1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11 // both before and after the DAG is legalized.
12 //
13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14 // primarily intended to handle simplification opportunities that are implicit
15 // in the LLVM IR and exposed by the various codegen lowering phases.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetLowering.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
41 #include "llvm/Target/TargetSubtargetInfo.h"
42 #include <algorithm>
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "dagcombine"
46 
47 STATISTIC(NodesCombined   , "Number of dag nodes combined");
48 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
49 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
50 STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
51 STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
52 STATISTIC(SlicedLoads, "Number of load sliced");
53 
54 namespace {
55   static cl::opt<bool>
56     CombinerAA("combiner-alias-analysis", cl::Hidden,
57                cl::desc("Enable DAG combiner alias-analysis heuristics"));
58 
59   static cl::opt<bool>
60     CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
61                cl::desc("Enable DAG combiner's use of IR alias analysis"));
62 
63   static cl::opt<bool>
64     UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
65                cl::desc("Enable DAG combiner's use of TBAA"));
66 
67 #ifndef NDEBUG
68   static cl::opt<std::string>
69     CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
70                cl::desc("Only use DAG-combiner alias analysis in this"
71                         " function"));
72 #endif
73 
74   /// Hidden option to stress test load slicing, i.e., when this option
75   /// is enabled, load slicing bypasses most of its profitability guards.
76   static cl::opt<bool>
77   StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
78                     cl::desc("Bypass the profitability model of load "
79                              "slicing"),
80                     cl::init(false));
81 
82   static cl::opt<bool>
83     MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
84                       cl::desc("DAG combiner may split indexing from loads"));
85 
86 //------------------------------ DAGCombiner ---------------------------------//
87 
88   class DAGCombiner {
89     SelectionDAG &DAG;
90     const TargetLowering &TLI;
91     CombineLevel Level;
92     CodeGenOpt::Level OptLevel;
93     bool LegalOperations;
94     bool LegalTypes;
95     bool ForCodeSize;
96 
97     /// \brief Worklist of all of the nodes that need to be simplified.
98     ///
99     /// This must behave as a stack -- new nodes to process are pushed onto the
100     /// back and when processing we pop off of the back.
101     ///
102     /// The worklist will not contain duplicates but may contain null entries
103     /// due to nodes being deleted from the underlying DAG.
104     SmallVector<SDNode *, 64> Worklist;
105 
106     /// \brief Mapping from an SDNode to its position on the worklist.
107     ///
108     /// This is used to find and remove nodes from the worklist (by nulling
109     /// them) when they are deleted from the underlying DAG. It relies on
110     /// stable indices of nodes within the worklist.
111     DenseMap<SDNode *, unsigned> WorklistMap;
112 
113     /// \brief Set of nodes which have been combined (at least once).
114     ///
115     /// This is used to allow us to reliably add any operands of a DAG node
116     /// which have not yet been combined to the worklist.
117     SmallPtrSet<SDNode *, 32> CombinedNodes;
118 
119     // AA - Used for DAG load/store alias analysis.
120     AliasAnalysis &AA;
121 
122     /// When an instruction is simplified, add all users of the instruction to
123     /// the work lists because they might get more simplified now.
124     void AddUsersToWorklist(SDNode *N) {
125       for (SDNode *Node : N->uses())
126         AddToWorklist(Node);
127     }
128 
129     /// Call the node-specific routine that folds each particular type of node.
130     SDValue visit(SDNode *N);
131 
132   public:
133     /// Add to the worklist making sure its instance is at the back (next to be
134     /// processed.)
135     void AddToWorklist(SDNode *N) {
136       // Skip handle nodes as they can't usefully be combined and confuse the
137       // zero-use deletion strategy.
138       if (N->getOpcode() == ISD::HANDLENODE)
139         return;
140 
141       if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second)
142         Worklist.push_back(N);
143     }
144 
145     /// Remove all instances of N from the worklist.
146     void removeFromWorklist(SDNode *N) {
147       CombinedNodes.erase(N);
148 
149       auto It = WorklistMap.find(N);
150       if (It == WorklistMap.end())
151         return; // Not in the worklist.
152 
153       // Null out the entry rather than erasing it to avoid a linear operation.
154       Worklist[It->second] = nullptr;
155       WorklistMap.erase(It);
156     }
157 
158     void deleteAndRecombine(SDNode *N);
159     bool recursivelyDeleteUnusedNodes(SDNode *N);
160 
161     /// Replaces all uses of the results of one DAG node with new values.
162     SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
163                       bool AddTo = true);
164 
165     /// Replaces all uses of the results of one DAG node with new values.
166     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
167       return CombineTo(N, &Res, 1, AddTo);
168     }
169 
170     /// Replaces all uses of the results of one DAG node with new values.
171     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
172                       bool AddTo = true) {
173       SDValue To[] = { Res0, Res1 };
174       return CombineTo(N, To, 2, AddTo);
175     }
176 
177     void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
178 
179   private:
180 
181     /// Check the specified integer node value to see if it can be simplified or
182     /// if things it uses can be simplified by bit propagation.
183     /// If so, return true.
184     bool SimplifyDemandedBits(SDValue Op) {
185       unsigned BitWidth = Op.getScalarValueSizeInBits();
186       APInt Demanded = APInt::getAllOnesValue(BitWidth);
187       return SimplifyDemandedBits(Op, Demanded);
188     }
189 
190     bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
191 
192     bool CombineToPreIndexedLoadStore(SDNode *N);
193     bool CombineToPostIndexedLoadStore(SDNode *N);
194     SDValue SplitIndexingFromLoad(LoadSDNode *LD);
195     bool SliceUpLoad(SDNode *N);
196 
197     /// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
198     ///   load.
199     ///
200     /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
201     /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
202     /// \param EltNo index of the vector element to load.
203     /// \param OriginalLoad load that EVE came from to be replaced.
204     /// \returns EVE on success SDValue() on failure.
205     SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
206         SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad);
207     void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
208     SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
209     SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
210     SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
211     SDValue PromoteIntBinOp(SDValue Op);
212     SDValue PromoteIntShiftOp(SDValue Op);
213     SDValue PromoteExtend(SDValue Op);
214     bool PromoteLoad(SDValue Op);
215 
216     void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, SDValue Trunc,
217                          SDValue ExtLoad, const SDLoc &DL,
218                          ISD::NodeType ExtType);
219 
220     /// Call the node-specific routine that knows how to fold each
221     /// particular type of node. If that doesn't do anything, try the
222     /// target-specific DAG combines.
223     SDValue combine(SDNode *N);
224 
225     // Visitation implementation - Implement dag node combining for different
226     // node types.  The semantics are as follows:
227     // Return Value:
228     //   SDValue.getNode() == 0 - No change was made
229     //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
230     //   otherwise              - N should be replaced by the returned Operand.
231     //
232     SDValue visitTokenFactor(SDNode *N);
233     SDValue visitMERGE_VALUES(SDNode *N);
234     SDValue visitADD(SDNode *N);
235     SDValue visitSUB(SDNode *N);
236     SDValue visitADDC(SDNode *N);
237     SDValue visitSUBC(SDNode *N);
238     SDValue visitADDE(SDNode *N);
239     SDValue visitSUBE(SDNode *N);
240     SDValue visitMUL(SDNode *N);
241     SDValue useDivRem(SDNode *N);
242     SDValue visitSDIV(SDNode *N);
243     SDValue visitUDIV(SDNode *N);
244     SDValue visitREM(SDNode *N);
245     SDValue visitMULHU(SDNode *N);
246     SDValue visitMULHS(SDNode *N);
247     SDValue visitSMUL_LOHI(SDNode *N);
248     SDValue visitUMUL_LOHI(SDNode *N);
249     SDValue visitSMULO(SDNode *N);
250     SDValue visitUMULO(SDNode *N);
251     SDValue visitIMINMAX(SDNode *N);
252     SDValue visitAND(SDNode *N);
253     SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *LocReference);
254     SDValue visitOR(SDNode *N);
255     SDValue visitORLike(SDValue N0, SDValue N1, SDNode *LocReference);
256     SDValue visitXOR(SDNode *N);
257     SDValue SimplifyVBinOp(SDNode *N);
258     SDValue visitSHL(SDNode *N);
259     SDValue visitSRA(SDNode *N);
260     SDValue visitSRL(SDNode *N);
261     SDValue visitRotate(SDNode *N);
262     SDValue visitBSWAP(SDNode *N);
263     SDValue visitBITREVERSE(SDNode *N);
264     SDValue visitCTLZ(SDNode *N);
265     SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
266     SDValue visitCTTZ(SDNode *N);
267     SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
268     SDValue visitCTPOP(SDNode *N);
269     SDValue visitSELECT(SDNode *N);
270     SDValue visitVSELECT(SDNode *N);
271     SDValue visitSELECT_CC(SDNode *N);
272     SDValue visitSETCC(SDNode *N);
273     SDValue visitSETCCE(SDNode *N);
274     SDValue visitSIGN_EXTEND(SDNode *N);
275     SDValue visitZERO_EXTEND(SDNode *N);
276     SDValue visitANY_EXTEND(SDNode *N);
277     SDValue visitSIGN_EXTEND_INREG(SDNode *N);
278     SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N);
279     SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N);
280     SDValue visitTRUNCATE(SDNode *N);
281     SDValue visitBITCAST(SDNode *N);
282     SDValue visitBUILD_PAIR(SDNode *N);
283     SDValue visitFADD(SDNode *N);
284     SDValue visitFSUB(SDNode *N);
285     SDValue visitFMUL(SDNode *N);
286     SDValue visitFMA(SDNode *N);
287     SDValue visitFDIV(SDNode *N);
288     SDValue visitFREM(SDNode *N);
289     SDValue visitFSQRT(SDNode *N);
290     SDValue visitFCOPYSIGN(SDNode *N);
291     SDValue visitSINT_TO_FP(SDNode *N);
292     SDValue visitUINT_TO_FP(SDNode *N);
293     SDValue visitFP_TO_SINT(SDNode *N);
294     SDValue visitFP_TO_UINT(SDNode *N);
295     SDValue visitFP_ROUND(SDNode *N);
296     SDValue visitFP_ROUND_INREG(SDNode *N);
297     SDValue visitFP_EXTEND(SDNode *N);
298     SDValue visitFNEG(SDNode *N);
299     SDValue visitFABS(SDNode *N);
300     SDValue visitFCEIL(SDNode *N);
301     SDValue visitFTRUNC(SDNode *N);
302     SDValue visitFFLOOR(SDNode *N);
303     SDValue visitFMINNUM(SDNode *N);
304     SDValue visitFMAXNUM(SDNode *N);
305     SDValue visitBRCOND(SDNode *N);
306     SDValue visitBR_CC(SDNode *N);
307     SDValue visitLOAD(SDNode *N);
308 
309     SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
310     SDValue replaceStoreOfFPConstant(StoreSDNode *ST);
311 
312     SDValue visitSTORE(SDNode *N);
313     SDValue visitINSERT_VECTOR_ELT(SDNode *N);
314     SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
315     SDValue visitBUILD_VECTOR(SDNode *N);
316     SDValue visitCONCAT_VECTORS(SDNode *N);
317     SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
318     SDValue visitVECTOR_SHUFFLE(SDNode *N);
319     SDValue visitSCALAR_TO_VECTOR(SDNode *N);
320     SDValue visitINSERT_SUBVECTOR(SDNode *N);
321     SDValue visitMLOAD(SDNode *N);
322     SDValue visitMSTORE(SDNode *N);
323     SDValue visitMGATHER(SDNode *N);
324     SDValue visitMSCATTER(SDNode *N);
325     SDValue visitFP_TO_FP16(SDNode *N);
326     SDValue visitFP16_TO_FP(SDNode *N);
327 
328     SDValue visitFADDForFMACombine(SDNode *N);
329     SDValue visitFSUBForFMACombine(SDNode *N);
330     SDValue visitFMULForFMADistributiveCombine(SDNode *N);
331 
332     SDValue XformToShuffleWithZero(SDNode *N);
333     SDValue ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue LHS,
334                            SDValue RHS);
335 
336     SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt);
337 
338     SDValue foldSelectOfConstants(SDNode *N);
339     bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
340     SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
341     SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2);
342     SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
343                              SDValue N2, SDValue N3, ISD::CondCode CC,
344                              bool NotExtCompare = false);
345     SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1,
346                                    SDValue N2, SDValue N3, ISD::CondCode CC);
347     SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
348                           const SDLoc &DL, bool foldBooleans = true);
349 
350     bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
351                            SDValue &CC) const;
352     bool isOneUseSetCC(SDValue N) const;
353 
354     SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
355                                          unsigned HiOp);
356     SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
357     SDValue CombineExtLoad(SDNode *N);
358     SDValue combineRepeatedFPDivisors(SDNode *N);
359     SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
360     SDValue BuildSDIV(SDNode *N);
361     SDValue BuildSDIVPow2(SDNode *N);
362     SDValue BuildUDIV(SDNode *N);
363     SDValue BuildLogBase2(SDValue Op, const SDLoc &DL);
364     SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags);
365     SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags);
366     SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags *Flags);
367     SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags *Flags, bool Recip);
368     SDValue buildSqrtNROneConst(SDValue Op, SDValue Est, unsigned Iterations,
369                                 SDNodeFlags *Flags, bool Reciprocal);
370     SDValue buildSqrtNRTwoConst(SDValue Op, SDValue Est, unsigned Iterations,
371                                 SDNodeFlags *Flags, bool Reciprocal);
372     SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
373                                bool DemandHighBits = true);
374     SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
375     SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
376                               SDValue InnerPos, SDValue InnerNeg,
377                               unsigned PosOpcode, unsigned NegOpcode,
378                               const SDLoc &DL);
379     SDNode *MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL);
380     SDValue ReduceLoadWidth(SDNode *N);
381     SDValue ReduceLoadOpStoreWidth(SDNode *N);
382     SDValue splitMergedValStore(StoreSDNode *ST);
383     SDValue TransformFPLoadStorePair(SDNode *N);
384     SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
385     SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
386     SDValue reduceBuildVecToShuffle(SDNode *N);
387     SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N,
388                                   ArrayRef<int> VectorMask, SDValue VecIn1,
389                                   SDValue VecIn2, unsigned LeftIdx);
390 
391     SDValue GetDemandedBits(SDValue V, const APInt &Mask);
392 
393     /// Walk up chain skipping non-aliasing memory nodes,
394     /// looking for aliasing nodes and adding them to the Aliases vector.
395     void GatherAllAliases(SDNode *N, SDValue OriginalChain,
396                           SmallVectorImpl<SDValue> &Aliases);
397 
398     /// Return true if there is any possibility that the two addresses overlap.
399     bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const;
400 
401     /// Walk up chain skipping non-aliasing memory nodes, looking for a better
402     /// chain (aliasing node.)
403     SDValue FindBetterChain(SDNode *N, SDValue Chain);
404 
405     /// Try to replace a store and any possibly adjacent stores on
406     /// consecutive chains with better chains. Return true only if St is
407     /// replaced.
408     ///
409     /// Notice that other chains may still be replaced even if the function
410     /// returns false.
411     bool findBetterNeighborChains(StoreSDNode *St);
412 
413     /// Match "(X shl/srl V1) & V2" where V2 may not be present.
414     bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask);
415 
416     /// Holds a pointer to an LSBaseSDNode as well as information on where it
417     /// is located in a sequence of memory operations connected by a chain.
418     struct MemOpLink {
419       MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
420       MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
421       // Ptr to the mem node.
422       LSBaseSDNode *MemNode;
423       // Offset from the base ptr.
424       int64_t OffsetFromBase;
425       // What is the sequence number of this mem node.
426       // Lowest mem operand in the DAG starts at zero.
427       unsigned SequenceNum;
428     };
429 
430     /// This is a helper function for visitMUL to check the profitability
431     /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
432     /// MulNode is the original multiply, AddNode is (add x, c1),
433     /// and ConstNode is c2.
434     bool isMulAddWithConstProfitable(SDNode *MulNode,
435                                      SDValue &AddNode,
436                                      SDValue &ConstNode);
437 
438     /// This is a helper function for MergeStoresOfConstantsOrVecElts. Returns a
439     /// constant build_vector of the stored constant values in Stores.
440     SDValue getMergedConstantVectorStore(SelectionDAG &DAG, const SDLoc &SL,
441                                          ArrayRef<MemOpLink> Stores,
442                                          SmallVectorImpl<SDValue> &Chains,
443                                          EVT Ty) const;
444 
445     /// This is a helper function for visitAND and visitZERO_EXTEND.  Returns
446     /// true if the (and (load x) c) pattern matches an extload.  ExtVT returns
447     /// the type of the loaded value to be extended.  LoadedVT returns the type
448     /// of the original loaded value.  NarrowLoad returns whether the load would
449     /// need to be narrowed in order to match.
450     bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
451                           EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT,
452                           bool &NarrowLoad);
453 
454     /// This is a helper function for MergeConsecutiveStores. When the source
455     /// elements of the consecutive stores are all constants or all extracted
456     /// vector elements, try to merge them into one larger store.
457     /// \return number of stores that were merged into a merged store (always
458     /// a prefix of \p StoreNode).
459     bool MergeStoresOfConstantsOrVecElts(
460         SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores,
461         bool IsConstantSrc, bool UseVector);
462 
463     /// This is a helper function for MergeConsecutiveStores.
464     /// Stores that may be merged are placed in StoreNodes.
465     /// Loads that may alias with those stores are placed in AliasLoadNodes.
466     void getStoreMergeAndAliasCandidates(
467         StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes,
468         SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes);
469 
470     /// Helper function for MergeConsecutiveStores. Checks if
471     /// Candidate stores have indirect dependency through their
472     /// operands. \return True if safe to merge
473     bool checkMergeStoreCandidatesForDependencies(
474         SmallVectorImpl<MemOpLink> &StoreNodes);
475 
476     /// Merge consecutive store operations into a wide store.
477     /// This optimization uses wide integers or vectors when possible.
478     /// \return number of stores that were merged into a merged store (the
479     /// affected nodes are stored as a prefix in \p StoreNodes).
480     bool MergeConsecutiveStores(StoreSDNode *N,
481                                 SmallVectorImpl<MemOpLink> &StoreNodes);
482 
483     /// \brief Try to transform a truncation where C is a constant:
484     ///     (trunc (and X, C)) -> (and (trunc X), (trunc C))
485     ///
486     /// \p N needs to be a truncation and its first operand an AND. Other
487     /// requirements are checked by the function (e.g. that trunc is
488     /// single-use) and if missed an empty SDValue is returned.
489     SDValue distributeTruncateThroughAnd(SDNode *N);
490 
491   public:
492     DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
493         : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
494           OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {
495       ForCodeSize = DAG.getMachineFunction().getFunction()->optForSize();
496     }
497 
498     /// Runs the dag combiner on all nodes in the work list
499     void Run(CombineLevel AtLevel);
500 
501     SelectionDAG &getDAG() const { return DAG; }
502 
503     /// Returns a type large enough to hold any valid shift amount - before type
504     /// legalization these can be huge.
505     EVT getShiftAmountTy(EVT LHSTy) {
506       assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
507       if (LHSTy.isVector())
508         return LHSTy;
509       auto &DL = DAG.getDataLayout();
510       return LegalTypes ? TLI.getScalarShiftAmountTy(DL, LHSTy)
511                         : TLI.getPointerTy(DL);
512     }
513 
514     /// This method returns true if we are running before type legalization or
515     /// if the specified VT is legal.
516     bool isTypeLegal(const EVT &VT) {
517       if (!LegalTypes) return true;
518       return TLI.isTypeLegal(VT);
519     }
520 
521     /// Convenience wrapper around TargetLowering::getSetCCResultType
522     EVT getSetCCResultType(EVT VT) const {
523       return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
524     }
525   };
526 }
527 
528 
529 namespace {
530 /// This class is a DAGUpdateListener that removes any deleted
531 /// nodes from the worklist.
532 class WorklistRemover : public SelectionDAG::DAGUpdateListener {
533   DAGCombiner &DC;
534 public:
535   explicit WorklistRemover(DAGCombiner &dc)
536     : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
537 
538   void NodeDeleted(SDNode *N, SDNode *E) override {
539     DC.removeFromWorklist(N);
540   }
541 };
542 }
543 
544 //===----------------------------------------------------------------------===//
545 //  TargetLowering::DAGCombinerInfo implementation
546 //===----------------------------------------------------------------------===//
547 
548 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
549   ((DAGCombiner*)DC)->AddToWorklist(N);
550 }
551 
552 SDValue TargetLowering::DAGCombinerInfo::
553 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
554   return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
555 }
556 
557 SDValue TargetLowering::DAGCombinerInfo::
558 CombineTo(SDNode *N, SDValue Res, bool AddTo) {
559   return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
560 }
561 
562 
563 SDValue TargetLowering::DAGCombinerInfo::
564 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
565   return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
566 }
567 
568 void TargetLowering::DAGCombinerInfo::
569 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
570   return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
571 }
572 
573 //===----------------------------------------------------------------------===//
574 // Helper Functions
575 //===----------------------------------------------------------------------===//
576 
577 void DAGCombiner::deleteAndRecombine(SDNode *N) {
578   removeFromWorklist(N);
579 
580   // If the operands of this node are only used by the node, they will now be
581   // dead. Make sure to re-visit them and recursively delete dead nodes.
582   for (const SDValue &Op : N->ops())
583     // For an operand generating multiple values, one of the values may
584     // become dead allowing further simplification (e.g. split index
585     // arithmetic from an indexed load).
586     if (Op->hasOneUse() || Op->getNumValues() > 1)
587       AddToWorklist(Op.getNode());
588 
589   DAG.DeleteNode(N);
590 }
591 
592 /// Return 1 if we can compute the negated form of the specified expression for
593 /// the same cost as the expression itself, or 2 if we can compute the negated
594 /// form more cheaply than the expression itself.
595 static char isNegatibleForFree(SDValue Op, bool LegalOperations,
596                                const TargetLowering &TLI,
597                                const TargetOptions *Options,
598                                unsigned Depth = 0) {
599   // fneg is removable even if it has multiple uses.
600   if (Op.getOpcode() == ISD::FNEG) return 2;
601 
602   // Don't allow anything with multiple uses.
603   if (!Op.hasOneUse()) return 0;
604 
605   // Don't recurse exponentially.
606   if (Depth > 6) return 0;
607 
608   switch (Op.getOpcode()) {
609   default: return false;
610   case ISD::ConstantFP:
611     // Don't invert constant FP values after legalize.  The negated constant
612     // isn't necessarily legal.
613     return LegalOperations ? 0 : 1;
614   case ISD::FADD:
615     // FIXME: determine better conditions for this xform.
616     if (!Options->UnsafeFPMath) return 0;
617 
618     // After operation legalization, it might not be legal to create new FSUBs.
619     if (LegalOperations &&
620         !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
621       return 0;
622 
623     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
624     if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
625                                     Options, Depth + 1))
626       return V;
627     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
628     return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
629                               Depth + 1);
630   case ISD::FSUB:
631     // We can't turn -(A-B) into B-A when we honor signed zeros.
632     if (!Options->UnsafeFPMath && !Op.getNode()->getFlags()->hasNoSignedZeros())
633       return 0;
634 
635     // fold (fneg (fsub A, B)) -> (fsub B, A)
636     return 1;
637 
638   case ISD::FMUL:
639   case ISD::FDIV:
640     if (Options->HonorSignDependentRoundingFPMath()) return 0;
641 
642     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
643     if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
644                                     Options, Depth + 1))
645       return V;
646 
647     return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
648                               Depth + 1);
649 
650   case ISD::FP_EXTEND:
651   case ISD::FP_ROUND:
652   case ISD::FSIN:
653     return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
654                               Depth + 1);
655   }
656 }
657 
658 /// If isNegatibleForFree returns true, return the newly negated expression.
659 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
660                                     bool LegalOperations, unsigned Depth = 0) {
661   const TargetOptions &Options = DAG.getTarget().Options;
662   // fneg is removable even if it has multiple uses.
663   if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
664 
665   // Don't allow anything with multiple uses.
666   assert(Op.hasOneUse() && "Unknown reuse!");
667 
668   assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
669 
670   const SDNodeFlags *Flags = Op.getNode()->getFlags();
671 
672   switch (Op.getOpcode()) {
673   default: llvm_unreachable("Unknown code");
674   case ISD::ConstantFP: {
675     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
676     V.changeSign();
677     return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
678   }
679   case ISD::FADD:
680     // FIXME: determine better conditions for this xform.
681     assert(Options.UnsafeFPMath);
682 
683     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
684     if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
685                            DAG.getTargetLoweringInfo(), &Options, Depth+1))
686       return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
687                          GetNegatedExpression(Op.getOperand(0), DAG,
688                                               LegalOperations, Depth+1),
689                          Op.getOperand(1), Flags);
690     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
691     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
692                        GetNegatedExpression(Op.getOperand(1), DAG,
693                                             LegalOperations, Depth+1),
694                        Op.getOperand(0), Flags);
695   case ISD::FSUB:
696     // fold (fneg (fsub 0, B)) -> B
697     if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
698       if (N0CFP->isZero())
699         return Op.getOperand(1);
700 
701     // fold (fneg (fsub A, B)) -> (fsub B, A)
702     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
703                        Op.getOperand(1), Op.getOperand(0), Flags);
704 
705   case ISD::FMUL:
706   case ISD::FDIV:
707     assert(!Options.HonorSignDependentRoundingFPMath());
708 
709     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
710     if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
711                            DAG.getTargetLoweringInfo(), &Options, Depth+1))
712       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
713                          GetNegatedExpression(Op.getOperand(0), DAG,
714                                               LegalOperations, Depth+1),
715                          Op.getOperand(1), Flags);
716 
717     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
718     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
719                        Op.getOperand(0),
720                        GetNegatedExpression(Op.getOperand(1), DAG,
721                                             LegalOperations, Depth+1), Flags);
722 
723   case ISD::FP_EXTEND:
724   case ISD::FSIN:
725     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
726                        GetNegatedExpression(Op.getOperand(0), DAG,
727                                             LegalOperations, Depth+1));
728   case ISD::FP_ROUND:
729       return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
730                          GetNegatedExpression(Op.getOperand(0), DAG,
731                                               LegalOperations, Depth+1),
732                          Op.getOperand(1));
733   }
734 }
735 
736 // APInts must be the same size for most operations, this helper
737 // function zero extends the shorter of the pair so that they match.
738 // We provide an Offset so that we can create bitwidths that won't overflow.
739 static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) {
740   unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth());
741   LHS = LHS.zextOrSelf(Bits);
742   RHS = RHS.zextOrSelf(Bits);
743 }
744 
745 // Return true if this node is a setcc, or is a select_cc
746 // that selects between the target values used for true and false, making it
747 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
748 // the appropriate nodes based on the type of node we are checking. This
749 // simplifies life a bit for the callers.
750 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
751                                     SDValue &CC) const {
752   if (N.getOpcode() == ISD::SETCC) {
753     LHS = N.getOperand(0);
754     RHS = N.getOperand(1);
755     CC  = N.getOperand(2);
756     return true;
757   }
758 
759   if (N.getOpcode() != ISD::SELECT_CC ||
760       !TLI.isConstTrueVal(N.getOperand(2).getNode()) ||
761       !TLI.isConstFalseVal(N.getOperand(3).getNode()))
762     return false;
763 
764   if (TLI.getBooleanContents(N.getValueType()) ==
765       TargetLowering::UndefinedBooleanContent)
766     return false;
767 
768   LHS = N.getOperand(0);
769   RHS = N.getOperand(1);
770   CC  = N.getOperand(4);
771   return true;
772 }
773 
774 /// Return true if this is a SetCC-equivalent operation with only one use.
775 /// If this is true, it allows the users to invert the operation for free when
776 /// it is profitable to do so.
777 bool DAGCombiner::isOneUseSetCC(SDValue N) const {
778   SDValue N0, N1, N2;
779   if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
780     return true;
781   return false;
782 }
783 
784 // \brief Returns the SDNode if it is a constant float BuildVector
785 // or constant float.
786 static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) {
787   if (isa<ConstantFPSDNode>(N))
788     return N.getNode();
789   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
790     return N.getNode();
791   return nullptr;
792 }
793 
794 // Determines if it is a constant integer or a build vector of constant
795 // integers (and undefs).
796 // Do not permit build vector implicit truncation.
797 static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) {
798   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N))
799     return !(Const->isOpaque() && NoOpaques);
800   if (N.getOpcode() != ISD::BUILD_VECTOR)
801     return false;
802   unsigned BitWidth = N.getScalarValueSizeInBits();
803   for (const SDValue &Op : N->op_values()) {
804     if (Op.isUndef())
805       continue;
806     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op);
807     if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth ||
808         (Const->isOpaque() && NoOpaques))
809       return false;
810   }
811   return true;
812 }
813 
814 // Determines if it is a constant null integer or a splatted vector of a
815 // constant null integer (with no undefs).
816 // Build vector implicit truncation is not an issue for null values.
817 static bool isNullConstantOrNullSplatConstant(SDValue N) {
818   if (ConstantSDNode *Splat = isConstOrConstSplat(N))
819     return Splat->isNullValue();
820   return false;
821 }
822 
823 // Determines if it is a constant integer of one or a splatted vector of a
824 // constant integer of one (with no undefs).
825 // Do not permit build vector implicit truncation.
826 static bool isOneConstantOrOneSplatConstant(SDValue N) {
827   unsigned BitWidth = N.getScalarValueSizeInBits();
828   if (ConstantSDNode *Splat = isConstOrConstSplat(N))
829     return Splat->isOne() && Splat->getAPIntValue().getBitWidth() == BitWidth;
830   return false;
831 }
832 
833 // Determines if it is a constant integer of all ones or a splatted vector of a
834 // constant integer of all ones (with no undefs).
835 // Do not permit build vector implicit truncation.
836 static bool isAllOnesConstantOrAllOnesSplatConstant(SDValue N) {
837   unsigned BitWidth = N.getScalarValueSizeInBits();
838   if (ConstantSDNode *Splat = isConstOrConstSplat(N))
839     return Splat->isAllOnesValue() &&
840            Splat->getAPIntValue().getBitWidth() == BitWidth;
841   return false;
842 }
843 
844 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
845 // undef's.
846 static bool isAnyConstantBuildVector(const SDNode *N) {
847   return ISD::isBuildVectorOfConstantSDNodes(N) ||
848          ISD::isBuildVectorOfConstantFPSDNodes(N);
849 }
850 
851 SDValue DAGCombiner::ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
852                                     SDValue N1) {
853   EVT VT = N0.getValueType();
854   if (N0.getOpcode() == Opc) {
855     if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) {
856       if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
857         // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
858         if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R))
859           return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
860         return SDValue();
861       }
862       if (N0.hasOneUse()) {
863         // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one
864         // use
865         SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1);
866         if (!OpNode.getNode())
867           return SDValue();
868         AddToWorklist(OpNode.getNode());
869         return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
870       }
871     }
872   }
873 
874   if (N1.getOpcode() == Opc) {
875     if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) {
876       if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
877         // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
878         if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L))
879           return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
880         return SDValue();
881       }
882       if (N1.hasOneUse()) {
883         // reassoc. (op x, (op y, c1)) -> (op (op x, y), c1) iff x+c1 has one
884         // use
885         SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0, N1.getOperand(0));
886         if (!OpNode.getNode())
887           return SDValue();
888         AddToWorklist(OpNode.getNode());
889         return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
890       }
891     }
892   }
893 
894   return SDValue();
895 }
896 
897 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
898                                bool AddTo) {
899   assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
900   ++NodesCombined;
901   DEBUG(dbgs() << "\nReplacing.1 ";
902         N->dump(&DAG);
903         dbgs() << "\nWith: ";
904         To[0].getNode()->dump(&DAG);
905         dbgs() << " and " << NumTo-1 << " other values\n");
906   for (unsigned i = 0, e = NumTo; i != e; ++i)
907     assert((!To[i].getNode() ||
908             N->getValueType(i) == To[i].getValueType()) &&
909            "Cannot combine value to value of different type!");
910 
911   WorklistRemover DeadNodes(*this);
912   DAG.ReplaceAllUsesWith(N, To);
913   if (AddTo) {
914     // Push the new nodes and any users onto the worklist
915     for (unsigned i = 0, e = NumTo; i != e; ++i) {
916       if (To[i].getNode()) {
917         AddToWorklist(To[i].getNode());
918         AddUsersToWorklist(To[i].getNode());
919       }
920     }
921   }
922 
923   // Finally, if the node is now dead, remove it from the graph.  The node
924   // may not be dead if the replacement process recursively simplified to
925   // something else needing this node.
926   if (N->use_empty())
927     deleteAndRecombine(N);
928   return SDValue(N, 0);
929 }
930 
931 void DAGCombiner::
932 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
933   // Replace all uses.  If any nodes become isomorphic to other nodes and
934   // are deleted, make sure to remove them from our worklist.
935   WorklistRemover DeadNodes(*this);
936   DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
937 
938   // Push the new node and any (possibly new) users onto the worklist.
939   AddToWorklist(TLO.New.getNode());
940   AddUsersToWorklist(TLO.New.getNode());
941 
942   // Finally, if the node is now dead, remove it from the graph.  The node
943   // may not be dead if the replacement process recursively simplified to
944   // something else needing this node.
945   if (TLO.Old.getNode()->use_empty())
946     deleteAndRecombine(TLO.Old.getNode());
947 }
948 
949 /// Check the specified integer node value to see if it can be simplified or if
950 /// things it uses can be simplified by bit propagation. If so, return true.
951 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
952   TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
953   APInt KnownZero, KnownOne;
954   if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
955     return false;
956 
957   // Revisit the node.
958   AddToWorklist(Op.getNode());
959 
960   // Replace the old value with the new one.
961   ++NodesCombined;
962   DEBUG(dbgs() << "\nReplacing.2 ";
963         TLO.Old.getNode()->dump(&DAG);
964         dbgs() << "\nWith: ";
965         TLO.New.getNode()->dump(&DAG);
966         dbgs() << '\n');
967 
968   CommitTargetLoweringOpt(TLO);
969   return true;
970 }
971 
972 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
973   SDLoc DL(Load);
974   EVT VT = Load->getValueType(0);
975   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0));
976 
977   DEBUG(dbgs() << "\nReplacing.9 ";
978         Load->dump(&DAG);
979         dbgs() << "\nWith: ";
980         Trunc.getNode()->dump(&DAG);
981         dbgs() << '\n');
982   WorklistRemover DeadNodes(*this);
983   DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
984   DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
985   deleteAndRecombine(Load);
986   AddToWorklist(Trunc.getNode());
987 }
988 
989 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
990   Replace = false;
991   SDLoc DL(Op);
992   if (ISD::isUNINDEXEDLoad(Op.getNode())) {
993     LoadSDNode *LD = cast<LoadSDNode>(Op);
994     EVT MemVT = LD->getMemoryVT();
995     ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
996       ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD
997                                                        : ISD::EXTLOAD)
998       : LD->getExtensionType();
999     Replace = true;
1000     return DAG.getExtLoad(ExtType, DL, PVT,
1001                           LD->getChain(), LD->getBasePtr(),
1002                           MemVT, LD->getMemOperand());
1003   }
1004 
1005   unsigned Opc = Op.getOpcode();
1006   switch (Opc) {
1007   default: break;
1008   case ISD::AssertSext:
1009     return DAG.getNode(ISD::AssertSext, DL, PVT,
1010                        SExtPromoteOperand(Op.getOperand(0), PVT),
1011                        Op.getOperand(1));
1012   case ISD::AssertZext:
1013     return DAG.getNode(ISD::AssertZext, DL, PVT,
1014                        ZExtPromoteOperand(Op.getOperand(0), PVT),
1015                        Op.getOperand(1));
1016   case ISD::Constant: {
1017     unsigned ExtOpc =
1018       Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1019     return DAG.getNode(ExtOpc, DL, PVT, Op);
1020   }
1021   }
1022 
1023   if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
1024     return SDValue();
1025   return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op);
1026 }
1027 
1028 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
1029   if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
1030     return SDValue();
1031   EVT OldVT = Op.getValueType();
1032   SDLoc DL(Op);
1033   bool Replace = false;
1034   SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1035   if (!NewOp.getNode())
1036     return SDValue();
1037   AddToWorklist(NewOp.getNode());
1038 
1039   if (Replace)
1040     ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1041   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp,
1042                      DAG.getValueType(OldVT));
1043 }
1044 
1045 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
1046   EVT OldVT = Op.getValueType();
1047   SDLoc DL(Op);
1048   bool Replace = false;
1049   SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1050   if (!NewOp.getNode())
1051     return SDValue();
1052   AddToWorklist(NewOp.getNode());
1053 
1054   if (Replace)
1055     ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1056   return DAG.getZeroExtendInReg(NewOp, DL, OldVT);
1057 }
1058 
1059 /// Promote the specified integer binary operation if the target indicates it is
1060 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1061 /// i32 since i16 instructions are longer.
1062 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
1063   if (!LegalOperations)
1064     return SDValue();
1065 
1066   EVT VT = Op.getValueType();
1067   if (VT.isVector() || !VT.isInteger())
1068     return SDValue();
1069 
1070   // If operation type is 'undesirable', e.g. i16 on x86, consider
1071   // promoting it.
1072   unsigned Opc = Op.getOpcode();
1073   if (TLI.isTypeDesirableForOp(Opc, VT))
1074     return SDValue();
1075 
1076   EVT PVT = VT;
1077   // Consult target whether it is a good idea to promote this operation and
1078   // what's the right type to promote it to.
1079   if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1080     assert(PVT != VT && "Don't know what type to promote to!");
1081 
1082     bool Replace0 = false;
1083     SDValue N0 = Op.getOperand(0);
1084     SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
1085     if (!NN0.getNode())
1086       return SDValue();
1087 
1088     bool Replace1 = false;
1089     SDValue N1 = Op.getOperand(1);
1090     SDValue NN1;
1091     if (N0 == N1)
1092       NN1 = NN0;
1093     else {
1094       NN1 = PromoteOperand(N1, PVT, Replace1);
1095       if (!NN1.getNode())
1096         return SDValue();
1097     }
1098 
1099     AddToWorklist(NN0.getNode());
1100     if (NN1.getNode())
1101       AddToWorklist(NN1.getNode());
1102 
1103     if (Replace0)
1104       ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
1105     if (Replace1)
1106       ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
1107 
1108     DEBUG(dbgs() << "\nPromoting ";
1109           Op.getNode()->dump(&DAG));
1110     SDLoc DL(Op);
1111     return DAG.getNode(ISD::TRUNCATE, DL, VT,
1112                        DAG.getNode(Opc, DL, PVT, NN0, NN1));
1113   }
1114   return SDValue();
1115 }
1116 
1117 /// Promote the specified integer shift operation if the target indicates it is
1118 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1119 /// i32 since i16 instructions are longer.
1120 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
1121   if (!LegalOperations)
1122     return SDValue();
1123 
1124   EVT VT = Op.getValueType();
1125   if (VT.isVector() || !VT.isInteger())
1126     return SDValue();
1127 
1128   // If operation type is 'undesirable', e.g. i16 on x86, consider
1129   // promoting it.
1130   unsigned Opc = Op.getOpcode();
1131   if (TLI.isTypeDesirableForOp(Opc, VT))
1132     return SDValue();
1133 
1134   EVT PVT = VT;
1135   // Consult target whether it is a good idea to promote this operation and
1136   // what's the right type to promote it to.
1137   if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1138     assert(PVT != VT && "Don't know what type to promote to!");
1139 
1140     bool Replace = false;
1141     SDValue N0 = Op.getOperand(0);
1142     if (Opc == ISD::SRA)
1143       N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
1144     else if (Opc == ISD::SRL)
1145       N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
1146     else
1147       N0 = PromoteOperand(N0, PVT, Replace);
1148     if (!N0.getNode())
1149       return SDValue();
1150 
1151     AddToWorklist(N0.getNode());
1152     if (Replace)
1153       ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
1154 
1155     DEBUG(dbgs() << "\nPromoting ";
1156           Op.getNode()->dump(&DAG));
1157     SDLoc DL(Op);
1158     return DAG.getNode(ISD::TRUNCATE, DL, VT,
1159                        DAG.getNode(Opc, DL, PVT, N0, Op.getOperand(1)));
1160   }
1161   return SDValue();
1162 }
1163 
1164 SDValue DAGCombiner::PromoteExtend(SDValue Op) {
1165   if (!LegalOperations)
1166     return SDValue();
1167 
1168   EVT VT = Op.getValueType();
1169   if (VT.isVector() || !VT.isInteger())
1170     return SDValue();
1171 
1172   // If operation type is 'undesirable', e.g. i16 on x86, consider
1173   // promoting it.
1174   unsigned Opc = Op.getOpcode();
1175   if (TLI.isTypeDesirableForOp(Opc, VT))
1176     return SDValue();
1177 
1178   EVT PVT = VT;
1179   // Consult target whether it is a good idea to promote this operation and
1180   // what's the right type to promote it to.
1181   if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1182     assert(PVT != VT && "Don't know what type to promote to!");
1183     // fold (aext (aext x)) -> (aext x)
1184     // fold (aext (zext x)) -> (zext x)
1185     // fold (aext (sext x)) -> (sext x)
1186     DEBUG(dbgs() << "\nPromoting ";
1187           Op.getNode()->dump(&DAG));
1188     return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
1189   }
1190   return SDValue();
1191 }
1192 
1193 bool DAGCombiner::PromoteLoad(SDValue Op) {
1194   if (!LegalOperations)
1195     return false;
1196 
1197   if (!ISD::isUNINDEXEDLoad(Op.getNode()))
1198     return false;
1199 
1200   EVT VT = Op.getValueType();
1201   if (VT.isVector() || !VT.isInteger())
1202     return false;
1203 
1204   // If operation type is 'undesirable', e.g. i16 on x86, consider
1205   // promoting it.
1206   unsigned Opc = Op.getOpcode();
1207   if (TLI.isTypeDesirableForOp(Opc, VT))
1208     return false;
1209 
1210   EVT PVT = VT;
1211   // Consult target whether it is a good idea to promote this operation and
1212   // what's the right type to promote it to.
1213   if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1214     assert(PVT != VT && "Don't know what type to promote to!");
1215 
1216     SDLoc DL(Op);
1217     SDNode *N = Op.getNode();
1218     LoadSDNode *LD = cast<LoadSDNode>(N);
1219     EVT MemVT = LD->getMemoryVT();
1220     ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
1221       ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD
1222                                                        : ISD::EXTLOAD)
1223       : LD->getExtensionType();
1224     SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT,
1225                                    LD->getChain(), LD->getBasePtr(),
1226                                    MemVT, LD->getMemOperand());
1227     SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);
1228 
1229     DEBUG(dbgs() << "\nPromoting ";
1230           N->dump(&DAG);
1231           dbgs() << "\nTo: ";
1232           Result.getNode()->dump(&DAG);
1233           dbgs() << '\n');
1234     WorklistRemover DeadNodes(*this);
1235     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1236     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1237     deleteAndRecombine(N);
1238     AddToWorklist(Result.getNode());
1239     return true;
1240   }
1241   return false;
1242 }
1243 
1244 /// \brief Recursively delete a node which has no uses and any operands for
1245 /// which it is the only use.
1246 ///
1247 /// Note that this both deletes the nodes and removes them from the worklist.
1248 /// It also adds any nodes who have had a user deleted to the worklist as they
1249 /// may now have only one use and subject to other combines.
1250 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
1251   if (!N->use_empty())
1252     return false;
1253 
1254   SmallSetVector<SDNode *, 16> Nodes;
1255   Nodes.insert(N);
1256   do {
1257     N = Nodes.pop_back_val();
1258     if (!N)
1259       continue;
1260 
1261     if (N->use_empty()) {
1262       for (const SDValue &ChildN : N->op_values())
1263         Nodes.insert(ChildN.getNode());
1264 
1265       removeFromWorklist(N);
1266       DAG.DeleteNode(N);
1267     } else {
1268       AddToWorklist(N);
1269     }
1270   } while (!Nodes.empty());
1271   return true;
1272 }
1273 
1274 //===----------------------------------------------------------------------===//
1275 //  Main DAG Combiner implementation
1276 //===----------------------------------------------------------------------===//
1277 
1278 void DAGCombiner::Run(CombineLevel AtLevel) {
1279   // set the instance variables, so that the various visit routines may use it.
1280   Level = AtLevel;
1281   LegalOperations = Level >= AfterLegalizeVectorOps;
1282   LegalTypes = Level >= AfterLegalizeTypes;
1283 
1284   // Add all the dag nodes to the worklist.
1285   for (SDNode &Node : DAG.allnodes())
1286     AddToWorklist(&Node);
1287 
1288   // Create a dummy node (which is not added to allnodes), that adds a reference
1289   // to the root node, preventing it from being deleted, and tracking any
1290   // changes of the root.
1291   HandleSDNode Dummy(DAG.getRoot());
1292 
1293   // While the worklist isn't empty, find a node and try to combine it.
1294   while (!WorklistMap.empty()) {
1295     SDNode *N;
1296     // The Worklist holds the SDNodes in order, but it may contain null entries.
1297     do {
1298       N = Worklist.pop_back_val();
1299     } while (!N);
1300 
1301     bool GoodWorklistEntry = WorklistMap.erase(N);
1302     (void)GoodWorklistEntry;
1303     assert(GoodWorklistEntry &&
1304            "Found a worklist entry without a corresponding map entry!");
1305 
1306     // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1307     // N is deleted from the DAG, since they too may now be dead or may have a
1308     // reduced number of uses, allowing other xforms.
1309     if (recursivelyDeleteUnusedNodes(N))
1310       continue;
1311 
1312     WorklistRemover DeadNodes(*this);
1313 
1314     // If this combine is running after legalizing the DAG, re-legalize any
1315     // nodes pulled off the worklist.
1316     if (Level == AfterLegalizeDAG) {
1317       SmallSetVector<SDNode *, 16> UpdatedNodes;
1318       bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
1319 
1320       for (SDNode *LN : UpdatedNodes) {
1321         AddToWorklist(LN);
1322         AddUsersToWorklist(LN);
1323       }
1324       if (!NIsValid)
1325         continue;
1326     }
1327 
1328     DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
1329 
1330     // Add any operands of the new node which have not yet been combined to the
1331     // worklist as well. Because the worklist uniques things already, this
1332     // won't repeatedly process the same operand.
1333     CombinedNodes.insert(N);
1334     for (const SDValue &ChildN : N->op_values())
1335       if (!CombinedNodes.count(ChildN.getNode()))
1336         AddToWorklist(ChildN.getNode());
1337 
1338     SDValue RV = combine(N);
1339 
1340     if (!RV.getNode())
1341       continue;
1342 
1343     ++NodesCombined;
1344 
1345     // If we get back the same node we passed in, rather than a new node or
1346     // zero, we know that the node must have defined multiple values and
1347     // CombineTo was used.  Since CombineTo takes care of the worklist
1348     // mechanics for us, we have no work to do in this case.
1349     if (RV.getNode() == N)
1350       continue;
1351 
1352     assert(N->getOpcode() != ISD::DELETED_NODE &&
1353            RV.getOpcode() != ISD::DELETED_NODE &&
1354            "Node was deleted but visit returned new node!");
1355 
1356     DEBUG(dbgs() << " ... into: ";
1357           RV.getNode()->dump(&DAG));
1358 
1359     if (N->getNumValues() == RV.getNode()->getNumValues())
1360       DAG.ReplaceAllUsesWith(N, RV.getNode());
1361     else {
1362       assert(N->getValueType(0) == RV.getValueType() &&
1363              N->getNumValues() == 1 && "Type mismatch");
1364       SDValue OpV = RV;
1365       DAG.ReplaceAllUsesWith(N, &OpV);
1366     }
1367 
1368     // Push the new node and any users onto the worklist
1369     AddToWorklist(RV.getNode());
1370     AddUsersToWorklist(RV.getNode());
1371 
1372     // Finally, if the node is now dead, remove it from the graph.  The node
1373     // may not be dead if the replacement process recursively simplified to
1374     // something else needing this node. This will also take care of adding any
1375     // operands which have lost a user to the worklist.
1376     recursivelyDeleteUnusedNodes(N);
1377   }
1378 
1379   // If the root changed (e.g. it was a dead load, update the root).
1380   DAG.setRoot(Dummy.getValue());
1381   DAG.RemoveDeadNodes();
1382 }
1383 
1384 SDValue DAGCombiner::visit(SDNode *N) {
1385   switch (N->getOpcode()) {
1386   default: break;
1387   case ISD::TokenFactor:        return visitTokenFactor(N);
1388   case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1389   case ISD::ADD:                return visitADD(N);
1390   case ISD::SUB:                return visitSUB(N);
1391   case ISD::ADDC:               return visitADDC(N);
1392   case ISD::SUBC:               return visitSUBC(N);
1393   case ISD::ADDE:               return visitADDE(N);
1394   case ISD::SUBE:               return visitSUBE(N);
1395   case ISD::MUL:                return visitMUL(N);
1396   case ISD::SDIV:               return visitSDIV(N);
1397   case ISD::UDIV:               return visitUDIV(N);
1398   case ISD::SREM:
1399   case ISD::UREM:               return visitREM(N);
1400   case ISD::MULHU:              return visitMULHU(N);
1401   case ISD::MULHS:              return visitMULHS(N);
1402   case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1403   case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1404   case ISD::SMULO:              return visitSMULO(N);
1405   case ISD::UMULO:              return visitUMULO(N);
1406   case ISD::SMIN:
1407   case ISD::SMAX:
1408   case ISD::UMIN:
1409   case ISD::UMAX:               return visitIMINMAX(N);
1410   case ISD::AND:                return visitAND(N);
1411   case ISD::OR:                 return visitOR(N);
1412   case ISD::XOR:                return visitXOR(N);
1413   case ISD::SHL:                return visitSHL(N);
1414   case ISD::SRA:                return visitSRA(N);
1415   case ISD::SRL:                return visitSRL(N);
1416   case ISD::ROTR:
1417   case ISD::ROTL:               return visitRotate(N);
1418   case ISD::BSWAP:              return visitBSWAP(N);
1419   case ISD::BITREVERSE:         return visitBITREVERSE(N);
1420   case ISD::CTLZ:               return visitCTLZ(N);
1421   case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1422   case ISD::CTTZ:               return visitCTTZ(N);
1423   case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1424   case ISD::CTPOP:              return visitCTPOP(N);
1425   case ISD::SELECT:             return visitSELECT(N);
1426   case ISD::VSELECT:            return visitVSELECT(N);
1427   case ISD::SELECT_CC:          return visitSELECT_CC(N);
1428   case ISD::SETCC:              return visitSETCC(N);
1429   case ISD::SETCCE:             return visitSETCCE(N);
1430   case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1431   case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1432   case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1433   case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1434   case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N);
1435   case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N);
1436   case ISD::TRUNCATE:           return visitTRUNCATE(N);
1437   case ISD::BITCAST:            return visitBITCAST(N);
1438   case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1439   case ISD::FADD:               return visitFADD(N);
1440   case ISD::FSUB:               return visitFSUB(N);
1441   case ISD::FMUL:               return visitFMUL(N);
1442   case ISD::FMA:                return visitFMA(N);
1443   case ISD::FDIV:               return visitFDIV(N);
1444   case ISD::FREM:               return visitFREM(N);
1445   case ISD::FSQRT:              return visitFSQRT(N);
1446   case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1447   case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1448   case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1449   case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1450   case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1451   case ISD::FP_ROUND:           return visitFP_ROUND(N);
1452   case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1453   case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1454   case ISD::FNEG:               return visitFNEG(N);
1455   case ISD::FABS:               return visitFABS(N);
1456   case ISD::FFLOOR:             return visitFFLOOR(N);
1457   case ISD::FMINNUM:            return visitFMINNUM(N);
1458   case ISD::FMAXNUM:            return visitFMAXNUM(N);
1459   case ISD::FCEIL:              return visitFCEIL(N);
1460   case ISD::FTRUNC:             return visitFTRUNC(N);
1461   case ISD::BRCOND:             return visitBRCOND(N);
1462   case ISD::BR_CC:              return visitBR_CC(N);
1463   case ISD::LOAD:               return visitLOAD(N);
1464   case ISD::STORE:              return visitSTORE(N);
1465   case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1466   case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1467   case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1468   case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1469   case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1470   case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1471   case ISD::SCALAR_TO_VECTOR:   return visitSCALAR_TO_VECTOR(N);
1472   case ISD::INSERT_SUBVECTOR:   return visitINSERT_SUBVECTOR(N);
1473   case ISD::MGATHER:            return visitMGATHER(N);
1474   case ISD::MLOAD:              return visitMLOAD(N);
1475   case ISD::MSCATTER:           return visitMSCATTER(N);
1476   case ISD::MSTORE:             return visitMSTORE(N);
1477   case ISD::FP_TO_FP16:         return visitFP_TO_FP16(N);
1478   case ISD::FP16_TO_FP:         return visitFP16_TO_FP(N);
1479   }
1480   return SDValue();
1481 }
1482 
1483 SDValue DAGCombiner::combine(SDNode *N) {
1484   SDValue RV = visit(N);
1485 
1486   // If nothing happened, try a target-specific DAG combine.
1487   if (!RV.getNode()) {
1488     assert(N->getOpcode() != ISD::DELETED_NODE &&
1489            "Node was deleted but visit returned NULL!");
1490 
1491     if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1492         TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1493 
1494       // Expose the DAG combiner to the target combiner impls.
1495       TargetLowering::DAGCombinerInfo
1496         DagCombineInfo(DAG, Level, false, this);
1497 
1498       RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1499     }
1500   }
1501 
1502   // If nothing happened still, try promoting the operation.
1503   if (!RV.getNode()) {
1504     switch (N->getOpcode()) {
1505     default: break;
1506     case ISD::ADD:
1507     case ISD::SUB:
1508     case ISD::MUL:
1509     case ISD::AND:
1510     case ISD::OR:
1511     case ISD::XOR:
1512       RV = PromoteIntBinOp(SDValue(N, 0));
1513       break;
1514     case ISD::SHL:
1515     case ISD::SRA:
1516     case ISD::SRL:
1517       RV = PromoteIntShiftOp(SDValue(N, 0));
1518       break;
1519     case ISD::SIGN_EXTEND:
1520     case ISD::ZERO_EXTEND:
1521     case ISD::ANY_EXTEND:
1522       RV = PromoteExtend(SDValue(N, 0));
1523       break;
1524     case ISD::LOAD:
1525       if (PromoteLoad(SDValue(N, 0)))
1526         RV = SDValue(N, 0);
1527       break;
1528     }
1529   }
1530 
1531   // If N is a commutative binary node, try commuting it to enable more
1532   // sdisel CSE.
1533   if (!RV.getNode() && SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1534       N->getNumValues() == 1) {
1535     SDValue N0 = N->getOperand(0);
1536     SDValue N1 = N->getOperand(1);
1537 
1538     // Constant operands are canonicalized to RHS.
1539     if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1540       SDValue Ops[] = {N1, N0};
1541       SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
1542                                             N->getFlags());
1543       if (CSENode)
1544         return SDValue(CSENode, 0);
1545     }
1546   }
1547 
1548   return RV;
1549 }
1550 
1551 /// Given a node, return its input chain if it has one, otherwise return a null
1552 /// sd operand.
1553 static SDValue getInputChainForNode(SDNode *N) {
1554   if (unsigned NumOps = N->getNumOperands()) {
1555     if (N->getOperand(0).getValueType() == MVT::Other)
1556       return N->getOperand(0);
1557     if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1558       return N->getOperand(NumOps-1);
1559     for (unsigned i = 1; i < NumOps-1; ++i)
1560       if (N->getOperand(i).getValueType() == MVT::Other)
1561         return N->getOperand(i);
1562   }
1563   return SDValue();
1564 }
1565 
1566 SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1567   // If N has two operands, where one has an input chain equal to the other,
1568   // the 'other' chain is redundant.
1569   if (N->getNumOperands() == 2) {
1570     if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1571       return N->getOperand(0);
1572     if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1573       return N->getOperand(1);
1574   }
1575 
1576   SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1577   SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1578   SmallPtrSet<SDNode*, 16> SeenOps;
1579   bool Changed = false;             // If we should replace this token factor.
1580 
1581   // Start out with this token factor.
1582   TFs.push_back(N);
1583 
1584   // Iterate through token factors.  The TFs grows when new token factors are
1585   // encountered.
1586   for (unsigned i = 0; i < TFs.size(); ++i) {
1587     SDNode *TF = TFs[i];
1588 
1589     // Check each of the operands.
1590     for (const SDValue &Op : TF->op_values()) {
1591 
1592       switch (Op.getOpcode()) {
1593       case ISD::EntryToken:
1594         // Entry tokens don't need to be added to the list. They are
1595         // redundant.
1596         Changed = true;
1597         break;
1598 
1599       case ISD::TokenFactor:
1600         if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) {
1601           // Queue up for processing.
1602           TFs.push_back(Op.getNode());
1603           // Clean up in case the token factor is removed.
1604           AddToWorklist(Op.getNode());
1605           Changed = true;
1606           break;
1607         }
1608         LLVM_FALLTHROUGH;
1609 
1610       default:
1611         // Only add if it isn't already in the list.
1612         if (SeenOps.insert(Op.getNode()).second)
1613           Ops.push_back(Op);
1614         else
1615           Changed = true;
1616         break;
1617       }
1618     }
1619   }
1620 
1621   SDValue Result;
1622 
1623   // If we've changed things around then replace token factor.
1624   if (Changed) {
1625     if (Ops.empty()) {
1626       // The entry token is the only possible outcome.
1627       Result = DAG.getEntryNode();
1628     } else {
1629       // New and improved token factor.
1630       Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops);
1631     }
1632 
1633     // Add users to worklist if AA is enabled, since it may introduce
1634     // a lot of new chained token factors while removing memory deps.
1635     bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
1636       : DAG.getSubtarget().useAA();
1637     return CombineTo(N, Result, UseAA /*add to worklist*/);
1638   }
1639 
1640   return Result;
1641 }
1642 
1643 /// MERGE_VALUES can always be eliminated.
1644 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1645   WorklistRemover DeadNodes(*this);
1646   // Replacing results may cause a different MERGE_VALUES to suddenly
1647   // be CSE'd with N, and carry its uses with it. Iterate until no
1648   // uses remain, to ensure that the node can be safely deleted.
1649   // First add the users of this node to the work list so that they
1650   // can be tried again once they have new operands.
1651   AddUsersToWorklist(N);
1652   do {
1653     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1654       DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1655   } while (!N->use_empty());
1656   deleteAndRecombine(N);
1657   return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1658 }
1659 
1660 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
1661 /// ConstantSDNode pointer else nullptr.
1662 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) {
1663   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N);
1664   return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
1665 }
1666 
1667 SDValue DAGCombiner::visitADD(SDNode *N) {
1668   SDValue N0 = N->getOperand(0);
1669   SDValue N1 = N->getOperand(1);
1670   EVT VT = N0.getValueType();
1671   SDLoc DL(N);
1672 
1673   // fold vector ops
1674   if (VT.isVector()) {
1675     if (SDValue FoldedVOp = SimplifyVBinOp(N))
1676       return FoldedVOp;
1677 
1678     // fold (add x, 0) -> x, vector edition
1679     if (ISD::isBuildVectorAllZeros(N1.getNode()))
1680       return N0;
1681     if (ISD::isBuildVectorAllZeros(N0.getNode()))
1682       return N1;
1683   }
1684 
1685   // fold (add x, undef) -> undef
1686   if (N0.isUndef())
1687     return N0;
1688 
1689   if (N1.isUndef())
1690     return N1;
1691 
1692   if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
1693     // canonicalize constant to RHS
1694     if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
1695       return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
1696     // fold (add c1, c2) -> c1+c2
1697     return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N0.getNode(),
1698                                       N1.getNode());
1699   }
1700 
1701   // fold (add x, 0) -> x
1702   if (isNullConstant(N1))
1703     return N0;
1704 
1705   // fold ((c1-A)+c2) -> (c1+c2)-A
1706   if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) {
1707     if (N0.getOpcode() == ISD::SUB)
1708       if (isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) {
1709         return DAG.getNode(ISD::SUB, DL, VT,
1710                            DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)),
1711                            N0.getOperand(1));
1712       }
1713   }
1714 
1715   // reassociate add
1716   if (SDValue RADD = ReassociateOps(ISD::ADD, DL, N0, N1))
1717     return RADD;
1718 
1719   // fold ((0-A) + B) -> B-A
1720   if (N0.getOpcode() == ISD::SUB &&
1721       isNullConstantOrNullSplatConstant(N0.getOperand(0)))
1722     return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
1723 
1724   // fold (A + (0-B)) -> A-B
1725   if (N1.getOpcode() == ISD::SUB &&
1726       isNullConstantOrNullSplatConstant(N1.getOperand(0)))
1727     return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1));
1728 
1729   // fold (A+(B-A)) -> B
1730   if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1731     return N1.getOperand(0);
1732 
1733   // fold ((B-A)+A) -> B
1734   if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1735     return N0.getOperand(0);
1736 
1737   // fold (A+(B-(A+C))) to (B-C)
1738   if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1739       N0 == N1.getOperand(1).getOperand(0))
1740     return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
1741                        N1.getOperand(1).getOperand(1));
1742 
1743   // fold (A+(B-(C+A))) to (B-C)
1744   if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1745       N0 == N1.getOperand(1).getOperand(1))
1746     return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
1747                        N1.getOperand(1).getOperand(0));
1748 
1749   // fold (A+((B-A)+or-C)) to (B+or-C)
1750   if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1751       N1.getOperand(0).getOpcode() == ISD::SUB &&
1752       N0 == N1.getOperand(0).getOperand(1))
1753     return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0),
1754                        N1.getOperand(1));
1755 
1756   // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1757   if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1758     SDValue N00 = N0.getOperand(0);
1759     SDValue N01 = N0.getOperand(1);
1760     SDValue N10 = N1.getOperand(0);
1761     SDValue N11 = N1.getOperand(1);
1762 
1763     if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10))
1764       return DAG.getNode(ISD::SUB, DL, VT,
1765                          DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
1766                          DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
1767   }
1768 
1769   if (SimplifyDemandedBits(SDValue(N, 0)))
1770     return SDValue(N, 0);
1771 
1772   // fold (a+b) -> (a|b) iff a and b share no bits.
1773   if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
1774       VT.isInteger() && DAG.haveNoCommonBitsSet(N0, N1))
1775     return DAG.getNode(ISD::OR, DL, VT, N0, N1);
1776 
1777   // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1778   if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB &&
1779       isNullConstantOrNullSplatConstant(N1.getOperand(0).getOperand(0)))
1780     return DAG.getNode(ISD::SUB, DL, VT, N0,
1781                        DAG.getNode(ISD::SHL, DL, VT,
1782                                    N1.getOperand(0).getOperand(1),
1783                                    N1.getOperand(1)));
1784   if (N0.getOpcode() == ISD::SHL && N0.getOperand(0).getOpcode() == ISD::SUB &&
1785       isNullConstantOrNullSplatConstant(N0.getOperand(0).getOperand(0)))
1786     return DAG.getNode(ISD::SUB, DL, VT, N1,
1787                        DAG.getNode(ISD::SHL, DL, VT,
1788                                    N0.getOperand(0).getOperand(1),
1789                                    N0.getOperand(1)));
1790 
1791   if (N1.getOpcode() == ISD::AND) {
1792     SDValue AndOp0 = N1.getOperand(0);
1793     unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1794     unsigned DestBits = VT.getScalarSizeInBits();
1795 
1796     // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1797     // and similar xforms where the inner op is either ~0 or 0.
1798     if (NumSignBits == DestBits &&
1799         isOneConstantOrOneSplatConstant(N1->getOperand(1)))
1800       return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1801   }
1802 
1803   // add (sext i1), X -> sub X, (zext i1)
1804   if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1805       N0.getOperand(0).getValueType() == MVT::i1 &&
1806       !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1807     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1808     return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1809   }
1810 
1811   // add X, (sextinreg Y i1) -> sub X, (and Y 1)
1812   if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1813     VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
1814     if (TN->getVT() == MVT::i1) {
1815       SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
1816                                  DAG.getConstant(1, DL, VT));
1817       return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
1818     }
1819   }
1820 
1821   return SDValue();
1822 }
1823 
1824 SDValue DAGCombiner::visitADDC(SDNode *N) {
1825   SDValue N0 = N->getOperand(0);
1826   SDValue N1 = N->getOperand(1);
1827   EVT VT = N0.getValueType();
1828 
1829   // If the flag result is dead, turn this into an ADD.
1830   if (!N->hasAnyUseOfValue(1))
1831     return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1),
1832                      DAG.getNode(ISD::CARRY_FALSE,
1833                                  SDLoc(N), MVT::Glue));
1834 
1835   // canonicalize constant to RHS.
1836   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1837   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1838   if (N0C && !N1C)
1839     return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0);
1840 
1841   // fold (addc x, 0) -> x + no carry out
1842   if (isNullConstant(N1))
1843     return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1844                                         SDLoc(N), MVT::Glue));
1845 
1846   // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1847   APInt LHSZero, LHSOne;
1848   APInt RHSZero, RHSOne;
1849   DAG.computeKnownBits(N0, LHSZero, LHSOne);
1850 
1851   if (LHSZero.getBoolValue()) {
1852     DAG.computeKnownBits(N1, RHSZero, RHSOne);
1853 
1854     // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1855     // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1856     if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1857       return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1),
1858                        DAG.getNode(ISD::CARRY_FALSE,
1859                                    SDLoc(N), MVT::Glue));
1860   }
1861 
1862   return SDValue();
1863 }
1864 
1865 SDValue DAGCombiner::visitADDE(SDNode *N) {
1866   SDValue N0 = N->getOperand(0);
1867   SDValue N1 = N->getOperand(1);
1868   SDValue CarryIn = N->getOperand(2);
1869 
1870   // canonicalize constant to RHS
1871   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1872   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1873   if (N0C && !N1C)
1874     return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
1875                        N1, N0, CarryIn);
1876 
1877   // fold (adde x, y, false) -> (addc x, y)
1878   if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1879     return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
1880 
1881   return SDValue();
1882 }
1883 
1884 // Since it may not be valid to emit a fold to zero for vector initializers
1885 // check if we can before folding.
1886 static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT,
1887                              SelectionDAG &DAG, bool LegalOperations,
1888                              bool LegalTypes) {
1889   if (!VT.isVector())
1890     return DAG.getConstant(0, DL, VT);
1891   if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
1892     return DAG.getConstant(0, DL, VT);
1893   return SDValue();
1894 }
1895 
1896 SDValue DAGCombiner::visitSUB(SDNode *N) {
1897   SDValue N0 = N->getOperand(0);
1898   SDValue N1 = N->getOperand(1);
1899   EVT VT = N0.getValueType();
1900   SDLoc DL(N);
1901 
1902   // fold vector ops
1903   if (VT.isVector()) {
1904     if (SDValue FoldedVOp = SimplifyVBinOp(N))
1905       return FoldedVOp;
1906 
1907     // fold (sub x, 0) -> x, vector edition
1908     if (ISD::isBuildVectorAllZeros(N1.getNode()))
1909       return N0;
1910   }
1911 
1912   // fold (sub x, x) -> 0
1913   // FIXME: Refactor this and xor and other similar operations together.
1914   if (N0 == N1)
1915     return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations, LegalTypes);
1916   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
1917       DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
1918     // fold (sub c1, c2) -> c1-c2
1919     return DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(),
1920                                       N1.getNode());
1921   }
1922 
1923   ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
1924 
1925   // fold (sub x, c) -> (add x, -c)
1926   if (N1C) {
1927     return DAG.getNode(ISD::ADD, DL, VT, N0,
1928                        DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
1929   }
1930 
1931   if (isNullConstantOrNullSplatConstant(N0)) {
1932     unsigned BitWidth = VT.getScalarSizeInBits();
1933     // Right-shifting everything out but the sign bit followed by negation is
1934     // the same as flipping arithmetic/logical shift type without the negation:
1935     // -(X >>u 31) -> (X >>s 31)
1936     // -(X >>s 31) -> (X >>u 31)
1937     if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) {
1938       ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1));
1939       if (ShiftAmt && ShiftAmt->getZExtValue() == BitWidth - 1) {
1940         auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA;
1941         if (!LegalOperations || TLI.isOperationLegal(NewSh, VT))
1942           return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1));
1943       }
1944     }
1945 
1946     // 0 - X --> 0 if the sub is NUW.
1947     if (N->getFlags()->hasNoUnsignedWrap())
1948       return N0;
1949 
1950     if (DAG.MaskedValueIsZero(N1, ~APInt::getSignBit(BitWidth))) {
1951       // N1 is either 0 or the minimum signed value. If the sub is NSW, then
1952       // N1 must be 0 because negating the minimum signed value is undefined.
1953       if (N->getFlags()->hasNoSignedWrap())
1954         return N0;
1955 
1956       // 0 - X --> X if X is 0 or the minimum signed value.
