1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run 11 // both before and after the DAG is legalized. 12 // 13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is 14 // primarily intended to handle simplification opportunities that are implicit 15 // in the LLVM IR and exposed by the various codegen lowering phases. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/SelectionDAG.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallBitVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetLowering.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetSubtargetInfo.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "dagcombine" 44 45 STATISTIC(NodesCombined , "Number of dag nodes combined"); 46 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); 47 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); 48 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); 49 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); 50 STATISTIC(SlicedLoads, "Number of load sliced"); 51 52 namespace { 53 static cl::opt<bool> 54 CombinerAA("combiner-alias-analysis", cl::Hidden, 55 cl::desc("Enable DAG combiner alias-analysis heuristics")); 56 57 static cl::opt<bool> 58 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, 59 cl::desc("Enable DAG combiner's use of IR alias analysis")); 60 61 static cl::opt<bool> 62 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), 63 cl::desc("Enable DAG combiner's use of TBAA")); 64 65 #ifndef NDEBUG 66 static cl::opt<std::string> 67 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, 68 cl::desc("Only use DAG-combiner alias analysis in this" 69 " function")); 70 #endif 71 72 /// Hidden option to stress test load slicing, i.e., when this option 73 /// is enabled, load slicing bypasses most of its profitability guards. 74 static cl::opt<bool> 75 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, 76 cl::desc("Bypass the profitability model of load " 77 "slicing"), 78 cl::init(false)); 79 80 static cl::opt<bool> 81 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), 82 cl::desc("DAG combiner may split indexing from loads")); 83 84 //------------------------------ DAGCombiner ---------------------------------// 85 86 class DAGCombiner { 87 SelectionDAG &DAG; 88 const TargetLowering &TLI; 89 CombineLevel Level; 90 CodeGenOpt::Level OptLevel; 91 bool LegalOperations; 92 bool LegalTypes; 93 bool ForCodeSize; 94 95 /// \brief Worklist of all of the nodes that need to be simplified. 96 /// 97 /// This must behave as a stack -- new nodes to process are pushed onto the 98 /// back and when processing we pop off of the back. 99 /// 100 /// The worklist will not contain duplicates but may contain null entries 101 /// due to nodes being deleted from the underlying DAG. 102 SmallVector<SDNode *, 64> Worklist; 103 104 /// \brief Mapping from an SDNode to its position on the worklist. 105 /// 106 /// This is used to find and remove nodes from the worklist (by nulling 107 /// them) when they are deleted from the underlying DAG. It relies on 108 /// stable indices of nodes within the worklist. 109 DenseMap<SDNode *, unsigned> WorklistMap; 110 111 /// \brief Set of nodes which have been combined (at least once). 112 /// 113 /// This is used to allow us to reliably add any operands of a DAG node 114 /// which have not yet been combined to the worklist. 115 SmallPtrSet<SDNode *, 64> CombinedNodes; 116 117 // AA - Used for DAG load/store alias analysis. 118 AliasAnalysis &AA; 119 120 /// When an instruction is simplified, add all users of the instruction to 121 /// the work lists because they might get more simplified now. 122 void AddUsersToWorklist(SDNode *N) { 123 for (SDNode *Node : N->uses()) 124 AddToWorklist(Node); 125 } 126 127 /// Call the node-specific routine that folds each particular type of node. 128 SDValue visit(SDNode *N); 129 130 public: 131 /// Add to the worklist making sure its instance is at the back (next to be 132 /// processed.) 133 void AddToWorklist(SDNode *N) { 134 // Skip handle nodes as they can't usefully be combined and confuse the 135 // zero-use deletion strategy. 136 if (N->getOpcode() == ISD::HANDLENODE) 137 return; 138 139 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) 140 Worklist.push_back(N); 141 } 142 143 /// Remove all instances of N from the worklist. 144 void removeFromWorklist(SDNode *N) { 145 CombinedNodes.erase(N); 146 147 auto It = WorklistMap.find(N); 148 if (It == WorklistMap.end()) 149 return; // Not in the worklist. 150 151 // Null out the entry rather than erasing it to avoid a linear operation. 152 Worklist[It->second] = nullptr; 153 WorklistMap.erase(It); 154 } 155 156 void deleteAndRecombine(SDNode *N); 157 bool recursivelyDeleteUnusedNodes(SDNode *N); 158 159 /// Replaces all uses of the results of one DAG node with new values. 160 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 161 bool AddTo = true); 162 163 /// Replaces all uses of the results of one DAG node with new values. 164 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { 165 return CombineTo(N, &Res, 1, AddTo); 166 } 167 168 /// Replaces all uses of the results of one DAG node with new values. 169 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, 170 bool AddTo = true) { 171 SDValue To[] = { Res0, Res1 }; 172 return CombineTo(N, To, 2, AddTo); 173 } 174 175 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); 176 177 private: 178 179 /// Check the specified integer node value to see if it can be simplified or 180 /// if things it uses can be simplified by bit propagation. 181 /// If so, return true. 182 bool SimplifyDemandedBits(SDValue Op) { 183 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); 184 APInt Demanded = APInt::getAllOnesValue(BitWidth); 185 return SimplifyDemandedBits(Op, Demanded); 186 } 187 188 bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded); 189 190 bool CombineToPreIndexedLoadStore(SDNode *N); 191 bool CombineToPostIndexedLoadStore(SDNode *N); 192 SDValue SplitIndexingFromLoad(LoadSDNode *LD); 193 bool SliceUpLoad(SDNode *N); 194 195 /// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed 196 /// load. 197 /// 198 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. 199 /// \param InVecVT type of the input vector to EVE with bitcasts resolved. 200 /// \param EltNo index of the vector element to load. 201 /// \param OriginalLoad load that EVE came from to be replaced. 202 /// \returns EVE on success SDValue() on failure. 203 SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad( 204 SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad); 205 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); 206 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); 207 SDValue SExtPromoteOperand(SDValue Op, EVT PVT); 208 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); 209 SDValue PromoteIntBinOp(SDValue Op); 210 SDValue PromoteIntShiftOp(SDValue Op); 211 SDValue PromoteExtend(SDValue Op); 212 bool PromoteLoad(SDValue Op); 213 214 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 215 SDValue Trunc, SDValue ExtLoad, SDLoc DL, 216 ISD::NodeType ExtType); 217 218 /// Call the node-specific routine that knows how to fold each 219 /// particular type of node. If that doesn't do anything, try the 220 /// target-specific DAG combines. 221 SDValue combine(SDNode *N); 222 223 // Visitation implementation - Implement dag node combining for different 224 // node types. The semantics are as follows: 225 // Return Value: 226 // SDValue.getNode() == 0 - No change was made 227 // SDValue.getNode() == N - N was replaced, is dead and has been handled. 228 // otherwise - N should be replaced by the returned Operand. 229 // 230 SDValue visitTokenFactor(SDNode *N); 231 SDValue visitMERGE_VALUES(SDNode *N); 232 SDValue visitADD(SDNode *N); 233 SDValue visitSUB(SDNode *N); 234 SDValue visitADDC(SDNode *N); 235 SDValue visitSUBC(SDNode *N); 236 SDValue visitADDE(SDNode *N); 237 SDValue visitSUBE(SDNode *N); 238 SDValue visitMUL(SDNode *N); 239 SDValue useDivRem(SDNode *N); 240 SDValue visitSDIV(SDNode *N); 241 SDValue visitUDIV(SDNode *N); 242 SDValue visitREM(SDNode *N); 243 SDValue visitMULHU(SDNode *N); 244 SDValue visitMULHS(SDNode *N); 245 SDValue visitSMUL_LOHI(SDNode *N); 246 SDValue visitUMUL_LOHI(SDNode *N); 247 SDValue visitSMULO(SDNode *N); 248 SDValue visitUMULO(SDNode *N); 249 SDValue visitIMINMAX(SDNode *N); 250 SDValue visitAND(SDNode *N); 251 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *LocReference); 252 SDValue visitOR(SDNode *N); 253 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *LocReference); 254 SDValue visitXOR(SDNode *N); 255 SDValue SimplifyVBinOp(SDNode *N); 256 SDValue visitSHL(SDNode *N); 257 SDValue visitSRA(SDNode *N); 258 SDValue visitSRL(SDNode *N); 259 SDValue visitRotate(SDNode *N); 260 SDValue visitBSWAP(SDNode *N); 261 SDValue visitCTLZ(SDNode *N); 262 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); 263 SDValue visitCTTZ(SDNode *N); 264 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); 265 SDValue visitCTPOP(SDNode *N); 266 SDValue visitSELECT(SDNode *N); 267 SDValue visitVSELECT(SDNode *N); 268 SDValue visitSELECT_CC(SDNode *N); 269 SDValue visitSETCC(SDNode *N); 270 SDValue visitSIGN_EXTEND(SDNode *N); 271 SDValue visitZERO_EXTEND(SDNode *N); 272 SDValue visitANY_EXTEND(SDNode *N); 273 SDValue visitSIGN_EXTEND_INREG(SDNode *N); 274 SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); 275 SDValue visitTRUNCATE(SDNode *N); 276 SDValue visitBITCAST(SDNode *N); 277 SDValue visitBUILD_PAIR(SDNode *N); 278 SDValue visitFADD(SDNode *N); 279 SDValue visitFSUB(SDNode *N); 280 SDValue visitFMUL(SDNode *N); 281 SDValue visitFMA(SDNode *N); 282 SDValue visitFDIV(SDNode *N); 283 SDValue visitFREM(SDNode *N); 284 SDValue visitFSQRT(SDNode *N); 285 SDValue visitFCOPYSIGN(SDNode *N); 286 SDValue visitSINT_TO_FP(SDNode *N); 287 SDValue visitUINT_TO_FP(SDNode *N); 288 SDValue visitFP_TO_SINT(SDNode *N); 289 SDValue visitFP_TO_UINT(SDNode *N); 290 SDValue visitFP_ROUND(SDNode *N); 291 SDValue visitFP_ROUND_INREG(SDNode *N); 292 SDValue visitFP_EXTEND(SDNode *N); 293 SDValue visitFNEG(SDNode *N); 294 SDValue visitFABS(SDNode *N); 295 SDValue visitFCEIL(SDNode *N); 296 SDValue visitFTRUNC(SDNode *N); 297 SDValue visitFFLOOR(SDNode *N); 298 SDValue visitFMINNUM(SDNode *N); 299 SDValue visitFMAXNUM(SDNode *N); 300 SDValue visitBRCOND(SDNode *N); 301 SDValue visitBR_CC(SDNode *N); 302 SDValue visitLOAD(SDNode *N); 303 304 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); 305 SDValue replaceStoreOfFPConstant(StoreSDNode *ST); 306 307 SDValue visitSTORE(SDNode *N); 308 SDValue visitINSERT_VECTOR_ELT(SDNode *N); 309 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); 310 SDValue visitBUILD_VECTOR(SDNode *N); 311 SDValue visitCONCAT_VECTORS(SDNode *N); 312 SDValue visitEXTRACT_SUBVECTOR(SDNode *N); 313 SDValue visitVECTOR_SHUFFLE(SDNode *N); 314 SDValue visitSCALAR_TO_VECTOR(SDNode *N); 315 SDValue visitINSERT_SUBVECTOR(SDNode *N); 316 SDValue visitMLOAD(SDNode *N); 317 SDValue visitMSTORE(SDNode *N); 318 SDValue visitMGATHER(SDNode *N); 319 SDValue visitMSCATTER(SDNode *N); 320 SDValue visitFP_TO_FP16(SDNode *N); 321 SDValue visitFP16_TO_FP(SDNode *N); 322 323 SDValue visitFADDForFMACombine(SDNode *N); 324 SDValue visitFSUBForFMACombine(SDNode *N); 325 SDValue visitFMULForFMACombine(SDNode *N); 326 327 SDValue XformToShuffleWithZero(SDNode *N); 328 SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS); 329 330 SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt); 331 332 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); 333 SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N); 334 SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2); 335 SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2, 336 SDValue N3, ISD::CondCode CC, 337 bool NotExtCompare = false); 338 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 339 SDLoc DL, bool foldBooleans = true); 340 341 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 342 SDValue &CC) const; 343 bool isOneUseSetCC(SDValue N) const; 344 345 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 346 unsigned HiOp); 347 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); 348 SDValue CombineExtLoad(SDNode *N); 349 SDValue combineRepeatedFPDivisors(SDNode *N); 350 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); 351 SDValue BuildSDIV(SDNode *N); 352 SDValue BuildSDIVPow2(SDNode *N); 353 SDValue BuildUDIV(SDNode *N); 354 SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags); 355 SDValue BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags); 356 SDValue BuildRsqrtNROneConst(SDValue Op, SDValue Est, unsigned Iterations, 357 SDNodeFlags *Flags); 358 SDValue BuildRsqrtNRTwoConst(SDValue Op, SDValue Est, unsigned Iterations, 359 SDNodeFlags *Flags); 360 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 361 bool DemandHighBits = true); 362 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); 363 SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, 364 SDValue InnerPos, SDValue InnerNeg, 365 unsigned PosOpcode, unsigned NegOpcode, 366 SDLoc DL); 367 SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL); 368 SDValue ReduceLoadWidth(SDNode *N); 369 SDValue ReduceLoadOpStoreWidth(SDNode *N); 370 SDValue TransformFPLoadStorePair(SDNode *N); 371 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); 372 SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N); 373 374 SDValue GetDemandedBits(SDValue V, const APInt &Mask); 375 376 /// Walk up chain skipping non-aliasing memory nodes, 377 /// looking for aliasing nodes and adding them to the Aliases vector. 378 void GatherAllAliases(SDNode *N, SDValue OriginalChain, 379 SmallVectorImpl<SDValue> &Aliases); 380 381 /// Return true if there is any possibility that the two addresses overlap. 382 bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const; 383 384 /// Walk up chain skipping non-aliasing memory nodes, looking for a better 385 /// chain (aliasing node.) 386 SDValue FindBetterChain(SDNode *N, SDValue Chain); 387 388 /// Do FindBetterChain for a store and any possibly adjacent stores on 389 /// consecutive chains. 390 bool findBetterNeighborChains(StoreSDNode *St); 391 392 /// Holds a pointer to an LSBaseSDNode as well as information on where it 393 /// is located in a sequence of memory operations connected by a chain. 394 struct MemOpLink { 395 MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq): 396 MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { } 397 // Ptr to the mem node. 398 LSBaseSDNode *MemNode; 399 // Offset from the base ptr. 400 int64_t OffsetFromBase; 401 // What is the sequence number of this mem node. 402 // Lowest mem operand in the DAG starts at zero. 403 unsigned SequenceNum; 404 }; 405 406 /// This is a helper function for visitMUL to check the profitability 407 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 408 /// MulNode is the original multiply, AddNode is (add x, c1), 409 /// and ConstNode is c2. 410 bool isMulAddWithConstProfitable(SDNode *MulNode, 411 SDValue &AddNode, 412 SDValue &ConstNode); 413 414 /// This is a helper function for MergeStoresOfConstantsOrVecElts. Returns a 415 /// constant build_vector of the stored constant values in Stores. 416 SDValue getMergedConstantVectorStore(SelectionDAG &DAG, 417 SDLoc SL, 418 ArrayRef<MemOpLink> Stores, 419 SmallVectorImpl<SDValue> &Chains, 420 EVT Ty) const; 421 422 /// This is a helper function for MergeConsecutiveStores. When the source 423 /// elements of the consecutive stores are all constants or all extracted 424 /// vector elements, try to merge them into one larger store. 425 /// \return True if a merged store was created. 426 bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, 427 EVT MemVT, unsigned NumStores, 428 bool IsConstantSrc, bool UseVector); 429 430 /// This is a helper function for MergeConsecutiveStores. 431 /// Stores that may be merged are placed in StoreNodes. 432 /// Loads that may alias with those stores are placed in AliasLoadNodes. 433 void getStoreMergeAndAliasCandidates( 434 StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes, 435 SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes); 436 437 /// Merge consecutive store operations into a wide store. 438 /// This optimization uses wide integers or vectors when possible. 439 /// \return True if some memory operations were changed. 440 bool MergeConsecutiveStores(StoreSDNode *N); 441 442 /// \brief Try to transform a truncation where C is a constant: 443 /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) 444 /// 445 /// \p N needs to be a truncation and its first operand an AND. Other 446 /// requirements are checked by the function (e.g. that trunc is 447 /// single-use) and if missed an empty SDValue is returned. 448 SDValue distributeTruncateThroughAnd(SDNode *N); 449 450 public: 451 DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL) 452 : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), 453 OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) { 454 ForCodeSize = DAG.getMachineFunction().getFunction()->optForSize(); 455 } 456 457 /// Runs the dag combiner on all nodes in the work list 458 void Run(CombineLevel AtLevel); 459 460 SelectionDAG &getDAG() const { return DAG; } 461 462 /// Returns a type large enough to hold any valid shift amount - before type 463 /// legalization these can be huge. 464 EVT getShiftAmountTy(EVT LHSTy) { 465 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 466 if (LHSTy.isVector()) 467 return LHSTy; 468 auto &DL = DAG.getDataLayout(); 469 return LegalTypes ? TLI.getScalarShiftAmountTy(DL, LHSTy) 470 : TLI.getPointerTy(DL); 471 } 472 473 /// This method returns true if we are running before type legalization or 474 /// if the specified VT is legal. 475 bool isTypeLegal(const EVT &VT) { 476 if (!LegalTypes) return true; 477 return TLI.isTypeLegal(VT); 478 } 479 480 /// Convenience wrapper around TargetLowering::getSetCCResultType 481 EVT getSetCCResultType(EVT VT) const { 482 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 483 } 484 }; 485 } 486 487 488 namespace { 489 /// This class is a DAGUpdateListener that removes any deleted 490 /// nodes from the worklist. 491 class WorklistRemover : public SelectionDAG::DAGUpdateListener { 492 DAGCombiner &DC; 493 public: 494 explicit WorklistRemover(DAGCombiner &dc) 495 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 496 497 void NodeDeleted(SDNode *N, SDNode *E) override { 498 DC.removeFromWorklist(N); 499 } 500 }; 501 } 502 503 //===----------------------------------------------------------------------===// 504 // TargetLowering::DAGCombinerInfo implementation 505 //===----------------------------------------------------------------------===// 506 507 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { 508 ((DAGCombiner*)DC)->AddToWorklist(N); 509 } 510 511 void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) { 512 ((DAGCombiner*)DC)->removeFromWorklist(N); 513 } 514 515 SDValue TargetLowering::DAGCombinerInfo:: 516 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { 517 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); 518 } 519 520 SDValue TargetLowering::DAGCombinerInfo:: 521 CombineTo(SDNode *N, SDValue Res, bool AddTo) { 522 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); 523 } 524 525 526 SDValue TargetLowering::DAGCombinerInfo:: 527 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { 528 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); 529 } 530 531 void TargetLowering::DAGCombinerInfo:: 532 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 533 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); 534 } 535 536 //===----------------------------------------------------------------------===// 537 // Helper Functions 538 //===----------------------------------------------------------------------===// 539 540 void DAGCombiner::deleteAndRecombine(SDNode *N) { 541 removeFromWorklist(N); 542 543 // If the operands of this node are only used by the node, they will now be 544 // dead. Make sure to re-visit them and recursively delete dead nodes. 545 for (const SDValue &Op : N->ops()) 546 // For an operand generating multiple values, one of the values may 547 // become dead allowing further simplification (e.g. split index 548 // arithmetic from an indexed load). 549 if (Op->hasOneUse() || Op->getNumValues() > 1) 550 AddToWorklist(Op.getNode()); 551 552 DAG.DeleteNode(N); 553 } 554 555 /// Return 1 if we can compute the negated form of the specified expression for 556 /// the same cost as the expression itself, or 2 if we can compute the negated 557 /// form more cheaply than the expression itself. 558 static char isNegatibleForFree(SDValue Op, bool LegalOperations, 559 const TargetLowering &TLI, 560 const TargetOptions *Options, 561 unsigned Depth = 0) { 562 // fneg is removable even if it has multiple uses. 563 if (Op.getOpcode() == ISD::FNEG) return 2; 564 565 // Don't allow anything with multiple uses. 566 if (!Op.hasOneUse()) return 0; 567 568 // Don't recurse exponentially. 569 if (Depth > 6) return 0; 570 571 switch (Op.getOpcode()) { 572 default: return false; 573 case ISD::ConstantFP: 574 // Don't invert constant FP values after legalize. The negated constant 575 // isn't necessarily legal. 576 return LegalOperations ? 0 : 1; 577 case ISD::FADD: 578 // FIXME: determine better conditions for this xform. 579 if (!Options->UnsafeFPMath) return 0; 580 581 // After operation legalization, it might not be legal to create new FSUBs. 582 if (LegalOperations && 583 !TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) 584 return 0; 585 586 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 587 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 588 Options, Depth + 1)) 589 return V; 590 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 591 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 592 Depth + 1); 593 case ISD::FSUB: 594 // We can't turn -(A-B) into B-A when we honor signed zeros. 595 if (!Options->UnsafeFPMath) return 0; 596 597 // fold (fneg (fsub A, B)) -> (fsub B, A) 598 return 1; 599 600 case ISD::FMUL: 601 case ISD::FDIV: 602 if (Options->HonorSignDependentRoundingFPMath()) return 0; 603 604 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 605 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 606 Options, Depth + 1)) 607 return V; 608 609 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 610 Depth + 1); 611 612 case ISD::FP_EXTEND: 613 case ISD::FP_ROUND: 614 case ISD::FSIN: 615 return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options, 616 Depth + 1); 617 } 618 } 619 620 /// If isNegatibleForFree returns true, return the newly negated expression. 621 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, 622 bool LegalOperations, unsigned Depth = 0) { 623 const TargetOptions &Options = DAG.getTarget().Options; 624 // fneg is removable even if it has multiple uses. 625 if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); 626 627 // Don't allow anything with multiple uses. 628 assert(Op.hasOneUse() && "Unknown reuse!"); 629 630 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); 631 632 const SDNodeFlags *Flags = Op.getNode()->getFlags(); 633 634 switch (Op.getOpcode()) { 635 default: llvm_unreachable("Unknown code"); 636 case ISD::ConstantFP: { 637 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 638 V.changeSign(); 639 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 640 } 641 case ISD::FADD: 642 // FIXME: determine better conditions for this xform. 643 assert(Options.UnsafeFPMath); 644 645 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 646 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 647 DAG.getTargetLoweringInfo(), &Options, Depth+1)) 648 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 649 GetNegatedExpression(Op.getOperand(0), DAG, 650 LegalOperations, Depth+1), 651 Op.getOperand(1), Flags); 652 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 653 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 654 GetNegatedExpression(Op.getOperand(1), DAG, 655 LegalOperations, Depth+1), 656 Op.getOperand(0), Flags); 657 case ISD::FSUB: 658 // We can't turn -(A-B) into B-A when we honor signed zeros. 659 assert(Options.UnsafeFPMath); 660 661 // fold (fneg (fsub 0, B)) -> B 662 if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0))) 663 if (N0CFP->isZero()) 664 return Op.getOperand(1); 665 666 // fold (fneg (fsub A, B)) -> (fsub B, A) 667 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 668 Op.getOperand(1), Op.getOperand(0), Flags); 669 670 case ISD::FMUL: 671 case ISD::FDIV: 672 assert(!Options.HonorSignDependentRoundingFPMath()); 673 674 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 675 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 676 DAG.getTargetLoweringInfo(), &Options, Depth+1)) 677 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 678 GetNegatedExpression(Op.getOperand(0), DAG, 679 LegalOperations, Depth+1), 680 Op.getOperand(1), Flags); 681 682 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 683 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 684 Op.getOperand(0), 685 GetNegatedExpression(Op.getOperand(1), DAG, 686 LegalOperations, Depth+1), Flags); 687 688 case ISD::FP_EXTEND: 689 case ISD::FSIN: 690 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 691 GetNegatedExpression(Op.getOperand(0), DAG, 692 LegalOperations, Depth+1)); 693 case ISD::FP_ROUND: 694 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 695 GetNegatedExpression(Op.getOperand(0), DAG, 696 LegalOperations, Depth+1), 697 Op.getOperand(1)); 698 } 699 } 700 701 // Return true if this node is a setcc, or is a select_cc 702 // that selects between the target values used for true and false, making it 703 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to 704 // the appropriate nodes based on the type of node we are checking. This 705 // simplifies life a bit for the callers. 706 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 707 SDValue &CC) const { 708 if (N.getOpcode() == ISD::SETCC) { 709 LHS = N.getOperand(0); 710 RHS = N.getOperand(1); 711 CC = N.getOperand(2); 712 return true; 713 } 714 715 if (N.getOpcode() != ISD::SELECT_CC || 716 !TLI.isConstTrueVal(N.getOperand(2).getNode()) || 717 !TLI.isConstFalseVal(N.getOperand(3).getNode())) 718 return false; 719 720 if (TLI.getBooleanContents(N.getValueType()) == 721 TargetLowering::UndefinedBooleanContent) 722 return false; 723 724 LHS = N.getOperand(0); 725 RHS = N.getOperand(1); 726 CC = N.getOperand(4); 727 return true; 728 } 729 730 /// Return true if this is a SetCC-equivalent operation with only one use. 731 /// If this is true, it allows the users to invert the operation for free when 732 /// it is profitable to do so. 733 bool DAGCombiner::isOneUseSetCC(SDValue N) const { 734 SDValue N0, N1, N2; 735 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) 736 return true; 737 return false; 738 } 739 740 /// Returns true if N is a BUILD_VECTOR node whose 741 /// elements are all the same constant or undefined. 742 static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) { 743 BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N); 744 if (!C) 745 return false; 746 747 APInt SplatUndef; 748 unsigned SplatBitSize; 749 bool HasAnyUndefs; 750 EVT EltVT = N->getValueType(0).getVectorElementType(); 751 return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 752 HasAnyUndefs) && 753 EltVT.getSizeInBits() >= SplatBitSize); 754 } 755 756 // \brief Returns the SDNode if it is a constant integer BuildVector 757 // or constant integer. 758 static SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N) { 759 if (isa<ConstantSDNode>(N)) 760 return N.getNode(); 761 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 762 return N.getNode(); 763 return nullptr; 764 } 765 766 // \brief Returns the SDNode if it is a constant float BuildVector 767 // or constant float. 768 static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { 769 if (isa<ConstantFPSDNode>(N)) 770 return N.getNode(); 771 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 772 return N.getNode(); 773 return nullptr; 774 } 775 776 // \brief Returns the SDNode if it is a constant splat BuildVector or constant 777 // int. 778 static ConstantSDNode *isConstOrConstSplat(SDValue N) { 779 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 780 return CN; 781 782 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 783 BitVector UndefElements; 784 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 785 786 // BuildVectors can truncate their operands. Ignore that case here. 787 // FIXME: We blindly ignore splats which include undef which is overly 788 // pessimistic. 789 if (CN && UndefElements.none() && 790 CN->getValueType(0) == N.getValueType().getScalarType()) 791 return CN; 792 } 793 794 return nullptr; 795 } 796 797 // \brief Returns the SDNode if it is a constant splat BuildVector or constant 798 // float. 799 static ConstantFPSDNode *isConstOrConstSplatFP(SDValue N) { 800 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 801 return CN; 802 803 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 804 BitVector UndefElements; 805 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 806 807 if (CN && UndefElements.none()) 808 return CN; 809 } 810 811 return nullptr; 812 } 813 814 SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL, 815 SDValue N0, SDValue N1) { 816 EVT VT = N0.getValueType(); 817 if (N0.getOpcode() == Opc) { 818 if (SDNode *L = isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { 819 if (SDNode *R = isConstantIntBuildVectorOrConstantInt(N1)) { 820 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) 821 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R)) 822 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); 823 return SDValue(); 824 } 825 if (N0.hasOneUse()) { 826 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one 827 // use 828 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); 829 if (!OpNode.getNode()) 830 return SDValue(); 831 AddToWorklist(OpNode.getNode()); 832 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); 833 } 834 } 835 } 836 837 if (N1.getOpcode() == Opc) { 838 if (SDNode *R = isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) { 839 if (SDNode *L = isConstantIntBuildVectorOrConstantInt(N0)) { 840 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) 841 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L)) 842 return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode); 843 return SDValue(); 844 } 845 if (N1.hasOneUse()) { 846 // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one 847 // use 848 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N1.getOperand(0), N0); 849 if (!OpNode.getNode()) 850 return SDValue(); 851 AddToWorklist(OpNode.getNode()); 852 return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1)); 853 } 854 } 855 } 856 857 return SDValue(); 858 } 859 860 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 861 bool AddTo) { 862 assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); 863 ++NodesCombined; 864 DEBUG(dbgs() << "\nReplacing.1 "; 865 N->dump(&DAG); 866 dbgs() << "\nWith: "; 867 To[0].getNode()->dump(&DAG); 868 dbgs() << " and " << NumTo-1 << " other values\n"); 869 for (unsigned i = 0, e = NumTo; i != e; ++i) 870 assert((!To[i].getNode() || 871 N->getValueType(i) == To[i].getValueType()) && 872 "Cannot combine value to value of different type!"); 873 874 WorklistRemover DeadNodes(*this); 875 DAG.ReplaceAllUsesWith(N, To); 876 if (AddTo) { 877 // Push the new nodes and any users onto the worklist 878 for (unsigned i = 0, e = NumTo; i != e; ++i) { 879 if (To[i].getNode()) { 880 AddToWorklist(To[i].getNode()); 881 AddUsersToWorklist(To[i].getNode()); 882 } 883 } 884 } 885 886 // Finally, if the node is now dead, remove it from the graph. The node 887 // may not be dead if the replacement process recursively simplified to 888 // something else needing this node. 889 if (N->use_empty()) 890 deleteAndRecombine(N); 891 return SDValue(N, 0); 892 } 893 894 void DAGCombiner:: 895 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 896 // Replace all uses. If any nodes become isomorphic to other nodes and 897 // are deleted, make sure to remove them from our worklist. 898 WorklistRemover DeadNodes(*this); 899 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); 900 901 // Push the new node and any (possibly new) users onto the worklist. 902 AddToWorklist(TLO.New.getNode()); 903 AddUsersToWorklist(TLO.New.getNode()); 904 905 // Finally, if the node is now dead, remove it from the graph. The node 906 // may not be dead if the replacement process recursively simplified to 907 // something else needing this node. 908 if (TLO.Old.getNode()->use_empty()) 909 deleteAndRecombine(TLO.Old.getNode()); 910 } 911 912 /// Check the specified integer node value to see if it can be simplified or if 913 /// things it uses can be simplified by bit propagation. If so, return true. 914 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) { 915 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 916 APInt KnownZero, KnownOne; 917 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 918 return false; 919 920 // Revisit the node. 921 AddToWorklist(Op.getNode()); 922 923 // Replace the old value with the new one. 924 ++NodesCombined; 925 DEBUG(dbgs() << "\nReplacing.2 "; 926 TLO.Old.getNode()->dump(&DAG); 927 dbgs() << "\nWith: "; 928 TLO.New.getNode()->dump(&DAG); 929 dbgs() << '\n'); 930 931 CommitTargetLoweringOpt(TLO); 932 return true; 933 } 934 935 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { 936 SDLoc dl(Load); 937 EVT VT = Load->getValueType(0); 938 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0)); 939 940 DEBUG(dbgs() << "\nReplacing.9 "; 941 Load->dump(&DAG); 942 dbgs() << "\nWith: "; 943 Trunc.getNode()->dump(&DAG); 944 dbgs() << '\n'); 945 WorklistRemover DeadNodes(*this); 946 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); 947 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); 948 deleteAndRecombine(Load); 949 AddToWorklist(Trunc.getNode()); 950 } 951 952 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { 953 Replace = false; 954 SDLoc dl(Op); 955 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 956 EVT MemVT = LD->getMemoryVT(); 957 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) 958 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD 959 : ISD::EXTLOAD) 960 : LD->getExtensionType(); 961 Replace = true; 962 return DAG.getExtLoad(ExtType, dl, PVT, 963 LD->getChain(), LD->getBasePtr(), 964 MemVT, LD->getMemOperand()); 965 } 966 967 unsigned Opc = Op.getOpcode(); 968 switch (Opc) { 969 default: break; 970 case ISD::AssertSext: 971 return DAG.getNode(ISD::AssertSext, dl, PVT, 972 SExtPromoteOperand(Op.getOperand(0), PVT), 973 Op.getOperand(1)); 974 case ISD::AssertZext: 975 return DAG.getNode(ISD::AssertZext, dl, PVT, 976 ZExtPromoteOperand(Op.getOperand(0), PVT), 977 Op.getOperand(1)); 978 case ISD::Constant: { 979 unsigned ExtOpc = 980 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 981 return DAG.getNode(ExtOpc, dl, PVT, Op); 982 } 983 } 984 985 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) 986 return SDValue(); 987 return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op); 988 } 989 990 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { 991 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) 992 return SDValue(); 993 EVT OldVT = Op.getValueType(); 994 SDLoc dl(Op); 995 bool Replace = false; 996 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 997 if (!NewOp.getNode()) 998 return SDValue(); 999 AddToWorklist(NewOp.getNode()); 1000 1001 if (Replace) 1002 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1003 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp, 1004 DAG.getValueType(OldVT)); 1005 } 1006 1007 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { 1008 EVT OldVT = Op.getValueType(); 1009 SDLoc dl(Op); 1010 bool Replace = false; 1011 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1012 if (!NewOp.getNode()) 1013 return SDValue(); 1014 AddToWorklist(NewOp.getNode()); 1015 1016 if (Replace) 1017 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1018 return DAG.getZeroExtendInReg(NewOp, dl, OldVT); 1019 } 1020 1021 /// Promote the specified integer binary operation if the target indicates it is 1022 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1023 /// i32 since i16 instructions are longer. 