1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run 11 // both before and after the DAG is legalized. 12 // 13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is 14 // primarily intended to handle simplification opportunities that are implicit 15 // in the LLVM IR and exposed by the various codegen lowering phases. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/SelectionDAG.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallBitVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetOptions.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "dagcombine" 45 46 STATISTIC(NodesCombined , "Number of dag nodes combined"); 47 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); 48 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); 49 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); 50 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); 51 STATISTIC(SlicedLoads, "Number of load sliced"); 52 53 namespace { 54 static cl::opt<bool> 55 CombinerAA("combiner-alias-analysis", cl::Hidden, 56 cl::desc("Enable DAG combiner alias-analysis heuristics")); 57 58 static cl::opt<bool> 59 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, 60 cl::desc("Enable DAG combiner's use of IR alias analysis")); 61 62 static cl::opt<bool> 63 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), 64 cl::desc("Enable DAG combiner's use of TBAA")); 65 66 #ifndef NDEBUG 67 static cl::opt<std::string> 68 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, 69 cl::desc("Only use DAG-combiner alias analysis in this" 70 " function")); 71 #endif 72 73 /// Hidden option to stress test load slicing, i.e., when this option 74 /// is enabled, load slicing bypasses most of its profitability guards. 75 static cl::opt<bool> 76 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, 77 cl::desc("Bypass the profitability model of load " 78 "slicing"), 79 cl::init(false)); 80 81 static cl::opt<bool> 82 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), 83 cl::desc("DAG combiner may split indexing from loads")); 84 85 //------------------------------ DAGCombiner ---------------------------------// 86 87 class DAGCombiner { 88 SelectionDAG &DAG; 89 const TargetLowering &TLI; 90 CombineLevel Level; 91 CodeGenOpt::Level OptLevel; 92 bool LegalOperations; 93 bool LegalTypes; 94 bool ForCodeSize; 95 96 /// \brief Worklist of all of the nodes that need to be simplified. 97 /// 98 /// This must behave as a stack -- new nodes to process are pushed onto the 99 /// back and when processing we pop off of the back. 100 /// 101 /// The worklist will not contain duplicates but may contain null entries 102 /// due to nodes being deleted from the underlying DAG. 103 SmallVector<SDNode *, 64> Worklist; 104 105 /// \brief Mapping from an SDNode to its position on the worklist. 106 /// 107 /// This is used to find and remove nodes from the worklist (by nulling 108 /// them) when they are deleted from the underlying DAG. It relies on 109 /// stable indices of nodes within the worklist. 110 DenseMap<SDNode *, unsigned> WorklistMap; 111 112 /// \brief Set of nodes which have been combined (at least once). 113 /// 114 /// This is used to allow us to reliably add any operands of a DAG node 115 /// which have not yet been combined to the worklist. 116 SmallPtrSet<SDNode *, 32> CombinedNodes; 117 118 // AA - Used for DAG load/store alias analysis. 119 AliasAnalysis &AA; 120 121 /// When an instruction is simplified, add all users of the instruction to 122 /// the work lists because they might get more simplified now. 123 void AddUsersToWorklist(SDNode *N) { 124 for (SDNode *Node : N->uses()) 125 AddToWorklist(Node); 126 } 127 128 /// Call the node-specific routine that folds each particular type of node. 129 SDValue visit(SDNode *N); 130 131 public: 132 /// Add to the worklist making sure its instance is at the back (next to be 133 /// processed.) 134 void AddToWorklist(SDNode *N) { 135 // Skip handle nodes as they can't usefully be combined and confuse the 136 // zero-use deletion strategy. 137 if (N->getOpcode() == ISD::HANDLENODE) 138 return; 139 140 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) 141 Worklist.push_back(N); 142 } 143 144 /// Remove all instances of N from the worklist. 145 void removeFromWorklist(SDNode *N) { 146 CombinedNodes.erase(N); 147 148 auto It = WorklistMap.find(N); 149 if (It == WorklistMap.end()) 150 return; // Not in the worklist. 151 152 // Null out the entry rather than erasing it to avoid a linear operation. 153 Worklist[It->second] = nullptr; 154 WorklistMap.erase(It); 155 } 156 157 void deleteAndRecombine(SDNode *N); 158 bool recursivelyDeleteUnusedNodes(SDNode *N); 159 160 /// Replaces all uses of the results of one DAG node with new values. 161 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 162 bool AddTo = true); 163 164 /// Replaces all uses of the results of one DAG node with new values. 165 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { 166 return CombineTo(N, &Res, 1, AddTo); 167 } 168 169 /// Replaces all uses of the results of one DAG node with new values. 170 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, 171 bool AddTo = true) { 172 SDValue To[] = { Res0, Res1 }; 173 return CombineTo(N, To, 2, AddTo); 174 } 175 176 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); 177 178 private: 179 180 /// Check the specified integer node value to see if it can be simplified or 181 /// if things it uses can be simplified by bit propagation. 182 /// If so, return true. 183 bool SimplifyDemandedBits(SDValue Op) { 184 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); 185 APInt Demanded = APInt::getAllOnesValue(BitWidth); 186 return SimplifyDemandedBits(Op, Demanded); 187 } 188 189 bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded); 190 191 bool CombineToPreIndexedLoadStore(SDNode *N); 192 bool CombineToPostIndexedLoadStore(SDNode *N); 193 SDValue SplitIndexingFromLoad(LoadSDNode *LD); 194 bool SliceUpLoad(SDNode *N); 195 196 /// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed 197 /// load. 198 /// 199 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. 200 /// \param InVecVT type of the input vector to EVE with bitcasts resolved. 201 /// \param EltNo index of the vector element to load. 202 /// \param OriginalLoad load that EVE came from to be replaced. 203 /// \returns EVE on success SDValue() on failure. 204 SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad( 205 SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad); 206 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); 207 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); 208 SDValue SExtPromoteOperand(SDValue Op, EVT PVT); 209 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); 210 SDValue PromoteIntBinOp(SDValue Op); 211 SDValue PromoteIntShiftOp(SDValue Op); 212 SDValue PromoteExtend(SDValue Op); 213 bool PromoteLoad(SDValue Op); 214 215 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 216 SDValue Trunc, SDValue ExtLoad, SDLoc DL, 217 ISD::NodeType ExtType); 218 219 /// Call the node-specific routine that knows how to fold each 220 /// particular type of node. If that doesn't do anything, try the 221 /// target-specific DAG combines. 222 SDValue combine(SDNode *N); 223 224 // Visitation implementation - Implement dag node combining for different 225 // node types. The semantics are as follows: 226 // Return Value: 227 // SDValue.getNode() == 0 - No change was made 228 // SDValue.getNode() == N - N was replaced, is dead and has been handled. 229 // otherwise - N should be replaced by the returned Operand. 230 // 231 SDValue visitTokenFactor(SDNode *N); 232 SDValue visitMERGE_VALUES(SDNode *N); 233 SDValue visitADD(SDNode *N); 234 SDValue visitSUB(SDNode *N); 235 SDValue visitADDC(SDNode *N); 236 SDValue visitSUBC(SDNode *N); 237 SDValue visitADDE(SDNode *N); 238 SDValue visitSUBE(SDNode *N); 239 SDValue visitMUL(SDNode *N); 240 SDValue useDivRem(SDNode *N); 241 SDValue visitSDIV(SDNode *N); 242 SDValue visitUDIV(SDNode *N); 243 SDValue visitREM(SDNode *N); 244 SDValue visitMULHU(SDNode *N); 245 SDValue visitMULHS(SDNode *N); 246 SDValue visitSMUL_LOHI(SDNode *N); 247 SDValue visitUMUL_LOHI(SDNode *N); 248 SDValue visitSMULO(SDNode *N); 249 SDValue visitUMULO(SDNode *N); 250 SDValue visitIMINMAX(SDNode *N); 251 SDValue visitAND(SDNode *N); 252 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *LocReference); 253 SDValue visitOR(SDNode *N); 254 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *LocReference); 255 SDValue visitXOR(SDNode *N); 256 SDValue SimplifyVBinOp(SDNode *N); 257 SDValue visitSHL(SDNode *N); 258 SDValue visitSRA(SDNode *N); 259 SDValue visitSRL(SDNode *N); 260 SDValue visitRotate(SDNode *N); 261 SDValue visitBSWAP(SDNode *N); 262 SDValue visitBITREVERSE(SDNode *N); 263 SDValue visitCTLZ(SDNode *N); 264 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); 265 SDValue visitCTTZ(SDNode *N); 266 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); 267 SDValue visitCTPOP(SDNode *N); 268 SDValue visitSELECT(SDNode *N); 269 SDValue visitVSELECT(SDNode *N); 270 SDValue visitSELECT_CC(SDNode *N); 271 SDValue visitSETCC(SDNode *N); 272 SDValue visitSETCCE(SDNode *N); 273 SDValue visitSIGN_EXTEND(SDNode *N); 274 SDValue visitZERO_EXTEND(SDNode *N); 275 SDValue visitANY_EXTEND(SDNode *N); 276 SDValue visitSIGN_EXTEND_INREG(SDNode *N); 277 SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); 278 SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N); 279 SDValue visitTRUNCATE(SDNode *N); 280 SDValue visitBITCAST(SDNode *N); 281 SDValue visitBUILD_PAIR(SDNode *N); 282 SDValue visitFADD(SDNode *N); 283 SDValue visitFSUB(SDNode *N); 284 SDValue visitFMUL(SDNode *N); 285 SDValue visitFMA(SDNode *N); 286 SDValue visitFDIV(SDNode *N); 287 SDValue visitFREM(SDNode *N); 288 SDValue visitFSQRT(SDNode *N); 289 SDValue visitFCOPYSIGN(SDNode *N); 290 SDValue visitSINT_TO_FP(SDNode *N); 291 SDValue visitUINT_TO_FP(SDNode *N); 292 SDValue visitFP_TO_SINT(SDNode *N); 293 SDValue visitFP_TO_UINT(SDNode *N); 294 SDValue visitFP_ROUND(SDNode *N); 295 SDValue visitFP_ROUND_INREG(SDNode *N); 296 SDValue visitFP_EXTEND(SDNode *N); 297 SDValue visitFNEG(SDNode *N); 298 SDValue visitFABS(SDNode *N); 299 SDValue visitFCEIL(SDNode *N); 300 SDValue visitFTRUNC(SDNode *N); 301 SDValue visitFFLOOR(SDNode *N); 302 SDValue visitFMINNUM(SDNode *N); 303 SDValue visitFMAXNUM(SDNode *N); 304 SDValue visitBRCOND(SDNode *N); 305 SDValue visitBR_CC(SDNode *N); 306 SDValue visitLOAD(SDNode *N); 307 308 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); 309 SDValue replaceStoreOfFPConstant(StoreSDNode *ST); 310 311 SDValue visitSTORE(SDNode *N); 312 SDValue visitINSERT_VECTOR_ELT(SDNode *N); 313 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); 314 SDValue visitBUILD_VECTOR(SDNode *N); 315 SDValue visitCONCAT_VECTORS(SDNode *N); 316 SDValue visitEXTRACT_SUBVECTOR(SDNode *N); 317 SDValue visitVECTOR_SHUFFLE(SDNode *N); 318 SDValue visitSCALAR_TO_VECTOR(SDNode *N); 319 SDValue visitINSERT_SUBVECTOR(SDNode *N); 320 SDValue visitMLOAD(SDNode *N); 321 SDValue visitMSTORE(SDNode *N); 322 SDValue visitMGATHER(SDNode *N); 323 SDValue visitMSCATTER(SDNode *N); 324 SDValue visitFP_TO_FP16(SDNode *N); 325 SDValue visitFP16_TO_FP(SDNode *N); 326 327 SDValue visitFADDForFMACombine(SDNode *N); 328 SDValue visitFSUBForFMACombine(SDNode *N); 329 SDValue visitFMULForFMACombine(SDNode *N); 330 331 SDValue XformToShuffleWithZero(SDNode *N); 332 SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS); 333 334 SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt); 335 336 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); 337 SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N); 338 SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2); 339 SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2, 340 SDValue N3, ISD::CondCode CC, 341 bool NotExtCompare = false); 342 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 343 SDLoc DL, bool foldBooleans = true); 344 345 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 346 SDValue &CC) const; 347 bool isOneUseSetCC(SDValue N) const; 348 349 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 350 unsigned HiOp); 351 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); 352 SDValue CombineExtLoad(SDNode *N); 353 SDValue combineRepeatedFPDivisors(SDNode *N); 354 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); 355 SDValue BuildSDIV(SDNode *N); 356 SDValue BuildSDIVPow2(SDNode *N); 357 SDValue BuildUDIV(SDNode *N); 358 SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags); 359 SDValue BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags); 360 SDValue BuildRsqrtNROneConst(SDValue Op, SDValue Est, unsigned Iterations, 361 SDNodeFlags *Flags); 362 SDValue BuildRsqrtNRTwoConst(SDValue Op, SDValue Est, unsigned Iterations, 363 SDNodeFlags *Flags); 364 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 365 bool DemandHighBits = true); 366 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); 367 SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, 368 SDValue InnerPos, SDValue InnerNeg, 369 unsigned PosOpcode, unsigned NegOpcode, 370 SDLoc DL); 371 SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL); 372 SDValue ReduceLoadWidth(SDNode *N); 373 SDValue ReduceLoadOpStoreWidth(SDNode *N); 374 SDValue TransformFPLoadStorePair(SDNode *N); 375 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); 376 SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N); 377 378 SDValue GetDemandedBits(SDValue V, const APInt &Mask); 379 380 /// Walk up chain skipping non-aliasing memory nodes, 381 /// looking for aliasing nodes and adding them to the Aliases vector. 382 void GatherAllAliases(SDNode *N, SDValue OriginalChain, 383 SmallVectorImpl<SDValue> &Aliases); 384 385 /// Return true if there is any possibility that the two addresses overlap. 386 bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const; 387 388 /// Walk up chain skipping non-aliasing memory nodes, looking for a better 389 /// chain (aliasing node.) 390 SDValue FindBetterChain(SDNode *N, SDValue Chain); 391 392 /// Do FindBetterChain for a store and any possibly adjacent stores on 393 /// consecutive chains. 394 bool findBetterNeighborChains(StoreSDNode *St); 395 396 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 397 bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask); 398 399 /// Holds a pointer to an LSBaseSDNode as well as information on where it 400 /// is located in a sequence of memory operations connected by a chain. 401 struct MemOpLink { 402 MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq): 403 MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { } 404 // Ptr to the mem node. 405 LSBaseSDNode *MemNode; 406 // Offset from the base ptr. 407 int64_t OffsetFromBase; 408 // What is the sequence number of this mem node. 409 // Lowest mem operand in the DAG starts at zero. 410 unsigned SequenceNum; 411 }; 412 413 /// This is a helper function for visitMUL to check the profitability 414 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 415 /// MulNode is the original multiply, AddNode is (add x, c1), 416 /// and ConstNode is c2. 417 bool isMulAddWithConstProfitable(SDNode *MulNode, 418 SDValue &AddNode, 419 SDValue &ConstNode); 420 421 /// This is a helper function for MergeStoresOfConstantsOrVecElts. Returns a 422 /// constant build_vector of the stored constant values in Stores. 423 SDValue getMergedConstantVectorStore(SelectionDAG &DAG, 424 SDLoc SL, 425 ArrayRef<MemOpLink> Stores, 426 SmallVectorImpl<SDValue> &Chains, 427 EVT Ty) const; 428 429 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns 430 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns 431 /// the type of the loaded value to be extended. LoadedVT returns the type 432 /// of the original loaded value. NarrowLoad returns whether the load would 433 /// need to be narrowed in order to match. 434 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 435 EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT, 436 bool &NarrowLoad); 437 438 /// This is a helper function for MergeConsecutiveStores. When the source 439 /// elements of the consecutive stores are all constants or all extracted 440 /// vector elements, try to merge them into one larger store. 441 /// \return True if a merged store was created. 442 bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, 443 EVT MemVT, unsigned NumStores, 444 bool IsConstantSrc, bool UseVector); 445 446 /// This is a helper function for MergeConsecutiveStores. 447 /// Stores that may be merged are placed in StoreNodes. 448 /// Loads that may alias with those stores are placed in AliasLoadNodes. 449 void getStoreMergeAndAliasCandidates( 450 StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes, 451 SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes); 452 453 /// Helper function for MergeConsecutiveStores. Checks if 454 /// Candidate stores have indirect dependency through their 455 /// operands. \return True if safe to merge 456 bool checkMergeStoreCandidatesForDependencies( 457 SmallVectorImpl<MemOpLink> &StoreNodes); 458 459 /// Merge consecutive store operations into a wide store. 460 /// This optimization uses wide integers or vectors when possible. 461 /// \return True if some memory operations were changed. 462 bool MergeConsecutiveStores(StoreSDNode *N); 463 464 /// \brief Try to transform a truncation where C is a constant: 465 /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) 466 /// 467 /// \p N needs to be a truncation and its first operand an AND. Other 468 /// requirements are checked by the function (e.g. that trunc is 469 /// single-use) and if missed an empty SDValue is returned. 470 SDValue distributeTruncateThroughAnd(SDNode *N); 471 472 public: 473 DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL) 474 : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), 475 OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) { 476 ForCodeSize = DAG.getMachineFunction().getFunction()->optForSize(); 477 } 478 479 /// Runs the dag combiner on all nodes in the work list 480 void Run(CombineLevel AtLevel); 481 482 SelectionDAG &getDAG() const { return DAG; } 483 484 /// Returns a type large enough to hold any valid shift amount - before type 485 /// legalization these can be huge. 486 EVT getShiftAmountTy(EVT LHSTy) { 487 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 488 if (LHSTy.isVector()) 489 return LHSTy; 490 auto &DL = DAG.getDataLayout(); 491 return LegalTypes ? TLI.getScalarShiftAmountTy(DL, LHSTy) 492 : TLI.getPointerTy(DL); 493 } 494 495 /// This method returns true if we are running before type legalization or 496 /// if the specified VT is legal. 497 bool isTypeLegal(const EVT &VT) { 498 if (!LegalTypes) return true; 499 return TLI.isTypeLegal(VT); 500 } 501 502 /// Convenience wrapper around TargetLowering::getSetCCResultType 503 EVT getSetCCResultType(EVT VT) const { 504 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 505 } 506 }; 507 } 508 509 510 namespace { 511 /// This class is a DAGUpdateListener that removes any deleted 512 /// nodes from the worklist. 513 class WorklistRemover : public SelectionDAG::DAGUpdateListener { 514 DAGCombiner &DC; 515 public: 516 explicit WorklistRemover(DAGCombiner &dc) 517 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 518 519 void NodeDeleted(SDNode *N, SDNode *E) override { 520 DC.removeFromWorklist(N); 521 } 522 }; 523 } 524 525 //===----------------------------------------------------------------------===// 526 // TargetLowering::DAGCombinerInfo implementation 527 //===----------------------------------------------------------------------===// 528 529 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { 530 ((DAGCombiner*)DC)->AddToWorklist(N); 531 } 532 533 void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) { 534 ((DAGCombiner*)DC)->removeFromWorklist(N); 535 } 536 537 SDValue TargetLowering::DAGCombinerInfo:: 538 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { 539 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); 540 } 541 542 SDValue TargetLowering::DAGCombinerInfo:: 543 CombineTo(SDNode *N, SDValue Res, bool AddTo) { 544 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); 545 } 546 547 548 SDValue TargetLowering::DAGCombinerInfo:: 549 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { 550 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); 551 } 552 553 void TargetLowering::DAGCombinerInfo:: 554 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 555 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); 556 } 557 558 //===----------------------------------------------------------------------===// 559 // Helper Functions 560 //===----------------------------------------------------------------------===// 561 562 void DAGCombiner::deleteAndRecombine(SDNode *N) { 563 removeFromWorklist(N); 564 565 // If the operands of this node are only used by the node, they will now be 566 // dead. Make sure to re-visit them and recursively delete dead nodes. 567 for (const SDValue &Op : N->ops()) 568 // For an operand generating multiple values, one of the values may 569 // become dead allowing further simplification (e.g. split index 570 // arithmetic from an indexed load). 571 if (Op->hasOneUse() || Op->getNumValues() > 1) 572 AddToWorklist(Op.getNode()); 573 574 DAG.DeleteNode(N); 575 } 576 577 /// Return 1 if we can compute the negated form of the specified expression for 578 /// the same cost as the expression itself, or 2 if we can compute the negated 579 /// form more cheaply than the expression itself. 580 static char isNegatibleForFree(SDValue Op, bool LegalOperations, 581 const TargetLowering &TLI, 582 const TargetOptions *Options, 583 unsigned Depth = 0) { 584 // fneg is removable even if it has multiple uses. 585 if (Op.getOpcode() == ISD::FNEG) return 2; 586 587 // Don't allow anything with multiple uses. 588 if (!Op.hasOneUse()) return 0; 589 590 // Don't recurse exponentially. 591 if (Depth > 6) return 0; 592 593 switch (Op.getOpcode()) { 594 default: return false; 595 case ISD::ConstantFP: 596 // Don't invert constant FP values after legalize. The negated constant 597 // isn't necessarily legal. 598 return LegalOperations ? 0 : 1; 599 case ISD::FADD: 600 // FIXME: determine better conditions for this xform. 601 if (!Options->UnsafeFPMath) return 0; 602 603 // After operation legalization, it might not be legal to create new FSUBs. 604 if (LegalOperations && 605 !TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) 606 return 0; 607 608 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 609 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 610 Options, Depth + 1)) 611 return V; 612 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 613 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 614 Depth + 1); 615 case ISD::FSUB: 616 // We can't turn -(A-B) into B-A when we honor signed zeros. 617 if (!Options->UnsafeFPMath) return 0; 618 619 // fold (fneg (fsub A, B)) -> (fsub B, A) 620 return 1; 621 622 case ISD::FMUL: 623 case ISD::FDIV: 624 if (Options->HonorSignDependentRoundingFPMath()) return 0; 625 626 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 627 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 628 Options, Depth + 1)) 629 return V; 630 631 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 632 Depth + 1); 633 634 case ISD::FP_EXTEND: 635 case ISD::FP_ROUND: 636 case ISD::FSIN: 637 return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options, 638 Depth + 1); 639 } 640 } 641 642 /// If isNegatibleForFree returns true, return the newly negated expression. 643 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, 644 bool LegalOperations, unsigned Depth = 0) { 645 const TargetOptions &Options = DAG.getTarget().Options; 646 // fneg is removable even if it has multiple uses. 647 if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); 648 649 // Don't allow anything with multiple uses. 650 assert(Op.hasOneUse() && "Unknown reuse!"); 651 652 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); 653 654 const SDNodeFlags *Flags = Op.getNode()->getFlags(); 655 656 switch (Op.getOpcode()) { 657 default: llvm_unreachable("Unknown code"); 658 case ISD::ConstantFP: { 659 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 660 V.changeSign(); 661 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 662 } 663 case ISD::FADD: 664 // FIXME: determine better conditions for this xform. 665 assert(Options.UnsafeFPMath); 666 667 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 668 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 669 DAG.getTargetLoweringInfo(), &Options, Depth+1)) 670 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 671 GetNegatedExpression(Op.getOperand(0), DAG, 672 LegalOperations, Depth+1), 673 Op.getOperand(1), Flags); 674 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 675 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 676 GetNegatedExpression(Op.getOperand(1), DAG, 677 LegalOperations, Depth+1), 678 Op.getOperand(0), Flags); 679 case ISD::FSUB: 680 // We can't turn -(A-B) into B-A when we honor signed zeros. 681 assert(Options.UnsafeFPMath); 682 683 // fold (fneg (fsub 0, B)) -> B 684 if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0))) 685 if (N0CFP->isZero()) 686 return Op.getOperand(1); 687 688 // fold (fneg (fsub A, B)) -> (fsub B, A) 689 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 690 Op.getOperand(1), Op.getOperand(0), Flags); 691 692 case ISD::FMUL: 693 case ISD::FDIV: 694 assert(!Options.HonorSignDependentRoundingFPMath()); 695 696 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 697 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 698 DAG.getTargetLoweringInfo(), &Options, Depth+1)) 699 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 700 GetNegatedExpression(Op.getOperand(0), DAG, 701 LegalOperations, Depth+1), 702 Op.getOperand(1), Flags); 703 704 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 705 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 706 Op.getOperand(0), 707 GetNegatedExpression(Op.getOperand(1), DAG, 708 LegalOperations, Depth+1), Flags); 709 710 case ISD::FP_EXTEND: 711 case ISD::FSIN: 712 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 713 GetNegatedExpression(Op.getOperand(0), DAG, 714 LegalOperations, Depth+1)); 715 case ISD::FP_ROUND: 716 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 717 GetNegatedExpression(Op.getOperand(0), DAG, 718 LegalOperations, Depth+1), 719 Op.getOperand(1)); 720 } 721 } 722 723 // Return true if this node is a setcc, or is a select_cc 724 // that selects between the target values used for true and false, making it 725 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to 726 // the appropriate nodes based on the type of node we are checking. This 727 // simplifies life a bit for the callers. 728 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 729 SDValue &CC) const { 730 if (N.getOpcode() == ISD::SETCC) { 731 LHS = N.getOperand(0); 732 RHS = N.getOperand(1); 733 CC = N.getOperand(2); 734 return true; 735 } 736 737 if (N.getOpcode() != ISD::SELECT_CC || 738 !TLI.isConstTrueVal(N.getOperand(2).getNode()) || 739 !TLI.isConstFalseVal(N.getOperand(3).getNode())) 740 return false; 741 742 if (TLI.getBooleanContents(N.getValueType()) == 743 TargetLowering::UndefinedBooleanContent) 744 return false; 745 746 LHS = N.getOperand(0); 747 RHS = N.getOperand(1); 748 CC = N.getOperand(4); 749 return true; 750 } 751 752 /// Return true if this is a SetCC-equivalent operation with only one use. 753 /// If this is true, it allows the users to invert the operation for free when 754 /// it is profitable to do so. 755 bool DAGCombiner::isOneUseSetCC(SDValue N) const { 756 SDValue N0, N1, N2; 757 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) 758 return true; 759 return false; 760 } 761 762 /// Returns true if N is a BUILD_VECTOR node whose 763 /// elements are all the same constant or undefined. 764 static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) { 765 BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N); 766 if (!C) 767 return false; 768 769 APInt SplatUndef; 770 unsigned SplatBitSize; 771 bool HasAnyUndefs; 772 EVT EltVT = N->getValueType(0).getVectorElementType(); 773 return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 774 HasAnyUndefs) && 775 EltVT.getSizeInBits() >= SplatBitSize); 776 } 777 778 // \brief Returns the SDNode if it is a constant float BuildVector 779 // or constant float. 780 static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { 781 if (isa<ConstantFPSDNode>(N)) 782 return N.getNode(); 783 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 784 return N.getNode(); 785 return nullptr; 786 } 787 788 // \brief Returns the SDNode if it is a constant splat BuildVector or constant 789 // int. 790 static ConstantSDNode *isConstOrConstSplat(SDValue N) { 791 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 792 return CN; 793 794 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 795 BitVector UndefElements; 796 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 797 798 // BuildVectors can truncate their operands. Ignore that case here. 799 // FIXME: We blindly ignore splats which include undef which is overly 800 // pessimistic. 801 if (CN && UndefElements.none() && 802 CN->getValueType(0) == N.getValueType().getScalarType()) 803 return CN; 804 } 805 806 return nullptr; 807 } 808 809 // \brief Returns the SDNode if it is a constant splat BuildVector or constant 810 // float. 811 static ConstantFPSDNode *isConstOrConstSplatFP(SDValue N) { 812 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 813 return CN; 814 815 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 816 BitVector UndefElements; 817 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 818 819 if (CN && UndefElements.none()) 820 return CN; 821 } 822 823 return nullptr; 824 } 825 826 SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL, 827 SDValue N0, SDValue N1) { 828 EVT VT = N0.getValueType(); 829 if (N0.getOpcode() == Opc) { 830 if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { 831 if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1)) { 832 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) 833 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R)) 834 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); 835 return SDValue(); 836 } 837 if (N0.hasOneUse()) { 838 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one 839 // use 840 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); 841 if (!OpNode.getNode()) 842 return SDValue(); 843 AddToWorklist(OpNode.getNode()); 844 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); 845 } 846 } 847 } 848 849 if (N1.getOpcode() == Opc) { 850 if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) { 851 if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 852 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) 853 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L)) 854 return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode); 855 return SDValue(); 856 } 857 if (N1.hasOneUse()) { 858 // reassoc. (op x, (op y, c1)) -> (op (op x, y), c1) iff x+c1 has one 859 // use 860 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0, N1.getOperand(0)); 861 if (!OpNode.getNode()) 862 return SDValue(); 863 AddToWorklist(OpNode.getNode()); 864 return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1)); 865 } 866 } 867 } 868 869 return SDValue(); 870 } 871 872 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 873 bool AddTo) { 874 assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); 875 ++NodesCombined; 876 DEBUG(dbgs() << "\nReplacing.1 "; 877 N->dump(&DAG); 878 dbgs() << "\nWith: "; 879 To[0].getNode()->dump(&DAG); 880 dbgs() << " and " << NumTo-1 << " other values\n"); 881 for (unsigned i = 0, e = NumTo; i != e; ++i) 882 assert((!To[i].getNode() || 883 N->getValueType(i) == To[i].getValueType()) && 884 "Cannot combine value to value of different type!"); 885 886 WorklistRemover DeadNodes(*this); 887 DAG.ReplaceAllUsesWith(N, To); 888 if (AddTo) { 889 // Push the new nodes and any users onto the worklist 890 for (unsigned i = 0, e = NumTo; i != e; ++i) { 891 if (To[i].getNode()) { 892 AddToWorklist(To[i].getNode()); 893 AddUsersToWorklist(To[i].getNode()); 894 } 895 } 896 } 897 898 // Finally, if the node is now dead, remove it from the graph. The node 899 // may not be dead if the replacement process recursively simplified to 900 // something else needing this node. 901 if (N->use_empty()) 902 deleteAndRecombine(N); 903 return SDValue(N, 0); 904 } 905 906 void DAGCombiner:: 907 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 908 // Replace all uses. If any nodes become isomorphic to other nodes and 909 // are deleted, make sure to remove them from our worklist. 910 WorklistRemover DeadNodes(*this); 911 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); 912 913 // Push the new node and any (possibly new) users onto the worklist. 914 AddToWorklist(TLO.New.getNode()); 915 AddUsersToWorklist(TLO.New.getNode()); 916 917 // Finally, if the node is now dead, remove it from the graph. The node 918 // may not be dead if the replacement process recursively simplified to 919 // something else needing this node. 920 if (TLO.Old.getNode()->use_empty()) 921 deleteAndRecombine(TLO.Old.getNode()); 922 } 923 924 /// Check the specified integer node value to see if it can be simplified or if 925 /// things it uses can be simplified by bit propagation. If so, return true. 926 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) { 927 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 928 APInt KnownZero, KnownOne; 929 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 930 return false; 931 932 // Revisit the node. 933 AddToWorklist(Op.getNode()); 934 935 // Replace the old value with the new one. 936 ++NodesCombined; 937 DEBUG(dbgs() << "\nReplacing.2 "; 938 TLO.Old.getNode()->dump(&DAG); 939 dbgs() << "\nWith: "; 940 TLO.New.getNode()->dump(&DAG); 941 dbgs() << '\n'); 942 943 CommitTargetLoweringOpt(TLO); 944 return true; 945 } 946 947 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { 948 SDLoc dl(Load); 949 EVT VT = Load->getValueType(0); 950 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0)); 951 952 DEBUG(dbgs() << "\nReplacing.9 "; 953 Load->dump(&DAG); 954 dbgs() << "\nWith: "; 955 Trunc.getNode()->dump(&DAG); 956 dbgs() << '\n'); 957 WorklistRemover DeadNodes(*this); 958 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); 959 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); 960 deleteAndRecombine(Load); 961 AddToWorklist(Trunc.getNode()); 962 } 963 964 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { 965 Replace = false; 966 SDLoc dl(Op); 967 if (ISD::isUNINDEXEDLoad(Op.getNode())) { 968 LoadSDNode *LD = cast<LoadSDNode>(Op); 969 EVT MemVT = LD->getMemoryVT(); 970 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) 971 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD 972 : ISD::EXTLOAD) 973 : LD->getExtensionType(); 974 Replace = true; 975 return DAG.getExtLoad(ExtType, dl, PVT, 976 LD->getChain(), LD->getBasePtr(), 977 MemVT, LD->getMemOperand()); 978 } 979 980 unsigned Opc = Op.getOpcode(); 981 switch (Opc) { 982 default: break; 983 case ISD::AssertSext: 984 return DAG.getNode(ISD::AssertSext, dl, PVT, 985 SExtPromoteOperand(Op.getOperand(0), PVT), 986 Op.getOperand(1)); 987 case ISD::AssertZext: 988 return DAG.getNode(ISD::AssertZext, dl, PVT, 989 ZExtPromoteOperand(Op.getOperand(0), PVT), 990 Op.getOperand(1)); 991 case ISD::Constant: { 992 unsigned ExtOpc = 993 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 994 return DAG.getNode(ExtOpc, dl, PVT, Op); 995 } 996 } 997 998 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) 999 return SDValue(); 1000 return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op); 1001 } 1002 1003 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { 1004 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) 1005 return SDValue(); 1006 EVT OldVT = Op.getValueType(); 1007 SDLoc dl(Op); 1008 bool Replace = false; 1009 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1010 if (!NewOp.getNode()) 1011 return SDValue(); 1012 AddToWorklist(NewOp.getNode()); 1013 1014 if (Replace) 1015 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1016 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp, 1017 DAG.getValueType(OldVT)); 1018 } 1019 1020 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { 1021 EVT OldVT = Op.getValueType(); 1022 SDLoc dl(Op); 1023 bool Replace = false; 1024 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1025 if (!NewOp.getNode()) 1026 return SDValue(); 1027 AddToWorklist(NewOp.getNode()); 1028 1029 if (Replace) 1030 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1031 return DAG.getZeroExtendInReg(NewOp, dl, OldVT); 1032 } 1033 1034 /// Promote the specified integer binary operation if the target indicates it is 1035 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1036 /// i32 since i16 instructions are longer. 1037 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { 1038 if (!LegalOperations) 1039 return SDValue(); 1040 1041 EVT VT = Op.getValueType(); 1042 if (VT.isVector() || !VT.isInteger()) 1043 return SDValue(); 1044 1045 // If operation type is 'undesirable', e.g. i16 on x86, consider 1046 // promoting it. 1047 unsigned Opc = Op.getOpcode(); 1048 if (TLI.isTypeDesirableForOp(Opc, VT)) 1049 return SDValue(); 1050 1051 EVT PVT = VT; 1052 // Consult target whether it is a good idea to promote this operation and 1053 // what's the right type to promote it to. 1054 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1055 assert(PVT != VT && "Don't know what type to promote to!"); 1056 1057 bool Replace0 = false; 1058 SDValue N0 = Op.getOperand(0); 1059 SDValue NN0 = PromoteOperand(N0, PVT, Replace0); 1060 if (!NN0.getNode()) 1061 return SDValue(); 1062 1063 bool Replace1 = false; 1064 SDValue N1 = Op.getOperand(1); 1065 SDValue NN1; 1066 if (N0 == N1) 1067 NN1 = NN0; 1068 else { 1069 NN1 = PromoteOperand(N1, PVT, Replace1); 1070 if (!NN1.getNode()) 1071 return SDValue(); 1072 } 1073 1074 AddToWorklist(NN0.getNode()); 1075 if (NN1.getNode()) 1076 AddToWorklist(NN1.getNode()); 1077 1078 if (Replace0) 1079 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); 1080 if (Replace1) 1081 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); 1082 1083 DEBUG(dbgs() << "\nPromoting "; 1084 Op.getNode()->dump(&DAG)); 1085 SDLoc dl(Op); 1086 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1087 DAG.getNode(Opc, dl, PVT, NN0, NN1)); 1088 } 1089 return SDValue(); 1090 } 1091 1092 /// Promote the specified integer shift operation if the target indicates it is 1093 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1094 /// i32 since i16 instructions are longer. 1095 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { 1096 if (!LegalOperations) 1097 return SDValue(); 1098 1099 EVT VT = Op.getValueType(); 1100 if (VT.isVector() || !VT.isInteger()) 1101 return SDValue(); 1102 1103 // If operation type is 'undesirable', e.g. i16 on x86, consider 1104 // promoting it. 1105 unsigned Opc = Op.getOpcode(); 1106 if (TLI.isTypeDesirableForOp(Opc, VT)) 1107 return SDValue(); 1108 1109 EVT PVT = VT; 1110 // Consult target whether it is a good idea to promote this operation and 1111 // what's the right type to promote it to. 1112 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1113 assert(PVT != VT && "Don't know what type to promote to!"); 1114 1115 bool Replace = false; 1116 SDValue N0 = Op.getOperand(0); 1117 if (Opc == ISD::SRA) 1118 N0 = SExtPromoteOperand(Op.getOperand(0), PVT); 1119 else if (Opc == ISD::SRL) 1120 N0 = ZExtPromoteOperand(Op.getOperand(0), PVT); 1121 else 1122 N0 = PromoteOperand(N0, PVT, Replace); 1123 if (!N0.getNode()) 1124 return SDValue(); 1125 1126 AddToWorklist(N0.getNode()); 1127 if (Replace) 1128 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); 1129 1130 DEBUG(dbgs() << "\nPromoting "; 1131 Op.getNode()->dump(&DAG)); 1132 SDLoc dl(Op); 1133 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1134 DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1))); 1135 } 1136 return SDValue(); 1137 } 1138 1139 SDValue DAGCombiner::PromoteExtend(SDValue Op) { 1140 if (!LegalOperations) 1141 return SDValue(); 1142 1143 EVT VT = Op.getValueType(); 1144 if (VT.isVector() || !VT.isInteger()) 1145 return SDValue(); 1146 1147 // If operation type is 'undesirable', e.g. i16 on x86, consider 1148 // promoting it. 1149 unsigned Opc = Op.getOpcode(); 1150 if (TLI.isTypeDesirableForOp(Opc, VT)) 1151 return SDValue(); 1152 1153 EVT PVT = VT; 1154 // Consult target whether it is a good idea to promote this operation and 1155 // what's the right type to promote it to. 1156 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1157 assert(PVT != VT && "Don't know what type to promote to!"); 1158 // fold (aext (aext x)) -> (aext x) 1159 // fold (aext (zext x)) -> (zext x) 1160 // fold (aext (sext x)) -> (sext x) 1161 DEBUG(dbgs() << "\nPromoting "; 1162 Op.getNode()->dump(&DAG)); 1163 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); 1164 } 1165 return SDValue(); 1166 } 1167 1168 bool DAGCombiner::PromoteLoad(SDValue Op) { 1169 if (!LegalOperations) 1170 return false; 1171 1172 if (!ISD::isUNINDEXEDLoad(Op.getNode())) 1173 return false; 1174 1175 EVT VT = Op.getValueType(); 1176 if (VT.isVector() || !VT.isInteger()) 1177 return false; 1178 1179 // If operation type is 'undesirable', e.g. i16 on x86, consider 1180 // promoting it. 1181 unsigned Opc = Op.getOpcode(); 1182 if (TLI.isTypeDesirableForOp(Opc, VT)) 1183 return false; 1184 1185 EVT PVT = VT; 1186 // Consult target whether it is a good idea to promote this operation and 1187 // what's the right type to promote it to. 1188 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1189 assert(PVT != VT && "Don't know what type to promote to!"); 1190 1191 SDLoc dl(Op); 1192 SDNode *N = Op.getNode(); 1193 LoadSDNode *LD = cast<LoadSDNode>(N); 1194 EVT MemVT = LD->getMemoryVT(); 1195 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) 1196 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD 1197 : ISD::EXTLOAD) 1198 : LD->getExtensionType(); 1199 SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT, 1200 LD->getChain(), LD->getBasePtr(), 1201 MemVT, LD->getMemOperand()); 1202 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD); 1203 1204 DEBUG(dbgs() << "\nPromoting "; 1205 N->dump(&DAG); 1206 dbgs() << "\nTo: "; 1207 Result.getNode()->dump(&DAG); 1208 dbgs() << '\n'); 1209 WorklistRemover DeadNodes(*this); 1210 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1211 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); 1212 deleteAndRecombine(N); 1213 AddToWorklist(Result.getNode()); 1214 return true; 1215 } 1216 return false; 1217 } 1218 1219 /// \brief Recursively delete a node which has no uses and any operands for 1220 /// which it is the only use. 1221 /// 1222 /// Note that this both deletes the nodes and removes them from the worklist. 1223 /// It also adds any nodes who have had a user deleted to the worklist as they 1224 /// may now have only one use and subject to other combines. 1225 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { 1226 if (!N->use_empty()) 1227 return false; 1228 1229 SmallSetVector<SDNode *, 16> Nodes; 1230 Nodes.insert(N); 1231 do { 1232 N = Nodes.pop_back_val(); 1233 if (!N) 1234 continue; 1235 1236 if (N->use_empty()) { 1237 for (const SDValue &ChildN : N->op_values()) 1238 Nodes.insert(ChildN.getNode()); 1239 1240 removeFromWorklist(N); 1241 DAG.DeleteNode(N); 1242 } else { 1243 AddToWorklist(N); 1244 } 1245 } while (!Nodes.empty()); 1246 return true; 1247 } 1248 1249 //===----------------------------------------------------------------------===// 1250 // Main DAG Combiner implementation 1251 //===----------------------------------------------------------------------===// 1252 1253 void DAGCombiner::Run(CombineLevel AtLevel) { 1254 // set the instance variables, so that the various visit routines may use it. 1255 Level = AtLevel; 1256 LegalOperations = Level >= AfterLegalizeVectorOps; 1257 LegalTypes = Level >= AfterLegalizeTypes; 1258 1259 // Add all the dag nodes to the worklist. 1260 for (SDNode &Node : DAG.allnodes()) 1261 AddToWorklist(&Node); 1262 1263 // Create a dummy node (which is not added to allnodes), that adds a reference 1264 // to the root node, preventing it from being deleted, and tracking any 1265 // changes of the root. 1266 HandleSDNode Dummy(DAG.getRoot()); 1267 1268 // While the worklist isn't empty, find a node and try to combine it. 1269 while (!WorklistMap.empty()) { 1270 SDNode *N; 1271 // The Worklist holds the SDNodes in order, but it may contain null entries. 1272 do { 1273 N = Worklist.pop_back_val(); 1274 } while (!N); 1275 1276 bool GoodWorklistEntry = WorklistMap.erase(N); 1277 (void)GoodWorklistEntry; 1278 assert(GoodWorklistEntry && 1279 "Found a worklist entry without a corresponding map entry!"); 1280 1281 // If N has no uses, it is dead. Make sure to revisit all N's operands once 1282 // N is deleted from the DAG, since they too may now be dead or may have a 1283 // reduced number of uses, allowing other xforms. 1284 if (recursivelyDeleteUnusedNodes(N)) 1285 continue; 1286 1287 WorklistRemover DeadNodes(*this); 1288 1289 // If this combine is running after legalizing the DAG, re-legalize any 1290 // nodes pulled off the worklist. 1291 if (Level == AfterLegalizeDAG) { 1292 SmallSetVector<SDNode *, 16> UpdatedNodes; 1293 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); 1294 1295 for (SDNode *LN : UpdatedNodes) { 1296 AddToWorklist(LN); 1297 AddUsersToWorklist(LN); 1298 } 1299 if (!NIsValid) 1300 continue; 1301 } 1302 1303 DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); 1304 1305 // Add any operands of the new node which have not yet been combined to the 1306 // worklist as well. Because the worklist uniques things already, this 1307 // won't repeatedly process the same operand. 1308 CombinedNodes.insert(N); 1309 for (const SDValue &ChildN : N->op_values()) 1310 if (!CombinedNodes.count(ChildN.getNode())) 1311 AddToWorklist(ChildN.getNode()); 1312 1313 SDValue RV = combine(N); 1314 1315 if (!RV.getNode()) 1316 continue; 1317 1318 ++NodesCombined; 1319 1320 // If we get back the same node we passed in, rather than a new node or 1321 // zero, we know that the node must have defined multiple values and 1322 // CombineTo was used. Since CombineTo takes care of the worklist 1323 // mechanics for us, we have no work to do in this case. 1324 if (RV.getNode() == N) 1325 continue; 1326 1327 assert(N->getOpcode() != ISD::DELETED_NODE && 1328 RV.getNode()->getOpcode() != ISD::DELETED_NODE && 1329 "Node was deleted but visit returned new node!"); 1330 1331 DEBUG(dbgs() << " ... into: "; 1332 RV.getNode()->dump(&DAG)); 1333 1334 // Transfer debug value. 1335 DAG.TransferDbgValues(SDValue(N, 0), RV); 1336 if (N->getNumValues() == RV.getNode()->getNumValues()) 1337 DAG.ReplaceAllUsesWith(N, RV.getNode()); 1338 else { 1339 assert(N->getValueType(0) == RV.getValueType() && 1340 N->getNumValues() == 1 && "Type mismatch"); 1341 SDValue OpV = RV; 1342 DAG.ReplaceAllUsesWith(N, &OpV); 1343 } 1344 1345 // Push the new node and any users onto the worklist 1346 AddToWorklist(RV.getNode()); 1347 AddUsersToWorklist(RV.getNode()); 1348 1349 // Finally, if the node is now dead, remove it from the graph. The node 1350 // may not be dead if the replacement process recursively simplified to 1351 // something else needing this node. This will also take care of adding any 1352 // operands which have lost a user to the worklist. 1353 recursivelyDeleteUnusedNodes(N); 1354 } 1355 1356 // If the root changed (e.g. it was a dead load, update the root). 1357 DAG.setRoot(Dummy.getValue()); 1358 DAG.RemoveDeadNodes(); 1359 } 1360 1361 SDValue DAGCombiner::visit(SDNode *N) { 1362 switch (N->getOpcode()) { 1363 default: break; 1364 case ISD::TokenFactor: return visitTokenFactor(N); 1365 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); 1366 case ISD::ADD: return visitADD(N); 1367 case ISD::SUB: return visitSUB(N); 1368 case ISD::ADDC: return visitADDC(N); 1369 case ISD::SUBC: return visitSUBC(N); 1370 case ISD::ADDE: return visitADDE(N); 1371 case ISD::SUBE: return visitSUBE(N); 1372 case ISD::MUL: return visitMUL(N); 1373 case ISD::SDIV: return visitSDIV(N); 1374 case ISD::UDIV: return visitUDIV(N); 1375 case ISD::SREM: 1376 case ISD::UREM: return visitREM(N); 1377 case ISD::MULHU: return visitMULHU(N); 1378 case ISD::MULHS: return visitMULHS(N); 1379 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); 1380 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); 1381 case ISD::SMULO: return visitSMULO(N); 1382 case ISD::UMULO: return visitUMULO(N); 1383 case ISD::SMIN: 1384 case ISD::SMAX: 1385 case ISD::UMIN: 1386 case ISD::UMAX: return visitIMINMAX(N); 1387 case ISD::AND: return visitAND(N); 1388 case ISD::OR: return visitOR(N); 1389 case ISD::XOR: return visitXOR(N); 1390 case ISD::SHL: return visitSHL(N); 1391 case ISD::SRA: return visitSRA(N); 1392 case ISD::SRL: return visitSRL(N); 1393 case ISD::ROTR: 1394 case ISD::ROTL: return visitRotate(N); 1395 case ISD::BSWAP: return visitBSWAP(N); 1396 case ISD::BITREVERSE: return visitBITREVERSE(N); 1397 case ISD::CTLZ: return visitCTLZ(N); 1398 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); 1399 case ISD::CTTZ: return visitCTTZ(N); 1400 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); 1401 case ISD::CTPOP: return visitCTPOP(N); 1402 case ISD::SELECT: return visitSELECT(N); 1403 case ISD::VSELECT: return visitVSELECT(N); 1404 case ISD::SELECT_CC: return visitSELECT_CC(N); 1405 case ISD::SETCC: return visitSETCC(N); 1406 case ISD::SETCCE: return visitSETCCE(N); 1407 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); 1408 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); 1409 case ISD::ANY_EXTEND: return visitANY_EXTEND(N); 1410 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); 1411 case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); 1412 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N); 1413 case ISD::TRUNCATE: return visitTRUNCATE(N); 1414 case ISD::BITCAST: return visitBITCAST(N); 1415 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); 1416 case ISD::FADD: return visitFADD(N); 1417 case ISD::FSUB: return visitFSUB(N); 1418 case ISD::FMUL: return visitFMUL(N); 1419 case ISD::FMA: return visitFMA(N); 1420 case ISD::FDIV: return visitFDIV(N); 1421 case ISD::FREM: return visitFREM(N); 1422 case ISD::FSQRT: return visitFSQRT(N); 1423 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); 1424 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); 1425 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); 1426 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); 1427 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); 1428 case ISD::FP_ROUND: return visitFP_ROUND(N); 1429 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); 1430 case ISD::FP_EXTEND: return visitFP_EXTEND(N); 1431 case ISD::FNEG: return visitFNEG(N); 1432 case ISD::FABS: return visitFABS(N); 1433 case ISD::FFLOOR: return visitFFLOOR(N); 1434 case ISD::FMINNUM: return visitFMINNUM(N); 1435 case ISD::FMAXNUM: return visitFMAXNUM(N); 1436 case ISD::FCEIL: return visitFCEIL(N); 1437 case ISD::FTRUNC: return visitFTRUNC(N); 1438 case ISD::BRCOND: return visitBRCOND(N); 1439 case ISD::BR_CC: return visitBR_CC(N); 1440 case ISD::LOAD: return visitLOAD(N); 1441 case ISD::STORE: return visitSTORE(N); 1442 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); 1443 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); 1444 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); 1445 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); 1446 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); 1447 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); 1448 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); 1449 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); 1450 case ISD::MGATHER: return visitMGATHER(N); 1451 case ISD::MLOAD: return visitMLOAD(N); 1452 case ISD::MSCATTER: return visitMSCATTER(N); 1453 case ISD::MSTORE: return visitMSTORE(N); 1454 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); 1455 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); 1456 } 1457 return SDValue(); 1458 } 1459 1460 SDValue DAGCombiner::combine(SDNode *N) { 1461 SDValue RV = visit(N); 1462 1463 // If nothing happened, try a target-specific DAG combine. 1464 if (!RV.getNode()) { 1465 assert(N->getOpcode() != ISD::DELETED_NODE && 1466 "Node was deleted but visit returned NULL!"); 1467 1468 if (N->getOpcode() >= ISD::BUILTIN_OP_END || 1469 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { 1470 1471 // Expose the DAG combiner to the target combiner impls. 1472 TargetLowering::DAGCombinerInfo 1473 DagCombineInfo(DAG, Level, false, this); 1474 1475 RV = TLI.PerformDAGCombine(N, DagCombineInfo); 1476 } 1477 } 1478 1479 // If nothing happened still, try promoting the operation. 1480 if (!RV.getNode()) { 1481 switch (N->getOpcode()) { 1482 default: break; 1483 case ISD::ADD: 1484 case ISD::SUB: 1485 case ISD::MUL: 1486 case ISD::AND: 1487 case ISD::OR: 1488 case ISD::XOR: 1489 RV = PromoteIntBinOp(SDValue(N, 0)); 1490 break; 1491 case ISD::SHL: 1492 case ISD::SRA: 1493 case ISD::SRL: 1494 RV = PromoteIntShiftOp(SDValue(N, 0)); 1495 break; 1496 case ISD::SIGN_EXTEND: 1497 case ISD::ZERO_EXTEND: 1498 case ISD::ANY_EXTEND: 1499 RV = PromoteExtend(SDValue(N, 0)); 1500 break; 1501 case ISD::LOAD: 1502 if (PromoteLoad(SDValue(N, 0))) 1503 RV = SDValue(N, 0); 1504 break; 1505 } 1506 } 1507 1508 // If N is a commutative binary node, try commuting it to enable more 1509 // sdisel CSE. 1510 if (!RV.getNode() && SelectionDAG::isCommutativeBinOp(N->getOpcode()) && 1511 N->getNumValues() == 1) { 1512 SDValue N0 = N->getOperand(0); 1513 SDValue N1 = N->getOperand(1); 1514 1515 // Constant operands are canonicalized to RHS. 1516 if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) { 1517 SDValue Ops[] = {N1, N0}; 1518 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 1519 N->getFlags()); 1520 if (CSENode) 1521 return SDValue(CSENode, 0); 1522 } 1523 } 1524 1525 return RV; 1526 } 1527 1528 /// Given a node, return its input chain if it has one, otherwise return a null 1529 /// sd operand. 1530 static SDValue getInputChainForNode(SDNode *N) { 1531 if (unsigned NumOps = N->getNumOperands()) { 1532 if (N->getOperand(0).getValueType() == MVT::Other) 1533 return N->getOperand(0); 1534 if (N->getOperand(NumOps-1).getValueType() == MVT::Other) 1535 return N->getOperand(NumOps-1); 1536 for (unsigned i = 1; i < NumOps-1; ++i) 1537 if (N->getOperand(i).getValueType() == MVT::Other) 1538 return N->getOperand(i); 1539 } 1540 return SDValue(); 1541 } 1542 1543 SDValue DAGCombiner::visitTokenFactor(SDNode *N) { 1544 // If N has two operands, where one has an input chain equal to the other, 1545 // the 'other' chain is redundant. 1546 if (N->getNumOperands() == 2) { 1547 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) 1548 return N->getOperand(0); 1549 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) 1550 return N->getOperand(1); 1551 } 1552 1553 SmallVector<SDNode *, 8> TFs; // List of token factors to visit. 1554 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. 1555 SmallPtrSet<SDNode*, 16> SeenOps; 1556 bool Changed = false; // If we should replace this token factor. 1557 1558 // Start out with this token factor. 1559 TFs.push_back(N); 1560 1561 // Iterate through token factors. The TFs grows when new token factors are 1562 // encountered. 1563 for (unsigned i = 0; i < TFs.size(); ++i) { 1564 SDNode *TF = TFs[i]; 1565 1566 // Check each of the operands. 1567 for (const SDValue &Op : TF->op_values()) { 1568 1569 switch (Op.getOpcode()) { 1570 case ISD::EntryToken: 1571 // Entry tokens don't need to be added to the list. They are 1572 // redundant. 1573 Changed = true; 1574 break; 1575 1576 case ISD::TokenFactor: 1577 if (Op.hasOneUse() && 1578 std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) { 1579 // Queue up for processing. 1580 TFs.push_back(Op.getNode()); 1581 // Clean up in case the token factor is removed. 1582 AddToWorklist(Op.getNode()); 1583 Changed = true; 1584 break; 1585 } 1586 // Fall thru 1587 1588 default: 1589 // Only add if it isn't already in the list. 1590 if (SeenOps.insert(Op.getNode()).second) 1591 Ops.push_back(Op); 1592 else 1593 Changed = true; 1594 break; 1595 } 1596 } 1597 } 1598 1599 SDValue Result; 1600 1601 // If we've changed things around then replace token factor. 1602 if (Changed) { 1603 if (Ops.empty()) { 1604 // The entry token is the only possible outcome. 1605 Result = DAG.getEntryNode(); 1606 } else { 1607 // New and improved token factor. 1608 Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops); 1609 } 1610 1611 // Add users to worklist if AA is enabled, since it may introduce 1612 // a lot of new chained token factors while removing memory deps. 1613 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 1614 : DAG.getSubtarget().useAA(); 1615 return CombineTo(N, Result, UseAA /*add to worklist*/); 1616 } 1617 1618 return Result; 1619 } 1620 1621 /// MERGE_VALUES can always be eliminated. 1622 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { 1623 WorklistRemover DeadNodes(*this); 1624 // Replacing results may cause a different MERGE_VALUES to suddenly 1625 // be CSE'd with N, and carry its uses with it. Iterate until no 1626 // uses remain, to ensure that the node can be safely deleted. 1627 // First add the users of this node to the work list so that they 1628 // can be tried again once they have new operands. 1629 AddUsersToWorklist(N); 1630 do { 1631 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 1632 DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i)); 1633 } while (!N->use_empty()); 1634 deleteAndRecombine(N); 1635 return SDValue(N, 0); // Return N so it doesn't get rechecked! 1636 } 1637 1638 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a 1639 /// ConstantSDNode pointer else nullptr. 1640 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { 1641 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); 1642 return Const != nullptr && !Const->isOpaque() ? Const : nullptr; 1643 } 1644 1645 SDValue DAGCombiner::visitADD(SDNode *N) { 1646 SDValue N0 = N->getOperand(0); 1647 SDValue N1 = N->getOperand(1); 1648 EVT VT = N0.getValueType(); 1649 1650 // fold vector ops 1651 if (VT.isVector()) { 1652 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 1653 return FoldedVOp; 1654 1655 // fold (add x, 0) -> x, vector edition 1656 if (ISD::isBuildVectorAllZeros(N1.getNode())) 1657 return N0; 1658 if (ISD::isBuildVectorAllZeros(N0.getNode())) 1659 return N1; 1660 } 1661 1662 // fold (add x, undef) -> undef 1663 if (N0.isUndef()) 1664 return N0; 1665 if (N1.isUndef()) 1666 return N1; 1667 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 1668 // canonicalize constant to RHS 1669 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) 1670 return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0); 1671 // fold (add c1, c2) -> c1+c2 1672 return DAG.FoldConstantArithmetic(ISD::ADD, SDLoc(N), VT, 1673 N0.getNode(), N1.getNode()); 1674 } 1675 // fold (add x, 0) -> x 1676 if (isNullConstant(N1)) 1677 return N0; 1678 // fold ((c1-A)+c2) -> (c1+c2)-A 1679 if (ConstantSDNode *N1C = getAsNonOpaqueConstant(N1)) { 1680 if (N0.getOpcode() == ISD::SUB) 1681 if (ConstantSDNode *N0C = getAsNonOpaqueConstant(N0.getOperand(0))) { 1682 SDLoc DL(N); 1683 return DAG.getNode(ISD::SUB, DL, VT, 1684 DAG.getConstant(N1C->getAPIntValue()+ 1685 N0C->getAPIntValue(), DL, VT), 1686 N0.getOperand(1)); 1687 } 1688 } 1689 // reassociate add 1690 if (SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1)) 1691 return RADD; 1692 // fold ((0-A) + B) -> B-A 1693 if (N0.getOpcode() == ISD::SUB && isNullConstant(N0.getOperand(0))) 1694 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1)); 1695 // fold (A + (0-B)) -> A-B 1696 if (N1.getOpcode() == ISD::SUB && isNullConstant(N1.getOperand(0))) 1697 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1)); 1698 // fold (A+(B-A)) -> B 1699 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) 1700 return N1.getOperand(0); 1701 // fold ((B-A)+A) -> B 1702 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) 1703 return N0.getOperand(0); 1704 // fold (A+(B-(A+C))) to (B-C) 1705 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 1706 N0 == N1.getOperand(1).getOperand(0)) 1707 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0), 1708 N1.getOperand(1).getOperand(1)); 1709 // fold (A+(B-(C+A))) to (B-C) 1710 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 1711 N0 == N1.getOperand(1).getOperand(1)) 1712 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0), 1713 N1.getOperand(1).getOperand(0)); 1714 // fold (A+((B-A)+or-C)) to (B+or-C) 1715 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && 1716 N1.getOperand(0).getOpcode() == ISD::SUB && 1717 N0 == N1.getOperand(0).getOperand(1)) 1718 return DAG.getNode(N1.getOpcode(), SDLoc(N), VT, 1719 N1.getOperand(0).getOperand(0), N1.getOperand(1)); 1720 1721 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant 1722 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { 1723 SDValue N00 = N0.getOperand(0); 1724 SDValue N01 = N0.getOperand(1); 1725 SDValue N10 = N1.getOperand(0); 1726 SDValue N11 = N1.getOperand(1); 1727 1728 if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10)) 1729 return DAG.getNode(ISD::SUB, SDLoc(N), VT, 1730 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), 1731 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); 1732 } 1733 1734 if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) 1735 return SDValue(N, 0); 1736 1737 // fold (a+b) -> (a|b) iff a and b share no bits. 1738 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::OR, VT)) && 1739 VT.isInteger() && !VT.isVector() && DAG.haveNoCommonBitsSet(N0, N1)) 1740 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1); 1741 1742 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) 1743 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && 1744 isNullConstant(N1.getOperand(0).getOperand(0))) 1745 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, 1746 DAG.getNode(ISD::SHL, SDLoc(N), VT, 1747 N1.getOperand(0).getOperand(1), 1748 N1.getOperand(1))); 1749 if (N0.getOpcode() == ISD::SHL && N0.getOperand(0).getOpcode() == ISD::SUB && 1750 isNullConstant(N0.getOperand(0).getOperand(0))) 1751 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, 1752 DAG.getNode(ISD::SHL, SDLoc(N), VT, 1753 N0.getOperand(0).getOperand(1), 1754 N0.getOperand(1))); 1755 1756 if (N1.getOpcode() == ISD::AND) { 1757 SDValue AndOp0 = N1.getOperand(0); 1758 unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0); 1759 unsigned DestBits = VT.getScalarType().getSizeInBits(); 1760 1761 // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x)) 1762 // and similar xforms where the inner op is either ~0 or 0. 1763 if (NumSignBits == DestBits && isOneConstant(N1->getOperand(1))) { 1764 SDLoc DL(N); 1765 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0); 1766 } 1767 } 1768 1769 // add (sext i1), X -> sub X, (zext i1) 1770 if (N0.getOpcode() == ISD::SIGN_EXTEND && 1771 N0.getOperand(0).getValueType() == MVT::i1 && 1772 !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) { 1773 SDLoc DL(N); 1774 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 1775 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); 1776 } 1777 1778 // add X, (sextinreg Y i1) -> sub X, (and Y 1) 1779 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 1780 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 1781 if (TN->getVT() == MVT::i1) { 1782 SDLoc DL(N); 1783 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 1784 DAG.getConstant(1, DL, VT)); 1785 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); 1786 } 1787 } 1788 1789 return SDValue(); 1790 } 1791 1792 SDValue DAGCombiner::visitADDC(SDNode *N) { 1793 SDValue N0 = N->getOperand(0); 1794 SDValue N1 = N->getOperand(1); 1795 EVT VT = N0.getValueType(); 1796 1797 // If the flag result is dead, turn this into an ADD. 1798 if (!N->hasAnyUseOfValue(1)) 1799 return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1), 1800 DAG.getNode(ISD::CARRY_FALSE, 1801 SDLoc(N), MVT::Glue)); 1802 1803 // canonicalize constant to RHS. 1804 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1805 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1806 if (N0C && !N1C) 1807 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0); 1808 1809 // fold (addc x, 0) -> x + no carry out 1810 if (isNullConstant(N1)) 1811 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, 1812 SDLoc(N), MVT::Glue)); 1813 1814 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits. 1815 APInt LHSZero, LHSOne; 1816 APInt RHSZero, RHSOne; 1817 DAG.computeKnownBits(N0, LHSZero, LHSOne); 1818 1819 if (LHSZero.getBoolValue()) { 1820 DAG.computeKnownBits(N1, RHSZero, RHSOne); 1821 1822 // If all possibly-set bits on the LHS are clear on the RHS, return an OR. 1823 // If all possibly-set bits on the RHS are clear on the LHS, return an OR. 1824 if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero) 1825 return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1), 1826 DAG.getNode(ISD::CARRY_FALSE, 1827 SDLoc(N), MVT::Glue)); 1828 } 1829 1830 return SDValue(); 1831 } 1832 1833 SDValue DAGCombiner::visitADDE(SDNode *N) { 1834 SDValue N0 = N->getOperand(0); 1835 SDValue N1 = N->getOperand(1); 1836 SDValue CarryIn = N->getOperand(2); 1837 1838 // canonicalize constant to RHS 1839 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1840 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1841 if (N0C && !N1C) 1842 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), 1843 N1, N0, CarryIn); 1844 1845 // fold (adde x, y, false) -> (addc x, y) 1846 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 1847 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); 1848 1849 return SDValue(); 1850 } 1851 1852 // Since it may not be valid to emit a fold to zero for vector initializers 1853 // check if we can before folding. 1854 static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT, 1855 SelectionDAG &DAG, 1856 bool LegalOperations, bool LegalTypes) { 1857 if (!VT.isVector()) 1858 return DAG.getConstant(0, DL, VT); 1859 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 1860 return DAG.getConstant(0, DL, VT); 1861 return SDValue(); 1862 } 1863 1864 SDValue DAGCombiner::visitSUB(SDNode *N) { 1865 SDValue N0 = N->getOperand(0); 1866 SDValue N1 = N->getOperand(1); 1867 EVT VT = N0.getValueType(); 1868 1869 // fold vector ops 1870 if (VT.isVector()) { 1871 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 1872 return FoldedVOp; 1873 1874 // fold (sub x, 0) -> x, vector edition 1875 if (ISD::isBuildVectorAllZeros(N1.getNode())) 1876 return N0; 1877 } 1878 1879 // fold (sub x, x) -> 0 1880 // FIXME: Refactor this and xor and other similar operations together. 1881 if (N0 == N1) 1882 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); 1883 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 1884 DAG.isConstantIntBuildVectorOrConstantInt(N1)) { 1885 // fold (sub c1, c2) -> c1-c2 1886 return DAG.FoldConstantArithmetic(ISD::SUB, SDLoc(N), VT, 1887 N0.getNode(), N1.getNode()); 1888 } 1889 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 1890 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 1891 // fold (sub x, c) -> (add x, -c) 1892 if (N1C) { 1893 SDLoc DL(N); 1894 return DAG.getNode(ISD::ADD, DL, VT, N0, 1895 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 1896 } 1897 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) 1898 if (isAllOnesConstant(N0)) 1899 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); 1900 // fold A-(A-B) -> B 1901 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) 1902 return N1.getOperand(1); 1903 // fold (A+B)-A -> B 1904 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) 1905 return N0.getOperand(1); 1906 // fold (A+B)-B -> A 1907 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) 1908 return N0.getOperand(0); 1909 // fold C2-(A+C1) -> (C2-C1)-A 1910 ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? nullptr : 1911 dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode()); 1912 if (N1.getOpcode() == ISD::ADD && N0C && N1C1) { 1913 SDLoc DL(N); 1914 SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(), 1915 DL, VT); 1916 return DAG.getNode(ISD::SUB, DL, VT, NewC, 1917 N1.getOperand(0)); 1918 } 1919 // fold ((A+(B+or-C))-B) -> A+or-C 1920 if (N0.getOpcode() == ISD::ADD && 1921 (N0.getOperand(1).getOpcode() == ISD::SUB || 1922 N0.getOperand(1).getOpcode() == ISD::ADD) && 1923 N0.getOperand(1).getOperand(0) == N1) 1924 return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT, 1925 N0.getOperand(0), N0.getOperand(1).getOperand(1)); 1926 // fold ((A+(C+B))-B) -> A+C 1927 if (N0.getOpcode() == ISD::ADD && 1928 N0.getOperand(1).getOpcode() == ISD::ADD && 1929 N0.getOperand(1).getOperand(1) == N1) 1930 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 1931 N0.getOperand(0), N0.getOperand(1).getOperand(0)); 1932 // fold ((A-(B-C))-C) -> A-B 1933 if (N0.getOpcode() == ISD::SUB && 1934 N0.getOperand(1).getOpcode() == ISD::SUB && 1935 N0.getOperand(1).getOperand(1) == N1) 1936 return DAG.getNode(ISD::SUB, SDLoc(N), VT, 1937 N0.getOperand(0), N0.getOperand(1).getOperand(0)); 1938 1939 // If either operand of a sub is undef, the result is undef 1940 if (N0.isUndef()) 1941 return N0; 1942 if (N1.isUndef()) 1943 return N1; 1944 1945 // If the relocation model supports it, consider symbol offsets. 