1957       return N1;
1958     }
1959   }
1960 
1961   // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1962   if (isAllOnesConstantOrAllOnesSplatConstant(N0))
1963     return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
1964 
1965   // fold A-(A-B) -> B
1966   if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1967     return N1.getOperand(1);
1968 
1969   // fold (A+B)-A -> B
1970   if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1971     return N0.getOperand(1);
1972 
1973   // fold (A+B)-B -> A
1974   if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1975     return N0.getOperand(0);
1976 
1977   // fold C2-(A+C1) -> (C2-C1)-A
1978   if (N1.getOpcode() == ISD::ADD) {
1979     SDValue N11 = N1.getOperand(1);
1980     if (isConstantOrConstantVector(N0, /* NoOpaques */ true) &&
1981         isConstantOrConstantVector(N11, /* NoOpaques */ true)) {
1982       SDValue NewC = DAG.getNode(ISD::SUB, DL, VT, N0, N11);
1983       return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0));
1984     }
1985   }
1986 
1987   // fold ((A+(B+or-C))-B) -> A+or-C
1988   if (N0.getOpcode() == ISD::ADD &&
1989       (N0.getOperand(1).getOpcode() == ISD::SUB ||
1990        N0.getOperand(1).getOpcode() == ISD::ADD) &&
1991       N0.getOperand(1).getOperand(0) == N1)
1992     return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0),
1993                        N0.getOperand(1).getOperand(1));
1994 
1995   // fold ((A+(C+B))-B) -> A+C
1996   if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD &&
1997       N0.getOperand(1).getOperand(1) == N1)
1998     return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0),
1999                        N0.getOperand(1).getOperand(0));
2000 
2001   // fold ((A-(B-C))-C) -> A-B
2002   if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB &&
2003       N0.getOperand(1).getOperand(1) == N1)
2004     return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
2005                        N0.getOperand(1).getOperand(0));
2006 
2007   // If either operand of a sub is undef, the result is undef
2008   if (N0.isUndef())
2009     return N0;
2010   if (N1.isUndef())
2011     return N1;
2012 
2013   // If the relocation model supports it, consider symbol offsets.
2014   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
2015     if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
2016       // fold (sub Sym, c) -> Sym-c
2017       if (N1C && GA->getOpcode() == ISD::GlobalAddress)
2018         return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
2019                                     GA->getOffset() -
2020                                         (uint64_t)N1C->getSExtValue());
2021       // fold (sub Sym+c1, Sym+c2) -> c1-c2
2022       if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
2023         if (GA->getGlobal() == GB->getGlobal())
2024           return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
2025                                  DL, VT);
2026     }
2027 
2028   // sub X, (sextinreg Y i1) -> add X, (and Y 1)
2029   if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
2030     VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
2031     if (TN->getVT() == MVT::i1) {
2032       SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
2033                                  DAG.getConstant(1, DL, VT));
2034       return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
2035     }
2036   }
2037 
2038   return SDValue();
2039 }
2040 
2041 SDValue DAGCombiner::visitSUBC(SDNode *N) {
2042   SDValue N0 = N->getOperand(0);
2043   SDValue N1 = N->getOperand(1);
2044   EVT VT = N0.getValueType();
2045   SDLoc DL(N);
2046 
2047   // If the flag result is dead, turn this into an SUB.
2048   if (!N->hasAnyUseOfValue(1))
2049     return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
2050                      DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2051 
2052   // fold (subc x, x) -> 0 + no borrow
2053   if (N0 == N1)
2054     return CombineTo(N, DAG.getConstant(0, DL, VT),
2055                      DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2056 
2057   // fold (subc x, 0) -> x + no borrow
2058   if (isNullConstant(N1))
2059     return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2060 
2061   // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
2062   if (isAllOnesConstant(N0))
2063     return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
2064                      DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2065 
2066   return SDValue();
2067 }
2068 
2069 SDValue DAGCombiner::visitSUBE(SDNode *N) {
2070   SDValue N0 = N->getOperand(0);
2071   SDValue N1 = N->getOperand(1);
2072   SDValue CarryIn = N->getOperand(2);
2073 
2074   // fold (sube x, y, false) -> (subc x, y)
2075   if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
2076     return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
2077 
2078   return SDValue();
2079 }
2080 
2081 SDValue DAGCombiner::visitMUL(SDNode *N) {
2082   SDValue N0 = N->getOperand(0);
2083   SDValue N1 = N->getOperand(1);
2084   EVT VT = N0.getValueType();
2085 
2086   // fold (mul x, undef) -> 0
2087   if (N0.isUndef() || N1.isUndef())
2088     return DAG.getConstant(0, SDLoc(N), VT);
2089 
2090   bool N0IsConst = false;
2091   bool N1IsConst = false;
2092   bool N1IsOpaqueConst = false;
2093   bool N0IsOpaqueConst = false;
2094   APInt ConstValue0, ConstValue1;
2095   // fold vector ops
2096   if (VT.isVector()) {
2097     if (SDValue FoldedVOp = SimplifyVBinOp(N))
2098       return FoldedVOp;
2099 
2100     N0IsConst = ISD::isConstantSplatVector(N0.getNode(), ConstValue0);
2101     N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1);
2102   } else {
2103     N0IsConst = isa<ConstantSDNode>(N0);
2104     if (N0IsConst) {
2105       ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue();
2106       N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque();
2107     }
2108     N1IsConst = isa<ConstantSDNode>(N1);
2109     if (N1IsConst) {
2110       ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue();
2111       N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
2112     }
2113   }
2114 
2115   // fold (mul c1, c2) -> c1*c2
2116   if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst)
2117     return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT,
2118                                       N0.getNode(), N1.getNode());
2119 
2120   // canonicalize constant to RHS (vector doesn't have to splat)
2121   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
2122      !DAG.isConstantIntBuildVectorOrConstantInt(N1))
2123     return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
2124   // fold (mul x, 0) -> 0
2125   if (N1IsConst && ConstValue1 == 0)
2126     return N1;
2127   // We require a splat of the entire scalar bit width for non-contiguous
2128   // bit patterns.
2129   bool IsFullSplat =
2130     ConstValue1.getBitWidth() == VT.getScalarSizeInBits();
2131   // fold (mul x, 1) -> x
2132   if (N1IsConst && ConstValue1 == 1 && IsFullSplat)
2133     return N0;
2134   // fold (mul x, -1) -> 0-x
2135   if (N1IsConst && ConstValue1.isAllOnesValue()) {
2136     SDLoc DL(N);
2137     return DAG.getNode(ISD::SUB, DL, VT,
2138                        DAG.getConstant(0, DL, VT), N0);
2139   }
2140   // fold (mul x, (1 << c)) -> x << c
2141   if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isPowerOf2() &&
2142       IsFullSplat) {
2143     SDLoc DL(N);
2144     return DAG.getNode(ISD::SHL, DL, VT, N0,
2145                        DAG.getConstant(ConstValue1.logBase2(), DL,
2146                                        getShiftAmountTy(N0.getValueType())));
2147   }
2148   // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
2149   if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2() &&
2150       IsFullSplat) {
2151     unsigned Log2Val = (-ConstValue1).logBase2();
2152     SDLoc DL(N);
2153     // FIXME: If the input is something that is easily negated (e.g. a
2154     // single-use add), we should put the negate there.
2155     return DAG.getNode(ISD::SUB, DL, VT,
2156                        DAG.getConstant(0, DL, VT),
2157                        DAG.getNode(ISD::SHL, DL, VT, N0,
2158                             DAG.getConstant(Log2Val, DL,
2159                                       getShiftAmountTy(N0.getValueType()))));
2160   }
2161 
2162   // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
2163   if (N0.getOpcode() == ISD::SHL &&
2164       isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
2165       isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
2166     SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1));
2167     if (isConstantOrConstantVector(C3))
2168       return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3);
2169   }
2170 
2171   // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
2172   // use.
2173   {
2174     SDValue Sh(nullptr, 0), Y(nullptr, 0);
2175 
2176     // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
2177     if (N0.getOpcode() == ISD::SHL &&
2178         isConstantOrConstantVector(N0.getOperand(1)) &&
2179         N0.getNode()->hasOneUse()) {
2180       Sh = N0; Y = N1;
2181     } else if (N1.getOpcode() == ISD::SHL &&
2182                isConstantOrConstantVector(N1.getOperand(1)) &&
2183                N1.getNode()->hasOneUse()) {
2184       Sh = N1; Y = N0;
2185     }
2186 
2187     if (Sh.getNode()) {
2188       SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y);
2189       return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1));
2190     }
2191   }
2192 
2193   // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
2194   if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
2195       N0.getOpcode() == ISD::ADD &&
2196       DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
2197       isMulAddWithConstProfitable(N, N0, N1))
2198       return DAG.getNode(ISD::ADD, SDLoc(N), VT,
2199                          DAG.getNode(ISD::MUL, SDLoc(N0), VT,
2200                                      N0.getOperand(0), N1),
2201                          DAG.getNode(ISD::MUL, SDLoc(N1), VT,
2202                                      N0.getOperand(1), N1));
2203 
2204   // reassociate mul
2205   if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1))
2206     return RMUL;
2207 
2208   return SDValue();
2209 }
2210 
2211 /// Return true if divmod libcall is available.
2212 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
2213                                      const TargetLowering &TLI) {
2214   RTLIB::Libcall LC;
2215   EVT NodeType = Node->getValueType(0);
2216   if (!NodeType.isSimple())
2217     return false;
2218   switch (NodeType.getSimpleVT().SimpleTy) {
2219   default: return false; // No libcall for vector types.
2220   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2221   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2222   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2223   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2224   case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2225   }
2226 
2227   return TLI.getLibcallName(LC) != nullptr;
2228 }
2229 
2230 /// Issue divrem if both quotient and remainder are needed.
2231 SDValue DAGCombiner::useDivRem(SDNode *Node) {
2232   if (Node->use_empty())
2233     return SDValue(); // This is a dead node, leave it alone.
2234 
2235   unsigned Opcode = Node->getOpcode();
2236   bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
2237   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2238 
2239   // DivMod lib calls can still work on non-legal types if using lib-calls.
2240   EVT VT = Node->getValueType(0);
2241   if (VT.isVector() || !VT.isInteger())
2242     return SDValue();
2243 
2244   if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT))
2245     return SDValue();
2246 
2247   // If DIVREM is going to get expanded into a libcall,
2248   // but there is no libcall available, then don't combine.
2249   if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
2250       !isDivRemLibcallAvailable(Node, isSigned, TLI))
2251     return SDValue();
2252 
2253   // If div is legal, it's better to do the normal expansion
2254   unsigned OtherOpcode = 0;
2255   if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
2256     OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
2257     if (TLI.isOperationLegalOrCustom(Opcode, VT))
2258       return SDValue();
2259   } else {
2260     OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
2261     if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
2262       return SDValue();
2263   }
2264 
2265   SDValue Op0 = Node->getOperand(0);
2266   SDValue Op1 = Node->getOperand(1);
2267   SDValue combined;
2268   for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2269          UE = Op0.getNode()->use_end(); UI != UE;) {
2270     SDNode *User = *UI++;
2271     if (User == Node || User->use_empty())
2272       continue;
2273     // Convert the other matching node(s), too;
2274     // otherwise, the DIVREM may get target-legalized into something
2275     // target-specific that we won't be able to recognize.
2276     unsigned UserOpc = User->getOpcode();
2277     if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
2278         User->getOperand(0) == Op0 &&
2279         User->getOperand(1) == Op1) {
2280       if (!combined) {
2281         if (UserOpc == OtherOpcode) {
2282           SDVTList VTs = DAG.getVTList(VT, VT);
2283           combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
2284         } else if (UserOpc == DivRemOpc) {
2285           combined = SDValue(User, 0);
2286         } else {
2287           assert(UserOpc == Opcode);
2288           continue;
2289         }
2290       }
2291       if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
2292         CombineTo(User, combined);
2293       else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
2294         CombineTo(User, combined.getValue(1));
2295     }
2296   }
2297   return combined;
2298 }
2299 
2300 SDValue DAGCombiner::visitSDIV(SDNode *N) {
2301   SDValue N0 = N->getOperand(0);
2302   SDValue N1 = N->getOperand(1);
2303   EVT VT = N->getValueType(0);
2304 
2305   // fold vector ops
2306   if (VT.isVector())
2307     if (SDValue FoldedVOp = SimplifyVBinOp(N))
2308       return FoldedVOp;
2309 
2310   SDLoc DL(N);
2311 
2312   // fold (sdiv c1, c2) -> c1/c2
2313   ConstantSDNode *N0C = isConstOrConstSplat(N0);
2314   ConstantSDNode *N1C = isConstOrConstSplat(N1);
2315   if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque())
2316     return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C);
2317   // fold (sdiv X, 1) -> X
2318   if (N1C && N1C->isOne())
2319     return N0;
2320   // fold (sdiv X, -1) -> 0-X
2321   if (N1C && N1C->isAllOnesValue())
2322     return DAG.getNode(ISD::SUB, DL, VT,
2323                        DAG.getConstant(0, DL, VT), N0);
2324 
2325   // If we know the sign bits of both operands are zero, strength reduce to a
2326   // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
2327   if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2328     return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
2329 
2330   // fold (sdiv X, pow2) -> simple ops after legalize
2331   // FIXME: We check for the exact bit here because the generic lowering gives
2332   // better results in that case. The target-specific lowering should learn how
2333   // to handle exact sdivs efficiently.
2334   if (N1C && !N1C->isNullValue() && !N1C->isOpaque() &&
2335       !cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact() &&
2336       (N1C->getAPIntValue().isPowerOf2() ||
2337        (-N1C->getAPIntValue()).isPowerOf2())) {
2338     // Target-specific implementation of sdiv x, pow2.
2339     if (SDValue Res = BuildSDIVPow2(N))
2340       return Res;
2341 
2342     unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
2343 
2344     // Splat the sign bit into the register
2345     SDValue SGN =
2346         DAG.getNode(ISD::SRA, DL, VT, N0,
2347                     DAG.getConstant(VT.getScalarSizeInBits() - 1, DL,
2348                                     getShiftAmountTy(N0.getValueType())));
2349     AddToWorklist(SGN.getNode());
2350 
2351     // Add (N0 < 0) ? abs2 - 1 : 0;
2352     SDValue SRL =
2353         DAG.getNode(ISD::SRL, DL, VT, SGN,
2354                     DAG.getConstant(VT.getScalarSizeInBits() - lg2, DL,
2355                                     getShiftAmountTy(SGN.getValueType())));
2356     SDValue ADD = DAG.getNode(ISD::ADD, DL, VT, N0, SRL);
2357     AddToWorklist(SRL.getNode());
2358     AddToWorklist(ADD.getNode());    // Divide by pow2
2359     SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, ADD,
2360                   DAG.getConstant(lg2, DL,
2361                                   getShiftAmountTy(ADD.getValueType())));
2362 
2363     // If we're dividing by a positive value, we're done.  Otherwise, we must
2364     // negate the result.
2365     if (N1C->getAPIntValue().isNonNegative())
2366       return SRA;
2367 
2368     AddToWorklist(SRA.getNode());
2369     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
2370   }
2371 
2372   // If integer divide is expensive and we satisfy the requirements, emit an
2373   // alternate sequence.  Targets may check function attributes for size/speed
2374   // trade-offs.
2375   AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2376   if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr))
2377     if (SDValue Op = BuildSDIV(N))
2378       return Op;
2379 
2380   // sdiv, srem -> sdivrem
2381   // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
2382   // true.  Otherwise, we break the simplification logic in visitREM().
2383   if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
2384     if (SDValue DivRem = useDivRem(N))
2385         return DivRem;
2386 
2387   // undef / X -> 0
2388   if (N0.isUndef())
2389     return DAG.getConstant(0, DL, VT);
2390   // X / undef -> undef
2391   if (N1.isUndef())
2392     return N1;
2393 
2394   return SDValue();
2395 }
2396 
2397 SDValue DAGCombiner::visitUDIV(SDNode *N) {
2398   SDValue N0 = N->getOperand(0);
2399   SDValue N1 = N->getOperand(1);
2400   EVT VT = N->getValueType(0);
2401 
2402   // fold vector ops
2403   if (VT.isVector())
2404     if (SDValue FoldedVOp = SimplifyVBinOp(N))
2405       return FoldedVOp;
2406 
2407   SDLoc DL(N);
2408 
2409   // fold (udiv c1, c2) -> c1/c2
2410   ConstantSDNode *N0C = isConstOrConstSplat(N0);
2411   ConstantSDNode *N1C = isConstOrConstSplat(N1);
2412   if (N0C && N1C)
2413     if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT,
2414                                                     N0C, N1C))
2415       return Folded;
2416 
2417   // fold (udiv x, (1 << c)) -> x >>u c
2418   if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
2419       DAG.isKnownToBeAPowerOfTwo(N1)) {
2420     SDValue LogBase2 = BuildLogBase2(N1, DL);
2421     AddToWorklist(LogBase2.getNode());
2422 
2423     EVT ShiftVT = getShiftAmountTy(N0.getValueType());
2424     SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
2425     AddToWorklist(Trunc.getNode());
2426     return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
2427   }
2428 
2429   // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
2430   if (N1.getOpcode() == ISD::SHL) {
2431     SDValue N10 = N1.getOperand(0);
2432     if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) &&
2433         DAG.isKnownToBeAPowerOfTwo(N10)) {
2434       SDValue LogBase2 = BuildLogBase2(N10, DL);
2435       AddToWorklist(LogBase2.getNode());
2436 
2437       EVT ADDVT = N1.getOperand(1).getValueType();
2438       SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT);
2439       AddToWorklist(Trunc.getNode());
2440       SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc);
2441       AddToWorklist(Add.getNode());
2442       return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
2443     }
2444   }
2445 
2446   // fold (udiv x, c) -> alternate
2447   AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2448   if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr))
2449     if (SDValue Op = BuildUDIV(N))
2450       return Op;
2451 
2452   // sdiv, srem -> sdivrem
2453   // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
2454   // true.  Otherwise, we break the simplification logic in visitREM().
2455   if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
2456     if (SDValue DivRem = useDivRem(N))
2457         return DivRem;
2458 
2459   // undef / X -> 0
2460   if (N0.isUndef())
2461     return DAG.getConstant(0, DL, VT);
2462   // X / undef -> undef
2463   if (N1.isUndef())
2464     return N1;
2465 
2466   return SDValue();
2467 }
2468 
2469 // handles ISD::SREM and ISD::UREM
2470 SDValue DAGCombiner::visitREM(SDNode *N) {
2471   unsigned Opcode = N->getOpcode();
2472   SDValue N0 = N->getOperand(0);
2473   SDValue N1 = N->getOperand(1);
2474   EVT VT = N->getValueType(0);
2475   bool isSigned = (Opcode == ISD::SREM);
2476   SDLoc DL(N);
2477 
2478   // fold (rem c1, c2) -> c1%c2
2479   ConstantSDNode *N0C = isConstOrConstSplat(N0);
2480   ConstantSDNode *N1C = isConstOrConstSplat(N1);
2481   if (N0C && N1C)
2482     if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C))
2483       return Folded;
2484 
2485   if (isSigned) {
2486     // If we know the sign bits of both operands are zero, strength reduce to a
2487     // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2488     if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2489       return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
2490   } else {
2491     // fold (urem x, pow2) -> (and x, pow2-1)
2492     if (DAG.isKnownToBeAPowerOfTwo(N1)) {
2493       APInt NegOne = APInt::getAllOnesValue(VT.getScalarSizeInBits());
2494       SDValue Add =
2495           DAG.getNode(ISD::ADD, DL, VT, N1, DAG.getConstant(NegOne, DL, VT));
2496       AddToWorklist(Add.getNode());
2497       return DAG.getNode(ISD::AND, DL, VT, N0, Add);
2498     }
2499     // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2500     if (N1.getOpcode() == ISD::SHL &&
2501         DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) {
2502       APInt NegOne = APInt::getAllOnesValue(VT.getScalarSizeInBits());
2503       SDValue Add =
2504           DAG.getNode(ISD::ADD, DL, VT, N1, DAG.getConstant(NegOne, DL, VT));
2505       AddToWorklist(Add.getNode());
2506       return DAG.getNode(ISD::AND, DL, VT, N0, Add);
2507     }
2508   }
2509 
2510   AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2511 
2512   // If X/C can be simplified by the division-by-constant logic, lower
2513   // X%C to the equivalent of X-X/C*C.
2514   // To avoid mangling nodes, this simplification requires that the combine()
2515   // call for the speculative DIV must not cause a DIVREM conversion.  We guard
2516   // against this by skipping the simplification if isIntDivCheap().  When
2517   // div is not cheap, combine will not return a DIVREM.  Regardless,
2518   // checking cheapness here makes sense since the simplification results in
2519   // fatter code.
2520   if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap(VT, Attr)) {
2521     unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
2522     SDValue Div = DAG.getNode(DivOpcode, DL, VT, N0, N1);
2523     AddToWorklist(Div.getNode());
2524     SDValue OptimizedDiv = combine(Div.getNode());
2525     if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2526       assert((OptimizedDiv.getOpcode() != ISD::UDIVREM) &&
2527              (OptimizedDiv.getOpcode() != ISD::SDIVREM));
2528       SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
2529       SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
2530       AddToWorklist(Mul.getNode());
2531       return Sub;
2532     }
2533   }
2534 
2535   // sdiv, srem -> sdivrem
2536   if (SDValue DivRem = useDivRem(N))
2537     return DivRem.getValue(1);
2538 
2539   // undef % X -> 0
2540   if (N0.isUndef())
2541     return DAG.getConstant(0, DL, VT);
2542   // X % undef -> undef
2543   if (N1.isUndef())
2544     return N1;
2545 
2546   return SDValue();
2547 }
2548 
2549 SDValue DAGCombiner::visitMULHS(SDNode *N) {
2550   SDValue N0 = N->getOperand(0);
2551   SDValue N1 = N->getOperand(1);
2552   EVT VT = N->getValueType(0);
2553   SDLoc DL(N);
2554 
2555   // fold (mulhs x, 0) -> 0
2556   if (isNullConstant(N1))
2557     return N1;
2558   // fold (mulhs x, 1) -> (sra x, size(x)-1)
2559   if (isOneConstant(N1)) {
2560     SDLoc DL(N);
2561     return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0,
2562                        DAG.getConstant(N0.getValueSizeInBits() - 1, DL,
2563                                        getShiftAmountTy(N0.getValueType())));
2564   }
2565   // fold (mulhs x, undef) -> 0
2566   if (N0.isUndef() || N1.isUndef())
2567     return DAG.getConstant(0, SDLoc(N), VT);
2568 
2569   // If the type twice as wide is legal, transform the mulhs to a wider multiply
2570   // plus a shift.
2571   if (VT.isSimple() && !VT.isVector()) {
2572     MVT Simple = VT.getSimpleVT();
2573     unsigned SimpleSize = Simple.getSizeInBits();
2574     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2575     if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2576       N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2577       N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2578       N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2579       N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2580             DAG.getConstant(SimpleSize, DL,
2581                             getShiftAmountTy(N1.getValueType())));
2582       return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2583     }
2584   }
2585 
2586   return SDValue();
2587 }
2588 
2589 SDValue DAGCombiner::visitMULHU(SDNode *N) {
2590   SDValue N0 = N->getOperand(0);
2591   SDValue N1 = N->getOperand(1);
2592   EVT VT = N->getValueType(0);
2593   SDLoc DL(N);
2594 
2595   // fold (mulhu x, 0) -> 0
2596   if (isNullConstant(N1))
2597     return N1;
2598   // fold (mulhu x, 1) -> 0
2599   if (isOneConstant(N1))
2600     return DAG.getConstant(0, DL, N0.getValueType());
2601   // fold (mulhu x, undef) -> 0
2602   if (N0.isUndef() || N1.isUndef())
2603     return DAG.getConstant(0, DL, VT);
2604 
2605   // If the type twice as wide is legal, transform the mulhu to a wider multiply
2606   // plus a shift.
2607   if (VT.isSimple() && !VT.isVector()) {
2608     MVT Simple = VT.getSimpleVT();
2609     unsigned SimpleSize = Simple.getSizeInBits();
2610     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2611     if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2612       N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2613       N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2614       N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2615       N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2616             DAG.getConstant(SimpleSize, DL,
2617                             getShiftAmountTy(N1.getValueType())));
2618       return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2619     }
2620   }
2621 
2622   return SDValue();
2623 }
2624 
2625 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp
2626 /// give the opcodes for the two computations that are being performed. Return
2627 /// true if a simplification was made.
2628 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2629                                                 unsigned HiOp) {
2630   // If the high half is not needed, just compute the low half.
2631   bool HiExists = N->hasAnyUseOfValue(1);
2632   if (!HiExists &&
2633       (!LegalOperations ||
2634        TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
2635     SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
2636     return CombineTo(N, Res, Res);
2637   }
2638 
2639   // If the low half is not needed, just compute the high half.
2640   bool LoExists = N->hasAnyUseOfValue(0);
2641   if (!LoExists &&
2642       (!LegalOperations ||
2643        TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2644     SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
2645     return CombineTo(N, Res, Res);
2646   }
2647 
2648   // If both halves are used, return as it is.
2649   if (LoExists && HiExists)
2650     return SDValue();
2651 
2652   // If the two computed results can be simplified separately, separate them.
2653   if (LoExists) {
2654     SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
2655     AddToWorklist(Lo.getNode());
2656     SDValue LoOpt = combine(Lo.getNode());
2657     if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2658         (!LegalOperations ||
2659          TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2660       return CombineTo(N, LoOpt, LoOpt);
2661   }
2662 
2663   if (HiExists) {
2664     SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
2665     AddToWorklist(Hi.getNode());
2666     SDValue HiOpt = combine(Hi.getNode());
2667     if (HiOpt.getNode() && HiOpt != Hi &&
2668         (!LegalOperations ||
2669          TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2670       return CombineTo(N, HiOpt, HiOpt);
2671   }
2672 
2673   return SDValue();
2674 }
2675 
2676 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2677   if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
2678     return Res;
2679 
2680   EVT VT = N->getValueType(0);
2681   SDLoc DL(N);
2682 
2683   // If the type is twice as wide is legal, transform the mulhu to a wider
2684   // multiply plus a shift.
2685   if (VT.isSimple() && !VT.isVector()) {
2686     MVT Simple = VT.getSimpleVT();
2687     unsigned SimpleSize = Simple.getSizeInBits();
2688     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2689     if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2690       SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2691       SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2692       Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2693       // Compute the high part as N1.
2694       Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2695             DAG.getConstant(SimpleSize, DL,
2696                             getShiftAmountTy(Lo.getValueType())));
2697       Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2698       // Compute the low part as N0.
2699       Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2700       return CombineTo(N, Lo, Hi);
2701     }
2702   }
2703 
2704   return SDValue();
2705 }
2706 
2707 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2708   if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
2709     return Res;
2710 
2711   EVT VT = N->getValueType(0);
2712   SDLoc DL(N);
2713 
2714   // If the type is twice as wide is legal, transform the mulhu to a wider
2715   // multiply plus a shift.
2716   if (VT.isSimple() && !VT.isVector()) {
2717     MVT Simple = VT.getSimpleVT();
2718     unsigned SimpleSize = Simple.getSizeInBits();
2719     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2720     if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2721       SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2722       SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2723       Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2724       // Compute the high part as N1.
2725       Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2726             DAG.getConstant(SimpleSize, DL,
2727                             getShiftAmountTy(Lo.getValueType())));
2728       Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2729       // Compute the low part as N0.
2730       Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2731       return CombineTo(N, Lo, Hi);
2732     }
2733   }
2734 
2735   return SDValue();
2736 }
2737 
2738 SDValue DAGCombiner::visitSMULO(SDNode *N) {
2739   // (smulo x, 2) -> (saddo x, x)
2740   if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2741     if (C2->getAPIntValue() == 2)
2742       return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
2743                          N->getOperand(0), N->getOperand(0));
2744 
2745   return SDValue();
2746 }
2747 
2748 SDValue DAGCombiner::visitUMULO(SDNode *N) {
2749   // (umulo x, 2) -> (uaddo x, x)
2750   if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2751     if (C2->getAPIntValue() == 2)
2752       return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
2753                          N->getOperand(0), N->getOperand(0));
2754 
2755   return SDValue();
2756 }
2757 
2758 SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
2759   SDValue N0 = N->getOperand(0);
2760   SDValue N1 = N->getOperand(1);
2761   EVT VT = N0.getValueType();
2762 
2763   // fold vector ops
2764   if (VT.isVector())
2765     if (SDValue FoldedVOp = SimplifyVBinOp(N))
2766       return FoldedVOp;
2767 
2768   // fold (add c1, c2) -> c1+c2
2769   ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
2770   ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
2771   if (N0C && N1C)
2772     return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C);
2773 
2774   // canonicalize constant to RHS
2775   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
2776      !DAG.isConstantIntBuildVectorOrConstantInt(N1))
2777     return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
2778 
2779   return SDValue();
2780 }
2781 
2782 /// If this is a binary operator with two operands of the same opcode, try to
2783 /// simplify it.
2784 SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2785   SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2786   EVT VT = N0.getValueType();
2787   assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2788 
2789   // Bail early if none of these transforms apply.
2790   if (N0.getNumOperands() == 0) return SDValue();
2791 
2792   // For each of OP in AND/OR/XOR:
2793   // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2794   // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2795   // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2796   // fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y))
2797   // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2798   //
2799   // do not sink logical op inside of a vector extend, since it may combine
2800   // into a vsetcc.
2801   EVT Op0VT = N0.getOperand(0).getValueType();
2802   if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2803        N0.getOpcode() == ISD::SIGN_EXTEND ||
2804        N0.getOpcode() == ISD::BSWAP ||
2805        // Avoid infinite looping with PromoteIntBinOp.
2806        (N0.getOpcode() == ISD::ANY_EXTEND &&
2807         (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2808        (N0.getOpcode() == ISD::TRUNCATE &&
2809         (!TLI.isZExtFree(VT, Op0VT) ||
2810          !TLI.isTruncateFree(Op0VT, VT)) &&
2811         TLI.isTypeLegal(Op0VT))) &&
2812       !VT.isVector() &&
2813       Op0VT == N1.getOperand(0).getValueType() &&
2814       (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2815     SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2816                                  N0.getOperand(0).getValueType(),
2817                                  N0.getOperand(0), N1.getOperand(0));
2818     AddToWorklist(ORNode.getNode());
2819     return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode);
2820   }
2821 
2822   // For each of OP in SHL/SRL/SRA/AND...
2823   //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2824   //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2825   //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2826   if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2827        N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2828       N0.getOperand(1) == N1.getOperand(1)) {
2829     SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2830                                  N0.getOperand(0).getValueType(),
2831                                  N0.getOperand(0), N1.getOperand(0));
2832     AddToWorklist(ORNode.getNode());
2833     return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
2834                        ORNode, N0.getOperand(1));
2835   }
2836 
2837   // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2838   // Only perform this optimization up until type legalization, before
2839   // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2840   // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2841   // we don't want to undo this promotion.
2842   // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2843   // on scalars.
2844   if ((N0.getOpcode() == ISD::BITCAST ||
2845        N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2846        Level <= AfterLegalizeTypes) {
2847     SDValue In0 = N0.getOperand(0);
2848     SDValue In1 = N1.getOperand(0);
2849     EVT In0Ty = In0.getValueType();
2850     EVT In1Ty = In1.getValueType();
2851     SDLoc DL(N);
2852     // If both incoming values are integers, and the original types are the
2853     // same.
2854     if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2855       SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2856       SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2857       AddToWorklist(Op.getNode());
2858       return BC;
2859     }
2860   }
2861 
2862   // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2863   // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2864   // If both shuffles use the same mask, and both shuffle within a single
2865   // vector, then it is worthwhile to move the swizzle after the operation.
2866   // The type-legalizer generates this pattern when loading illegal
2867   // vector types from memory. In many cases this allows additional shuffle
2868   // optimizations.
2869   // There are other cases where moving the shuffle after the xor/and/or
2870   // is profitable even if shuffles don't perform a swizzle.
2871   // If both shuffles use the same mask, and both shuffles have the same first
2872   // or second operand, then it might still be profitable to move the shuffle
2873   // after the xor/and/or operation.
2874   if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
2875     ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2876     ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2877 
2878     assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() &&
2879            "Inputs to shuffles are not the same type");
2880 
2881     // Check that both shuffles use the same mask. The masks are known to be of
2882     // the same length because the result vector type is the same.
2883     // Check also that shuffles have only one use to avoid introducing extra
2884     // instructions.
2885     if (SVN0->hasOneUse() && SVN1->hasOneUse() &&
2886         SVN0->getMask().equals(SVN1->getMask())) {
2887       SDValue ShOp = N0->getOperand(1);
2888 
2889       // Don't try to fold this node if it requires introducing a
2890       // build vector of all zeros that might be illegal at this stage.
2891       if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) {
2892         if (!LegalTypes)
2893           ShOp = DAG.getConstant(0, SDLoc(N), VT);
2894         else
2895           ShOp = SDValue();
2896       }
2897 
2898       // (AND (shuf (A, C), shuf (B, C)) -> shuf (AND (A, B), C)
2899       // (OR  (shuf (A, C), shuf (B, C)) -> shuf (OR  (A, B), C)
2900       // (XOR (shuf (A, C), shuf (B, C)) -> shuf (XOR (A, B), V_0)
2901       if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
2902         SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2903                                       N0->getOperand(0), N1->getOperand(0));
2904         AddToWorklist(NewNode.getNode());
2905         return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp,
2906                                     SVN0->getMask());
2907       }
2908 
2909       // Don't try to fold this node if it requires introducing a
2910       // build vector of all zeros that might be illegal at this stage.
2911       ShOp = N0->getOperand(0);
2912       if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) {
2913         if (!LegalTypes)
2914           ShOp = DAG.getConstant(0, SDLoc(N), VT);
2915         else
2916           ShOp = SDValue();
2917       }
2918 
2919       // (AND (shuf (C, A), shuf (C, B)) -> shuf (C, AND (A, B))
2920       // (OR  (shuf (C, A), shuf (C, B)) -> shuf (C, OR  (A, B))
2921       // (XOR (shuf (C, A), shuf (C, B)) -> shuf (V_0, XOR (A, B))
2922       if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) {
2923         SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2924                                       N0->getOperand(1), N1->getOperand(1));
2925         AddToWorklist(NewNode.getNode());
2926         return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode,
2927                                     SVN0->getMask());
2928       }
2929     }
2930   }
2931 
2932   return SDValue();
2933 }
2934 
2935 /// This contains all DAGCombine rules which reduce two values combined by
2936 /// an And operation to a single value. This makes them reusable in the context
2937 /// of visitSELECT(). Rules involving constants are not included as
2938 /// visitSELECT() already handles those cases.
2939 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1,
2940                                   SDNode *LocReference) {
2941   EVT VT = N1.getValueType();
2942 
2943   // fold (and x, undef) -> 0
2944   if (N0.isUndef() || N1.isUndef())
2945     return DAG.getConstant(0, SDLoc(LocReference), VT);
2946   // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2947   SDValue LL, LR, RL, RR, CC0, CC1;
2948   if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2949     ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2950     ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2951 
2952     if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2953         LL.getValueType().isInteger()) {
2954       // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2955       if (isNullConstant(LR) && Op1 == ISD::SETEQ) {
2956         EVT CCVT = getSetCCResultType(LR.getValueType());
2957         if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) {
2958           SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2959                                        LR.getValueType(), LL, RL);
2960           AddToWorklist(ORNode.getNode());
2961           return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
2962         }
2963       }
2964       if (isAllOnesConstant(LR)) {
2965         // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2966         if (Op1 == ISD::SETEQ) {
2967           EVT CCVT = getSetCCResultType(LR.getValueType());
2968           if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) {
2969             SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
2970                                           LR.getValueType(), LL, RL);
2971             AddToWorklist(ANDNode.getNode());
2972             return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1);
2973           }
2974         }
2975         // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
2976         if (Op1 == ISD::SETGT) {
2977           EVT CCVT = getSetCCResultType(LR.getValueType());
2978           if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) {
2979             SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2980                                          LR.getValueType(), LL, RL);
2981             AddToWorklist(ORNode.getNode());
2982             return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
2983           }
2984         }
2985       }
2986     }
2987     // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2)
2988     if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) &&
2989         Op0 == Op1 && LL.getValueType().isInteger() &&
2990       Op0 == ISD::SETNE && ((isNullConstant(LR) && isAllOnesConstant(RR)) ||
2991                             (isAllOnesConstant(LR) && isNullConstant(RR)))) {
2992       EVT CCVT = getSetCCResultType(LL.getValueType());
2993       if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) {
2994         SDLoc DL(N0);
2995         SDValue ADDNode = DAG.getNode(ISD::ADD, DL, LL.getValueType(),
2996                                       LL, DAG.getConstant(1, DL,
2997                                                           LL.getValueType()));
2998         AddToWorklist(ADDNode.getNode());
2999         return DAG.getSetCC(SDLoc(LocReference), VT, ADDNode,
3000                             DAG.getConstant(2, DL, LL.getValueType()),
3001                             ISD::SETUGE);
3002       }
3003     }
3004     // canonicalize equivalent to ll == rl
3005     if (LL == RR && LR == RL) {
3006       Op1 = ISD::getSetCCSwappedOperands(Op1);
3007       std::swap(RL, RR);
3008     }
3009     if (LL == RL && LR == RR) {
3010       bool isInteger = LL.getValueType().isInteger();
3011       ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
3012       if (Result != ISD::SETCC_INVALID &&
3013           (!LegalOperations ||
3014            (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3015             TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) {
3016         EVT CCVT = getSetCCResultType(LL.getValueType());
3017         if (N0.getValueType() == CCVT ||
3018             (!LegalOperations && N0.getValueType() == MVT::i1))
3019           return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(),
3020                               LL, LR, Result);
3021       }
3022     }
3023   }
3024 
3025   if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
3026       VT.getSizeInBits() <= 64) {
3027     if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3028       APInt ADDC = ADDI->getAPIntValue();
3029       if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
3030         // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
3031         // immediate for an add, but it is legal if its top c2 bits are set,
3032         // transform the ADD so the immediate doesn't need to be materialized
3033         // in a register.
3034         if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
3035           APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3036                                              SRLI->getZExtValue());
3037           if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
3038             ADDC |= Mask;
3039             if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
3040               SDLoc DL(N0);
3041               SDValue NewAdd =
3042                 DAG.getNode(ISD::ADD, DL, VT,
3043                             N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
3044               CombineTo(N0.getNode(), NewAdd);
3045               // Return N so it doesn't get rechecked!
3046               return SDValue(LocReference, 0);
3047             }
3048           }
3049         }
3050       }
3051     }
3052   }
3053 
3054   // Reduce bit extract of low half of an integer to the narrower type.
3055   // (and (srl i64:x, K), KMask) ->
3056   //   (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
3057   if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
3058     if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) {
3059       if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3060         unsigned Size = VT.getSizeInBits();
3061         const APInt &AndMask = CAnd->getAPIntValue();
3062         unsigned ShiftBits = CShift->getZExtValue();
3063 
3064         // Bail out, this node will probably disappear anyway.
3065         if (ShiftBits == 0)
3066           return SDValue();
3067 
3068         unsigned MaskBits = AndMask.countTrailingOnes();
3069         EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2);
3070 
3071         if (APIntOps::isMask(AndMask) &&
3072             // Required bits must not span the two halves of the integer and
3073             // must fit in the half size type.
3074             (ShiftBits + MaskBits <= Size / 2) &&
3075             TLI.isNarrowingProfitable(VT, HalfVT) &&
3076             TLI.isTypeDesirableForOp(ISD::AND, HalfVT) &&
3077             TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) &&
3078             TLI.isTruncateFree(VT, HalfVT) &&
3079             TLI.isZExtFree(HalfVT, VT)) {
3080           // The isNarrowingProfitable is to avoid regressions on PPC and
3081           // AArch64 which match a few 64-bit bit insert / bit extract patterns
3082           // on downstream users of this. Those patterns could probably be
3083           // extended to handle extensions mixed in.
3084 
3085           SDValue SL(N0);
3086           assert(MaskBits <= Size);
3087 
3088           // Extracting the highest bit of the low half.
3089           EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout());
3090           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT,
3091                                       N0.getOperand(0));
3092 
3093           SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT);
3094           SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT);
3095           SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK);
3096           SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask);
3097           return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And);
3098         }
3099       }
3100     }
3101   }
3102 
3103   return SDValue();
3104 }
3105 
3106 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
3107                                    EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT,
3108                                    bool &NarrowLoad) {
3109   uint32_t ActiveBits = AndC->getAPIntValue().getActiveBits();
3110 
3111   if (ActiveBits == 0 || !APIntOps::isMask(ActiveBits, AndC->getAPIntValue()))
3112     return false;
3113 
3114   ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
3115   LoadedVT = LoadN->getMemoryVT();
3116 
3117   if (ExtVT == LoadedVT &&
3118       (!LegalOperations ||
3119        TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) {
3120     // ZEXTLOAD will match without needing to change the size of the value being
3121     // loaded.
3122     NarrowLoad = false;
3123     return true;
3124   }
3125 
3126   // Do not change the width of a volatile load.
3127   if (LoadN->isVolatile())
3128     return false;
3129 
3130   // Do not generate loads of non-round integer types since these can
3131   // be expensive (and would be wrong if the type is not byte sized).
3132   if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound())
3133     return false;
3134 
3135   if (LegalOperations &&
3136       !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))
3137     return false;
3138 
3139   if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT))
3140     return false;
3141 
3142   NarrowLoad = true;
3143   return true;
3144 }
3145 
3146 SDValue DAGCombiner::visitAND(SDNode *N) {
3147   SDValue N0 = N->getOperand(0);
3148   SDValue N1 = N->getOperand(1);
3149   EVT VT = N1.getValueType();
3150 
3151   // x & x --> x
3152   if (N0 == N1)
3153     return N0;
3154 
3155   // fold vector ops
3156   if (VT.isVector()) {
3157     if (SDValue FoldedVOp = SimplifyVBinOp(N))
3158       return FoldedVOp;
3159 
3160     // fold (and x, 0) -> 0, vector edition
3161     if (ISD::isBuildVectorAllZeros(N0.getNode()))
3162       // do not return N0, because undef node may exist in N0
3163       return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()),
3164                              SDLoc(N), N0.getValueType());
3165     if (ISD::isBuildVectorAllZeros(N1.getNode()))
3166       // do not return N1, because undef node may exist in N1
3167       return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()),
3168                              SDLoc(N), N1.getValueType());
3169 
3170     // fold (and x, -1) -> x, vector edition
3171     if (ISD::isBuildVectorAllOnes(N0.getNode()))
3172       return N1;
3173     if (ISD::isBuildVectorAllOnes(N1.getNode()))
3174       return N0;
3175   }
3176 
3177   // fold (and c1, c2) -> c1&c2
3178   ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
3179   ConstantSDNode *N1C = isConstOrConstSplat(N1);
3180   if (N0C && N1C && !N1C->isOpaque())
3181     return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C);
3182   // canonicalize constant to RHS
3183   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3184      !DAG.isConstantIntBuildVectorOrConstantInt(N1))
3185     return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
3186   // fold (and x, -1) -> x
3187   if (isAllOnesConstant(N1))
3188     return N0;
3189   // if (and x, c) is known to be zero, return 0
3190   unsigned BitWidth = VT.getScalarSizeInBits();
3191   if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3192                                    APInt::getAllOnesValue(BitWidth)))
3193     return DAG.getConstant(0, SDLoc(N), VT);
3194   // reassociate and
3195   if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1))
3196     return RAND;
3197   // fold (and (or x, C), D) -> D if (C & D) == D
3198   if (N1C && N0.getOpcode() == ISD::OR)
3199     if (ConstantSDNode *ORI = isConstOrConstSplat(N0.getOperand(1)))
3200       if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
3201         return N1;
3202   // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
3203   if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
3204     SDValue N0Op0 = N0.getOperand(0);
3205     APInt Mask = ~N1C->getAPIntValue();
3206     Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits());
3207     if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
3208       SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
3209                                  N0.getValueType(), N0Op0);
3210 
3211       // Replace uses of the AND with uses of the Zero extend node.
3212       CombineTo(N, Zext);
3213 
3214       // We actually want to replace all uses of the any_extend with the
3215       // zero_extend, to avoid duplicating things.  This will later cause this
3216       // AND to be folded.
3217       CombineTo(N0.getNode(), Zext);
3218       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
3219     }
3220   }
3221   // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
3222   // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
3223   // already be zero by virtue of the width of the base type of the load.
3224   //
3225   // the 'X' node here can either be nothing or an extract_vector_elt to catch
3226   // more cases.
3227   if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
3228        N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() &&
3229        N0.getOperand(0).getOpcode() == ISD::LOAD &&
3230        N0.getOperand(0).getResNo() == 0) ||
3231       (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) {
3232     LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
3233                                          N0 : N0.getOperand(0) );
3234 
3235     // Get the constant (if applicable) the zero'th operand is being ANDed with.
3236     // This can be a pure constant or a vector splat, in which case we treat the
3237     // vector as a scalar and use the splat value.
3238     APInt Constant = APInt::getNullValue(1);
3239     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
3240       Constant = C->getAPIntValue();
3241     } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
3242       APInt SplatValue, SplatUndef;
3243       unsigned SplatBitSize;
3244       bool HasAnyUndefs;
3245       bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
3246                                              SplatBitSize, HasAnyUndefs);
3247       if (IsSplat) {
3248         // Undef bits can contribute to a possible optimisation if set, so
3249         // set them.
3250         SplatValue |= SplatUndef;
3251 
3252         // The splat value may be something like "0x00FFFFFF", which means 0 for
3253         // the first vector value and FF for the rest, repeating. We need a mask
3254         // that will apply equally to all members of the vector, so AND all the
3255         // lanes of the constant together.
3256         EVT VT = Vector->getValueType(0);
3257         unsigned BitWidth = VT.getScalarSizeInBits();
3258 
3259         // If the splat value has been compressed to a bitlength lower
3260         // than the size of the vector lane, we need to re-expand it to
3261         // the lane size.
3262         if (BitWidth > SplatBitSize)
3263           for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
3264                SplatBitSize < BitWidth;
3265                SplatBitSize = SplatBitSize * 2)
3266             SplatValue |= SplatValue.shl(SplatBitSize);
3267 
3268         // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
3269         // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
3270         if (SplatBitSize % BitWidth == 0) {
3271           Constant = APInt::getAllOnesValue(BitWidth);
3272           for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
3273             Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
3274         }
3275       }
3276     }
3277 
3278     // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
3279     // actually legal and isn't going to get expanded, else this is a false
3280     // optimisation.
3281     bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
3282                                                     Load->getValueType(0),
3283                                                     Load->getMemoryVT());
3284 
3285     // Resize the constant to the same size as the original memory access before
3286     // extension. If it is still the AllOnesValue then this AND is completely
3287     // unneeded.
3288     Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits());
3289 
3290     bool B;
3291     switch (Load->getExtensionType()) {
3292     default: B = false; break;
3293     case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
3294     case ISD::ZEXTLOAD:
3295     case ISD::NON_EXTLOAD: B = true; break;
3296     }
3297 
3298     if (B && Constant.isAllOnesValue()) {
3299       // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
3300       // preserve semantics once we get rid of the AND.
3301       SDValue NewLoad(Load, 0);
3302       if (Load->getExtensionType() == ISD::EXTLOAD) {
3303         NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
3304                               Load->getValueType(0), SDLoc(Load),
3305                               Load->getChain(), Load->getBasePtr(),
3306                               Load->getOffset(), Load->getMemoryVT(),
3307                               Load->getMemOperand());
3308         // Replace uses of the EXTLOAD with the new ZEXTLOAD.
3309         if (Load->getNumValues() == 3) {
3310           // PRE/POST_INC loads have 3 values.
3311           SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
3312                            NewLoad.getValue(2) };
3313           CombineTo(Load, To, 3, true);
3314         } else {
3315           CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
3316         }
3317       }
3318 
3319       // Fold the AND away, taking care not to fold to the old load node if we
3320       // replaced it.
3321       CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
3322 
3323       return SDValue(N, 0); // Return N so it doesn't get rechecked!
3324     }
3325   }
3326 
3327   // fold (and (load x), 255) -> (zextload x, i8)
3328   // fold (and (extload x, i16), 255) -> (zextload x, i8)
3329   // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
3330   if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD ||
3331                                 (N0.getOpcode() == ISD::ANY_EXTEND &&
3332                                  N0.getOperand(0).getOpcode() == ISD::LOAD))) {
3333     bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
3334     LoadSDNode *LN0 = HasAnyExt
3335       ? cast<LoadSDNode>(N0.getOperand(0))
3336       : cast<LoadSDNode>(N0);
3337     if (LN0->getExtensionType() != ISD::SEXTLOAD &&
3338         LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) {
3339       auto NarrowLoad = false;
3340       EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
3341       EVT ExtVT, LoadedVT;
3342       if (isAndLoadExtLoad(N1C, LN0, LoadResultTy, ExtVT, LoadedVT,
3343                            NarrowLoad)) {
3344         if (!NarrowLoad) {
3345           SDValue NewLoad =
3346             DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
3347                            LN0->getChain(), LN0->getBasePtr(), ExtVT,
3348                            LN0->getMemOperand());
3349           AddToWorklist(N);
3350           CombineTo(LN0, NewLoad, NewLoad.getValue(1));
3351           return SDValue(N, 0);   // Return N so it doesn't get rechecked!
3352         } else {
3353           EVT PtrType = LN0->getOperand(1).getValueType();
3354 
3355           unsigned Alignment = LN0->getAlignment();
3356           SDValue NewPtr = LN0->getBasePtr();
3357 
3358           // For big endian targets, we need to add an offset to the pointer
3359           // to load the correct bytes.  For little endian systems, we merely
3360           // need to read fewer bytes from the same pointer.
3361           if (DAG.getDataLayout().isBigEndian()) {
3362             unsigned LVTStoreBytes = LoadedVT.getStoreSize();
3363             unsigned EVTStoreBytes = ExtVT.getStoreSize();
3364             unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
3365             SDLoc DL(LN0);
3366             NewPtr = DAG.getNode(ISD::ADD, DL, PtrType,
3367                                  NewPtr, DAG.getConstant(PtrOff, DL, PtrType));
3368             Alignment = MinAlign(Alignment, PtrOff);
3369           }
3370 
3371           AddToWorklist(NewPtr.getNode());
3372 
3373           SDValue Load = DAG.getExtLoad(
3374               ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, LN0->getChain(), NewPtr,
3375               LN0->getPointerInfo(), ExtVT, Alignment,
3376               LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
3377           AddToWorklist(N);
3378           CombineTo(LN0, Load, Load.getValue(1));
3379           return SDValue(N, 0);   // Return N so it doesn't get rechecked!
3380         }
3381       }
3382     }
3383   }
3384 
3385   if (SDValue Combined = visitANDLike(N0, N1, N))
3386     return Combined;
3387 
3388   // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
3389   if (N0.getOpcode() == N1.getOpcode())
3390     if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N))
3391       return Tmp;
3392 
3393   // Masking the negated extension of a boolean is just the zero-extended
3394   // boolean:
3395   // and (sub 0, zext(bool X)), 1 --> zext(bool X)
3396   // and (sub 0, sext(bool X)), 1 --> zext(bool X)
3397   //
3398   // Note: the SimplifyDemandedBits fold below can make an information-losing
3399   // transform, and then we have no way to find this better fold.
3400   if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) {
3401     ConstantSDNode *SubLHS = isConstOrConstSplat(N0.getOperand(0));
3402     SDValue SubRHS = N0.getOperand(1);
3403     if (SubLHS && SubLHS->isNullValue()) {
3404       if (SubRHS.getOpcode() == ISD::ZERO_EXTEND &&
3405           SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
3406         return SubRHS;
3407       if (SubRHS.getOpcode() == ISD::SIGN_EXTEND &&
3408           SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
3409         return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0));
3410     }
3411   }
3412 
3413   // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
3414   // fold (and (sra)) -> (and (srl)) when possible.
3415   if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
3416     return SDValue(N, 0);
3417 
3418   // fold (zext_inreg (extload x)) -> (zextload x)
3419   if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
3420     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3421     EVT MemVT = LN0->getMemoryVT();
3422     // If we zero all the possible extended bits, then we can turn this into
3423     // a zextload if we are running before legalize or the operation is legal.
3424     unsigned BitWidth = N1.getScalarValueSizeInBits();
3425     if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
3426                            BitWidth - MemVT.getScalarSizeInBits())) &&
3427         ((!LegalOperations && !LN0->isVolatile()) ||
3428          TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
3429       SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
3430                                        LN0->getChain(), LN0->getBasePtr(),
3431                                        MemVT, LN0->getMemOperand());
3432       AddToWorklist(N);
3433       CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
3434       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
3435     }
3436   }
3437   // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
3438   if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
3439       N0.hasOneUse()) {
3440     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3441     EVT MemVT = LN0->getMemoryVT();
3442     // If we zero all the possible extended bits, then we can turn this into
3443     // a zextload if we are running before legalize or the operation is legal.
3444     unsigned BitWidth = N1.getScalarValueSizeInBits();
3445     if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
3446                            BitWidth - MemVT.getScalarSizeInBits())) &&
3447         ((!LegalOperations && !LN0->isVolatile()) ||
3448          TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
3449       SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
3450                                        LN0->getChain(), LN0->getBasePtr(),
3451                                        MemVT, LN0->getMemOperand());
3452       AddToWorklist(N);
3453       CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
3454       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
3455     }
3456   }
3457   // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
3458   if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
3459     if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
3460                                            N0.getOperand(1), false))
3461       return BSwap;
3462   }
3463 
3464   return SDValue();
3465 }
3466 
3467 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
3468 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
3469                                         bool DemandHighBits) {
3470   if (!LegalOperations)
3471     return SDValue();
3472 
3473   EVT VT = N->getValueType(0);
3474   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
3475     return SDValue();
3476   if (!TLI.isOperationLegal(ISD::BSWAP, VT))
3477     return SDValue();
3478 
3479   // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
3480   bool LookPassAnd0 = false;
3481   bool LookPassAnd1 = false;
3482   if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
3483       std::swap(N0, N1);
3484   if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
3485       std::swap(N0, N1);
3486   if (N0.getOpcode() == ISD::AND) {
3487     if (!N0.getNode()->hasOneUse())
3488       return SDValue();
3489     ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3490     if (!N01C || N01C->getZExtValue() != 0xFF00)
3491       return SDValue();
3492     N0 = N0.getOperand(0);
3493     LookPassAnd0 = true;
3494   }
3495 
3496   if (N1.getOpcode() == ISD::AND) {
3497     if (!N1.getNode()->hasOneUse())
3498       return SDValue();
3499     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
3500     if (!N11C || N11C->getZExtValue() != 0xFF)
3501       return SDValue();
3502     N1 = N1.getOperand(0);
3503     LookPassAnd1 = true;
3504   }
3505 
3506   if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
3507     std::swap(N0, N1);
3508   if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
3509     return SDValue();
3510   if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse())
3511     return SDValue();
3512 
3513   ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3514   ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
3515   if (!N01C || !N11C)
3516     return SDValue();
3517   if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
3518     return SDValue();
3519 
3520   // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
3521   SDValue N00 = N0->getOperand(0);
3522   if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
3523     if (!N00.getNode()->hasOneUse())
3524       return SDValue();
3525     ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
3526     if (!N001C || N001C->getZExtValue() != 0xFF)
3527       return SDValue();
3528     N00 = N00.getOperand(0);
3529     LookPassAnd0 = true;
3530   }
3531 
3532   SDValue N10 = N1->getOperand(0);
3533   if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
3534     if (!N10.getNode()->hasOneUse())
3535       return SDValue();
3536     ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
3537     if (!N101C || N101C->getZExtValue() != 0xFF00)
3538       return SDValue();
3539     N10 = N10.getOperand(0);
3540     LookPassAnd1 = true;
3541   }
3542 
3543   if (N00 != N10)
3544     return SDValue();
3545 
3546   // Make sure everything beyond the low halfword gets set to zero since the SRL
3547   // 16 will clear the top bits.
3548   unsigned OpSizeInBits = VT.getSizeInBits();
3549   if (DemandHighBits && OpSizeInBits > 16) {
3550     // If the left-shift isn't masked out then the only way this is a bswap is
3551     // if all bits beyond the low 8 are 0. In that case the entire pattern
3552     // reduces to a left shift anyway: leave it for other parts of the combiner.
3553     if (!LookPassAnd0)
3554       return SDValue();
3555 
3556     // However, if the right shift isn't masked out then it might be because
3557     // it's not needed. See if we can spot that too.
3558     if (!LookPassAnd1 &&
3559         !DAG.MaskedValueIsZero(
3560             N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
3561       return SDValue();
3562   }
3563 
3564   SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
3565   if (OpSizeInBits > 16) {
3566     SDLoc DL(N);
3567     Res = DAG.getNode(ISD::SRL, DL, VT, Res,
3568                       DAG.getConstant(OpSizeInBits - 16, DL,
3569                                       getShiftAmountTy(VT)));
3570   }
3571   return Res;
3572 }
3573 
3574 /// Return true if the specified node is an element that makes up a 32-bit
3575 /// packed halfword byteswap.
3576 /// ((x & 0x000000ff) << 8) |
3577 /// ((x & 0x0000ff00) >> 8) |
3578 /// ((x & 0x00ff0000) << 8) |
3579 /// ((x & 0xff000000) >> 8)
3580 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
3581   if (!N.getNode()->hasOneUse())
3582     return false;
3583 
3584   unsigned Opc = N.getOpcode();
3585   if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
3586     return false;
3587 
3588   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3589   if (!N1C)
3590     return false;
3591 
3592   unsigned Num;
3593   switch (N1C->getZExtValue()) {
3594   default:
3595     return false;
3596   case 0xFF:       Num = 0; break;
3597   case 0xFF00:     Num = 1; break;
3598   case 0xFF0000:   Num = 2; break;
3599   case 0xFF000000: Num = 3; break;
3600   }
3601 
3602   // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
3603   SDValue N0 = N.getOperand(0);
3604   if (Opc == ISD::AND) {
3605     if (Num == 0 || Num == 2) {
3606       // (x >> 8) & 0xff
3607       // (x >> 8) & 0xff0000
3608       if (N0.getOpcode() != ISD::SRL)
3609         return false;
3610       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3611       if (!C || C->getZExtValue() != 8)
3612         return false;
3613     } else {
3614       // (x << 8) & 0xff00
3615       // (x << 8) & 0xff000000
3616       if (N0.getOpcode() != ISD::SHL)
3617         return false;
3618       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3619       if (!C || C->getZExtValue() != 8)
3620         return false;
3621     }
3622   } else if (Opc == ISD::SHL) {
3623     // (x & 0xff) << 8
3624     // (x & 0xff0000) << 8
3625     if (Num != 0 && Num != 2)
3626       return false;
3627     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3628     if (!C || C->getZExtValue() != 8)
3629       return false;
3630   } else { // Opc == ISD::SRL
3631     // (x & 0xff00) >> 8
3632     // (x & 0xff000000) >> 8
3633     if (Num != 1 && Num != 3)
3634       return false;
3635     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3636     if (!C || C->getZExtValue() != 8)
3637       return false;
3638   }
3639 
3640   if (Parts[Num])
3641     return false;
3642 
3643   Parts[Num] = N0.getOperand(0).getNode();
3644   return true;
3645 }
3646 
3647 /// Match a 32-bit packed halfword bswap. That is
3648 /// ((x & 0x000000ff) << 8) |
3649 /// ((x & 0x0000ff00) >> 8) |
3650 /// ((x & 0x00ff0000) << 8) |
3651 /// ((x & 0xff000000) >> 8)
3652 /// => (rotl (bswap x), 16)
3653 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
3654   if (!LegalOperations)
3655     return SDValue();
3656 
3657   EVT VT = N->getValueType(0);
3658   if (VT != MVT::i32)
3659     return SDValue();
3660   if (!TLI.isOperationLegal(ISD::BSWAP, VT))
3661     return SDValue();
3662 
3663   // Look for either
3664   // (or (or (and), (and)), (or (and), (and)))
3665   // (or (or (or (and), (and)), (and)), (and))
3666   if (N0.getOpcode() != ISD::OR)
3667     return SDValue();
3668   SDValue N00 = N0.getOperand(0);
3669   SDValue N01 = N0.getOperand(1);
3670   SDNode *Parts[4] = {};
3671 
3672   if (N1.getOpcode() == ISD::OR &&
3673       N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
3674     // (or (or (and), (and)), (or (and), (and)))
3675     SDValue N000 = N00.getOperand(0);
3676     if (!isBSwapHWordElement(N000, Parts))
3677       return SDValue();
3678 
3679     SDValue N001 = N00.getOperand(1);
3680     if (!isBSwapHWordElement(N001, Parts))
3681       return SDValue();
3682     SDValue N010 = N01.getOperand(0);
3683     if (!isBSwapHWordElement(N010, Parts))
3684       return SDValue();
3685     SDValue N011 = N01.getOperand(1);
3686     if (!isBSwapHWordElement(N011, Parts))
3687       return SDValue();
3688   } else {
3689     // (or (or (or (and), (and)), (and)), (and))
3690     if (!isBSwapHWordElement(N1, Parts))
3691       return SDValue();
3692     if (!isBSwapHWordElement(N01, Parts))
3693       return SDValue();
3694     if (N00.getOpcode() != ISD::OR)
3695       return SDValue();
3696     SDValue N000 = N00.getOperand(0);
3697     if (!isBSwapHWordElement(N000, Parts))
3698       return SDValue();
3699     SDValue N001 = N00.getOperand(1);
3700     if (!isBSwapHWordElement(N001, Parts))
3701       return SDValue();
3702   }
3703 
3704   // Make sure the parts are all coming from the same node.
3705   if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3706     return SDValue();
3707 
3708   SDLoc DL(N);
3709   SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
3710                               SDValue(Parts[0], 0));
3711 
3712   // Result of the bswap should be rotated by 16. If it's not legal, then
3713   // do  (x << 16) | (x >> 16).
3714   SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT));
3715   if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3716     return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
3717   if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3718     return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
3719   return DAG.getNode(ISD::OR, DL, VT,
3720                      DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
3721                      DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
3722 }
3723 
3724 /// This contains all DAGCombine rules which reduce two values combined by
3725 /// an Or operation to a single value \see visitANDLike().
3726 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *LocReference) {
3727   EVT VT = N1.getValueType();
3728   // fold (or x, undef) -> -1
3729   if (!LegalOperations &&
3730       (N0.isUndef() || N1.isUndef())) {
3731     EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3732     return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()),
3733                            SDLoc(LocReference), VT);
3734   }
3735   // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3736   SDValue LL, LR, RL, RR, CC0, CC1;
3737   if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3738     ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3739     ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3740 
3741     if (LR == RR && Op0 == Op1 && LL.getValueType().isInteger()) {
3742       // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3743       // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3744       if (isNullConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3745         EVT CCVT = getSetCCResultType(LR.getValueType());
3746         if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) {
3747           SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
3748                                        LR.getValueType(), LL, RL);
3749           AddToWorklist(ORNode.getNode());
3750           return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
3751         }
3752       }
3753       // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3754       // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3755       if (isAllOnesConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3756         EVT CCVT = getSetCCResultType(LR.getValueType());
3757         if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) {
3758           SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
3759                                         LR.getValueType(), LL, RL);
3760           AddToWorklist(ANDNode.getNode());
3761           return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1);
3762         }
3763       }
3764     }
3765     // canonicalize equivalent to ll == rl
3766     if (LL == RR && LR == RL) {
3767       Op1 = ISD::getSetCCSwappedOperands(Op1);
3768       std::swap(RL, RR);
3769     }
3770     if (LL == RL && LR == RR) {
3771       bool isInteger = LL.getValueType().isInteger();
3772       ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3773       if (Result != ISD::SETCC_INVALID &&
3774           (!LegalOperations ||
3775            (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3776             TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) {
3777         EVT CCVT = getSetCCResultType(LL.getValueType());
3778         if (N0.getValueType() == CCVT ||
3779             (!LegalOperations && N0.getValueType() == MVT::i1))
3780           return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(),
3781                               LL, LR, Result);
3782       }
3783     }
3784   }
3785 
3786   // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3787   if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
3788       // Don't increase # computations.
3789       (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3790     // We can only do this xform if we know that bits from X that are set in C2
3791     // but not in C1 are already zero.  Likewise for Y.
3792     if (const ConstantSDNode *N0O1C =
3793         getAsNonOpaqueConstant(N0.getOperand(1))) {
3794       if (const ConstantSDNode *N1O1C =
3795           getAsNonOpaqueConstant(N1.getOperand(1))) {
3796         // We can only do this xform if we know that bits from X that are set in
3797         // C2 but not in C1 are already zero.  Likewise for Y.
3798         const APInt &LHSMask = N0O1C->getAPIntValue();
3799         const APInt &RHSMask = N1O1C->getAPIntValue();
3800 
3801         if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3802             DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3803           SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
3804                                   N0.getOperand(0), N1.getOperand(0));
3805           SDLoc DL(LocReference);
3806           return DAG.getNode(ISD::AND, DL, VT, X,
3807                              DAG.getConstant(LHSMask | RHSMask, DL, VT));
3808         }
3809       }
3810     }
3811   }
3812 
3813   // (or (and X, M), (and X, N)) -> (and X, (or M, N))
3814   if (N0.getOpcode() == ISD::AND &&
3815       N1.getOpcode() == ISD::AND &&
3816       N0.getOperand(0) == N1.getOperand(0) &&
3817       // Don't increase # computations.
3818       (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3819     SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
3820                             N0.getOperand(1), N1.getOperand(1));
3821     return DAG.getNode(ISD::AND, SDLoc(LocReference), VT, N0.getOperand(0), X);
3822   }
3823 
3824   return SDValue();
3825 }
3826 
3827 SDValue DAGCombiner::visitOR(SDNode *N) {
3828   SDValue N0 = N->getOperand(0);
3829   SDValue N1 = N->getOperand(1);
3830   EVT VT = N1.getValueType();
3831 
3832   // x | x --> x
3833   if (N0 == N1)
3834     return N0;
3835 
3836   // fold vector ops
3837   if (VT.isVector()) {
3838     if (SDValue FoldedVOp = SimplifyVBinOp(N))
3839       return FoldedVOp;
3840 
3841     // fold (or x, 0) -> x, vector edition
3842     if (ISD::isBuildVectorAllZeros(N0.getNode()))
3843       return N1;
3844     if (ISD::isBuildVectorAllZeros(N1.getNode()))
3845       return N0;
3846 
3847     // fold (or x, -1) -> -1, vector edition
3848     if (ISD::isBuildVectorAllOnes(N0.getNode()))
3849       // do not return N0, because undef node may exist in N0
3850       return DAG.getConstant(
3851           APInt::getAllOnesValue(N0.getScalarValueSizeInBits()), SDLoc(N),
3852           N0.getValueType());
3853     if (ISD::isBuildVectorAllOnes(N1.getNode()))
3854       // do not return N1, because undef node may exist in N1
3855       return DAG.getConstant(
3856           APInt::getAllOnesValue(N1.getScalarValueSizeInBits()), SDLoc(N),
3857           N1.getValueType());
3858 
3859     // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
3860     // Do this only if the resulting shuffle is legal.
3861     if (isa<ShuffleVectorSDNode>(N0) &&
3862         isa<ShuffleVectorSDNode>(N1) &&
3863         // Avoid folding a node with illegal type.
3864         TLI.isTypeLegal(VT)) {
3865       bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode());
3866       bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode());
3867       bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
3868       bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode());
3869       // Ensure both shuffles have a zero input.
3870       if ((ZeroN00 || ZeroN01) && (ZeroN10 || ZeroN11)) {
3871         assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!");
3872         assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!");
3873         const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0);
3874         const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1);
3875         bool CanFold = true;
3876         int NumElts = VT.getVectorNumElements();
3877         SmallVector<int, 4> Mask(NumElts);
3878 
3879         for (int i = 0; i != NumElts; ++i) {
3880           int M0 = SV0->getMaskElt(i);
3881           int M1 = SV1->getMaskElt(i);
3882 
3883           // Determine if either index is pointing to a zero vector.
3884           bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts));
3885           bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts));
3886 
3887           // If one element is zero and the otherside is undef, keep undef.
3888           // This also handles the case that both are undef.
3889           if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) {
3890             Mask[i] = -1;
3891             continue;
3892           }
3893 
3894           // Make sure only one of the elements is zero.
3895           if (M0Zero == M1Zero) {
3896             CanFold = false;
3897             break;
3898           }
3899 
3900           assert((M0 >= 0 || M1 >= 0) && "Undef index!");
3901 
3902           // We have a zero and non-zero element. If the non-zero came from
3903           // SV0 make the index a LHS index. If it came from SV1, make it
3904           // a RHS index. We need to mod by NumElts because we don't care
3905           // which operand it came from in the original shuffles.
3906           Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts;
3907         }
3908 
3909         if (CanFold) {
3910           SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0);
3911           SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0);
3912 
3913           bool LegalMask = TLI.isShuffleMaskLegal(Mask, VT);
3914           if (!LegalMask) {
3915             std::swap(NewLHS, NewRHS);
3916             ShuffleVectorSDNode::commuteMask(Mask);
3917             LegalMask = TLI.isShuffleMaskLegal(Mask, VT);
3918           }
3919 
3920           if (LegalMask)
3921             return DAG.getVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, Mask);
3922         }
3923       }
3924     }
3925   }
3926 
3927   // fold (or c1, c2) -> c1|c2
3928   ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
3929   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3930   if (N0C && N1C && !N1C->isOpaque())
3931     return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C);
3932   // canonicalize constant to RHS
3933   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3934      !DAG.isConstantIntBuildVectorOrConstantInt(N1))
3935     return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
3936   // fold (or x, 0) -> x
3937   if (isNullConstant(N1))
3938     return N0;
3939   // fold (or x, -1) -> -1
3940   if (isAllOnesConstant(N1))
3941     return N1;
3942   // fold (or x, c) -> c iff (x & ~c) == 0
3943   if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3944     return N1;
3945 
3946   if (SDValue Combined = visitORLike(N0, N1, N))
3947     return Combined;
3948 
3949   // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3950   if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
3951     return BSwap;
3952   if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
3953     return BSwap;
3954 
3955   // reassociate or
3956   if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1))
3957     return ROR;
3958   // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3959   // iff (c1 & c2) == 0.
3960   if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3961              isa<ConstantSDNode>(N0.getOperand(1))) {
3962     ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3963     if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) {
3964       if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT,
3965                                                    N1C, C1))
3966         return DAG.getNode(
3967             ISD::AND, SDLoc(N), VT,
3968             DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1), COR);
3969       return SDValue();
3970     }
3971   }
3972   // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3973   if (N0.getOpcode() == N1.getOpcode())
3974     if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N))
3975       return Tmp;
3976 
3977   // See if this is some rotate idiom.