1024 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { 1025 if (!LegalOperations) 1026 return SDValue(); 1027 1028 EVT VT = Op.getValueType(); 1029 if (VT.isVector() || !VT.isInteger()) 1030 return SDValue(); 1031 1032 // If operation type is 'undesirable', e.g. i16 on x86, consider 1033 // promoting it. 1034 unsigned Opc = Op.getOpcode(); 1035 if (TLI.isTypeDesirableForOp(Opc, VT)) 1036 return SDValue(); 1037 1038 EVT PVT = VT; 1039 // Consult target whether it is a good idea to promote this operation and 1040 // what's the right type to promote it to. 1041 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1042 assert(PVT != VT && "Don't know what type to promote to!"); 1043 1044 bool Replace0 = false; 1045 SDValue N0 = Op.getOperand(0); 1046 SDValue NN0 = PromoteOperand(N0, PVT, Replace0); 1047 if (!NN0.getNode()) 1048 return SDValue(); 1049 1050 bool Replace1 = false; 1051 SDValue N1 = Op.getOperand(1); 1052 SDValue NN1; 1053 if (N0 == N1) 1054 NN1 = NN0; 1055 else { 1056 NN1 = PromoteOperand(N1, PVT, Replace1); 1057 if (!NN1.getNode()) 1058 return SDValue(); 1059 } 1060 1061 AddToWorklist(NN0.getNode()); 1062 if (NN1.getNode()) 1063 AddToWorklist(NN1.getNode()); 1064 1065 if (Replace0) 1066 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); 1067 if (Replace1) 1068 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); 1069 1070 DEBUG(dbgs() << "\nPromoting "; 1071 Op.getNode()->dump(&DAG)); 1072 SDLoc dl(Op); 1073 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1074 DAG.getNode(Opc, dl, PVT, NN0, NN1)); 1075 } 1076 return SDValue(); 1077 } 1078 1079 /// Promote the specified integer shift operation if the target indicates it is 1080 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1081 /// i32 since i16 instructions are longer. 1082 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { 1083 if (!LegalOperations) 1084 return SDValue(); 1085 1086 EVT VT = Op.getValueType(); 1087 if (VT.isVector() || !VT.isInteger()) 1088 return SDValue(); 1089 1090 // If operation type is 'undesirable', e.g. i16 on x86, consider 1091 // promoting it. 1092 unsigned Opc = Op.getOpcode(); 1093 if (TLI.isTypeDesirableForOp(Opc, VT)) 1094 return SDValue(); 1095 1096 EVT PVT = VT; 1097 // Consult target whether it is a good idea to promote this operation and 1098 // what's the right type to promote it to. 1099 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1100 assert(PVT != VT && "Don't know what type to promote to!"); 1101 1102 bool Replace = false; 1103 SDValue N0 = Op.getOperand(0); 1104 if (Opc == ISD::SRA) 1105 N0 = SExtPromoteOperand(Op.getOperand(0), PVT); 1106 else if (Opc == ISD::SRL) 1107 N0 = ZExtPromoteOperand(Op.getOperand(0), PVT); 1108 else 1109 N0 = PromoteOperand(N0, PVT, Replace); 1110 if (!N0.getNode()) 1111 return SDValue(); 1112 1113 AddToWorklist(N0.getNode()); 1114 if (Replace) 1115 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); 1116 1117 DEBUG(dbgs() << "\nPromoting "; 1118 Op.getNode()->dump(&DAG)); 1119 SDLoc dl(Op); 1120 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1121 DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1))); 1122 } 1123 return SDValue(); 1124 } 1125 1126 SDValue DAGCombiner::PromoteExtend(SDValue Op) { 1127 if (!LegalOperations) 1128 return SDValue(); 1129 1130 EVT VT = Op.getValueType(); 1131 if (VT.isVector() || !VT.isInteger()) 1132 return SDValue(); 1133 1134 // If operation type is 'undesirable', e.g. i16 on x86, consider 1135 // promoting it. 1136 unsigned Opc = Op.getOpcode(); 1137 if (TLI.isTypeDesirableForOp(Opc, VT)) 1138 return SDValue(); 1139 1140 EVT PVT = VT; 1141 // Consult target whether it is a good idea to promote this operation and 1142 // what's the right type to promote it to. 1143 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1144 assert(PVT != VT && "Don't know what type to promote to!"); 1145 // fold (aext (aext x)) -> (aext x) 1146 // fold (aext (zext x)) -> (zext x) 1147 // fold (aext (sext x)) -> (sext x) 1148 DEBUG(dbgs() << "\nPromoting "; 1149 Op.getNode()->dump(&DAG)); 1150 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); 1151 } 1152 return SDValue(); 1153 } 1154 1155 bool DAGCombiner::PromoteLoad(SDValue Op) { 1156 if (!LegalOperations) 1157 return false; 1158 1159 EVT VT = Op.getValueType(); 1160 if (VT.isVector() || !VT.isInteger()) 1161 return false; 1162 1163 // If operation type is 'undesirable', e.g. i16 on x86, consider 1164 // promoting it. 1165 unsigned Opc = Op.getOpcode(); 1166 if (TLI.isTypeDesirableForOp(Opc, VT)) 1167 return false; 1168 1169 EVT PVT = VT; 1170 // Consult target whether it is a good idea to promote this operation and 1171 // what's the right type to promote it to. 1172 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1173 assert(PVT != VT && "Don't know what type to promote to!"); 1174 1175 SDLoc dl(Op); 1176 SDNode *N = Op.getNode(); 1177 LoadSDNode *LD = cast<LoadSDNode>(N); 1178 EVT MemVT = LD->getMemoryVT(); 1179 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) 1180 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD 1181 : ISD::EXTLOAD) 1182 : LD->getExtensionType(); 1183 SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT, 1184 LD->getChain(), LD->getBasePtr(), 1185 MemVT, LD->getMemOperand()); 1186 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD); 1187 1188 DEBUG(dbgs() << "\nPromoting "; 1189 N->dump(&DAG); 1190 dbgs() << "\nTo: "; 1191 Result.getNode()->dump(&DAG); 1192 dbgs() << '\n'); 1193 WorklistRemover DeadNodes(*this); 1194 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1195 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); 1196 deleteAndRecombine(N); 1197 AddToWorklist(Result.getNode()); 1198 return true; 1199 } 1200 return false; 1201 } 1202 1203 /// \brief Recursively delete a node which has no uses and any operands for 1204 /// which it is the only use. 1205 /// 1206 /// Note that this both deletes the nodes and removes them from the worklist. 1207 /// It also adds any nodes who have had a user deleted to the worklist as they 1208 /// may now have only one use and subject to other combines. 1209 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { 1210 if (!N->use_empty()) 1211 return false; 1212 1213 SmallSetVector<SDNode *, 16> Nodes; 1214 Nodes.insert(N); 1215 do { 1216 N = Nodes.pop_back_val(); 1217 if (!N) 1218 continue; 1219 1220 if (N->use_empty()) { 1221 for (const SDValue &ChildN : N->op_values()) 1222 Nodes.insert(ChildN.getNode()); 1223 1224 removeFromWorklist(N); 1225 DAG.DeleteNode(N); 1226 } else { 1227 AddToWorklist(N); 1228 } 1229 } while (!Nodes.empty()); 1230 return true; 1231 } 1232 1233 //===----------------------------------------------------------------------===// 1234 // Main DAG Combiner implementation 1235 //===----------------------------------------------------------------------===// 1236 1237 void DAGCombiner::Run(CombineLevel AtLevel) { 1238 // set the instance variables, so that the various visit routines may use it. 1239 Level = AtLevel; 1240 LegalOperations = Level >= AfterLegalizeVectorOps; 1241 LegalTypes = Level >= AfterLegalizeTypes; 1242 1243 // Add all the dag nodes to the worklist. 1244 for (SDNode &Node : DAG.allnodes()) 1245 AddToWorklist(&Node); 1246 1247 // Create a dummy node (which is not added to allnodes), that adds a reference 1248 // to the root node, preventing it from being deleted, and tracking any 1249 // changes of the root. 1250 HandleSDNode Dummy(DAG.getRoot()); 1251 1252 // while the worklist isn't empty, find a node and 1253 // try and combine it. 1254 while (!WorklistMap.empty()) { 1255 SDNode *N; 1256 // The Worklist holds the SDNodes in order, but it may contain null entries. 1257 do { 1258 N = Worklist.pop_back_val(); 1259 } while (!N); 1260 1261 bool GoodWorklistEntry = WorklistMap.erase(N); 1262 (void)GoodWorklistEntry; 1263 assert(GoodWorklistEntry && 1264 "Found a worklist entry without a corresponding map entry!"); 1265 1266 // If N has no uses, it is dead. Make sure to revisit all N's operands once 1267 // N is deleted from the DAG, since they too may now be dead or may have a 1268 // reduced number of uses, allowing other xforms. 1269 if (recursivelyDeleteUnusedNodes(N)) 1270 continue; 1271 1272 WorklistRemover DeadNodes(*this); 1273 1274 // If this combine is running after legalizing the DAG, re-legalize any 1275 // nodes pulled off the worklist. 1276 if (Level == AfterLegalizeDAG) { 1277 SmallSetVector<SDNode *, 16> UpdatedNodes; 1278 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); 1279 1280 for (SDNode *LN : UpdatedNodes) { 1281 AddToWorklist(LN); 1282 AddUsersToWorklist(LN); 1283 } 1284 if (!NIsValid) 1285 continue; 1286 } 1287 1288 DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); 1289 1290 // Add any operands of the new node which have not yet been combined to the 1291 // worklist as well. Because the worklist uniques things already, this 1292 // won't repeatedly process the same operand. 1293 CombinedNodes.insert(N); 1294 for (const SDValue &ChildN : N->op_values()) 1295 if (!CombinedNodes.count(ChildN.getNode())) 1296 AddToWorklist(ChildN.getNode()); 1297 1298 SDValue RV = combine(N); 1299 1300 if (!RV.getNode()) 1301 continue; 1302 1303 ++NodesCombined; 1304 1305 // If we get back the same node we passed in, rather than a new node or 1306 // zero, we know that the node must have defined multiple values and 1307 // CombineTo was used. Since CombineTo takes care of the worklist 1308 // mechanics for us, we have no work to do in this case. 1309 if (RV.getNode() == N) 1310 continue; 1311 1312 assert(N->getOpcode() != ISD::DELETED_NODE && 1313 RV.getNode()->getOpcode() != ISD::DELETED_NODE && 1314 "Node was deleted but visit returned new node!"); 1315 1316 DEBUG(dbgs() << " ... into: "; 1317 RV.getNode()->dump(&DAG)); 1318 1319 // Transfer debug value. 1320 DAG.TransferDbgValues(SDValue(N, 0), RV); 1321 if (N->getNumValues() == RV.getNode()->getNumValues()) 1322 DAG.ReplaceAllUsesWith(N, RV.getNode()); 1323 else { 1324 assert(N->getValueType(0) == RV.getValueType() && 1325 N->getNumValues() == 1 && "Type mismatch"); 1326 SDValue OpV = RV; 1327 DAG.ReplaceAllUsesWith(N, &OpV); 1328 } 1329 1330 // Push the new node and any users onto the worklist 1331 AddToWorklist(RV.getNode()); 1332 AddUsersToWorklist(RV.getNode()); 1333 1334 // Finally, if the node is now dead, remove it from the graph. The node 1335 // may not be dead if the replacement process recursively simplified to 1336 // something else needing this node. This will also take care of adding any 1337 // operands which have lost a user to the worklist. 1338 recursivelyDeleteUnusedNodes(N); 1339 } 1340 1341 // If the root changed (e.g. it was a dead load, update the root). 1342 DAG.setRoot(Dummy.getValue()); 1343 DAG.RemoveDeadNodes(); 1344 } 1345 1346 SDValue DAGCombiner::visit(SDNode *N) { 1347 switch (N->getOpcode()) { 1348 default: break; 1349 case ISD::TokenFactor: return visitTokenFactor(N); 1350 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); 1351 case ISD::ADD: return visitADD(N); 1352 case ISD::SUB: return visitSUB(N); 1353 case ISD::ADDC: return visitADDC(N); 1354 case ISD::SUBC: return visitSUBC(N); 1355 case ISD::ADDE: return visitADDE(N); 1356 case ISD::SUBE: return visitSUBE(N); 1357 case ISD::MUL: return visitMUL(N); 1358 case ISD::SDIV: return visitSDIV(N); 1359 case ISD::UDIV: return visitUDIV(N); 1360 case ISD::SREM: 1361 case ISD::UREM: return visitREM(N); 1362 case ISD::MULHU: return visitMULHU(N); 1363 case ISD::MULHS: return visitMULHS(N); 1364 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); 1365 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); 1366 case ISD::SMULO: return visitSMULO(N); 1367 case ISD::UMULO: return visitUMULO(N); 1368 case ISD::SMIN: 1369 case ISD::SMAX: 1370 case ISD::UMIN: 1371 case ISD::UMAX: return visitIMINMAX(N); 1372 case ISD::AND: return visitAND(N); 1373 case ISD::OR: return visitOR(N); 1374 case ISD::XOR: return visitXOR(N); 1375 case ISD::SHL: return visitSHL(N); 1376 case ISD::SRA: return visitSRA(N); 1377 case ISD::SRL: return visitSRL(N); 1378 case ISD::ROTR: 1379 case ISD::ROTL: return visitRotate(N); 1380 case ISD::BSWAP: return visitBSWAP(N); 1381 case ISD::CTLZ: return visitCTLZ(N); 1382 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); 1383 case ISD::CTTZ: return visitCTTZ(N); 1384 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); 1385 case ISD::CTPOP: return visitCTPOP(N); 1386 case ISD::SELECT: return visitSELECT(N); 1387 case ISD::VSELECT: return visitVSELECT(N); 1388 case ISD::SELECT_CC: return visitSELECT_CC(N); 1389 case ISD::SETCC: return visitSETCC(N); 1390 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); 1391 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); 1392 case ISD::ANY_EXTEND: return visitANY_EXTEND(N); 1393 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); 1394 case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); 1395 case ISD::TRUNCATE: return visitTRUNCATE(N); 1396 case ISD::BITCAST: return visitBITCAST(N); 1397 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); 1398 case ISD::FADD: return visitFADD(N); 1399 case ISD::FSUB: return visitFSUB(N); 1400 case ISD::FMUL: return visitFMUL(N); 1401 case ISD::FMA: return visitFMA(N); 1402 case ISD::FDIV: return visitFDIV(N); 1403 case ISD::FREM: return visitFREM(N); 1404 case ISD::FSQRT: return visitFSQRT(N); 1405 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); 1406 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); 1407 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); 1408 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); 1409 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); 1410 case ISD::FP_ROUND: return visitFP_ROUND(N); 1411 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); 1412 case ISD::FP_EXTEND: return visitFP_EXTEND(N); 1413 case ISD::FNEG: return visitFNEG(N); 1414 case ISD::FABS: return visitFABS(N); 1415 case ISD::FFLOOR: return visitFFLOOR(N); 1416 case ISD::FMINNUM: return visitFMINNUM(N); 1417 case ISD::FMAXNUM: return visitFMAXNUM(N); 1418 case ISD::FCEIL: return visitFCEIL(N); 1419 case ISD::FTRUNC: return visitFTRUNC(N); 1420 case ISD::BRCOND: return visitBRCOND(N); 1421 case ISD::BR_CC: return visitBR_CC(N); 1422 case ISD::LOAD: return visitLOAD(N); 1423 case ISD::STORE: return visitSTORE(N); 1424 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); 1425 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); 1426 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); 1427 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); 1428 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); 1429 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); 1430 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); 1431 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); 1432 case ISD::MGATHER: return visitMGATHER(N); 1433 case ISD::MLOAD: return visitMLOAD(N); 1434 case ISD::MSCATTER: return visitMSCATTER(N); 1435 case ISD::MSTORE: return visitMSTORE(N); 1436 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); 1437 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); 1438 } 1439 return SDValue(); 1440 } 1441 1442 SDValue DAGCombiner::combine(SDNode *N) { 1443 SDValue RV = visit(N); 1444 1445 // If nothing happened, try a target-specific DAG combine. 1446 if (!RV.getNode()) { 1447 assert(N->getOpcode() != ISD::DELETED_NODE && 1448 "Node was deleted but visit returned NULL!"); 1449 1450 if (N->getOpcode() >= ISD::BUILTIN_OP_END || 1451 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { 1452 1453 // Expose the DAG combiner to the target combiner impls. 1454 TargetLowering::DAGCombinerInfo 1455 DagCombineInfo(DAG, Level, false, this); 1456 1457 RV = TLI.PerformDAGCombine(N, DagCombineInfo); 1458 } 1459 } 1460 1461 // If nothing happened still, try promoting the operation. 1462 if (!RV.getNode()) { 1463 switch (N->getOpcode()) { 1464 default: break; 1465 case ISD::ADD: 1466 case ISD::SUB: 1467 case ISD::MUL: 1468 case ISD::AND: 1469 case ISD::OR: 1470 case ISD::XOR: 1471 RV = PromoteIntBinOp(SDValue(N, 0)); 1472 break; 1473 case ISD::SHL: 1474 case ISD::SRA: 1475 case ISD::SRL: 1476 RV = PromoteIntShiftOp(SDValue(N, 0)); 1477 break; 1478 case ISD::SIGN_EXTEND: 1479 case ISD::ZERO_EXTEND: 1480 case ISD::ANY_EXTEND: 1481 RV = PromoteExtend(SDValue(N, 0)); 1482 break; 1483 case ISD::LOAD: 1484 if (PromoteLoad(SDValue(N, 0))) 1485 RV = SDValue(N, 0); 1486 break; 1487 } 1488 } 1489 1490 // If N is a commutative binary node, try commuting it to enable more 1491 // sdisel CSE. 1492 if (!RV.getNode() && SelectionDAG::isCommutativeBinOp(N->getOpcode()) && 1493 N->getNumValues() == 1) { 1494 SDValue N0 = N->getOperand(0); 1495 SDValue N1 = N->getOperand(1); 1496 1497 // Constant operands are canonicalized to RHS. 1498 if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) { 1499 SDValue Ops[] = {N1, N0}; 1500 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 1501 N->getFlags()); 1502 if (CSENode) 1503 return SDValue(CSENode, 0); 1504 } 1505 } 1506 1507 return RV; 1508 } 1509 1510 /// Given a node, return its input chain if it has one, otherwise return a null 1511 /// sd operand. 1512 static SDValue getInputChainForNode(SDNode *N) { 1513 if (unsigned NumOps = N->getNumOperands()) { 1514 if (N->getOperand(0).getValueType() == MVT::Other) 1515 return N->getOperand(0); 1516 if (N->getOperand(NumOps-1).getValueType() == MVT::Other) 1517 return N->getOperand(NumOps-1); 1518 for (unsigned i = 1; i < NumOps-1; ++i) 1519 if (N->getOperand(i).getValueType() == MVT::Other) 1520 return N->getOperand(i); 1521 } 1522 return SDValue(); 1523 } 1524 1525 SDValue DAGCombiner::visitTokenFactor(SDNode *N) { 1526 // If N has two operands, where one has an input chain equal to the other, 1527 // the 'other' chain is redundant. 1528 if (N->getNumOperands() == 2) { 1529 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) 1530 return N->getOperand(0); 1531 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) 1532 return N->getOperand(1); 1533 } 1534 1535 SmallVector<SDNode *, 8> TFs; // List of token factors to visit. 1536 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. 1537 SmallPtrSet<SDNode*, 16> SeenOps; 1538 bool Changed = false; // If we should replace this token factor. 1539 1540 // Start out with this token factor. 1541 TFs.push_back(N); 1542 1543 // Iterate through token factors. The TFs grows when new token factors are 1544 // encountered. 1545 for (unsigned i = 0; i < TFs.size(); ++i) { 1546 SDNode *TF = TFs[i]; 1547 1548 // Check each of the operands. 1549 for (const SDValue &Op : TF->op_values()) { 1550 1551 switch (Op.getOpcode()) { 1552 case ISD::EntryToken: 1553 // Entry tokens don't need to be added to the list. They are 1554 // redundant. 1555 Changed = true; 1556 break; 1557 1558 case ISD::TokenFactor: 1559 if (Op.hasOneUse() && 1560 std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) { 1561 // Queue up for processing. 1562 TFs.push_back(Op.getNode()); 1563 // Clean up in case the token factor is removed. 1564 AddToWorklist(Op.getNode()); 1565 Changed = true; 1566 break; 1567 } 1568 // Fall thru 1569 1570 default: 1571 // Only add if it isn't already in the list. 1572 if (SeenOps.insert(Op.getNode()).second) 1573 Ops.push_back(Op); 1574 else 1575 Changed = true; 1576 break; 1577 } 1578 } 1579 } 1580 1581 SDValue Result; 1582 1583 // If we've changed things around then replace token factor. 1584 if (Changed) { 1585 if (Ops.empty()) { 1586 // The entry token is the only possible outcome. 1587 Result = DAG.getEntryNode(); 1588 } else { 1589 // New and improved token factor. 1590 Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops); 1591 } 1592 1593 // Add users to worklist if AA is enabled, since it may introduce 1594 // a lot of new chained token factors while removing memory deps. 1595 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 1596 : DAG.getSubtarget().useAA(); 1597 return CombineTo(N, Result, UseAA /*add to worklist*/); 1598 } 1599 1600 return Result; 1601 } 1602 1603 /// MERGE_VALUES can always be eliminated. 1604 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { 1605 WorklistRemover DeadNodes(*this); 1606 // Replacing results may cause a different MERGE_VALUES to suddenly 1607 // be CSE'd with N, and carry its uses with it. Iterate until no 1608 // uses remain, to ensure that the node can be safely deleted. 1609 // First add the users of this node to the work list so that they 1610 // can be tried again once they have new operands. 1611 AddUsersToWorklist(N); 1612 do { 1613 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 1614 DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i)); 1615 } while (!N->use_empty()); 1616 deleteAndRecombine(N); 1617 return SDValue(N, 0); // Return N so it doesn't get rechecked! 1618 } 1619 1620 static bool isNullConstant(SDValue V) { 1621 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 1622 return Const != nullptr && Const->isNullValue(); 1623 } 1624 1625 static bool isNullFPConstant(SDValue V) { 1626 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 1627 return Const != nullptr && Const->isZero() && !Const->isNegative(); 1628 } 1629 1630 static bool isAllOnesConstant(SDValue V) { 1631 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 1632 return Const != nullptr && Const->isAllOnesValue(); 1633 } 1634 1635 static bool isOneConstant(SDValue V) { 1636 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 1637 return Const != nullptr && Const->isOne(); 1638 } 1639 1640 /// If \p N is a ContantSDNode with isOpaque() == false return it casted to a 1641 /// ContantSDNode pointer else nullptr. 1642 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { 1643 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); 1644 return Const != nullptr && !Const->isOpaque() ? Const : nullptr; 1645 } 1646 1647 SDValue DAGCombiner::visitADD(SDNode *N) { 1648 SDValue N0 = N->getOperand(0); 1649 SDValue N1 = N->getOperand(1); 1650 EVT VT = N0.getValueType(); 1651 1652 // fold vector ops 1653 if (VT.isVector()) { 1654 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 1655 return FoldedVOp; 1656 1657 // fold (add x, 0) -> x, vector edition 1658 if (ISD::isBuildVectorAllZeros(N1.getNode())) 1659 return N0; 1660 if (ISD::isBuildVectorAllZeros(N0.getNode())) 1661 return N1; 1662 } 1663 1664 // fold (add x, undef) -> undef 1665 if (N0.getOpcode() == ISD::UNDEF) 1666 return N0; 1667 if (N1.getOpcode() == ISD::UNDEF) 1668 return N1; 1669 // fold (add c1, c2) -> c1+c2 1670 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 1671 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 1672 if (N0C && N1C) 1673 return DAG.FoldConstantArithmetic(ISD::ADD, SDLoc(N), VT, N0C, N1C); 1674 // canonicalize constant to RHS 1675 if (isConstantIntBuildVectorOrConstantInt(N0) && 1676 !isConstantIntBuildVectorOrConstantInt(N1)) 1677 return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0); 1678 // fold (add x, 0) -> x 1679 if (isNullConstant(N1)) 1680 return N0; 1681 // fold (add Sym, c) -> Sym+c 1682 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 1683 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C && 1684 GA->getOpcode() == ISD::GlobalAddress) 1685 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 1686 GA->getOffset() + 1687 (uint64_t)N1C->getSExtValue()); 1688 // fold ((c1-A)+c2) -> (c1+c2)-A 1689 if (N1C && N0.getOpcode() == ISD::SUB) 1690 if (ConstantSDNode *N0C = getAsNonOpaqueConstant(N0.getOperand(0))) { 1691 SDLoc DL(N); 1692 return DAG.getNode(ISD::SUB, DL, VT, 1693 DAG.getConstant(N1C->getAPIntValue()+ 1694 N0C->getAPIntValue(), DL, VT), 1695 N0.getOperand(1)); 1696 } 1697 // reassociate add 1698 if (SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1)) 1699 return RADD; 1700 // fold ((0-A) + B) -> B-A 1701 if (N0.getOpcode() == ISD::SUB && isNullConstant(N0.getOperand(0))) 1702 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1)); 1703 // fold (A + (0-B)) -> A-B 1704 if (N1.getOpcode() == ISD::SUB && isNullConstant(N1.getOperand(0))) 1705 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1)); 1706 // fold (A+(B-A)) -> B 1707 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) 1708 return N1.getOperand(0); 1709 // fold ((B-A)+A) -> B 1710 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) 1711 return N0.getOperand(0); 1712 // fold (A+(B-(A+C))) to (B-C) 1713 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 1714 N0 == N1.getOperand(1).getOperand(0)) 1715 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0), 1716 N1.getOperand(1).getOperand(1)); 1717 // fold (A+(B-(C+A))) to (B-C) 1718 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 1719 N0 == N1.getOperand(1).getOperand(1)) 1720 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0), 1721 N1.getOperand(1).getOperand(0)); 1722 // fold (A+((B-A)+or-C)) to (B+or-C) 1723 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && 1724 N1.getOperand(0).getOpcode() == ISD::SUB && 1725 N0 == N1.getOperand(0).getOperand(1)) 1726 return DAG.getNode(N1.getOpcode(), SDLoc(N), VT, 1727 N1.getOperand(0).getOperand(0), N1.getOperand(1)); 1728 1729 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant 1730 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { 1731 SDValue N00 = N0.getOperand(0); 1732 SDValue N01 = N0.getOperand(1); 1733 SDValue N10 = N1.getOperand(0); 1734 SDValue N11 = N1.getOperand(1); 1735 1736 if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10)) 1737 return DAG.getNode(ISD::SUB, SDLoc(N), VT, 1738 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), 1739 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); 1740 } 1741 1742 if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) 1743 return SDValue(N, 0); 1744 1745 // fold (a+b) -> (a|b) iff a and b share no bits. 1746 if (VT.isInteger() && !VT.isVector()) { 1747 APInt LHSZero, LHSOne; 1748 APInt RHSZero, RHSOne; 1749 DAG.computeKnownBits(N0, LHSZero, LHSOne); 1750 1751 if (LHSZero.getBoolValue()) { 1752 DAG.computeKnownBits(N1, RHSZero, RHSOne); 1753 1754 // If all possibly-set bits on the LHS are clear on the RHS, return an OR. 1755 // If all possibly-set bits on the RHS are clear on the LHS, return an OR. 1756 if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero){ 1757 if (!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) 1758 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1); 1759 } 1760 } 1761 } 1762 1763 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) 1764 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && 1765 isNullConstant(N1.getOperand(0).getOperand(0))) 1766 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, 1767 DAG.getNode(ISD::SHL, SDLoc(N), VT, 1768 N1.getOperand(0).getOperand(1), 1769 N1.getOperand(1))); 1770 if (N0.getOpcode() == ISD::SHL && N0.getOperand(0).getOpcode() == ISD::SUB && 1771 isNullConstant(N0.getOperand(0).getOperand(0))) 1772 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, 1773 DAG.getNode(ISD::SHL, SDLoc(N), VT, 1774 N0.getOperand(0).getOperand(1), 1775 N0.getOperand(1))); 1776 1777 if (N1.getOpcode() == ISD::AND) { 1778 SDValue AndOp0 = N1.getOperand(0); 1779 unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0); 1780 unsigned DestBits = VT.getScalarType().getSizeInBits(); 1781 1782 // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x)) 1783 // and similar xforms where the inner op is either ~0 or 0. 1784 if (NumSignBits == DestBits && isOneConstant(N1->getOperand(1))) { 1785 SDLoc DL(N); 1786 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0); 1787 } 1788 } 1789 1790 // add (sext i1), X -> sub X, (zext i1) 1791 if (N0.getOpcode() == ISD::SIGN_EXTEND && 1792 N0.getOperand(0).getValueType() == MVT::i1 && 1793 !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) { 1794 SDLoc DL(N); 1795 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 1796 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); 1797 } 1798 1799 // add X, (sextinreg Y i1) -> sub X, (and Y 1) 1800 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 1801 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 1802 if (TN->getVT() == MVT::i1) { 1803 SDLoc DL(N); 1804 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 1805 DAG.getConstant(1, DL, VT)); 1806 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); 1807 } 1808 } 1809 1810 return SDValue(); 1811 } 1812 1813 SDValue DAGCombiner::visitADDC(SDNode *N) { 1814 SDValue N0 = N->getOperand(0); 1815 SDValue N1 = N->getOperand(1); 1816 EVT VT = N0.getValueType(); 1817 1818 // If the flag result is dead, turn this into an ADD. 1819 if (!N->hasAnyUseOfValue(1)) 1820 return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1), 1821 DAG.getNode(ISD::CARRY_FALSE, 1822 SDLoc(N), MVT::Glue)); 1823 1824 // canonicalize constant to RHS. 1825 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1826 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1827 if (N0C && !N1C) 1828 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0); 1829 1830 // fold (addc x, 0) -> x + no carry out 1831 if (isNullConstant(N1)) 1832 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, 1833 SDLoc(N), MVT::Glue)); 1834 1835 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits. 1836 APInt LHSZero, LHSOne; 1837 APInt RHSZero, RHSOne; 1838 DAG.computeKnownBits(N0, LHSZero, LHSOne); 1839 1840 if (LHSZero.getBoolValue()) { 1841 DAG.computeKnownBits(N1, RHSZero, RHSOne); 1842 1843 // If all possibly-set bits on the LHS are clear on the RHS, return an OR. 1844 // If all possibly-set bits on the RHS are clear on the LHS, return an OR. 1845 if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero) 1846 return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1), 1847 DAG.getNode(ISD::CARRY_FALSE, 1848 SDLoc(N), MVT::Glue)); 1849 } 1850 1851 return SDValue(); 1852 } 1853 1854 SDValue DAGCombiner::visitADDE(SDNode *N) { 1855 SDValue N0 = N->getOperand(0); 1856 SDValue N1 = N->getOperand(1); 1857 SDValue CarryIn = N->getOperand(2); 1858 1859 // canonicalize constant to RHS 1860 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1861 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1862 if (N0C && !N1C) 1863 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), 1864 N1, N0, CarryIn); 1865 1866 // fold (adde x, y, false) -> (addc x, y) 1867 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 1868 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); 1869 1870 return SDValue(); 1871 } 1872 1873 // Since it may not be valid to emit a fold to zero for vector initializers 1874 // check if we can before folding. 1875 static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT, 1876 SelectionDAG &DAG, 1877 bool LegalOperations, bool LegalTypes) { 1878 if (!VT.isVector()) 1879 return DAG.getConstant(0, DL, VT); 1880 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 1881 return DAG.getConstant(0, DL, VT); 1882 return SDValue(); 1883 } 1884 1885 SDValue DAGCombiner::visitSUB(SDNode *N) { 1886 SDValue N0 = N->getOperand(0); 1887 SDValue N1 = N->getOperand(1); 1888 EVT VT = N0.getValueType(); 1889 1890 // fold vector ops 1891 if (VT.isVector()) { 1892 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 1893 return FoldedVOp; 1894 1895 // fold (sub x, 0) -> x, vector edition 1896 if (ISD::isBuildVectorAllZeros(N1.getNode())) 1897 return N0; 1898 } 1899 1900 // fold (sub x, x) -> 0 1901 // FIXME: Refactor this and xor and other similar operations together. 1902 if (N0 == N1) 1903 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); 1904 // fold (sub c1, c2) -> c1-c2 1905 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 1906 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 1907 if (N0C && N1C) 1908 return DAG.FoldConstantArithmetic(ISD::SUB, SDLoc(N), VT, N0C, N1C); 1909 // fold (sub x, c) -> (add x, -c) 1910 if (N1C) { 1911 SDLoc DL(N); 1912 return DAG.getNode(ISD::ADD, DL, VT, N0, 1913 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 1914 } 1915 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) 1916 if (isAllOnesConstant(N0)) 1917 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); 1918 // fold A-(A-B) -> B 1919 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) 1920 return N1.getOperand(1); 1921 // fold (A+B)-A -> B 1922 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) 1923 return N0.getOperand(1); 1924 // fold (A+B)-B -> A 1925 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) 1926 return N0.getOperand(0); 1927 // fold C2-(A+C1) -> (C2-C1)-A 1928 ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? nullptr : 1929 dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode()); 1930 if (N1.getOpcode() == ISD::ADD && N0C && N1C1) { 1931 SDLoc DL(N); 1932 SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(), 1933 DL, VT); 1934 return DAG.getNode(ISD::SUB, DL, VT, NewC, 1935 N1.getOperand(0)); 1936 } 1937 // fold ((A+(B+or-C))-B) -> A+or-C 1938 if (N0.getOpcode() == ISD::ADD && 1939 (N0.getOperand(1).getOpcode() == ISD::SUB || 1940 N0.getOperand(1).getOpcode() == ISD::ADD) && 1941 N0.getOperand(1).getOperand(0) == N1) 1942 return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT, 1943 N0.getOperand(0), N0.getOperand(1).getOperand(1)); 1944 // fold ((A+(C+B))-B) -> A+C 1945 if (N0.getOpcode() == ISD::ADD && 1946 N0.getOperand(1).getOpcode() == ISD::ADD && 1947 N0.getOperand(1).getOperand(1) == N1) 1948 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 1949 N0.getOperand(0), N0.getOperand(1).getOperand(0)); 1950 // fold ((A-(B-C))-C) -> A-B 1951 if (N0.getOpcode() == ISD::SUB && 1952 N0.getOperand(1).getOpcode() == ISD::SUB && 1953 N0.getOperand(1).getOperand(1) == N1) 1954 return DAG.getNode(ISD::SUB, SDLoc(N), VT, 1955 N0.getOperand(0), N0.getOperand(1).getOperand(0)); 1956 1957 // If either operand of a sub is undef, the result is undef 1958 if (N0.getOpcode() == ISD::UNDEF) 1959 return N0; 1960 if (N1.getOpcode() == ISD::UNDEF) 1961 return N1; 1962 1963 // If the relocation model supports it, consider symbol offsets. 1964 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 1965 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { 1966 // fold (sub Sym, c) -> Sym-c 1967 if (N1C && GA->getOpcode() == ISD::GlobalAddress) 1968 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 1969 GA->getOffset() - 1970 (uint64_t)N1C->getSExtValue()); 1971 // fold (sub Sym+c1, Sym+c2) -> c1-c2 1972 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) 1973 if (GA->getGlobal() == GB->getGlobal()) 1974 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), 1975 SDLoc(N), VT); 1976 } 1977 1978 // sub X, (sextinreg Y i1) -> add X, (and Y 1) 1979 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 1980 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 1981 if (TN->getVT() == MVT::i1) { 1982 SDLoc DL(N); 1983 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 1984 DAG.getConstant(1, DL, VT)); 1985 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); 1986 } 1987 } 1988 1989 return SDValue(); 1990 } 1991 1992 SDValue DAGCombiner::visitSUBC(SDNode *N) { 1993 SDValue N0 = N->getOperand(0); 1994 SDValue N1 = N->getOperand(1); 1995 EVT VT = N0.getValueType(); 1996 SDLoc DL(N); 1997 1998 // If the flag result is dead, turn this into an SUB. 1999 if (!N->hasAnyUseOfValue(1)) 2000 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 2001 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2002 2003 // fold (subc x, x) -> 0 + no borrow 2004 if (N0 == N1) 2005 return CombineTo(N, DAG.getConstant(0, DL, VT), 2006 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2007 2008 // fold (subc x, 0) -> x + no borrow 2009 if (isNullConstant(N1)) 2010 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2011 2012 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow 2013 if (isAllOnesConstant(N0)) 2014 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 2015 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2016 2017 return SDValue(); 2018 } 2019 2020 SDValue DAGCombiner::visitSUBE(SDNode *N) { 2021 SDValue N0 = N->getOperand(0); 2022 SDValue N1 = N->getOperand(1); 2023 SDValue CarryIn = N->getOperand(2); 2024 2025 // fold (sube x, y, false) -> (subc x, y) 2026 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 2027 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); 2028 2029 return SDValue(); 2030 } 2031 2032 SDValue DAGCombiner::visitMUL(SDNode *N) { 2033 SDValue N0 = N->getOperand(0); 2034 SDValue N1 = N->getOperand(1); 2035 EVT VT = N0.getValueType(); 2036 2037 // fold (mul x, undef) -> 0 2038 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) 2039 return DAG.getConstant(0, SDLoc(N), VT); 2040 2041 bool N0IsConst = false; 2042 bool N1IsConst = false; 2043 bool N1IsOpaqueConst = false; 2044 bool N0IsOpaqueConst = false; 2045 APInt ConstValue0, ConstValue1; 2046 // fold vector ops 2047 if (VT.isVector()) { 2048 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2049 return FoldedVOp; 2050 2051 N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0); 2052 N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1); 2053 } else { 2054 N0IsConst = isa<ConstantSDNode>(N0); 2055 if (N0IsConst) { 2056 ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue(); 2057 N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque(); 2058 } 2059 N1IsConst = isa<ConstantSDNode>(N1); 2060 if (N1IsConst) { 2061 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); 2062 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); 2063 } 2064 } 2065 2066 // fold (mul c1, c2) -> c1*c2 2067 if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst) 2068 return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, 2069 N0.getNode(), N1.getNode()); 2070 2071 // canonicalize constant to RHS (vector doesn't have to splat) 2072 if (isConstantIntBuildVectorOrConstantInt(N0) && 2073 !isConstantIntBuildVectorOrConstantInt(N1)) 2074 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); 2075 // fold (mul x, 0) -> 0 2076 if (N1IsConst && ConstValue1 == 0) 2077 return N1; 2078 // We require a splat of the entire scalar bit width for non-contiguous 2079 // bit patterns. 