1946 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 1947 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { 1948 // fold (sub Sym, c) -> Sym-c 1949 if (N1C && GA->getOpcode() == ISD::GlobalAddress) 1950 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 1951 GA->getOffset() - 1952 (uint64_t)N1C->getSExtValue()); 1953 // fold (sub Sym+c1, Sym+c2) -> c1-c2 1954 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) 1955 if (GA->getGlobal() == GB->getGlobal()) 1956 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), 1957 SDLoc(N), VT); 1958 } 1959 1960 // sub X, (sextinreg Y i1) -> add X, (and Y 1) 1961 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 1962 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 1963 if (TN->getVT() == MVT::i1) { 1964 SDLoc DL(N); 1965 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 1966 DAG.getConstant(1, DL, VT)); 1967 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); 1968 } 1969 } 1970 1971 return SDValue(); 1972 } 1973 1974 SDValue DAGCombiner::visitSUBC(SDNode *N) { 1975 SDValue N0 = N->getOperand(0); 1976 SDValue N1 = N->getOperand(1); 1977 EVT VT = N0.getValueType(); 1978 SDLoc DL(N); 1979 1980 // If the flag result is dead, turn this into an SUB. 1981 if (!N->hasAnyUseOfValue(1)) 1982 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 1983 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 1984 1985 // fold (subc x, x) -> 0 + no borrow 1986 if (N0 == N1) 1987 return CombineTo(N, DAG.getConstant(0, DL, VT), 1988 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 1989 1990 // fold (subc x, 0) -> x + no borrow 1991 if (isNullConstant(N1)) 1992 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 1993 1994 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow 1995 if (isAllOnesConstant(N0)) 1996 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 1997 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 1998 1999 return SDValue(); 2000 } 2001 2002 SDValue DAGCombiner::visitSUBE(SDNode *N) { 2003 SDValue N0 = N->getOperand(0); 2004 SDValue N1 = N->getOperand(1); 2005 SDValue CarryIn = N->getOperand(2); 2006 2007 // fold (sube x, y, false) -> (subc x, y) 2008 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 2009 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); 2010 2011 return SDValue(); 2012 } 2013 2014 SDValue DAGCombiner::visitMUL(SDNode *N) { 2015 SDValue N0 = N->getOperand(0); 2016 SDValue N1 = N->getOperand(1); 2017 EVT VT = N0.getValueType(); 2018 2019 // fold (mul x, undef) -> 0 2020 if (N0.isUndef() || N1.isUndef()) 2021 return DAG.getConstant(0, SDLoc(N), VT); 2022 2023 bool N0IsConst = false; 2024 bool N1IsConst = false; 2025 bool N1IsOpaqueConst = false; 2026 bool N0IsOpaqueConst = false; 2027 APInt ConstValue0, ConstValue1; 2028 // fold vector ops 2029 if (VT.isVector()) { 2030 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2031 return FoldedVOp; 2032 2033 N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0); 2034 N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1); 2035 } else { 2036 N0IsConst = isa<ConstantSDNode>(N0); 2037 if (N0IsConst) { 2038 ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue(); 2039 N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque(); 2040 } 2041 N1IsConst = isa<ConstantSDNode>(N1); 2042 if (N1IsConst) { 2043 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); 2044 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); 2045 } 2046 } 2047 2048 // fold (mul c1, c2) -> c1*c2 2049 if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst) 2050 return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, 2051 N0.getNode(), N1.getNode()); 2052 2053 // canonicalize constant to RHS (vector doesn't have to splat) 2054 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2055 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2056 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); 2057 // fold (mul x, 0) -> 0 2058 if (N1IsConst && ConstValue1 == 0) 2059 return N1; 2060 // We require a splat of the entire scalar bit width for non-contiguous 2061 // bit patterns. 2062 bool IsFullSplat = 2063 ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits(); 2064 // fold (mul x, 1) -> x 2065 if (N1IsConst && ConstValue1 == 1 && IsFullSplat) 2066 return N0; 2067 // fold (mul x, -1) -> 0-x 2068 if (N1IsConst && ConstValue1.isAllOnesValue()) { 2069 SDLoc DL(N); 2070 return DAG.getNode(ISD::SUB, DL, VT, 2071 DAG.getConstant(0, DL, VT), N0); 2072 } 2073 // fold (mul x, (1 << c)) -> x << c 2074 if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isPowerOf2() && 2075 IsFullSplat) { 2076 SDLoc DL(N); 2077 return DAG.getNode(ISD::SHL, DL, VT, N0, 2078 DAG.getConstant(ConstValue1.logBase2(), DL, 2079 getShiftAmountTy(N0.getValueType()))); 2080 } 2081 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c 2082 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2() && 2083 IsFullSplat) { 2084 unsigned Log2Val = (-ConstValue1).logBase2(); 2085 SDLoc DL(N); 2086 // FIXME: If the input is something that is easily negated (e.g. a 2087 // single-use add), we should put the negate there. 2088 return DAG.getNode(ISD::SUB, DL, VT, 2089 DAG.getConstant(0, DL, VT), 2090 DAG.getNode(ISD::SHL, DL, VT, N0, 2091 DAG.getConstant(Log2Val, DL, 2092 getShiftAmountTy(N0.getValueType())))); 2093 } 2094 2095 APInt Val; 2096 // (mul (shl X, c1), c2) -> (mul X, c2 << c1) 2097 if (N1IsConst && N0.getOpcode() == ISD::SHL && 2098 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) || 2099 isa<ConstantSDNode>(N0.getOperand(1)))) { 2100 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, 2101 N1, N0.getOperand(1)); 2102 AddToWorklist(C3.getNode()); 2103 return DAG.getNode(ISD::MUL, SDLoc(N), VT, 2104 N0.getOperand(0), C3); 2105 } 2106 2107 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one 2108 // use. 2109 { 2110 SDValue Sh(nullptr,0), Y(nullptr,0); 2111 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). 2112 if (N0.getOpcode() == ISD::SHL && 2113 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) || 2114 isa<ConstantSDNode>(N0.getOperand(1))) && 2115 N0.getNode()->hasOneUse()) { 2116 Sh = N0; Y = N1; 2117 } else if (N1.getOpcode() == ISD::SHL && 2118 isa<ConstantSDNode>(N1.getOperand(1)) && 2119 N1.getNode()->hasOneUse()) { 2120 Sh = N1; Y = N0; 2121 } 2122 2123 if (Sh.getNode()) { 2124 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, 2125 Sh.getOperand(0), Y); 2126 return DAG.getNode(ISD::SHL, SDLoc(N), VT, 2127 Mul, Sh.getOperand(1)); 2128 } 2129 } 2130 2131 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) 2132 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 2133 N0.getOpcode() == ISD::ADD && 2134 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && 2135 isMulAddWithConstProfitable(N, N0, N1)) 2136 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 2137 DAG.getNode(ISD::MUL, SDLoc(N0), VT, 2138 N0.getOperand(0), N1), 2139 DAG.getNode(ISD::MUL, SDLoc(N1), VT, 2140 N0.getOperand(1), N1)); 2141 2142 // reassociate mul 2143 if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1)) 2144 return RMUL; 2145 2146 return SDValue(); 2147 } 2148 2149 /// Return true if divmod libcall is available. 2150 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 2151 const TargetLowering &TLI) { 2152 RTLIB::Libcall LC; 2153 EVT NodeType = Node->getValueType(0); 2154 if (!NodeType.isSimple()) 2155 return false; 2156 switch (NodeType.getSimpleVT().SimpleTy) { 2157 default: return false; // No libcall for vector types. 2158 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2159 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2160 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2161 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2162 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2163 } 2164 2165 return TLI.getLibcallName(LC) != nullptr; 2166 } 2167 2168 /// Issue divrem if both quotient and remainder are needed. 2169 SDValue DAGCombiner::useDivRem(SDNode *Node) { 2170 if (Node->use_empty()) 2171 return SDValue(); // This is a dead node, leave it alone. 2172 2173 unsigned Opcode = Node->getOpcode(); 2174 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); 2175 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 2176 2177 // DivMod lib calls can still work on non-legal types if using lib-calls. 2178 EVT VT = Node->getValueType(0); 2179 if (VT.isVector() || !VT.isInteger()) 2180 return SDValue(); 2181 2182 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) 2183 return SDValue(); 2184 2185 // If DIVREM is going to get expanded into a libcall, 2186 // but there is no libcall available, then don't combine. 2187 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && 2188 !isDivRemLibcallAvailable(Node, isSigned, TLI)) 2189 return SDValue(); 2190 2191 // If div is legal, it's better to do the normal expansion 2192 unsigned OtherOpcode = 0; 2193 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { 2194 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; 2195 if (TLI.isOperationLegalOrCustom(Opcode, VT)) 2196 return SDValue(); 2197 } else { 2198 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 2199 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) 2200 return SDValue(); 2201 } 2202 2203 SDValue Op0 = Node->getOperand(0); 2204 SDValue Op1 = Node->getOperand(1); 2205 SDValue combined; 2206 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2207 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2208 SDNode *User = *UI; 2209 if (User == Node || User->use_empty()) 2210 continue; 2211 // Convert the other matching node(s), too; 2212 // otherwise, the DIVREM may get target-legalized into something 2213 // target-specific that we won't be able to recognize. 2214 unsigned UserOpc = User->getOpcode(); 2215 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && 2216 User->getOperand(0) == Op0 && 2217 User->getOperand(1) == Op1) { 2218 if (!combined) { 2219 if (UserOpc == OtherOpcode) { 2220 SDVTList VTs = DAG.getVTList(VT, VT); 2221 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); 2222 } else if (UserOpc == DivRemOpc) { 2223 combined = SDValue(User, 0); 2224 } else { 2225 assert(UserOpc == Opcode); 2226 continue; 2227 } 2228 } 2229 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) 2230 CombineTo(User, combined); 2231 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) 2232 CombineTo(User, combined.getValue(1)); 2233 } 2234 } 2235 return combined; 2236 } 2237 2238 SDValue DAGCombiner::visitSDIV(SDNode *N) { 2239 SDValue N0 = N->getOperand(0); 2240 SDValue N1 = N->getOperand(1); 2241 EVT VT = N->getValueType(0); 2242 2243 // fold vector ops 2244 if (VT.isVector()) 2245 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2246 return FoldedVOp; 2247 2248 SDLoc DL(N); 2249 2250 // fold (sdiv c1, c2) -> c1/c2 2251 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2252 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2253 if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque()) 2254 return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C); 2255 // fold (sdiv X, 1) -> X 2256 if (N1C && N1C->isOne()) 2257 return N0; 2258 // fold (sdiv X, -1) -> 0-X 2259 if (N1C && N1C->isAllOnesValue()) 2260 return DAG.getNode(ISD::SUB, DL, VT, 2261 DAG.getConstant(0, DL, VT), N0); 2262 2263 // If we know the sign bits of both operands are zero, strength reduce to a 2264 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 2265 if (!VT.isVector()) { 2266 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 2267 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); 2268 } 2269 2270 // fold (sdiv X, pow2) -> simple ops after legalize 2271 // FIXME: We check for the exact bit here because the generic lowering gives 2272 // better results in that case. The target-specific lowering should learn how 2273 // to handle exact sdivs efficiently. 2274 if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && 2275 !cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact() && 2276 (N1C->getAPIntValue().isPowerOf2() || 2277 (-N1C->getAPIntValue()).isPowerOf2())) { 2278 // Target-specific implementation of sdiv x, pow2. 2279 if (SDValue Res = BuildSDIVPow2(N)) 2280 return Res; 2281 2282 unsigned lg2 = N1C->getAPIntValue().countTrailingZeros(); 2283 2284 // Splat the sign bit into the register 2285 SDValue SGN = 2286 DAG.getNode(ISD::SRA, DL, VT, N0, 2287 DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, 2288 getShiftAmountTy(N0.getValueType()))); 2289 AddToWorklist(SGN.getNode()); 2290 2291 // Add (N0 < 0) ? abs2 - 1 : 0; 2292 SDValue SRL = 2293 DAG.getNode(ISD::SRL, DL, VT, SGN, 2294 DAG.getConstant(VT.getScalarSizeInBits() - lg2, DL, 2295 getShiftAmountTy(SGN.getValueType()))); 2296 SDValue ADD = DAG.getNode(ISD::ADD, DL, VT, N0, SRL); 2297 AddToWorklist(SRL.getNode()); 2298 AddToWorklist(ADD.getNode()); // Divide by pow2 2299 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, ADD, 2300 DAG.getConstant(lg2, DL, 2301 getShiftAmountTy(ADD.getValueType()))); 2302 2303 // If we're dividing by a positive value, we're done. Otherwise, we must 2304 // negate the result. 2305 if (N1C->getAPIntValue().isNonNegative()) 2306 return SRA; 2307 2308 AddToWorklist(SRA.getNode()); 2309 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 2310 } 2311 2312 // If integer divide is expensive and we satisfy the requirements, emit an 2313 // alternate sequence. Targets may check function attributes for size/speed 2314 // trade-offs. 2315 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2316 if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) 2317 if (SDValue Op = BuildSDIV(N)) 2318 return Op; 2319 2320 // sdiv, srem -> sdivrem 2321 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true. 2322 // Otherwise, we break the simplification logic in visitREM(). 2323 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 2324 if (SDValue DivRem = useDivRem(N)) 2325 return DivRem; 2326 2327 // undef / X -> 0 2328 if (N0.isUndef()) 2329 return DAG.getConstant(0, DL, VT); 2330 // X / undef -> undef 2331 if (N1.isUndef()) 2332 return N1; 2333 2334 return SDValue(); 2335 } 2336 2337 SDValue DAGCombiner::visitUDIV(SDNode *N) { 2338 SDValue N0 = N->getOperand(0); 2339 SDValue N1 = N->getOperand(1); 2340 EVT VT = N->getValueType(0); 2341 2342 // fold vector ops 2343 if (VT.isVector()) 2344 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2345 return FoldedVOp; 2346 2347 SDLoc DL(N); 2348 2349 // fold (udiv c1, c2) -> c1/c2 2350 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2351 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2352 if (N0C && N1C) 2353 if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, 2354 N0C, N1C)) 2355 return Folded; 2356 // fold (udiv x, (1 << c)) -> x >>u c 2357 if (N1C && !N1C->isOpaque() && N1C->getAPIntValue().isPowerOf2()) 2358 return DAG.getNode(ISD::SRL, DL, VT, N0, 2359 DAG.getConstant(N1C->getAPIntValue().logBase2(), DL, 2360 getShiftAmountTy(N0.getValueType()))); 2361 2362 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 2363 if (N1.getOpcode() == ISD::SHL) { 2364 if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) { 2365 if (SHC->getAPIntValue().isPowerOf2()) { 2366 EVT ADDVT = N1.getOperand(1).getValueType(); 2367 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, 2368 N1.getOperand(1), 2369 DAG.getConstant(SHC->getAPIntValue() 2370 .logBase2(), 2371 DL, ADDVT)); 2372 AddToWorklist(Add.getNode()); 2373 return DAG.getNode(ISD::SRL, DL, VT, N0, Add); 2374 } 2375 } 2376 } 2377 2378 // fold (udiv x, c) -> alternate 2379 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2380 if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) 2381 if (SDValue Op = BuildUDIV(N)) 2382 return Op; 2383 2384 // sdiv, srem -> sdivrem 2385 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true. 2386 // Otherwise, we break the simplification logic in visitREM(). 2387 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 2388 if (SDValue DivRem = useDivRem(N)) 2389 return DivRem; 2390 2391 // undef / X -> 0 2392 if (N0.isUndef()) 2393 return DAG.getConstant(0, DL, VT); 2394 // X / undef -> undef 2395 if (N1.isUndef()) 2396 return N1; 2397 2398 return SDValue(); 2399 } 2400 2401 // handles ISD::SREM and ISD::UREM 2402 SDValue DAGCombiner::visitREM(SDNode *N) { 2403 unsigned Opcode = N->getOpcode(); 2404 SDValue N0 = N->getOperand(0); 2405 SDValue N1 = N->getOperand(1); 2406 EVT VT = N->getValueType(0); 2407 bool isSigned = (Opcode == ISD::SREM); 2408 SDLoc DL(N); 2409 2410 // fold (rem c1, c2) -> c1%c2 2411 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2412 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2413 if (N0C && N1C) 2414 if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C)) 2415 return Folded; 2416 2417 if (isSigned) { 2418 // If we know the sign bits of both operands are zero, strength reduce to a 2419 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 2420 if (!VT.isVector()) { 2421 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 2422 return DAG.getNode(ISD::UREM, DL, VT, N0, N1); 2423 } 2424 } else { 2425 // fold (urem x, pow2) -> (and x, pow2-1) 2426 if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && 2427 N1C->getAPIntValue().isPowerOf2()) { 2428 return DAG.getNode(ISD::AND, DL, VT, N0, 2429 DAG.getConstant(N1C->getAPIntValue() - 1, DL, VT)); 2430 } 2431 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) 2432 if (N1.getOpcode() == ISD::SHL) { 2433 ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0)); 2434 if (SHC && SHC->getAPIntValue().isPowerOf2()) { 2435 APInt NegOne = APInt::getAllOnesValue(VT.getSizeInBits()); 2436 SDValue Add = 2437 DAG.getNode(ISD::ADD, DL, VT, N1, DAG.getConstant(NegOne, DL, VT)); 2438 AddToWorklist(Add.getNode()); 2439 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 2440 } 2441 } 2442 } 2443 2444 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2445 2446 // If X/C can be simplified by the division-by-constant logic, lower 2447 // X%C to the equivalent of X-X/C*C. 2448 // To avoid mangling nodes, this simplification requires that the combine() 2449 // call for the speculative DIV must not cause a DIVREM conversion. We guard 2450 // against this by skipping the simplification if isIntDivCheap(). When 2451 // div is not cheap, combine will not return a DIVREM. Regardless, 2452 // checking cheapness here makes sense since the simplification results in 2453 // fatter code. 2454 if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap(VT, Attr)) { 2455 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 2456 SDValue Div = DAG.getNode(DivOpcode, DL, VT, N0, N1); 2457 AddToWorklist(Div.getNode()); 2458 SDValue OptimizedDiv = combine(Div.getNode()); 2459 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { 2460 assert((OptimizedDiv.getOpcode() != ISD::UDIVREM) && 2461 (OptimizedDiv.getOpcode() != ISD::SDIVREM)); 2462 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); 2463 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 2464 AddToWorklist(Mul.getNode()); 2465 return Sub; 2466 } 2467 } 2468 2469 // sdiv, srem -> sdivrem 2470 if (SDValue DivRem = useDivRem(N)) 2471 return DivRem.getValue(1); 2472 2473 // undef % X -> 0 2474 if (N0.isUndef()) 2475 return DAG.getConstant(0, DL, VT); 2476 // X % undef -> undef 2477 if (N1.isUndef()) 2478 return N1; 2479 2480 return SDValue(); 2481 } 2482 2483 SDValue DAGCombiner::visitMULHS(SDNode *N) { 2484 SDValue N0 = N->getOperand(0); 2485 SDValue N1 = N->getOperand(1); 2486 EVT VT = N->getValueType(0); 2487 SDLoc DL(N); 2488 2489 // fold (mulhs x, 0) -> 0 2490 if (isNullConstant(N1)) 2491 return N1; 2492 // fold (mulhs x, 1) -> (sra x, size(x)-1) 2493 if (isOneConstant(N1)) { 2494 SDLoc DL(N); 2495 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, 2496 DAG.getConstant(N0.getValueType().getSizeInBits() - 1, 2497 DL, 2498 getShiftAmountTy(N0.getValueType()))); 2499 } 2500 // fold (mulhs x, undef) -> 0 2501 if (N0.isUndef() || N1.isUndef()) 2502 return DAG.getConstant(0, SDLoc(N), VT); 2503 2504 // If the type twice as wide is legal, transform the mulhs to a wider multiply 2505 // plus a shift. 2506 if (VT.isSimple() && !VT.isVector()) { 2507 MVT Simple = VT.getSimpleVT(); 2508 unsigned SimpleSize = Simple.getSizeInBits(); 2509 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2510 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2511 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); 2512 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); 2513 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 2514 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 2515 DAG.getConstant(SimpleSize, DL, 2516 getShiftAmountTy(N1.getValueType()))); 2517 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 2518 } 2519 } 2520 2521 return SDValue(); 2522 } 2523 2524 SDValue DAGCombiner::visitMULHU(SDNode *N) { 2525 SDValue N0 = N->getOperand(0); 2526 SDValue N1 = N->getOperand(1); 2527 EVT VT = N->getValueType(0); 2528 SDLoc DL(N); 2529 2530 // fold (mulhu x, 0) -> 0 2531 if (isNullConstant(N1)) 2532 return N1; 2533 // fold (mulhu x, 1) -> 0 2534 if (isOneConstant(N1)) 2535 return DAG.getConstant(0, DL, N0.getValueType()); 2536 // fold (mulhu x, undef) -> 0 2537 if (N0.isUndef() || N1.isUndef()) 2538 return DAG.getConstant(0, DL, VT); 2539 2540 // If the type twice as wide is legal, transform the mulhu to a wider multiply 2541 // plus a shift. 2542 if (VT.isSimple() && !VT.isVector()) { 2543 MVT Simple = VT.getSimpleVT(); 2544 unsigned SimpleSize = Simple.getSizeInBits(); 2545 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2546 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2547 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); 2548 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); 2549 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 2550 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 2551 DAG.getConstant(SimpleSize, DL, 2552 getShiftAmountTy(N1.getValueType()))); 2553 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 2554 } 2555 } 2556 2557 return SDValue(); 2558 } 2559 2560 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp 2561 /// give the opcodes for the two computations that are being performed. Return 2562 /// true if a simplification was made. 2563 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 2564 unsigned HiOp) { 2565 // If the high half is not needed, just compute the low half. 2566 bool HiExists = N->hasAnyUseOfValue(1); 2567 if (!HiExists && 2568 (!LegalOperations || 2569 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { 2570 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 2571 return CombineTo(N, Res, Res); 2572 } 2573 2574 // If the low half is not needed, just compute the high half. 2575 bool LoExists = N->hasAnyUseOfValue(0); 2576 if (!LoExists && 2577 (!LegalOperations || 2578 TLI.isOperationLegal(HiOp, N->getValueType(1)))) { 2579 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 2580 return CombineTo(N, Res, Res); 2581 } 2582 2583 // If both halves are used, return as it is. 2584 if (LoExists && HiExists) 2585 return SDValue(); 2586 2587 // If the two computed results can be simplified separately, separate them. 2588 if (LoExists) { 2589 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 2590 AddToWorklist(Lo.getNode()); 2591 SDValue LoOpt = combine(Lo.getNode()); 2592 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && 2593 (!LegalOperations || 2594 TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))) 2595 return CombineTo(N, LoOpt, LoOpt); 2596 } 2597 2598 if (HiExists) { 2599 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 2600 AddToWorklist(Hi.getNode()); 2601 SDValue HiOpt = combine(Hi.getNode()); 2602 if (HiOpt.getNode() && HiOpt != Hi && 2603 (!LegalOperations || 2604 TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))) 2605 return CombineTo(N, HiOpt, HiOpt); 2606 } 2607 2608 return SDValue(); 2609 } 2610 2611 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { 2612 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) 2613 return Res; 2614 2615 EVT VT = N->getValueType(0); 2616 SDLoc DL(N); 2617 2618 // If the type is twice as wide is legal, transform the mulhu to a wider 2619 // multiply plus a shift. 2620 if (VT.isSimple() && !VT.isVector()) { 2621 MVT Simple = VT.getSimpleVT(); 2622 unsigned SimpleSize = Simple.getSizeInBits(); 2623 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2624 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2625 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); 2626 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); 2627 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 2628 // Compute the high part as N1. 2629 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 2630 DAG.getConstant(SimpleSize, DL, 2631 getShiftAmountTy(Lo.getValueType()))); 2632 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 2633 // Compute the low part as N0. 2634 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 2635 return CombineTo(N, Lo, Hi); 2636 } 2637 } 2638 2639 return SDValue(); 2640 } 2641 2642 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { 2643 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) 2644 return Res; 2645 2646 EVT VT = N->getValueType(0); 2647 SDLoc DL(N); 2648 2649 // If the type is twice as wide is legal, transform the mulhu to a wider 2650 // multiply plus a shift. 2651 if (VT.isSimple() && !VT.isVector()) { 2652 MVT Simple = VT.getSimpleVT(); 2653 unsigned SimpleSize = Simple.getSizeInBits(); 2654 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2655 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2656 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); 2657 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); 2658 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 2659 // Compute the high part as N1. 2660 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 2661 DAG.getConstant(SimpleSize, DL, 2662 getShiftAmountTy(Lo.getValueType()))); 2663 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 2664 // Compute the low part as N0. 2665 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 2666 return CombineTo(N, Lo, Hi); 2667 } 2668 } 2669 2670 return SDValue(); 2671 } 2672 2673 SDValue DAGCombiner::visitSMULO(SDNode *N) { 2674 // (smulo x, 2) -> (saddo x, x) 2675 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2676 if (C2->getAPIntValue() == 2) 2677 return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(), 2678 N->getOperand(0), N->getOperand(0)); 2679 2680 return SDValue(); 2681 } 2682 2683 SDValue DAGCombiner::visitUMULO(SDNode *N) { 2684 // (umulo x, 2) -> (uaddo x, x) 2685 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2686 if (C2->getAPIntValue() == 2) 2687 return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(), 2688 N->getOperand(0), N->getOperand(0)); 2689 2690 return SDValue(); 2691 } 2692 2693 SDValue DAGCombiner::visitIMINMAX(SDNode *N) { 2694 SDValue N0 = N->getOperand(0); 2695 SDValue N1 = N->getOperand(1); 2696 EVT VT = N0.getValueType(); 2697 2698 // fold vector ops 2699 if (VT.isVector()) 2700 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2701 return FoldedVOp; 2702 2703 // fold (add c1, c2) -> c1+c2 2704 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 2705 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 2706 if (N0C && N1C) 2707 return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C); 2708 2709 // canonicalize constant to RHS 2710 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2711 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2712 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 2713 2714 return SDValue(); 2715 } 2716 2717 /// If this is a binary operator with two operands of the same opcode, try to 2718 /// simplify it. 2719 SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { 2720 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 2721 EVT VT = N0.getValueType(); 2722 assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); 2723 2724 // Bail early if none of these transforms apply. 2725 if (N0.getNode()->getNumOperands() == 0) return SDValue(); 2726 2727 // For each of OP in AND/OR/XOR: 2728 // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) 2729 // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) 2730 // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) 2731 // fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y)) 2732 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free) 2733 // 2734 // do not sink logical op inside of a vector extend, since it may combine 2735 // into a vsetcc. 2736 EVT Op0VT = N0.getOperand(0).getValueType(); 2737 if ((N0.getOpcode() == ISD::ZERO_EXTEND || 2738 N0.getOpcode() == ISD::SIGN_EXTEND || 2739 N0.getOpcode() == ISD::BSWAP || 2740 // Avoid infinite looping with PromoteIntBinOp. 2741 (N0.getOpcode() == ISD::ANY_EXTEND && 2742 (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) || 2743 (N0.getOpcode() == ISD::TRUNCATE && 2744 (!TLI.isZExtFree(VT, Op0VT) || 2745 !TLI.isTruncateFree(Op0VT, VT)) && 2746 TLI.isTypeLegal(Op0VT))) && 2747 !VT.isVector() && 2748 Op0VT == N1.getOperand(0).getValueType() && 2749 (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) { 2750 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), 2751 N0.getOperand(0).getValueType(), 2752 N0.getOperand(0), N1.getOperand(0)); 2753 AddToWorklist(ORNode.getNode()); 2754 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode); 2755 } 2756 2757 // For each of OP in SHL/SRL/SRA/AND... 2758 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) 2759 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z) 2760 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) 2761 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || 2762 N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && 2763 N0.getOperand(1) == N1.getOperand(1)) { 2764 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), 2765 N0.getOperand(0).getValueType(), 2766 N0.getOperand(0), N1.getOperand(0)); 2767 AddToWorklist(ORNode.getNode()); 2768 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, 2769 ORNode, N0.getOperand(1)); 2770 } 2771 2772 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) 2773 // Only perform this optimization up until type legalization, before 2774 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by 2775 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and 2776 // we don't want to undo this promotion. 2777 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper 2778 // on scalars. 2779 if ((N0.getOpcode() == ISD::BITCAST || 2780 N0.getOpcode() == ISD::SCALAR_TO_VECTOR) && 2781 Level <= AfterLegalizeTypes) { 2782 SDValue In0 = N0.getOperand(0); 2783 SDValue In1 = N1.getOperand(0); 2784 EVT In0Ty = In0.getValueType(); 2785 EVT In1Ty = In1.getValueType(); 2786 SDLoc DL(N); 2787 // If both incoming values are integers, and the original types are the 2788 // same. 2789 if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) { 2790 SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1); 2791 SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op); 2792 AddToWorklist(Op.getNode()); 2793 return BC; 2794 } 2795 } 2796 2797 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). 2798 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) 2799 // If both shuffles use the same mask, and both shuffle within a single 2800 // vector, then it is worthwhile to move the swizzle after the operation. 2801 // The type-legalizer generates this pattern when loading illegal 2802 // vector types from memory. In many cases this allows additional shuffle 2803 // optimizations. 2804 // There are other cases where moving the shuffle after the xor/and/or 2805 // is profitable even if shuffles don't perform a swizzle. 2806 // If both shuffles use the same mask, and both shuffles have the same first 2807 // or second operand, then it might still be profitable to move the shuffle 2808 // after the xor/and/or operation. 2809 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { 2810 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0); 2811 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1); 2812 2813 assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() && 2814 "Inputs to shuffles are not the same type"); 2815 2816 // Check that both shuffles use the same mask. The masks are known to be of 2817 // the same length because the result vector type is the same. 2818 // Check also that shuffles have only one use to avoid introducing extra 2819 // instructions. 2820 if (SVN0->hasOneUse() && SVN1->hasOneUse() && 2821 SVN0->getMask().equals(SVN1->getMask())) { 2822 SDValue ShOp = N0->getOperand(1); 2823 2824 // Don't try to fold this node if it requires introducing a 2825 // build vector of all zeros that might be illegal at this stage. 2826 if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) { 2827 if (!LegalTypes) 2828 ShOp = DAG.getConstant(0, SDLoc(N), VT); 2829 else 2830 ShOp = SDValue(); 2831 } 2832 2833 // (AND (shuf (A, C), shuf (B, C)) -> shuf (AND (A, B), C) 2834 // (OR (shuf (A, C), shuf (B, C)) -> shuf (OR (A, B), C) 2835 // (XOR (shuf (A, C), shuf (B, C)) -> shuf (XOR (A, B), V_0) 2836 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { 2837 SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 2838 N0->getOperand(0), N1->getOperand(0)); 2839 AddToWorklist(NewNode.getNode()); 2840 return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp, 2841 &SVN0->getMask()[0]); 2842 } 2843 2844 // Don't try to fold this node if it requires introducing a 2845 // build vector of all zeros that might be illegal at this stage. 2846 ShOp = N0->getOperand(0); 2847 if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) { 2848 if (!LegalTypes) 2849 ShOp = DAG.getConstant(0, SDLoc(N), VT); 2850 else 2851 ShOp = SDValue(); 2852 } 2853 2854 // (AND (shuf (C, A), shuf (C, B)) -> shuf (C, AND (A, B)) 2855 // (OR (shuf (C, A), shuf (C, B)) -> shuf (C, OR (A, B)) 2856 // (XOR (shuf (C, A), shuf (C, B)) -> shuf (V_0, XOR (A, B)) 2857 if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) { 2858 SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 2859 N0->getOperand(1), N1->getOperand(1)); 2860 AddToWorklist(NewNode.getNode()); 2861 return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode, 2862 &SVN0->getMask()[0]); 2863 } 2864 } 2865 } 2866 2867 return SDValue(); 2868 } 2869 2870 /// This contains all DAGCombine rules which reduce two values combined by 2871 /// an And operation to a single value. This makes them reusable in the context 2872 /// of visitSELECT(). Rules involving constants are not included as 2873 /// visitSELECT() already handles those cases. 2874 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, 2875 SDNode *LocReference) { 2876 EVT VT = N1.getValueType(); 2877 2878 // fold (and x, undef) -> 0 2879 if (N0.isUndef() || N1.isUndef()) 2880 return DAG.getConstant(0, SDLoc(LocReference), VT); 2881 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) 2882 SDValue LL, LR, RL, RR, CC0, CC1; 2883 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ 2884 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); 2885 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); 2886 2887 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && 2888 LL.getValueType().isInteger()) { 2889 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0) 2890 if (isNullConstant(LR) && Op1 == ISD::SETEQ) { 2891 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), 2892 LR.getValueType(), LL, RL); 2893 AddToWorklist(ORNode.getNode()); 2894 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 2895 } 2896 if (isAllOnesConstant(LR)) { 2897 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1) 2898 if (Op1 == ISD::SETEQ) { 2899 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0), 2900 LR.getValueType(), LL, RL); 2901 AddToWorklist(ANDNode.getNode()); 2902 return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); 2903 } 2904 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1) 2905 if (Op1 == ISD::SETGT) { 2906 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), 2907 LR.getValueType(), LL, RL); 2908 AddToWorklist(ORNode.getNode()); 2909 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 2910 } 2911 } 2912 } 2913 // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2) 2914 if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) && 2915 Op0 == Op1 && LL.getValueType().isInteger() && 2916 Op0 == ISD::SETNE && ((isNullConstant(LR) && isAllOnesConstant(RR)) || 2917 (isAllOnesConstant(LR) && isNullConstant(RR)))) { 2918 SDLoc DL(N0); 2919 SDValue ADDNode = DAG.getNode(ISD::ADD, DL, LL.getValueType(), 2920 LL, DAG.getConstant(1, DL, 2921 LL.getValueType())); 2922 AddToWorklist(ADDNode.getNode()); 2923 return DAG.getSetCC(SDLoc(LocReference), VT, ADDNode, 2924 DAG.getConstant(2, DL, LL.getValueType()), 2925 ISD::SETUGE); 2926 } 2927 // canonicalize equivalent to ll == rl 2928 if (LL == RR && LR == RL) { 2929 Op1 = ISD::getSetCCSwappedOperands(Op1); 2930 std::swap(RL, RR); 2931 } 2932 if (LL == RL && LR == RR) { 2933 bool isInteger = LL.getValueType().isInteger(); 2934 ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); 2935 if (Result != ISD::SETCC_INVALID && 2936 (!LegalOperations || 2937 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && 2938 TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { 2939 EVT CCVT = getSetCCResultType(LL.getValueType()); 2940 if (N0.getValueType() == CCVT || 2941 (!LegalOperations && N0.getValueType() == MVT::i1)) 2942 return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), 2943 LL, LR, Result); 2944 } 2945 } 2946 } 2947 2948 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && 2949 VT.getSizeInBits() <= 64) { 2950 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2951 APInt ADDC = ADDI->getAPIntValue(); 2952 if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 2953 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal 2954 // immediate for an add, but it is legal if its top c2 bits are set, 2955 // transform the ADD so the immediate doesn't need to be materialized 2956 // in a register. 2957 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { 2958 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 2959 SRLI->getZExtValue()); 2960 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { 2961 ADDC |= Mask; 2962 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 2963 SDLoc DL(N0); 2964 SDValue NewAdd = 2965 DAG.getNode(ISD::ADD, DL, VT, 2966 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); 2967 CombineTo(N0.getNode(), NewAdd); 2968 // Return N so it doesn't get rechecked! 2969 return SDValue(LocReference, 0); 2970 } 2971 } 2972 } 2973 } 2974 } 2975 } 2976 2977 // Reduce bit extract of low half of an integer to the narrower type. 2978 // (and (srl i64:x, K), KMask) -> 2979 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) 2980 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 2981 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { 2982 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2983 unsigned Size = VT.getSizeInBits(); 2984 const APInt &AndMask = CAnd->getAPIntValue(); 2985 unsigned ShiftBits = CShift->getZExtValue(); 2986 unsigned MaskBits = AndMask.countTrailingOnes(); 2987 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); 2988 2989 if (APIntOps::isMask(AndMask) && 2990 // Required bits must not span the two halves of the integer and 2991 // must fit in the half size type. 2992 (ShiftBits + MaskBits <= Size / 2) && 2993 TLI.isNarrowingProfitable(VT, HalfVT) && 2994 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && 2995 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && 2996 TLI.isTruncateFree(VT, HalfVT) && 2997 TLI.isZExtFree(HalfVT, VT)) { 2998 // The isNarrowingProfitable is to avoid regressions on PPC and 2999 // AArch64 which match a few 64-bit bit insert / bit extract patterns 3000 // on downstream users of this. Those patterns could probably be 3001 // extended to handle extensions mixed in. 3002 3003 SDValue SL(N0); 3004 assert(ShiftBits != 0 && MaskBits <= Size); 3005 3006 // Extracting the highest bit of the low half. 3007 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); 3008 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, 3009 N0.getOperand(0)); 3010 3011 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); 3012 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); 3013 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); 3014 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); 3015 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); 3016 } 3017 } 3018 } 3019 } 3020 3021 return SDValue(); 3022 } 3023 3024 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 3025 EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT, 3026 bool &NarrowLoad) { 3027 uint32_t ActiveBits = AndC->getAPIntValue().getActiveBits(); 3028 3029 if (ActiveBits == 0 || !APIntOps::isMask(ActiveBits, AndC->getAPIntValue())) 3030 return false; 3031 3032 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 3033 LoadedVT = LoadN->getMemoryVT(); 3034 3035 if (ExtVT == LoadedVT && 3036 (!LegalOperations || 3037 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { 3038 // ZEXTLOAD will match without needing to change the size of the value being 3039 // loaded. 3040 NarrowLoad = false; 3041 return true; 3042 } 3043 3044 // Do not change the width of a volatile load. 3045 if (LoadN->isVolatile()) 3046 return false; 3047 3048 // Do not generate loads of non-round integer types since these can 3049 // be expensive (and would be wrong if the type is not byte sized). 3050 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) 3051 return false; 3052 3053 if (LegalOperations && 3054 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) 3055 return false; 3056 3057 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) 3058 return false; 3059 3060 NarrowLoad = true; 3061 return true; 3062 } 3063 3064 SDValue DAGCombiner::visitAND(SDNode *N) { 3065 SDValue N0 = N->getOperand(0); 3066 SDValue N1 = N->getOperand(1); 3067 EVT VT = N1.getValueType(); 3068 3069 // fold vector ops 3070 if (VT.isVector()) { 3071 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3072 return FoldedVOp; 3073 3074 // fold (and x, 0) -> 0, vector edition 3075 if (ISD::isBuildVectorAllZeros(N0.getNode())) 3076 // do not return N0, because undef node may exist in N0 3077 return DAG.getConstant( 3078 APInt::getNullValue( 3079 N0.getValueType().getScalarType().getSizeInBits()), 3080 SDLoc(N), N0.getValueType()); 3081 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3082 // do not return N1, because undef node may exist in N1 3083 return DAG.getConstant( 3084 APInt::getNullValue( 3085 N1.getValueType().getScalarType().getSizeInBits()), 3086 SDLoc(N), N1.getValueType()); 3087 3088 // fold (and x, -1) -> x, vector edition 3089 if (ISD::isBuildVectorAllOnes(N0.getNode())) 3090 return N1; 3091 if (ISD::isBuildVectorAllOnes(N1.getNode())) 3092 return N0; 3093 } 3094 3095 // fold (and c1, c2) -> c1&c2 3096 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 3097 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3098 if (N0C && N1C && !N1C->isOpaque()) 3099 return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C); 3100 // canonicalize constant to RHS 3101 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3102 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3103 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); 3104 // fold (and x, -1) -> x 3105 if (isAllOnesConstant(N1)) 3106 return N0; 3107 // if (and x, c) is known to be zero, return 0 3108 unsigned BitWidth = VT.getScalarType().getSizeInBits(); 3109 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 3110 APInt::getAllOnesValue(BitWidth))) 3111 return DAG.getConstant(0, SDLoc(N), VT); 3112 // reassociate and 3113 if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1)) 3114 return RAND; 3115 // fold (and (or x, C), D) -> D if (C & D) == D 3116 if (N1C && N0.getOpcode() == ISD::OR) 3117 if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 3118 if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue()) 3119 return N1; 3120 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. 3121 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 3122 SDValue N0Op0 = N0.getOperand(0); 3123 APInt Mask = ~N1C->getAPIntValue(); 3124 Mask = Mask.trunc(N0Op0.getValueSizeInBits()); 3125 if (DAG.MaskedValueIsZero(N0Op0, Mask)) { 3126 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 3127 N0.getValueType(), N0Op0); 3128 3129 // Replace uses of the AND with uses of the Zero extend node. 3130 CombineTo(N, Zext); 3131 3132 // We actually want to replace all uses of the any_extend with the 3133 // zero_extend, to avoid duplicating things. This will later cause this 3134 // AND to be folded. 3135 CombineTo(N0.getNode(), Zext); 3136 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3137 } 3138 } 3139 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> 3140 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must 3141 // already be zero by virtue of the width of the base type of the load. 3142 // 3143 // the 'X' node here can either be nothing or an extract_vector_elt to catch 3144 // more cases. 3145 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 3146 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && 3147 N0.getOperand(0).getOpcode() == ISD::LOAD && 3148 N0.getOperand(0).getResNo() == 0) || 3149 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { 3150 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? 3151 N0 : N0.getOperand(0) ); 3152 3153 // Get the constant (if applicable) the zero'th operand is being ANDed with. 3154 // This can be a pure constant or a vector splat, in which case we treat the 3155 // vector as a scalar and use the splat value. 3156 APInt Constant = APInt::getNullValue(1); 3157 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 3158 Constant = C->getAPIntValue(); 3159 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { 3160 APInt SplatValue, SplatUndef; 3161 unsigned SplatBitSize; 3162 bool HasAnyUndefs; 3163 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, 3164 SplatBitSize, HasAnyUndefs); 3165 if (IsSplat) { 3166 // Undef bits can contribute to a possible optimisation if set, so 3167 // set them. 3168 SplatValue |= SplatUndef; 3169 3170 // The splat value may be something like "0x00FFFFFF", which means 0 for 3171 // the first vector value and FF for the rest, repeating. We need a mask 3172 // that will apply equally to all members of the vector, so AND all the 3173 // lanes of the constant together. 3174 EVT VT = Vector->getValueType(0); 3175 unsigned BitWidth = VT.getVectorElementType().getSizeInBits(); 3176 3177 // If the splat value has been compressed to a bitlength lower 3178 // than the size of the vector lane, we need to re-expand it to 3179 // the lane size. 3180 if (BitWidth > SplatBitSize) 3181 for (SplatValue = SplatValue.zextOrTrunc(BitWidth); 3182 SplatBitSize < BitWidth; 3183 SplatBitSize = SplatBitSize * 2) 3184 SplatValue |= SplatValue.shl(SplatBitSize); 3185 3186 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a 3187 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. 3188 if (SplatBitSize % BitWidth == 0) { 3189 Constant = APInt::getAllOnesValue(BitWidth); 3190 for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i) 3191 Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth); 3192 } 3193 } 3194 } 3195 3196 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is 3197 // actually legal and isn't going to get expanded, else this is a false 3198 // optimisation. 3199 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, 3200 Load->getValueType(0), 3201 Load->getMemoryVT()); 3202 3203 // Resize the constant to the same size as the original memory access before 3204 // extension. If it is still the AllOnesValue then this AND is completely 3205 // unneeded. 3206 Constant = 3207 Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits()); 3208 3209 bool B; 3210 switch (Load->getExtensionType()) { 3211 default: B = false; break; 3212 case ISD::EXTLOAD: B = CanZextLoadProfitably; break; 3213 case ISD::ZEXTLOAD: 3214 case ISD::NON_EXTLOAD: B = true; break; 3215 } 3216 3217 if (B && Constant.isAllOnesValue()) { 3218 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to 3219 // preserve semantics once we get rid of the AND. 3220 SDValue NewLoad(Load, 0); 3221 if (Load->getExtensionType() == ISD::EXTLOAD) { 3222 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, 3223 Load->getValueType(0), SDLoc(Load), 3224 Load->getChain(), Load->getBasePtr(), 3225 Load->getOffset(), Load->getMemoryVT(), 3226 Load->getMemOperand()); 3227 // Replace uses of the EXTLOAD with the new ZEXTLOAD. 3228 if (Load->getNumValues() == 3) { 3229 // PRE/POST_INC loads have 3 values. 3230 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), 3231 NewLoad.getValue(2) }; 3232 CombineTo(Load, To, 3, true); 3233 } else { 3234 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); 3235 } 3236 } 3237 3238 // Fold the AND away, taking care not to fold to the old load node if we 3239 // replaced it. 3240 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); 3241 3242 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3243 } 3244 } 3245 3246 // fold (and (load x), 255) -> (zextload x, i8) 3247 // fold (and (extload x, i16), 255) -> (zextload x, i8) 3248 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) 3249 if (N1C && (N0.getOpcode() == ISD::LOAD || 3250 (N0.getOpcode() == ISD::ANY_EXTEND && 3251 N0.getOperand(0).getOpcode() == ISD::LOAD))) { 3252 bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND; 3253 LoadSDNode *LN0 = HasAnyExt 3254 ? cast<LoadSDNode>(N0.getOperand(0)) 3255 : cast<LoadSDNode>(N0); 3256 if (LN0->getExtensionType() != ISD::SEXTLOAD && 3257 LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) { 3258 auto NarrowLoad = false; 3259 EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; 3260 EVT ExtVT, LoadedVT; 3261 if (isAndLoadExtLoad(N1C, LN0, LoadResultTy, ExtVT, LoadedVT, 3262 NarrowLoad)) { 3263 if (!NarrowLoad) { 3264 SDValue NewLoad = 3265 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, 3266 LN0->getChain(), LN0->getBasePtr(), ExtVT, 3267 LN0->getMemOperand()); 3268 AddToWorklist(N); 3269 CombineTo(LN0, NewLoad, NewLoad.getValue(1)); 3270 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3271 } else { 3272 EVT PtrType = LN0->getOperand(1).getValueType(); 3273 3274 unsigned Alignment = LN0->getAlignment(); 3275 SDValue NewPtr = LN0->getBasePtr(); 3276 3277 // For big endian targets, we need to add an offset to the pointer 3278 // to load the correct bytes. For little endian systems, we merely 3279 // need to read fewer bytes from the same pointer. 3280 if (DAG.getDataLayout().isBigEndian()) { 3281 unsigned LVTStoreBytes = LoadedVT.getStoreSize(); 3282 unsigned EVTStoreBytes = ExtVT.getStoreSize(); 3283 unsigned PtrOff = LVTStoreBytes - EVTStoreBytes; 3284 SDLoc DL(LN0); 3285 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, 3286 NewPtr, DAG.getConstant(PtrOff, DL, PtrType)); 3287 Alignment = MinAlign(Alignment, PtrOff); 3288 } 3289 3290 AddToWorklist(NewPtr.getNode()); 3291 3292 SDValue Load = 3293 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, 3294 LN0->getChain(), NewPtr, 3295 LN0->getPointerInfo(), 3296 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), 3297 LN0->isInvariant(), Alignment, LN0->getAAInfo()); 3298 AddToWorklist(N); 3299 CombineTo(LN0, Load, Load.getValue(1)); 3300 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3301 } 3302 } 3303 } 3304 } 3305 3306 if (SDValue Combined = visitANDLike(N0, N1, N)) 3307 return Combined; 3308 3309 // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) 3310 if (N0.getOpcode() == N1.getOpcode()) 3311 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 3312 return Tmp; 3313 3314 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) 3315 // fold (and (sra)) -> (and (srl)) when possible. 3316 if (!VT.isVector() && 3317 SimplifyDemandedBits(SDValue(N, 0))) 3318 return SDValue(N, 0); 3319 3320 // fold (zext_inreg (extload x)) -> (zextload x) 3321 if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { 3322 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 3323 EVT MemVT = LN0->getMemoryVT(); 3324 // If we zero all the possible extended bits, then we can turn this into 3325 // a zextload if we are running before legalize or the operation is legal. 3326 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); 3327 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 3328 BitWidth - MemVT.getScalarType().getSizeInBits())) && 3329 ((!LegalOperations && !LN0->isVolatile()) || 3330 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 3331 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 3332 LN0->getChain(), LN0->getBasePtr(), 3333 MemVT, LN0->getMemOperand()); 3334 AddToWorklist(N); 3335 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 3336 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3337 } 3338 } 3339 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use 3340 if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 3341 N0.hasOneUse()) { 3342 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 3343 EVT MemVT = LN0->getMemoryVT(); 3344 // If we zero all the possible extended bits, then we can turn this into 3345 // a zextload if we are running before legalize or the operation is legal. 3346 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); 3347 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 3348 BitWidth - MemVT.getScalarType().getSizeInBits())) && 3349 ((!LegalOperations && !LN0->isVolatile()) || 3350 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 3351 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 3352 LN0->getChain(), LN0->getBasePtr(), 3353 MemVT, LN0->getMemOperand()); 3354 AddToWorklist(N); 3355 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 3356 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3357 } 3358 } 3359 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) 3360 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { 3361 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 3362 N0.getOperand(1), false)) 3363 return BSwap; 3364 } 3365 3366 return SDValue(); 3367 } 3368 3369 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. 3370 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 3371 bool DemandHighBits) { 3372 if (!LegalOperations) 3373 return SDValue(); 3374 3375 EVT VT = N->getValueType(0); 3376 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) 3377 return SDValue(); 3378 if (!TLI.isOperationLegal(ISD::BSWAP, VT)) 3379 return SDValue(); 3380 3381 // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00) 3382 bool LookPassAnd0 = false; 3383 bool LookPassAnd1 = false; 3384 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) 3385 std::swap(N0, N1); 3386 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) 3387 std::swap(N0, N1); 3388 if (N0.getOpcode() == ISD::AND) { 3389 if (!N0.getNode()->hasOneUse()) 3390 return SDValue(); 3391 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3392 if (!N01C || N01C->getZExtValue() != 0xFF00) 3393 return SDValue(); 3394 N0 = N0.getOperand(0); 3395 LookPassAnd0 = true; 3396 } 3397 3398 if (N1.getOpcode() == ISD::AND) { 3399 if (!N1.getNode()->hasOneUse()) 3400 return SDValue(); 3401 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 3402 if (!N11C || N11C->getZExtValue() != 0xFF) 3403 return SDValue(); 3404 N1 = N1.getOperand(0); 3405 LookPassAnd1 = true; 3406 } 3407 3408 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 3409 std::swap(N0, N1); 3410 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 3411 return SDValue(); 3412 if (!N0.getNode()->hasOneUse() || 3413 !N1.getNode()->hasOneUse()) 3414 return SDValue(); 3415 3416 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3417 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 3418 if (!N01C || !N11C) 3419 return SDValue(); 3420 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) 3421 return SDValue(); 3422 3423 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) 3424 SDValue N00 = N0->getOperand(0); 3425 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { 3426 if (!N00.getNode()->hasOneUse()) 3427 return SDValue(); 3428 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); 3429 if (!N001C || N001C->getZExtValue() != 0xFF) 3430 return SDValue(); 3431 N00 = N00.getOperand(0); 3432 LookPassAnd0 = true; 3433 } 3434 3435 SDValue N10 = N1->getOperand(0); 3436 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { 3437 if (!N10.getNode()->hasOneUse()) 3438 return SDValue(); 3439 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); 3440 if (!N101C || N101C->getZExtValue() != 0xFF00) 3441 return SDValue(); 3442 N10 = N10.getOperand(0); 3443 LookPassAnd1 = true; 3444 } 3445 3446 if (N00 != N10) 3447 return SDValue(); 3448 3449 // Make sure everything beyond the low halfword gets set to zero since the SRL 3450 // 16 will clear the top bits. 3451 unsigned OpSizeInBits = VT.getSizeInBits(); 3452 if (DemandHighBits && OpSizeInBits > 16) { 3453 // If the left-shift isn't masked out then the only way this is a bswap is 3454 // if all bits beyond the low 8 are 0. In that case the entire pattern 3455 // reduces to a left shift anyway: leave it for other parts of the combiner. 3456 if (!LookPassAnd0) 3457 return SDValue(); 3458 3459 // However, if the right shift isn't masked out then it might be because 3460 // it's not needed. See if we can spot that too. 3461 if (!LookPassAnd1 && 3462 !DAG.MaskedValueIsZero( 3463 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) 3464 return SDValue(); 3465 } 3466 3467 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); 3468 if (OpSizeInBits > 16) { 3469 SDLoc DL(N); 3470 Res = DAG.getNode(ISD::SRL, DL, VT, Res, 3471 DAG.getConstant(OpSizeInBits - 16, DL, 3472 getShiftAmountTy(VT))); 3473 } 3474 return Res; 3475 } 3476 3477 /// Return true if the specified node is an element that makes up a 32-bit 3478 /// packed halfword byteswap. 3479 /// ((x & 0x000000ff) << 8) | 3480 /// ((x & 0x0000ff00) >> 8) | 3481 /// ((x & 0x00ff0000) << 8) | 3482 /// ((x & 0xff000000) >> 8) 3483 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { 3484 if (!N.getNode()->hasOneUse()) 3485 return false; 3486 3487 unsigned Opc = N.getOpcode(); 3488 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) 3489 return false; 3490 3491 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3492 if (!N1C) 3493 return false; 3494 3495 unsigned Num; 3496 switch (N1C->getZExtValue()) { 3497 default: 3498 return false; 3499 case 0xFF: Num = 0; break; 3500 case 0xFF00: Num = 1; break; 3501 case 0xFF0000: Num = 2; break; 3502 case 0xFF000000: Num = 3; break; 3503 } 3504 3505 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). 3506 SDValue N0 = N.getOperand(0); 3507 if (Opc == ISD::AND) { 3508 if (Num == 0 || Num == 2) { 3509 // (x >> 8) & 0xff 3510 // (x >> 8) & 0xff0000 3511 if (N0.getOpcode() != ISD::SRL) 3512 return false; 3513 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3514 if (!C || C->getZExtValue() != 8) 3515 return false; 3516 } else { 3517 // (x << 8) & 0xff00 3518 // (x << 8) & 0xff000000 3519 if (N0.getOpcode() != ISD::SHL) 3520 return false; 3521 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3522 if (!C || C->getZExtValue() != 8) 3523 return false; 3524 } 3525 } else if (Opc == ISD::SHL) { 3526 // (x & 0xff) << 8 3527 // (x & 0xff0000) << 8 3528 if (Num != 0 && Num != 2) 3529 return false; 3530 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3531 if (!C || C->getZExtValue() != 8) 3532 return false; 3533 } else { // Opc == ISD::SRL 3534 // (x & 0xff00) >> 8 3535 // (x & 0xff000000) >> 8 3536 if (Num != 1 && Num != 3) 3537 return false; 3538 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3539 if (!C || C->getZExtValue() != 8) 3540 return false; 3541 } 3542 3543 if (Parts[Num]) 3544 return false; 3545 3546 Parts[Num] = N0.getOperand(0).getNode(); 3547 return true; 3548 } 3549 3550 /// Match a 32-bit packed halfword bswap. That is 3551 /// ((x & 0x000000ff) << 8) | 3552 /// ((x & 0x0000ff00) >> 8) | 3553 /// ((x & 0x00ff0000) << 8) | 3554 /// ((x & 0xff000000) >> 8) 3555 /// => (rotl (bswap x), 16) 3556 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { 3557 if (!LegalOperations) 3558 return SDValue(); 3559 3560 EVT VT = N->getValueType(0); 3561 if (VT != MVT::i32) 3562 return SDValue(); 3563 if (!TLI.isOperationLegal(ISD::BSWAP, VT)) 3564 return SDValue(); 3565 3566 // Look for either 3567 // (or (or (and), (and)), (or (and), (and))) 3568 // (or (or (or (and), (and)), (and)), (and)) 3569 if (N0.getOpcode() != ISD::OR) 3570 return SDValue(); 3571 SDValue N00 = N0.getOperand(0); 3572 SDValue N01 = N0.getOperand(1); 3573 SDNode *Parts[4] = {}; 3574 3575 if (N1.getOpcode() == ISD::OR && 3576 N00.getNumOperands() == 2 && N01.getNumOperands() == 2) { 3577 // (or (or (and), (and)), (or (and), (and))) 3578 SDValue N000 = N00.getOperand(0); 3579 if (!isBSwapHWordElement(N000, Parts)) 3580 return SDValue(); 3581 3582 SDValue N001 = N00.getOperand(1); 3583 if (!isBSwapHWordElement(N001, Parts)) 3584 return SDValue(); 3585 SDValue N010 = N01.getOperand(0); 3586 if (!isBSwapHWordElement(N010, Parts)) 3587 return SDValue(); 3588 SDValue N011 = N01.getOperand(1); 3589 if (!isBSwapHWordElement(N011, Parts)) 3590 return SDValue(); 3591 } else { 3592 // (or (or (or (and), (and)), (and)), (and)) 3593 if (!isBSwapHWordElement(N1, Parts)) 3594 return SDValue(); 3595 if (!isBSwapHWordElement(N01, Parts)) 3596 return SDValue(); 3597 if (N00.getOpcode() != ISD::OR) 3598 return SDValue(); 3599 SDValue N000 = N00.getOperand(0); 3600 if (!isBSwapHWordElement(N000, Parts)) 3601 return SDValue(); 3602 SDValue N001 = N00.getOperand(1); 3603 if (!isBSwapHWordElement(N001, Parts)) 3604 return SDValue(); 3605 } 3606 3607 // Make sure the parts are all coming from the same node. 3608 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) 3609 return SDValue(); 3610 3611 SDLoc DL(N); 3612 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, 3613 SDValue(Parts[0], 0)); 3614 3615 // Result of the bswap should be rotated by 16. If it's not legal, then 3616 // do (x << 16) | (x >> 16). 3617 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); 3618 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) 3619 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); 3620 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 3621 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 3622 return DAG.getNode(ISD::OR, DL, VT, 3623 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), 3624 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); 3625 } 3626 3627 /// This contains all DAGCombine rules which reduce two values combined by 3628 /// an Or operation to a single value \see visitANDLike(). 3629 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *LocReference) { 3630 EVT VT = N1.getValueType(); 3631 // fold (or x, undef) -> -1 3632 if (!LegalOperations && 3633 (N0.isUndef() || N1.isUndef())) { 3634 EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; 3635 return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), 3636 SDLoc(LocReference), VT); 3637 } 3638 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) 3639 SDValue LL, LR, RL, RR, CC0, CC1; 3640 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ 3641 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); 3642 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); 3643 3644 if (LR == RR && Op0 == Op1 && LL.getValueType().isInteger()) { 3645 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0) 3646 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0) 3647 if (isNullConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { 3648 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR), 3649 LR.getValueType(), LL, RL); 3650 AddToWorklist(ORNode.getNode()); 3651 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 3652 } 3653 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1) 3654 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1) 3655 if (isAllOnesConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { 3656 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR), 3657 LR.getValueType(), LL, RL); 3658 AddToWorklist(ANDNode.getNode()); 3659 return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); 3660 } 3661 } 3662 // canonicalize equivalent to ll == rl 3663 if (LL == RR && LR == RL) { 3664 Op1 = ISD::getSetCCSwappedOperands(Op1); 3665 std::swap(RL, RR); 3666 } 3667 if (LL == RL && LR == RR) { 3668 bool isInteger = LL.getValueType().isInteger(); 3669 ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); 3670 if (Result != ISD::SETCC_INVALID && 3671 (!LegalOperations || 3672 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && 3673 TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { 3674 EVT CCVT = getSetCCResultType(LL.getValueType()); 3675 if (N0.getValueType() == CCVT || 3676 (!LegalOperations && N0.getValueType() == MVT::i1)) 3677 return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), 3678 LL, LR, Result); 3679 } 3680 } 3681 } 3682 3683 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. 3684 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && 3685 // Don't increase # computations. 3686 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 3687 // We can only do this xform if we know that bits from X that are set in C2 3688 // but not in C1 are already zero. Likewise for Y. 3689 if (const ConstantSDNode *N0O1C = 3690 getAsNonOpaqueConstant(N0.getOperand(1))) { 3691 if (const ConstantSDNode *N1O1C = 3692 getAsNonOpaqueConstant(N1.getOperand(1))) { 3693 // We can only do this xform if we know that bits from X that are set in 3694 // C2 but not in C1 are already zero. Likewise for Y. 3695 const APInt &LHSMask = N0O1C->getAPIntValue(); 3696 const APInt &RHSMask = N1O1C->getAPIntValue(); 3697 3698 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && 3699 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { 3700 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 3701 N0.getOperand(0), N1.getOperand(0)); 3702 SDLoc DL(LocReference); 3703 return DAG.getNode(ISD::AND, DL, VT, X, 3704 DAG.getConstant(LHSMask | RHSMask, DL, VT)); 3705 } 3706 } 3707 } 3708 } 3709 3710 // (or (and X, M), (and X, N)) -> (and X, (or M, N)) 3711 if (N0.getOpcode() == ISD::AND && 3712 N1.getOpcode() == ISD::AND && 3713 N0.getOperand(0) == N1.getOperand(0) && 3714 // Don't increase # computations. 3715 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 3716 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 3717 N0.getOperand(1), N1.getOperand(1)); 3718 return DAG.getNode(ISD::AND, SDLoc(LocReference), VT, N0.getOperand(0), X); 3719 } 3720 3721 return SDValue(); 3722 } 3723 3724 SDValue DAGCombiner::visitOR(SDNode *N) { 3725 SDValue N0 = N->getOperand(0); 3726 SDValue N1 = N->getOperand(1); 3727 EVT VT = N1.getValueType(); 3728 3729 // fold vector ops 3730 if (VT.isVector()) { 3731 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3732 return FoldedVOp; 3733 3734 // fold (or x, 0) -> x, vector edition 3735 if (ISD::isBuildVectorAllZeros(N0.getNode())) 3736 return N1; 3737 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3738 return N0; 3739 3740 // fold (or x, -1) -> -1, vector edition 3741 if (ISD::isBuildVectorAllOnes(N0.getNode())) 3742 // do not return N0, because undef node may exist in N0 3743 return DAG.getConstant( 3744 APInt::getAllOnesValue( 3745 N0.getValueType().getScalarType().getSizeInBits()), 3746 SDLoc(N), N0.getValueType()); 3747 if (ISD::isBuildVectorAllOnes(N1.getNode())) 3748 // do not return N1, because undef node may exist in N1 3749 return DAG.getConstant( 3750 APInt::getAllOnesValue( 3751 N1.getValueType().getScalarType().getSizeInBits()), 3752 SDLoc(N), N1.getValueType()); 3753 3754 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1) 3755 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2) 3756 // Do this only if the resulting shuffle is legal. 3757 if (isa<ShuffleVectorSDNode>(N0) && 3758 isa<ShuffleVectorSDNode>(N1) && 3759 // Avoid folding a node with illegal type. 3760 TLI.isTypeLegal(VT) && 3761 N0->getOperand(1) == N1->getOperand(1) && 3762 ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode())) { 3763 bool CanFold = true; 3764 unsigned NumElts = VT.getVectorNumElements(); 3765 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); 3766 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); 3767 // We construct two shuffle masks: 3768 // - Mask1 is a shuffle mask for a shuffle with N0 as the first operand 3769 // and N1 as the second operand. 3770 // - Mask2 is a shuffle mask for a shuffle with N1 as the first operand 3771 // and N0 as the second operand. 3772 // We do this because OR is commutable and therefore there might be 3773 // two ways to fold this node into a shuffle. 3774 SmallVector<int,4> Mask1; 3775 SmallVector<int,4> Mask2; 3776 3777 for (unsigned i = 0; i != NumElts && CanFold; ++i) { 3778 int M0 = SV0->getMaskElt(i); 3779 int M1 = SV1->getMaskElt(i); 3780 3781 // Both shuffle indexes are undef. Propagate Undef. 3782 if (M0 < 0 && M1 < 0) { 3783 Mask1.push_back(M0); 3784 Mask2.push_back(M0); 3785 continue; 3786 } 3787 3788 if (M0 < 0 || M1 < 0 || 3789 (M0 < (int)NumElts && M1 < (int)NumElts) || 3790 (M0 >= (int)NumElts && M1 >= (int)NumElts)) { 3791 CanFold = false; 3792 break; 3793 } 3794 3795 Mask1.push_back(M0 < (int)NumElts ? M0 : M1 + NumElts); 3796 Mask2.push_back(M1 < (int)NumElts ? M1 : M0 + NumElts); 3797 } 3798 3799 if (CanFold) { 3800 // Fold this sequence only if the resulting shuffle is 'legal'. 3801 if (TLI.isShuffleMaskLegal(Mask1, VT)) 3802 return DAG.getVectorShuffle(VT, SDLoc(N), N0->getOperand(0), 3803 N1->getOperand(0), &Mask1[0]); 3804 if (TLI.isShuffleMaskLegal(Mask2, VT)) 3805 return DAG.getVectorShuffle(VT, SDLoc(N), N1->getOperand(0), 3806 N0->getOperand(0), &Mask2[0]); 3807 } 3808 } 3809 } 3810 3811 // fold (or c1, c2) -> c1|c2 3812 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 3813 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3814 if (N0C && N1C && !N1C->isOpaque()) 3815 return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C); 3816 // canonicalize constant to RHS 3817 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3818 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3819 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); 3820 // fold (or x, 0) -> x 3821 if (isNullConstant(N1)) 3822 return N0; 3823 // fold (or x, -1) -> -1 3824 if (isAllOnesConstant(N1)) 3825 return N1; 3826 // fold (or x, c) -> c iff (x & ~c) == 0 3827 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) 3828 return N1; 3829 3830 if (SDValue Combined = visitORLike(N0, N1, N)) 3831 return Combined; 3832 3833 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) 3834 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) 3835 return BSwap; 3836 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) 3837 return BSwap; 3838 3839 // reassociate or 3840 if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1)) 3841 return ROR; 3842 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) 3843 // iff (c1 & c2) == 0. 