3978   if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
3979     return SDValue(Rot, 0);
3980 
3981   // Simplify the operands using demanded-bits information.
3982   if (!VT.isVector() &&
3983       SimplifyDemandedBits(SDValue(N, 0)))
3984     return SDValue(N, 0);
3985 
3986   return SDValue();
3987 }
3988 
3989 /// Match "(X shl/srl V1) & V2" where V2 may not be present.
3990 bool DAGCombiner::MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3991   if (Op.getOpcode() == ISD::AND) {
3992     if (DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
3993       Mask = Op.getOperand(1);
3994       Op = Op.getOperand(0);
3995     } else {
3996       return false;
3997     }
3998   }
3999 
4000   if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
4001     Shift = Op;
4002     return true;
4003   }
4004 
4005   return false;
4006 }
4007 
4008 // Return true if we can prove that, whenever Neg and Pos are both in the
4009 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos).  This means that
4010 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
4011 //
4012 //     (or (shift1 X, Neg), (shift2 X, Pos))
4013 //
4014 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
4015 // in direction shift1 by Neg.  The range [0, EltSize) means that we only need
4016 // to consider shift amounts with defined behavior.
4017 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize) {
4018   // If EltSize is a power of 2 then:
4019   //
4020   //  (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
4021   //  (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
4022   //
4023   // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
4024   // for the stronger condition:
4025   //
4026   //     Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1)    [A]
4027   //
4028   // for all Neg and Pos.  Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
4029   // we can just replace Neg with Neg' for the rest of the function.
4030   //
4031   // In other cases we check for the even stronger condition:
4032   //
4033   //     Neg == EltSize - Pos                                    [B]
4034   //
4035   // for all Neg and Pos.  Note that the (or ...) then invokes undefined
4036   // behavior if Pos == 0 (and consequently Neg == EltSize).
4037   //
4038   // We could actually use [A] whenever EltSize is a power of 2, but the
4039   // only extra cases that it would match are those uninteresting ones
4040   // where Neg and Pos are never in range at the same time.  E.g. for
4041   // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
4042   // as well as (sub 32, Pos), but:
4043   //
4044   //     (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
4045   //
4046   // always invokes undefined behavior for 32-bit X.
4047   //
4048   // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
4049   unsigned MaskLoBits = 0;
4050   if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) {
4051     if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) {
4052       if (NegC->getAPIntValue() == EltSize - 1) {
4053         Neg = Neg.getOperand(0);
4054         MaskLoBits = Log2_64(EltSize);
4055       }
4056     }
4057   }
4058 
4059   // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
4060   if (Neg.getOpcode() != ISD::SUB)
4061     return false;
4062   ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0));
4063   if (!NegC)
4064     return false;
4065   SDValue NegOp1 = Neg.getOperand(1);
4066 
4067   // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
4068   // Pos'.  The truncation is redundant for the purpose of the equality.
4069   if (MaskLoBits && Pos.getOpcode() == ISD::AND)
4070     if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
4071       if (PosC->getAPIntValue() == EltSize - 1)
4072         Pos = Pos.getOperand(0);
4073 
4074   // The condition we need is now:
4075   //
4076   //     (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
4077   //
4078   // If NegOp1 == Pos then we need:
4079   //
4080   //              EltSize & Mask == NegC & Mask
4081   //
4082   // (because "x & Mask" is a truncation and distributes through subtraction).
4083   APInt Width;
4084   if (Pos == NegOp1)
4085     Width = NegC->getAPIntValue();
4086 
4087   // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
4088   // Then the condition we want to prove becomes:
4089   //
4090   //     (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
4091   //
4092   // which, again because "x & Mask" is a truncation, becomes:
4093   //
4094   //                NegC & Mask == (EltSize - PosC) & Mask
4095   //             EltSize & Mask == (NegC + PosC) & Mask
4096   else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
4097     if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
4098       Width = PosC->getAPIntValue() + NegC->getAPIntValue();
4099     else
4100       return false;
4101   } else
4102     return false;
4103 
4104   // Now we just need to check that EltSize & Mask == Width & Mask.
4105   if (MaskLoBits)
4106     // EltSize & Mask is 0 since Mask is EltSize - 1.
4107     return Width.getLoBits(MaskLoBits) == 0;
4108   return Width == EltSize;
4109 }
4110 
4111 // A subroutine of MatchRotate used once we have found an OR of two opposite
4112 // shifts of Shifted.  If Neg == <operand size> - Pos then the OR reduces
4113 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
4114 // former being preferred if supported.  InnerPos and InnerNeg are Pos and
4115 // Neg with outer conversions stripped away.
4116 SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
4117                                        SDValue Neg, SDValue InnerPos,
4118                                        SDValue InnerNeg, unsigned PosOpcode,
4119                                        unsigned NegOpcode, const SDLoc &DL) {
4120   // fold (or (shl x, (*ext y)),
4121   //          (srl x, (*ext (sub 32, y)))) ->
4122   //   (rotl x, y) or (rotr x, (sub 32, y))
4123   //
4124   // fold (or (shl x, (*ext (sub 32, y))),
4125   //          (srl x, (*ext y))) ->
4126   //   (rotr x, y) or (rotl x, (sub 32, y))
4127   EVT VT = Shifted.getValueType();
4128   if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits())) {
4129     bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
4130     return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
4131                        HasPos ? Pos : Neg).getNode();
4132   }
4133 
4134   return nullptr;
4135 }
4136 
4137 // MatchRotate - Handle an 'or' of two operands.  If this is one of the many
4138 // idioms for rotate, and if the target supports rotation instructions, generate
4139 // a rot[lr].
4140 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) {
4141   // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
4142   EVT VT = LHS.getValueType();
4143   if (!TLI.isTypeLegal(VT)) return nullptr;
4144 
4145   // The target must have at least one rotate flavor.
4146   bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
4147   bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
4148   if (!HasROTL && !HasROTR) return nullptr;
4149 
4150   // Match "(X shl/srl V1) & V2" where V2 may not be present.
4151   SDValue LHSShift;   // The shift.
4152   SDValue LHSMask;    // AND value if any.
4153   if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
4154     return nullptr; // Not part of a rotate.
4155 
4156   SDValue RHSShift;   // The shift.
4157   SDValue RHSMask;    // AND value if any.
4158   if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
4159     return nullptr; // Not part of a rotate.
4160 
4161   if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
4162     return nullptr;   // Not shifting the same value.
4163 
4164   if (LHSShift.getOpcode() == RHSShift.getOpcode())
4165     return nullptr;   // Shifts must disagree.
4166 
4167   // Canonicalize shl to left side in a shl/srl pair.
4168   if (RHSShift.getOpcode() == ISD::SHL) {
4169     std::swap(LHS, RHS);
4170     std::swap(LHSShift, RHSShift);
4171     std::swap(LHSMask, RHSMask);
4172   }
4173 
4174   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4175   SDValue LHSShiftArg = LHSShift.getOperand(0);
4176   SDValue LHSShiftAmt = LHSShift.getOperand(1);
4177   SDValue RHSShiftArg = RHSShift.getOperand(0);
4178   SDValue RHSShiftAmt = RHSShift.getOperand(1);
4179 
4180   // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
4181   // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
4182   if (isConstOrConstSplat(LHSShiftAmt) && isConstOrConstSplat(RHSShiftAmt)) {
4183     uint64_t LShVal = isConstOrConstSplat(LHSShiftAmt)->getZExtValue();
4184     uint64_t RShVal = isConstOrConstSplat(RHSShiftAmt)->getZExtValue();
4185     if ((LShVal + RShVal) != EltSizeInBits)
4186       return nullptr;
4187 
4188     SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
4189                               LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
4190 
4191     // If there is an AND of either shifted operand, apply it to the result.
4192     if (LHSMask.getNode() || RHSMask.getNode()) {
4193       APInt AllBits = APInt::getAllOnesValue(EltSizeInBits);
4194       SDValue Mask = DAG.getConstant(AllBits, DL, VT);
4195 
4196       if (LHSMask.getNode()) {
4197         APInt RHSBits = APInt::getLowBitsSet(EltSizeInBits, LShVal);
4198         Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
4199                            DAG.getNode(ISD::OR, DL, VT, LHSMask,
4200                                        DAG.getConstant(RHSBits, DL, VT)));
4201       }
4202       if (RHSMask.getNode()) {
4203         APInt LHSBits = APInt::getHighBitsSet(EltSizeInBits, RShVal);
4204         Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
4205                            DAG.getNode(ISD::OR, DL, VT, RHSMask,
4206                                        DAG.getConstant(LHSBits, DL, VT)));
4207       }
4208 
4209       Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask);
4210     }
4211 
4212     return Rot.getNode();
4213   }
4214 
4215   // If there is a mask here, and we have a variable shift, we can't be sure
4216   // that we're masking out the right stuff.
4217   if (LHSMask.getNode() || RHSMask.getNode())
4218     return nullptr;
4219 
4220   // If the shift amount is sign/zext/any-extended just peel it off.
4221   SDValue LExtOp0 = LHSShiftAmt;
4222   SDValue RExtOp0 = RHSShiftAmt;
4223   if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
4224        LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
4225        LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
4226        LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
4227       (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
4228        RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
4229        RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
4230        RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
4231     LExtOp0 = LHSShiftAmt.getOperand(0);
4232     RExtOp0 = RHSShiftAmt.getOperand(0);
4233   }
4234 
4235   SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt,
4236                                    LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL);
4237   if (TryL)
4238     return TryL;
4239 
4240   SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
4241                                    RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL);
4242   if (TryR)
4243     return TryR;
4244 
4245   return nullptr;
4246 }
4247 
4248 namespace {
4249 /// Helper struct to parse and store a memory address as base + index + offset.
4250 /// We ignore sign extensions when it is safe to do so.
4251 /// The following two expressions are not equivalent. To differentiate we need
4252 /// to store whether there was a sign extension involved in the index
4253 /// computation.
4254 ///  (load (i64 add (i64 copyfromreg %c)
4255 ///                 (i64 signextend (add (i8 load %index)
4256 ///                                      (i8 1))))
4257 /// vs
4258 ///
4259 /// (load (i64 add (i64 copyfromreg %c)
4260 ///                (i64 signextend (i32 add (i32 signextend (i8 load %index))
4261 ///                                         (i32 1)))))
4262 struct BaseIndexOffset {
4263   SDValue Base;
4264   SDValue Index;
4265   int64_t Offset;
4266   bool IsIndexSignExt;
4267 
4268   BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
4269 
4270   BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
4271                   bool IsIndexSignExt) :
4272     Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
4273 
4274   bool equalBaseIndex(const BaseIndexOffset &Other) {
4275     return Other.Base == Base && Other.Index == Index &&
4276       Other.IsIndexSignExt == IsIndexSignExt;
4277   }
4278 
4279   /// Parses tree in Ptr for base, index, offset addresses.
4280   static BaseIndexOffset match(SDValue Ptr, SelectionDAG &DAG,
4281                                int64_t PartialOffset = 0) {
4282     bool IsIndexSignExt = false;
4283 
4284     // Split up a folded GlobalAddress+Offset into its component parts.
4285     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ptr))
4286       if (GA->getOpcode() == ISD::GlobalAddress && GA->getOffset() != 0) {
4287         return BaseIndexOffset(DAG.getGlobalAddress(GA->getGlobal(),
4288                                                     SDLoc(GA),
4289                                                     GA->getValueType(0),
4290                                                     /*Offset=*/PartialOffset,
4291                                                     /*isTargetGA=*/false,
4292                                                     GA->getTargetFlags()),
4293                                SDValue(),
4294                                GA->getOffset(),
4295                                IsIndexSignExt);
4296       }
4297 
4298     // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD
4299     // instruction, then it could be just the BASE or everything else we don't
4300     // know how to handle. Just use Ptr as BASE and give up.
4301     if (Ptr->getOpcode() != ISD::ADD)
4302       return BaseIndexOffset(Ptr, SDValue(), PartialOffset, IsIndexSignExt);
4303 
4304     // We know that we have at least an ADD instruction. Try to pattern match
4305     // the simple case of BASE + OFFSET.
4306     if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
4307       int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
4308       return match(Ptr->getOperand(0), DAG, Offset + PartialOffset);
4309     }
4310 
4311     // Inside a loop the current BASE pointer is calculated using an ADD and a
4312     // MUL instruction. In this case Ptr is the actual BASE pointer.
4313     // (i64 add (i64 %array_ptr)
4314     //          (i64 mul (i64 %induction_var)
4315     //                   (i64 %element_size)))
4316     if (Ptr->getOperand(1)->getOpcode() == ISD::MUL)
4317       return BaseIndexOffset(Ptr, SDValue(), PartialOffset, IsIndexSignExt);
4318 
4319     // Look at Base + Index + Offset cases.
4320     SDValue Base = Ptr->getOperand(0);
4321     SDValue IndexOffset = Ptr->getOperand(1);
4322 
4323     // Skip signextends.
4324     if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
4325       IndexOffset = IndexOffset->getOperand(0);
4326       IsIndexSignExt = true;
4327     }
4328 
4329     // Either the case of Base + Index (no offset) or something else.
4330     if (IndexOffset->getOpcode() != ISD::ADD)
4331       return BaseIndexOffset(Base, IndexOffset, PartialOffset, IsIndexSignExt);
4332 
4333     // Now we have the case of Base + Index + offset.
4334     SDValue Index = IndexOffset->getOperand(0);
4335     SDValue Offset = IndexOffset->getOperand(1);
4336 
4337     if (!isa<ConstantSDNode>(Offset))
4338       return BaseIndexOffset(Ptr, SDValue(), PartialOffset, IsIndexSignExt);
4339 
4340     // Ignore signextends.
4341     if (Index->getOpcode() == ISD::SIGN_EXTEND) {
4342       Index = Index->getOperand(0);
4343       IsIndexSignExt = true;
4344     } else IsIndexSignExt = false;
4345 
4346     int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
4347     return BaseIndexOffset(Base, Index, Off + PartialOffset, IsIndexSignExt);
4348   }
4349 };
4350 } // namespace
4351 
4352 SDValue DAGCombiner::visitXOR(SDNode *N) {
4353   SDValue N0 = N->getOperand(0);
4354   SDValue N1 = N->getOperand(1);
4355   EVT VT = N0.getValueType();
4356 
4357   // fold vector ops
4358   if (VT.isVector()) {
4359     if (SDValue FoldedVOp = SimplifyVBinOp(N))
4360       return FoldedVOp;
4361 
4362     // fold (xor x, 0) -> x, vector edition
4363     if (ISD::isBuildVectorAllZeros(N0.getNode()))
4364       return N1;
4365     if (ISD::isBuildVectorAllZeros(N1.getNode()))
4366       return N0;
4367   }
4368 
4369   // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
4370   if (N0.isUndef() && N1.isUndef())
4371     return DAG.getConstant(0, SDLoc(N), VT);
4372   // fold (xor x, undef) -> undef
4373   if (N0.isUndef())
4374     return N0;
4375   if (N1.isUndef())
4376     return N1;
4377   // fold (xor c1, c2) -> c1^c2
4378   ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
4379   ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
4380   if (N0C && N1C)
4381     return DAG.FoldConstantArithmetic(ISD::XOR, SDLoc(N), VT, N0C, N1C);
4382   // canonicalize constant to RHS
4383   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
4384      !DAG.isConstantIntBuildVectorOrConstantInt(N1))
4385     return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
4386   // fold (xor x, 0) -> x
4387   if (isNullConstant(N1))
4388     return N0;
4389   // reassociate xor
4390   if (SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1))
4391     return RXOR;
4392 
4393   // fold !(x cc y) -> (x !cc y)
4394   SDValue LHS, RHS, CC;
4395   if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) {
4396     bool isInt = LHS.getValueType().isInteger();
4397     ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
4398                                                isInt);
4399 
4400     if (!LegalOperations ||
4401         TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
4402       switch (N0.getOpcode()) {
4403       default:
4404         llvm_unreachable("Unhandled SetCC Equivalent!");
4405       case ISD::SETCC:
4406         return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC);
4407       case ISD::SELECT_CC:
4408         return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2),
4409                                N0.getOperand(3), NotCC);
4410       }
4411     }
4412   }
4413 
4414   // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
4415   if (isOneConstant(N1) && N0.getOpcode() == ISD::ZERO_EXTEND &&
4416       N0.getNode()->hasOneUse() &&
4417       isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
4418     SDValue V = N0.getOperand(0);
4419     SDLoc DL(N0);
4420     V = DAG.getNode(ISD::XOR, DL, V.getValueType(), V,
4421                     DAG.getConstant(1, DL, V.getValueType()));
4422     AddToWorklist(V.getNode());
4423     return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V);
4424   }
4425 
4426   // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
4427   if (isOneConstant(N1) && VT == MVT::i1 &&
4428       (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
4429     SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4430     if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
4431       unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
4432       LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
4433       RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
4434       AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode());
4435       return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
4436     }
4437   }
4438   // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
4439   if (isAllOnesConstant(N1) &&
4440       (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
4441     SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4442     if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
4443       unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
4444       LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
4445       RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
4446       AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode());
4447       return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
4448     }
4449   }
4450   // fold (xor (and x, y), y) -> (and (not x), y)
4451   if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
4452       N0->getOperand(1) == N1) {
4453     SDValue X = N0->getOperand(0);
4454     SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
4455     AddToWorklist(NotX.getNode());
4456     return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1);
4457   }
4458   // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
4459   if (N1C && N0.getOpcode() == ISD::XOR) {
4460     if (const ConstantSDNode *N00C = getAsNonOpaqueConstant(N0.getOperand(0))) {
4461       SDLoc DL(N);
4462       return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1),
4463                          DAG.getConstant(N1C->getAPIntValue() ^
4464                                          N00C->getAPIntValue(), DL, VT));
4465     }
4466     if (const ConstantSDNode *N01C = getAsNonOpaqueConstant(N0.getOperand(1))) {
4467       SDLoc DL(N);
4468       return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
4469                          DAG.getConstant(N1C->getAPIntValue() ^
4470                                          N01C->getAPIntValue(), DL, VT));
4471     }
4472   }
4473   // fold (xor x, x) -> 0
4474   if (N0 == N1)
4475     return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
4476 
4477   // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
4478   // Here is a concrete example of this equivalence:
4479   // i16   x ==  14
4480   // i16 shl ==   1 << 14  == 16384 == 0b0100000000000000
4481   // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
4482   //
4483   // =>
4484   //
4485   // i16     ~1      == 0b1111111111111110
4486   // i16 rol(~1, 14) == 0b1011111111111111
4487   //
4488   // Some additional tips to help conceptualize this transform:
4489   // - Try to see the operation as placing a single zero in a value of all ones.
4490   // - There exists no value for x which would allow the result to contain zero.
4491   // - Values of x larger than the bitwidth are undefined and do not require a
4492   //   consistent result.
4493   // - Pushing the zero left requires shifting one bits in from the right.
4494   // A rotate left of ~1 is a nice way of achieving the desired result.
4495   if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0.getOpcode() == ISD::SHL
4496       && isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) {
4497     SDLoc DL(N);
4498     return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT),
4499                        N0.getOperand(1));
4500   }
4501 
4502   // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
4503   if (N0.getOpcode() == N1.getOpcode())
4504     if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N))
4505       return Tmp;
4506 
4507   // Simplify the expression using non-local knowledge.
4508   if (!VT.isVector() &&
4509       SimplifyDemandedBits(SDValue(N, 0)))
4510     return SDValue(N, 0);
4511 
4512   return SDValue();
4513 }
4514 
4515 /// Handle transforms common to the three shifts, when the shift amount is a
4516 /// constant.
4517 SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) {
4518   SDNode *LHS = N->getOperand(0).getNode();
4519   if (!LHS->hasOneUse()) return SDValue();
4520 
4521   // We want to pull some binops through shifts, so that we have (and (shift))
4522   // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
4523   // thing happens with address calculations, so it's important to canonicalize
4524   // it.
4525   bool HighBitSet = false;  // Can we transform this if the high bit is set?
4526 
4527   switch (LHS->getOpcode()) {
4528   default: return SDValue();
4529   case ISD::OR:
4530   case ISD::XOR:
4531     HighBitSet = false; // We can only transform sra if the high bit is clear.
4532     break;
4533   case ISD::AND:
4534     HighBitSet = true;  // We can only transform sra if the high bit is set.
4535     break;
4536   case ISD::ADD:
4537     if (N->getOpcode() != ISD::SHL)
4538       return SDValue(); // only shl(add) not sr[al](add).
4539     HighBitSet = false; // We can only transform sra if the high bit is clear.
4540     break;
4541   }
4542 
4543   // We require the RHS of the binop to be a constant and not opaque as well.
4544   ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1));
4545   if (!BinOpCst) return SDValue();
4546 
4547   // FIXME: disable this unless the input to the binop is a shift by a constant
4548   // or is copy/select.Enable this in other cases when figure out it's exactly profitable.
4549   SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
4550   bool isShift = BinOpLHSVal->getOpcode() == ISD::SHL ||
4551                  BinOpLHSVal->getOpcode() == ISD::SRA ||
4552                  BinOpLHSVal->getOpcode() == ISD::SRL;
4553   bool isCopyOrSelect = BinOpLHSVal->getOpcode() == ISD::CopyFromReg ||
4554                         BinOpLHSVal->getOpcode() == ISD::SELECT;
4555 
4556   if ((!isShift || !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) &&
4557       !isCopyOrSelect)
4558     return SDValue();
4559 
4560   if (isCopyOrSelect && N->hasOneUse())
4561     return SDValue();
4562 
4563   EVT VT = N->getValueType(0);
4564 
4565   // If this is a signed shift right, and the high bit is modified by the
4566   // logical operation, do not perform the transformation. The highBitSet
4567   // boolean indicates the value of the high bit of the constant which would
4568   // cause it to be modified for this operation.
4569   if (N->getOpcode() == ISD::SRA) {
4570     bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
4571     if (BinOpRHSSignSet != HighBitSet)
4572       return SDValue();
4573   }
4574 
4575   if (!TLI.isDesirableToCommuteWithShift(LHS))
4576     return SDValue();
4577 
4578   // Fold the constants, shifting the binop RHS by the shift amount.
4579   SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
4580                                N->getValueType(0),
4581                                LHS->getOperand(1), N->getOperand(1));
4582   assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!");
4583 
4584   // Create the new shift.
4585   SDValue NewShift = DAG.getNode(N->getOpcode(),
4586                                  SDLoc(LHS->getOperand(0)),
4587                                  VT, LHS->getOperand(0), N->getOperand(1));
4588 
4589   // Create the new binop.
4590   return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
4591 }
4592 
4593 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
4594   assert(N->getOpcode() == ISD::TRUNCATE);
4595   assert(N->getOperand(0).getOpcode() == ISD::AND);
4596 
4597   // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
4598   if (N->hasOneUse() && N->getOperand(0).hasOneUse()) {
4599     SDValue N01 = N->getOperand(0).getOperand(1);
4600     if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) {
4601       SDLoc DL(N);
4602       EVT TruncVT = N->getValueType(0);
4603       SDValue N00 = N->getOperand(0).getOperand(0);
4604       SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00);
4605       SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01);
4606       AddToWorklist(Trunc00.getNode());
4607       AddToWorklist(Trunc01.getNode());
4608       return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01);
4609     }
4610   }
4611 
4612   return SDValue();
4613 }
4614 
4615 SDValue DAGCombiner::visitRotate(SDNode *N) {
4616   // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
4617   if (N->getOperand(1).getOpcode() == ISD::TRUNCATE &&
4618       N->getOperand(1).getOperand(0).getOpcode() == ISD::AND) {
4619     if (SDValue NewOp1 =
4620             distributeTruncateThroughAnd(N->getOperand(1).getNode()))
4621       return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
4622                          N->getOperand(0), NewOp1);
4623   }
4624   return SDValue();
4625 }
4626 
4627 SDValue DAGCombiner::visitSHL(SDNode *N) {
4628   SDValue N0 = N->getOperand(0);
4629   SDValue N1 = N->getOperand(1);
4630   EVT VT = N0.getValueType();
4631   unsigned OpSizeInBits = VT.getScalarSizeInBits();
4632 
4633   // fold vector ops
4634   if (VT.isVector()) {
4635     if (SDValue FoldedVOp = SimplifyVBinOp(N))
4636       return FoldedVOp;
4637 
4638     BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
4639     // If setcc produces all-one true value then:
4640     // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
4641     if (N1CV && N1CV->isConstant()) {
4642       if (N0.getOpcode() == ISD::AND) {
4643         SDValue N00 = N0->getOperand(0);
4644         SDValue N01 = N0->getOperand(1);
4645         BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
4646 
4647         if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
4648             TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
4649                 TargetLowering::ZeroOrNegativeOneBooleanContent) {
4650           if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT,
4651                                                      N01CV, N1CV))
4652             return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
4653         }
4654       }
4655     }
4656   }
4657 
4658   ConstantSDNode *N1C = isConstOrConstSplat(N1);
4659 
4660   // fold (shl c1, c2) -> c1<<c2
4661   ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
4662   if (N0C && N1C && !N1C->isOpaque())
4663     return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C);
4664   // fold (shl 0, x) -> 0
4665   if (isNullConstant(N0))
4666     return N0;
4667   // fold (shl x, c >= size(x)) -> undef
4668   if (N1C && N1C->getAPIntValue().uge(OpSizeInBits))
4669     return DAG.getUNDEF(VT);
4670   // fold (shl x, 0) -> x
4671   if (N1C && N1C->isNullValue())
4672     return N0;
4673   // fold (shl undef, x) -> 0
4674   if (N0.isUndef())
4675     return DAG.getConstant(0, SDLoc(N), VT);
4676   // if (shl x, c) is known to be zero, return 0
4677   if (DAG.MaskedValueIsZero(SDValue(N, 0),
4678                             APInt::getAllOnesValue(OpSizeInBits)))
4679     return DAG.getConstant(0, SDLoc(N), VT);
4680   // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
4681   if (N1.getOpcode() == ISD::TRUNCATE &&
4682       N1.getOperand(0).getOpcode() == ISD::AND) {
4683     if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
4684       return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1);
4685   }
4686 
4687   if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4688     return SDValue(N, 0);
4689 
4690   // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
4691   if (N1C && N0.getOpcode() == ISD::SHL) {
4692     if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
4693       SDLoc DL(N);
4694       APInt c1 = N0C1->getAPIntValue();
4695       APInt c2 = N1C->getAPIntValue();
4696       zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
4697 
4698       APInt Sum = c1 + c2;
4699       if (Sum.uge(OpSizeInBits))
4700         return DAG.getConstant(0, DL, VT);
4701 
4702       return DAG.getNode(
4703           ISD::SHL, DL, VT, N0.getOperand(0),
4704           DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType()));
4705     }
4706   }
4707 
4708   // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
4709   // For this to be valid, the second form must not preserve any of the bits
4710   // that are shifted out by the inner shift in the first form.  This means
4711   // the outer shift size must be >= the number of bits added by the ext.
4712   // As a corollary, we don't care what kind of ext it is.
4713   if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
4714               N0.getOpcode() == ISD::ANY_EXTEND ||
4715               N0.getOpcode() == ISD::SIGN_EXTEND) &&
4716       N0.getOperand(0).getOpcode() == ISD::SHL) {
4717     SDValue N0Op0 = N0.getOperand(0);
4718     if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
4719       APInt c1 = N0Op0C1->getAPIntValue();
4720       APInt c2 = N1C->getAPIntValue();
4721       zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
4722 
4723       EVT InnerShiftVT = N0Op0.getValueType();
4724       uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
4725       if (c2.uge(OpSizeInBits - InnerShiftSize)) {
4726         SDLoc DL(N0);
4727         APInt Sum = c1 + c2;
4728         if (Sum.uge(OpSizeInBits))
4729           return DAG.getConstant(0, DL, VT);
4730 
4731         return DAG.getNode(
4732             ISD::SHL, DL, VT,
4733             DAG.getNode(N0.getOpcode(), DL, VT, N0Op0->getOperand(0)),
4734             DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType()));
4735       }
4736     }
4737   }
4738 
4739   // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
4740   // Only fold this if the inner zext has no other uses to avoid increasing
4741   // the total number of instructions.
4742   if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
4743       N0.getOperand(0).getOpcode() == ISD::SRL) {
4744     SDValue N0Op0 = N0.getOperand(0);
4745     if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
4746       if (N0Op0C1->getAPIntValue().ult(VT.getScalarSizeInBits())) {
4747         uint64_t c1 = N0Op0C1->getZExtValue();
4748         uint64_t c2 = N1C->getZExtValue();
4749         if (c1 == c2) {
4750           SDValue NewOp0 = N0.getOperand(0);
4751           EVT CountVT = NewOp0.getOperand(1).getValueType();
4752           SDLoc DL(N);
4753           SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(),
4754                                        NewOp0,
4755                                        DAG.getConstant(c2, DL, CountVT));
4756           AddToWorklist(NewSHL.getNode());
4757           return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
4758         }
4759       }
4760     }
4761   }
4762 
4763   // fold (shl (sr[la] exact X,  C1), C2) -> (shl    X, (C2-C1)) if C1 <= C2
4764   // fold (shl (sr[la] exact X,  C1), C2) -> (sr[la] X, (C2-C1)) if C1  > C2
4765   if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) &&
4766       cast<BinaryWithFlagsSDNode>(N0)->Flags.hasExact()) {
4767     if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
4768       uint64_t C1 = N0C1->getZExtValue();
4769       uint64_t C2 = N1C->getZExtValue();
4770       SDLoc DL(N);
4771       if (C1 <= C2)
4772         return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
4773                            DAG.getConstant(C2 - C1, DL, N1.getValueType()));
4774       return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0),
4775                          DAG.getConstant(C1 - C2, DL, N1.getValueType()));
4776     }
4777   }
4778 
4779   // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
4780   //                               (and (srl x, (sub c1, c2), MASK)
4781   // Only fold this if the inner shift has no other uses -- if it does, folding
4782   // this will increase the total number of instructions.
4783   if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
4784     if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
4785       uint64_t c1 = N0C1->getZExtValue();
4786       if (c1 < OpSizeInBits) {
4787         uint64_t c2 = N1C->getZExtValue();
4788         APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1);
4789         SDValue Shift;
4790         if (c2 > c1) {
4791           Mask = Mask.shl(c2 - c1);
4792           SDLoc DL(N);
4793           Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
4794                               DAG.getConstant(c2 - c1, DL, N1.getValueType()));
4795         } else {
4796           Mask = Mask.lshr(c1 - c2);
4797           SDLoc DL(N);
4798           Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
4799                               DAG.getConstant(c1 - c2, DL, N1.getValueType()));
4800         }
4801         SDLoc DL(N0);
4802         return DAG.getNode(ISD::AND, DL, VT, Shift,
4803                            DAG.getConstant(Mask, DL, VT));
4804       }
4805     }
4806   }
4807 
4808   // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
4809   if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) &&
4810       isConstantOrConstantVector(N1, /* No Opaques */ true)) {
4811     unsigned BitSize = VT.getScalarSizeInBits();
4812     SDLoc DL(N);
4813     SDValue AllBits = DAG.getConstant(APInt::getAllOnesValue(BitSize), DL, VT);
4814     SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1);
4815     return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask);
4816   }
4817 
4818   // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
4819   // Variant of version done on multiply, except mul by a power of 2 is turned
4820   // into a shift.
4821   if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
4822       isConstantOrConstantVector(N1, /* No Opaques */ true) &&
4823       isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) {
4824     SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
4825     SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
4826     AddToWorklist(Shl0.getNode());
4827     AddToWorklist(Shl1.getNode());
4828     return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1);
4829   }
4830 
4831   // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
4832   if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() &&
4833       isConstantOrConstantVector(N1, /* No Opaques */ true) &&
4834       isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) {
4835     SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
4836     if (isConstantOrConstantVector(Shl))
4837       return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl);
4838   }
4839 
4840   if (N1C && !N1C->isOpaque())
4841     if (SDValue NewSHL = visitShiftByConstant(N, N1C))
4842       return NewSHL;
4843 
4844   return SDValue();
4845 }
4846 
4847 SDValue DAGCombiner::visitSRA(SDNode *N) {
4848   SDValue N0 = N->getOperand(0);
4849   SDValue N1 = N->getOperand(1);
4850   EVT VT = N0.getValueType();
4851   unsigned OpSizeInBits = VT.getScalarSizeInBits();
4852 
4853   // Arithmetic shifting an all-sign-bit value is a no-op.
4854   if (DAG.ComputeNumSignBits(N0) == OpSizeInBits)
4855     return N0;
4856 
4857   // fold vector ops
4858   if (VT.isVector())
4859     if (SDValue FoldedVOp = SimplifyVBinOp(N))
4860       return FoldedVOp;
4861 
4862   ConstantSDNode *N1C = isConstOrConstSplat(N1);
4863 
4864   // fold (sra c1, c2) -> (sra c1, c2)
4865   ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
4866   if (N0C && N1C && !N1C->isOpaque())
4867     return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C);
4868   // fold (sra 0, x) -> 0
4869   if (isNullConstant(N0))
4870     return N0;
4871   // fold (sra -1, x) -> -1
4872   if (isAllOnesConstant(N0))
4873     return N0;
4874   // fold (sra x, c >= size(x)) -> undef
4875   if (N1C && N1C->getAPIntValue().uge(OpSizeInBits))
4876     return DAG.getUNDEF(VT);
4877   // fold (sra x, 0) -> x
4878   if (N1C && N1C->isNullValue())
4879     return N0;
4880   // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
4881   // sext_inreg.
4882   if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
4883     unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
4884     EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
4885     if (VT.isVector())
4886       ExtVT = EVT::getVectorVT(*DAG.getContext(),
4887                                ExtVT, VT.getVectorNumElements());
4888     if ((!LegalOperations ||
4889          TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
4890       return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
4891                          N0.getOperand(0), DAG.getValueType(ExtVT));
4892   }
4893 
4894   // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
4895   if (N1C && N0.getOpcode() == ISD::SRA) {
4896     if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
4897       SDLoc DL(N);
4898       APInt c1 = N0C1->getAPIntValue();
4899       APInt c2 = N1C->getAPIntValue();
4900       zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
4901 
4902       APInt Sum = c1 + c2;
4903       if (Sum.uge(OpSizeInBits))
4904         Sum = APInt(OpSizeInBits, OpSizeInBits - 1);
4905 
4906       return DAG.getNode(
4907           ISD::SRA, DL, VT, N0.getOperand(0),
4908           DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType()));
4909     }
4910   }
4911 
4912   // fold (sra (shl X, m), (sub result_size, n))
4913   // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
4914   // result_size - n != m.
4915   // If truncate is free for the target sext(shl) is likely to result in better
4916   // code.
4917   if (N0.getOpcode() == ISD::SHL && N1C) {
4918     // Get the two constanst of the shifts, CN0 = m, CN = n.
4919     const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
4920     if (N01C) {
4921       LLVMContext &Ctx = *DAG.getContext();
4922       // Determine what the truncate's result bitsize and type would be.
4923       EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
4924 
4925       if (VT.isVector())
4926         TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());
4927 
4928       // Determine the residual right-shift amount.
4929       int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
4930 
4931       // If the shift is not a no-op (in which case this should be just a sign
4932       // extend already), the truncated to type is legal, sign_extend is legal
4933       // on that type, and the truncate to that type is both legal and free,
4934       // perform the transform.
4935       if ((ShiftAmt > 0) &&
4936           TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
4937           TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
4938           TLI.isTruncateFree(VT, TruncVT)) {
4939 
4940         SDLoc DL(N);
4941         SDValue Amt = DAG.getConstant(ShiftAmt, DL,
4942             getShiftAmountTy(N0.getOperand(0).getValueType()));
4943         SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
4944                                     N0.getOperand(0), Amt);
4945         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
4946                                     Shift);
4947         return DAG.getNode(ISD::SIGN_EXTEND, DL,
4948                            N->getValueType(0), Trunc);
4949       }
4950     }
4951   }
4952 
4953   // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
4954   if (N1.getOpcode() == ISD::TRUNCATE &&
4955       N1.getOperand(0).getOpcode() == ISD::AND) {
4956     if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
4957       return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1);
4958   }
4959 
4960   // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
4961   //      if c1 is equal to the number of bits the trunc removes
4962   if (N0.getOpcode() == ISD::TRUNCATE &&
4963       (N0.getOperand(0).getOpcode() == ISD::SRL ||
4964        N0.getOperand(0).getOpcode() == ISD::SRA) &&
4965       N0.getOperand(0).hasOneUse() &&
4966       N0.getOperand(0).getOperand(1).hasOneUse() &&
4967       N1C) {
4968     SDValue N0Op0 = N0.getOperand(0);
4969     if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
4970       unsigned LargeShiftVal = LargeShift->getZExtValue();
4971       EVT LargeVT = N0Op0.getValueType();
4972 
4973       if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) {
4974         SDLoc DL(N);
4975         SDValue Amt =
4976           DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL,
4977                           getShiftAmountTy(N0Op0.getOperand(0).getValueType()));
4978         SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT,
4979                                   N0Op0.getOperand(0), Amt);
4980         return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
4981       }
4982     }
4983   }
4984 
4985   // Simplify, based on bits shifted out of the LHS.
4986   if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4987     return SDValue(N, 0);
4988 
4989 
4990   // If the sign bit is known to be zero, switch this to a SRL.
4991   if (DAG.SignBitIsZero(N0))
4992     return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
4993 
4994   if (N1C && !N1C->isOpaque())
4995     if (SDValue NewSRA = visitShiftByConstant(N, N1C))
4996       return NewSRA;
4997 
4998   return SDValue();
4999 }
5000 
5001 SDValue DAGCombiner::visitSRL(SDNode *N) {
5002   SDValue N0 = N->getOperand(0);
5003   SDValue N1 = N->getOperand(1);
5004   EVT VT = N0.getValueType();
5005   unsigned OpSizeInBits = VT.getScalarSizeInBits();
5006 
5007   // fold vector ops
5008   if (VT.isVector())
5009     if (SDValue FoldedVOp = SimplifyVBinOp(N))
5010       return FoldedVOp;
5011 
5012   ConstantSDNode *N1C = isConstOrConstSplat(N1);
5013 
5014   // fold (srl c1, c2) -> c1 >>u c2
5015   ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
5016   if (N0C && N1C && !N1C->isOpaque())
5017     return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C);
5018   // fold (srl 0, x) -> 0
5019   if (isNullConstant(N0))
5020     return N0;
5021   // fold (srl x, c >= size(x)) -> undef
5022   if (N1C && N1C->getAPIntValue().uge(OpSizeInBits))
5023     return DAG.getUNDEF(VT);
5024   // fold (srl x, 0) -> x
5025   if (N1C && N1C->isNullValue())
5026     return N0;
5027   // if (srl x, c) is known to be zero, return 0
5028   if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
5029                                    APInt::getAllOnesValue(OpSizeInBits)))
5030     return DAG.getConstant(0, SDLoc(N), VT);
5031 
5032   // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
5033   if (N1C && N0.getOpcode() == ISD::SRL) {
5034     if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
5035       SDLoc DL(N);
5036       APInt c1 = N0C1->getAPIntValue();
5037       APInt c2 = N1C->getAPIntValue();
5038       zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
5039 
5040       APInt Sum = c1 + c2;
5041       if (Sum.uge(OpSizeInBits))
5042         return DAG.getConstant(0, DL, VT);
5043 
5044       return DAG.getNode(
5045           ISD::SRL, DL, VT, N0.getOperand(0),
5046           DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType()));
5047     }
5048   }
5049 
5050   // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
5051   if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
5052       N0.getOperand(0).getOpcode() == ISD::SRL &&
5053       isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
5054     uint64_t c1 =
5055       cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
5056     uint64_t c2 = N1C->getZExtValue();
5057     EVT InnerShiftVT = N0.getOperand(0).getValueType();
5058     EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
5059     uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
5060     // This is only valid if the OpSizeInBits + c1 = size of inner shift.
5061     if (c1 + OpSizeInBits == InnerShiftSize) {
5062       SDLoc DL(N0);
5063       if (c1 + c2 >= InnerShiftSize)
5064         return DAG.getConstant(0, DL, VT);
5065       return DAG.getNode(ISD::TRUNCATE, DL, VT,
5066                          DAG.getNode(ISD::SRL, DL, InnerShiftVT,
5067                                      N0.getOperand(0)->getOperand(0),
5068                                      DAG.getConstant(c1 + c2, DL,
5069                                                      ShiftCountVT)));
5070     }
5071   }
5072 
5073   // fold (srl (shl x, c), c) -> (and x, cst2)
5074   if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
5075       isConstantOrConstantVector(N1, /* NoOpaques */ true)) {
5076     SDLoc DL(N);
5077     APInt AllBits = APInt::getAllOnesValue(N0.getScalarValueSizeInBits());
5078     SDValue Mask =
5079         DAG.getNode(ISD::SRL, DL, VT, DAG.getConstant(AllBits, DL, VT), N1);
5080     AddToWorklist(Mask.getNode());
5081     return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask);
5082   }
5083 
5084   // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
5085   if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
5086     // Shifting in all undef bits?
5087     EVT SmallVT = N0.getOperand(0).getValueType();
5088     unsigned BitSize = SmallVT.getScalarSizeInBits();
5089     if (N1C->getZExtValue() >= BitSize)
5090       return DAG.getUNDEF(VT);
5091 
5092     if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
5093       uint64_t ShiftAmt = N1C->getZExtValue();
5094       SDLoc DL0(N0);
5095       SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT,
5096                                        N0.getOperand(0),
5097                           DAG.getConstant(ShiftAmt, DL0,
5098                                           getShiftAmountTy(SmallVT)));
5099       AddToWorklist(SmallShift.getNode());
5100       APInt Mask = APInt::getAllOnesValue(OpSizeInBits).lshr(ShiftAmt);
5101       SDLoc DL(N);
5102       return DAG.getNode(ISD::AND, DL, VT,
5103                          DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
5104                          DAG.getConstant(Mask, DL, VT));
5105     }
5106   }
5107 
5108   // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
5109   // bit, which is unmodified by sra.
5110   if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) {
5111     if (N0.getOpcode() == ISD::SRA)
5112       return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
5113   }
5114 
5115   // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
5116   if (N1C && N0.getOpcode() == ISD::CTLZ &&
5117       N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
5118     APInt KnownZero, KnownOne;
5119     DAG.computeKnownBits(N0.getOperand(0), KnownZero, KnownOne);
5120 
5121     // If any of the input bits are KnownOne, then the input couldn't be all
5122     // zeros, thus the result of the srl will always be zero.
5123     if (KnownOne.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
5124 
5125     // If all of the bits input the to ctlz node are known to be zero, then
5126     // the result of the ctlz is "32" and the result of the shift is one.
5127     APInt UnknownBits = ~KnownZero;
5128     if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
5129 
5130     // Otherwise, check to see if there is exactly one bit input to the ctlz.
5131     if ((UnknownBits & (UnknownBits - 1)) == 0) {
5132       // Okay, we know that only that the single bit specified by UnknownBits
5133       // could be set on input to the CTLZ node. If this bit is set, the SRL
5134       // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
5135       // to an SRL/XOR pair, which is likely to simplify more.
5136       unsigned ShAmt = UnknownBits.countTrailingZeros();
5137       SDValue Op = N0.getOperand(0);
5138 
5139       if (ShAmt) {
5140         SDLoc DL(N0);
5141         Op = DAG.getNode(ISD::SRL, DL, VT, Op,
5142                   DAG.getConstant(ShAmt, DL,
5143                                   getShiftAmountTy(Op.getValueType())));
5144         AddToWorklist(Op.getNode());
5145       }
5146 
5147       SDLoc DL(N);
5148       return DAG.getNode(ISD::XOR, DL, VT,
5149                          Op, DAG.getConstant(1, DL, VT));
5150     }
5151   }
5152 
5153   // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
5154   if (N1.getOpcode() == ISD::TRUNCATE &&
5155       N1.getOperand(0).getOpcode() == ISD::AND) {
5156     if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
5157       return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1);
5158   }
5159 
5160   // fold operands of srl based on knowledge that the low bits are not
5161   // demanded.
5162   if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
5163     return SDValue(N, 0);
5164 
5165   if (N1C && !N1C->isOpaque())
5166     if (SDValue NewSRL = visitShiftByConstant(N, N1C))
5167       return NewSRL;
5168 
5169   // Attempt to convert a srl of a load into a narrower zero-extending load.
5170   if (SDValue NarrowLoad = ReduceLoadWidth(N))
5171     return NarrowLoad;
5172 
5173   // Here is a common situation. We want to optimize:
5174   //
5175   //   %a = ...
5176   //   %b = and i32 %a, 2
5177   //   %c = srl i32 %b, 1
5178   //   brcond i32 %c ...
5179   //
5180   // into
5181   //
5182   //   %a = ...
5183   //   %b = and %a, 2
5184   //   %c = setcc eq %b, 0
5185   //   brcond %c ...
5186   //
5187   // However when after the source operand of SRL is optimized into AND, the SRL
5188   // itself may not be optimized further. Look for it and add the BRCOND into
5189   // the worklist.
5190   if (N->hasOneUse()) {
5191     SDNode *Use = *N->use_begin();
5192     if (Use->getOpcode() == ISD::BRCOND)
5193       AddToWorklist(Use);
5194     else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
5195       // Also look pass the truncate.
5196       Use = *Use->use_begin();
5197       if (Use->getOpcode() == ISD::BRCOND)
5198         AddToWorklist(Use);
5199     }
5200   }
5201 
5202   return SDValue();
5203 }
5204 
5205 SDValue DAGCombiner::visitBSWAP(SDNode *N) {
5206   SDValue N0 = N->getOperand(0);
5207   EVT VT = N->getValueType(0);
5208 
5209   // fold (bswap c1) -> c2
5210   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
5211     return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0);
5212   // fold (bswap (bswap x)) -> x
5213   if (N0.getOpcode() == ISD::BSWAP)
5214     return N0->getOperand(0);
5215   return SDValue();
5216 }
5217 
5218 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) {
5219   SDValue N0 = N->getOperand(0);
5220   EVT VT = N->getValueType(0);
5221 
5222   // fold (bitreverse c1) -> c2
5223   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
5224     return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0);
5225   // fold (bitreverse (bitreverse x)) -> x
5226   if (N0.getOpcode() == ISD::BITREVERSE)
5227     return N0.getOperand(0);
5228   return SDValue();
5229 }
5230 
5231 SDValue DAGCombiner::visitCTLZ(SDNode *N) {
5232   SDValue N0 = N->getOperand(0);
5233   EVT VT = N->getValueType(0);
5234 
5235   // fold (ctlz c1) -> c2
5236   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
5237     return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
5238   return SDValue();
5239 }
5240 
5241 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
5242   SDValue N0 = N->getOperand(0);
5243   EVT VT = N->getValueType(0);
5244 
5245   // fold (ctlz_zero_undef c1) -> c2
5246   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
5247     return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
5248   return SDValue();
5249 }
5250 
5251 SDValue DAGCombiner::visitCTTZ(SDNode *N) {
5252   SDValue N0 = N->getOperand(0);
5253   EVT VT = N->getValueType(0);
5254 
5255   // fold (cttz c1) -> c2
5256   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
5257     return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
5258   return SDValue();
5259 }
5260 
5261 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
5262   SDValue N0 = N->getOperand(0);
5263   EVT VT = N->getValueType(0);
5264 
5265   // fold (cttz_zero_undef c1) -> c2
5266   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
5267     return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
5268   return SDValue();
5269 }
5270 
5271 SDValue DAGCombiner::visitCTPOP(SDNode *N) {
5272   SDValue N0 = N->getOperand(0);
5273   EVT VT = N->getValueType(0);
5274 
5275   // fold (ctpop c1) -> c2
5276   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
5277     return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
5278   return SDValue();
5279 }
5280 
5281 
5282 /// \brief Generate Min/Max node
5283 static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
5284                                    SDValue RHS, SDValue True, SDValue False,
5285                                    ISD::CondCode CC, const TargetLowering &TLI,
5286                                    SelectionDAG &DAG) {
5287   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
5288     return SDValue();
5289 
5290   switch (CC) {
5291   case ISD::SETOLT:
5292   case ISD::SETOLE:
5293   case ISD::SETLT:
5294   case ISD::SETLE:
5295   case ISD::SETULT:
5296   case ISD::SETULE: {
5297     unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
5298     if (TLI.isOperationLegal(Opcode, VT))
5299       return DAG.getNode(Opcode, DL, VT, LHS, RHS);
5300     return SDValue();
5301   }
5302   case ISD::SETOGT:
5303   case ISD::SETOGE:
5304   case ISD::SETGT:
5305   case ISD::SETGE:
5306   case ISD::SETUGT:
5307   case ISD::SETUGE: {
5308     unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
5309     if (TLI.isOperationLegal(Opcode, VT))
5310       return DAG.getNode(Opcode, DL, VT, LHS, RHS);
5311     return SDValue();
5312   }
5313   default:
5314     return SDValue();
5315   }
5316 }
5317 
5318 // TODO: We should handle other cases of selecting between {-1,0,1} here.
5319 SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) {
5320   SDValue Cond = N->getOperand(0);
5321   SDValue N1 = N->getOperand(1);
5322   SDValue N2 = N->getOperand(2);
5323   EVT VT = N->getValueType(0);
5324   EVT CondVT = Cond.getValueType();
5325   SDLoc DL(N);
5326 
5327   // fold (select Cond, 0, 1) -> (xor Cond, 1)
5328   // We can't do this reliably if integer based booleans have different contents
5329   // to floating point based booleans. This is because we can't tell whether we
5330   // have an integer-based boolean or a floating-point-based boolean unless we
5331   // can find the SETCC that produced it and inspect its operands. This is
5332   // fairly easy if C is the SETCC node, but it can potentially be
5333   // undiscoverable (or not reasonably discoverable). For example, it could be
5334   // in another basic block or it could require searching a complicated
5335   // expression.
5336   if (VT.isInteger() &&
5337       (CondVT == MVT::i1 || (CondVT.isInteger() &&
5338                              TLI.getBooleanContents(false, true) ==
5339                                  TargetLowering::ZeroOrOneBooleanContent &&
5340                              TLI.getBooleanContents(false, false) ==
5341                                  TargetLowering::ZeroOrOneBooleanContent)) &&
5342       isNullConstant(N1) && isOneConstant(N2)) {
5343     SDValue NotCond = DAG.getNode(ISD::XOR, DL, CondVT, Cond,
5344                                   DAG.getConstant(1, DL, CondVT));
5345     if (VT.bitsEq(CondVT))
5346       return NotCond;
5347     return DAG.getZExtOrTrunc(NotCond, DL, VT);
5348   }
5349 
5350   return SDValue();
5351 }
5352 
5353 SDValue DAGCombiner::visitSELECT(SDNode *N) {
5354   SDValue N0 = N->getOperand(0);
5355   SDValue N1 = N->getOperand(1);
5356   SDValue N2 = N->getOperand(2);
5357   EVT VT = N->getValueType(0);
5358   EVT VT0 = N0.getValueType();
5359 
5360   // fold (select C, X, X) -> X
5361   if (N1 == N2)
5362     return N1;
5363   if (const ConstantSDNode *N0C = dyn_cast<const ConstantSDNode>(N0)) {
5364     // fold (select true, X, Y) -> X
5365     // fold (select false, X, Y) -> Y
5366     return !N0C->isNullValue() ? N1 : N2;
5367   }
5368   // fold (select X, X, Y) -> (or X, Y)
5369   // fold (select X, 1, Y) -> (or C, Y)
5370   if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1)))
5371     return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
5372 
5373   if (SDValue V = foldSelectOfConstants(N))
5374     return V;
5375 
5376   // fold (select C, 0, X) -> (and (not C), X)
5377   if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) {
5378     SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
5379     AddToWorklist(NOTNode.getNode());
5380     return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2);
5381   }
5382   // fold (select C, X, 1) -> (or (not C), X)
5383   if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) {
5384     SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
5385     AddToWorklist(NOTNode.getNode());
5386     return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1);
5387   }
5388   // fold (select X, Y, X) -> (and X, Y)
5389   // fold (select X, Y, 0) -> (and X, Y)
5390   if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2)))
5391     return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
5392 
5393   // If we can fold this based on the true/false value, do so.
5394   if (SimplifySelectOps(N, N1, N2))
5395     return SDValue(N, 0);  // Don't revisit N.
5396 
5397   if (VT0 == MVT::i1) {
5398     // The code in this block deals with the following 2 equivalences:
5399     //    select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
5400     //    select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
5401     // The target can specify its preferred form with the
5402     // shouldNormalizeToSelectSequence() callback. However we always transform
5403     // to the right anyway if we find the inner select exists in the DAG anyway
5404     // and we always transform to the left side if we know that we can further
5405     // optimize the combination of the conditions.
5406     bool normalizeToSequence
5407       = TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT);
5408     // select (and Cond0, Cond1), X, Y
5409     //   -> select Cond0, (select Cond1, X, Y), Y
5410     if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
5411       SDValue Cond0 = N0->getOperand(0);
5412       SDValue Cond1 = N0->getOperand(1);
5413       SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N),
5414                                         N1.getValueType(), Cond1, N1, N2);
5415       if (normalizeToSequence || !InnerSelect.use_empty())
5416         return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0,
5417                            InnerSelect, N2);
5418     }
5419     // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
5420     if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
5421       SDValue Cond0 = N0->getOperand(0);
5422       SDValue Cond1 = N0->getOperand(1);
5423       SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N),
5424                                         N1.getValueType(), Cond1, N1, N2);
5425       if (normalizeToSequence || !InnerSelect.use_empty())
5426         return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, N1,
5427                            InnerSelect);
5428     }
5429 
5430     // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
5431     if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
5432       SDValue N1_0 = N1->getOperand(0);
5433       SDValue N1_1 = N1->getOperand(1);
5434       SDValue N1_2 = N1->getOperand(2);
5435       if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
5436         // Create the actual and node if we can generate good code for it.
5437         if (!normalizeToSequence) {
5438           SDValue And = DAG.getNode(ISD::AND, SDLoc(N), N0.getValueType(),
5439                                     N0, N1_0);
5440           return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), And,
5441                              N1_1, N2);
5442         }
5443         // Otherwise see if we can optimize the "and" to a better pattern.
5444         if (SDValue Combined = visitANDLike(N0, N1_0, N))
5445           return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined,
5446                              N1_1, N2);
5447       }
5448     }
5449     // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
5450     if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
5451       SDValue N2_0 = N2->getOperand(0);
5452       SDValue N2_1 = N2->getOperand(1);
5453       SDValue N2_2 = N2->getOperand(2);
5454       if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
5455         // Create the actual or node if we can generate good code for it.
5456         if (!normalizeToSequence) {
5457           SDValue Or = DAG.getNode(ISD::OR, SDLoc(N), N0.getValueType(),
5458                                    N0, N2_0);
5459           return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Or,
5460                              N1, N2_2);
5461         }
5462         // Otherwise see if we can optimize to a better pattern.
5463         if (SDValue Combined = visitORLike(N0, N2_0, N))
5464           return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined,
5465                              N1, N2_2);
5466       }
5467     }
5468   }
5469 
5470   // select (xor Cond, 1), X, Y -> select Cond, Y, X
5471   if (VT0 == MVT::i1) {
5472     if (N0->getOpcode() == ISD::XOR) {
5473       if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) {
5474         SDValue Cond0 = N0->getOperand(0);
5475         if (C->isOne())
5476           return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(),
5477                              Cond0, N2, N1);
5478       }
5479     }
5480   }
5481 
5482   // fold selects based on a setcc into other things, such as min/max/abs
5483   if (N0.getOpcode() == ISD::SETCC) {
5484     // select x, y (fcmp lt x, y) -> fminnum x, y
5485     // select x, y (fcmp gt x, y) -> fmaxnum x, y
5486     //
5487     // This is OK if we don't care about what happens if either operand is a
5488     // NaN.
5489     //
5490 
5491     // FIXME: Instead of testing for UnsafeFPMath, this should be checking for
5492     // no signed zeros as well as no nans.
5493     const TargetOptions &Options = DAG.getTarget().Options;
5494     if (Options.UnsafeFPMath &&
5495         VT.isFloatingPoint() && N0.hasOneUse() &&
5496         DAG.isKnownNeverNaN(N1) && DAG.isKnownNeverNaN(N2)) {
5497       ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
5498 
5499       if (SDValue FMinMax = combineMinNumMaxNum(SDLoc(N), VT, N0.getOperand(0),
5500                                                 N0.getOperand(1), N1, N2, CC,
5501                                                 TLI, DAG))
5502         return FMinMax;
5503     }
5504 
5505     if ((!LegalOperations &&
5506          TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) ||
5507         TLI.isOperationLegal(ISD::SELECT_CC, VT))
5508       return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT,
5509                          N0.getOperand(0), N0.getOperand(1),
5510                          N1, N2, N0.getOperand(2));
5511     return SimplifySelect(SDLoc(N), N0, N1, N2);
5512   }
5513 
5514   return SDValue();
5515 }
5516 
5517 static
5518 std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) {
5519   SDLoc DL(N);
5520   EVT LoVT, HiVT;
5521   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
5522 
5523   // Split the inputs.
5524   SDValue Lo, Hi, LL, LH, RL, RH;
5525   std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
5526   std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
5527 
5528   Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
5529   Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
5530 
5531   return std::make_pair(Lo, Hi);
5532 }
5533 
5534 // This function assumes all the vselect's arguments are CONCAT_VECTOR
5535 // nodes and that the condition is a BV of ConstantSDNodes (or undefs).
5536 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
5537   SDLoc DL(N);
5538   SDValue Cond = N->getOperand(0);
5539   SDValue LHS = N->getOperand(1);
5540   SDValue RHS = N->getOperand(2);
5541   EVT VT = N->getValueType(0);
5542   int NumElems = VT.getVectorNumElements();
5543   assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
5544          RHS.getOpcode() == ISD::CONCAT_VECTORS &&
5545          Cond.getOpcode() == ISD::BUILD_VECTOR);
5546 
5547   // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
5548   // binary ones here.
5549   if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
5550     return SDValue();
5551 
5552   // We're sure we have an even number of elements due to the
5553   // concat_vectors we have as arguments to vselect.
5554   // Skip BV elements until we find one that's not an UNDEF
5555   // After we find an UNDEF element, keep looping until we get to half the
5556   // length of the BV and see if all the non-undef nodes are the same.
5557   ConstantSDNode *BottomHalf = nullptr;
5558   for (int i = 0; i < NumElems / 2; ++i) {
5559     if (Cond->getOperand(i)->isUndef())
5560       continue;
5561 
5562     if (BottomHalf == nullptr)
5563       BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
5564     else if (Cond->getOperand(i).getNode() != BottomHalf)
5565       return SDValue();
5566   }
5567 
5568   // Do the same for the second half of the BuildVector
5569   ConstantSDNode *TopHalf = nullptr;
5570   for (int i = NumElems / 2; i < NumElems; ++i) {
5571     if (Cond->getOperand(i)->isUndef())
5572       continue;
5573 
5574     if (TopHalf == nullptr)
5575       TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
5576     else if (Cond->getOperand(i).getNode() != TopHalf)
5577       return SDValue();
5578   }
5579 
5580   assert(TopHalf && BottomHalf &&
5581          "One half of the selector was all UNDEFs and the other was all the "
5582          "same value. This should have been addressed before this function.");
5583   return DAG.getNode(
5584       ISD::CONCAT_VECTORS, DL, VT,
5585       BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0),
5586       TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
5587 }
5588 
5589 SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
5590 
5591   if (Level >= AfterLegalizeTypes)
5592     return SDValue();
5593 
5594   MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
5595   SDValue Mask = MSC->getMask();
5596   SDValue Data  = MSC->getValue();
5597   SDLoc DL(N);
5598 
5599   // If the MSCATTER data type requires splitting and the mask is provided by a
5600   // SETCC, then split both nodes and its operands before legalization. This
5601   // prevents the type legalizer from unrolling SETCC into scalar comparisons
5602   // and enables future optimizations (e.g. min/max pattern matching on X86).
5603   if (Mask.getOpcode() != ISD::SETCC)
5604     return SDValue();
5605 
5606   // Check if any splitting is required.
5607   if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) !=
5608       TargetLowering::TypeSplitVector)
5609     return SDValue();
5610   SDValue MaskLo, MaskHi, Lo, Hi;
5611   std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
5612 
5613   EVT LoVT, HiVT;
5614   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0));
5615 
5616   SDValue Chain = MSC->getChain();
5617 
5618   EVT MemoryVT = MSC->getMemoryVT();
5619   unsigned Alignment = MSC->getOriginalAlignment();
5620 
5621   EVT LoMemVT, HiMemVT;
5622   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
5623 
5624   SDValue DataLo, DataHi;
5625   std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
5626 
5627   SDValue BasePtr = MSC->getBasePtr();
5628   SDValue IndexLo, IndexHi;
5629   std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL);
5630 
5631   MachineMemOperand *MMO = DAG.getMachineFunction().
5632     getMachineMemOperand(MSC->getPointerInfo(),
5633                           MachineMemOperand::MOStore,  LoMemVT.getStoreSize(),
5634                           Alignment, MSC->getAAInfo(), MSC->getRanges());
5635 
5636   SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo };
5637   Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(),
5638                             DL, OpsLo, MMO);
5639 
5640   SDValue OpsHi[] = {Chain, DataHi, MaskHi, BasePtr, IndexHi};
5641   Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(),
5642                             DL, OpsHi, MMO);
5643 
5644   AddToWorklist(Lo.getNode());
5645   AddToWorklist(Hi.getNode());
5646 
5647   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
5648 }
5649 
5650 SDValue DAGCombiner::visitMSTORE(SDNode *N) {
5651 
5652   if (Level >= AfterLegalizeTypes)
5653     return SDValue();
5654 
5655   MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N);
5656   SDValue Mask = MST->getMask();
5657   SDValue Data  = MST->getValue();
5658   EVT VT = Data.getValueType();
5659   SDLoc DL(N);
5660 
5661   // If the MSTORE data type requires splitting and the mask is provided by a
5662   // SETCC, then split both nodes and its operands before legalization. This
5663   // prevents the type legalizer from unrolling SETCC into scalar comparisons
5664   // and enables future optimizations (e.g. min/max pattern matching on X86).
5665   if (Mask.getOpcode() == ISD::SETCC) {
5666 
5667     // Check if any splitting is required.
5668     if (TLI.getTypeAction(*DAG.getContext(), VT) !=
5669         TargetLowering::TypeSplitVector)
5670       return SDValue();
5671 
5672     SDValue MaskLo, MaskHi, Lo, Hi;
5673     std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
5674 
5675     SDValue Chain = MST->getChain();
5676     SDValue Ptr   = MST->getBasePtr();
5677 
5678     EVT MemoryVT = MST->getMemoryVT();
5679     unsigned Alignment = MST->getOriginalAlignment();
5680 
5681     // if Alignment is equal to the vector size,
5682     // take the half of it for the second part
5683     unsigned SecondHalfAlignment =
5684       (Alignment == VT.getSizeInBits() / 8) ? Alignment / 2 : Alignment;
5685 
5686     EVT LoMemVT, HiMemVT;
5687     std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
5688 
5689     SDValue DataLo, DataHi;
5690     std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
5691 
5692     MachineMemOperand *MMO = DAG.getMachineFunction().
5693       getMachineMemOperand(MST->getPointerInfo(),
5694                            MachineMemOperand::MOStore,  LoMemVT.getStoreSize(),
5695                            Alignment, MST->getAAInfo(), MST->getRanges());
5696 
5697     Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO,
5698                             MST->isTruncatingStore(),
5699                             MST->isCompressingStore());
5700 
5701     Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG,
5702                                      MST->isCompressingStore());
5703 
5704     MMO = DAG.getMachineFunction().
5705       getMachineMemOperand(MST->getPointerInfo(),
5706                            MachineMemOperand::MOStore,  HiMemVT.getStoreSize(),
5707                            SecondHalfAlignment, MST->getAAInfo(),
5708                            MST->getRanges());
5709 
5710     Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO,
5711                             MST->isTruncatingStore(),
5712                             MST->isCompressingStore());
5713 
5714     AddToWorklist(Lo.getNode());
5715     AddToWorklist(Hi.getNode());
5716 
5717     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
5718   }
5719   return SDValue();
5720 }
5721 
5722 SDValue DAGCombiner::visitMGATHER(SDNode *N) {
5723 
5724   if (Level >= AfterLegalizeTypes)
5725     return SDValue();
5726 
5727   MaskedGatherSDNode *MGT = dyn_cast<MaskedGatherSDNode>(N);
5728   SDValue Mask = MGT->getMask();
5729   SDLoc DL(N);
5730 
5731   // If the MGATHER result requires splitting and the mask is provided by a
5732   // SETCC, then split both nodes and its operands before legalization. This
5733   // prevents the type legalizer from unrolling SETCC into scalar comparisons
5734   // and enables future optimizations (e.g. min/max pattern matching on X86).
5735 
5736   if (Mask.getOpcode() != ISD::SETCC)
5737     return SDValue();
5738 
5739   EVT VT = N->getValueType(0);
5740 
5741   // Check if any splitting is required.
5742   if (TLI.getTypeAction(*DAG.getContext(), VT) !=
5743       TargetLowering::TypeSplitVector)
5744     return SDValue();
5745 
5746   SDValue MaskLo, MaskHi, Lo, Hi;
5747   std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
5748 
5749   SDValue Src0 = MGT->getValue();
5750   SDValue Src0Lo, Src0Hi;
5751   std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL);
5752 
5753   EVT LoVT, HiVT;
5754   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
5755 
5756   SDValue Chain = MGT->getChain();
5757   EVT MemoryVT = MGT->getMemoryVT();
5758   unsigned Alignment = MGT->getOriginalAlignment();
5759 
5760   EVT LoMemVT, HiMemVT;
5761   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
5762 
5763   SDValue BasePtr = MGT->getBasePtr();
5764   SDValue Index = MGT->getIndex();
5765   SDValue IndexLo, IndexHi;
5766   std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL);
5767 
5768   MachineMemOperand *MMO = DAG.getMachineFunction().
5769     getMachineMemOperand(MGT->getPointerInfo(),
5770                           MachineMemOperand::MOLoad,  LoMemVT.getStoreSize(),
5771                           Alignment, MGT->getAAInfo(), MGT->getRanges());
5772 
5773   SDValue OpsLo[] = { Chain, Src0Lo, MaskLo, BasePtr, IndexLo };
5774   Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo,
5775                             MMO);
5776 
5777   SDValue OpsHi[] = {Chain, Src0Hi, MaskHi, BasePtr, IndexHi};
5778   Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi,
5779                             MMO);
5780 
5781   AddToWorklist(Lo.getNode());
5782   AddToWorklist(Hi.getNode());
5783 
5784   // Build a factor node to remember that this load is independent of the
5785   // other one.
5786   Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
5787                       Hi.getValue(1));
5788 
5789   // Legalized the chain result - switch anything that used the old chain to
5790   // use the new one.
5791   DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain);
5792 
5793   SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
5794 
5795   SDValue RetOps[] = { GatherRes, Chain };
5796   return DAG.getMergeValues(RetOps, DL);
5797 }
5798 
5799 SDValue DAGCombiner::visitMLOAD(SDNode *N) {
5800 
5801   if (Level >= AfterLegalizeTypes)
5802     return SDValue();
5803 
5804   MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N);
5805   SDValue Mask = MLD->getMask();
5806   SDLoc DL(N);
5807 
5808   // If the MLOAD result requires splitting and the mask is provided by a
5809   // SETCC, then split both nodes and its operands before legalization. This
5810   // prevents the type legalizer from unrolling SETCC into scalar comparisons
5811   // and enables future optimizations (e.g. min/max pattern matching on X86).
5812 
5813   if (Mask.getOpcode() == ISD::SETCC) {
5814     EVT VT = N->getValueType(0);
5815 
5816     // Check if any splitting is required.
5817     if (TLI.getTypeAction(*DAG.getContext(), VT) !=
5818         TargetLowering::TypeSplitVector)
5819       return SDValue();
5820 
5821     SDValue MaskLo, MaskHi, Lo, Hi;
5822     std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
5823 
5824     SDValue Src0 = MLD->getSrc0();
5825     SDValue Src0Lo, Src0Hi;
5826     std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL);
5827 
5828     EVT LoVT, HiVT;
5829     std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
5830 
5831     SDValue Chain = MLD->getChain();
5832     SDValue Ptr   = MLD->getBasePtr();
5833     EVT MemoryVT = MLD->getMemoryVT();
5834     unsigned Alignment = MLD->getOriginalAlignment();
5835 
5836     // if Alignment is equal to the vector size,
5837     // take the half of it for the second part
5838     unsigned SecondHalfAlignment =
5839       (Alignment == MLD->getValueType(0).getSizeInBits()/8) ?
5840          Alignment/2 : Alignment;
5841 
5842     EVT LoMemVT, HiMemVT;
5843     std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
5844 
5845     MachineMemOperand *MMO = DAG.getMachineFunction().
5846     getMachineMemOperand(MLD->getPointerInfo(),
5847                          MachineMemOperand::MOLoad,  LoMemVT.getStoreSize(),
5848                          Alignment, MLD->getAAInfo(), MLD->getRanges());
5849 
5850     Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, LoMemVT, MMO,
5851                            ISD::NON_EXTLOAD, MLD->isExpandingLoad());
5852 
5853     Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG,
5854                                      MLD->isExpandingLoad());
5855 
5856     MMO = DAG.getMachineFunction().
5857     getMachineMemOperand(MLD->getPointerInfo(),
5858                          MachineMemOperand::MOLoad,  HiMemVT.getStoreSize(),
5859                          SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges());
5860 
5861     Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, HiMemVT, MMO,
5862                            ISD::NON_EXTLOAD, MLD->isExpandingLoad());
5863 
5864     AddToWorklist(Lo.getNode());
5865     AddToWorklist(Hi.getNode());
5866 
5867     // Build a factor node to remember that this load is independent of the
5868     // other one.