2080 bool IsFullSplat = 2081 ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits(); 2082 // fold (mul x, 1) -> x 2083 if (N1IsConst && ConstValue1 == 1 && IsFullSplat) 2084 return N0; 2085 // fold (mul x, -1) -> 0-x 2086 if (N1IsConst && ConstValue1.isAllOnesValue()) { 2087 SDLoc DL(N); 2088 return DAG.getNode(ISD::SUB, DL, VT, 2089 DAG.getConstant(0, DL, VT), N0); 2090 } 2091 // fold (mul x, (1 << c)) -> x << c 2092 if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isPowerOf2() && 2093 IsFullSplat) { 2094 SDLoc DL(N); 2095 return DAG.getNode(ISD::SHL, DL, VT, N0, 2096 DAG.getConstant(ConstValue1.logBase2(), DL, 2097 getShiftAmountTy(N0.getValueType()))); 2098 } 2099 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c 2100 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2() && 2101 IsFullSplat) { 2102 unsigned Log2Val = (-ConstValue1).logBase2(); 2103 SDLoc DL(N); 2104 // FIXME: If the input is something that is easily negated (e.g. a 2105 // single-use add), we should put the negate there. 2106 return DAG.getNode(ISD::SUB, DL, VT, 2107 DAG.getConstant(0, DL, VT), 2108 DAG.getNode(ISD::SHL, DL, VT, N0, 2109 DAG.getConstant(Log2Val, DL, 2110 getShiftAmountTy(N0.getValueType())))); 2111 } 2112 2113 APInt Val; 2114 // (mul (shl X, c1), c2) -> (mul X, c2 << c1) 2115 if (N1IsConst && N0.getOpcode() == ISD::SHL && 2116 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) || 2117 isa<ConstantSDNode>(N0.getOperand(1)))) { 2118 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, 2119 N1, N0.getOperand(1)); 2120 AddToWorklist(C3.getNode()); 2121 return DAG.getNode(ISD::MUL, SDLoc(N), VT, 2122 N0.getOperand(0), C3); 2123 } 2124 2125 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one 2126 // use. 2127 { 2128 SDValue Sh(nullptr,0), Y(nullptr,0); 2129 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). 2130 if (N0.getOpcode() == ISD::SHL && 2131 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) || 2132 isa<ConstantSDNode>(N0.getOperand(1))) && 2133 N0.getNode()->hasOneUse()) { 2134 Sh = N0; Y = N1; 2135 } else if (N1.getOpcode() == ISD::SHL && 2136 isa<ConstantSDNode>(N1.getOperand(1)) && 2137 N1.getNode()->hasOneUse()) { 2138 Sh = N1; Y = N0; 2139 } 2140 2141 if (Sh.getNode()) { 2142 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, 2143 Sh.getOperand(0), Y); 2144 return DAG.getNode(ISD::SHL, SDLoc(N), VT, 2145 Mul, Sh.getOperand(1)); 2146 } 2147 } 2148 2149 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) 2150 if (isConstantIntBuildVectorOrConstantInt(N1) && 2151 N0.getOpcode() == ISD::ADD && 2152 isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && 2153 isMulAddWithConstProfitable(N, N0, N1)) 2154 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 2155 DAG.getNode(ISD::MUL, SDLoc(N0), VT, 2156 N0.getOperand(0), N1), 2157 DAG.getNode(ISD::MUL, SDLoc(N1), VT, 2158 N0.getOperand(1), N1)); 2159 2160 // reassociate mul 2161 if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1)) 2162 return RMUL; 2163 2164 return SDValue(); 2165 } 2166 2167 /// Return true if divmod libcall is available. 2168 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 2169 const TargetLowering &TLI) { 2170 RTLIB::Libcall LC; 2171 switch (Node->getSimpleValueType(0).SimpleTy) { 2172 default: return false; // No libcall for vector types. 2173 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2174 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2175 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2176 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2177 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2178 } 2179 2180 return TLI.getLibcallName(LC) != nullptr; 2181 } 2182 2183 /// Issue divrem if both quotient and remainder are needed. 2184 SDValue DAGCombiner::useDivRem(SDNode *Node) { 2185 if (Node->use_empty()) 2186 return SDValue(); // This is a dead node, leave it alone. 2187 2188 EVT VT = Node->getValueType(0); 2189 if (!TLI.isTypeLegal(VT)) 2190 return SDValue(); 2191 2192 unsigned Opcode = Node->getOpcode(); 2193 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); 2194 2195 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 2196 // If DIVREM is going to get expanded into a libcall, 2197 // but there is no libcall available, then don't combine. 2198 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && 2199 !isDivRemLibcallAvailable(Node, isSigned, TLI)) 2200 return SDValue(); 2201 2202 // If div is legal, it's better to do the normal expansion 2203 unsigned OtherOpcode = 0; 2204 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { 2205 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; 2206 if (TLI.isOperationLegalOrCustom(Opcode, VT)) 2207 return SDValue(); 2208 } else { 2209 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 2210 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) 2211 return SDValue(); 2212 } 2213 2214 SDValue Op0 = Node->getOperand(0); 2215 SDValue Op1 = Node->getOperand(1); 2216 SDValue combined; 2217 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2218 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2219 SDNode *User = *UI; 2220 if (User == Node || User->use_empty()) 2221 continue; 2222 // Convert the other matching node(s), too; 2223 // otherwise, the DIVREM may get target-legalized into something 2224 // target-specific that we won't be able to recognize. 2225 unsigned UserOpc = User->getOpcode(); 2226 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && 2227 User->getOperand(0) == Op0 && 2228 User->getOperand(1) == Op1) { 2229 if (!combined) { 2230 if (UserOpc == OtherOpcode) { 2231 SDVTList VTs = DAG.getVTList(VT, VT); 2232 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); 2233 } else if (UserOpc == DivRemOpc) { 2234 combined = SDValue(User, 0); 2235 } else { 2236 assert(UserOpc == Opcode); 2237 continue; 2238 } 2239 } 2240 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) 2241 CombineTo(User, combined); 2242 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) 2243 CombineTo(User, combined.getValue(1)); 2244 } 2245 } 2246 return combined; 2247 } 2248 2249 SDValue DAGCombiner::visitSDIV(SDNode *N) { 2250 SDValue N0 = N->getOperand(0); 2251 SDValue N1 = N->getOperand(1); 2252 EVT VT = N->getValueType(0); 2253 2254 // fold vector ops 2255 if (VT.isVector()) 2256 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2257 return FoldedVOp; 2258 2259 SDLoc DL(N); 2260 2261 // fold (sdiv c1, c2) -> c1/c2 2262 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2263 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2264 if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque()) 2265 return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C); 2266 // fold (sdiv X, 1) -> X 2267 if (N1C && N1C->isOne()) 2268 return N0; 2269 // fold (sdiv X, -1) -> 0-X 2270 if (N1C && N1C->isAllOnesValue()) 2271 return DAG.getNode(ISD::SUB, DL, VT, 2272 DAG.getConstant(0, DL, VT), N0); 2273 2274 // If we know the sign bits of both operands are zero, strength reduce to a 2275 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 2276 if (!VT.isVector()) { 2277 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 2278 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); 2279 } 2280 2281 // fold (sdiv X, pow2) -> simple ops after legalize 2282 // FIXME: We check for the exact bit here because the generic lowering gives 2283 // better results in that case. The target-specific lowering should learn how 2284 // to handle exact sdivs efficiently. 2285 if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && 2286 !cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact() && 2287 (N1C->getAPIntValue().isPowerOf2() || 2288 (-N1C->getAPIntValue()).isPowerOf2())) { 2289 // Target-specific implementation of sdiv x, pow2. 2290 if (SDValue Res = BuildSDIVPow2(N)) 2291 return Res; 2292 2293 unsigned lg2 = N1C->getAPIntValue().countTrailingZeros(); 2294 2295 // Splat the sign bit into the register 2296 SDValue SGN = 2297 DAG.getNode(ISD::SRA, DL, VT, N0, 2298 DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, 2299 getShiftAmountTy(N0.getValueType()))); 2300 AddToWorklist(SGN.getNode()); 2301 2302 // Add (N0 < 0) ? abs2 - 1 : 0; 2303 SDValue SRL = 2304 DAG.getNode(ISD::SRL, DL, VT, SGN, 2305 DAG.getConstant(VT.getScalarSizeInBits() - lg2, DL, 2306 getShiftAmountTy(SGN.getValueType()))); 2307 SDValue ADD = DAG.getNode(ISD::ADD, DL, VT, N0, SRL); 2308 AddToWorklist(SRL.getNode()); 2309 AddToWorklist(ADD.getNode()); // Divide by pow2 2310 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, ADD, 2311 DAG.getConstant(lg2, DL, 2312 getShiftAmountTy(ADD.getValueType()))); 2313 2314 // If we're dividing by a positive value, we're done. Otherwise, we must 2315 // negate the result. 2316 if (N1C->getAPIntValue().isNonNegative()) 2317 return SRA; 2318 2319 AddToWorklist(SRA.getNode()); 2320 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 2321 } 2322 2323 // If integer divide is expensive and we satisfy the requirements, emit an 2324 // alternate sequence. Targets may check function attributes for size/speed 2325 // trade-offs. 2326 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2327 if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) 2328 if (SDValue Op = BuildSDIV(N)) 2329 return Op; 2330 2331 // sdiv, srem -> sdivrem 2332 if (SDValue DivRem = useDivRem(N)) 2333 return DivRem; 2334 2335 // undef / X -> 0 2336 if (N0.getOpcode() == ISD::UNDEF) 2337 return DAG.getConstant(0, DL, VT); 2338 // X / undef -> undef 2339 if (N1.getOpcode() == ISD::UNDEF) 2340 return N1; 2341 2342 return SDValue(); 2343 } 2344 2345 SDValue DAGCombiner::visitUDIV(SDNode *N) { 2346 SDValue N0 = N->getOperand(0); 2347 SDValue N1 = N->getOperand(1); 2348 EVT VT = N->getValueType(0); 2349 2350 // fold vector ops 2351 if (VT.isVector()) 2352 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2353 return FoldedVOp; 2354 2355 SDLoc DL(N); 2356 2357 // fold (udiv c1, c2) -> c1/c2 2358 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2359 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2360 if (N0C && N1C) 2361 if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, 2362 N0C, N1C)) 2363 return Folded; 2364 // fold (udiv x, (1 << c)) -> x >>u c 2365 if (N1C && !N1C->isOpaque() && N1C->getAPIntValue().isPowerOf2()) 2366 return DAG.getNode(ISD::SRL, DL, VT, N0, 2367 DAG.getConstant(N1C->getAPIntValue().logBase2(), DL, 2368 getShiftAmountTy(N0.getValueType()))); 2369 2370 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 2371 if (N1.getOpcode() == ISD::SHL) { 2372 if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) { 2373 if (SHC->getAPIntValue().isPowerOf2()) { 2374 EVT ADDVT = N1.getOperand(1).getValueType(); 2375 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, 2376 N1.getOperand(1), 2377 DAG.getConstant(SHC->getAPIntValue() 2378 .logBase2(), 2379 DL, ADDVT)); 2380 AddToWorklist(Add.getNode()); 2381 return DAG.getNode(ISD::SRL, DL, VT, N0, Add); 2382 } 2383 } 2384 } 2385 2386 // fold (udiv x, c) -> alternate 2387 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2388 if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) 2389 if (SDValue Op = BuildUDIV(N)) 2390 return Op; 2391 2392 // sdiv, srem -> sdivrem 2393 if (SDValue DivRem = useDivRem(N)) 2394 return DivRem; 2395 2396 // undef / X -> 0 2397 if (N0.getOpcode() == ISD::UNDEF) 2398 return DAG.getConstant(0, DL, VT); 2399 // X / undef -> undef 2400 if (N1.getOpcode() == ISD::UNDEF) 2401 return N1; 2402 2403 return SDValue(); 2404 } 2405 2406 // handles ISD::SREM and ISD::UREM 2407 SDValue DAGCombiner::visitREM(SDNode *N) { 2408 unsigned Opcode = N->getOpcode(); 2409 SDValue N0 = N->getOperand(0); 2410 SDValue N1 = N->getOperand(1); 2411 EVT VT = N->getValueType(0); 2412 bool isSigned = (Opcode == ISD::SREM); 2413 SDLoc DL(N); 2414 2415 // fold (rem c1, c2) -> c1%c2 2416 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2417 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2418 if (N0C && N1C) 2419 if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C)) 2420 return Folded; 2421 2422 if (isSigned) { 2423 // If we know the sign bits of both operands are zero, strength reduce to a 2424 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 2425 if (!VT.isVector()) { 2426 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 2427 return DAG.getNode(ISD::UREM, DL, VT, N0, N1); 2428 } 2429 } else { 2430 // fold (urem x, pow2) -> (and x, pow2-1) 2431 if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && 2432 N1C->getAPIntValue().isPowerOf2()) { 2433 return DAG.getNode(ISD::AND, DL, VT, N0, 2434 DAG.getConstant(N1C->getAPIntValue() - 1, DL, VT)); 2435 } 2436 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) 2437 if (N1.getOpcode() == ISD::SHL) { 2438 if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) { 2439 if (SHC->getAPIntValue().isPowerOf2()) { 2440 SDValue Add = 2441 DAG.getNode(ISD::ADD, DL, VT, N1, 2442 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, 2443 VT)); 2444 AddToWorklist(Add.getNode()); 2445 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 2446 } 2447 } 2448 } 2449 } 2450 2451 // If X/C can be simplified by the division-by-constant logic, lower 2452 // X%C to the equivalent of X-X/C*C. 2453 if (N1C && !N1C->isNullValue()) { 2454 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 2455 SDValue Div = DAG.getNode(DivOpcode, DL, VT, N0, N1); 2456 AddToWorklist(Div.getNode()); 2457 SDValue OptimizedDiv = combine(Div.getNode()); 2458 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { 2459 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); 2460 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 2461 AddToWorklist(Mul.getNode()); 2462 return Sub; 2463 } 2464 } 2465 2466 // sdiv, srem -> sdivrem 2467 if (SDValue DivRem = useDivRem(N)) 2468 return DivRem.getValue(1); 2469 2470 // undef % X -> 0 2471 if (N0.getOpcode() == ISD::UNDEF) 2472 return DAG.getConstant(0, DL, VT); 2473 // X % undef -> undef 2474 if (N1.getOpcode() == ISD::UNDEF) 2475 return N1; 2476 2477 return SDValue(); 2478 } 2479 2480 SDValue DAGCombiner::visitMULHS(SDNode *N) { 2481 SDValue N0 = N->getOperand(0); 2482 SDValue N1 = N->getOperand(1); 2483 EVT VT = N->getValueType(0); 2484 SDLoc DL(N); 2485 2486 // fold (mulhs x, 0) -> 0 2487 if (isNullConstant(N1)) 2488 return N1; 2489 // fold (mulhs x, 1) -> (sra x, size(x)-1) 2490 if (isOneConstant(N1)) { 2491 SDLoc DL(N); 2492 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, 2493 DAG.getConstant(N0.getValueType().getSizeInBits() - 1, 2494 DL, 2495 getShiftAmountTy(N0.getValueType()))); 2496 } 2497 // fold (mulhs x, undef) -> 0 2498 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) 2499 return DAG.getConstant(0, SDLoc(N), VT); 2500 2501 // If the type twice as wide is legal, transform the mulhs to a wider multiply 2502 // plus a shift. 2503 if (VT.isSimple() && !VT.isVector()) { 2504 MVT Simple = VT.getSimpleVT(); 2505 unsigned SimpleSize = Simple.getSizeInBits(); 2506 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2507 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2508 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); 2509 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); 2510 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 2511 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 2512 DAG.getConstant(SimpleSize, DL, 2513 getShiftAmountTy(N1.getValueType()))); 2514 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 2515 } 2516 } 2517 2518 return SDValue(); 2519 } 2520 2521 SDValue DAGCombiner::visitMULHU(SDNode *N) { 2522 SDValue N0 = N->getOperand(0); 2523 SDValue N1 = N->getOperand(1); 2524 EVT VT = N->getValueType(0); 2525 SDLoc DL(N); 2526 2527 // fold (mulhu x, 0) -> 0 2528 if (isNullConstant(N1)) 2529 return N1; 2530 // fold (mulhu x, 1) -> 0 2531 if (isOneConstant(N1)) 2532 return DAG.getConstant(0, DL, N0.getValueType()); 2533 // fold (mulhu x, undef) -> 0 2534 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) 2535 return DAG.getConstant(0, DL, VT); 2536 2537 // If the type twice as wide is legal, transform the mulhu to a wider multiply 2538 // plus a shift. 2539 if (VT.isSimple() && !VT.isVector()) { 2540 MVT Simple = VT.getSimpleVT(); 2541 unsigned SimpleSize = Simple.getSizeInBits(); 2542 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2543 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2544 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); 2545 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); 2546 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 2547 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 2548 DAG.getConstant(SimpleSize, DL, 2549 getShiftAmountTy(N1.getValueType()))); 2550 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 2551 } 2552 } 2553 2554 return SDValue(); 2555 } 2556 2557 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp 2558 /// give the opcodes for the two computations that are being performed. Return 2559 /// true if a simplification was made. 2560 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 2561 unsigned HiOp) { 2562 // If the high half is not needed, just compute the low half. 2563 bool HiExists = N->hasAnyUseOfValue(1); 2564 if (!HiExists && 2565 (!LegalOperations || 2566 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { 2567 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 2568 return CombineTo(N, Res, Res); 2569 } 2570 2571 // If the low half is not needed, just compute the high half. 2572 bool LoExists = N->hasAnyUseOfValue(0); 2573 if (!LoExists && 2574 (!LegalOperations || 2575 TLI.isOperationLegal(HiOp, N->getValueType(1)))) { 2576 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 2577 return CombineTo(N, Res, Res); 2578 } 2579 2580 // If both halves are used, return as it is. 2581 if (LoExists && HiExists) 2582 return SDValue(); 2583 2584 // If the two computed results can be simplified separately, separate them. 2585 if (LoExists) { 2586 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 2587 AddToWorklist(Lo.getNode()); 2588 SDValue LoOpt = combine(Lo.getNode()); 2589 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && 2590 (!LegalOperations || 2591 TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))) 2592 return CombineTo(N, LoOpt, LoOpt); 2593 } 2594 2595 if (HiExists) { 2596 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 2597 AddToWorklist(Hi.getNode()); 2598 SDValue HiOpt = combine(Hi.getNode()); 2599 if (HiOpt.getNode() && HiOpt != Hi && 2600 (!LegalOperations || 2601 TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))) 2602 return CombineTo(N, HiOpt, HiOpt); 2603 } 2604 2605 return SDValue(); 2606 } 2607 2608 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { 2609 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) 2610 return Res; 2611 2612 EVT VT = N->getValueType(0); 2613 SDLoc DL(N); 2614 2615 // If the type is twice as wide is legal, transform the mulhu to a wider 2616 // multiply plus a shift. 2617 if (VT.isSimple() && !VT.isVector()) { 2618 MVT Simple = VT.getSimpleVT(); 2619 unsigned SimpleSize = Simple.getSizeInBits(); 2620 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2621 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2622 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); 2623 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); 2624 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 2625 // Compute the high part as N1. 2626 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 2627 DAG.getConstant(SimpleSize, DL, 2628 getShiftAmountTy(Lo.getValueType()))); 2629 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 2630 // Compute the low part as N0. 2631 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 2632 return CombineTo(N, Lo, Hi); 2633 } 2634 } 2635 2636 return SDValue(); 2637 } 2638 2639 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { 2640 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) 2641 return Res; 2642 2643 EVT VT = N->getValueType(0); 2644 SDLoc DL(N); 2645 2646 // If the type is twice as wide is legal, transform the mulhu to a wider 2647 // multiply plus a shift. 2648 if (VT.isSimple() && !VT.isVector()) { 2649 MVT Simple = VT.getSimpleVT(); 2650 unsigned SimpleSize = Simple.getSizeInBits(); 2651 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2652 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2653 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); 2654 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); 2655 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 2656 // Compute the high part as N1. 2657 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 2658 DAG.getConstant(SimpleSize, DL, 2659 getShiftAmountTy(Lo.getValueType()))); 2660 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 2661 // Compute the low part as N0. 2662 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 2663 return CombineTo(N, Lo, Hi); 2664 } 2665 } 2666 2667 return SDValue(); 2668 } 2669 2670 SDValue DAGCombiner::visitSMULO(SDNode *N) { 2671 // (smulo x, 2) -> (saddo x, x) 2672 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2673 if (C2->getAPIntValue() == 2) 2674 return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(), 2675 N->getOperand(0), N->getOperand(0)); 2676 2677 return SDValue(); 2678 } 2679 2680 SDValue DAGCombiner::visitUMULO(SDNode *N) { 2681 // (umulo x, 2) -> (uaddo x, x) 2682 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2683 if (C2->getAPIntValue() == 2) 2684 return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(), 2685 N->getOperand(0), N->getOperand(0)); 2686 2687 return SDValue(); 2688 } 2689 2690 SDValue DAGCombiner::visitIMINMAX(SDNode *N) { 2691 SDValue N0 = N->getOperand(0); 2692 SDValue N1 = N->getOperand(1); 2693 EVT VT = N0.getValueType(); 2694 2695 // fold vector ops 2696 if (VT.isVector()) 2697 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2698 return FoldedVOp; 2699 2700 // fold (add c1, c2) -> c1+c2 2701 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 2702 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 2703 if (N0C && N1C) 2704 return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C); 2705 2706 // canonicalize constant to RHS 2707 if (isConstantIntBuildVectorOrConstantInt(N0) && 2708 !isConstantIntBuildVectorOrConstantInt(N1)) 2709 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 2710 2711 return SDValue(); 2712 } 2713 2714 /// If this is a binary operator with two operands of the same opcode, try to 2715 /// simplify it. 2716 SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { 2717 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 2718 EVT VT = N0.getValueType(); 2719 assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); 2720 2721 // Bail early if none of these transforms apply. 2722 if (N0.getNode()->getNumOperands() == 0) return SDValue(); 2723 2724 // For each of OP in AND/OR/XOR: 2725 // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) 2726 // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) 2727 // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) 2728 // fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y)) 2729 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free) 2730 // 2731 // do not sink logical op inside of a vector extend, since it may combine 2732 // into a vsetcc. 2733 EVT Op0VT = N0.getOperand(0).getValueType(); 2734 if ((N0.getOpcode() == ISD::ZERO_EXTEND || 2735 N0.getOpcode() == ISD::SIGN_EXTEND || 2736 N0.getOpcode() == ISD::BSWAP || 2737 // Avoid infinite looping with PromoteIntBinOp. 2738 (N0.getOpcode() == ISD::ANY_EXTEND && 2739 (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) || 2740 (N0.getOpcode() == ISD::TRUNCATE && 2741 (!TLI.isZExtFree(VT, Op0VT) || 2742 !TLI.isTruncateFree(Op0VT, VT)) && 2743 TLI.isTypeLegal(Op0VT))) && 2744 !VT.isVector() && 2745 Op0VT == N1.getOperand(0).getValueType() && 2746 (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) { 2747 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), 2748 N0.getOperand(0).getValueType(), 2749 N0.getOperand(0), N1.getOperand(0)); 2750 AddToWorklist(ORNode.getNode()); 2751 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode); 2752 } 2753 2754 // For each of OP in SHL/SRL/SRA/AND... 2755 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) 2756 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z) 2757 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) 2758 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || 2759 N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && 2760 N0.getOperand(1) == N1.getOperand(1)) { 2761 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), 2762 N0.getOperand(0).getValueType(), 2763 N0.getOperand(0), N1.getOperand(0)); 2764 AddToWorklist(ORNode.getNode()); 2765 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, 2766 ORNode, N0.getOperand(1)); 2767 } 2768 2769 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) 2770 // Only perform this optimization after type legalization and before 2771 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by 2772 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and 2773 // we don't want to undo this promotion. 2774 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper 2775 // on scalars. 2776 if ((N0.getOpcode() == ISD::BITCAST || 2777 N0.getOpcode() == ISD::SCALAR_TO_VECTOR) && 2778 Level == AfterLegalizeTypes) { 2779 SDValue In0 = N0.getOperand(0); 2780 SDValue In1 = N1.getOperand(0); 2781 EVT In0Ty = In0.getValueType(); 2782 EVT In1Ty = In1.getValueType(); 2783 SDLoc DL(N); 2784 // If both incoming values are integers, and the original types are the 2785 // same. 2786 if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) { 2787 SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1); 2788 SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op); 2789 AddToWorklist(Op.getNode()); 2790 return BC; 2791 } 2792 } 2793 2794 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). 2795 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) 2796 // If both shuffles use the same mask, and both shuffle within a single 2797 // vector, then it is worthwhile to move the swizzle after the operation. 2798 // The type-legalizer generates this pattern when loading illegal 2799 // vector types from memory. In many cases this allows additional shuffle 2800 // optimizations. 2801 // There are other cases where moving the shuffle after the xor/and/or 2802 // is profitable even if shuffles don't perform a swizzle. 2803 // If both shuffles use the same mask, and both shuffles have the same first 2804 // or second operand, then it might still be profitable to move the shuffle 2805 // after the xor/and/or operation. 2806 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { 2807 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0); 2808 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1); 2809 2810 assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() && 2811 "Inputs to shuffles are not the same type"); 2812 2813 // Check that both shuffles use the same mask. The masks are known to be of 2814 // the same length because the result vector type is the same. 2815 // Check also that shuffles have only one use to avoid introducing extra 2816 // instructions. 2817 if (SVN0->hasOneUse() && SVN1->hasOneUse() && 2818 SVN0->getMask().equals(SVN1->getMask())) { 2819 SDValue ShOp = N0->getOperand(1); 2820 2821 // Don't try to fold this node if it requires introducing a 2822 // build vector of all zeros that might be illegal at this stage. 2823 if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) { 2824 if (!LegalTypes) 2825 ShOp = DAG.getConstant(0, SDLoc(N), VT); 2826 else 2827 ShOp = SDValue(); 2828 } 2829 2830 // (AND (shuf (A, C), shuf (B, C)) -> shuf (AND (A, B), C) 2831 // (OR (shuf (A, C), shuf (B, C)) -> shuf (OR (A, B), C) 2832 // (XOR (shuf (A, C), shuf (B, C)) -> shuf (XOR (A, B), V_0) 2833 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { 2834 SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 2835 N0->getOperand(0), N1->getOperand(0)); 2836 AddToWorklist(NewNode.getNode()); 2837 return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp, 2838 &SVN0->getMask()[0]); 2839 } 2840 2841 // Don't try to fold this node if it requires introducing a 2842 // build vector of all zeros that might be illegal at this stage. 2843 ShOp = N0->getOperand(0); 2844 if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) { 2845 if (!LegalTypes) 2846 ShOp = DAG.getConstant(0, SDLoc(N), VT); 2847 else 2848 ShOp = SDValue(); 2849 } 2850 2851 // (AND (shuf (C, A), shuf (C, B)) -> shuf (C, AND (A, B)) 2852 // (OR (shuf (C, A), shuf (C, B)) -> shuf (C, OR (A, B)) 2853 // (XOR (shuf (C, A), shuf (C, B)) -> shuf (V_0, XOR (A, B)) 2854 if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) { 2855 SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 2856 N0->getOperand(1), N1->getOperand(1)); 2857 AddToWorklist(NewNode.getNode()); 2858 return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode, 2859 &SVN0->getMask()[0]); 2860 } 2861 } 2862 } 2863 2864 return SDValue(); 2865 } 2866 2867 /// This contains all DAGCombine rules which reduce two values combined by 2868 /// an And operation to a single value. This makes them reusable in the context 2869 /// of visitSELECT(). Rules involving constants are not included as 2870 /// visitSELECT() already handles those cases. 2871 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, 2872 SDNode *LocReference) { 2873 EVT VT = N1.getValueType(); 2874 2875 // fold (and x, undef) -> 0 2876 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) 2877 return DAG.getConstant(0, SDLoc(LocReference), VT); 2878 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) 2879 SDValue LL, LR, RL, RR, CC0, CC1; 2880 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ 2881 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); 2882 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); 2883 2884 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && 2885 LL.getValueType().isInteger()) { 2886 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0) 2887 if (isNullConstant(LR) && Op1 == ISD::SETEQ) { 2888 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), 2889 LR.getValueType(), LL, RL); 2890 AddToWorklist(ORNode.getNode()); 2891 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 2892 } 2893 if (isAllOnesConstant(LR)) { 2894 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1) 2895 if (Op1 == ISD::SETEQ) { 2896 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0), 2897 LR.getValueType(), LL, RL); 2898 AddToWorklist(ANDNode.getNode()); 2899 return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); 2900 } 2901 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1) 2902 if (Op1 == ISD::SETGT) { 2903 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), 2904 LR.getValueType(), LL, RL); 2905 AddToWorklist(ORNode.getNode()); 2906 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 2907 } 2908 } 2909 } 2910 // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2) 2911 if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) && 2912 Op0 == Op1 && LL.getValueType().isInteger() && 2913 Op0 == ISD::SETNE && ((isNullConstant(LR) && isAllOnesConstant(RR)) || 2914 (isAllOnesConstant(LR) && isNullConstant(RR)))) { 2915 SDLoc DL(N0); 2916 SDValue ADDNode = DAG.getNode(ISD::ADD, DL, LL.getValueType(), 2917 LL, DAG.getConstant(1, DL, 2918 LL.getValueType())); 2919 AddToWorklist(ADDNode.getNode()); 2920 return DAG.getSetCC(SDLoc(LocReference), VT, ADDNode, 2921 DAG.getConstant(2, DL, LL.getValueType()), 2922 ISD::SETUGE); 2923 } 2924 // canonicalize equivalent to ll == rl 2925 if (LL == RR && LR == RL) { 2926 Op1 = ISD::getSetCCSwappedOperands(Op1); 2927 std::swap(RL, RR); 2928 } 2929 if (LL == RL && LR == RR) { 2930 bool isInteger = LL.getValueType().isInteger(); 2931 ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); 2932 if (Result != ISD::SETCC_INVALID && 2933 (!LegalOperations || 2934 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && 2935 TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { 2936 EVT CCVT = getSetCCResultType(LL.getValueType()); 2937 if (N0.getValueType() == CCVT || 2938 (!LegalOperations && N0.getValueType() == MVT::i1)) 2939 return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), 2940 LL, LR, Result); 2941 } 2942 } 2943 } 2944 2945 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && 2946 VT.getSizeInBits() <= 64) { 2947 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2948 APInt ADDC = ADDI->getAPIntValue(); 2949 if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 2950 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal 2951 // immediate for an add, but it is legal if its top c2 bits are set, 2952 // transform the ADD so the immediate doesn't need to be materialized 2953 // in a register. 2954 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { 2955 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 2956 SRLI->getZExtValue()); 2957 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { 2958 ADDC |= Mask; 2959 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 2960 SDLoc DL(N0); 2961 SDValue NewAdd = 2962 DAG.getNode(ISD::ADD, DL, VT, 2963 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); 2964 CombineTo(N0.getNode(), NewAdd); 2965 // Return N so it doesn't get rechecked! 2966 return SDValue(LocReference, 0); 2967 } 2968 } 2969 } 2970 } 2971 } 2972 } 2973 2974 return SDValue(); 2975 } 2976 2977 SDValue DAGCombiner::visitAND(SDNode *N) { 2978 SDValue N0 = N->getOperand(0); 2979 SDValue N1 = N->getOperand(1); 2980 EVT VT = N1.getValueType(); 2981 2982 // fold vector ops 2983 if (VT.isVector()) { 2984 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2985 return FoldedVOp; 2986 2987 // fold (and x, 0) -> 0, vector edition 2988 if (ISD::isBuildVectorAllZeros(N0.getNode())) 2989 // do not return N0, because undef node may exist in N0 2990 return DAG.getConstant( 2991 APInt::getNullValue( 2992 N0.getValueType().getScalarType().getSizeInBits()), 2993 SDLoc(N), N0.getValueType()); 2994 if (ISD::isBuildVectorAllZeros(N1.getNode())) 2995 // do not return N1, because undef node may exist in N1 2996 return DAG.getConstant( 2997 APInt::getNullValue( 2998 N1.getValueType().getScalarType().getSizeInBits()), 2999 SDLoc(N), N1.getValueType()); 3000 3001 // fold (and x, -1) -> x, vector edition 3002 if (ISD::isBuildVectorAllOnes(N0.getNode())) 3003 return N1; 3004 if (ISD::isBuildVectorAllOnes(N1.getNode())) 3005 return N0; 3006 } 3007 3008 // fold (and c1, c2) -> c1&c2 3009 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 3010 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3011 if (N0C && N1C && !N1C->isOpaque()) 3012 return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C); 3013 // canonicalize constant to RHS 3014 if (isConstantIntBuildVectorOrConstantInt(N0) && 3015 !isConstantIntBuildVectorOrConstantInt(N1)) 3016 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); 3017 // fold (and x, -1) -> x 3018 if (isAllOnesConstant(N1)) 3019 return N0; 3020 // if (and x, c) is known to be zero, return 0 3021 unsigned BitWidth = VT.getScalarType().getSizeInBits(); 3022 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 3023 APInt::getAllOnesValue(BitWidth))) 3024 return DAG.getConstant(0, SDLoc(N), VT); 3025 // reassociate and 3026 if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1)) 3027 return RAND; 3028 // fold (and (or x, C), D) -> D if (C & D) == D 3029 if (N1C && N0.getOpcode() == ISD::OR) 3030 if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 3031 if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue()) 3032 return N1; 3033 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. 