3844 if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 3845 isa<ConstantSDNode>(N0.getOperand(1))) { 3846 ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1)); 3847 if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) { 3848 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, 3849 N1C, C1)) 3850 return DAG.getNode( 3851 ISD::AND, SDLoc(N), VT, 3852 DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1), COR); 3853 return SDValue(); 3854 } 3855 } 3856 // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) 3857 if (N0.getOpcode() == N1.getOpcode()) 3858 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 3859 return Tmp; 3860 3861 // See if this is some rotate idiom. 3862 if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N))) 3863 return SDValue(Rot, 0); 3864 3865 // Simplify the operands using demanded-bits information. 3866 if (!VT.isVector() && 3867 SimplifyDemandedBits(SDValue(N, 0))) 3868 return SDValue(N, 0); 3869 3870 return SDValue(); 3871 } 3872 3873 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 3874 bool DAGCombiner::MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) { 3875 if (Op.getOpcode() == ISD::AND) { 3876 if (DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { 3877 Mask = Op.getOperand(1); 3878 Op = Op.getOperand(0); 3879 } else { 3880 return false; 3881 } 3882 } 3883 3884 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { 3885 Shift = Op; 3886 return true; 3887 } 3888 3889 return false; 3890 } 3891 3892 // Return true if we can prove that, whenever Neg and Pos are both in the 3893 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that 3894 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: 3895 // 3896 // (or (shift1 X, Neg), (shift2 X, Pos)) 3897 // 3898 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate 3899 // in direction shift1 by Neg. The range [0, EltSize) means that we only need 3900 // to consider shift amounts with defined behavior. 3901 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize) { 3902 // If EltSize is a power of 2 then: 3903 // 3904 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) 3905 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). 3906 // 3907 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check 3908 // for the stronger condition: 3909 // 3910 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] 3911 // 3912 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) 3913 // we can just replace Neg with Neg' for the rest of the function. 3914 // 3915 // In other cases we check for the even stronger condition: 3916 // 3917 // Neg == EltSize - Pos [B] 3918 // 3919 // for all Neg and Pos. Note that the (or ...) then invokes undefined 3920 // behavior if Pos == 0 (and consequently Neg == EltSize). 3921 // 3922 // We could actually use [A] whenever EltSize is a power of 2, but the 3923 // only extra cases that it would match are those uninteresting ones 3924 // where Neg and Pos are never in range at the same time. E.g. for 3925 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) 3926 // as well as (sub 32, Pos), but: 3927 // 3928 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) 3929 // 3930 // always invokes undefined behavior for 32-bit X. 3931 // 3932 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. 3933 unsigned MaskLoBits = 0; 3934 if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { 3935 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { 3936 if (NegC->getAPIntValue() == EltSize - 1) { 3937 Neg = Neg.getOperand(0); 3938 MaskLoBits = Log2_64(EltSize); 3939 } 3940 } 3941 } 3942 3943 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. 3944 if (Neg.getOpcode() != ISD::SUB) 3945 return false; 3946 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); 3947 if (!NegC) 3948 return false; 3949 SDValue NegOp1 = Neg.getOperand(1); 3950 3951 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with 3952 // Pos'. The truncation is redundant for the purpose of the equality. 3953 if (MaskLoBits && Pos.getOpcode() == ISD::AND) 3954 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 3955 if (PosC->getAPIntValue() == EltSize - 1) 3956 Pos = Pos.getOperand(0); 3957 3958 // The condition we need is now: 3959 // 3960 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask 3961 // 3962 // If NegOp1 == Pos then we need: 3963 // 3964 // EltSize & Mask == NegC & Mask 3965 // 3966 // (because "x & Mask" is a truncation and distributes through subtraction). 3967 APInt Width; 3968 if (Pos == NegOp1) 3969 Width = NegC->getAPIntValue(); 3970 3971 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. 3972 // Then the condition we want to prove becomes: 3973 // 3974 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask 3975 // 3976 // which, again because "x & Mask" is a truncation, becomes: 3977 // 3978 // NegC & Mask == (EltSize - PosC) & Mask 3979 // EltSize & Mask == (NegC + PosC) & Mask 3980 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { 3981 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 3982 Width = PosC->getAPIntValue() + NegC->getAPIntValue(); 3983 else 3984 return false; 3985 } else 3986 return false; 3987 3988 // Now we just need to check that EltSize & Mask == Width & Mask. 3989 if (MaskLoBits) 3990 // EltSize & Mask is 0 since Mask is EltSize - 1. 3991 return Width.getLoBits(MaskLoBits) == 0; 3992 return Width == EltSize; 3993 } 3994 3995 // A subroutine of MatchRotate used once we have found an OR of two opposite 3996 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces 3997 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the 3998 // former being preferred if supported. InnerPos and InnerNeg are Pos and 3999 // Neg with outer conversions stripped away. 4000 SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, 4001 SDValue Neg, SDValue InnerPos, 4002 SDValue InnerNeg, unsigned PosOpcode, 4003 unsigned NegOpcode, SDLoc DL) { 4004 // fold (or (shl x, (*ext y)), 4005 // (srl x, (*ext (sub 32, y)))) -> 4006 // (rotl x, y) or (rotr x, (sub 32, y)) 4007 // 4008 // fold (or (shl x, (*ext (sub 32, y))), 4009 // (srl x, (*ext y))) -> 4010 // (rotr x, y) or (rotl x, (sub 32, y)) 4011 EVT VT = Shifted.getValueType(); 4012 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits())) { 4013 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 4014 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, 4015 HasPos ? Pos : Neg).getNode(); 4016 } 4017 4018 return nullptr; 4019 } 4020 4021 // MatchRotate - Handle an 'or' of two operands. If this is one of the many 4022 // idioms for rotate, and if the target supports rotation instructions, generate 4023 // a rot[lr]. 4024 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) { 4025 // Must be a legal type. Expanded 'n promoted things won't work with rotates. 4026 EVT VT = LHS.getValueType(); 4027 if (!TLI.isTypeLegal(VT)) return nullptr; 4028 4029 // The target must have at least one rotate flavor. 4030 bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT); 4031 bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT); 4032 if (!HasROTL && !HasROTR) return nullptr; 4033 4034 // Match "(X shl/srl V1) & V2" where V2 may not be present. 4035 SDValue LHSShift; // The shift. 4036 SDValue LHSMask; // AND value if any. 4037 if (!MatchRotateHalf(LHS, LHSShift, LHSMask)) 4038 return nullptr; // Not part of a rotate. 4039 4040 SDValue RHSShift; // The shift. 4041 SDValue RHSMask; // AND value if any. 4042 if (!MatchRotateHalf(RHS, RHSShift, RHSMask)) 4043 return nullptr; // Not part of a rotate. 4044 4045 if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) 4046 return nullptr; // Not shifting the same value. 4047 4048 if (LHSShift.getOpcode() == RHSShift.getOpcode()) 4049 return nullptr; // Shifts must disagree. 4050 4051 // Canonicalize shl to left side in a shl/srl pair. 4052 if (RHSShift.getOpcode() == ISD::SHL) { 4053 std::swap(LHS, RHS); 4054 std::swap(LHSShift, RHSShift); 4055 std::swap(LHSMask, RHSMask); 4056 } 4057 4058 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4059 SDValue LHSShiftArg = LHSShift.getOperand(0); 4060 SDValue LHSShiftAmt = LHSShift.getOperand(1); 4061 SDValue RHSShiftArg = RHSShift.getOperand(0); 4062 SDValue RHSShiftAmt = RHSShift.getOperand(1); 4063 4064 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) 4065 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) 4066 if (isConstOrConstSplat(LHSShiftAmt) && isConstOrConstSplat(RHSShiftAmt)) { 4067 uint64_t LShVal = isConstOrConstSplat(LHSShiftAmt)->getZExtValue(); 4068 uint64_t RShVal = isConstOrConstSplat(RHSShiftAmt)->getZExtValue(); 4069 if ((LShVal + RShVal) != EltSizeInBits) 4070 return nullptr; 4071 4072 SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, 4073 LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt); 4074 4075 // If there is an AND of either shifted operand, apply it to the result. 4076 if (LHSMask.getNode() || RHSMask.getNode()) { 4077 APInt AllBits = APInt::getAllOnesValue(EltSizeInBits); 4078 SDValue Mask = DAG.getConstant(AllBits, DL, VT); 4079 4080 if (LHSMask.getNode()) { 4081 APInt RHSBits = APInt::getLowBitsSet(EltSizeInBits, LShVal); 4082 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 4083 DAG.getNode(ISD::OR, DL, VT, LHSMask, 4084 DAG.getConstant(RHSBits, DL, VT))); 4085 } 4086 if (RHSMask.getNode()) { 4087 APInt LHSBits = APInt::getHighBitsSet(EltSizeInBits, RShVal); 4088 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 4089 DAG.getNode(ISD::OR, DL, VT, RHSMask, 4090 DAG.getConstant(LHSBits, DL, VT))); 4091 } 4092 4093 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask); 4094 } 4095 4096 return Rot.getNode(); 4097 } 4098 4099 // If there is a mask here, and we have a variable shift, we can't be sure 4100 // that we're masking out the right stuff. 4101 if (LHSMask.getNode() || RHSMask.getNode()) 4102 return nullptr; 4103 4104 // If the shift amount is sign/zext/any-extended just peel it off. 4105 SDValue LExtOp0 = LHSShiftAmt; 4106 SDValue RExtOp0 = RHSShiftAmt; 4107 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 4108 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 4109 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 4110 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && 4111 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 4112 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 4113 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 4114 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { 4115 LExtOp0 = LHSShiftAmt.getOperand(0); 4116 RExtOp0 = RHSShiftAmt.getOperand(0); 4117 } 4118 4119 SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, 4120 LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL); 4121 if (TryL) 4122 return TryL; 4123 4124 SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, 4125 RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL); 4126 if (TryR) 4127 return TryR; 4128 4129 return nullptr; 4130 } 4131 4132 SDValue DAGCombiner::visitXOR(SDNode *N) { 4133 SDValue N0 = N->getOperand(0); 4134 SDValue N1 = N->getOperand(1); 4135 EVT VT = N0.getValueType(); 4136 4137 // fold vector ops 4138 if (VT.isVector()) { 4139 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4140 return FoldedVOp; 4141 4142 // fold (xor x, 0) -> x, vector edition 4143 if (ISD::isBuildVectorAllZeros(N0.getNode())) 4144 return N1; 4145 if (ISD::isBuildVectorAllZeros(N1.getNode())) 4146 return N0; 4147 } 4148 4149 // fold (xor undef, undef) -> 0. This is a common idiom (misuse). 4150 if (N0.isUndef() && N1.isUndef()) 4151 return DAG.getConstant(0, SDLoc(N), VT); 4152 // fold (xor x, undef) -> undef 4153 if (N0.isUndef()) 4154 return N0; 4155 if (N1.isUndef()) 4156 return N1; 4157 // fold (xor c1, c2) -> c1^c2 4158 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4159 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 4160 if (N0C && N1C) 4161 return DAG.FoldConstantArithmetic(ISD::XOR, SDLoc(N), VT, N0C, N1C); 4162 // canonicalize constant to RHS 4163 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4164 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4165 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); 4166 // fold (xor x, 0) -> x 4167 if (isNullConstant(N1)) 4168 return N0; 4169 // reassociate xor 4170 if (SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1)) 4171 return RXOR; 4172 4173 // fold !(x cc y) -> (x !cc y) 4174 SDValue LHS, RHS, CC; 4175 if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) { 4176 bool isInt = LHS.getValueType().isInteger(); 4177 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 4178 isInt); 4179 4180 if (!LegalOperations || 4181 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { 4182 switch (N0.getOpcode()) { 4183 default: 4184 llvm_unreachable("Unhandled SetCC Equivalent!"); 4185 case ISD::SETCC: 4186 return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC); 4187 case ISD::SELECT_CC: 4188 return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2), 4189 N0.getOperand(3), NotCC); 4190 } 4191 } 4192 } 4193 4194 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) 4195 if (isOneConstant(N1) && N0.getOpcode() == ISD::ZERO_EXTEND && 4196 N0.getNode()->hasOneUse() && 4197 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ 4198 SDValue V = N0.getOperand(0); 4199 SDLoc DL(N0); 4200 V = DAG.getNode(ISD::XOR, DL, V.getValueType(), V, 4201 DAG.getConstant(1, DL, V.getValueType())); 4202 AddToWorklist(V.getNode()); 4203 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V); 4204 } 4205 4206 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc 4207 if (isOneConstant(N1) && VT == MVT::i1 && 4208 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { 4209 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 4210 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { 4211 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; 4212 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 4213 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 4214 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 4215 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); 4216 } 4217 } 4218 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants 4219 if (isAllOnesConstant(N1) && 4220 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { 4221 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 4222 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { 4223 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; 4224 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 4225 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 4226 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 4227 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); 4228 } 4229 } 4230 // fold (xor (and x, y), y) -> (and (not x), y) 4231 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 4232 N0->getOperand(1) == N1) { 4233 SDValue X = N0->getOperand(0); 4234 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); 4235 AddToWorklist(NotX.getNode()); 4236 return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1); 4237 } 4238 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2)) 4239 if (N1C && N0.getOpcode() == ISD::XOR) { 4240 if (const ConstantSDNode *N00C = getAsNonOpaqueConstant(N0.getOperand(0))) { 4241 SDLoc DL(N); 4242 return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), 4243 DAG.getConstant(N1C->getAPIntValue() ^ 4244 N00C->getAPIntValue(), DL, VT)); 4245 } 4246 if (const ConstantSDNode *N01C = getAsNonOpaqueConstant(N0.getOperand(1))) { 4247 SDLoc DL(N); 4248 return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 4249 DAG.getConstant(N1C->getAPIntValue() ^ 4250 N01C->getAPIntValue(), DL, VT)); 4251 } 4252 } 4253 // fold (xor x, x) -> 0 4254 if (N0 == N1) 4255 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); 4256 4257 // fold (xor (shl 1, x), -1) -> (rotl ~1, x) 4258 // Here is a concrete example of this equivalence: 4259 // i16 x == 14 4260 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 4261 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 4262 // 4263 // => 4264 // 4265 // i16 ~1 == 0b1111111111111110 4266 // i16 rol(~1, 14) == 0b1011111111111111 4267 // 4268 // Some additional tips to help conceptualize this transform: 4269 // - Try to see the operation as placing a single zero in a value of all ones. 4270 // - There exists no value for x which would allow the result to contain zero. 4271 // - Values of x larger than the bitwidth are undefined and do not require a 4272 // consistent result. 4273 // - Pushing the zero left requires shifting one bits in from the right. 4274 // A rotate left of ~1 is a nice way of achieving the desired result. 4275 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0.getOpcode() == ISD::SHL 4276 && isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { 4277 SDLoc DL(N); 4278 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), 4279 N0.getOperand(1)); 4280 } 4281 4282 // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) 4283 if (N0.getOpcode() == N1.getOpcode()) 4284 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 4285 return Tmp; 4286 4287 // Simplify the expression using non-local knowledge. 4288 if (!VT.isVector() && 4289 SimplifyDemandedBits(SDValue(N, 0))) 4290 return SDValue(N, 0); 4291 4292 return SDValue(); 4293 } 4294 4295 /// Handle transforms common to the three shifts, when the shift amount is a 4296 /// constant. 4297 SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) { 4298 SDNode *LHS = N->getOperand(0).getNode(); 4299 if (!LHS->hasOneUse()) return SDValue(); 4300 4301 // We want to pull some binops through shifts, so that we have (and (shift)) 4302 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of 4303 // thing happens with address calculations, so it's important to canonicalize 4304 // it. 4305 bool HighBitSet = false; // Can we transform this if the high bit is set? 4306 4307 switch (LHS->getOpcode()) { 4308 default: return SDValue(); 4309 case ISD::OR: 4310 case ISD::XOR: 4311 HighBitSet = false; // We can only transform sra if the high bit is clear. 4312 break; 4313 case ISD::AND: 4314 HighBitSet = true; // We can only transform sra if the high bit is set. 4315 break; 4316 case ISD::ADD: 4317 if (N->getOpcode() != ISD::SHL) 4318 return SDValue(); // only shl(add) not sr[al](add). 4319 HighBitSet = false; // We can only transform sra if the high bit is clear. 4320 break; 4321 } 4322 4323 // We require the RHS of the binop to be a constant and not opaque as well. 4324 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1)); 4325 if (!BinOpCst) return SDValue(); 4326 4327 // FIXME: disable this unless the input to the binop is a shift by a constant. 4328 // If it is not a shift, it pessimizes some common cases like: 4329 // 4330 // void foo(int *X, int i) { X[i & 1235] = 1; } 4331 // int bar(int *X, int i) { return X[i & 255]; } 4332 SDNode *BinOpLHSVal = LHS->getOperand(0).getNode(); 4333 if ((BinOpLHSVal->getOpcode() != ISD::SHL && 4334 BinOpLHSVal->getOpcode() != ISD::SRA && 4335 BinOpLHSVal->getOpcode() != ISD::SRL) || 4336 !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) 4337 return SDValue(); 4338 4339 EVT VT = N->getValueType(0); 4340 4341 // If this is a signed shift right, and the high bit is modified by the 4342 // logical operation, do not perform the transformation. The highBitSet 4343 // boolean indicates the value of the high bit of the constant which would 4344 // cause it to be modified for this operation. 4345 if (N->getOpcode() == ISD::SRA) { 4346 bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); 4347 if (BinOpRHSSignSet != HighBitSet) 4348 return SDValue(); 4349 } 4350 4351 if (!TLI.isDesirableToCommuteWithShift(LHS)) 4352 return SDValue(); 4353 4354 // Fold the constants, shifting the binop RHS by the shift amount. 4355 SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)), 4356 N->getValueType(0), 4357 LHS->getOperand(1), N->getOperand(1)); 4358 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); 4359 4360 // Create the new shift. 4361 SDValue NewShift = DAG.getNode(N->getOpcode(), 4362 SDLoc(LHS->getOperand(0)), 4363 VT, LHS->getOperand(0), N->getOperand(1)); 4364 4365 // Create the new binop. 4366 return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS); 4367 } 4368 4369 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { 4370 assert(N->getOpcode() == ISD::TRUNCATE); 4371 assert(N->getOperand(0).getOpcode() == ISD::AND); 4372 4373 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) 4374 if (N->hasOneUse() && N->getOperand(0).hasOneUse()) { 4375 SDValue N01 = N->getOperand(0).getOperand(1); 4376 4377 if (ConstantSDNode *N01C = isConstOrConstSplat(N01)) { 4378 if (!N01C->isOpaque()) { 4379 EVT TruncVT = N->getValueType(0); 4380 SDValue N00 = N->getOperand(0).getOperand(0); 4381 APInt TruncC = N01C->getAPIntValue(); 4382 TruncC = TruncC.trunc(TruncVT.getScalarSizeInBits()); 4383 SDLoc DL(N); 4384 4385 return DAG.getNode(ISD::AND, DL, TruncVT, 4386 DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00), 4387 DAG.getConstant(TruncC, DL, TruncVT)); 4388 } 4389 } 4390 } 4391 4392 return SDValue(); 4393 } 4394 4395 SDValue DAGCombiner::visitRotate(SDNode *N) { 4396 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). 4397 if (N->getOperand(1).getOpcode() == ISD::TRUNCATE && 4398 N->getOperand(1).getOperand(0).getOpcode() == ISD::AND) { 4399 if (SDValue NewOp1 = 4400 distributeTruncateThroughAnd(N->getOperand(1).getNode())) 4401 return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), 4402 N->getOperand(0), NewOp1); 4403 } 4404 return SDValue(); 4405 } 4406 4407 SDValue DAGCombiner::visitSHL(SDNode *N) { 4408 SDValue N0 = N->getOperand(0); 4409 SDValue N1 = N->getOperand(1); 4410 EVT VT = N0.getValueType(); 4411 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 4412 4413 // fold vector ops 4414 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4415 if (VT.isVector()) { 4416 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4417 return FoldedVOp; 4418 4419 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); 4420 // If setcc produces all-one true value then: 4421 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) 4422 if (N1CV && N1CV->isConstant()) { 4423 if (N0.getOpcode() == ISD::AND) { 4424 SDValue N00 = N0->getOperand(0); 4425 SDValue N01 = N0->getOperand(1); 4426 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); 4427 4428 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && 4429 TLI.getBooleanContents(N00.getOperand(0).getValueType()) == 4430 TargetLowering::ZeroOrNegativeOneBooleanContent) { 4431 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, 4432 N01CV, N1CV)) 4433 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); 4434 } 4435 } else { 4436 N1C = isConstOrConstSplat(N1); 4437 } 4438 } 4439 } 4440 4441 // fold (shl c1, c2) -> c1<<c2 4442 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4443 if (N0C && N1C && !N1C->isOpaque()) 4444 return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C); 4445 // fold (shl 0, x) -> 0 4446 if (isNullConstant(N0)) 4447 return N0; 4448 // fold (shl x, c >= size(x)) -> undef 4449 if (N1C && N1C->getAPIntValue().uge(OpSizeInBits)) 4450 return DAG.getUNDEF(VT); 4451 // fold (shl x, 0) -> x 4452 if (N1C && N1C->isNullValue()) 4453 return N0; 4454 // fold (shl undef, x) -> 0 4455 if (N0.isUndef()) 4456 return DAG.getConstant(0, SDLoc(N), VT); 4457 // if (shl x, c) is known to be zero, return 0 4458 if (DAG.MaskedValueIsZero(SDValue(N, 0), 4459 APInt::getAllOnesValue(OpSizeInBits))) 4460 return DAG.getConstant(0, SDLoc(N), VT); 4461 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). 4462 if (N1.getOpcode() == ISD::TRUNCATE && 4463 N1.getOperand(0).getOpcode() == ISD::AND) { 4464 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 4465 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); 4466 } 4467 4468 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4469 return SDValue(N, 0); 4470 4471 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) 4472 if (N1C && N0.getOpcode() == ISD::SHL) { 4473 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4474 uint64_t c1 = N0C1->getZExtValue(); 4475 uint64_t c2 = N1C->getZExtValue(); 4476 SDLoc DL(N); 4477 if (c1 + c2 >= OpSizeInBits) 4478 return DAG.getConstant(0, DL, VT); 4479 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4480 DAG.getConstant(c1 + c2, DL, N1.getValueType())); 4481 } 4482 } 4483 4484 // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2))) 4485 // For this to be valid, the second form must not preserve any of the bits 4486 // that are shifted out by the inner shift in the first form. This means 4487 // the outer shift size must be >= the number of bits added by the ext. 4488 // As a corollary, we don't care what kind of ext it is. 4489 if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND || 4490 N0.getOpcode() == ISD::ANY_EXTEND || 4491 N0.getOpcode() == ISD::SIGN_EXTEND) && 4492 N0.getOperand(0).getOpcode() == ISD::SHL) { 4493 SDValue N0Op0 = N0.getOperand(0); 4494 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 4495 uint64_t c1 = N0Op0C1->getZExtValue(); 4496 uint64_t c2 = N1C->getZExtValue(); 4497 EVT InnerShiftVT = N0Op0.getValueType(); 4498 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 4499 if (c2 >= OpSizeInBits - InnerShiftSize) { 4500 SDLoc DL(N0); 4501 if (c1 + c2 >= OpSizeInBits) 4502 return DAG.getConstant(0, DL, VT); 4503 return DAG.getNode(ISD::SHL, DL, VT, 4504 DAG.getNode(N0.getOpcode(), DL, VT, 4505 N0Op0->getOperand(0)), 4506 DAG.getConstant(c1 + c2, DL, N1.getValueType())); 4507 } 4508 } 4509 } 4510 4511 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) 4512 // Only fold this if the inner zext has no other uses to avoid increasing 4513 // the total number of instructions. 4514 if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && 4515 N0.getOperand(0).getOpcode() == ISD::SRL) { 4516 SDValue N0Op0 = N0.getOperand(0); 4517 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 4518 uint64_t c1 = N0Op0C1->getZExtValue(); 4519 if (c1 < VT.getScalarSizeInBits()) { 4520 uint64_t c2 = N1C->getZExtValue(); 4521 if (c1 == c2) { 4522 SDValue NewOp0 = N0.getOperand(0); 4523 EVT CountVT = NewOp0.getOperand(1).getValueType(); 4524 SDLoc DL(N); 4525 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(), 4526 NewOp0, 4527 DAG.getConstant(c2, DL, CountVT)); 4528 AddToWorklist(NewSHL.getNode()); 4529 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); 4530 } 4531 } 4532 } 4533 } 4534 4535 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 4536 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 4537 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && 4538 cast<BinaryWithFlagsSDNode>(N0)->Flags.hasExact()) { 4539 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4540 uint64_t C1 = N0C1->getZExtValue(); 4541 uint64_t C2 = N1C->getZExtValue(); 4542 SDLoc DL(N); 4543 if (C1 <= C2) 4544 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4545 DAG.getConstant(C2 - C1, DL, N1.getValueType())); 4546 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), 4547 DAG.getConstant(C1 - C2, DL, N1.getValueType())); 4548 } 4549 } 4550 4551 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or 4552 // (and (srl x, (sub c1, c2), MASK) 4553 // Only fold this if the inner shift has no other uses -- if it does, folding 4554 // this will increase the total number of instructions. 4555 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 4556 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4557 uint64_t c1 = N0C1->getZExtValue(); 4558 if (c1 < OpSizeInBits) { 4559 uint64_t c2 = N1C->getZExtValue(); 4560 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); 4561 SDValue Shift; 4562 if (c2 > c1) { 4563 Mask = Mask.shl(c2 - c1); 4564 SDLoc DL(N); 4565 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4566 DAG.getConstant(c2 - c1, DL, N1.getValueType())); 4567 } else { 4568 Mask = Mask.lshr(c1 - c2); 4569 SDLoc DL(N); 4570 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 4571 DAG.getConstant(c1 - c2, DL, N1.getValueType())); 4572 } 4573 SDLoc DL(N0); 4574 return DAG.getNode(ISD::AND, DL, VT, Shift, 4575 DAG.getConstant(Mask, DL, VT)); 4576 } 4577 } 4578 } 4579 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) 4580 if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) { 4581 unsigned BitSize = VT.getScalarSizeInBits(); 4582 SDLoc DL(N); 4583 SDValue HiBitsMask = 4584 DAG.getConstant(APInt::getHighBitsSet(BitSize, 4585 BitSize - N1C->getZExtValue()), 4586 DL, VT); 4587 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), 4588 HiBitsMask); 4589 } 4590 4591 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 4592 // Variant of version done on multiply, except mul by a power of 2 is turned 4593 // into a shift. 4594 APInt Val; 4595 if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() && 4596 (isa<ConstantSDNode>(N0.getOperand(1)) || 4597 isConstantSplatVector(N0.getOperand(1).getNode(), Val))) { 4598 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); 4599 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 4600 return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1); 4601 } 4602 4603 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) 4604 if (N1C && N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse()) { 4605 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4606 if (SDValue Folded = 4607 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, N0C1, N1C)) 4608 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Folded); 4609 } 4610 } 4611 4612 if (N1C && !N1C->isOpaque()) 4613 if (SDValue NewSHL = visitShiftByConstant(N, N1C)) 4614 return NewSHL; 4615 4616 return SDValue(); 4617 } 4618 4619 SDValue DAGCombiner::visitSRA(SDNode *N) { 4620 SDValue N0 = N->getOperand(0); 4621 SDValue N1 = N->getOperand(1); 4622 EVT VT = N0.getValueType(); 4623 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); 4624 4625 // fold vector ops 4626 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4627 if (VT.isVector()) { 4628 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4629 return FoldedVOp; 4630 4631 N1C = isConstOrConstSplat(N1); 4632 } 4633 4634 // fold (sra c1, c2) -> (sra c1, c2) 4635 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4636 if (N0C && N1C && !N1C->isOpaque()) 4637 return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C); 4638 // fold (sra 0, x) -> 0 4639 if (isNullConstant(N0)) 4640 return N0; 4641 // fold (sra -1, x) -> -1 4642 if (isAllOnesConstant(N0)) 4643 return N0; 4644 // fold (sra x, (setge c, size(x))) -> undef 4645 if (N1C && N1C->getZExtValue() >= OpSizeInBits) 4646 return DAG.getUNDEF(VT); 4647 // fold (sra x, 0) -> x 4648 if (N1C && N1C->isNullValue()) 4649 return N0; 4650 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports 4651 // sext_inreg. 4652 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { 4653 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); 4654 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); 4655 if (VT.isVector()) 4656 ExtVT = EVT::getVectorVT(*DAG.getContext(), 4657 ExtVT, VT.getVectorNumElements()); 4658 if ((!LegalOperations || 4659 TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) 4660 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 4661 N0.getOperand(0), DAG.getValueType(ExtVT)); 4662 } 4663 4664 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) 4665 if (N1C && N0.getOpcode() == ISD::SRA) { 4666 if (ConstantSDNode *C1 = isConstOrConstSplat(N0.getOperand(1))) { 4667 unsigned Sum = N1C->getZExtValue() + C1->getZExtValue(); 4668 if (Sum >= OpSizeInBits) 4669 Sum = OpSizeInBits - 1; 4670 SDLoc DL(N); 4671 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), 4672 DAG.getConstant(Sum, DL, N1.getValueType())); 4673 } 4674 } 4675 4676 // fold (sra (shl X, m), (sub result_size, n)) 4677 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for 4678 // result_size - n != m. 4679 // If truncate is free for the target sext(shl) is likely to result in better 4680 // code. 4681 if (N0.getOpcode() == ISD::SHL && N1C) { 4682 // Get the two constanst of the shifts, CN0 = m, CN = n. 4683 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); 4684 if (N01C) { 4685 LLVMContext &Ctx = *DAG.getContext(); 4686 // Determine what the truncate's result bitsize and type would be. 4687 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); 4688 4689 if (VT.isVector()) 4690 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); 4691 4692 // Determine the residual right-shift amount. 4693 signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); 4694 4695 // If the shift is not a no-op (in which case this should be just a sign 4696 // extend already), the truncated to type is legal, sign_extend is legal 4697 // on that type, and the truncate to that type is both legal and free, 4698 // perform the transform. 4699 if ((ShiftAmt > 0) && 4700 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && 4701 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && 4702 TLI.isTruncateFree(VT, TruncVT)) { 4703 4704 SDLoc DL(N); 4705 SDValue Amt = DAG.getConstant(ShiftAmt, DL, 4706 getShiftAmountTy(N0.getOperand(0).getValueType())); 4707 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, 4708 N0.getOperand(0), Amt); 4709 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, 4710 Shift); 4711 return DAG.getNode(ISD::SIGN_EXTEND, DL, 4712 N->getValueType(0), Trunc); 4713 } 4714 } 4715 } 4716 4717 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). 4718 if (N1.getOpcode() == ISD::TRUNCATE && 4719 N1.getOperand(0).getOpcode() == ISD::AND) { 4720 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 4721 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); 4722 } 4723 4724 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) 4725 // if c1 is equal to the number of bits the trunc removes 4726 if (N0.getOpcode() == ISD::TRUNCATE && 4727 (N0.getOperand(0).getOpcode() == ISD::SRL || 4728 N0.getOperand(0).getOpcode() == ISD::SRA) && 4729 N0.getOperand(0).hasOneUse() && 4730 N0.getOperand(0).getOperand(1).hasOneUse() && 4731 N1C) { 4732 SDValue N0Op0 = N0.getOperand(0); 4733 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { 4734 unsigned LargeShiftVal = LargeShift->getZExtValue(); 4735 EVT LargeVT = N0Op0.getValueType(); 4736 4737 if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) { 4738 SDLoc DL(N); 4739 SDValue Amt = 4740 DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL, 4741 getShiftAmountTy(N0Op0.getOperand(0).getValueType())); 4742 SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT, 4743 N0Op0.getOperand(0), Amt); 4744 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); 4745 } 4746 } 4747 } 4748 4749 // Simplify, based on bits shifted out of the LHS. 4750 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4751 return SDValue(N, 0); 4752 4753 4754 // If the sign bit is known to be zero, switch this to a SRL. 4755 if (DAG.SignBitIsZero(N0)) 4756 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); 4757 4758 if (N1C && !N1C->isOpaque()) 4759 if (SDValue NewSRA = visitShiftByConstant(N, N1C)) 4760 return NewSRA; 4761 4762 return SDValue(); 4763 } 4764 4765 SDValue DAGCombiner::visitSRL(SDNode *N) { 4766 SDValue N0 = N->getOperand(0); 4767 SDValue N1 = N->getOperand(1); 4768 EVT VT = N0.getValueType(); 4769 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); 4770 4771 // fold vector ops 4772 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4773 if (VT.isVector()) { 4774 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4775 return FoldedVOp; 4776 4777 N1C = isConstOrConstSplat(N1); 4778 } 4779 4780 // fold (srl c1, c2) -> c1 >>u c2 4781 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4782 if (N0C && N1C && !N1C->isOpaque()) 4783 return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C); 4784 // fold (srl 0, x) -> 0 4785 if (isNullConstant(N0)) 4786 return N0; 4787 // fold (srl x, c >= size(x)) -> undef 4788 if (N1C && N1C->getZExtValue() >= OpSizeInBits) 4789 return DAG.getUNDEF(VT); 4790 // fold (srl x, 0) -> x 4791 if (N1C && N1C->isNullValue()) 4792 return N0; 4793 // if (srl x, c) is known to be zero, return 0 4794 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 4795 APInt::getAllOnesValue(OpSizeInBits))) 4796 return DAG.getConstant(0, SDLoc(N), VT); 4797 4798 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) 4799 if (N1C && N0.getOpcode() == ISD::SRL) { 4800 if (ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1))) { 4801 uint64_t c1 = N01C->getZExtValue(); 4802 uint64_t c2 = N1C->getZExtValue(); 4803 SDLoc DL(N); 4804 if (c1 + c2 >= OpSizeInBits) 4805 return DAG.getConstant(0, DL, VT); 4806 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 4807 DAG.getConstant(c1 + c2, DL, N1.getValueType())); 4808 } 4809 } 4810 4811 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) 4812 if (N1C && N0.getOpcode() == ISD::TRUNCATE && 4813 N0.getOperand(0).getOpcode() == ISD::SRL && 4814 isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) { 4815 uint64_t c1 = 4816 cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue(); 4817 uint64_t c2 = N1C->getZExtValue(); 4818 EVT InnerShiftVT = N0.getOperand(0).getValueType(); 4819 EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType(); 4820 uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits(); 4821 // This is only valid if the OpSizeInBits + c1 = size of inner shift. 4822 if (c1 + OpSizeInBits == InnerShiftSize) { 4823 SDLoc DL(N0); 4824 if (c1 + c2 >= InnerShiftSize) 4825 return DAG.getConstant(0, DL, VT); 4826 return DAG.getNode(ISD::TRUNCATE, DL, VT, 4827 DAG.getNode(ISD::SRL, DL, InnerShiftVT, 4828 N0.getOperand(0)->getOperand(0), 4829 DAG.getConstant(c1 + c2, DL, 4830 ShiftCountVT))); 4831 } 4832 } 4833 4834 // fold (srl (shl x, c), c) -> (and x, cst2) 4835 if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1) { 4836 unsigned BitSize = N0.getScalarValueSizeInBits(); 4837 if (BitSize <= 64) { 4838 uint64_t ShAmt = N1C->getZExtValue() + 64 - BitSize; 4839 SDLoc DL(N); 4840 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), 4841 DAG.getConstant(~0ULL >> ShAmt, DL, VT)); 4842 } 4843 } 4844 4845 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) 4846 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 4847 // Shifting in all undef bits? 4848 EVT SmallVT = N0.getOperand(0).getValueType(); 4849 unsigned BitSize = SmallVT.getScalarSizeInBits(); 4850 if (N1C->getZExtValue() >= BitSize) 4851 return DAG.getUNDEF(VT); 4852 4853 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { 4854 uint64_t ShiftAmt = N1C->getZExtValue(); 4855 SDLoc DL0(N0); 4856 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, 4857 N0.getOperand(0), 4858 DAG.getConstant(ShiftAmt, DL0, 4859 getShiftAmountTy(SmallVT))); 4860 AddToWorklist(SmallShift.getNode()); 4861 APInt Mask = APInt::getAllOnesValue(OpSizeInBits).lshr(ShiftAmt); 4862 SDLoc DL(N); 4863 return DAG.getNode(ISD::AND, DL, VT, 4864 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), 4865 DAG.getConstant(Mask, DL, VT)); 4866 } 4867 } 4868 4869 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign 4870 // bit, which is unmodified by sra. 4871 if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) { 4872 if (N0.getOpcode() == ISD::SRA) 4873 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); 4874 } 4875 4876 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). 4877 if (N1C && N0.getOpcode() == ISD::CTLZ && 4878 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { 4879 APInt KnownZero, KnownOne; 4880 DAG.computeKnownBits(N0.getOperand(0), KnownZero, KnownOne); 4881 4882 // If any of the input bits are KnownOne, then the input couldn't be all 4883 // zeros, thus the result of the srl will always be zero. 4884 if (KnownOne.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); 4885 4886 // If all of the bits input the to ctlz node are known to be zero, then 4887 // the result of the ctlz is "32" and the result of the shift is one. 4888 APInt UnknownBits = ~KnownZero; 4889 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); 4890 4891 // Otherwise, check to see if there is exactly one bit input to the ctlz. 4892 if ((UnknownBits & (UnknownBits - 1)) == 0) { 4893 // Okay, we know that only that the single bit specified by UnknownBits 4894 // could be set on input to the CTLZ node. If this bit is set, the SRL 4895 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair 4896 // to an SRL/XOR pair, which is likely to simplify more. 4897 unsigned ShAmt = UnknownBits.countTrailingZeros(); 4898 SDValue Op = N0.getOperand(0); 4899 4900 if (ShAmt) { 4901 SDLoc DL(N0); 4902 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 4903 DAG.getConstant(ShAmt, DL, 4904 getShiftAmountTy(Op.getValueType()))); 4905 AddToWorklist(Op.getNode()); 4906 } 4907 4908 SDLoc DL(N); 4909 return DAG.getNode(ISD::XOR, DL, VT, 4910 Op, DAG.getConstant(1, DL, VT)); 4911 } 4912 } 4913 4914 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). 4915 if (N1.getOpcode() == ISD::TRUNCATE && 4916 N1.getOperand(0).getOpcode() == ISD::AND) { 4917 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 4918 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); 4919 } 4920 4921 // fold operands of srl based on knowledge that the low bits are not 4922 // demanded. 4923 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4924 return SDValue(N, 0); 4925 4926 if (N1C && !N1C->isOpaque()) 4927 if (SDValue NewSRL = visitShiftByConstant(N, N1C)) 4928 return NewSRL; 4929 4930 // Attempt to convert a srl of a load into a narrower zero-extending load. 4931 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 4932 return NarrowLoad; 4933 4934 // Here is a common situation. We want to optimize: 4935 // 4936 // %a = ... 4937 // %b = and i32 %a, 2 4938 // %c = srl i32 %b, 1 4939 // brcond i32 %c ... 4940 // 4941 // into 4942 // 4943 // %a = ... 4944 // %b = and %a, 2 4945 // %c = setcc eq %b, 0 4946 // brcond %c ... 4947 // 4948 // However when after the source operand of SRL is optimized into AND, the SRL 4949 // itself may not be optimized further. Look for it and add the BRCOND into 4950 // the worklist. 4951 if (N->hasOneUse()) { 4952 SDNode *Use = *N->use_begin(); 4953 if (Use->getOpcode() == ISD::BRCOND) 4954 AddToWorklist(Use); 4955 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { 4956 // Also look pass the truncate. 4957 Use = *Use->use_begin(); 4958 if (Use->getOpcode() == ISD::BRCOND) 4959 AddToWorklist(Use); 4960 } 4961 } 4962 4963 return SDValue(); 4964 } 4965 4966 SDValue DAGCombiner::visitBSWAP(SDNode *N) { 4967 SDValue N0 = N->getOperand(0); 4968 EVT VT = N->getValueType(0); 4969 4970 // fold (bswap c1) -> c2 4971 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 4972 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); 4973 // fold (bswap (bswap x)) -> x 4974 if (N0.getOpcode() == ISD::BSWAP) 4975 return N0->getOperand(0); 4976 return SDValue(); 4977 } 4978 4979 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { 4980 SDValue N0 = N->getOperand(0); 4981 4982 // fold (bitreverse (bitreverse x)) -> x 4983 if (N0.getOpcode() == ISD::BITREVERSE) 4984 return N0.getOperand(0); 4985 return SDValue(); 4986 } 4987 4988 SDValue DAGCombiner::visitCTLZ(SDNode *N) { 4989 SDValue N0 = N->getOperand(0); 4990 EVT VT = N->getValueType(0); 4991 4992 // fold (ctlz c1) -> c2 4993 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 4994 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); 4995 return SDValue(); 4996 } 4997 4998 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { 4999 SDValue N0 = N->getOperand(0); 5000 EVT VT = N->getValueType(0); 5001 5002 // fold (ctlz_zero_undef c1) -> c2 5003 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5004 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 5005 return SDValue(); 5006 } 5007 5008 SDValue DAGCombiner::visitCTTZ(SDNode *N) { 5009 SDValue N0 = N->getOperand(0); 5010 EVT VT = N->getValueType(0); 5011 5012 // fold (cttz c1) -> c2 5013 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5014 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); 5015 return SDValue(); 5016 } 5017 5018 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { 5019 SDValue N0 = N->getOperand(0); 5020 EVT VT = N->getValueType(0); 5021 5022 // fold (cttz_zero_undef c1) -> c2 5023 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5024 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 5025 return SDValue(); 5026 } 5027 5028 SDValue DAGCombiner::visitCTPOP(SDNode *N) { 5029 SDValue N0 = N->getOperand(0); 5030 EVT VT = N->getValueType(0); 5031 5032 // fold (ctpop c1) -> c2 5033 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5034 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); 5035 return SDValue(); 5036 } 5037 5038 5039 /// \brief Generate Min/Max node 5040 static SDValue combineMinNumMaxNum(SDLoc DL, EVT VT, SDValue LHS, SDValue RHS, 5041 SDValue True, SDValue False, 5042 ISD::CondCode CC, const TargetLowering &TLI, 5043 SelectionDAG &DAG) { 5044 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 5045 return SDValue(); 5046 5047 switch (CC) { 5048 case ISD::SETOLT: 5049 case ISD::SETOLE: 5050 case ISD::SETLT: 5051 case ISD::SETLE: 5052 case ISD::SETULT: 5053 case ISD::SETULE: { 5054 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; 5055 if (TLI.isOperationLegal(Opcode, VT)) 5056 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 5057 return SDValue(); 5058 } 5059 case ISD::SETOGT: 5060 case ISD::SETOGE: 5061 case ISD::SETGT: 5062 case ISD::SETGE: 5063 case ISD::SETUGT: 5064 case ISD::SETUGE: { 5065 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; 5066 if (TLI.isOperationLegal(Opcode, VT)) 5067 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 5068 return SDValue(); 5069 } 5070 default: 5071 return SDValue(); 5072 } 5073 } 5074 5075 SDValue DAGCombiner::visitSELECT(SDNode *N) { 5076 SDValue N0 = N->getOperand(0); 5077 SDValue N1 = N->getOperand(1); 5078 SDValue N2 = N->getOperand(2); 5079 EVT VT = N->getValueType(0); 5080 EVT VT0 = N0.getValueType(); 5081 5082 // fold (select C, X, X) -> X 5083 if (N1 == N2) 5084 return N1; 5085 if (const ConstantSDNode *N0C = dyn_cast<const ConstantSDNode>(N0)) { 5086 // fold (select true, X, Y) -> X 5087 // fold (select false, X, Y) -> Y 5088 return !N0C->isNullValue() ? N1 : N2; 5089 } 5090 // fold (select C, 1, X) -> (or C, X) 5091 if (VT == MVT::i1 && isOneConstant(N1)) 5092 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); 5093 // fold (select C, 0, 1) -> (xor C, 1) 5094 // We can't do this reliably if integer based booleans have different contents 5095 // to floating point based booleans. This is because we can't tell whether we 5096 // have an integer-based boolean or a floating-point-based boolean unless we 5097 // can find the SETCC that produced it and inspect its operands. This is 5098 // fairly easy if C is the SETCC node, but it can potentially be 5099 // undiscoverable (or not reasonably discoverable). For example, it could be 5100 // in another basic block or it could require searching a complicated 5101 // expression. 5102 if (VT.isInteger() && 5103 (VT0 == MVT::i1 || (VT0.isInteger() && 5104 TLI.getBooleanContents(false, false) == 5105 TLI.getBooleanContents(false, true) && 5106 TLI.getBooleanContents(false, false) == 5107 TargetLowering::ZeroOrOneBooleanContent)) && 5108 isNullConstant(N1) && isOneConstant(N2)) { 5109 SDValue XORNode; 5110 if (VT == VT0) { 5111 SDLoc DL(N); 5112 return DAG.getNode(ISD::XOR, DL, VT0, 5113 N0, DAG.getConstant(1, DL, VT0)); 5114 } 5115 SDLoc DL0(N0); 5116 XORNode = DAG.getNode(ISD::XOR, DL0, VT0, 5117 N0, DAG.getConstant(1, DL0, VT0)); 5118 AddToWorklist(XORNode.getNode()); 5119 if (VT.bitsGT(VT0)) 5120 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode); 5121 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode); 5122 } 5123 // fold (select C, 0, X) -> (and (not C), X) 5124 if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { 5125 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 5126 AddToWorklist(NOTNode.getNode()); 5127 return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2); 5128 } 5129 // fold (select C, X, 1) -> (or (not C), X) 5130 if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { 5131 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 5132 AddToWorklist(NOTNode.getNode()); 5133 return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1); 5134 } 5135 // fold (select C, X, 0) -> (and C, X) 5136 if (VT == MVT::i1 && isNullConstant(N2)) 5137 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); 5138 // fold (select X, X, Y) -> (or X, Y) 5139 // fold (select X, 1, Y) -> (or X, Y) 5140 if (VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) 5141 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); 5142 // fold (select X, Y, X) -> (and X, Y) 5143 // fold (select X, Y, 0) -> (and X, Y) 5144 if (VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) 5145 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); 5146 5147 // If we can fold this based on the true/false value, do so. 5148 if (SimplifySelectOps(N, N1, N2)) 5149 return SDValue(N, 0); // Don't revisit N. 5150 5151 if (VT0 == MVT::i1) { 5152 // The code in this block deals with the following 2 equivalences: 5153 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) 5154 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) 5155 // The target can specify its prefered form with the 5156 // shouldNormalizeToSelectSequence() callback. However we always transform 5157 // to the right anyway if we find the inner select exists in the DAG anyway 5158 // and we always transform to the left side if we know that we can further 5159 // optimize the combination of the conditions. 5160 bool normalizeToSequence 5161 = TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); 5162 // select (and Cond0, Cond1), X, Y 5163 // -> select Cond0, (select Cond1, X, Y), Y 5164 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { 5165 SDValue Cond0 = N0->getOperand(0); 5166 SDValue Cond1 = N0->getOperand(1); 5167 SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), 5168 N1.getValueType(), Cond1, N1, N2); 5169 if (normalizeToSequence || !InnerSelect.use_empty()) 5170 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, 5171 InnerSelect, N2); 5172 } 5173 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) 5174 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { 5175 SDValue Cond0 = N0->getOperand(0); 5176 SDValue Cond1 = N0->getOperand(1); 5177 SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), 5178 N1.getValueType(), Cond1, N1, N2); 5179 if (normalizeToSequence || !InnerSelect.use_empty()) 5180 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, N1, 5181 InnerSelect); 5182 } 5183 5184 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y 5185 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { 5186 SDValue N1_0 = N1->getOperand(0); 5187 SDValue N1_1 = N1->getOperand(1); 5188 SDValue N1_2 = N1->getOperand(2); 5189 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { 5190 // Create the actual and node if we can generate good code for it. 5191 if (!normalizeToSequence) { 5192 SDValue And = DAG.getNode(ISD::AND, SDLoc(N), N0.getValueType(), 5193 N0, N1_0); 5194 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), And, 5195 N1_1, N2); 5196 } 5197 // Otherwise see if we can optimize the "and" to a better pattern. 5198 if (SDValue Combined = visitANDLike(N0, N1_0, N)) 5199 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, 5200 N1_1, N2); 5201 } 5202 } 5203 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y 5204 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { 5205 SDValue N2_0 = N2->getOperand(0); 5206 SDValue N2_1 = N2->getOperand(1); 5207 SDValue N2_2 = N2->getOperand(2); 5208 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { 5209 // Create the actual or node if we can generate good code for it. 5210 if (!normalizeToSequence) { 5211 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N), N0.getValueType(), 5212 N0, N2_0); 5213 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Or, 5214 N1, N2_2); 5215 } 5216 // Otherwise see if we can optimize to a better pattern. 5217 if (SDValue Combined = visitORLike(N0, N2_0, N)) 5218 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, 5219 N1, N2_2); 5220 } 5221 } 5222 } 5223 5224 // fold selects based on a setcc into other things, such as min/max/abs 5225 if (N0.getOpcode() == ISD::SETCC) { 5226 // select x, y (fcmp lt x, y) -> fminnum x, y 5227 // select x, y (fcmp gt x, y) -> fmaxnum x, y 5228 // 5229 // This is OK if we don't care about what happens if either operand is a 5230 // NaN. 5231 // 5232 5233 // FIXME: Instead of testing for UnsafeFPMath, this should be checking for 5234 // no signed zeros as well as no nans. 5235 const TargetOptions &Options = DAG.getTarget().Options; 5236 if (Options.UnsafeFPMath && 5237 VT.isFloatingPoint() && N0.hasOneUse() && 5238 DAG.isKnownNeverNaN(N1) && DAG.isKnownNeverNaN(N2)) { 5239 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 5240 5241 if (SDValue FMinMax = combineMinNumMaxNum(SDLoc(N), VT, N0.getOperand(0), 5242 N0.getOperand(1), N1, N2, CC, 5243 TLI, DAG)) 5244 return FMinMax; 5245 } 5246 5247 if ((!LegalOperations && 5248 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) || 5249 TLI.isOperationLegal(ISD::SELECT_CC, VT)) 5250 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, 5251 N0.getOperand(0), N0.getOperand(1), 5252 N1, N2, N0.getOperand(2)); 5253 return SimplifySelect(SDLoc(N), N0, N1, N2); 5254 } 5255 5256 return SDValue(); 5257 } 5258 5259 static 5260 std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) { 5261 SDLoc DL(N); 5262 EVT LoVT, HiVT; 5263 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); 5264 5265 // Split the inputs. 5266 SDValue Lo, Hi, LL, LH, RL, RH; 5267 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0); 5268 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1); 5269 5270 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2)); 5271 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2)); 5272 5273 return std::make_pair(Lo, Hi); 5274 } 5275 5276 // This function assumes all the vselect's arguments are CONCAT_VECTOR 5277 // nodes and that the condition is a BV of ConstantSDNodes (or undefs). 5278 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { 5279 SDLoc dl(N); 5280 SDValue Cond = N->getOperand(0); 5281 SDValue LHS = N->getOperand(1); 5282 SDValue RHS = N->getOperand(2); 5283 EVT VT = N->getValueType(0); 5284 int NumElems = VT.getVectorNumElements(); 5285 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && 5286 RHS.getOpcode() == ISD::CONCAT_VECTORS && 5287 Cond.getOpcode() == ISD::BUILD_VECTOR); 5288 5289 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about 5290 // binary ones here. 5291 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) 5292 return SDValue(); 5293 5294 // We're sure we have an even number of elements due to the 5295 // concat_vectors we have as arguments to vselect. 5296 // Skip BV elements until we find one that's not an UNDEF 5297 // After we find an UNDEF element, keep looping until we get to half the 5298 // length of the BV and see if all the non-undef nodes are the same. 5299 ConstantSDNode *BottomHalf = nullptr; 5300 for (int i = 0; i < NumElems / 2; ++i) { 5301 if (Cond->getOperand(i)->isUndef()) 5302 continue; 5303 5304 if (BottomHalf == nullptr) 5305 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 5306 else if (Cond->getOperand(i).getNode() != BottomHalf) 5307 return SDValue(); 5308 } 5309 5310 // Do the same for the second half of the BuildVector 5311 ConstantSDNode *TopHalf = nullptr; 5312 for (int i = NumElems / 2; i < NumElems; ++i) { 5313 if (Cond->getOperand(i)->isUndef()) 5314 continue; 5315 5316 if (TopHalf == nullptr) 5317 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 5318 else if (Cond->getOperand(i).getNode() != TopHalf) 5319 return SDValue(); 5320 } 5321 5322 assert(TopHalf && BottomHalf && 5323 "One half of the selector was all UNDEFs and the other was all the " 5324 "same value. This should have been addressed before this function."); 5325 return DAG.getNode( 5326 ISD::CONCAT_VECTORS, dl, VT, 5327 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), 5328 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); 5329 } 5330 5331 SDValue DAGCombiner::visitMSCATTER(SDNode *N) { 5332 5333 if (Level >= AfterLegalizeTypes) 5334 return SDValue(); 5335 5336 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); 5337 SDValue Mask = MSC->getMask(); 5338 SDValue Data = MSC->getValue(); 5339 SDLoc DL(N); 5340 5341 // If the MSCATTER data type requires splitting and the mask is provided by a 5342 // SETCC, then split both nodes and its operands before legalization. This 5343 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5344 // and enables future optimizations (e.g. min/max pattern matching on X86). 5345 if (Mask.getOpcode() != ISD::SETCC) 5346 return SDValue(); 5347 5348 // Check if any splitting is required. 5349 if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != 5350 TargetLowering::TypeSplitVector) 5351 return SDValue(); 5352 SDValue MaskLo, MaskHi, Lo, Hi; 5353 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5354 5355 EVT LoVT, HiVT; 5356 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0)); 5357 5358 SDValue Chain = MSC->getChain(); 5359 5360 EVT MemoryVT = MSC->getMemoryVT(); 5361 unsigned Alignment = MSC->getOriginalAlignment(); 5362 5363 EVT LoMemVT, HiMemVT; 5364 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5365 5366 SDValue DataLo, DataHi; 5367 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); 5368 5369 SDValue BasePtr = MSC->getBasePtr(); 5370 SDValue IndexLo, IndexHi; 5371 std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL); 5372 5373 MachineMemOperand *MMO = DAG.getMachineFunction(). 5374 getMachineMemOperand(MSC->getPointerInfo(), 5375 MachineMemOperand::MOStore, LoMemVT.getStoreSize(), 5376 Alignment, MSC->getAAInfo(), MSC->getRanges()); 5377 5378 SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo }; 5379 Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(), 5380 DL, OpsLo, MMO); 5381 5382 SDValue OpsHi[] = {Chain, DataHi, MaskHi, BasePtr, IndexHi}; 5383 Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(), 5384 DL, OpsHi, MMO); 5385 5386 AddToWorklist(Lo.getNode()); 5387 AddToWorklist(Hi.getNode()); 5388 5389 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 5390 } 5391 5392 SDValue DAGCombiner::visitMSTORE(SDNode *N) { 5393 5394 if (Level >= AfterLegalizeTypes) 5395 return SDValue(); 5396 5397 MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N); 5398 SDValue Mask = MST->getMask(); 5399 SDValue Data = MST->getValue(); 5400 SDLoc DL(N); 5401 5402 // If the MSTORE data type requires splitting and the mask is provided by a 5403 // SETCC, then split both nodes and its operands before legalization. This 5404 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5405 // and enables future optimizations (e.g. min/max pattern matching on X86). 5406 if (Mask.getOpcode() == ISD::SETCC) { 5407 5408 // Check if any splitting is required. 5409 if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != 5410 TargetLowering::TypeSplitVector) 5411 return SDValue(); 5412 5413 SDValue MaskLo, MaskHi, Lo, Hi; 5414 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5415 5416 EVT LoVT, HiVT; 5417 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MST->getValueType(0)); 5418 5419 SDValue Chain = MST->getChain(); 5420 SDValue Ptr = MST->getBasePtr(); 5421 5422 EVT MemoryVT = MST->getMemoryVT(); 5423 unsigned Alignment = MST->getOriginalAlignment(); 5424 5425 // if Alignment is equal to the vector size, 5426 // take the half of it for the second part 5427 unsigned SecondHalfAlignment = 5428 (Alignment == Data->getValueType(0).getSizeInBits()/8) ? 5429 Alignment/2 : Alignment; 5430 5431 EVT LoMemVT, HiMemVT; 5432 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5433 5434 SDValue DataLo, DataHi; 5435 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); 5436 5437 MachineMemOperand *MMO = DAG.getMachineFunction(). 5438 getMachineMemOperand(MST->getPointerInfo(), 5439 MachineMemOperand::MOStore, LoMemVT.getStoreSize(), 5440 Alignment, MST->getAAInfo(), MST->getRanges()); 5441 5442 Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO, 5443 MST->isTruncatingStore()); 5444 5445 unsigned IncrementSize = LoMemVT.getSizeInBits()/8; 5446 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 5447 DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); 5448 5449 MMO = DAG.getMachineFunction(). 5450 getMachineMemOperand(MST->getPointerInfo(), 5451 MachineMemOperand::MOStore, HiMemVT.getStoreSize(), 5452 SecondHalfAlignment, MST->getAAInfo(), 5453 MST->getRanges()); 5454 5455 Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO, 5456 MST->isTruncatingStore()); 5457 5458 AddToWorklist(Lo.getNode()); 5459 AddToWorklist(Hi.getNode()); 5460 5461 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 5462 } 5463 return SDValue(); 5464 } 5465 5466 SDValue DAGCombiner::visitMGATHER(SDNode *N) { 5467 5468 if (Level >= AfterLegalizeTypes) 5469 return SDValue(); 5470 5471 MaskedGatherSDNode *MGT = dyn_cast<MaskedGatherSDNode>(N); 5472 SDValue Mask = MGT->getMask(); 5473 SDLoc DL(N); 5474 5475 // If the MGATHER result requires splitting and the mask is provided by a 5476 // SETCC, then split both nodes and its operands before legalization. This 5477 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5478 // and enables future optimizations (e.g. min/max pattern matching on X86). 5479 5480 if (Mask.getOpcode() != ISD::SETCC) 5481 return SDValue(); 5482 5483 EVT VT = N->getValueType(0); 5484 5485 // Check if any splitting is required. 5486 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5487 TargetLowering::TypeSplitVector) 5488 return SDValue(); 5489 5490 SDValue MaskLo, MaskHi, Lo, Hi; 5491 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5492 5493 SDValue Src0 = MGT->getValue(); 5494 SDValue Src0Lo, Src0Hi; 5495 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); 5496 5497 EVT LoVT, HiVT; 5498 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 5499 5500 SDValue Chain = MGT->getChain(); 5501 EVT MemoryVT = MGT->getMemoryVT(); 5502 unsigned Alignment = MGT->getOriginalAlignment(); 5503 5504 EVT LoMemVT, HiMemVT; 5505 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5506 5507 SDValue BasePtr = MGT->getBasePtr(); 5508 SDValue Index = MGT->getIndex(); 5509 SDValue IndexLo, IndexHi; 5510 std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL); 5511 5512 MachineMemOperand *MMO = DAG.getMachineFunction(). 5513 getMachineMemOperand(MGT->getPointerInfo(), 5514 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), 5515 Alignment, MGT->getAAInfo(), MGT->getRanges()); 5516 5517 SDValue OpsLo[] = { Chain, Src0Lo, MaskLo, BasePtr, IndexLo }; 5518 Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo, 5519 MMO); 5520 5521 SDValue OpsHi[] = {Chain, Src0Hi, MaskHi, BasePtr, IndexHi}; 5522 Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi, 5523 MMO); 5524 5525 AddToWorklist(Lo.getNode()); 5526 AddToWorklist(Hi.getNode()); 5527 5528 // Build a factor node to remember that this load is independent of the 5529 // other one. 5530 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), 5531 Hi.getValue(1)); 5532 5533 // Legalized the chain result - switch anything that used the old chain to 5534 // use the new one. 5535 DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain); 5536 5537 SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5538 5539 SDValue RetOps[] = { GatherRes, Chain }; 5540 return DAG.getMergeValues(RetOps, DL); 5541 } 5542 5543 SDValue DAGCombiner::visitMLOAD(SDNode *N) { 5544 5545 if (Level >= AfterLegalizeTypes) 5546 return SDValue(); 5547 5548 MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N); 5549 SDValue Mask = MLD->getMask(); 5550 SDLoc DL(N); 5551 5552 // If the MLOAD result requires splitting and the mask is provided by a 5553 // SETCC, then split both nodes and its operands before legalization. This 5554 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5555 // and enables future optimizations (e.g. min/max pattern matching on X86). 5556 5557 if (Mask.getOpcode() == ISD::SETCC) { 5558 EVT VT = N->getValueType(0); 5559 5560 // Check if any splitting is required. 5561 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5562 TargetLowering::TypeSplitVector) 5563 return SDValue(); 5564 5565 SDValue MaskLo, MaskHi, Lo, Hi; 5566 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5567 5568 SDValue Src0 = MLD->getSrc0(); 5569 SDValue Src0Lo, Src0Hi; 5570 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); 5571 5572 EVT LoVT, HiVT; 5573 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0)); 5574 5575 SDValue Chain = MLD->getChain(); 5576 SDValue Ptr = MLD->getBasePtr(); 5577 EVT MemoryVT = MLD->getMemoryVT(); 5578 unsigned Alignment = MLD->getOriginalAlignment(); 5579 5580 // if Alignment is equal to the vector size, 5581 // take the half of it for the second part 5582 unsigned SecondHalfAlignment = 5583 (Alignment == MLD->getValueType(0).getSizeInBits()/8) ? 5584 Alignment/2 : Alignment; 5585 5586 EVT LoMemVT, HiMemVT; 5587 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5588 5589 MachineMemOperand *MMO = DAG.getMachineFunction(). 5590 getMachineMemOperand(MLD->getPointerInfo(), 5591 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), 5592 Alignment, MLD->getAAInfo(), MLD->getRanges()); 5593 5594 Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, LoMemVT, MMO, 5595 ISD::NON_EXTLOAD); 5596 5597 unsigned IncrementSize = LoMemVT.getSizeInBits()/8; 5598 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 5599 DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); 5600 5601 MMO = DAG.getMachineFunction(). 5602 getMachineMemOperand(MLD->getPointerInfo(), 5603 MachineMemOperand::MOLoad, HiMemVT.getStoreSize(), 5604 SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges()); 5605 5606 Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, HiMemVT, MMO, 5607 ISD::NON_EXTLOAD); 5608 5609 AddToWorklist(Lo.getNode()); 5610 AddToWorklist(Hi.getNode()); 5611 5612 // Build a factor node to remember that this load is independent of the 5613 // other one. 5614 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), 5615 Hi.getValue(1)); 5616 5617 // Legalized the chain result - switch anything that used the old chain to 5618 // use the new one. 5619 DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain); 5620 5621 SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5622 5623 SDValue RetOps[] = { LoadRes, Chain }; 5624 return DAG.getMergeValues(RetOps, DL); 5625 } 5626 return SDValue(); 5627 } 5628 5629 SDValue DAGCombiner::visitVSELECT(SDNode *N) { 5630 SDValue N0 = N->getOperand(0); 5631 SDValue N1 = N->getOperand(1); 5632 SDValue N2 = N->getOperand(2); 5633 SDLoc DL(N); 5634 5635 // Canonicalize integer abs. 5636 // vselect (setg[te] X, 0), X, -X -> 5637 // vselect (setgt X, -1), X, -X -> 5638 // vselect (setl[te] X, 0), -X, X -> 5639 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 5640 if (N0.getOpcode() == ISD::SETCC) { 5641 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 5642 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 5643 bool isAbs = false; 5644 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); 5645 5646 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || 5647 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && 5648 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) 5649 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); 5650 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && 5651 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) 5652 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 5653 5654 if (isAbs) { 5655 EVT VT = LHS.getValueType(); 5656 SDValue Shift = DAG.getNode( 5657 ISD::SRA, DL, VT, LHS, 5658 DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, DL, VT)); 5659 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); 5660 AddToWorklist(Shift.getNode()); 5661 AddToWorklist(Add.getNode()); 5662 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); 5663 } 5664 } 5665 5666 if (SimplifySelectOps(N, N1, N2)) 5667 return SDValue(N, 0); // Don't revisit N. 5668 5669 // If the VSELECT result requires splitting and the mask is provided by a 5670 // SETCC, then split both nodes and its operands before legalization. This 5671 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5672 // and enables future optimizations (e.g. min/max pattern matching on X86). 5673 if (N0.getOpcode() == ISD::SETCC) { 5674 EVT VT = N->getValueType(0); 5675 5676 // Check if any splitting is required. 5677 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5678 TargetLowering::TypeSplitVector) 5679 return SDValue(); 5680 5681 SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH; 5682 std::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG); 5683 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 1); 5684 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 2); 5685 5686 Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL); 5687 Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH); 5688 5689 // Add the new VSELECT nodes to the work list in case they need to be split 5690 // again. 5691 AddToWorklist(Lo.getNode()); 5692 AddToWorklist(Hi.getNode()); 5693 5694 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5695 } 5696 5697 // Fold (vselect (build_vector all_ones), N1, N2) -> N1 5698 if (ISD::isBuildVectorAllOnes(N0.getNode())) 5699 return N1; 5700 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 5701 if (ISD::isBuildVectorAllZeros(N0.getNode())) 5702 return N2; 5703 5704 // The ConvertSelectToConcatVector function is assuming both the above 5705 // checks for (vselect (build_vector all{ones,zeros) ...) have been made 5706 // and addressed. 