5869     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
5870                         Hi.getValue(1));
5871 
5872     // Legalized the chain result - switch anything that used the old chain to
5873     // use the new one.
5874     DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain);
5875 
5876     SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
5877 
5878     SDValue RetOps[] = { LoadRes, Chain };
5879     return DAG.getMergeValues(RetOps, DL);
5880   }
5881   return SDValue();
5882 }
5883 
5884 SDValue DAGCombiner::visitVSELECT(SDNode *N) {
5885   SDValue N0 = N->getOperand(0);
5886   SDValue N1 = N->getOperand(1);
5887   SDValue N2 = N->getOperand(2);
5888   SDLoc DL(N);
5889 
5890   // fold (vselect C, X, X) -> X
5891   if (N1 == N2)
5892     return N1;
5893 
5894   // Canonicalize integer abs.
5895   // vselect (setg[te] X,  0),  X, -X ->
5896   // vselect (setgt    X, -1),  X, -X ->
5897   // vselect (setl[te] X,  0), -X,  X ->
5898   // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5899   if (N0.getOpcode() == ISD::SETCC) {
5900     SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
5901     ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
5902     bool isAbs = false;
5903     bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
5904 
5905     if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
5906          (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
5907         N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
5908       isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
5909     else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
5910              N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
5911       isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
5912 
5913     if (isAbs) {
5914       EVT VT = LHS.getValueType();
5915       SDValue Shift = DAG.getNode(
5916           ISD::SRA, DL, VT, LHS,
5917           DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT));
5918       SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
5919       AddToWorklist(Shift.getNode());
5920       AddToWorklist(Add.getNode());
5921       return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
5922     }
5923   }
5924 
5925   if (SimplifySelectOps(N, N1, N2))
5926     return SDValue(N, 0);  // Don't revisit N.
5927 
5928   // If the VSELECT result requires splitting and the mask is provided by a
5929   // SETCC, then split both nodes and its operands before legalization. This
5930   // prevents the type legalizer from unrolling SETCC into scalar comparisons
5931   // and enables future optimizations (e.g. min/max pattern matching on X86).
5932   if (N0.getOpcode() == ISD::SETCC) {
5933     EVT VT = N->getValueType(0);
5934 
5935     // Check if any splitting is required.
5936     if (TLI.getTypeAction(*DAG.getContext(), VT) !=
5937         TargetLowering::TypeSplitVector)
5938       return SDValue();
5939 
5940     SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH;
5941     std::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG);
5942     std::tie(LL, LH) = DAG.SplitVectorOperand(N, 1);
5943     std::tie(RL, RH) = DAG.SplitVectorOperand(N, 2);
5944 
5945     Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL);
5946     Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH);
5947 
5948     // Add the new VSELECT nodes to the work list in case they need to be split
5949     // again.
5950     AddToWorklist(Lo.getNode());
5951     AddToWorklist(Hi.getNode());
5952 
5953     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
5954   }
5955 
5956   // Fold (vselect (build_vector all_ones), N1, N2) -> N1
5957   if (ISD::isBuildVectorAllOnes(N0.getNode()))
5958     return N1;
5959   // Fold (vselect (build_vector all_zeros), N1, N2) -> N2
5960   if (ISD::isBuildVectorAllZeros(N0.getNode()))
5961     return N2;
5962 
5963   // The ConvertSelectToConcatVector function is assuming both the above
5964   // checks for (vselect (build_vector all{ones,zeros) ...) have been made
5965   // and addressed.
5966   if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
5967       N2.getOpcode() == ISD::CONCAT_VECTORS &&
5968       ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
5969     if (SDValue CV = ConvertSelectToConcatVector(N, DAG))
5970       return CV;
5971   }
5972 
5973   return SDValue();
5974 }
5975 
5976 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
5977   SDValue N0 = N->getOperand(0);
5978   SDValue N1 = N->getOperand(1);
5979   SDValue N2 = N->getOperand(2);
5980   SDValue N3 = N->getOperand(3);
5981   SDValue N4 = N->getOperand(4);
5982   ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
5983 
5984   // fold select_cc lhs, rhs, x, x, cc -> x
5985   if (N2 == N3)
5986     return N2;
5987 
5988   // Determine if the condition we're dealing with is constant
5989   if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1,
5990                                   CC, SDLoc(N), false)) {
5991     AddToWorklist(SCC.getNode());
5992 
5993     if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
5994       if (!SCCC->isNullValue())
5995         return N2;    // cond always true -> true val
5996       else
5997         return N3;    // cond always false -> false val
5998     } else if (SCC->isUndef()) {
5999       // When the condition is UNDEF, just return the first operand. This is
6000       // coherent the DAG creation, no setcc node is created in this case
6001       return N2;
6002     } else if (SCC.getOpcode() == ISD::SETCC) {
6003       // Fold to a simpler select_cc
6004       return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
6005                          SCC.getOperand(0), SCC.getOperand(1), N2, N3,
6006                          SCC.getOperand(2));
6007     }
6008   }
6009 
6010   // If we can fold this based on the true/false value, do so.
6011   if (SimplifySelectOps(N, N2, N3))
6012     return SDValue(N, 0);  // Don't revisit N.
6013 
6014   // fold select_cc into other things, such as min/max/abs
6015   return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
6016 }
6017 
6018 SDValue DAGCombiner::visitSETCC(SDNode *N) {
6019   return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
6020                        cast<CondCodeSDNode>(N->getOperand(2))->get(),
6021                        SDLoc(N));
6022 }
6023 
6024 SDValue DAGCombiner::visitSETCCE(SDNode *N) {
6025   SDValue LHS = N->getOperand(0);
6026   SDValue RHS = N->getOperand(1);
6027   SDValue Carry = N->getOperand(2);
6028   SDValue Cond = N->getOperand(3);
6029 
6030   // If Carry is false, fold to a regular SETCC.
6031   if (Carry.getOpcode() == ISD::CARRY_FALSE)
6032     return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond);
6033 
6034   return SDValue();
6035 }
6036 
6037 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
6038 /// a build_vector of constants.
6039 /// This function is called by the DAGCombiner when visiting sext/zext/aext
6040 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
6041 /// Vector extends are not folded if operations are legal; this is to
6042 /// avoid introducing illegal build_vector dag nodes.
6043 static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
6044                                          SelectionDAG &DAG, bool LegalTypes,
6045                                          bool LegalOperations) {
6046   unsigned Opcode = N->getOpcode();
6047   SDValue N0 = N->getOperand(0);
6048   EVT VT = N->getValueType(0);
6049 
6050   assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
6051          Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
6052          Opcode == ISD::ZERO_EXTEND_VECTOR_INREG)
6053          && "Expected EXTEND dag node in input!");
6054 
6055   // fold (sext c1) -> c1
6056   // fold (zext c1) -> c1
6057   // fold (aext c1) -> c1
6058   if (isa<ConstantSDNode>(N0))
6059     return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode();
6060 
6061   // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
6062   // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
6063   // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
6064   EVT SVT = VT.getScalarType();
6065   if (!(VT.isVector() &&
6066       (!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) &&
6067       ISD::isBuildVectorOfConstantSDNodes(N0.getNode())))
6068     return nullptr;
6069 
6070   // We can fold this node into a build_vector.
6071   unsigned VTBits = SVT.getSizeInBits();
6072   unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits();
6073   SmallVector<SDValue, 8> Elts;
6074   unsigned NumElts = VT.getVectorNumElements();
6075   SDLoc DL(N);
6076 
6077   for (unsigned i=0; i != NumElts; ++i) {
6078     SDValue Op = N0->getOperand(i);
6079     if (Op->isUndef()) {
6080       Elts.push_back(DAG.getUNDEF(SVT));
6081       continue;
6082     }
6083 
6084     SDLoc DL(Op);
6085     // Get the constant value and if needed trunc it to the size of the type.
6086     // Nodes like build_vector might have constants wider than the scalar type.
6087     APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits);
6088     if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
6089       Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT));
6090     else
6091       Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT));
6092   }
6093 
6094   return DAG.getBuildVector(VT, DL, Elts).getNode();
6095 }
6096 
6097 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
6098 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
6099 // transformation. Returns true if extension are possible and the above
6100 // mentioned transformation is profitable.
6101 static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
6102                                     unsigned ExtOpc,
6103                                     SmallVectorImpl<SDNode *> &ExtendNodes,
6104                                     const TargetLowering &TLI) {
6105   bool HasCopyToRegUses = false;
6106   bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
6107   for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
6108                             UE = N0.getNode()->use_end();
6109        UI != UE; ++UI) {
6110     SDNode *User = *UI;
6111     if (User == N)
6112       continue;
6113     if (UI.getUse().getResNo() != N0.getResNo())
6114       continue;
6115     // FIXME: Only extend SETCC N, N and SETCC N, c for now.
6116     if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
6117       ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
6118       if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
6119         // Sign bits will be lost after a zext.
6120         return false;
6121       bool Add = false;
6122       for (unsigned i = 0; i != 2; ++i) {
6123         SDValue UseOp = User->getOperand(i);
6124         if (UseOp == N0)
6125           continue;
6126         if (!isa<ConstantSDNode>(UseOp))
6127           return false;
6128         Add = true;
6129       }
6130       if (Add)
6131         ExtendNodes.push_back(User);
6132       continue;
6133     }
6134     // If truncates aren't free and there are users we can't
6135     // extend, it isn't worthwhile.
6136     if (!isTruncFree)
6137       return false;
6138     // Remember if this value is live-out.
6139     if (User->getOpcode() == ISD::CopyToReg)
6140       HasCopyToRegUses = true;
6141   }
6142 
6143   if (HasCopyToRegUses) {
6144     bool BothLiveOut = false;
6145     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6146          UI != UE; ++UI) {
6147       SDUse &Use = UI.getUse();
6148       if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
6149         BothLiveOut = true;
6150         break;
6151       }
6152     }
6153     if (BothLiveOut)
6154       // Both unextended and extended values are live out. There had better be
6155       // a good reason for the transformation.
6156       return ExtendNodes.size();
6157   }
6158   return true;
6159 }
6160 
6161 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
6162                                   SDValue Trunc, SDValue ExtLoad,
6163                                   const SDLoc &DL, ISD::NodeType ExtType) {
6164   // Extend SetCC uses if necessary.
6165   for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
6166     SDNode *SetCC = SetCCs[i];
6167     SmallVector<SDValue, 4> Ops;
6168 
6169     for (unsigned j = 0; j != 2; ++j) {
6170       SDValue SOp = SetCC->getOperand(j);
6171       if (SOp == Trunc)
6172         Ops.push_back(ExtLoad);
6173       else
6174         Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
6175     }
6176 
6177     Ops.push_back(SetCC->getOperand(2));
6178     CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
6179   }
6180 }
6181 
6182 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
6183 SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
6184   SDValue N0 = N->getOperand(0);
6185   EVT DstVT = N->getValueType(0);
6186   EVT SrcVT = N0.getValueType();
6187 
6188   assert((N->getOpcode() == ISD::SIGN_EXTEND ||
6189           N->getOpcode() == ISD::ZERO_EXTEND) &&
6190          "Unexpected node type (not an extend)!");
6191 
6192   // fold (sext (load x)) to multiple smaller sextloads; same for zext.
6193   // For example, on a target with legal v4i32, but illegal v8i32, turn:
6194   //   (v8i32 (sext (v8i16 (load x))))
6195   // into:
6196   //   (v8i32 (concat_vectors (v4i32 (sextload x)),
6197   //                          (v4i32 (sextload (x + 16)))))
6198   // Where uses of the original load, i.e.:
6199   //   (v8i16 (load x))
6200   // are replaced with:
6201   //   (v8i16 (truncate
6202   //     (v8i32 (concat_vectors (v4i32 (sextload x)),
6203   //                            (v4i32 (sextload (x + 16)))))))
6204   //
6205   // This combine is only applicable to illegal, but splittable, vectors.
6206   // All legal types, and illegal non-vector types, are handled elsewhere.
6207   // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
6208   //
6209   if (N0->getOpcode() != ISD::LOAD)
6210     return SDValue();
6211 
6212   LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6213 
6214   if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
6215       !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() ||
6216       !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
6217     return SDValue();
6218 
6219   SmallVector<SDNode *, 4> SetCCs;
6220   if (!ExtendUsesToFormExtLoad(N, N0, N->getOpcode(), SetCCs, TLI))
6221     return SDValue();
6222 
6223   ISD::LoadExtType ExtType =
6224       N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
6225 
6226   // Try to split the vector types to get down to legal types.
6227   EVT SplitSrcVT = SrcVT;
6228   EVT SplitDstVT = DstVT;
6229   while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
6230          SplitSrcVT.getVectorNumElements() > 1) {
6231     SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
6232     SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
6233   }
6234 
6235   if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
6236     return SDValue();
6237 
6238   SDLoc DL(N);
6239   const unsigned NumSplits =
6240       DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
6241   const unsigned Stride = SplitSrcVT.getStoreSize();
6242   SmallVector<SDValue, 4> Loads;
6243   SmallVector<SDValue, 4> Chains;
6244 
6245   SDValue BasePtr = LN0->getBasePtr();
6246   for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
6247     const unsigned Offset = Idx * Stride;
6248     const unsigned Align = MinAlign(LN0->getAlignment(), Offset);
6249 
6250     SDValue SplitLoad = DAG.getExtLoad(
6251         ExtType, DL, SplitDstVT, LN0->getChain(), BasePtr,
6252         LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align,
6253         LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
6254 
6255     BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
6256                           DAG.getConstant(Stride, DL, BasePtr.getValueType()));
6257 
6258     Loads.push_back(SplitLoad.getValue(0));
6259     Chains.push_back(SplitLoad.getValue(1));
6260   }
6261 
6262   SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
6263   SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);
6264 
6265   CombineTo(N, NewValue);
6266 
6267   // Replace uses of the original load (before extension)
6268   // with a truncate of the concatenated sextloaded vectors.
6269   SDValue Trunc =
6270       DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
6271   CombineTo(N0.getNode(), Trunc, NewChain);
6272   ExtendSetCCUses(SetCCs, Trunc, NewValue, DL,
6273                   (ISD::NodeType)N->getOpcode());
6274   return SDValue(N, 0); // Return N so it doesn't get rechecked!
6275 }
6276 
6277 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
6278   SDValue N0 = N->getOperand(0);
6279   EVT VT = N->getValueType(0);
6280 
6281   if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
6282                                               LegalOperations))
6283     return SDValue(Res, 0);
6284 
6285   // fold (sext (sext x)) -> (sext x)
6286   // fold (sext (aext x)) -> (sext x)
6287   if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
6288     return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT,
6289                        N0.getOperand(0));
6290 
6291   if (N0.getOpcode() == ISD::TRUNCATE) {
6292     // fold (sext (truncate (load x))) -> (sext (smaller load x))
6293     // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
6294     if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
6295       SDNode *oye = N0.getOperand(0).getNode();
6296       if (NarrowLoad.getNode() != N0.getNode()) {
6297         CombineTo(N0.getNode(), NarrowLoad);
6298         // CombineTo deleted the truncate, if needed, but not what's under it.
6299         AddToWorklist(oye);
6300       }
6301       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6302     }
6303 
6304     // See if the value being truncated is already sign extended.  If so, just
6305     // eliminate the trunc/sext pair.
6306     SDValue Op = N0.getOperand(0);
6307     unsigned OpBits   = Op.getScalarValueSizeInBits();
6308     unsigned MidBits  = N0.getScalarValueSizeInBits();
6309     unsigned DestBits = VT.getScalarSizeInBits();
6310     unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
6311 
6312     if (OpBits == DestBits) {
6313       // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
6314       // bits, it is already ready.
6315       if (NumSignBits > DestBits-MidBits)
6316         return Op;
6317     } else if (OpBits < DestBits) {
6318       // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
6319       // bits, just sext from i32.
6320       if (NumSignBits > OpBits-MidBits)
6321         return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op);
6322     } else {
6323       // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
6324       // bits, just truncate to i32.
6325       if (NumSignBits > OpBits-MidBits)
6326         return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
6327     }
6328 
6329     // fold (sext (truncate x)) -> (sextinreg x).
6330     if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
6331                                                  N0.getValueType())) {
6332       if (OpBits < DestBits)
6333         Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
6334       else if (OpBits > DestBits)
6335         Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
6336       return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op,
6337                          DAG.getValueType(N0.getValueType()));
6338     }
6339   }
6340 
6341   // fold (sext (load x)) -> (sext (truncate (sextload x)))
6342   // Only generate vector extloads when 1) they're legal, and 2) they are
6343   // deemed desirable by the target.
6344   if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
6345       ((!LegalOperations && !VT.isVector() &&
6346         !cast<LoadSDNode>(N0)->isVolatile()) ||
6347        TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()))) {
6348     bool DoXform = true;
6349     SmallVector<SDNode*, 4> SetCCs;
6350     if (!N0.hasOneUse())
6351       DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
6352     if (VT.isVector())
6353       DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
6354     if (DoXform) {
6355       LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6356       SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
6357                                        LN0->getChain(),
6358                                        LN0->getBasePtr(), N0.getValueType(),
6359                                        LN0->getMemOperand());
6360       CombineTo(N, ExtLoad);
6361       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
6362                                   N0.getValueType(), ExtLoad);
6363       CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
6364       ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
6365                       ISD::SIGN_EXTEND);
6366       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6367     }
6368   }
6369 
6370   // fold (sext (load x)) to multiple smaller sextloads.
6371   // Only on illegal but splittable vectors.
6372   if (SDValue ExtLoad = CombineExtLoad(N))
6373     return ExtLoad;
6374 
6375   // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
6376   // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
6377   if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
6378       ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
6379     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6380     EVT MemVT = LN0->getMemoryVT();
6381     if ((!LegalOperations && !LN0->isVolatile()) ||
6382         TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT)) {
6383       SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
6384                                        LN0->getChain(),
6385                                        LN0->getBasePtr(), MemVT,
6386                                        LN0->getMemOperand());
6387       CombineTo(N, ExtLoad);
6388       CombineTo(N0.getNode(),
6389                 DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
6390                             N0.getValueType(), ExtLoad),
6391                 ExtLoad.getValue(1));
6392       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6393     }
6394   }
6395 
6396   // fold (sext (and/or/xor (load x), cst)) ->
6397   //      (and/or/xor (sextload x), (sext cst))
6398   if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
6399        N0.getOpcode() == ISD::XOR) &&
6400       isa<LoadSDNode>(N0.getOperand(0)) &&
6401       N0.getOperand(1).getOpcode() == ISD::Constant &&
6402       TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()) &&
6403       (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
6404     LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
6405     if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) {
6406       bool DoXform = true;
6407       SmallVector<SDNode*, 4> SetCCs;
6408       if (!N0.hasOneUse())
6409         DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
6410                                           SetCCs, TLI);
6411       if (DoXform) {
6412         SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT,
6413                                          LN0->getChain(), LN0->getBasePtr(),
6414                                          LN0->getMemoryVT(),
6415                                          LN0->getMemOperand());
6416         APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
6417         Mask = Mask.sext(VT.getSizeInBits());
6418         SDLoc DL(N);
6419         SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
6420                                   ExtLoad, DAG.getConstant(Mask, DL, VT));
6421         SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
6422                                     SDLoc(N0.getOperand(0)),
6423                                     N0.getOperand(0).getValueType(), ExtLoad);
6424         CombineTo(N, And);
6425         CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
6426         ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL,
6427                         ISD::SIGN_EXTEND);
6428         return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6429       }
6430     }
6431   }
6432 
6433   if (N0.getOpcode() == ISD::SETCC) {
6434     EVT N0VT = N0.getOperand(0).getValueType();
6435     // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
6436     // Only do this before legalize for now.
6437     if (VT.isVector() && !LegalOperations &&
6438         TLI.getBooleanContents(N0VT) ==
6439             TargetLowering::ZeroOrNegativeOneBooleanContent) {
6440       // On some architectures (such as SSE/NEON/etc) the SETCC result type is
6441       // of the same size as the compared operands. Only optimize sext(setcc())
6442       // if this is the case.
6443       EVT SVT = getSetCCResultType(N0VT);
6444 
6445       // We know that the # elements of the results is the same as the
6446       // # elements of the compare (and the # elements of the compare result
6447       // for that matter).  Check to see that they are the same size.  If so,
6448       // we know that the element size of the sext'd result matches the
6449       // element size of the compare operands.
6450       if (VT.getSizeInBits() == SVT.getSizeInBits())
6451         return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
6452                              N0.getOperand(1),
6453                              cast<CondCodeSDNode>(N0.getOperand(2))->get());
6454 
6455       // If the desired elements are smaller or larger than the source
6456       // elements we can use a matching integer vector type and then
6457       // truncate/sign extend
6458       EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
6459       if (SVT == MatchingVectorType) {
6460         SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType,
6461                                N0.getOperand(0), N0.getOperand(1),
6462                                cast<CondCodeSDNode>(N0.getOperand(2))->get());
6463         return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
6464       }
6465     }
6466 
6467     // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
6468     // Here, T can be 1 or -1, depending on the type of the setcc and
6469     // getBooleanContents().
6470     unsigned SetCCWidth = N0.getScalarValueSizeInBits();
6471 
6472     SDLoc DL(N);
6473     // To determine the "true" side of the select, we need to know the high bit
6474     // of the value returned by the setcc if it evaluates to true.
6475     // If the type of the setcc is i1, then the true case of the select is just
6476     // sext(i1 1), that is, -1.
6477     // If the type of the setcc is larger (say, i8) then the value of the high
6478     // bit depends on getBooleanContents(). So, ask TLI for a real "true" value
6479     // of the appropriate width.
6480     SDValue ExtTrueVal =
6481         (SetCCWidth == 1)
6482             ? DAG.getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()),
6483                               DL, VT)
6484             : TLI.getConstTrueVal(DAG, VT, DL);
6485 
6486     if (SDValue SCC = SimplifySelectCC(
6487             DL, N0.getOperand(0), N0.getOperand(1), ExtTrueVal,
6488             DAG.getConstant(0, DL, VT),
6489             cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
6490       return SCC;
6491 
6492     if (!VT.isVector()) {
6493       EVT SetCCVT = getSetCCResultType(N0.getOperand(0).getValueType());
6494       if (!LegalOperations ||
6495           TLI.isOperationLegal(ISD::SETCC, N0.getOperand(0).getValueType())) {
6496         SDLoc DL(N);
6497         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
6498         SDValue SetCC =
6499             DAG.getSetCC(DL, SetCCVT, N0.getOperand(0), N0.getOperand(1), CC);
6500         return DAG.getSelect(DL, VT, SetCC, ExtTrueVal,
6501                              DAG.getConstant(0, DL, VT));
6502       }
6503     }
6504   }
6505 
6506   // fold (sext x) -> (zext x) if the sign bit is known zero.
6507   if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
6508       DAG.SignBitIsZero(N0))
6509     return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
6510 
6511   return SDValue();
6512 }
6513 
6514 // isTruncateOf - If N is a truncate of some other value, return true, record
6515 // the value being truncated in Op and which of Op's bits are zero in KnownZero.
6516 // This function computes KnownZero to avoid a duplicated call to
6517 // computeKnownBits in the caller.
6518 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
6519                          APInt &KnownZero) {
6520   APInt KnownOne;
6521   if (N->getOpcode() == ISD::TRUNCATE) {
6522     Op = N->getOperand(0);
6523     DAG.computeKnownBits(Op, KnownZero, KnownOne);
6524     return true;
6525   }
6526 
6527   if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
6528       cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
6529     return false;
6530 
6531   SDValue Op0 = N->getOperand(0);
6532   SDValue Op1 = N->getOperand(1);
6533   assert(Op0.getValueType() == Op1.getValueType());
6534 
6535   if (isNullConstant(Op0))
6536     Op = Op1;
6537   else if (isNullConstant(Op1))
6538     Op = Op0;
6539   else
6540     return false;
6541 
6542   DAG.computeKnownBits(Op, KnownZero, KnownOne);
6543 
6544   if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
6545     return false;
6546 
6547   return true;
6548 }
6549 
6550 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
6551   SDValue N0 = N->getOperand(0);
6552   EVT VT = N->getValueType(0);
6553 
6554   if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
6555                                               LegalOperations))
6556     return SDValue(Res, 0);
6557 
6558   // fold (zext (zext x)) -> (zext x)
6559   // fold (zext (aext x)) -> (zext x)
6560   if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
6561     return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
6562                        N0.getOperand(0));
6563 
6564   // fold (zext (truncate x)) -> (zext x) or
6565   //      (zext (truncate x)) -> (truncate x)
6566   // This is valid when the truncated bits of x are already zero.
6567   // FIXME: We should extend this to work for vectors too.
6568   SDValue Op;
6569   APInt KnownZero;
6570   if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
6571     APInt TruncatedBits =
6572       (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
6573       APInt(Op.getValueSizeInBits(), 0) :
6574       APInt::getBitsSet(Op.getValueSizeInBits(),
6575                         N0.getValueSizeInBits(),
6576                         std::min(Op.getValueSizeInBits(),
6577                                  VT.getSizeInBits()));
6578     if (TruncatedBits == (KnownZero & TruncatedBits)) {
6579       if (VT.bitsGT(Op.getValueType()))
6580         return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op);
6581       if (VT.bitsLT(Op.getValueType()))
6582         return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
6583 
6584       return Op;
6585     }
6586   }
6587 
6588   // fold (zext (truncate (load x))) -> (zext (smaller load x))
6589   // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
6590   if (N0.getOpcode() == ISD::TRUNCATE) {
6591     if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
6592       SDNode *oye = N0.getOperand(0).getNode();
6593       if (NarrowLoad.getNode() != N0.getNode()) {
6594         CombineTo(N0.getNode(), NarrowLoad);
6595         // CombineTo deleted the truncate, if needed, but not what's under it.
6596         AddToWorklist(oye);
6597       }
6598       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6599     }
6600   }
6601 
6602   // fold (zext (truncate x)) -> (and x, mask)
6603   if (N0.getOpcode() == ISD::TRUNCATE) {
6604     // fold (zext (truncate (load x))) -> (zext (smaller load x))
6605     // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
6606     if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
6607       SDNode *oye = N0.getOperand(0).getNode();
6608       if (NarrowLoad.getNode() != N0.getNode()) {
6609         CombineTo(N0.getNode(), NarrowLoad);
6610         // CombineTo deleted the truncate, if needed, but not what's under it.
6611         AddToWorklist(oye);
6612       }
6613       return SDValue(N, 0); // Return N so it doesn't get rechecked!
6614     }
6615 
6616     EVT SrcVT = N0.getOperand(0).getValueType();
6617     EVT MinVT = N0.getValueType();
6618 
6619     // Try to mask before the extension to avoid having to generate a larger mask,
6620     // possibly over several sub-vectors.
6621     if (SrcVT.bitsLT(VT)) {
6622       if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) &&
6623                                TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) {
6624         SDValue Op = N0.getOperand(0);
6625         Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
6626         AddToWorklist(Op.getNode());
6627         return DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
6628       }
6629     }
6630 
6631     if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) {
6632       SDValue Op = N0.getOperand(0);
6633       if (SrcVT.bitsLT(VT)) {
6634         Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op);
6635         AddToWorklist(Op.getNode());
6636       } else if (SrcVT.bitsGT(VT)) {
6637         Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
6638         AddToWorklist(Op.getNode());
6639       }
6640       return DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
6641     }
6642   }
6643 
6644   // Fold (zext (and (trunc x), cst)) -> (and x, cst),
6645   // if either of the casts is not free.
6646   if (N0.getOpcode() == ISD::AND &&
6647       N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6648       N0.getOperand(1).getOpcode() == ISD::Constant &&
6649       (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
6650                            N0.getValueType()) ||
6651        !TLI.isZExtFree(N0.getValueType(), VT))) {
6652     SDValue X = N0.getOperand(0).getOperand(0);
6653     if (X.getValueType().bitsLT(VT)) {
6654       X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X);
6655     } else if (X.getValueType().bitsGT(VT)) {
6656       X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
6657     }
6658     APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
6659     Mask = Mask.zext(VT.getSizeInBits());
6660     SDLoc DL(N);
6661     return DAG.getNode(ISD::AND, DL, VT,
6662                        X, DAG.getConstant(Mask, DL, VT));
6663   }
6664 
6665   // fold (zext (load x)) -> (zext (truncate (zextload x)))
6666   // Only generate vector extloads when 1) they're legal, and 2) they are
6667   // deemed desirable by the target.
6668   if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
6669       ((!LegalOperations && !VT.isVector() &&
6670         !cast<LoadSDNode>(N0)->isVolatile()) ||
6671        TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()))) {
6672     bool DoXform = true;
6673     SmallVector<SDNode*, 4> SetCCs;
6674     if (!N0.hasOneUse())
6675       DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
6676     if (VT.isVector())
6677       DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
6678     if (DoXform) {
6679       LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6680       SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
6681                                        LN0->getChain(),
6682                                        LN0->getBasePtr(), N0.getValueType(),
6683                                        LN0->getMemOperand());
6684       CombineTo(N, ExtLoad);
6685       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
6686                                   N0.getValueType(), ExtLoad);
6687       CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
6688 
6689       ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
6690                       ISD::ZERO_EXTEND);
6691       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6692     }
6693   }
6694 
6695   // fold (zext (load x)) to multiple smaller zextloads.
6696   // Only on illegal but splittable vectors.
6697   if (SDValue ExtLoad = CombineExtLoad(N))
6698     return ExtLoad;
6699 
6700   // fold (zext (and/or/xor (load x), cst)) ->
6701   //      (and/or/xor (zextload x), (zext cst))
6702   // Unless (and (load x) cst) will match as a zextload already and has
6703   // additional users.
6704   if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
6705        N0.getOpcode() == ISD::XOR) &&
6706       isa<LoadSDNode>(N0.getOperand(0)) &&
6707       N0.getOperand(1).getOpcode() == ISD::Constant &&
6708       TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()) &&
6709       (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
6710     LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
6711     if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) {
6712       bool DoXform = true;
6713       SmallVector<SDNode*, 4> SetCCs;
6714       if (!N0.hasOneUse()) {
6715         if (N0.getOpcode() == ISD::AND) {
6716           auto *AndC = cast<ConstantSDNode>(N0.getOperand(1));
6717           auto NarrowLoad = false;
6718           EVT LoadResultTy = AndC->getValueType(0);
6719           EVT ExtVT, LoadedVT;
6720           if (isAndLoadExtLoad(AndC, LN0, LoadResultTy, ExtVT, LoadedVT,
6721                                NarrowLoad))
6722             DoXform = false;
6723         }
6724         if (DoXform)
6725           DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0),
6726                                             ISD::ZERO_EXTEND, SetCCs, TLI);
6727       }
6728       if (DoXform) {
6729         SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT,
6730                                          LN0->getChain(), LN0->getBasePtr(),
6731                                          LN0->getMemoryVT(),
6732                                          LN0->getMemOperand());
6733         APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
6734         Mask = Mask.zext(VT.getSizeInBits());
6735         SDLoc DL(N);
6736         SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
6737                                   ExtLoad, DAG.getConstant(Mask, DL, VT));
6738         SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
6739                                     SDLoc(N0.getOperand(0)),
6740                                     N0.getOperand(0).getValueType(), ExtLoad);
6741         CombineTo(N, And);
6742         CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
6743         ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL,
6744                         ISD::ZERO_EXTEND);
6745         return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6746       }
6747     }
6748   }
6749 
6750   // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
6751   // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
6752   if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
6753       ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
6754     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6755     EVT MemVT = LN0->getMemoryVT();
6756     if ((!LegalOperations && !LN0->isVolatile()) ||
6757         TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT)) {
6758       SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
6759                                        LN0->getChain(),
6760                                        LN0->getBasePtr(), MemVT,
6761                                        LN0->getMemOperand());
6762       CombineTo(N, ExtLoad);
6763       CombineTo(N0.getNode(),
6764                 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(),
6765                             ExtLoad),
6766                 ExtLoad.getValue(1));
6767       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6768     }
6769   }
6770 
6771   if (N0.getOpcode() == ISD::SETCC) {
6772     // Only do this before legalize for now.
6773     if (!LegalOperations && VT.isVector() &&
6774         N0.getValueType().getVectorElementType() == MVT::i1) {
6775       EVT N00VT = N0.getOperand(0).getValueType();
6776       if (getSetCCResultType(N00VT) == N0.getValueType())
6777         return SDValue();
6778 
6779       // We know that the # elements of the results is the same as the #
6780       // elements of the compare (and the # elements of the compare result for
6781       // that matter). Check to see that they are the same size. If so, we know
6782       // that the element size of the sext'd result matches the element size of
6783       // the compare operands.
6784       SDLoc DL(N);
6785       SDValue VecOnes = DAG.getConstant(1, DL, VT);
6786       if (VT.getSizeInBits() == N00VT.getSizeInBits()) {
6787         // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
6788         SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0),
6789                                      N0.getOperand(1), N0.getOperand(2));
6790         return DAG.getNode(ISD::AND, DL, VT, VSetCC, VecOnes);
6791       }
6792 
6793       // If the desired elements are smaller or larger than the source
6794       // elements we can use a matching integer vector type and then
6795       // truncate/sign extend.
6796       EVT MatchingElementType = EVT::getIntegerVT(
6797           *DAG.getContext(), N00VT.getScalarSizeInBits());
6798       EVT MatchingVectorType = EVT::getVectorVT(
6799           *DAG.getContext(), MatchingElementType, N00VT.getVectorNumElements());
6800       SDValue VsetCC =
6801           DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0),
6802                       N0.getOperand(1), N0.getOperand(2));
6803       return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT),
6804                          VecOnes);
6805     }
6806 
6807     // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
6808     SDLoc DL(N);
6809     if (SDValue SCC = SimplifySelectCC(
6810             DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
6811             DAG.getConstant(0, DL, VT),
6812             cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
6813       return SCC;
6814   }
6815 
6816   // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
6817   if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
6818       isa<ConstantSDNode>(N0.getOperand(1)) &&
6819       N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
6820       N0.hasOneUse()) {
6821     SDValue ShAmt = N0.getOperand(1);
6822     unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
6823     if (N0.getOpcode() == ISD::SHL) {
6824       SDValue InnerZExt = N0.getOperand(0);
6825       // If the original shl may be shifting out bits, do not perform this
6826       // transformation.
6827       unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() -
6828         InnerZExt.getOperand(0).getValueSizeInBits();
6829       if (ShAmtVal > KnownZeroBits)
6830         return SDValue();
6831     }
6832 
6833     SDLoc DL(N);
6834 
6835     // Ensure that the shift amount is wide enough for the shifted value.
6836     if (VT.getSizeInBits() >= 256)
6837       ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
6838 
6839     return DAG.getNode(N0.getOpcode(), DL, VT,
6840                        DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
6841                        ShAmt);
6842   }
6843 
6844   return SDValue();
6845 }
6846 
6847 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
6848   SDValue N0 = N->getOperand(0);
6849   EVT VT = N->getValueType(0);
6850 
6851   if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
6852                                               LegalOperations))
6853     return SDValue(Res, 0);
6854 
6855   // fold (aext (aext x)) -> (aext x)
6856   // fold (aext (zext x)) -> (zext x)
6857   // fold (aext (sext x)) -> (sext x)
6858   if (N0.getOpcode() == ISD::ANY_EXTEND  ||
6859       N0.getOpcode() == ISD::ZERO_EXTEND ||
6860       N0.getOpcode() == ISD::SIGN_EXTEND)
6861     return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
6862 
6863   // fold (aext (truncate (load x))) -> (aext (smaller load x))
6864   // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
6865   if (N0.getOpcode() == ISD::TRUNCATE) {
6866     if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
6867       SDNode *oye = N0.getOperand(0).getNode();
6868       if (NarrowLoad.getNode() != N0.getNode()) {
6869         CombineTo(N0.getNode(), NarrowLoad);
6870         // CombineTo deleted the truncate, if needed, but not what's under it.
6871         AddToWorklist(oye);
6872       }
6873       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6874     }
6875   }
6876 
6877   // fold (aext (truncate x))
6878   if (N0.getOpcode() == ISD::TRUNCATE) {
6879     SDValue TruncOp = N0.getOperand(0);
6880     if (TruncOp.getValueType() == VT)
6881       return TruncOp; // x iff x size == zext size.
6882     if (TruncOp.getValueType().bitsGT(VT))
6883       return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp);
6884     return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp);
6885   }
6886 
6887   // Fold (aext (and (trunc x), cst)) -> (and x, cst)
6888   // if the trunc is not free.
6889   if (N0.getOpcode() == ISD::AND &&
6890       N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6891       N0.getOperand(1).getOpcode() == ISD::Constant &&
6892       !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
6893                           N0.getValueType())) {
6894     SDLoc DL(N);
6895     SDValue X = N0.getOperand(0).getOperand(0);
6896     if (X.getValueType().bitsLT(VT)) {
6897       X = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X);
6898     } else if (X.getValueType().bitsGT(VT)) {
6899       X = DAG.getNode(ISD::TRUNCATE, DL, VT, X);
6900     }
6901     APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
6902     Mask = Mask.zext(VT.getSizeInBits());
6903     return DAG.getNode(ISD::AND, DL, VT,
6904                        X, DAG.getConstant(Mask, DL, VT));
6905   }
6906 
6907   // fold (aext (load x)) -> (aext (truncate (extload x)))
6908   // None of the supported targets knows how to perform load and any_ext
6909   // on vectors in one instruction.  We only perform this transformation on
6910   // scalars.
6911   if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
6912       ISD::isUNINDEXEDLoad(N0.getNode()) &&
6913       TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
6914     bool DoXform = true;
6915     SmallVector<SDNode*, 4> SetCCs;
6916     if (!N0.hasOneUse())
6917       DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
6918     if (DoXform) {
6919       LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6920       SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
6921                                        LN0->getChain(),
6922                                        LN0->getBasePtr(), N0.getValueType(),
6923                                        LN0->getMemOperand());
6924       CombineTo(N, ExtLoad);
6925       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
6926                                   N0.getValueType(), ExtLoad);
6927       CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
6928       ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
6929                       ISD::ANY_EXTEND);
6930       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6931     }
6932   }
6933 
6934   // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
6935   // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
6936   // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
6937   if (N0.getOpcode() == ISD::LOAD &&
6938       !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
6939       N0.hasOneUse()) {
6940     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6941     ISD::LoadExtType ExtType = LN0->getExtensionType();
6942     EVT MemVT = LN0->getMemoryVT();
6943     if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
6944       SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
6945                                        VT, LN0->getChain(), LN0->getBasePtr(),
6946                                        MemVT, LN0->getMemOperand());
6947       CombineTo(N, ExtLoad);
6948       CombineTo(N0.getNode(),
6949                 DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
6950                             N0.getValueType(), ExtLoad),
6951                 ExtLoad.getValue(1));
6952       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6953     }
6954   }
6955 
6956   if (N0.getOpcode() == ISD::SETCC) {
6957     // For vectors:
6958     // aext(setcc) -> vsetcc
6959     // aext(setcc) -> truncate(vsetcc)
6960     // aext(setcc) -> aext(vsetcc)
6961     // Only do this before legalize for now.
6962     if (VT.isVector() && !LegalOperations) {
6963       EVT N0VT = N0.getOperand(0).getValueType();
6964         // We know that the # elements of the results is the same as the
6965         // # elements of the compare (and the # elements of the compare result
6966         // for that matter).  Check to see that they are the same size.  If so,
6967         // we know that the element size of the sext'd result matches the
6968         // element size of the compare operands.
6969       if (VT.getSizeInBits() == N0VT.getSizeInBits())
6970         return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
6971                              N0.getOperand(1),
6972                              cast<CondCodeSDNode>(N0.getOperand(2))->get());
6973       // If the desired elements are smaller or larger than the source
6974       // elements we can use a matching integer vector type and then
6975       // truncate/any extend
6976       else {
6977         EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
6978         SDValue VsetCC =
6979           DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
6980                         N0.getOperand(1),
6981                         cast<CondCodeSDNode>(N0.getOperand(2))->get());
6982         return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT);
6983       }
6984     }
6985 
6986     // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
6987     SDLoc DL(N);
6988     if (SDValue SCC = SimplifySelectCC(
6989             DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
6990             DAG.getConstant(0, DL, VT),
6991             cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
6992       return SCC;
6993   }
6994 
6995   return SDValue();
6996 }
6997 
6998 /// See if the specified operand can be simplified with the knowledge that only
6999 /// the bits specified by Mask are used.  If so, return the simpler operand,
7000 /// otherwise return a null SDValue.
7001 SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
7002   switch (V.getOpcode()) {
7003   default: break;
7004   case ISD::Constant: {
7005     const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
7006     assert(CV && "Const value should be ConstSDNode.");
7007     const APInt &CVal = CV->getAPIntValue();
7008     APInt NewVal = CVal & Mask;
7009     if (NewVal != CVal)
7010       return DAG.getConstant(NewVal, SDLoc(V), V.getValueType());
7011     break;
7012   }
7013   case ISD::OR:
7014   case ISD::XOR:
7015     // If the LHS or RHS don't contribute bits to the or, drop them.
7016     if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
7017       return V.getOperand(1);
7018     if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
7019       return V.getOperand(0);
7020     break;
7021   case ISD::SRL:
7022     // Only look at single-use SRLs.
7023     if (!V.getNode()->hasOneUse())
7024       break;
7025     if (ConstantSDNode *RHSC = getAsNonOpaqueConstant(V.getOperand(1))) {
7026       // See if we can recursively simplify the LHS.
7027       unsigned Amt = RHSC->getZExtValue();
7028 
7029       // Watch out for shift count overflow though.
7030       if (Amt >= Mask.getBitWidth()) break;
7031       APInt NewMask = Mask << Amt;
7032       if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
7033         return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(),
7034                            SimplifyLHS, V.getOperand(1));
7035     }
7036   }
7037   return SDValue();
7038 }
7039 
7040 /// If the result of a wider load is shifted to right of N  bits and then
7041 /// truncated to a narrower type and where N is a multiple of number of bits of
7042 /// the narrower type, transform it to a narrower load from address + N / num of
7043 /// bits of new type. If the result is to be extended, also fold the extension
7044 /// to form a extending load.
7045 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
7046   unsigned Opc = N->getOpcode();
7047 
7048   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
7049   SDValue N0 = N->getOperand(0);
7050   EVT VT = N->getValueType(0);
7051   EVT ExtVT = VT;
7052 
7053   // This transformation isn't valid for vector loads.
7054   if (VT.isVector())
7055     return SDValue();
7056 
7057   // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
7058   // extended to VT.
7059   if (Opc == ISD::SIGN_EXTEND_INREG) {
7060     ExtType = ISD::SEXTLOAD;
7061     ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
7062   } else if (Opc == ISD::SRL) {
7063     // Another special-case: SRL is basically zero-extending a narrower value.
7064     ExtType = ISD::ZEXTLOAD;
7065     N0 = SDValue(N, 0);
7066     ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
7067     if (!N01) return SDValue();
7068     ExtVT = EVT::getIntegerVT(*DAG.getContext(),
7069                               VT.getSizeInBits() - N01->getZExtValue());
7070   }
7071   if (LegalOperations && !TLI.isLoadExtLegal(ExtType, VT, ExtVT))
7072     return SDValue();
7073 
7074   unsigned EVTBits = ExtVT.getSizeInBits();
7075 
7076   // Do not generate loads of non-round integer types since these can
7077   // be expensive (and would be wrong if the type is not byte sized).
7078   if (!ExtVT.isRound())
7079     return SDValue();
7080 
7081   unsigned ShAmt = 0;
7082   if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
7083     if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
7084       ShAmt = N01->getZExtValue();
7085       // Is the shift amount a multiple of size of VT?
7086       if ((ShAmt & (EVTBits-1)) == 0) {
7087         N0 = N0.getOperand(0);
7088         // Is the load width a multiple of size of VT?
7089         if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0)
7090           return SDValue();
7091       }
7092 
7093       // At this point, we must have a load or else we can't do the transform.
7094       if (!isa<LoadSDNode>(N0)) return SDValue();
7095 
7096       // Because a SRL must be assumed to *need* to zero-extend the high bits
7097       // (as opposed to anyext the high bits), we can't combine the zextload
7098       // lowering of SRL and an sextload.
7099       if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
7100         return SDValue();
7101 
7102       // If the shift amount is larger than the input type then we're not
7103       // accessing any of the loaded bytes.  If the load was a zextload/extload
7104       // then the result of the shift+trunc is zero/undef (handled elsewhere).
7105       if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
7106         return SDValue();
7107     }
7108   }
7109 
7110   // If the load is shifted left (and the result isn't shifted back right),
7111   // we can fold the truncate through the shift.
7112   unsigned ShLeftAmt = 0;
7113   if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
7114       ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
7115     if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
7116       ShLeftAmt = N01->getZExtValue();
7117       N0 = N0.getOperand(0);
7118     }
7119   }
7120 
7121   // If we haven't found a load, we can't narrow it.  Don't transform one with
7122   // multiple uses, this would require adding a new load.
7123   if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
7124     return SDValue();
7125 
7126   // Don't change the width of a volatile load.
7127   LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7128   if (LN0->isVolatile())
7129     return SDValue();
7130 
7131   // Verify that we are actually reducing a load width here.
7132   if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
7133     return SDValue();
7134 
7135   // For the transform to be legal, the load must produce only two values
7136   // (the value loaded and the chain).  Don't transform a pre-increment
7137   // load, for example, which produces an extra value.  Otherwise the
7138   // transformation is not equivalent, and the downstream logic to replace
7139   // uses gets things wrong.
7140   if (LN0->getNumValues() > 2)
7141     return SDValue();
7142 
7143   // If the load that we're shrinking is an extload and we're not just
7144   // discarding the extension we can't simply shrink the load. Bail.
7145   // TODO: It would be possible to merge the extensions in some cases.
7146   if (LN0->getExtensionType() != ISD::NON_EXTLOAD &&
7147       LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt)
7148     return SDValue();
7149 
7150   if (!TLI.shouldReduceLoadWidth(LN0, ExtType, ExtVT))
7151     return SDValue();
7152 
7153   EVT PtrType = N0.getOperand(1).getValueType();
7154 
7155   if (PtrType == MVT::Untyped || PtrType.isExtended())
7156     // It's not possible to generate a constant of extended or untyped type.
7157     return SDValue();
7158 
7159   // For big endian targets, we need to adjust the offset to the pointer to
7160   // load the correct bytes.
7161   if (DAG.getDataLayout().isBigEndian()) {
7162     unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
7163     unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
7164     ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
7165   }
7166 
7167   uint64_t PtrOff = ShAmt / 8;
7168   unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
7169   SDLoc DL(LN0);
7170   // The original load itself didn't wrap, so an offset within it doesn't.
7171   SDNodeFlags Flags;
7172   Flags.setNoUnsignedWrap(true);
7173   SDValue NewPtr = DAG.getNode(ISD::ADD, DL,
7174                                PtrType, LN0->getBasePtr(),
7175                                DAG.getConstant(PtrOff, DL, PtrType),
7176                                &Flags);
7177   AddToWorklist(NewPtr.getNode());
7178 
7179   SDValue Load;
7180   if (ExtType == ISD::NON_EXTLOAD)
7181     Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
7182                        LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign,
7183                        LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
7184   else
7185     Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(), NewPtr,
7186                           LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT,
7187                           NewAlign, LN0->getMemOperand()->getFlags(),
7188                           LN0->getAAInfo());
7189 
7190   // Replace the old load's chain with the new load's chain.
7191   WorklistRemover DeadNodes(*this);
7192   DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
7193 
7194   // Shift the result left, if we've swallowed a left shift.
7195   SDValue Result = Load;
7196   if (ShLeftAmt != 0) {
7197     EVT ShImmTy = getShiftAmountTy(Result.getValueType());
7198     if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
7199       ShImmTy = VT;
7200     // If the shift amount is as large as the result size (but, presumably,
7201     // no larger than the source) then the useful bits of the result are
7202     // zero; we can't simply return the shortened shift, because the result
7203     // of that operation is undefined.
7204     SDLoc DL(N0);
7205     if (ShLeftAmt >= VT.getSizeInBits())
7206       Result = DAG.getConstant(0, DL, VT);
7207     else
7208       Result = DAG.getNode(ISD::SHL, DL, VT,
7209                           Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy));
7210   }
7211 
7212   // Return the new loaded value.
7213   return Result;
7214 }
7215 
7216 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
7217   SDValue N0 = N->getOperand(0);
7218   SDValue N1 = N->getOperand(1);
7219   EVT VT = N->getValueType(0);
7220   EVT EVT = cast<VTSDNode>(N1)->getVT();
7221   unsigned VTBits = VT.getScalarSizeInBits();
7222   unsigned EVTBits = EVT.getScalarSizeInBits();
7223 
7224   if (N0.isUndef())
7225     return DAG.getUNDEF(VT);
7226 
7227   // fold (sext_in_reg c1) -> c1
7228   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
7229     return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
7230 
7231   // If the input is already sign extended, just drop the extension.
7232   if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
7233     return N0;
7234 
7235   // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
7236   if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7237       EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
7238     return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
7239                        N0.getOperand(0), N1);
7240 
7241   // fold (sext_in_reg (sext x)) -> (sext x)
7242   // fold (sext_in_reg (aext x)) -> (sext x)
7243   // if x is small enough.
7244   if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
7245     SDValue N00 = N0.getOperand(0);
7246     if (N00.getScalarValueSizeInBits() <= EVTBits &&
7247         (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
7248       return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
7249   }
7250 
7251   // fold (sext_in_reg (zext x)) -> (sext x)
7252   // iff we are extending the source sign bit.
7253   if (N0.getOpcode() == ISD::ZERO_EXTEND) {
7254     SDValue N00 = N0.getOperand(0);
7255     if (N00.getScalarValueSizeInBits() == EVTBits &&
7256         (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
7257       return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
7258   }
7259 
7260   // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
7261   if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
7262     return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT.getScalarType());
7263 
7264   // fold operands of sext_in_reg based on knowledge that the top bits are not
7265   // demanded.
7266   if (SimplifyDemandedBits(SDValue(N, 0)))
7267     return SDValue(N, 0);
7268 
7269   // fold (sext_in_reg (load x)) -> (smaller sextload x)
7270   // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
7271   if (SDValue NarrowLoad = ReduceLoadWidth(N))
7272     return NarrowLoad;
7273 
7274   // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
7275   // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
7276   // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
7277   if (N0.getOpcode() == ISD::SRL) {
7278     if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
7279       if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
7280         // We can turn this into an SRA iff the input to the SRL is already sign
7281         // extended enough.
7282         unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
7283         if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
7284           return DAG.getNode(ISD::SRA, SDLoc(N), VT,
7285                              N0.getOperand(0), N0.getOperand(1));
7286       }
7287   }
7288 
7289   // fold (sext_inreg (extload x)) -> (sextload x)
7290   if (ISD::isEXTLoad(N0.getNode()) &&
7291       ISD::isUNINDEXEDLoad(N0.getNode()) &&
7292       EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
7293       ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
7294        TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
7295     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7296     SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
7297                                      LN0->getChain(),
7298                                      LN0->getBasePtr(), EVT,
7299                                      LN0->getMemOperand());
7300     CombineTo(N, ExtLoad);
7301     CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
7302     AddToWorklist(ExtLoad.getNode());
7303     return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7304   }
7305   // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
7306   if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
7307       N0.hasOneUse() &&
7308       EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
7309       ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
7310        TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
7311     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7312     SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
7313                                      LN0->getChain(),
7314                                      LN0->getBasePtr(), EVT,
7315                                      LN0->getMemOperand());
7316     CombineTo(N, ExtLoad);
7317     CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
7318     return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7319   }
7320 
7321   // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
7322   if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
7323     if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
7324                                            N0.getOperand(1), false))
7325       return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
7326                          BSwap, N1);
7327   }
7328 
7329   return SDValue();
7330 }
7331 
7332 SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) {
7333   SDValue N0 = N->getOperand(0);
7334   EVT VT = N->getValueType(0);
7335 
7336   if (N0.isUndef())
7337     return DAG.getUNDEF(VT);
7338 
7339   if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
7340                                               LegalOperations))
7341     return SDValue(Res, 0);
7342 
7343   return SDValue();
7344 }
7345 
7346 SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) {
7347   SDValue N0 = N->getOperand(0);
7348   EVT VT = N->getValueType(0);
7349 
7350   if (N0.isUndef())
7351     return DAG.getUNDEF(VT);
7352 
7353   if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
7354                                               LegalOperations))
7355     return SDValue(Res, 0);
7356 
7357   return SDValue();
7358 }
7359 
7360 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
7361   SDValue N0 = N->getOperand(0);
7362   EVT VT = N->getValueType(0);
7363   bool isLE = DAG.getDataLayout().isLittleEndian();
7364 
7365   // noop truncate
7366   if (N0.getValueType() == N->getValueType(0))
7367     return N0;
7368   // fold (truncate c1) -> c1
7369   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
7370     return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
7371   // fold (truncate (truncate x)) -> (truncate x)
7372   if (N0.getOpcode() == ISD::TRUNCATE)
7373     return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
7374   // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
7375   if (N0.getOpcode() == ISD::ZERO_EXTEND ||
7376       N0.getOpcode() == ISD::SIGN_EXTEND ||
7377       N0.getOpcode() == ISD::ANY_EXTEND) {
7378     // if the source is smaller than the dest, we still need an extend.
7379     if (N0.getOperand(0).getValueType().bitsLT(VT))
7380       return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
7381     // if the source is larger than the dest, than we just need the truncate.
7382     if (N0.getOperand(0).getValueType().bitsGT(VT))
7383       return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
7384     // if the source and dest are the same type, we can drop both the extend
7385     // and the truncate.
7386     return N0.getOperand(0);
7387   }
7388 
7389   // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
7390   if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND))
7391     return SDValue();
7392 
7393   // Fold extract-and-trunc into a narrow extract. For example:
7394   //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
7395   //   i32 y = TRUNCATE(i64 x)
7396   //        -- becomes --
7397   //   v16i8 b = BITCAST (v2i64 val)
7398   //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
7399   //
7400   // Note: We only run this optimization after type legalization (which often
7401   // creates this pattern) and before operation legalization after which
7402   // we need to be more careful about the vector instructions that we generate.
7403   if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7404       LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) {
7405 
7406     EVT VecTy = N0.getOperand(0).getValueType();
7407     EVT ExTy = N0.getValueType();
7408     EVT TrTy = N->getValueType(0);
7409 
7410     unsigned NumElem = VecTy.getVectorNumElements();
7411     unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
7412 
7413     EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
7414     assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
7415 
7416     SDValue EltNo = N0->getOperand(1);
7417     if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
7418       int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
7419       EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7420       int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
7421 
7422       SDLoc DL(N);
7423       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy,
7424                          DAG.getBitcast(NVT, N0.getOperand(0)),
7425                          DAG.getConstant(Index, DL, IndexTy));
7426     }
7427   }
7428 
7429   // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
7430   if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) {
7431     EVT SrcVT = N0.getValueType();
7432     if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) &&
7433         TLI.isTruncateFree(SrcVT, VT)) {
7434       SDLoc SL(N0);
7435       SDValue Cond = N0.getOperand(0);
7436       SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
7437       SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
7438       return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1);
7439     }
7440   }
7441 
7442   // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
7443   if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
7444       (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) &&
7445       TLI.isTypeDesirableForOp(ISD::SHL, VT)) {
7446     if (const ConstantSDNode *CAmt = isConstOrConstSplat(N0.getOperand(1))) {
7447       uint64_t Amt = CAmt->getZExtValue();
7448       unsigned Size = VT.getScalarSizeInBits();
7449 
7450       if (Amt < Size) {
7451         SDLoc SL(N);
7452         EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
7453 
7454         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
7455         return DAG.getNode(ISD::SHL, SL, VT, Trunc,
7456                            DAG.getConstant(Amt, SL, AmtVT));
7457       }
7458     }
7459   }
7460 
7461   // Fold a series of buildvector, bitcast, and truncate if possible.
7462   // For example fold
7463   //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
7464   //   (2xi32 (buildvector x, y)).
7465   if (Level == AfterLegalizeVectorOps && VT.isVector() &&
7466       N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
7467       N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
7468       N0.getOperand(0).hasOneUse()) {
7469 
7470     SDValue BuildVect = N0.getOperand(0);
7471     EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
7472     EVT TruncVecEltTy = VT.getVectorElementType();
7473 
7474     // Check that the element types match.
7475     if (BuildVectEltTy == TruncVecEltTy) {
7476       // Now we only need to compute the offset of the truncated elements.
7477       unsigned BuildVecNumElts =  BuildVect.getNumOperands();
7478       unsigned TruncVecNumElts = VT.getVectorNumElements();
7479       unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
7480 
7481       assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
7482              "Invalid number of elements");
7483 
7484       SmallVector<SDValue, 8> Opnds;
7485       for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
7486         Opnds.push_back(BuildVect.getOperand(i));
7487 
7488       return DAG.getBuildVector(VT, SDLoc(N), Opnds);
7489     }
7490   }
7491 
7492   // See if we can simplify the input to this truncate through knowledge that
7493   // only the low bits are being used.
7494   // For example "trunc (or (shl x, 8), y)" // -> trunc y
7495   // Currently we only perform this optimization on scalars because vectors
7496   // may have different active low bits.
7497   if (!VT.isVector()) {
7498     if (SDValue Shorter =
7499             GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
7500                                                      VT.getSizeInBits())))
7501       return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
7502   }
7503   // fold (truncate (load x)) -> (smaller load x)
7504   // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
7505   if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
7506     if (SDValue Reduced = ReduceLoadWidth(N))
7507       return Reduced;
7508 
7509     // Handle the case where the load remains an extending load even
7510     // after truncation.
7511     if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
7512       LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7513       if (!LN0->isVolatile() &&
7514           LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) {
7515         SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0),
7516                                          VT, LN0->getChain(), LN0->getBasePtr(),
7517                                          LN0->getMemoryVT(),
7518                                          LN0->getMemOperand());
7519         DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
7520         return NewLoad;
7521       }
7522     }
7523   }
7524   // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
7525   // where ... are all 'undef'.
7526   if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
7527     SmallVector<EVT, 8> VTs;
7528     SDValue V;
7529     unsigned Idx = 0;
7530     unsigned NumDefs = 0;
7531 
7532     for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
7533       SDValue X = N0.getOperand(i);
7534       if (!X.isUndef()) {
7535         V = X;
7536         Idx = i;
7537         NumDefs++;
7538       }
7539       // Stop if more than one members are non-undef.
7540       if (NumDefs > 1)
7541         break;
7542       VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
7543                                      VT.getVectorElementType(),
7544                                      X.getValueType().getVectorNumElements()));
7545     }
7546 
7547     if (NumDefs == 0)
7548       return DAG.getUNDEF(VT);
7549 
7550     if (NumDefs == 1) {
7551       assert(V.getNode() && "The single defined operand is empty!");
7552       SmallVector<SDValue, 8> Opnds;
7553       for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
7554         if (i != Idx) {
7555           Opnds.push_back(DAG.getUNDEF(VTs[i]));
7556           continue;
7557         }
7558         SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
7559         AddToWorklist(NV.getNode());
7560         Opnds.push_back(NV);
7561       }
7562       return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds);
7563     }
7564   }
7565 
7566   // Fold truncate of a bitcast of a vector to an extract of the low vector
7567   // element.
7568   //
7569   // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, 0
7570   if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) {
7571     SDValue VecSrc = N0.getOperand(0);
7572     EVT SrcVT = VecSrc.getValueType();
7573     if (SrcVT.isVector() && SrcVT.getScalarType() == VT &&
7574         (!LegalOperations ||
7575          TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) {
7576       SDLoc SL(N);
7577 
7578       EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
7579       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT,
7580                          VecSrc, DAG.getConstant(0, SL, IdxVT));
7581     }
7582   }
7583 
7584   // Simplify the operands using demanded-bits information.
7585   if (!VT.isVector() &&
7586       SimplifyDemandedBits(SDValue(N, 0)))
7587     return SDValue(N, 0);
7588 
7589   return SDValue();
7590 }
7591 
7592 static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
7593   SDValue Elt = N->getOperand(i);
7594   if (Elt.getOpcode() != ISD::MERGE_VALUES)
7595     return Elt.getNode();
7596   return Elt.getOperand(Elt.getResNo()).getNode();
7597 }
7598 
7599 /// build_pair (load, load) -> load
7600 /// if load locations are consecutive.
7601 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
7602   assert(N->getOpcode() == ISD::BUILD_PAIR);
7603 
7604   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
7605   LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
7606   if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
7607       LD1->getAddressSpace() != LD2->getAddressSpace())
7608     return SDValue();
7609   EVT LD1VT = LD1->getValueType(0);
7610   unsigned LD1Bytes = LD1VT.getSizeInBits() / 8;
7611   if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() &&
7612       DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) {
7613     unsigned Align = LD1->getAlignment();
7614     unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
7615         VT.getTypeForEVT(*DAG.getContext()));
7616 
7617     if (NewAlign <= Align &&
7618         (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
7619       return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(),
7620                          LD1->getPointerInfo(), Align);
7621   }
7622 
7623   return SDValue();
7624 }
7625 
7626 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) {
7627   // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
7628   // and Lo parts; on big-endian machines it doesn't.
7629   return DAG.getDataLayout().isBigEndian() ? 1 : 0;
7630 }
7631 
7632 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
7633                                     const TargetLowering &TLI) {
7634   // If this is not a bitcast to an FP type or if the target doesn't have
7635   // IEEE754-compliant FP logic, we're done.
7636   EVT VT = N->getValueType(0);
7637   if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT))
7638     return SDValue();
7639 
7640   // TODO: Use splat values for the constant-checking below and remove this
7641   // restriction.
7642   SDValue N0 = N->getOperand(0);
7643   EVT SourceVT = N0.getValueType();
7644   if (SourceVT.isVector())
7645     return SDValue();
7646 
7647   unsigned FPOpcode;
7648   APInt SignMask;
7649   switch (N0.getOpcode()) {
7650   case ISD::AND:
7651     FPOpcode = ISD::FABS;
7652     SignMask = ~APInt::getSignBit(SourceVT.getSizeInBits());
7653     break;
7654   case ISD::XOR:
7655     FPOpcode = ISD::FNEG;
7656     SignMask = APInt::getSignBit(SourceVT.getSizeInBits());
7657     break;
7658   // TODO: ISD::OR --> ISD::FNABS?
7659   default:
7660     return SDValue();
7661   }
7662 
7663   // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
7664   // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
7665   SDValue LogicOp0 = N0.getOperand(0);
7666   ConstantSDNode *LogicOp1 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
7667   if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask &&
7668       LogicOp0.getOpcode() == ISD::BITCAST &&
7669       LogicOp0->getOperand(0).getValueType() == VT)
7670     return DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0->getOperand(0));
7671 
7672   return SDValue();
7673 }
7674 
7675 SDValue DAGCombiner::visitBITCAST(SDNode *N) {
7676   SDValue N0 = N->getOperand(0);
7677   EVT VT = N->getValueType(0);
7678 
7679   // If the input is a BUILD_VECTOR with all constant elements, fold this now.
7680   // Only do this before legalize, since afterward the target may be depending
7681   // on the bitconvert.
7682   // First check to see if this is all constant.
7683   if (!LegalTypes &&
7684       N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
7685       VT.isVector()) {
7686     bool isSimple = cast<BuildVectorSDNode>(N0)->isConstant();
7687 
7688     EVT DestEltVT = N->getValueType(0).getVectorElementType();
7689     assert(!DestEltVT.isVector() &&
7690            "Element type of vector ValueType must not be vector!");
7691     if (isSimple)
7692       return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
7693   }
7694 
7695   // If the input is a constant, let getNode fold it.
7696   if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
7697     // If we can't allow illegal operations, we need to check that this is just
7698     // a fp -> int or int -> conversion and that the resulting operation will
7699     // be legal.
7700     if (!LegalOperations ||
7701         (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
7702          TLI.isOperationLegal(ISD::ConstantFP, VT)) ||
7703         (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
7704          TLI.isOperationLegal(ISD::Constant, VT)))
7705       return DAG.getBitcast(VT, N0);
7706   }
7707 
7708   // (conv (conv x, t1), t2) -> (conv x, t2)
7709   if (N0.getOpcode() == ISD::BITCAST)
7710     return DAG.getBitcast(VT, N0.getOperand(0));
7711 
7712   // fold (conv (load x)) -> (load (conv*)x)
7713   // If the resultant load doesn't need a higher alignment than the original!
7714   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7715       // Do not change the width of a volatile load.
7716       !cast<LoadSDNode>(N0)->isVolatile() &&
7717       // Do not remove the cast if the types differ in endian layout.
7718       TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) ==
7719           TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
7720       (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) &&
7721       TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) {
7722     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7723     unsigned OrigAlign = LN0->getAlignment();
7724 
7725     bool Fast = false;
7726     if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
7727                                LN0->getAddressSpace(), OrigAlign, &Fast) &&
7728         Fast) {
7729       SDValue Load =
7730           DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
7731                       LN0->getPointerInfo(), OrigAlign,
7732                       LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
7733       DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
7734       return Load;
7735     }
7736   }
7737 
7738   if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI))
7739     return V;
7740 
7741   // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
7742   // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
7743   //
7744   // For ppc_fp128:
7745   // fold (bitcast (fneg x)) ->
7746   //     flipbit = signbit
7747   //     (xor (bitcast x) (build_pair flipbit, flipbit))
7748   //
7749   // fold (bitcast (fabs x)) ->
7750   //     flipbit = (and (extract_element (bitcast x), 0), signbit)
7751   //     (xor (bitcast x) (build_pair flipbit, flipbit))
7752   // This often reduces constant pool loads.
7753   if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
7754        (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
7755       N0.getNode()->hasOneUse() && VT.isInteger() &&
7756       !VT.isVector() && !N0.getValueType().isVector()) {
7757     SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0));
7758     AddToWorklist(NewConv.getNode());
7759 
7760     SDLoc DL(N);
7761     if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
7762       assert(VT.getSizeInBits() == 128);
7763       SDValue SignBit = DAG.getConstant(
7764           APInt::getSignBit(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64);
7765       SDValue FlipBit;
7766       if (N0.getOpcode() == ISD::FNEG) {
7767         FlipBit = SignBit;
7768         AddToWorklist(FlipBit.getNode());
7769       } else {
7770         assert(N0.getOpcode() == ISD::FABS);
7771         SDValue Hi =
7772             DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv,
7773                         DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
7774                                               SDLoc(NewConv)));
7775         AddToWorklist(Hi.getNode());
7776         FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit);
7777         AddToWorklist(FlipBit.getNode());
7778       }
7779       SDValue FlipBits =
7780           DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
7781       AddToWorklist(FlipBits.getNode());
7782       return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits);
7783     }
7784     APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
7785     if (N0.getOpcode() == ISD::FNEG)
7786       return DAG.getNode(ISD::XOR, DL, VT,
7787                          NewConv, DAG.getConstant(SignBit, DL, VT));
7788     assert(N0.getOpcode() == ISD::FABS);
7789     return DAG.getNode(ISD::AND, DL, VT,
7790                        NewConv, DAG.getConstant(~SignBit, DL, VT));
7791   }
7792 
7793   // fold (bitconvert (fcopysign cst, x)) ->
7794   //         (or (and (bitconvert x), sign), (and cst, (not sign)))
7795   // Note that we don't handle (copysign x, cst) because this can always be
7796   // folded to an fneg or fabs.
7797   //
7798   // For ppc_fp128:
7799   // fold (bitcast (fcopysign cst, x)) ->
7800   //     flipbit = (and (extract_element
7801   //                     (xor (bitcast cst), (bitcast x)), 0),
7802   //                    signbit)
7803   //     (xor (bitcast cst) (build_pair flipbit, flipbit))
7804   if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
7805       isa<ConstantFPSDNode>(N0.getOperand(0)) &&
7806       VT.isInteger() && !VT.isVector()) {
7807     unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits();
7808     EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
7809     if (isTypeLegal(IntXVT)) {
7810       SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1));
7811       AddToWorklist(X.getNode());
7812 
7813       // If X has a different width than the result/lhs, sext it or truncate it.
7814       unsigned VTWidth = VT.getSizeInBits();
7815       if (OrigXWidth < VTWidth) {
7816         X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
7817         AddToWorklist(X.getNode());
7818       } else if (OrigXWidth > VTWidth) {
7819         // To get the sign bit in the right place, we have to shift it right
7820         // before truncating.
7821         SDLoc DL(X);
7822         X = DAG.getNode(ISD::SRL, DL,
7823                         X.getValueType(), X,
7824                         DAG.getConstant(OrigXWidth-VTWidth, DL,
7825                                         X.getValueType()));
7826         AddToWorklist(X.getNode());
7827         X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
7828         AddToWorklist(X.getNode());
7829       }
7830 
7831       if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
7832         APInt SignBit = APInt::getSignBit(VT.getSizeInBits() / 2);
7833         SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
7834         AddToWorklist(Cst.getNode());
7835         SDValue X = DAG.getBitcast(VT, N0.getOperand(1));
7836         AddToWorklist(X.getNode());
7837         SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X);
7838         AddToWorklist(XorResult.getNode());
7839         SDValue XorResult64 = DAG.getNode(
7840             ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult,
7841             DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
7842                                   SDLoc(XorResult)));
7843         AddToWorklist(XorResult64.getNode());
7844         SDValue FlipBit =
7845             DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64,
7846                         DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64));
7847         AddToWorklist(FlipBit.getNode());
7848         SDValue FlipBits =
7849             DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
7850         AddToWorklist(FlipBits.getNode());
7851         return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits);
7852       }
7853       APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
7854       X = DAG.getNode(ISD::AND, SDLoc(X), VT,
7855                       X, DAG.getConstant(SignBit, SDLoc(X), VT));
7856       AddToWorklist(X.getNode());
7857 
7858       SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
7859       Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
7860                         Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
7861       AddToWorklist(Cst.getNode());
7862 
7863       return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
7864     }
7865   }
7866 
7867   // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
7868   if (N0.getOpcode() == ISD::BUILD_PAIR)
7869     if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT))
7870       return CombineLD;
7871 
7872   // Remove double bitcasts from shuffles - this is often a legacy of
7873   // XformToShuffleWithZero being used to combine bitmaskings (of
7874   // float vectors bitcast to integer vectors) into shuffles.