3034 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 3035 SDValue N0Op0 = N0.getOperand(0); 3036 APInt Mask = ~N1C->getAPIntValue(); 3037 Mask = Mask.trunc(N0Op0.getValueSizeInBits()); 3038 if (DAG.MaskedValueIsZero(N0Op0, Mask)) { 3039 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 3040 N0.getValueType(), N0Op0); 3041 3042 // Replace uses of the AND with uses of the Zero extend node. 3043 CombineTo(N, Zext); 3044 3045 // We actually want to replace all uses of the any_extend with the 3046 // zero_extend, to avoid duplicating things. This will later cause this 3047 // AND to be folded. 3048 CombineTo(N0.getNode(), Zext); 3049 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3050 } 3051 } 3052 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> 3053 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must 3054 // already be zero by virtue of the width of the base type of the load. 3055 // 3056 // the 'X' node here can either be nothing or an extract_vector_elt to catch 3057 // more cases. 3058 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 3059 N0.getOperand(0).getOpcode() == ISD::LOAD) || 3060 N0.getOpcode() == ISD::LOAD) { 3061 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? 3062 N0 : N0.getOperand(0) ); 3063 3064 // Get the constant (if applicable) the zero'th operand is being ANDed with. 3065 // This can be a pure constant or a vector splat, in which case we treat the 3066 // vector as a scalar and use the splat value. 3067 APInt Constant = APInt::getNullValue(1); 3068 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 3069 Constant = C->getAPIntValue(); 3070 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { 3071 APInt SplatValue, SplatUndef; 3072 unsigned SplatBitSize; 3073 bool HasAnyUndefs; 3074 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, 3075 SplatBitSize, HasAnyUndefs); 3076 if (IsSplat) { 3077 // Undef bits can contribute to a possible optimisation if set, so 3078 // set them. 3079 SplatValue |= SplatUndef; 3080 3081 // The splat value may be something like "0x00FFFFFF", which means 0 for 3082 // the first vector value and FF for the rest, repeating. We need a mask 3083 // that will apply equally to all members of the vector, so AND all the 3084 // lanes of the constant together. 3085 EVT VT = Vector->getValueType(0); 3086 unsigned BitWidth = VT.getVectorElementType().getSizeInBits(); 3087 3088 // If the splat value has been compressed to a bitlength lower 3089 // than the size of the vector lane, we need to re-expand it to 3090 // the lane size. 3091 if (BitWidth > SplatBitSize) 3092 for (SplatValue = SplatValue.zextOrTrunc(BitWidth); 3093 SplatBitSize < BitWidth; 3094 SplatBitSize = SplatBitSize * 2) 3095 SplatValue |= SplatValue.shl(SplatBitSize); 3096 3097 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a 3098 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. 3099 if (SplatBitSize % BitWidth == 0) { 3100 Constant = APInt::getAllOnesValue(BitWidth); 3101 for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i) 3102 Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth); 3103 } 3104 } 3105 } 3106 3107 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is 3108 // actually legal and isn't going to get expanded, else this is a false 3109 // optimisation. 3110 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, 3111 Load->getValueType(0), 3112 Load->getMemoryVT()); 3113 3114 // Resize the constant to the same size as the original memory access before 3115 // extension. If it is still the AllOnesValue then this AND is completely 3116 // unneeded. 3117 Constant = 3118 Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits()); 3119 3120 bool B; 3121 switch (Load->getExtensionType()) { 3122 default: B = false; break; 3123 case ISD::EXTLOAD: B = CanZextLoadProfitably; break; 3124 case ISD::ZEXTLOAD: 3125 case ISD::NON_EXTLOAD: B = true; break; 3126 } 3127 3128 if (B && Constant.isAllOnesValue()) { 3129 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to 3130 // preserve semantics once we get rid of the AND. 3131 SDValue NewLoad(Load, 0); 3132 if (Load->getExtensionType() == ISD::EXTLOAD) { 3133 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, 3134 Load->getValueType(0), SDLoc(Load), 3135 Load->getChain(), Load->getBasePtr(), 3136 Load->getOffset(), Load->getMemoryVT(), 3137 Load->getMemOperand()); 3138 // Replace uses of the EXTLOAD with the new ZEXTLOAD. 3139 if (Load->getNumValues() == 3) { 3140 // PRE/POST_INC loads have 3 values. 3141 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), 3142 NewLoad.getValue(2) }; 3143 CombineTo(Load, To, 3, true); 3144 } else { 3145 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); 3146 } 3147 } 3148 3149 // Fold the AND away, taking care not to fold to the old load node if we 3150 // replaced it. 3151 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); 3152 3153 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3154 } 3155 } 3156 3157 // fold (and (load x), 255) -> (zextload x, i8) 3158 // fold (and (extload x, i16), 255) -> (zextload x, i8) 3159 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) 3160 if (N1C && (N0.getOpcode() == ISD::LOAD || 3161 (N0.getOpcode() == ISD::ANY_EXTEND && 3162 N0.getOperand(0).getOpcode() == ISD::LOAD))) { 3163 bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND; 3164 LoadSDNode *LN0 = HasAnyExt 3165 ? cast<LoadSDNode>(N0.getOperand(0)) 3166 : cast<LoadSDNode>(N0); 3167 if (LN0->getExtensionType() != ISD::SEXTLOAD && 3168 LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) { 3169 uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits(); 3170 if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){ 3171 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 3172 EVT LoadedVT = LN0->getMemoryVT(); 3173 EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; 3174 3175 if (ExtVT == LoadedVT && 3176 (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, 3177 ExtVT))) { 3178 3179 SDValue NewLoad = 3180 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, 3181 LN0->getChain(), LN0->getBasePtr(), ExtVT, 3182 LN0->getMemOperand()); 3183 AddToWorklist(N); 3184 CombineTo(LN0, NewLoad, NewLoad.getValue(1)); 3185 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3186 } 3187 3188 // Do not change the width of a volatile load. 3189 // Do not generate loads of non-round integer types since these can 3190 // be expensive (and would be wrong if the type is not byte sized). 3191 if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() && 3192 (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, 3193 ExtVT))) { 3194 EVT PtrType = LN0->getOperand(1).getValueType(); 3195 3196 unsigned Alignment = LN0->getAlignment(); 3197 SDValue NewPtr = LN0->getBasePtr(); 3198 3199 // For big endian targets, we need to add an offset to the pointer 3200 // to load the correct bytes. For little endian systems, we merely 3201 // need to read fewer bytes from the same pointer. 3202 if (DAG.getDataLayout().isBigEndian()) { 3203 unsigned LVTStoreBytes = LoadedVT.getStoreSize(); 3204 unsigned EVTStoreBytes = ExtVT.getStoreSize(); 3205 unsigned PtrOff = LVTStoreBytes - EVTStoreBytes; 3206 SDLoc DL(LN0); 3207 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, 3208 NewPtr, DAG.getConstant(PtrOff, DL, PtrType)); 3209 Alignment = MinAlign(Alignment, PtrOff); 3210 } 3211 3212 AddToWorklist(NewPtr.getNode()); 3213 3214 SDValue Load = 3215 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, 3216 LN0->getChain(), NewPtr, 3217 LN0->getPointerInfo(), 3218 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), 3219 LN0->isInvariant(), Alignment, LN0->getAAInfo()); 3220 AddToWorklist(N); 3221 CombineTo(LN0, Load, Load.getValue(1)); 3222 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3223 } 3224 } 3225 } 3226 } 3227 3228 if (SDValue Combined = visitANDLike(N0, N1, N)) 3229 return Combined; 3230 3231 // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) 3232 if (N0.getOpcode() == N1.getOpcode()) 3233 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 3234 return Tmp; 3235 3236 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) 3237 // fold (and (sra)) -> (and (srl)) when possible. 3238 if (!VT.isVector() && 3239 SimplifyDemandedBits(SDValue(N, 0))) 3240 return SDValue(N, 0); 3241 3242 // fold (zext_inreg (extload x)) -> (zextload x) 3243 if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { 3244 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 3245 EVT MemVT = LN0->getMemoryVT(); 3246 // If we zero all the possible extended bits, then we can turn this into 3247 // a zextload if we are running before legalize or the operation is legal. 3248 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); 3249 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 3250 BitWidth - MemVT.getScalarType().getSizeInBits())) && 3251 ((!LegalOperations && !LN0->isVolatile()) || 3252 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 3253 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 3254 LN0->getChain(), LN0->getBasePtr(), 3255 MemVT, LN0->getMemOperand()); 3256 AddToWorklist(N); 3257 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 3258 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3259 } 3260 } 3261 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use 3262 if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 3263 N0.hasOneUse()) { 3264 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 3265 EVT MemVT = LN0->getMemoryVT(); 3266 // If we zero all the possible extended bits, then we can turn this into 3267 // a zextload if we are running before legalize or the operation is legal. 3268 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); 3269 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 3270 BitWidth - MemVT.getScalarType().getSizeInBits())) && 3271 ((!LegalOperations && !LN0->isVolatile()) || 3272 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 3273 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 3274 LN0->getChain(), LN0->getBasePtr(), 3275 MemVT, LN0->getMemOperand()); 3276 AddToWorklist(N); 3277 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 3278 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3279 } 3280 } 3281 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) 3282 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { 3283 SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 3284 N0.getOperand(1), false); 3285 if (BSwap.getNode()) 3286 return BSwap; 3287 } 3288 3289 return SDValue(); 3290 } 3291 3292 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. 3293 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 3294 bool DemandHighBits) { 3295 if (!LegalOperations) 3296 return SDValue(); 3297 3298 EVT VT = N->getValueType(0); 3299 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) 3300 return SDValue(); 3301 if (!TLI.isOperationLegal(ISD::BSWAP, VT)) 3302 return SDValue(); 3303 3304 // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00) 3305 bool LookPassAnd0 = false; 3306 bool LookPassAnd1 = false; 3307 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) 3308 std::swap(N0, N1); 3309 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) 3310 std::swap(N0, N1); 3311 if (N0.getOpcode() == ISD::AND) { 3312 if (!N0.getNode()->hasOneUse()) 3313 return SDValue(); 3314 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3315 if (!N01C || N01C->getZExtValue() != 0xFF00) 3316 return SDValue(); 3317 N0 = N0.getOperand(0); 3318 LookPassAnd0 = true; 3319 } 3320 3321 if (N1.getOpcode() == ISD::AND) { 3322 if (!N1.getNode()->hasOneUse()) 3323 return SDValue(); 3324 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 3325 if (!N11C || N11C->getZExtValue() != 0xFF) 3326 return SDValue(); 3327 N1 = N1.getOperand(0); 3328 LookPassAnd1 = true; 3329 } 3330 3331 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 3332 std::swap(N0, N1); 3333 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 3334 return SDValue(); 3335 if (!N0.getNode()->hasOneUse() || 3336 !N1.getNode()->hasOneUse()) 3337 return SDValue(); 3338 3339 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3340 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 3341 if (!N01C || !N11C) 3342 return SDValue(); 3343 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) 3344 return SDValue(); 3345 3346 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) 3347 SDValue N00 = N0->getOperand(0); 3348 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { 3349 if (!N00.getNode()->hasOneUse()) 3350 return SDValue(); 3351 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); 3352 if (!N001C || N001C->getZExtValue() != 0xFF) 3353 return SDValue(); 3354 N00 = N00.getOperand(0); 3355 LookPassAnd0 = true; 3356 } 3357 3358 SDValue N10 = N1->getOperand(0); 3359 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { 3360 if (!N10.getNode()->hasOneUse()) 3361 return SDValue(); 3362 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); 3363 if (!N101C || N101C->getZExtValue() != 0xFF00) 3364 return SDValue(); 3365 N10 = N10.getOperand(0); 3366 LookPassAnd1 = true; 3367 } 3368 3369 if (N00 != N10) 3370 return SDValue(); 3371 3372 // Make sure everything beyond the low halfword gets set to zero since the SRL 3373 // 16 will clear the top bits. 3374 unsigned OpSizeInBits = VT.getSizeInBits(); 3375 if (DemandHighBits && OpSizeInBits > 16) { 3376 // If the left-shift isn't masked out then the only way this is a bswap is 3377 // if all bits beyond the low 8 are 0. In that case the entire pattern 3378 // reduces to a left shift anyway: leave it for other parts of the combiner. 3379 if (!LookPassAnd0) 3380 return SDValue(); 3381 3382 // However, if the right shift isn't masked out then it might be because 3383 // it's not needed. See if we can spot that too. 3384 if (!LookPassAnd1 && 3385 !DAG.MaskedValueIsZero( 3386 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) 3387 return SDValue(); 3388 } 3389 3390 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); 3391 if (OpSizeInBits > 16) { 3392 SDLoc DL(N); 3393 Res = DAG.getNode(ISD::SRL, DL, VT, Res, 3394 DAG.getConstant(OpSizeInBits - 16, DL, 3395 getShiftAmountTy(VT))); 3396 } 3397 return Res; 3398 } 3399 3400 /// Return true if the specified node is an element that makes up a 32-bit 3401 /// packed halfword byteswap. 3402 /// ((x & 0x000000ff) << 8) | 3403 /// ((x & 0x0000ff00) >> 8) | 3404 /// ((x & 0x00ff0000) << 8) | 3405 /// ((x & 0xff000000) >> 8) 3406 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { 3407 if (!N.getNode()->hasOneUse()) 3408 return false; 3409 3410 unsigned Opc = N.getOpcode(); 3411 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) 3412 return false; 3413 3414 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3415 if (!N1C) 3416 return false; 3417 3418 unsigned Num; 3419 switch (N1C->getZExtValue()) { 3420 default: 3421 return false; 3422 case 0xFF: Num = 0; break; 3423 case 0xFF00: Num = 1; break; 3424 case 0xFF0000: Num = 2; break; 3425 case 0xFF000000: Num = 3; break; 3426 } 3427 3428 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). 3429 SDValue N0 = N.getOperand(0); 3430 if (Opc == ISD::AND) { 3431 if (Num == 0 || Num == 2) { 3432 // (x >> 8) & 0xff 3433 // (x >> 8) & 0xff0000 3434 if (N0.getOpcode() != ISD::SRL) 3435 return false; 3436 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3437 if (!C || C->getZExtValue() != 8) 3438 return false; 3439 } else { 3440 // (x << 8) & 0xff00 3441 // (x << 8) & 0xff000000 3442 if (N0.getOpcode() != ISD::SHL) 3443 return false; 3444 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3445 if (!C || C->getZExtValue() != 8) 3446 return false; 3447 } 3448 } else if (Opc == ISD::SHL) { 3449 // (x & 0xff) << 8 3450 // (x & 0xff0000) << 8 3451 if (Num != 0 && Num != 2) 3452 return false; 3453 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3454 if (!C || C->getZExtValue() != 8) 3455 return false; 3456 } else { // Opc == ISD::SRL 3457 // (x & 0xff00) >> 8 3458 // (x & 0xff000000) >> 8 3459 if (Num != 1 && Num != 3) 3460 return false; 3461 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3462 if (!C || C->getZExtValue() != 8) 3463 return false; 3464 } 3465 3466 if (Parts[Num]) 3467 return false; 3468 3469 Parts[Num] = N0.getOperand(0).getNode(); 3470 return true; 3471 } 3472 3473 /// Match a 32-bit packed halfword bswap. That is 3474 /// ((x & 0x000000ff) << 8) | 3475 /// ((x & 0x0000ff00) >> 8) | 3476 /// ((x & 0x00ff0000) << 8) | 3477 /// ((x & 0xff000000) >> 8) 3478 /// => (rotl (bswap x), 16) 3479 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { 3480 if (!LegalOperations) 3481 return SDValue(); 3482 3483 EVT VT = N->getValueType(0); 3484 if (VT != MVT::i32) 3485 return SDValue(); 3486 if (!TLI.isOperationLegal(ISD::BSWAP, VT)) 3487 return SDValue(); 3488 3489 // Look for either 3490 // (or (or (and), (and)), (or (and), (and))) 3491 // (or (or (or (and), (and)), (and)), (and)) 3492 if (N0.getOpcode() != ISD::OR) 3493 return SDValue(); 3494 SDValue N00 = N0.getOperand(0); 3495 SDValue N01 = N0.getOperand(1); 3496 SDNode *Parts[4] = {}; 3497 3498 if (N1.getOpcode() == ISD::OR && 3499 N00.getNumOperands() == 2 && N01.getNumOperands() == 2) { 3500 // (or (or (and), (and)), (or (and), (and))) 3501 SDValue N000 = N00.getOperand(0); 3502 if (!isBSwapHWordElement(N000, Parts)) 3503 return SDValue(); 3504 3505 SDValue N001 = N00.getOperand(1); 3506 if (!isBSwapHWordElement(N001, Parts)) 3507 return SDValue(); 3508 SDValue N010 = N01.getOperand(0); 3509 if (!isBSwapHWordElement(N010, Parts)) 3510 return SDValue(); 3511 SDValue N011 = N01.getOperand(1); 3512 if (!isBSwapHWordElement(N011, Parts)) 3513 return SDValue(); 3514 } else { 3515 // (or (or (or (and), (and)), (and)), (and)) 3516 if (!isBSwapHWordElement(N1, Parts)) 3517 return SDValue(); 3518 if (!isBSwapHWordElement(N01, Parts)) 3519 return SDValue(); 3520 if (N00.getOpcode() != ISD::OR) 3521 return SDValue(); 3522 SDValue N000 = N00.getOperand(0); 3523 if (!isBSwapHWordElement(N000, Parts)) 3524 return SDValue(); 3525 SDValue N001 = N00.getOperand(1); 3526 if (!isBSwapHWordElement(N001, Parts)) 3527 return SDValue(); 3528 } 3529 3530 // Make sure the parts are all coming from the same node. 3531 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) 3532 return SDValue(); 3533 3534 SDLoc DL(N); 3535 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, 3536 SDValue(Parts[0], 0)); 3537 3538 // Result of the bswap should be rotated by 16. If it's not legal, then 3539 // do (x << 16) | (x >> 16). 3540 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); 3541 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) 3542 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); 3543 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 3544 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 3545 return DAG.getNode(ISD::OR, DL, VT, 3546 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), 3547 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); 3548 } 3549 3550 /// This contains all DAGCombine rules which reduce two values combined by 3551 /// an Or operation to a single value \see visitANDLike(). 3552 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *LocReference) { 3553 EVT VT = N1.getValueType(); 3554 // fold (or x, undef) -> -1 3555 if (!LegalOperations && 3556 (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) { 3557 EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; 3558 return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), 3559 SDLoc(LocReference), VT); 3560 } 3561 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) 3562 SDValue LL, LR, RL, RR, CC0, CC1; 3563 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ 3564 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); 3565 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); 3566 3567 if (LR == RR && Op0 == Op1 && LL.getValueType().isInteger()) { 3568 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0) 3569 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0) 3570 if (isNullConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { 3571 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR), 3572 LR.getValueType(), LL, RL); 3573 AddToWorklist(ORNode.getNode()); 3574 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 3575 } 3576 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1) 3577 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1) 3578 if (isAllOnesConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { 3579 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR), 3580 LR.getValueType(), LL, RL); 3581 AddToWorklist(ANDNode.getNode()); 3582 return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); 3583 } 3584 } 3585 // canonicalize equivalent to ll == rl 3586 if (LL == RR && LR == RL) { 3587 Op1 = ISD::getSetCCSwappedOperands(Op1); 3588 std::swap(RL, RR); 3589 } 3590 if (LL == RL && LR == RR) { 3591 bool isInteger = LL.getValueType().isInteger(); 3592 ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); 3593 if (Result != ISD::SETCC_INVALID && 3594 (!LegalOperations || 3595 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && 3596 TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { 3597 EVT CCVT = getSetCCResultType(LL.getValueType()); 3598 if (N0.getValueType() == CCVT || 3599 (!LegalOperations && N0.getValueType() == MVT::i1)) 3600 return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), 3601 LL, LR, Result); 3602 } 3603 } 3604 } 3605 3606 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. 3607 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && 3608 // Don't increase # computations. 3609 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 3610 // We can only do this xform if we know that bits from X that are set in C2 3611 // but not in C1 are already zero. Likewise for Y. 3612 if (const ConstantSDNode *N0O1C = 3613 getAsNonOpaqueConstant(N0.getOperand(1))) { 3614 if (const ConstantSDNode *N1O1C = 3615 getAsNonOpaqueConstant(N1.getOperand(1))) { 3616 // We can only do this xform if we know that bits from X that are set in 3617 // C2 but not in C1 are already zero. Likewise for Y. 3618 const APInt &LHSMask = N0O1C->getAPIntValue(); 3619 const APInt &RHSMask = N1O1C->getAPIntValue(); 3620 3621 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && 3622 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { 3623 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 3624 N0.getOperand(0), N1.getOperand(0)); 3625 SDLoc DL(LocReference); 3626 return DAG.getNode(ISD::AND, DL, VT, X, 3627 DAG.getConstant(LHSMask | RHSMask, DL, VT)); 3628 } 3629 } 3630 } 3631 } 3632 3633 // (or (and X, M), (and X, N)) -> (and X, (or M, N)) 3634 if (N0.getOpcode() == ISD::AND && 3635 N1.getOpcode() == ISD::AND && 3636 N0.getOperand(0) == N1.getOperand(0) && 3637 // Don't increase # computations. 3638 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 3639 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 3640 N0.getOperand(1), N1.getOperand(1)); 3641 return DAG.getNode(ISD::AND, SDLoc(LocReference), VT, N0.getOperand(0), X); 3642 } 3643 3644 return SDValue(); 3645 } 3646 3647 SDValue DAGCombiner::visitOR(SDNode *N) { 3648 SDValue N0 = N->getOperand(0); 3649 SDValue N1 = N->getOperand(1); 3650 EVT VT = N1.getValueType(); 3651 3652 // fold vector ops 3653 if (VT.isVector()) { 3654 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3655 return FoldedVOp; 3656 3657 // fold (or x, 0) -> x, vector edition 3658 if (ISD::isBuildVectorAllZeros(N0.getNode())) 3659 return N1; 3660 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3661 return N0; 3662 3663 // fold (or x, -1) -> -1, vector edition 3664 if (ISD::isBuildVectorAllOnes(N0.getNode())) 3665 // do not return N0, because undef node may exist in N0 3666 return DAG.getConstant( 3667 APInt::getAllOnesValue( 3668 N0.getValueType().getScalarType().getSizeInBits()), 3669 SDLoc(N), N0.getValueType()); 3670 if (ISD::isBuildVectorAllOnes(N1.getNode())) 3671 // do not return N1, because undef node may exist in N1 3672 return DAG.getConstant( 3673 APInt::getAllOnesValue( 3674 N1.getValueType().getScalarType().getSizeInBits()), 3675 SDLoc(N), N1.getValueType()); 3676 3677 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1) 3678 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2) 3679 // Do this only if the resulting shuffle is legal. 3680 if (isa<ShuffleVectorSDNode>(N0) && 3681 isa<ShuffleVectorSDNode>(N1) && 3682 // Avoid folding a node with illegal type. 3683 TLI.isTypeLegal(VT) && 3684 N0->getOperand(1) == N1->getOperand(1) && 3685 ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode())) { 3686 bool CanFold = true; 3687 unsigned NumElts = VT.getVectorNumElements(); 3688 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); 3689 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); 3690 // We construct two shuffle masks: 3691 // - Mask1 is a shuffle mask for a shuffle with N0 as the first operand 3692 // and N1 as the second operand. 3693 // - Mask2 is a shuffle mask for a shuffle with N1 as the first operand 3694 // and N0 as the second operand. 3695 // We do this because OR is commutable and therefore there might be 3696 // two ways to fold this node into a shuffle. 3697 SmallVector<int,4> Mask1; 3698 SmallVector<int,4> Mask2; 3699 3700 for (unsigned i = 0; i != NumElts && CanFold; ++i) { 3701 int M0 = SV0->getMaskElt(i); 3702 int M1 = SV1->getMaskElt(i); 3703 3704 // Both shuffle indexes are undef. Propagate Undef. 3705 if (M0 < 0 && M1 < 0) { 3706 Mask1.push_back(M0); 3707 Mask2.push_back(M0); 3708 continue; 3709 } 3710 3711 if (M0 < 0 || M1 < 0 || 3712 (M0 < (int)NumElts && M1 < (int)NumElts) || 3713 (M0 >= (int)NumElts && M1 >= (int)NumElts)) { 3714 CanFold = false; 3715 break; 3716 } 3717 3718 Mask1.push_back(M0 < (int)NumElts ? M0 : M1 + NumElts); 3719 Mask2.push_back(M1 < (int)NumElts ? M1 : M0 + NumElts); 3720 } 3721 3722 if (CanFold) { 3723 // Fold this sequence only if the resulting shuffle is 'legal'. 3724 if (TLI.isShuffleMaskLegal(Mask1, VT)) 3725 return DAG.getVectorShuffle(VT, SDLoc(N), N0->getOperand(0), 3726 N1->getOperand(0), &Mask1[0]); 3727 if (TLI.isShuffleMaskLegal(Mask2, VT)) 3728 return DAG.getVectorShuffle(VT, SDLoc(N), N1->getOperand(0), 3729 N0->getOperand(0), &Mask2[0]); 3730 } 3731 } 3732 } 3733 3734 // fold (or c1, c2) -> c1|c2 3735 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 3736 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3737 if (N0C && N1C && !N1C->isOpaque()) 3738 return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C); 3739 // canonicalize constant to RHS 3740 if (isConstantIntBuildVectorOrConstantInt(N0) && 3741 !isConstantIntBuildVectorOrConstantInt(N1)) 3742 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); 3743 // fold (or x, 0) -> x 3744 if (isNullConstant(N1)) 3745 return N0; 3746 // fold (or x, -1) -> -1 3747 if (isAllOnesConstant(N1)) 3748 return N1; 3749 // fold (or x, c) -> c iff (x & ~c) == 0 3750 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) 3751 return N1; 3752 3753 if (SDValue Combined = visitORLike(N0, N1, N)) 3754 return Combined; 3755 3756 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) 3757 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) 3758 return BSwap; 3759 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) 3760 return BSwap; 3761 3762 // reassociate or 3763 if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1)) 3764 return ROR; 3765 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) 3766 // iff (c1 & c2) == 0. 3767 if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 3768 isa<ConstantSDNode>(N0.getOperand(1))) { 3769 ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1)); 3770 if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) { 3771 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, 3772 N1C, C1)) 3773 return DAG.getNode( 3774 ISD::AND, SDLoc(N), VT, 3775 DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1), COR); 3776 return SDValue(); 3777 } 3778 } 3779 // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) 3780 if (N0.getOpcode() == N1.getOpcode()) 3781 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 3782 return Tmp; 3783 3784 // See if this is some rotate idiom. 3785 if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N))) 3786 return SDValue(Rot, 0); 3787 3788 // Simplify the operands using demanded-bits information. 3789 if (!VT.isVector() && 3790 SimplifyDemandedBits(SDValue(N, 0))) 3791 return SDValue(N, 0); 3792 3793 return SDValue(); 3794 } 3795 3796 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 3797 static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) { 3798 if (Op.getOpcode() == ISD::AND) { 3799 if (isa<ConstantSDNode>(Op.getOperand(1))) { 3800 Mask = Op.getOperand(1); 3801 Op = Op.getOperand(0); 3802 } else { 3803 return false; 3804 } 3805 } 3806 3807 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { 3808 Shift = Op; 3809 return true; 3810 } 3811 3812 return false; 3813 } 3814 3815 // Return true if we can prove that, whenever Neg and Pos are both in the 3816 // range [0, OpSize), Neg == (Pos == 0 ? 0 : OpSize - Pos). This means that 3817 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: 3818 // 3819 // (or (shift1 X, Neg), (shift2 X, Pos)) 3820 // 3821 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate 3822 // in direction shift1 by Neg. The range [0, OpSize) means that we only need 3823 // to consider shift amounts with defined behavior. 3824 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned OpSize) { 3825 // If OpSize is a power of 2 then: 3826 // 3827 // (a) (Pos == 0 ? 0 : OpSize - Pos) == (OpSize - Pos) & (OpSize - 1) 3828 // (b) Neg == Neg & (OpSize - 1) whenever Neg is in [0, OpSize). 3829 // 3830 // So if OpSize is a power of 2 and Neg is (and Neg', OpSize-1), we check 3831 // for the stronger condition: 3832 // 3833 // Neg & (OpSize - 1) == (OpSize - Pos) & (OpSize - 1) [A] 3834 // 3835 // for all Neg and Pos. Since Neg & (OpSize - 1) == Neg' & (OpSize - 1) 3836 // we can just replace Neg with Neg' for the rest of the function. 3837 // 3838 // In other cases we check for the even stronger condition: 3839 // 3840 // Neg == OpSize - Pos [B] 3841 // 3842 // for all Neg and Pos. Note that the (or ...) then invokes undefined 3843 // behavior if Pos == 0 (and consequently Neg == OpSize). 3844 // 3845 // We could actually use [A] whenever OpSize is a power of 2, but the 3846 // only extra cases that it would match are those uninteresting ones 3847 // where Neg and Pos are never in range at the same time. E.g. for 3848 // OpSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) 3849 // as well as (sub 32, Pos), but: 3850 // 3851 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) 3852 // 3853 // always invokes undefined behavior for 32-bit X. 3854 // 3855 // Below, Mask == OpSize - 1 when using [A] and is all-ones otherwise. 3856 unsigned MaskLoBits = 0; 3857 if (Neg.getOpcode() == ISD::AND && 3858 isPowerOf2_64(OpSize) && 3859 Neg.getOperand(1).getOpcode() == ISD::Constant && 3860 cast<ConstantSDNode>(Neg.getOperand(1))->getAPIntValue() == OpSize - 1) { 3861 Neg = Neg.getOperand(0); 3862 MaskLoBits = Log2_64(OpSize); 3863 } 3864 3865 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. 3866 if (Neg.getOpcode() != ISD::SUB) 3867 return 0; 3868 ConstantSDNode *NegC = dyn_cast<ConstantSDNode>(Neg.getOperand(0)); 3869 if (!NegC) 3870 return 0; 3871 SDValue NegOp1 = Neg.getOperand(1); 3872 3873 // On the RHS of [A], if Pos is Pos' & (OpSize - 1), just replace Pos with 3874 // Pos'. The truncation is redundant for the purpose of the equality. 3875 if (MaskLoBits && 3876 Pos.getOpcode() == ISD::AND && 3877 Pos.getOperand(1).getOpcode() == ISD::Constant && 3878 cast<ConstantSDNode>(Pos.getOperand(1))->getAPIntValue() == OpSize - 1) 3879 Pos = Pos.getOperand(0); 3880 3881 // The condition we need is now: 3882 // 3883 // (NegC - NegOp1) & Mask == (OpSize - Pos) & Mask 3884 // 3885 // If NegOp1 == Pos then we need: 3886 // 3887 // OpSize & Mask == NegC & Mask 3888 // 3889 // (because "x & Mask" is a truncation and distributes through subtraction). 3890 APInt Width; 3891 if (Pos == NegOp1) 3892 Width = NegC->getAPIntValue(); 3893 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. 3894 // Then the condition we want to prove becomes: 3895 // 3896 // (NegC - NegOp1) & Mask == (OpSize - (NegOp1 + PosC)) & Mask 3897 // 3898 // which, again because "x & Mask" is a truncation, becomes: 3899 // 3900 // NegC & Mask == (OpSize - PosC) & Mask 3901 // OpSize & Mask == (NegC + PosC) & Mask 3902 else if (Pos.getOpcode() == ISD::ADD && 3903 Pos.getOperand(0) == NegOp1 && 3904 Pos.getOperand(1).getOpcode() == ISD::Constant) 3905 Width = (cast<ConstantSDNode>(Pos.getOperand(1))->getAPIntValue() + 3906 NegC->getAPIntValue()); 3907 else 3908 return false; 3909 3910 // Now we just need to check that OpSize & Mask == Width & Mask. 3911 if (MaskLoBits) 3912 // Opsize & Mask is 0 since Mask is Opsize - 1. 3913 return Width.getLoBits(MaskLoBits) == 0; 3914 return Width == OpSize; 3915 } 3916 3917 // A subroutine of MatchRotate used once we have found an OR of two opposite 3918 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces 3919 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the 3920 // former being preferred if supported. InnerPos and InnerNeg are Pos and 3921 // Neg with outer conversions stripped away. 3922 SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, 3923 SDValue Neg, SDValue InnerPos, 3924 SDValue InnerNeg, unsigned PosOpcode, 3925 unsigned NegOpcode, SDLoc DL) { 3926 // fold (or (shl x, (*ext y)), 3927 // (srl x, (*ext (sub 32, y)))) -> 3928 // (rotl x, y) or (rotr x, (sub 32, y)) 3929 // 3930 // fold (or (shl x, (*ext (sub 32, y))), 3931 // (srl x, (*ext y))) -> 3932 // (rotr x, y) or (rotl x, (sub 32, y)) 3933 EVT VT = Shifted.getValueType(); 3934 if (matchRotateSub(InnerPos, InnerNeg, VT.getSizeInBits())) { 3935 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 3936 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, 3937 HasPos ? Pos : Neg).getNode(); 3938 } 3939 3940 return nullptr; 3941 } 3942 3943 // MatchRotate - Handle an 'or' of two operands. If this is one of the many 3944 // idioms for rotate, and if the target supports rotation instructions, generate 3945 // a rot[lr]. 3946 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) { 3947 // Must be a legal type. Expanded 'n promoted things won't work with rotates. 3948 EVT VT = LHS.getValueType(); 3949 if (!TLI.isTypeLegal(VT)) return nullptr; 3950 3951 // The target must have at least one rotate flavor. 3952 bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT); 3953 bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT); 3954 if (!HasROTL && !HasROTR) return nullptr; 3955 3956 // Match "(X shl/srl V1) & V2" where V2 may not be present. 3957 SDValue LHSShift; // The shift. 3958 SDValue LHSMask; // AND value if any. 3959 if (!MatchRotateHalf(LHS, LHSShift, LHSMask)) 3960 return nullptr; // Not part of a rotate. 3961 3962 SDValue RHSShift; // The shift. 3963 SDValue RHSMask; // AND value if any. 3964 if (!MatchRotateHalf(RHS, RHSShift, RHSMask)) 3965 return nullptr; // Not part of a rotate. 3966 3967 if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) 3968 return nullptr; // Not shifting the same value. 3969 3970 if (LHSShift.getOpcode() == RHSShift.getOpcode()) 3971 return nullptr; // Shifts must disagree. 3972 3973 // Canonicalize shl to left side in a shl/srl pair. 3974 if (RHSShift.getOpcode() == ISD::SHL) { 3975 std::swap(LHS, RHS); 3976 std::swap(LHSShift, RHSShift); 3977 std::swap(LHSMask , RHSMask ); 3978 } 3979 3980 unsigned OpSizeInBits = VT.getSizeInBits(); 3981 SDValue LHSShiftArg = LHSShift.getOperand(0); 3982 SDValue LHSShiftAmt = LHSShift.getOperand(1); 3983 SDValue RHSShiftArg = RHSShift.getOperand(0); 3984 SDValue RHSShiftAmt = RHSShift.getOperand(1); 3985 3986 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) 3987 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) 3988 if (LHSShiftAmt.getOpcode() == ISD::Constant && 3989 RHSShiftAmt.getOpcode() == ISD::Constant) { 3990 uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue(); 3991 uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue(); 3992 if ((LShVal + RShVal) != OpSizeInBits) 3993 return nullptr; 3994 3995 SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, 3996 LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt); 3997 3998 // If there is an AND of either shifted operand, apply it to the result. 