5707 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 5708 N2.getOpcode() == ISD::CONCAT_VECTORS && 5709 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 5710 if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) 5711 return CV; 5712 } 5713 5714 return SDValue(); 5715 } 5716 5717 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { 5718 SDValue N0 = N->getOperand(0); 5719 SDValue N1 = N->getOperand(1); 5720 SDValue N2 = N->getOperand(2); 5721 SDValue N3 = N->getOperand(3); 5722 SDValue N4 = N->getOperand(4); 5723 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); 5724 5725 // fold select_cc lhs, rhs, x, x, cc -> x 5726 if (N2 == N3) 5727 return N2; 5728 5729 // Determine if the condition we're dealing with is constant 5730 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, 5731 CC, SDLoc(N), false)) { 5732 AddToWorklist(SCC.getNode()); 5733 5734 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { 5735 if (!SCCC->isNullValue()) 5736 return N2; // cond always true -> true val 5737 else 5738 return N3; // cond always false -> false val 5739 } else if (SCC->isUndef()) { 5740 // When the condition is UNDEF, just return the first operand. This is 5741 // coherent the DAG creation, no setcc node is created in this case 5742 return N2; 5743 } else if (SCC.getOpcode() == ISD::SETCC) { 5744 // Fold to a simpler select_cc 5745 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(), 5746 SCC.getOperand(0), SCC.getOperand(1), N2, N3, 5747 SCC.getOperand(2)); 5748 } 5749 } 5750 5751 // If we can fold this based on the true/false value, do so. 5752 if (SimplifySelectOps(N, N2, N3)) 5753 return SDValue(N, 0); // Don't revisit N. 5754 5755 // fold select_cc into other things, such as min/max/abs 5756 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); 5757 } 5758 5759 SDValue DAGCombiner::visitSETCC(SDNode *N) { 5760 return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), 5761 cast<CondCodeSDNode>(N->getOperand(2))->get(), 5762 SDLoc(N)); 5763 } 5764 5765 SDValue DAGCombiner::visitSETCCE(SDNode *N) { 5766 SDValue LHS = N->getOperand(0); 5767 SDValue RHS = N->getOperand(1); 5768 SDValue Carry = N->getOperand(2); 5769 SDValue Cond = N->getOperand(3); 5770 5771 // If Carry is false, fold to a regular SETCC. 5772 if (Carry.getOpcode() == ISD::CARRY_FALSE) 5773 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); 5774 5775 return SDValue(); 5776 } 5777 5778 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or 5779 /// a build_vector of constants. 5780 /// This function is called by the DAGCombiner when visiting sext/zext/aext 5781 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 5782 /// Vector extends are not folded if operations are legal; this is to 5783 /// avoid introducing illegal build_vector dag nodes. 5784 static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, 5785 SelectionDAG &DAG, bool LegalTypes, 5786 bool LegalOperations) { 5787 unsigned Opcode = N->getOpcode(); 5788 SDValue N0 = N->getOperand(0); 5789 EVT VT = N->getValueType(0); 5790 5791 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 5792 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5793 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) 5794 && "Expected EXTEND dag node in input!"); 5795 5796 // fold (sext c1) -> c1 5797 // fold (zext c1) -> c1 5798 // fold (aext c1) -> c1 5799 if (isa<ConstantSDNode>(N0)) 5800 return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode(); 5801 5802 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) 5803 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) 5804 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) 5805 EVT SVT = VT.getScalarType(); 5806 if (!(VT.isVector() && 5807 (!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) && 5808 ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) 5809 return nullptr; 5810 5811 // We can fold this node into a build_vector. 5812 unsigned VTBits = SVT.getSizeInBits(); 5813 unsigned EVTBits = N0->getValueType(0).getScalarType().getSizeInBits(); 5814 SmallVector<SDValue, 8> Elts; 5815 unsigned NumElts = VT.getVectorNumElements(); 5816 SDLoc DL(N); 5817 5818 for (unsigned i=0; i != NumElts; ++i) { 5819 SDValue Op = N0->getOperand(i); 5820 if (Op->isUndef()) { 5821 Elts.push_back(DAG.getUNDEF(SVT)); 5822 continue; 5823 } 5824 5825 SDLoc DL(Op); 5826 // Get the constant value and if needed trunc it to the size of the type. 5827 // Nodes like build_vector might have constants wider than the scalar type. 5828 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); 5829 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 5830 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); 5831 else 5832 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); 5833 } 5834 5835 return DAG.getBuildVector(VT, DL, Elts).getNode(); 5836 } 5837 5838 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: 5839 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" 5840 // transformation. Returns true if extension are possible and the above 5841 // mentioned transformation is profitable. 5842 static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0, 5843 unsigned ExtOpc, 5844 SmallVectorImpl<SDNode *> &ExtendNodes, 5845 const TargetLowering &TLI) { 5846 bool HasCopyToRegUses = false; 5847 bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType()); 5848 for (SDNode::use_iterator UI = N0.getNode()->use_begin(), 5849 UE = N0.getNode()->use_end(); 5850 UI != UE; ++UI) { 5851 SDNode *User = *UI; 5852 if (User == N) 5853 continue; 5854 if (UI.getUse().getResNo() != N0.getResNo()) 5855 continue; 5856 // FIXME: Only extend SETCC N, N and SETCC N, c for now. 5857 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { 5858 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); 5859 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) 5860 // Sign bits will be lost after a zext. 5861 return false; 5862 bool Add = false; 5863 for (unsigned i = 0; i != 2; ++i) { 5864 SDValue UseOp = User->getOperand(i); 5865 if (UseOp == N0) 5866 continue; 5867 if (!isa<ConstantSDNode>(UseOp)) 5868 return false; 5869 Add = true; 5870 } 5871 if (Add) 5872 ExtendNodes.push_back(User); 5873 continue; 5874 } 5875 // If truncates aren't free and there are users we can't 5876 // extend, it isn't worthwhile. 5877 if (!isTruncFree) 5878 return false; 5879 // Remember if this value is live-out. 5880 if (User->getOpcode() == ISD::CopyToReg) 5881 HasCopyToRegUses = true; 5882 } 5883 5884 if (HasCopyToRegUses) { 5885 bool BothLiveOut = false; 5886 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5887 UI != UE; ++UI) { 5888 SDUse &Use = UI.getUse(); 5889 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { 5890 BothLiveOut = true; 5891 break; 5892 } 5893 } 5894 if (BothLiveOut) 5895 // Both unextended and extended values are live out. There had better be 5896 // a good reason for the transformation. 5897 return ExtendNodes.size(); 5898 } 5899 return true; 5900 } 5901 5902 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 5903 SDValue Trunc, SDValue ExtLoad, SDLoc DL, 5904 ISD::NodeType ExtType) { 5905 // Extend SetCC uses if necessary. 5906 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { 5907 SDNode *SetCC = SetCCs[i]; 5908 SmallVector<SDValue, 4> Ops; 5909 5910 for (unsigned j = 0; j != 2; ++j) { 5911 SDValue SOp = SetCC->getOperand(j); 5912 if (SOp == Trunc) 5913 Ops.push_back(ExtLoad); 5914 else 5915 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); 5916 } 5917 5918 Ops.push_back(SetCC->getOperand(2)); 5919 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 5920 } 5921 } 5922 5923 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). 5924 SDValue DAGCombiner::CombineExtLoad(SDNode *N) { 5925 SDValue N0 = N->getOperand(0); 5926 EVT DstVT = N->getValueType(0); 5927 EVT SrcVT = N0.getValueType(); 5928 5929 assert((N->getOpcode() == ISD::SIGN_EXTEND || 5930 N->getOpcode() == ISD::ZERO_EXTEND) && 5931 "Unexpected node type (not an extend)!"); 5932 5933 // fold (sext (load x)) to multiple smaller sextloads; same for zext. 5934 // For example, on a target with legal v4i32, but illegal v8i32, turn: 5935 // (v8i32 (sext (v8i16 (load x)))) 5936 // into: 5937 // (v8i32 (concat_vectors (v4i32 (sextload x)), 5938 // (v4i32 (sextload (x + 16))))) 5939 // Where uses of the original load, i.e.: 5940 // (v8i16 (load x)) 5941 // are replaced with: 5942 // (v8i16 (truncate 5943 // (v8i32 (concat_vectors (v4i32 (sextload x)), 5944 // (v4i32 (sextload (x + 16))))))) 5945 // 5946 // This combine is only applicable to illegal, but splittable, vectors. 5947 // All legal types, and illegal non-vector types, are handled elsewhere. 5948 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. 5949 // 5950 if (N0->getOpcode() != ISD::LOAD) 5951 return SDValue(); 5952 5953 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 5954 5955 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || 5956 !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() || 5957 !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 5958 return SDValue(); 5959 5960 SmallVector<SDNode *, 4> SetCCs; 5961 if (!ExtendUsesToFormExtLoad(N, N0, N->getOpcode(), SetCCs, TLI)) 5962 return SDValue(); 5963 5964 ISD::LoadExtType ExtType = 5965 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 5966 5967 // Try to split the vector types to get down to legal types. 5968 EVT SplitSrcVT = SrcVT; 5969 EVT SplitDstVT = DstVT; 5970 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && 5971 SplitSrcVT.getVectorNumElements() > 1) { 5972 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; 5973 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; 5974 } 5975 5976 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) 5977 return SDValue(); 5978 5979 SDLoc DL(N); 5980 const unsigned NumSplits = 5981 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); 5982 const unsigned Stride = SplitSrcVT.getStoreSize(); 5983 SmallVector<SDValue, 4> Loads; 5984 SmallVector<SDValue, 4> Chains; 5985 5986 SDValue BasePtr = LN0->getBasePtr(); 5987 for (unsigned Idx = 0; Idx < NumSplits; Idx++) { 5988 const unsigned Offset = Idx * Stride; 5989 const unsigned Align = MinAlign(LN0->getAlignment(), Offset); 5990 5991 SDValue SplitLoad = DAG.getExtLoad( 5992 ExtType, DL, SplitDstVT, LN0->getChain(), BasePtr, 5993 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, 5994 LN0->isVolatile(), LN0->isNonTemporal(), LN0->isInvariant(), 5995 Align, LN0->getAAInfo()); 5996 5997 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, 5998 DAG.getConstant(Stride, DL, BasePtr.getValueType())); 5999 6000 Loads.push_back(SplitLoad.getValue(0)); 6001 Chains.push_back(SplitLoad.getValue(1)); 6002 } 6003 6004 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 6005 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); 6006 6007 CombineTo(N, NewValue); 6008 6009 // Replace uses of the original load (before extension) 6010 // with a truncate of the concatenated sextloaded vectors. 6011 SDValue Trunc = 6012 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); 6013 CombineTo(N0.getNode(), Trunc, NewChain); 6014 ExtendSetCCUses(SetCCs, Trunc, NewValue, DL, 6015 (ISD::NodeType)N->getOpcode()); 6016 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6017 } 6018 6019 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { 6020 SDValue N0 = N->getOperand(0); 6021 EVT VT = N->getValueType(0); 6022 6023 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6024 LegalOperations)) 6025 return SDValue(Res, 0); 6026 6027 // fold (sext (sext x)) -> (sext x) 6028 // fold (sext (aext x)) -> (sext x) 6029 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 6030 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, 6031 N0.getOperand(0)); 6032 6033 if (N0.getOpcode() == ISD::TRUNCATE) { 6034 // fold (sext (truncate (load x))) -> (sext (smaller load x)) 6035 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) 6036 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6037 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6038 if (NarrowLoad.getNode() != N0.getNode()) { 6039 CombineTo(N0.getNode(), NarrowLoad); 6040 // CombineTo deleted the truncate, if needed, but not what's under it. 6041 AddToWorklist(oye); 6042 } 6043 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6044 } 6045 6046 // See if the value being truncated is already sign extended. If so, just 6047 // eliminate the trunc/sext pair. 6048 SDValue Op = N0.getOperand(0); 6049 unsigned OpBits = Op.getValueType().getScalarType().getSizeInBits(); 6050 unsigned MidBits = N0.getValueType().getScalarType().getSizeInBits(); 6051 unsigned DestBits = VT.getScalarType().getSizeInBits(); 6052 unsigned NumSignBits = DAG.ComputeNumSignBits(Op); 6053 6054 if (OpBits == DestBits) { 6055 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign 6056 // bits, it is already ready. 6057 if (NumSignBits > DestBits-MidBits) 6058 return Op; 6059 } else if (OpBits < DestBits) { 6060 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign 6061 // bits, just sext from i32. 6062 if (NumSignBits > OpBits-MidBits) 6063 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op); 6064 } else { 6065 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign 6066 // bits, just truncate to i32. 6067 if (NumSignBits > OpBits-MidBits) 6068 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6069 } 6070 6071 // fold (sext (truncate x)) -> (sextinreg x). 6072 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, 6073 N0.getValueType())) { 6074 if (OpBits < DestBits) 6075 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); 6076 else if (OpBits > DestBits) 6077 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); 6078 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op, 6079 DAG.getValueType(N0.getValueType())); 6080 } 6081 } 6082 6083 // fold (sext (load x)) -> (sext (truncate (sextload x))) 6084 // Only generate vector extloads when 1) they're legal, and 2) they are 6085 // deemed desirable by the target. 6086 if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6087 ((!LegalOperations && !VT.isVector() && 6088 !cast<LoadSDNode>(N0)->isVolatile()) || 6089 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()))) { 6090 bool DoXform = true; 6091 SmallVector<SDNode*, 4> SetCCs; 6092 if (!N0.hasOneUse()) 6093 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI); 6094 if (VT.isVector()) 6095 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 6096 if (DoXform) { 6097 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6098 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6099 LN0->getChain(), 6100 LN0->getBasePtr(), N0.getValueType(), 6101 LN0->getMemOperand()); 6102 CombineTo(N, ExtLoad); 6103 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6104 N0.getValueType(), ExtLoad); 6105 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6106 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6107 ISD::SIGN_EXTEND); 6108 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6109 } 6110 } 6111 6112 // fold (sext (load x)) to multiple smaller sextloads. 6113 // Only on illegal but splittable vectors. 6114 if (SDValue ExtLoad = CombineExtLoad(N)) 6115 return ExtLoad; 6116 6117 // fold (sext (sextload x)) -> (sext (truncate (sextload x))) 6118 // fold (sext ( extload x)) -> (sext (truncate (sextload x))) 6119 if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && 6120 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 6121 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6122 EVT MemVT = LN0->getMemoryVT(); 6123 if ((!LegalOperations && !LN0->isVolatile()) || 6124 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT)) { 6125 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6126 LN0->getChain(), 6127 LN0->getBasePtr(), MemVT, 6128 LN0->getMemOperand()); 6129 CombineTo(N, ExtLoad); 6130 CombineTo(N0.getNode(), 6131 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6132 N0.getValueType(), ExtLoad), 6133 ExtLoad.getValue(1)); 6134 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6135 } 6136 } 6137 6138 // fold (sext (and/or/xor (load x), cst)) -> 6139 // (and/or/xor (sextload x), (sext cst)) 6140 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 6141 N0.getOpcode() == ISD::XOR) && 6142 isa<LoadSDNode>(N0.getOperand(0)) && 6143 N0.getOperand(1).getOpcode() == ISD::Constant && 6144 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()) && 6145 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 6146 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); 6147 if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) { 6148 bool DoXform = true; 6149 SmallVector<SDNode*, 4> SetCCs; 6150 if (!N0.hasOneUse()) 6151 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND, 6152 SetCCs, TLI); 6153 if (DoXform) { 6154 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT, 6155 LN0->getChain(), LN0->getBasePtr(), 6156 LN0->getMemoryVT(), 6157 LN0->getMemOperand()); 6158 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6159 Mask = Mask.sext(VT.getSizeInBits()); 6160 SDLoc DL(N); 6161 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 6162 ExtLoad, DAG.getConstant(Mask, DL, VT)); 6163 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, 6164 SDLoc(N0.getOperand(0)), 6165 N0.getOperand(0).getValueType(), ExtLoad); 6166 CombineTo(N, And); 6167 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); 6168 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, 6169 ISD::SIGN_EXTEND); 6170 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6171 } 6172 } 6173 } 6174 6175 if (N0.getOpcode() == ISD::SETCC) { 6176 EVT N0VT = N0.getOperand(0).getValueType(); 6177 // sext(setcc) -> sext_in_reg(vsetcc) for vectors. 6178 // Only do this before legalize for now. 6179 if (VT.isVector() && !LegalOperations && 6180 TLI.getBooleanContents(N0VT) == 6181 TargetLowering::ZeroOrNegativeOneBooleanContent) { 6182 // On some architectures (such as SSE/NEON/etc) the SETCC result type is 6183 // of the same size as the compared operands. Only optimize sext(setcc()) 6184 // if this is the case. 6185 EVT SVT = getSetCCResultType(N0VT); 6186 6187 // We know that the # elements of the results is the same as the 6188 // # elements of the compare (and the # elements of the compare result 6189 // for that matter). Check to see that they are the same size. If so, 6190 // we know that the element size of the sext'd result matches the 6191 // element size of the compare operands. 6192 if (VT.getSizeInBits() == SVT.getSizeInBits()) 6193 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 6194 N0.getOperand(1), 6195 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6196 6197 // If the desired elements are smaller or larger than the source 6198 // elements we can use a matching integer vector type and then 6199 // truncate/sign extend 6200 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); 6201 if (SVT == MatchingVectorType) { 6202 SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType, 6203 N0.getOperand(0), N0.getOperand(1), 6204 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6205 return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT); 6206 } 6207 } 6208 6209 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), -1, 0) 6210 unsigned ElementWidth = VT.getScalarType().getSizeInBits(); 6211 SDLoc DL(N); 6212 SDValue NegOne = 6213 DAG.getConstant(APInt::getAllOnesValue(ElementWidth), DL, VT); 6214 if (SDValue SCC = SimplifySelectCC( 6215 DL, N0.getOperand(0), N0.getOperand(1), NegOne, 6216 DAG.getConstant(0, DL, VT), 6217 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 6218 return SCC; 6219 6220 if (!VT.isVector()) { 6221 EVT SetCCVT = getSetCCResultType(N0.getOperand(0).getValueType()); 6222 if (!LegalOperations || 6223 TLI.isOperationLegal(ISD::SETCC, N0.getOperand(0).getValueType())) { 6224 SDLoc DL(N); 6225 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 6226 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, 6227 N0.getOperand(0), N0.getOperand(1), CC); 6228 return DAG.getSelect(DL, VT, SetCC, 6229 NegOne, DAG.getConstant(0, DL, VT)); 6230 } 6231 } 6232 } 6233 6234 // fold (sext x) -> (zext x) if the sign bit is known zero. 6235 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && 6236 DAG.SignBitIsZero(N0)) 6237 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0); 6238 6239 return SDValue(); 6240 } 6241 6242 // isTruncateOf - If N is a truncate of some other value, return true, record 6243 // the value being truncated in Op and which of Op's bits are zero in KnownZero. 6244 // This function computes KnownZero to avoid a duplicated call to 6245 // computeKnownBits in the caller. 6246 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, 6247 APInt &KnownZero) { 6248 APInt KnownOne; 6249 if (N->getOpcode() == ISD::TRUNCATE) { 6250 Op = N->getOperand(0); 6251 DAG.computeKnownBits(Op, KnownZero, KnownOne); 6252 return true; 6253 } 6254 6255 if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 || 6256 cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE) 6257 return false; 6258 6259 SDValue Op0 = N->getOperand(0); 6260 SDValue Op1 = N->getOperand(1); 6261 assert(Op0.getValueType() == Op1.getValueType()); 6262 6263 if (isNullConstant(Op0)) 6264 Op = Op1; 6265 else if (isNullConstant(Op1)) 6266 Op = Op0; 6267 else 6268 return false; 6269 6270 DAG.computeKnownBits(Op, KnownZero, KnownOne); 6271 6272 if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue()) 6273 return false; 6274 6275 return true; 6276 } 6277 6278 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { 6279 SDValue N0 = N->getOperand(0); 6280 EVT VT = N->getValueType(0); 6281 6282 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6283 LegalOperations)) 6284 return SDValue(Res, 0); 6285 6286 // fold (zext (zext x)) -> (zext x) 6287 // fold (zext (aext x)) -> (zext x) 6288 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 6289 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, 6290 N0.getOperand(0)); 6291 6292 // fold (zext (truncate x)) -> (zext x) or 6293 // (zext (truncate x)) -> (truncate x) 6294 // This is valid when the truncated bits of x are already zero. 6295 // FIXME: We should extend this to work for vectors too. 6296 SDValue Op; 6297 APInt KnownZero; 6298 if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) { 6299 APInt TruncatedBits = 6300 (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ? 6301 APInt(Op.getValueSizeInBits(), 0) : 6302 APInt::getBitsSet(Op.getValueSizeInBits(), 6303 N0.getValueSizeInBits(), 6304 std::min(Op.getValueSizeInBits(), 6305 VT.getSizeInBits())); 6306 if (TruncatedBits == (KnownZero & TruncatedBits)) { 6307 if (VT.bitsGT(Op.getValueType())) 6308 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op); 6309 if (VT.bitsLT(Op.getValueType())) 6310 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6311 6312 return Op; 6313 } 6314 } 6315 6316 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 6317 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n))) 6318 if (N0.getOpcode() == ISD::TRUNCATE) { 6319 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6320 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6321 if (NarrowLoad.getNode() != N0.getNode()) { 6322 CombineTo(N0.getNode(), NarrowLoad); 6323 // CombineTo deleted the truncate, if needed, but not what's under it. 6324 AddToWorklist(oye); 6325 } 6326 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6327 } 6328 } 6329 6330 // fold (zext (truncate x)) -> (and x, mask) 6331 if (N0.getOpcode() == ISD::TRUNCATE) { 6332 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 6333 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) 6334 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6335 SDNode *oye = N0.getNode()->getOperand(0).getNode(); 6336 if (NarrowLoad.getNode() != N0.getNode()) { 6337 CombineTo(N0.getNode(), NarrowLoad); 6338 // CombineTo deleted the truncate, if needed, but not what's under it. 6339 AddToWorklist(oye); 6340 } 6341 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6342 } 6343 6344 EVT SrcVT = N0.getOperand(0).getValueType(); 6345 EVT MinVT = N0.getValueType(); 6346 6347 // Try to mask before the extension to avoid having to generate a larger mask, 6348 // possibly over several sub-vectors. 6349 if (SrcVT.bitsLT(VT)) { 6350 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && 6351 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { 6352 SDValue Op = N0.getOperand(0); 6353 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); 6354 AddToWorklist(Op.getNode()); 6355 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 6356 } 6357 } 6358 6359 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { 6360 SDValue Op = N0.getOperand(0); 6361 if (SrcVT.bitsLT(VT)) { 6362 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op); 6363 AddToWorklist(Op.getNode()); 6364 } else if (SrcVT.bitsGT(VT)) { 6365 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6366 AddToWorklist(Op.getNode()); 6367 } 6368 return DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); 6369 } 6370 } 6371 6372 // Fold (zext (and (trunc x), cst)) -> (and x, cst), 6373 // if either of the casts is not free. 6374 if (N0.getOpcode() == ISD::AND && 6375 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 6376 N0.getOperand(1).getOpcode() == ISD::Constant && 6377 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 6378 N0.getValueType()) || 6379 !TLI.isZExtFree(N0.getValueType(), VT))) { 6380 SDValue X = N0.getOperand(0).getOperand(0); 6381 if (X.getValueType().bitsLT(VT)) { 6382 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X); 6383 } else if (X.getValueType().bitsGT(VT)) { 6384 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 6385 } 6386 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6387 Mask = Mask.zext(VT.getSizeInBits()); 6388 SDLoc DL(N); 6389 return DAG.getNode(ISD::AND, DL, VT, 6390 X, DAG.getConstant(Mask, DL, VT)); 6391 } 6392 6393 // fold (zext (load x)) -> (zext (truncate (zextload x))) 6394 // Only generate vector extloads when 1) they're legal, and 2) they are 6395 // deemed desirable by the target. 6396 if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6397 ((!LegalOperations && !VT.isVector() && 6398 !cast<LoadSDNode>(N0)->isVolatile()) || 6399 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()))) { 6400 bool DoXform = true; 6401 SmallVector<SDNode*, 4> SetCCs; 6402 if (!N0.hasOneUse()) 6403 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI); 6404 if (VT.isVector()) 6405 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 6406 if (DoXform) { 6407 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6408 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, 6409 LN0->getChain(), 6410 LN0->getBasePtr(), N0.getValueType(), 6411 LN0->getMemOperand()); 6412 CombineTo(N, ExtLoad); 6413 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6414 N0.getValueType(), ExtLoad); 6415 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6416 6417 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6418 ISD::ZERO_EXTEND); 6419 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6420 } 6421 } 6422 6423 // fold (zext (load x)) to multiple smaller zextloads. 6424 // Only on illegal but splittable vectors. 6425 if (SDValue ExtLoad = CombineExtLoad(N)) 6426 return ExtLoad; 6427 6428 // fold (zext (and/or/xor (load x), cst)) -> 6429 // (and/or/xor (zextload x), (zext cst)) 6430 // Unless (and (load x) cst) will match as a zextload already and has 6431 // additional users. 6432 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 6433 N0.getOpcode() == ISD::XOR) && 6434 isa<LoadSDNode>(N0.getOperand(0)) && 6435 N0.getOperand(1).getOpcode() == ISD::Constant && 6436 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()) && 6437 (!LegalOperations && TLI.isOperationLegalOrCustom(N0.getOpcode(), VT))) { 6438 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); 6439 if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) { 6440 bool DoXform = true; 6441 SmallVector<SDNode*, 4> SetCCs; 6442 if (!N0.hasOneUse()) { 6443 if (N0.getOpcode() == ISD::AND) { 6444 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); 6445 auto NarrowLoad = false; 6446 EVT LoadResultTy = AndC->getValueType(0); 6447 EVT ExtVT, LoadedVT; 6448 if (isAndLoadExtLoad(AndC, LN0, LoadResultTy, ExtVT, LoadedVT, 6449 NarrowLoad)) 6450 DoXform = false; 6451 } 6452 if (DoXform) 6453 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), 6454 ISD::ZERO_EXTEND, SetCCs, TLI); 6455 } 6456 if (DoXform) { 6457 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT, 6458 LN0->getChain(), LN0->getBasePtr(), 6459 LN0->getMemoryVT(), 6460 LN0->getMemOperand()); 6461 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6462 Mask = Mask.zext(VT.getSizeInBits()); 6463 SDLoc DL(N); 6464 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 6465 ExtLoad, DAG.getConstant(Mask, DL, VT)); 6466 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, 6467 SDLoc(N0.getOperand(0)), 6468 N0.getOperand(0).getValueType(), ExtLoad); 6469 CombineTo(N, And); 6470 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); 6471 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, 6472 ISD::ZERO_EXTEND); 6473 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6474 } 6475 } 6476 } 6477 6478 // fold (zext (zextload x)) -> (zext (truncate (zextload x))) 6479 // fold (zext ( extload x)) -> (zext (truncate (zextload x))) 6480 if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && 6481 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 6482 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6483 EVT MemVT = LN0->getMemoryVT(); 6484 if ((!LegalOperations && !LN0->isVolatile()) || 6485 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT)) { 6486 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, 6487 LN0->getChain(), 6488 LN0->getBasePtr(), MemVT, 6489 LN0->getMemOperand()); 6490 CombineTo(N, ExtLoad); 6491 CombineTo(N0.getNode(), 6492 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), 6493 ExtLoad), 6494 ExtLoad.getValue(1)); 6495 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6496 } 6497 } 6498 6499 if (N0.getOpcode() == ISD::SETCC) { 6500 if (!LegalOperations && VT.isVector() && 6501 N0.getValueType().getVectorElementType() == MVT::i1) { 6502 EVT N0VT = N0.getOperand(0).getValueType(); 6503 if (getSetCCResultType(N0VT) == N0.getValueType()) 6504 return SDValue(); 6505 6506 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. 6507 // Only do this before legalize for now. 6508 SDLoc DL(N); 6509 SDValue VecOnes = DAG.getConstant(1, DL, VT); 6510 if (VT.getSizeInBits() == N0VT.getSizeInBits()) 6511 // We know that the # elements of the results is the same as the 6512 // # elements of the compare (and the # elements of the compare result 6513 // for that matter). Check to see that they are the same size. If so, 6514 // we know that the element size of the sext'd result matches the 6515 // element size of the compare operands. 6516 return DAG.getNode(ISD::AND, DL, VT, 6517 DAG.getSetCC(DL, VT, N0.getOperand(0), 6518 N0.getOperand(1), 6519 cast<CondCodeSDNode>(N0.getOperand(2))->get()), 6520 VecOnes); 6521 6522 // If the desired elements are smaller or larger than the source 6523 // elements we can use a matching integer vector type and then 6524 // truncate/sign extend 6525 EVT MatchingElementType = 6526 EVT::getIntegerVT(*DAG.getContext(), 6527 N0VT.getScalarType().getSizeInBits()); 6528 EVT MatchingVectorType = 6529 EVT::getVectorVT(*DAG.getContext(), MatchingElementType, 6530 N0VT.getVectorNumElements()); 6531 SDValue VsetCC = 6532 DAG.getSetCC(DL, MatchingVectorType, N0.getOperand(0), 6533 N0.getOperand(1), 6534 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6535 return DAG.getNode(ISD::AND, DL, VT, 6536 DAG.getSExtOrTrunc(VsetCC, DL, VT), 6537 VecOnes); 6538 } 6539 6540 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 6541 SDLoc DL(N); 6542 if (SDValue SCC = SimplifySelectCC( 6543 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 6544 DAG.getConstant(0, DL, VT), 6545 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 6546 return SCC; 6547 } 6548 6549 // (zext (shl (zext x), cst)) -> (shl (zext x), cst) 6550 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && 6551 isa<ConstantSDNode>(N0.getOperand(1)) && 6552 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 6553 N0.hasOneUse()) { 6554 SDValue ShAmt = N0.getOperand(1); 6555 unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue(); 6556 if (N0.getOpcode() == ISD::SHL) { 6557 SDValue InnerZExt = N0.getOperand(0); 6558 // If the original shl may be shifting out bits, do not perform this 6559 // transformation. 6560 unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() - 6561 InnerZExt.getOperand(0).getValueType().getSizeInBits(); 6562 if (ShAmtVal > KnownZeroBits) 6563 return SDValue(); 6564 } 6565 6566 SDLoc DL(N); 6567 6568 // Ensure that the shift amount is wide enough for the shifted value. 6569 if (VT.getSizeInBits() >= 256) 6570 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); 6571 6572 return DAG.getNode(N0.getOpcode(), DL, VT, 6573 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), 6574 ShAmt); 6575 } 6576 6577 return SDValue(); 6578 } 6579 6580 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { 6581 SDValue N0 = N->getOperand(0); 6582 EVT VT = N->getValueType(0); 6583 6584 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6585 LegalOperations)) 6586 return SDValue(Res, 0); 6587 6588 // fold (aext (aext x)) -> (aext x) 6589 // fold (aext (zext x)) -> (zext x) 6590 // fold (aext (sext x)) -> (sext x) 6591 if (N0.getOpcode() == ISD::ANY_EXTEND || 6592 N0.getOpcode() == ISD::ZERO_EXTEND || 6593 N0.getOpcode() == ISD::SIGN_EXTEND) 6594 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 6595 6596 // fold (aext (truncate (load x))) -> (aext (smaller load x)) 6597 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) 6598 if (N0.getOpcode() == ISD::TRUNCATE) { 6599 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6600 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6601 if (NarrowLoad.getNode() != N0.getNode()) { 6602 CombineTo(N0.getNode(), NarrowLoad); 6603 // CombineTo deleted the truncate, if needed, but not what's under it. 6604 AddToWorklist(oye); 6605 } 6606 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6607 } 6608 } 6609 6610 // fold (aext (truncate x)) 6611 if (N0.getOpcode() == ISD::TRUNCATE) { 6612 SDValue TruncOp = N0.getOperand(0); 6613 if (TruncOp.getValueType() == VT) 6614 return TruncOp; // x iff x size == zext size. 6615 if (TruncOp.getValueType().bitsGT(VT)) 6616 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp); 6617 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp); 6618 } 6619 6620 // Fold (aext (and (trunc x), cst)) -> (and x, cst) 6621 // if the trunc is not free. 6622 if (N0.getOpcode() == ISD::AND && 6623 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 6624 N0.getOperand(1).getOpcode() == ISD::Constant && 6625 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 6626 N0.getValueType())) { 6627 SDValue X = N0.getOperand(0).getOperand(0); 6628 if (X.getValueType().bitsLT(VT)) { 6629 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X); 6630 } else if (X.getValueType().bitsGT(VT)) { 6631 X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X); 6632 } 6633 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6634 Mask = Mask.zext(VT.getSizeInBits()); 6635 SDLoc DL(N); 6636 return DAG.getNode(ISD::AND, DL, VT, 6637 X, DAG.getConstant(Mask, DL, VT)); 6638 } 6639 6640 // fold (aext (load x)) -> (aext (truncate (extload x))) 6641 // None of the supported targets knows how to perform load and any_ext 6642 // on vectors in one instruction. We only perform this transformation on 6643 // scalars. 6644 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && 6645 ISD::isUNINDEXEDLoad(N0.getNode()) && 6646 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 6647 bool DoXform = true; 6648 SmallVector<SDNode*, 4> SetCCs; 6649 if (!N0.hasOneUse()) 6650 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI); 6651 if (DoXform) { 6652 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6653 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 6654 LN0->getChain(), 6655 LN0->getBasePtr(), N0.getValueType(), 6656 LN0->getMemOperand()); 6657 CombineTo(N, ExtLoad); 6658 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6659 N0.getValueType(), ExtLoad); 6660 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6661 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6662 ISD::ANY_EXTEND); 6663 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6664 } 6665 } 6666 6667 // fold (aext (zextload x)) -> (aext (truncate (zextload x))) 6668 // fold (aext (sextload x)) -> (aext (truncate (sextload x))) 6669 // fold (aext ( extload x)) -> (aext (truncate (extload x))) 6670 if (N0.getOpcode() == ISD::LOAD && 6671 !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6672 N0.hasOneUse()) { 6673 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6674 ISD::LoadExtType ExtType = LN0->getExtensionType(); 6675 EVT MemVT = LN0->getMemoryVT(); 6676 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { 6677 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), 6678 VT, LN0->getChain(), LN0->getBasePtr(), 6679 MemVT, LN0->getMemOperand()); 6680 CombineTo(N, ExtLoad); 6681 CombineTo(N0.getNode(), 6682 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6683 N0.getValueType(), ExtLoad), 6684 ExtLoad.getValue(1)); 6685 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6686 } 6687 } 6688 6689 if (N0.getOpcode() == ISD::SETCC) { 6690 // For vectors: 6691 // aext(setcc) -> vsetcc 6692 // aext(setcc) -> truncate(vsetcc) 6693 // aext(setcc) -> aext(vsetcc) 6694 // Only do this before legalize for now. 6695 if (VT.isVector() && !LegalOperations) { 6696 EVT N0VT = N0.getOperand(0).getValueType(); 6697 // We know that the # elements of the results is the same as the 6698 // # elements of the compare (and the # elements of the compare result 6699 // for that matter). Check to see that they are the same size. If so, 6700 // we know that the element size of the sext'd result matches the 6701 // element size of the compare operands. 6702 if (VT.getSizeInBits() == N0VT.getSizeInBits()) 6703 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 6704 N0.getOperand(1), 6705 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6706 // If the desired elements are smaller or larger than the source 6707 // elements we can use a matching integer vector type and then 6708 // truncate/any extend 6709 else { 6710 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); 6711 SDValue VsetCC = 6712 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 6713 N0.getOperand(1), 6714 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6715 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); 6716 } 6717 } 6718 6719 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 6720 SDLoc DL(N); 6721 if (SDValue SCC = SimplifySelectCC( 6722 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 6723 DAG.getConstant(0, DL, VT), 6724 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 6725 return SCC; 6726 } 6727 6728 return SDValue(); 6729 } 6730 6731 /// See if the specified operand can be simplified with the knowledge that only 6732 /// the bits specified by Mask are used. If so, return the simpler operand, 6733 /// otherwise return a null SDValue. 6734 SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) { 6735 switch (V.getOpcode()) { 6736 default: break; 6737 case ISD::Constant: { 6738 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 6739 assert(CV && "Const value should be ConstSDNode."); 6740 const APInt &CVal = CV->getAPIntValue(); 6741 APInt NewVal = CVal & Mask; 6742 if (NewVal != CVal) 6743 return DAG.getConstant(NewVal, SDLoc(V), V.getValueType()); 6744 break; 6745 } 6746 case ISD::OR: 6747 case ISD::XOR: 6748 // If the LHS or RHS don't contribute bits to the or, drop them. 6749 if (DAG.MaskedValueIsZero(V.getOperand(0), Mask)) 6750 return V.getOperand(1); 6751 if (DAG.MaskedValueIsZero(V.getOperand(1), Mask)) 6752 return V.getOperand(0); 6753 break; 6754 case ISD::SRL: 6755 // Only look at single-use SRLs. 6756 if (!V.getNode()->hasOneUse()) 6757 break; 6758 if (ConstantSDNode *RHSC = getAsNonOpaqueConstant(V.getOperand(1))) { 6759 // See if we can recursively simplify the LHS. 6760 unsigned Amt = RHSC->getZExtValue(); 6761 6762 // Watch out for shift count overflow though. 6763 if (Amt >= Mask.getBitWidth()) break; 6764 APInt NewMask = Mask << Amt; 6765 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 6766 return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(), 6767 SimplifyLHS, V.getOperand(1)); 6768 } 6769 } 6770 return SDValue(); 6771 } 6772 6773 /// If the result of a wider load is shifted to right of N bits and then 6774 /// truncated to a narrower type and where N is a multiple of number of bits of 6775 /// the narrower type, transform it to a narrower load from address + N / num of 6776 /// bits of new type. If the result is to be extended, also fold the extension 6777 /// to form a extending load. 6778 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { 6779 unsigned Opc = N->getOpcode(); 6780 6781 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 6782 SDValue N0 = N->getOperand(0); 6783 EVT VT = N->getValueType(0); 6784 EVT ExtVT = VT; 6785 6786 // This transformation isn't valid for vector loads. 6787 if (VT.isVector()) 6788 return SDValue(); 6789 6790 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then 6791 // extended to VT. 6792 if (Opc == ISD::SIGN_EXTEND_INREG) { 6793 ExtType = ISD::SEXTLOAD; 6794 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 6795 } else if (Opc == ISD::SRL) { 6796 // Another special-case: SRL is basically zero-extending a narrower value. 6797 ExtType = ISD::ZEXTLOAD; 6798 N0 = SDValue(N, 0); 6799 ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6800 if (!N01) return SDValue(); 6801 ExtVT = EVT::getIntegerVT(*DAG.getContext(), 6802 VT.getSizeInBits() - N01->getZExtValue()); 6803 } 6804 if (LegalOperations && !TLI.isLoadExtLegal(ExtType, VT, ExtVT)) 6805 return SDValue(); 6806 6807 unsigned EVTBits = ExtVT.getSizeInBits(); 6808 6809 // Do not generate loads of non-round integer types since these can 6810 // be expensive (and would be wrong if the type is not byte sized). 6811 if (!ExtVT.isRound()) 6812 return SDValue(); 6813 6814 unsigned ShAmt = 0; 6815 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 6816 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 6817 ShAmt = N01->getZExtValue(); 6818 // Is the shift amount a multiple of size of VT? 6819 if ((ShAmt & (EVTBits-1)) == 0) { 6820 N0 = N0.getOperand(0); 6821 // Is the load width a multiple of size of VT? 6822 if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0) 6823 return SDValue(); 6824 } 6825 6826 // At this point, we must have a load or else we can't do the transform. 6827 if (!isa<LoadSDNode>(N0)) return SDValue(); 6828 6829 // Because a SRL must be assumed to *need* to zero-extend the high bits 6830 // (as opposed to anyext the high bits), we can't combine the zextload 6831 // lowering of SRL and an sextload. 6832 if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD) 6833 return SDValue(); 6834 6835 // If the shift amount is larger than the input type then we're not 6836 // accessing any of the loaded bytes. If the load was a zextload/extload 6837 // then the result of the shift+trunc is zero/undef (handled elsewhere). 6838 if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits()) 6839 return SDValue(); 6840 } 6841 } 6842 6843 // If the load is shifted left (and the result isn't shifted back right), 6844 // we can fold the truncate through the shift. 6845 unsigned ShLeftAmt = 0; 6846 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 6847 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { 6848 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 6849 ShLeftAmt = N01->getZExtValue(); 6850 N0 = N0.getOperand(0); 6851 } 6852 } 6853 6854 // If we haven't found a load, we can't narrow it. Don't transform one with 6855 // multiple uses, this would require adding a new load. 6856 if (!isa<LoadSDNode>(N0) || !N0.hasOneUse()) 6857 return SDValue(); 6858 6859 // Don't change the width of a volatile load. 6860 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6861 if (LN0->isVolatile()) 6862 return SDValue(); 6863 6864 // Verify that we are actually reducing a load width here. 6865 if (LN0->getMemoryVT().getSizeInBits() < EVTBits) 6866 return SDValue(); 6867 6868 // For the transform to be legal, the load must produce only two values 6869 // (the value loaded and the chain). Don't transform a pre-increment 6870 // load, for example, which produces an extra value. Otherwise the 6871 // transformation is not equivalent, and the downstream logic to replace 6872 // uses gets things wrong. 6873 if (LN0->getNumValues() > 2) 6874 return SDValue(); 6875 6876 // If the load that we're shrinking is an extload and we're not just 6877 // discarding the extension we can't simply shrink the load. Bail. 6878 // TODO: It would be possible to merge the extensions in some cases. 6879 if (LN0->getExtensionType() != ISD::NON_EXTLOAD && 6880 LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt) 6881 return SDValue(); 6882 6883 if (!TLI.shouldReduceLoadWidth(LN0, ExtType, ExtVT)) 6884 return SDValue(); 6885 6886 EVT PtrType = N0.getOperand(1).getValueType(); 6887 6888 if (PtrType == MVT::Untyped || PtrType.isExtended()) 6889 // It's not possible to generate a constant of extended or untyped type. 6890 return SDValue(); 6891 6892 // For big endian targets, we need to adjust the offset to the pointer to 6893 // load the correct bytes. 6894 if (DAG.getDataLayout().isBigEndian()) { 6895 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); 6896 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); 6897 ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; 6898 } 6899 6900 uint64_t PtrOff = ShAmt / 8; 6901 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); 6902 SDLoc DL(LN0); 6903 // The original load itself didn't wrap, so an offset within it doesn't. 6904 SDNodeFlags Flags; 6905 Flags.setNoUnsignedWrap(true); 6906 SDValue NewPtr = DAG.getNode(ISD::ADD, DL, 6907 PtrType, LN0->getBasePtr(), 6908 DAG.getConstant(PtrOff, DL, PtrType), 6909 &Flags); 6910 AddToWorklist(NewPtr.getNode()); 6911 6912 SDValue Load; 6913 if (ExtType == ISD::NON_EXTLOAD) 6914 Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr, 6915 LN0->getPointerInfo().getWithOffset(PtrOff), 6916 LN0->isVolatile(), LN0->isNonTemporal(), 6917 LN0->isInvariant(), NewAlign, LN0->getAAInfo()); 6918 else 6919 Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr, 6920 LN0->getPointerInfo().getWithOffset(PtrOff), 6921 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), 6922 LN0->isInvariant(), NewAlign, LN0->getAAInfo()); 6923 6924 // Replace the old load's chain with the new load's chain. 6925 WorklistRemover DeadNodes(*this); 6926 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 6927 6928 // Shift the result left, if we've swallowed a left shift. 6929 SDValue Result = Load; 6930 if (ShLeftAmt != 0) { 6931 EVT ShImmTy = getShiftAmountTy(Result.getValueType()); 6932 if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) 6933 ShImmTy = VT; 6934 // If the shift amount is as large as the result size (but, presumably, 6935 // no larger than the source) then the useful bits of the result are 6936 // zero; we can't simply return the shortened shift, because the result 6937 // of that operation is undefined. 6938 SDLoc DL(N0); 6939 if (ShLeftAmt >= VT.getSizeInBits()) 6940 Result = DAG.getConstant(0, DL, VT); 6941 else 6942 Result = DAG.getNode(ISD::SHL, DL, VT, 6943 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); 6944 } 6945 6946 // Return the new loaded value. 6947 return Result; 6948 } 6949 6950 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { 6951 SDValue N0 = N->getOperand(0); 6952 SDValue N1 = N->getOperand(1); 6953 EVT VT = N->getValueType(0); 6954 EVT EVT = cast<VTSDNode>(N1)->getVT(); 6955 unsigned VTBits = VT.getScalarType().getSizeInBits(); 6956 unsigned EVTBits = EVT.getScalarType().getSizeInBits(); 6957 6958 if (N0.isUndef()) 6959 return DAG.getUNDEF(VT); 6960 6961 // fold (sext_in_reg c1) -> c1 6962 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 6963 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); 6964 6965 // If the input is already sign extended, just drop the extension. 6966 if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) 6967 return N0; 6968 6969 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 6970 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 6971 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) 6972 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 6973 N0.getOperand(0), N1); 6974 6975 // fold (sext_in_reg (sext x)) -> (sext x) 6976 // fold (sext_in_reg (aext x)) -> (sext x) 6977 // if x is small enough. 6978 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { 6979 SDValue N00 = N0.getOperand(0); 6980 if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits && 6981 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 6982 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); 6983 } 6984 6985 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. 6986 if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits))) 6987 return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT); 6988 6989 // fold operands of sext_in_reg based on knowledge that the top bits are not 6990 // demanded. 6991 if (SimplifyDemandedBits(SDValue(N, 0))) 6992 return SDValue(N, 0); 6993 6994 // fold (sext_in_reg (load x)) -> (smaller sextload x) 6995 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) 6996 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 6997 return NarrowLoad; 6998 6999 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) 7000 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. 7001 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. 7002 if (N0.getOpcode() == ISD::SRL) { 7003 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 7004 if (ShAmt->getZExtValue()+EVTBits <= VTBits) { 7005 // We can turn this into an SRA iff the input to the SRL is already sign 7006 // extended enough. 7007 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); 7008 if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits) 7009 return DAG.getNode(ISD::SRA, SDLoc(N), VT, 7010 N0.getOperand(0), N0.getOperand(1)); 7011 } 7012 } 7013 7014 // fold (sext_inreg (extload x)) -> (sextload x) 7015 if (ISD::isEXTLoad(N0.getNode()) && 7016 ISD::isUNINDEXEDLoad(N0.getNode()) && 7017 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 7018 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 7019 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 7020 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7021 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 7022 LN0->getChain(), 7023 LN0->getBasePtr(), EVT, 7024 LN0->getMemOperand()); 7025 CombineTo(N, ExtLoad); 7026 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 7027 AddToWorklist(ExtLoad.getNode()); 7028 return SDValue(N, 0); // Return N so it doesn't get rechecked! 7029 } 7030 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use 7031 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 7032 N0.hasOneUse() && 7033 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 7034 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 7035 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 7036 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7037 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 7038 LN0->getChain(), 7039 LN0->getBasePtr(), EVT, 7040 LN0->getMemOperand()); 7041 CombineTo(N, ExtLoad); 7042 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 7043 return SDValue(N, 0); // Return N so it doesn't get rechecked! 7044 } 7045 7046 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) 7047 if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { 7048 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 7049 N0.getOperand(1), false)) 7050 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 7051 BSwap, N1); 7052 } 7053 7054 return SDValue(); 7055 } 7056 7057 SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { 7058 SDValue N0 = N->getOperand(0); 7059 EVT VT = N->getValueType(0); 7060 7061 if (N0.isUndef()) 7062 return DAG.getUNDEF(VT); 7063 7064 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 7065 LegalOperations)) 7066 return SDValue(Res, 0); 7067 7068 return SDValue(); 7069 } 7070 7071 SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) { 7072 SDValue N0 = N->getOperand(0); 7073 EVT VT = N->getValueType(0); 7074 7075 if (N0.isUndef()) 7076 return DAG.getUNDEF(VT); 7077 7078 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 7079 LegalOperations)) 7080 return SDValue(Res, 0); 7081 7082 return SDValue(); 7083 } 7084 7085 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { 7086 SDValue N0 = N->getOperand(0); 7087 EVT VT = N->getValueType(0); 7088 bool isLE = DAG.getDataLayout().isLittleEndian(); 7089 7090 // noop truncate 7091 if (N0.getValueType() == N->getValueType(0)) 7092 return N0; 7093 // fold (truncate c1) -> c1 7094 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 7095 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); 7096 // fold (truncate (truncate x)) -> (truncate x) 7097 if (N0.getOpcode() == ISD::TRUNCATE) 7098 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 7099 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x 7100 if (N0.getOpcode() == ISD::ZERO_EXTEND || 7101 N0.getOpcode() == ISD::SIGN_EXTEND || 7102 N0.getOpcode() == ISD::ANY_EXTEND) { 7103 // if the source is smaller than the dest, we still need an extend. 7104 if (N0.getOperand(0).getValueType().bitsLT(VT)) 7105 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 7106 // if the source is larger than the dest, than we just need the truncate. 7107 if (N0.getOperand(0).getValueType().bitsGT(VT)) 7108 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 7109 // if the source and dest are the same type, we can drop both the extend 7110 // and the truncate. 7111 return N0.getOperand(0); 7112 } 7113 7114 // Fold extract-and-trunc into a narrow extract. For example: 7115 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) 7116 // i32 y = TRUNCATE(i64 x) 7117 // -- becomes -- 7118 // v16i8 b = BITCAST (v2i64 val) 7119 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) 7120 // 7121 // Note: We only run this optimization after type legalization (which often 7122 // creates this pattern) and before operation legalization after which 7123 // we need to be more careful about the vector instructions that we generate. 7124 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7125 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { 7126 7127 EVT VecTy = N0.getOperand(0).getValueType(); 7128 EVT ExTy = N0.getValueType(); 7129 EVT TrTy = N->getValueType(0); 7130 7131 unsigned NumElem = VecTy.getVectorNumElements(); 7132 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); 7133 7134 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); 7135 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); 7136 7137 SDValue EltNo = N0->getOperand(1); 7138 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { 7139 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 7140 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7141 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); 7142 7143 SDLoc DL(N); 7144 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, 7145 DAG.getBitcast(NVT, N0.getOperand(0)), 7146 DAG.getConstant(Index, DL, IndexTy)); 7147 } 7148 } 7149 7150 // trunc (select c, a, b) -> select c, (trunc a), (trunc b) 7151 if (N0.getOpcode() == ISD::SELECT) { 7152 EVT SrcVT = N0.getValueType(); 7153 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && 7154 TLI.isTruncateFree(SrcVT, VT)) { 7155 SDLoc SL(N0); 7156 SDValue Cond = N0.getOperand(0); 7157 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 7158 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); 7159 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); 7160 } 7161 } 7162 7163 // trunc (shl x, K) -> shl (trunc x), K => K < vt.size / 2 7164 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 7165 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) && 7166 TLI.isTypeDesirableForOp(ISD::SHL, VT)) { 7167 if (const ConstantSDNode *CAmt = isConstOrConstSplat(N0.getOperand(1))) { 7168 uint64_t Amt = CAmt->getZExtValue(); 7169 unsigned Size = VT.getSizeInBits(); 7170 7171 if (Amt < Size / 2) { 7172 SDLoc SL(N); 7173 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 7174 7175 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 7176 return DAG.getNode(ISD::SHL, SL, VT, Trunc, 7177 DAG.getConstant(Amt, SL, AmtVT)); 7178 } 7179 } 7180 } 7181 7182 // Fold a series of buildvector, bitcast, and truncate if possible. 7183 // For example fold 7184 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to 7185 // (2xi32 (buildvector x, y)). 7186 if (Level == AfterLegalizeVectorOps && VT.isVector() && 7187 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 7188 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 7189 N0.getOperand(0).hasOneUse()) { 7190 7191 SDValue BuildVect = N0.getOperand(0); 7192 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); 7193 EVT TruncVecEltTy = VT.getVectorElementType(); 7194 7195 // Check that the element types match. 7196 if (BuildVectEltTy == TruncVecEltTy) { 7197 // Now we only need to compute the offset of the truncated elements. 7198 unsigned BuildVecNumElts = BuildVect.getNumOperands(); 7199 unsigned TruncVecNumElts = VT.getVectorNumElements(); 7200 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; 7201 7202 assert((BuildVecNumElts % TruncVecNumElts) == 0 && 7203 "Invalid number of elements"); 7204 7205 SmallVector<SDValue, 8> Opnds; 7206 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) 7207 Opnds.push_back(BuildVect.getOperand(i)); 7208 7209 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 7210 } 7211 } 7212 7213 // See if we can simplify the input to this truncate through knowledge that 7214 // only the low bits are being used. 7215 // For example "trunc (or (shl x, 8), y)" // -> trunc y 7216 // Currently we only perform this optimization on scalars because vectors 7217 // may have different active low bits. 7218 if (!VT.isVector()) { 7219 if (SDValue Shorter = 7220 GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(), 7221 VT.getSizeInBits()))) 7222 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); 7223 } 7224 // fold (truncate (load x)) -> (smaller load x) 7225 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) 7226 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { 7227 if (SDValue Reduced = ReduceLoadWidth(N)) 7228 return Reduced; 7229 7230 // Handle the case where the load remains an extending load even 7231 // after truncation. 7232 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { 7233 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7234 if (!LN0->isVolatile() && 7235 LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { 7236 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), 7237 VT, LN0->getChain(), LN0->getBasePtr(), 7238 LN0->getMemoryVT(), 7239 LN0->getMemOperand()); 7240 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); 7241 return NewLoad; 7242 } 7243 } 7244 } 7245 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), 7246 // where ... are all 'undef'. 7247 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { 7248 SmallVector<EVT, 8> VTs; 7249 SDValue V; 7250 unsigned Idx = 0; 7251 unsigned NumDefs = 0; 7252 7253 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 7254 SDValue X = N0.getOperand(i); 7255 if (!X.isUndef()) { 7256 V = X; 7257 Idx = i; 7258 NumDefs++; 7259 } 7260 // Stop if more than one members are non-undef. 7261 if (NumDefs > 1) 7262 break; 7263 VTs.push_back(EVT::getVectorVT(*DAG.getContext(), 7264 VT.getVectorElementType(), 7265 X.getValueType().getVectorNumElements())); 7266 } 7267 7268 if (NumDefs == 0) 7269 return DAG.getUNDEF(VT); 7270 7271 if (NumDefs == 1) { 7272 assert(V.getNode() && "The single defined operand is empty!"); 7273 SmallVector<SDValue, 8> Opnds; 7274 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 7275 if (i != Idx) { 7276 Opnds.push_back(DAG.getUNDEF(VTs[i])); 7277 continue; 7278 } 7279 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); 7280 AddToWorklist(NV.getNode()); 7281 Opnds.push_back(NV); 7282 } 7283 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); 7284 } 7285 } 7286 7287 // Fold truncate of a bitcast of a vector to an extract of the low vector 7288 // element. 7289 // 7290 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, 0 7291 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { 7292 SDValue VecSrc = N0.getOperand(0); 7293 EVT SrcVT = VecSrc.getValueType(); 7294 if (SrcVT.isVector() && SrcVT.getScalarType() == VT && 7295 (!LegalOperations || 7296 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) { 7297 SDLoc SL(N); 7298 7299 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 7300 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, 7301 VecSrc, DAG.getConstant(0, SL, IdxVT)); 7302 } 7303 } 7304 7305 // Simplify the operands using demanded-bits information. 7306 if (!VT.isVector() && 7307 SimplifyDemandedBits(SDValue(N, 0))) 7308 return SDValue(N, 0); 7309 7310 return SDValue(); 7311 } 7312 7313 static SDNode *getBuildPairElt(SDNode *N, unsigned i) { 7314 SDValue Elt = N->getOperand(i); 7315 if (Elt.getOpcode() != ISD::MERGE_VALUES) 7316 return Elt.getNode(); 7317 return Elt.getOperand(Elt.getResNo()).getNode(); 7318 } 7319 7320 /// build_pair (load, load) -> load 7321 /// if load locations are consecutive. 7322 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { 7323 assert(N->getOpcode() == ISD::BUILD_PAIR); 7324 7325 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); 7326 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); 7327 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || 7328 LD1->getAddressSpace() != LD2->getAddressSpace()) 7329 return SDValue(); 7330 EVT LD1VT = LD1->getValueType(0); 7331 unsigned LD1Bytes = LD1VT.getSizeInBits() / 8; 7332 if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && 7333 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) { 7334 unsigned Align = LD1->getAlignment(); 7335 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 7336 VT.getTypeForEVT(*DAG.getContext())); 7337 7338 if (NewAlign <= Align && 7339 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) 7340 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), 7341 LD1->getBasePtr(), LD1->getPointerInfo(), 7342 false, false, false, Align); 7343 } 7344 7345 return SDValue(); 7346 } 7347 7348 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { 7349 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi 7350 // and Lo parts; on big-endian machines it doesn't. 7351 return DAG.getDataLayout().isBigEndian() ? 1 : 0; 7352 } 7353 7354 SDValue DAGCombiner::visitBITCAST(SDNode *N) { 7355 SDValue N0 = N->getOperand(0); 7356 EVT VT = N->getValueType(0); 7357 7358 // If the input is a BUILD_VECTOR with all constant elements, fold this now. 7359 // Only do this before legalize, since afterward the target may be depending 7360 // on the bitconvert. 7361 // First check to see if this is all constant. 7362 if (!LegalTypes && 7363 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && 7364 VT.isVector()) { 7365 bool isSimple = cast<BuildVectorSDNode>(N0)->isConstant(); 7366 7367 EVT DestEltVT = N->getValueType(0).getVectorElementType(); 7368 assert(!DestEltVT.isVector() && 7369 "Element type of vector ValueType must not be vector!"); 7370 if (isSimple) 7371 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT); 7372 } 7373 7374 // If the input is a constant, let getNode fold it. 7375 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { 7376 // If we can't allow illegal operations, we need to check that this is just 7377 // a fp -> int or int -> conversion and that the resulting operation will 7378 // be legal. 7379 if (!LegalOperations || 7380 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && 7381 TLI.isOperationLegal(ISD::ConstantFP, VT)) || 7382 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && 7383 TLI.isOperationLegal(ISD::Constant, VT))) 7384 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0); 7385 } 7386 7387 // (conv (conv x, t1), t2) -> (conv x, t2) 7388 if (N0.getOpcode() == ISD::BITCAST) 7389 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, 7390 N0.getOperand(0)); 7391 7392 // fold (conv (load x)) -> (load (conv*)x) 7393 // If the resultant load doesn't need a higher alignment than the original! 7394 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 7395 // Do not change the width of a volatile load. 7396 !cast<LoadSDNode>(N0)->isVolatile() && 7397 // Do not remove the cast if the types differ in endian layout. 7398 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == 7399 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && 7400 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && 7401 TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) { 7402 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7403 unsigned OrigAlign = LN0->getAlignment(); 7404 7405 bool Fast = false; 7406 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 7407 LN0->getAddressSpace(), OrigAlign, &Fast) && 7408 Fast) { 7409 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), 7410 LN0->getBasePtr(), LN0->getPointerInfo(), 7411 LN0->isVolatile(), LN0->isNonTemporal(), 7412 LN0->isInvariant(), OrigAlign, 7413 LN0->getAAInfo()); 7414 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 7415 return Load; 7416 } 7417 } 7418 7419 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7420 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7421 // 7422 // For ppc_fp128: 7423 // fold (bitcast (fneg x)) -> 7424 // flipbit = signbit 7425 // (xor (bitcast x) (build_pair flipbit, flipbit)) 7426 // 7427 // fold (bitcast (fabs x)) -> 7428 // flipbit = (and (extract_element (bitcast x), 0), signbit) 7429 // (xor (bitcast x) (build_pair flipbit, flipbit)) 7430 // This often reduces constant pool loads. 7431 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || 7432 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && 7433 N0.getNode()->hasOneUse() && VT.isInteger() && 7434 !VT.isVector() && !N0.getValueType().isVector()) { 7435 SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT, 7436 N0.getOperand(0)); 7437 AddToWorklist(NewConv.getNode()); 7438 7439 SDLoc DL(N); 7440 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 7441 assert(VT.getSizeInBits() == 128); 7442 SDValue SignBit = DAG.getConstant( 7443 APInt::getSignBit(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); 7444 SDValue FlipBit; 7445 if (N0.getOpcode() == ISD::FNEG) { 7446 FlipBit = SignBit; 7447 AddToWorklist(FlipBit.getNode()); 7448 } else { 7449 assert(N0.getOpcode() == ISD::FABS); 7450 SDValue Hi = 7451 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, 7452 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 7453 SDLoc(NewConv))); 7454 AddToWorklist(Hi.getNode()); 7455 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); 7456 AddToWorklist(FlipBit.getNode()); 7457 } 7458 SDValue FlipBits = 7459 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 7460 AddToWorklist(FlipBits.getNode()); 7461 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); 7462 } 7463 APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); 7464 if (N0.getOpcode() == ISD::FNEG) 7465 return DAG.getNode(ISD::XOR, DL, VT, 7466 NewConv, DAG.getConstant(SignBit, DL, VT)); 7467 assert(N0.getOpcode() == ISD::FABS); 7468 return DAG.getNode(ISD::AND, DL, VT, 7469 NewConv, DAG.getConstant(~SignBit, DL, VT)); 7470 } 7471 7472 // fold (bitconvert (fcopysign cst, x)) -> 7473 // (or (and (bitconvert x), sign), (and cst, (not sign))) 7474 // Note that we don't handle (copysign x, cst) because this can always be 7475 // folded to an fneg or fabs. 7476 // 7477 // For ppc_fp128: 7478 // fold (bitcast (fcopysign cst, x)) -> 7479 // flipbit = (and (extract_element 7480 // (xor (bitcast cst), (bitcast x)), 0), 7481 // signbit) 7482 // (xor (bitcast cst) (build_pair flipbit, flipbit)) 7483 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && 7484 isa<ConstantFPSDNode>(N0.getOperand(0)) && 7485 VT.isInteger() && !VT.isVector()) { 7486 unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits(); 7487 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); 7488 if (isTypeLegal(IntXVT)) { 7489 SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0), 7490 IntXVT, N0.getOperand(1)); 7491 AddToWorklist(X.getNode()); 7492 7493 // If X has a different width than the result/lhs, sext it or truncate it. 7494 unsigned VTWidth = VT.getSizeInBits(); 7495 if (OrigXWidth < VTWidth) { 7496 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); 7497 AddToWorklist(X.getNode()); 7498 } else if (OrigXWidth > VTWidth) { 7499 // To get the sign bit in the right place, we have to shift it right 7500 // before truncating. 