7875   // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
7876   if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
7877       N0->getOpcode() == ISD::VECTOR_SHUFFLE &&
7878       VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() &&
7879       !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) {
7880     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);
7881 
7882     // If operands are a bitcast, peek through if it casts the original VT.
7883     // If operands are a constant, just bitcast back to original VT.
7884     auto PeekThroughBitcast = [&](SDValue Op) {
7885       if (Op.getOpcode() == ISD::BITCAST &&
7886           Op.getOperand(0).getValueType() == VT)
7887         return SDValue(Op.getOperand(0));
7888       if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) ||
7889           ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode()))
7890         return DAG.getBitcast(VT, Op);
7891       return SDValue();
7892     };
7893 
7894     SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
7895     SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
7896     if (!(SV0 && SV1))
7897       return SDValue();
7898 
7899     int MaskScale =
7900         VT.getVectorNumElements() / N0.getValueType().getVectorNumElements();
7901     SmallVector<int, 8> NewMask;
7902     for (int M : SVN->getMask())
7903       for (int i = 0; i != MaskScale; ++i)
7904         NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);
7905 
7906     bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT);
7907     if (!LegalMask) {
7908       std::swap(SV0, SV1);
7909       ShuffleVectorSDNode::commuteMask(NewMask);
7910       LegalMask = TLI.isShuffleMaskLegal(NewMask, VT);
7911     }
7912 
7913     if (LegalMask)
7914       return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask);
7915   }
7916 
7917   return SDValue();
7918 }
7919 
7920 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
7921   EVT VT = N->getValueType(0);
7922   return CombineConsecutiveLoads(N, VT);
7923 }
7924 
7925 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef
7926 /// operands. DstEltVT indicates the destination element value type.
7927 SDValue DAGCombiner::
7928 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
7929   EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
7930 
7931   // If this is already the right type, we're done.
7932   if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
7933 
7934   unsigned SrcBitSize = SrcEltVT.getSizeInBits();
7935   unsigned DstBitSize = DstEltVT.getSizeInBits();
7936 
7937   // If this is a conversion of N elements of one type to N elements of another
7938   // type, convert each element.  This handles FP<->INT cases.
7939   if (SrcBitSize == DstBitSize) {
7940     EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
7941                               BV->getValueType(0).getVectorNumElements());
7942 
7943     // Due to the FP element handling below calling this routine recursively,
7944     // we can end up with a scalar-to-vector node here.
7945     if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
7946       return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
7947                          DAG.getBitcast(DstEltVT, BV->getOperand(0)));
7948 
7949     SmallVector<SDValue, 8> Ops;
7950     for (SDValue Op : BV->op_values()) {
7951       // If the vector element type is not legal, the BUILD_VECTOR operands
7952       // are promoted and implicitly truncated.  Make that explicit here.
7953       if (Op.getValueType() != SrcEltVT)
7954         Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
7955       Ops.push_back(DAG.getBitcast(DstEltVT, Op));
7956       AddToWorklist(Ops.back().getNode());
7957     }
7958     return DAG.getBuildVector(VT, SDLoc(BV), Ops);
7959   }
7960 
7961   // Otherwise, we're growing or shrinking the elements.  To avoid having to
7962   // handle annoying details of growing/shrinking FP values, we convert them to
7963   // int first.
7964   if (SrcEltVT.isFloatingPoint()) {
7965     // Convert the input float vector to a int vector where the elements are the
7966     // same sizes.
7967     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
7968     BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
7969     SrcEltVT = IntVT;
7970   }
7971 
7972   // Now we know the input is an integer vector.  If the output is a FP type,
7973   // convert to integer first, then to FP of the right size.
7974   if (DstEltVT.isFloatingPoint()) {
7975     EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
7976     SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
7977 
7978     // Next, convert to FP elements of the same size.
7979     return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
7980   }
7981 
7982   SDLoc DL(BV);
7983 
7984   // Okay, we know the src/dst types are both integers of differing types.
7985   // Handling growing first.
7986   assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
7987   if (SrcBitSize < DstBitSize) {
7988     unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
7989 
7990     SmallVector<SDValue, 8> Ops;
7991     for (unsigned i = 0, e = BV->getNumOperands(); i != e;
7992          i += NumInputsPerOutput) {
7993       bool isLE = DAG.getDataLayout().isLittleEndian();
7994       APInt NewBits = APInt(DstBitSize, 0);
7995       bool EltIsUndef = true;
7996       for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
7997         // Shift the previously computed bits over.
7998         NewBits <<= SrcBitSize;
7999         SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
8000         if (Op.isUndef()) continue;
8001         EltIsUndef = false;
8002 
8003         NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
8004                    zextOrTrunc(SrcBitSize).zext(DstBitSize);
8005       }
8006 
8007       if (EltIsUndef)
8008         Ops.push_back(DAG.getUNDEF(DstEltVT));
8009       else
8010         Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT));
8011     }
8012 
8013     EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
8014     return DAG.getBuildVector(VT, DL, Ops);
8015   }
8016 
8017   // Finally, this must be the case where we are shrinking elements: each input
8018   // turns into multiple outputs.
8019   unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
8020   EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
8021                             NumOutputsPerInput*BV->getNumOperands());
8022   SmallVector<SDValue, 8> Ops;
8023 
8024   for (const SDValue &Op : BV->op_values()) {
8025     if (Op.isUndef()) {
8026       Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT));
8027       continue;
8028     }
8029 
8030     APInt OpVal = cast<ConstantSDNode>(Op)->
8031                   getAPIntValue().zextOrTrunc(SrcBitSize);
8032 
8033     for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
8034       APInt ThisVal = OpVal.trunc(DstBitSize);
8035       Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT));
8036       OpVal = OpVal.lshr(DstBitSize);
8037     }
8038 
8039     // For big endian targets, swap the order of the pieces of each element.
8040     if (DAG.getDataLayout().isBigEndian())
8041       std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
8042   }
8043 
8044   return DAG.getBuildVector(VT, DL, Ops);
8045 }
8046 
8047 /// Try to perform FMA combining on a given FADD node.
8048 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
8049   SDValue N0 = N->getOperand(0);
8050   SDValue N1 = N->getOperand(1);
8051   EVT VT = N->getValueType(0);
8052   SDLoc SL(N);
8053 
8054   const TargetOptions &Options = DAG.getTarget().Options;
8055   bool AllowFusion =
8056       (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath);
8057 
8058   // Floating-point multiply-add with intermediate rounding.
8059   bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
8060 
8061   // Floating-point multiply-add without intermediate rounding.
8062   bool HasFMA =
8063       AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) &&
8064       (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
8065 
8066   // No valid opcode, do not combine.
8067   if (!HasFMAD && !HasFMA)
8068     return SDValue();
8069 
8070   const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo();
8071   ;
8072   if (AllowFusion && STI && STI->generateFMAsInMachineCombiner(OptLevel))
8073     return SDValue();
8074 
8075   // Always prefer FMAD to FMA for precision.
8076   unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
8077   bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
8078   bool LookThroughFPExt = TLI.isFPExtFree(VT);
8079 
8080   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
8081   // prefer to fold the multiply with fewer uses.
8082   if (Aggressive && N0.getOpcode() == ISD::FMUL &&
8083       N1.getOpcode() == ISD::FMUL) {
8084     if (N0.getNode()->use_size() > N1.getNode()->use_size())
8085       std::swap(N0, N1);
8086   }
8087 
8088   // fold (fadd (fmul x, y), z) -> (fma x, y, z)
8089   if (N0.getOpcode() == ISD::FMUL &&
8090       (Aggressive || N0->hasOneUse())) {
8091     return DAG.getNode(PreferredFusedOpcode, SL, VT,
8092                        N0.getOperand(0), N0.getOperand(1), N1);
8093   }
8094 
8095   // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
8096   // Note: Commutes FADD operands.
8097   if (N1.getOpcode() == ISD::FMUL &&
8098       (Aggressive || N1->hasOneUse())) {
8099     return DAG.getNode(PreferredFusedOpcode, SL, VT,
8100                        N1.getOperand(0), N1.getOperand(1), N0);
8101   }
8102 
8103   // Look through FP_EXTEND nodes to do more combining.
8104   if (AllowFusion && LookThroughFPExt) {
8105     // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
8106     if (N0.getOpcode() == ISD::FP_EXTEND) {
8107       SDValue N00 = N0.getOperand(0);
8108       if (N00.getOpcode() == ISD::FMUL)
8109         return DAG.getNode(PreferredFusedOpcode, SL, VT,
8110                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
8111                                        N00.getOperand(0)),
8112                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
8113                                        N00.getOperand(1)), N1);
8114     }
8115 
8116     // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
8117     // Note: Commutes FADD operands.
8118     if (N1.getOpcode() == ISD::FP_EXTEND) {
8119       SDValue N10 = N1.getOperand(0);
8120       if (N10.getOpcode() == ISD::FMUL)
8121         return DAG.getNode(PreferredFusedOpcode, SL, VT,
8122                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
8123                                        N10.getOperand(0)),
8124                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
8125                                        N10.getOperand(1)), N0);
8126     }
8127   }
8128 
8129   // More folding opportunities when target permits.
8130   if ((AllowFusion || HasFMAD)  && Aggressive) {
8131     // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z))
8132     if (N0.getOpcode() == PreferredFusedOpcode &&
8133         N0.getOperand(2).getOpcode() == ISD::FMUL &&
8134         N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) {
8135       return DAG.getNode(PreferredFusedOpcode, SL, VT,
8136                          N0.getOperand(0), N0.getOperand(1),
8137                          DAG.getNode(PreferredFusedOpcode, SL, VT,
8138                                      N0.getOperand(2).getOperand(0),
8139                                      N0.getOperand(2).getOperand(1),
8140                                      N1));
8141     }
8142 
8143     // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x))
8144     if (N1->getOpcode() == PreferredFusedOpcode &&
8145         N1.getOperand(2).getOpcode() == ISD::FMUL &&
8146         N1->hasOneUse() && N1.getOperand(2)->hasOneUse()) {
8147       return DAG.getNode(PreferredFusedOpcode, SL, VT,
8148                          N1.getOperand(0), N1.getOperand(1),
8149                          DAG.getNode(PreferredFusedOpcode, SL, VT,
8150                                      N1.getOperand(2).getOperand(0),
8151                                      N1.getOperand(2).getOperand(1),
8152                                      N0));
8153     }
8154 
8155     if (AllowFusion && LookThroughFPExt) {
8156       // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
8157       //   -> (fma x, y, (fma (fpext u), (fpext v), z))
8158       auto FoldFAddFMAFPExtFMul = [&] (
8159           SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) {
8160         return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y,
8161                            DAG.getNode(PreferredFusedOpcode, SL, VT,
8162                                        DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
8163                                        DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
8164                                        Z));
8165       };
8166       if (N0.getOpcode() == PreferredFusedOpcode) {
8167         SDValue N02 = N0.getOperand(2);
8168         if (N02.getOpcode() == ISD::FP_EXTEND) {
8169           SDValue N020 = N02.getOperand(0);
8170           if (N020.getOpcode() == ISD::FMUL)
8171             return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
8172                                         N020.getOperand(0), N020.getOperand(1),
8173                                         N1);
8174         }
8175       }
8176 
8177       // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
8178       //   -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
8179       // FIXME: This turns two single-precision and one double-precision
8180       // operation into two double-precision operations, which might not be
8181       // interesting for all targets, especially GPUs.
8182       auto FoldFAddFPExtFMAFMul = [&] (
8183           SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) {
8184         return DAG.getNode(PreferredFusedOpcode, SL, VT,
8185                            DAG.getNode(ISD::FP_EXTEND, SL, VT, X),
8186                            DAG.getNode(ISD::FP_EXTEND, SL, VT, Y),
8187                            DAG.getNode(PreferredFusedOpcode, SL, VT,
8188                                        DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
8189                                        DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
8190                                        Z));
8191       };
8192       if (N0.getOpcode() == ISD::FP_EXTEND) {
8193         SDValue N00 = N0.getOperand(0);
8194         if (N00.getOpcode() == PreferredFusedOpcode) {
8195           SDValue N002 = N00.getOperand(2);
8196           if (N002.getOpcode() == ISD::FMUL)
8197             return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
8198                                         N002.getOperand(0), N002.getOperand(1),
8199                                         N1);
8200         }
8201       }
8202 
8203       // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
8204       //   -> (fma y, z, (fma (fpext u), (fpext v), x))
8205       if (N1.getOpcode() == PreferredFusedOpcode) {
8206         SDValue N12 = N1.getOperand(2);
8207         if (N12.getOpcode() == ISD::FP_EXTEND) {
8208           SDValue N120 = N12.getOperand(0);
8209           if (N120.getOpcode() == ISD::FMUL)
8210             return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
8211                                         N120.getOperand(0), N120.getOperand(1),
8212                                         N0);
8213         }
8214       }
8215 
8216       // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
8217       //   -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
8218       // FIXME: This turns two single-precision and one double-precision
8219       // operation into two double-precision operations, which might not be
8220       // interesting for all targets, especially GPUs.
8221       if (N1.getOpcode() == ISD::FP_EXTEND) {
8222         SDValue N10 = N1.getOperand(0);
8223         if (N10.getOpcode() == PreferredFusedOpcode) {
8224           SDValue N102 = N10.getOperand(2);
8225           if (N102.getOpcode() == ISD::FMUL)
8226             return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
8227                                         N102.getOperand(0), N102.getOperand(1),
8228                                         N0);
8229         }
8230       }
8231     }
8232   }
8233 
8234   return SDValue();
8235 }
8236 
8237 /// Try to perform FMA combining on a given FSUB node.
8238 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
8239   SDValue N0 = N->getOperand(0);
8240   SDValue N1 = N->getOperand(1);
8241   EVT VT = N->getValueType(0);
8242   SDLoc SL(N);
8243 
8244   const TargetOptions &Options = DAG.getTarget().Options;
8245   bool AllowFusion =
8246       (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath);
8247 
8248   // Floating-point multiply-add with intermediate rounding.
8249   bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
8250 
8251   // Floating-point multiply-add without intermediate rounding.
8252   bool HasFMA =
8253       AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) &&
8254       (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
8255 
8256   // No valid opcode, do not combine.
8257   if (!HasFMAD && !HasFMA)
8258     return SDValue();
8259 
8260   const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo();
8261   if (AllowFusion && STI && STI->generateFMAsInMachineCombiner(OptLevel))
8262     return SDValue();
8263 
8264   // Always prefer FMAD to FMA for precision.
8265   unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
8266   bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
8267   bool LookThroughFPExt = TLI.isFPExtFree(VT);
8268 
8269   // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
8270   if (N0.getOpcode() == ISD::FMUL &&
8271       (Aggressive || N0->hasOneUse())) {
8272     return DAG.getNode(PreferredFusedOpcode, SL, VT,
8273                        N0.getOperand(0), N0.getOperand(1),
8274                        DAG.getNode(ISD::FNEG, SL, VT, N1));
8275   }
8276 
8277   // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
8278   // Note: Commutes FSUB operands.
8279   if (N1.getOpcode() == ISD::FMUL &&
8280       (Aggressive || N1->hasOneUse()))
8281     return DAG.getNode(PreferredFusedOpcode, SL, VT,
8282                        DAG.getNode(ISD::FNEG, SL, VT,
8283                                    N1.getOperand(0)),
8284                        N1.getOperand(1), N0);
8285 
8286   // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
8287   if (N0.getOpcode() == ISD::FNEG &&
8288       N0.getOperand(0).getOpcode() == ISD::FMUL &&
8289       (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
8290     SDValue N00 = N0.getOperand(0).getOperand(0);
8291     SDValue N01 = N0.getOperand(0).getOperand(1);
8292     return DAG.getNode(PreferredFusedOpcode, SL, VT,
8293                        DAG.getNode(ISD::FNEG, SL, VT, N00), N01,
8294                        DAG.getNode(ISD::FNEG, SL, VT, N1));
8295   }
8296 
8297   // Look through FP_EXTEND nodes to do more combining.
8298   if (AllowFusion && LookThroughFPExt) {
8299     // fold (fsub (fpext (fmul x, y)), z)
8300     //   -> (fma (fpext x), (fpext y), (fneg z))
8301     if (N0.getOpcode() == ISD::FP_EXTEND) {
8302       SDValue N00 = N0.getOperand(0);
8303       if (N00.getOpcode() == ISD::FMUL)
8304         return DAG.getNode(PreferredFusedOpcode, SL, VT,
8305                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
8306                                        N00.getOperand(0)),
8307                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
8308                                        N00.getOperand(1)),
8309                            DAG.getNode(ISD::FNEG, SL, VT, N1));
8310     }
8311 
8312     // fold (fsub x, (fpext (fmul y, z)))
8313     //   -> (fma (fneg (fpext y)), (fpext z), x)
8314     // Note: Commutes FSUB operands.
8315     if (N1.getOpcode() == ISD::FP_EXTEND) {
8316       SDValue N10 = N1.getOperand(0);
8317       if (N10.getOpcode() == ISD::FMUL)
8318         return DAG.getNode(PreferredFusedOpcode, SL, VT,
8319                            DAG.getNode(ISD::FNEG, SL, VT,
8320                                        DAG.getNode(ISD::FP_EXTEND, SL, VT,
8321                                                    N10.getOperand(0))),
8322                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
8323                                        N10.getOperand(1)),
8324                            N0);
8325     }
8326 
8327     // fold (fsub (fpext (fneg (fmul, x, y))), z)
8328     //   -> (fneg (fma (fpext x), (fpext y), z))
8329     // Note: This could be removed with appropriate canonicalization of the
8330     // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
8331     // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
8332     // from implementing the canonicalization in visitFSUB.
8333     if (N0.getOpcode() == ISD::FP_EXTEND) {
8334       SDValue N00 = N0.getOperand(0);
8335       if (N00.getOpcode() == ISD::FNEG) {
8336         SDValue N000 = N00.getOperand(0);
8337         if (N000.getOpcode() == ISD::FMUL) {
8338           return DAG.getNode(ISD::FNEG, SL, VT,
8339                              DAG.getNode(PreferredFusedOpcode, SL, VT,
8340                                          DAG.getNode(ISD::FP_EXTEND, SL, VT,
8341                                                      N000.getOperand(0)),
8342                                          DAG.getNode(ISD::FP_EXTEND, SL, VT,
8343                                                      N000.getOperand(1)),
8344                                          N1));
8345         }
8346       }
8347     }
8348 
8349     // fold (fsub (fneg (fpext (fmul, x, y))), z)
8350     //   -> (fneg (fma (fpext x)), (fpext y), z)
8351     // Note: This could be removed with appropriate canonicalization of the
8352     // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
8353     // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
8354     // from implementing the canonicalization in visitFSUB.
8355     if (N0.getOpcode() == ISD::FNEG) {
8356       SDValue N00 = N0.getOperand(0);
8357       if (N00.getOpcode() == ISD::FP_EXTEND) {
8358         SDValue N000 = N00.getOperand(0);
8359         if (N000.getOpcode() == ISD::FMUL) {
8360           return DAG.getNode(ISD::FNEG, SL, VT,
8361                              DAG.getNode(PreferredFusedOpcode, SL, VT,
8362                                          DAG.getNode(ISD::FP_EXTEND, SL, VT,
8363                                                      N000.getOperand(0)),
8364                                          DAG.getNode(ISD::FP_EXTEND, SL, VT,
8365                                                      N000.getOperand(1)),
8366                                          N1));
8367         }
8368       }
8369     }
8370 
8371   }
8372 
8373   // More folding opportunities when target permits.
8374   if ((AllowFusion || HasFMAD) && Aggressive) {
8375     // fold (fsub (fma x, y, (fmul u, v)), z)
8376     //   -> (fma x, y (fma u, v, (fneg z)))
8377     if (N0.getOpcode() == PreferredFusedOpcode &&
8378         N0.getOperand(2).getOpcode() == ISD::FMUL &&
8379         N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) {
8380       return DAG.getNode(PreferredFusedOpcode, SL, VT,
8381                          N0.getOperand(0), N0.getOperand(1),
8382                          DAG.getNode(PreferredFusedOpcode, SL, VT,
8383                                      N0.getOperand(2).getOperand(0),
8384                                      N0.getOperand(2).getOperand(1),
8385                                      DAG.getNode(ISD::FNEG, SL, VT,
8386                                                  N1)));
8387     }
8388 
8389     // fold (fsub x, (fma y, z, (fmul u, v)))
8390     //   -> (fma (fneg y), z, (fma (fneg u), v, x))
8391     if (N1.getOpcode() == PreferredFusedOpcode &&
8392         N1.getOperand(2).getOpcode() == ISD::FMUL) {
8393       SDValue N20 = N1.getOperand(2).getOperand(0);
8394       SDValue N21 = N1.getOperand(2).getOperand(1);
8395       return DAG.getNode(PreferredFusedOpcode, SL, VT,
8396                          DAG.getNode(ISD::FNEG, SL, VT,
8397                                      N1.getOperand(0)),
8398                          N1.getOperand(1),
8399                          DAG.getNode(PreferredFusedOpcode, SL, VT,
8400                                      DAG.getNode(ISD::FNEG, SL, VT, N20),
8401 
8402                                      N21, N0));
8403     }
8404 
8405     if (AllowFusion && LookThroughFPExt) {
8406       // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
8407       //   -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
8408       if (N0.getOpcode() == PreferredFusedOpcode) {
8409         SDValue N02 = N0.getOperand(2);
8410         if (N02.getOpcode() == ISD::FP_EXTEND) {
8411           SDValue N020 = N02.getOperand(0);
8412           if (N020.getOpcode() == ISD::FMUL)
8413             return DAG.getNode(PreferredFusedOpcode, SL, VT,
8414                                N0.getOperand(0), N0.getOperand(1),
8415                                DAG.getNode(PreferredFusedOpcode, SL, VT,
8416                                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
8417                                                        N020.getOperand(0)),
8418                                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
8419                                                        N020.getOperand(1)),
8420                                            DAG.getNode(ISD::FNEG, SL, VT,
8421                                                        N1)));
8422         }
8423       }
8424 
8425       // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
8426       //   -> (fma (fpext x), (fpext y),
8427       //           (fma (fpext u), (fpext v), (fneg z)))
8428       // FIXME: This turns two single-precision and one double-precision
8429       // operation into two double-precision operations, which might not be
8430       // interesting for all targets, especially GPUs.
8431       if (N0.getOpcode() == ISD::FP_EXTEND) {
8432         SDValue N00 = N0.getOperand(0);
8433         if (N00.getOpcode() == PreferredFusedOpcode) {
8434           SDValue N002 = N00.getOperand(2);
8435           if (N002.getOpcode() == ISD::FMUL)
8436             return DAG.getNode(PreferredFusedOpcode, SL, VT,
8437                                DAG.getNode(ISD::FP_EXTEND, SL, VT,
8438                                            N00.getOperand(0)),
8439                                DAG.getNode(ISD::FP_EXTEND, SL, VT,
8440                                            N00.getOperand(1)),
8441                                DAG.getNode(PreferredFusedOpcode, SL, VT,
8442                                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
8443                                                        N002.getOperand(0)),
8444                                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
8445                                                        N002.getOperand(1)),
8446                                            DAG.getNode(ISD::FNEG, SL, VT,
8447                                                        N1)));
8448         }
8449       }
8450 
8451       // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
8452       //   -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
8453       if (N1.getOpcode() == PreferredFusedOpcode &&
8454         N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) {
8455         SDValue N120 = N1.getOperand(2).getOperand(0);
8456         if (N120.getOpcode() == ISD::FMUL) {
8457           SDValue N1200 = N120.getOperand(0);
8458           SDValue N1201 = N120.getOperand(1);
8459           return DAG.getNode(PreferredFusedOpcode, SL, VT,
8460                              DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)),
8461                              N1.getOperand(1),
8462                              DAG.getNode(PreferredFusedOpcode, SL, VT,
8463                                          DAG.getNode(ISD::FNEG, SL, VT,
8464                                              DAG.getNode(ISD::FP_EXTEND, SL,
8465                                                          VT, N1200)),
8466                                          DAG.getNode(ISD::FP_EXTEND, SL, VT,
8467                                                      N1201),
8468                                          N0));
8469         }
8470       }
8471 
8472       // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
8473       //   -> (fma (fneg (fpext y)), (fpext z),
8474       //           (fma (fneg (fpext u)), (fpext v), x))
8475       // FIXME: This turns two single-precision and one double-precision
8476       // operation into two double-precision operations, which might not be
8477       // interesting for all targets, especially GPUs.
8478       if (N1.getOpcode() == ISD::FP_EXTEND &&
8479         N1.getOperand(0).getOpcode() == PreferredFusedOpcode) {
8480         SDValue N100 = N1.getOperand(0).getOperand(0);
8481         SDValue N101 = N1.getOperand(0).getOperand(1);
8482         SDValue N102 = N1.getOperand(0).getOperand(2);
8483         if (N102.getOpcode() == ISD::FMUL) {
8484           SDValue N1020 = N102.getOperand(0);
8485           SDValue N1021 = N102.getOperand(1);
8486           return DAG.getNode(PreferredFusedOpcode, SL, VT,
8487                              DAG.getNode(ISD::FNEG, SL, VT,
8488                                          DAG.getNode(ISD::FP_EXTEND, SL, VT,
8489                                                      N100)),
8490                              DAG.getNode(ISD::FP_EXTEND, SL, VT, N101),
8491                              DAG.getNode(PreferredFusedOpcode, SL, VT,
8492                                          DAG.getNode(ISD::FNEG, SL, VT,
8493                                              DAG.getNode(ISD::FP_EXTEND, SL,
8494                                                          VT, N1020)),
8495                                          DAG.getNode(ISD::FP_EXTEND, SL, VT,
8496                                                      N1021),
8497                                          N0));
8498         }
8499       }
8500     }
8501   }
8502 
8503   return SDValue();
8504 }
8505 
8506 /// Try to perform FMA combining on a given FMUL node based on the distributive
8507 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
8508 /// subtraction instead of addition).
8509 SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) {
8510   SDValue N0 = N->getOperand(0);
8511   SDValue N1 = N->getOperand(1);
8512   EVT VT = N->getValueType(0);
8513   SDLoc SL(N);
8514 
8515   assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation");
8516 
8517   const TargetOptions &Options = DAG.getTarget().Options;
8518 
8519   // The transforms below are incorrect when x == 0 and y == inf, because the
8520   // intermediate multiplication produces a nan.
8521   if (!Options.NoInfsFPMath)
8522     return SDValue();
8523 
8524   // Floating-point multiply-add without intermediate rounding.
8525   bool HasFMA =
8526       (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) &&
8527       TLI.isFMAFasterThanFMulAndFAdd(VT) &&
8528       (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
8529 
8530   // Floating-point multiply-add with intermediate rounding. This can result
8531   // in a less precise result due to the changed rounding order.
8532   bool HasFMAD = Options.UnsafeFPMath &&
8533                  (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
8534 
8535   // No valid opcode, do not combine.
8536   if (!HasFMAD && !HasFMA)
8537     return SDValue();
8538 
8539   // Always prefer FMAD to FMA for precision.
8540   unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
8541   bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
8542 
8543   // fold (fmul (fadd x, +1.0), y) -> (fma x, y, y)
8544   // fold (fmul (fadd x, -1.0), y) -> (fma x, y, (fneg y))
8545   auto FuseFADD = [&](SDValue X, SDValue Y) {
8546     if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) {
8547       auto XC1 = isConstOrConstSplatFP(X.getOperand(1));
8548       if (XC1 && XC1->isExactlyValue(+1.0))
8549         return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y);
8550       if (XC1 && XC1->isExactlyValue(-1.0))
8551         return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
8552                            DAG.getNode(ISD::FNEG, SL, VT, Y));
8553     }
8554     return SDValue();
8555   };
8556 
8557   if (SDValue FMA = FuseFADD(N0, N1))
8558     return FMA;
8559   if (SDValue FMA = FuseFADD(N1, N0))
8560     return FMA;
8561 
8562   // fold (fmul (fsub +1.0, x), y) -> (fma (fneg x), y, y)
8563   // fold (fmul (fsub -1.0, x), y) -> (fma (fneg x), y, (fneg y))
8564   // fold (fmul (fsub x, +1.0), y) -> (fma x, y, (fneg y))
8565   // fold (fmul (fsub x, -1.0), y) -> (fma x, y, y)
8566   auto FuseFSUB = [&](SDValue X, SDValue Y) {
8567     if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) {
8568       auto XC0 = isConstOrConstSplatFP(X.getOperand(0));
8569       if (XC0 && XC0->isExactlyValue(+1.0))
8570         return DAG.getNode(PreferredFusedOpcode, SL, VT,
8571                            DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
8572                            Y);
8573       if (XC0 && XC0->isExactlyValue(-1.0))
8574         return DAG.getNode(PreferredFusedOpcode, SL, VT,
8575                            DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
8576                            DAG.getNode(ISD::FNEG, SL, VT, Y));
8577 
8578       auto XC1 = isConstOrConstSplatFP(X.getOperand(1));
8579       if (XC1 && XC1->isExactlyValue(+1.0))
8580         return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
8581                            DAG.getNode(ISD::FNEG, SL, VT, Y));
8582       if (XC1 && XC1->isExactlyValue(-1.0))
8583         return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y);
8584     }
8585     return SDValue();
8586   };
8587 
8588   if (SDValue FMA = FuseFSUB(N0, N1))
8589     return FMA;
8590   if (SDValue FMA = FuseFSUB(N1, N0))
8591     return FMA;
8592 
8593   return SDValue();
8594 }
8595 
8596 SDValue DAGCombiner::visitFADD(SDNode *N) {
8597   SDValue N0 = N->getOperand(0);
8598   SDValue N1 = N->getOperand(1);
8599   bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
8600   bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
8601   EVT VT = N->getValueType(0);
8602   SDLoc DL(N);
8603   const TargetOptions &Options = DAG.getTarget().Options;
8604   const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags;
8605 
8606   // fold vector ops
8607   if (VT.isVector())
8608     if (SDValue FoldedVOp = SimplifyVBinOp(N))
8609       return FoldedVOp;
8610 
8611   // fold (fadd c1, c2) -> c1 + c2
8612   if (N0CFP && N1CFP)
8613     return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags);
8614 
8615   // canonicalize constant to RHS
8616   if (N0CFP && !N1CFP)
8617     return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags);
8618 
8619   // fold (fadd A, (fneg B)) -> (fsub A, B)
8620   if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
8621       isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2)
8622     return DAG.getNode(ISD::FSUB, DL, VT, N0,
8623                        GetNegatedExpression(N1, DAG, LegalOperations), Flags);
8624 
8625   // fold (fadd (fneg A), B) -> (fsub B, A)
8626   if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
8627       isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2)
8628     return DAG.getNode(ISD::FSUB, DL, VT, N1,
8629                        GetNegatedExpression(N0, DAG, LegalOperations), Flags);
8630 
8631   // FIXME: Auto-upgrade the target/function-level option.
8632   if (Options.UnsafeFPMath || N->getFlags()->hasNoSignedZeros()) {
8633     // fold (fadd A, 0) -> A
8634     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1))
8635       if (N1C->isZero())
8636         return N0;
8637   }
8638 
8639   // If 'unsafe math' is enabled, fold lots of things.
8640   if (Options.UnsafeFPMath) {
8641     // No FP constant should be created after legalization as Instruction
8642     // Selection pass has a hard time dealing with FP constants.
8643     bool AllowNewConst = (Level < AfterLegalizeDAG);
8644 
8645     // fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
8646     if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
8647         isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)))
8648       return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0),
8649                          DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1,
8650                                      Flags),
8651                          Flags);
8652 
8653     // If allowed, fold (fadd (fneg x), x) -> 0.0
8654     if (AllowNewConst && N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
8655       return DAG.getConstantFP(0.0, DL, VT);
8656 
8657     // If allowed, fold (fadd x, (fneg x)) -> 0.0
8658     if (AllowNewConst && N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
8659       return DAG.getConstantFP(0.0, DL, VT);
8660 
8661     // We can fold chains of FADD's of the same value into multiplications.
8662     // This transform is not safe in general because we are reducing the number
8663     // of rounding steps.
8664     if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
8665       if (N0.getOpcode() == ISD::FMUL) {
8666         bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
8667         bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1));
8668 
8669         // (fadd (fmul x, c), x) -> (fmul x, c+1)
8670         if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
8671           SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
8672                                        DAG.getConstantFP(1.0, DL, VT), Flags);
8673           return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags);
8674         }
8675 
8676         // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
8677         if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
8678             N1.getOperand(0) == N1.getOperand(1) &&
8679             N0.getOperand(0) == N1.getOperand(0)) {
8680           SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
8681                                        DAG.getConstantFP(2.0, DL, VT), Flags);
8682           return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags);
8683         }
8684       }
8685 
8686       if (N1.getOpcode() == ISD::FMUL) {
8687         bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
8688         bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1));
8689 
8690         // (fadd x, (fmul x, c)) -> (fmul x, c+1)
8691         if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
8692           SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
8693                                        DAG.getConstantFP(1.0, DL, VT), Flags);
8694           return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags);
8695         }
8696 
8697         // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
8698         if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
8699             N0.getOperand(0) == N0.getOperand(1) &&
8700             N1.getOperand(0) == N0.getOperand(0)) {
8701           SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
8702                                        DAG.getConstantFP(2.0, DL, VT), Flags);
8703           return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags);
8704         }
8705       }
8706 
8707       if (N0.getOpcode() == ISD::FADD && AllowNewConst) {
8708         bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
8709         // (fadd (fadd x, x), x) -> (fmul x, 3.0)
8710         if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) &&
8711             (N0.getOperand(0) == N1)) {
8712           return DAG.getNode(ISD::FMUL, DL, VT,
8713                              N1, DAG.getConstantFP(3.0, DL, VT), Flags);
8714         }
8715       }
8716 
8717       if (N1.getOpcode() == ISD::FADD && AllowNewConst) {
8718         bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
8719         // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
8720         if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
8721             N1.getOperand(0) == N0) {
8722           return DAG.getNode(ISD::FMUL, DL, VT,
8723                              N0, DAG.getConstantFP(3.0, DL, VT), Flags);
8724         }
8725       }
8726 
8727       // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
8728       if (AllowNewConst &&
8729           N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
8730           N0.getOperand(0) == N0.getOperand(1) &&
8731           N1.getOperand(0) == N1.getOperand(1) &&
8732           N0.getOperand(0) == N1.getOperand(0)) {
8733         return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0),
8734                            DAG.getConstantFP(4.0, DL, VT), Flags);
8735       }
8736     }
8737   } // enable-unsafe-fp-math
8738 
8739   // FADD -> FMA combines:
8740   if (SDValue Fused = visitFADDForFMACombine(N)) {
8741     AddToWorklist(Fused.getNode());
8742     return Fused;
8743   }
8744   return SDValue();
8745 }
8746 
8747 SDValue DAGCombiner::visitFSUB(SDNode *N) {
8748   SDValue N0 = N->getOperand(0);
8749   SDValue N1 = N->getOperand(1);
8750   ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
8751   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
8752   EVT VT = N->getValueType(0);
8753   SDLoc DL(N);
8754   const TargetOptions &Options = DAG.getTarget().Options;
8755   const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags;
8756 
8757   // fold vector ops
8758   if (VT.isVector())
8759     if (SDValue FoldedVOp = SimplifyVBinOp(N))
8760       return FoldedVOp;
8761 
8762   // fold (fsub c1, c2) -> c1-c2
8763   if (N0CFP && N1CFP)
8764     return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags);
8765 
8766   // fold (fsub A, (fneg B)) -> (fadd A, B)
8767   if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
8768     return DAG.getNode(ISD::FADD, DL, VT, N0,
8769                        GetNegatedExpression(N1, DAG, LegalOperations), Flags);
8770 
8771   // FIXME: Auto-upgrade the target/function-level option.
8772   if (Options.UnsafeFPMath || N->getFlags()->hasNoSignedZeros()) {
8773     // (fsub 0, B) -> -B
8774     if (N0CFP && N0CFP->isZero()) {
8775       if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
8776         return GetNegatedExpression(N1, DAG, LegalOperations);
8777       if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
8778         return DAG.getNode(ISD::FNEG, DL, VT, N1, Flags);
8779     }
8780   }
8781 
8782   // If 'unsafe math' is enabled, fold lots of things.
8783   if (Options.UnsafeFPMath) {
8784     // (fsub A, 0) -> A
8785     if (N1CFP && N1CFP->isZero())
8786       return N0;
8787 
8788     // (fsub x, x) -> 0.0
8789     if (N0 == N1)
8790       return DAG.getConstantFP(0.0f, DL, VT);
8791 
8792     // (fsub x, (fadd x, y)) -> (fneg y)
8793     // (fsub x, (fadd y, x)) -> (fneg y)
8794     if (N1.getOpcode() == ISD::FADD) {
8795       SDValue N10 = N1->getOperand(0);
8796       SDValue N11 = N1->getOperand(1);
8797 
8798       if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options))
8799         return GetNegatedExpression(N11, DAG, LegalOperations);
8800 
8801       if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options))
8802         return GetNegatedExpression(N10, DAG, LegalOperations);
8803     }
8804   }
8805 
8806   // FSUB -> FMA combines:
8807   if (SDValue Fused = visitFSUBForFMACombine(N)) {
8808     AddToWorklist(Fused.getNode());
8809     return Fused;
8810   }
8811 
8812   return SDValue();
8813 }
8814 
8815 SDValue DAGCombiner::visitFMUL(SDNode *N) {
8816   SDValue N0 = N->getOperand(0);
8817   SDValue N1 = N->getOperand(1);
8818   ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
8819   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
8820   EVT VT = N->getValueType(0);
8821   SDLoc DL(N);
8822   const TargetOptions &Options = DAG.getTarget().Options;
8823   const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags;
8824 
8825   // fold vector ops
8826   if (VT.isVector()) {
8827     // This just handles C1 * C2 for vectors. Other vector folds are below.
8828     if (SDValue FoldedVOp = SimplifyVBinOp(N))
8829       return FoldedVOp;
8830   }
8831 
8832   // fold (fmul c1, c2) -> c1*c2
8833   if (N0CFP && N1CFP)
8834     return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags);
8835 
8836   // canonicalize constant to RHS
8837   if (isConstantFPBuildVectorOrConstantFP(N0) &&
8838      !isConstantFPBuildVectorOrConstantFP(N1))
8839     return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags);
8840 
8841   // fold (fmul A, 1.0) -> A
8842   if (N1CFP && N1CFP->isExactlyValue(1.0))
8843     return N0;
8844 
8845   if (Options.UnsafeFPMath) {
8846     // fold (fmul A, 0) -> 0
8847     if (N1CFP && N1CFP->isZero())
8848       return N1;
8849 
8850     // fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
8851     if (N0.getOpcode() == ISD::FMUL) {
8852       // Fold scalars or any vector constants (not just splats).
8853       // This fold is done in general by InstCombine, but extra fmul insts
8854       // may have been generated during lowering.
8855       SDValue N00 = N0.getOperand(0);
8856       SDValue N01 = N0.getOperand(1);
8857       auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
8858       auto *BV00 = dyn_cast<BuildVectorSDNode>(N00);
8859       auto *BV01 = dyn_cast<BuildVectorSDNode>(N01);
8860 
8861       // Check 1: Make sure that the first operand of the inner multiply is NOT
8862       // a constant. Otherwise, we may induce infinite looping.
8863       if (!(isConstOrConstSplatFP(N00) || (BV00 && BV00->isConstant()))) {
8864         // Check 2: Make sure that the second operand of the inner multiply and
8865         // the second operand of the outer multiply are constants.
8866         if ((N1CFP && isConstOrConstSplatFP(N01)) ||
8867             (BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) {
8868           SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags);
8869           return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags);
8870         }
8871       }
8872     }
8873 
8874     // fold (fmul (fadd x, x), c) -> (fmul x, (fmul 2.0, c))
8875     // Undo the fmul 2.0, x -> fadd x, x transformation, since if it occurs
8876     // during an early run of DAGCombiner can prevent folding with fmuls
8877     // inserted during lowering.
8878     if (N0.getOpcode() == ISD::FADD &&
8879         (N0.getOperand(0) == N0.getOperand(1)) &&
8880         N0.hasOneUse()) {
8881       const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
8882       SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags);
8883       return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags);
8884     }
8885   }
8886 
8887   // fold (fmul X, 2.0) -> (fadd X, X)
8888   if (N1CFP && N1CFP->isExactlyValue(+2.0))
8889     return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags);
8890 
8891   // fold (fmul X, -1.0) -> (fneg X)
8892   if (N1CFP && N1CFP->isExactlyValue(-1.0))
8893     if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
8894       return DAG.getNode(ISD::FNEG, DL, VT, N0);
8895 
8896   // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
8897   if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) {
8898     if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) {
8899       // Both can be negated for free, check to see if at least one is cheaper
8900       // negated.
8901       if (LHSNeg == 2 || RHSNeg == 2)
8902         return DAG.getNode(ISD::FMUL, DL, VT,
8903                            GetNegatedExpression(N0, DAG, LegalOperations),
8904                            GetNegatedExpression(N1, DAG, LegalOperations),
8905                            Flags);
8906     }
8907   }
8908 
8909   // FMUL -> FMA combines:
8910   if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) {
8911     AddToWorklist(Fused.getNode());
8912     return Fused;
8913   }
8914 
8915   return SDValue();
8916 }
8917 
8918 SDValue DAGCombiner::visitFMA(SDNode *N) {
8919   SDValue N0 = N->getOperand(0);
8920   SDValue N1 = N->getOperand(1);
8921   SDValue N2 = N->getOperand(2);
8922   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
8923   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
8924   EVT VT = N->getValueType(0);
8925   SDLoc DL(N);
8926   const TargetOptions &Options = DAG.getTarget().Options;
8927 
8928   // Constant fold FMA.
8929   if (isa<ConstantFPSDNode>(N0) &&
8930       isa<ConstantFPSDNode>(N1) &&
8931       isa<ConstantFPSDNode>(N2)) {
8932     return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2);
8933   }
8934 
8935   if (Options.UnsafeFPMath) {
8936     if (N0CFP && N0CFP->isZero())
8937       return N2;
8938     if (N1CFP && N1CFP->isZero())
8939       return N2;
8940   }
8941   // TODO: The FMA node should have flags that propagate to these nodes.
8942   if (N0CFP && N0CFP->isExactlyValue(1.0))
8943     return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
8944   if (N1CFP && N1CFP->isExactlyValue(1.0))
8945     return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
8946 
8947   // Canonicalize (fma c, x, y) -> (fma x, c, y)
8948   if (isConstantFPBuildVectorOrConstantFP(N0) &&
8949      !isConstantFPBuildVectorOrConstantFP(N1))
8950     return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
8951 
8952   // TODO: FMA nodes should have flags that propagate to the created nodes.
8953   // For now, create a Flags object for use with all unsafe math transforms.
8954   SDNodeFlags Flags;
8955   Flags.setUnsafeAlgebra(true);
8956 
8957   if (Options.UnsafeFPMath) {
8958     // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
8959     if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) &&
8960         isConstantFPBuildVectorOrConstantFP(N1) &&
8961         isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) {
8962       return DAG.getNode(ISD::FMUL, DL, VT, N0,
8963                          DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1),
8964                                      &Flags), &Flags);
8965     }
8966 
8967     // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
8968     if (N0.getOpcode() == ISD::FMUL &&
8969         isConstantFPBuildVectorOrConstantFP(N1) &&
8970         isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
8971       return DAG.getNode(ISD::FMA, DL, VT,
8972                          N0.getOperand(0),
8973                          DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1),
8974                                      &Flags),
8975                          N2);
8976     }
8977   }
8978 
8979   // (fma x, 1, y) -> (fadd x, y)
8980   // (fma x, -1, y) -> (fadd (fneg x), y)
8981   if (N1CFP) {
8982     if (N1CFP->isExactlyValue(1.0))
8983       // TODO: The FMA node should have flags that propagate to this node.
8984       return DAG.getNode(ISD::FADD, DL, VT, N0, N2);
8985 
8986     if (N1CFP->isExactlyValue(-1.0) &&
8987         (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
8988       SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0);
8989       AddToWorklist(RHSNeg.getNode());
8990       // TODO: The FMA node should have flags that propagate to this node.
8991       return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg);
8992     }
8993   }
8994 
8995   if (Options.UnsafeFPMath) {
8996     // (fma x, c, x) -> (fmul x, (c+1))
8997     if (N1CFP && N0 == N2) {
8998       return DAG.getNode(ISD::FMUL, DL, VT, N0,
8999                          DAG.getNode(ISD::FADD, DL, VT, N1,
9000                                      DAG.getConstantFP(1.0, DL, VT), &Flags),
9001                          &Flags);
9002     }
9003 
9004     // (fma x, c, (fneg x)) -> (fmul x, (c-1))
9005     if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
9006       return DAG.getNode(ISD::FMUL, DL, VT, N0,
9007                          DAG.getNode(ISD::FADD, DL, VT, N1,
9008                                      DAG.getConstantFP(-1.0, DL, VT), &Flags),
9009                          &Flags);
9010     }
9011   }
9012 
9013   return SDValue();
9014 }
9015 
9016 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
9017 // reciprocal.
9018 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
9019 // Notice that this is not always beneficial. One reason is different targets
9020 // may have different costs for FDIV and FMUL, so sometimes the cost of two
9021 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
9022 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
9023 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) {
9024   bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath;
9025   const SDNodeFlags *Flags = N->getFlags();
9026   if (!UnsafeMath && !Flags->hasAllowReciprocal())
9027     return SDValue();
9028 
9029   // Skip if current node is a reciprocal.
9030   SDValue N0 = N->getOperand(0);
9031   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
9032   if (N0CFP && N0CFP->isExactlyValue(1.0))
9033     return SDValue();
9034 
9035   // Exit early if the target does not want this transform or if there can't
9036   // possibly be enough uses of the divisor to make the transform worthwhile.
9037   SDValue N1 = N->getOperand(1);
9038   unsigned MinUses = TLI.combineRepeatedFPDivisors();
9039   if (!MinUses || N1->use_size() < MinUses)
9040     return SDValue();
9041 
9042   // Find all FDIV users of the same divisor.
9043   // Use a set because duplicates may be present in the user list.
9044   SetVector<SDNode *> Users;
9045   for (auto *U : N1->uses()) {
9046     if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) {
9047       // This division is eligible for optimization only if global unsafe math
9048       // is enabled or if this division allows reciprocal formation.
9049       if (UnsafeMath || U->getFlags()->hasAllowReciprocal())
9050         Users.insert(U);
9051     }
9052   }
9053 
9054   // Now that we have the actual number of divisor uses, make sure it meets
9055   // the minimum threshold specified by the target.
9056   if (Users.size() < MinUses)
9057     return SDValue();
9058 
9059   EVT VT = N->getValueType(0);
9060   SDLoc DL(N);
9061   SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
9062   SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags);
9063 
9064   // Dividend / Divisor -> Dividend * Reciprocal
9065   for (auto *U : Users) {
9066     SDValue Dividend = U->getOperand(0);
9067     if (Dividend != FPOne) {
9068       SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
9069                                     Reciprocal, Flags);
9070       CombineTo(U, NewNode);
9071     } else if (U != Reciprocal.getNode()) {
9072       // In the absence of fast-math-flags, this user node is always the
9073       // same node as Reciprocal, but with FMF they may be different nodes.
9074       CombineTo(U, Reciprocal);
9075     }
9076   }
9077   return SDValue(N, 0);  // N was replaced.
9078 }
9079 
9080 SDValue DAGCombiner::visitFDIV(SDNode *N) {
9081   SDValue N0 = N->getOperand(0);
9082   SDValue N1 = N->getOperand(1);
9083   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
9084   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
9085   EVT VT = N->getValueType(0);
9086   SDLoc DL(N);
9087   const TargetOptions &Options = DAG.getTarget().Options;
9088   SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags;
9089 
9090   // fold vector ops
9091   if (VT.isVector())
9092     if (SDValue FoldedVOp = SimplifyVBinOp(N))
9093       return FoldedVOp;
9094 
9095   // fold (fdiv c1, c2) -> c1/c2
9096   if (N0CFP && N1CFP)
9097     return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags);
9098 
9099   if (Options.UnsafeFPMath) {
9100     // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
9101     if (N1CFP) {
9102       // Compute the reciprocal 1.0 / c2.
9103       const APFloat &N1APF = N1CFP->getValueAPF();
9104       APFloat Recip(N1APF.getSemantics(), 1); // 1.0
9105       APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
9106       // Only do the transform if the reciprocal is a legal fp immediate that
9107       // isn't too nasty (eg NaN, denormal, ...).
9108       if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
9109           (!LegalOperations ||
9110            // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
9111            // backend)... we should handle this gracefully after Legalize.
9112            // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
9113            TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
9114            TLI.isFPImmLegal(Recip, VT)))
9115         return DAG.getNode(ISD::FMUL, DL, VT, N0,
9116                            DAG.getConstantFP(Recip, DL, VT), Flags);
9117     }
9118 
9119     // If this FDIV is part of a reciprocal square root, it may be folded
9120     // into a target-specific square root estimate instruction.
9121     if (N1.getOpcode() == ISD::FSQRT) {
9122       if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) {
9123         return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
9124       }
9125     } else if (N1.getOpcode() == ISD::FP_EXTEND &&
9126                N1.getOperand(0).getOpcode() == ISD::FSQRT) {
9127       if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0),
9128                                           Flags)) {
9129         RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
9130         AddToWorklist(RV.getNode());
9131         return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
9132       }
9133     } else if (N1.getOpcode() == ISD::FP_ROUND &&
9134                N1.getOperand(0).getOpcode() == ISD::FSQRT) {
9135       if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0),
9136                                           Flags)) {
9137         RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
9138         AddToWorklist(RV.getNode());
9139         return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
9140       }
9141     } else if (N1.getOpcode() == ISD::FMUL) {
9142       // Look through an FMUL. Even though this won't remove the FDIV directly,
9143       // it's still worthwhile to get rid of the FSQRT if possible.
9144       SDValue SqrtOp;
9145       SDValue OtherOp;
9146       if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
9147         SqrtOp = N1.getOperand(0);
9148         OtherOp = N1.getOperand(1);
9149       } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
9150         SqrtOp = N1.getOperand(1);
9151         OtherOp = N1.getOperand(0);
9152       }
9153       if (SqrtOp.getNode()) {
9154         // We found a FSQRT, so try to make this fold:
9155         // x / (y * sqrt(z)) -> x * (rsqrt(z) / y)
9156         if (SDValue RV = buildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) {
9157           RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags);
9158           AddToWorklist(RV.getNode());
9159           return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
9160         }
9161       }
9162     }
9163 
9164     // Fold into a reciprocal estimate and multiply instead of a real divide.
9165     if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) {
9166       AddToWorklist(RV.getNode());
9167       return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
9168     }
9169   }
9170 
9171   // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
9172   if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) {
9173     if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) {
9174       // Both can be negated for free, check to see if at least one is cheaper
9175       // negated.
9176       if (LHSNeg == 2 || RHSNeg == 2)
9177         return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
9178                            GetNegatedExpression(N0, DAG, LegalOperations),
9179                            GetNegatedExpression(N1, DAG, LegalOperations),
9180                            Flags);
9181     }
9182   }
9183 
9184   if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N))
9185     return CombineRepeatedDivisors;
9186 
9187   return SDValue();
9188 }
9189 
9190 SDValue DAGCombiner::visitFREM(SDNode *N) {
9191   SDValue N0 = N->getOperand(0);
9192   SDValue N1 = N->getOperand(1);
9193   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
9194   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
9195   EVT VT = N->getValueType(0);
9196 
9197   // fold (frem c1, c2) -> fmod(c1,c2)
9198   if (N0CFP && N1CFP)
9199     return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1,
9200                        &cast<BinaryWithFlagsSDNode>(N)->Flags);
9201 
9202   return SDValue();
9203 }
9204 
9205 SDValue DAGCombiner::visitFSQRT(SDNode *N) {
9206   if (!DAG.getTarget().Options.UnsafeFPMath)
9207     return SDValue();
9208 
9209   SDValue N0 = N->getOperand(0);
9210   if (TLI.isFsqrtCheap(N0, DAG))
9211     return SDValue();
9212 
9213   // TODO: FSQRT nodes should have flags that propagate to the created nodes.
9214   // For now, create a Flags object for use with all unsafe math transforms.
9215   SDNodeFlags Flags;
9216   Flags.setUnsafeAlgebra(true);
9217   return buildSqrtEstimate(N0, &Flags);
9218 }
9219 
9220 /// copysign(x, fp_extend(y)) -> copysign(x, y)
9221 /// copysign(x, fp_round(y)) -> copysign(x, y)
9222 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) {
9223   SDValue N1 = N->getOperand(1);
9224   if ((N1.getOpcode() == ISD::FP_EXTEND ||
9225        N1.getOpcode() == ISD::FP_ROUND)) {
9226     // Do not optimize out type conversion of f128 type yet.
9227     // For some targets like x86_64, configuration is changed to keep one f128
9228     // value in one SSE register, but instruction selection cannot handle
9229     // FCOPYSIGN on SSE registers yet.
9230     EVT N1VT = N1->getValueType(0);
9231     EVT N1Op0VT = N1->getOperand(0)->getValueType(0);
9232     return (N1VT == N1Op0VT || N1Op0VT != MVT::f128);
9233   }
9234   return false;
9235 }
9236 
9237 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
9238   SDValue N0 = N->getOperand(0);
9239   SDValue N1 = N->getOperand(1);
9240   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
9241   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
9242   EVT VT = N->getValueType(0);
9243 
9244   if (N0CFP && N1CFP) // Constant fold
9245     return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
9246 
9247   if (N1CFP) {
9248     const APFloat &V = N1CFP->getValueAPF();
9249     // copysign(x, c1) -> fabs(x)       iff ispos(c1)
9250     // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
9251     if (!V.isNegative()) {
9252       if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
9253         return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
9254     } else {
9255       if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
9256         return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
9257                            DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
9258     }
9259   }
9260 
9261   // copysign(fabs(x), y) -> copysign(x, y)
9262   // copysign(fneg(x), y) -> copysign(x, y)
9263   // copysign(copysign(x,z), y) -> copysign(x, y)
9264   if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
9265       N0.getOpcode() == ISD::FCOPYSIGN)
9266     return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1);
9267 
9268   // copysign(x, abs(y)) -> abs(x)
9269   if (N1.getOpcode() == ISD::FABS)
9270     return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
9271 
9272   // copysign(x, copysign(y,z)) -> copysign(x, z)
9273   if (N1.getOpcode() == ISD::FCOPYSIGN)
9274     return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1));
9275 
9276   // copysign(x, fp_extend(y)) -> copysign(x, y)
9277   // copysign(x, fp_round(y)) -> copysign(x, y)
9278   if (CanCombineFCOPYSIGN_EXTEND_ROUND(N))
9279     return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0));
9280 
9281   return SDValue();
9282 }
9283 
9284 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
9285   SDValue N0 = N->getOperand(0);
9286   EVT VT = N->getValueType(0);
9287   EVT OpVT = N0.getValueType();
9288 
9289   // fold (sint_to_fp c1) -> c1fp
9290   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
9291       // ...but only if the target supports immediate floating-point values
9292       (!LegalOperations ||
9293        TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
9294     return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
9295 
9296   // If the input is a legal type, and SINT_TO_FP is not legal on this target,
9297   // but UINT_TO_FP is legal on this target, try to convert.
9298   if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
9299       TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
9300     // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
9301     if (DAG.SignBitIsZero(N0))
9302       return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
9303   }
9304 
9305   // The next optimizations are desirable only if SELECT_CC can be lowered.
9306   if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
9307     // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
9308     if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
9309         !VT.isVector() &&
9310         (!LegalOperations ||
9311          TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
9312       SDLoc DL(N);
9313       SDValue Ops[] =
9314         { N0.getOperand(0), N0.getOperand(1),
9315           DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
9316           N0.getOperand(2) };
9317       return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
9318     }
9319 
9320     // fold (sint_to_fp (zext (setcc x, y, cc))) ->
9321     //      (select_cc x, y, 1.0, 0.0,, cc)
9322     if (N0.getOpcode() == ISD::ZERO_EXTEND &&
9323         N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
9324         (!LegalOperations ||
9325          TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
9326       SDLoc DL(N);
9327       SDValue Ops[] =
9328         { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
9329           DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
9330           N0.getOperand(0).getOperand(2) };
9331       return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
9332     }
9333   }
9334 
9335   return SDValue();
9336 }
9337 
9338 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
9339   SDValue N0 = N->getOperand(0);
9340   EVT VT = N->getValueType(0);
9341   EVT OpVT = N0.getValueType();
9342 
9343   // fold (uint_to_fp c1) -> c1fp
9344   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
9345       // ...but only if the target supports immediate floating-point values
9346       (!LegalOperations ||
9347        TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
9348     return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
9349 
9350   // If the input is a legal type, and UINT_TO_FP is not legal on this target,
9351   // but SINT_TO_FP is legal on this target, try to convert.
9352   if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
9353       TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
9354     // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
9355     if (DAG.SignBitIsZero(N0))
9356       return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
9357   }
9358 
9359   // The next optimizations are desirable only if SELECT_CC can be lowered.
9360   if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
9361     // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
9362 
9363     if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
9364         (!LegalOperations ||
9365          TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
9366       SDLoc DL(N);
9367       SDValue Ops[] =
9368         { N0.getOperand(0), N0.getOperand(1),
9369           DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
9370           N0.getOperand(2) };
9371       return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
9372     }
9373   }
9374 
9375   return SDValue();
9376 }
9377 
9378 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
9379 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) {
9380   SDValue N0 = N->getOperand(0);
9381   EVT VT = N->getValueType(0);
9382 
9383   if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
9384     return SDValue();
9385 
9386   SDValue Src = N0.getOperand(0);
9387   EVT SrcVT = Src.getValueType();
9388   bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
9389   bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;
9390 
9391   // We can safely assume the conversion won't overflow the output range,
9392   // because (for example) (uint8_t)18293.f is undefined behavior.
9393 
9394   // Since we can assume the conversion won't overflow, our decision as to
9395   // whether the input will fit in the float should depend on the minimum
9396   // of the input range and output range.
9397 
9398   // This means this is also safe for a signed input and unsigned output, since
9399   // a negative input would lead to undefined behavior.
9400   unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
9401   unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned;
9402   unsigned ActualSize = std::min(InputSize, OutputSize);
9403   const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType());
9404 
9405   // We can only fold away the float conversion if the input range can be
9406   // represented exactly in the float range.
9407   if (APFloat::semanticsPrecision(sem) >= ActualSize) {
9408     if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
9409       unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND
9410                                                        : ISD::ZERO_EXTEND;
9411       return DAG.getNode(ExtOp, SDLoc(N), VT, Src);
9412     }
9413     if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
9414       return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src);
9415     return DAG.getBitcast(VT, Src);
9416   }
9417   return SDValue();
9418 }
9419 
9420 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
9421   SDValue N0 = N->getOperand(0);
9422   EVT VT = N->getValueType(0);
9423 
9424   // fold (fp_to_sint c1fp) -> c1
9425   if (isConstantFPBuildVectorOrConstantFP(N0))
9426     return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
9427 
9428   return FoldIntToFPToInt(N, DAG);
9429 }
9430 
9431 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
9432   SDValue N0 = N->getOperand(0);
9433   EVT VT = N->getValueType(0);
9434 
9435   // fold (fp_to_uint c1fp) -> c1
9436   if (isConstantFPBuildVectorOrConstantFP(N0))
9437     return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
9438 
9439   return FoldIntToFPToInt(N, DAG);
9440 }
9441 
9442 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
9443   SDValue N0 = N->getOperand(0);
9444   SDValue N1 = N->getOperand(1);
9445   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
9446   EVT VT = N->getValueType(0);
9447 
9448   // fold (fp_round c1fp) -> c1fp
9449   if (N0CFP)
9450     return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
9451 
9452   // fold (fp_round (fp_extend x)) -> x
9453   if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
9454     return N0.getOperand(0);
9455 
9456   // fold (fp_round (fp_round x)) -> (fp_round x)
9457   if (N0.getOpcode() == ISD::FP_ROUND) {
9458     const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
9459     const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1;
9460 
9461     // Skip this folding if it results in an fp_round from f80 to f16.
9462     //
9463     // f80 to f16 always generates an expensive (and as yet, unimplemented)
9464     // libcall to __truncxfhf2 instead of selecting native f16 conversion
9465     // instructions from f32 or f64.  Moreover, the first (value-preserving)
9466     // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
9467     // x86.
9468     if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16)
9469       return SDValue();
9470 
9471     // If the first fp_round isn't a value preserving truncation, it might
9472     // introduce a tie in the second fp_round, that wouldn't occur in the
9473     // single-step fp_round we want to fold to.
9474     // In other words, double rounding isn't the same as rounding.
9475     // Also, this is a value preserving truncation iff both fp_round's are.
9476     if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) {
9477       SDLoc DL(N);
9478       return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0),
9479                          DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL));
9480     }
9481   }
9482 
9483   // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
9484   if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
9485     SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
9486                               N0.getOperand(0), N1);
9487     AddToWorklist(Tmp.getNode());
9488     return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
9489                        Tmp, N0.getOperand(1));
9490   }
9491 
9492   return SDValue();
9493 }
9494 
9495 SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
9496   SDValue N0 = N->getOperand(0);
9497   EVT VT = N->getValueType(0);
9498   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
9499   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
9500 
9501   // fold (fp_round_inreg c1fp) -> c1fp
9502   if (N0CFP && isTypeLegal(EVT)) {
9503     SDLoc DL(N);
9504     SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT);
9505     return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round);
9506   }
9507 
9508   return SDValue();
9509 }
9510 
9511 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
9512   SDValue N0 = N->getOperand(0);
9513   EVT VT = N->getValueType(0);
9514 
9515   // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
9516   if (N->hasOneUse() &&
9517       N->use_begin()->getOpcode() == ISD::FP_ROUND)
9518     return SDValue();
9519 
9520   // fold (fp_extend c1fp) -> c1fp
9521   if (isConstantFPBuildVectorOrConstantFP(N0))
9522     return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
9523 
9524   // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
9525   if (N0.getOpcode() == ISD::FP16_TO_FP &&
9526       TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
9527     return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0));
9528 
9529   // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
9530   // value of X.
9531   if (N0.getOpcode() == ISD::FP_ROUND
9532       && N0.getConstantOperandVal(1) == 1) {
9533     SDValue In = N0.getOperand(0);
9534     if (In.getValueType() == VT) return In;
9535     if (VT.bitsLT(In.getValueType()))
9536       return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
9537                          In, N0.getOperand(1));
9538     return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
9539   }
9540 
9541   // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
9542   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
9543        TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
9544     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9545     SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
9546                                      LN0->getChain(),
9547                                      LN0->getBasePtr(), N0.getValueType(),
9548                                      LN0->getMemOperand());
9549     CombineTo(N, ExtLoad);
9550     CombineTo(N0.getNode(),
9551               DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
9552                           N0.getValueType(), ExtLoad,
9553                           DAG.getIntPtrConstant(1, SDLoc(N0))),
9554               ExtLoad.getValue(1));
9555     return SDValue(N, 0);   // Return N so it doesn't get rechecked!
9556   }
9557 
9558   return SDValue();
9559 }
9560 
9561 SDValue DAGCombiner::visitFCEIL(SDNode *N) {
9562   SDValue N0 = N->getOperand(0);
9563   EVT VT = N->getValueType(0);
9564 
9565   // fold (fceil c1) -> fceil(c1)
9566   if (isConstantFPBuildVectorOrConstantFP(N0))
9567     return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
9568 
9569   return SDValue();
9570 }
9571 
9572 SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
9573   SDValue N0 = N->getOperand(0);
9574   EVT VT = N->getValueType(0);
9575 
9576   // fold (ftrunc c1) -> ftrunc(c1)
9577   if (isConstantFPBuildVectorOrConstantFP(N0))
9578     return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
9579 
9580   return SDValue();
9581 }
9582 
9583 SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
9584   SDValue N0 = N->getOperand(0);
9585   EVT VT = N->getValueType(0);
9586 
9587   // fold (ffloor c1) -> ffloor(c1)
9588   if (isConstantFPBuildVectorOrConstantFP(N0))
9589     return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
9590 
9591   return SDValue();
9592 }
9593 
9594 // FIXME: FNEG and FABS have a lot in common; refactor.
9595 SDValue DAGCombiner::visitFNEG(SDNode *N) {
9596   SDValue N0 = N->getOperand(0);
9597   EVT VT = N->getValueType(0);
9598 
9599   // Constant fold FNEG.
9600   if (isConstantFPBuildVectorOrConstantFP(N0))
9601     return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
9602 
9603   if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
9604                          &DAG.getTarget().Options))
9605     return GetNegatedExpression(N0, DAG, LegalOperations);
9606 
9607   // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading
9608   // constant pool values.
9609   if (!TLI.isFNegFree(VT) &&
9610       N0.getOpcode() == ISD::BITCAST &&
9611       N0.getNode()->hasOneUse()) {
9612     SDValue Int = N0.getOperand(0);
9613     EVT IntVT = Int.getValueType();
9614     if (IntVT.isInteger() && !IntVT.isVector()) {
9615       APInt SignMask;
9616       if (N0.getValueType().isVector()) {
9617         // For a vector, get a mask such as 0x80... per scalar element
9618         // and splat it.
9619         SignMask = APInt::getSignBit(N0.getScalarValueSizeInBits());
9620         SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
9621       } else {
9622         // For a scalar, just generate 0x80...
9623         SignMask = APInt::getSignBit(IntVT.getSizeInBits());
9624       }
9625       SDLoc DL0(N0);
9626       Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int,
9627                         DAG.getConstant(SignMask, DL0, IntVT));
9628       AddToWorklist(Int.getNode());
9629       return DAG.getBitcast(VT, Int);
9630     }
9631   }
9632 
9633   // (fneg (fmul c, x)) -> (fmul -c, x)
9634   if (N0.getOpcode() == ISD::FMUL &&
9635       (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) {
9636     ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
9637     if (CFP1) {
9638       APFloat CVal = CFP1->getValueAPF();
9639       CVal.changeSign();
9640       if (Level >= AfterLegalizeDAG &&
9641           (TLI.isFPImmLegal(CVal, VT) ||
9642            TLI.isOperationLegal(ISD::ConstantFP, VT)))
9643         return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
9644                            DAG.getNode(ISD::FNEG, SDLoc(N), VT,
9645                                        N0.getOperand(1)),
9646                            &cast<BinaryWithFlagsSDNode>(N0)->Flags);
9647     }
9648   }
9649 
9650   return SDValue();
9651 }
9652 
9653 SDValue DAGCombiner::visitFMINNUM(SDNode *N) {
9654   SDValue N0 = N->getOperand(0);
9655   SDValue N1 = N->getOperand(1);
9656   EVT VT = N->getValueType(0);
9657   const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
9658   const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
9659 
9660   if (N0CFP && N1CFP) {
9661     const APFloat &C0 = N0CFP->getValueAPF();
9662     const APFloat &C1 = N1CFP->getValueAPF();
9663     return DAG.getConstantFP(minnum(C0, C1), SDLoc(N), VT);
9664   }
9665 
9666   // Canonicalize to constant on RHS.
9667   if (isConstantFPBuildVectorOrConstantFP(N0) &&
9668      !isConstantFPBuildVectorOrConstantFP(N1))
9669     return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0);
9670 
9671   return SDValue();
9672 }
9673 
9674 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) {
9675   SDValue N0 = N->getOperand(0);
9676   SDValue N1 = N->getOperand(1);
9677   EVT VT = N->getValueType(0);
9678   const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
9679   const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
9680 
9681   if (N0CFP && N1CFP) {
9682     const APFloat &C0 = N0CFP->getValueAPF();
9683     const APFloat &C1 = N1CFP->getValueAPF();
9684     return DAG.getConstantFP(maxnum(C0, C1), SDLoc(N), VT);
9685   }
9686 
9687   // Canonicalize to constant on RHS.
9688   if (isConstantFPBuildVectorOrConstantFP(N0) &&
9689      !isConstantFPBuildVectorOrConstantFP(N1))
9690     return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0);
9691 
9692   return SDValue();
9693 }
9694 
9695 SDValue DAGCombiner::visitFABS(SDNode *N) {
9696   SDValue N0 = N->getOperand(0);
9697   EVT VT = N->getValueType(0);
9698 
9699   // fold (fabs c1) -> fabs(c1)
9700   if (isConstantFPBuildVectorOrConstantFP(N0))
9701     return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
9702 
9703   // fold (fabs (fabs x)) -> (fabs x)
9704   if (N0.getOpcode() == ISD::FABS)
9705     return N->getOperand(0);
9706 
9707   // fold (fabs (fneg x)) -> (fabs x)
9708   // fold (fabs (fcopysign x, y)) -> (fabs x)
9709   if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
9710     return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
9711 
9712   // Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading
9713   // constant pool values.
9714   if (!TLI.isFAbsFree(VT) &&
9715       N0.getOpcode() == ISD::BITCAST &&
9716       N0.getNode()->hasOneUse()) {
9717     SDValue Int = N0.getOperand(0);
9718     EVT IntVT = Int.getValueType();
9719     if (IntVT.isInteger() && !IntVT.isVector()) {
9720       APInt SignMask;
9721       if (N0.getValueType().isVector()) {
9722         // For a vector, get a mask such as 0x7f... per scalar element
9723         // and splat it.