3999 if (LHSMask.getNode() || RHSMask.getNode()) { 4000 APInt Mask = APInt::getAllOnesValue(OpSizeInBits); 4001 4002 if (LHSMask.getNode()) { 4003 APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal); 4004 Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits; 4005 } 4006 if (RHSMask.getNode()) { 4007 APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal); 4008 Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits; 4009 } 4010 4011 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, DL, VT)); 4012 } 4013 4014 return Rot.getNode(); 4015 } 4016 4017 // If there is a mask here, and we have a variable shift, we can't be sure 4018 // that we're masking out the right stuff. 4019 if (LHSMask.getNode() || RHSMask.getNode()) 4020 return nullptr; 4021 4022 // If the shift amount is sign/zext/any-extended just peel it off. 4023 SDValue LExtOp0 = LHSShiftAmt; 4024 SDValue RExtOp0 = RHSShiftAmt; 4025 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 4026 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 4027 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 4028 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && 4029 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 4030 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 4031 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 4032 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { 4033 LExtOp0 = LHSShiftAmt.getOperand(0); 4034 RExtOp0 = RHSShiftAmt.getOperand(0); 4035 } 4036 4037 SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, 4038 LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL); 4039 if (TryL) 4040 return TryL; 4041 4042 SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, 4043 RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL); 4044 if (TryR) 4045 return TryR; 4046 4047 return nullptr; 4048 } 4049 4050 SDValue DAGCombiner::visitXOR(SDNode *N) { 4051 SDValue N0 = N->getOperand(0); 4052 SDValue N1 = N->getOperand(1); 4053 EVT VT = N0.getValueType(); 4054 4055 // fold vector ops 4056 if (VT.isVector()) { 4057 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4058 return FoldedVOp; 4059 4060 // fold (xor x, 0) -> x, vector edition 4061 if (ISD::isBuildVectorAllZeros(N0.getNode())) 4062 return N1; 4063 if (ISD::isBuildVectorAllZeros(N1.getNode())) 4064 return N0; 4065 } 4066 4067 // fold (xor undef, undef) -> 0. This is a common idiom (misuse). 4068 if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF) 4069 return DAG.getConstant(0, SDLoc(N), VT); 4070 // fold (xor x, undef) -> undef 4071 if (N0.getOpcode() == ISD::UNDEF) 4072 return N0; 4073 if (N1.getOpcode() == ISD::UNDEF) 4074 return N1; 4075 // fold (xor c1, c2) -> c1^c2 4076 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4077 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 4078 if (N0C && N1C) 4079 return DAG.FoldConstantArithmetic(ISD::XOR, SDLoc(N), VT, N0C, N1C); 4080 // canonicalize constant to RHS 4081 if (isConstantIntBuildVectorOrConstantInt(N0) && 4082 !isConstantIntBuildVectorOrConstantInt(N1)) 4083 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); 4084 // fold (xor x, 0) -> x 4085 if (isNullConstant(N1)) 4086 return N0; 4087 // reassociate xor 4088 if (SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1)) 4089 return RXOR; 4090 4091 // fold !(x cc y) -> (x !cc y) 4092 SDValue LHS, RHS, CC; 4093 if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) { 4094 bool isInt = LHS.getValueType().isInteger(); 4095 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 4096 isInt); 4097 4098 if (!LegalOperations || 4099 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { 4100 switch (N0.getOpcode()) { 4101 default: 4102 llvm_unreachable("Unhandled SetCC Equivalent!"); 4103 case ISD::SETCC: 4104 return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC); 4105 case ISD::SELECT_CC: 4106 return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2), 4107 N0.getOperand(3), NotCC); 4108 } 4109 } 4110 } 4111 4112 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) 4113 if (isOneConstant(N1) && N0.getOpcode() == ISD::ZERO_EXTEND && 4114 N0.getNode()->hasOneUse() && 4115 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ 4116 SDValue V = N0.getOperand(0); 4117 SDLoc DL(N0); 4118 V = DAG.getNode(ISD::XOR, DL, V.getValueType(), V, 4119 DAG.getConstant(1, DL, V.getValueType())); 4120 AddToWorklist(V.getNode()); 4121 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V); 4122 } 4123 4124 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc 4125 if (isOneConstant(N1) && VT == MVT::i1 && 4126 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { 4127 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 4128 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { 4129 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; 4130 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 4131 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 4132 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 4133 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); 4134 } 4135 } 4136 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants 4137 if (isAllOnesConstant(N1) && 4138 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { 4139 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 4140 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { 4141 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; 4142 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 4143 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 4144 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 4145 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); 4146 } 4147 } 4148 // fold (xor (and x, y), y) -> (and (not x), y) 4149 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 4150 N0->getOperand(1) == N1) { 4151 SDValue X = N0->getOperand(0); 4152 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); 4153 AddToWorklist(NotX.getNode()); 4154 return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1); 4155 } 4156 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2)) 4157 if (N1C && N0.getOpcode() == ISD::XOR) { 4158 if (const ConstantSDNode *N00C = getAsNonOpaqueConstant(N0.getOperand(0))) { 4159 SDLoc DL(N); 4160 return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), 4161 DAG.getConstant(N1C->getAPIntValue() ^ 4162 N00C->getAPIntValue(), DL, VT)); 4163 } 4164 if (const ConstantSDNode *N01C = getAsNonOpaqueConstant(N0.getOperand(1))) { 4165 SDLoc DL(N); 4166 return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 4167 DAG.getConstant(N1C->getAPIntValue() ^ 4168 N01C->getAPIntValue(), DL, VT)); 4169 } 4170 } 4171 // fold (xor x, x) -> 0 4172 if (N0 == N1) 4173 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); 4174 4175 // fold (xor (shl 1, x), -1) -> (rotl ~1, x) 4176 // Here is a concrete example of this equivalence: 4177 // i16 x == 14 4178 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 4179 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 4180 // 4181 // => 4182 // 4183 // i16 ~1 == 0b1111111111111110 4184 // i16 rol(~1, 14) == 0b1011111111111111 4185 // 4186 // Some additional tips to help conceptualize this transform: 4187 // - Try to see the operation as placing a single zero in a value of all ones. 4188 // - There exists no value for x which would allow the result to contain zero. 4189 // - Values of x larger than the bitwidth are undefined and do not require a 4190 // consistent result. 4191 // - Pushing the zero left requires shifting one bits in from the right. 4192 // A rotate left of ~1 is a nice way of achieving the desired result. 4193 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0.getOpcode() == ISD::SHL 4194 && isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { 4195 SDLoc DL(N); 4196 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), 4197 N0.getOperand(1)); 4198 } 4199 4200 // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) 4201 if (N0.getOpcode() == N1.getOpcode()) 4202 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 4203 return Tmp; 4204 4205 // Simplify the expression using non-local knowledge. 4206 if (!VT.isVector() && 4207 SimplifyDemandedBits(SDValue(N, 0))) 4208 return SDValue(N, 0); 4209 4210 return SDValue(); 4211 } 4212 4213 /// Handle transforms common to the three shifts, when the shift amount is a 4214 /// constant. 4215 SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) { 4216 SDNode *LHS = N->getOperand(0).getNode(); 4217 if (!LHS->hasOneUse()) return SDValue(); 4218 4219 // We want to pull some binops through shifts, so that we have (and (shift)) 4220 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of 4221 // thing happens with address calculations, so it's important to canonicalize 4222 // it. 4223 bool HighBitSet = false; // Can we transform this if the high bit is set? 4224 4225 switch (LHS->getOpcode()) { 4226 default: return SDValue(); 4227 case ISD::OR: 4228 case ISD::XOR: 4229 HighBitSet = false; // We can only transform sra if the high bit is clear. 4230 break; 4231 case ISD::AND: 4232 HighBitSet = true; // We can only transform sra if the high bit is set. 4233 break; 4234 case ISD::ADD: 4235 if (N->getOpcode() != ISD::SHL) 4236 return SDValue(); // only shl(add) not sr[al](add). 4237 HighBitSet = false; // We can only transform sra if the high bit is clear. 4238 break; 4239 } 4240 4241 // We require the RHS of the binop to be a constant and not opaque as well. 4242 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1)); 4243 if (!BinOpCst) return SDValue(); 4244 4245 // FIXME: disable this unless the input to the binop is a shift by a constant. 4246 // If it is not a shift, it pessimizes some common cases like: 4247 // 4248 // void foo(int *X, int i) { X[i & 1235] = 1; } 4249 // int bar(int *X, int i) { return X[i & 255]; } 4250 SDNode *BinOpLHSVal = LHS->getOperand(0).getNode(); 4251 if ((BinOpLHSVal->getOpcode() != ISD::SHL && 4252 BinOpLHSVal->getOpcode() != ISD::SRA && 4253 BinOpLHSVal->getOpcode() != ISD::SRL) || 4254 !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) 4255 return SDValue(); 4256 4257 EVT VT = N->getValueType(0); 4258 4259 // If this is a signed shift right, and the high bit is modified by the 4260 // logical operation, do not perform the transformation. The highBitSet 4261 // boolean indicates the value of the high bit of the constant which would 4262 // cause it to be modified for this operation. 4263 if (N->getOpcode() == ISD::SRA) { 4264 bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); 4265 if (BinOpRHSSignSet != HighBitSet) 4266 return SDValue(); 4267 } 4268 4269 if (!TLI.isDesirableToCommuteWithShift(LHS)) 4270 return SDValue(); 4271 4272 // Fold the constants, shifting the binop RHS by the shift amount. 4273 SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)), 4274 N->getValueType(0), 4275 LHS->getOperand(1), N->getOperand(1)); 4276 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); 4277 4278 // Create the new shift. 4279 SDValue NewShift = DAG.getNode(N->getOpcode(), 4280 SDLoc(LHS->getOperand(0)), 4281 VT, LHS->getOperand(0), N->getOperand(1)); 4282 4283 // Create the new binop. 4284 return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS); 4285 } 4286 4287 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { 4288 assert(N->getOpcode() == ISD::TRUNCATE); 4289 assert(N->getOperand(0).getOpcode() == ISD::AND); 4290 4291 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) 4292 if (N->hasOneUse() && N->getOperand(0).hasOneUse()) { 4293 SDValue N01 = N->getOperand(0).getOperand(1); 4294 4295 if (ConstantSDNode *N01C = isConstOrConstSplat(N01)) { 4296 if (!N01C->isOpaque()) { 4297 EVT TruncVT = N->getValueType(0); 4298 SDValue N00 = N->getOperand(0).getOperand(0); 4299 APInt TruncC = N01C->getAPIntValue(); 4300 TruncC = TruncC.trunc(TruncVT.getScalarSizeInBits()); 4301 SDLoc DL(N); 4302 4303 return DAG.getNode(ISD::AND, DL, TruncVT, 4304 DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00), 4305 DAG.getConstant(TruncC, DL, TruncVT)); 4306 } 4307 } 4308 } 4309 4310 return SDValue(); 4311 } 4312 4313 SDValue DAGCombiner::visitRotate(SDNode *N) { 4314 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). 4315 if (N->getOperand(1).getOpcode() == ISD::TRUNCATE && 4316 N->getOperand(1).getOperand(0).getOpcode() == ISD::AND) { 4317 SDValue NewOp1 = distributeTruncateThroughAnd(N->getOperand(1).getNode()); 4318 if (NewOp1.getNode()) 4319 return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), 4320 N->getOperand(0), NewOp1); 4321 } 4322 return SDValue(); 4323 } 4324 4325 SDValue DAGCombiner::visitSHL(SDNode *N) { 4326 SDValue N0 = N->getOperand(0); 4327 SDValue N1 = N->getOperand(1); 4328 EVT VT = N0.getValueType(); 4329 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 4330 4331 // fold vector ops 4332 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4333 if (VT.isVector()) { 4334 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4335 return FoldedVOp; 4336 4337 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); 4338 // If setcc produces all-one true value then: 4339 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) 4340 if (N1CV && N1CV->isConstant()) { 4341 if (N0.getOpcode() == ISD::AND) { 4342 SDValue N00 = N0->getOperand(0); 4343 SDValue N01 = N0->getOperand(1); 4344 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); 4345 4346 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && 4347 TLI.getBooleanContents(N00.getOperand(0).getValueType()) == 4348 TargetLowering::ZeroOrNegativeOneBooleanContent) { 4349 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, 4350 N01CV, N1CV)) 4351 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); 4352 } 4353 } else { 4354 N1C = isConstOrConstSplat(N1); 4355 } 4356 } 4357 } 4358 4359 // fold (shl c1, c2) -> c1<<c2 4360 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4361 if (N0C && N1C && !N1C->isOpaque()) 4362 return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C); 4363 // fold (shl 0, x) -> 0 4364 if (isNullConstant(N0)) 4365 return N0; 4366 // fold (shl x, c >= size(x)) -> undef 4367 if (N1C && N1C->getAPIntValue().uge(OpSizeInBits)) 4368 return DAG.getUNDEF(VT); 4369 // fold (shl x, 0) -> x 4370 if (N1C && N1C->isNullValue()) 4371 return N0; 4372 // fold (shl undef, x) -> 0 4373 if (N0.getOpcode() == ISD::UNDEF) 4374 return DAG.getConstant(0, SDLoc(N), VT); 4375 // if (shl x, c) is known to be zero, return 0 4376 if (DAG.MaskedValueIsZero(SDValue(N, 0), 4377 APInt::getAllOnesValue(OpSizeInBits))) 4378 return DAG.getConstant(0, SDLoc(N), VT); 4379 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). 4380 if (N1.getOpcode() == ISD::TRUNCATE && 4381 N1.getOperand(0).getOpcode() == ISD::AND) { 4382 SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()); 4383 if (NewOp1.getNode()) 4384 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); 4385 } 4386 4387 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4388 return SDValue(N, 0); 4389 4390 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) 4391 if (N1C && N0.getOpcode() == ISD::SHL) { 4392 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4393 uint64_t c1 = N0C1->getZExtValue(); 4394 uint64_t c2 = N1C->getZExtValue(); 4395 SDLoc DL(N); 4396 if (c1 + c2 >= OpSizeInBits) 4397 return DAG.getConstant(0, DL, VT); 4398 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4399 DAG.getConstant(c1 + c2, DL, N1.getValueType())); 4400 } 4401 } 4402 4403 // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2))) 4404 // For this to be valid, the second form must not preserve any of the bits 4405 // that are shifted out by the inner shift in the first form. This means 4406 // the outer shift size must be >= the number of bits added by the ext. 4407 // As a corollary, we don't care what kind of ext it is. 4408 if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND || 4409 N0.getOpcode() == ISD::ANY_EXTEND || 4410 N0.getOpcode() == ISD::SIGN_EXTEND) && 4411 N0.getOperand(0).getOpcode() == ISD::SHL) { 4412 SDValue N0Op0 = N0.getOperand(0); 4413 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 4414 uint64_t c1 = N0Op0C1->getZExtValue(); 4415 uint64_t c2 = N1C->getZExtValue(); 4416 EVT InnerShiftVT = N0Op0.getValueType(); 4417 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 4418 if (c2 >= OpSizeInBits - InnerShiftSize) { 4419 SDLoc DL(N0); 4420 if (c1 + c2 >= OpSizeInBits) 4421 return DAG.getConstant(0, DL, VT); 4422 return DAG.getNode(ISD::SHL, DL, VT, 4423 DAG.getNode(N0.getOpcode(), DL, VT, 4424 N0Op0->getOperand(0)), 4425 DAG.getConstant(c1 + c2, DL, N1.getValueType())); 4426 } 4427 } 4428 } 4429 4430 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) 4431 // Only fold this if the inner zext has no other uses to avoid increasing 4432 // the total number of instructions. 4433 if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && 4434 N0.getOperand(0).getOpcode() == ISD::SRL) { 4435 SDValue N0Op0 = N0.getOperand(0); 4436 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 4437 uint64_t c1 = N0Op0C1->getZExtValue(); 4438 if (c1 < VT.getScalarSizeInBits()) { 4439 uint64_t c2 = N1C->getZExtValue(); 4440 if (c1 == c2) { 4441 SDValue NewOp0 = N0.getOperand(0); 4442 EVT CountVT = NewOp0.getOperand(1).getValueType(); 4443 SDLoc DL(N); 4444 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(), 4445 NewOp0, 4446 DAG.getConstant(c2, DL, CountVT)); 4447 AddToWorklist(NewSHL.getNode()); 4448 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); 4449 } 4450 } 4451 } 4452 } 4453 4454 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 4455 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 4456 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && 4457 cast<BinaryWithFlagsSDNode>(N0)->Flags.hasExact()) { 4458 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4459 uint64_t C1 = N0C1->getZExtValue(); 4460 uint64_t C2 = N1C->getZExtValue(); 4461 SDLoc DL(N); 4462 if (C1 <= C2) 4463 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4464 DAG.getConstant(C2 - C1, DL, N1.getValueType())); 4465 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), 4466 DAG.getConstant(C1 - C2, DL, N1.getValueType())); 4467 } 4468 } 4469 4470 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or 4471 // (and (srl x, (sub c1, c2), MASK) 4472 // Only fold this if the inner shift has no other uses -- if it does, folding 4473 // this will increase the total number of instructions. 4474 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 4475 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4476 uint64_t c1 = N0C1->getZExtValue(); 4477 if (c1 < OpSizeInBits) { 4478 uint64_t c2 = N1C->getZExtValue(); 4479 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); 4480 SDValue Shift; 4481 if (c2 > c1) { 4482 Mask = Mask.shl(c2 - c1); 4483 SDLoc DL(N); 4484 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4485 DAG.getConstant(c2 - c1, DL, N1.getValueType())); 4486 } else { 4487 Mask = Mask.lshr(c1 - c2); 4488 SDLoc DL(N); 4489 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 4490 DAG.getConstant(c1 - c2, DL, N1.getValueType())); 4491 } 4492 SDLoc DL(N0); 4493 return DAG.getNode(ISD::AND, DL, VT, Shift, 4494 DAG.getConstant(Mask, DL, VT)); 4495 } 4496 } 4497 } 4498 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) 4499 if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) { 4500 unsigned BitSize = VT.getScalarSizeInBits(); 4501 SDLoc DL(N); 4502 SDValue HiBitsMask = 4503 DAG.getConstant(APInt::getHighBitsSet(BitSize, 4504 BitSize - N1C->getZExtValue()), 4505 DL, VT); 4506 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), 4507 HiBitsMask); 4508 } 4509 4510 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 4511 // Variant of version done on multiply, except mul by a power of 2 is turned 4512 // into a shift. 4513 APInt Val; 4514 if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() && 4515 (isa<ConstantSDNode>(N0.getOperand(1)) || 4516 isConstantSplatVector(N0.getOperand(1).getNode(), Val))) { 4517 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); 4518 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 4519 return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1); 4520 } 4521 4522 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) 4523 if (N1C && N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse()) { 4524 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4525 if (SDValue Folded = 4526 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, N0C1, N1C)) 4527 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Folded); 4528 } 4529 } 4530 4531 if (N1C && !N1C->isOpaque()) 4532 if (SDValue NewSHL = visitShiftByConstant(N, N1C)) 4533 return NewSHL; 4534 4535 return SDValue(); 4536 } 4537 4538 SDValue DAGCombiner::visitSRA(SDNode *N) { 4539 SDValue N0 = N->getOperand(0); 4540 SDValue N1 = N->getOperand(1); 4541 EVT VT = N0.getValueType(); 4542 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); 4543 4544 // fold vector ops 4545 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4546 if (VT.isVector()) { 4547 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4548 return FoldedVOp; 4549 4550 N1C = isConstOrConstSplat(N1); 4551 } 4552 4553 // fold (sra c1, c2) -> (sra c1, c2) 4554 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4555 if (N0C && N1C && !N1C->isOpaque()) 4556 return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C); 4557 // fold (sra 0, x) -> 0 4558 if (isNullConstant(N0)) 4559 return N0; 4560 // fold (sra -1, x) -> -1 4561 if (isAllOnesConstant(N0)) 4562 return N0; 4563 // fold (sra x, (setge c, size(x))) -> undef 4564 if (N1C && N1C->getZExtValue() >= OpSizeInBits) 4565 return DAG.getUNDEF(VT); 4566 // fold (sra x, 0) -> x 4567 if (N1C && N1C->isNullValue()) 4568 return N0; 4569 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports 4570 // sext_inreg. 4571 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { 4572 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); 4573 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); 4574 if (VT.isVector()) 4575 ExtVT = EVT::getVectorVT(*DAG.getContext(), 4576 ExtVT, VT.getVectorNumElements()); 4577 if ((!LegalOperations || 4578 TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) 4579 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 4580 N0.getOperand(0), DAG.getValueType(ExtVT)); 4581 } 4582 4583 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) 4584 if (N1C && N0.getOpcode() == ISD::SRA) { 4585 if (ConstantSDNode *C1 = isConstOrConstSplat(N0.getOperand(1))) { 4586 unsigned Sum = N1C->getZExtValue() + C1->getZExtValue(); 4587 if (Sum >= OpSizeInBits) 4588 Sum = OpSizeInBits - 1; 4589 SDLoc DL(N); 4590 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), 4591 DAG.getConstant(Sum, DL, N1.getValueType())); 4592 } 4593 } 4594 4595 // fold (sra (shl X, m), (sub result_size, n)) 4596 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for 4597 // result_size - n != m. 4598 // If truncate is free for the target sext(shl) is likely to result in better 4599 // code. 4600 if (N0.getOpcode() == ISD::SHL && N1C) { 4601 // Get the two constanst of the shifts, CN0 = m, CN = n. 4602 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); 4603 if (N01C) { 4604 LLVMContext &Ctx = *DAG.getContext(); 4605 // Determine what the truncate's result bitsize and type would be. 4606 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); 4607 4608 if (VT.isVector()) 4609 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); 4610 4611 // Determine the residual right-shift amount. 4612 signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); 4613 4614 // If the shift is not a no-op (in which case this should be just a sign 4615 // extend already), the truncated to type is legal, sign_extend is legal 4616 // on that type, and the truncate to that type is both legal and free, 4617 // perform the transform. 4618 if ((ShiftAmt > 0) && 4619 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && 4620 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && 4621 TLI.isTruncateFree(VT, TruncVT)) { 4622 4623 SDLoc DL(N); 4624 SDValue Amt = DAG.getConstant(ShiftAmt, DL, 4625 getShiftAmountTy(N0.getOperand(0).getValueType())); 4626 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, 4627 N0.getOperand(0), Amt); 4628 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, 4629 Shift); 4630 return DAG.getNode(ISD::SIGN_EXTEND, DL, 4631 N->getValueType(0), Trunc); 4632 } 4633 } 4634 } 4635 4636 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). 4637 if (N1.getOpcode() == ISD::TRUNCATE && 4638 N1.getOperand(0).getOpcode() == ISD::AND) { 4639 SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()); 4640 if (NewOp1.getNode()) 4641 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); 4642 } 4643 4644 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) 4645 // if c1 is equal to the number of bits the trunc removes 4646 if (N0.getOpcode() == ISD::TRUNCATE && 4647 (N0.getOperand(0).getOpcode() == ISD::SRL || 4648 N0.getOperand(0).getOpcode() == ISD::SRA) && 4649 N0.getOperand(0).hasOneUse() && 4650 N0.getOperand(0).getOperand(1).hasOneUse() && 4651 N1C) { 4652 SDValue N0Op0 = N0.getOperand(0); 4653 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { 4654 unsigned LargeShiftVal = LargeShift->getZExtValue(); 4655 EVT LargeVT = N0Op0.getValueType(); 4656 4657 if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) { 4658 SDLoc DL(N); 4659 SDValue Amt = 4660 DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL, 4661 getShiftAmountTy(N0Op0.getOperand(0).getValueType())); 4662 SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT, 4663 N0Op0.getOperand(0), Amt); 4664 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); 4665 } 4666 } 4667 } 4668 4669 // Simplify, based on bits shifted out of the LHS. 4670 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4671 return SDValue(N, 0); 4672 4673 4674 // If the sign bit is known to be zero, switch this to a SRL. 4675 if (DAG.SignBitIsZero(N0)) 4676 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); 4677 4678 if (N1C && !N1C->isOpaque()) 4679 if (SDValue NewSRA = visitShiftByConstant(N, N1C)) 4680 return NewSRA; 4681 4682 return SDValue(); 4683 } 4684 4685 SDValue DAGCombiner::visitSRL(SDNode *N) { 4686 SDValue N0 = N->getOperand(0); 4687 SDValue N1 = N->getOperand(1); 4688 EVT VT = N0.getValueType(); 4689 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); 4690 4691 // fold vector ops 4692 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4693 if (VT.isVector()) { 4694 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4695 return FoldedVOp; 4696 4697 N1C = isConstOrConstSplat(N1); 4698 } 4699 4700 // fold (srl c1, c2) -> c1 >>u c2 4701 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4702 if (N0C && N1C && !N1C->isOpaque()) 4703 return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C); 4704 // fold (srl 0, x) -> 0 4705 if (isNullConstant(N0)) 4706 return N0; 4707 // fold (srl x, c >= size(x)) -> undef 4708 if (N1C && N1C->getZExtValue() >= OpSizeInBits) 4709 return DAG.getUNDEF(VT); 4710 // fold (srl x, 0) -> x 4711 if (N1C && N1C->isNullValue()) 4712 return N0; 4713 // if (srl x, c) is known to be zero, return 0 4714 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 4715 APInt::getAllOnesValue(OpSizeInBits))) 4716 return DAG.getConstant(0, SDLoc(N), VT); 4717 4718 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) 4719 if (N1C && N0.getOpcode() == ISD::SRL) { 4720 if (ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1))) { 4721 uint64_t c1 = N01C->getZExtValue(); 4722 uint64_t c2 = N1C->getZExtValue(); 4723 SDLoc DL(N); 4724 if (c1 + c2 >= OpSizeInBits) 4725 return DAG.getConstant(0, DL, VT); 4726 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 4727 DAG.getConstant(c1 + c2, DL, N1.getValueType())); 4728 } 4729 } 4730 4731 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) 4732 if (N1C && N0.getOpcode() == ISD::TRUNCATE && 4733 N0.getOperand(0).getOpcode() == ISD::SRL && 4734 isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) { 4735 uint64_t c1 = 4736 cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue(); 4737 uint64_t c2 = N1C->getZExtValue(); 4738 EVT InnerShiftVT = N0.getOperand(0).getValueType(); 4739 EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType(); 4740 uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits(); 4741 // This is only valid if the OpSizeInBits + c1 = size of inner shift. 4742 if (c1 + OpSizeInBits == InnerShiftSize) { 4743 SDLoc DL(N0); 4744 if (c1 + c2 >= InnerShiftSize) 4745 return DAG.getConstant(0, DL, VT); 4746 return DAG.getNode(ISD::TRUNCATE, DL, VT, 4747 DAG.getNode(ISD::SRL, DL, InnerShiftVT, 4748 N0.getOperand(0)->getOperand(0), 4749 DAG.getConstant(c1 + c2, DL, 4750 ShiftCountVT))); 4751 } 4752 } 4753 4754 // fold (srl (shl x, c), c) -> (and x, cst2) 4755 if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1) { 4756 unsigned BitSize = N0.getScalarValueSizeInBits(); 4757 if (BitSize <= 64) { 4758 uint64_t ShAmt = N1C->getZExtValue() + 64 - BitSize; 4759 SDLoc DL(N); 4760 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), 4761 DAG.getConstant(~0ULL >> ShAmt, DL, VT)); 4762 } 4763 } 4764 4765 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) 4766 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 4767 // Shifting in all undef bits? 4768 EVT SmallVT = N0.getOperand(0).getValueType(); 4769 unsigned BitSize = SmallVT.getScalarSizeInBits(); 4770 if (N1C->getZExtValue() >= BitSize) 4771 return DAG.getUNDEF(VT); 4772 4773 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { 4774 uint64_t ShiftAmt = N1C->getZExtValue(); 4775 SDLoc DL0(N0); 4776 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, 4777 N0.getOperand(0), 4778 DAG.getConstant(ShiftAmt, DL0, 4779 getShiftAmountTy(SmallVT))); 4780 AddToWorklist(SmallShift.getNode()); 4781 APInt Mask = APInt::getAllOnesValue(OpSizeInBits).lshr(ShiftAmt); 4782 SDLoc DL(N); 4783 return DAG.getNode(ISD::AND, DL, VT, 4784 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), 4785 DAG.getConstant(Mask, DL, VT)); 4786 } 4787 } 4788 4789 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign 4790 // bit, which is unmodified by sra. 4791 if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) { 4792 if (N0.getOpcode() == ISD::SRA) 4793 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); 4794 } 4795 4796 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). 4797 if (N1C && N0.getOpcode() == ISD::CTLZ && 4798 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { 4799 APInt KnownZero, KnownOne; 4800 DAG.computeKnownBits(N0.getOperand(0), KnownZero, KnownOne); 4801 4802 // If any of the input bits are KnownOne, then the input couldn't be all 4803 // zeros, thus the result of the srl will always be zero. 4804 if (KnownOne.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); 4805 4806 // If all of the bits input the to ctlz node are known to be zero, then 4807 // the result of the ctlz is "32" and the result of the shift is one. 4808 APInt UnknownBits = ~KnownZero; 4809 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); 4810 4811 // Otherwise, check to see if there is exactly one bit input to the ctlz. 4812 if ((UnknownBits & (UnknownBits - 1)) == 0) { 4813 // Okay, we know that only that the single bit specified by UnknownBits 4814 // could be set on input to the CTLZ node. If this bit is set, the SRL 4815 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair 4816 // to an SRL/XOR pair, which is likely to simplify more. 4817 unsigned ShAmt = UnknownBits.countTrailingZeros(); 4818 SDValue Op = N0.getOperand(0); 4819 4820 if (ShAmt) { 4821 SDLoc DL(N0); 4822 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 4823 DAG.getConstant(ShAmt, DL, 4824 getShiftAmountTy(Op.getValueType()))); 4825 AddToWorklist(Op.getNode()); 4826 } 4827 4828 SDLoc DL(N); 4829 return DAG.getNode(ISD::XOR, DL, VT, 4830 Op, DAG.getConstant(1, DL, VT)); 4831 } 4832 } 4833 4834 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). 4835 if (N1.getOpcode() == ISD::TRUNCATE && 4836 N1.getOperand(0).getOpcode() == ISD::AND) { 4837 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 4838 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); 4839 } 4840 4841 // fold operands of srl based on knowledge that the low bits are not 4842 // demanded. 4843 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4844 return SDValue(N, 0); 4845 4846 if (N1C && !N1C->isOpaque()) 4847 if (SDValue NewSRL = visitShiftByConstant(N, N1C)) 4848 return NewSRL; 4849 4850 // Attempt to convert a srl of a load into a narrower zero-extending load. 4851 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 4852 return NarrowLoad; 4853 4854 // Here is a common situation. We want to optimize: 4855 // 4856 // %a = ... 4857 // %b = and i32 %a, 2 4858 // %c = srl i32 %b, 1 4859 // brcond i32 %c ... 4860 // 4861 // into 4862 // 4863 // %a = ... 4864 // %b = and %a, 2 4865 // %c = setcc eq %b, 0 4866 // brcond %c ... 4867 // 4868 // However when after the source operand of SRL is optimized into AND, the SRL 4869 // itself may not be optimized further. Look for it and add the BRCOND into 4870 // the worklist. 4871 if (N->hasOneUse()) { 4872 SDNode *Use = *N->use_begin(); 4873 if (Use->getOpcode() == ISD::BRCOND) 4874 AddToWorklist(Use); 4875 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { 4876 // Also look pass the truncate. 4877 Use = *Use->use_begin(); 4878 if (Use->getOpcode() == ISD::BRCOND) 4879 AddToWorklist(Use); 4880 } 4881 } 4882 4883 return SDValue(); 4884 } 4885 4886 SDValue DAGCombiner::visitBSWAP(SDNode *N) { 4887 SDValue N0 = N->getOperand(0); 4888 EVT VT = N->getValueType(0); 4889 4890 // fold (bswap c1) -> c2 4891 if (isConstantIntBuildVectorOrConstantInt(N0)) 4892 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); 4893 // fold (bswap (bswap x)) -> x 4894 if (N0.getOpcode() == ISD::BSWAP) 4895 return N0->getOperand(0); 4896 return SDValue(); 4897 } 4898 4899 SDValue DAGCombiner::visitCTLZ(SDNode *N) { 4900 SDValue N0 = N->getOperand(0); 4901 EVT VT = N->getValueType(0); 4902 4903 // fold (ctlz c1) -> c2 4904 if (isConstantIntBuildVectorOrConstantInt(N0)) 4905 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); 4906 return SDValue(); 4907 } 4908 4909 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { 4910 SDValue N0 = N->getOperand(0); 4911 EVT VT = N->getValueType(0); 4912 4913 // fold (ctlz_zero_undef c1) -> c2 4914 if (isConstantIntBuildVectorOrConstantInt(N0)) 4915 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 4916 return SDValue(); 4917 } 4918 4919 SDValue DAGCombiner::visitCTTZ(SDNode *N) { 4920 SDValue N0 = N->getOperand(0); 4921 EVT VT = N->getValueType(0); 4922 4923 // fold (cttz c1) -> c2 4924 if (isConstantIntBuildVectorOrConstantInt(N0)) 4925 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); 4926 return SDValue(); 4927 } 4928 4929 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { 4930 SDValue N0 = N->getOperand(0); 4931 EVT VT = N->getValueType(0); 4932 4933 // fold (cttz_zero_undef c1) -> c2 4934 if (isConstantIntBuildVectorOrConstantInt(N0)) 4935 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 4936 return SDValue(); 4937 } 4938 4939 SDValue DAGCombiner::visitCTPOP(SDNode *N) { 4940 SDValue N0 = N->getOperand(0); 4941 EVT VT = N->getValueType(0); 4942 4943 // fold (ctpop c1) -> c2 4944 if (isConstantIntBuildVectorOrConstantInt(N0)) 4945 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); 4946 return SDValue(); 4947 } 4948 4949 4950 /// \brief Generate Min/Max node 4951 static SDValue combineMinNumMaxNum(SDLoc DL, EVT VT, SDValue LHS, SDValue RHS, 4952 SDValue True, SDValue False, 4953 ISD::CondCode CC, const TargetLowering &TLI, 4954 SelectionDAG &DAG) { 4955 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 4956 return SDValue(); 4957 4958 switch (CC) { 4959 case ISD::SETOLT: 4960 case ISD::SETOLE: 4961 case ISD::SETLT: 4962 case ISD::SETLE: 4963 case ISD::SETULT: 4964 case ISD::SETULE: { 4965 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; 4966 if (TLI.isOperationLegal(Opcode, VT)) 4967 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 4968 return SDValue(); 4969 } 4970 case ISD::SETOGT: 4971 case ISD::SETOGE: 4972 case ISD::SETGT: 4973 case ISD::SETGE: 4974 case ISD::SETUGT: 4975 case ISD::SETUGE: { 4976 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; 4977 if (TLI.isOperationLegal(Opcode, VT)) 4978 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 4979 return SDValue(); 4980 } 4981 default: 4982 return SDValue(); 4983 } 4984 } 4985 4986 SDValue DAGCombiner::visitSELECT(SDNode *N) { 4987 SDValue N0 = N->getOperand(0); 4988 SDValue N1 = N->getOperand(1); 4989 SDValue N2 = N->getOperand(2); 4990 EVT VT = N->getValueType(0); 4991 EVT VT0 = N0.getValueType(); 4992 4993 // fold (select C, X, X) -> X 4994 if (N1 == N2) 4995 return N1; 4996 if (const ConstantSDNode *N0C = dyn_cast<const ConstantSDNode>(N0)) { 4997 // fold (select true, X, Y) -> X 4998 // fold (select false, X, Y) -> Y 4999 return !N0C->isNullValue() ? N1 : N2; 5000 } 5001 // fold (select C, 1, X) -> (or C, X) 5002 if (VT == MVT::i1 && isOneConstant(N1)) 5003 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); 5004 // fold (select C, 0, 1) -> (xor C, 1) 5005 // We can't do this reliably if integer based booleans have different contents 5006 // to floating point based booleans. This is because we can't tell whether we 5007 // have an integer-based boolean or a floating-point-based boolean unless we 5008 // can find the SETCC that produced it and inspect its operands. This is 5009 // fairly easy if C is the SETCC node, but it can potentially be 5010 // undiscoverable (or not reasonably discoverable). For example, it could be 5011 // in another basic block or it could require searching a complicated 5012 // expression. 