7501 SDLoc DL(X); 7502 X = DAG.getNode(ISD::SRL, DL, 7503 X.getValueType(), X, 7504 DAG.getConstant(OrigXWidth-VTWidth, DL, 7505 X.getValueType())); 7506 AddToWorklist(X.getNode()); 7507 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 7508 AddToWorklist(X.getNode()); 7509 } 7510 7511 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 7512 APInt SignBit = APInt::getSignBit(VT.getSizeInBits() / 2); 7513 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 7514 AddToWorklist(Cst.getNode()); 7515 SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); 7516 AddToWorklist(X.getNode()); 7517 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); 7518 AddToWorklist(XorResult.getNode()); 7519 SDValue XorResult64 = DAG.getNode( 7520 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, 7521 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 7522 SDLoc(XorResult))); 7523 AddToWorklist(XorResult64.getNode()); 7524 SDValue FlipBit = 7525 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, 7526 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); 7527 AddToWorklist(FlipBit.getNode()); 7528 SDValue FlipBits = 7529 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 7530 AddToWorklist(FlipBits.getNode()); 7531 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); 7532 } 7533 APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); 7534 X = DAG.getNode(ISD::AND, SDLoc(X), VT, 7535 X, DAG.getConstant(SignBit, SDLoc(X), VT)); 7536 AddToWorklist(X.getNode()); 7537 7538 SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0), 7539 VT, N0.getOperand(0)); 7540 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, 7541 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); 7542 AddToWorklist(Cst.getNode()); 7543 7544 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); 7545 } 7546 } 7547 7548 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. 7549 if (N0.getOpcode() == ISD::BUILD_PAIR) 7550 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) 7551 return CombineLD; 7552 7553 // Remove double bitcasts from shuffles - this is often a legacy of 7554 // XformToShuffleWithZero being used to combine bitmaskings (of 7555 // float vectors bitcast to integer vectors) into shuffles. 7556 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) 7557 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && 7558 N0->getOpcode() == ISD::VECTOR_SHUFFLE && 7559 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && 7560 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { 7561 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); 7562 7563 // If operands are a bitcast, peek through if it casts the original VT. 7564 // If operands are a constant, just bitcast back to original VT. 7565 auto PeekThroughBitcast = [&](SDValue Op) { 7566 if (Op.getOpcode() == ISD::BITCAST && 7567 Op.getOperand(0).getValueType() == VT) 7568 return SDValue(Op.getOperand(0)); 7569 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || 7570 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) 7571 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 7572 return SDValue(); 7573 }; 7574 7575 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); 7576 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); 7577 if (!(SV0 && SV1)) 7578 return SDValue(); 7579 7580 int MaskScale = 7581 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); 7582 SmallVector<int, 8> NewMask; 7583 for (int M : SVN->getMask()) 7584 for (int i = 0; i != MaskScale; ++i) 7585 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); 7586 7587 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); 7588 if (!LegalMask) { 7589 std::swap(SV0, SV1); 7590 ShuffleVectorSDNode::commuteMask(NewMask); 7591 LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); 7592 } 7593 7594 if (LegalMask) 7595 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask); 7596 } 7597 7598 return SDValue(); 7599 } 7600 7601 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { 7602 EVT VT = N->getValueType(0); 7603 return CombineConsecutiveLoads(N, VT); 7604 } 7605 7606 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef 7607 /// operands. DstEltVT indicates the destination element value type. 7608 SDValue DAGCombiner:: 7609 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { 7610 EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); 7611 7612 // If this is already the right type, we're done. 7613 if (SrcEltVT == DstEltVT) return SDValue(BV, 0); 7614 7615 unsigned SrcBitSize = SrcEltVT.getSizeInBits(); 7616 unsigned DstBitSize = DstEltVT.getSizeInBits(); 7617 7618 // If this is a conversion of N elements of one type to N elements of another 7619 // type, convert each element. This handles FP<->INT cases. 7620 if (SrcBitSize == DstBitSize) { 7621 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 7622 BV->getValueType(0).getVectorNumElements()); 7623 7624 // Due to the FP element handling below calling this routine recursively, 7625 // we can end up with a scalar-to-vector node here. 7626 if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR) 7627 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT, 7628 DAG.getNode(ISD::BITCAST, SDLoc(BV), 7629 DstEltVT, BV->getOperand(0))); 7630 7631 SmallVector<SDValue, 8> Ops; 7632 for (SDValue Op : BV->op_values()) { 7633 // If the vector element type is not legal, the BUILD_VECTOR operands 7634 // are promoted and implicitly truncated. Make that explicit here. 7635 if (Op.getValueType() != SrcEltVT) 7636 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); 7637 Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV), 7638 DstEltVT, Op)); 7639 AddToWorklist(Ops.back().getNode()); 7640 } 7641 return DAG.getBuildVector(VT, SDLoc(BV), Ops); 7642 } 7643 7644 // Otherwise, we're growing or shrinking the elements. To avoid having to 7645 // handle annoying details of growing/shrinking FP values, we convert them to 7646 // int first. 7647 if (SrcEltVT.isFloatingPoint()) { 7648 // Convert the input float vector to a int vector where the elements are the 7649 // same sizes. 7650 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); 7651 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); 7652 SrcEltVT = IntVT; 7653 } 7654 7655 // Now we know the input is an integer vector. If the output is a FP type, 7656 // convert to integer first, then to FP of the right size. 7657 if (DstEltVT.isFloatingPoint()) { 7658 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); 7659 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); 7660 7661 // Next, convert to FP elements of the same size. 7662 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); 7663 } 7664 7665 SDLoc DL(BV); 7666 7667 // Okay, we know the src/dst types are both integers of differing types. 7668 // Handling growing first. 7669 assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); 7670 if (SrcBitSize < DstBitSize) { 7671 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; 7672 7673 SmallVector<SDValue, 8> Ops; 7674 for (unsigned i = 0, e = BV->getNumOperands(); i != e; 7675 i += NumInputsPerOutput) { 7676 bool isLE = DAG.getDataLayout().isLittleEndian(); 7677 APInt NewBits = APInt(DstBitSize, 0); 7678 bool EltIsUndef = true; 7679 for (unsigned j = 0; j != NumInputsPerOutput; ++j) { 7680 // Shift the previously computed bits over. 7681 NewBits <<= SrcBitSize; 7682 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); 7683 if (Op.isUndef()) continue; 7684 EltIsUndef = false; 7685 7686 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). 7687 zextOrTrunc(SrcBitSize).zext(DstBitSize); 7688 } 7689 7690 if (EltIsUndef) 7691 Ops.push_back(DAG.getUNDEF(DstEltVT)); 7692 else 7693 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); 7694 } 7695 7696 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); 7697 return DAG.getBuildVector(VT, DL, Ops); 7698 } 7699 7700 // Finally, this must be the case where we are shrinking elements: each input 7701 // turns into multiple outputs. 7702 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; 7703 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 7704 NumOutputsPerInput*BV->getNumOperands()); 7705 SmallVector<SDValue, 8> Ops; 7706 7707 for (const SDValue &Op : BV->op_values()) { 7708 if (Op.isUndef()) { 7709 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); 7710 continue; 7711 } 7712 7713 APInt OpVal = cast<ConstantSDNode>(Op)-> 7714 getAPIntValue().zextOrTrunc(SrcBitSize); 7715 7716 for (unsigned j = 0; j != NumOutputsPerInput; ++j) { 7717 APInt ThisVal = OpVal.trunc(DstBitSize); 7718 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); 7719 OpVal = OpVal.lshr(DstBitSize); 7720 } 7721 7722 // For big endian targets, swap the order of the pieces of each element. 7723 if (DAG.getDataLayout().isBigEndian()) 7724 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); 7725 } 7726 7727 return DAG.getBuildVector(VT, DL, Ops); 7728 } 7729 7730 /// Try to perform FMA combining on a given FADD node. 7731 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { 7732 SDValue N0 = N->getOperand(0); 7733 SDValue N1 = N->getOperand(1); 7734 EVT VT = N->getValueType(0); 7735 SDLoc SL(N); 7736 7737 const TargetOptions &Options = DAG.getTarget().Options; 7738 bool AllowFusion = 7739 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 7740 7741 // Floating-point multiply-add with intermediate rounding. 7742 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 7743 7744 // Floating-point multiply-add without intermediate rounding. 7745 bool HasFMA = 7746 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 7747 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 7748 7749 // No valid opcode, do not combine. 7750 if (!HasFMAD && !HasFMA) 7751 return SDValue(); 7752 7753 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); 7754 ; 7755 if (AllowFusion && STI && STI->generateFMAsInMachineCombiner(OptLevel)) 7756 return SDValue(); 7757 7758 // Always prefer FMAD to FMA for precision. 7759 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 7760 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 7761 bool LookThroughFPExt = TLI.isFPExtFree(VT); 7762 7763 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 7764 // prefer to fold the multiply with fewer uses. 7765 if (Aggressive && N0.getOpcode() == ISD::FMUL && 7766 N1.getOpcode() == ISD::FMUL) { 7767 if (N0.getNode()->use_size() > N1.getNode()->use_size()) 7768 std::swap(N0, N1); 7769 } 7770 7771 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 7772 if (N0.getOpcode() == ISD::FMUL && 7773 (Aggressive || N0->hasOneUse())) { 7774 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7775 N0.getOperand(0), N0.getOperand(1), N1); 7776 } 7777 7778 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 7779 // Note: Commutes FADD operands. 7780 if (N1.getOpcode() == ISD::FMUL && 7781 (Aggressive || N1->hasOneUse())) { 7782 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7783 N1.getOperand(0), N1.getOperand(1), N0); 7784 } 7785 7786 // Look through FP_EXTEND nodes to do more combining. 7787 if (AllowFusion && LookThroughFPExt) { 7788 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 7789 if (N0.getOpcode() == ISD::FP_EXTEND) { 7790 SDValue N00 = N0.getOperand(0); 7791 if (N00.getOpcode() == ISD::FMUL) 7792 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7793 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7794 N00.getOperand(0)), 7795 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7796 N00.getOperand(1)), N1); 7797 } 7798 7799 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) 7800 // Note: Commutes FADD operands. 7801 if (N1.getOpcode() == ISD::FP_EXTEND) { 7802 SDValue N10 = N1.getOperand(0); 7803 if (N10.getOpcode() == ISD::FMUL) 7804 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7805 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7806 N10.getOperand(0)), 7807 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7808 N10.getOperand(1)), N0); 7809 } 7810 } 7811 7812 // More folding opportunities when target permits. 7813 if ((AllowFusion || HasFMAD) && Aggressive) { 7814 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z)) 7815 if (N0.getOpcode() == PreferredFusedOpcode && 7816 N0.getOperand(2).getOpcode() == ISD::FMUL) { 7817 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7818 N0.getOperand(0), N0.getOperand(1), 7819 DAG.getNode(PreferredFusedOpcode, SL, VT, 7820 N0.getOperand(2).getOperand(0), 7821 N0.getOperand(2).getOperand(1), 7822 N1)); 7823 } 7824 7825 // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x)) 7826 if (N1->getOpcode() == PreferredFusedOpcode && 7827 N1.getOperand(2).getOpcode() == ISD::FMUL) { 7828 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7829 N1.getOperand(0), N1.getOperand(1), 7830 DAG.getNode(PreferredFusedOpcode, SL, VT, 7831 N1.getOperand(2).getOperand(0), 7832 N1.getOperand(2).getOperand(1), 7833 N0)); 7834 } 7835 7836 if (AllowFusion && LookThroughFPExt) { 7837 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 7838 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 7839 auto FoldFAddFMAFPExtFMul = [&] ( 7840 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { 7841 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, 7842 DAG.getNode(PreferredFusedOpcode, SL, VT, 7843 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 7844 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 7845 Z)); 7846 }; 7847 if (N0.getOpcode() == PreferredFusedOpcode) { 7848 SDValue N02 = N0.getOperand(2); 7849 if (N02.getOpcode() == ISD::FP_EXTEND) { 7850 SDValue N020 = N02.getOperand(0); 7851 if (N020.getOpcode() == ISD::FMUL) 7852 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), 7853 N020.getOperand(0), N020.getOperand(1), 7854 N1); 7855 } 7856 } 7857 7858 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 7859 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 7860 // FIXME: This turns two single-precision and one double-precision 7861 // operation into two double-precision operations, which might not be 7862 // interesting for all targets, especially GPUs. 7863 auto FoldFAddFPExtFMAFMul = [&] ( 7864 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { 7865 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7866 DAG.getNode(ISD::FP_EXTEND, SL, VT, X), 7867 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), 7868 DAG.getNode(PreferredFusedOpcode, SL, VT, 7869 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 7870 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 7871 Z)); 7872 }; 7873 if (N0.getOpcode() == ISD::FP_EXTEND) { 7874 SDValue N00 = N0.getOperand(0); 7875 if (N00.getOpcode() == PreferredFusedOpcode) { 7876 SDValue N002 = N00.getOperand(2); 7877 if (N002.getOpcode() == ISD::FMUL) 7878 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), 7879 N002.getOperand(0), N002.getOperand(1), 7880 N1); 7881 } 7882 } 7883 7884 // fold (fadd x, (fma y, z, (fpext (fmul u, v))) 7885 // -> (fma y, z, (fma (fpext u), (fpext v), x)) 7886 if (N1.getOpcode() == PreferredFusedOpcode) { 7887 SDValue N12 = N1.getOperand(2); 7888 if (N12.getOpcode() == ISD::FP_EXTEND) { 7889 SDValue N120 = N12.getOperand(0); 7890 if (N120.getOpcode() == ISD::FMUL) 7891 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), 7892 N120.getOperand(0), N120.getOperand(1), 7893 N0); 7894 } 7895 } 7896 7897 // fold (fadd x, (fpext (fma y, z, (fmul u, v))) 7898 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) 7899 // FIXME: This turns two single-precision and one double-precision 7900 // operation into two double-precision operations, which might not be 7901 // interesting for all targets, especially GPUs. 7902 if (N1.getOpcode() == ISD::FP_EXTEND) { 7903 SDValue N10 = N1.getOperand(0); 7904 if (N10.getOpcode() == PreferredFusedOpcode) { 7905 SDValue N102 = N10.getOperand(2); 7906 if (N102.getOpcode() == ISD::FMUL) 7907 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), 7908 N102.getOperand(0), N102.getOperand(1), 7909 N0); 7910 } 7911 } 7912 } 7913 } 7914 7915 return SDValue(); 7916 } 7917 7918 /// Try to perform FMA combining on a given FSUB node. 7919 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { 7920 SDValue N0 = N->getOperand(0); 7921 SDValue N1 = N->getOperand(1); 7922 EVT VT = N->getValueType(0); 7923 SDLoc SL(N); 7924 7925 const TargetOptions &Options = DAG.getTarget().Options; 7926 bool AllowFusion = 7927 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 7928 7929 // Floating-point multiply-add with intermediate rounding. 7930 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 7931 7932 // Floating-point multiply-add without intermediate rounding. 7933 bool HasFMA = 7934 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 7935 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 7936 7937 // No valid opcode, do not combine. 7938 if (!HasFMAD && !HasFMA) 7939 return SDValue(); 7940 7941 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); 7942 if (AllowFusion && STI && STI->generateFMAsInMachineCombiner(OptLevel)) 7943 return SDValue(); 7944 7945 // Always prefer FMAD to FMA for precision. 7946 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 7947 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 7948 bool LookThroughFPExt = TLI.isFPExtFree(VT); 7949 7950 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 7951 if (N0.getOpcode() == ISD::FMUL && 7952 (Aggressive || N0->hasOneUse())) { 7953 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7954 N0.getOperand(0), N0.getOperand(1), 7955 DAG.getNode(ISD::FNEG, SL, VT, N1)); 7956 } 7957 7958 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 7959 // Note: Commutes FSUB operands. 7960 if (N1.getOpcode() == ISD::FMUL && 7961 (Aggressive || N1->hasOneUse())) 7962 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7963 DAG.getNode(ISD::FNEG, SL, VT, 7964 N1.getOperand(0)), 7965 N1.getOperand(1), N0); 7966 7967 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) 7968 if (N0.getOpcode() == ISD::FNEG && 7969 N0.getOperand(0).getOpcode() == ISD::FMUL && 7970 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { 7971 SDValue N00 = N0.getOperand(0).getOperand(0); 7972 SDValue N01 = N0.getOperand(0).getOperand(1); 7973 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7974 DAG.getNode(ISD::FNEG, SL, VT, N00), N01, 7975 DAG.getNode(ISD::FNEG, SL, VT, N1)); 7976 } 7977 7978 // Look through FP_EXTEND nodes to do more combining. 7979 if (AllowFusion && LookThroughFPExt) { 7980 // fold (fsub (fpext (fmul x, y)), z) 7981 // -> (fma (fpext x), (fpext y), (fneg z)) 7982 if (N0.getOpcode() == ISD::FP_EXTEND) { 7983 SDValue N00 = N0.getOperand(0); 7984 if (N00.getOpcode() == ISD::FMUL) 7985 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7986 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7987 N00.getOperand(0)), 7988 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7989 N00.getOperand(1)), 7990 DAG.getNode(ISD::FNEG, SL, VT, N1)); 7991 } 7992 7993 // fold (fsub x, (fpext (fmul y, z))) 7994 // -> (fma (fneg (fpext y)), (fpext z), x) 7995 // Note: Commutes FSUB operands. 7996 if (N1.getOpcode() == ISD::FP_EXTEND) { 7997 SDValue N10 = N1.getOperand(0); 7998 if (N10.getOpcode() == ISD::FMUL) 7999 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8000 DAG.getNode(ISD::FNEG, SL, VT, 8001 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8002 N10.getOperand(0))), 8003 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8004 N10.getOperand(1)), 8005 N0); 8006 } 8007 8008 // fold (fsub (fpext (fneg (fmul, x, y))), z) 8009 // -> (fneg (fma (fpext x), (fpext y), z)) 8010 // Note: This could be removed with appropriate canonicalization of the 8011 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 8012 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 8013 // from implementing the canonicalization in visitFSUB. 8014 if (N0.getOpcode() == ISD::FP_EXTEND) { 8015 SDValue N00 = N0.getOperand(0); 8016 if (N00.getOpcode() == ISD::FNEG) { 8017 SDValue N000 = N00.getOperand(0); 8018 if (N000.getOpcode() == ISD::FMUL) { 8019 return DAG.getNode(ISD::FNEG, SL, VT, 8020 DAG.getNode(PreferredFusedOpcode, SL, VT, 8021 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8022 N000.getOperand(0)), 8023 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8024 N000.getOperand(1)), 8025 N1)); 8026 } 8027 } 8028 } 8029 8030 // fold (fsub (fneg (fpext (fmul, x, y))), z) 8031 // -> (fneg (fma (fpext x)), (fpext y), z) 8032 // Note: This could be removed with appropriate canonicalization of the 8033 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 8034 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 8035 // from implementing the canonicalization in visitFSUB. 8036 if (N0.getOpcode() == ISD::FNEG) { 8037 SDValue N00 = N0.getOperand(0); 8038 if (N00.getOpcode() == ISD::FP_EXTEND) { 8039 SDValue N000 = N00.getOperand(0); 8040 if (N000.getOpcode() == ISD::FMUL) { 8041 return DAG.getNode(ISD::FNEG, SL, VT, 8042 DAG.getNode(PreferredFusedOpcode, SL, VT, 8043 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8044 N000.getOperand(0)), 8045 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8046 N000.getOperand(1)), 8047 N1)); 8048 } 8049 } 8050 } 8051 8052 } 8053 8054 // More folding opportunities when target permits. 8055 if ((AllowFusion || HasFMAD) && Aggressive) { 8056 // fold (fsub (fma x, y, (fmul u, v)), z) 8057 // -> (fma x, y (fma u, v, (fneg z))) 8058 if (N0.getOpcode() == PreferredFusedOpcode && 8059 N0.getOperand(2).getOpcode() == ISD::FMUL) { 8060 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8061 N0.getOperand(0), N0.getOperand(1), 8062 DAG.getNode(PreferredFusedOpcode, SL, VT, 8063 N0.getOperand(2).getOperand(0), 8064 N0.getOperand(2).getOperand(1), 8065 DAG.getNode(ISD::FNEG, SL, VT, 8066 N1))); 8067 } 8068 8069 // fold (fsub x, (fma y, z, (fmul u, v))) 8070 // -> (fma (fneg y), z, (fma (fneg u), v, x)) 8071 if (N1.getOpcode() == PreferredFusedOpcode && 8072 N1.getOperand(2).getOpcode() == ISD::FMUL) { 8073 SDValue N20 = N1.getOperand(2).getOperand(0); 8074 SDValue N21 = N1.getOperand(2).getOperand(1); 8075 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8076 DAG.getNode(ISD::FNEG, SL, VT, 8077 N1.getOperand(0)), 8078 N1.getOperand(1), 8079 DAG.getNode(PreferredFusedOpcode, SL, VT, 8080 DAG.getNode(ISD::FNEG, SL, VT, N20), 8081 8082 N21, N0)); 8083 } 8084 8085 if (AllowFusion && LookThroughFPExt) { 8086 // fold (fsub (fma x, y, (fpext (fmul u, v))), z) 8087 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) 8088 if (N0.getOpcode() == PreferredFusedOpcode) { 8089 SDValue N02 = N0.getOperand(2); 8090 if (N02.getOpcode() == ISD::FP_EXTEND) { 8091 SDValue N020 = N02.getOperand(0); 8092 if (N020.getOpcode() == ISD::FMUL) 8093 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8094 N0.getOperand(0), N0.getOperand(1), 8095 DAG.getNode(PreferredFusedOpcode, SL, VT, 8096 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8097 N020.getOperand(0)), 8098 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8099 N020.getOperand(1)), 8100 DAG.getNode(ISD::FNEG, SL, VT, 8101 N1))); 8102 } 8103 } 8104 8105 // fold (fsub (fpext (fma x, y, (fmul u, v))), z) 8106 // -> (fma (fpext x), (fpext y), 8107 // (fma (fpext u), (fpext v), (fneg z))) 8108 // FIXME: This turns two single-precision and one double-precision 8109 // operation into two double-precision operations, which might not be 8110 // interesting for all targets, especially GPUs. 8111 if (N0.getOpcode() == ISD::FP_EXTEND) { 8112 SDValue N00 = N0.getOperand(0); 8113 if (N00.getOpcode() == PreferredFusedOpcode) { 8114 SDValue N002 = N00.getOperand(2); 8115 if (N002.getOpcode() == ISD::FMUL) 8116 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8117 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8118 N00.getOperand(0)), 8119 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8120 N00.getOperand(1)), 8121 DAG.getNode(PreferredFusedOpcode, SL, VT, 8122 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8123 N002.getOperand(0)), 8124 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8125 N002.getOperand(1)), 8126 DAG.getNode(ISD::FNEG, SL, VT, 8127 N1))); 8128 } 8129 } 8130 8131 // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) 8132 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) 8133 if (N1.getOpcode() == PreferredFusedOpcode && 8134 N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) { 8135 SDValue N120 = N1.getOperand(2).getOperand(0); 8136 if (N120.getOpcode() == ISD::FMUL) { 8137 SDValue N1200 = N120.getOperand(0); 8138 SDValue N1201 = N120.getOperand(1); 8139 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8140 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), 8141 N1.getOperand(1), 8142 DAG.getNode(PreferredFusedOpcode, SL, VT, 8143 DAG.getNode(ISD::FNEG, SL, VT, 8144 DAG.getNode(ISD::FP_EXTEND, SL, 8145 VT, N1200)), 8146 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8147 N1201), 8148 N0)); 8149 } 8150 } 8151 8152 // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) 8153 // -> (fma (fneg (fpext y)), (fpext z), 8154 // (fma (fneg (fpext u)), (fpext v), x)) 8155 // FIXME: This turns two single-precision and one double-precision 8156 // operation into two double-precision operations, which might not be 8157 // interesting for all targets, especially GPUs. 8158 if (N1.getOpcode() == ISD::FP_EXTEND && 8159 N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { 8160 SDValue N100 = N1.getOperand(0).getOperand(0); 8161 SDValue N101 = N1.getOperand(0).getOperand(1); 8162 SDValue N102 = N1.getOperand(0).getOperand(2); 8163 if (N102.getOpcode() == ISD::FMUL) { 8164 SDValue N1020 = N102.getOperand(0); 8165 SDValue N1021 = N102.getOperand(1); 8166 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8167 DAG.getNode(ISD::FNEG, SL, VT, 8168 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8169 N100)), 8170 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), 8171 DAG.getNode(PreferredFusedOpcode, SL, VT, 8172 DAG.getNode(ISD::FNEG, SL, VT, 8173 DAG.getNode(ISD::FP_EXTEND, SL, 8174 VT, N1020)), 8175 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8176 N1021), 8177 N0)); 8178 } 8179 } 8180 } 8181 } 8182 8183 return SDValue(); 8184 } 8185 8186 /// Try to perform FMA combining on a given FMUL node. 8187 SDValue DAGCombiner::visitFMULForFMACombine(SDNode *N) { 8188 SDValue N0 = N->getOperand(0); 8189 SDValue N1 = N->getOperand(1); 8190 EVT VT = N->getValueType(0); 8191 SDLoc SL(N); 8192 8193 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); 8194 8195 const TargetOptions &Options = DAG.getTarget().Options; 8196 bool AllowFusion = 8197 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 8198 8199 // Floating-point multiply-add with intermediate rounding. 8200 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 8201 8202 // Floating-point multiply-add without intermediate rounding. 8203 bool HasFMA = 8204 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 8205 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 8206 8207 // No valid opcode, do not combine. 8208 if (!HasFMAD && !HasFMA) 8209 return SDValue(); 8210 8211 // Always prefer FMAD to FMA for precision. 8212 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 8213 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 8214 8215 // fold (fmul (fadd x, +1.0), y) -> (fma x, y, y) 8216 // fold (fmul (fadd x, -1.0), y) -> (fma x, y, (fneg y)) 8217 auto FuseFADD = [&](SDValue X, SDValue Y) { 8218 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { 8219 auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); 8220 if (XC1 && XC1->isExactlyValue(+1.0)) 8221 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); 8222 if (XC1 && XC1->isExactlyValue(-1.0)) 8223 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 8224 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8225 } 8226 return SDValue(); 8227 }; 8228 8229 if (SDValue FMA = FuseFADD(N0, N1)) 8230 return FMA; 8231 if (SDValue FMA = FuseFADD(N1, N0)) 8232 return FMA; 8233 8234 // fold (fmul (fsub +1.0, x), y) -> (fma (fneg x), y, y) 8235 // fold (fmul (fsub -1.0, x), y) -> (fma (fneg x), y, (fneg y)) 8236 // fold (fmul (fsub x, +1.0), y) -> (fma x, y, (fneg y)) 8237 // fold (fmul (fsub x, -1.0), y) -> (fma x, y, y) 8238 auto FuseFSUB = [&](SDValue X, SDValue Y) { 8239 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { 8240 auto XC0 = isConstOrConstSplatFP(X.getOperand(0)); 8241 if (XC0 && XC0->isExactlyValue(+1.0)) 8242 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8243 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 8244 Y); 8245 if (XC0 && XC0->isExactlyValue(-1.0)) 8246 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8247 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 8248 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8249 8250 auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); 8251 if (XC1 && XC1->isExactlyValue(+1.0)) 8252 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 8253 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8254 if (XC1 && XC1->isExactlyValue(-1.0)) 8255 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); 8256 } 8257 return SDValue(); 8258 }; 8259 8260 if (SDValue FMA = FuseFSUB(N0, N1)) 8261 return FMA; 8262 if (SDValue FMA = FuseFSUB(N1, N0)) 8263 return FMA; 8264 8265 return SDValue(); 8266 } 8267 8268 SDValue DAGCombiner::visitFADD(SDNode *N) { 8269 SDValue N0 = N->getOperand(0); 8270 SDValue N1 = N->getOperand(1); 8271 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); 8272 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); 8273 EVT VT = N->getValueType(0); 8274 SDLoc DL(N); 8275 const TargetOptions &Options = DAG.getTarget().Options; 8276 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8277 8278 // fold vector ops 8279 if (VT.isVector()) 8280 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8281 return FoldedVOp; 8282 8283 // fold (fadd c1, c2) -> c1 + c2 8284 if (N0CFP && N1CFP) 8285 return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags); 8286 8287 // canonicalize constant to RHS 8288 if (N0CFP && !N1CFP) 8289 return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags); 8290 8291 // fold (fadd A, (fneg B)) -> (fsub A, B) 8292 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 8293 isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2) 8294 return DAG.getNode(ISD::FSUB, DL, VT, N0, 8295 GetNegatedExpression(N1, DAG, LegalOperations), Flags); 8296 8297 // fold (fadd (fneg A), B) -> (fsub B, A) 8298 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 8299 isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2) 8300 return DAG.getNode(ISD::FSUB, DL, VT, N1, 8301 GetNegatedExpression(N0, DAG, LegalOperations), Flags); 8302 8303 // If 'unsafe math' is enabled, fold lots of things. 8304 if (Options.UnsafeFPMath) { 8305 // No FP constant should be created after legalization as Instruction 8306 // Selection pass has a hard time dealing with FP constants. 8307 bool AllowNewConst = (Level < AfterLegalizeDAG); 8308 8309 // fold (fadd A, 0) -> A 8310 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1)) 8311 if (N1C->isZero()) 8312 return N0; 8313 8314 // fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2)) 8315 if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() && 8316 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) 8317 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), 8318 DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, 8319 Flags), 8320 Flags); 8321 8322 // If allowed, fold (fadd (fneg x), x) -> 0.0 8323 if (AllowNewConst && N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) 8324 return DAG.getConstantFP(0.0, DL, VT); 8325 8326 // If allowed, fold (fadd x, (fneg x)) -> 0.0 8327 if (AllowNewConst && N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) 8328 return DAG.getConstantFP(0.0, DL, VT); 8329 8330 // We can fold chains of FADD's of the same value into multiplications. 8331 // This transform is not safe in general because we are reducing the number 8332 // of rounding steps. 8333 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { 8334 if (N0.getOpcode() == ISD::FMUL) { 8335 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 8336 bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); 8337 8338 // (fadd (fmul x, c), x) -> (fmul x, c+1) 8339 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { 8340 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 8341 DAG.getConstantFP(1.0, DL, VT), Flags); 8342 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags); 8343 } 8344 8345 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) 8346 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && 8347 N1.getOperand(0) == N1.getOperand(1) && 8348 N0.getOperand(0) == N1.getOperand(0)) { 8349 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 8350 DAG.getConstantFP(2.0, DL, VT), Flags); 8351 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags); 8352 } 8353 } 8354 8355 if (N1.getOpcode() == ISD::FMUL) { 8356 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 8357 bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); 8358 8359 // (fadd x, (fmul x, c)) -> (fmul x, c+1) 8360 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { 8361 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 8362 DAG.getConstantFP(1.0, DL, VT), Flags); 8363 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags); 8364 } 8365 8366 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) 8367 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && 8368 N0.getOperand(0) == N0.getOperand(1) && 8369 N1.getOperand(0) == N0.getOperand(0)) { 8370 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 8371 DAG.getConstantFP(2.0, DL, VT), Flags); 8372 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags); 8373 } 8374 } 8375 8376 if (N0.getOpcode() == ISD::FADD && AllowNewConst) { 8377 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 8378 // (fadd (fadd x, x), x) -> (fmul x, 3.0) 8379 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && 8380 (N0.getOperand(0) == N1)) { 8381 return DAG.getNode(ISD::FMUL, DL, VT, 8382 N1, DAG.getConstantFP(3.0, DL, VT), Flags); 8383 } 8384 } 8385 8386 if (N1.getOpcode() == ISD::FADD && AllowNewConst) { 8387 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 8388 // (fadd x, (fadd x, x)) -> (fmul x, 3.0) 8389 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && 8390 N1.getOperand(0) == N0) { 8391 return DAG.getNode(ISD::FMUL, DL, VT, 8392 N0, DAG.getConstantFP(3.0, DL, VT), Flags); 8393 } 8394 } 8395 8396 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) 8397 if (AllowNewConst && 8398 N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && 8399 N0.getOperand(0) == N0.getOperand(1) && 8400 N1.getOperand(0) == N1.getOperand(1) && 8401 N0.getOperand(0) == N1.getOperand(0)) { 8402 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), 8403 DAG.getConstantFP(4.0, DL, VT), Flags); 8404 } 8405 } 8406 } // enable-unsafe-fp-math 8407 8408 // FADD -> FMA combines: 8409 if (SDValue Fused = visitFADDForFMACombine(N)) { 8410 AddToWorklist(Fused.getNode()); 8411 return Fused; 8412 } 8413 return SDValue(); 8414 } 8415 8416 SDValue DAGCombiner::visitFSUB(SDNode *N) { 8417 SDValue N0 = N->getOperand(0); 8418 SDValue N1 = N->getOperand(1); 8419 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 8420 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 8421 EVT VT = N->getValueType(0); 8422 SDLoc dl(N); 8423 const TargetOptions &Options = DAG.getTarget().Options; 8424 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8425 8426 // fold vector ops 8427 if (VT.isVector()) 8428 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8429 return FoldedVOp; 8430 8431 // fold (fsub c1, c2) -> c1-c2 8432 if (N0CFP && N1CFP) 8433 return DAG.getNode(ISD::FSUB, dl, VT, N0, N1, Flags); 8434 8435 // fold (fsub A, (fneg B)) -> (fadd A, B) 8436 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) 8437 return DAG.getNode(ISD::FADD, dl, VT, N0, 8438 GetNegatedExpression(N1, DAG, LegalOperations), Flags); 8439 8440 // If 'unsafe math' is enabled, fold lots of things. 8441 if (Options.UnsafeFPMath) { 8442 // (fsub A, 0) -> A 8443 if (N1CFP && N1CFP->isZero()) 8444 return N0; 8445 8446 // (fsub 0, B) -> -B 8447 if (N0CFP && N0CFP->isZero()) { 8448 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) 8449 return GetNegatedExpression(N1, DAG, LegalOperations); 8450 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8451 return DAG.getNode(ISD::FNEG, dl, VT, N1); 8452 } 8453 8454 // (fsub x, x) -> 0.0 8455 if (N0 == N1) 8456 return DAG.getConstantFP(0.0f, dl, VT); 8457 8458 // (fsub x, (fadd x, y)) -> (fneg y) 8459 // (fsub x, (fadd y, x)) -> (fneg y) 8460 if (N1.getOpcode() == ISD::FADD) { 8461 SDValue N10 = N1->getOperand(0); 8462 SDValue N11 = N1->getOperand(1); 8463 8464 if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options)) 8465 return GetNegatedExpression(N11, DAG, LegalOperations); 8466 8467 if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options)) 8468 return GetNegatedExpression(N10, DAG, LegalOperations); 8469 } 8470 } 8471 8472 // FSUB -> FMA combines: 8473 if (SDValue Fused = visitFSUBForFMACombine(N)) { 8474 AddToWorklist(Fused.getNode()); 8475 return Fused; 8476 } 8477 8478 return SDValue(); 8479 } 8480 8481 SDValue DAGCombiner::visitFMUL(SDNode *N) { 8482 SDValue N0 = N->getOperand(0); 8483 SDValue N1 = N->getOperand(1); 8484 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 8485 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 8486 EVT VT = N->getValueType(0); 8487 SDLoc DL(N); 8488 const TargetOptions &Options = DAG.getTarget().Options; 8489 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8490 8491 // fold vector ops 8492 if (VT.isVector()) { 8493 // This just handles C1 * C2 for vectors. Other vector folds are below. 8494 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8495 return FoldedVOp; 8496 } 8497 8498 // fold (fmul c1, c2) -> c1*c2 8499 if (N0CFP && N1CFP) 8500 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags); 8501 8502 // canonicalize constant to RHS 8503 if (isConstantFPBuildVectorOrConstantFP(N0) && 8504 !isConstantFPBuildVectorOrConstantFP(N1)) 8505 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags); 8506 8507 // fold (fmul A, 1.0) -> A 8508 if (N1CFP && N1CFP->isExactlyValue(1.0)) 8509 return N0; 8510 8511 if (Options.UnsafeFPMath) { 8512 // fold (fmul A, 0) -> 0 8513 if (N1CFP && N1CFP->isZero()) 8514 return N1; 8515 8516 // fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2)) 8517 if (N0.getOpcode() == ISD::FMUL) { 8518 // Fold scalars or any vector constants (not just splats). 8519 // This fold is done in general by InstCombine, but extra fmul insts 8520 // may have been generated during lowering. 8521 SDValue N00 = N0.getOperand(0); 8522 SDValue N01 = N0.getOperand(1); 8523 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 8524 auto *BV00 = dyn_cast<BuildVectorSDNode>(N00); 8525 auto *BV01 = dyn_cast<BuildVectorSDNode>(N01); 8526 8527 // Check 1: Make sure that the first operand of the inner multiply is NOT 8528 // a constant. Otherwise, we may induce infinite looping. 8529 if (!(isConstOrConstSplatFP(N00) || (BV00 && BV00->isConstant()))) { 8530 // Check 2: Make sure that the second operand of the inner multiply and 8531 // the second operand of the outer multiply are constants. 8532 if ((N1CFP && isConstOrConstSplatFP(N01)) || 8533 (BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) { 8534 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags); 8535 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags); 8536 } 8537 } 8538 } 8539 8540 // fold (fmul (fadd x, x), c) -> (fmul x, (fmul 2.0, c)) 8541 // Undo the fmul 2.0, x -> fadd x, x transformation, since if it occurs 8542 // during an early run of DAGCombiner can prevent folding with fmuls 8543 // inserted during lowering. 8544 if (N0.getOpcode() == ISD::FADD && 8545 (N0.getOperand(0) == N0.getOperand(1)) && 8546 N0.hasOneUse()) { 8547 const SDValue Two = DAG.getConstantFP(2.0, DL, VT); 8548 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags); 8549 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags); 8550 } 8551 } 8552 8553 // fold (fmul X, 2.0) -> (fadd X, X) 8554 if (N1CFP && N1CFP->isExactlyValue(+2.0)) 8555 return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags); 8556 8557 // fold (fmul X, -1.0) -> (fneg X) 8558 if (N1CFP && N1CFP->isExactlyValue(-1.0)) 8559 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8560 return DAG.getNode(ISD::FNEG, DL, VT, N0); 8561 8562 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) 8563 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { 8564 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { 8565 // Both can be negated for free, check to see if at least one is cheaper 8566 // negated. 8567 if (LHSNeg == 2 || RHSNeg == 2) 8568 return DAG.getNode(ISD::FMUL, DL, VT, 8569 GetNegatedExpression(N0, DAG, LegalOperations), 8570 GetNegatedExpression(N1, DAG, LegalOperations), 8571 Flags); 8572 } 8573 } 8574 8575 // FMUL -> FMA combines: 8576 if (SDValue Fused = visitFMULForFMACombine(N)) { 8577 AddToWorklist(Fused.getNode()); 8578 return Fused; 8579 } 8580 8581 return SDValue(); 8582 } 8583 8584 SDValue DAGCombiner::visitFMA(SDNode *N) { 8585 SDValue N0 = N->getOperand(0); 8586 SDValue N1 = N->getOperand(1); 8587 SDValue N2 = N->getOperand(2); 8588 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8589 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8590 EVT VT = N->getValueType(0); 8591 SDLoc dl(N); 8592 const TargetOptions &Options = DAG.getTarget().Options; 8593 8594 // Constant fold FMA. 8595 if (isa<ConstantFPSDNode>(N0) && 8596 isa<ConstantFPSDNode>(N1) && 8597 isa<ConstantFPSDNode>(N2)) { 8598 return DAG.getNode(ISD::FMA, dl, VT, N0, N1, N2); 8599 } 8600 8601 if (Options.UnsafeFPMath) { 8602 if (N0CFP && N0CFP->isZero()) 8603 return N2; 8604 if (N1CFP && N1CFP->isZero()) 8605 return N2; 8606 } 8607 // TODO: The FMA node should have flags that propagate to these nodes. 8608 if (N0CFP && N0CFP->isExactlyValue(1.0)) 8609 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); 8610 if (N1CFP && N1CFP->isExactlyValue(1.0)) 8611 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); 8612 8613 // Canonicalize (fma c, x, y) -> (fma x, c, y) 8614 if (isConstantFPBuildVectorOrConstantFP(N0) && 8615 !isConstantFPBuildVectorOrConstantFP(N1)) 8616 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); 8617 8618 // TODO: FMA nodes should have flags that propagate to the created nodes. 8619 // For now, create a Flags object for use with all unsafe math transforms. 8620 SDNodeFlags Flags; 8621 Flags.setUnsafeAlgebra(true); 8622 8623 if (Options.UnsafeFPMath) { 8624 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) 8625 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && 8626 isConstantFPBuildVectorOrConstantFP(N1) && 8627 isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { 8628 return DAG.getNode(ISD::FMUL, dl, VT, N0, 8629 DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1), 8630 &Flags), &Flags); 8631 } 8632 8633 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) 8634 if (N0.getOpcode() == ISD::FMUL && 8635 isConstantFPBuildVectorOrConstantFP(N1) && 8636 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 8637 return DAG.getNode(ISD::FMA, dl, VT, 8638 N0.getOperand(0), 8639 DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1), 8640 &Flags), 8641 N2); 8642 } 8643 } 8644 8645 // (fma x, 1, y) -> (fadd x, y) 8646 // (fma x, -1, y) -> (fadd (fneg x), y) 8647 if (N1CFP) { 8648 if (N1CFP->isExactlyValue(1.0)) 8649 // TODO: The FMA node should have flags that propagate to this node. 8650 return DAG.getNode(ISD::FADD, dl, VT, N0, N2); 8651 8652 if (N1CFP->isExactlyValue(-1.0) && 8653 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { 8654 SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0); 8655 AddToWorklist(RHSNeg.getNode()); 8656 // TODO: The FMA node should have flags that propagate to this node. 8657 return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg); 8658 } 8659 } 8660 8661 if (Options.UnsafeFPMath) { 8662 // (fma x, c, x) -> (fmul x, (c+1)) 8663 if (N1CFP && N0 == N2) { 8664 return DAG.getNode(ISD::FMUL, dl, VT, N0, 8665 DAG.getNode(ISD::FADD, dl, VT, 8666 N1, DAG.getConstantFP(1.0, dl, VT), 8667 &Flags), &Flags); 8668 } 8669 8670 // (fma x, c, (fneg x)) -> (fmul x, (c-1)) 8671 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { 8672 return DAG.getNode(ISD::FMUL, dl, VT, N0, 8673 DAG.getNode(ISD::FADD, dl, VT, 8674 N1, DAG.getConstantFP(-1.0, dl, VT), 8675 &Flags), &Flags); 8676 } 8677 } 8678 8679 return SDValue(); 8680 } 8681 8682 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 8683 // reciprocal. 8684 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) 8685 // Notice that this is not always beneficial. One reason is different target 8686 // may have different costs for FDIV and FMUL, so sometimes the cost of two 8687 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason 8688 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". 8689 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { 8690 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; 8691 const SDNodeFlags *Flags = N->getFlags(); 8692 if (!UnsafeMath && !Flags->hasAllowReciprocal()) 8693 return SDValue(); 8694 8695 // Skip if current node is a reciprocal. 8696 SDValue N0 = N->getOperand(0); 8697 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8698 if (N0CFP && N0CFP->isExactlyValue(1.0)) 8699 return SDValue(); 8700 8701 // Exit early if the target does not want this transform or if there can't 8702 // possibly be enough uses of the divisor to make the transform worthwhile. 8703 SDValue N1 = N->getOperand(1); 8704 unsigned MinUses = TLI.combineRepeatedFPDivisors(); 8705 if (!MinUses || N1->use_size() < MinUses) 8706 return SDValue(); 8707 8708 // Find all FDIV users of the same divisor. 8709 // Use a set because duplicates may be present in the user list. 8710 SetVector<SDNode *> Users; 8711 for (auto *U : N1->uses()) { 8712 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { 8713 // This division is eligible for optimization only if global unsafe math 8714 // is enabled or if this division allows reciprocal formation. 8715 if (UnsafeMath || U->getFlags()->hasAllowReciprocal()) 8716 Users.insert(U); 8717 } 8718 } 8719 8720 // Now that we have the actual number of divisor uses, make sure it meets 8721 // the minimum threshold specified by the target. 8722 if (Users.size() < MinUses) 8723 return SDValue(); 8724 8725 EVT VT = N->getValueType(0); 8726 SDLoc DL(N); 8727 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 8728 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); 8729 8730 // Dividend / Divisor -> Dividend * Reciprocal 8731 for (auto *U : Users) { 8732 SDValue Dividend = U->getOperand(0); 8733 if (Dividend != FPOne) { 8734 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, 8735 Reciprocal, Flags); 8736 CombineTo(U, NewNode); 8737 } else if (U != Reciprocal.getNode()) { 8738 // In the absence of fast-math-flags, this user node is always the 8739 // same node as Reciprocal, but with FMF they may be different nodes. 8740 CombineTo(U, Reciprocal); 8741 } 8742 } 8743 return SDValue(N, 0); // N was replaced. 8744 } 8745 8746 SDValue DAGCombiner::visitFDIV(SDNode *N) { 8747 SDValue N0 = N->getOperand(0); 8748 SDValue N1 = N->getOperand(1); 8749 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8750 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8751 EVT VT = N->getValueType(0); 8752 SDLoc DL(N); 8753 const TargetOptions &Options = DAG.getTarget().Options; 8754 SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8755 8756 // fold vector ops 8757 if (VT.isVector()) 8758 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8759 return FoldedVOp; 8760 8761 // fold (fdiv c1, c2) -> c1/c2 8762 if (N0CFP && N1CFP) 8763 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags); 8764 8765 if (Options.UnsafeFPMath) { 8766 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. 8767 if (N1CFP) { 8768 // Compute the reciprocal 1.0 / c2. 8769 APFloat N1APF = N1CFP->getValueAPF(); 8770 APFloat Recip(N1APF.getSemantics(), 1); // 1.0 8771 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); 8772 // Only do the transform if the reciprocal is a legal fp immediate that 8773 // isn't too nasty (eg NaN, denormal, ...). 8774 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty 8775 (!LegalOperations || 8776 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM 8777 // backend)... we should handle this gracefully after Legalize. 8778 // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) || 8779 TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) || 8780 TLI.isFPImmLegal(Recip, VT))) 8781 return DAG.getNode(ISD::FMUL, DL, VT, N0, 8782 DAG.getConstantFP(Recip, DL, VT), Flags); 8783 } 8784 8785 // If this FDIV is part of a reciprocal square root, it may be folded 8786 // into a target-specific square root estimate instruction. 8787 if (N1.getOpcode() == ISD::FSQRT) { 8788 if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0), Flags)) { 8789 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8790 } 8791 } else if (N1.getOpcode() == ISD::FP_EXTEND && 8792 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8793 if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0), 8794 Flags)) { 8795 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); 8796 AddToWorklist(RV.getNode()); 8797 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8798 } 8799 } else if (N1.getOpcode() == ISD::FP_ROUND && 8800 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8801 if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0), 8802 Flags)) { 8803 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); 8804 AddToWorklist(RV.getNode()); 8805 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8806 } 8807 } else if (N1.getOpcode() == ISD::FMUL) { 8808 // Look through an FMUL. Even though this won't remove the FDIV directly, 8809 // it's still worthwhile to get rid of the FSQRT if possible. 8810 SDValue SqrtOp; 8811 SDValue OtherOp; 8812 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8813 SqrtOp = N1.getOperand(0); 8814 OtherOp = N1.getOperand(1); 8815 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { 8816 SqrtOp = N1.getOperand(1); 8817 OtherOp = N1.getOperand(0); 8818 } 8819 if (SqrtOp.getNode()) { 8820 // We found a FSQRT, so try to make this fold: 8821 // x / (y * sqrt(z)) -> x * (rsqrt(z) / y) 8822 if (SDValue RV = BuildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) { 8823 RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags); 8824 AddToWorklist(RV.getNode()); 8825 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8826 } 8827 } 8828 } 8829 8830 // Fold into a reciprocal estimate and multiply instead of a real divide. 8831 if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) { 8832 AddToWorklist(RV.getNode()); 8833 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8834 } 8835 } 8836 8837 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) 8838 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { 8839 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { 8840 // Both can be negated for free, check to see if at least one is cheaper 8841 // negated. 8842 if (LHSNeg == 2 || RHSNeg == 2) 8843 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, 8844 GetNegatedExpression(N0, DAG, LegalOperations), 8845 GetNegatedExpression(N1, DAG, LegalOperations), 8846 Flags); 8847 } 8848 } 8849 8850 if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N)) 8851 return CombineRepeatedDivisors; 8852 8853 return SDValue(); 8854 } 8855 8856 SDValue DAGCombiner::visitFREM(SDNode *N) { 8857 SDValue N0 = N->getOperand(0); 8858 SDValue N1 = N->getOperand(1); 8859 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8860 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8861 EVT VT = N->getValueType(0); 8862 8863 // fold (frem c1, c2) -> fmod(c1,c2) 8864 if (N0CFP && N1CFP) 8865 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, 8866 &cast<BinaryWithFlagsSDNode>(N)->Flags); 8867 8868 return SDValue(); 8869 } 8870 8871 SDValue DAGCombiner::visitFSQRT(SDNode *N) { 8872 if (!DAG.getTarget().Options.UnsafeFPMath || TLI.isFsqrtCheap()) 8873 return SDValue(); 8874 8875 // TODO: FSQRT nodes should have flags that propagate to the created nodes. 8876 // For now, create a Flags object for use with all unsafe math transforms. 8877 SDNodeFlags Flags; 8878 Flags.setUnsafeAlgebra(true); 8879 8880 // Compute this as X * (1/sqrt(X)) = X * (X ** -0.5) 8881 SDValue RV = BuildRsqrtEstimate(N->getOperand(0), &Flags); 8882 if (!RV) 8883 return SDValue(); 8884 8885 EVT VT = RV.getValueType(); 8886 SDLoc DL(N); 8887 RV = DAG.getNode(ISD::FMUL, DL, VT, N->getOperand(0), RV, &Flags); 8888 AddToWorklist(RV.getNode()); 8889 8890 // Unfortunately, RV is now NaN if the input was exactly 0. 8891 // Select out this case and force the answer to 0. 8892 SDValue Zero = DAG.getConstantFP(0.0, DL, VT); 8893 EVT CCVT = getSetCCResultType(VT); 8894 SDValue ZeroCmp = DAG.getSetCC(DL, CCVT, N->getOperand(0), Zero, ISD::SETEQ); 8895 AddToWorklist(ZeroCmp.getNode()); 8896 AddToWorklist(RV.getNode()); 8897 8898 return DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, 8899 ZeroCmp, Zero, RV); 8900 } 8901 8902 /// copysign(x, fp_extend(y)) -> copysign(x, y) 8903 /// copysign(x, fp_round(y)) -> copysign(x, y) 8904 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { 8905 SDValue N1 = N->getOperand(1); 8906 if ((N1.getOpcode() == ISD::FP_EXTEND || 8907 N1.getOpcode() == ISD::FP_ROUND)) { 8908 // Do not optimize out type conversion of f128 type yet. 8909 // For some targets like x86_64, configuration is changed to keep one f128 8910 // value in one SSE register, but instruction selection cannot handle 8911 // FCOPYSIGN on SSE registers yet. 8912 EVT N1VT = N1->getValueType(0); 8913 EVT N1Op0VT = N1->getOperand(0)->getValueType(0); 8914 return (N1VT == N1Op0VT || N1Op0VT != MVT::f128); 8915 } 8916 return false; 8917 } 8918 8919 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { 8920 SDValue N0 = N->getOperand(0); 8921 SDValue N1 = N->getOperand(1); 8922 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8923 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8924 EVT VT = N->getValueType(0); 8925 8926 if (N0CFP && N1CFP) // Constant fold 8927 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); 8928 8929 if (N1CFP) { 8930 const APFloat& V = N1CFP->getValueAPF(); 8931 // copysign(x, c1) -> fabs(x) iff ispos(c1) 8932 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) 8933 if (!V.isNegative()) { 8934 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) 8935 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 8936 } else { 8937 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8938 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, 8939 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); 8940 } 8941 } 8942 8943 // copysign(fabs(x), y) -> copysign(x, y) 8944 // copysign(fneg(x), y) -> copysign(x, y) 8945 // copysign(copysign(x,z), y) -> copysign(x, y) 8946 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || 8947 N0.getOpcode() == ISD::FCOPYSIGN) 8948 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8949 N0.getOperand(0), N1); 8950 8951 // copysign(x, abs(y)) -> abs(x) 8952 if (N1.getOpcode() == ISD::FABS) 8953 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 8954 8955 // copysign(x, copysign(y,z)) -> copysign(x, z) 8956 if (N1.getOpcode() == ISD::FCOPYSIGN) 8957 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8958 N0, N1.getOperand(1)); 8959 8960 // copysign(x, fp_extend(y)) -> copysign(x, y) 8961 // copysign(x, fp_round(y)) -> copysign(x, y) 8962 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) 8963 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8964 N0, N1.getOperand(0)); 8965 8966 return SDValue(); 8967 } 8968 8969 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { 8970 SDValue N0 = N->getOperand(0); 8971 EVT VT = N->getValueType(0); 8972 EVT OpVT = N0.getValueType(); 8973 8974 // fold (sint_to_fp c1) -> c1fp 8975 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 8976 // ...but only if the target supports immediate floating-point values 8977 (!LegalOperations || 8978 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) 8979 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 8980 8981 // If the input is a legal type, and SINT_TO_FP is not legal on this target, 8982 // but UINT_TO_FP is legal on this target, try to convert. 8983 if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) && 8984 TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) { 8985 // If the sign bit is known to be zero, we can change this to UINT_TO_FP. 8986 if (DAG.SignBitIsZero(N0)) 8987 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 8988 } 8989 8990 // The next optimizations are desirable only if SELECT_CC can be lowered. 8991 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 8992 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 8993 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && 8994 !VT.isVector() && 8995 (!LegalOperations || 8996 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 8997 SDLoc DL(N); 8998 SDValue Ops[] = 8999 { N0.getOperand(0), N0.getOperand(1), 9000 DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 9001 N0.getOperand(2) }; 9002 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 9003 } 9004 9005 // fold (sint_to_fp (zext (setcc x, y, cc))) -> 9006 // (select_cc x, y, 1.0, 0.0,, cc) 9007 if (N0.getOpcode() == ISD::ZERO_EXTEND && 9008 N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() && 9009 (!LegalOperations || 9010 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 9011 SDLoc DL(N); 9012 SDValue Ops[] = 9013 { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1), 9014 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 9015 N0.getOperand(0).getOperand(2) }; 9016 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 9017 } 9018 } 9019 9020 return SDValue(); 9021 } 9022 9023 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { 9024 SDValue N0 = N->getOperand(0); 9025 EVT VT = N->getValueType(0); 9026 EVT OpVT = N0.getValueType(); 9027 9028 // fold (uint_to_fp c1) -> c1fp 9029 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 9030 // ...but only if the target supports immediate floating-point values 9031 (!LegalOperations || 9032 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) 9033 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 9034 9035 // If the input is a legal type, and UINT_TO_FP is not legal on this target, 9036 // but SINT_TO_FP is legal on this target, try to convert. 9037 if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) && 9038 TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) { 9039 // If the sign bit is known to be zero, we can change this to SINT_TO_FP. 9040 if (DAG.SignBitIsZero(N0)) 9041 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 9042 } 9043 9044 // The next optimizations are desirable only if SELECT_CC can be lowered. 9045 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 9046 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 9047 9048 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && 9049 (!LegalOperations || 9050 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 9051 SDLoc DL(N); 9052 SDValue Ops[] = 9053 { N0.getOperand(0), N0.getOperand(1), 9054 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 9055 N0.getOperand(2) }; 9056 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 9057 } 9058 } 9059 9060 return SDValue(); 9061 } 9062 9063 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x 9064 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { 9065 SDValue N0 = N->getOperand(0); 9066 EVT VT = N->getValueType(0); 9067 9068 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) 9069 return SDValue(); 9070 9071 SDValue Src = N0.getOperand(0); 9072 EVT SrcVT = Src.getValueType(); 9073 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; 9074 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; 9075 9076 // We can safely assume the conversion won't overflow the output range, 9077 // because (for example) (uint8_t)18293.f is undefined behavior. 9078 9079 // Since we can assume the conversion won't overflow, our decision as to 9080 // whether the input will fit in the float should depend on the minimum 9081 // of the input range and output range. 9082 9083 // This means this is also safe for a signed input and unsigned output, since 9084 // a negative input would lead to undefined behavior. 9085 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; 9086 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; 9087 unsigned ActualSize = std::min(InputSize, OutputSize); 9088 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); 9089 9090 // We can only fold away the float conversion if the input range can be 9091 // represented exactly in the float range. 9092 if (APFloat::semanticsPrecision(sem) >= ActualSize) { 9093 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { 9094 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND 9095 : ISD::ZERO_EXTEND; 9096 return DAG.getNode(ExtOp, SDLoc(N), VT, Src); 9097 } 9098 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) 9099 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); 9100 return DAG.getBitcast(VT, Src); 9101 } 9102 return SDValue(); 9103 } 9104 9105 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { 9106 SDValue N0 = N->getOperand(0); 9107 EVT VT = N->getValueType(0); 9108 9109 // fold (fp_to_sint c1fp) -> c1 9110 if (isConstantFPBuildVectorOrConstantFP(N0)) 9111 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); 9112 9113 return FoldIntToFPToInt(N, DAG); 9114 } 9115 9116 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { 9117 SDValue N0 = N->getOperand(0); 9118 EVT VT = N->getValueType(0); 9119 9120 // fold (fp_to_uint c1fp) -> c1 9121 if (isConstantFPBuildVectorOrConstantFP(N0)) 9122 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); 9123 9124 return FoldIntToFPToInt(N, DAG); 9125 } 9126 9127 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { 9128 SDValue N0 = N->getOperand(0); 9129 SDValue N1 = N->getOperand(1); 9130 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 9131 EVT VT = N->getValueType(0); 9132 9133 // fold (fp_round c1fp) -> c1fp 9134 if (N0CFP) 9135 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); 9136 9137 // fold (fp_round (fp_extend x)) -> x 9138 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) 9139 return N0.getOperand(0); 9140 9141 // fold (fp_round (fp_round x)) -> (fp_round x) 9142 if (N0.getOpcode() == ISD::FP_ROUND) { 9143 const bool NIsTrunc = N->getConstantOperandVal(1) == 1; 9144 const bool N0IsTrunc = N0.getNode()->getConstantOperandVal(1) == 1; 9145 9146 // Skip this folding if it results in an fp_round from f80 to f16. 9147 // 9148 // f80 to f16 always generates an expensive (and as yet, unimplemented) 9149 // libcall to __truncxfhf2 instead of selecting native f16 conversion 9150 // instructions from f32 or f64. Moreover, the first (value-preserving) 9151 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like 9152 // x86. 9153 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) 9154 return SDValue(); 9155 9156 // If the first fp_round isn't a value preserving truncation, it might 9157 // introduce a tie in the second fp_round, that wouldn't occur in the 9158 // single-step fp_round we want to fold to. 9159 // In other words, double rounding isn't the same as rounding. 9160 // Also, this is a value preserving truncation iff both fp_round's are. 9161 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { 9162 SDLoc DL(N); 9163 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), 9164 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); 9165 } 9166 } 9167 9168 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) 9169 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { 9170 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, 9171 N0.getOperand(0), N1); 9172 AddToWorklist(Tmp.getNode()); 9173 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 9174 Tmp, N0.getOperand(1)); 9175 } 9176 9177 return SDValue(); 9178 } 9179 9180 SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { 9181 SDValue N0 = N->getOperand(0); 9182 EVT VT = N->getValueType(0); 9183 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 9184 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 9185 9186 // fold (fp_round_inreg c1fp) -> c1fp 9187 if (N0CFP && isTypeLegal(EVT)) { 9188 SDLoc DL(N); 9189 SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT); 9190 return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round); 9191 } 9192 9193 return SDValue(); 9194 } 9195 9196 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { 9197 SDValue N0 = N->getOperand(0); 9198 EVT VT = N->getValueType(0); 9199 9200 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. 9201 if (N->hasOneUse() && 9202 N->use_begin()->getOpcode() == ISD::FP_ROUND) 9203 return SDValue(); 9204 9205 // fold (fp_extend c1fp) -> c1fp 9206 if (isConstantFPBuildVectorOrConstantFP(N0)) 9207 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); 9208 9209 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) 9210 if (N0.getOpcode() == ISD::FP16_TO_FP && 9211 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) 9212 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); 9213 9214 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the 9215 // value of X. 9216 if (N0.getOpcode() == ISD::FP_ROUND 9217 && N0.getNode()->getConstantOperandVal(1) == 1) { 9218 SDValue In = N0.getOperand(0); 9219 if (In.getValueType() == VT) return In; 9220 if (VT.bitsLT(In.getValueType())) 9221 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, 9222 In, N0.getOperand(1)); 9223 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); 9224 } 9225 9226 // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) 9227 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 9228 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 9229 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 9230 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 9231 LN0->getChain(), 9232 LN0->getBasePtr(), N0.getValueType(), 9233 LN0->getMemOperand()); 9234 CombineTo(N, ExtLoad); 9235 CombineTo(N0.getNode(), 9236 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), 9237 N0.getValueType(), ExtLoad, 9238 DAG.getIntPtrConstant(1, SDLoc(N0))), 9239 ExtLoad.getValue(1)); 9240 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9241 } 9242 9243 return SDValue(); 9244 } 9245 9246 SDValue DAGCombiner::visitFCEIL(SDNode *N) { 9247 SDValue N0 = N->getOperand(0); 9248 EVT VT = N->getValueType(0); 9249 9250 // fold (fceil c1) -> fceil(c1) 9251 if (isConstantFPBuildVectorOrConstantFP(N0)) 9252 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); 9253 9254 return SDValue(); 9255 } 9256 9257 SDValue DAGCombiner::visitFTRUNC(SDNode *N) { 9258 SDValue N0 = N->getOperand(0); 9259 EVT VT = N->getValueType(0); 9260 9261 // fold (ftrunc c1) -> ftrunc(c1) 9262 if (isConstantFPBuildVectorOrConstantFP(N0)) 9263 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); 9264 9265 return SDValue(); 9266 } 9267 9268 SDValue DAGCombiner::visitFFLOOR(SDNode *N) { 9269 SDValue N0 = N->getOperand(0); 9270 EVT VT = N->getValueType(0); 9271 9272 // fold (ffloor c1) -> ffloor(c1) 9273 if (isConstantFPBuildVectorOrConstantFP(N0)) 9274 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); 9275 9276 return SDValue(); 9277 } 9278 9279 // FIXME: FNEG and FABS have a lot in common; refactor. 9280 SDValue DAGCombiner::visitFNEG(SDNode *N) { 9281 SDValue N0 = N->getOperand(0); 9282 EVT VT = N->getValueType(0); 9283 9284 // Constant fold FNEG. 9285 if (isConstantFPBuildVectorOrConstantFP(N0)) 9286 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); 9287 9288 if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(), 9289 &DAG.getTarget().Options)) 9290 return GetNegatedExpression(N0, DAG, LegalOperations); 9291 9292 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading 9293 // constant pool values. 9294 if (!TLI.isFNegFree(VT) && 9295 N0.getOpcode() == ISD::BITCAST && 9296 N0.getNode()->hasOneUse()) { 9297 SDValue Int = N0.getOperand(0); 9298 EVT IntVT = Int.getValueType(); 9299 if (IntVT.isInteger() && !IntVT.isVector()) { 9300 APInt SignMask; 9301 if (N0.getValueType().isVector()) { 9302 // For a vector, get a mask such as 0x80... per scalar element 9303 // and splat it. 9304 SignMask = APInt::getSignBit(N0.getValueType().getScalarSizeInBits()); 9305 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 9306 } else { 9307 // For a scalar, just generate 0x80... 9308 SignMask = APInt::getSignBit(IntVT.getSizeInBits()); 9309 } 9310 SDLoc DL0(N0); 9311 Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int, 9312 DAG.getConstant(SignMask, DL0, IntVT)); 9313 AddToWorklist(Int.getNode()); 9314 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Int); 9315 } 9316 } 9317 9318 // (fneg (fmul c, x)) -> (fmul -c, x) 9319 if (N0.getOpcode() == ISD::FMUL && 9320 (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) { 9321 ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 9322 if (CFP1) { 9323 APFloat CVal = CFP1->getValueAPF(); 9324 CVal.changeSign(); 9325 if (Level >= AfterLegalizeDAG && 9326 (TLI.isFPImmLegal(CVal, VT) || 9327 TLI.isOperationLegal(ISD::ConstantFP, VT))) 9328 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), 9329 DAG.getNode(ISD::FNEG, SDLoc(N), VT, 9330 N0.getOperand(1)), 9331 &cast<BinaryWithFlagsSDNode>(N0)->Flags); 9332 } 9333 } 9334 9335 return SDValue(); 9336 } 9337 9338 SDValue DAGCombiner::visitFMINNUM(SDNode *N) { 9339 SDValue N0 = N->getOperand(0); 9340 SDValue N1 = N->getOperand(1); 9341 EVT VT = N->getValueType(0); 9342 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 9343 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 9344 9345 if (N0CFP && N1CFP) { 9346 const APFloat &C0 = N0CFP->getValueAPF(); 9347 const APFloat &C1 = N1CFP->getValueAPF(); 9348 return DAG.getConstantFP(minnum(C0, C1), SDLoc(N), VT); 9349 } 9350 9351 // Canonicalize to constant on RHS. 9352 if (isConstantFPBuildVectorOrConstantFP(N0) && 9353 !isConstantFPBuildVectorOrConstantFP(N1)) 9354 return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0); 9355 9356 return SDValue(); 9357 } 9358 9359 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { 9360 SDValue N0 = N->getOperand(0); 9361 SDValue N1 = N->getOperand(1); 9362 EVT VT = N->getValueType(0); 9363 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 9364 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 9365 9366 if (N0CFP && N1CFP) { 9367 const APFloat &C0 = N0CFP->getValueAPF(); 9368 const APFloat &C1 = N1CFP->getValueAPF(); 9369 return DAG.getConstantFP(maxnum(C0, C1), SDLoc(N), VT); 9370 } 9371 9372 // Canonicalize to constant on RHS. 9373 if (isConstantFPBuildVectorOrConstantFP(N0) && 9374 !isConstantFPBuildVectorOrConstantFP(N1)) 9375 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0); 9376 9377 return SDValue(); 9378 } 9379 9380 SDValue DAGCombiner::visitFABS(SDNode *N) { 9381 SDValue N0 = N->getOperand(0); 9382 EVT VT = N->getValueType(0); 9383 9384 // fold (fabs c1) -> fabs(c1) 9385 if (isConstantFPBuildVectorOrConstantFP(N0)) 9386 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 9387 9388 // fold (fabs (fabs x)) -> (fabs x) 9389 if (N0.getOpcode() == ISD::FABS) 9390 return N->getOperand(0); 9391 9392 // fold (fabs (fneg x)) -> (fabs x) 9393 // fold (fabs (fcopysign x, y)) -> (fabs x) 9394 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) 9395 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); 9396 9397 // Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading 9398 // constant pool values. 