9724         SignMask = ~APInt::getSignBit(N0.getScalarValueSizeInBits());
9725         SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
9726       } else {
9727         // For a scalar, just generate 0x7f...
9728         SignMask = ~APInt::getSignBit(IntVT.getSizeInBits());
9729       }
9730       SDLoc DL(N0);
9731       Int = DAG.getNode(ISD::AND, DL, IntVT, Int,
9732                         DAG.getConstant(SignMask, DL, IntVT));
9733       AddToWorklist(Int.getNode());
9734       return DAG.getBitcast(N->getValueType(0), Int);
9735     }
9736   }
9737 
9738   return SDValue();
9739 }
9740 
9741 SDValue DAGCombiner::visitBRCOND(SDNode *N) {
9742   SDValue Chain = N->getOperand(0);
9743   SDValue N1 = N->getOperand(1);
9744   SDValue N2 = N->getOperand(2);
9745 
9746   // If N is a constant we could fold this into a fallthrough or unconditional
9747   // branch. However that doesn't happen very often in normal code, because
9748   // Instcombine/SimplifyCFG should have handled the available opportunities.
9749   // If we did this folding here, it would be necessary to update the
9750   // MachineBasicBlock CFG, which is awkward.
9751 
9752   // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
9753   // on the target.
9754   if (N1.getOpcode() == ISD::SETCC &&
9755       TLI.isOperationLegalOrCustom(ISD::BR_CC,
9756                                    N1.getOperand(0).getValueType())) {
9757     return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
9758                        Chain, N1.getOperand(2),
9759                        N1.getOperand(0), N1.getOperand(1), N2);
9760   }
9761 
9762   if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
9763       ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
9764        (N1.getOperand(0).hasOneUse() &&
9765         N1.getOperand(0).getOpcode() == ISD::SRL))) {
9766     SDNode *Trunc = nullptr;
9767     if (N1.getOpcode() == ISD::TRUNCATE) {
9768       // Look pass the truncate.
9769       Trunc = N1.getNode();
9770       N1 = N1.getOperand(0);
9771     }
9772 
9773     // Match this pattern so that we can generate simpler code:
9774     //
9775     //   %a = ...
9776     //   %b = and i32 %a, 2
9777     //   %c = srl i32 %b, 1
9778     //   brcond i32 %c ...
9779     //
9780     // into
9781     //
9782     //   %a = ...
9783     //   %b = and i32 %a, 2
9784     //   %c = setcc eq %b, 0
9785     //   brcond %c ...
9786     //
9787     // This applies only when the AND constant value has one bit set and the
9788     // SRL constant is equal to the log2 of the AND constant. The back-end is
9789     // smart enough to convert the result into a TEST/JMP sequence.
9790     SDValue Op0 = N1.getOperand(0);
9791     SDValue Op1 = N1.getOperand(1);
9792 
9793     if (Op0.getOpcode() == ISD::AND &&
9794         Op1.getOpcode() == ISD::Constant) {
9795       SDValue AndOp1 = Op0.getOperand(1);
9796 
9797       if (AndOp1.getOpcode() == ISD::Constant) {
9798         const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
9799 
9800         if (AndConst.isPowerOf2() &&
9801             cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
9802           SDLoc DL(N);
9803           SDValue SetCC =
9804             DAG.getSetCC(DL,
9805                          getSetCCResultType(Op0.getValueType()),
9806                          Op0, DAG.getConstant(0, DL, Op0.getValueType()),
9807                          ISD::SETNE);
9808 
9809           SDValue NewBRCond = DAG.getNode(ISD::BRCOND, DL,
9810                                           MVT::Other, Chain, SetCC, N2);
9811           // Don't add the new BRCond into the worklist or else SimplifySelectCC
9812           // will convert it back to (X & C1) >> C2.
9813           CombineTo(N, NewBRCond, false);
9814           // Truncate is dead.
9815           if (Trunc)
9816             deleteAndRecombine(Trunc);
9817           // Replace the uses of SRL with SETCC
9818           WorklistRemover DeadNodes(*this);
9819           DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
9820           deleteAndRecombine(N1.getNode());
9821           return SDValue(N, 0);   // Return N so it doesn't get rechecked!
9822         }
9823       }
9824     }
9825 
9826     if (Trunc)
9827       // Restore N1 if the above transformation doesn't match.
9828       N1 = N->getOperand(1);
9829   }
9830 
9831   // Transform br(xor(x, y)) -> br(x != y)
9832   // Transform br(xor(xor(x,y), 1)) -> br (x == y)
9833   if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
9834     SDNode *TheXor = N1.getNode();
9835     SDValue Op0 = TheXor->getOperand(0);
9836     SDValue Op1 = TheXor->getOperand(1);
9837     if (Op0.getOpcode() == Op1.getOpcode()) {
9838       // Avoid missing important xor optimizations.
9839       if (SDValue Tmp = visitXOR(TheXor)) {
9840         if (Tmp.getNode() != TheXor) {
9841           DEBUG(dbgs() << "\nReplacing.8 ";
9842                 TheXor->dump(&DAG);
9843                 dbgs() << "\nWith: ";
9844                 Tmp.getNode()->dump(&DAG);
9845                 dbgs() << '\n');
9846           WorklistRemover DeadNodes(*this);
9847           DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
9848           deleteAndRecombine(TheXor);
9849           return DAG.getNode(ISD::BRCOND, SDLoc(N),
9850                              MVT::Other, Chain, Tmp, N2);
9851         }
9852 
9853         // visitXOR has changed XOR's operands or replaced the XOR completely,
9854         // bail out.
9855         return SDValue(N, 0);
9856       }
9857     }
9858 
9859     if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
9860       bool Equal = false;
9861       if (isOneConstant(Op0) && Op0.hasOneUse() &&
9862           Op0.getOpcode() == ISD::XOR) {
9863         TheXor = Op0.getNode();
9864         Equal = true;
9865       }
9866 
9867       EVT SetCCVT = N1.getValueType();
9868       if (LegalTypes)
9869         SetCCVT = getSetCCResultType(SetCCVT);
9870       SDValue SetCC = DAG.getSetCC(SDLoc(TheXor),
9871                                    SetCCVT,
9872                                    Op0, Op1,
9873                                    Equal ? ISD::SETEQ : ISD::SETNE);
9874       // Replace the uses of XOR with SETCC
9875       WorklistRemover DeadNodes(*this);
9876       DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
9877       deleteAndRecombine(N1.getNode());
9878       return DAG.getNode(ISD::BRCOND, SDLoc(N),
9879                          MVT::Other, Chain, SetCC, N2);
9880     }
9881   }
9882 
9883   return SDValue();
9884 }
9885 
9886 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
9887 //
9888 SDValue DAGCombiner::visitBR_CC(SDNode *N) {
9889   CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
9890   SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
9891 
9892   // If N is a constant we could fold this into a fallthrough or unconditional
9893   // branch. However that doesn't happen very often in normal code, because
9894   // Instcombine/SimplifyCFG should have handled the available opportunities.
9895   // If we did this folding here, it would be necessary to update the
9896   // MachineBasicBlock CFG, which is awkward.
9897 
9898   // Use SimplifySetCC to simplify SETCC's.
9899   SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
9900                                CondLHS, CondRHS, CC->get(), SDLoc(N),
9901                                false);
9902   if (Simp.getNode()) AddToWorklist(Simp.getNode());
9903 
9904   // fold to a simpler setcc
9905   if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
9906     return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
9907                        N->getOperand(0), Simp.getOperand(2),
9908                        Simp.getOperand(0), Simp.getOperand(1),
9909                        N->getOperand(4));
9910 
9911   return SDValue();
9912 }
9913 
9914 /// Return true if 'Use' is a load or a store that uses N as its base pointer
9915 /// and that N may be folded in the load / store addressing mode.
9916 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
9917                                     SelectionDAG &DAG,
9918                                     const TargetLowering &TLI) {
9919   EVT VT;
9920   unsigned AS;
9921 
9922   if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
9923     if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
9924       return false;
9925     VT = LD->getMemoryVT();
9926     AS = LD->getAddressSpace();
9927   } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
9928     if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
9929       return false;
9930     VT = ST->getMemoryVT();
9931     AS = ST->getAddressSpace();
9932   } else
9933     return false;
9934 
9935   TargetLowering::AddrMode AM;
9936   if (N->getOpcode() == ISD::ADD) {
9937     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
9938     if (Offset)
9939       // [reg +/- imm]
9940       AM.BaseOffs = Offset->getSExtValue();
9941     else
9942       // [reg +/- reg]
9943       AM.Scale = 1;
9944   } else if (N->getOpcode() == ISD::SUB) {
9945     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
9946     if (Offset)
9947       // [reg +/- imm]
9948       AM.BaseOffs = -Offset->getSExtValue();
9949     else
9950       // [reg +/- reg]
9951       AM.Scale = 1;
9952   } else
9953     return false;
9954 
9955   return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
9956                                    VT.getTypeForEVT(*DAG.getContext()), AS);
9957 }
9958 
9959 /// Try turning a load/store into a pre-indexed load/store when the base
9960 /// pointer is an add or subtract and it has other uses besides the load/store.
9961 /// After the transformation, the new indexed load/store has effectively folded
9962 /// the add/subtract in and all of its other uses are redirected to the
9963 /// new load/store.
9964 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
9965   if (Level < AfterLegalizeDAG)
9966     return false;
9967 
9968   bool isLoad = true;
9969   SDValue Ptr;
9970   EVT VT;
9971   if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
9972     if (LD->isIndexed())
9973       return false;
9974     VT = LD->getMemoryVT();
9975     if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
9976         !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
9977       return false;
9978     Ptr = LD->getBasePtr();
9979   } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
9980     if (ST->isIndexed())
9981       return false;
9982     VT = ST->getMemoryVT();
9983     if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
9984         !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
9985       return false;
9986     Ptr = ST->getBasePtr();
9987     isLoad = false;
9988   } else {
9989     return false;
9990   }
9991 
9992   // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
9993   // out.  There is no reason to make this a preinc/predec.
9994   if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
9995       Ptr.getNode()->hasOneUse())
9996     return false;
9997 
9998   // Ask the target to do addressing mode selection.
9999   SDValue BasePtr;
10000   SDValue Offset;
10001   ISD::MemIndexedMode AM = ISD::UNINDEXED;
10002   if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
10003     return false;
10004 
10005   // Backends without true r+i pre-indexed forms may need to pass a
10006   // constant base with a variable offset so that constant coercion
10007   // will work with the patterns in canonical form.
10008   bool Swapped = false;
10009   if (isa<ConstantSDNode>(BasePtr)) {
10010     std::swap(BasePtr, Offset);
10011     Swapped = true;
10012   }
10013 
10014   // Don't create a indexed load / store with zero offset.
10015   if (isNullConstant(Offset))
10016     return false;
10017 
10018   // Try turning it into a pre-indexed load / store except when:
10019   // 1) The new base ptr is a frame index.
10020   // 2) If N is a store and the new base ptr is either the same as or is a
10021   //    predecessor of the value being stored.
10022   // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
10023   //    that would create a cycle.
10024   // 4) All uses are load / store ops that use it as old base ptr.
10025 
10026   // Check #1.  Preinc'ing a frame index would require copying the stack pointer
10027   // (plus the implicit offset) to a register to preinc anyway.
10028   if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
10029     return false;
10030 
10031   // Check #2.
10032   if (!isLoad) {
10033     SDValue Val = cast<StoreSDNode>(N)->getValue();
10034     if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
10035       return false;
10036   }
10037 
10038   // Caches for hasPredecessorHelper.
10039   SmallPtrSet<const SDNode *, 32> Visited;
10040   SmallVector<const SDNode *, 16> Worklist;
10041   Worklist.push_back(N);
10042 
10043   // If the offset is a constant, there may be other adds of constants that
10044   // can be folded with this one. We should do this to avoid having to keep
10045   // a copy of the original base pointer.
10046   SmallVector<SDNode *, 16> OtherUses;
10047   if (isa<ConstantSDNode>(Offset))
10048     for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(),
10049                               UE = BasePtr.getNode()->use_end();
10050          UI != UE; ++UI) {
10051       SDUse &Use = UI.getUse();
10052       // Skip the use that is Ptr and uses of other results from BasePtr's
10053       // node (important for nodes that return multiple results).
10054       if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
10055         continue;
10056 
10057       if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist))
10058         continue;
10059 
10060       if (Use.getUser()->getOpcode() != ISD::ADD &&
10061           Use.getUser()->getOpcode() != ISD::SUB) {
10062         OtherUses.clear();
10063         break;
10064       }
10065 
10066       SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1);
10067       if (!isa<ConstantSDNode>(Op1)) {
10068         OtherUses.clear();
10069         break;
10070       }
10071 
10072       // FIXME: In some cases, we can be smarter about this.
10073       if (Op1.getValueType() != Offset.getValueType()) {
10074         OtherUses.clear();
10075         break;
10076       }
10077 
10078       OtherUses.push_back(Use.getUser());
10079     }
10080 
10081   if (Swapped)
10082     std::swap(BasePtr, Offset);
10083 
10084   // Now check for #3 and #4.
10085   bool RealUse = false;
10086 
10087   for (SDNode *Use : Ptr.getNode()->uses()) {
10088     if (Use == N)
10089       continue;
10090     if (SDNode::hasPredecessorHelper(Use, Visited, Worklist))
10091       return false;
10092 
10093     // If Ptr may be folded in addressing mode of other use, then it's
10094     // not profitable to do this transformation.
10095     if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
10096       RealUse = true;
10097   }
10098 
10099   if (!RealUse)
10100     return false;
10101 
10102   SDValue Result;
10103   if (isLoad)
10104     Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
10105                                 BasePtr, Offset, AM);
10106   else
10107     Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
10108                                  BasePtr, Offset, AM);
10109   ++PreIndexedNodes;
10110   ++NodesCombined;
10111   DEBUG(dbgs() << "\nReplacing.4 ";
10112         N->dump(&DAG);
10113         dbgs() << "\nWith: ";
10114         Result.getNode()->dump(&DAG);
10115         dbgs() << '\n');
10116   WorklistRemover DeadNodes(*this);
10117   if (isLoad) {
10118     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
10119     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
10120   } else {
10121     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
10122   }
10123 
10124   // Finally, since the node is now dead, remove it from the graph.
10125   deleteAndRecombine(N);
10126 
10127   if (Swapped)
10128     std::swap(BasePtr, Offset);
10129 
10130   // Replace other uses of BasePtr that can be updated to use Ptr
10131   for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
10132     unsigned OffsetIdx = 1;
10133     if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
10134       OffsetIdx = 0;
10135     assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
10136            BasePtr.getNode() && "Expected BasePtr operand");
10137 
10138     // We need to replace ptr0 in the following expression:
10139     //   x0 * offset0 + y0 * ptr0 = t0
10140     // knowing that
10141     //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
10142     //
10143     // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
10144     // indexed load/store and the expresion that needs to be re-written.
10145     //
10146     // Therefore, we have:
10147     //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
10148 
10149     ConstantSDNode *CN =
10150       cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
10151     int X0, X1, Y0, Y1;
10152     const APInt &Offset0 = CN->getAPIntValue();
10153     APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
10154 
10155     X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
10156     Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
10157     X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
10158     Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
10159 
10160     unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
10161 
10162     APInt CNV = Offset0;
10163     if (X0 < 0) CNV = -CNV;
10164     if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
10165     else CNV = CNV - Offset1;
10166 
10167     SDLoc DL(OtherUses[i]);
10168 
10169     // We can now generate the new expression.
10170     SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
10171     SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
10172 
10173     SDValue NewUse = DAG.getNode(Opcode,
10174                                  DL,
10175                                  OtherUses[i]->getValueType(0), NewOp1, NewOp2);
10176     DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
10177     deleteAndRecombine(OtherUses[i]);
10178   }
10179 
10180   // Replace the uses of Ptr with uses of the updated base value.
10181   DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
10182   deleteAndRecombine(Ptr.getNode());
10183 
10184   return true;
10185 }
10186 
10187 /// Try to combine a load/store with a add/sub of the base pointer node into a
10188 /// post-indexed load/store. The transformation folded the add/subtract into the
10189 /// new indexed load/store effectively and all of its uses are redirected to the
10190 /// new load/store.
10191 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
10192   if (Level < AfterLegalizeDAG)
10193     return false;
10194 
10195   bool isLoad = true;
10196   SDValue Ptr;
10197   EVT VT;
10198   if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
10199     if (LD->isIndexed())
10200       return false;
10201     VT = LD->getMemoryVT();
10202     if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
10203         !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
10204       return false;
10205     Ptr = LD->getBasePtr();
10206   } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
10207     if (ST->isIndexed())
10208       return false;
10209     VT = ST->getMemoryVT();
10210     if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
10211         !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
10212       return false;
10213     Ptr = ST->getBasePtr();
10214     isLoad = false;
10215   } else {
10216     return false;
10217   }
10218 
10219   if (Ptr.getNode()->hasOneUse())
10220     return false;
10221 
10222   for (SDNode *Op : Ptr.getNode()->uses()) {
10223     if (Op == N ||
10224         (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
10225       continue;
10226 
10227     SDValue BasePtr;
10228     SDValue Offset;
10229     ISD::MemIndexedMode AM = ISD::UNINDEXED;
10230     if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
10231       // Don't create a indexed load / store with zero offset.
10232       if (isNullConstant(Offset))
10233         continue;
10234 
10235       // Try turning it into a post-indexed load / store except when
10236       // 1) All uses are load / store ops that use it as base ptr (and
10237       //    it may be folded as addressing mmode).
10238       // 2) Op must be independent of N, i.e. Op is neither a predecessor
10239       //    nor a successor of N. Otherwise, if Op is folded that would
10240       //    create a cycle.
10241 
10242       if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
10243         continue;
10244 
10245       // Check for #1.
10246       bool TryNext = false;
10247       for (SDNode *Use : BasePtr.getNode()->uses()) {
10248         if (Use == Ptr.getNode())
10249           continue;
10250 
10251         // If all the uses are load / store addresses, then don't do the
10252         // transformation.
10253         if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
10254           bool RealUse = false;
10255           for (SDNode *UseUse : Use->uses()) {
10256             if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
10257               RealUse = true;
10258           }
10259 
10260           if (!RealUse) {
10261             TryNext = true;
10262             break;
10263           }
10264         }
10265       }
10266 
10267       if (TryNext)
10268         continue;
10269 
10270       // Check for #2
10271       if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
10272         SDValue Result = isLoad
10273           ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
10274                                BasePtr, Offset, AM)
10275           : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
10276                                 BasePtr, Offset, AM);
10277         ++PostIndexedNodes;
10278         ++NodesCombined;
10279         DEBUG(dbgs() << "\nReplacing.5 ";
10280               N->dump(&DAG);
10281               dbgs() << "\nWith: ";
10282               Result.getNode()->dump(&DAG);
10283               dbgs() << '\n');
10284         WorklistRemover DeadNodes(*this);
10285         if (isLoad) {
10286           DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
10287           DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
10288         } else {
10289           DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
10290         }
10291 
10292         // Finally, since the node is now dead, remove it from the graph.
10293         deleteAndRecombine(N);
10294 
10295         // Replace the uses of Use with uses of the updated base value.
10296         DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
10297                                       Result.getValue(isLoad ? 1 : 0));
10298         deleteAndRecombine(Op);
10299         return true;
10300       }
10301     }
10302   }
10303 
10304   return false;
10305 }
10306 
10307 /// \brief Return the base-pointer arithmetic from an indexed \p LD.
10308 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
10309   ISD::MemIndexedMode AM = LD->getAddressingMode();
10310   assert(AM != ISD::UNINDEXED);
10311   SDValue BP = LD->getOperand(1);
10312   SDValue Inc = LD->getOperand(2);
10313 
10314   // Some backends use TargetConstants for load offsets, but don't expect
10315   // TargetConstants in general ADD nodes. We can convert these constants into
10316   // regular Constants (if the constant is not opaque).
10317   assert((Inc.getOpcode() != ISD::TargetConstant ||
10318           !cast<ConstantSDNode>(Inc)->isOpaque()) &&
10319          "Cannot split out indexing using opaque target constants");
10320   if (Inc.getOpcode() == ISD::TargetConstant) {
10321     ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
10322     Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
10323                           ConstInc->getValueType(0));
10324   }
10325 
10326   unsigned Opc =
10327       (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
10328   return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
10329 }
10330 
10331 SDValue DAGCombiner::visitLOAD(SDNode *N) {
10332   LoadSDNode *LD  = cast<LoadSDNode>(N);
10333   SDValue Chain = LD->getChain();
10334   SDValue Ptr   = LD->getBasePtr();
10335 
10336   // If load is not volatile and there are no uses of the loaded value (and
10337   // the updated indexed value in case of indexed loads), change uses of the
10338   // chain value into uses of the chain input (i.e. delete the dead load).
10339   if (!LD->isVolatile()) {
10340     if (N->getValueType(1) == MVT::Other) {
10341       // Unindexed loads.
10342       if (!N->hasAnyUseOfValue(0)) {
10343         // It's not safe to use the two value CombineTo variant here. e.g.
10344         // v1, chain2 = load chain1, loc
10345         // v2, chain3 = load chain2, loc
10346         // v3         = add v2, c
10347         // Now we replace use of chain2 with chain1.  This makes the second load
10348         // isomorphic to the one we are deleting, and thus makes this load live.
10349         DEBUG(dbgs() << "\nReplacing.6 ";
10350               N->dump(&DAG);
10351               dbgs() << "\nWith chain: ";
10352               Chain.getNode()->dump(&DAG);
10353               dbgs() << "\n");
10354         WorklistRemover DeadNodes(*this);
10355         DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
10356 
10357         if (N->use_empty())
10358           deleteAndRecombine(N);
10359 
10360         return SDValue(N, 0);   // Return N so it doesn't get rechecked!
10361       }
10362     } else {
10363       // Indexed loads.
10364       assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
10365 
10366       // If this load has an opaque TargetConstant offset, then we cannot split
10367       // the indexing into an add/sub directly (that TargetConstant may not be
10368       // valid for a different type of node, and we cannot convert an opaque
10369       // target constant into a regular constant).
10370       bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant &&
10371                        cast<ConstantSDNode>(LD->getOperand(2))->isOpaque();
10372 
10373       if (!N->hasAnyUseOfValue(0) &&
10374           ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) {
10375         SDValue Undef = DAG.getUNDEF(N->getValueType(0));
10376         SDValue Index;
10377         if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) {
10378           Index = SplitIndexingFromLoad(LD);
10379           // Try to fold the base pointer arithmetic into subsequent loads and
10380           // stores.
10381           AddUsersToWorklist(N);
10382         } else
10383           Index = DAG.getUNDEF(N->getValueType(1));
10384         DEBUG(dbgs() << "\nReplacing.7 ";
10385               N->dump(&DAG);
10386               dbgs() << "\nWith: ";
10387               Undef.getNode()->dump(&DAG);
10388               dbgs() << " and 2 other values\n");
10389         WorklistRemover DeadNodes(*this);
10390         DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
10391         DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
10392         DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
10393         deleteAndRecombine(N);
10394         return SDValue(N, 0);   // Return N so it doesn't get rechecked!
10395       }
10396     }
10397   }
10398 
10399   // If this load is directly stored, replace the load value with the stored
10400   // value.
10401   // TODO: Handle store large -> read small portion.
10402   // TODO: Handle TRUNCSTORE/LOADEXT
10403   if (OptLevel != CodeGenOpt::None &&
10404       ISD::isNormalLoad(N) && !LD->isVolatile()) {
10405     if (ISD::isNON_TRUNCStore(Chain.getNode())) {
10406       StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
10407       if (PrevST->getBasePtr() == Ptr &&
10408           PrevST->getValue().getValueType() == N->getValueType(0))
10409       return CombineTo(N, Chain.getOperand(1), Chain);
10410     }
10411   }
10412 
10413   // Try to infer better alignment information than the load already has.
10414   if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
10415     if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
10416       if (Align > LD->getMemOperand()->getBaseAlignment()) {
10417         SDValue NewLoad = DAG.getExtLoad(
10418             LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr,
10419             LD->getPointerInfo(), LD->getMemoryVT(), Align,
10420             LD->getMemOperand()->getFlags(), LD->getAAInfo());
10421         if (NewLoad.getNode() != N)
10422           return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
10423       }
10424     }
10425   }
10426 
10427   bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
10428                                                   : DAG.getSubtarget().useAA();
10429 #ifndef NDEBUG
10430   if (CombinerAAOnlyFunc.getNumOccurrences() &&
10431       CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
10432     UseAA = false;
10433 #endif
10434   if (UseAA && LD->isUnindexed()) {
10435     // Walk up chain skipping non-aliasing memory nodes.
10436     SDValue BetterChain = FindBetterChain(N, Chain);
10437 
10438     // If there is a better chain.
10439     if (Chain != BetterChain) {
10440       SDValue ReplLoad;
10441 
10442       // Replace the chain to void dependency.
10443       if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
10444         ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
10445                                BetterChain, Ptr, LD->getMemOperand());
10446       } else {
10447         ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
10448                                   LD->getValueType(0),
10449                                   BetterChain, Ptr, LD->getMemoryVT(),
10450                                   LD->getMemOperand());
10451       }
10452 
10453       // Create token factor to keep old chain connected.
10454       SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
10455                                   MVT::Other, Chain, ReplLoad.getValue(1));
10456 
10457       // Make sure the new and old chains are cleaned up.
10458       AddToWorklist(Token.getNode());
10459 
10460       // Replace uses with load result and token factor. Don't add users
10461       // to work list.
10462       return CombineTo(N, ReplLoad.getValue(0), Token, false);
10463     }
10464   }
10465 
10466   // Try transforming N to an indexed load.
10467   if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
10468     return SDValue(N, 0);
10469 
10470   // Try to slice up N to more direct loads if the slices are mapped to
10471   // different register banks or pairing can take place.
10472   if (SliceUpLoad(N))
10473     return SDValue(N, 0);
10474 
10475   return SDValue();
10476 }
10477 
10478 namespace {
10479 /// \brief Helper structure used to slice a load in smaller loads.
10480 /// Basically a slice is obtained from the following sequence:
10481 /// Origin = load Ty1, Base
10482 /// Shift = srl Ty1 Origin, CstTy Amount
10483 /// Inst = trunc Shift to Ty2
10484 ///
10485 /// Then, it will be rewriten into:
10486 /// Slice = load SliceTy, Base + SliceOffset
10487 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
10488 ///
10489 /// SliceTy is deduced from the number of bits that are actually used to
10490 /// build Inst.
10491 struct LoadedSlice {
10492   /// \brief Helper structure used to compute the cost of a slice.
10493   struct Cost {
10494     /// Are we optimizing for code size.
10495     bool ForCodeSize;
10496     /// Various cost.
10497     unsigned Loads;
10498     unsigned Truncates;
10499     unsigned CrossRegisterBanksCopies;
10500     unsigned ZExts;
10501     unsigned Shift;
10502 
10503     Cost(bool ForCodeSize = false)
10504         : ForCodeSize(ForCodeSize), Loads(0), Truncates(0),
10505           CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {}
10506 
10507     /// \brief Get the cost of one isolated slice.
10508     Cost(const LoadedSlice &LS, bool ForCodeSize = false)
10509         : ForCodeSize(ForCodeSize), Loads(1), Truncates(0),
10510           CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {
10511       EVT TruncType = LS.Inst->getValueType(0);
10512       EVT LoadedType = LS.getLoadedType();
10513       if (TruncType != LoadedType &&
10514           !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
10515         ZExts = 1;
10516     }
10517 
10518     /// \brief Account for slicing gain in the current cost.
10519     /// Slicing provide a few gains like removing a shift or a
10520     /// truncate. This method allows to grow the cost of the original
10521     /// load with the gain from this slice.
10522     void addSliceGain(const LoadedSlice &LS) {
10523       // Each slice saves a truncate.
10524       const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
10525       if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(),
10526                               LS.Inst->getValueType(0)))
10527         ++Truncates;
10528       // If there is a shift amount, this slice gets rid of it.
10529       if (LS.Shift)
10530         ++Shift;
10531       // If this slice can merge a cross register bank copy, account for it.
10532       if (LS.canMergeExpensiveCrossRegisterBankCopy())
10533         ++CrossRegisterBanksCopies;
10534     }
10535 
10536     Cost &operator+=(const Cost &RHS) {
10537       Loads += RHS.Loads;
10538       Truncates += RHS.Truncates;
10539       CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
10540       ZExts += RHS.ZExts;
10541       Shift += RHS.Shift;
10542       return *this;
10543     }
10544 
10545     bool operator==(const Cost &RHS) const {
10546       return Loads == RHS.Loads && Truncates == RHS.Truncates &&
10547              CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
10548              ZExts == RHS.ZExts && Shift == RHS.Shift;
10549     }
10550 
10551     bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
10552 
10553     bool operator<(const Cost &RHS) const {
10554       // Assume cross register banks copies are as expensive as loads.
10555       // FIXME: Do we want some more target hooks?
10556       unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
10557       unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
10558       // Unless we are optimizing for code size, consider the
10559       // expensive operation first.
10560       if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
10561         return ExpensiveOpsLHS < ExpensiveOpsRHS;
10562       return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
10563              (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
10564     }
10565 
10566     bool operator>(const Cost &RHS) const { return RHS < *this; }
10567 
10568     bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
10569 
10570     bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
10571   };
10572   // The last instruction that represent the slice. This should be a
10573   // truncate instruction.
10574   SDNode *Inst;
10575   // The original load instruction.
10576   LoadSDNode *Origin;
10577   // The right shift amount in bits from the original load.
10578   unsigned Shift;
10579   // The DAG from which Origin came from.
10580   // This is used to get some contextual information about legal types, etc.
10581   SelectionDAG *DAG;
10582 
10583   LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
10584               unsigned Shift = 0, SelectionDAG *DAG = nullptr)
10585       : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
10586 
10587   /// \brief Get the bits used in a chunk of bits \p BitWidth large.
10588   /// \return Result is \p BitWidth and has used bits set to 1 and
10589   ///         not used bits set to 0.
10590   APInt getUsedBits() const {
10591     // Reproduce the trunc(lshr) sequence:
10592     // - Start from the truncated value.
10593     // - Zero extend to the desired bit width.
10594     // - Shift left.
10595     assert(Origin && "No original load to compare against.");
10596     unsigned BitWidth = Origin->getValueSizeInBits(0);
10597     assert(Inst && "This slice is not bound to an instruction");
10598     assert(Inst->getValueSizeInBits(0) <= BitWidth &&
10599            "Extracted slice is bigger than the whole type!");
10600     APInt UsedBits(Inst->getValueSizeInBits(0), 0);
10601     UsedBits.setAllBits();
10602     UsedBits = UsedBits.zext(BitWidth);
10603     UsedBits <<= Shift;
10604     return UsedBits;
10605   }
10606 
10607   /// \brief Get the size of the slice to be loaded in bytes.
10608   unsigned getLoadedSize() const {
10609     unsigned SliceSize = getUsedBits().countPopulation();
10610     assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
10611     return SliceSize / 8;
10612   }
10613 
10614   /// \brief Get the type that will be loaded for this slice.
10615   /// Note: This may not be the final type for the slice.
10616   EVT getLoadedType() const {
10617     assert(DAG && "Missing context");
10618     LLVMContext &Ctxt = *DAG->getContext();
10619     return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
10620   }
10621 
10622   /// \brief Get the alignment of the load used for this slice.
10623   unsigned getAlignment() const {
10624     unsigned Alignment = Origin->getAlignment();
10625     unsigned Offset = getOffsetFromBase();
10626     if (Offset != 0)
10627       Alignment = MinAlign(Alignment, Alignment + Offset);
10628     return Alignment;
10629   }
10630 
10631   /// \brief Check if this slice can be rewritten with legal operations.
10632   bool isLegal() const {
10633     // An invalid slice is not legal.
10634     if (!Origin || !Inst || !DAG)
10635       return false;
10636 
10637     // Offsets are for indexed load only, we do not handle that.
10638     if (!Origin->getOffset().isUndef())
10639       return false;
10640 
10641     const TargetLowering &TLI = DAG->getTargetLoweringInfo();
10642 
10643     // Check that the type is legal.
10644     EVT SliceType = getLoadedType();
10645     if (!TLI.isTypeLegal(SliceType))
10646       return false;
10647 
10648     // Check that the load is legal for this type.
10649     if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
10650       return false;
10651 
10652     // Check that the offset can be computed.
10653     // 1. Check its type.
10654     EVT PtrType = Origin->getBasePtr().getValueType();
10655     if (PtrType == MVT::Untyped || PtrType.isExtended())
10656       return false;
10657 
10658     // 2. Check that it fits in the immediate.
10659     if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
10660       return false;
10661 
10662     // 3. Check that the computation is legal.
10663     if (!TLI.isOperationLegal(ISD::ADD, PtrType))
10664       return false;
10665 
10666     // Check that the zext is legal if it needs one.
10667     EVT TruncateType = Inst->getValueType(0);
10668     if (TruncateType != SliceType &&
10669         !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
10670       return false;
10671 
10672     return true;
10673   }
10674 
10675   /// \brief Get the offset in bytes of this slice in the original chunk of
10676   /// bits.
10677   /// \pre DAG != nullptr.
10678   uint64_t getOffsetFromBase() const {
10679     assert(DAG && "Missing context.");
10680     bool IsBigEndian = DAG->getDataLayout().isBigEndian();
10681     assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
10682     uint64_t Offset = Shift / 8;
10683     unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
10684     assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
10685            "The size of the original loaded type is not a multiple of a"
10686            " byte.");
10687     // If Offset is bigger than TySizeInBytes, it means we are loading all
10688     // zeros. This should have been optimized before in the process.
10689     assert(TySizeInBytes > Offset &&
10690            "Invalid shift amount for given loaded size");
10691     if (IsBigEndian)
10692       Offset = TySizeInBytes - Offset - getLoadedSize();
10693     return Offset;
10694   }
10695 
10696   /// \brief Generate the sequence of instructions to load the slice
10697   /// represented by this object and redirect the uses of this slice to
10698   /// this new sequence of instructions.
10699   /// \pre this->Inst && this->Origin are valid Instructions and this
10700   /// object passed the legal check: LoadedSlice::isLegal returned true.
10701   /// \return The last instruction of the sequence used to load the slice.
10702   SDValue loadSlice() const {
10703     assert(Inst && Origin && "Unable to replace a non-existing slice.");
10704     const SDValue &OldBaseAddr = Origin->getBasePtr();
10705     SDValue BaseAddr = OldBaseAddr;
10706     // Get the offset in that chunk of bytes w.r.t. the endianness.
10707     int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
10708     assert(Offset >= 0 && "Offset too big to fit in int64_t!");
10709     if (Offset) {
10710       // BaseAddr = BaseAddr + Offset.
10711       EVT ArithType = BaseAddr.getValueType();
10712       SDLoc DL(Origin);
10713       BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
10714                               DAG->getConstant(Offset, DL, ArithType));
10715     }
10716 
10717     // Create the type of the loaded slice according to its size.
10718     EVT SliceType = getLoadedType();
10719 
10720     // Create the load for the slice.
10721     SDValue LastInst =
10722         DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
10723                      Origin->getPointerInfo().getWithOffset(Offset),
10724                      getAlignment(), Origin->getMemOperand()->getFlags());
10725     // If the final type is not the same as the loaded type, this means that
10726     // we have to pad with zero. Create a zero extend for that.
10727     EVT FinalType = Inst->getValueType(0);
10728     if (SliceType != FinalType)
10729       LastInst =
10730           DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
10731     return LastInst;
10732   }
10733 
10734   /// \brief Check if this slice can be merged with an expensive cross register
10735   /// bank copy. E.g.,
10736   /// i = load i32
10737   /// f = bitcast i32 i to float
10738   bool canMergeExpensiveCrossRegisterBankCopy() const {
10739     if (!Inst || !Inst->hasOneUse())
10740       return false;
10741     SDNode *Use = *Inst->use_begin();
10742     if (Use->getOpcode() != ISD::BITCAST)
10743       return false;
10744     assert(DAG && "Missing context");
10745     const TargetLowering &TLI = DAG->getTargetLoweringInfo();
10746     EVT ResVT = Use->getValueType(0);
10747     const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT());
10748     const TargetRegisterClass *ArgRC =
10749         TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT());
10750     if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
10751       return false;
10752 
10753     // At this point, we know that we perform a cross-register-bank copy.
10754     // Check if it is expensive.
10755     const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
10756     // Assume bitcasts are cheap, unless both register classes do not
10757     // explicitly share a common sub class.
10758     if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
10759       return false;
10760 
10761     // Check if it will be merged with the load.
10762     // 1. Check the alignment constraint.
10763     unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment(
10764         ResVT.getTypeForEVT(*DAG->getContext()));
10765 
10766     if (RequiredAlignment > getAlignment())
10767       return false;
10768 
10769     // 2. Check that the load is a legal operation for that type.
10770     if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
10771       return false;
10772 
10773     // 3. Check that we do not have a zext in the way.
10774     if (Inst->getValueType(0) != getLoadedType())
10775       return false;
10776 
10777     return true;
10778   }
10779 };
10780 }
10781 
10782 /// \brief Check that all bits set in \p UsedBits form a dense region, i.e.,
10783 /// \p UsedBits looks like 0..0 1..1 0..0.
10784 static bool areUsedBitsDense(const APInt &UsedBits) {
10785   // If all the bits are one, this is dense!
10786   if (UsedBits.isAllOnesValue())
10787     return true;
10788 
10789   // Get rid of the unused bits on the right.
10790   APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
10791   // Get rid of the unused bits on the left.
10792   if (NarrowedUsedBits.countLeadingZeros())
10793     NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
10794   // Check that the chunk of bits is completely used.
10795   return NarrowedUsedBits.isAllOnesValue();
10796 }
10797 
10798 /// \brief Check whether or not \p First and \p Second are next to each other
10799 /// in memory. This means that there is no hole between the bits loaded
10800 /// by \p First and the bits loaded by \p Second.
10801 static bool areSlicesNextToEachOther(const LoadedSlice &First,
10802                                      const LoadedSlice &Second) {
10803   assert(First.Origin == Second.Origin && First.Origin &&
10804          "Unable to match different memory origins.");
10805   APInt UsedBits = First.getUsedBits();
10806   assert((UsedBits & Second.getUsedBits()) == 0 &&
10807          "Slices are not supposed to overlap.");
10808   UsedBits |= Second.getUsedBits();
10809   return areUsedBitsDense(UsedBits);
10810 }
10811 
10812 /// \brief Adjust the \p GlobalLSCost according to the target
10813 /// paring capabilities and the layout of the slices.
10814 /// \pre \p GlobalLSCost should account for at least as many loads as
10815 /// there is in the slices in \p LoadedSlices.
10816 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
10817                                  LoadedSlice::Cost &GlobalLSCost) {
10818   unsigned NumberOfSlices = LoadedSlices.size();
10819   // If there is less than 2 elements, no pairing is possible.
10820   if (NumberOfSlices < 2)
10821     return;
10822 
10823   // Sort the slices so that elements that are likely to be next to each
10824   // other in memory are next to each other in the list.
10825   std::sort(LoadedSlices.begin(), LoadedSlices.end(),
10826             [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
10827     assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
10828     return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
10829   });
10830   const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
10831   // First (resp. Second) is the first (resp. Second) potentially candidate
10832   // to be placed in a paired load.
10833   const LoadedSlice *First = nullptr;
10834   const LoadedSlice *Second = nullptr;
10835   for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
10836                 // Set the beginning of the pair.
10837                                                            First = Second) {
10838 
10839     Second = &LoadedSlices[CurrSlice];
10840 
10841     // If First is NULL, it means we start a new pair.
10842     // Get to the next slice.
10843     if (!First)
10844       continue;
10845 
10846     EVT LoadedType = First->getLoadedType();
10847 
10848     // If the types of the slices are different, we cannot pair them.
10849     if (LoadedType != Second->getLoadedType())
10850       continue;
10851 
10852     // Check if the target supplies paired loads for this type.
10853     unsigned RequiredAlignment = 0;
10854     if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
10855       // move to the next pair, this type is hopeless.
10856       Second = nullptr;
10857       continue;
10858     }
10859     // Check if we meet the alignment requirement.
10860     if (RequiredAlignment > First->getAlignment())
10861       continue;
10862 
10863     // Check that both loads are next to each other in memory.
10864     if (!areSlicesNextToEachOther(*First, *Second))
10865       continue;
10866 
10867     assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
10868     --GlobalLSCost.Loads;
10869     // Move to the next pair.
10870     Second = nullptr;
10871   }
10872 }
10873 
10874 /// \brief Check the profitability of all involved LoadedSlice.
10875 /// Currently, it is considered profitable if there is exactly two
10876 /// involved slices (1) which are (2) next to each other in memory, and
10877 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
10878 ///
10879 /// Note: The order of the elements in \p LoadedSlices may be modified, but not
10880 /// the elements themselves.
10881 ///
10882 /// FIXME: When the cost model will be mature enough, we can relax
10883 /// constraints (1) and (2).
10884 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
10885                                 const APInt &UsedBits, bool ForCodeSize) {
10886   unsigned NumberOfSlices = LoadedSlices.size();
10887   if (StressLoadSlicing)
10888     return NumberOfSlices > 1;
10889 
10890   // Check (1).
10891   if (NumberOfSlices != 2)
10892     return false;
10893 
10894   // Check (2).
10895   if (!areUsedBitsDense(UsedBits))
10896     return false;
10897 
10898   // Check (3).
10899   LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
10900   // The original code has one big load.
10901   OrigCost.Loads = 1;
10902   for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
10903     const LoadedSlice &LS = LoadedSlices[CurrSlice];
10904     // Accumulate the cost of all the slices.
10905     LoadedSlice::Cost SliceCost(LS, ForCodeSize);
10906     GlobalSlicingCost += SliceCost;
10907 
10908     // Account as cost in the original configuration the gain obtained
10909     // with the current slices.
10910     OrigCost.addSliceGain(LS);
10911   }
10912 
10913   // If the target supports paired load, adjust the cost accordingly.
10914   adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
10915   return OrigCost > GlobalSlicingCost;
10916 }
10917 
10918 /// \brief If the given load, \p LI, is used only by trunc or trunc(lshr)
10919 /// operations, split it in the various pieces being extracted.
10920 ///
10921 /// This sort of thing is introduced by SROA.
10922 /// This slicing takes care not to insert overlapping loads.
10923 /// \pre LI is a simple load (i.e., not an atomic or volatile load).
10924 bool DAGCombiner::SliceUpLoad(SDNode *N) {
10925   if (Level < AfterLegalizeDAG)
10926     return false;
10927 
10928   LoadSDNode *LD = cast<LoadSDNode>(N);
10929   if (LD->isVolatile() || !ISD::isNormalLoad(LD) ||
10930       !LD->getValueType(0).isInteger())
10931     return false;
10932 
10933   // Keep track of already used bits to detect overlapping values.
10934   // In that case, we will just abort the transformation.
10935   APInt UsedBits(LD->getValueSizeInBits(0), 0);
10936 
10937   SmallVector<LoadedSlice, 4> LoadedSlices;
10938 
10939   // Check if this load is used as several smaller chunks of bits.
10940   // Basically, look for uses in trunc or trunc(lshr) and record a new chain
10941   // of computation for each trunc.
10942   for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
10943        UI != UIEnd; ++UI) {
10944     // Skip the uses of the chain.
10945     if (UI.getUse().getResNo() != 0)
10946       continue;
10947 
10948     SDNode *User = *UI;
10949     unsigned Shift = 0;
10950 
10951     // Check if this is a trunc(lshr).
10952     if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
10953         isa<ConstantSDNode>(User->getOperand(1))) {
10954       Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue();
10955       User = *User->use_begin();
10956     }
10957 
10958     // At this point, User is a Truncate, iff we encountered, trunc or
10959     // trunc(lshr).
10960     if (User->getOpcode() != ISD::TRUNCATE)
10961       return false;
10962 
10963     // The width of the type must be a power of 2 and greater than 8-bits.
10964     // Otherwise the load cannot be represented in LLVM IR.
10965     // Moreover, if we shifted with a non-8-bits multiple, the slice
10966     // will be across several bytes. We do not support that.
10967     unsigned Width = User->getValueSizeInBits(0);
10968     if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
10969       return 0;
10970 
10971     // Build the slice for this chain of computations.
10972     LoadedSlice LS(User, LD, Shift, &DAG);
10973     APInt CurrentUsedBits = LS.getUsedBits();
10974 
10975     // Check if this slice overlaps with another.
10976     if ((CurrentUsedBits & UsedBits) != 0)
10977       return false;
10978     // Update the bits used globally.
10979     UsedBits |= CurrentUsedBits;
10980 
10981     // Check if the new slice would be legal.
10982     if (!LS.isLegal())
10983       return false;
10984 
10985     // Record the slice.
10986     LoadedSlices.push_back(LS);
10987   }
10988 
10989   // Abort slicing if it does not seem to be profitable.
10990   if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
10991     return false;
10992 
10993   ++SlicedLoads;
10994 
10995   // Rewrite each chain to use an independent load.
10996   // By construction, each chain can be represented by a unique load.
10997 
10998   // Prepare the argument for the new token factor for all the slices.
10999   SmallVector<SDValue, 8> ArgChains;
11000   for (SmallVectorImpl<LoadedSlice>::const_iterator
11001            LSIt = LoadedSlices.begin(),
11002            LSItEnd = LoadedSlices.end();
11003        LSIt != LSItEnd; ++LSIt) {
11004     SDValue SliceInst = LSIt->loadSlice();
11005     CombineTo(LSIt->Inst, SliceInst, true);
11006     if (SliceInst.getOpcode() != ISD::LOAD)
11007       SliceInst = SliceInst.getOperand(0);
11008     assert(SliceInst->getOpcode() == ISD::LOAD &&
11009            "It takes more than a zext to get to the loaded slice!!");
11010     ArgChains.push_back(SliceInst.getValue(1));
11011   }
11012 
11013   SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
11014                               ArgChains);
11015   DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
11016   return true;
11017 }
11018 
11019 /// Check to see if V is (and load (ptr), imm), where the load is having
11020 /// specific bytes cleared out.  If so, return the byte size being masked out
11021 /// and the shift amount.
11022 static std::pair<unsigned, unsigned>
11023 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
11024   std::pair<unsigned, unsigned> Result(0, 0);
11025 
11026   // Check for the structure we're looking for.
11027   if (V->getOpcode() != ISD::AND ||
11028       !isa<ConstantSDNode>(V->getOperand(1)) ||
11029       !ISD::isNormalLoad(V->getOperand(0).getNode()))
11030     return Result;
11031 
11032   // Check the chain and pointer.
11033   LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
11034   if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
11035 
11036   // The store should be chained directly to the load or be an operand of a
11037   // tokenfactor.
11038   if (LD == Chain.getNode())
11039     ; // ok.
11040   else if (Chain->getOpcode() != ISD::TokenFactor)
11041     return Result; // Fail.
11042   else {
11043     bool isOk = false;
11044     for (const SDValue &ChainOp : Chain->op_values())
11045       if (ChainOp.getNode() == LD) {
11046         isOk = true;
11047         break;
11048       }
11049     if (!isOk) return Result;
11050   }
11051 
11052   // This only handles simple types.
11053   if (V.getValueType() != MVT::i16 &&
11054       V.getValueType() != MVT::i32 &&
11055       V.getValueType() != MVT::i64)
11056     return Result;
11057 
11058   // Check the constant mask.  Invert it so that the bits being masked out are
11059   // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
11060   // follow the sign bit for uniformity.
11061   uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
11062   unsigned NotMaskLZ = countLeadingZeros(NotMask);
11063   if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
11064   unsigned NotMaskTZ = countTrailingZeros(NotMask);
11065   if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
11066   if (NotMaskLZ == 64) return Result;  // All zero mask.
11067 
11068   // See if we have a continuous run of bits.  If so, we have 0*1+0*
11069   if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
11070     return Result;
11071 
11072   // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
11073   if (V.getValueType() != MVT::i64 && NotMaskLZ)
11074     NotMaskLZ -= 64-V.getValueSizeInBits();
11075 
11076   unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
11077   switch (MaskedBytes) {
11078   case 1:
11079   case 2:
11080   case 4: break;
11081   default: return Result; // All one mask, or 5-byte mask.
11082   }
11083 
11084   // Verify that the first bit starts at a multiple of mask so that the access
11085   // is aligned the same as the access width.
11086   if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
11087 
11088   Result.first = MaskedBytes;
11089   Result.second = NotMaskTZ/8;
11090   return Result;
11091 }
11092 
11093 
11094 /// Check to see if IVal is something that provides a value as specified by
11095 /// MaskInfo. If so, replace the specified store with a narrower store of
11096 /// truncated IVal.
11097 static SDNode *
11098 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
11099                                 SDValue IVal, StoreSDNode *St,
11100                                 DAGCombiner *DC) {
11101   unsigned NumBytes = MaskInfo.first;
11102   unsigned ByteShift = MaskInfo.second;
11103   SelectionDAG &DAG = DC->getDAG();
11104 
11105   // Check to see if IVal is all zeros in the part being masked in by the 'or'
11106   // that uses this.  If not, this is not a replacement.
11107   APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
11108                                   ByteShift*8, (ByteShift+NumBytes)*8);
11109   if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr;
11110 
11111   // Check that it is legal on the target to do this.  It is legal if the new
11112   // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
11113   // legalization.
11114   MVT VT = MVT::getIntegerVT(NumBytes*8);
11115   if (!DC->isTypeLegal(VT))
11116     return nullptr;
11117 
11118   // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
11119   // shifted by ByteShift and truncated down to NumBytes.
11120   if (ByteShift) {
11121     SDLoc DL(IVal);
11122     IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal,
11123                        DAG.getConstant(ByteShift*8, DL,
11124                                     DC->getShiftAmountTy(IVal.getValueType())));
11125   }
11126 
11127   // Figure out the offset for the store and the alignment of the access.
11128   unsigned StOffset;
11129   unsigned NewAlign = St->getAlignment();
11130 
11131   if (DAG.getDataLayout().isLittleEndian())
11132     StOffset = ByteShift;
11133   else
11134     StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
11135 
11136   SDValue Ptr = St->getBasePtr();
11137   if (StOffset) {
11138     SDLoc DL(IVal);
11139     Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(),
11140                       Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType()));
11141     NewAlign = MinAlign(NewAlign, StOffset);
11142   }
11143 
11144   // Truncate down to the new size.
11145   IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
11146 
11147   ++OpsNarrowed;
11148   return DAG
11149       .getStore(St->getChain(), SDLoc(St), IVal, Ptr,
11150                 St->getPointerInfo().getWithOffset(StOffset), NewAlign)
11151       .getNode();
11152 }
11153 
11154 
11155 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and
11156 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
11157 /// narrowing the load and store if it would end up being a win for performance
11158 /// or code size.
11159 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
11160   StoreSDNode *ST  = cast<StoreSDNode>(N);
11161   if (ST->isVolatile())
11162     return SDValue();
11163 
11164   SDValue Chain = ST->getChain();
11165   SDValue Value = ST->getValue();
11166   SDValue Ptr   = ST->getBasePtr();
11167   EVT VT = Value.getValueType();
11168 
11169   if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
11170     return SDValue();
11171 
11172   unsigned Opc = Value.getOpcode();
11173 
11174   // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
11175   // is a byte mask indicating a consecutive number of bytes, check to see if
11176   // Y is known to provide just those bytes.  If so, we try to replace the
11177   // load + replace + store sequence with a single (narrower) store, which makes
11178   // the load dead.
11179   if (Opc == ISD::OR) {
11180     std::pair<unsigned, unsigned> MaskedLoad;
11181     MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
11182     if (MaskedLoad.first)
11183       if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
11184                                                   Value.getOperand(1), ST,this))
11185         return SDValue(NewST, 0);
11186 
11187     // Or is commutative, so try swapping X and Y.
11188     MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
11189     if (MaskedLoad.first)
11190       if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
11191                                                   Value.getOperand(0), ST,this))
11192         return SDValue(NewST, 0);
11193   }
11194 
11195   if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
11196       Value.getOperand(1).getOpcode() != ISD::Constant)
11197     return SDValue();
11198 
11199   SDValue N0 = Value.getOperand(0);
11200   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
11201       Chain == SDValue(N0.getNode(), 1)) {
11202     LoadSDNode *LD = cast<LoadSDNode>(N0);
11203     if (LD->getBasePtr() != Ptr ||
11204         LD->getPointerInfo().getAddrSpace() !=
11205         ST->getPointerInfo().getAddrSpace())
11206       return SDValue();
11207 
11208     // Find the type to narrow it the load / op / store to.
11209     SDValue N1 = Value.getOperand(1);
11210     unsigned BitWidth = N1.getValueSizeInBits();
11211     APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
11212     if (Opc == ISD::AND)
11213       Imm ^= APInt::getAllOnesValue(BitWidth);
11214     if (Imm == 0 || Imm.isAllOnesValue())
11215       return SDValue();
11216     unsigned ShAmt = Imm.countTrailingZeros();
11217     unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
11218     unsigned NewBW = NextPowerOf2(MSB - ShAmt);
11219     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
11220     // The narrowing should be profitable, the load/store operation should be
11221     // legal (or custom) and the store size should be equal to the NewVT width.
11222     while (NewBW < BitWidth &&
11223            (NewVT.getStoreSizeInBits() != NewBW ||
11224             !TLI.isOperationLegalOrCustom(Opc, NewVT) ||
11225             !TLI.isNarrowingProfitable(VT, NewVT))) {
11226       NewBW = NextPowerOf2(NewBW);
11227       NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
11228     }
11229     if (NewBW >= BitWidth)
11230       return SDValue();
11231 
11232     // If the lsb changed does not start at the type bitwidth boundary,
11233     // start at the previous one.
11234     if (ShAmt % NewBW)
11235       ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
11236     APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
11237                                    std::min(BitWidth, ShAmt + NewBW));
11238     if ((Imm & Mask) == Imm) {
11239       APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
11240       if (Opc == ISD::AND)
11241         NewImm ^= APInt::getAllOnesValue(NewBW);
11242       uint64_t PtrOff = ShAmt / 8;
11243       // For big endian targets, we need to adjust the offset to the pointer to
11244       // load the correct bytes.
11245       if (DAG.getDataLayout().isBigEndian())
11246         PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
11247 
11248       unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
11249       Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
11250       if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy))
11251         return SDValue();
11252 
11253       SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
11254                                    Ptr.getValueType(), Ptr,
11255                                    DAG.getConstant(PtrOff, SDLoc(LD),
11256                                                    Ptr.getValueType()));
11257       SDValue NewLD =
11258           DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr,
11259                       LD->getPointerInfo().getWithOffset(PtrOff), NewAlign,
11260                       LD->getMemOperand()->getFlags(), LD->getAAInfo());
11261       SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
11262                                    DAG.getConstant(NewImm, SDLoc(Value),
11263                                                    NewVT));
11264       SDValue NewST =
11265           DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr,
11266                        ST->getPointerInfo().getWithOffset(PtrOff), NewAlign);
11267 
11268       AddToWorklist(NewPtr.getNode());
11269       AddToWorklist(NewLD.getNode());
11270       AddToWorklist(NewVal.getNode());
11271       WorklistRemover DeadNodes(*this);
11272       DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
11273       ++OpsNarrowed;
11274       return NewST;
11275     }
11276   }
11277 
11278   return SDValue();
11279 }
11280 
11281 /// For a given floating point load / store pair, if the load value isn't used
11282 /// by any other operations, then consider transforming the pair to integer
11283 /// load / store operations if the target deems the transformation profitable.
11284 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
11285   StoreSDNode *ST  = cast<StoreSDNode>(N);
11286   SDValue Chain = ST->getChain();
11287   SDValue Value = ST->getValue();
11288   if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
11289       Value.hasOneUse() &&
11290       Chain == SDValue(Value.getNode(), 1)) {
11291     LoadSDNode *LD = cast<LoadSDNode>(Value);
11292     EVT VT = LD->getMemoryVT();
11293     if (!VT.isFloatingPoint() ||
11294         VT != ST->getMemoryVT() ||
11295         LD->isNonTemporal() ||
11296         ST->isNonTemporal() ||
11297         LD->getPointerInfo().getAddrSpace() != 0 ||
11298         ST->getPointerInfo().getAddrSpace() != 0)
11299       return SDValue();
11300 
11301     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
11302     if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
11303         !TLI.isOperationLegal(ISD::STORE, IntVT) ||
11304         !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
11305         !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
11306       return SDValue();
11307 
11308     unsigned LDAlign = LD->getAlignment();
11309     unsigned STAlign = ST->getAlignment();
11310     Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
11311     unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy);
11312     if (LDAlign < ABIAlign || STAlign < ABIAlign)
11313       return SDValue();
11314 
11315     SDValue NewLD =
11316         DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(),
11317                     LD->getPointerInfo(), LDAlign);
11318 
11319     SDValue NewST =
11320         DAG.getStore(NewLD.getValue(1), SDLoc(N), NewLD, ST->getBasePtr(),
11321                      ST->getPointerInfo(), STAlign);
11322 
11323     AddToWorklist(NewLD.getNode());
11324     AddToWorklist(NewST.getNode());
11325     WorklistRemover DeadNodes(*this);
11326     DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
11327     ++LdStFP2Int;
11328     return NewST;
11329   }
11330 
11331   return SDValue();
11332 }
11333 
11334 // This is a helper function for visitMUL to check the profitability
11335 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
11336 // MulNode is the original multiply, AddNode is (add x, c1),
11337 // and ConstNode is c2.
11338 //
11339 // If the (add x, c1) has multiple uses, we could increase
11340 // the number of adds if we make this transformation.
11341 // It would only be worth doing this if we can remove a
11342 // multiply in the process. Check for that here.
11343 // To illustrate:
11344 //     (A + c1) * c3
11345 //     (A + c2) * c3
11346 // We're checking for cases where we have common "c3 * A" expressions.
11347 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode,
11348                                               SDValue &AddNode,
11349                                               SDValue &ConstNode) {
11350   APInt Val;
11351 
11352   // If the add only has one use, this would be OK to do.
11353   if (AddNode.getNode()->hasOneUse())
11354     return true;
11355 
11356   // Walk all the users of the constant with which we're multiplying.
11357   for (SDNode *Use : ConstNode->uses()) {
11358 
11359     if (Use == MulNode) // This use is the one we're on right now. Skip it.
11360       continue;
11361 
11362     if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
11363       SDNode *OtherOp;
11364       SDNode *MulVar = AddNode.getOperand(0).getNode();
11365 
11366       // OtherOp is what we're multiplying against the constant.
11367       if (Use->getOperand(0) == ConstNode)
11368         OtherOp = Use->getOperand(1).getNode();
11369       else
11370         OtherOp = Use->getOperand(0).getNode();
11371 
11372       // Check to see if multiply is with the same operand of our "add".
11373       //
11374       //     ConstNode  = CONST
11375       //     Use = ConstNode * A  <-- visiting Use. OtherOp is A.
11376       //     ...
11377       //     AddNode  = (A + c1)  <-- MulVar is A.
11378       //         = AddNode * ConstNode   <-- current visiting instruction.
11379       //
11380       // If we make this transformation, we will have a common
11381       // multiply (ConstNode * A) that we can save.
11382       if (OtherOp == MulVar)
11383         return true;
11384 
11385       // Now check to see if a future expansion will give us a common
11386       // multiply.
11387       //
11388       //     ConstNode  = CONST
11389       //     AddNode    = (A + c1)
11390       //     ...   = AddNode * ConstNode <-- current visiting instruction.
11391       //     ...
11392       //     OtherOp = (A + c2)
11393       //     Use     = OtherOp * ConstNode <-- visiting Use.
11394       //
11395       // If we make this transformation, we will have a common
11396       // multiply (CONST * A) after we also do the same transformation
11397       // to the "t2" instruction.
11398       if (OtherOp->getOpcode() == ISD::ADD &&
11399           DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
11400           OtherOp->getOperand(0).getNode() == MulVar)
11401         return true;
11402     }
11403   }
11404 
11405   // Didn't find a case where this would be profitable.
11406   return false;
11407 }
11408 
11409 SDValue DAGCombiner::getMergedConstantVectorStore(
11410     SelectionDAG &DAG, const SDLoc &SL, ArrayRef<MemOpLink> Stores,
11411     SmallVectorImpl<SDValue> &Chains, EVT Ty) const {
11412   SmallVector<SDValue, 8> BuildVector;
11413 
11414   for (unsigned I = 0, E = Ty.getVectorNumElements(); I != E; ++I) {
11415     StoreSDNode *St = cast<StoreSDNode>(Stores[I].MemNode);
11416     Chains.push_back(St->getChain());
11417     BuildVector.push_back(St->getValue());
11418   }
11419 
11420   return DAG.getBuildVector(Ty, SL, BuildVector);
11421 }
11422 
11423 bool DAGCombiner::MergeStoresOfConstantsOrVecElts(
11424                   SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT,
11425                   unsigned NumStores, bool IsConstantSrc, bool UseVector) {
11426   // Make sure we have something to merge.
11427   if (NumStores < 2)
11428     return false;
11429 
11430   int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8;
11431   LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
11432   unsigned LatestNodeUsed = 0;
11433 
11434   for (unsigned i=0; i < NumStores; ++i) {
11435     // Find a chain for the new wide-store operand. Notice that some
11436     // of the store nodes that we found may not be selected for inclusion
11437     // in the wide store. The chain we use needs to be the chain of the
11438     // latest store node which is *used* and replaced by the wide store.
11439     if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum)
11440       LatestNodeUsed = i;
11441   }
11442 
11443   SmallVector<SDValue, 8> Chains;
11444 
11445   // The latest Node in the DAG.
11446   LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode;
11447   SDLoc DL(StoreNodes[0].MemNode);
11448 
11449   SDValue StoredVal;
11450   if (UseVector) {
11451     bool IsVec = MemVT.isVector();
11452     unsigned Elts = NumStores;
11453     if (IsVec) {
11454       // When merging vector stores, get the total number of elements.
11455       Elts *= MemVT.getVectorNumElements();
11456     }
11457     // Get the type for the merged vector store.
11458     EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
11459     assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
11460 
11461     if (IsConstantSrc) {
11462       StoredVal = getMergedConstantVectorStore(DAG, DL, StoreNodes, Chains, Ty);
11463     } else {
11464       SmallVector<SDValue, 8> Ops;
11465       for (unsigned i = 0; i < NumStores; ++i) {
11466         StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
11467         SDValue Val = St->getValue();
11468         // All operands of BUILD_VECTOR / CONCAT_VECTOR must have the same type.
11469         if (Val.getValueType() != MemVT)
11470           return false;
11471         Ops.push_back(Val);
11472         Chains.push_back(St->getChain());
11473       }
11474 
11475       // Build the extracted vector elements back into a vector.
11476       StoredVal = DAG.getNode(IsVec ? ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
11477                               DL, Ty, Ops);    }
11478   } else {
11479     // We should always use a vector store when merging extracted vector
11480     // elements, so this path implies a store of constants.
11481     assert(IsConstantSrc && "Merged vector elements should use vector store");
11482 
11483     unsigned SizeInBits = NumStores * ElementSizeBytes * 8;
11484     APInt StoreInt(SizeInBits, 0);
11485 
11486     // Construct a single integer constant which is made of the smaller
11487     // constant inputs.
11488     bool IsLE = DAG.getDataLayout().isLittleEndian();
11489     for (unsigned i = 0; i < NumStores; ++i) {
11490       unsigned Idx = IsLE ? (NumStores - 1 - i) : i;
11491       StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
11492       Chains.push_back(St->getChain());
11493 
11494       SDValue Val = St->getValue();
11495       StoreInt <<= ElementSizeBytes * 8;
11496       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
11497         StoreInt |= C->getAPIntValue().zext(SizeInBits);
11498       } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
11499         StoreInt |= C->getValueAPF().bitcastToAPInt().zext(SizeInBits);
11500       } else {
11501         llvm_unreachable("Invalid constant element type");
11502       }
11503     }
11504 
11505     // Create the new Load and Store operations.
11506     EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
11507     StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
11508   }
11509 
11510   assert(!Chains.empty());
11511 
11512   SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
11513   SDValue NewStore = DAG.getStore(NewChain, DL, StoredVal,
11514                                   FirstInChain->getBasePtr(),
11515                                   FirstInChain->getPointerInfo(),
11516                                   FirstInChain->getAlignment());
11517 
11518   bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
11519                                                   : DAG.getSubtarget().useAA();
11520   if (UseAA) {
11521     // Replace all merged stores with the new store.
11522     for (unsigned i = 0; i < NumStores; ++i)
11523       CombineTo(StoreNodes[i].MemNode, NewStore);
11524   } else {
11525     // Replace the last store with the new store.
11526     CombineTo(LatestOp, NewStore);
11527     // Erase all other stores.
11528     for (unsigned i = 0; i < NumStores; ++i) {
11529       if (StoreNodes[i].MemNode == LatestOp)
11530         continue;
11531       StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
11532       // ReplaceAllUsesWith will replace all uses that existed when it was
11533       // called, but graph optimizations may cause new ones to appear. For
11534       // example, the case in pr14333 looks like
11535       //
11536       //  St's chain -> St -> another store -> X
11537       //
11538       // And the only difference from St to the other store is the chain.
11539       // When we change it's chain to be St's chain they become identical,
11540       // get CSEed and the net result is that X is now a use of St.
11541       // Since we know that St is redundant, just iterate.
11542       while (!St->use_empty())
11543         DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
11544       deleteAndRecombine(St);
11545     }
11546   }
11547 
11548   StoreNodes.erase(StoreNodes.begin() + NumStores, StoreNodes.end());
11549   return true;
11550 }
11551 
11552 void DAGCombiner::getStoreMergeAndAliasCandidates(
11553     StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes,
11554     SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes) {
11555   // This holds the base pointer, index, and the offset in bytes from the base
11556   // pointer.
11557   BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr(), DAG);
11558 
11559   // We must have a base and an offset.
11560   if (!BasePtr.Base.getNode())
11561     return;
11562 
11563   // Do not handle stores to undef base pointers.
11564   if (BasePtr.Base.isUndef())
11565     return;
11566 
11567   // Walk up the chain and look for nodes with offsets from the same
11568   // base pointer. Stop when reaching an instruction with a different kind
11569   // or instruction which has a different base pointer.
11570   EVT MemVT = St->getMemoryVT();
11571   unsigned Seq = 0;
11572   StoreSDNode *Index = St;
11573 
11574 
11575   bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
11576                                                   : DAG.getSubtarget().useAA();
11577 
11578   if (UseAA) {
11579     // Look at other users of the same chain. Stores on the same chain do not
11580     // alias. If combiner-aa is enabled, non-aliasing stores are canonicalized
11581     // to be on the same chain, so don't bother looking at adjacent chains.
11582 
11583     SDValue Chain = St->getChain();
11584     for (auto I = Chain->use_begin(), E = Chain->use_end(); I != E; ++I) {
11585       if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) {
11586         if (I.getOperandNo() != 0)
11587           continue;
11588 
11589         if (OtherST->isVolatile() || OtherST->isIndexed())
11590           continue;
11591 
11592         if (OtherST->getMemoryVT() != MemVT)
11593           continue;
11594 
11595         BaseIndexOffset Ptr = BaseIndexOffset::match(OtherST->getBasePtr(), DAG);
11596 
11597         if (Ptr.equalBaseIndex(BasePtr))
11598           StoreNodes.push_back(MemOpLink(OtherST, Ptr.Offset, Seq++));
11599       }
11600     }
11601 
11602     return;
11603   }
11604 
11605   while (Index) {
11606     // If the chain has more than one use, then we can't reorder the mem ops.
11607     if (Index != St && !SDValue(Index, 0)->hasOneUse())
11608       break;
11609 
11610     // Find the base pointer and offset for this memory node.
11611     BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr(), DAG);
11612 
11613     // Check that the base pointer is the same as the original one.
11614     if (!Ptr.equalBaseIndex(BasePtr))
11615       break;
11616 
11617     // The memory operands must not be volatile.
11618     if (Index->isVolatile() || Index->isIndexed())
11619       break;
11620 
11621     // No truncation.
11622     if (Index->isTruncatingStore())
11623       break;
11624 
11625     // The stored memory type must be the same.
11626     if (Index->getMemoryVT() != MemVT)
11627       break;
11628 
11629     // We do not allow under-aligned stores in order to prevent
11630     // overriding stores. NOTE: this is a bad hack. Alignment SHOULD
11631     // be irrelevant here; what MATTERS is that we not move memory
11632     // operations that potentially overlap past each-other.
11633     if (Index->getAlignment() < MemVT.getStoreSize())
11634       break;
11635 
11636     // We found a potential memory operand to merge.
11637     StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
11638 
11639     // Find the next memory operand in the chain. If the next operand in the
11640     // chain is a store then move up and continue the scan with the next
11641     // memory operand. If the next operand is a load save it and use alias
11642     // information to check if it interferes with anything.
11643     SDNode *NextInChain = Index->getChain().getNode();
11644     while (1) {
11645       if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
11646         // We found a store node. Use it for the next iteration.
11647         Index = STn;
11648         break;
11649       } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
11650         if (Ldn->isVolatile()) {
11651           Index = nullptr;
11652           break;
11653         }
11654 
11655         // Save the load node for later. Continue the scan.
11656         AliasLoadNodes.push_back(Ldn);
11657         NextInChain = Ldn->getChain().getNode();
11658         continue;
11659       } else {
11660         Index = nullptr;
11661         break;
11662       }
11663     }
11664   }
11665 }
11666 
11667 // We need to check that merging these stores does not cause a loop
11668 // in the DAG. Any store candidate may depend on another candidate
11669 // indirectly through its operand (we already consider dependencies
11670 // through the chain). Check in parallel by searching up from
11671 // non-chain operands of candidates.