5013 if (VT.isInteger() && 5014 (VT0 == MVT::i1 || (VT0.isInteger() && 5015 TLI.getBooleanContents(false, false) == 5016 TLI.getBooleanContents(false, true) && 5017 TLI.getBooleanContents(false, false) == 5018 TargetLowering::ZeroOrOneBooleanContent)) && 5019 isNullConstant(N1) && isOneConstant(N2)) { 5020 SDValue XORNode; 5021 if (VT == VT0) { 5022 SDLoc DL(N); 5023 return DAG.getNode(ISD::XOR, DL, VT0, 5024 N0, DAG.getConstant(1, DL, VT0)); 5025 } 5026 SDLoc DL0(N0); 5027 XORNode = DAG.getNode(ISD::XOR, DL0, VT0, 5028 N0, DAG.getConstant(1, DL0, VT0)); 5029 AddToWorklist(XORNode.getNode()); 5030 if (VT.bitsGT(VT0)) 5031 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode); 5032 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode); 5033 } 5034 // fold (select C, 0, X) -> (and (not C), X) 5035 if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { 5036 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 5037 AddToWorklist(NOTNode.getNode()); 5038 return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2); 5039 } 5040 // fold (select C, X, 1) -> (or (not C), X) 5041 if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { 5042 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 5043 AddToWorklist(NOTNode.getNode()); 5044 return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1); 5045 } 5046 // fold (select C, X, 0) -> (and C, X) 5047 if (VT == MVT::i1 && isNullConstant(N2)) 5048 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); 5049 // fold (select X, X, Y) -> (or X, Y) 5050 // fold (select X, 1, Y) -> (or X, Y) 5051 if (VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) 5052 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); 5053 // fold (select X, Y, X) -> (and X, Y) 5054 // fold (select X, Y, 0) -> (and X, Y) 5055 if (VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) 5056 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); 5057 5058 // If we can fold this based on the true/false value, do so. 5059 if (SimplifySelectOps(N, N1, N2)) 5060 return SDValue(N, 0); // Don't revisit N. 5061 5062 if (VT0 == MVT::i1) { 5063 // The code in this block deals with the following 2 equivalences: 5064 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) 5065 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) 5066 // The target can specify its prefered form with the 5067 // shouldNormalizeToSelectSequence() callback. However we always transform 5068 // to the right anyway if we find the inner select exists in the DAG anyway 5069 // and we always transform to the left side if we know that we can further 5070 // optimize the combination of the conditions. 5071 bool normalizeToSequence 5072 = TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); 5073 // select (and Cond0, Cond1), X, Y 5074 // -> select Cond0, (select Cond1, X, Y), Y 5075 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { 5076 SDValue Cond0 = N0->getOperand(0); 5077 SDValue Cond1 = N0->getOperand(1); 5078 SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), 5079 N1.getValueType(), Cond1, N1, N2); 5080 if (normalizeToSequence || !InnerSelect.use_empty()) 5081 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, 5082 InnerSelect, N2); 5083 } 5084 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) 5085 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { 5086 SDValue Cond0 = N0->getOperand(0); 5087 SDValue Cond1 = N0->getOperand(1); 5088 SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), 5089 N1.getValueType(), Cond1, N1, N2); 5090 if (normalizeToSequence || !InnerSelect.use_empty()) 5091 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, N1, 5092 InnerSelect); 5093 } 5094 5095 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y 5096 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { 5097 SDValue N1_0 = N1->getOperand(0); 5098 SDValue N1_1 = N1->getOperand(1); 5099 SDValue N1_2 = N1->getOperand(2); 5100 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { 5101 // Create the actual and node if we can generate good code for it. 5102 if (!normalizeToSequence) { 5103 SDValue And = DAG.getNode(ISD::AND, SDLoc(N), N0.getValueType(), 5104 N0, N1_0); 5105 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), And, 5106 N1_1, N2); 5107 } 5108 // Otherwise see if we can optimize the "and" to a better pattern. 5109 if (SDValue Combined = visitANDLike(N0, N1_0, N)) 5110 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, 5111 N1_1, N2); 5112 } 5113 } 5114 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y 5115 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { 5116 SDValue N2_0 = N2->getOperand(0); 5117 SDValue N2_1 = N2->getOperand(1); 5118 SDValue N2_2 = N2->getOperand(2); 5119 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { 5120 // Create the actual or node if we can generate good code for it. 5121 if (!normalizeToSequence) { 5122 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N), N0.getValueType(), 5123 N0, N2_0); 5124 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Or, 5125 N1, N2_2); 5126 } 5127 // Otherwise see if we can optimize to a better pattern. 5128 if (SDValue Combined = visitORLike(N0, N2_0, N)) 5129 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, 5130 N1, N2_2); 5131 } 5132 } 5133 } 5134 5135 // fold selects based on a setcc into other things, such as min/max/abs 5136 if (N0.getOpcode() == ISD::SETCC) { 5137 // select x, y (fcmp lt x, y) -> fminnum x, y 5138 // select x, y (fcmp gt x, y) -> fmaxnum x, y 5139 // 5140 // This is OK if we don't care about what happens if either operand is a 5141 // NaN. 5142 // 5143 5144 // FIXME: Instead of testing for UnsafeFPMath, this should be checking for 5145 // no signed zeros as well as no nans. 5146 const TargetOptions &Options = DAG.getTarget().Options; 5147 if (Options.UnsafeFPMath && 5148 VT.isFloatingPoint() && N0.hasOneUse() && 5149 DAG.isKnownNeverNaN(N1) && DAG.isKnownNeverNaN(N2)) { 5150 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 5151 5152 if (SDValue FMinMax = combineMinNumMaxNum(SDLoc(N), VT, N0.getOperand(0), 5153 N0.getOperand(1), N1, N2, CC, 5154 TLI, DAG)) 5155 return FMinMax; 5156 } 5157 5158 if ((!LegalOperations && 5159 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) || 5160 TLI.isOperationLegal(ISD::SELECT_CC, VT)) 5161 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, 5162 N0.getOperand(0), N0.getOperand(1), 5163 N1, N2, N0.getOperand(2)); 5164 return SimplifySelect(SDLoc(N), N0, N1, N2); 5165 } 5166 5167 return SDValue(); 5168 } 5169 5170 static 5171 std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) { 5172 SDLoc DL(N); 5173 EVT LoVT, HiVT; 5174 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); 5175 5176 // Split the inputs. 5177 SDValue Lo, Hi, LL, LH, RL, RH; 5178 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0); 5179 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1); 5180 5181 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2)); 5182 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2)); 5183 5184 return std::make_pair(Lo, Hi); 5185 } 5186 5187 // This function assumes all the vselect's arguments are CONCAT_VECTOR 5188 // nodes and that the condition is a BV of ConstantSDNodes (or undefs). 5189 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { 5190 SDLoc dl(N); 5191 SDValue Cond = N->getOperand(0); 5192 SDValue LHS = N->getOperand(1); 5193 SDValue RHS = N->getOperand(2); 5194 EVT VT = N->getValueType(0); 5195 int NumElems = VT.getVectorNumElements(); 5196 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && 5197 RHS.getOpcode() == ISD::CONCAT_VECTORS && 5198 Cond.getOpcode() == ISD::BUILD_VECTOR); 5199 5200 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about 5201 // binary ones here. 5202 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) 5203 return SDValue(); 5204 5205 // We're sure we have an even number of elements due to the 5206 // concat_vectors we have as arguments to vselect. 5207 // Skip BV elements until we find one that's not an UNDEF 5208 // After we find an UNDEF element, keep looping until we get to half the 5209 // length of the BV and see if all the non-undef nodes are the same. 5210 ConstantSDNode *BottomHalf = nullptr; 5211 for (int i = 0; i < NumElems / 2; ++i) { 5212 if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF) 5213 continue; 5214 5215 if (BottomHalf == nullptr) 5216 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 5217 else if (Cond->getOperand(i).getNode() != BottomHalf) 5218 return SDValue(); 5219 } 5220 5221 // Do the same for the second half of the BuildVector 5222 ConstantSDNode *TopHalf = nullptr; 5223 for (int i = NumElems / 2; i < NumElems; ++i) { 5224 if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF) 5225 continue; 5226 5227 if (TopHalf == nullptr) 5228 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 5229 else if (Cond->getOperand(i).getNode() != TopHalf) 5230 return SDValue(); 5231 } 5232 5233 assert(TopHalf && BottomHalf && 5234 "One half of the selector was all UNDEFs and the other was all the " 5235 "same value. This should have been addressed before this function."); 5236 return DAG.getNode( 5237 ISD::CONCAT_VECTORS, dl, VT, 5238 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), 5239 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); 5240 } 5241 5242 SDValue DAGCombiner::visitMSCATTER(SDNode *N) { 5243 5244 if (Level >= AfterLegalizeTypes) 5245 return SDValue(); 5246 5247 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); 5248 SDValue Mask = MSC->getMask(); 5249 SDValue Data = MSC->getValue(); 5250 SDLoc DL(N); 5251 5252 // If the MSCATTER data type requires splitting and the mask is provided by a 5253 // SETCC, then split both nodes and its operands before legalization. This 5254 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5255 // and enables future optimizations (e.g. min/max pattern matching on X86). 5256 if (Mask.getOpcode() != ISD::SETCC) 5257 return SDValue(); 5258 5259 // Check if any splitting is required. 5260 if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != 5261 TargetLowering::TypeSplitVector) 5262 return SDValue(); 5263 SDValue MaskLo, MaskHi, Lo, Hi; 5264 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5265 5266 EVT LoVT, HiVT; 5267 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0)); 5268 5269 SDValue Chain = MSC->getChain(); 5270 5271 EVT MemoryVT = MSC->getMemoryVT(); 5272 unsigned Alignment = MSC->getOriginalAlignment(); 5273 5274 EVT LoMemVT, HiMemVT; 5275 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5276 5277 SDValue DataLo, DataHi; 5278 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); 5279 5280 SDValue BasePtr = MSC->getBasePtr(); 5281 SDValue IndexLo, IndexHi; 5282 std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL); 5283 5284 MachineMemOperand *MMO = DAG.getMachineFunction(). 5285 getMachineMemOperand(MSC->getPointerInfo(), 5286 MachineMemOperand::MOStore, LoMemVT.getStoreSize(), 5287 Alignment, MSC->getAAInfo(), MSC->getRanges()); 5288 5289 SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo }; 5290 Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(), 5291 DL, OpsLo, MMO); 5292 5293 SDValue OpsHi[] = {Chain, DataHi, MaskHi, BasePtr, IndexHi}; 5294 Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(), 5295 DL, OpsHi, MMO); 5296 5297 AddToWorklist(Lo.getNode()); 5298 AddToWorklist(Hi.getNode()); 5299 5300 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 5301 } 5302 5303 SDValue DAGCombiner::visitMSTORE(SDNode *N) { 5304 5305 if (Level >= AfterLegalizeTypes) 5306 return SDValue(); 5307 5308 MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N); 5309 SDValue Mask = MST->getMask(); 5310 SDValue Data = MST->getValue(); 5311 SDLoc DL(N); 5312 5313 // If the MSTORE data type requires splitting and the mask is provided by a 5314 // SETCC, then split both nodes and its operands before legalization. This 5315 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5316 // and enables future optimizations (e.g. min/max pattern matching on X86). 5317 if (Mask.getOpcode() == ISD::SETCC) { 5318 5319 // Check if any splitting is required. 5320 if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != 5321 TargetLowering::TypeSplitVector) 5322 return SDValue(); 5323 5324 SDValue MaskLo, MaskHi, Lo, Hi; 5325 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5326 5327 EVT LoVT, HiVT; 5328 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MST->getValueType(0)); 5329 5330 SDValue Chain = MST->getChain(); 5331 SDValue Ptr = MST->getBasePtr(); 5332 5333 EVT MemoryVT = MST->getMemoryVT(); 5334 unsigned Alignment = MST->getOriginalAlignment(); 5335 5336 // if Alignment is equal to the vector size, 5337 // take the half of it for the second part 5338 unsigned SecondHalfAlignment = 5339 (Alignment == Data->getValueType(0).getSizeInBits()/8) ? 5340 Alignment/2 : Alignment; 5341 5342 EVT LoMemVT, HiMemVT; 5343 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5344 5345 SDValue DataLo, DataHi; 5346 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); 5347 5348 MachineMemOperand *MMO = DAG.getMachineFunction(). 5349 getMachineMemOperand(MST->getPointerInfo(), 5350 MachineMemOperand::MOStore, LoMemVT.getStoreSize(), 5351 Alignment, MST->getAAInfo(), MST->getRanges()); 5352 5353 Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO, 5354 MST->isTruncatingStore()); 5355 5356 unsigned IncrementSize = LoMemVT.getSizeInBits()/8; 5357 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 5358 DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); 5359 5360 MMO = DAG.getMachineFunction(). 5361 getMachineMemOperand(MST->getPointerInfo(), 5362 MachineMemOperand::MOStore, HiMemVT.getStoreSize(), 5363 SecondHalfAlignment, MST->getAAInfo(), 5364 MST->getRanges()); 5365 5366 Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO, 5367 MST->isTruncatingStore()); 5368 5369 AddToWorklist(Lo.getNode()); 5370 AddToWorklist(Hi.getNode()); 5371 5372 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 5373 } 5374 return SDValue(); 5375 } 5376 5377 SDValue DAGCombiner::visitMGATHER(SDNode *N) { 5378 5379 if (Level >= AfterLegalizeTypes) 5380 return SDValue(); 5381 5382 MaskedGatherSDNode *MGT = dyn_cast<MaskedGatherSDNode>(N); 5383 SDValue Mask = MGT->getMask(); 5384 SDLoc DL(N); 5385 5386 // If the MGATHER result requires splitting and the mask is provided by a 5387 // SETCC, then split both nodes and its operands before legalization. This 5388 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5389 // and enables future optimizations (e.g. min/max pattern matching on X86). 5390 5391 if (Mask.getOpcode() != ISD::SETCC) 5392 return SDValue(); 5393 5394 EVT VT = N->getValueType(0); 5395 5396 // Check if any splitting is required. 5397 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5398 TargetLowering::TypeSplitVector) 5399 return SDValue(); 5400 5401 SDValue MaskLo, MaskHi, Lo, Hi; 5402 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5403 5404 SDValue Src0 = MGT->getValue(); 5405 SDValue Src0Lo, Src0Hi; 5406 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); 5407 5408 EVT LoVT, HiVT; 5409 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 5410 5411 SDValue Chain = MGT->getChain(); 5412 EVT MemoryVT = MGT->getMemoryVT(); 5413 unsigned Alignment = MGT->getOriginalAlignment(); 5414 5415 EVT LoMemVT, HiMemVT; 5416 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5417 5418 SDValue BasePtr = MGT->getBasePtr(); 5419 SDValue Index = MGT->getIndex(); 5420 SDValue IndexLo, IndexHi; 5421 std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL); 5422 5423 MachineMemOperand *MMO = DAG.getMachineFunction(). 5424 getMachineMemOperand(MGT->getPointerInfo(), 5425 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), 5426 Alignment, MGT->getAAInfo(), MGT->getRanges()); 5427 5428 SDValue OpsLo[] = { Chain, Src0Lo, MaskLo, BasePtr, IndexLo }; 5429 Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo, 5430 MMO); 5431 5432 SDValue OpsHi[] = {Chain, Src0Hi, MaskHi, BasePtr, IndexHi}; 5433 Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi, 5434 MMO); 5435 5436 AddToWorklist(Lo.getNode()); 5437 AddToWorklist(Hi.getNode()); 5438 5439 // Build a factor node to remember that this load is independent of the 5440 // other one. 5441 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), 5442 Hi.getValue(1)); 5443 5444 // Legalized the chain result - switch anything that used the old chain to 5445 // use the new one. 5446 DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain); 5447 5448 SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5449 5450 SDValue RetOps[] = { GatherRes, Chain }; 5451 return DAG.getMergeValues(RetOps, DL); 5452 } 5453 5454 SDValue DAGCombiner::visitMLOAD(SDNode *N) { 5455 5456 if (Level >= AfterLegalizeTypes) 5457 return SDValue(); 5458 5459 MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N); 5460 SDValue Mask = MLD->getMask(); 5461 SDLoc DL(N); 5462 5463 // If the MLOAD result requires splitting and the mask is provided by a 5464 // SETCC, then split both nodes and its operands before legalization. This 5465 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5466 // and enables future optimizations (e.g. min/max pattern matching on X86). 5467 5468 if (Mask.getOpcode() == ISD::SETCC) { 5469 EVT VT = N->getValueType(0); 5470 5471 // Check if any splitting is required. 5472 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5473 TargetLowering::TypeSplitVector) 5474 return SDValue(); 5475 5476 SDValue MaskLo, MaskHi, Lo, Hi; 5477 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5478 5479 SDValue Src0 = MLD->getSrc0(); 5480 SDValue Src0Lo, Src0Hi; 5481 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); 5482 5483 EVT LoVT, HiVT; 5484 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0)); 5485 5486 SDValue Chain = MLD->getChain(); 5487 SDValue Ptr = MLD->getBasePtr(); 5488 EVT MemoryVT = MLD->getMemoryVT(); 5489 unsigned Alignment = MLD->getOriginalAlignment(); 5490 5491 // if Alignment is equal to the vector size, 5492 // take the half of it for the second part 5493 unsigned SecondHalfAlignment = 5494 (Alignment == MLD->getValueType(0).getSizeInBits()/8) ? 5495 Alignment/2 : Alignment; 5496 5497 EVT LoMemVT, HiMemVT; 5498 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5499 5500 MachineMemOperand *MMO = DAG.getMachineFunction(). 5501 getMachineMemOperand(MLD->getPointerInfo(), 5502 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), 5503 Alignment, MLD->getAAInfo(), MLD->getRanges()); 5504 5505 Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, LoMemVT, MMO, 5506 ISD::NON_EXTLOAD); 5507 5508 unsigned IncrementSize = LoMemVT.getSizeInBits()/8; 5509 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 5510 DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); 5511 5512 MMO = DAG.getMachineFunction(). 5513 getMachineMemOperand(MLD->getPointerInfo(), 5514 MachineMemOperand::MOLoad, HiMemVT.getStoreSize(), 5515 SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges()); 5516 5517 Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, HiMemVT, MMO, 5518 ISD::NON_EXTLOAD); 5519 5520 AddToWorklist(Lo.getNode()); 5521 AddToWorklist(Hi.getNode()); 5522 5523 // Build a factor node to remember that this load is independent of the 5524 // other one. 5525 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), 5526 Hi.getValue(1)); 5527 5528 // Legalized the chain result - switch anything that used the old chain to 5529 // use the new one. 5530 DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain); 5531 5532 SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5533 5534 SDValue RetOps[] = { LoadRes, Chain }; 5535 return DAG.getMergeValues(RetOps, DL); 5536 } 5537 return SDValue(); 5538 } 5539 5540 SDValue DAGCombiner::visitVSELECT(SDNode *N) { 5541 SDValue N0 = N->getOperand(0); 5542 SDValue N1 = N->getOperand(1); 5543 SDValue N2 = N->getOperand(2); 5544 SDLoc DL(N); 5545 5546 // Canonicalize integer abs. 5547 // vselect (setg[te] X, 0), X, -X -> 5548 // vselect (setgt X, -1), X, -X -> 5549 // vselect (setl[te] X, 0), -X, X -> 5550 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 5551 if (N0.getOpcode() == ISD::SETCC) { 5552 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 5553 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 5554 bool isAbs = false; 5555 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); 5556 5557 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || 5558 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && 5559 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) 5560 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); 5561 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && 5562 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) 5563 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 5564 5565 if (isAbs) { 5566 EVT VT = LHS.getValueType(); 5567 SDValue Shift = DAG.getNode( 5568 ISD::SRA, DL, VT, LHS, 5569 DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, DL, VT)); 5570 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); 5571 AddToWorklist(Shift.getNode()); 5572 AddToWorklist(Add.getNode()); 5573 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); 5574 } 5575 } 5576 5577 if (SimplifySelectOps(N, N1, N2)) 5578 return SDValue(N, 0); // Don't revisit N. 5579 5580 // If the VSELECT result requires splitting and the mask is provided by a 5581 // SETCC, then split both nodes and its operands before legalization. This 5582 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5583 // and enables future optimizations (e.g. min/max pattern matching on X86). 5584 if (N0.getOpcode() == ISD::SETCC) { 5585 EVT VT = N->getValueType(0); 5586 5587 // Check if any splitting is required. 5588 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5589 TargetLowering::TypeSplitVector) 5590 return SDValue(); 5591 5592 SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH; 5593 std::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG); 5594 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 1); 5595 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 2); 5596 5597 Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL); 5598 Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH); 5599 5600 // Add the new VSELECT nodes to the work list in case they need to be split 5601 // again. 5602 AddToWorklist(Lo.getNode()); 5603 AddToWorklist(Hi.getNode()); 5604 5605 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5606 } 5607 5608 // Fold (vselect (build_vector all_ones), N1, N2) -> N1 5609 if (ISD::isBuildVectorAllOnes(N0.getNode())) 5610 return N1; 5611 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 5612 if (ISD::isBuildVectorAllZeros(N0.getNode())) 5613 return N2; 5614 5615 // The ConvertSelectToConcatVector function is assuming both the above 5616 // checks for (vselect (build_vector all{ones,zeros) ...) have been made 5617 // and addressed. 5618 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 5619 N2.getOpcode() == ISD::CONCAT_VECTORS && 5620 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 5621 if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) 5622 return CV; 5623 } 5624 5625 return SDValue(); 5626 } 5627 5628 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { 5629 SDValue N0 = N->getOperand(0); 5630 SDValue N1 = N->getOperand(1); 5631 SDValue N2 = N->getOperand(2); 5632 SDValue N3 = N->getOperand(3); 5633 SDValue N4 = N->getOperand(4); 5634 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); 5635 5636 // fold select_cc lhs, rhs, x, x, cc -> x 5637 if (N2 == N3) 5638 return N2; 5639 5640 // Determine if the condition we're dealing with is constant 5641 SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), 5642 N0, N1, CC, SDLoc(N), false); 5643 if (SCC.getNode()) { 5644 AddToWorklist(SCC.getNode()); 5645 5646 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { 5647 if (!SCCC->isNullValue()) 5648 return N2; // cond always true -> true val 5649 else 5650 return N3; // cond always false -> false val 5651 } else if (SCC->getOpcode() == ISD::UNDEF) { 5652 // When the condition is UNDEF, just return the first operand. This is 5653 // coherent the DAG creation, no setcc node is created in this case 5654 return N2; 5655 } else if (SCC.getOpcode() == ISD::SETCC) { 5656 // Fold to a simpler select_cc 5657 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(), 5658 SCC.getOperand(0), SCC.getOperand(1), N2, N3, 5659 SCC.getOperand(2)); 5660 } 5661 } 5662 5663 // If we can fold this based on the true/false value, do so. 5664 if (SimplifySelectOps(N, N2, N3)) 5665 return SDValue(N, 0); // Don't revisit N. 5666 5667 // fold select_cc into other things, such as min/max/abs 5668 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); 5669 } 5670 5671 SDValue DAGCombiner::visitSETCC(SDNode *N) { 5672 return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), 5673 cast<CondCodeSDNode>(N->getOperand(2))->get(), 5674 SDLoc(N)); 5675 } 5676 5677 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or 5678 /// a build_vector of constants. 5679 /// This function is called by the DAGCombiner when visiting sext/zext/aext 5680 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 5681 /// Vector extends are not folded if operations are legal; this is to 5682 /// avoid introducing illegal build_vector dag nodes. 5683 static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, 5684 SelectionDAG &DAG, bool LegalTypes, 5685 bool LegalOperations) { 5686 unsigned Opcode = N->getOpcode(); 5687 SDValue N0 = N->getOperand(0); 5688 EVT VT = N->getValueType(0); 5689 5690 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 5691 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 5692 && "Expected EXTEND dag node in input!"); 5693 5694 // fold (sext c1) -> c1 5695 // fold (zext c1) -> c1 5696 // fold (aext c1) -> c1 5697 if (isa<ConstantSDNode>(N0)) 5698 return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode(); 5699 5700 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) 5701 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) 5702 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) 5703 EVT SVT = VT.getScalarType(); 5704 if (!(VT.isVector() && 5705 (!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) && 5706 ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) 5707 return nullptr; 5708 5709 // We can fold this node into a build_vector. 5710 unsigned VTBits = SVT.getSizeInBits(); 5711 unsigned EVTBits = N0->getValueType(0).getScalarType().getSizeInBits(); 5712 SmallVector<SDValue, 8> Elts; 5713 unsigned NumElts = VT.getVectorNumElements(); 5714 SDLoc DL(N); 5715 5716 for (unsigned i=0; i != NumElts; ++i) { 5717 SDValue Op = N0->getOperand(i); 5718 if (Op->getOpcode() == ISD::UNDEF) { 5719 Elts.push_back(DAG.getUNDEF(SVT)); 5720 continue; 5721 } 5722 5723 SDLoc DL(Op); 5724 // Get the constant value and if needed trunc it to the size of the type. 5725 // Nodes like build_vector might have constants wider than the scalar type. 5726 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); 5727 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 5728 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); 5729 else 5730 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); 5731 } 5732 5733 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts).getNode(); 5734 } 5735 5736 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: 5737 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" 5738 // transformation. Returns true if extension are possible and the above 5739 // mentioned transformation is profitable. 5740 static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0, 5741 unsigned ExtOpc, 5742 SmallVectorImpl<SDNode *> &ExtendNodes, 5743 const TargetLowering &TLI) { 5744 bool HasCopyToRegUses = false; 5745 bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType()); 5746 for (SDNode::use_iterator UI = N0.getNode()->use_begin(), 5747 UE = N0.getNode()->use_end(); 5748 UI != UE; ++UI) { 5749 SDNode *User = *UI; 5750 if (User == N) 5751 continue; 5752 if (UI.getUse().getResNo() != N0.getResNo()) 5753 continue; 5754 // FIXME: Only extend SETCC N, N and SETCC N, c for now. 5755 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { 5756 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); 5757 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) 5758 // Sign bits will be lost after a zext. 5759 return false; 5760 bool Add = false; 5761 for (unsigned i = 0; i != 2; ++i) { 5762 SDValue UseOp = User->getOperand(i); 5763 if (UseOp == N0) 5764 continue; 5765 if (!isa<ConstantSDNode>(UseOp)) 5766 return false; 5767 Add = true; 5768 } 5769 if (Add) 5770 ExtendNodes.push_back(User); 5771 continue; 5772 } 5773 // If truncates aren't free and there are users we can't 5774 // extend, it isn't worthwhile. 5775 if (!isTruncFree) 5776 return false; 5777 // Remember if this value is live-out. 5778 if (User->getOpcode() == ISD::CopyToReg) 5779 HasCopyToRegUses = true; 5780 } 5781 5782 if (HasCopyToRegUses) { 5783 bool BothLiveOut = false; 5784 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5785 UI != UE; ++UI) { 5786 SDUse &Use = UI.getUse(); 5787 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { 5788 BothLiveOut = true; 5789 break; 5790 } 5791 } 5792 if (BothLiveOut) 5793 // Both unextended and extended values are live out. There had better be 5794 // a good reason for the transformation. 5795 return ExtendNodes.size(); 5796 } 5797 return true; 5798 } 5799 5800 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 5801 SDValue Trunc, SDValue ExtLoad, SDLoc DL, 5802 ISD::NodeType ExtType) { 5803 // Extend SetCC uses if necessary. 5804 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { 5805 SDNode *SetCC = SetCCs[i]; 5806 SmallVector<SDValue, 4> Ops; 5807 5808 for (unsigned j = 0; j != 2; ++j) { 5809 SDValue SOp = SetCC->getOperand(j); 5810 if (SOp == Trunc) 5811 Ops.push_back(ExtLoad); 5812 else 5813 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); 5814 } 5815 5816 Ops.push_back(SetCC->getOperand(2)); 5817 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 5818 } 5819 } 5820 5821 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). 5822 SDValue DAGCombiner::CombineExtLoad(SDNode *N) { 5823 SDValue N0 = N->getOperand(0); 5824 EVT DstVT = N->getValueType(0); 5825 EVT SrcVT = N0.getValueType(); 5826 5827 assert((N->getOpcode() == ISD::SIGN_EXTEND || 5828 N->getOpcode() == ISD::ZERO_EXTEND) && 5829 "Unexpected node type (not an extend)!"); 5830 5831 // fold (sext (load x)) to multiple smaller sextloads; same for zext. 5832 // For example, on a target with legal v4i32, but illegal v8i32, turn: 5833 // (v8i32 (sext (v8i16 (load x)))) 5834 // into: 5835 // (v8i32 (concat_vectors (v4i32 (sextload x)), 5836 // (v4i32 (sextload (x + 16))))) 5837 // Where uses of the original load, i.e.: 5838 // (v8i16 (load x)) 5839 // are replaced with: 5840 // (v8i16 (truncate 5841 // (v8i32 (concat_vectors (v4i32 (sextload x)), 5842 // (v4i32 (sextload (x + 16))))))) 5843 // 5844 // This combine is only applicable to illegal, but splittable, vectors. 5845 // All legal types, and illegal non-vector types, are handled elsewhere. 5846 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. 5847 // 5848 if (N0->getOpcode() != ISD::LOAD) 5849 return SDValue(); 5850 5851 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 5852 5853 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || 5854 !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() || 5855 !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 5856 return SDValue(); 5857 5858 SmallVector<SDNode *, 4> SetCCs; 5859 if (!ExtendUsesToFormExtLoad(N, N0, N->getOpcode(), SetCCs, TLI)) 5860 return SDValue(); 5861 5862 ISD::LoadExtType ExtType = 5863 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 5864 5865 // Try to split the vector types to get down to legal types. 5866 EVT SplitSrcVT = SrcVT; 5867 EVT SplitDstVT = DstVT; 5868 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && 5869 SplitSrcVT.getVectorNumElements() > 1) { 5870 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; 5871 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; 5872 } 5873 5874 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) 5875 return SDValue(); 5876 5877 SDLoc DL(N); 5878 const unsigned NumSplits = 5879 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); 5880 const unsigned Stride = SplitSrcVT.getStoreSize(); 5881 SmallVector<SDValue, 4> Loads; 5882 SmallVector<SDValue, 4> Chains; 5883 5884 SDValue BasePtr = LN0->getBasePtr(); 5885 for (unsigned Idx = 0; Idx < NumSplits; Idx++) { 5886 const unsigned Offset = Idx * Stride; 5887 const unsigned Align = MinAlign(LN0->getAlignment(), Offset); 5888 5889 SDValue SplitLoad = DAG.getExtLoad( 5890 ExtType, DL, SplitDstVT, LN0->getChain(), BasePtr, 5891 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, 5892 LN0->isVolatile(), LN0->isNonTemporal(), LN0->isInvariant(), 5893 Align, LN0->getAAInfo()); 5894 5895 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, 5896 DAG.getConstant(Stride, DL, BasePtr.getValueType())); 5897 5898 Loads.push_back(SplitLoad.getValue(0)); 5899 Chains.push_back(SplitLoad.getValue(1)); 5900 } 5901 5902 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 5903 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); 5904 5905 CombineTo(N, NewValue); 5906 5907 // Replace uses of the original load (before extension) 5908 // with a truncate of the concatenated sextloaded vectors. 5909 SDValue Trunc = 5910 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); 5911 CombineTo(N0.getNode(), Trunc, NewChain); 5912 ExtendSetCCUses(SetCCs, Trunc, NewValue, DL, 5913 (ISD::NodeType)N->getOpcode()); 5914 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5915 } 5916 5917 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { 5918 SDValue N0 = N->getOperand(0); 5919 EVT VT = N->getValueType(0); 5920 5921 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 5922 LegalOperations)) 5923 return SDValue(Res, 0); 5924 5925 // fold (sext (sext x)) -> (sext x) 5926 // fold (sext (aext x)) -> (sext x) 5927 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 5928 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, 5929 N0.getOperand(0)); 5930 5931 if (N0.getOpcode() == ISD::TRUNCATE) { 5932 // fold (sext (truncate (load x))) -> (sext (smaller load x)) 5933 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) 5934 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 5935 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 5936 if (NarrowLoad.getNode() != N0.getNode()) { 5937 CombineTo(N0.getNode(), NarrowLoad); 5938 // CombineTo deleted the truncate, if needed, but not what's under it. 5939 AddToWorklist(oye); 5940 } 5941 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5942 } 5943 5944 // See if the value being truncated is already sign extended. If so, just 5945 // eliminate the trunc/sext pair. 5946 SDValue Op = N0.getOperand(0); 5947 unsigned OpBits = Op.getValueType().getScalarType().getSizeInBits(); 5948 unsigned MidBits = N0.getValueType().getScalarType().getSizeInBits(); 5949 unsigned DestBits = VT.getScalarType().getSizeInBits(); 5950 unsigned NumSignBits = DAG.ComputeNumSignBits(Op); 5951 5952 if (OpBits == DestBits) { 5953 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign 5954 // bits, it is already ready. 5955 if (NumSignBits > DestBits-MidBits) 5956 return Op; 5957 } else if (OpBits < DestBits) { 5958 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign 5959 // bits, just sext from i32. 5960 if (NumSignBits > OpBits-MidBits) 5961 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op); 5962 } else { 5963 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign 5964 // bits, just truncate to i32. 5965 if (NumSignBits > OpBits-MidBits) 5966 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 5967 } 5968 5969 // fold (sext (truncate x)) -> (sextinreg x). 