9399 if (!TLI.isFAbsFree(VT) && 9400 N0.getOpcode() == ISD::BITCAST && 9401 N0.getNode()->hasOneUse()) { 9402 SDValue Int = N0.getOperand(0); 9403 EVT IntVT = Int.getValueType(); 9404 if (IntVT.isInteger() && !IntVT.isVector()) { 9405 APInt SignMask; 9406 if (N0.getValueType().isVector()) { 9407 // For a vector, get a mask such as 0x7f... per scalar element 9408 // and splat it. 9409 SignMask = ~APInt::getSignBit(N0.getValueType().getScalarSizeInBits()); 9410 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 9411 } else { 9412 // For a scalar, just generate 0x7f... 9413 SignMask = ~APInt::getSignBit(IntVT.getSizeInBits()); 9414 } 9415 SDLoc DL(N0); 9416 Int = DAG.getNode(ISD::AND, DL, IntVT, Int, 9417 DAG.getConstant(SignMask, DL, IntVT)); 9418 AddToWorklist(Int.getNode()); 9419 return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Int); 9420 } 9421 } 9422 9423 return SDValue(); 9424 } 9425 9426 SDValue DAGCombiner::visitBRCOND(SDNode *N) { 9427 SDValue Chain = N->getOperand(0); 9428 SDValue N1 = N->getOperand(1); 9429 SDValue N2 = N->getOperand(2); 9430 9431 // If N is a constant we could fold this into a fallthrough or unconditional 9432 // branch. However that doesn't happen very often in normal code, because 9433 // Instcombine/SimplifyCFG should have handled the available opportunities. 9434 // If we did this folding here, it would be necessary to update the 9435 // MachineBasicBlock CFG, which is awkward. 9436 9437 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal 9438 // on the target. 9439 if (N1.getOpcode() == ISD::SETCC && 9440 TLI.isOperationLegalOrCustom(ISD::BR_CC, 9441 N1.getOperand(0).getValueType())) { 9442 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 9443 Chain, N1.getOperand(2), 9444 N1.getOperand(0), N1.getOperand(1), N2); 9445 } 9446 9447 if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) || 9448 ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) && 9449 (N1.getOperand(0).hasOneUse() && 9450 N1.getOperand(0).getOpcode() == ISD::SRL))) { 9451 SDNode *Trunc = nullptr; 9452 if (N1.getOpcode() == ISD::TRUNCATE) { 9453 // Look pass the truncate. 9454 Trunc = N1.getNode(); 9455 N1 = N1.getOperand(0); 9456 } 9457 9458 // Match this pattern so that we can generate simpler code: 9459 // 9460 // %a = ... 9461 // %b = and i32 %a, 2 9462 // %c = srl i32 %b, 1 9463 // brcond i32 %c ... 9464 // 9465 // into 9466 // 9467 // %a = ... 9468 // %b = and i32 %a, 2 9469 // %c = setcc eq %b, 0 9470 // brcond %c ... 9471 // 9472 // This applies only when the AND constant value has one bit set and the 9473 // SRL constant is equal to the log2 of the AND constant. The back-end is 9474 // smart enough to convert the result into a TEST/JMP sequence. 9475 SDValue Op0 = N1.getOperand(0); 9476 SDValue Op1 = N1.getOperand(1); 9477 9478 if (Op0.getOpcode() == ISD::AND && 9479 Op1.getOpcode() == ISD::Constant) { 9480 SDValue AndOp1 = Op0.getOperand(1); 9481 9482 if (AndOp1.getOpcode() == ISD::Constant) { 9483 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); 9484 9485 if (AndConst.isPowerOf2() && 9486 cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) { 9487 SDLoc DL(N); 9488 SDValue SetCC = 9489 DAG.getSetCC(DL, 9490 getSetCCResultType(Op0.getValueType()), 9491 Op0, DAG.getConstant(0, DL, Op0.getValueType()), 9492 ISD::SETNE); 9493 9494 SDValue NewBRCond = DAG.getNode(ISD::BRCOND, DL, 9495 MVT::Other, Chain, SetCC, N2); 9496 // Don't add the new BRCond into the worklist or else SimplifySelectCC 9497 // will convert it back to (X & C1) >> C2. 9498 CombineTo(N, NewBRCond, false); 9499 // Truncate is dead. 9500 if (Trunc) 9501 deleteAndRecombine(Trunc); 9502 // Replace the uses of SRL with SETCC 9503 WorklistRemover DeadNodes(*this); 9504 DAG.ReplaceAllUsesOfValueWith(N1, SetCC); 9505 deleteAndRecombine(N1.getNode()); 9506 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9507 } 9508 } 9509 } 9510 9511 if (Trunc) 9512 // Restore N1 if the above transformation doesn't match. 9513 N1 = N->getOperand(1); 9514 } 9515 9516 // Transform br(xor(x, y)) -> br(x != y) 9517 // Transform br(xor(xor(x,y), 1)) -> br (x == y) 9518 if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) { 9519 SDNode *TheXor = N1.getNode(); 9520 SDValue Op0 = TheXor->getOperand(0); 9521 SDValue Op1 = TheXor->getOperand(1); 9522 if (Op0.getOpcode() == Op1.getOpcode()) { 9523 // Avoid missing important xor optimizations. 9524 if (SDValue Tmp = visitXOR(TheXor)) { 9525 if (Tmp.getNode() != TheXor) { 9526 DEBUG(dbgs() << "\nReplacing.8 "; 9527 TheXor->dump(&DAG); 9528 dbgs() << "\nWith: "; 9529 Tmp.getNode()->dump(&DAG); 9530 dbgs() << '\n'); 9531 WorklistRemover DeadNodes(*this); 9532 DAG.ReplaceAllUsesOfValueWith(N1, Tmp); 9533 deleteAndRecombine(TheXor); 9534 return DAG.getNode(ISD::BRCOND, SDLoc(N), 9535 MVT::Other, Chain, Tmp, N2); 9536 } 9537 9538 // visitXOR has changed XOR's operands or replaced the XOR completely, 9539 // bail out. 9540 return SDValue(N, 0); 9541 } 9542 } 9543 9544 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { 9545 bool Equal = false; 9546 if (isOneConstant(Op0) && Op0.hasOneUse() && 9547 Op0.getOpcode() == ISD::XOR) { 9548 TheXor = Op0.getNode(); 9549 Equal = true; 9550 } 9551 9552 EVT SetCCVT = N1.getValueType(); 9553 if (LegalTypes) 9554 SetCCVT = getSetCCResultType(SetCCVT); 9555 SDValue SetCC = DAG.getSetCC(SDLoc(TheXor), 9556 SetCCVT, 9557 Op0, Op1, 9558 Equal ? ISD::SETEQ : ISD::SETNE); 9559 // Replace the uses of XOR with SETCC 9560 WorklistRemover DeadNodes(*this); 9561 DAG.ReplaceAllUsesOfValueWith(N1, SetCC); 9562 deleteAndRecombine(N1.getNode()); 9563 return DAG.getNode(ISD::BRCOND, SDLoc(N), 9564 MVT::Other, Chain, SetCC, N2); 9565 } 9566 } 9567 9568 return SDValue(); 9569 } 9570 9571 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. 9572 // 9573 SDValue DAGCombiner::visitBR_CC(SDNode *N) { 9574 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); 9575 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); 9576 9577 // If N is a constant we could fold this into a fallthrough or unconditional 9578 // branch. However that doesn't happen very often in normal code, because 9579 // Instcombine/SimplifyCFG should have handled the available opportunities. 9580 // If we did this folding here, it would be necessary to update the 9581 // MachineBasicBlock CFG, which is awkward. 9582 9583 // Use SimplifySetCC to simplify SETCC's. 9584 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), 9585 CondLHS, CondRHS, CC->get(), SDLoc(N), 9586 false); 9587 if (Simp.getNode()) AddToWorklist(Simp.getNode()); 9588 9589 // fold to a simpler setcc 9590 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) 9591 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 9592 N->getOperand(0), Simp.getOperand(2), 9593 Simp.getOperand(0), Simp.getOperand(1), 9594 N->getOperand(4)); 9595 9596 return SDValue(); 9597 } 9598 9599 /// Return true if 'Use' is a load or a store that uses N as its base pointer 9600 /// and that N may be folded in the load / store addressing mode. 9601 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, 9602 SelectionDAG &DAG, 9603 const TargetLowering &TLI) { 9604 EVT VT; 9605 unsigned AS; 9606 9607 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { 9608 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 9609 return false; 9610 VT = LD->getMemoryVT(); 9611 AS = LD->getAddressSpace(); 9612 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { 9613 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 9614 return false; 9615 VT = ST->getMemoryVT(); 9616 AS = ST->getAddressSpace(); 9617 } else 9618 return false; 9619 9620 TargetLowering::AddrMode AM; 9621 if (N->getOpcode() == ISD::ADD) { 9622 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9623 if (Offset) 9624 // [reg +/- imm] 9625 AM.BaseOffs = Offset->getSExtValue(); 9626 else 9627 // [reg +/- reg] 9628 AM.Scale = 1; 9629 } else if (N->getOpcode() == ISD::SUB) { 9630 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9631 if (Offset) 9632 // [reg +/- imm] 9633 AM.BaseOffs = -Offset->getSExtValue(); 9634 else 9635 // [reg +/- reg] 9636 AM.Scale = 1; 9637 } else 9638 return false; 9639 9640 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, 9641 VT.getTypeForEVT(*DAG.getContext()), AS); 9642 } 9643 9644 /// Try turning a load/store into a pre-indexed load/store when the base 9645 /// pointer is an add or subtract and it has other uses besides the load/store. 9646 /// After the transformation, the new indexed load/store has effectively folded 9647 /// the add/subtract in and all of its other uses are redirected to the 9648 /// new load/store. 9649 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { 9650 if (Level < AfterLegalizeDAG) 9651 return false; 9652 9653 bool isLoad = true; 9654 SDValue Ptr; 9655 EVT VT; 9656 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 9657 if (LD->isIndexed()) 9658 return false; 9659 VT = LD->getMemoryVT(); 9660 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && 9661 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) 9662 return false; 9663 Ptr = LD->getBasePtr(); 9664 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 9665 if (ST->isIndexed()) 9666 return false; 9667 VT = ST->getMemoryVT(); 9668 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && 9669 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) 9670 return false; 9671 Ptr = ST->getBasePtr(); 9672 isLoad = false; 9673 } else { 9674 return false; 9675 } 9676 9677 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail 9678 // out. There is no reason to make this a preinc/predec. 9679 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || 9680 Ptr.getNode()->hasOneUse()) 9681 return false; 9682 9683 // Ask the target to do addressing mode selection. 9684 SDValue BasePtr; 9685 SDValue Offset; 9686 ISD::MemIndexedMode AM = ISD::UNINDEXED; 9687 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) 9688 return false; 9689 9690 // Backends without true r+i pre-indexed forms may need to pass a 9691 // constant base with a variable offset so that constant coercion 9692 // will work with the patterns in canonical form. 9693 bool Swapped = false; 9694 if (isa<ConstantSDNode>(BasePtr)) { 9695 std::swap(BasePtr, Offset); 9696 Swapped = true; 9697 } 9698 9699 // Don't create a indexed load / store with zero offset. 9700 if (isNullConstant(Offset)) 9701 return false; 9702 9703 // Try turning it into a pre-indexed load / store except when: 9704 // 1) The new base ptr is a frame index. 9705 // 2) If N is a store and the new base ptr is either the same as or is a 9706 // predecessor of the value being stored. 9707 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded 9708 // that would create a cycle. 9709 // 4) All uses are load / store ops that use it as old base ptr. 9710 9711 // Check #1. Preinc'ing a frame index would require copying the stack pointer 9712 // (plus the implicit offset) to a register to preinc anyway. 9713 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 9714 return false; 9715 9716 // Check #2. 9717 if (!isLoad) { 9718 SDValue Val = cast<StoreSDNode>(N)->getValue(); 9719 if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode())) 9720 return false; 9721 } 9722 9723 // Caches for hasPredecessorHelper. 9724 SmallPtrSet<const SDNode *, 32> Visited; 9725 SmallVector<const SDNode *, 16> Worklist; 9726 Worklist.push_back(N); 9727 9728 // If the offset is a constant, there may be other adds of constants that 9729 // can be folded with this one. We should do this to avoid having to keep 9730 // a copy of the original base pointer. 9731 SmallVector<SDNode *, 16> OtherUses; 9732 if (isa<ConstantSDNode>(Offset)) 9733 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), 9734 UE = BasePtr.getNode()->use_end(); 9735 UI != UE; ++UI) { 9736 SDUse &Use = UI.getUse(); 9737 // Skip the use that is Ptr and uses of other results from BasePtr's 9738 // node (important for nodes that return multiple results). 9739 if (Use.getUser() == Ptr.getNode() || Use != BasePtr) 9740 continue; 9741 9742 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) 9743 continue; 9744 9745 if (Use.getUser()->getOpcode() != ISD::ADD && 9746 Use.getUser()->getOpcode() != ISD::SUB) { 9747 OtherUses.clear(); 9748 break; 9749 } 9750 9751 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); 9752 if (!isa<ConstantSDNode>(Op1)) { 9753 OtherUses.clear(); 9754 break; 9755 } 9756 9757 // FIXME: In some cases, we can be smarter about this. 9758 if (Op1.getValueType() != Offset.getValueType()) { 9759 OtherUses.clear(); 9760 break; 9761 } 9762 9763 OtherUses.push_back(Use.getUser()); 9764 } 9765 9766 if (Swapped) 9767 std::swap(BasePtr, Offset); 9768 9769 // Now check for #3 and #4. 9770 bool RealUse = false; 9771 9772 for (SDNode *Use : Ptr.getNode()->uses()) { 9773 if (Use == N) 9774 continue; 9775 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) 9776 return false; 9777 9778 // If Ptr may be folded in addressing mode of other use, then it's 9779 // not profitable to do this transformation. 9780 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) 9781 RealUse = true; 9782 } 9783 9784 if (!RealUse) 9785 return false; 9786 9787 SDValue Result; 9788 if (isLoad) 9789 Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 9790 BasePtr, Offset, AM); 9791 else 9792 Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 9793 BasePtr, Offset, AM); 9794 ++PreIndexedNodes; 9795 ++NodesCombined; 9796 DEBUG(dbgs() << "\nReplacing.4 "; 9797 N->dump(&DAG); 9798 dbgs() << "\nWith: "; 9799 Result.getNode()->dump(&DAG); 9800 dbgs() << '\n'); 9801 WorklistRemover DeadNodes(*this); 9802 if (isLoad) { 9803 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 9804 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 9805 } else { 9806 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 9807 } 9808 9809 // Finally, since the node is now dead, remove it from the graph. 9810 deleteAndRecombine(N); 9811 9812 if (Swapped) 9813 std::swap(BasePtr, Offset); 9814 9815 // Replace other uses of BasePtr that can be updated to use Ptr 9816 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { 9817 unsigned OffsetIdx = 1; 9818 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) 9819 OffsetIdx = 0; 9820 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == 9821 BasePtr.getNode() && "Expected BasePtr operand"); 9822 9823 // We need to replace ptr0 in the following expression: 9824 // x0 * offset0 + y0 * ptr0 = t0 9825 // knowing that 9826 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) 9827 // 9828 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the 9829 // indexed load/store and the expresion that needs to be re-written. 9830 // 9831 // Therefore, we have: 9832 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 9833 9834 ConstantSDNode *CN = 9835 cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); 9836 int X0, X1, Y0, Y1; 9837 APInt Offset0 = CN->getAPIntValue(); 9838 APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); 9839 9840 X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; 9841 Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; 9842 X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; 9843 Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; 9844 9845 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; 9846 9847 APInt CNV = Offset0; 9848 if (X0 < 0) CNV = -CNV; 9849 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; 9850 else CNV = CNV - Offset1; 9851 9852 SDLoc DL(OtherUses[i]); 9853 9854 // We can now generate the new expression. 9855 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); 9856 SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0); 9857 9858 SDValue NewUse = DAG.getNode(Opcode, 9859 DL, 9860 OtherUses[i]->getValueType(0), NewOp1, NewOp2); 9861 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); 9862 deleteAndRecombine(OtherUses[i]); 9863 } 9864 9865 // Replace the uses of Ptr with uses of the updated base value. 9866 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0)); 9867 deleteAndRecombine(Ptr.getNode()); 9868 9869 return true; 9870 } 9871 9872 /// Try to combine a load/store with a add/sub of the base pointer node into a 9873 /// post-indexed load/store. The transformation folded the add/subtract into the 9874 /// new indexed load/store effectively and all of its uses are redirected to the 9875 /// new load/store. 9876 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { 9877 if (Level < AfterLegalizeDAG) 9878 return false; 9879 9880 bool isLoad = true; 9881 SDValue Ptr; 9882 EVT VT; 9883 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 9884 if (LD->isIndexed()) 9885 return false; 9886 VT = LD->getMemoryVT(); 9887 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && 9888 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) 9889 return false; 9890 Ptr = LD->getBasePtr(); 9891 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 9892 if (ST->isIndexed()) 9893 return false; 9894 VT = ST->getMemoryVT(); 9895 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && 9896 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) 9897 return false; 9898 Ptr = ST->getBasePtr(); 9899 isLoad = false; 9900 } else { 9901 return false; 9902 } 9903 9904 if (Ptr.getNode()->hasOneUse()) 9905 return false; 9906 9907 for (SDNode *Op : Ptr.getNode()->uses()) { 9908 if (Op == N || 9909 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) 9910 continue; 9911 9912 SDValue BasePtr; 9913 SDValue Offset; 9914 ISD::MemIndexedMode AM = ISD::UNINDEXED; 9915 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { 9916 // Don't create a indexed load / store with zero offset. 9917 if (isNullConstant(Offset)) 9918 continue; 9919 9920 // Try turning it into a post-indexed load / store except when 9921 // 1) All uses are load / store ops that use it as base ptr (and 9922 // it may be folded as addressing mmode). 9923 // 2) Op must be independent of N, i.e. Op is neither a predecessor 9924 // nor a successor of N. Otherwise, if Op is folded that would 9925 // create a cycle. 9926 9927 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 9928 continue; 9929 9930 // Check for #1. 9931 bool TryNext = false; 9932 for (SDNode *Use : BasePtr.getNode()->uses()) { 9933 if (Use == Ptr.getNode()) 9934 continue; 9935 9936 // If all the uses are load / store addresses, then don't do the 9937 // transformation. 9938 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ 9939 bool RealUse = false; 9940 for (SDNode *UseUse : Use->uses()) { 9941 if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI)) 9942 RealUse = true; 9943 } 9944 9945 if (!RealUse) { 9946 TryNext = true; 9947 break; 9948 } 9949 } 9950 } 9951 9952 if (TryNext) 9953 continue; 9954 9955 // Check for #2 9956 if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) { 9957 SDValue Result = isLoad 9958 ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 9959 BasePtr, Offset, AM) 9960 : DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 9961 BasePtr, Offset, AM); 9962 ++PostIndexedNodes; 9963 ++NodesCombined; 9964 DEBUG(dbgs() << "\nReplacing.5 "; 9965 N->dump(&DAG); 9966 dbgs() << "\nWith: "; 9967 Result.getNode()->dump(&DAG); 9968 dbgs() << '\n'); 9969 WorklistRemover DeadNodes(*this); 9970 if (isLoad) { 9971 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 9972 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 9973 } else { 9974 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 9975 } 9976 9977 // Finally, since the node is now dead, remove it from the graph. 9978 deleteAndRecombine(N); 9979 9980 // Replace the uses of Use with uses of the updated base value. 9981 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), 9982 Result.getValue(isLoad ? 1 : 0)); 9983 deleteAndRecombine(Op); 9984 return true; 9985 } 9986 } 9987 } 9988 9989 return false; 9990 } 9991 9992 /// \brief Return the base-pointer arithmetic from an indexed \p LD. 9993 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { 9994 ISD::MemIndexedMode AM = LD->getAddressingMode(); 9995 assert(AM != ISD::UNINDEXED); 9996 SDValue BP = LD->getOperand(1); 9997 SDValue Inc = LD->getOperand(2); 9998 9999 // Some backends use TargetConstants for load offsets, but don't expect 10000 // TargetConstants in general ADD nodes. We can convert these constants into 10001 // regular Constants (if the constant is not opaque). 10002 assert((Inc.getOpcode() != ISD::TargetConstant || 10003 !cast<ConstantSDNode>(Inc)->isOpaque()) && 10004 "Cannot split out indexing using opaque target constants"); 10005 if (Inc.getOpcode() == ISD::TargetConstant) { 10006 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); 10007 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), 10008 ConstInc->getValueType(0)); 10009 } 10010 10011 unsigned Opc = 10012 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); 10013 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); 10014 } 10015 10016 SDValue DAGCombiner::visitLOAD(SDNode *N) { 10017 LoadSDNode *LD = cast<LoadSDNode>(N); 10018 SDValue Chain = LD->getChain(); 10019 SDValue Ptr = LD->getBasePtr(); 10020 10021 // If load is not volatile and there are no uses of the loaded value (and 10022 // the updated indexed value in case of indexed loads), change uses of the 10023 // chain value into uses of the chain input (i.e. delete the dead load). 10024 if (!LD->isVolatile()) { 10025 if (N->getValueType(1) == MVT::Other) { 10026 // Unindexed loads. 10027 if (!N->hasAnyUseOfValue(0)) { 10028 // It's not safe to use the two value CombineTo variant here. e.g. 10029 // v1, chain2 = load chain1, loc 10030 // v2, chain3 = load chain2, loc 10031 // v3 = add v2, c 10032 // Now we replace use of chain2 with chain1. This makes the second load 10033 // isomorphic to the one we are deleting, and thus makes this load live. 10034 DEBUG(dbgs() << "\nReplacing.6 "; 10035 N->dump(&DAG); 10036 dbgs() << "\nWith chain: "; 10037 Chain.getNode()->dump(&DAG); 10038 dbgs() << "\n"); 10039 WorklistRemover DeadNodes(*this); 10040 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 10041 10042 if (N->use_empty()) 10043 deleteAndRecombine(N); 10044 10045 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10046 } 10047 } else { 10048 // Indexed loads. 10049 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); 10050 10051 // If this load has an opaque TargetConstant offset, then we cannot split 10052 // the indexing into an add/sub directly (that TargetConstant may not be 10053 // valid for a different type of node, and we cannot convert an opaque 10054 // target constant into a regular constant). 10055 bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant && 10056 cast<ConstantSDNode>(LD->getOperand(2))->isOpaque(); 10057 10058 if (!N->hasAnyUseOfValue(0) && 10059 ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) { 10060 SDValue Undef = DAG.getUNDEF(N->getValueType(0)); 10061 SDValue Index; 10062 if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) { 10063 Index = SplitIndexingFromLoad(LD); 10064 // Try to fold the base pointer arithmetic into subsequent loads and 10065 // stores. 10066 AddUsersToWorklist(N); 10067 } else 10068 Index = DAG.getUNDEF(N->getValueType(1)); 10069 DEBUG(dbgs() << "\nReplacing.7 "; 10070 N->dump(&DAG); 10071 dbgs() << "\nWith: "; 10072 Undef.getNode()->dump(&DAG); 10073 dbgs() << " and 2 other values\n"); 10074 WorklistRemover DeadNodes(*this); 10075 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); 10076 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); 10077 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); 10078 deleteAndRecombine(N); 10079 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10080 } 10081 } 10082 } 10083 10084 // If this load is directly stored, replace the load value with the stored 10085 // value. 10086 // TODO: Handle store large -> read small portion. 10087 // TODO: Handle TRUNCSTORE/LOADEXT 10088 if (ISD::isNormalLoad(N) && !LD->isVolatile()) { 10089 if (ISD::isNON_TRUNCStore(Chain.getNode())) { 10090 StoreSDNode *PrevST = cast<StoreSDNode>(Chain); 10091 if (PrevST->getBasePtr() == Ptr && 10092 PrevST->getValue().getValueType() == N->getValueType(0)) 10093 return CombineTo(N, Chain.getOperand(1), Chain); 10094 } 10095 } 10096 10097 // Try to infer better alignment information than the load already has. 10098 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) { 10099 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 10100 if (Align > LD->getMemOperand()->getBaseAlignment()) { 10101 SDValue NewLoad = 10102 DAG.getExtLoad(LD->getExtensionType(), SDLoc(N), 10103 LD->getValueType(0), 10104 Chain, Ptr, LD->getPointerInfo(), 10105 LD->getMemoryVT(), 10106 LD->isVolatile(), LD->isNonTemporal(), 10107 LD->isInvariant(), Align, LD->getAAInfo()); 10108 if (NewLoad.getNode() != N) 10109 return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true); 10110 } 10111 } 10112 } 10113 10114 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 10115 : DAG.getSubtarget().useAA(); 10116 #ifndef NDEBUG 10117 if (CombinerAAOnlyFunc.getNumOccurrences() && 10118 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 10119 UseAA = false; 10120 #endif 10121 if (UseAA && LD->isUnindexed()) { 10122 // Walk up chain skipping non-aliasing memory nodes. 10123 SDValue BetterChain = FindBetterChain(N, Chain); 10124 10125 // If there is a better chain. 10126 if (Chain != BetterChain) { 10127 SDValue ReplLoad; 10128 10129 // Replace the chain to void dependency. 10130 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 10131 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), 10132 BetterChain, Ptr, LD->getMemOperand()); 10133 } else { 10134 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), 10135 LD->getValueType(0), 10136 BetterChain, Ptr, LD->getMemoryVT(), 10137 LD->getMemOperand()); 10138 } 10139 10140 // Create token factor to keep old chain connected. 10141 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 10142 MVT::Other, Chain, ReplLoad.getValue(1)); 10143 10144 // Make sure the new and old chains are cleaned up. 10145 AddToWorklist(Token.getNode()); 10146 10147 // Replace uses with load result and token factor. Don't add users 10148 // to work list. 10149 return CombineTo(N, ReplLoad.getValue(0), Token, false); 10150 } 10151 } 10152 10153 // Try transforming N to an indexed load. 10154 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 10155 return SDValue(N, 0); 10156 10157 // Try to slice up N to more direct loads if the slices are mapped to 10158 // different register banks or pairing can take place. 10159 if (SliceUpLoad(N)) 10160 return SDValue(N, 0); 10161 10162 return SDValue(); 10163 } 10164 10165 namespace { 10166 /// \brief Helper structure used to slice a load in smaller loads. 10167 /// Basically a slice is obtained from the following sequence: 10168 /// Origin = load Ty1, Base 10169 /// Shift = srl Ty1 Origin, CstTy Amount 10170 /// Inst = trunc Shift to Ty2 10171 /// 10172 /// Then, it will be rewriten into: 10173 /// Slice = load SliceTy, Base + SliceOffset 10174 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 10175 /// 10176 /// SliceTy is deduced from the number of bits that are actually used to 10177 /// build Inst. 10178 struct LoadedSlice { 10179 /// \brief Helper structure used to compute the cost of a slice. 10180 struct Cost { 10181 /// Are we optimizing for code size. 10182 bool ForCodeSize; 10183 /// Various cost. 10184 unsigned Loads; 10185 unsigned Truncates; 10186 unsigned CrossRegisterBanksCopies; 10187 unsigned ZExts; 10188 unsigned Shift; 10189 10190 Cost(bool ForCodeSize = false) 10191 : ForCodeSize(ForCodeSize), Loads(0), Truncates(0), 10192 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {} 10193 10194 /// \brief Get the cost of one isolated slice. 10195 Cost(const LoadedSlice &LS, bool ForCodeSize = false) 10196 : ForCodeSize(ForCodeSize), Loads(1), Truncates(0), 10197 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) { 10198 EVT TruncType = LS.Inst->getValueType(0); 10199 EVT LoadedType = LS.getLoadedType(); 10200 if (TruncType != LoadedType && 10201 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) 10202 ZExts = 1; 10203 } 10204 10205 /// \brief Account for slicing gain in the current cost. 10206 /// Slicing provide a few gains like removing a shift or a 10207 /// truncate. This method allows to grow the cost of the original 10208 /// load with the gain from this slice. 10209 void addSliceGain(const LoadedSlice &LS) { 10210 // Each slice saves a truncate. 10211 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); 10212 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), 10213 LS.Inst->getValueType(0))) 10214 ++Truncates; 10215 // If there is a shift amount, this slice gets rid of it. 10216 if (LS.Shift) 10217 ++Shift; 10218 // If this slice can merge a cross register bank copy, account for it. 10219 if (LS.canMergeExpensiveCrossRegisterBankCopy()) 10220 ++CrossRegisterBanksCopies; 10221 } 10222 10223 Cost &operator+=(const Cost &RHS) { 10224 Loads += RHS.Loads; 10225 Truncates += RHS.Truncates; 10226 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; 10227 ZExts += RHS.ZExts; 10228 Shift += RHS.Shift; 10229 return *this; 10230 } 10231 10232 bool operator==(const Cost &RHS) const { 10233 return Loads == RHS.Loads && Truncates == RHS.Truncates && 10234 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && 10235 ZExts == RHS.ZExts && Shift == RHS.Shift; 10236 } 10237 10238 bool operator!=(const Cost &RHS) const { return !(*this == RHS); } 10239 10240 bool operator<(const Cost &RHS) const { 10241 // Assume cross register banks copies are as expensive as loads. 10242 // FIXME: Do we want some more target hooks? 10243 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; 10244 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; 10245 // Unless we are optimizing for code size, consider the 10246 // expensive operation first. 10247 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) 10248 return ExpensiveOpsLHS < ExpensiveOpsRHS; 10249 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < 10250 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); 10251 } 10252 10253 bool operator>(const Cost &RHS) const { return RHS < *this; } 10254 10255 bool operator<=(const Cost &RHS) const { return !(RHS < *this); } 10256 10257 bool operator>=(const Cost &RHS) const { return !(*this < RHS); } 10258 }; 10259 // The last instruction that represent the slice. This should be a 10260 // truncate instruction. 10261 SDNode *Inst; 10262 // The original load instruction. 10263 LoadSDNode *Origin; 10264 // The right shift amount in bits from the original load. 10265 unsigned Shift; 10266 // The DAG from which Origin came from. 10267 // This is used to get some contextual information about legal types, etc. 10268 SelectionDAG *DAG; 10269 10270 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, 10271 unsigned Shift = 0, SelectionDAG *DAG = nullptr) 10272 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} 10273 10274 /// \brief Get the bits used in a chunk of bits \p BitWidth large. 10275 /// \return Result is \p BitWidth and has used bits set to 1 and 10276 /// not used bits set to 0. 10277 APInt getUsedBits() const { 10278 // Reproduce the trunc(lshr) sequence: 10279 // - Start from the truncated value. 10280 // - Zero extend to the desired bit width. 10281 // - Shift left. 10282 assert(Origin && "No original load to compare against."); 10283 unsigned BitWidth = Origin->getValueSizeInBits(0); 10284 assert(Inst && "This slice is not bound to an instruction"); 10285 assert(Inst->getValueSizeInBits(0) <= BitWidth && 10286 "Extracted slice is bigger than the whole type!"); 10287 APInt UsedBits(Inst->getValueSizeInBits(0), 0); 10288 UsedBits.setAllBits(); 10289 UsedBits = UsedBits.zext(BitWidth); 10290 UsedBits <<= Shift; 10291 return UsedBits; 10292 } 10293 10294 /// \brief Get the size of the slice to be loaded in bytes. 10295 unsigned getLoadedSize() const { 10296 unsigned SliceSize = getUsedBits().countPopulation(); 10297 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); 10298 return SliceSize / 8; 10299 } 10300 10301 /// \brief Get the type that will be loaded for this slice. 10302 /// Note: This may not be the final type for the slice. 10303 EVT getLoadedType() const { 10304 assert(DAG && "Missing context"); 10305 LLVMContext &Ctxt = *DAG->getContext(); 10306 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); 10307 } 10308 10309 /// \brief Get the alignment of the load used for this slice. 10310 unsigned getAlignment() const { 10311 unsigned Alignment = Origin->getAlignment(); 10312 unsigned Offset = getOffsetFromBase(); 10313 if (Offset != 0) 10314 Alignment = MinAlign(Alignment, Alignment + Offset); 10315 return Alignment; 10316 } 10317 10318 /// \brief Check if this slice can be rewritten with legal operations. 10319 bool isLegal() const { 10320 // An invalid slice is not legal. 10321 if (!Origin || !Inst || !DAG) 10322 return false; 10323 10324 // Offsets are for indexed load only, we do not handle that. 10325 if (!Origin->getOffset().isUndef()) 10326 return false; 10327 10328 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 10329 10330 // Check that the type is legal. 10331 EVT SliceType = getLoadedType(); 10332 if (!TLI.isTypeLegal(SliceType)) 10333 return false; 10334 10335 // Check that the load is legal for this type. 10336 if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) 10337 return false; 10338 10339 // Check that the offset can be computed. 10340 // 1. Check its type. 10341 EVT PtrType = Origin->getBasePtr().getValueType(); 10342 if (PtrType == MVT::Untyped || PtrType.isExtended()) 10343 return false; 10344 10345 // 2. Check that it fits in the immediate. 10346 if (!TLI.isLegalAddImmediate(getOffsetFromBase())) 10347 return false; 10348 10349 // 3. Check that the computation is legal. 10350 if (!TLI.isOperationLegal(ISD::ADD, PtrType)) 10351 return false; 10352 10353 // Check that the zext is legal if it needs one. 10354 EVT TruncateType = Inst->getValueType(0); 10355 if (TruncateType != SliceType && 10356 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) 10357 return false; 10358 10359 return true; 10360 } 10361 10362 /// \brief Get the offset in bytes of this slice in the original chunk of 10363 /// bits. 10364 /// \pre DAG != nullptr. 10365 uint64_t getOffsetFromBase() const { 10366 assert(DAG && "Missing context."); 10367 bool IsBigEndian = DAG->getDataLayout().isBigEndian(); 10368 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); 10369 uint64_t Offset = Shift / 8; 10370 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; 10371 assert(!(Origin->getValueSizeInBits(0) & 0x7) && 10372 "The size of the original loaded type is not a multiple of a" 10373 " byte."); 10374 // If Offset is bigger than TySizeInBytes, it means we are loading all 10375 // zeros. This should have been optimized before in the process. 10376 assert(TySizeInBytes > Offset && 10377 "Invalid shift amount for given loaded size"); 10378 if (IsBigEndian) 10379 Offset = TySizeInBytes - Offset - getLoadedSize(); 10380 return Offset; 10381 } 10382 10383 /// \brief Generate the sequence of instructions to load the slice 10384 /// represented by this object and redirect the uses of this slice to 10385 /// this new sequence of instructions. 10386 /// \pre this->Inst && this->Origin are valid Instructions and this 10387 /// object passed the legal check: LoadedSlice::isLegal returned true. 10388 /// \return The last instruction of the sequence used to load the slice. 10389 SDValue loadSlice() const { 10390 assert(Inst && Origin && "Unable to replace a non-existing slice."); 10391 const SDValue &OldBaseAddr = Origin->getBasePtr(); 10392 SDValue BaseAddr = OldBaseAddr; 10393 // Get the offset in that chunk of bytes w.r.t. the endianess. 10394 int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); 10395 assert(Offset >= 0 && "Offset too big to fit in int64_t!"); 10396 if (Offset) { 10397 // BaseAddr = BaseAddr + Offset. 10398 EVT ArithType = BaseAddr.getValueType(); 10399 SDLoc DL(Origin); 10400 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, 10401 DAG->getConstant(Offset, DL, ArithType)); 10402 } 10403 10404 // Create the type of the loaded slice according to its size. 10405 EVT SliceType = getLoadedType(); 10406 10407 // Create the load for the slice. 10408 SDValue LastInst = DAG->getLoad( 10409 SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, 10410 Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(), 10411 Origin->isNonTemporal(), Origin->isInvariant(), getAlignment()); 10412 // If the final type is not the same as the loaded type, this means that 10413 // we have to pad with zero. Create a zero extend for that. 10414 EVT FinalType = Inst->getValueType(0); 10415 if (SliceType != FinalType) 10416 LastInst = 10417 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); 10418 return LastInst; 10419 } 10420 10421 /// \brief Check if this slice can be merged with an expensive cross register 10422 /// bank copy. E.g., 10423 /// i = load i32 10424 /// f = bitcast i32 i to float 10425 bool canMergeExpensiveCrossRegisterBankCopy() const { 10426 if (!Inst || !Inst->hasOneUse()) 10427 return false; 10428 SDNode *Use = *Inst->use_begin(); 10429 if (Use->getOpcode() != ISD::BITCAST) 10430 return false; 10431 assert(DAG && "Missing context"); 10432 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 10433 EVT ResVT = Use->getValueType(0); 10434 const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT()); 10435 const TargetRegisterClass *ArgRC = 10436 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT()); 10437 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) 10438 return false; 10439 10440 // At this point, we know that we perform a cross-register-bank copy. 10441 // Check if it is expensive. 10442 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); 10443 // Assume bitcasts are cheap, unless both register classes do not 10444 // explicitly share a common sub class. 10445 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) 10446 return false; 10447 10448 // Check if it will be merged with the load. 10449 // 1. Check the alignment constraint. 10450 unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment( 10451 ResVT.getTypeForEVT(*DAG->getContext())); 10452 10453 if (RequiredAlignment > getAlignment()) 10454 return false; 10455 10456 // 2. Check that the load is a legal operation for that type. 10457 if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) 10458 return false; 10459 10460 // 3. Check that we do not have a zext in the way. 10461 if (Inst->getValueType(0) != getLoadedType()) 10462 return false; 10463 10464 return true; 10465 } 10466 }; 10467 } 10468 10469 /// \brief Check that all bits set in \p UsedBits form a dense region, i.e., 10470 /// \p UsedBits looks like 0..0 1..1 0..0. 10471 static bool areUsedBitsDense(const APInt &UsedBits) { 10472 // If all the bits are one, this is dense! 10473 if (UsedBits.isAllOnesValue()) 10474 return true; 10475 10476 // Get rid of the unused bits on the right. 10477 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); 10478 // Get rid of the unused bits on the left. 10479 if (NarrowedUsedBits.countLeadingZeros()) 10480 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); 10481 // Check that the chunk of bits is completely used. 10482 return NarrowedUsedBits.isAllOnesValue(); 10483 } 10484 10485 /// \brief Check whether or not \p First and \p Second are next to each other 10486 /// in memory. This means that there is no hole between the bits loaded 10487 /// by \p First and the bits loaded by \p Second. 10488 static bool areSlicesNextToEachOther(const LoadedSlice &First, 10489 const LoadedSlice &Second) { 10490 assert(First.Origin == Second.Origin && First.Origin && 10491 "Unable to match different memory origins."); 10492 APInt UsedBits = First.getUsedBits(); 10493 assert((UsedBits & Second.getUsedBits()) == 0 && 10494 "Slices are not supposed to overlap."); 10495 UsedBits |= Second.getUsedBits(); 10496 return areUsedBitsDense(UsedBits); 10497 } 10498 10499 /// \brief Adjust the \p GlobalLSCost according to the target 10500 /// paring capabilities and the layout of the slices. 10501 /// \pre \p GlobalLSCost should account for at least as many loads as 10502 /// there is in the slices in \p LoadedSlices. 10503 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, 10504 LoadedSlice::Cost &GlobalLSCost) { 10505 unsigned NumberOfSlices = LoadedSlices.size(); 10506 // If there is less than 2 elements, no pairing is possible. 10507 if (NumberOfSlices < 2) 10508 return; 10509 10510 // Sort the slices so that elements that are likely to be next to each 10511 // other in memory are next to each other in the list. 10512 std::sort(LoadedSlices.begin(), LoadedSlices.end(), 10513 [](const LoadedSlice &LHS, const LoadedSlice &RHS) { 10514 assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); 10515 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); 10516 }); 10517 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); 10518 // First (resp. Second) is the first (resp. Second) potentially candidate 10519 // to be placed in a paired load. 10520 const LoadedSlice *First = nullptr; 10521 const LoadedSlice *Second = nullptr; 10522 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, 10523 // Set the beginning of the pair. 10524 First = Second) { 10525 10526 Second = &LoadedSlices[CurrSlice]; 10527 10528 // If First is NULL, it means we start a new pair. 10529 // Get to the next slice. 10530 if (!First) 10531 continue; 10532 10533 EVT LoadedType = First->getLoadedType(); 10534 10535 // If the types of the slices are different, we cannot pair them. 10536 if (LoadedType != Second->getLoadedType()) 10537 continue; 10538 10539 // Check if the target supplies paired loads for this type. 10540 unsigned RequiredAlignment = 0; 10541 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { 10542 // move to the next pair, this type is hopeless. 10543 Second = nullptr; 10544 continue; 10545 } 10546 // Check if we meet the alignment requirement. 10547 if (RequiredAlignment > First->getAlignment()) 10548 continue; 10549 10550 // Check that both loads are next to each other in memory. 10551 if (!areSlicesNextToEachOther(*First, *Second)) 10552 continue; 10553 10554 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); 10555 --GlobalLSCost.Loads; 10556 // Move to the next pair. 10557 Second = nullptr; 10558 } 10559 } 10560 10561 /// \brief Check the profitability of all involved LoadedSlice. 10562 /// Currently, it is considered profitable if there is exactly two 10563 /// involved slices (1) which are (2) next to each other in memory, and 10564 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). 10565 /// 10566 /// Note: The order of the elements in \p LoadedSlices may be modified, but not 10567 /// the elements themselves. 10568 /// 10569 /// FIXME: When the cost model will be mature enough, we can relax 10570 /// constraints (1) and (2). 10571 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, 10572 const APInt &UsedBits, bool ForCodeSize) { 10573 unsigned NumberOfSlices = LoadedSlices.size(); 10574 if (StressLoadSlicing) 10575 return NumberOfSlices > 1; 10576 10577 // Check (1). 10578 if (NumberOfSlices != 2) 10579 return false; 10580 10581 // Check (2). 10582 if (!areUsedBitsDense(UsedBits)) 10583 return false; 10584 10585 // Check (3). 10586 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); 10587 // The original code has one big load. 10588 OrigCost.Loads = 1; 10589 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { 10590 const LoadedSlice &LS = LoadedSlices[CurrSlice]; 10591 // Accumulate the cost of all the slices. 10592 LoadedSlice::Cost SliceCost(LS, ForCodeSize); 10593 GlobalSlicingCost += SliceCost; 10594 10595 // Account as cost in the original configuration the gain obtained 10596 // with the current slices. 10597 OrigCost.addSliceGain(LS); 10598 } 10599 10600 // If the target supports paired load, adjust the cost accordingly. 10601 adjustCostForPairing(LoadedSlices, GlobalSlicingCost); 10602 return OrigCost > GlobalSlicingCost; 10603 } 10604 10605 /// \brief If the given load, \p LI, is used only by trunc or trunc(lshr) 10606 /// operations, split it in the various pieces being extracted. 10607 /// 10608 /// This sort of thing is introduced by SROA. 10609 /// This slicing takes care not to insert overlapping loads. 10610 /// \pre LI is a simple load (i.e., not an atomic or volatile load). 10611 bool DAGCombiner::SliceUpLoad(SDNode *N) { 10612 if (Level < AfterLegalizeDAG) 10613 return false; 10614 10615 LoadSDNode *LD = cast<LoadSDNode>(N); 10616 if (LD->isVolatile() || !ISD::isNormalLoad(LD) || 10617 !LD->getValueType(0).isInteger()) 10618 return false; 10619 10620 // Keep track of already used bits to detect overlapping values. 10621 // In that case, we will just abort the transformation. 10622 APInt UsedBits(LD->getValueSizeInBits(0), 0); 10623 10624 SmallVector<LoadedSlice, 4> LoadedSlices; 10625 10626 // Check if this load is used as several smaller chunks of bits. 10627 // Basically, look for uses in trunc or trunc(lshr) and record a new chain 10628 // of computation for each trunc. 10629 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 10630 UI != UIEnd; ++UI) { 10631 // Skip the uses of the chain. 10632 if (UI.getUse().getResNo() != 0) 10633 continue; 10634 10635 SDNode *User = *UI; 10636 unsigned Shift = 0; 10637 10638 // Check if this is a trunc(lshr). 10639 if (User->getOpcode() == ISD::SRL && User->hasOneUse() && 10640 isa<ConstantSDNode>(User->getOperand(1))) { 10641 Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue(); 10642 User = *User->use_begin(); 10643 } 10644 10645 // At this point, User is a Truncate, iff we encountered, trunc or 10646 // trunc(lshr). 10647 if (User->getOpcode() != ISD::TRUNCATE) 10648 return false; 10649 10650 // The width of the type must be a power of 2 and greater than 8-bits. 10651 // Otherwise the load cannot be represented in LLVM IR. 10652 // Moreover, if we shifted with a non-8-bits multiple, the slice 10653 // will be across several bytes. We do not support that. 10654 unsigned Width = User->getValueSizeInBits(0); 10655 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) 10656 return 0; 10657 10658 // Build the slice for this chain of computations. 10659 LoadedSlice LS(User, LD, Shift, &DAG); 10660 APInt CurrentUsedBits = LS.getUsedBits(); 10661 10662 // Check if this slice overlaps with another. 10663 if ((CurrentUsedBits & UsedBits) != 0) 10664 return false; 10665 // Update the bits used globally. 10666 UsedBits |= CurrentUsedBits; 10667 10668 // Check if the new slice would be legal. 10669 if (!LS.isLegal()) 10670 return false; 10671 10672 // Record the slice. 10673 LoadedSlices.push_back(LS); 10674 } 10675 10676 // Abort slicing if it does not seem to be profitable. 10677 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) 10678 return false; 10679 10680 ++SlicedLoads; 10681 10682 // Rewrite each chain to use an independent load. 10683 // By construction, each chain can be represented by a unique load. 10684 10685 // Prepare the argument for the new token factor for all the slices. 10686 SmallVector<SDValue, 8> ArgChains; 10687 for (SmallVectorImpl<LoadedSlice>::const_iterator 10688 LSIt = LoadedSlices.begin(), 10689 LSItEnd = LoadedSlices.end(); 10690 LSIt != LSItEnd; ++LSIt) { 10691 SDValue SliceInst = LSIt->loadSlice(); 10692 CombineTo(LSIt->Inst, SliceInst, true); 10693 if (SliceInst.getNode()->getOpcode() != ISD::LOAD) 10694 SliceInst = SliceInst.getOperand(0); 10695 assert(SliceInst->getOpcode() == ISD::LOAD && 10696 "It takes more than a zext to get to the loaded slice!!"); 10697 ArgChains.push_back(SliceInst.getValue(1)); 10698 } 10699 10700 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, 10701 ArgChains); 10702 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 10703 return true; 10704 } 10705 10706 /// Check to see if V is (and load (ptr), imm), where the load is having 10707 /// specific bytes cleared out. If so, return the byte size being masked out 10708 /// and the shift amount. 10709 static std::pair<unsigned, unsigned> 10710 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { 10711 std::pair<unsigned, unsigned> Result(0, 0); 10712 10713 // Check for the structure we're looking for. 10714 if (V->getOpcode() != ISD::AND || 10715 !isa<ConstantSDNode>(V->getOperand(1)) || 10716 !ISD::isNormalLoad(V->getOperand(0).getNode())) 10717 return Result; 10718 10719 // Check the chain and pointer. 10720 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); 10721 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. 10722 10723 // The store should be chained directly to the load or be an operand of a 10724 // tokenfactor. 10725 if (LD == Chain.getNode()) 10726 ; // ok. 10727 else if (Chain->getOpcode() != ISD::TokenFactor) 10728 return Result; // Fail. 10729 else { 10730 bool isOk = false; 10731 for (const SDValue &ChainOp : Chain->op_values()) 10732 if (ChainOp.getNode() == LD) { 10733 isOk = true; 10734 break; 10735 } 10736 if (!isOk) return Result; 10737 } 10738 10739 // This only handles simple types. 10740 if (V.getValueType() != MVT::i16 && 10741 V.getValueType() != MVT::i32 && 10742 V.getValueType() != MVT::i64) 10743 return Result; 10744 10745 // Check the constant mask. Invert it so that the bits being masked out are 10746 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits 10747 // follow the sign bit for uniformity. 10748 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); 10749 unsigned NotMaskLZ = countLeadingZeros(NotMask); 10750 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. 10751 unsigned NotMaskTZ = countTrailingZeros(NotMask); 10752 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. 10753 if (NotMaskLZ == 64) return Result; // All zero mask. 10754 10755 // See if we have a continuous run of bits. If so, we have 0*1+0* 10756 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) 10757 return Result; 10758 10759 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. 10760 if (V.getValueType() != MVT::i64 && NotMaskLZ) 10761 NotMaskLZ -= 64-V.getValueSizeInBits(); 10762 10763 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; 10764 switch (MaskedBytes) { 10765 case 1: 10766 case 2: 10767 case 4: break; 10768 default: return Result; // All one mask, or 5-byte mask. 10769 } 10770 10771 // Verify that the first bit starts at a multiple of mask so that the access 10772 // is aligned the same as the access width. 10773 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; 10774 10775 Result.first = MaskedBytes; 10776 Result.second = NotMaskTZ/8; 10777 return Result; 10778 } 10779 10780 10781 /// Check to see if IVal is something that provides a value as specified by 10782 /// MaskInfo. If so, replace the specified store with a narrower store of 10783 /// truncated IVal. 10784 static SDNode * 10785 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, 10786 SDValue IVal, StoreSDNode *St, 10787 DAGCombiner *DC) { 10788 unsigned NumBytes = MaskInfo.first; 10789 unsigned ByteShift = MaskInfo.second; 10790 SelectionDAG &DAG = DC->getDAG(); 10791 10792 // Check to see if IVal is all zeros in the part being masked in by the 'or' 10793 // that uses this. If not, this is not a replacement. 10794 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), 10795 ByteShift*8, (ByteShift+NumBytes)*8); 10796 if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr; 10797 10798 // Check that it is legal on the target to do this. It is legal if the new 10799 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type 10800 // legalization. 10801 MVT VT = MVT::getIntegerVT(NumBytes*8); 10802 if (!DC->isTypeLegal(VT)) 10803 return nullptr; 10804 10805 // Okay, we can do this! Replace the 'St' store with a store of IVal that is 10806 // shifted by ByteShift and truncated down to NumBytes. 10807 if (ByteShift) { 10808 SDLoc DL(IVal); 10809 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, 10810 DAG.getConstant(ByteShift*8, DL, 10811 DC->getShiftAmountTy(IVal.getValueType()))); 10812 } 10813 10814 // Figure out the offset for the store and the alignment of the access. 10815 unsigned StOffset; 10816 unsigned NewAlign = St->getAlignment(); 10817 10818 if (DAG.getDataLayout().isLittleEndian()) 10819 StOffset = ByteShift; 10820 else 10821 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; 10822 10823 SDValue Ptr = St->getBasePtr(); 10824 if (StOffset) { 10825 SDLoc DL(IVal); 10826 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), 10827 Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType())); 10828 NewAlign = MinAlign(NewAlign, StOffset); 10829 } 10830 10831 // Truncate down to the new size. 10832 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); 10833 10834 ++OpsNarrowed; 10835 return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr, 10836 St->getPointerInfo().getWithOffset(StOffset), 10837 false, false, NewAlign).getNode(); 10838 } 10839 10840 10841 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and 10842 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try 10843 /// narrowing the load and store if it would end up being a win for performance 10844 /// or code size. 10845 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { 10846 StoreSDNode *ST = cast<StoreSDNode>(N); 10847 if (ST->isVolatile()) 10848 return SDValue(); 10849 10850 SDValue Chain = ST->getChain(); 10851 SDValue Value = ST->getValue(); 10852 SDValue Ptr = ST->getBasePtr(); 10853 EVT VT = Value.getValueType(); 10854 10855 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) 10856 return SDValue(); 10857 10858 unsigned Opc = Value.getOpcode(); 10859 10860 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst 10861 // is a byte mask indicating a consecutive number of bytes, check to see if 10862 // Y is known to provide just those bytes. If so, we try to replace the 10863 // load + replace + store sequence with a single (narrower) store, which makes 10864 // the load dead. 10865 if (Opc == ISD::OR) { 10866 std::pair<unsigned, unsigned> MaskedLoad; 10867 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); 10868 if (MaskedLoad.first) 10869 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 10870 Value.getOperand(1), ST,this)) 10871 return SDValue(NewST, 0); 10872 10873 // Or is commutative, so try swapping X and Y. 10874 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); 10875 if (MaskedLoad.first) 10876 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 10877 Value.getOperand(0), ST,this)) 10878 return SDValue(NewST, 0); 10879 } 10880 10881 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || 10882 Value.getOperand(1).getOpcode() != ISD::Constant) 10883 return SDValue(); 10884 10885 SDValue N0 = Value.getOperand(0); 10886 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 10887 Chain == SDValue(N0.getNode(), 1)) { 10888 LoadSDNode *LD = cast<LoadSDNode>(N0); 10889 if (LD->getBasePtr() != Ptr || 10890 LD->getPointerInfo().getAddrSpace() != 10891 ST->getPointerInfo().getAddrSpace()) 10892 return SDValue(); 10893 10894 // Find the type to narrow it the load / op / store to. 10895 SDValue N1 = Value.getOperand(1); 10896 unsigned BitWidth = N1.getValueSizeInBits(); 10897 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); 10898 if (Opc == ISD::AND) 10899 Imm ^= APInt::getAllOnesValue(BitWidth); 10900 if (Imm == 0 || Imm.isAllOnesValue()) 10901 return SDValue(); 10902 unsigned ShAmt = Imm.countTrailingZeros(); 10903 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; 10904 unsigned NewBW = NextPowerOf2(MSB - ShAmt); 10905 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 10906 // The narrowing should be profitable, the load/store operation should be 10907 // legal (or custom) and the store size should be equal to the NewVT width. 10908 while (NewBW < BitWidth && 10909 (NewVT.getStoreSizeInBits() != NewBW || 10910 !TLI.isOperationLegalOrCustom(Opc, NewVT) || 10911 !TLI.isNarrowingProfitable(VT, NewVT))) { 10912 NewBW = NextPowerOf2(NewBW); 10913 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 10914 } 10915 if (NewBW >= BitWidth) 10916 return SDValue(); 10917 10918 // If the lsb changed does not start at the type bitwidth boundary, 10919 // start at the previous one. 10920 if (ShAmt % NewBW) 10921 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; 10922 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, 10923 std::min(BitWidth, ShAmt + NewBW)); 10924 if ((Imm & Mask) == Imm) { 10925 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); 10926 if (Opc == ISD::AND) 10927 NewImm ^= APInt::getAllOnesValue(NewBW); 10928 uint64_t PtrOff = ShAmt / 8; 10929 // For big endian targets, we need to adjust the offset to the pointer to 10930 // load the correct bytes. 10931 if (DAG.getDataLayout().isBigEndian()) 10932 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; 10933 10934 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); 10935 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); 10936 if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy)) 10937 return SDValue(); 10938 10939 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD), 10940 Ptr.getValueType(), Ptr, 10941 DAG.getConstant(PtrOff, SDLoc(LD), 10942 Ptr.getValueType())); 10943 SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0), 10944 LD->getChain(), NewPtr, 10945 LD->getPointerInfo().getWithOffset(PtrOff), 10946 LD->isVolatile(), LD->isNonTemporal(), 10947 LD->isInvariant(), NewAlign, 10948 LD->getAAInfo()); 10949 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, 10950 DAG.getConstant(NewImm, SDLoc(Value), 10951 NewVT)); 10952 SDValue NewST = DAG.getStore(Chain, SDLoc(N), 10953 NewVal, NewPtr, 10954 ST->getPointerInfo().getWithOffset(PtrOff), 10955 false, false, NewAlign); 10956 10957 AddToWorklist(NewPtr.getNode()); 10958 AddToWorklist(NewLD.getNode()); 10959 AddToWorklist(NewVal.getNode()); 10960 WorklistRemover DeadNodes(*this); 10961 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); 10962 ++OpsNarrowed; 10963 return NewST; 10964 } 10965 } 10966 10967 return SDValue(); 10968 } 10969 10970 /// For a given floating point load / store pair, if the load value isn't used 10971 /// by any other operations, then consider transforming the pair to integer 10972 /// load / store operations if the target deems the transformation profitable. 10973 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { 10974 StoreSDNode *ST = cast<StoreSDNode>(N); 10975 SDValue Chain = ST->getChain(); 10976 SDValue Value = ST->getValue(); 10977 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && 10978 Value.hasOneUse() && 10979 Chain == SDValue(Value.getNode(), 1)) { 10980 LoadSDNode *LD = cast<LoadSDNode>(Value); 10981 EVT VT = LD->getMemoryVT(); 10982 if (!VT.isFloatingPoint() || 10983 VT != ST->getMemoryVT() || 10984 LD->isNonTemporal() || 10985 ST->isNonTemporal() || 10986 LD->getPointerInfo().getAddrSpace() != 0 || 10987 ST->getPointerInfo().getAddrSpace() != 0) 10988 return SDValue(); 10989 10990 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 10991 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || 10992 !TLI.isOperationLegal(ISD::STORE, IntVT) || 10993 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || 10994 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) 10995 return SDValue(); 10996 10997 unsigned LDAlign = LD->getAlignment(); 10998 unsigned STAlign = ST->getAlignment(); 10999 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); 11000 unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy); 11001 if (LDAlign < ABIAlign || STAlign < ABIAlign) 11002 return SDValue(); 11003 11004 SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value), 11005 LD->getChain(), LD->getBasePtr(), 11006 LD->getPointerInfo(), 11007 false, false, false, LDAlign); 11008 11009 SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N), 11010 NewLD, ST->getBasePtr(), 11011 ST->getPointerInfo(), 11012 false, false, STAlign); 11013 11014 AddToWorklist(NewLD.getNode()); 11015 AddToWorklist(NewST.getNode()); 11016 WorklistRemover DeadNodes(*this); 11017 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); 11018 ++LdStFP2Int; 11019 return NewST; 11020 } 11021 11022 return SDValue(); 11023 } 11024 11025 namespace { 11026 /// Helper struct to parse and store a memory address as base + index + offset. 11027 /// We ignore sign extensions when it is safe to do so. 11028 /// The following two expressions are not equivalent. To differentiate we need 11029 /// to store whether there was a sign extension involved in the index 11030 /// computation. 11031 /// (load (i64 add (i64 copyfromreg %c) 11032 /// (i64 signextend (add (i8 load %index) 11033 /// (i8 1)))) 11034 /// vs 11035 /// 11036 /// (load (i64 add (i64 copyfromreg %c) 11037 /// (i64 signextend (i32 add (i32 signextend (i8 load %index)) 11038 /// (i32 1))))) 11039 struct BaseIndexOffset { 11040 SDValue Base; 11041 SDValue Index; 11042 int64_t Offset; 11043 bool IsIndexSignExt; 11044 11045 BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {} 11046 11047 BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset, 11048 bool IsIndexSignExt) : 11049 Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {} 11050 11051 bool equalBaseIndex(const BaseIndexOffset &Other) { 11052 return Other.Base == Base && Other.Index == Index && 11053 Other.IsIndexSignExt == IsIndexSignExt; 11054 } 11055 11056 /// Parses tree in Ptr for base, index, offset addresses. 11057 static BaseIndexOffset match(SDValue Ptr, SelectionDAG &DAG) { 11058 bool IsIndexSignExt = false; 11059 11060 // Split up a folded GlobalAddress+Offset into its component parts. 11061 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ptr)) 11062 if (GA->getOpcode() == ISD::GlobalAddress && GA->getOffset() != 0) { 11063 return BaseIndexOffset(DAG.getGlobalAddress(GA->getGlobal(), 11064 SDLoc(GA), 11065 GA->getValueType(0), 11066 /*Offset=*/0, 11067 /*isTargetGA=*/false, 11068 GA->getTargetFlags()), 11069 SDValue(), 11070 GA->getOffset(), 11071 IsIndexSignExt); 11072 } 11073 11074 // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD 11075 // instruction, then it could be just the BASE or everything else we don't 11076 // know how to handle. Just use Ptr as BASE and give up. 11077 if (Ptr->getOpcode() != ISD::ADD) 11078 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 11079 11080 // We know that we have at least an ADD instruction. Try to pattern match 11081 // the simple case of BASE + OFFSET. 11082 if (isa<ConstantSDNode>(Ptr->getOperand(1))) { 11083 int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue(); 11084 return BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset, 11085 IsIndexSignExt); 11086 } 11087 11088 // Inside a loop the current BASE pointer is calculated using an ADD and a 11089 // MUL instruction. In this case Ptr is the actual BASE pointer. 11090 // (i64 add (i64 %array_ptr) 11091 // (i64 mul (i64 %induction_var) 11092 // (i64 %element_size))) 11093 if (Ptr->getOperand(1)->getOpcode() == ISD::MUL) 11094 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 11095 11096 // Look at Base + Index + Offset cases. 11097 SDValue Base = Ptr->getOperand(0); 11098 SDValue IndexOffset = Ptr->getOperand(1); 11099 11100 // Skip signextends. 11101 if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) { 11102 IndexOffset = IndexOffset->getOperand(0); 11103 IsIndexSignExt = true; 11104 } 11105 11106 // Either the case of Base + Index (no offset) or something else. 11107 if (IndexOffset->getOpcode() != ISD::ADD) 11108 return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt); 11109 11110 // Now we have the case of Base + Index + offset. 11111 SDValue Index = IndexOffset->getOperand(0); 11112 SDValue Offset = IndexOffset->getOperand(1); 11113 11114 if (!isa<ConstantSDNode>(Offset)) 11115 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 11116 11117 // Ignore signextends. 11118 if (Index->getOpcode() == ISD::SIGN_EXTEND) { 11119 Index = Index->getOperand(0); 11120 IsIndexSignExt = true; 11121 } else IsIndexSignExt = false; 11122 11123 int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue(); 11124 return BaseIndexOffset(Base, Index, Off, IsIndexSignExt); 11125 } 11126 }; 11127 } // namespace 11128 11129 // This is a helper function for visitMUL to check the profitability 11130 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 11131 // MulNode is the original multiply, AddNode is (add x, c1), 11132 // and ConstNode is c2. 11133 // 11134 // If the (add x, c1) has multiple uses, we could increase 11135 // the number of adds if we make this transformation. 11136 // It would only be worth doing this if we can remove a 11137 // multiply in the process. Check for that here. 11138 // To illustrate: 11139 // (A + c1) * c3 11140 // (A + c2) * c3 11141 // We're checking for cases where we have common "c3 * A" expressions. 11142 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, 11143 SDValue &AddNode, 11144 SDValue &ConstNode) { 11145 APInt Val; 11146 11147 // If the add only has one use, this would be OK to do. 11148 if (AddNode.getNode()->hasOneUse()) 11149 return true; 11150 11151 // Walk all the users of the constant with which we're multiplying. 11152 for (SDNode *Use : ConstNode->uses()) { 11153 11154 if (Use == MulNode) // This use is the one we're on right now. Skip it. 11155 continue; 11156 11157 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. 11158 SDNode *OtherOp; 11159 SDNode *MulVar = AddNode.getOperand(0).getNode(); 11160 11161 // OtherOp is what we're multiplying against the constant. 11162 if (Use->getOperand(0) == ConstNode) 11163 OtherOp = Use->getOperand(1).getNode(); 11164 else 11165 OtherOp = Use->getOperand(0).getNode(); 11166 11167 // Check to see if multiply is with the same operand of our "add". 11168 // 11169 // ConstNode = CONST 11170 // Use = ConstNode * A <-- visiting Use. OtherOp is A. 11171 // ... 11172 // AddNode = (A + c1) <-- MulVar is A. 11173 // = AddNode * ConstNode <-- current visiting instruction. 11174 // 11175 // If we make this transformation, we will have a common 11176 // multiply (ConstNode * A) that we can save. 11177 if (OtherOp == MulVar) 11178 return true; 11179 11180 // Now check to see if a future expansion will give us a common 11181 // multiply. 11182 // 11183 // ConstNode = CONST 11184 // AddNode = (A + c1) 11185 // ... = AddNode * ConstNode <-- current visiting instruction. 11186 // ... 11187 // OtherOp = (A + c2) 11188 // Use = OtherOp * ConstNode <-- visiting Use. 11189 // 11190 // If we make this transformation, we will have a common 11191 // multiply (CONST * A) after we also do the same transformation 11192 // to the "t2" instruction. 11193 if (OtherOp->getOpcode() == ISD::ADD && 11194 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && 11195 OtherOp->getOperand(0).getNode() == MulVar) 11196 return true; 11197 } 11198 } 11199 11200 // Didn't find a case where this would be profitable. 11201 return false; 11202 } 11203 11204 SDValue DAGCombiner::getMergedConstantVectorStore(SelectionDAG &DAG, 11205 SDLoc SL, 11206 ArrayRef<MemOpLink> Stores, 11207 SmallVectorImpl<SDValue> &Chains, 11208 EVT Ty) const { 11209 SmallVector<SDValue, 8> BuildVector; 11210 11211 for (unsigned I = 0, E = Ty.getVectorNumElements(); I != E; ++I) { 11212 StoreSDNode *St = cast<StoreSDNode>(Stores[I].MemNode); 11213 Chains.push_back(St->getChain()); 11214 BuildVector.push_back(St->getValue()); 11215 } 11216 11217 return DAG.getBuildVector(Ty, SL, BuildVector); 11218 } 11219 11220 bool DAGCombiner::MergeStoresOfConstantsOrVecElts( 11221 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, 11222 unsigned NumStores, bool IsConstantSrc, bool UseVector) { 11223 // Make sure we have something to merge. 11224 if (NumStores < 2) 11225 return false; 11226 11227 int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; 11228 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 11229 unsigned LatestNodeUsed = 0; 11230 11231 for (unsigned i=0; i < NumStores; ++i) { 11232 // Find a chain for the new wide-store operand. Notice that some 11233 // of the store nodes that we found may not be selected for inclusion 11234 // in the wide store. The chain we use needs to be the chain of the 11235 // latest store node which is *used* and replaced by the wide store. 11236 if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum) 11237 LatestNodeUsed = i; 11238 } 11239 11240 SmallVector<SDValue, 8> Chains; 11241 11242 // The latest Node in the DAG. 11243 LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode; 11244 SDLoc DL(StoreNodes[0].MemNode); 11245 11246 SDValue StoredVal; 11247 if (UseVector) { 11248 bool IsVec = MemVT.isVector(); 11249 unsigned Elts = NumStores; 11250 if (IsVec) { 11251 // When merging vector stores, get the total number of elements. 11252 Elts *= MemVT.getVectorNumElements(); 11253 } 11254 // Get the type for the merged vector store. 11255 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 11256 assert(TLI.isTypeLegal(Ty) && "Illegal vector store"); 11257 11258 if (IsConstantSrc) { 11259 StoredVal = getMergedConstantVectorStore(DAG, DL, StoreNodes, Chains, Ty); 11260 } else { 11261 SmallVector<SDValue, 8> Ops; 11262 for (unsigned i = 0; i < NumStores; ++i) { 11263 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11264 SDValue Val = St->getValue(); 11265 // All operands of BUILD_VECTOR / CONCAT_VECTOR must have the same type. 11266 if (Val.getValueType() != MemVT) 11267 return false; 11268 Ops.push_back(Val); 11269 Chains.push_back(St->getChain()); 11270 } 11271 11272 // Build the extracted vector elements back into a vector. 