11672 bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
11673     SmallVectorImpl<MemOpLink> &StoreNodes) {
11674   SmallPtrSet<const SDNode *, 16> Visited;
11675   SmallVector<const SDNode *, 8> Worklist;
11676   // search ops of store candidates
11677   for (unsigned i = 0; i < StoreNodes.size(); ++i) {
11678     SDNode *n = StoreNodes[i].MemNode;
11679     // Potential loops may happen only through non-chain operands
11680     for (unsigned j = 1; j < n->getNumOperands(); ++j)
11681       Worklist.push_back(n->getOperand(j).getNode());
11682   }
11683   // search through DAG. We can stop early if we find a storenode
11684   for (unsigned i = 0; i < StoreNodes.size(); ++i) {
11685     if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist))
11686       return false;
11687   }
11688   return true;
11689 }
11690 
11691 bool DAGCombiner::MergeConsecutiveStores(
11692     StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes) {
11693   if (OptLevel == CodeGenOpt::None)
11694     return false;
11695 
11696   EVT MemVT = St->getMemoryVT();
11697   int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8;
11698   bool NoVectors = DAG.getMachineFunction().getFunction()->hasFnAttribute(
11699       Attribute::NoImplicitFloat);
11700 
11701   // This function cannot currently deal with non-byte-sized memory sizes.
11702   if (ElementSizeBytes * 8 != MemVT.getSizeInBits())
11703     return false;
11704 
11705   if (!MemVT.isSimple())
11706     return false;
11707 
11708   // Perform an early exit check. Do not bother looking at stored values that
11709   // are not constants, loads, or extracted vector elements.
11710   SDValue StoredVal = St->getValue();
11711   bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
11712   bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) ||
11713                        isa<ConstantFPSDNode>(StoredVal);
11714   bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
11715                           StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR);
11716 
11717   if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc)
11718     return false;
11719 
11720   // Don't merge vectors into wider vectors if the source data comes from loads.
11721   // TODO: This restriction can be lifted by using logic similar to the
11722   // ExtractVecSrc case.
11723   if (MemVT.isVector() && IsLoadSrc)
11724     return false;
11725 
11726   // Only look at ends of store sequences.
11727   SDValue Chain = SDValue(St, 0);
11728   if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
11729     return false;
11730 
11731   // Save the LoadSDNodes that we find in the chain.
11732   // We need to make sure that these nodes do not interfere with
11733   // any of the store nodes.
11734   SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
11735 
11736   getStoreMergeAndAliasCandidates(St, StoreNodes, AliasLoadNodes);
11737 
11738   // Check if there is anything to merge.
11739   if (StoreNodes.size() < 2)
11740     return false;
11741 
11742   // only do dependence check in AA case
11743   bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
11744                                                   : DAG.getSubtarget().useAA();
11745   if (UseAA && !checkMergeStoreCandidatesForDependencies(StoreNodes))
11746     return false;
11747 
11748   // Sort the memory operands according to their distance from the
11749   // base pointer.  As a secondary criteria: make sure stores coming
11750   // later in the code come first in the list. This is important for
11751   // the non-UseAA case, because we're merging stores into the FINAL
11752   // store along a chain which potentially contains aliasing stores.
11753   // Thus, if there are multiple stores to the same address, the last
11754   // one can be considered for merging but not the others.
11755   std::sort(StoreNodes.begin(), StoreNodes.end(),
11756             [](MemOpLink LHS, MemOpLink RHS) {
11757     return LHS.OffsetFromBase < RHS.OffsetFromBase ||
11758            (LHS.OffsetFromBase == RHS.OffsetFromBase &&
11759             LHS.SequenceNum < RHS.SequenceNum);
11760   });
11761 
11762   // Scan the memory operations on the chain and find the first non-consecutive
11763   // store memory address.
11764   unsigned LastConsecutiveStore = 0;
11765   int64_t StartAddress = StoreNodes[0].OffsetFromBase;
11766   for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
11767 
11768     // Check that the addresses are consecutive starting from the second
11769     // element in the list of stores.
11770     if (i > 0) {
11771       int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
11772       if (CurrAddress - StartAddress != (ElementSizeBytes * i))
11773         break;
11774     }
11775 
11776     // Check if this store interferes with any of the loads that we found.
11777     // If we find a load that alias with this store. Stop the sequence.
11778     if (any_of(AliasLoadNodes, [&](LSBaseSDNode *Ldn) {
11779           return isAlias(Ldn, StoreNodes[i].MemNode);
11780         }))
11781       break;
11782 
11783     // Mark this node as useful.
11784     LastConsecutiveStore = i;
11785   }
11786 
11787   // The node with the lowest store address.
11788   LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
11789   unsigned FirstStoreAS = FirstInChain->getAddressSpace();
11790   unsigned FirstStoreAlign = FirstInChain->getAlignment();
11791   LLVMContext &Context = *DAG.getContext();
11792   const DataLayout &DL = DAG.getDataLayout();
11793 
11794   // Store the constants into memory as one consecutive store.
11795   if (IsConstantSrc) {
11796     unsigned LastLegalType = 0;
11797     unsigned LastLegalVectorType = 0;
11798     bool NonZero = false;
11799     for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
11800       StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
11801       SDValue StoredVal = St->getValue();
11802 
11803       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
11804         NonZero |= !C->isNullValue();
11805       } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
11806         NonZero |= !C->getConstantFPValue()->isNullValue();
11807       } else {
11808         // Non-constant.
11809         break;
11810       }
11811 
11812       // Find a legal type for the constant store.
11813       unsigned SizeInBits = (i+1) * ElementSizeBytes * 8;
11814       EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits);
11815       bool IsFast;
11816       if (TLI.isTypeLegal(StoreTy) &&
11817           TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
11818                                  FirstStoreAlign, &IsFast) && IsFast) {
11819         LastLegalType = i+1;
11820       // Or check whether a truncstore is legal.
11821       } else if (TLI.getTypeAction(Context, StoreTy) ==
11822                  TargetLowering::TypePromoteInteger) {
11823         EVT LegalizedStoredValueTy =
11824           TLI.getTypeToTransformTo(Context, StoredVal.getValueType());
11825         if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
11826             TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy,
11827                                    FirstStoreAS, FirstStoreAlign, &IsFast) &&
11828             IsFast) {
11829           LastLegalType = i + 1;
11830         }
11831       }
11832 
11833       // We only use vectors if the constant is known to be zero or the target
11834       // allows it and the function is not marked with the noimplicitfloat
11835       // attribute.
11836       if ((!NonZero || TLI.storeOfVectorConstantIsCheap(MemVT, i+1,
11837                                                         FirstStoreAS)) &&
11838           !NoVectors) {
11839         // Find a legal type for the vector store.
11840         EVT Ty = EVT::getVectorVT(Context, MemVT, i+1);
11841         if (TLI.isTypeLegal(Ty) &&
11842             TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS,
11843                                    FirstStoreAlign, &IsFast) && IsFast)
11844           LastLegalVectorType = i + 1;
11845       }
11846     }
11847 
11848     // Check if we found a legal integer type to store.
11849     if (LastLegalType == 0 && LastLegalVectorType == 0)
11850       return false;
11851 
11852     bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
11853     unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
11854 
11855     return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem,
11856                                            true, UseVector);
11857   }
11858 
11859   // When extracting multiple vector elements, try to store them
11860   // in one vector store rather than a sequence of scalar stores.
11861   if (IsExtractVecSrc) {
11862     unsigned NumStoresToMerge = 0;
11863     bool IsVec = MemVT.isVector();
11864     for (unsigned i = 0; i < LastConsecutiveStore + 1; ++i) {
11865       StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
11866       unsigned StoreValOpcode = St->getValue().getOpcode();
11867       // This restriction could be loosened.
11868       // Bail out if any stored values are not elements extracted from a vector.
11869       // It should be possible to handle mixed sources, but load sources need
11870       // more careful handling (see the block of code below that handles
11871       // consecutive loads).
11872       if (StoreValOpcode != ISD::EXTRACT_VECTOR_ELT &&
11873           StoreValOpcode != ISD::EXTRACT_SUBVECTOR)
11874         return false;
11875 
11876       // Find a legal type for the vector store.
11877       unsigned Elts = i + 1;
11878       if (IsVec) {
11879         // When merging vector stores, get the total number of elements.
11880         Elts *= MemVT.getVectorNumElements();
11881       }
11882       EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
11883       bool IsFast;
11884       if (TLI.isTypeLegal(Ty) &&
11885           TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS,
11886                                  FirstStoreAlign, &IsFast) && IsFast)
11887         NumStoresToMerge = i + 1;
11888     }
11889 
11890     return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumStoresToMerge,
11891                                            false, true);
11892   }
11893 
11894   // Below we handle the case of multiple consecutive stores that
11895   // come from multiple consecutive loads. We merge them into a single
11896   // wide load and a single wide store.
11897 
11898   // Look for load nodes which are used by the stored values.
11899   SmallVector<MemOpLink, 8> LoadNodes;
11900 
11901   // Find acceptable loads. Loads need to have the same chain (token factor),
11902   // must not be zext, volatile, indexed, and they must be consecutive.
11903   BaseIndexOffset LdBasePtr;
11904   for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
11905     StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
11906     LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
11907     if (!Ld) break;
11908 
11909     // Loads must only have one use.
11910     if (!Ld->hasNUsesOfValue(1, 0))
11911       break;
11912 
11913     // The memory operands must not be volatile.
11914     if (Ld->isVolatile() || Ld->isIndexed())
11915       break;
11916 
11917     // We do not accept ext loads.
11918     if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
11919       break;
11920 
11921     // The stored memory type must be the same.
11922     if (Ld->getMemoryVT() != MemVT)
11923       break;
11924 
11925     BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr(), DAG);
11926     // If this is not the first ptr that we check.
11927     if (LdBasePtr.Base.getNode()) {
11928       // The base ptr must be the same.
11929       if (!LdPtr.equalBaseIndex(LdBasePtr))
11930         break;
11931     } else {
11932       // Check that all other base pointers are the same as this one.
11933       LdBasePtr = LdPtr;
11934     }
11935 
11936     // We found a potential memory operand to merge.
11937     LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
11938   }
11939 
11940   if (LoadNodes.size() < 2)
11941     return false;
11942 
11943   // If we have load/store pair instructions and we only have two values,
11944   // don't bother.
11945   unsigned RequiredAlignment;
11946   if (LoadNodes.size() == 2 && TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
11947       St->getAlignment() >= RequiredAlignment)
11948     return false;
11949 
11950   LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
11951   unsigned FirstLoadAS = FirstLoad->getAddressSpace();
11952   unsigned FirstLoadAlign = FirstLoad->getAlignment();
11953 
11954   // Scan the memory operations on the chain and find the first non-consecutive
11955   // load memory address. These variables hold the index in the store node
11956   // array.
11957   unsigned LastConsecutiveLoad = 0;
11958   // This variable refers to the size and not index in the array.
11959   unsigned LastLegalVectorType = 0;
11960   unsigned LastLegalIntegerType = 0;
11961   StartAddress = LoadNodes[0].OffsetFromBase;
11962   SDValue FirstChain = FirstLoad->getChain();
11963   for (unsigned i = 1; i < LoadNodes.size(); ++i) {
11964     // All loads must share the same chain.
11965     if (LoadNodes[i].MemNode->getChain() != FirstChain)
11966       break;
11967 
11968     int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
11969     if (CurrAddress - StartAddress != (ElementSizeBytes * i))
11970       break;
11971     LastConsecutiveLoad = i;
11972     // Find a legal type for the vector store.
11973     EVT StoreTy = EVT::getVectorVT(Context, MemVT, i+1);
11974     bool IsFastSt, IsFastLd;
11975     if (TLI.isTypeLegal(StoreTy) &&
11976         TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
11977                                FirstStoreAlign, &IsFastSt) && IsFastSt &&
11978         TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS,
11979                                FirstLoadAlign, &IsFastLd) && IsFastLd) {
11980       LastLegalVectorType = i + 1;
11981     }
11982 
11983     // Find a legal type for the integer store.
11984     unsigned SizeInBits = (i+1) * ElementSizeBytes * 8;
11985     StoreTy = EVT::getIntegerVT(Context, SizeInBits);
11986     if (TLI.isTypeLegal(StoreTy) &&
11987         TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
11988                                FirstStoreAlign, &IsFastSt) && IsFastSt &&
11989         TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS,
11990                                FirstLoadAlign, &IsFastLd) && IsFastLd)
11991       LastLegalIntegerType = i + 1;
11992     // Or check whether a truncstore and extload is legal.
11993     else if (TLI.getTypeAction(Context, StoreTy) ==
11994              TargetLowering::TypePromoteInteger) {
11995       EVT LegalizedStoredValueTy =
11996         TLI.getTypeToTransformTo(Context, StoreTy);
11997       if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
11998           TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValueTy, StoreTy) &&
11999           TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValueTy, StoreTy) &&
12000           TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValueTy, StoreTy) &&
12001           TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy,
12002                                  FirstStoreAS, FirstStoreAlign, &IsFastSt) &&
12003           IsFastSt &&
12004           TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy,
12005                                  FirstLoadAS, FirstLoadAlign, &IsFastLd) &&
12006           IsFastLd)
12007         LastLegalIntegerType = i+1;
12008     }
12009   }
12010 
12011   // Only use vector types if the vector type is larger than the integer type.
12012   // If they are the same, use integers.
12013   bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
12014   unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
12015 
12016   // We add +1 here because the LastXXX variables refer to location while
12017   // the NumElem refers to array/index size.
12018   unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
12019   NumElem = std::min(LastLegalType, NumElem);
12020 
12021   if (NumElem < 2)
12022     return false;
12023 
12024   // Collect the chains from all merged stores.
12025   SmallVector<SDValue, 8> MergeStoreChains;
12026   MergeStoreChains.push_back(StoreNodes[0].MemNode->getChain());
12027 
12028   // The latest Node in the DAG.
12029   unsigned LatestNodeUsed = 0;
12030   for (unsigned i=1; i<NumElem; ++i) {
12031     // Find a chain for the new wide-store operand. Notice that some
12032     // of the store nodes that we found may not be selected for inclusion
12033     // in the wide store. The chain we use needs to be the chain of the
12034     // latest store node which is *used* and replaced by the wide store.
12035     if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum)
12036       LatestNodeUsed = i;
12037 
12038     MergeStoreChains.push_back(StoreNodes[i].MemNode->getChain());
12039   }
12040 
12041   LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode;
12042 
12043   // Find if it is better to use vectors or integers to load and store
12044   // to memory.
12045   EVT JointMemOpVT;
12046   if (UseVectorTy) {
12047     JointMemOpVT = EVT::getVectorVT(Context, MemVT, NumElem);
12048   } else {
12049     unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
12050     JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits);
12051   }
12052 
12053   SDLoc LoadDL(LoadNodes[0].MemNode);
12054   SDLoc StoreDL(StoreNodes[0].MemNode);
12055 
12056   // The merged loads are required to have the same incoming chain, so
12057   // using the first's chain is acceptable.
12058   SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL, FirstLoad->getChain(),
12059                                 FirstLoad->getBasePtr(),
12060                                 FirstLoad->getPointerInfo(), FirstLoadAlign);
12061 
12062   SDValue NewStoreChain =
12063     DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, MergeStoreChains);
12064 
12065   SDValue NewStore =
12066       DAG.getStore(NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(),
12067                    FirstInChain->getPointerInfo(), FirstStoreAlign);
12068 
12069   // Transfer chain users from old loads to the new load.
12070   for (unsigned i = 0; i < NumElem; ++i) {
12071     LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
12072     DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
12073                                   SDValue(NewLoad.getNode(), 1));
12074   }
12075 
12076   if (UseAA) {
12077     // Replace the all stores with the new store.
12078     for (unsigned i = 0; i < NumElem; ++i)
12079       CombineTo(StoreNodes[i].MemNode, NewStore);
12080   } else {
12081     // Replace the last store with the new store.
12082     CombineTo(LatestOp, NewStore);
12083     // Erase all other stores.
12084     for (unsigned i = 0; i < NumElem; ++i) {
12085       // Remove all Store nodes.
12086       if (StoreNodes[i].MemNode == LatestOp)
12087         continue;
12088       StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
12089       DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
12090       deleteAndRecombine(St);
12091     }
12092   }
12093 
12094   StoreNodes.erase(StoreNodes.begin() + NumElem, StoreNodes.end());
12095   return true;
12096 }
12097 
12098 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) {
12099   SDLoc SL(ST);
12100   SDValue ReplStore;
12101 
12102   // Replace the chain to avoid dependency.
12103   if (ST->isTruncatingStore()) {
12104     ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(),
12105                                   ST->getBasePtr(), ST->getMemoryVT(),
12106                                   ST->getMemOperand());
12107   } else {
12108     ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(),
12109                              ST->getMemOperand());
12110   }
12111 
12112   // Create token to keep both nodes around.
12113   SDValue Token = DAG.getNode(ISD::TokenFactor, SL,
12114                               MVT::Other, ST->getChain(), ReplStore);
12115 
12116   // Make sure the new and old chains are cleaned up.
12117   AddToWorklist(Token.getNode());
12118 
12119   // Don't add users to work list.
12120   return CombineTo(ST, Token, false);
12121 }
12122 
12123 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) {
12124   SDValue Value = ST->getValue();
12125   if (Value.getOpcode() == ISD::TargetConstantFP)
12126     return SDValue();
12127 
12128   SDLoc DL(ST);
12129 
12130   SDValue Chain = ST->getChain();
12131   SDValue Ptr = ST->getBasePtr();
12132 
12133   const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value);
12134 
12135   // NOTE: If the original store is volatile, this transform must not increase
12136   // the number of stores.  For example, on x86-32 an f64 can be stored in one
12137   // processor operation but an i64 (which is not legal) requires two.  So the
12138   // transform should not be done in this case.
12139 
12140   SDValue Tmp;
12141   switch (CFP->getSimpleValueType(0).SimpleTy) {
12142   default:
12143     llvm_unreachable("Unknown FP type");
12144   case MVT::f16:    // We don't do this for these yet.
12145   case MVT::f80:
12146   case MVT::f128:
12147   case MVT::ppcf128:
12148     return SDValue();
12149   case MVT::f32:
12150     if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
12151         TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
12152       ;
12153       Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
12154                             bitcastToAPInt().getZExtValue(), SDLoc(CFP),
12155                             MVT::i32);
12156       return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand());
12157     }
12158 
12159     return SDValue();
12160   case MVT::f64:
12161     if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
12162          !ST->isVolatile()) ||
12163         TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
12164       ;
12165       Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
12166                             getZExtValue(), SDLoc(CFP), MVT::i64);
12167       return DAG.getStore(Chain, DL, Tmp,
12168                           Ptr, ST->getMemOperand());
12169     }
12170 
12171     if (!ST->isVolatile() &&
12172         TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
12173       // Many FP stores are not made apparent until after legalize, e.g. for
12174       // argument passing.  Since this is so common, custom legalize the
12175       // 64-bit integer store into two 32-bit stores.
12176       uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
12177       SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
12178       SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
12179       if (DAG.getDataLayout().isBigEndian())
12180         std::swap(Lo, Hi);
12181 
12182       unsigned Alignment = ST->getAlignment();
12183       MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
12184       AAMDNodes AAInfo = ST->getAAInfo();
12185 
12186       SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
12187                                  ST->getAlignment(), MMOFlags, AAInfo);
12188       Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
12189                         DAG.getConstant(4, DL, Ptr.getValueType()));
12190       Alignment = MinAlign(Alignment, 4U);
12191       SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr,
12192                                  ST->getPointerInfo().getWithOffset(4),
12193                                  Alignment, MMOFlags, AAInfo);
12194       return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
12195                          St0, St1);
12196     }
12197 
12198     return SDValue();
12199   }
12200 }
12201 
12202 SDValue DAGCombiner::visitSTORE(SDNode *N) {
12203   StoreSDNode *ST  = cast<StoreSDNode>(N);
12204   SDValue Chain = ST->getChain();
12205   SDValue Value = ST->getValue();
12206   SDValue Ptr   = ST->getBasePtr();
12207 
12208   // If this is a store of a bit convert, store the input value if the
12209   // resultant store does not need a higher alignment than the original.
12210   if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
12211       ST->isUnindexed()) {
12212     EVT SVT = Value.getOperand(0).getValueType();
12213     if (((!LegalOperations && !ST->isVolatile()) ||
12214          TLI.isOperationLegalOrCustom(ISD::STORE, SVT)) &&
12215         TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT)) {
12216       unsigned OrigAlign = ST->getAlignment();
12217       bool Fast = false;
12218       if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), SVT,
12219                                  ST->getAddressSpace(), OrigAlign, &Fast) &&
12220           Fast) {
12221         return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
12222                             ST->getPointerInfo(), OrigAlign,
12223                             ST->getMemOperand()->getFlags(), ST->getAAInfo());
12224       }
12225     }
12226   }
12227 
12228   // Turn 'store undef, Ptr' -> nothing.
12229   if (Value.isUndef() && ST->isUnindexed())
12230     return Chain;
12231 
12232   // Try to infer better alignment information than the store already has.
12233   if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
12234     if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
12235       if (Align > ST->getAlignment()) {
12236         SDValue NewStore =
12237             DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(),
12238                               ST->getMemoryVT(), Align,
12239                               ST->getMemOperand()->getFlags(), ST->getAAInfo());
12240         if (NewStore.getNode() != N)
12241           return CombineTo(ST, NewStore, true);
12242       }
12243     }
12244   }
12245 
12246   // Try transforming a pair floating point load / store ops to integer
12247   // load / store ops.
12248   if (SDValue NewST = TransformFPLoadStorePair(N))
12249     return NewST;
12250 
12251   bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
12252                                                   : DAG.getSubtarget().useAA();
12253 #ifndef NDEBUG
12254   if (CombinerAAOnlyFunc.getNumOccurrences() &&
12255       CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
12256     UseAA = false;
12257 #endif
12258   if (UseAA && ST->isUnindexed()) {
12259     // FIXME: We should do this even without AA enabled. AA will just allow
12260     // FindBetterChain to work in more situations. The problem with this is that
12261     // any combine that expects memory operations to be on consecutive chains
12262     // first needs to be updated to look for users of the same chain.
12263 
12264     // Walk up chain skipping non-aliasing memory nodes, on this store and any
12265     // adjacent stores.
12266     if (findBetterNeighborChains(ST)) {
12267       // replaceStoreChain uses CombineTo, which handled all of the worklist
12268       // manipulation. Return the original node to not do anything else.
12269       return SDValue(ST, 0);
12270     }
12271     Chain = ST->getChain();
12272   }
12273 
12274   // Try transforming N to an indexed store.
12275   if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
12276     return SDValue(N, 0);
12277 
12278   // FIXME: is there such a thing as a truncating indexed store?
12279   if (ST->isTruncatingStore() && ST->isUnindexed() &&
12280       Value.getValueType().isInteger()) {
12281     // See if we can simplify the input to this truncstore with knowledge that
12282     // only the low bits are being used.  For example:
12283     // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
12284     SDValue Shorter = GetDemandedBits(
12285         Value, APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
12286                                     ST->getMemoryVT().getScalarSizeInBits()));
12287     AddToWorklist(Value.getNode());
12288     if (Shorter.getNode())
12289       return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
12290                                Ptr, ST->getMemoryVT(), ST->getMemOperand());
12291 
12292     // Otherwise, see if we can simplify the operation with
12293     // SimplifyDemandedBits, which only works if the value has a single use.
12294     if (SimplifyDemandedBits(
12295             Value,
12296             APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
12297                                  ST->getMemoryVT().getScalarSizeInBits())))
12298       return SDValue(N, 0);
12299   }
12300 
12301   // If this is a load followed by a store to the same location, then the store
12302   // is dead/noop.
12303   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
12304     if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
12305         ST->isUnindexed() && !ST->isVolatile() &&
12306         // There can't be any side effects between the load and store, such as
12307         // a call or store.
12308         Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
12309       // The store is dead, remove it.
12310       return Chain;
12311     }
12312   }
12313 
12314   // If this is a store followed by a store with the same value to the same
12315   // location, then the store is dead/noop.
12316   if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
12317     if (ST1->getBasePtr() == Ptr && ST->getMemoryVT() == ST1->getMemoryVT() &&
12318         ST1->getValue() == Value && ST->isUnindexed() && !ST->isVolatile() &&
12319         ST1->isUnindexed() && !ST1->isVolatile()) {
12320       // The store is dead, remove it.
12321       return Chain;
12322     }
12323   }
12324 
12325   // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
12326   // truncating store.  We can do this even if this is already a truncstore.
12327   if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
12328       && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
12329       TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
12330                             ST->getMemoryVT())) {
12331     return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
12332                              Ptr, ST->getMemoryVT(), ST->getMemOperand());
12333   }
12334 
12335   // Only perform this optimization before the types are legal, because we
12336   // don't want to perform this optimization on every DAGCombine invocation.
12337   if (!LegalTypes) {
12338     for (;;) {
12339       // There can be multiple store sequences on the same chain.
12340       // Keep trying to merge store sequences until we are unable to do so
12341       // or until we merge the last store on the chain.
12342       SmallVector<MemOpLink, 8> StoreNodes;
12343       bool Changed = MergeConsecutiveStores(ST, StoreNodes);
12344       if (!Changed) break;
12345 
12346       if (any_of(StoreNodes,
12347                  [ST](const MemOpLink &Link) { return Link.MemNode == ST; })) {
12348         // ST has been merged and no longer exists.
12349         return SDValue(N, 0);
12350       }
12351     }
12352   }
12353 
12354   // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
12355   //
12356   // Make sure to do this only after attempting to merge stores in order to
12357   //  avoid changing the types of some subset of stores due to visit order,
12358   //  preventing their merging.
12359   if (isa<ConstantFPSDNode>(Value)) {
12360     if (SDValue NewSt = replaceStoreOfFPConstant(ST))
12361       return NewSt;
12362   }
12363 
12364   if (SDValue NewSt = splitMergedValStore(ST))
12365     return NewSt;
12366 
12367   return ReduceLoadOpStoreWidth(N);
12368 }
12369 
12370 /// For the instruction sequence of store below, F and I values
12371 /// are bundled together as an i64 value before being stored into memory.
12372 /// Sometimes it is more efficent to generate separate stores for F and I,
12373 /// which can remove the bitwise instructions or sink them to colder places.
12374 ///
12375 ///   (store (or (zext (bitcast F to i32) to i64),
12376 ///              (shl (zext I to i64), 32)), addr)  -->
12377 ///   (store F, addr) and (store I, addr+4)
12378 ///
12379 /// Similarly, splitting for other merged store can also be beneficial, like:
12380 /// For pair of {i32, i32}, i64 store --> two i32 stores.
12381 /// For pair of {i32, i16}, i64 store --> two i32 stores.
12382 /// For pair of {i16, i16}, i32 store --> two i16 stores.
12383 /// For pair of {i16, i8},  i32 store --> two i16 stores.
12384 /// For pair of {i8, i8},   i16 store --> two i8 stores.
12385 ///
12386 /// We allow each target to determine specifically which kind of splitting is
12387 /// supported.
12388 ///
12389 /// The store patterns are commonly seen from the simple code snippet below
12390 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
12391 ///   void goo(const std::pair<int, float> &);
12392 ///   hoo() {
12393 ///     ...
12394 ///     goo(std::make_pair(tmp, ftmp));
12395 ///     ...
12396 ///   }
12397 ///
12398 SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) {
12399   if (OptLevel == CodeGenOpt::None)
12400     return SDValue();
12401 
12402   SDValue Val = ST->getValue();
12403   SDLoc DL(ST);
12404 
12405   // Match OR operand.
12406   if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR)
12407     return SDValue();
12408 
12409   // Match SHL operand and get Lower and Higher parts of Val.
12410   SDValue Op1 = Val.getOperand(0);
12411   SDValue Op2 = Val.getOperand(1);
12412   SDValue Lo, Hi;
12413   if (Op1.getOpcode() != ISD::SHL) {
12414     std::swap(Op1, Op2);
12415     if (Op1.getOpcode() != ISD::SHL)
12416       return SDValue();
12417   }
12418   Lo = Op2;
12419   Hi = Op1.getOperand(0);
12420   if (!Op1.hasOneUse())
12421     return SDValue();
12422 
12423   // Match shift amount to HalfValBitSize.
12424   unsigned HalfValBitSize = Val.getValueSizeInBits() / 2;
12425   ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1));
12426   if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize)
12427     return SDValue();
12428 
12429   // Lo and Hi are zero-extended from int with size less equal than 32
12430   // to i64.
12431   if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() ||
12432       !Lo.getOperand(0).getValueType().isScalarInteger() ||
12433       Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize ||
12434       Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() ||
12435       !Hi.getOperand(0).getValueType().isScalarInteger() ||
12436       Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize)
12437     return SDValue();
12438 
12439   // Use the EVT of low and high parts before bitcast as the input
12440   // of target query.
12441   EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST)
12442                   ? Lo.getOperand(0).getValueType()
12443                   : Lo.getValueType();
12444   EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST)
12445                    ? Hi.getOperand(0).getValueType()
12446                    : Hi.getValueType();
12447   if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
12448     return SDValue();
12449 
12450   // Start to split store.
12451   unsigned Alignment = ST->getAlignment();
12452   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
12453   AAMDNodes AAInfo = ST->getAAInfo();
12454 
12455   // Change the sizes of Lo and Hi's value types to HalfValBitSize.
12456   EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize);
12457   Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0));
12458   Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0));
12459 
12460   SDValue Chain = ST->getChain();
12461   SDValue Ptr = ST->getBasePtr();
12462   // Lower value store.
12463   SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
12464                              ST->getAlignment(), MMOFlags, AAInfo);
12465   Ptr =
12466       DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
12467                   DAG.getConstant(HalfValBitSize / 8, DL, Ptr.getValueType()));
12468   // Higher value store.
12469   SDValue St1 =
12470       DAG.getStore(St0, DL, Hi, Ptr,
12471                    ST->getPointerInfo().getWithOffset(HalfValBitSize / 8),
12472                    Alignment / 2, MMOFlags, AAInfo);
12473   return St1;
12474 }
12475 
12476 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
12477   SDValue InVec = N->getOperand(0);
12478   SDValue InVal = N->getOperand(1);
12479   SDValue EltNo = N->getOperand(2);
12480   SDLoc DL(N);
12481 
12482   // If the inserted element is an UNDEF, just use the input vector.
12483   if (InVal.isUndef())
12484     return InVec;
12485 
12486   EVT VT = InVec.getValueType();
12487 
12488   // If we can't generate a legal BUILD_VECTOR, exit
12489   if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
12490     return SDValue();
12491 
12492   // Check that we know which element is being inserted
12493   if (!isa<ConstantSDNode>(EltNo))
12494     return SDValue();
12495   unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
12496 
12497   // Canonicalize insert_vector_elt dag nodes.
12498   // Example:
12499   // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
12500   // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
12501   //
12502   // Do this only if the child insert_vector node has one use; also
12503   // do this only if indices are both constants and Idx1 < Idx0.
12504   if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
12505       && isa<ConstantSDNode>(InVec.getOperand(2))) {
12506     unsigned OtherElt =
12507       cast<ConstantSDNode>(InVec.getOperand(2))->getZExtValue();
12508     if (Elt < OtherElt) {
12509       // Swap nodes.
12510       SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
12511                                   InVec.getOperand(0), InVal, EltNo);
12512       AddToWorklist(NewOp.getNode());
12513       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
12514                          VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
12515     }
12516   }
12517 
12518   // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
12519   // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
12520   // vector elements.
12521   SmallVector<SDValue, 8> Ops;
12522   // Do not combine these two vectors if the output vector will not replace
12523   // the input vector.
12524   if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
12525     Ops.append(InVec.getNode()->op_begin(),
12526                InVec.getNode()->op_end());
12527   } else if (InVec.isUndef()) {
12528     unsigned NElts = VT.getVectorNumElements();
12529     Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
12530   } else {
12531     return SDValue();
12532   }
12533 
12534   // Insert the element
12535   if (Elt < Ops.size()) {
12536     // All the operands of BUILD_VECTOR must have the same type;
12537     // we enforce that here.
12538     EVT OpVT = Ops[0].getValueType();
12539     if (InVal.getValueType() != OpVT)
12540       InVal = OpVT.bitsGT(InVal.getValueType()) ?
12541                 DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
12542                 DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
12543     Ops[Elt] = InVal;
12544   }
12545 
12546   // Return the new vector
12547   return DAG.getBuildVector(VT, DL, Ops);
12548 }
12549 
12550 SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
12551     SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) {
12552   assert(!OriginalLoad->isVolatile());
12553 
12554   EVT ResultVT = EVE->getValueType(0);
12555   EVT VecEltVT = InVecVT.getVectorElementType();
12556   unsigned Align = OriginalLoad->getAlignment();
12557   unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
12558       VecEltVT.getTypeForEVT(*DAG.getContext()));
12559 
12560   if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
12561     return SDValue();
12562 
12563   ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ?
12564     ISD::NON_EXTLOAD : ISD::EXTLOAD;
12565   if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT))
12566     return SDValue();
12567 
12568   Align = NewAlign;
12569 
12570   SDValue NewPtr = OriginalLoad->getBasePtr();
12571   SDValue Offset;
12572   EVT PtrType = NewPtr.getValueType();
12573   MachinePointerInfo MPI;
12574   SDLoc DL(EVE);
12575   if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
12576     int Elt = ConstEltNo->getZExtValue();
12577     unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
12578     Offset = DAG.getConstant(PtrOff, DL, PtrType);
12579     MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
12580   } else {
12581     Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType);
12582     Offset = DAG.getNode(
12583         ISD::MUL, DL, PtrType, Offset,
12584         DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType));
12585     MPI = OriginalLoad->getPointerInfo();
12586   }
12587   NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset);
12588 
12589   // The replacement we need to do here is a little tricky: we need to
12590   // replace an extractelement of a load with a load.
12591   // Use ReplaceAllUsesOfValuesWith to do the replacement.
12592   // Note that this replacement assumes that the extractvalue is the only
12593   // use of the load; that's okay because we don't want to perform this
12594   // transformation in other cases anyway.
12595   SDValue Load;
12596   SDValue Chain;
12597   if (ResultVT.bitsGT(VecEltVT)) {
12598     // If the result type of vextract is wider than the load, then issue an
12599     // extending load instead.
12600     ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT,
12601                                                   VecEltVT)
12602                                    ? ISD::ZEXTLOAD
12603                                    : ISD::EXTLOAD;
12604     Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT,
12605                           OriginalLoad->getChain(), NewPtr, MPI, VecEltVT,
12606                           Align, OriginalLoad->getMemOperand()->getFlags(),
12607                           OriginalLoad->getAAInfo());
12608     Chain = Load.getValue(1);
12609   } else {
12610     Load = DAG.getLoad(VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr,
12611                        MPI, Align, OriginalLoad->getMemOperand()->getFlags(),
12612                        OriginalLoad->getAAInfo());
12613     Chain = Load.getValue(1);
12614     if (ResultVT.bitsLT(VecEltVT))
12615       Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load);
12616     else
12617       Load = DAG.getBitcast(ResultVT, Load);
12618   }
12619   WorklistRemover DeadNodes(*this);
12620   SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) };
12621   SDValue To[] = { Load, Chain };
12622   DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
12623   // Since we're explicitly calling ReplaceAllUses, add the new node to the
12624   // worklist explicitly as well.
12625   AddToWorklist(Load.getNode());
12626   AddUsersToWorklist(Load.getNode()); // Add users too
12627   // Make sure to revisit this node to clean it up; it will usually be dead.
12628   AddToWorklist(EVE);
12629   ++OpsNarrowed;
12630   return SDValue(EVE, 0);
12631 }
12632 
12633 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
12634   // (vextract (scalar_to_vector val, 0) -> val
12635   SDValue InVec = N->getOperand(0);
12636   EVT VT = InVec.getValueType();
12637   EVT NVT = N->getValueType(0);
12638 
12639   if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
12640     // Check if the result type doesn't match the inserted element type. A
12641     // SCALAR_TO_VECTOR may truncate the inserted element and the
12642     // EXTRACT_VECTOR_ELT may widen the extracted vector.
12643     SDValue InOp = InVec.getOperand(0);
12644     if (InOp.getValueType() != NVT) {
12645       assert(InOp.getValueType().isInteger() && NVT.isInteger());
12646       return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT);
12647     }
12648     return InOp;
12649   }
12650 
12651   SDValue EltNo = N->getOperand(1);
12652   ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
12653 
12654   // extract_vector_elt (build_vector x, y), 1 -> y
12655   if (ConstEltNo &&
12656       InVec.getOpcode() == ISD::BUILD_VECTOR &&
12657       TLI.isTypeLegal(VT) &&
12658       (InVec.hasOneUse() ||
12659        TLI.aggressivelyPreferBuildVectorSources(VT))) {
12660     SDValue Elt = InVec.getOperand(ConstEltNo->getZExtValue());
12661     EVT InEltVT = Elt.getValueType();
12662 
12663     // Sometimes build_vector's scalar input types do not match result type.
12664     if (NVT == InEltVT)
12665       return Elt;
12666 
12667     // TODO: It may be useful to truncate if free if the build_vector implicitly
12668     // converts.
12669   }
12670 
12671   // extract_vector_elt (v2i32 (bitcast i64:x)), 0 -> i32 (trunc i64:x)
12672   if (ConstEltNo && InVec.getOpcode() == ISD::BITCAST && InVec.hasOneUse() &&
12673       ConstEltNo->isNullValue() && VT.isInteger()) {
12674     SDValue BCSrc = InVec.getOperand(0);
12675     if (BCSrc.getValueType().isScalarInteger())
12676       return DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, BCSrc);
12677   }
12678 
12679   // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
12680   //
12681   // This only really matters if the index is non-constant since other combines
12682   // on the constant elements already work.
12683   if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT &&
12684       EltNo == InVec.getOperand(2)) {
12685     SDValue Elt = InVec.getOperand(1);
12686     return VT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, SDLoc(N), NVT) : Elt;
12687   }
12688 
12689   // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
12690   // We only perform this optimization before the op legalization phase because
12691   // we may introduce new vector instructions which are not backed by TD
12692   // patterns. For example on AVX, extracting elements from a wide vector
12693   // without using extract_subvector. However, if we can find an underlying
12694   // scalar value, then we can always use that.
12695   if (ConstEltNo && InVec.getOpcode() == ISD::VECTOR_SHUFFLE) {
12696     int NumElem = VT.getVectorNumElements();
12697     ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
12698     // Find the new index to extract from.
12699     int OrigElt = SVOp->getMaskElt(ConstEltNo->getZExtValue());
12700 
12701     // Extracting an undef index is undef.
12702     if (OrigElt == -1)
12703       return DAG.getUNDEF(NVT);
12704 
12705     // Select the right vector half to extract from.
12706     SDValue SVInVec;
12707     if (OrigElt < NumElem) {
12708       SVInVec = InVec->getOperand(0);
12709     } else {
12710       SVInVec = InVec->getOperand(1);
12711       OrigElt -= NumElem;
12712     }
12713 
12714     if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
12715       SDValue InOp = SVInVec.getOperand(OrigElt);
12716       if (InOp.getValueType() != NVT) {
12717         assert(InOp.getValueType().isInteger() && NVT.isInteger());
12718         InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT);
12719       }
12720 
12721       return InOp;
12722     }
12723 
12724     // FIXME: We should handle recursing on other vector shuffles and
12725     // scalar_to_vector here as well.
12726 
12727     if (!LegalOperations) {
12728       EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
12729       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT, SVInVec,
12730                          DAG.getConstant(OrigElt, SDLoc(SVOp), IndexTy));
12731     }
12732   }
12733 
12734   bool BCNumEltsChanged = false;
12735   EVT ExtVT = VT.getVectorElementType();
12736   EVT LVT = ExtVT;
12737 
12738   // If the result of load has to be truncated, then it's not necessarily
12739   // profitable.
12740   if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
12741     return SDValue();
12742 
12743   if (InVec.getOpcode() == ISD::BITCAST) {
12744     // Don't duplicate a load with other uses.
12745     if (!InVec.hasOneUse())
12746       return SDValue();
12747 
12748     EVT BCVT = InVec.getOperand(0).getValueType();
12749     if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
12750       return SDValue();
12751     if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
12752       BCNumEltsChanged = true;
12753     InVec = InVec.getOperand(0);
12754     ExtVT = BCVT.getVectorElementType();
12755   }
12756 
12757   // (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size)
12758   if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() &&
12759       ISD::isNormalLoad(InVec.getNode()) &&
12760       !N->getOperand(1)->hasPredecessor(InVec.getNode())) {
12761     SDValue Index = N->getOperand(1);
12762     if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec)) {
12763       if (!OrigLoad->isVolatile()) {
12764         return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index,
12765                                                              OrigLoad);
12766       }
12767     }
12768   }
12769 
12770   // Perform only after legalization to ensure build_vector / vector_shuffle
12771   // optimizations have already been done.
12772   if (!LegalOperations) return SDValue();
12773 
12774   // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
12775   // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
12776   // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
12777 
12778   if (ConstEltNo) {
12779     int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
12780 
12781     LoadSDNode *LN0 = nullptr;
12782     const ShuffleVectorSDNode *SVN = nullptr;
12783     if (ISD::isNormalLoad(InVec.getNode())) {
12784       LN0 = cast<LoadSDNode>(InVec);
12785     } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
12786                InVec.getOperand(0).getValueType() == ExtVT &&
12787                ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
12788       // Don't duplicate a load with other uses.
12789       if (!InVec.hasOneUse())
12790         return SDValue();
12791 
12792       LN0 = cast<LoadSDNode>(InVec.getOperand(0));
12793     } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
12794       // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
12795       // =>
12796       // (load $addr+1*size)
12797 
12798       // Don't duplicate a load with other uses.
12799       if (!InVec.hasOneUse())
12800         return SDValue();
12801 
12802       // If the bit convert changed the number of elements, it is unsafe
12803       // to examine the mask.
12804       if (BCNumEltsChanged)
12805         return SDValue();
12806 
12807       // Select the input vector, guarding against out of range extract vector.
12808       unsigned NumElems = VT.getVectorNumElements();
12809       int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
12810       InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
12811 
12812       if (InVec.getOpcode() == ISD::BITCAST) {
12813         // Don't duplicate a load with other uses.
12814         if (!InVec.hasOneUse())
12815           return SDValue();
12816 
12817         InVec = InVec.getOperand(0);
12818       }
12819       if (ISD::isNormalLoad(InVec.getNode())) {
12820         LN0 = cast<LoadSDNode>(InVec);
12821         Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
12822         EltNo = DAG.getConstant(Elt, SDLoc(EltNo), EltNo.getValueType());
12823       }
12824     }
12825 
12826     // Make sure we found a non-volatile load and the extractelement is
12827     // the only use.
12828     if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
12829       return SDValue();
12830 
12831     // If Idx was -1 above, Elt is going to be -1, so just return undef.
12832     if (Elt == -1)
12833       return DAG.getUNDEF(LVT);
12834 
12835     return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0);
12836   }
12837 
12838   return SDValue();
12839 }
12840 
12841 // Simplify (build_vec (ext )) to (bitcast (build_vec ))
12842 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
12843   // We perform this optimization post type-legalization because
12844   // the type-legalizer often scalarizes integer-promoted vectors.
12845   // Performing this optimization before may create bit-casts which
12846   // will be type-legalized to complex code sequences.
12847   // We perform this optimization only before the operation legalizer because we
12848   // may introduce illegal operations.
12849   if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
12850     return SDValue();
12851 
12852   unsigned NumInScalars = N->getNumOperands();
12853   SDLoc DL(N);
12854   EVT VT = N->getValueType(0);
12855 
12856   // Check to see if this is a BUILD_VECTOR of a bunch of values
12857   // which come from any_extend or zero_extend nodes. If so, we can create
12858   // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
12859   // optimizations. We do not handle sign-extend because we can't fill the sign
12860   // using shuffles.
12861   EVT SourceType = MVT::Other;
12862   bool AllAnyExt = true;
12863 
12864   for (unsigned i = 0; i != NumInScalars; ++i) {
12865     SDValue In = N->getOperand(i);
12866     // Ignore undef inputs.
12867     if (In.isUndef()) continue;
12868 
12869     bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
12870     bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
12871 
12872     // Abort if the element is not an extension.
12873     if (!ZeroExt && !AnyExt) {
12874       SourceType = MVT::Other;
12875       break;
12876     }
12877 
12878     // The input is a ZeroExt or AnyExt. Check the original type.
12879     EVT InTy = In.getOperand(0).getValueType();
12880 
12881     // Check that all of the widened source types are the same.
12882     if (SourceType == MVT::Other)
12883       // First time.
12884       SourceType = InTy;
12885     else if (InTy != SourceType) {
12886       // Multiple income types. Abort.
12887       SourceType = MVT::Other;
12888       break;
12889     }
12890 
12891     // Check if all of the extends are ANY_EXTENDs.
12892     AllAnyExt &= AnyExt;
12893   }
12894 
12895   // In order to have valid types, all of the inputs must be extended from the
12896   // same source type and all of the inputs must be any or zero extend.
12897   // Scalar sizes must be a power of two.
12898   EVT OutScalarTy = VT.getScalarType();
12899   bool ValidTypes = SourceType != MVT::Other &&
12900                  isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
12901                  isPowerOf2_32(SourceType.getSizeInBits());
12902 
12903   // Create a new simpler BUILD_VECTOR sequence which other optimizations can
12904   // turn into a single shuffle instruction.
12905   if (!ValidTypes)
12906     return SDValue();
12907 
12908   bool isLE = DAG.getDataLayout().isLittleEndian();
12909   unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
12910   assert(ElemRatio > 1 && "Invalid element size ratio");
12911   SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
12912                                DAG.getConstant(0, DL, SourceType);
12913 
12914   unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
12915   SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
12916 
12917   // Populate the new build_vector
12918   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
12919     SDValue Cast = N->getOperand(i);
12920     assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
12921             Cast.getOpcode() == ISD::ZERO_EXTEND ||
12922             Cast.isUndef()) && "Invalid cast opcode");
12923     SDValue In;
12924     if (Cast.isUndef())
12925       In = DAG.getUNDEF(SourceType);
12926     else
12927       In = Cast->getOperand(0);
12928     unsigned Index = isLE ? (i * ElemRatio) :
12929                             (i * ElemRatio + (ElemRatio - 1));
12930 
12931     assert(Index < Ops.size() && "Invalid index");
12932     Ops[Index] = In;
12933   }
12934 
12935   // The type of the new BUILD_VECTOR node.
12936   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
12937   assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
12938          "Invalid vector size");
12939   // Check if the new vector type is legal.
12940   if (!isTypeLegal(VecVT)) return SDValue();
12941 
12942   // Make the new BUILD_VECTOR.
12943   SDValue BV = DAG.getBuildVector(VecVT, DL, Ops);
12944 
12945   // The new BUILD_VECTOR node has the potential to be further optimized.
12946   AddToWorklist(BV.getNode());
12947   // Bitcast to the desired type.
12948   return DAG.getBitcast(VT, BV);
12949 }
12950 
12951 SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
12952   EVT VT = N->getValueType(0);
12953 
12954   unsigned NumInScalars = N->getNumOperands();
12955   SDLoc DL(N);
12956 
12957   EVT SrcVT = MVT::Other;
12958   unsigned Opcode = ISD::DELETED_NODE;
12959   unsigned NumDefs = 0;
12960 
12961   for (unsigned i = 0; i != NumInScalars; ++i) {
12962     SDValue In = N->getOperand(i);
12963     unsigned Opc = In.getOpcode();
12964 
12965     if (Opc == ISD::UNDEF)
12966       continue;
12967 
12968     // If all scalar values are floats and converted from integers.
12969     if (Opcode == ISD::DELETED_NODE &&
12970         (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
12971       Opcode = Opc;
12972     }
12973 
12974     if (Opc != Opcode)
12975       return SDValue();
12976 
12977     EVT InVT = In.getOperand(0).getValueType();
12978 
12979     // If all scalar values are typed differently, bail out. It's chosen to
12980     // simplify BUILD_VECTOR of integer types.
12981     if (SrcVT == MVT::Other)
12982       SrcVT = InVT;
12983     if (SrcVT != InVT)
12984       return SDValue();
12985     NumDefs++;
12986   }
12987 
12988   // If the vector has just one element defined, it's not worth to fold it into
12989   // a vectorized one.
12990   if (NumDefs < 2)
12991     return SDValue();
12992 
12993   assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
12994          && "Should only handle conversion from integer to float.");
12995   assert(SrcVT != MVT::Other && "Cannot determine source type!");
12996 
12997   EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
12998 
12999   if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
13000     return SDValue();
13001 
13002   // Just because the floating-point vector type is legal does not necessarily
13003   // mean that the corresponding integer vector type is.
13004   if (!isTypeLegal(NVT))
13005     return SDValue();
13006 
13007   SmallVector<SDValue, 8> Opnds;
13008   for (unsigned i = 0; i != NumInScalars; ++i) {
13009     SDValue In = N->getOperand(i);
13010 
13011     if (In.isUndef())
13012       Opnds.push_back(DAG.getUNDEF(SrcVT));
13013     else
13014       Opnds.push_back(In.getOperand(0));
13015   }
13016   SDValue BV = DAG.getBuildVector(NVT, DL, Opnds);
13017   AddToWorklist(BV.getNode());
13018 
13019   return DAG.getNode(Opcode, DL, VT, BV);
13020 }
13021 
13022 SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N,
13023                                            ArrayRef<int> VectorMask,
13024                                            SDValue VecIn1, SDValue VecIn2,
13025                                            unsigned LeftIdx) {
13026   MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
13027   SDValue ZeroIdx = DAG.getConstant(0, DL, IdxTy);
13028 
13029   EVT VT = N->getValueType(0);
13030   EVT InVT1 = VecIn1.getValueType();
13031   EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1;
13032 
13033   unsigned Vec2Offset = InVT1.getVectorNumElements();
13034   unsigned NumElems = VT.getVectorNumElements();
13035   unsigned ShuffleNumElems = NumElems;
13036 
13037   // We can't generate a shuffle node with mismatched input and output types.
13038   // Try to make the types match the type of the output.
13039   if (InVT1 != VT || InVT2 != VT) {
13040     if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) {
13041       // If the output vector length is a multiple of both input lengths,
13042       // we can concatenate them and pad the rest with undefs.
13043       unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits();
13044       assert(NumConcats >= 2 && "Concat needs at least two inputs!");
13045       SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1));
13046       ConcatOps[0] = VecIn1;
13047       ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1);
13048       VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
13049       VecIn2 = SDValue();
13050     } else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) {
13051       if (!TLI.isExtractSubvectorCheap(VT, NumElems))
13052         return SDValue();
13053 
13054       if (!VecIn2.getNode()) {
13055         // If we only have one input vector, and it's twice the size of the
13056         // output, split it in two.
13057         VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1,
13058                              DAG.getConstant(NumElems, DL, IdxTy));
13059         VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx);
13060         // Since we now have shorter input vectors, adjust the offset of the
13061         // second vector's start.
13062         Vec2Offset = NumElems;
13063       } else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) {
13064         // VecIn1 is wider than the output, and we have another, possibly
13065         // smaller input. Pad the smaller input with undefs, shuffle at the
13066         // input vector width, and extract the output.
13067         // The shuffle type is different than VT, so check legality again.
13068         if (LegalOperations &&
13069             !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1))
13070           return SDValue();
13071 
13072         if (InVT1 != InVT2)
13073           VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1,
13074                                DAG.getUNDEF(InVT1), VecIn2, ZeroIdx);
13075         ShuffleNumElems = NumElems * 2;
13076       } else {
13077         // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider
13078         // than VecIn1. We can't handle this for now - this case will disappear
13079         // when we start sorting the vectors by type.
13080         return SDValue();
13081       }
13082     } else {
13083       // TODO: Support cases where the length mismatch isn't exactly by a
13084       // factor of 2.
13085       // TODO: Move this check upwards, so that if we have bad type
13086       // mismatches, we don't create any DAG nodes.
13087       return SDValue();
13088     }
13089   }
13090 
13091   // Initialize mask to undef.
13092   SmallVector<int, 8> Mask(ShuffleNumElems, -1);
13093 
13094   // Only need to run up to the number of elements actually used, not the
13095   // total number of elements in the shuffle - if we are shuffling a wider
13096   // vector, the high lanes should be set to undef.
13097   for (unsigned i = 0; i != NumElems; ++i) {
13098     if (VectorMask[i] <= 0)
13099       continue;
13100 
13101     unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1);
13102     if (VectorMask[i] == (int)LeftIdx) {
13103       Mask[i] = ExtIndex;
13104     } else if (VectorMask[i] == (int)LeftIdx + 1) {
13105       Mask[i] = Vec2Offset + ExtIndex;
13106     }
13107   }
13108 
13109   // The type the input vectors may have changed above.
13110   InVT1 = VecIn1.getValueType();
13111 
13112   // If we already have a VecIn2, it should have the same type as VecIn1.
13113   // If we don't, get an undef/zero vector of the appropriate type.
13114   VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1);
13115   assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type.");
13116 
13117   SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask);
13118   if (ShuffleNumElems > NumElems)
13119     Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx);
13120 
13121   return Shuffle;
13122 }
13123 
13124 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
13125 // operations. If the types of the vectors we're extracting from allow it,
13126 // turn this into a vector_shuffle node.
13127 SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) {
13128   SDLoc DL(N);
13129   EVT VT = N->getValueType(0);
13130 
13131   // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
13132   if (!isTypeLegal(VT))
13133     return SDValue();
13134 
13135   // May only combine to shuffle after legalize if shuffle is legal.
13136   if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
13137     return SDValue();
13138 
13139   bool UsesZeroVector = false;
13140   unsigned NumElems = N->getNumOperands();
13141 
13142   // Record, for each element of the newly built vector, which input vector
13143   // that element comes from. -1 stands for undef, 0 for the zero vector,
13144   // and positive values for the input vectors.
13145   // VectorMask maps each element to its vector number, and VecIn maps vector
13146   // numbers to their initial SDValues.
13147 
13148   SmallVector<int, 8> VectorMask(NumElems, -1);
13149   SmallVector<SDValue, 8> VecIn;
13150   VecIn.push_back(SDValue());
13151 
13152   for (unsigned i = 0; i != NumElems; ++i) {
13153     SDValue Op = N->getOperand(i);
13154 
13155     if (Op.isUndef())
13156       continue;
13157 
13158     // See if we can use a blend with a zero vector.
13159     // TODO: Should we generalize this to a blend with an arbitrary constant
13160     // vector?
13161     if (isNullConstant(Op) || isNullFPConstant(Op)) {
13162       UsesZeroVector = true;
13163       VectorMask[i] = 0;
13164       continue;
13165     }
13166 
13167     // Not an undef or zero. If the input is something other than an
13168     // EXTRACT_VECTOR_ELT with a constant index, bail out.
13169     if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13170         !isa<ConstantSDNode>(Op.getOperand(1)))
13171       return SDValue();
13172 
13173     SDValue ExtractedFromVec = Op.getOperand(0);
13174 
13175     // All inputs must have the same element type as the output.
13176     if (VT.getVectorElementType() !=
13177         ExtractedFromVec.getValueType().getVectorElementType())
13178       return SDValue();
13179 
13180     // Have we seen this input vector before?
13181     // The vectors are expected to be tiny (usually 1 or 2 elements), so using
13182     // a map back from SDValues to numbers isn't worth it.
13183     unsigned Idx = std::distance(
13184         VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec));
13185     if (Idx == VecIn.size())
13186       VecIn.push_back(ExtractedFromVec);
13187 
13188     VectorMask[i] = Idx;
13189   }
13190 
13191   // If we didn't find at least one input vector, bail out.
13192   if (VecIn.size() < 2)
13193     return SDValue();
13194 
13195   // TODO: We want to sort the vectors by descending length, so that adjacent
13196   // pairs have similar length, and the longer vector is always first in the
13197   // pair.
13198 
13199   // TODO: Should this fire if some of the input vectors has illegal type (like
13200   // it does now), or should we let legalization run its course first?
13201 
13202   // Shuffle phase:
13203   // Take pairs of vectors, and shuffle them so that the result has elements
13204   // from these vectors in the correct places.
13205   // For example, given:
13206   // t10: i32 = extract_vector_elt t1, Constant:i64<0>
13207   // t11: i32 = extract_vector_elt t2, Constant:i64<0>
13208   // t12: i32 = extract_vector_elt t3, Constant:i64<0>
13209   // t13: i32 = extract_vector_elt t1, Constant:i64<1>
13210   // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
13211   // We will generate:
13212   // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
13213   // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
13214   SmallVector<SDValue, 4> Shuffles;
13215   for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) {
13216     unsigned LeftIdx = 2 * In + 1;
13217     SDValue VecLeft = VecIn[LeftIdx];
13218     SDValue VecRight =
13219         (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue();
13220 
13221     if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft,
13222                                                 VecRight, LeftIdx))
13223       Shuffles.push_back(Shuffle);
13224     else
13225       return SDValue();
13226   }
13227 
13228   // If we need the zero vector as an "ingredient" in the blend tree, add it
13229   // to the list of shuffles.
13230   if (UsesZeroVector)
13231     Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT)
13232                                       : DAG.getConstantFP(0.0, DL, VT));
13233 
13234   // If we only have one shuffle, we're done.
13235   if (Shuffles.size() == 1)
13236     return Shuffles[0];
13237 
13238   // Update the vector mask to point to the post-shuffle vectors.
13239   for (int &Vec : VectorMask)
13240     if (Vec == 0)
13241       Vec = Shuffles.size() - 1;
13242     else
13243       Vec = (Vec - 1) / 2;
13244 
13245   // More than one shuffle. Generate a binary tree of blends, e.g. if from
13246   // the previous step we got the set of shuffles t10, t11, t12, t13, we will
13247   // generate:
13248   // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
13249   // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
13250   // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
13251   // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
13252   // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
13253   // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
13254   // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
13255 
13256   // Make sure the initial size of the shuffle list is even.
13257   if (Shuffles.size() % 2)
13258     Shuffles.push_back(DAG.getUNDEF(VT));
13259 
13260   for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) {
13261     if (CurSize % 2) {
13262       Shuffles[CurSize] = DAG.getUNDEF(VT);
13263       CurSize++;
13264     }
13265     for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) {
13266       int Left = 2 * In;
13267       int Right = 2 * In + 1;
13268       SmallVector<int, 8> Mask(NumElems, -1);
13269       for (unsigned i = 0; i != NumElems; ++i) {
13270         if (VectorMask[i] == Left) {
13271           Mask[i] = i;
13272           VectorMask[i] = In;
13273         } else if (VectorMask[i] == Right) {
13274           Mask[i] = i + NumElems;
13275           VectorMask[i] = In;
13276         }
13277       }
13278 
13279       Shuffles[In] =
13280           DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask);
13281     }
13282   }
13283 
13284   return Shuffles[0];
13285 }
13286 
13287 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
13288   EVT VT = N->getValueType(0);
13289 
13290   // A vector built entirely of undefs is undef.
13291   if (ISD::allOperandsUndef(N))
13292     return DAG.getUNDEF(VT);
13293 
13294   if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
13295     return V;
13296 
13297   if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N))
13298     return V;
13299 
13300   if (SDValue V = reduceBuildVecToShuffle(N))
13301     return V;
13302 
13303   return SDValue();
13304 }
13305 
13306 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) {
13307   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13308   EVT OpVT = N->getOperand(0).getValueType();
13309 
13310   // If the operands are legal vectors, leave them alone.
13311   if (TLI.isTypeLegal(OpVT))
13312     return SDValue();
13313 
13314   SDLoc DL(N);
13315   EVT VT = N->getValueType(0);
13316   SmallVector<SDValue, 8> Ops;
13317 
13318   EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
13319   SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
13320 
13321   // Keep track of what we encounter.
13322   bool AnyInteger = false;
13323   bool AnyFP = false;
13324   for (const SDValue &Op : N->ops()) {
13325     if (ISD::BITCAST == Op.getOpcode() &&
13326         !Op.getOperand(0).getValueType().isVector())
13327       Ops.push_back(Op.getOperand(0));
13328     else if (ISD::UNDEF == Op.getOpcode())
13329       Ops.push_back(ScalarUndef);
13330     else
13331       return SDValue();
13332 
13333     // Note whether we encounter an integer or floating point scalar.
13334     // If it's neither, bail out, it could be something weird like x86mmx.
13335     EVT LastOpVT = Ops.back().getValueType();
13336     if (LastOpVT.isFloatingPoint())
13337       AnyFP = true;
13338     else if (LastOpVT.isInteger())
13339       AnyInteger = true;
13340     else
13341       return SDValue();
13342   }
13343 
13344   // If any of the operands is a floating point scalar bitcast to a vector,
13345   // use floating point types throughout, and bitcast everything.
13346   // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
13347   if (AnyFP) {
13348     SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits());
13349     ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
13350     if (AnyInteger) {
13351       for (SDValue &Op : Ops) {
13352         if (Op.getValueType() == SVT)
13353           continue;
13354         if (Op.isUndef())
13355           Op = ScalarUndef;
13356         else
13357           Op = DAG.getBitcast(SVT, Op);
13358       }
13359     }
13360   }
13361 
13362   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
13363                                VT.getSizeInBits() / SVT.getSizeInBits());
13364   return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops));
13365 }
13366 
13367 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
13368 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
13369 // most two distinct vectors the same size as the result, attempt to turn this
13370 // into a legal shuffle.
13371 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) {
13372   EVT VT = N->getValueType(0);
13373   EVT OpVT = N->getOperand(0).getValueType();
13374   int NumElts = VT.getVectorNumElements();
13375   int NumOpElts = OpVT.getVectorNumElements();
13376 
13377   SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT);
13378   SmallVector<int, 8> Mask;
13379 
13380   for (SDValue Op : N->ops()) {
13381     // Peek through any bitcast.
13382     while (Op.getOpcode() == ISD::BITCAST)
13383       Op = Op.getOperand(0);
13384 
13385     // UNDEF nodes convert to UNDEF shuffle mask values.
13386     if (Op.isUndef()) {
13387       Mask.append((unsigned)NumOpElts, -1);
13388       continue;
13389     }
13390 
13391     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
13392       return SDValue();
13393 
13394     // What vector are we extracting the subvector from and at what index?
13395     SDValue ExtVec = Op.getOperand(0);
13396 
13397     // We want the EVT of the original extraction to correctly scale the
13398     // extraction index.
13399     EVT ExtVT = ExtVec.getValueType();
13400 
13401     // Peek through any bitcast.
13402     while (ExtVec.getOpcode() == ISD::BITCAST)
13403       ExtVec = ExtVec.getOperand(0);
13404 
13405     // UNDEF nodes convert to UNDEF shuffle mask values.
13406     if (ExtVec.isUndef()) {
13407       Mask.append((unsigned)NumOpElts, -1);
13408       continue;
13409     }
13410 
13411     if (!isa<ConstantSDNode>(Op.getOperand(1)))
13412       return SDValue();
13413     int ExtIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
13414 
13415     // Ensure that we are extracting a subvector from a vector the same
13416     // size as the result.
13417     if (ExtVT.getSizeInBits() != VT.getSizeInBits())
13418       return SDValue();
13419 
13420     // Scale the subvector index to account for any bitcast.
13421     int NumExtElts = ExtVT.getVectorNumElements();
13422     if (0 == (NumExtElts % NumElts))
13423       ExtIdx /= (NumExtElts / NumElts);
13424     else if (0 == (NumElts % NumExtElts))
13425       ExtIdx *= (NumElts / NumExtElts);
13426     else
13427       return SDValue();
13428 
13429     // At most we can reference 2 inputs in the final shuffle.
13430     if (SV0.isUndef() || SV0 == ExtVec) {
13431       SV0 = ExtVec;
13432       for (int i = 0; i != NumOpElts; ++i)
13433         Mask.push_back(i + ExtIdx);
13434     } else if (SV1.isUndef() || SV1 == ExtVec) {
13435       SV1 = ExtVec;
13436       for (int i = 0; i != NumOpElts; ++i)
13437         Mask.push_back(i + ExtIdx + NumElts);
13438     } else {
13439       return SDValue();
13440     }
13441   }
13442 
13443   if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT))
13444     return SDValue();
13445 
13446   return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0),
13447                               DAG.getBitcast(VT, SV1), Mask);
13448 }
13449 
13450 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
13451   // If we only have one input vector, we don't need to do any concatenation.
13452   if (N->getNumOperands() == 1)
13453     return N->getOperand(0);
13454 
13455   // Check if all of the operands are undefs.
13456   EVT VT = N->getValueType(0);
13457   if (ISD::allOperandsUndef(N))
13458     return DAG.getUNDEF(VT);
13459 
13460   // Optimize concat_vectors where all but the first of the vectors are undef.
13461   if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) {
13462         return Op.isUndef();
13463       })) {
13464     SDValue In = N->getOperand(0);
13465     assert(In.getValueType().isVector() && "Must concat vectors");
13466 
13467     // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr).
13468     if (In->getOpcode() == ISD::BITCAST &&
13469         !In->getOperand(0)->getValueType(0).isVector()) {
13470       SDValue Scalar = In->getOperand(0);
13471 
13472       // If the bitcast type isn't legal, it might be a trunc of a legal type;
13473       // look through the trunc so we can still do the transform:
13474       //   concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
13475       if (Scalar->getOpcode() == ISD::TRUNCATE &&
13476           !TLI.isTypeLegal(Scalar.getValueType()) &&
13477           TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
13478         Scalar = Scalar->getOperand(0);
13479 
13480       EVT SclTy = Scalar->getValueType(0);
13481 
13482       if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
13483         return SDValue();
13484 
13485       EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy,
13486                                  VT.getSizeInBits() / SclTy.getSizeInBits());
13487       if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
13488         return SDValue();
13489 
13490       SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar);
13491       return DAG.getBitcast(VT, Res);
13492     }
13493   }
13494 
13495   // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
13496   // We have already tested above for an UNDEF only concatenation.
13497   // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
13498   // -> (BUILD_VECTOR A, B, ..., C, D, ...)
13499   auto IsBuildVectorOrUndef = [](const SDValue &Op) {
13500     return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode();
13501   };
13502   if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) {
13503     SmallVector<SDValue, 8> Opnds;
13504     EVT SVT = VT.getScalarType();
13505 
13506     EVT MinVT = SVT;
13507     if (!SVT.isFloatingPoint()) {
13508       // If BUILD_VECTOR are from built from integer, they may have different
13509       // operand types. Get the smallest type and truncate all operands to it.
13510       bool FoundMinVT = false;
13511       for (const SDValue &Op : N->ops())
13512         if (ISD::BUILD_VECTOR == Op.getOpcode()) {
13513           EVT OpSVT = Op.getOperand(0)->getValueType(0);
13514           MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
13515           FoundMinVT = true;
13516         }
13517       assert(FoundMinVT && "Concat vector type mismatch");
13518     }
13519 
13520     for (const SDValue &Op : N->ops()) {
13521       EVT OpVT = Op.getValueType();
13522       unsigned NumElts = OpVT.getVectorNumElements();
13523 
13524       if (ISD::UNDEF == Op.getOpcode())
13525         Opnds.append(NumElts, DAG.getUNDEF(MinVT));
13526 
13527       if (ISD::BUILD_VECTOR == Op.getOpcode()) {
13528         if (SVT.isFloatingPoint()) {
13529           assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch");
13530           Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
13531         } else {
13532           for (unsigned i = 0; i != NumElts; ++i)
13533             Opnds.push_back(
13534                 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
13535         }
13536       }
13537     }
13538 
13539     assert(VT.getVectorNumElements() == Opnds.size() &&
13540            "Concat vector type mismatch");
13541     return DAG.getBuildVector(VT, SDLoc(N), Opnds);
13542   }
13543 
13544   // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
13545   if (SDValue V = combineConcatVectorOfScalars(N, DAG))
13546     return V;
13547 
13548   // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
13549   if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT))
13550     if (SDValue V = combineConcatVectorOfExtracts(N, DAG))
13551       return V;
13552 
13553   // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
13554   // nodes often generate nop CONCAT_VECTOR nodes.
13555   // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
13556   // place the incoming vectors at the exact same location.
13557   SDValue SingleSource = SDValue();
13558   unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
13559 
13560   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
13561     SDValue Op = N->getOperand(i);
13562 
13563     if (Op.isUndef())
13564       continue;
13565 
13566     // Check if this is the identity extract:
13567     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
13568       return SDValue();
13569 
13570     // Find the single incoming vector for the extract_subvector.
13571     if (SingleSource.getNode()) {
13572       if (Op.getOperand(0) != SingleSource)
13573         return SDValue();
13574     } else {
13575       SingleSource = Op.getOperand(0);
13576 
13577       // Check the source type is the same as the type of the result.
13578       // If not, this concat may extend the vector, so we can not
13579       // optimize it away.
13580       if (SingleSource.getValueType() != N->getValueType(0))
13581         return SDValue();
13582     }
13583 
13584     unsigned IdentityIndex = i * PartNumElem;
13585     ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
13586     // The extract index must be constant.
13587     if (!CS)
13588       return SDValue();
13589 
13590     // Check that we are reading from the identity index.
13591     if (CS->getZExtValue() != IdentityIndex)
13592       return SDValue();
13593   }
13594 
13595   if (SingleSource.getNode())
13596     return SingleSource;
13597 
13598   return SDValue();
13599 }
13600 
13601 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
13602   EVT NVT = N->getValueType(0);
13603   SDValue V = N->getOperand(0);
13604 
13605   if (V->getOpcode() == ISD::CONCAT_VECTORS) {
13606     // Combine:
13607     //    (extract_subvec (concat V1, V2, ...), i)
13608     // Into:
13609     //    Vi if possible
13610     // Only operand 0 is checked as 'concat' assumes all inputs of the same
13611     // type.