5970 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, 5971 N0.getValueType())) { 5972 if (OpBits < DestBits) 5973 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); 5974 else if (OpBits > DestBits) 5975 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); 5976 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op, 5977 DAG.getValueType(N0.getValueType())); 5978 } 5979 } 5980 5981 // fold (sext (load x)) -> (sext (truncate (sextload x))) 5982 // Only generate vector extloads when 1) they're legal, and 2) they are 5983 // deemed desirable by the target. 5984 if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 5985 ((!LegalOperations && !VT.isVector() && 5986 !cast<LoadSDNode>(N0)->isVolatile()) || 5987 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()))) { 5988 bool DoXform = true; 5989 SmallVector<SDNode*, 4> SetCCs; 5990 if (!N0.hasOneUse()) 5991 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI); 5992 if (VT.isVector()) 5993 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 5994 if (DoXform) { 5995 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 5996 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 5997 LN0->getChain(), 5998 LN0->getBasePtr(), N0.getValueType(), 5999 LN0->getMemOperand()); 6000 CombineTo(N, ExtLoad); 6001 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6002 N0.getValueType(), ExtLoad); 6003 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6004 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6005 ISD::SIGN_EXTEND); 6006 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6007 } 6008 } 6009 6010 // fold (sext (load x)) to multiple smaller sextloads. 6011 // Only on illegal but splittable vectors. 6012 if (SDValue ExtLoad = CombineExtLoad(N)) 6013 return ExtLoad; 6014 6015 // fold (sext (sextload x)) -> (sext (truncate (sextload x))) 6016 // fold (sext ( extload x)) -> (sext (truncate (sextload x))) 6017 if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && 6018 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 6019 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6020 EVT MemVT = LN0->getMemoryVT(); 6021 if ((!LegalOperations && !LN0->isVolatile()) || 6022 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT)) { 6023 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6024 LN0->getChain(), 6025 LN0->getBasePtr(), MemVT, 6026 LN0->getMemOperand()); 6027 CombineTo(N, ExtLoad); 6028 CombineTo(N0.getNode(), 6029 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6030 N0.getValueType(), ExtLoad), 6031 ExtLoad.getValue(1)); 6032 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6033 } 6034 } 6035 6036 // fold (sext (and/or/xor (load x), cst)) -> 6037 // (and/or/xor (sextload x), (sext cst)) 6038 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 6039 N0.getOpcode() == ISD::XOR) && 6040 isa<LoadSDNode>(N0.getOperand(0)) && 6041 N0.getOperand(1).getOpcode() == ISD::Constant && 6042 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()) && 6043 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 6044 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); 6045 if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) { 6046 bool DoXform = true; 6047 SmallVector<SDNode*, 4> SetCCs; 6048 if (!N0.hasOneUse()) 6049 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND, 6050 SetCCs, TLI); 6051 if (DoXform) { 6052 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT, 6053 LN0->getChain(), LN0->getBasePtr(), 6054 LN0->getMemoryVT(), 6055 LN0->getMemOperand()); 6056 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6057 Mask = Mask.sext(VT.getSizeInBits()); 6058 SDLoc DL(N); 6059 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 6060 ExtLoad, DAG.getConstant(Mask, DL, VT)); 6061 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, 6062 SDLoc(N0.getOperand(0)), 6063 N0.getOperand(0).getValueType(), ExtLoad); 6064 CombineTo(N, And); 6065 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); 6066 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, 6067 ISD::SIGN_EXTEND); 6068 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6069 } 6070 } 6071 } 6072 6073 if (N0.getOpcode() == ISD::SETCC) { 6074 EVT N0VT = N0.getOperand(0).getValueType(); 6075 // sext(setcc) -> sext_in_reg(vsetcc) for vectors. 6076 // Only do this before legalize for now. 6077 if (VT.isVector() && !LegalOperations && 6078 TLI.getBooleanContents(N0VT) == 6079 TargetLowering::ZeroOrNegativeOneBooleanContent) { 6080 // On some architectures (such as SSE/NEON/etc) the SETCC result type is 6081 // of the same size as the compared operands. Only optimize sext(setcc()) 6082 // if this is the case. 6083 EVT SVT = getSetCCResultType(N0VT); 6084 6085 // We know that the # elements of the results is the same as the 6086 // # elements of the compare (and the # elements of the compare result 6087 // for that matter). Check to see that they are the same size. If so, 6088 // we know that the element size of the sext'd result matches the 6089 // element size of the compare operands. 6090 if (VT.getSizeInBits() == SVT.getSizeInBits()) 6091 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 6092 N0.getOperand(1), 6093 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6094 6095 // If the desired elements are smaller or larger than the source 6096 // elements we can use a matching integer vector type and then 6097 // truncate/sign extend 6098 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); 6099 if (SVT == MatchingVectorType) { 6100 SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType, 6101 N0.getOperand(0), N0.getOperand(1), 6102 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6103 return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT); 6104 } 6105 } 6106 6107 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), -1, 0) 6108 unsigned ElementWidth = VT.getScalarType().getSizeInBits(); 6109 SDLoc DL(N); 6110 SDValue NegOne = 6111 DAG.getConstant(APInt::getAllOnesValue(ElementWidth), DL, VT); 6112 SDValue SCC = 6113 SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), 6114 NegOne, DAG.getConstant(0, DL, VT), 6115 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); 6116 if (SCC.getNode()) return SCC; 6117 6118 if (!VT.isVector()) { 6119 EVT SetCCVT = getSetCCResultType(N0.getOperand(0).getValueType()); 6120 if (!LegalOperations || 6121 TLI.isOperationLegal(ISD::SETCC, N0.getOperand(0).getValueType())) { 6122 SDLoc DL(N); 6123 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 6124 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, 6125 N0.getOperand(0), N0.getOperand(1), CC); 6126 return DAG.getSelect(DL, VT, SetCC, 6127 NegOne, DAG.getConstant(0, DL, VT)); 6128 } 6129 } 6130 } 6131 6132 // fold (sext x) -> (zext x) if the sign bit is known zero. 6133 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && 6134 DAG.SignBitIsZero(N0)) 6135 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0); 6136 6137 return SDValue(); 6138 } 6139 6140 // isTruncateOf - If N is a truncate of some other value, return true, record 6141 // the value being truncated in Op and which of Op's bits are zero in KnownZero. 6142 // This function computes KnownZero to avoid a duplicated call to 6143 // computeKnownBits in the caller. 6144 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, 6145 APInt &KnownZero) { 6146 APInt KnownOne; 6147 if (N->getOpcode() == ISD::TRUNCATE) { 6148 Op = N->getOperand(0); 6149 DAG.computeKnownBits(Op, KnownZero, KnownOne); 6150 return true; 6151 } 6152 6153 if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 || 6154 cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE) 6155 return false; 6156 6157 SDValue Op0 = N->getOperand(0); 6158 SDValue Op1 = N->getOperand(1); 6159 assert(Op0.getValueType() == Op1.getValueType()); 6160 6161 if (isNullConstant(Op0)) 6162 Op = Op1; 6163 else if (isNullConstant(Op1)) 6164 Op = Op0; 6165 else 6166 return false; 6167 6168 DAG.computeKnownBits(Op, KnownZero, KnownOne); 6169 6170 if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue()) 6171 return false; 6172 6173 return true; 6174 } 6175 6176 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { 6177 SDValue N0 = N->getOperand(0); 6178 EVT VT = N->getValueType(0); 6179 6180 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6181 LegalOperations)) 6182 return SDValue(Res, 0); 6183 6184 // fold (zext (zext x)) -> (zext x) 6185 // fold (zext (aext x)) -> (zext x) 6186 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 6187 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, 6188 N0.getOperand(0)); 6189 6190 // fold (zext (truncate x)) -> (zext x) or 6191 // (zext (truncate x)) -> (truncate x) 6192 // This is valid when the truncated bits of x are already zero. 6193 // FIXME: We should extend this to work for vectors too. 6194 SDValue Op; 6195 APInt KnownZero; 6196 if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) { 6197 APInt TruncatedBits = 6198 (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ? 6199 APInt(Op.getValueSizeInBits(), 0) : 6200 APInt::getBitsSet(Op.getValueSizeInBits(), 6201 N0.getValueSizeInBits(), 6202 std::min(Op.getValueSizeInBits(), 6203 VT.getSizeInBits())); 6204 if (TruncatedBits == (KnownZero & TruncatedBits)) { 6205 if (VT.bitsGT(Op.getValueType())) 6206 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op); 6207 if (VT.bitsLT(Op.getValueType())) 6208 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6209 6210 return Op; 6211 } 6212 } 6213 6214 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 6215 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n))) 6216 if (N0.getOpcode() == ISD::TRUNCATE) { 6217 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6218 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6219 if (NarrowLoad.getNode() != N0.getNode()) { 6220 CombineTo(N0.getNode(), NarrowLoad); 6221 // CombineTo deleted the truncate, if needed, but not what's under it. 6222 AddToWorklist(oye); 6223 } 6224 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6225 } 6226 } 6227 6228 // fold (zext (truncate x)) -> (and x, mask) 6229 if (N0.getOpcode() == ISD::TRUNCATE) { 6230 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 6231 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) 6232 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6233 SDNode *oye = N0.getNode()->getOperand(0).getNode(); 6234 if (NarrowLoad.getNode() != N0.getNode()) { 6235 CombineTo(N0.getNode(), NarrowLoad); 6236 // CombineTo deleted the truncate, if needed, but not what's under it. 6237 AddToWorklist(oye); 6238 } 6239 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6240 } 6241 6242 EVT SrcVT = N0.getOperand(0).getValueType(); 6243 EVT MinVT = N0.getValueType(); 6244 6245 // Try to mask before the extension to avoid having to generate a larger mask, 6246 // possibly over several sub-vectors. 6247 if (SrcVT.bitsLT(VT)) { 6248 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && 6249 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { 6250 SDValue Op = N0.getOperand(0); 6251 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); 6252 AddToWorklist(Op.getNode()); 6253 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 6254 } 6255 } 6256 6257 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { 6258 SDValue Op = N0.getOperand(0); 6259 if (SrcVT.bitsLT(VT)) { 6260 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op); 6261 AddToWorklist(Op.getNode()); 6262 } else if (SrcVT.bitsGT(VT)) { 6263 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6264 AddToWorklist(Op.getNode()); 6265 } 6266 return DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); 6267 } 6268 } 6269 6270 // Fold (zext (and (trunc x), cst)) -> (and x, cst), 6271 // if either of the casts is not free. 6272 if (N0.getOpcode() == ISD::AND && 6273 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 6274 N0.getOperand(1).getOpcode() == ISD::Constant && 6275 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 6276 N0.getValueType()) || 6277 !TLI.isZExtFree(N0.getValueType(), VT))) { 6278 SDValue X = N0.getOperand(0).getOperand(0); 6279 if (X.getValueType().bitsLT(VT)) { 6280 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X); 6281 } else if (X.getValueType().bitsGT(VT)) { 6282 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 6283 } 6284 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6285 Mask = Mask.zext(VT.getSizeInBits()); 6286 SDLoc DL(N); 6287 return DAG.getNode(ISD::AND, DL, VT, 6288 X, DAG.getConstant(Mask, DL, VT)); 6289 } 6290 6291 // fold (zext (load x)) -> (zext (truncate (zextload x))) 6292 // Only generate vector extloads when 1) they're legal, and 2) they are 6293 // deemed desirable by the target. 6294 if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6295 ((!LegalOperations && !VT.isVector() && 6296 !cast<LoadSDNode>(N0)->isVolatile()) || 6297 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()))) { 6298 bool DoXform = true; 6299 SmallVector<SDNode*, 4> SetCCs; 6300 if (!N0.hasOneUse()) 6301 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI); 6302 if (VT.isVector()) 6303 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 6304 if (DoXform) { 6305 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6306 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, 6307 LN0->getChain(), 6308 LN0->getBasePtr(), N0.getValueType(), 6309 LN0->getMemOperand()); 6310 CombineTo(N, ExtLoad); 6311 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6312 N0.getValueType(), ExtLoad); 6313 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6314 6315 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6316 ISD::ZERO_EXTEND); 6317 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6318 } 6319 } 6320 6321 // fold (zext (load x)) to multiple smaller zextloads. 6322 // Only on illegal but splittable vectors. 6323 if (SDValue ExtLoad = CombineExtLoad(N)) 6324 return ExtLoad; 6325 6326 // fold (zext (and/or/xor (load x), cst)) -> 6327 // (and/or/xor (zextload x), (zext cst)) 6328 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 6329 N0.getOpcode() == ISD::XOR) && 6330 isa<LoadSDNode>(N0.getOperand(0)) && 6331 N0.getOperand(1).getOpcode() == ISD::Constant && 6332 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()) && 6333 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 6334 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); 6335 if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) { 6336 bool DoXform = true; 6337 SmallVector<SDNode*, 4> SetCCs; 6338 if (!N0.hasOneUse()) 6339 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND, 6340 SetCCs, TLI); 6341 if (DoXform) { 6342 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT, 6343 LN0->getChain(), LN0->getBasePtr(), 6344 LN0->getMemoryVT(), 6345 LN0->getMemOperand()); 6346 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6347 Mask = Mask.zext(VT.getSizeInBits()); 6348 SDLoc DL(N); 6349 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 6350 ExtLoad, DAG.getConstant(Mask, DL, VT)); 6351 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, 6352 SDLoc(N0.getOperand(0)), 6353 N0.getOperand(0).getValueType(), ExtLoad); 6354 CombineTo(N, And); 6355 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); 6356 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, 6357 ISD::ZERO_EXTEND); 6358 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6359 } 6360 } 6361 } 6362 6363 // fold (zext (zextload x)) -> (zext (truncate (zextload x))) 6364 // fold (zext ( extload x)) -> (zext (truncate (zextload x))) 6365 if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && 6366 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 6367 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6368 EVT MemVT = LN0->getMemoryVT(); 6369 if ((!LegalOperations && !LN0->isVolatile()) || 6370 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT)) { 6371 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, 6372 LN0->getChain(), 6373 LN0->getBasePtr(), MemVT, 6374 LN0->getMemOperand()); 6375 CombineTo(N, ExtLoad); 6376 CombineTo(N0.getNode(), 6377 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), 6378 ExtLoad), 6379 ExtLoad.getValue(1)); 6380 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6381 } 6382 } 6383 6384 if (N0.getOpcode() == ISD::SETCC) { 6385 if (!LegalOperations && VT.isVector() && 6386 N0.getValueType().getVectorElementType() == MVT::i1) { 6387 EVT N0VT = N0.getOperand(0).getValueType(); 6388 if (getSetCCResultType(N0VT) == N0.getValueType()) 6389 return SDValue(); 6390 6391 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. 6392 // Only do this before legalize for now. 6393 EVT EltVT = VT.getVectorElementType(); 6394 SDLoc DL(N); 6395 SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(), 6396 DAG.getConstant(1, DL, EltVT)); 6397 if (VT.getSizeInBits() == N0VT.getSizeInBits()) 6398 // We know that the # elements of the results is the same as the 6399 // # elements of the compare (and the # elements of the compare result 6400 // for that matter). Check to see that they are the same size. If so, 6401 // we know that the element size of the sext'd result matches the 6402 // element size of the compare operands. 6403 return DAG.getNode(ISD::AND, DL, VT, 6404 DAG.getSetCC(DL, VT, N0.getOperand(0), 6405 N0.getOperand(1), 6406 cast<CondCodeSDNode>(N0.getOperand(2))->get()), 6407 DAG.getNode(ISD::BUILD_VECTOR, DL, VT, 6408 OneOps)); 6409 6410 // If the desired elements are smaller or larger than the source 6411 // elements we can use a matching integer vector type and then 6412 // truncate/sign extend 6413 EVT MatchingElementType = 6414 EVT::getIntegerVT(*DAG.getContext(), 6415 N0VT.getScalarType().getSizeInBits()); 6416 EVT MatchingVectorType = 6417 EVT::getVectorVT(*DAG.getContext(), MatchingElementType, 6418 N0VT.getVectorNumElements()); 6419 SDValue VsetCC = 6420 DAG.getSetCC(DL, MatchingVectorType, N0.getOperand(0), 6421 N0.getOperand(1), 6422 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6423 return DAG.getNode(ISD::AND, DL, VT, 6424 DAG.getSExtOrTrunc(VsetCC, DL, VT), 6425 DAG.getNode(ISD::BUILD_VECTOR, DL, VT, OneOps)); 6426 } 6427 6428 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 6429 SDLoc DL(N); 6430 SDValue SCC = 6431 SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), 6432 DAG.getConstant(1, DL, VT), DAG.getConstant(0, DL, VT), 6433 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); 6434 if (SCC.getNode()) return SCC; 6435 } 6436 6437 // (zext (shl (zext x), cst)) -> (shl (zext x), cst) 6438 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && 6439 isa<ConstantSDNode>(N0.getOperand(1)) && 6440 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 6441 N0.hasOneUse()) { 6442 SDValue ShAmt = N0.getOperand(1); 6443 unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue(); 6444 if (N0.getOpcode() == ISD::SHL) { 6445 SDValue InnerZExt = N0.getOperand(0); 6446 // If the original shl may be shifting out bits, do not perform this 6447 // transformation. 6448 unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() - 6449 InnerZExt.getOperand(0).getValueType().getSizeInBits(); 6450 if (ShAmtVal > KnownZeroBits) 6451 return SDValue(); 6452 } 6453 6454 SDLoc DL(N); 6455 6456 // Ensure that the shift amount is wide enough for the shifted value. 6457 if (VT.getSizeInBits() >= 256) 6458 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); 6459 6460 return DAG.getNode(N0.getOpcode(), DL, VT, 6461 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), 6462 ShAmt); 6463 } 6464 6465 return SDValue(); 6466 } 6467 6468 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { 6469 SDValue N0 = N->getOperand(0); 6470 EVT VT = N->getValueType(0); 6471 6472 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6473 LegalOperations)) 6474 return SDValue(Res, 0); 6475 6476 // fold (aext (aext x)) -> (aext x) 6477 // fold (aext (zext x)) -> (zext x) 6478 // fold (aext (sext x)) -> (sext x) 6479 if (N0.getOpcode() == ISD::ANY_EXTEND || 6480 N0.getOpcode() == ISD::ZERO_EXTEND || 6481 N0.getOpcode() == ISD::SIGN_EXTEND) 6482 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 6483 6484 // fold (aext (truncate (load x))) -> (aext (smaller load x)) 6485 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) 6486 if (N0.getOpcode() == ISD::TRUNCATE) { 6487 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6488 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6489 if (NarrowLoad.getNode() != N0.getNode()) { 6490 CombineTo(N0.getNode(), NarrowLoad); 6491 // CombineTo deleted the truncate, if needed, but not what's under it. 6492 AddToWorklist(oye); 6493 } 6494 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6495 } 6496 } 6497 6498 // fold (aext (truncate x)) 6499 if (N0.getOpcode() == ISD::TRUNCATE) { 6500 SDValue TruncOp = N0.getOperand(0); 6501 if (TruncOp.getValueType() == VT) 6502 return TruncOp; // x iff x size == zext size. 6503 if (TruncOp.getValueType().bitsGT(VT)) 6504 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp); 6505 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp); 6506 } 6507 6508 // Fold (aext (and (trunc x), cst)) -> (and x, cst) 6509 // if the trunc is not free. 6510 if (N0.getOpcode() == ISD::AND && 6511 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 6512 N0.getOperand(1).getOpcode() == ISD::Constant && 6513 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 6514 N0.getValueType())) { 6515 SDValue X = N0.getOperand(0).getOperand(0); 6516 if (X.getValueType().bitsLT(VT)) { 6517 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X); 6518 } else if (X.getValueType().bitsGT(VT)) { 6519 X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X); 6520 } 6521 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6522 Mask = Mask.zext(VT.getSizeInBits()); 6523 SDLoc DL(N); 6524 return DAG.getNode(ISD::AND, DL, VT, 6525 X, DAG.getConstant(Mask, DL, VT)); 6526 } 6527 6528 // fold (aext (load x)) -> (aext (truncate (extload x))) 6529 // None of the supported targets knows how to perform load and any_ext 6530 // on vectors in one instruction. We only perform this transformation on 6531 // scalars. 6532 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && 6533 ISD::isUNINDEXEDLoad(N0.getNode()) && 6534 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 6535 bool DoXform = true; 6536 SmallVector<SDNode*, 4> SetCCs; 6537 if (!N0.hasOneUse()) 6538 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI); 6539 if (DoXform) { 6540 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6541 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 6542 LN0->getChain(), 6543 LN0->getBasePtr(), N0.getValueType(), 6544 LN0->getMemOperand()); 6545 CombineTo(N, ExtLoad); 6546 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6547 N0.getValueType(), ExtLoad); 6548 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6549 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6550 ISD::ANY_EXTEND); 6551 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6552 } 6553 } 6554 6555 // fold (aext (zextload x)) -> (aext (truncate (zextload x))) 6556 // fold (aext (sextload x)) -> (aext (truncate (sextload x))) 6557 // fold (aext ( extload x)) -> (aext (truncate (extload x))) 6558 if (N0.getOpcode() == ISD::LOAD && 6559 !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6560 N0.hasOneUse()) { 6561 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6562 ISD::LoadExtType ExtType = LN0->getExtensionType(); 6563 EVT MemVT = LN0->getMemoryVT(); 6564 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { 6565 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), 6566 VT, LN0->getChain(), LN0->getBasePtr(), 6567 MemVT, LN0->getMemOperand()); 6568 CombineTo(N, ExtLoad); 6569 CombineTo(N0.getNode(), 6570 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6571 N0.getValueType(), ExtLoad), 6572 ExtLoad.getValue(1)); 6573 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6574 } 6575 } 6576 6577 if (N0.getOpcode() == ISD::SETCC) { 6578 // For vectors: 6579 // aext(setcc) -> vsetcc 6580 // aext(setcc) -> truncate(vsetcc) 6581 // aext(setcc) -> aext(vsetcc) 6582 // Only do this before legalize for now. 6583 if (VT.isVector() && !LegalOperations) { 6584 EVT N0VT = N0.getOperand(0).getValueType(); 6585 // We know that the # elements of the results is the same as the 6586 // # elements of the compare (and the # elements of the compare result 6587 // for that matter). Check to see that they are the same size. If so, 6588 // we know that the element size of the sext'd result matches the 6589 // element size of the compare operands. 6590 if (VT.getSizeInBits() == N0VT.getSizeInBits()) 6591 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 6592 N0.getOperand(1), 6593 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6594 // If the desired elements are smaller or larger than the source 6595 // elements we can use a matching integer vector type and then 6596 // truncate/any extend 6597 else { 6598 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); 6599 SDValue VsetCC = 6600 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 6601 N0.getOperand(1), 6602 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6603 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); 6604 } 6605 } 6606 6607 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 6608 SDLoc DL(N); 6609 SDValue SCC = 6610 SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), 6611 DAG.getConstant(1, DL, VT), DAG.getConstant(0, DL, VT), 6612 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); 6613 if (SCC.getNode()) 6614 return SCC; 6615 } 6616 6617 return SDValue(); 6618 } 6619 6620 /// See if the specified operand can be simplified with the knowledge that only 6621 /// the bits specified by Mask are used. If so, return the simpler operand, 6622 /// otherwise return a null SDValue. 6623 SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) { 6624 switch (V.getOpcode()) { 6625 default: break; 6626 case ISD::Constant: { 6627 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 6628 assert(CV && "Const value should be ConstSDNode."); 6629 const APInt &CVal = CV->getAPIntValue(); 6630 APInt NewVal = CVal & Mask; 6631 if (NewVal != CVal) 6632 return DAG.getConstant(NewVal, SDLoc(V), V.getValueType()); 6633 break; 6634 } 6635 case ISD::OR: 6636 case ISD::XOR: 6637 // If the LHS or RHS don't contribute bits to the or, drop them. 6638 if (DAG.MaskedValueIsZero(V.getOperand(0), Mask)) 6639 return V.getOperand(1); 6640 if (DAG.MaskedValueIsZero(V.getOperand(1), Mask)) 6641 return V.getOperand(0); 6642 break; 6643 case ISD::SRL: 6644 // Only look at single-use SRLs. 6645 if (!V.getNode()->hasOneUse()) 6646 break; 6647 if (ConstantSDNode *RHSC = getAsNonOpaqueConstant(V.getOperand(1))) { 6648 // See if we can recursively simplify the LHS. 6649 unsigned Amt = RHSC->getZExtValue(); 6650 6651 // Watch out for shift count overflow though. 6652 if (Amt >= Mask.getBitWidth()) break; 6653 APInt NewMask = Mask << Amt; 6654 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 6655 return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(), 6656 SimplifyLHS, V.getOperand(1)); 6657 } 6658 } 6659 return SDValue(); 6660 } 6661 6662 /// If the result of a wider load is shifted to right of N bits and then 6663 /// truncated to a narrower type and where N is a multiple of number of bits of 6664 /// the narrower type, transform it to a narrower load from address + N / num of 6665 /// bits of new type. If the result is to be extended, also fold the extension 6666 /// to form a extending load. 6667 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { 6668 unsigned Opc = N->getOpcode(); 6669 6670 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 6671 SDValue N0 = N->getOperand(0); 6672 EVT VT = N->getValueType(0); 6673 EVT ExtVT = VT; 6674 6675 // This transformation isn't valid for vector loads. 6676 if (VT.isVector()) 6677 return SDValue(); 6678 6679 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then 6680 // extended to VT. 6681 if (Opc == ISD::SIGN_EXTEND_INREG) { 6682 ExtType = ISD::SEXTLOAD; 6683 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 6684 } else if (Opc == ISD::SRL) { 6685 // Another special-case: SRL is basically zero-extending a narrower value. 6686 ExtType = ISD::ZEXTLOAD; 6687 N0 = SDValue(N, 0); 6688 ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6689 if (!N01) return SDValue(); 6690 ExtVT = EVT::getIntegerVT(*DAG.getContext(), 6691 VT.getSizeInBits() - N01->getZExtValue()); 6692 } 6693 if (LegalOperations && !TLI.isLoadExtLegal(ExtType, VT, ExtVT)) 6694 return SDValue(); 6695 6696 unsigned EVTBits = ExtVT.getSizeInBits(); 6697 6698 // Do not generate loads of non-round integer types since these can 6699 // be expensive (and would be wrong if the type is not byte sized). 6700 if (!ExtVT.isRound()) 6701 return SDValue(); 6702 6703 unsigned ShAmt = 0; 6704 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 6705 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 6706 ShAmt = N01->getZExtValue(); 6707 // Is the shift amount a multiple of size of VT? 6708 if ((ShAmt & (EVTBits-1)) == 0) { 6709 N0 = N0.getOperand(0); 6710 // Is the load width a multiple of size of VT? 6711 if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0) 6712 return SDValue(); 6713 } 6714 6715 // At this point, we must have a load or else we can't do the transform. 6716 if (!isa<LoadSDNode>(N0)) return SDValue(); 6717 6718 // Because a SRL must be assumed to *need* to zero-extend the high bits 6719 // (as opposed to anyext the high bits), we can't combine the zextload 6720 // lowering of SRL and an sextload. 6721 if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD) 6722 return SDValue(); 6723 6724 // If the shift amount is larger than the input type then we're not 6725 // accessing any of the loaded bytes. If the load was a zextload/extload 6726 // then the result of the shift+trunc is zero/undef (handled elsewhere). 6727 if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits()) 6728 return SDValue(); 6729 } 6730 } 6731 6732 // If the load is shifted left (and the result isn't shifted back right), 6733 // we can fold the truncate through the shift. 6734 unsigned ShLeftAmt = 0; 6735 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 6736 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { 6737 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 6738 ShLeftAmt = N01->getZExtValue(); 6739 N0 = N0.getOperand(0); 6740 } 6741 } 6742 6743 // If we haven't found a load, we can't narrow it. Don't transform one with 6744 // multiple uses, this would require adding a new load. 6745 if (!isa<LoadSDNode>(N0) || !N0.hasOneUse()) 6746 return SDValue(); 6747 6748 // Don't change the width of a volatile load. 6749 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6750 if (LN0->isVolatile()) 6751 return SDValue(); 6752 6753 // Verify that we are actually reducing a load width here. 6754 if (LN0->getMemoryVT().getSizeInBits() < EVTBits) 6755 return SDValue(); 6756 6757 // For the transform to be legal, the load must produce only two values 6758 // (the value loaded and the chain). Don't transform a pre-increment 6759 // load, for example, which produces an extra value. Otherwise the 6760 // transformation is not equivalent, and the downstream logic to replace 6761 // uses gets things wrong. 6762 if (LN0->getNumValues() > 2) 6763 return SDValue(); 6764 6765 // If the load that we're shrinking is an extload and we're not just 6766 // discarding the extension we can't simply shrink the load. Bail. 6767 // TODO: It would be possible to merge the extensions in some cases. 6768 if (LN0->getExtensionType() != ISD::NON_EXTLOAD && 6769 LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt) 6770 return SDValue(); 6771 6772 if (!TLI.shouldReduceLoadWidth(LN0, ExtType, ExtVT)) 6773 return SDValue(); 6774 6775 EVT PtrType = N0.getOperand(1).getValueType(); 6776 6777 if (PtrType == MVT::Untyped || PtrType.isExtended()) 6778 // It's not possible to generate a constant of extended or untyped type. 6779 return SDValue(); 6780 6781 // For big endian targets, we need to adjust the offset to the pointer to 6782 // load the correct bytes. 6783 if (DAG.getDataLayout().isBigEndian()) { 6784 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); 6785 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); 6786 ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; 6787 } 6788 6789 uint64_t PtrOff = ShAmt / 8; 6790 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); 6791 SDLoc DL(LN0); 6792 SDValue NewPtr = DAG.getNode(ISD::ADD, DL, 6793 PtrType, LN0->getBasePtr(), 6794 DAG.getConstant(PtrOff, DL, PtrType)); 6795 AddToWorklist(NewPtr.getNode()); 6796 6797 SDValue Load; 6798 if (ExtType == ISD::NON_EXTLOAD) 6799 Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr, 6800 LN0->getPointerInfo().getWithOffset(PtrOff), 6801 LN0->isVolatile(), LN0->isNonTemporal(), 6802 LN0->isInvariant(), NewAlign, LN0->getAAInfo()); 6803 else 6804 Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr, 6805 LN0->getPointerInfo().getWithOffset(PtrOff), 6806 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), 6807 LN0->isInvariant(), NewAlign, LN0->getAAInfo()); 6808 6809 // Replace the old load's chain with the new load's chain. 6810 WorklistRemover DeadNodes(*this); 6811 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 6812 6813 // Shift the result left, if we've swallowed a left shift. 6814 SDValue Result = Load; 6815 if (ShLeftAmt != 0) { 6816 EVT ShImmTy = getShiftAmountTy(Result.getValueType()); 6817 if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) 6818 ShImmTy = VT; 6819 // If the shift amount is as large as the result size (but, presumably, 6820 // no larger than the source) then the useful bits of the result are 6821 // zero; we can't simply return the shortened shift, because the result 6822 // of that operation is undefined. 6823 SDLoc DL(N0); 6824 if (ShLeftAmt >= VT.getSizeInBits()) 6825 Result = DAG.getConstant(0, DL, VT); 6826 else 6827 Result = DAG.getNode(ISD::SHL, DL, VT, 6828 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); 6829 } 6830 6831 // Return the new loaded value. 6832 return Result; 6833 } 6834 6835 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { 6836 SDValue N0 = N->getOperand(0); 6837 SDValue N1 = N->getOperand(1); 6838 EVT VT = N->getValueType(0); 6839 EVT EVT = cast<VTSDNode>(N1)->getVT(); 6840 unsigned VTBits = VT.getScalarType().getSizeInBits(); 6841 unsigned EVTBits = EVT.getScalarType().getSizeInBits(); 6842 6843 if (N0.isUndef()) 6844 return DAG.getUNDEF(VT); 6845 6846 // fold (sext_in_reg c1) -> c1 6847 if (isConstantIntBuildVectorOrConstantInt(N0)) 6848 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); 6849 6850 // If the input is already sign extended, just drop the extension. 6851 if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) 6852 return N0; 6853 6854 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 6855 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 6856 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) 6857 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 6858 N0.getOperand(0), N1); 6859 6860 // fold (sext_in_reg (sext x)) -> (sext x) 6861 // fold (sext_in_reg (aext x)) -> (sext x) 6862 // if x is small enough. 6863 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { 6864 SDValue N00 = N0.getOperand(0); 6865 if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits && 6866 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 6867 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); 6868 } 6869 6870 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. 6871 if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits))) 6872 return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT); 6873 6874 // fold operands of sext_in_reg based on knowledge that the top bits are not 6875 // demanded. 6876 if (SimplifyDemandedBits(SDValue(N, 0))) 6877 return SDValue(N, 0); 6878 6879 // fold (sext_in_reg (load x)) -> (smaller sextload x) 6880 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) 6881 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 6882 return NarrowLoad; 6883 6884 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) 6885 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. 6886 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. 6887 if (N0.getOpcode() == ISD::SRL) { 6888 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 6889 if (ShAmt->getZExtValue()+EVTBits <= VTBits) { 6890 // We can turn this into an SRA iff the input to the SRL is already sign 6891 // extended enough. 