11273 StoredVal = DAG.getNode(IsVec ? ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, 11274 DL, Ty, Ops); } 11275 } else { 11276 // We should always use a vector store when merging extracted vector 11277 // elements, so this path implies a store of constants. 11278 assert(IsConstantSrc && "Merged vector elements should use vector store"); 11279 11280 unsigned SizeInBits = NumStores * ElementSizeBytes * 8; 11281 APInt StoreInt(SizeInBits, 0); 11282 11283 // Construct a single integer constant which is made of the smaller 11284 // constant inputs. 11285 bool IsLE = DAG.getDataLayout().isLittleEndian(); 11286 for (unsigned i = 0; i < NumStores; ++i) { 11287 unsigned Idx = IsLE ? (NumStores - 1 - i) : i; 11288 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); 11289 Chains.push_back(St->getChain()); 11290 11291 SDValue Val = St->getValue(); 11292 StoreInt <<= ElementSizeBytes * 8; 11293 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { 11294 StoreInt |= C->getAPIntValue().zext(SizeInBits); 11295 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { 11296 StoreInt |= C->getValueAPF().bitcastToAPInt().zext(SizeInBits); 11297 } else { 11298 llvm_unreachable("Invalid constant element type"); 11299 } 11300 } 11301 11302 // Create the new Load and Store operations. 11303 EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); 11304 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); 11305 } 11306 11307 assert(!Chains.empty()); 11308 11309 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 11310 SDValue NewStore = DAG.getStore(NewChain, DL, StoredVal, 11311 FirstInChain->getBasePtr(), 11312 FirstInChain->getPointerInfo(), 11313 false, false, 11314 FirstInChain->getAlignment()); 11315 11316 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11317 : DAG.getSubtarget().useAA(); 11318 if (UseAA) { 11319 // Replace all merged stores with the new store. 11320 for (unsigned i = 0; i < NumStores; ++i) 11321 CombineTo(StoreNodes[i].MemNode, NewStore); 11322 } else { 11323 // Replace the last store with the new store. 11324 CombineTo(LatestOp, NewStore); 11325 // Erase all other stores. 11326 for (unsigned i = 0; i < NumStores; ++i) { 11327 if (StoreNodes[i].MemNode == LatestOp) 11328 continue; 11329 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11330 // ReplaceAllUsesWith will replace all uses that existed when it was 11331 // called, but graph optimizations may cause new ones to appear. For 11332 // example, the case in pr14333 looks like 11333 // 11334 // St's chain -> St -> another store -> X 11335 // 11336 // And the only difference from St to the other store is the chain. 11337 // When we change it's chain to be St's chain they become identical, 11338 // get CSEed and the net result is that X is now a use of St. 11339 // Since we know that St is redundant, just iterate. 11340 while (!St->use_empty()) 11341 DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain()); 11342 deleteAndRecombine(St); 11343 } 11344 } 11345 11346 return true; 11347 } 11348 11349 void DAGCombiner::getStoreMergeAndAliasCandidates( 11350 StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes, 11351 SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes) { 11352 // This holds the base pointer, index, and the offset in bytes from the base 11353 // pointer. 11354 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr(), DAG); 11355 11356 // We must have a base and an offset. 11357 if (!BasePtr.Base.getNode()) 11358 return; 11359 11360 // Do not handle stores to undef base pointers. 11361 if (BasePtr.Base.isUndef()) 11362 return; 11363 11364 // Walk up the chain and look for nodes with offsets from the same 11365 // base pointer. Stop when reaching an instruction with a different kind 11366 // or instruction which has a different base pointer. 11367 EVT MemVT = St->getMemoryVT(); 11368 unsigned Seq = 0; 11369 StoreSDNode *Index = St; 11370 11371 11372 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11373 : DAG.getSubtarget().useAA(); 11374 11375 if (UseAA) { 11376 // Look at other users of the same chain. Stores on the same chain do not 11377 // alias. If combiner-aa is enabled, non-aliasing stores are canonicalized 11378 // to be on the same chain, so don't bother looking at adjacent chains. 11379 11380 SDValue Chain = St->getChain(); 11381 for (auto I = Chain->use_begin(), E = Chain->use_end(); I != E; ++I) { 11382 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) { 11383 if (I.getOperandNo() != 0) 11384 continue; 11385 11386 if (OtherST->isVolatile() || OtherST->isIndexed()) 11387 continue; 11388 11389 if (OtherST->getMemoryVT() != MemVT) 11390 continue; 11391 11392 BaseIndexOffset Ptr = BaseIndexOffset::match(OtherST->getBasePtr(), DAG); 11393 11394 if (Ptr.equalBaseIndex(BasePtr)) 11395 StoreNodes.push_back(MemOpLink(OtherST, Ptr.Offset, Seq++)); 11396 } 11397 } 11398 11399 return; 11400 } 11401 11402 while (Index) { 11403 // If the chain has more than one use, then we can't reorder the mem ops. 11404 if (Index != St && !SDValue(Index, 0)->hasOneUse()) 11405 break; 11406 11407 // Find the base pointer and offset for this memory node. 11408 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr(), DAG); 11409 11410 // Check that the base pointer is the same as the original one. 11411 if (!Ptr.equalBaseIndex(BasePtr)) 11412 break; 11413 11414 // The memory operands must not be volatile. 11415 if (Index->isVolatile() || Index->isIndexed()) 11416 break; 11417 11418 // No truncation. 11419 if (Index->isTruncatingStore()) 11420 break; 11421 11422 // The stored memory type must be the same. 11423 if (Index->getMemoryVT() != MemVT) 11424 break; 11425 11426 // We do not allow under-aligned stores in order to prevent 11427 // overriding stores. NOTE: this is a bad hack. Alignment SHOULD 11428 // be irrelevant here; what MATTERS is that we not move memory 11429 // operations that potentially overlap past each-other. 11430 if (Index->getAlignment() < MemVT.getStoreSize()) 11431 break; 11432 11433 // We found a potential memory operand to merge. 11434 StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++)); 11435 11436 // Find the next memory operand in the chain. If the next operand in the 11437 // chain is a store then move up and continue the scan with the next 11438 // memory operand. If the next operand is a load save it and use alias 11439 // information to check if it interferes with anything. 11440 SDNode *NextInChain = Index->getChain().getNode(); 11441 while (1) { 11442 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { 11443 // We found a store node. Use it for the next iteration. 11444 Index = STn; 11445 break; 11446 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { 11447 if (Ldn->isVolatile()) { 11448 Index = nullptr; 11449 break; 11450 } 11451 11452 // Save the load node for later. Continue the scan. 11453 AliasLoadNodes.push_back(Ldn); 11454 NextInChain = Ldn->getChain().getNode(); 11455 continue; 11456 } else { 11457 Index = nullptr; 11458 break; 11459 } 11460 } 11461 } 11462 } 11463 11464 // We need to check that merging these stores does not cause a loop 11465 // in the DAG. Any store candidate may depend on another candidate 11466 // indirectly through its operand (we already consider dependencies 11467 // through the chain). Check in parallel by searching up from 11468 // non-chain operands of candidates. 11469 bool DAGCombiner::checkMergeStoreCandidatesForDependencies( 11470 SmallVectorImpl<MemOpLink> &StoreNodes) { 11471 SmallPtrSet<const SDNode *, 16> Visited; 11472 SmallVector<const SDNode *, 8> Worklist; 11473 // search ops of store candidates 11474 for (unsigned i = 0; i < StoreNodes.size(); ++i) { 11475 SDNode *n = StoreNodes[i].MemNode; 11476 // Potential loops may happen only through non-chain operands 11477 for (unsigned j = 1; j < n->getNumOperands(); ++j) 11478 Worklist.push_back(n->getOperand(j).getNode()); 11479 } 11480 // search through DAG. We can stop early if we find a storenode 11481 for (unsigned i = 0; i < StoreNodes.size(); ++i) { 11482 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist)) 11483 return false; 11484 } 11485 return true; 11486 } 11487 11488 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) { 11489 if (OptLevel == CodeGenOpt::None) 11490 return false; 11491 11492 EVT MemVT = St->getMemoryVT(); 11493 int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; 11494 bool NoVectors = DAG.getMachineFunction().getFunction()->hasFnAttribute( 11495 Attribute::NoImplicitFloat); 11496 11497 // This function cannot currently deal with non-byte-sized memory sizes. 11498 if (ElementSizeBytes * 8 != MemVT.getSizeInBits()) 11499 return false; 11500 11501 if (!MemVT.isSimple()) 11502 return false; 11503 11504 // Perform an early exit check. Do not bother looking at stored values that 11505 // are not constants, loads, or extracted vector elements. 11506 SDValue StoredVal = St->getValue(); 11507 bool IsLoadSrc = isa<LoadSDNode>(StoredVal); 11508 bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) || 11509 isa<ConstantFPSDNode>(StoredVal); 11510 bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 11511 StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR); 11512 11513 if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc) 11514 return false; 11515 11516 // Don't merge vectors into wider vectors if the source data comes from loads. 11517 // TODO: This restriction can be lifted by using logic similar to the 11518 // ExtractVecSrc case. 11519 if (MemVT.isVector() && IsLoadSrc) 11520 return false; 11521 11522 // Only look at ends of store sequences. 11523 SDValue Chain = SDValue(St, 0); 11524 if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE) 11525 return false; 11526 11527 // Save the LoadSDNodes that we find in the chain. 11528 // We need to make sure that these nodes do not interfere with 11529 // any of the store nodes. 11530 SmallVector<LSBaseSDNode*, 8> AliasLoadNodes; 11531 11532 // Save the StoreSDNodes that we find in the chain. 11533 SmallVector<MemOpLink, 8> StoreNodes; 11534 11535 getStoreMergeAndAliasCandidates(St, StoreNodes, AliasLoadNodes); 11536 11537 // Check if there is anything to merge. 11538 if (StoreNodes.size() < 2) 11539 return false; 11540 11541 // only do dep endence check in AA case 11542 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11543 : DAG.getSubtarget().useAA(); 11544 if (UseAA && !checkMergeStoreCandidatesForDependencies(StoreNodes)) 11545 return false; 11546 11547 // Sort the memory operands according to their distance from the 11548 // base pointer. As a secondary criteria: make sure stores coming 11549 // later in the code come first in the list. This is important for 11550 // the non-UseAA case, because we're merging stores into the FINAL 11551 // store along a chain which potentially contains aliasing stores. 11552 // Thus, if there are multiple stores to the same address, the last 11553 // one can be considered for merging but not the others. 11554 std::sort(StoreNodes.begin(), StoreNodes.end(), 11555 [](MemOpLink LHS, MemOpLink RHS) { 11556 return LHS.OffsetFromBase < RHS.OffsetFromBase || 11557 (LHS.OffsetFromBase == RHS.OffsetFromBase && 11558 LHS.SequenceNum < RHS.SequenceNum); 11559 }); 11560 11561 // Scan the memory operations on the chain and find the first non-consecutive 11562 // store memory address. 11563 unsigned LastConsecutiveStore = 0; 11564 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 11565 for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) { 11566 11567 // Check that the addresses are consecutive starting from the second 11568 // element in the list of stores. 11569 if (i > 0) { 11570 int64_t CurrAddress = StoreNodes[i].OffsetFromBase; 11571 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 11572 break; 11573 } 11574 11575 // Check if this store interferes with any of the loads that we found. 11576 // If we find a load that alias with this store. Stop the sequence. 11577 if (std::any_of(AliasLoadNodes.begin(), AliasLoadNodes.end(), 11578 [&](LSBaseSDNode* Ldn) { 11579 return isAlias(Ldn, StoreNodes[i].MemNode); 11580 })) 11581 break; 11582 11583 // Mark this node as useful. 11584 LastConsecutiveStore = i; 11585 } 11586 11587 // The node with the lowest store address. 11588 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 11589 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 11590 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 11591 LLVMContext &Context = *DAG.getContext(); 11592 const DataLayout &DL = DAG.getDataLayout(); 11593 11594 // Store the constants into memory as one consecutive store. 11595 if (IsConstantSrc) { 11596 unsigned LastLegalType = 0; 11597 unsigned LastLegalVectorType = 0; 11598 bool NonZero = false; 11599 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { 11600 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11601 SDValue StoredVal = St->getValue(); 11602 11603 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) { 11604 NonZero |= !C->isNullValue(); 11605 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) { 11606 NonZero |= !C->getConstantFPValue()->isNullValue(); 11607 } else { 11608 // Non-constant. 11609 break; 11610 } 11611 11612 // Find a legal type for the constant store. 11613 unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; 11614 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); 11615 bool IsFast; 11616 if (TLI.isTypeLegal(StoreTy) && 11617 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11618 FirstStoreAlign, &IsFast) && IsFast) { 11619 LastLegalType = i+1; 11620 // Or check whether a truncstore is legal. 11621 } else if (TLI.getTypeAction(Context, StoreTy) == 11622 TargetLowering::TypePromoteInteger) { 11623 EVT LegalizedStoredValueTy = 11624 TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); 11625 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && 11626 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11627 FirstStoreAS, FirstStoreAlign, &IsFast) && 11628 IsFast) { 11629 LastLegalType = i + 1; 11630 } 11631 } 11632 11633 // We only use vectors if the constant is known to be zero or the target 11634 // allows it and the function is not marked with the noimplicitfloat 11635 // attribute. 11636 if ((!NonZero || TLI.storeOfVectorConstantIsCheap(MemVT, i+1, 11637 FirstStoreAS)) && 11638 !NoVectors) { 11639 // Find a legal type for the vector store. 11640 EVT Ty = EVT::getVectorVT(Context, MemVT, i+1); 11641 if (TLI.isTypeLegal(Ty) && 11642 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, 11643 FirstStoreAlign, &IsFast) && IsFast) 11644 LastLegalVectorType = i + 1; 11645 } 11646 } 11647 11648 // Check if we found a legal integer type to store. 11649 if (LastLegalType == 0 && LastLegalVectorType == 0) 11650 return false; 11651 11652 bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors; 11653 unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType; 11654 11655 return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, 11656 true, UseVector); 11657 } 11658 11659 // When extracting multiple vector elements, try to store them 11660 // in one vector store rather than a sequence of scalar stores. 11661 if (IsExtractVecSrc) { 11662 unsigned NumStoresToMerge = 0; 11663 bool IsVec = MemVT.isVector(); 11664 for (unsigned i = 0; i < LastConsecutiveStore + 1; ++i) { 11665 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11666 unsigned StoreValOpcode = St->getValue().getOpcode(); 11667 // This restriction could be loosened. 11668 // Bail out if any stored values are not elements extracted from a vector. 11669 // It should be possible to handle mixed sources, but load sources need 11670 // more careful handling (see the block of code below that handles 11671 // consecutive loads). 11672 if (StoreValOpcode != ISD::EXTRACT_VECTOR_ELT && 11673 StoreValOpcode != ISD::EXTRACT_SUBVECTOR) 11674 return false; 11675 11676 // Find a legal type for the vector store. 11677 unsigned Elts = i + 1; 11678 if (IsVec) { 11679 // When merging vector stores, get the total number of elements. 11680 Elts *= MemVT.getVectorNumElements(); 11681 } 11682 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 11683 bool IsFast; 11684 if (TLI.isTypeLegal(Ty) && 11685 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, 11686 FirstStoreAlign, &IsFast) && IsFast) 11687 NumStoresToMerge = i + 1; 11688 } 11689 11690 return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumStoresToMerge, 11691 false, true); 11692 } 11693 11694 // Below we handle the case of multiple consecutive stores that 11695 // come from multiple consecutive loads. We merge them into a single 11696 // wide load and a single wide store. 11697 11698 // Look for load nodes which are used by the stored values. 11699 SmallVector<MemOpLink, 8> LoadNodes; 11700 11701 // Find acceptable loads. Loads need to have the same chain (token factor), 11702 // must not be zext, volatile, indexed, and they must be consecutive. 11703 BaseIndexOffset LdBasePtr; 11704 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { 11705 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11706 LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue()); 11707 if (!Ld) break; 11708 11709 // Loads must only have one use. 11710 if (!Ld->hasNUsesOfValue(1, 0)) 11711 break; 11712 11713 // The memory operands must not be volatile. 11714 if (Ld->isVolatile() || Ld->isIndexed()) 11715 break; 11716 11717 // We do not accept ext loads. 11718 if (Ld->getExtensionType() != ISD::NON_EXTLOAD) 11719 break; 11720 11721 // The stored memory type must be the same. 11722 if (Ld->getMemoryVT() != MemVT) 11723 break; 11724 11725 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr(), DAG); 11726 // If this is not the first ptr that we check. 11727 if (LdBasePtr.Base.getNode()) { 11728 // The base ptr must be the same. 11729 if (!LdPtr.equalBaseIndex(LdBasePtr)) 11730 break; 11731 } else { 11732 // Check that all other base pointers are the same as this one. 11733 LdBasePtr = LdPtr; 11734 } 11735 11736 // We found a potential memory operand to merge. 11737 LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0)); 11738 } 11739 11740 if (LoadNodes.size() < 2) 11741 return false; 11742 11743 // If we have load/store pair instructions and we only have two values, 11744 // don't bother. 11745 unsigned RequiredAlignment; 11746 if (LoadNodes.size() == 2 && TLI.hasPairedLoad(MemVT, RequiredAlignment) && 11747 St->getAlignment() >= RequiredAlignment) 11748 return false; 11749 11750 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); 11751 unsigned FirstLoadAS = FirstLoad->getAddressSpace(); 11752 unsigned FirstLoadAlign = FirstLoad->getAlignment(); 11753 11754 // Scan the memory operations on the chain and find the first non-consecutive 11755 // load memory address. These variables hold the index in the store node 11756 // array. 11757 unsigned LastConsecutiveLoad = 0; 11758 // This variable refers to the size and not index in the array. 11759 unsigned LastLegalVectorType = 0; 11760 unsigned LastLegalIntegerType = 0; 11761 StartAddress = LoadNodes[0].OffsetFromBase; 11762 SDValue FirstChain = FirstLoad->getChain(); 11763 for (unsigned i = 1; i < LoadNodes.size(); ++i) { 11764 // All loads must share the same chain. 11765 if (LoadNodes[i].MemNode->getChain() != FirstChain) 11766 break; 11767 11768 int64_t CurrAddress = LoadNodes[i].OffsetFromBase; 11769 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 11770 break; 11771 LastConsecutiveLoad = i; 11772 // Find a legal type for the vector store. 11773 EVT StoreTy = EVT::getVectorVT(Context, MemVT, i+1); 11774 bool IsFastSt, IsFastLd; 11775 if (TLI.isTypeLegal(StoreTy) && 11776 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11777 FirstStoreAlign, &IsFastSt) && IsFastSt && 11778 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 11779 FirstLoadAlign, &IsFastLd) && IsFastLd) { 11780 LastLegalVectorType = i + 1; 11781 } 11782 11783 // Find a legal type for the integer store. 11784 unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; 11785 StoreTy = EVT::getIntegerVT(Context, SizeInBits); 11786 if (TLI.isTypeLegal(StoreTy) && 11787 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11788 FirstStoreAlign, &IsFastSt) && IsFastSt && 11789 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 11790 FirstLoadAlign, &IsFastLd) && IsFastLd) 11791 LastLegalIntegerType = i + 1; 11792 // Or check whether a truncstore and extload is legal. 11793 else if (TLI.getTypeAction(Context, StoreTy) == 11794 TargetLowering::TypePromoteInteger) { 11795 EVT LegalizedStoredValueTy = 11796 TLI.getTypeToTransformTo(Context, StoreTy); 11797 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && 11798 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValueTy, StoreTy) && 11799 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValueTy, StoreTy) && 11800 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValueTy, StoreTy) && 11801 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11802 FirstStoreAS, FirstStoreAlign, &IsFastSt) && 11803 IsFastSt && 11804 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11805 FirstLoadAS, FirstLoadAlign, &IsFastLd) && 11806 IsFastLd) 11807 LastLegalIntegerType = i+1; 11808 } 11809 } 11810 11811 // Only use vector types if the vector type is larger than the integer type. 11812 // If they are the same, use integers. 11813 bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors; 11814 unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType); 11815 11816 // We add +1 here because the LastXXX variables refer to location while 11817 // the NumElem refers to array/index size. 11818 unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1; 11819 NumElem = std::min(LastLegalType, NumElem); 11820 11821 if (NumElem < 2) 11822 return false; 11823 11824 // Collect the chains from all merged stores. 11825 SmallVector<SDValue, 8> MergeStoreChains; 11826 MergeStoreChains.push_back(StoreNodes[0].MemNode->getChain()); 11827 11828 // The latest Node in the DAG. 11829 unsigned LatestNodeUsed = 0; 11830 for (unsigned i=1; i<NumElem; ++i) { 11831 // Find a chain for the new wide-store operand. Notice that some 11832 // of the store nodes that we found may not be selected for inclusion 11833 // in the wide store. The chain we use needs to be the chain of the 11834 // latest store node which is *used* and replaced by the wide store. 11835 if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum) 11836 LatestNodeUsed = i; 11837 11838 MergeStoreChains.push_back(StoreNodes[i].MemNode->getChain()); 11839 } 11840 11841 LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode; 11842 11843 // Find if it is better to use vectors or integers to load and store 11844 // to memory. 11845 EVT JointMemOpVT; 11846 if (UseVectorTy) { 11847 JointMemOpVT = EVT::getVectorVT(Context, MemVT, NumElem); 11848 } else { 11849 unsigned SizeInBits = NumElem * ElementSizeBytes * 8; 11850 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); 11851 } 11852 11853 SDLoc LoadDL(LoadNodes[0].MemNode); 11854 SDLoc StoreDL(StoreNodes[0].MemNode); 11855 11856 // The merged loads are required to have the same incoming chain, so 11857 // using the first's chain is acceptable. 11858 SDValue NewLoad = DAG.getLoad( 11859 JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(), 11860 FirstLoad->getPointerInfo(), false, false, false, FirstLoadAlign); 11861 11862 SDValue NewStoreChain = 11863 DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, MergeStoreChains); 11864 11865 SDValue NewStore = DAG.getStore( 11866 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), 11867 FirstInChain->getPointerInfo(), false, false, FirstStoreAlign); 11868 11869 // Transfer chain users from old loads to the new load. 11870 for (unsigned i = 0; i < NumElem; ++i) { 11871 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); 11872 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), 11873 SDValue(NewLoad.getNode(), 1)); 11874 } 11875 11876 if (UseAA) { 11877 // Replace the all stores with the new store. 11878 for (unsigned i = 0; i < NumElem; ++i) 11879 CombineTo(StoreNodes[i].MemNode, NewStore); 11880 } else { 11881 // Replace the last store with the new store. 11882 CombineTo(LatestOp, NewStore); 11883 // Erase all other stores. 11884 for (unsigned i = 0; i < NumElem; ++i) { 11885 // Remove all Store nodes. 11886 if (StoreNodes[i].MemNode == LatestOp) 11887 continue; 11888 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11889 DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain()); 11890 deleteAndRecombine(St); 11891 } 11892 } 11893 11894 return true; 11895 } 11896 11897 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { 11898 SDLoc SL(ST); 11899 SDValue ReplStore; 11900 11901 // Replace the chain to avoid dependency. 11902 if (ST->isTruncatingStore()) { 11903 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), 11904 ST->getBasePtr(), ST->getMemoryVT(), 11905 ST->getMemOperand()); 11906 } else { 11907 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), 11908 ST->getMemOperand()); 11909 } 11910 11911 // Create token to keep both nodes around. 11912 SDValue Token = DAG.getNode(ISD::TokenFactor, SL, 11913 MVT::Other, ST->getChain(), ReplStore); 11914 11915 // Make sure the new and old chains are cleaned up. 11916 AddToWorklist(Token.getNode()); 11917 11918 // Don't add users to work list. 11919 return CombineTo(ST, Token, false); 11920 } 11921 11922 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { 11923 SDValue Value = ST->getValue(); 11924 if (Value.getOpcode() == ISD::TargetConstantFP) 11925 return SDValue(); 11926 11927 SDLoc DL(ST); 11928 11929 SDValue Chain = ST->getChain(); 11930 SDValue Ptr = ST->getBasePtr(); 11931 11932 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); 11933 11934 // NOTE: If the original store is volatile, this transform must not increase 11935 // the number of stores. For example, on x86-32 an f64 can be stored in one 11936 // processor operation but an i64 (which is not legal) requires two. So the 11937 // transform should not be done in this case. 11938 11939 SDValue Tmp; 11940 switch (CFP->getSimpleValueType(0).SimpleTy) { 11941 default: 11942 llvm_unreachable("Unknown FP type"); 11943 case MVT::f16: // We don't do this for these yet. 11944 case MVT::f80: 11945 case MVT::f128: 11946 case MVT::ppcf128: 11947 return SDValue(); 11948 case MVT::f32: 11949 if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) || 11950 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 11951 ; 11952 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). 11953 bitcastToAPInt().getZExtValue(), SDLoc(CFP), 11954 MVT::i32); 11955 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); 11956 } 11957 11958 return SDValue(); 11959 case MVT::f64: 11960 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && 11961 !ST->isVolatile()) || 11962 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { 11963 ; 11964 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 11965 getZExtValue(), SDLoc(CFP), MVT::i64); 11966 return DAG.getStore(Chain, DL, Tmp, 11967 Ptr, ST->getMemOperand()); 11968 } 11969 11970 if (!ST->isVolatile() && 11971 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 11972 // Many FP stores are not made apparent until after legalize, e.g. for 11973 // argument passing. Since this is so common, custom legalize the 11974 // 64-bit integer store into two 32-bit stores. 11975 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 11976 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); 11977 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); 11978 if (DAG.getDataLayout().isBigEndian()) 11979 std::swap(Lo, Hi); 11980 11981 unsigned Alignment = ST->getAlignment(); 11982 bool isVolatile = ST->isVolatile(); 11983 bool isNonTemporal = ST->isNonTemporal(); 11984 AAMDNodes AAInfo = ST->getAAInfo(); 11985 11986 SDValue St0 = DAG.getStore(Chain, DL, Lo, 11987 Ptr, ST->getPointerInfo(), 11988 isVolatile, isNonTemporal, 11989 ST->getAlignment(), AAInfo); 11990 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 11991 DAG.getConstant(4, DL, Ptr.getValueType())); 11992 Alignment = MinAlign(Alignment, 4U); 11993 SDValue St1 = DAG.getStore(Chain, DL, Hi, 11994 Ptr, ST->getPointerInfo().getWithOffset(4), 11995 isVolatile, isNonTemporal, 11996 Alignment, AAInfo); 11997 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 11998 St0, St1); 11999 } 12000 12001 return SDValue(); 12002 } 12003 } 12004 12005 SDValue DAGCombiner::visitSTORE(SDNode *N) { 12006 StoreSDNode *ST = cast<StoreSDNode>(N); 12007 SDValue Chain = ST->getChain(); 12008 SDValue Value = ST->getValue(); 12009 SDValue Ptr = ST->getBasePtr(); 12010 12011 // If this is a store of a bit convert, store the input value if the 12012 // resultant store does not need a higher alignment than the original. 12013 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && 12014 ST->isUnindexed()) { 12015 EVT SVT = Value.getOperand(0).getValueType(); 12016 if (((!LegalOperations && !ST->isVolatile()) || 12017 TLI.isOperationLegalOrCustom(ISD::STORE, SVT)) && 12018 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT)) { 12019 unsigned OrigAlign = ST->getAlignment(); 12020 bool Fast = false; 12021 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), SVT, 12022 ST->getAddressSpace(), OrigAlign, &Fast) && 12023 Fast) { 12024 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), 12025 Ptr, ST->getPointerInfo(), ST->isVolatile(), 12026 ST->isNonTemporal(), OrigAlign, 12027 ST->getAAInfo()); 12028 } 12029 } 12030 } 12031 12032 // Turn 'store undef, Ptr' -> nothing. 12033 if (Value.isUndef() && ST->isUnindexed()) 12034 return Chain; 12035 12036 // Try to infer better alignment information than the store already has. 12037 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) { 12038 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 12039 if (Align > ST->getAlignment()) { 12040 SDValue NewStore = 12041 DAG.getTruncStore(Chain, SDLoc(N), Value, 12042 Ptr, ST->getPointerInfo(), ST->getMemoryVT(), 12043 ST->isVolatile(), ST->isNonTemporal(), Align, 12044 ST->getAAInfo()); 12045 if (NewStore.getNode() != N) 12046 return CombineTo(ST, NewStore, true); 12047 } 12048 } 12049 } 12050 12051 // Try transforming a pair floating point load / store ops to integer 12052 // load / store ops. 12053 if (SDValue NewST = TransformFPLoadStorePair(N)) 12054 return NewST; 12055 12056 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 12057 : DAG.getSubtarget().useAA(); 12058 #ifndef NDEBUG 12059 if (CombinerAAOnlyFunc.getNumOccurrences() && 12060 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 12061 UseAA = false; 12062 #endif 12063 if (UseAA && ST->isUnindexed()) { 12064 // FIXME: We should do this even without AA enabled. AA will just allow 12065 // FindBetterChain to work in more situations. The problem with this is that 12066 // any combine that expects memory operations to be on consecutive chains 12067 // first needs to be updated to look for users of the same chain. 12068 12069 // Walk up chain skipping non-aliasing memory nodes, on this store and any 12070 // adjacent stores. 12071 if (findBetterNeighborChains(ST)) { 12072 // replaceStoreChain uses CombineTo, which handled all of the worklist 12073 // manipulation. Return the original node to not do anything else. 12074 return SDValue(ST, 0); 12075 } 12076 } 12077 12078 // Try transforming N to an indexed store. 12079 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 12080 return SDValue(N, 0); 12081 12082 // FIXME: is there such a thing as a truncating indexed store? 12083 if (ST->isTruncatingStore() && ST->isUnindexed() && 12084 Value.getValueType().isInteger()) { 12085 // See if we can simplify the input to this truncstore with knowledge that 12086 // only the low bits are being used. For example: 12087 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" 12088 SDValue Shorter = 12089 GetDemandedBits(Value, 12090 APInt::getLowBitsSet( 12091 Value.getValueType().getScalarType().getSizeInBits(), 12092 ST->getMemoryVT().getScalarType().getSizeInBits())); 12093 AddToWorklist(Value.getNode()); 12094 if (Shorter.getNode()) 12095 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, 12096 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 12097 12098 // Otherwise, see if we can simplify the operation with 12099 // SimplifyDemandedBits, which only works if the value has a single use. 12100 if (SimplifyDemandedBits(Value, 12101 APInt::getLowBitsSet( 12102 Value.getValueType().getScalarType().getSizeInBits(), 12103 ST->getMemoryVT().getScalarType().getSizeInBits()))) 12104 return SDValue(N, 0); 12105 } 12106 12107 // If this is a load followed by a store to the same location, then the store 12108 // is dead/noop. 12109 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { 12110 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && 12111 ST->isUnindexed() && !ST->isVolatile() && 12112 // There can't be any side effects between the load and store, such as 12113 // a call or store. 12114 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { 12115 // The store is dead, remove it. 12116 return Chain; 12117 } 12118 } 12119 12120 // If this is a store followed by a store with the same value to the same 12121 // location, then the store is dead/noop. 12122 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { 12123 if (ST1->getBasePtr() == Ptr && ST->getMemoryVT() == ST1->getMemoryVT() && 12124 ST1->getValue() == Value && ST->isUnindexed() && !ST->isVolatile() && 12125 ST1->isUnindexed() && !ST1->isVolatile()) { 12126 // The store is dead, remove it. 12127 return Chain; 12128 } 12129 } 12130 12131 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a 12132 // truncating store. We can do this even if this is already a truncstore. 12133 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) 12134 && Value.getNode()->hasOneUse() && ST->isUnindexed() && 12135 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), 12136 ST->getMemoryVT())) { 12137 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), 12138 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 12139 } 12140 12141 // Only perform this optimization before the types are legal, because we 12142 // don't want to perform this optimization on every DAGCombine invocation. 12143 if (!LegalTypes) { 12144 bool EverChanged = false; 12145 12146 do { 12147 // There can be multiple store sequences on the same chain. 12148 // Keep trying to merge store sequences until we are unable to do so 12149 // or until we merge the last store on the chain. 12150 bool Changed = MergeConsecutiveStores(ST); 12151 EverChanged |= Changed; 12152 if (!Changed) break; 12153 } while (ST->getOpcode() != ISD::DELETED_NODE); 12154 12155 if (EverChanged) 12156 return SDValue(N, 0); 12157 } 12158 12159 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 12160 // 12161 // Make sure to do this only after attempting to merge stores in order to 12162 // avoid changing the types of some subset of stores due to visit order, 12163 // preventing their merging. 12164 if (isa<ConstantFPSDNode>(Value)) { 12165 if (SDValue NewSt = replaceStoreOfFPConstant(ST)) 12166 return NewSt; 12167 } 12168 12169 return ReduceLoadOpStoreWidth(N); 12170 } 12171 12172 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { 12173 SDValue InVec = N->getOperand(0); 12174 SDValue InVal = N->getOperand(1); 12175 SDValue EltNo = N->getOperand(2); 12176 SDLoc dl(N); 12177 12178 // If the inserted element is an UNDEF, just use the input vector. 12179 if (InVal.isUndef()) 12180 return InVec; 12181 12182 EVT VT = InVec.getValueType(); 12183 12184 // If we can't generate a legal BUILD_VECTOR, exit 12185 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 12186 return SDValue(); 12187 12188 // Check that we know which element is being inserted 12189 if (!isa<ConstantSDNode>(EltNo)) 12190 return SDValue(); 12191 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 12192 12193 // Canonicalize insert_vector_elt dag nodes. 12194 // Example: 12195 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) 12196 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) 12197 // 12198 // Do this only if the child insert_vector node has one use; also 12199 // do this only if indices are both constants and Idx1 < Idx0. 12200 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() 12201 && isa<ConstantSDNode>(InVec.getOperand(2))) { 12202 unsigned OtherElt = 12203 cast<ConstantSDNode>(InVec.getOperand(2))->getZExtValue(); 12204 if (Elt < OtherElt) { 12205 // Swap nodes. 12206 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VT, 12207 InVec.getOperand(0), InVal, EltNo); 12208 AddToWorklist(NewOp.getNode()); 12209 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), 12210 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); 12211 } 12212 } 12213 12214 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 12215 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 12216 // vector elements. 12217 SmallVector<SDValue, 8> Ops; 12218 // Do not combine these two vectors if the output vector will not replace 12219 // the input vector. 12220 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { 12221 Ops.append(InVec.getNode()->op_begin(), 12222 InVec.getNode()->op_end()); 12223 } else if (InVec.isUndef()) { 12224 unsigned NElts = VT.getVectorNumElements(); 12225 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType())); 12226 } else { 12227 return SDValue(); 12228 } 12229 12230 // Insert the element 12231 if (Elt < Ops.size()) { 12232 // All the operands of BUILD_VECTOR must have the same type; 12233 // we enforce that here. 12234 EVT OpVT = Ops[0].getValueType(); 12235 if (InVal.getValueType() != OpVT) 12236 InVal = OpVT.bitsGT(InVal.getValueType()) ? 12237 DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) : 12238 DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal); 12239 Ops[Elt] = InVal; 12240 } 12241 12242 // Return the new vector 12243 return DAG.getBuildVector(VT, dl, Ops); 12244 } 12245 12246 SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad( 12247 SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) { 12248 EVT ResultVT = EVE->getValueType(0); 12249 EVT VecEltVT = InVecVT.getVectorElementType(); 12250 unsigned Align = OriginalLoad->getAlignment(); 12251 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 12252 VecEltVT.getTypeForEVT(*DAG.getContext())); 12253 12254 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) 12255 return SDValue(); 12256 12257 Align = NewAlign; 12258 12259 SDValue NewPtr = OriginalLoad->getBasePtr(); 12260 SDValue Offset; 12261 EVT PtrType = NewPtr.getValueType(); 12262 MachinePointerInfo MPI; 12263 SDLoc DL(EVE); 12264 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { 12265 int Elt = ConstEltNo->getZExtValue(); 12266 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; 12267 Offset = DAG.getConstant(PtrOff, DL, PtrType); 12268 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); 12269 } else { 12270 Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); 12271 Offset = DAG.getNode( 12272 ISD::MUL, DL, PtrType, Offset, 12273 DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); 12274 MPI = OriginalLoad->getPointerInfo(); 12275 } 12276 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset); 12277 12278 // The replacement we need to do here is a little tricky: we need to 12279 // replace an extractelement of a load with a load. 12280 // Use ReplaceAllUsesOfValuesWith to do the replacement. 12281 // Note that this replacement assumes that the extractvalue is the only 12282 // use of the load; that's okay because we don't want to perform this 12283 // transformation in other cases anyway. 12284 SDValue Load; 12285 SDValue Chain; 12286 if (ResultVT.bitsGT(VecEltVT)) { 12287 // If the result type of vextract is wider than the load, then issue an 12288 // extending load instead. 12289 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, 12290 VecEltVT) 12291 ? ISD::ZEXTLOAD 12292 : ISD::EXTLOAD; 12293 Load = DAG.getExtLoad( 12294 ExtType, SDLoc(EVE), ResultVT, OriginalLoad->getChain(), NewPtr, MPI, 12295 VecEltVT, OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(), 12296 OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo()); 12297 Chain = Load.getValue(1); 12298 } else { 12299 Load = DAG.getLoad( 12300 VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, 12301 OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(), 12302 OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo()); 12303 Chain = Load.getValue(1); 12304 if (ResultVT.bitsLT(VecEltVT)) 12305 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); 12306 else 12307 Load = DAG.getNode(ISD::BITCAST, SDLoc(EVE), ResultVT, Load); 12308 } 12309 WorklistRemover DeadNodes(*this); 12310 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; 12311 SDValue To[] = { Load, Chain }; 12312 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 12313 // Since we're explicitly calling ReplaceAllUses, add the new node to the 12314 // worklist explicitly as well. 12315 AddToWorklist(Load.getNode()); 12316 AddUsersToWorklist(Load.getNode()); // Add users too 12317 // Make sure to revisit this node to clean it up; it will usually be dead. 12318 AddToWorklist(EVE); 12319 ++OpsNarrowed; 12320 return SDValue(EVE, 0); 12321 } 12322 12323 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { 12324 // (vextract (scalar_to_vector val, 0) -> val 12325 SDValue InVec = N->getOperand(0); 12326 EVT VT = InVec.getValueType(); 12327 EVT NVT = N->getValueType(0); 12328 12329 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { 12330 // Check if the result type doesn't match the inserted element type. A 12331 // SCALAR_TO_VECTOR may truncate the inserted element and the 12332 // EXTRACT_VECTOR_ELT may widen the extracted vector. 12333 SDValue InOp = InVec.getOperand(0); 12334 if (InOp.getValueType() != NVT) { 12335 assert(InOp.getValueType().isInteger() && NVT.isInteger()); 12336 return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT); 12337 } 12338 return InOp; 12339 } 12340 12341 SDValue EltNo = N->getOperand(1); 12342 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 12343 12344 // extract_vector_elt (build_vector x, y), 1 -> y 12345 if (ConstEltNo && 12346 InVec.getOpcode() == ISD::BUILD_VECTOR && 12347 TLI.isTypeLegal(VT) && 12348 (InVec.hasOneUse() || 12349 TLI.aggressivelyPreferBuildVectorSources(VT))) { 12350 SDValue Elt = InVec.getOperand(ConstEltNo->getZExtValue()); 12351 EVT InEltVT = Elt.getValueType(); 12352 12353 // Sometimes build_vector's scalar input types do not match result type. 12354 if (NVT == InEltVT) 12355 return Elt; 12356 12357 // TODO: It may be useful to truncate if free if the build_vector implicitly 12358 // converts. 12359 } 12360 12361 // extract_vector_elt (v2i32 (bitcast i64:x)), 0 -> i32 (trunc i64:x) 12362 if (ConstEltNo && InVec.getOpcode() == ISD::BITCAST && InVec.hasOneUse() && 12363 ConstEltNo->isNullValue() && VT.isInteger()) { 12364 SDValue BCSrc = InVec.getOperand(0); 12365 if (BCSrc.getValueType().isScalarInteger()) 12366 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, BCSrc); 12367 } 12368 12369 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. 12370 // We only perform this optimization before the op legalization phase because 12371 // we may introduce new vector instructions which are not backed by TD 12372 // patterns. For example on AVX, extracting elements from a wide vector 12373 // without using extract_subvector. However, if we can find an underlying 12374 // scalar value, then we can always use that. 12375 if (ConstEltNo && InVec.getOpcode() == ISD::VECTOR_SHUFFLE) { 12376 int NumElem = VT.getVectorNumElements(); 12377 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec); 12378 // Find the new index to extract from. 12379 int OrigElt = SVOp->getMaskElt(ConstEltNo->getZExtValue()); 12380 12381 // Extracting an undef index is undef. 12382 if (OrigElt == -1) 12383 return DAG.getUNDEF(NVT); 12384 12385 // Select the right vector half to extract from. 12386 SDValue SVInVec; 12387 if (OrigElt < NumElem) { 12388 SVInVec = InVec->getOperand(0); 12389 } else { 12390 SVInVec = InVec->getOperand(1); 12391 OrigElt -= NumElem; 12392 } 12393 12394 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { 12395 SDValue InOp = SVInVec.getOperand(OrigElt); 12396 if (InOp.getValueType() != NVT) { 12397 assert(InOp.getValueType().isInteger() && NVT.isInteger()); 12398 InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT); 12399 } 12400 12401 return InOp; 12402 } 12403 12404 // FIXME: We should handle recursing on other vector shuffles and 12405 // scalar_to_vector here as well. 12406 12407 if (!LegalOperations) { 12408 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 12409 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT, SVInVec, 12410 DAG.getConstant(OrigElt, SDLoc(SVOp), IndexTy)); 12411 } 12412 } 12413 12414 bool BCNumEltsChanged = false; 12415 EVT ExtVT = VT.getVectorElementType(); 12416 EVT LVT = ExtVT; 12417 12418 // If the result of load has to be truncated, then it's not necessarily 12419 // profitable. 12420 if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT)) 12421 return SDValue(); 12422 12423 if (InVec.getOpcode() == ISD::BITCAST) { 12424 // Don't duplicate a load with other uses. 12425 if (!InVec.hasOneUse()) 12426 return SDValue(); 12427 12428 EVT BCVT = InVec.getOperand(0).getValueType(); 12429 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) 12430 return SDValue(); 12431 if (VT.getVectorNumElements() != BCVT.getVectorNumElements()) 12432 BCNumEltsChanged = true; 12433 InVec = InVec.getOperand(0); 12434 ExtVT = BCVT.getVectorElementType(); 12435 } 12436 12437 // (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size) 12438 if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() && 12439 ISD::isNormalLoad(InVec.getNode()) && 12440 !N->getOperand(1)->hasPredecessor(InVec.getNode())) { 12441 SDValue Index = N->getOperand(1); 12442 if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec)) 12443 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index, 12444 OrigLoad); 12445 } 12446 12447 // Perform only after legalization to ensure build_vector / vector_shuffle 12448 // optimizations have already been done. 12449 if (!LegalOperations) return SDValue(); 12450 12451 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) 12452 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) 12453 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) 12454 12455 if (ConstEltNo) { 12456 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 12457 12458 LoadSDNode *LN0 = nullptr; 12459 const ShuffleVectorSDNode *SVN = nullptr; 12460 if (ISD::isNormalLoad(InVec.getNode())) { 12461 LN0 = cast<LoadSDNode>(InVec); 12462 } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR && 12463 InVec.getOperand(0).getValueType() == ExtVT && 12464 ISD::isNormalLoad(InVec.getOperand(0).getNode())) { 12465 // Don't duplicate a load with other uses. 12466 if (!InVec.hasOneUse()) 12467 return SDValue(); 12468 12469 LN0 = cast<LoadSDNode>(InVec.getOperand(0)); 12470 } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) { 12471 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) 12472 // => 12473 // (load $addr+1*size) 12474 12475 // Don't duplicate a load with other uses. 12476 if (!InVec.hasOneUse()) 12477 return SDValue(); 12478 12479 // If the bit convert changed the number of elements, it is unsafe 12480 // to examine the mask. 12481 if (BCNumEltsChanged) 12482 return SDValue(); 12483 12484 // Select the input vector, guarding against out of range extract vector. 12485 unsigned NumElems = VT.getVectorNumElements(); 12486 int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt); 12487 InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); 12488 12489 if (InVec.getOpcode() == ISD::BITCAST) { 12490 // Don't duplicate a load with other uses. 12491 if (!InVec.hasOneUse()) 12492 return SDValue(); 12493 12494 InVec = InVec.getOperand(0); 12495 } 12496 if (ISD::isNormalLoad(InVec.getNode())) { 12497 LN0 = cast<LoadSDNode>(InVec); 12498 Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems; 12499 EltNo = DAG.getConstant(Elt, SDLoc(EltNo), EltNo.getValueType()); 12500 } 12501 } 12502 12503 // Make sure we found a non-volatile load and the extractelement is 12504 // the only use. 12505 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile()) 12506 return SDValue(); 12507 12508 // If Idx was -1 above, Elt is going to be -1, so just return undef. 12509 if (Elt == -1) 12510 return DAG.getUNDEF(LVT); 12511 12512 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0); 12513 } 12514 12515 return SDValue(); 12516 } 12517 12518 // Simplify (build_vec (ext )) to (bitcast (build_vec )) 12519 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { 12520 // We perform this optimization post type-legalization because 12521 // the type-legalizer often scalarizes integer-promoted vectors. 12522 // Performing this optimization before may create bit-casts which 12523 // will be type-legalized to complex code sequences. 12524 // We perform this optimization only before the operation legalizer because we 12525 // may introduce illegal operations. 12526 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) 12527 return SDValue(); 12528 12529 unsigned NumInScalars = N->getNumOperands(); 12530 SDLoc dl(N); 12531 EVT VT = N->getValueType(0); 12532 12533 // Check to see if this is a BUILD_VECTOR of a bunch of values 12534 // which come from any_extend or zero_extend nodes. If so, we can create 12535 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR 12536 // optimizations. We do not handle sign-extend because we can't fill the sign 12537 // using shuffles. 12538 EVT SourceType = MVT::Other; 12539 bool AllAnyExt = true; 12540 12541 for (unsigned i = 0; i != NumInScalars; ++i) { 12542 SDValue In = N->getOperand(i); 12543 // Ignore undef inputs. 12544 if (In.isUndef()) continue; 12545 12546 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; 12547 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; 12548 12549 // Abort if the element is not an extension. 12550 if (!ZeroExt && !AnyExt) { 12551 SourceType = MVT::Other; 12552 break; 12553 } 12554 12555 // The input is a ZeroExt or AnyExt. Check the original type. 12556 EVT InTy = In.getOperand(0).getValueType(); 12557 12558 // Check that all of the widened source types are the same. 12559 if (SourceType == MVT::Other) 12560 // First time. 12561 SourceType = InTy; 12562 else if (InTy != SourceType) { 12563 // Multiple income types. Abort. 12564 SourceType = MVT::Other; 12565 break; 12566 } 12567 12568 // Check if all of the extends are ANY_EXTENDs. 12569 AllAnyExt &= AnyExt; 12570 } 12571 12572 // In order to have valid types, all of the inputs must be extended from the 12573 // same source type and all of the inputs must be any or zero extend. 12574 // Scalar sizes must be a power of two. 12575 EVT OutScalarTy = VT.getScalarType(); 12576 bool ValidTypes = SourceType != MVT::Other && 12577 isPowerOf2_32(OutScalarTy.getSizeInBits()) && 12578 isPowerOf2_32(SourceType.getSizeInBits()); 12579 12580 // Create a new simpler BUILD_VECTOR sequence which other optimizations can 12581 // turn into a single shuffle instruction. 12582 if (!ValidTypes) 12583 return SDValue(); 12584 12585 bool isLE = DAG.getDataLayout().isLittleEndian(); 12586 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); 12587 assert(ElemRatio > 1 && "Invalid element size ratio"); 12588 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): 12589 DAG.getConstant(0, SDLoc(N), SourceType); 12590 12591 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); 12592 SmallVector<SDValue, 8> Ops(NewBVElems, Filler); 12593 12594 // Populate the new build_vector 12595 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 12596 SDValue Cast = N->getOperand(i); 12597 assert((Cast.getOpcode() == ISD::ANY_EXTEND || 12598 Cast.getOpcode() == ISD::ZERO_EXTEND || 12599 Cast.isUndef()) && "Invalid cast opcode"); 12600 SDValue In; 12601 if (Cast.isUndef()) 12602 In = DAG.getUNDEF(SourceType); 12603 else 12604 In = Cast->getOperand(0); 12605 unsigned Index = isLE ? (i * ElemRatio) : 12606 (i * ElemRatio + (ElemRatio - 1)); 12607 12608 assert(Index < Ops.size() && "Invalid index"); 12609 Ops[Index] = In; 12610 } 12611 12612 // The type of the new BUILD_VECTOR node. 12613 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); 12614 assert(VecVT.getSizeInBits() == VT.getSizeInBits() && 12615 "Invalid vector size"); 12616 // Check if the new vector type is legal. 12617 if (!isTypeLegal(VecVT)) return SDValue(); 12618 12619 // Make the new BUILD_VECTOR. 12620 SDValue BV = DAG.getBuildVector(VecVT, dl, Ops); 12621 12622 // The new BUILD_VECTOR node has the potential to be further optimized. 12623 AddToWorklist(BV.getNode()); 12624 // Bitcast to the desired type. 12625 return DAG.getNode(ISD::BITCAST, dl, VT, BV); 12626 } 12627 12628 SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) { 12629 EVT VT = N->getValueType(0); 12630 12631 unsigned NumInScalars = N->getNumOperands(); 12632 SDLoc dl(N); 12633 12634 EVT SrcVT = MVT::Other; 12635 unsigned Opcode = ISD::DELETED_NODE; 12636 unsigned NumDefs = 0; 12637 12638 for (unsigned i = 0; i != NumInScalars; ++i) { 12639 SDValue In = N->getOperand(i); 12640 unsigned Opc = In.getOpcode(); 12641 12642 if (Opc == ISD::UNDEF) 12643 continue; 12644 12645 // If all scalar values are floats and converted from integers. 12646 if (Opcode == ISD::DELETED_NODE && 12647 (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) { 12648 Opcode = Opc; 12649 } 12650 12651 if (Opc != Opcode) 12652 return SDValue(); 12653 12654 EVT InVT = In.getOperand(0).getValueType(); 12655 12656 // If all scalar values are typed differently, bail out. It's chosen to 12657 // simplify BUILD_VECTOR of integer types. 12658 if (SrcVT == MVT::Other) 12659 SrcVT = InVT; 12660 if (SrcVT != InVT) 12661 return SDValue(); 12662 NumDefs++; 12663 } 12664 12665 // If the vector has just one element defined, it's not worth to fold it into 12666 // a vectorized one. 12667 if (NumDefs < 2) 12668 return SDValue(); 12669 12670 assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP) 12671 && "Should only handle conversion from integer to float."); 12672 assert(SrcVT != MVT::Other && "Cannot determine source type!"); 12673 12674 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars); 12675 12676 if (!TLI.isOperationLegalOrCustom(Opcode, NVT)) 12677 return SDValue(); 12678 12679 // Just because the floating-point vector type is legal does not necessarily 12680 // mean that the corresponding integer vector type is. 12681 if (!isTypeLegal(NVT)) 12682 return SDValue(); 12683 12684 SmallVector<SDValue, 8> Opnds; 12685 for (unsigned i = 0; i != NumInScalars; ++i) { 12686 SDValue In = N->getOperand(i); 12687 12688 if (In.isUndef()) 12689 Opnds.push_back(DAG.getUNDEF(SrcVT)); 12690 else 12691 Opnds.push_back(In.getOperand(0)); 12692 } 12693 SDValue BV = DAG.getBuildVector(NVT, dl, Opnds); 12694 AddToWorklist(BV.getNode()); 12695 12696 return DAG.getNode(Opcode, dl, VT, BV); 12697 } 12698 12699 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { 12700 unsigned NumInScalars = N->getNumOperands(); 12701 SDLoc dl(N); 12702 EVT VT = N->getValueType(0); 12703 12704 // A vector built entirely of undefs is undef. 12705 if (ISD::allOperandsUndef(N)) 12706 return DAG.getUNDEF(VT); 12707 12708 if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) 12709 return V; 12710 12711 if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N)) 12712 return V; 12713 12714 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT 12715 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from 12716 // at most two distinct vectors, turn this into a shuffle node. 12717 12718 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. 12719 if (!isTypeLegal(VT)) 12720 return SDValue(); 12721 12722 // May only combine to shuffle after legalize if shuffle is legal. 12723 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) 12724 return SDValue(); 12725 12726 SDValue VecIn1, VecIn2; 12727 bool UsesZeroVector = false; 12728 for (unsigned i = 0; i != NumInScalars; ++i) { 12729 SDValue Op = N->getOperand(i); 12730 // Ignore undef inputs. 12731 if (Op.isUndef()) continue; 12732 12733 // See if we can combine this build_vector into a blend with a zero vector. 12734 if (!VecIn2.getNode() && (isNullConstant(Op) || isNullFPConstant(Op))) { 12735 UsesZeroVector = true; 12736 continue; 12737 } 12738 12739 // If this input is something other than a EXTRACT_VECTOR_ELT with a 12740 // constant index, bail out. 12741 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12742 !isa<ConstantSDNode>(Op.getOperand(1))) { 12743 VecIn1 = VecIn2 = SDValue(nullptr, 0); 12744 break; 12745 } 12746 12747 // We allow up to two distinct input vectors. 12748 SDValue ExtractedFromVec = Op.getOperand(0); 12749 if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2) 12750 continue; 12751 12752 if (!VecIn1.getNode()) { 12753 VecIn1 = ExtractedFromVec; 12754 } else if (!VecIn2.getNode() && !UsesZeroVector) { 12755 VecIn2 = ExtractedFromVec; 12756 } else { 12757 // Too many inputs. 12758 VecIn1 = VecIn2 = SDValue(nullptr, 0); 12759 break; 12760 } 12761 } 12762 12763 // If everything is good, we can make a shuffle operation. 12764 if (VecIn1.getNode()) { 12765 unsigned InNumElements = VecIn1.getValueType().getVectorNumElements(); 12766 SmallVector<int, 8> Mask; 12767 for (unsigned i = 0; i != NumInScalars; ++i) { 12768 unsigned Opcode = N->getOperand(i).getOpcode(); 12769 if (Opcode == ISD::UNDEF) { 12770 Mask.push_back(-1); 12771 continue; 12772 } 12773 12774 // Operands can also be zero. 12775 if (Opcode != ISD::EXTRACT_VECTOR_ELT) { 12776 assert(UsesZeroVector && 12777 (Opcode == ISD::Constant || Opcode == ISD::ConstantFP) && 12778 "Unexpected node found!"); 12779 Mask.push_back(NumInScalars+i); 12780 continue; 12781 } 12782 12783 // If extracting from the first vector, just use the index directly. 12784 SDValue Extract = N->getOperand(i); 12785 SDValue ExtVal = Extract.getOperand(1); 12786 unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue(); 12787 if (Extract.getOperand(0) == VecIn1) { 12788 Mask.push_back(ExtIndex); 12789 continue; 12790 } 12791 12792 // Otherwise, use InIdx + InputVecSize 12793 Mask.push_back(InNumElements + ExtIndex); 12794 } 12795 12796 // Avoid introducing illegal shuffles with zero. 12797 if (UsesZeroVector && !TLI.isVectorClearMaskLegal(Mask, VT)) 12798 return SDValue(); 12799 12800 // We can't generate a shuffle node with mismatched input and output types. 12801 // Attempt to transform a single input vector to the correct type. 12802 if ((VT != VecIn1.getValueType())) { 12803 // If the input vector type has a different base type to the output 12804 // vector type, bail out. 12805 EVT VTElemType = VT.getVectorElementType(); 12806 if ((VecIn1.getValueType().getVectorElementType() != VTElemType) || 12807 (VecIn2.getNode() && 12808 (VecIn2.getValueType().getVectorElementType() != VTElemType))) 12809 return SDValue(); 12810 12811 // If the input vector is too small, widen it. 12812 // We only support widening of vectors which are half the size of the 12813 // output registers. For example XMM->YMM widening on X86 with AVX. 12814 EVT VecInT = VecIn1.getValueType(); 12815 if (VecInT.getSizeInBits() * 2 == VT.getSizeInBits()) { 12816 // If we only have one small input, widen it by adding undef values. 12817 if (!VecIn2.getNode()) 12818 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, 12819 DAG.getUNDEF(VecIn1.getValueType())); 12820 else if (VecIn1.getValueType() == VecIn2.getValueType()) { 12821 // If we have two small inputs of the same type, try to concat them. 12822 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, VecIn2); 12823 VecIn2 = SDValue(nullptr, 0); 12824 } else 12825 return SDValue(); 12826 } else if (VecInT.getSizeInBits() == VT.getSizeInBits() * 2) { 12827 // If the input vector is too large, try to split it. 12828 // We don't support having two input vectors that are too large. 12829 // If the zero vector was used, we can not split the vector, 12830 // since we'd need 3 inputs. 12831 if (UsesZeroVector || VecIn2.getNode()) 12832 return SDValue(); 12833 12834 if (!TLI.isExtractSubvectorCheap(VT, VT.getVectorNumElements())) 12835 return SDValue(); 12836 12837 // Try to replace VecIn1 with two extract_subvectors 12838 // No need to update the masks, they should still be correct. 12839 VecIn2 = DAG.getNode( 12840 ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1, 12841 DAG.getConstant(VT.getVectorNumElements(), dl, 12842 TLI.getVectorIdxTy(DAG.getDataLayout()))); 12843 VecIn1 = DAG.getNode( 12844 ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1, 12845 DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 12846 } else 12847 return SDValue(); 12848 } 12849 12850 if (UsesZeroVector) 12851 VecIn2 = VT.isInteger() ? DAG.getConstant(0, dl, VT) : 12852 DAG.getConstantFP(0.0, dl, VT); 12853 else 12854 // If VecIn2 is unused then change it to undef. 12855 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); 12856 12857 // Check that we were able to transform all incoming values to the same 12858 // type. 12859 if (VecIn2.getValueType() != VecIn1.getValueType() || 12860 VecIn1.getValueType() != VT) 12861 return SDValue(); 12862 12863 // Return the new VECTOR_SHUFFLE node. 12864 SDValue Ops[2]; 12865 Ops[0] = VecIn1; 12866 Ops[1] = VecIn2; 12867 return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]); 12868 } 12869 12870 return SDValue(); 12871 } 12872 12873 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { 12874 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12875 EVT OpVT = N->getOperand(0).getValueType(); 12876 12877 // If the operands are legal vectors, leave them alone. 12878 if (TLI.isTypeLegal(OpVT)) 12879 return SDValue(); 12880 12881 SDLoc DL(N); 12882 EVT VT = N->getValueType(0); 12883 SmallVector<SDValue, 8> Ops; 12884 12885 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); 12886 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 12887 12888 // Keep track of what we encounter. 12889 bool AnyInteger = false; 12890 bool AnyFP = false; 12891 for (const SDValue &Op : N->ops()) { 12892 if (ISD::BITCAST == Op.getOpcode() && 12893 !Op.getOperand(0).getValueType().isVector()) 12894 Ops.push_back(Op.getOperand(0)); 12895 else if (ISD::UNDEF == Op.getOpcode()) 12896 Ops.push_back(ScalarUndef); 12897 else 12898 return SDValue(); 12899 12900 // Note whether we encounter an integer or floating point scalar. 12901 // If it's neither, bail out, it could be something weird like x86mmx. 12902 EVT LastOpVT = Ops.back().getValueType(); 12903 if (LastOpVT.isFloatingPoint()) 12904 AnyFP = true; 12905 else if (LastOpVT.isInteger()) 12906 AnyInteger = true; 12907 else 12908 return SDValue(); 12909 } 12910 12911 // If any of the operands is a floating point scalar bitcast to a vector, 12912 // use floating point types throughout, and bitcast everything. 12913 // Replace UNDEFs by another scalar UNDEF node, of the final desired type. 12914 if (AnyFP) { 12915 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); 12916 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 12917 if (AnyInteger) { 12918 for (SDValue &Op : Ops) { 12919 if (Op.getValueType() == SVT) 12920 continue; 12921 if (Op.isUndef()) 12922 Op = ScalarUndef; 12923 else 12924 Op = DAG.getNode(ISD::BITCAST, DL, SVT, Op); 12925 } 12926 } 12927 } 12928 12929 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, 12930 VT.getSizeInBits() / SVT.getSizeInBits()); 12931 return DAG.getNode(ISD::BITCAST, DL, VT, 12932 DAG.getBuildVector(VecVT, DL, Ops)); 12933 } 12934 12935 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR 12936 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at 12937 // most two distinct vectors the same size as the result, attempt to turn this 12938 // into a legal shuffle. 12939 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { 12940 EVT VT = N->getValueType(0); 12941 EVT OpVT = N->getOperand(0).getValueType(); 12942 int NumElts = VT.getVectorNumElements(); 12943 int NumOpElts = OpVT.getVectorNumElements(); 12944 12945 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); 12946 SmallVector<int, 8> Mask; 12947 12948 for (SDValue Op : N->ops()) { 12949 // Peek through any bitcast. 12950 while (Op.getOpcode() == ISD::BITCAST) 12951 Op = Op.getOperand(0); 12952 12953 // UNDEF nodes convert to UNDEF shuffle mask values. 12954 if (Op.isUndef()) { 12955 Mask.append((unsigned)NumOpElts, -1); 12956 continue; 12957 } 12958 12959 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 12960 return SDValue(); 12961 12962 // What vector are we extracting the subvector from and at what index? 12963 SDValue ExtVec = Op.getOperand(0); 12964 12965 // We want the EVT of the original extraction to correctly scale the 12966 // extraction index. 12967 EVT ExtVT = ExtVec.getValueType(); 12968 12969 // Peek through any bitcast. 12970 while (ExtVec.getOpcode() == ISD::BITCAST) 12971 ExtVec = ExtVec.getOperand(0); 12972 12973 // UNDEF nodes convert to UNDEF shuffle mask values. 12974 if (ExtVec.isUndef()) { 12975 Mask.append((unsigned)NumOpElts, -1); 12976 continue; 12977 } 12978 12979 if (!isa<ConstantSDNode>(Op.getOperand(1))) 12980 return SDValue(); 12981 int ExtIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 12982 12983 // Ensure that we are extracting a subvector from a vector the same 12984 // size as the result. 12985 if (ExtVT.getSizeInBits() != VT.getSizeInBits()) 12986 return SDValue(); 12987 12988 // Scale the subvector index to account for any bitcast. 12989 int NumExtElts = ExtVT.getVectorNumElements(); 12990 if (0 == (NumExtElts % NumElts)) 12991 ExtIdx /= (NumExtElts / NumElts); 12992 else if (0 == (NumElts % NumExtElts)) 12993 ExtIdx *= (NumElts / NumExtElts); 12994 else 12995 return SDValue(); 12996 12997 // At most we can reference 2 inputs in the final shuffle. 12998 if (SV0.isUndef() || SV0 == ExtVec) { 12999 SV0 = ExtVec; 13000 for (int i = 0; i != NumOpElts; ++i) 13001 Mask.push_back(i + ExtIdx); 13002 } else if (SV1.isUndef() || SV1 == ExtVec) { 13003 SV1 = ExtVec; 13004 for (int i = 0; i != NumOpElts; ++i) 13005 Mask.push_back(i + ExtIdx + NumElts); 13006 } else { 13007 return SDValue(); 13008 } 13009 } 13010 13011 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT)) 13012 return SDValue(); 13013 13014 return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), 13015 DAG.getBitcast(VT, SV1), Mask); 13016 } 13017 13018 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { 13019 // If we only have one input vector, we don't need to do any concatenation. 13020 if (N->getNumOperands() == 1) 13021 return N->getOperand(0); 13022 13023 // Check if all of the operands are undefs. 13024 EVT VT = N->getValueType(0); 13025 if (ISD::allOperandsUndef(N)) 13026 return DAG.getUNDEF(VT); 13027 13028 // Optimize concat_vectors where all but the first of the vectors are undef. 13029 if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) { 13030 return Op.isUndef(); 13031 })) { 13032 SDValue In = N->getOperand(0); 13033 assert(In.getValueType().isVector() && "Must concat vectors"); 13034 13035 // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr). 13036 if (In->getOpcode() == ISD::BITCAST && 13037 !In->getOperand(0)->getValueType(0).isVector()) { 13038 SDValue Scalar = In->getOperand(0); 13039 13040 // If the bitcast type isn't legal, it might be a trunc of a legal type; 13041 // look through the trunc so we can still do the transform: 13042 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) 13043 if (Scalar->getOpcode() == ISD::TRUNCATE && 13044 !TLI.isTypeLegal(Scalar.getValueType()) && 13045 TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) 13046 Scalar = Scalar->getOperand(0); 13047 13048 EVT SclTy = Scalar->getValueType(0); 13049 13050 if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) 13051 return SDValue(); 13052 13053 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, 13054 VT.getSizeInBits() / SclTy.getSizeInBits()); 13055 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) 13056 return SDValue(); 13057 13058 SDLoc dl = SDLoc(N); 13059 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar); 13060 return DAG.getNode(ISD::BITCAST, dl, VT, Res); 13061 } 13062 } 13063 13064 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. 13065 // We have already tested above for an UNDEF only concatenation. 13066 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) 13067 // -> (BUILD_VECTOR A, B, ..., C, D, ...) 13068 auto IsBuildVectorOrUndef = [](const SDValue &Op) { 13069 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); 13070 }; 13071 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { 13072 SmallVector<SDValue, 8> Opnds; 13073 EVT SVT = VT.getScalarType(); 13074 13075 EVT MinVT = SVT; 13076 if (!SVT.isFloatingPoint()) { 13077 // If BUILD_VECTOR are from built from integer, they may have different 13078 // operand types. Get the smallest type and truncate all operands to it. 13079 bool FoundMinVT = false; 13080 for (const SDValue &Op : N->ops()) 13081 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 13082 EVT OpSVT = Op.getOperand(0)->getValueType(0); 13083 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; 13084 FoundMinVT = true; 13085 } 13086 assert(FoundMinVT && "Concat vector type mismatch"); 13087 } 13088 13089 for (const SDValue &Op : N->ops()) { 13090 EVT OpVT = Op.getValueType(); 13091 unsigned NumElts = OpVT.getVectorNumElements(); 13092 13093 if (ISD::UNDEF == Op.getOpcode()) 13094 Opnds.append(NumElts, DAG.getUNDEF(MinVT)); 13095 13096 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 13097 if (SVT.isFloatingPoint()) { 13098 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); 13099 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); 13100 } else { 13101 for (unsigned i = 0; i != NumElts; ++i) 13102 Opnds.push_back( 13103 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); 13104 } 13105 } 13106 } 13107 13108 assert(VT.getVectorNumElements() == Opnds.size() && 13109 "Concat vector type mismatch"); 13110 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 13111 } 13112 13113 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. 