13612     if (V->getOperand(0).getValueType() != NVT)
13613       return SDValue();
13614     unsigned Idx = N->getConstantOperandVal(1);
13615     unsigned NumElems = NVT.getVectorNumElements();
13616     assert((Idx % NumElems) == 0 &&
13617            "IDX in concat is not a multiple of the result vector length.");
13618     return V->getOperand(Idx / NumElems);
13619   }
13620 
13621   // Skip bitcasting
13622   if (V->getOpcode() == ISD::BITCAST)
13623     V = V.getOperand(0);
13624 
13625   if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
13626     // Handle only simple case where vector being inserted and vector
13627     // being extracted are of same type, and are half size of larger vectors.
13628     EVT BigVT = V->getOperand(0).getValueType();
13629     EVT SmallVT = V->getOperand(1).getValueType();
13630     if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
13631       return SDValue();
13632 
13633     // Only handle cases where both indexes are constants with the same type.
13634     ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
13635     ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
13636 
13637     if (InsIdx && ExtIdx &&
13638         InsIdx->getValueType(0).getSizeInBits() <= 64 &&
13639         ExtIdx->getValueType(0).getSizeInBits() <= 64) {
13640       // Combine:
13641       //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
13642       // Into:
13643       //    indices are equal or bit offsets are equal => V1
13644       //    otherwise => (extract_subvec V1, ExtIdx)
13645       if (InsIdx->getZExtValue() * SmallVT.getScalarSizeInBits() ==
13646           ExtIdx->getZExtValue() * NVT.getScalarSizeInBits())
13647         return DAG.getBitcast(NVT, V->getOperand(1));
13648       return DAG.getNode(
13649           ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT,
13650           DAG.getBitcast(N->getOperand(0).getValueType(), V->getOperand(0)),
13651           N->getOperand(1));
13652     }
13653   }
13654 
13655   return SDValue();
13656 }
13657 
13658 static SDValue simplifyShuffleOperandRecursively(SmallBitVector &UsedElements,
13659                                                  SDValue V, SelectionDAG &DAG) {
13660   SDLoc DL(V);
13661   EVT VT = V.getValueType();
13662 
13663   switch (V.getOpcode()) {
13664   default:
13665     return V;
13666 
13667   case ISD::CONCAT_VECTORS: {
13668     EVT OpVT = V->getOperand(0).getValueType();
13669     int OpSize = OpVT.getVectorNumElements();
13670     SmallBitVector OpUsedElements(OpSize, false);
13671     bool FoundSimplification = false;
13672     SmallVector<SDValue, 4> NewOps;
13673     NewOps.reserve(V->getNumOperands());
13674     for (int i = 0, NumOps = V->getNumOperands(); i < NumOps; ++i) {
13675       SDValue Op = V->getOperand(i);
13676       bool OpUsed = false;
13677       for (int j = 0; j < OpSize; ++j)
13678         if (UsedElements[i * OpSize + j]) {
13679           OpUsedElements[j] = true;
13680           OpUsed = true;
13681         }
13682       NewOps.push_back(
13683           OpUsed ? simplifyShuffleOperandRecursively(OpUsedElements, Op, DAG)
13684                  : DAG.getUNDEF(OpVT));
13685       FoundSimplification |= Op == NewOps.back();
13686       OpUsedElements.reset();
13687     }
13688     if (FoundSimplification)
13689       V = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, NewOps);
13690     return V;
13691   }
13692 
13693   case ISD::INSERT_SUBVECTOR: {
13694     SDValue BaseV = V->getOperand(0);
13695     SDValue SubV = V->getOperand(1);
13696     auto *IdxN = dyn_cast<ConstantSDNode>(V->getOperand(2));
13697     if (!IdxN)
13698       return V;
13699 
13700     int SubSize = SubV.getValueType().getVectorNumElements();
13701     int Idx = IdxN->getZExtValue();
13702     bool SubVectorUsed = false;
13703     SmallBitVector SubUsedElements(SubSize, false);
13704     for (int i = 0; i < SubSize; ++i)
13705       if (UsedElements[i + Idx]) {
13706         SubVectorUsed = true;
13707         SubUsedElements[i] = true;
13708         UsedElements[i + Idx] = false;
13709       }
13710 
13711     // Now recurse on both the base and sub vectors.
13712     SDValue SimplifiedSubV =
13713         SubVectorUsed
13714             ? simplifyShuffleOperandRecursively(SubUsedElements, SubV, DAG)
13715             : DAG.getUNDEF(SubV.getValueType());
13716     SDValue SimplifiedBaseV = simplifyShuffleOperandRecursively(UsedElements, BaseV, DAG);
13717     if (SimplifiedSubV != SubV || SimplifiedBaseV != BaseV)
13718       V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
13719                       SimplifiedBaseV, SimplifiedSubV, V->getOperand(2));
13720     return V;
13721   }
13722   }
13723 }
13724 
13725 static SDValue simplifyShuffleOperands(ShuffleVectorSDNode *SVN, SDValue N0,
13726                                        SDValue N1, SelectionDAG &DAG) {
13727   EVT VT = SVN->getValueType(0);
13728   int NumElts = VT.getVectorNumElements();
13729   SmallBitVector N0UsedElements(NumElts, false), N1UsedElements(NumElts, false);
13730   for (int M : SVN->getMask())
13731     if (M >= 0 && M < NumElts)
13732       N0UsedElements[M] = true;
13733     else if (M >= NumElts)
13734       N1UsedElements[M - NumElts] = true;
13735 
13736   SDValue S0 = simplifyShuffleOperandRecursively(N0UsedElements, N0, DAG);
13737   SDValue S1 = simplifyShuffleOperandRecursively(N1UsedElements, N1, DAG);
13738   if (S0 == N0 && S1 == N1)
13739     return SDValue();
13740 
13741   return DAG.getVectorShuffle(VT, SDLoc(SVN), S0, S1, SVN->getMask());
13742 }
13743 
13744 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
13745 // or turn a shuffle of a single concat into simpler shuffle then concat.
13746 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
13747   EVT VT = N->getValueType(0);
13748   unsigned NumElts = VT.getVectorNumElements();
13749 
13750   SDValue N0 = N->getOperand(0);
13751   SDValue N1 = N->getOperand(1);
13752   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
13753 
13754   SmallVector<SDValue, 4> Ops;
13755   EVT ConcatVT = N0.getOperand(0).getValueType();
13756   unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
13757   unsigned NumConcats = NumElts / NumElemsPerConcat;
13758 
13759   // Special case: shuffle(concat(A,B)) can be more efficiently represented
13760   // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
13761   // half vector elements.
13762   if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() &&
13763       std::all_of(SVN->getMask().begin() + NumElemsPerConcat,
13764                   SVN->getMask().end(), [](int i) { return i == -1; })) {
13765     N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1),
13766                               makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat));
13767     N1 = DAG.getUNDEF(ConcatVT);
13768     return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
13769   }
13770 
13771   // Look at every vector that's inserted. We're looking for exact
13772   // subvector-sized copies from a concatenated vector
13773   for (unsigned I = 0; I != NumConcats; ++I) {
13774     // Make sure we're dealing with a copy.
13775     unsigned Begin = I * NumElemsPerConcat;
13776     bool AllUndef = true, NoUndef = true;
13777     for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
13778       if (SVN->getMaskElt(J) >= 0)
13779         AllUndef = false;
13780       else
13781         NoUndef = false;
13782     }
13783 
13784     if (NoUndef) {
13785       if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
13786         return SDValue();
13787 
13788       for (unsigned J = 1; J != NumElemsPerConcat; ++J)
13789         if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
13790           return SDValue();
13791 
13792       unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
13793       if (FirstElt < N0.getNumOperands())
13794         Ops.push_back(N0.getOperand(FirstElt));
13795       else
13796         Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
13797 
13798     } else if (AllUndef) {
13799       Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
13800     } else { // Mixed with general masks and undefs, can't do optimization.
13801       return SDValue();
13802     }
13803   }
13804 
13805   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
13806 }
13807 
13808 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
13809 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
13810 //
13811 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
13812 // a simplification in some sense, but it isn't appropriate in general: some
13813 // BUILD_VECTORs are substantially cheaper than others. The general case
13814 // of a BUILD_VECTOR requires inserting each element individually (or
13815 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
13816 // all constants is a single constant pool load.  A BUILD_VECTOR where each
13817 // element is identical is a splat.  A BUILD_VECTOR where most of the operands
13818 // are undef lowers to a small number of element insertions.
13819 //
13820 // To deal with this, we currently use a bunch of mostly arbitrary heuristics.
13821 // We don't fold shuffles where one side is a non-zero constant, and we don't
13822 // fold shuffles if the resulting BUILD_VECTOR would have duplicate
13823 // non-constant operands. This seems to work out reasonably well in practice.
13824 static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN,
13825                                        SelectionDAG &DAG,
13826                                        const TargetLowering &TLI) {
13827   EVT VT = SVN->getValueType(0);
13828   unsigned NumElts = VT.getVectorNumElements();
13829   SDValue N0 = SVN->getOperand(0);
13830   SDValue N1 = SVN->getOperand(1);
13831 
13832   if (!N0->hasOneUse() || !N1->hasOneUse())
13833     return SDValue();
13834   // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
13835   // discussed above.
13836   if (!N1.isUndef()) {
13837     bool N0AnyConst = isAnyConstantBuildVector(N0.getNode());
13838     bool N1AnyConst = isAnyConstantBuildVector(N1.getNode());
13839     if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode()))
13840       return SDValue();
13841     if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode()))
13842       return SDValue();
13843   }
13844 
13845   SmallVector<SDValue, 8> Ops;
13846   SmallSet<SDValue, 16> DuplicateOps;
13847   for (int M : SVN->getMask()) {
13848     SDValue Op = DAG.getUNDEF(VT.getScalarType());
13849     if (M >= 0) {
13850       int Idx = M < (int)NumElts ? M : M - NumElts;
13851       SDValue &S = (M < (int)NumElts ? N0 : N1);
13852       if (S.getOpcode() == ISD::BUILD_VECTOR) {
13853         Op = S.getOperand(Idx);
13854       } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) {
13855         if (Idx == 0)
13856           Op = S.getOperand(0);
13857       } else {
13858         // Operand can't be combined - bail out.
13859         return SDValue();
13860       }
13861     }
13862 
13863     // Don't duplicate a non-constant BUILD_VECTOR operand; semantically, this is
13864     // fine, but it's likely to generate low-quality code if the target can't
13865     // reconstruct an appropriate shuffle.
13866     if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op))
13867       if (!DuplicateOps.insert(Op).second)
13868         return SDValue();
13869 
13870     Ops.push_back(Op);
13871   }
13872   // BUILD_VECTOR requires all inputs to be of the same type, find the
13873   // maximum type and extend them all.
13874   EVT SVT = VT.getScalarType();
13875   if (SVT.isInteger())
13876     for (SDValue &Op : Ops)
13877       SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
13878   if (SVT != VT.getScalarType())
13879     for (SDValue &Op : Ops)
13880       Op = TLI.isZExtFree(Op.getValueType(), SVT)
13881                ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT)
13882                : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT);
13883   return DAG.getBuildVector(VT, SDLoc(SVN), Ops);
13884 }
13885 
13886 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
13887   EVT VT = N->getValueType(0);
13888   unsigned NumElts = VT.getVectorNumElements();
13889 
13890   SDValue N0 = N->getOperand(0);
13891   SDValue N1 = N->getOperand(1);
13892 
13893   assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
13894 
13895   // Canonicalize shuffle undef, undef -> undef
13896   if (N0.isUndef() && N1.isUndef())
13897     return DAG.getUNDEF(VT);
13898 
13899   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
13900 
13901   // Canonicalize shuffle v, v -> v, undef
13902   if (N0 == N1) {
13903     SmallVector<int, 8> NewMask;
13904     for (unsigned i = 0; i != NumElts; ++i) {
13905       int Idx = SVN->getMaskElt(i);
13906       if (Idx >= (int)NumElts) Idx -= NumElts;
13907       NewMask.push_back(Idx);
13908     }
13909     return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask);
13910   }
13911 
13912   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
13913   if (N0.isUndef())
13914     return DAG.getCommutedVectorShuffle(*SVN);
13915 
13916   // Remove references to rhs if it is undef
13917   if (N1.isUndef()) {
13918     bool Changed = false;
13919     SmallVector<int, 8> NewMask;
13920     for (unsigned i = 0; i != NumElts; ++i) {
13921       int Idx = SVN->getMaskElt(i);
13922       if (Idx >= (int)NumElts) {
13923         Idx = -1;
13924         Changed = true;
13925       }
13926       NewMask.push_back(Idx);
13927     }
13928     if (Changed)
13929       return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask);
13930   }
13931 
13932   // If it is a splat, check if the argument vector is another splat or a
13933   // build_vector.
13934   if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
13935     SDNode *V = N0.getNode();
13936 
13937     // If this is a bit convert that changes the element type of the vector but
13938     // not the number of vector elements, look through it.  Be careful not to
13939     // look though conversions that change things like v4f32 to v2f64.
13940     if (V->getOpcode() == ISD::BITCAST) {
13941       SDValue ConvInput = V->getOperand(0);
13942       if (ConvInput.getValueType().isVector() &&
13943           ConvInput.getValueType().getVectorNumElements() == NumElts)
13944         V = ConvInput.getNode();
13945     }
13946 
13947     if (V->getOpcode() == ISD::BUILD_VECTOR) {
13948       assert(V->getNumOperands() == NumElts &&
13949              "BUILD_VECTOR has wrong number of operands");
13950       SDValue Base;
13951       bool AllSame = true;
13952       for (unsigned i = 0; i != NumElts; ++i) {
13953         if (!V->getOperand(i).isUndef()) {
13954           Base = V->getOperand(i);
13955           break;
13956         }
13957       }
13958       // Splat of <u, u, u, u>, return <u, u, u, u>
13959       if (!Base.getNode())
13960         return N0;
13961       for (unsigned i = 0; i != NumElts; ++i) {
13962         if (V->getOperand(i) != Base) {
13963           AllSame = false;
13964           break;
13965         }
13966       }
13967       // Splat of <x, x, x, x>, return <x, x, x, x>
13968       if (AllSame)
13969         return N0;
13970 
13971       // Canonicalize any other splat as a build_vector.
13972       const SDValue &Splatted = V->getOperand(SVN->getSplatIndex());
13973       SmallVector<SDValue, 8> Ops(NumElts, Splatted);
13974       SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops);
13975 
13976       // We may have jumped through bitcasts, so the type of the
13977       // BUILD_VECTOR may not match the type of the shuffle.
13978       if (V->getValueType(0) != VT)
13979         NewBV = DAG.getBitcast(VT, NewBV);
13980       return NewBV;
13981     }
13982   }
13983 
13984   // There are various patterns used to build up a vector from smaller vectors,
13985   // subvectors, or elements. Scan chains of these and replace unused insertions
13986   // or components with undef.
13987   if (SDValue S = simplifyShuffleOperands(SVN, N0, N1, DAG))
13988     return S;
13989 
13990   if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
13991       Level < AfterLegalizeVectorOps &&
13992       (N1.isUndef() ||
13993       (N1.getOpcode() == ISD::CONCAT_VECTORS &&
13994        N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
13995     if (SDValue V = partitionShuffleOfConcats(N, DAG))
13996       return V;
13997   }
13998 
13999   // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
14000   // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
14001   if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT))
14002     if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI))
14003       return Res;
14004 
14005   // If this shuffle only has a single input that is a bitcasted shuffle,
14006   // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
14007   // back to their original types.
14008   if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
14009       N1.isUndef() && Level < AfterLegalizeVectorOps &&
14010       TLI.isTypeLegal(VT)) {
14011 
14012     // Peek through the bitcast only if there is one user.
14013     SDValue BC0 = N0;
14014     while (BC0.getOpcode() == ISD::BITCAST) {
14015       if (!BC0.hasOneUse())
14016         break;
14017       BC0 = BC0.getOperand(0);
14018     }
14019 
14020     auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) {
14021       if (Scale == 1)
14022         return SmallVector<int, 8>(Mask.begin(), Mask.end());
14023 
14024       SmallVector<int, 8> NewMask;
14025       for (int M : Mask)
14026         for (int s = 0; s != Scale; ++s)
14027           NewMask.push_back(M < 0 ? -1 : Scale * M + s);
14028       return NewMask;
14029     };
14030 
14031     if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
14032       EVT SVT = VT.getScalarType();
14033       EVT InnerVT = BC0->getValueType(0);
14034       EVT InnerSVT = InnerVT.getScalarType();
14035 
14036       // Determine which shuffle works with the smaller scalar type.
14037       EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
14038       EVT ScaleSVT = ScaleVT.getScalarType();
14039 
14040       if (TLI.isTypeLegal(ScaleVT) &&
14041           0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
14042           0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
14043 
14044         int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
14045         int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();
14046 
14047         // Scale the shuffle masks to the smaller scalar type.
14048         ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
14049         SmallVector<int, 8> InnerMask =
14050             ScaleShuffleMask(InnerSVN->getMask(), InnerScale);
14051         SmallVector<int, 8> OuterMask =
14052             ScaleShuffleMask(SVN->getMask(), OuterScale);
14053 
14054         // Merge the shuffle masks.
14055         SmallVector<int, 8> NewMask;
14056         for (int M : OuterMask)
14057           NewMask.push_back(M < 0 ? -1 : InnerMask[M]);
14058 
14059         // Test for shuffle mask legality over both commutations.
14060         SDValue SV0 = BC0->getOperand(0);
14061         SDValue SV1 = BC0->getOperand(1);
14062         bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
14063         if (!LegalMask) {
14064           std::swap(SV0, SV1);
14065           ShuffleVectorSDNode::commuteMask(NewMask);
14066           LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
14067         }
14068 
14069         if (LegalMask) {
14070           SV0 = DAG.getBitcast(ScaleVT, SV0);
14071           SV1 = DAG.getBitcast(ScaleVT, SV1);
14072           return DAG.getBitcast(
14073               VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
14074         }
14075       }
14076     }
14077   }
14078 
14079   // Canonicalize shuffles according to rules:
14080   //  shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
14081   //  shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
14082   //  shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
14083   if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
14084       N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
14085       TLI.isTypeLegal(VT)) {
14086     // The incoming shuffle must be of the same type as the result of the
14087     // current shuffle.
14088     assert(N1->getOperand(0).getValueType() == VT &&
14089            "Shuffle types don't match");
14090 
14091     SDValue SV0 = N1->getOperand(0);
14092     SDValue SV1 = N1->getOperand(1);
14093     bool HasSameOp0 = N0 == SV0;
14094     bool IsSV1Undef = SV1.isUndef();
14095     if (HasSameOp0 || IsSV1Undef || N0 == SV1)
14096       // Commute the operands of this shuffle so that next rule
14097       // will trigger.
14098       return DAG.getCommutedVectorShuffle(*SVN);
14099   }
14100 
14101   // Try to fold according to rules:
14102   //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
14103   //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
14104   //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
14105   // Don't try to fold shuffles with illegal type.
14106   // Only fold if this shuffle is the only user of the other shuffle.
14107   if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) &&
14108       Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
14109     ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
14110 
14111     // Don't try to fold splats; they're likely to simplify somehow, or they
14112     // might be free.
14113     if (OtherSV->isSplat())
14114       return SDValue();
14115 
14116     // The incoming shuffle must be of the same type as the result of the
14117     // current shuffle.
14118     assert(OtherSV->getOperand(0).getValueType() == VT &&
14119            "Shuffle types don't match");
14120 
14121     SDValue SV0, SV1;
14122     SmallVector<int, 4> Mask;
14123     // Compute the combined shuffle mask for a shuffle with SV0 as the first
14124     // operand, and SV1 as the second operand.
14125     for (unsigned i = 0; i != NumElts; ++i) {
14126       int Idx = SVN->getMaskElt(i);
14127       if (Idx < 0) {
14128         // Propagate Undef.
14129         Mask.push_back(Idx);
14130         continue;
14131       }
14132 
14133       SDValue CurrentVec;
14134       if (Idx < (int)NumElts) {
14135         // This shuffle index refers to the inner shuffle N0. Lookup the inner
14136         // shuffle mask to identify which vector is actually referenced.
14137         Idx = OtherSV->getMaskElt(Idx);
14138         if (Idx < 0) {
14139           // Propagate Undef.
14140           Mask.push_back(Idx);
14141           continue;
14142         }
14143 
14144         CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0)
14145                                            : OtherSV->getOperand(1);
14146       } else {
14147         // This shuffle index references an element within N1.
14148         CurrentVec = N1;
14149       }
14150 
14151       // Simple case where 'CurrentVec' is UNDEF.
14152       if (CurrentVec.isUndef()) {
14153         Mask.push_back(-1);
14154         continue;
14155       }
14156 
14157       // Canonicalize the shuffle index. We don't know yet if CurrentVec
14158       // will be the first or second operand of the combined shuffle.
14159       Idx = Idx % NumElts;
14160       if (!SV0.getNode() || SV0 == CurrentVec) {
14161         // Ok. CurrentVec is the left hand side.
14162         // Update the mask accordingly.
14163         SV0 = CurrentVec;
14164         Mask.push_back(Idx);
14165         continue;
14166       }
14167 
14168       // Bail out if we cannot convert the shuffle pair into a single shuffle.
14169       if (SV1.getNode() && SV1 != CurrentVec)
14170         return SDValue();
14171 
14172       // Ok. CurrentVec is the right hand side.
14173       // Update the mask accordingly.
14174       SV1 = CurrentVec;
14175       Mask.push_back(Idx + NumElts);
14176     }
14177 
14178     // Check if all indices in Mask are Undef. In case, propagate Undef.
14179     bool isUndefMask = true;
14180     for (unsigned i = 0; i != NumElts && isUndefMask; ++i)
14181       isUndefMask &= Mask[i] < 0;
14182 
14183     if (isUndefMask)
14184       return DAG.getUNDEF(VT);
14185 
14186     if (!SV0.getNode())
14187       SV0 = DAG.getUNDEF(VT);
14188     if (!SV1.getNode())
14189       SV1 = DAG.getUNDEF(VT);
14190 
14191     // Avoid introducing shuffles with illegal mask.
14192     if (!TLI.isShuffleMaskLegal(Mask, VT)) {
14193       ShuffleVectorSDNode::commuteMask(Mask);
14194 
14195       if (!TLI.isShuffleMaskLegal(Mask, VT))
14196         return SDValue();
14197 
14198       //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
14199       //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
14200       //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
14201       std::swap(SV0, SV1);
14202     }
14203 
14204     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
14205     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
14206     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
14207     return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask);
14208   }
14209 
14210   return SDValue();
14211 }
14212 
14213 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
14214   SDValue InVal = N->getOperand(0);
14215   EVT VT = N->getValueType(0);
14216 
14217   // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
14218   // with a VECTOR_SHUFFLE.
14219   if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14220     SDValue InVec = InVal->getOperand(0);
14221     SDValue EltNo = InVal->getOperand(1);
14222 
14223     // FIXME: We could support implicit truncation if the shuffle can be
14224     // scaled to a smaller vector scalar type.
14225     ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo);
14226     if (C0 && VT == InVec.getValueType() &&
14227         VT.getScalarType() == InVal.getValueType()) {
14228       SmallVector<int, 8> NewMask(VT.getVectorNumElements(), -1);
14229       int Elt = C0->getZExtValue();
14230       NewMask[0] = Elt;
14231 
14232       if (TLI.isShuffleMaskLegal(NewMask, VT))
14233         return DAG.getVectorShuffle(VT, SDLoc(N), InVec, DAG.getUNDEF(VT),
14234                                     NewMask);
14235     }
14236   }
14237 
14238   return SDValue();
14239 }
14240 
14241 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
14242   EVT VT = N->getValueType(0);
14243   SDValue N0 = N->getOperand(0);
14244   SDValue N1 = N->getOperand(1);
14245   SDValue N2 = N->getOperand(2);
14246 
14247   // Combine INSERT_SUBVECTORs where we are inserting to the same index.
14248   // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
14249   // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
14250   if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
14251       N0.getOperand(1).getValueType() == N1.getValueType() &&
14252       N0.getOperand(2) == N2)
14253     return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0),
14254                        N1, N2);
14255 
14256   if (N0.getValueType() != N1.getValueType())
14257     return SDValue();
14258 
14259   // If the input vector is a concatenation, and the insert replaces
14260   // one of the halves, we can optimize into a single concat_vectors.
14261   if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0->getNumOperands() == 2 &&
14262       N2.getOpcode() == ISD::Constant) {
14263     APInt InsIdx = cast<ConstantSDNode>(N2)->getAPIntValue();
14264 
14265     // Lower half: fold (insert_subvector (concat_vectors X, Y), Z) ->
14266     // (concat_vectors Z, Y)
14267     if (InsIdx == 0)
14268       return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N1,
14269                          N0.getOperand(1));
14270 
14271     // Upper half: fold (insert_subvector (concat_vectors X, Y), Z) ->
14272     // (concat_vectors X, Z)
14273     if (InsIdx == VT.getVectorNumElements() / 2)
14274       return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0.getOperand(0),
14275                          N1);
14276   }
14277 
14278   return SDValue();
14279 }
14280 
14281 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
14282   SDValue N0 = N->getOperand(0);
14283 
14284   // fold (fp_to_fp16 (fp16_to_fp op)) -> op
14285   if (N0->getOpcode() == ISD::FP16_TO_FP)
14286     return N0->getOperand(0);
14287 
14288   return SDValue();
14289 }
14290 
14291 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) {
14292   SDValue N0 = N->getOperand(0);
14293 
14294   // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
14295   if (N0->getOpcode() == ISD::AND) {
14296     ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1));
14297     if (AndConst && AndConst->getAPIntValue() == 0xffff) {
14298       return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0),
14299                          N0.getOperand(0));
14300     }
14301   }
14302 
14303   return SDValue();
14304 }
14305 
14306 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
14307 /// with the destination vector and a zero vector.
14308 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
14309 ///      vector_shuffle V, Zero, <0, 4, 2, 4>
14310 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
14311   EVT VT = N->getValueType(0);
14312   SDValue LHS = N->getOperand(0);
14313   SDValue RHS = N->getOperand(1);
14314   SDLoc DL(N);
14315 
14316   // Make sure we're not running after operation legalization where it
14317   // may have custom lowered the vector shuffles.
14318   if (LegalOperations)
14319     return SDValue();
14320 
14321   if (N->getOpcode() != ISD::AND)
14322     return SDValue();
14323 
14324   if (RHS.getOpcode() == ISD::BITCAST)
14325     RHS = RHS.getOperand(0);
14326 
14327   if (RHS.getOpcode() != ISD::BUILD_VECTOR)
14328     return SDValue();
14329 
14330   EVT RVT = RHS.getValueType();
14331   unsigned NumElts = RHS.getNumOperands();
14332 
14333   // Attempt to create a valid clear mask, splitting the mask into
14334   // sub elements and checking to see if each is
14335   // all zeros or all ones - suitable for shuffle masking.
14336   auto BuildClearMask = [&](int Split) {
14337     int NumSubElts = NumElts * Split;
14338     int NumSubBits = RVT.getScalarSizeInBits() / Split;
14339 
14340     SmallVector<int, 8> Indices;
14341     for (int i = 0; i != NumSubElts; ++i) {
14342       int EltIdx = i / Split;
14343       int SubIdx = i % Split;
14344       SDValue Elt = RHS.getOperand(EltIdx);
14345       if (Elt.isUndef()) {
14346         Indices.push_back(-1);
14347         continue;
14348       }
14349 
14350       APInt Bits;
14351       if (isa<ConstantSDNode>(Elt))
14352         Bits = cast<ConstantSDNode>(Elt)->getAPIntValue();
14353       else if (isa<ConstantFPSDNode>(Elt))
14354         Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt();
14355       else
14356         return SDValue();
14357 
14358       // Extract the sub element from the constant bit mask.
14359       if (DAG.getDataLayout().isBigEndian()) {
14360         Bits = Bits.lshr((Split - SubIdx - 1) * NumSubBits);
14361       } else {
14362         Bits = Bits.lshr(SubIdx * NumSubBits);
14363       }
14364 
14365       if (Split > 1)
14366         Bits = Bits.trunc(NumSubBits);
14367 
14368       if (Bits.isAllOnesValue())
14369         Indices.push_back(i);
14370       else if (Bits == 0)
14371         Indices.push_back(i + NumSubElts);
14372       else
14373         return SDValue();
14374     }
14375 
14376     // Let's see if the target supports this vector_shuffle.
14377     EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits);
14378     EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts);
14379     if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
14380       return SDValue();
14381 
14382     SDValue Zero = DAG.getConstant(0, DL, ClearVT);
14383     return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL,
14384                                                    DAG.getBitcast(ClearVT, LHS),
14385                                                    Zero, Indices));
14386   };
14387 
14388   // Determine maximum split level (byte level masking).
14389   int MaxSplit = 1;
14390   if (RVT.getScalarSizeInBits() % 8 == 0)
14391     MaxSplit = RVT.getScalarSizeInBits() / 8;
14392 
14393   for (int Split = 1; Split <= MaxSplit; ++Split)
14394     if (RVT.getScalarSizeInBits() % Split == 0)
14395       if (SDValue S = BuildClearMask(Split))
14396         return S;
14397 
14398   return SDValue();
14399 }
14400 
14401 /// Visit a binary vector operation, like ADD.
14402 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
14403   assert(N->getValueType(0).isVector() &&
14404          "SimplifyVBinOp only works on vectors!");
14405 
14406   SDValue LHS = N->getOperand(0);
14407   SDValue RHS = N->getOperand(1);
14408   SDValue Ops[] = {LHS, RHS};
14409 
14410   // See if we can constant fold the vector operation.
14411   if (SDValue Fold = DAG.FoldConstantVectorArithmetic(
14412           N->getOpcode(), SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags()))
14413     return Fold;
14414 
14415   // Try to convert a constant mask AND into a shuffle clear mask.
14416   if (SDValue Shuffle = XformToShuffleWithZero(N))
14417     return Shuffle;
14418 
14419   // Type legalization might introduce new shuffles in the DAG.
14420   // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask)))
14421   //   -> (shuffle (VBinOp (A, B)), Undef, Mask).
14422   if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) &&
14423       isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() &&
14424       LHS.getOperand(1).isUndef() &&
14425       RHS.getOperand(1).isUndef()) {
14426     ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS);
14427     ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS);
14428 
14429     if (SVN0->getMask().equals(SVN1->getMask())) {
14430       EVT VT = N->getValueType(0);
14431       SDValue UndefVector = LHS.getOperand(1);
14432       SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
14433                                      LHS.getOperand(0), RHS.getOperand(0),
14434                                      N->getFlags());
14435       AddUsersToWorklist(N);
14436       return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector,
14437                                   SVN0->getMask());
14438     }
14439   }
14440 
14441   return SDValue();
14442 }
14443 
14444 SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1,
14445                                     SDValue N2) {
14446   assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
14447 
14448   SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
14449                                  cast<CondCodeSDNode>(N0.getOperand(2))->get());
14450 
14451   // If we got a simplified select_cc node back from SimplifySelectCC, then
14452   // break it down into a new SETCC node, and a new SELECT node, and then return
14453   // the SELECT node, since we were called with a SELECT node.
14454   if (SCC.getNode()) {
14455     // Check to see if we got a select_cc back (to turn into setcc/select).
14456     // Otherwise, just return whatever node we got back, like fabs.
14457     if (SCC.getOpcode() == ISD::SELECT_CC) {
14458       SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
14459                                   N0.getValueType(),
14460                                   SCC.getOperand(0), SCC.getOperand(1),
14461                                   SCC.getOperand(4));
14462       AddToWorklist(SETCC.getNode());
14463       return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
14464                            SCC.getOperand(2), SCC.getOperand(3));
14465     }
14466 
14467     return SCC;
14468   }
14469   return SDValue();
14470 }
14471 
14472 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
14473 /// being selected between, see if we can simplify the select.  Callers of this
14474 /// should assume that TheSelect is deleted if this returns true.  As such, they
14475 /// should return the appropriate thing (e.g. the node) back to the top-level of
14476 /// the DAG combiner loop to avoid it being looked at.
14477 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
14478                                     SDValue RHS) {
14479 
14480   // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
14481   // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
14482   if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
14483     if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
14484       // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
14485       SDValue Sqrt = RHS;
14486       ISD::CondCode CC;
14487       SDValue CmpLHS;
14488       const ConstantFPSDNode *Zero = nullptr;
14489 
14490       if (TheSelect->getOpcode() == ISD::SELECT_CC) {
14491         CC = dyn_cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
14492         CmpLHS = TheSelect->getOperand(0);
14493         Zero = isConstOrConstSplatFP(TheSelect->getOperand(1));
14494       } else {
14495         // SELECT or VSELECT
14496         SDValue Cmp = TheSelect->getOperand(0);
14497         if (Cmp.getOpcode() == ISD::SETCC) {
14498           CC = dyn_cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
14499           CmpLHS = Cmp.getOperand(0);
14500           Zero = isConstOrConstSplatFP(Cmp.getOperand(1));
14501         }
14502       }
14503       if (Zero && Zero->isZero() &&
14504           Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
14505           CC == ISD::SETULT || CC == ISD::SETLT)) {
14506         // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
14507         CombineTo(TheSelect, Sqrt);
14508         return true;
14509       }
14510     }
14511   }
14512   // Cannot simplify select with vector condition
14513   if (TheSelect->getOperand(0).getValueType().isVector()) return false;
14514 
14515   // If this is a select from two identical things, try to pull the operation
14516   // through the select.
14517   if (LHS.getOpcode() != RHS.getOpcode() ||
14518       !LHS.hasOneUse() || !RHS.hasOneUse())
14519     return false;
14520 
14521   // If this is a load and the token chain is identical, replace the select
14522   // of two loads with a load through a select of the address to load from.
14523   // This triggers in things like "select bool X, 10.0, 123.0" after the FP
14524   // constants have been dropped into the constant pool.
14525   if (LHS.getOpcode() == ISD::LOAD) {
14526     LoadSDNode *LLD = cast<LoadSDNode>(LHS);
14527     LoadSDNode *RLD = cast<LoadSDNode>(RHS);
14528 
14529     // Token chains must be identical.
14530     if (LHS.getOperand(0) != RHS.getOperand(0) ||
14531         // Do not let this transformation reduce the number of volatile loads.
14532         LLD->isVolatile() || RLD->isVolatile() ||
14533         // FIXME: If either is a pre/post inc/dec load,
14534         // we'd need to split out the address adjustment.
14535         LLD->isIndexed() || RLD->isIndexed() ||
14536         // If this is an EXTLOAD, the VT's must match.
14537         LLD->getMemoryVT() != RLD->getMemoryVT() ||
14538         // If this is an EXTLOAD, the kind of extension must match.
14539         (LLD->getExtensionType() != RLD->getExtensionType() &&
14540          // The only exception is if one of the extensions is anyext.
14541          LLD->getExtensionType() != ISD::EXTLOAD &&
14542          RLD->getExtensionType() != ISD::EXTLOAD) ||
14543         // FIXME: this discards src value information.  This is
14544         // over-conservative. It would be beneficial to be able to remember
14545         // both potential memory locations.  Since we are discarding
14546         // src value info, don't do the transformation if the memory
14547         // locations are not in the default address space.
14548         LLD->getPointerInfo().getAddrSpace() != 0 ||
14549         RLD->getPointerInfo().getAddrSpace() != 0 ||
14550         !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
14551                                       LLD->getBasePtr().getValueType()))
14552       return false;
14553 
14554     // Check that the select condition doesn't reach either load.  If so,
14555     // folding this will induce a cycle into the DAG.  If not, this is safe to
14556     // xform, so create a select of the addresses.
14557     SDValue Addr;
14558     if (TheSelect->getOpcode() == ISD::SELECT) {
14559       SDNode *CondNode = TheSelect->getOperand(0).getNode();
14560       if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
14561           (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
14562         return false;
14563       // The loads must not depend on one another.
14564       if (LLD->isPredecessorOf(RLD) ||
14565           RLD->isPredecessorOf(LLD))
14566         return false;
14567       Addr = DAG.getSelect(SDLoc(TheSelect),
14568                            LLD->getBasePtr().getValueType(),
14569                            TheSelect->getOperand(0), LLD->getBasePtr(),
14570                            RLD->getBasePtr());
14571     } else {  // Otherwise SELECT_CC
14572       SDNode *CondLHS = TheSelect->getOperand(0).getNode();
14573       SDNode *CondRHS = TheSelect->getOperand(1).getNode();
14574 
14575       if ((LLD->hasAnyUseOfValue(1) &&
14576            (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
14577           (RLD->hasAnyUseOfValue(1) &&
14578            (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
14579         return false;
14580 
14581       Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
14582                          LLD->getBasePtr().getValueType(),
14583                          TheSelect->getOperand(0),
14584                          TheSelect->getOperand(1),
14585                          LLD->getBasePtr(), RLD->getBasePtr(),
14586                          TheSelect->getOperand(4));
14587     }
14588 
14589     SDValue Load;
14590     // It is safe to replace the two loads if they have different alignments,
14591     // but the new load must be the minimum (most restrictive) alignment of the
14592     // inputs.
14593     unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment());
14594     MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags();
14595     if (!RLD->isInvariant())
14596       MMOFlags &= ~MachineMemOperand::MOInvariant;
14597     if (!RLD->isDereferenceable())
14598       MMOFlags &= ~MachineMemOperand::MODereferenceable;
14599     if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
14600       // FIXME: Discards pointer and AA info.
14601       Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect),
14602                          LLD->getChain(), Addr, MachinePointerInfo(), Alignment,
14603                          MMOFlags);
14604     } else {
14605       // FIXME: Discards pointer and AA info.
14606       Load = DAG.getExtLoad(
14607           LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType()
14608                                                   : LLD->getExtensionType(),
14609           SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr,
14610           MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags);
14611     }
14612 
14613     // Users of the select now use the result of the load.
14614     CombineTo(TheSelect, Load);
14615 
14616     // Users of the old loads now use the new load's chain.  We know the
14617     // old-load value is dead now.
14618     CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
14619     CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
14620     return true;
14621   }
14622 
14623   return false;
14624 }
14625 
14626 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
14627 /// bitwise 'and'.
14628 SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0,
14629                                             SDValue N1, SDValue N2, SDValue N3,
14630                                             ISD::CondCode CC) {
14631   // If this is a select where the false operand is zero and the compare is a
14632   // check of the sign bit, see if we can perform the "gzip trick":
14633   // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
14634   // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
14635   EVT XType = N0.getValueType();
14636   EVT AType = N2.getValueType();
14637   if (!isNullConstant(N3) || !XType.bitsGE(AType))
14638     return SDValue();
14639 
14640   // If the comparison is testing for a positive value, we have to invert
14641   // the sign bit mask, so only do that transform if the target has a bitwise
14642   // 'and not' instruction (the invert is free).
14643   if (CC == ISD::SETGT && TLI.hasAndNot(N2)) {
14644     // (X > -1) ? A : 0
14645     // (X >  0) ? X : 0 <-- This is canonical signed max.
14646     if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2)))
14647       return SDValue();
14648   } else if (CC == ISD::SETLT) {
14649     // (X <  0) ? A : 0
14650     // (X <  1) ? X : 0 <-- This is un-canonicalized signed min.
14651     if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2)))
14652       return SDValue();
14653   } else {
14654     return SDValue();
14655   }
14656 
14657   // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
14658   // constant.
14659   EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
14660   auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
14661   if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
14662     unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1;
14663     SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
14664     SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt);
14665     AddToWorklist(Shift.getNode());
14666 
14667     if (XType.bitsGT(AType)) {
14668       Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
14669       AddToWorklist(Shift.getNode());
14670     }
14671 
14672     if (CC == ISD::SETGT)
14673       Shift = DAG.getNOT(DL, Shift, AType);
14674 
14675     return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
14676   }
14677 
14678   SDValue ShiftAmt = DAG.getConstant(XType.getSizeInBits() - 1, DL, ShiftAmtTy);
14679   SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt);
14680   AddToWorklist(Shift.getNode());
14681 
14682   if (XType.bitsGT(AType)) {
14683     Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
14684     AddToWorklist(Shift.getNode());
14685   }
14686 
14687   if (CC == ISD::SETGT)
14688     Shift = DAG.getNOT(DL, Shift, AType);
14689 
14690   return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
14691 }
14692 
14693 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3
14694 /// where 'cond' is the comparison specified by CC.
14695 SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
14696                                       SDValue N2, SDValue N3, ISD::CondCode CC,
14697                                       bool NotExtCompare) {
14698   // (x ? y : y) -> y.
14699   if (N2 == N3) return N2;
14700 
14701   EVT VT = N2.getValueType();
14702   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
14703   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
14704 
14705   // Determine if the condition we're dealing with is constant
14706   SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
14707                               N0, N1, CC, DL, false);
14708   if (SCC.getNode()) AddToWorklist(SCC.getNode());
14709 
14710   if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
14711     // fold select_cc true, x, y -> x
14712     // fold select_cc false, x, y -> y
14713     return !SCCC->isNullValue() ? N2 : N3;
14714   }
14715 
14716   // Check to see if we can simplify the select into an fabs node
14717   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
14718     // Allow either -0.0 or 0.0
14719     if (CFP->isZero()) {
14720       // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
14721       if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
14722           N0 == N2 && N3.getOpcode() == ISD::FNEG &&
14723           N2 == N3.getOperand(0))
14724         return DAG.getNode(ISD::FABS, DL, VT, N0);
14725 
14726       // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
14727       if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
14728           N0 == N3 && N2.getOpcode() == ISD::FNEG &&
14729           N2.getOperand(0) == N3)
14730         return DAG.getNode(ISD::FABS, DL, VT, N3);
14731     }
14732   }
14733 
14734   // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
14735   // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
14736   // in it.  This is a win when the constant is not otherwise available because
14737   // it replaces two constant pool loads with one.  We only do this if the FP
14738   // type is known to be legal, because if it isn't, then we are before legalize
14739   // types an we want the other legalization to happen first (e.g. to avoid
14740   // messing with soft float) and if the ConstantFP is not legal, because if
14741   // it is legal, we may not need to store the FP constant in a constant pool.
14742   if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
14743     if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
14744       if (TLI.isTypeLegal(N2.getValueType()) &&
14745           (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
14746                TargetLowering::Legal &&
14747            !TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) &&
14748            !TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) &&
14749           // If both constants have multiple uses, then we won't need to do an
14750           // extra load, they are likely around in registers for other users.
14751           (TV->hasOneUse() || FV->hasOneUse())) {
14752         Constant *Elts[] = {
14753           const_cast<ConstantFP*>(FV->getConstantFPValue()),
14754           const_cast<ConstantFP*>(TV->getConstantFPValue())
14755         };
14756         Type *FPTy = Elts[0]->getType();
14757         const DataLayout &TD = DAG.getDataLayout();
14758 
14759         // Create a ConstantArray of the two constants.
14760         Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
14761         SDValue CPIdx =
14762             DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()),
14763                                 TD.getPrefTypeAlignment(FPTy));
14764         unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
14765 
14766         // Get the offsets to the 0 and 1 element of the array so that we can
14767         // select between them.
14768         SDValue Zero = DAG.getIntPtrConstant(0, DL);
14769         unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
14770         SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
14771 
14772         SDValue Cond = DAG.getSetCC(DL,
14773                                     getSetCCResultType(N0.getValueType()),
14774                                     N0, N1, CC);
14775         AddToWorklist(Cond.getNode());
14776         SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
14777                                           Cond, One, Zero);
14778         AddToWorklist(CstOffset.getNode());
14779         CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx,
14780                             CstOffset);
14781         AddToWorklist(CPIdx.getNode());
14782         return DAG.getLoad(
14783             TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
14784             MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
14785             Alignment);
14786       }
14787     }
14788 
14789   if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC))
14790     return V;
14791 
14792   // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
14793   // where y is has a single bit set.
14794   // A plaintext description would be, we can turn the SELECT_CC into an AND
14795   // when the condition can be materialized as an all-ones register.  Any
14796   // single bit-test can be materialized as an all-ones register with
14797   // shift-left and shift-right-arith.
14798   if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
14799       N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) {
14800     SDValue AndLHS = N0->getOperand(0);
14801     ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
14802     if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
14803       // Shift the tested bit over the sign bit.
14804       const APInt &AndMask = ConstAndRHS->getAPIntValue();
14805       SDValue ShlAmt =
14806         DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS),
14807                         getShiftAmountTy(AndLHS.getValueType()));
14808       SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
14809 
14810       // Now arithmetic right shift it all the way over, so the result is either
14811       // all-ones, or zero.
14812       SDValue ShrAmt =
14813         DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl),
14814                         getShiftAmountTy(Shl.getValueType()));
14815       SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
14816 
14817       return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
14818     }
14819   }
14820 
14821   // fold select C, 16, 0 -> shl C, 4
14822   if (N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2() &&
14823       TLI.getBooleanContents(N0.getValueType()) ==
14824           TargetLowering::ZeroOrOneBooleanContent) {
14825 
14826     // If the caller doesn't want us to simplify this into a zext of a compare,
14827     // don't do it.
14828     if (NotExtCompare && N2C->isOne())
14829       return SDValue();
14830 
14831     // Get a SetCC of the condition
14832     // NOTE: Don't create a SETCC if it's not legal on this target.
14833     if (!LegalOperations ||
14834         TLI.isOperationLegal(ISD::SETCC, N0.getValueType())) {
14835       SDValue Temp, SCC;
14836       // cast from setcc result type to select result type
14837       if (LegalTypes) {
14838         SCC  = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()),
14839                             N0, N1, CC);
14840         if (N2.getValueType().bitsLT(SCC.getValueType()))
14841           Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2),
14842                                         N2.getValueType());
14843         else
14844           Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
14845                              N2.getValueType(), SCC);
14846       } else {
14847         SCC  = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
14848         Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
14849                            N2.getValueType(), SCC);
14850       }
14851 
14852       AddToWorklist(SCC.getNode());
14853       AddToWorklist(Temp.getNode());
14854 
14855       if (N2C->isOne())
14856         return Temp;
14857 
14858       // shl setcc result by log2 n2c
14859       return DAG.getNode(
14860           ISD::SHL, DL, N2.getValueType(), Temp,
14861           DAG.getConstant(N2C->getAPIntValue().logBase2(), SDLoc(Temp),
14862                           getShiftAmountTy(Temp.getValueType())));
14863     }
14864   }
14865 
14866   // Check to see if this is an integer abs.
14867   // select_cc setg[te] X,  0,  X, -X ->
14868   // select_cc setgt    X, -1,  X, -X ->
14869   // select_cc setl[te] X,  0, -X,  X ->
14870   // select_cc setlt    X,  1, -X,  X ->
14871   // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
14872   if (N1C) {
14873     ConstantSDNode *SubC = nullptr;
14874     if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
14875          (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
14876         N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
14877       SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
14878     else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
14879               (N1C->isOne() && CC == ISD::SETLT)) &&
14880              N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
14881       SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
14882 
14883     EVT XType = N0.getValueType();
14884     if (SubC && SubC->isNullValue() && XType.isInteger()) {
14885       SDLoc DL(N0);
14886       SDValue Shift = DAG.getNode(ISD::SRA, DL, XType,
14887                                   N0,
14888                                   DAG.getConstant(XType.getSizeInBits() - 1, DL,
14889                                          getShiftAmountTy(N0.getValueType())));
14890       SDValue Add = DAG.getNode(ISD::ADD, DL,
14891                                 XType, N0, Shift);
14892       AddToWorklist(Shift.getNode());
14893       AddToWorklist(Add.getNode());
14894       return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
14895     }
14896   }
14897 
14898   // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
14899   // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
14900   // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
14901   // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
14902   // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
14903   // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
14904   // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
14905   // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
14906   if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
14907     SDValue ValueOnZero = N2;
14908     SDValue Count = N3;
14909     // If the condition is NE instead of E, swap the operands.
14910     if (CC == ISD::SETNE)
14911       std::swap(ValueOnZero, Count);
14912     // Check if the value on zero is a constant equal to the bits in the type.
14913     if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) {
14914       if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) {
14915         // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
14916         // legal, combine to just cttz.
14917         if ((Count.getOpcode() == ISD::CTTZ ||
14918              Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) &&
14919             N0 == Count.getOperand(0) &&
14920             (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT)))
14921           return DAG.getNode(ISD::CTTZ, DL, VT, N0);
14922         // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
14923         // legal, combine to just ctlz.
14924         if ((Count.getOpcode() == ISD::CTLZ ||
14925              Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) &&
14926             N0 == Count.getOperand(0) &&
14927             (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT)))
14928           return DAG.getNode(ISD::CTLZ, DL, VT, N0);
14929       }
14930     }
14931   }
14932 
14933   return SDValue();
14934 }
14935 
14936 /// This is a stub for TargetLowering::SimplifySetCC.
14937 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
14938                                    ISD::CondCode Cond, const SDLoc &DL,
14939                                    bool foldBooleans) {
14940   TargetLowering::DAGCombinerInfo
14941     DagCombineInfo(DAG, Level, false, this);
14942   return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
14943 }
14944 
14945 /// Given an ISD::SDIV node expressing a divide by constant, return
14946 /// a DAG expression to select that will generate the same value by multiplying
14947 /// by a magic number.
14948 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
14949 SDValue DAGCombiner::BuildSDIV(SDNode *N) {
14950   // when optimising for minimum size, we don't want to expand a div to a mul
14951   // and a shift.
14952   if (DAG.getMachineFunction().getFunction()->optForMinSize())
14953     return SDValue();
14954 
14955   ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
14956   if (!C)
14957     return SDValue();
14958 
14959   // Avoid division by zero.
14960   if (C->isNullValue())
14961     return SDValue();
14962 
14963   std::vector<SDNode*> Built;
14964   SDValue S =
14965       TLI.BuildSDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built);
14966 
14967   for (SDNode *N : Built)
14968     AddToWorklist(N);
14969   return S;
14970 }
14971 
14972 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
14973 /// DAG expression that will generate the same value by right shifting.
14974 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
14975   ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
14976   if (!C)
14977     return SDValue();
14978 
14979   // Avoid division by zero.
14980   if (C->isNullValue())
14981     return SDValue();
14982 
14983   std::vector<SDNode *> Built;
14984   SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, &Built);
14985 
14986   for (SDNode *N : Built)
14987     AddToWorklist(N);
14988   return S;
14989 }
14990 
14991 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG
14992 /// expression that will generate the same value by multiplying by a magic
14993 /// number.
14994 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
14995 SDValue DAGCombiner::BuildUDIV(SDNode *N) {
14996   // when optimising for minimum size, we don't want to expand a div to a mul
14997   // and a shift.
14998   if (DAG.getMachineFunction().getFunction()->optForMinSize())
14999     return SDValue();
15000 
15001   ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
15002   if (!C)
15003     return SDValue();
15004 
15005   // Avoid division by zero.
15006   if (C->isNullValue())
15007     return SDValue();
15008 
15009   std::vector<SDNode*> Built;
15010   SDValue S =
15011       TLI.BuildUDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built);
15012 
15013   for (SDNode *N : Built)
15014     AddToWorklist(N);
15015   return S;
15016 }
15017 
15018 /// Determines the LogBase2 value for a non-null input value using the
15019 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
15020 SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) {
15021   EVT VT = V.getValueType();
15022   unsigned EltBits = VT.getScalarSizeInBits();
15023   SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V);
15024   SDValue Base = DAG.getConstant(EltBits - 1, DL, VT);
15025   SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz);
15026   return LogBase2;
15027 }
15028 
15029 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
15030 /// For the reciprocal, we need to find the zero of the function:
15031 ///   F(X) = A X - 1 [which has a zero at X = 1/A]
15032 ///     =>
15033 ///   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
15034 ///     does not require additional intermediate precision]
15035 SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags) {
15036   if (Level >= AfterLegalizeDAG)
15037     return SDValue();
15038 
15039   // TODO: Handle half and/or extended types?
15040   EVT VT = Op.getValueType();
15041   if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
15042     return SDValue();
15043 
15044   // If estimates are explicitly disabled for this function, we're done.
15045   MachineFunction &MF = DAG.getMachineFunction();
15046   int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF);
15047   if (Enabled == TLI.ReciprocalEstimate::Disabled)
15048     return SDValue();
15049 
15050   // Estimates may be explicitly enabled for this type with a custom number of
15051   // refinement steps.
15052   int Iterations = TLI.getDivRefinementSteps(VT, MF);
15053   if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) {
15054     AddToWorklist(Est.getNode());
15055 
15056     if (Iterations) {
15057       EVT VT = Op.getValueType();
15058       SDLoc DL(Op);
15059       SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
15060 
15061       // Newton iterations: Est = Est + Est (1 - Arg * Est)
15062       for (int i = 0; i < Iterations; ++i) {
15063         SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags);
15064         AddToWorklist(NewEst.getNode());
15065 
15066         NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags);
15067         AddToWorklist(NewEst.getNode());
15068 
15069         NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
15070         AddToWorklist(NewEst.getNode());
15071 
15072         Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags);
15073         AddToWorklist(Est.getNode());
15074       }
15075     }
15076     return Est;
15077   }
15078 
15079   return SDValue();
15080 }
15081 
15082 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
15083 /// For the reciprocal sqrt, we need to find the zero of the function:
15084 ///   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
15085 ///     =>
15086 ///   X_{i+1} = X_i (1.5 - A X_i^2 / 2)
15087 /// As a result, we precompute A/2 prior to the iteration loop.
15088 SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est,
15089                                          unsigned Iterations,
15090                                          SDNodeFlags *Flags, bool Reciprocal) {
15091   EVT VT = Arg.getValueType();
15092   SDLoc DL(Arg);
15093   SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);
15094 
15095   // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
15096   // this entire sequence requires only one FP constant.
15097   SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags);
15098   AddToWorklist(HalfArg.getNode());
15099 
15100   HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags);
15101   AddToWorklist(HalfArg.getNode());
15102 
15103   // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
15104   for (unsigned i = 0; i < Iterations; ++i) {
15105     SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
15106     AddToWorklist(NewEst.getNode());
15107 
15108     NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags);
15109     AddToWorklist(NewEst.getNode());
15110 
15111     NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags);
15112     AddToWorklist(NewEst.getNode());
15113 
15114     Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
15115     AddToWorklist(Est.getNode());
15116   }
15117 
15118   // If non-reciprocal square root is requested, multiply the result by Arg.
15119   if (!Reciprocal) {
15120     Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags);
15121     AddToWorklist(Est.getNode());
15122   }
15123 
15124   return Est;
15125 }
15126 
15127 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
15128 /// For the reciprocal sqrt, we need to find the zero of the function:
15129 ///   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
15130 ///     =>
15131 ///   X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
15132 SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est,
15133                                          unsigned Iterations,
15134                                          SDNodeFlags *Flags, bool Reciprocal) {
15135   EVT VT = Arg.getValueType();
15136   SDLoc DL(Arg);
15137   SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
15138   SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);
15139 
15140   // This routine must enter the loop below to work correctly
15141   // when (Reciprocal == false).
15142   assert(Iterations > 0);
15143 
15144   // Newton iterations for reciprocal square root:
15145   // E = (E * -0.5) * ((A * E) * E + -3.0)
15146   for (unsigned i = 0; i < Iterations; ++i) {
15147     SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags);
15148     AddToWorklist(AE.getNode());
15149 
15150     SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags);
15151     AddToWorklist(AEE.getNode());
15152 
15153     SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags);
15154     AddToWorklist(RHS.getNode());
15155 
15156     // When calculating a square root at the last iteration build:
15157     // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
15158     // (notice a common subexpression)
15159     SDValue LHS;
15160     if (Reciprocal || (i + 1) < Iterations) {
15161       // RSQRT: LHS = (E * -0.5)
15162       LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags);
15163     } else {
15164       // SQRT: LHS = (A * E) * -0.5
15165       LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags);
15166     }
15167     AddToWorklist(LHS.getNode());
15168 
15169     Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags);
15170     AddToWorklist(Est.getNode());
15171   }
15172 
15173   return Est;
15174 }
15175 
15176 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
15177 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
15178 /// Op can be zero.
15179 SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags *Flags,
15180                                            bool Reciprocal) {
15181   if (Level >= AfterLegalizeDAG)
15182     return SDValue();
15183 
15184   // TODO: Handle half and/or extended types?
15185   EVT VT = Op.getValueType();
15186   if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
15187     return SDValue();
15188 
15189   // If estimates are explicitly disabled for this function, we're done.
15190   MachineFunction &MF = DAG.getMachineFunction();
15191   int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF);
15192   if (Enabled == TLI.ReciprocalEstimate::Disabled)
15193     return SDValue();
15194 
15195   // Estimates may be explicitly enabled for this type with a custom number of
15196   // refinement steps.
15197   int Iterations = TLI.getSqrtRefinementSteps(VT, MF);
15198 
15199   bool UseOneConstNR = false;
15200   if (SDValue Est =
15201       TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR,
15202                           Reciprocal)) {
15203     AddToWorklist(Est.getNode());
15204 
15205     if (Iterations) {
15206       Est = UseOneConstNR
15207             ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal)
15208             : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal);
15209 
15210       if (!Reciprocal) {
15211         // Unfortunately, Est is now NaN if the input was exactly 0.0.
15212         // Select out this case and force the answer to 0.0.
15213         EVT VT = Op.getValueType();
15214         SDLoc DL(Op);
15215 
15216         SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
15217         EVT CCVT = getSetCCResultType(VT);
15218         SDValue ZeroCmp = DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
15219         AddToWorklist(ZeroCmp.getNode());
15220 
15221         Est = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
15222                           ZeroCmp, FPZero, Est);
15223         AddToWorklist(Est.getNode());
15224       }
15225     }
15226     return Est;
15227   }
15228 
15229   return SDValue();
15230 }
15231 
15232 SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags) {
15233   return buildSqrtEstimateImpl(Op, Flags, true);
15234 }
15235 
15236 SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags *Flags) {
15237   return buildSqrtEstimateImpl(Op, Flags, false);
15238 }
15239 
15240 /// Return true if base is a frame index, which is known not to alias with
15241 /// anything but itself.  Provides base object and offset as results.
15242 static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
15243                            const GlobalValue *&GV, const void *&CV) {
15244   // Assume it is a primitive operation.
15245   Base = Ptr; Offset = 0; GV = nullptr; CV = nullptr;
15246 
15247   // If it's an adding a simple constant then integrate the offset.
15248   if (Base.getOpcode() == ISD::ADD) {
15249     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
15250       Base = Base.getOperand(0);
15251       Offset += C->getZExtValue();
15252     }
15253   }
15254 
15255   // Return the underlying GlobalValue, and update the Offset.  Return false
15256   // for GlobalAddressSDNode since the same GlobalAddress may be represented
15257   // by multiple nodes with different offsets.
15258   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
15259     GV = G->getGlobal();
15260     Offset += G->getOffset();
15261     return false;
15262   }
15263 
15264   // Return the underlying Constant value, and update the Offset.  Return false
15265   // for ConstantSDNodes since the same constant pool entry may be represented
15266   // by multiple nodes with different offsets.
15267   if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
15268     CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
15269                                          : (const void *)C->getConstVal();
15270     Offset += C->getOffset();
15271     return false;
15272   }
15273   // If it's any of the following then it can't alias with anything but itself.
15274   return isa<FrameIndexSDNode>(Base);
15275 }
15276 
15277 /// Return true if there is any possibility that the two addresses overlap.
15278 bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const {
15279   // If they are the same then they must be aliases.
15280   if (Op0->getBasePtr() == Op1->getBasePtr()) return true;
15281 
15282   // If they are both volatile then they cannot be reordered.
15283   if (Op0->isVolatile() && Op1->isVolatile()) return true;
15284 
15285   // If one operation reads from invariant memory, and the other may store, they
15286   // cannot alias. These should really be checking the equivalent of mayWrite,
15287   // but it only matters for memory nodes other than load /store.
15288   if (Op0->isInvariant() && Op1->writeMem())
15289     return false;
15290 
15291   if (Op1->isInvariant() && Op0->writeMem())
15292     return false;
15293 
15294   // Gather base node and offset information.
15295   SDValue Base1, Base2;
15296   int64_t Offset1, Offset2;
15297   const GlobalValue *GV1, *GV2;
15298   const void *CV1, *CV2;
15299   bool isFrameIndex1 = FindBaseOffset(Op0->getBasePtr(),
15300                                       Base1, Offset1, GV1, CV1);
15301   bool isFrameIndex2 = FindBaseOffset(Op1->getBasePtr(),
15302                                       Base2, Offset2, GV2, CV2);
15303 
15304   // If they have a same base address then check to see if they overlap.
15305   if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
15306     return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 ||
15307              (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1);
15308 
15309   // It is possible for different frame indices to alias each other, mostly
15310   // when tail call optimization reuses return address slots for arguments.
15311   // To catch this case, look up the actual index of frame indices to compute
15312   // the real alias relationship.
15313   if (isFrameIndex1 && isFrameIndex2) {
15314     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
15315     Offset1 += MFI.getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
15316     Offset2 += MFI.getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
15317     return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 ||
15318              (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1);
15319   }
15320 
15321   // Otherwise, if we know what the bases are, and they aren't identical, then
15322   // we know they cannot alias.
15323   if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
15324     return false;
15325 
15326   // If we know required SrcValue1 and SrcValue2 have relatively large alignment
15327   // compared to the size and offset of the access, we may be able to prove they
15328   // do not alias.  This check is conservative for now to catch cases created by
15329   // splitting vector types.
15330   if ((Op0->getOriginalAlignment() == Op1->getOriginalAlignment()) &&
15331       (Op0->getSrcValueOffset() != Op1->getSrcValueOffset()) &&
15332       (Op0->getMemoryVT().getSizeInBits() >> 3 ==
15333        Op1->getMemoryVT().getSizeInBits() >> 3) &&
15334       (Op0->getOriginalAlignment() > (Op0->getMemoryVT().getSizeInBits() >> 3))) {
15335     int64_t OffAlign1 = Op0->getSrcValueOffset() % Op0->getOriginalAlignment();
15336     int64_t OffAlign2 = Op1->getSrcValueOffset() % Op1->getOriginalAlignment();
15337 
15338     // There is no overlap between these relatively aligned accesses of similar
15339     // size, return no alias.
15340     if ((OffAlign1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign2 ||
15341         (OffAlign2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign1)
15342       return false;
15343   }
15344 
15345   bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0
15346                    ? CombinerGlobalAA
15347                    : DAG.getSubtarget().useAA();
15348 #ifndef NDEBUG
15349   if (CombinerAAOnlyFunc.getNumOccurrences() &&
15350       CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
15351     UseAA = false;
15352 #endif
15353   if (UseAA &&
15354       Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) {
15355     // Use alias analysis information.
15356     int64_t MinOffset = std::min(Op0->getSrcValueOffset(),
15357                                  Op1->getSrcValueOffset());
15358     int64_t Overlap1 = (Op0->getMemoryVT().getSizeInBits() >> 3) +
15359         Op0->getSrcValueOffset() - MinOffset;
15360     int64_t Overlap2 = (Op1->getMemoryVT().getSizeInBits() >> 3) +
15361         Op1->getSrcValueOffset() - MinOffset;
15362     AliasResult AAResult =
15363         AA.alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap1,
15364                                 UseTBAA ? Op0->getAAInfo() : AAMDNodes()),
15365                  MemoryLocation(Op1->getMemOperand()->getValue(), Overlap2,
15366                                 UseTBAA ? Op1->getAAInfo() : AAMDNodes()));
15367     if (AAResult == NoAlias)
15368       return false;
15369   }
15370 
15371   // Otherwise we have to assume they alias.
15372   return true;
15373 }
15374 
15375 /// Walk up chain skipping non-aliasing memory nodes,
15376 /// looking for aliasing nodes and adding them to the Aliases vector.
15377 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
15378                                    SmallVectorImpl<SDValue> &Aliases) {
15379   SmallVector<SDValue, 8> Chains;     // List of chains to visit.
15380   SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
15381 
15382   // Get alias information for node.
15383   bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile();
15384 
15385   // Starting off.
15386   Chains.push_back(OriginalChain);
15387   unsigned Depth = 0;
15388 
15389   // Look at each chain and determine if it is an alias.  If so, add it to the
15390   // aliases list.  If not, then continue up the chain looking for the next
15391   // candidate.
15392   while (!Chains.empty()) {
15393     SDValue Chain = Chains.pop_back_val();
15394 
15395     // For TokenFactor nodes, look at each operand and only continue up the
15396     // chain until we reach the depth limit.
15397     //
15398     // FIXME: The depth check could be made to return the last non-aliasing
15399     // chain we found before we hit a tokenfactor rather than the original
15400     // chain.
15401     if (Depth > TLI.getGatherAllAliasesMaxDepth()) {
15402       Aliases.clear();
15403       Aliases.push_back(OriginalChain);
15404       return;
15405     }
15406 
15407     // Don't bother if we've been before.
15408     if (!Visited.insert(Chain.getNode()).second)
15409       continue;
15410 
15411     switch (Chain.getOpcode()) {
15412     case ISD::EntryToken:
15413       // Entry token is ideal chain operand, but handled in FindBetterChain.
15414       break;
15415 
15416     case ISD::LOAD:
15417     case ISD::STORE: {
15418       // Get alias information for Chain.
15419       bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) &&
15420           !cast<LSBaseSDNode>(Chain.getNode())->isVolatile();
15421 
15422       // If chain is alias then stop here.
15423       if (!(IsLoad && IsOpLoad) &&
15424           isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) {
15425         Aliases.push_back(Chain);
15426       } else {
15427         // Look further up the chain.
15428         Chains.push_back(Chain.getOperand(0));
15429         ++Depth;
15430       }
15431       break;
15432     }
15433 
15434     case ISD::TokenFactor:
15435       // We have to check each of the operands of the token factor for "small"
15436       // token factors, so we queue them up.  Adding the operands to the queue
15437       // (stack) in reverse order maintains the original order and increases the
15438       // likelihood that getNode will find a matching token factor (CSE.)
15439       if (Chain.getNumOperands() > 16) {
15440         Aliases.push_back(Chain);
15441         break;
15442       }
15443       for (unsigned n = Chain.getNumOperands(); n;)
15444         Chains.push_back(Chain.getOperand(--n));
15445       ++Depth;
15446       break;
15447 
15448     default:
15449       // For all other instructions we will just have to take what we can get.
15450       Aliases.push_back(Chain);
15451       break;
15452     }
15453   }
15454 }
15455 
15456 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
15457 /// (aliasing node.)
15458 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
15459   SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
15460 
15461   // Accumulate all the aliases to this node.
15462   GatherAllAliases(N, OldChain, Aliases);
15463 
15464   // If no operands then chain to entry token.
15465   if (Aliases.size() == 0)
15466     return DAG.getEntryNode();
15467 
15468   // If a single operand then chain to it.  We don't need to revisit it.
15469   if (Aliases.size() == 1)
15470     return Aliases[0];
15471 
15472   // Construct a custom tailored token factor.
15473   return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases);
15474 }
15475 
15476 bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) {
15477   // This holds the base pointer, index, and the offset in bytes from the base
15478   // pointer.
15479   BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr(), DAG);
15480 
15481   // We must have a base and an offset.
15482   if (!BasePtr.Base.getNode())
15483     return false;
15484 
15485   // Do not handle stores to undef base pointers.
15486   if (BasePtr.Base.isUndef())
15487     return false;
15488 
15489   SmallVector<StoreSDNode *, 8> ChainedStores;
15490   ChainedStores.push_back(St);
15491 
15492   // Walk up the chain and look for nodes with offsets from the same
15493   // base pointer. Stop when reaching an instruction with a different kind
15494   // or instruction which has a different base pointer.
15495   StoreSDNode *Index = St;
15496   while (Index) {
15497     // If the chain has more than one use, then we can't reorder the mem ops.
15498     if (Index != St && !SDValue(Index, 0)->hasOneUse())
15499       break;
15500 
15501     if (Index->isVolatile() || Index->isIndexed())
15502       break;
15503 
15504     // Find the base pointer and offset for this memory node.
15505     BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr(), DAG);
15506 
15507     // Check that the base pointer is the same as the original one.
15508     if (!Ptr.equalBaseIndex(BasePtr))
15509       break;
15510 
15511     // Find the next memory operand in the chain. If the next operand in the
15512     // chain is a store then move up and continue the scan with the next
15513     // memory operand. If the next operand is a load save it and use alias
15514     // information to check if it interferes with anything.
15515     SDNode *NextInChain = Index->getChain().getNode();
15516     while (true) {
15517       if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
15518         // We found a store node. Use it for the next iteration.
15519         if (STn->isVolatile() || STn->isIndexed()) {
15520           Index = nullptr;
15521           break;
15522         }
15523         ChainedStores.push_back(STn);
15524         Index = STn;
15525         break;
15526       } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
15527         NextInChain = Ldn->getChain().getNode();
15528         continue;
15529       } else {
15530         Index = nullptr;
15531         break;
15532       }
15533     }
15534   }
15535 
15536   bool MadeChangeToSt = false;
15537   SmallVector<std::pair<StoreSDNode *, SDValue>, 8> BetterChains;
15538 
15539   for (StoreSDNode *ChainedStore : ChainedStores) {
15540     SDValue Chain = ChainedStore->getChain();
15541     SDValue BetterChain = FindBetterChain(ChainedStore, Chain);
15542 
15543     if (Chain != BetterChain) {
15544       if (ChainedStore == St)
15545         MadeChangeToSt = true;
15546       BetterChains.push_back(std::make_pair(ChainedStore, BetterChain));
15547     }
15548   }
15549 
15550   // Do all replacements after finding the replacements to make to avoid making
15551   // the chains more complicated by introducing new TokenFactors.
15552   for (auto Replacement : BetterChains)
15553     replaceStoreChain(Replacement.first, Replacement.second);
15554 
15555   return MadeChangeToSt;
15556 }
15557 
15558 /// This is the entry point for the file.
15559 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
15560                            CodeGenOpt::Level OptLevel) {
15561   /// This is the main entry point to this class.
15562   DAGCombiner(*this, AA, OptLevel).Run(Level);
15563 }
15564