13114 if (SDValue V = combineConcatVectorOfScalars(N, DAG)) 13115 return V; 13116 13117 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. 13118 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) 13119 if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) 13120 return V; 13121 13122 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR 13123 // nodes often generate nop CONCAT_VECTOR nodes. 13124 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that 13125 // place the incoming vectors at the exact same location. 13126 SDValue SingleSource = SDValue(); 13127 unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements(); 13128 13129 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 13130 SDValue Op = N->getOperand(i); 13131 13132 if (Op.isUndef()) 13133 continue; 13134 13135 // Check if this is the identity extract: 13136 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 13137 return SDValue(); 13138 13139 // Find the single incoming vector for the extract_subvector. 13140 if (SingleSource.getNode()) { 13141 if (Op.getOperand(0) != SingleSource) 13142 return SDValue(); 13143 } else { 13144 SingleSource = Op.getOperand(0); 13145 13146 // Check the source type is the same as the type of the result. 13147 // If not, this concat may extend the vector, so we can not 13148 // optimize it away. 13149 if (SingleSource.getValueType() != N->getValueType(0)) 13150 return SDValue(); 13151 } 13152 13153 unsigned IdentityIndex = i * PartNumElem; 13154 ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 13155 // The extract index must be constant. 13156 if (!CS) 13157 return SDValue(); 13158 13159 // Check that we are reading from the identity index. 13160 if (CS->getZExtValue() != IdentityIndex) 13161 return SDValue(); 13162 } 13163 13164 if (SingleSource.getNode()) 13165 return SingleSource; 13166 13167 return SDValue(); 13168 } 13169 13170 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) { 13171 EVT NVT = N->getValueType(0); 13172 SDValue V = N->getOperand(0); 13173 13174 if (V->getOpcode() == ISD::CONCAT_VECTORS) { 13175 // Combine: 13176 // (extract_subvec (concat V1, V2, ...), i) 13177 // Into: 13178 // Vi if possible 13179 // Only operand 0 is checked as 'concat' assumes all inputs of the same 13180 // type. 13181 if (V->getOperand(0).getValueType() != NVT) 13182 return SDValue(); 13183 unsigned Idx = N->getConstantOperandVal(1); 13184 unsigned NumElems = NVT.getVectorNumElements(); 13185 assert((Idx % NumElems) == 0 && 13186 "IDX in concat is not a multiple of the result vector length."); 13187 return V->getOperand(Idx / NumElems); 13188 } 13189 13190 // Skip bitcasting 13191 if (V->getOpcode() == ISD::BITCAST) 13192 V = V.getOperand(0); 13193 13194 if (V->getOpcode() == ISD::INSERT_SUBVECTOR) { 13195 SDLoc dl(N); 13196 // Handle only simple case where vector being inserted and vector 13197 // being extracted are of same type, and are half size of larger vectors. 13198 EVT BigVT = V->getOperand(0).getValueType(); 13199 EVT SmallVT = V->getOperand(1).getValueType(); 13200 if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits()) 13201 return SDValue(); 13202 13203 // Only handle cases where both indexes are constants with the same type. 13204 ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 13205 ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2)); 13206 13207 if (InsIdx && ExtIdx && 13208 InsIdx->getValueType(0).getSizeInBits() <= 64 && 13209 ExtIdx->getValueType(0).getSizeInBits() <= 64) { 13210 // Combine: 13211 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) 13212 // Into: 13213 // indices are equal or bit offsets are equal => V1 13214 // otherwise => (extract_subvec V1, ExtIdx) 13215 if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() == 13216 ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits()) 13217 return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1)); 13218 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, 13219 DAG.getNode(ISD::BITCAST, dl, 13220 N->getOperand(0).getValueType(), 13221 V->getOperand(0)), N->getOperand(1)); 13222 } 13223 } 13224 13225 return SDValue(); 13226 } 13227 13228 static SDValue simplifyShuffleOperandRecursively(SmallBitVector &UsedElements, 13229 SDValue V, SelectionDAG &DAG) { 13230 SDLoc DL(V); 13231 EVT VT = V.getValueType(); 13232 13233 switch (V.getOpcode()) { 13234 default: 13235 return V; 13236 13237 case ISD::CONCAT_VECTORS: { 13238 EVT OpVT = V->getOperand(0).getValueType(); 13239 int OpSize = OpVT.getVectorNumElements(); 13240 SmallBitVector OpUsedElements(OpSize, false); 13241 bool FoundSimplification = false; 13242 SmallVector<SDValue, 4> NewOps; 13243 NewOps.reserve(V->getNumOperands()); 13244 for (int i = 0, NumOps = V->getNumOperands(); i < NumOps; ++i) { 13245 SDValue Op = V->getOperand(i); 13246 bool OpUsed = false; 13247 for (int j = 0; j < OpSize; ++j) 13248 if (UsedElements[i * OpSize + j]) { 13249 OpUsedElements[j] = true; 13250 OpUsed = true; 13251 } 13252 NewOps.push_back( 13253 OpUsed ? simplifyShuffleOperandRecursively(OpUsedElements, Op, DAG) 13254 : DAG.getUNDEF(OpVT)); 13255 FoundSimplification |= Op == NewOps.back(); 13256 OpUsedElements.reset(); 13257 } 13258 if (FoundSimplification) 13259 V = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, NewOps); 13260 return V; 13261 } 13262 13263 case ISD::INSERT_SUBVECTOR: { 13264 SDValue BaseV = V->getOperand(0); 13265 SDValue SubV = V->getOperand(1); 13266 auto *IdxN = dyn_cast<ConstantSDNode>(V->getOperand(2)); 13267 if (!IdxN) 13268 return V; 13269 13270 int SubSize = SubV.getValueType().getVectorNumElements(); 13271 int Idx = IdxN->getZExtValue(); 13272 bool SubVectorUsed = false; 13273 SmallBitVector SubUsedElements(SubSize, false); 13274 for (int i = 0; i < SubSize; ++i) 13275 if (UsedElements[i + Idx]) { 13276 SubVectorUsed = true; 13277 SubUsedElements[i] = true; 13278 UsedElements[i + Idx] = false; 13279 } 13280 13281 // Now recurse on both the base and sub vectors. 13282 SDValue SimplifiedSubV = 13283 SubVectorUsed 13284 ? simplifyShuffleOperandRecursively(SubUsedElements, SubV, DAG) 13285 : DAG.getUNDEF(SubV.getValueType()); 13286 SDValue SimplifiedBaseV = simplifyShuffleOperandRecursively(UsedElements, BaseV, DAG); 13287 if (SimplifiedSubV != SubV || SimplifiedBaseV != BaseV) 13288 V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 13289 SimplifiedBaseV, SimplifiedSubV, V->getOperand(2)); 13290 return V; 13291 } 13292 } 13293 } 13294 13295 static SDValue simplifyShuffleOperands(ShuffleVectorSDNode *SVN, SDValue N0, 13296 SDValue N1, SelectionDAG &DAG) { 13297 EVT VT = SVN->getValueType(0); 13298 int NumElts = VT.getVectorNumElements(); 13299 SmallBitVector N0UsedElements(NumElts, false), N1UsedElements(NumElts, false); 13300 for (int M : SVN->getMask()) 13301 if (M >= 0 && M < NumElts) 13302 N0UsedElements[M] = true; 13303 else if (M >= NumElts) 13304 N1UsedElements[M - NumElts] = true; 13305 13306 SDValue S0 = simplifyShuffleOperandRecursively(N0UsedElements, N0, DAG); 13307 SDValue S1 = simplifyShuffleOperandRecursively(N1UsedElements, N1, DAG); 13308 if (S0 == N0 && S1 == N1) 13309 return SDValue(); 13310 13311 return DAG.getVectorShuffle(VT, SDLoc(SVN), S0, S1, SVN->getMask()); 13312 } 13313 13314 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, 13315 // or turn a shuffle of a single concat into simpler shuffle then concat. 13316 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { 13317 EVT VT = N->getValueType(0); 13318 unsigned NumElts = VT.getVectorNumElements(); 13319 13320 SDValue N0 = N->getOperand(0); 13321 SDValue N1 = N->getOperand(1); 13322 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 13323 13324 SmallVector<SDValue, 4> Ops; 13325 EVT ConcatVT = N0.getOperand(0).getValueType(); 13326 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); 13327 unsigned NumConcats = NumElts / NumElemsPerConcat; 13328 13329 // Special case: shuffle(concat(A,B)) can be more efficiently represented 13330 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high 13331 // half vector elements. 13332 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && 13333 std::all_of(SVN->getMask().begin() + NumElemsPerConcat, 13334 SVN->getMask().end(), [](int i) { return i == -1; })) { 13335 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1), 13336 makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat)); 13337 N1 = DAG.getUNDEF(ConcatVT); 13338 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); 13339 } 13340 13341 // Look at every vector that's inserted. We're looking for exact 13342 // subvector-sized copies from a concatenated vector 13343 for (unsigned I = 0; I != NumConcats; ++I) { 13344 // Make sure we're dealing with a copy. 13345 unsigned Begin = I * NumElemsPerConcat; 13346 bool AllUndef = true, NoUndef = true; 13347 for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) { 13348 if (SVN->getMaskElt(J) >= 0) 13349 AllUndef = false; 13350 else 13351 NoUndef = false; 13352 } 13353 13354 if (NoUndef) { 13355 if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0) 13356 return SDValue(); 13357 13358 for (unsigned J = 1; J != NumElemsPerConcat; ++J) 13359 if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J)) 13360 return SDValue(); 13361 13362 unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat; 13363 if (FirstElt < N0.getNumOperands()) 13364 Ops.push_back(N0.getOperand(FirstElt)); 13365 else 13366 Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands())); 13367 13368 } else if (AllUndef) { 13369 Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType())); 13370 } else { // Mixed with general masks and undefs, can't do optimization. 13371 return SDValue(); 13372 } 13373 } 13374 13375 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 13376 } 13377 13378 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { 13379 EVT VT = N->getValueType(0); 13380 unsigned NumElts = VT.getVectorNumElements(); 13381 13382 SDValue N0 = N->getOperand(0); 13383 SDValue N1 = N->getOperand(1); 13384 13385 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); 13386 13387 // Canonicalize shuffle undef, undef -> undef 13388 if (N0.isUndef() && N1.isUndef()) 13389 return DAG.getUNDEF(VT); 13390 13391 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 13392 13393 // Canonicalize shuffle v, v -> v, undef 13394 if (N0 == N1) { 13395 SmallVector<int, 8> NewMask; 13396 for (unsigned i = 0; i != NumElts; ++i) { 13397 int Idx = SVN->getMaskElt(i); 13398 if (Idx >= (int)NumElts) Idx -= NumElts; 13399 NewMask.push_back(Idx); 13400 } 13401 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), 13402 &NewMask[0]); 13403 } 13404 13405 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 13406 if (N0.isUndef()) { 13407 SmallVector<int, 8> NewMask; 13408 for (unsigned i = 0; i != NumElts; ++i) { 13409 int Idx = SVN->getMaskElt(i); 13410 if (Idx >= 0) { 13411 if (Idx >= (int)NumElts) 13412 Idx -= NumElts; 13413 else 13414 Idx = -1; // remove reference to lhs 13415 } 13416 NewMask.push_back(Idx); 13417 } 13418 return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT), 13419 &NewMask[0]); 13420 } 13421 13422 // Remove references to rhs if it is undef 13423 if (N1.isUndef()) { 13424 bool Changed = false; 13425 SmallVector<int, 8> NewMask; 13426 for (unsigned i = 0; i != NumElts; ++i) { 13427 int Idx = SVN->getMaskElt(i); 13428 if (Idx >= (int)NumElts) { 13429 Idx = -1; 13430 Changed = true; 13431 } 13432 NewMask.push_back(Idx); 13433 } 13434 if (Changed) 13435 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]); 13436 } 13437 13438 // If it is a splat, check if the argument vector is another splat or a 13439 // build_vector. 13440 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { 13441 SDNode *V = N0.getNode(); 13442 13443 // If this is a bit convert that changes the element type of the vector but 13444 // not the number of vector elements, look through it. Be careful not to 13445 // look though conversions that change things like v4f32 to v2f64. 13446 if (V->getOpcode() == ISD::BITCAST) { 13447 SDValue ConvInput = V->getOperand(0); 13448 if (ConvInput.getValueType().isVector() && 13449 ConvInput.getValueType().getVectorNumElements() == NumElts) 13450 V = ConvInput.getNode(); 13451 } 13452 13453 if (V->getOpcode() == ISD::BUILD_VECTOR) { 13454 assert(V->getNumOperands() == NumElts && 13455 "BUILD_VECTOR has wrong number of operands"); 13456 SDValue Base; 13457 bool AllSame = true; 13458 for (unsigned i = 0; i != NumElts; ++i) { 13459 if (!V->getOperand(i).isUndef()) { 13460 Base = V->getOperand(i); 13461 break; 13462 } 13463 } 13464 // Splat of <u, u, u, u>, return <u, u, u, u> 13465 if (!Base.getNode()) 13466 return N0; 13467 for (unsigned i = 0; i != NumElts; ++i) { 13468 if (V->getOperand(i) != Base) { 13469 AllSame = false; 13470 break; 13471 } 13472 } 13473 // Splat of <x, x, x, x>, return <x, x, x, x> 13474 if (AllSame) 13475 return N0; 13476 13477 // Canonicalize any other splat as a build_vector. 13478 const SDValue &Splatted = V->getOperand(SVN->getSplatIndex()); 13479 SmallVector<SDValue, 8> Ops(NumElts, Splatted); 13480 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); 13481 13482 // We may have jumped through bitcasts, so the type of the 13483 // BUILD_VECTOR may not match the type of the shuffle. 13484 if (V->getValueType(0) != VT) 13485 NewBV = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, NewBV); 13486 return NewBV; 13487 } 13488 } 13489 13490 // There are various patterns used to build up a vector from smaller vectors, 13491 // subvectors, or elements. Scan chains of these and replace unused insertions 13492 // or components with undef. 13493 if (SDValue S = simplifyShuffleOperands(SVN, N0, N1, DAG)) 13494 return S; 13495 13496 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 13497 Level < AfterLegalizeVectorOps && 13498 (N1.isUndef() || 13499 (N1.getOpcode() == ISD::CONCAT_VECTORS && 13500 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { 13501 if (SDValue V = partitionShuffleOfConcats(N, DAG)) 13502 return V; 13503 } 13504 13505 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 13506 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 13507 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) { 13508 SmallVector<SDValue, 8> Ops; 13509 for (int M : SVN->getMask()) { 13510 SDValue Op = DAG.getUNDEF(VT.getScalarType()); 13511 if (M >= 0) { 13512 int Idx = M % NumElts; 13513 SDValue &S = (M < (int)NumElts ? N0 : N1); 13514 if (S.getOpcode() == ISD::BUILD_VECTOR && S.hasOneUse()) { 13515 Op = S.getOperand(Idx); 13516 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR && S.hasOneUse()) { 13517 if (Idx == 0) 13518 Op = S.getOperand(0); 13519 } else { 13520 // Operand can't be combined - bail out. 13521 break; 13522 } 13523 } 13524 Ops.push_back(Op); 13525 } 13526 if (Ops.size() == VT.getVectorNumElements()) { 13527 // BUILD_VECTOR requires all inputs to be of the same type, find the 13528 // maximum type and extend them all. 13529 EVT SVT = VT.getScalarType(); 13530 if (SVT.isInteger()) 13531 for (SDValue &Op : Ops) 13532 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 13533 if (SVT != VT.getScalarType()) 13534 for (SDValue &Op : Ops) 13535 Op = TLI.isZExtFree(Op.getValueType(), SVT) 13536 ? DAG.getZExtOrTrunc(Op, SDLoc(N), SVT) 13537 : DAG.getSExtOrTrunc(Op, SDLoc(N), SVT); 13538 return DAG.getBuildVector(VT, SDLoc(N), Ops); 13539 } 13540 } 13541 13542 // If this shuffle only has a single input that is a bitcasted shuffle, 13543 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output 13544 // back to their original types. 13545 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 13546 N1.isUndef() && Level < AfterLegalizeVectorOps && 13547 TLI.isTypeLegal(VT)) { 13548 13549 // Peek through the bitcast only if there is one user. 13550 SDValue BC0 = N0; 13551 while (BC0.getOpcode() == ISD::BITCAST) { 13552 if (!BC0.hasOneUse()) 13553 break; 13554 BC0 = BC0.getOperand(0); 13555 } 13556 13557 auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) { 13558 if (Scale == 1) 13559 return SmallVector<int, 8>(Mask.begin(), Mask.end()); 13560 13561 SmallVector<int, 8> NewMask; 13562 for (int M : Mask) 13563 for (int s = 0; s != Scale; ++s) 13564 NewMask.push_back(M < 0 ? -1 : Scale * M + s); 13565 return NewMask; 13566 }; 13567 13568 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { 13569 EVT SVT = VT.getScalarType(); 13570 EVT InnerVT = BC0->getValueType(0); 13571 EVT InnerSVT = InnerVT.getScalarType(); 13572 13573 // Determine which shuffle works with the smaller scalar type. 13574 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; 13575 EVT ScaleSVT = ScaleVT.getScalarType(); 13576 13577 if (TLI.isTypeLegal(ScaleVT) && 13578 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && 13579 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { 13580 13581 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 13582 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 13583 13584 // Scale the shuffle masks to the smaller scalar type. 13585 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); 13586 SmallVector<int, 8> InnerMask = 13587 ScaleShuffleMask(InnerSVN->getMask(), InnerScale); 13588 SmallVector<int, 8> OuterMask = 13589 ScaleShuffleMask(SVN->getMask(), OuterScale); 13590 13591 // Merge the shuffle masks. 13592 SmallVector<int, 8> NewMask; 13593 for (int M : OuterMask) 13594 NewMask.push_back(M < 0 ? -1 : InnerMask[M]); 13595 13596 // Test for shuffle mask legality over both commutations. 13597 SDValue SV0 = BC0->getOperand(0); 13598 SDValue SV1 = BC0->getOperand(1); 13599 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 13600 if (!LegalMask) { 13601 std::swap(SV0, SV1); 13602 ShuffleVectorSDNode::commuteMask(NewMask); 13603 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 13604 } 13605 13606 if (LegalMask) { 13607 SV0 = DAG.getNode(ISD::BITCAST, SDLoc(N), ScaleVT, SV0); 13608 SV1 = DAG.getNode(ISD::BITCAST, SDLoc(N), ScaleVT, SV1); 13609 return DAG.getNode( 13610 ISD::BITCAST, SDLoc(N), VT, 13611 DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); 13612 } 13613 } 13614 } 13615 } 13616 13617 // Canonicalize shuffles according to rules: 13618 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) 13619 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) 13620 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) 13621 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && 13622 N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && 13623 TLI.isTypeLegal(VT)) { 13624 // The incoming shuffle must be of the same type as the result of the 13625 // current shuffle. 13626 assert(N1->getOperand(0).getValueType() == VT && 13627 "Shuffle types don't match"); 13628 13629 SDValue SV0 = N1->getOperand(0); 13630 SDValue SV1 = N1->getOperand(1); 13631 bool HasSameOp0 = N0 == SV0; 13632 bool IsSV1Undef = SV1.isUndef(); 13633 if (HasSameOp0 || IsSV1Undef || N0 == SV1) 13634 // Commute the operands of this shuffle so that next rule 13635 // will trigger. 13636 return DAG.getCommutedVectorShuffle(*SVN); 13637 } 13638 13639 // Try to fold according to rules: 13640 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 13641 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 13642 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 13643 // Don't try to fold shuffles with illegal type. 13644 // Only fold if this shuffle is the only user of the other shuffle. 13645 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && 13646 Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { 13647 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); 13648 13649 // The incoming shuffle must be of the same type as the result of the 13650 // current shuffle. 13651 assert(OtherSV->getOperand(0).getValueType() == VT && 13652 "Shuffle types don't match"); 13653 13654 SDValue SV0, SV1; 13655 SmallVector<int, 4> Mask; 13656 // Compute the combined shuffle mask for a shuffle with SV0 as the first 13657 // operand, and SV1 as the second operand. 13658 for (unsigned i = 0; i != NumElts; ++i) { 13659 int Idx = SVN->getMaskElt(i); 13660 if (Idx < 0) { 13661 // Propagate Undef. 13662 Mask.push_back(Idx); 13663 continue; 13664 } 13665 13666 SDValue CurrentVec; 13667 if (Idx < (int)NumElts) { 13668 // This shuffle index refers to the inner shuffle N0. Lookup the inner 13669 // shuffle mask to identify which vector is actually referenced. 13670 Idx = OtherSV->getMaskElt(Idx); 13671 if (Idx < 0) { 13672 // Propagate Undef. 13673 Mask.push_back(Idx); 13674 continue; 13675 } 13676 13677 CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0) 13678 : OtherSV->getOperand(1); 13679 } else { 13680 // This shuffle index references an element within N1. 13681 CurrentVec = N1; 13682 } 13683 13684 // Simple case where 'CurrentVec' is UNDEF. 13685 if (CurrentVec.isUndef()) { 13686 Mask.push_back(-1); 13687 continue; 13688 } 13689 13690 // Canonicalize the shuffle index. We don't know yet if CurrentVec 13691 // will be the first or second operand of the combined shuffle. 13692 Idx = Idx % NumElts; 13693 if (!SV0.getNode() || SV0 == CurrentVec) { 13694 // Ok. CurrentVec is the left hand side. 13695 // Update the mask accordingly. 13696 SV0 = CurrentVec; 13697 Mask.push_back(Idx); 13698 continue; 13699 } 13700 13701 // Bail out if we cannot convert the shuffle pair into a single shuffle. 13702 if (SV1.getNode() && SV1 != CurrentVec) 13703 return SDValue(); 13704 13705 // Ok. CurrentVec is the right hand side. 13706 // Update the mask accordingly. 13707 SV1 = CurrentVec; 13708 Mask.push_back(Idx + NumElts); 13709 } 13710 13711 // Check if all indices in Mask are Undef. In case, propagate Undef. 13712 bool isUndefMask = true; 13713 for (unsigned i = 0; i != NumElts && isUndefMask; ++i) 13714 isUndefMask &= Mask[i] < 0; 13715 13716 if (isUndefMask) 13717 return DAG.getUNDEF(VT); 13718 13719 if (!SV0.getNode()) 13720 SV0 = DAG.getUNDEF(VT); 13721 if (!SV1.getNode()) 13722 SV1 = DAG.getUNDEF(VT); 13723 13724 // Avoid introducing shuffles with illegal mask. 13725 if (!TLI.isShuffleMaskLegal(Mask, VT)) { 13726 ShuffleVectorSDNode::commuteMask(Mask); 13727 13728 if (!TLI.isShuffleMaskLegal(Mask, VT)) 13729 return SDValue(); 13730 13731 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) 13732 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) 13733 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) 13734 std::swap(SV0, SV1); 13735 } 13736 13737 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 13738 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 13739 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 13740 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, &Mask[0]); 13741 } 13742 13743 return SDValue(); 13744 } 13745 13746 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { 13747 SDValue InVal = N->getOperand(0); 13748 EVT VT = N->getValueType(0); 13749 13750 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern 13751 // with a VECTOR_SHUFFLE. 13752 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 13753 SDValue InVec = InVal->getOperand(0); 13754 SDValue EltNo = InVal->getOperand(1); 13755 13756 // FIXME: We could support implicit truncation if the shuffle can be 13757 // scaled to a smaller vector scalar type. 13758 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo); 13759 if (C0 && VT == InVec.getValueType() && 13760 VT.getScalarType() == InVal.getValueType()) { 13761 SmallVector<int, 8> NewMask(VT.getVectorNumElements(), -1); 13762 int Elt = C0->getZExtValue(); 13763 NewMask[0] = Elt; 13764 13765 if (TLI.isShuffleMaskLegal(NewMask, VT)) 13766 return DAG.getVectorShuffle(VT, SDLoc(N), InVec, DAG.getUNDEF(VT), 13767 NewMask); 13768 } 13769 } 13770 13771 return SDValue(); 13772 } 13773 13774 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { 13775 SDValue N0 = N->getOperand(0); 13776 SDValue N2 = N->getOperand(2); 13777 13778 // If the input vector is a concatenation, and the insert replaces 13779 // one of the halves, we can optimize into a single concat_vectors. 13780 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 13781 N0->getNumOperands() == 2 && N2.getOpcode() == ISD::Constant) { 13782 APInt InsIdx = cast<ConstantSDNode>(N2)->getAPIntValue(); 13783 EVT VT = N->getValueType(0); 13784 13785 // Lower half: fold (insert_subvector (concat_vectors X, Y), Z) -> 13786 // (concat_vectors Z, Y) 13787 if (InsIdx == 0) 13788 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 13789 N->getOperand(1), N0.getOperand(1)); 13790 13791 // Upper half: fold (insert_subvector (concat_vectors X, Y), Z) -> 13792 // (concat_vectors X, Z) 13793 if (InsIdx == VT.getVectorNumElements()/2) 13794 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 13795 N0.getOperand(0), N->getOperand(1)); 13796 } 13797 13798 return SDValue(); 13799 } 13800 13801 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { 13802 SDValue N0 = N->getOperand(0); 13803 13804 // fold (fp_to_fp16 (fp16_to_fp op)) -> op 13805 if (N0->getOpcode() == ISD::FP16_TO_FP) 13806 return N0->getOperand(0); 13807 13808 return SDValue(); 13809 } 13810 13811 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { 13812 SDValue N0 = N->getOperand(0); 13813 13814 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) 13815 if (N0->getOpcode() == ISD::AND) { 13816 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); 13817 if (AndConst && AndConst->getAPIntValue() == 0xffff) { 13818 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), 13819 N0.getOperand(0)); 13820 } 13821 } 13822 13823 return SDValue(); 13824 } 13825 13826 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle 13827 /// with the destination vector and a zero vector. 13828 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> 13829 /// vector_shuffle V, Zero, <0, 4, 2, 4> 13830 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { 13831 EVT VT = N->getValueType(0); 13832 SDValue LHS = N->getOperand(0); 13833 SDValue RHS = N->getOperand(1); 13834 SDLoc dl(N); 13835 13836 // Make sure we're not running after operation legalization where it 13837 // may have custom lowered the vector shuffles. 13838 if (LegalOperations) 13839 return SDValue(); 13840 13841 if (N->getOpcode() != ISD::AND) 13842 return SDValue(); 13843 13844 if (RHS.getOpcode() == ISD::BITCAST) 13845 RHS = RHS.getOperand(0); 13846 13847 if (RHS.getOpcode() != ISD::BUILD_VECTOR) 13848 return SDValue(); 13849 13850 EVT RVT = RHS.getValueType(); 13851 unsigned NumElts = RHS.getNumOperands(); 13852 13853 // Attempt to create a valid clear mask, splitting the mask into 13854 // sub elements and checking to see if each is 13855 // all zeros or all ones - suitable for shuffle masking. 13856 auto BuildClearMask = [&](int Split) { 13857 int NumSubElts = NumElts * Split; 13858 int NumSubBits = RVT.getScalarSizeInBits() / Split; 13859 13860 SmallVector<int, 8> Indices; 13861 for (int i = 0; i != NumSubElts; ++i) { 13862 int EltIdx = i / Split; 13863 int SubIdx = i % Split; 13864 SDValue Elt = RHS.getOperand(EltIdx); 13865 if (Elt.isUndef()) { 13866 Indices.push_back(-1); 13867 continue; 13868 } 13869 13870 APInt Bits; 13871 if (isa<ConstantSDNode>(Elt)) 13872 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); 13873 else if (isa<ConstantFPSDNode>(Elt)) 13874 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); 13875 else 13876 return SDValue(); 13877 13878 // Extract the sub element from the constant bit mask. 13879 if (DAG.getDataLayout().isBigEndian()) { 13880 Bits = Bits.lshr((Split - SubIdx - 1) * NumSubBits); 13881 } else { 13882 Bits = Bits.lshr(SubIdx * NumSubBits); 13883 } 13884 13885 if (Split > 1) 13886 Bits = Bits.trunc(NumSubBits); 13887 13888 if (Bits.isAllOnesValue()) 13889 Indices.push_back(i); 13890 else if (Bits == 0) 13891 Indices.push_back(i + NumSubElts); 13892 else 13893 return SDValue(); 13894 } 13895 13896 // Let's see if the target supports this vector_shuffle. 13897 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); 13898 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); 13899 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) 13900 return SDValue(); 13901 13902 SDValue Zero = DAG.getConstant(0, dl, ClearVT); 13903 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, dl, 13904 DAG.getBitcast(ClearVT, LHS), 13905 Zero, &Indices[0])); 13906 }; 13907 13908 // Determine maximum split level (byte level masking). 13909 int MaxSplit = 1; 13910 if (RVT.getScalarSizeInBits() % 8 == 0) 13911 MaxSplit = RVT.getScalarSizeInBits() / 8; 13912 13913 for (int Split = 1; Split <= MaxSplit; ++Split) 13914 if (RVT.getScalarSizeInBits() % Split == 0) 13915 if (SDValue S = BuildClearMask(Split)) 13916 return S; 13917 13918 return SDValue(); 13919 } 13920 13921 /// Visit a binary vector operation, like ADD. 13922 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { 13923 assert(N->getValueType(0).isVector() && 13924 "SimplifyVBinOp only works on vectors!"); 13925 13926 SDValue LHS = N->getOperand(0); 13927 SDValue RHS = N->getOperand(1); 13928 SDValue Ops[] = {LHS, RHS}; 13929 13930 // See if we can constant fold the vector operation. 13931 if (SDValue Fold = DAG.FoldConstantVectorArithmetic( 13932 N->getOpcode(), SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) 13933 return Fold; 13934 13935 // Try to convert a constant mask AND into a shuffle clear mask. 13936 if (SDValue Shuffle = XformToShuffleWithZero(N)) 13937 return Shuffle; 13938 13939 // Type legalization might introduce new shuffles in the DAG. 13940 // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask))) 13941 // -> (shuffle (VBinOp (A, B)), Undef, Mask). 13942 if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) && 13943 isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() && 13944 LHS.getOperand(1).isUndef() && 13945 RHS.getOperand(1).isUndef()) { 13946 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS); 13947 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS); 13948 13949 if (SVN0->getMask().equals(SVN1->getMask())) { 13950 EVT VT = N->getValueType(0); 13951 SDValue UndefVector = LHS.getOperand(1); 13952 SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 13953 LHS.getOperand(0), RHS.getOperand(0), 13954 N->getFlags()); 13955 AddUsersToWorklist(N); 13956 return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector, 13957 &SVN0->getMask()[0]); 13958 } 13959 } 13960 13961 return SDValue(); 13962 } 13963 13964 SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0, 13965 SDValue N1, SDValue N2){ 13966 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); 13967 13968 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, 13969 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 13970 13971 // If we got a simplified select_cc node back from SimplifySelectCC, then 13972 // break it down into a new SETCC node, and a new SELECT node, and then return 13973 // the SELECT node, since we were called with a SELECT node. 13974 if (SCC.getNode()) { 13975 // Check to see if we got a select_cc back (to turn into setcc/select). 13976 // Otherwise, just return whatever node we got back, like fabs. 13977 if (SCC.getOpcode() == ISD::SELECT_CC) { 13978 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), 13979 N0.getValueType(), 13980 SCC.getOperand(0), SCC.getOperand(1), 13981 SCC.getOperand(4)); 13982 AddToWorklist(SETCC.getNode()); 13983 return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, 13984 SCC.getOperand(2), SCC.getOperand(3)); 13985 } 13986 13987 return SCC; 13988 } 13989 return SDValue(); 13990 } 13991 13992 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values 13993 /// being selected between, see if we can simplify the select. Callers of this 13994 /// should assume that TheSelect is deleted if this returns true. As such, they 13995 /// should return the appropriate thing (e.g. the node) back to the top-level of 13996 /// the DAG combiner loop to avoid it being looked at. 13997 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, 13998 SDValue RHS) { 13999 14000 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 14001 // The select + setcc is redundant, because fsqrt returns NaN for X < 0. 14002 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { 14003 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { 14004 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) 14005 SDValue Sqrt = RHS; 14006 ISD::CondCode CC; 14007 SDValue CmpLHS; 14008 const ConstantFPSDNode *Zero = nullptr; 14009 14010 if (TheSelect->getOpcode() == ISD::SELECT_CC) { 14011 CC = dyn_cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); 14012 CmpLHS = TheSelect->getOperand(0); 14013 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); 14014 } else { 14015 // SELECT or VSELECT 14016 SDValue Cmp = TheSelect->getOperand(0); 14017 if (Cmp.getOpcode() == ISD::SETCC) { 14018 CC = dyn_cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); 14019 CmpLHS = Cmp.getOperand(0); 14020 Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); 14021 } 14022 } 14023 if (Zero && Zero->isZero() && 14024 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || 14025 CC == ISD::SETULT || CC == ISD::SETLT)) { 14026 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 14027 CombineTo(TheSelect, Sqrt); 14028 return true; 14029 } 14030 } 14031 } 14032 // Cannot simplify select with vector condition 14033 if (TheSelect->getOperand(0).getValueType().isVector()) return false; 14034 14035 // If this is a select from two identical things, try to pull the operation 14036 // through the select. 14037 if (LHS.getOpcode() != RHS.getOpcode() || 14038 !LHS.hasOneUse() || !RHS.hasOneUse()) 14039 return false; 14040 14041 // If this is a load and the token chain is identical, replace the select 14042 // of two loads with a load through a select of the address to load from. 14043 // This triggers in things like "select bool X, 10.0, 123.0" after the FP 14044 // constants have been dropped into the constant pool. 14045 if (LHS.getOpcode() == ISD::LOAD) { 14046 LoadSDNode *LLD = cast<LoadSDNode>(LHS); 14047 LoadSDNode *RLD = cast<LoadSDNode>(RHS); 14048 14049 // Token chains must be identical. 14050 if (LHS.getOperand(0) != RHS.getOperand(0) || 14051 // Do not let this transformation reduce the number of volatile loads. 14052 LLD->isVolatile() || RLD->isVolatile() || 14053 // FIXME: If either is a pre/post inc/dec load, 14054 // we'd need to split out the address adjustment. 14055 LLD->isIndexed() || RLD->isIndexed() || 14056 // If this is an EXTLOAD, the VT's must match. 14057 LLD->getMemoryVT() != RLD->getMemoryVT() || 14058 // If this is an EXTLOAD, the kind of extension must match. 14059 (LLD->getExtensionType() != RLD->getExtensionType() && 14060 // The only exception is if one of the extensions is anyext. 14061 LLD->getExtensionType() != ISD::EXTLOAD && 14062 RLD->getExtensionType() != ISD::EXTLOAD) || 14063 // FIXME: this discards src value information. This is 14064 // over-conservative. It would be beneficial to be able to remember 14065 // both potential memory locations. Since we are discarding 14066 // src value info, don't do the transformation if the memory 14067 // locations are not in the default address space. 14068 LLD->getPointerInfo().getAddrSpace() != 0 || 14069 RLD->getPointerInfo().getAddrSpace() != 0 || 14070 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), 14071 LLD->getBasePtr().getValueType())) 14072 return false; 14073 14074 // Check that the select condition doesn't reach either load. If so, 14075 // folding this will induce a cycle into the DAG. If not, this is safe to 14076 // xform, so create a select of the addresses. 14077 SDValue Addr; 14078 if (TheSelect->getOpcode() == ISD::SELECT) { 14079 SDNode *CondNode = TheSelect->getOperand(0).getNode(); 14080 if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) || 14081 (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode))) 14082 return false; 14083 // The loads must not depend on one another. 14084 if (LLD->isPredecessorOf(RLD) || 14085 RLD->isPredecessorOf(LLD)) 14086 return false; 14087 Addr = DAG.getSelect(SDLoc(TheSelect), 14088 LLD->getBasePtr().getValueType(), 14089 TheSelect->getOperand(0), LLD->getBasePtr(), 14090 RLD->getBasePtr()); 14091 } else { // Otherwise SELECT_CC 14092 SDNode *CondLHS = TheSelect->getOperand(0).getNode(); 14093 SDNode *CondRHS = TheSelect->getOperand(1).getNode(); 14094 14095 if ((LLD->hasAnyUseOfValue(1) && 14096 (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) || 14097 (RLD->hasAnyUseOfValue(1) && 14098 (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS)))) 14099 return false; 14100 14101 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), 14102 LLD->getBasePtr().getValueType(), 14103 TheSelect->getOperand(0), 14104 TheSelect->getOperand(1), 14105 LLD->getBasePtr(), RLD->getBasePtr(), 14106 TheSelect->getOperand(4)); 14107 } 14108 14109 SDValue Load; 14110 // It is safe to replace the two loads if they have different alignments, 14111 // but the new load must be the minimum (most restrictive) alignment of the 14112 // inputs. 14113 bool isInvariant = LLD->isInvariant() & RLD->isInvariant(); 14114 unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment()); 14115 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { 14116 Load = DAG.getLoad(TheSelect->getValueType(0), 14117 SDLoc(TheSelect), 14118 // FIXME: Discards pointer and AA info. 14119 LLD->getChain(), Addr, MachinePointerInfo(), 14120 LLD->isVolatile(), LLD->isNonTemporal(), 14121 isInvariant, Alignment); 14122 } else { 14123 Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ? 14124 RLD->getExtensionType() : LLD->getExtensionType(), 14125 SDLoc(TheSelect), 14126 TheSelect->getValueType(0), 14127 // FIXME: Discards pointer and AA info. 14128 LLD->getChain(), Addr, MachinePointerInfo(), 14129 LLD->getMemoryVT(), LLD->isVolatile(), 14130 LLD->isNonTemporal(), isInvariant, Alignment); 14131 } 14132 14133 // Users of the select now use the result of the load. 14134 CombineTo(TheSelect, Load); 14135 14136 // Users of the old loads now use the new load's chain. We know the 14137 // old-load value is dead now. 14138 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); 14139 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); 14140 return true; 14141 } 14142 14143 return false; 14144 } 14145 14146 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 14147 /// where 'cond' is the comparison specified by CC. 14148 SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, 14149 SDValue N2, SDValue N3, 14150 ISD::CondCode CC, bool NotExtCompare) { 14151 // (x ? y : y) -> y. 14152 if (N2 == N3) return N2; 14153 14154 EVT VT = N2.getValueType(); 14155 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 14156 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 14157 14158 // Determine if the condition we're dealing with is constant 14159 SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), 14160 N0, N1, CC, DL, false); 14161 if (SCC.getNode()) AddToWorklist(SCC.getNode()); 14162 14163 if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) { 14164 // fold select_cc true, x, y -> x 14165 // fold select_cc false, x, y -> y 14166 return !SCCC->isNullValue() ? N2 : N3; 14167 } 14168 14169 // Check to see if we can simplify the select into an fabs node 14170 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) { 14171 // Allow either -0.0 or 0.0 14172 if (CFP->isZero()) { 14173 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs 14174 if ((CC == ISD::SETGE || CC == ISD::SETGT) && 14175 N0 == N2 && N3.getOpcode() == ISD::FNEG && 14176 N2 == N3.getOperand(0)) 14177 return DAG.getNode(ISD::FABS, DL, VT, N0); 14178 14179 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs 14180 if ((CC == ISD::SETLT || CC == ISD::SETLE) && 14181 N0 == N3 && N2.getOpcode() == ISD::FNEG && 14182 N2.getOperand(0) == N3) 14183 return DAG.getNode(ISD::FABS, DL, VT, N3); 14184 } 14185 } 14186 14187 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" 14188 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 14189 // in it. This is a win when the constant is not otherwise available because 14190 // it replaces two constant pool loads with one. We only do this if the FP 14191 // type is known to be legal, because if it isn't, then we are before legalize 14192 // types an we want the other legalization to happen first (e.g. to avoid 14193 // messing with soft float) and if the ConstantFP is not legal, because if 14194 // it is legal, we may not need to store the FP constant in a constant pool. 14195 if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2)) 14196 if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) { 14197 if (TLI.isTypeLegal(N2.getValueType()) && 14198 (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) != 14199 TargetLowering::Legal && 14200 !TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) && 14201 !TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) && 14202 // If both constants have multiple uses, then we won't need to do an 14203 // extra load, they are likely around in registers for other users. 14204 (TV->hasOneUse() || FV->hasOneUse())) { 14205 Constant *Elts[] = { 14206 const_cast<ConstantFP*>(FV->getConstantFPValue()), 14207 const_cast<ConstantFP*>(TV->getConstantFPValue()) 14208 }; 14209 Type *FPTy = Elts[0]->getType(); 14210 const DataLayout &TD = DAG.getDataLayout(); 14211 14212 // Create a ConstantArray of the two constants. 14213 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); 14214 SDValue CPIdx = 14215 DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), 14216 TD.getPrefTypeAlignment(FPTy)); 14217 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 14218 14219 // Get the offsets to the 0 and 1 element of the array so that we can 14220 // select between them. 14221 SDValue Zero = DAG.getIntPtrConstant(0, DL); 14222 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); 14223 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); 14224 14225 SDValue Cond = DAG.getSetCC(DL, 14226 getSetCCResultType(N0.getValueType()), 14227 N0, N1, CC); 14228 AddToWorklist(Cond.getNode()); 14229 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), 14230 Cond, One, Zero); 14231 AddToWorklist(CstOffset.getNode()); 14232 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, 14233 CstOffset); 14234 AddToWorklist(CPIdx.getNode()); 14235 return DAG.getLoad( 14236 TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, 14237 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 14238 false, false, false, Alignment); 14239 } 14240 } 14241 14242 // Check to see if we can perform the "gzip trick", transforming 14243 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A) 14244 if (isNullConstant(N3) && CC == ISD::SETLT && 14245 (isNullConstant(N1) || // (a < 0) ? b : 0 14246 (isOneConstant(N1) && N0 == N2))) { // (a < 1) ? a : 0 14247 EVT XType = N0.getValueType(); 14248 EVT AType = N2.getValueType(); 14249 if (XType.bitsGE(AType)) { 14250 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a 14251 // single-bit constant. 14252 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { 14253 unsigned ShCtV = N2C->getAPIntValue().logBase2(); 14254 ShCtV = XType.getSizeInBits() - ShCtV - 1; 14255 SDValue ShCt = DAG.getConstant(ShCtV, SDLoc(N0), 14256 getShiftAmountTy(N0.getValueType())); 14257 SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), 14258 XType, N0, ShCt); 14259 AddToWorklist(Shift.getNode()); 14260 14261 if (XType.bitsGT(AType)) { 14262 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 14263 AddToWorklist(Shift.getNode()); 14264 } 14265 14266 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 14267 } 14268 14269 SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), 14270 XType, N0, 14271 DAG.getConstant(XType.getSizeInBits() - 1, 14272 SDLoc(N0), 14273 getShiftAmountTy(N0.getValueType()))); 14274 AddToWorklist(Shift.getNode()); 14275 14276 if (XType.bitsGT(AType)) { 14277 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 14278 AddToWorklist(Shift.getNode()); 14279 } 14280 14281 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 14282 } 14283 } 14284 14285 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) 14286 // where y is has a single bit set. 14287 // A plaintext description would be, we can turn the SELECT_CC into an AND 14288 // when the condition can be materialized as an all-ones register. Any 14289 // single bit-test can be materialized as an all-ones register with 14290 // shift-left and shift-right-arith. 14291 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && 14292 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { 14293 SDValue AndLHS = N0->getOperand(0); 14294 ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 14295 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { 14296 // Shift the tested bit over the sign bit. 14297 APInt AndMask = ConstAndRHS->getAPIntValue(); 14298 SDValue ShlAmt = 14299 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), 14300 getShiftAmountTy(AndLHS.getValueType())); 14301 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); 14302 14303 // Now arithmetic right shift it all the way over, so the result is either 14304 // all-ones, or zero. 14305 SDValue ShrAmt = 14306 DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl), 14307 getShiftAmountTy(Shl.getValueType())); 14308 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); 14309 14310 return DAG.getNode(ISD::AND, DL, VT, Shr, N3); 14311 } 14312 } 14313 14314 // fold select C, 16, 0 -> shl C, 4 14315 if (N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2() && 14316 TLI.getBooleanContents(N0.getValueType()) == 14317 TargetLowering::ZeroOrOneBooleanContent) { 14318 14319 // If the caller doesn't want us to simplify this into a zext of a compare, 14320 // don't do it. 14321 if (NotExtCompare && N2C->isOne()) 14322 return SDValue(); 14323 14324 // Get a SetCC of the condition 14325 // NOTE: Don't create a SETCC if it's not legal on this target. 14326 if (!LegalOperations || 14327 TLI.isOperationLegal(ISD::SETCC, N0.getValueType())) { 14328 SDValue Temp, SCC; 14329 // cast from setcc result type to select result type 14330 if (LegalTypes) { 14331 SCC = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), 14332 N0, N1, CC); 14333 if (N2.getValueType().bitsLT(SCC.getValueType())) 14334 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), 14335 N2.getValueType()); 14336 else 14337 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), 14338 N2.getValueType(), SCC); 14339 } else { 14340 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); 14341 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), 14342 N2.getValueType(), SCC); 14343 } 14344 14345 AddToWorklist(SCC.getNode()); 14346 AddToWorklist(Temp.getNode()); 14347 14348 if (N2C->isOne()) 14349 return Temp; 14350 14351 // shl setcc result by log2 n2c 14352 return DAG.getNode( 14353 ISD::SHL, DL, N2.getValueType(), Temp, 14354 DAG.getConstant(N2C->getAPIntValue().logBase2(), SDLoc(Temp), 14355 getShiftAmountTy(Temp.getValueType()))); 14356 } 14357 } 14358 14359 // Check to see if this is an integer abs. 14360 // select_cc setg[te] X, 0, X, -X -> 14361 // select_cc setgt X, -1, X, -X -> 14362 // select_cc setl[te] X, 0, -X, X -> 14363 // select_cc setlt X, 1, -X, X -> 14364 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 14365 if (N1C) { 14366 ConstantSDNode *SubC = nullptr; 14367 if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) || 14368 (N1C->isAllOnesValue() && CC == ISD::SETGT)) && 14369 N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) 14370 SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0)); 14371 else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) || 14372 (N1C->isOne() && CC == ISD::SETLT)) && 14373 N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) 14374 SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0)); 14375 14376 EVT XType = N0.getValueType(); 14377 if (SubC && SubC->isNullValue() && XType.isInteger()) { 14378 SDLoc DL(N0); 14379 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, 14380 N0, 14381 DAG.getConstant(XType.getSizeInBits() - 1, DL, 14382 getShiftAmountTy(N0.getValueType()))); 14383 SDValue Add = DAG.getNode(ISD::ADD, DL, 14384 XType, N0, Shift); 14385 AddToWorklist(Shift.getNode()); 14386 AddToWorklist(Add.getNode()); 14387 return DAG.getNode(ISD::XOR, DL, XType, Add, Shift); 14388 } 14389 } 14390 14391 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) 14392 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) 14393 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) 14394 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) 14395 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) 14396 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) 14397 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) 14398 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) 14399 if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 14400 SDValue ValueOnZero = N2; 14401 SDValue Count = N3; 14402 // If the condition is NE instead of E, swap the operands. 14403 if (CC == ISD::SETNE) 14404 std::swap(ValueOnZero, Count); 14405 // Check if the value on zero is a constant equal to the bits in the type. 14406 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { 14407 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { 14408 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is 14409 // legal, combine to just cttz. 14410 if ((Count.getOpcode() == ISD::CTTZ || 14411 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && 14412 N0 == Count.getOperand(0) && 14413 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) 14414 return DAG.getNode(ISD::CTTZ, DL, VT, N0); 14415 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is 14416 // legal, combine to just ctlz. 14417 if ((Count.getOpcode() == ISD::CTLZ || 14418 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && 14419 N0 == Count.getOperand(0) && 14420 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) 14421 return DAG.getNode(ISD::CTLZ, DL, VT, N0); 14422 } 14423 } 14424 } 14425 14426 return SDValue(); 14427 } 14428 14429 /// This is a stub for TargetLowering::SimplifySetCC. 14430 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, 14431 SDValue N1, ISD::CondCode Cond, 14432 SDLoc DL, bool foldBooleans) { 14433 TargetLowering::DAGCombinerInfo 14434 DagCombineInfo(DAG, Level, false, this); 14435 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); 14436 } 14437 14438 /// Given an ISD::SDIV node expressing a divide by constant, return 14439 /// a DAG expression to select that will generate the same value by multiplying 14440 /// by a magic number. 14441 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 14442 SDValue DAGCombiner::BuildSDIV(SDNode *N) { 14443 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14444 if (!C) 14445 return SDValue(); 14446 14447 // Avoid division by zero. 14448 if (C->isNullValue()) 14449 return SDValue(); 14450 14451 std::vector<SDNode*> Built; 14452 SDValue S = 14453 TLI.BuildSDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); 14454 14455 for (SDNode *N : Built) 14456 AddToWorklist(N); 14457 return S; 14458 } 14459 14460 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a 14461 /// DAG expression that will generate the same value by right shifting. 14462 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { 14463 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14464 if (!C) 14465 return SDValue(); 14466 14467 // Avoid division by zero. 14468 if (C->isNullValue()) 14469 return SDValue(); 14470 14471 std::vector<SDNode *> Built; 14472 SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, &Built); 14473 14474 for (SDNode *N : Built) 14475 AddToWorklist(N); 14476 return S; 14477 } 14478 14479 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG 14480 /// expression that will generate the same value by multiplying by a magic 14481 /// number. 14482 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 14483 SDValue DAGCombiner::BuildUDIV(SDNode *N) { 14484 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14485 if (!C) 14486 return SDValue(); 14487 14488 // Avoid division by zero. 14489 if (C->isNullValue()) 14490 return SDValue(); 14491 14492 std::vector<SDNode*> Built; 14493 SDValue S = 14494 TLI.BuildUDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); 14495 14496 for (SDNode *N : Built) 14497 AddToWorklist(N); 14498 return S; 14499 } 14500 14501 SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags) { 14502 if (Level >= AfterLegalizeDAG) 14503 return SDValue(); 14504 14505 // Expose the DAG combiner to the target combiner implementations. 14506 TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this); 14507 14508 unsigned Iterations = 0; 14509 if (SDValue Est = TLI.getRecipEstimate(Op, DCI, Iterations)) { 14510 if (Iterations) { 14511 // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14512 // For the reciprocal, we need to find the zero of the function: 14513 // F(X) = A X - 1 [which has a zero at X = 1/A] 14514 // => 14515 // X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form 14516 // does not require additional intermediate precision] 14517 EVT VT = Op.getValueType(); 14518 SDLoc DL(Op); 14519 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 14520 14521 AddToWorklist(Est.getNode()); 14522 14523 // Newton iterations: Est = Est + Est (1 - Arg * Est) 14524 for (unsigned i = 0; i < Iterations; ++i) { 14525 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags); 14526 AddToWorklist(NewEst.getNode()); 14527 14528 NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags); 14529 AddToWorklist(NewEst.getNode()); 14530 14531 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 14532 AddToWorklist(NewEst.getNode()); 14533 14534 Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags); 14535 AddToWorklist(Est.getNode()); 14536 } 14537 } 14538 return Est; 14539 } 14540 14541 return SDValue(); 14542 } 14543 14544 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14545 /// For the reciprocal sqrt, we need to find the zero of the function: 14546 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 14547 /// => 14548 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) 14549 /// As a result, we precompute A/2 prior to the iteration loop. 14550 SDValue DAGCombiner::BuildRsqrtNROneConst(SDValue Arg, SDValue Est, 14551 unsigned Iterations, 14552 SDNodeFlags *Flags) { 14553 EVT VT = Arg.getValueType(); 14554 SDLoc DL(Arg); 14555 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); 14556 14557 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that 14558 // this entire sequence requires only one FP constant. 14559 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); 14560 AddToWorklist(HalfArg.getNode()); 14561 14562 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); 14563 AddToWorklist(HalfArg.getNode()); 14564 14565 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) 14566 for (unsigned i = 0; i < Iterations; ++i) { 14567 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 14568 AddToWorklist(NewEst.getNode()); 14569 14570 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); 14571 AddToWorklist(NewEst.getNode()); 14572 14573 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); 14574 AddToWorklist(NewEst.getNode()); 14575 14576 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 14577 AddToWorklist(Est.getNode()); 14578 } 14579 return Est; 14580 } 14581 14582 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14583 /// For the reciprocal sqrt, we need to find the zero of the function: 14584 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 14585 /// => 14586 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) 14587 SDValue DAGCombiner::BuildRsqrtNRTwoConst(SDValue Arg, SDValue Est, 14588 unsigned Iterations, 14589 SDNodeFlags *Flags) { 14590 EVT VT = Arg.getValueType(); 14591 SDLoc DL(Arg); 14592 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); 14593 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); 14594 14595 // Newton iterations: Est = -0.5 * Est * (-3.0 + Arg * Est * Est) 14596 for (unsigned i = 0; i < Iterations; ++i) { 14597 SDValue HalfEst = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); 14598 AddToWorklist(HalfEst.getNode()); 14599 14600 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 14601 AddToWorklist(Est.getNode()); 14602 14603 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); 14604 AddToWorklist(Est.getNode()); 14605 14606 Est = DAG.getNode(ISD::FADD, DL, VT, Est, MinusThree, Flags); 14607 AddToWorklist(Est.getNode()); 14608 14609 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, HalfEst, Flags); 14610 AddToWorklist(Est.getNode()); 14611 } 14612 return Est; 14613 } 14614 14615 SDValue DAGCombiner::BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags) { 14616 if (Level >= AfterLegalizeDAG) 14617 return SDValue(); 14618 14619 // Expose the DAG combiner to the target combiner implementations. 14620 TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this); 14621 unsigned Iterations = 0; 14622 bool UseOneConstNR = false; 14623 if (SDValue Est = TLI.getRsqrtEstimate(Op, DCI, Iterations, UseOneConstNR)) { 14624 AddToWorklist(Est.getNode()); 14625 if (Iterations) { 14626 Est = UseOneConstNR ? 14627 BuildRsqrtNROneConst(Op, Est, Iterations, Flags) : 14628 BuildRsqrtNRTwoConst(Op, Est, Iterations, Flags); 14629 } 14630 return Est; 14631 } 14632 14633 return SDValue(); 14634 } 14635 14636 /// Return true if base is a frame index, which is known not to alias with 14637 /// anything but itself. Provides base object and offset as results. 14638 static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset, 14639 const GlobalValue *&GV, const void *&CV) { 14640 // Assume it is a primitive operation. 14641 Base = Ptr; Offset = 0; GV = nullptr; CV = nullptr; 14642 14643 // If it's an adding a simple constant then integrate the offset. 14644 if (Base.getOpcode() == ISD::ADD) { 14645 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) { 14646 Base = Base.getOperand(0); 14647 Offset += C->getZExtValue(); 14648 } 14649 } 14650 14651 // Return the underlying GlobalValue, and update the Offset. Return false 14652 // for GlobalAddressSDNode since the same GlobalAddress may be represented 14653 // by multiple nodes with different offsets. 14654 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) { 14655 GV = G->getGlobal(); 14656 Offset += G->getOffset(); 14657 return false; 14658 } 14659 14660 // Return the underlying Constant value, and update the Offset. Return false 14661 // for ConstantSDNodes since the same constant pool entry may be represented 14662 // by multiple nodes with different offsets. 14663 if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) { 14664 CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal() 14665 : (const void *)C->getConstVal(); 14666 Offset += C->getOffset(); 14667 return false; 14668 } 14669 // If it's any of the following then it can't alias with anything but itself. 14670 return isa<FrameIndexSDNode>(Base); 14671 } 14672 14673 /// Return true if there is any possibility that the two addresses overlap. 14674 bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const { 14675 // If they are the same then they must be aliases. 14676 if (Op0->getBasePtr() == Op1->getBasePtr()) return true; 14677 14678 // If they are both volatile then they cannot be reordered. 14679 if (Op0->isVolatile() && Op1->isVolatile()) return true; 14680 14681 // If one operation reads from invariant memory, and the other may store, they 14682 // cannot alias. These should really be checking the equivalent of mayWrite, 14683 // but it only matters for memory nodes other than load /store. 14684 if (Op0->isInvariant() && Op1->writeMem()) 14685 return false; 14686 14687 if (Op1->isInvariant() && Op0->writeMem()) 14688 return false; 14689 14690 // Gather base node and offset information. 14691 SDValue Base1, Base2; 14692 int64_t Offset1, Offset2; 14693 const GlobalValue *GV1, *GV2; 14694 const void *CV1, *CV2; 14695 bool isFrameIndex1 = FindBaseOffset(Op0->getBasePtr(), 14696 Base1, Offset1, GV1, CV1); 14697 bool isFrameIndex2 = FindBaseOffset(Op1->getBasePtr(), 14698 Base2, Offset2, GV2, CV2); 14699 14700 // If they have a same base address then check to see if they overlap. 14701 if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2))) 14702 return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || 14703 (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); 14704 14705 // It is possible for different frame indices to alias each other, mostly 14706 // when tail call optimization reuses return address slots for arguments. 14707 // To catch this case, look up the actual index of frame indices to compute 14708 // the real alias relationship. 14709 if (isFrameIndex1 && isFrameIndex2) { 14710 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 14711 Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex()); 14712 Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex()); 14713 return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || 14714 (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); 14715 } 14716 14717 // Otherwise, if we know what the bases are, and they aren't identical, then 14718 // we know they cannot alias. 14719 if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2)) 14720 return false; 14721 14722 // If we know required SrcValue1 and SrcValue2 have relatively large alignment 14723 // compared to the size and offset of the access, we may be able to prove they 14724 // do not alias. This check is conservative for now to catch cases created by 14725 // splitting vector types. 14726 if ((Op0->getOriginalAlignment() == Op1->getOriginalAlignment()) && 14727 (Op0->getSrcValueOffset() != Op1->getSrcValueOffset()) && 14728 (Op0->getMemoryVT().getSizeInBits() >> 3 == 14729 Op1->getMemoryVT().getSizeInBits() >> 3) && 14730 (Op0->getOriginalAlignment() > Op0->getMemoryVT().getSizeInBits()) >> 3) { 14731 int64_t OffAlign1 = Op0->getSrcValueOffset() % Op0->getOriginalAlignment(); 14732 int64_t OffAlign2 = Op1->getSrcValueOffset() % Op1->getOriginalAlignment(); 14733 14734 // There is no overlap between these relatively aligned accesses of similar 14735 // size, return no alias. 14736 if ((OffAlign1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign2 || 14737 (OffAlign2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign1) 14738 return false; 14739 } 14740 14741 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 14742 ? CombinerGlobalAA 14743 : DAG.getSubtarget().useAA(); 14744 #ifndef NDEBUG 14745 if (CombinerAAOnlyFunc.getNumOccurrences() && 14746 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 14747 UseAA = false; 14748 #endif 14749 if (UseAA && 14750 Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) { 14751 // Use alias analysis information. 14752 int64_t MinOffset = std::min(Op0->getSrcValueOffset(), 14753 Op1->getSrcValueOffset()); 14754 int64_t Overlap1 = (Op0->getMemoryVT().getSizeInBits() >> 3) + 14755 Op0->getSrcValueOffset() - MinOffset; 14756 int64_t Overlap2 = (Op1->getMemoryVT().getSizeInBits() >> 3) + 14757 Op1->getSrcValueOffset() - MinOffset; 14758 AliasResult AAResult = 14759 AA.alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap1, 14760 UseTBAA ? Op0->getAAInfo() : AAMDNodes()), 14761 MemoryLocation(Op1->getMemOperand()->getValue(), Overlap2, 14762 UseTBAA ? Op1->getAAInfo() : AAMDNodes())); 14763 if (AAResult == NoAlias) 14764 return false; 14765 } 14766 14767 // Otherwise we have to assume they alias. 14768 return true; 14769 } 14770 14771 /// Walk up chain skipping non-aliasing memory nodes, 14772 /// looking for aliasing nodes and adding them to the Aliases vector. 14773 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, 14774 SmallVectorImpl<SDValue> &Aliases) { 14775 SmallVector<SDValue, 8> Chains; // List of chains to visit. 14776 SmallPtrSet<SDNode *, 16> Visited; // Visited node set. 14777 14778 // Get alias information for node. 14779 bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile(); 14780 14781 // Starting off. 14782 Chains.push_back(OriginalChain); 14783 unsigned Depth = 0; 14784 14785 // Look at each chain and determine if it is an alias. If so, add it to the 14786 // aliases list. If not, then continue up the chain looking for the next 14787 // candidate. 14788 while (!Chains.empty()) { 14789 SDValue Chain = Chains.pop_back_val(); 14790 14791 // For TokenFactor nodes, look at each operand and only continue up the 14792 // chain until we reach the depth limit. 14793 // 14794 // FIXME: The depth check could be made to return the last non-aliasing 14795 // chain we found before we hit a tokenfactor rather than the original 14796 // chain. 14797 if (Depth > TLI.getGatherAllAliasesMaxDepth()) { 14798 Aliases.clear(); 14799 Aliases.push_back(OriginalChain); 14800 return; 14801 } 14802 14803 // Don't bother if we've been before. 14804 if (!Visited.insert(Chain.getNode()).second) 14805 continue; 14806 14807 switch (Chain.getOpcode()) { 14808 case ISD::EntryToken: 14809 // Entry token is ideal chain operand, but handled in FindBetterChain. 14810 break; 14811 14812 case ISD::LOAD: 14813 case ISD::STORE: { 14814 // Get alias information for Chain. 14815 bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) && 14816 !cast<LSBaseSDNode>(Chain.getNode())->isVolatile(); 14817 14818 // If chain is alias then stop here. 14819 if (!(IsLoad && IsOpLoad) && 14820 isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) { 14821 Aliases.push_back(Chain); 14822 } else { 14823 // Look further up the chain. 14824 Chains.push_back(Chain.getOperand(0)); 14825 ++Depth; 14826 } 14827 break; 14828 } 14829 14830 case ISD::TokenFactor: 14831 // We have to check each of the operands of the token factor for "small" 14832 // token factors, so we queue them up. Adding the operands to the queue 14833 // (stack) in reverse order maintains the original order and increases the 14834 // likelihood that getNode will find a matching token factor (CSE.) 14835 if (Chain.getNumOperands() > 16) { 14836 Aliases.push_back(Chain); 14837 break; 14838 } 14839 for (unsigned n = Chain.getNumOperands(); n;) 14840 Chains.push_back(Chain.getOperand(--n)); 14841 ++Depth; 14842 break; 14843 14844 default: 14845 // For all other instructions we will just have to take what we can get. 14846 Aliases.push_back(Chain); 14847 break; 14848 } 14849 } 14850 } 14851 14852 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain 14853 /// (aliasing node.) 14854 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { 14855 SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor. 14856 14857 // Accumulate all the aliases to this node. 14858 GatherAllAliases(N, OldChain, Aliases); 14859 14860 // If no operands then chain to entry token. 14861 if (Aliases.size() == 0) 14862 return DAG.getEntryNode(); 14863 14864 // If a single operand then chain to it. We don't need to revisit it. 14865 if (Aliases.size() == 1) 14866 return Aliases[0]; 14867 14868 // Construct a custom tailored token factor. 14869 return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases); 14870 } 14871 14872 bool DAGCombiner::findBetterNeighborChains(StoreSDNode* St) { 14873 // This holds the base pointer, index, and the offset in bytes from the base 14874 // pointer. 14875 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr(), DAG); 14876 14877 // We must have a base and an offset. 14878 if (!BasePtr.Base.getNode()) 14879 return false; 14880 14881 // Do not handle stores to undef base pointers. 14882 if (BasePtr.Base.isUndef()) 14883 return false; 14884 14885 SmallVector<StoreSDNode *, 8> ChainedStores; 14886 ChainedStores.push_back(St); 14887 14888 // Walk up the chain and look for nodes with offsets from the same 14889 // base pointer. Stop when reaching an instruction with a different kind 14890 // or instruction which has a different base pointer. 14891 StoreSDNode *Index = St; 14892 while (Index) { 14893 // If the chain has more than one use, then we can't reorder the mem ops. 14894 if (Index != St && !SDValue(Index, 0)->hasOneUse()) 14895 break; 14896 14897 if (Index->isVolatile() || Index->isIndexed()) 14898 break; 14899 14900 // Find the base pointer and offset for this memory node. 14901 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr(), DAG); 14902 14903 // Check that the base pointer is the same as the original one. 14904 if (!Ptr.equalBaseIndex(BasePtr)) 14905 break; 14906 14907 // Find the next memory operand in the chain. If the next operand in the 14908 // chain is a store then move up and continue the scan with the next 14909 // memory operand. If the next operand is a load save it and use alias 14910 // information to check if it interferes with anything. 14911 SDNode *NextInChain = Index->getChain().getNode(); 14912 while (true) { 14913 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { 14914 // We found a store node. Use it for the next iteration. 14915 if (STn->isVolatile() || STn->isIndexed()) { 14916 Index = nullptr; 14917 break; 14918 } 14919 ChainedStores.push_back(STn); 14920 Index = STn; 14921 break; 14922 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { 14923 NextInChain = Ldn->getChain().getNode(); 14924 continue; 14925 } else { 14926 Index = nullptr; 14927 break; 14928 } 14929 } 14930 } 14931 14932 bool MadeChange = false; 14933 SmallVector<std::pair<StoreSDNode *, SDValue>, 8> BetterChains; 14934 14935 for (StoreSDNode *ChainedStore : ChainedStores) { 14936 SDValue Chain = ChainedStore->getChain(); 14937 SDValue BetterChain = FindBetterChain(ChainedStore, Chain); 14938 14939 if (Chain != BetterChain) { 14940 MadeChange = true; 14941 BetterChains.push_back(std::make_pair(ChainedStore, BetterChain)); 14942 } 14943 } 14944 14945 // Do all replacements after finding the replacements to make to avoid making 14946 // the chains more complicated by introducing new TokenFactors. 14947 for (auto Replacement : BetterChains) 14948 replaceStoreChain(Replacement.first, Replacement.second); 14949 14950 return MadeChange; 14951 } 14952 14953 /// This is the entry point for the file. 14954 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA, 14955 CodeGenOpt::Level OptLevel) { 14956 /// This is the main entry point to this class. 14957 DAGCombiner(*this, AA, OptLevel).Run(Level); 14958 } 14959