6892 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); 6893 if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits) 6894 return DAG.getNode(ISD::SRA, SDLoc(N), VT, 6895 N0.getOperand(0), N0.getOperand(1)); 6896 } 6897 } 6898 6899 // fold (sext_inreg (extload x)) -> (sextload x) 6900 if (ISD::isEXTLoad(N0.getNode()) && 6901 ISD::isUNINDEXEDLoad(N0.getNode()) && 6902 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 6903 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 6904 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 6905 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6906 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6907 LN0->getChain(), 6908 LN0->getBasePtr(), EVT, 6909 LN0->getMemOperand()); 6910 CombineTo(N, ExtLoad); 6911 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 6912 AddToWorklist(ExtLoad.getNode()); 6913 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6914 } 6915 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use 6916 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6917 N0.hasOneUse() && 6918 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 6919 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 6920 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 6921 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6922 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6923 LN0->getChain(), 6924 LN0->getBasePtr(), EVT, 6925 LN0->getMemOperand()); 6926 CombineTo(N, ExtLoad); 6927 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 6928 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6929 } 6930 6931 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) 6932 if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { 6933 SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 6934 N0.getOperand(1), false); 6935 if (BSwap.getNode()) 6936 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 6937 BSwap, N1); 6938 } 6939 6940 return SDValue(); 6941 } 6942 6943 SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { 6944 SDValue N0 = N->getOperand(0); 6945 EVT VT = N->getValueType(0); 6946 6947 if (N0.getOpcode() == ISD::UNDEF) 6948 return DAG.getUNDEF(VT); 6949 6950 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6951 LegalOperations)) 6952 return SDValue(Res, 0); 6953 6954 return SDValue(); 6955 } 6956 6957 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { 6958 SDValue N0 = N->getOperand(0); 6959 EVT VT = N->getValueType(0); 6960 bool isLE = DAG.getDataLayout().isLittleEndian(); 6961 6962 // noop truncate 6963 if (N0.getValueType() == N->getValueType(0)) 6964 return N0; 6965 // fold (truncate c1) -> c1 6966 if (isConstantIntBuildVectorOrConstantInt(N0)) 6967 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); 6968 // fold (truncate (truncate x)) -> (truncate x) 6969 if (N0.getOpcode() == ISD::TRUNCATE) 6970 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 6971 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x 6972 if (N0.getOpcode() == ISD::ZERO_EXTEND || 6973 N0.getOpcode() == ISD::SIGN_EXTEND || 6974 N0.getOpcode() == ISD::ANY_EXTEND) { 6975 if (N0.getOperand(0).getValueType().bitsLT(VT)) 6976 // if the source is smaller than the dest, we still need an extend 6977 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, 6978 N0.getOperand(0)); 6979 if (N0.getOperand(0).getValueType().bitsGT(VT)) 6980 // if the source is larger than the dest, than we just need the truncate 6981 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 6982 // if the source and dest are the same type, we can drop both the extend 6983 // and the truncate. 6984 return N0.getOperand(0); 6985 } 6986 6987 // Fold extract-and-trunc into a narrow extract. For example: 6988 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) 6989 // i32 y = TRUNCATE(i64 x) 6990 // -- becomes -- 6991 // v16i8 b = BITCAST (v2i64 val) 6992 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) 6993 // 6994 // Note: We only run this optimization after type legalization (which often 6995 // creates this pattern) and before operation legalization after which 6996 // we need to be more careful about the vector instructions that we generate. 6997 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6998 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { 6999 7000 EVT VecTy = N0.getOperand(0).getValueType(); 7001 EVT ExTy = N0.getValueType(); 7002 EVT TrTy = N->getValueType(0); 7003 7004 unsigned NumElem = VecTy.getVectorNumElements(); 7005 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); 7006 7007 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); 7008 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); 7009 7010 SDValue EltNo = N0->getOperand(1); 7011 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { 7012 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 7013 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7014 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); 7015 7016 SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N), 7017 NVT, N0.getOperand(0)); 7018 7019 SDLoc DL(N); 7020 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, 7021 DL, TrTy, V, 7022 DAG.getConstant(Index, DL, IndexTy)); 7023 } 7024 } 7025 7026 // trunc (select c, a, b) -> select c, (trunc a), (trunc b) 7027 if (N0.getOpcode() == ISD::SELECT) { 7028 EVT SrcVT = N0.getValueType(); 7029 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && 7030 TLI.isTruncateFree(SrcVT, VT)) { 7031 SDLoc SL(N0); 7032 SDValue Cond = N0.getOperand(0); 7033 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 7034 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); 7035 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); 7036 } 7037 } 7038 7039 // Fold a series of buildvector, bitcast, and truncate if possible. 7040 // For example fold 7041 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to 7042 // (2xi32 (buildvector x, y)). 7043 if (Level == AfterLegalizeVectorOps && VT.isVector() && 7044 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 7045 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 7046 N0.getOperand(0).hasOneUse()) { 7047 7048 SDValue BuildVect = N0.getOperand(0); 7049 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); 7050 EVT TruncVecEltTy = VT.getVectorElementType(); 7051 7052 // Check that the element types match. 7053 if (BuildVectEltTy == TruncVecEltTy) { 7054 // Now we only need to compute the offset of the truncated elements. 7055 unsigned BuildVecNumElts = BuildVect.getNumOperands(); 7056 unsigned TruncVecNumElts = VT.getVectorNumElements(); 7057 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; 7058 7059 assert((BuildVecNumElts % TruncVecNumElts) == 0 && 7060 "Invalid number of elements"); 7061 7062 SmallVector<SDValue, 8> Opnds; 7063 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) 7064 Opnds.push_back(BuildVect.getOperand(i)); 7065 7066 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds); 7067 } 7068 } 7069 7070 // See if we can simplify the input to this truncate through knowledge that 7071 // only the low bits are being used. 7072 // For example "trunc (or (shl x, 8), y)" // -> trunc y 7073 // Currently we only perform this optimization on scalars because vectors 7074 // may have different active low bits. 7075 if (!VT.isVector()) { 7076 SDValue Shorter = 7077 GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(), 7078 VT.getSizeInBits())); 7079 if (Shorter.getNode()) 7080 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); 7081 } 7082 // fold (truncate (load x)) -> (smaller load x) 7083 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) 7084 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { 7085 if (SDValue Reduced = ReduceLoadWidth(N)) 7086 return Reduced; 7087 7088 // Handle the case where the load remains an extending load even 7089 // after truncation. 7090 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { 7091 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7092 if (!LN0->isVolatile() && 7093 LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { 7094 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), 7095 VT, LN0->getChain(), LN0->getBasePtr(), 7096 LN0->getMemoryVT(), 7097 LN0->getMemOperand()); 7098 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); 7099 return NewLoad; 7100 } 7101 } 7102 } 7103 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), 7104 // where ... are all 'undef'. 7105 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { 7106 SmallVector<EVT, 8> VTs; 7107 SDValue V; 7108 unsigned Idx = 0; 7109 unsigned NumDefs = 0; 7110 7111 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 7112 SDValue X = N0.getOperand(i); 7113 if (X.getOpcode() != ISD::UNDEF) { 7114 V = X; 7115 Idx = i; 7116 NumDefs++; 7117 } 7118 // Stop if more than one members are non-undef. 7119 if (NumDefs > 1) 7120 break; 7121 VTs.push_back(EVT::getVectorVT(*DAG.getContext(), 7122 VT.getVectorElementType(), 7123 X.getValueType().getVectorNumElements())); 7124 } 7125 7126 if (NumDefs == 0) 7127 return DAG.getUNDEF(VT); 7128 7129 if (NumDefs == 1) { 7130 assert(V.getNode() && "The single defined operand is empty!"); 7131 SmallVector<SDValue, 8> Opnds; 7132 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 7133 if (i != Idx) { 7134 Opnds.push_back(DAG.getUNDEF(VTs[i])); 7135 continue; 7136 } 7137 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); 7138 AddToWorklist(NV.getNode()); 7139 Opnds.push_back(NV); 7140 } 7141 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); 7142 } 7143 } 7144 7145 // Simplify the operands using demanded-bits information. 7146 if (!VT.isVector() && 7147 SimplifyDemandedBits(SDValue(N, 0))) 7148 return SDValue(N, 0); 7149 7150 return SDValue(); 7151 } 7152 7153 static SDNode *getBuildPairElt(SDNode *N, unsigned i) { 7154 SDValue Elt = N->getOperand(i); 7155 if (Elt.getOpcode() != ISD::MERGE_VALUES) 7156 return Elt.getNode(); 7157 return Elt.getOperand(Elt.getResNo()).getNode(); 7158 } 7159 7160 /// build_pair (load, load) -> load 7161 /// if load locations are consecutive. 7162 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { 7163 assert(N->getOpcode() == ISD::BUILD_PAIR); 7164 7165 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); 7166 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); 7167 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || 7168 LD1->getAddressSpace() != LD2->getAddressSpace()) 7169 return SDValue(); 7170 EVT LD1VT = LD1->getValueType(0); 7171 7172 if (ISD::isNON_EXTLoad(LD2) && 7173 LD2->hasOneUse() && 7174 // If both are volatile this would reduce the number of volatile loads. 7175 // If one is volatile it might be ok, but play conservative and bail out. 7176 !LD1->isVolatile() && 7177 !LD2->isVolatile() && 7178 DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) { 7179 unsigned Align = LD1->getAlignment(); 7180 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 7181 VT.getTypeForEVT(*DAG.getContext())); 7182 7183 if (NewAlign <= Align && 7184 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) 7185 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), 7186 LD1->getBasePtr(), LD1->getPointerInfo(), 7187 false, false, false, Align); 7188 } 7189 7190 return SDValue(); 7191 } 7192 7193 SDValue DAGCombiner::visitBITCAST(SDNode *N) { 7194 SDValue N0 = N->getOperand(0); 7195 EVT VT = N->getValueType(0); 7196 7197 // If the input is a BUILD_VECTOR with all constant elements, fold this now. 7198 // Only do this before legalize, since afterward the target may be depending 7199 // on the bitconvert. 7200 // First check to see if this is all constant. 7201 if (!LegalTypes && 7202 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && 7203 VT.isVector()) { 7204 bool isSimple = cast<BuildVectorSDNode>(N0)->isConstant(); 7205 7206 EVT DestEltVT = N->getValueType(0).getVectorElementType(); 7207 assert(!DestEltVT.isVector() && 7208 "Element type of vector ValueType must not be vector!"); 7209 if (isSimple) 7210 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT); 7211 } 7212 7213 // If the input is a constant, let getNode fold it. 7214 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { 7215 // If we can't allow illegal operations, we need to check that this is just 7216 // a fp -> int or int -> conversion and that the resulting operation will 7217 // be legal. 7218 if (!LegalOperations || 7219 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && 7220 TLI.isOperationLegal(ISD::ConstantFP, VT)) || 7221 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && 7222 TLI.isOperationLegal(ISD::Constant, VT))) 7223 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0); 7224 } 7225 7226 // (conv (conv x, t1), t2) -> (conv x, t2) 7227 if (N0.getOpcode() == ISD::BITCAST) 7228 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, 7229 N0.getOperand(0)); 7230 7231 // fold (conv (load x)) -> (load (conv*)x) 7232 // If the resultant load doesn't need a higher alignment than the original! 7233 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 7234 // Do not change the width of a volatile load. 7235 !cast<LoadSDNode>(N0)->isVolatile() && 7236 // Do not remove the cast if the types differ in endian layout. 7237 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == 7238 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && 7239 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && 7240 TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) { 7241 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7242 unsigned Align = DAG.getDataLayout().getABITypeAlignment( 7243 VT.getTypeForEVT(*DAG.getContext())); 7244 unsigned OrigAlign = LN0->getAlignment(); 7245 7246 if (Align <= OrigAlign) { 7247 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), 7248 LN0->getBasePtr(), LN0->getPointerInfo(), 7249 LN0->isVolatile(), LN0->isNonTemporal(), 7250 LN0->isInvariant(), OrigAlign, 7251 LN0->getAAInfo()); 7252 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 7253 return Load; 7254 } 7255 } 7256 7257 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7258 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7259 // This often reduces constant pool loads. 7260 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || 7261 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && 7262 N0.getNode()->hasOneUse() && VT.isInteger() && 7263 !VT.isVector() && !N0.getValueType().isVector()) { 7264 SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT, 7265 N0.getOperand(0)); 7266 AddToWorklist(NewConv.getNode()); 7267 7268 SDLoc DL(N); 7269 APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); 7270 if (N0.getOpcode() == ISD::FNEG) 7271 return DAG.getNode(ISD::XOR, DL, VT, 7272 NewConv, DAG.getConstant(SignBit, DL, VT)); 7273 assert(N0.getOpcode() == ISD::FABS); 7274 return DAG.getNode(ISD::AND, DL, VT, 7275 NewConv, DAG.getConstant(~SignBit, DL, VT)); 7276 } 7277 7278 // fold (bitconvert (fcopysign cst, x)) -> 7279 // (or (and (bitconvert x), sign), (and cst, (not sign))) 7280 // Note that we don't handle (copysign x, cst) because this can always be 7281 // folded to an fneg or fabs. 7282 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && 7283 isa<ConstantFPSDNode>(N0.getOperand(0)) && 7284 VT.isInteger() && !VT.isVector()) { 7285 unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits(); 7286 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); 7287 if (isTypeLegal(IntXVT)) { 7288 SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0), 7289 IntXVT, N0.getOperand(1)); 7290 AddToWorklist(X.getNode()); 7291 7292 // If X has a different width than the result/lhs, sext it or truncate it. 7293 unsigned VTWidth = VT.getSizeInBits(); 7294 if (OrigXWidth < VTWidth) { 7295 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); 7296 AddToWorklist(X.getNode()); 7297 } else if (OrigXWidth > VTWidth) { 7298 // To get the sign bit in the right place, we have to shift it right 7299 // before truncating. 7300 SDLoc DL(X); 7301 X = DAG.getNode(ISD::SRL, DL, 7302 X.getValueType(), X, 7303 DAG.getConstant(OrigXWidth-VTWidth, DL, 7304 X.getValueType())); 7305 AddToWorklist(X.getNode()); 7306 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 7307 AddToWorklist(X.getNode()); 7308 } 7309 7310 APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); 7311 X = DAG.getNode(ISD::AND, SDLoc(X), VT, 7312 X, DAG.getConstant(SignBit, SDLoc(X), VT)); 7313 AddToWorklist(X.getNode()); 7314 7315 SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0), 7316 VT, N0.getOperand(0)); 7317 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, 7318 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); 7319 AddToWorklist(Cst.getNode()); 7320 7321 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); 7322 } 7323 } 7324 7325 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. 7326 if (N0.getOpcode() == ISD::BUILD_PAIR) 7327 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) 7328 return CombineLD; 7329 7330 // Remove double bitcasts from shuffles - this is often a legacy of 7331 // XformToShuffleWithZero being used to combine bitmaskings (of 7332 // float vectors bitcast to integer vectors) into shuffles. 7333 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) 7334 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && 7335 N0->getOpcode() == ISD::VECTOR_SHUFFLE && 7336 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && 7337 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { 7338 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); 7339 7340 // If operands are a bitcast, peek through if it casts the original VT. 7341 // If operands are a constant, just bitcast back to original VT. 7342 auto PeekThroughBitcast = [&](SDValue Op) { 7343 if (Op.getOpcode() == ISD::BITCAST && 7344 Op.getOperand(0).getValueType() == VT) 7345 return SDValue(Op.getOperand(0)); 7346 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || 7347 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) 7348 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 7349 return SDValue(); 7350 }; 7351 7352 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); 7353 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); 7354 if (!(SV0 && SV1)) 7355 return SDValue(); 7356 7357 int MaskScale = 7358 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); 7359 SmallVector<int, 8> NewMask; 7360 for (int M : SVN->getMask()) 7361 for (int i = 0; i != MaskScale; ++i) 7362 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); 7363 7364 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); 7365 if (!LegalMask) { 7366 std::swap(SV0, SV1); 7367 ShuffleVectorSDNode::commuteMask(NewMask); 7368 LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); 7369 } 7370 7371 if (LegalMask) 7372 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask); 7373 } 7374 7375 return SDValue(); 7376 } 7377 7378 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { 7379 EVT VT = N->getValueType(0); 7380 return CombineConsecutiveLoads(N, VT); 7381 } 7382 7383 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef 7384 /// operands. DstEltVT indicates the destination element value type. 7385 SDValue DAGCombiner:: 7386 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { 7387 EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); 7388 7389 // If this is already the right type, we're done. 7390 if (SrcEltVT == DstEltVT) return SDValue(BV, 0); 7391 7392 unsigned SrcBitSize = SrcEltVT.getSizeInBits(); 7393 unsigned DstBitSize = DstEltVT.getSizeInBits(); 7394 7395 // If this is a conversion of N elements of one type to N elements of another 7396 // type, convert each element. This handles FP<->INT cases. 7397 if (SrcBitSize == DstBitSize) { 7398 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 7399 BV->getValueType(0).getVectorNumElements()); 7400 7401 // Due to the FP element handling below calling this routine recursively, 7402 // we can end up with a scalar-to-vector node here. 7403 if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR) 7404 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT, 7405 DAG.getNode(ISD::BITCAST, SDLoc(BV), 7406 DstEltVT, BV->getOperand(0))); 7407 7408 SmallVector<SDValue, 8> Ops; 7409 for (SDValue Op : BV->op_values()) { 7410 // If the vector element type is not legal, the BUILD_VECTOR operands 7411 // are promoted and implicitly truncated. Make that explicit here. 7412 if (Op.getValueType() != SrcEltVT) 7413 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); 7414 Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV), 7415 DstEltVT, Op)); 7416 AddToWorklist(Ops.back().getNode()); 7417 } 7418 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT, Ops); 7419 } 7420 7421 // Otherwise, we're growing or shrinking the elements. To avoid having to 7422 // handle annoying details of growing/shrinking FP values, we convert them to 7423 // int first. 7424 if (SrcEltVT.isFloatingPoint()) { 7425 // Convert the input float vector to a int vector where the elements are the 7426 // same sizes. 7427 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); 7428 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); 7429 SrcEltVT = IntVT; 7430 } 7431 7432 // Now we know the input is an integer vector. If the output is a FP type, 7433 // convert to integer first, then to FP of the right size. 7434 if (DstEltVT.isFloatingPoint()) { 7435 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); 7436 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); 7437 7438 // Next, convert to FP elements of the same size. 7439 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); 7440 } 7441 7442 SDLoc DL(BV); 7443 7444 // Okay, we know the src/dst types are both integers of differing types. 7445 // Handling growing first. 7446 assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); 7447 if (SrcBitSize < DstBitSize) { 7448 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; 7449 7450 SmallVector<SDValue, 8> Ops; 7451 for (unsigned i = 0, e = BV->getNumOperands(); i != e; 7452 i += NumInputsPerOutput) { 7453 bool isLE = DAG.getDataLayout().isLittleEndian(); 7454 APInt NewBits = APInt(DstBitSize, 0); 7455 bool EltIsUndef = true; 7456 for (unsigned j = 0; j != NumInputsPerOutput; ++j) { 7457 // Shift the previously computed bits over. 7458 NewBits <<= SrcBitSize; 7459 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); 7460 if (Op.getOpcode() == ISD::UNDEF) continue; 7461 EltIsUndef = false; 7462 7463 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). 7464 zextOrTrunc(SrcBitSize).zext(DstBitSize); 7465 } 7466 7467 if (EltIsUndef) 7468 Ops.push_back(DAG.getUNDEF(DstEltVT)); 7469 else 7470 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); 7471 } 7472 7473 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); 7474 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); 7475 } 7476 7477 // Finally, this must be the case where we are shrinking elements: each input 7478 // turns into multiple outputs. 7479 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; 7480 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 7481 NumOutputsPerInput*BV->getNumOperands()); 7482 SmallVector<SDValue, 8> Ops; 7483 7484 for (const SDValue &Op : BV->op_values()) { 7485 if (Op.getOpcode() == ISD::UNDEF) { 7486 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); 7487 continue; 7488 } 7489 7490 APInt OpVal = cast<ConstantSDNode>(Op)-> 7491 getAPIntValue().zextOrTrunc(SrcBitSize); 7492 7493 for (unsigned j = 0; j != NumOutputsPerInput; ++j) { 7494 APInt ThisVal = OpVal.trunc(DstBitSize); 7495 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); 7496 OpVal = OpVal.lshr(DstBitSize); 7497 } 7498 7499 // For big endian targets, swap the order of the pieces of each element. 7500 if (DAG.getDataLayout().isBigEndian()) 7501 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); 7502 } 7503 7504 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); 7505 } 7506 7507 /// Try to perform FMA combining on a given FADD node. 7508 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { 7509 SDValue N0 = N->getOperand(0); 7510 SDValue N1 = N->getOperand(1); 7511 EVT VT = N->getValueType(0); 7512 SDLoc SL(N); 7513 7514 const TargetOptions &Options = DAG.getTarget().Options; 7515 bool AllowFusion = 7516 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 7517 7518 // Floating-point multiply-add with intermediate rounding. 7519 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 7520 7521 // Floating-point multiply-add without intermediate rounding. 7522 bool HasFMA = 7523 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 7524 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 7525 7526 // No valid opcode, do not combine. 7527 if (!HasFMAD && !HasFMA) 7528 return SDValue(); 7529 7530 // Always prefer FMAD to FMA for precision. 7531 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 7532 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 7533 bool LookThroughFPExt = TLI.isFPExtFree(VT); 7534 7535 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 7536 // prefer to fold the multiply with fewer uses. 7537 if (Aggressive && N0.getOpcode() == ISD::FMUL && 7538 N1.getOpcode() == ISD::FMUL) { 7539 if (N0.getNode()->use_size() > N1.getNode()->use_size()) 7540 std::swap(N0, N1); 7541 } 7542 7543 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 7544 if (N0.getOpcode() == ISD::FMUL && 7545 (Aggressive || N0->hasOneUse())) { 7546 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7547 N0.getOperand(0), N0.getOperand(1), N1); 7548 } 7549 7550 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 7551 // Note: Commutes FADD operands. 7552 if (N1.getOpcode() == ISD::FMUL && 7553 (Aggressive || N1->hasOneUse())) { 7554 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7555 N1.getOperand(0), N1.getOperand(1), N0); 7556 } 7557 7558 // Look through FP_EXTEND nodes to do more combining. 7559 if (AllowFusion && LookThroughFPExt) { 7560 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 7561 if (N0.getOpcode() == ISD::FP_EXTEND) { 7562 SDValue N00 = N0.getOperand(0); 7563 if (N00.getOpcode() == ISD::FMUL) 7564 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7565 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7566 N00.getOperand(0)), 7567 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7568 N00.getOperand(1)), N1); 7569 } 7570 7571 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) 7572 // Note: Commutes FADD operands. 7573 if (N1.getOpcode() == ISD::FP_EXTEND) { 7574 SDValue N10 = N1.getOperand(0); 7575 if (N10.getOpcode() == ISD::FMUL) 7576 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7577 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7578 N10.getOperand(0)), 7579 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7580 N10.getOperand(1)), N0); 7581 } 7582 } 7583 7584 // More folding opportunities when target permits. 7585 if ((AllowFusion || HasFMAD) && Aggressive) { 7586 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z)) 7587 if (N0.getOpcode() == PreferredFusedOpcode && 7588 N0.getOperand(2).getOpcode() == ISD::FMUL) { 7589 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7590 N0.getOperand(0), N0.getOperand(1), 7591 DAG.getNode(PreferredFusedOpcode, SL, VT, 7592 N0.getOperand(2).getOperand(0), 7593 N0.getOperand(2).getOperand(1), 7594 N1)); 7595 } 7596 7597 // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x)) 7598 if (N1->getOpcode() == PreferredFusedOpcode && 7599 N1.getOperand(2).getOpcode() == ISD::FMUL) { 7600 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7601 N1.getOperand(0), N1.getOperand(1), 7602 DAG.getNode(PreferredFusedOpcode, SL, VT, 7603 N1.getOperand(2).getOperand(0), 7604 N1.getOperand(2).getOperand(1), 7605 N0)); 7606 } 7607 7608 if (AllowFusion && LookThroughFPExt) { 7609 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 7610 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 7611 auto FoldFAddFMAFPExtFMul = [&] ( 7612 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { 7613 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, 7614 DAG.getNode(PreferredFusedOpcode, SL, VT, 7615 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 7616 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 7617 Z)); 7618 }; 7619 if (N0.getOpcode() == PreferredFusedOpcode) { 7620 SDValue N02 = N0.getOperand(2); 7621 if (N02.getOpcode() == ISD::FP_EXTEND) { 7622 SDValue N020 = N02.getOperand(0); 7623 if (N020.getOpcode() == ISD::FMUL) 7624 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), 7625 N020.getOperand(0), N020.getOperand(1), 7626 N1); 7627 } 7628 } 7629 7630 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 7631 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 7632 // FIXME: This turns two single-precision and one double-precision 7633 // operation into two double-precision operations, which might not be 7634 // interesting for all targets, especially GPUs. 7635 auto FoldFAddFPExtFMAFMul = [&] ( 7636 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { 7637 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7638 DAG.getNode(ISD::FP_EXTEND, SL, VT, X), 7639 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), 7640 DAG.getNode(PreferredFusedOpcode, SL, VT, 7641 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 7642 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 7643 Z)); 7644 }; 7645 if (N0.getOpcode() == ISD::FP_EXTEND) { 7646 SDValue N00 = N0.getOperand(0); 7647 if (N00.getOpcode() == PreferredFusedOpcode) { 7648 SDValue N002 = N00.getOperand(2); 7649 if (N002.getOpcode() == ISD::FMUL) 7650 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), 7651 N002.getOperand(0), N002.getOperand(1), 7652 N1); 7653 } 7654 } 7655 7656 // fold (fadd x, (fma y, z, (fpext (fmul u, v))) 7657 // -> (fma y, z, (fma (fpext u), (fpext v), x)) 7658 if (N1.getOpcode() == PreferredFusedOpcode) { 7659 SDValue N12 = N1.getOperand(2); 7660 if (N12.getOpcode() == ISD::FP_EXTEND) { 7661 SDValue N120 = N12.getOperand(0); 7662 if (N120.getOpcode() == ISD::FMUL) 7663 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), 7664 N120.getOperand(0), N120.getOperand(1), 7665 N0); 7666 } 7667 } 7668 7669 // fold (fadd x, (fpext (fma y, z, (fmul u, v))) 7670 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) 7671 // FIXME: This turns two single-precision and one double-precision 7672 // operation into two double-precision operations, which might not be 7673 // interesting for all targets, especially GPUs. 7674 if (N1.getOpcode() == ISD::FP_EXTEND) { 7675 SDValue N10 = N1.getOperand(0); 7676 if (N10.getOpcode() == PreferredFusedOpcode) { 7677 SDValue N102 = N10.getOperand(2); 7678 if (N102.getOpcode() == ISD::FMUL) 7679 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), 7680 N102.getOperand(0), N102.getOperand(1), 7681 N0); 7682 } 7683 } 7684 } 7685 } 7686 7687 return SDValue(); 7688 } 7689 7690 /// Try to perform FMA combining on a given FSUB node. 7691 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { 7692 SDValue N0 = N->getOperand(0); 7693 SDValue N1 = N->getOperand(1); 7694 EVT VT = N->getValueType(0); 7695 SDLoc SL(N); 7696 7697 const TargetOptions &Options = DAG.getTarget().Options; 7698 bool AllowFusion = 7699 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 7700 7701 // Floating-point multiply-add with intermediate rounding. 7702 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 7703 7704 // Floating-point multiply-add without intermediate rounding. 7705 bool HasFMA = 7706 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 7707 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 7708 7709 // No valid opcode, do not combine. 7710 if (!HasFMAD && !HasFMA) 7711 return SDValue(); 7712 7713 // Always prefer FMAD to FMA for precision. 7714 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 7715 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 7716 bool LookThroughFPExt = TLI.isFPExtFree(VT); 7717 7718 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 7719 if (N0.getOpcode() == ISD::FMUL && 7720 (Aggressive || N0->hasOneUse())) { 7721 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7722 N0.getOperand(0), N0.getOperand(1), 7723 DAG.getNode(ISD::FNEG, SL, VT, N1)); 7724 } 7725 7726 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 7727 // Note: Commutes FSUB operands. 7728 if (N1.getOpcode() == ISD::FMUL && 7729 (Aggressive || N1->hasOneUse())) 7730 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7731 DAG.getNode(ISD::FNEG, SL, VT, 7732 N1.getOperand(0)), 7733 N1.getOperand(1), N0); 7734 7735 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) 7736 if (N0.getOpcode() == ISD::FNEG && 7737 N0.getOperand(0).getOpcode() == ISD::FMUL && 7738 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { 7739 SDValue N00 = N0.getOperand(0).getOperand(0); 7740 SDValue N01 = N0.getOperand(0).getOperand(1); 7741 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7742 DAG.getNode(ISD::FNEG, SL, VT, N00), N01, 7743 DAG.getNode(ISD::FNEG, SL, VT, N1)); 7744 } 7745 7746 // Look through FP_EXTEND nodes to do more combining. 7747 if (AllowFusion && LookThroughFPExt) { 7748 // fold (fsub (fpext (fmul x, y)), z) 7749 // -> (fma (fpext x), (fpext y), (fneg z)) 7750 if (N0.getOpcode() == ISD::FP_EXTEND) { 7751 SDValue N00 = N0.getOperand(0); 7752 if (N00.getOpcode() == ISD::FMUL) 7753 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7754 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7755 N00.getOperand(0)), 7756 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7757 N00.getOperand(1)), 7758 DAG.getNode(ISD::FNEG, SL, VT, N1)); 7759 } 7760 7761 // fold (fsub x, (fpext (fmul y, z))) 7762 // -> (fma (fneg (fpext y)), (fpext z), x) 7763 // Note: Commutes FSUB operands. 7764 if (N1.getOpcode() == ISD::FP_EXTEND) { 7765 SDValue N10 = N1.getOperand(0); 7766 if (N10.getOpcode() == ISD::FMUL) 7767 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7768 DAG.getNode(ISD::FNEG, SL, VT, 7769 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7770 N10.getOperand(0))), 7771 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7772 N10.getOperand(1)), 7773 N0); 7774 } 7775 7776 // fold (fsub (fpext (fneg (fmul, x, y))), z) 7777 // -> (fneg (fma (fpext x), (fpext y), z)) 7778 // Note: This could be removed with appropriate canonicalization of the 7779 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 7780 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 7781 // from implementing the canonicalization in visitFSUB. 7782 if (N0.getOpcode() == ISD::FP_EXTEND) { 7783 SDValue N00 = N0.getOperand(0); 7784 if (N00.getOpcode() == ISD::FNEG) { 7785 SDValue N000 = N00.getOperand(0); 7786 if (N000.getOpcode() == ISD::FMUL) { 7787 return DAG.getNode(ISD::FNEG, SL, VT, 7788 DAG.getNode(PreferredFusedOpcode, SL, VT, 7789 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7790 N000.getOperand(0)), 7791 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7792 N000.getOperand(1)), 7793 N1)); 7794 } 7795 } 7796 } 7797 7798 // fold (fsub (fneg (fpext (fmul, x, y))), z) 7799 // -> (fneg (fma (fpext x)), (fpext y), z) 7800 // Note: This could be removed with appropriate canonicalization of the 7801 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 7802 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 7803 // from implementing the canonicalization in visitFSUB. 7804 if (N0.getOpcode() == ISD::FNEG) { 7805 SDValue N00 = N0.getOperand(0); 7806 if (N00.getOpcode() == ISD::FP_EXTEND) { 7807 SDValue N000 = N00.getOperand(0); 7808 if (N000.getOpcode() == ISD::FMUL) { 7809 return DAG.getNode(ISD::FNEG, SL, VT, 7810 DAG.getNode(PreferredFusedOpcode, SL, VT, 7811 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7812 N000.getOperand(0)), 7813 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7814 N000.getOperand(1)), 7815 N1)); 7816 } 7817 } 7818 } 7819 7820 } 7821 7822 // More folding opportunities when target permits. 7823 if ((AllowFusion || HasFMAD) && Aggressive) { 7824 // fold (fsub (fma x, y, (fmul u, v)), z) 7825 // -> (fma x, y (fma u, v, (fneg z))) 7826 if (N0.getOpcode() == PreferredFusedOpcode && 7827 N0.getOperand(2).getOpcode() == ISD::FMUL) { 7828 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7829 N0.getOperand(0), N0.getOperand(1), 7830 DAG.getNode(PreferredFusedOpcode, SL, VT, 7831 N0.getOperand(2).getOperand(0), 7832 N0.getOperand(2).getOperand(1), 7833 DAG.getNode(ISD::FNEG, SL, VT, 7834 N1))); 7835 } 7836 7837 // fold (fsub x, (fma y, z, (fmul u, v))) 7838 // -> (fma (fneg y), z, (fma (fneg u), v, x)) 7839 if (N1.getOpcode() == PreferredFusedOpcode && 7840 N1.getOperand(2).getOpcode() == ISD::FMUL) { 7841 SDValue N20 = N1.getOperand(2).getOperand(0); 7842 SDValue N21 = N1.getOperand(2).getOperand(1); 7843 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7844 DAG.getNode(ISD::FNEG, SL, VT, 7845 N1.getOperand(0)), 7846 N1.getOperand(1), 7847 DAG.getNode(PreferredFusedOpcode, SL, VT, 7848 DAG.getNode(ISD::FNEG, SL, VT, N20), 7849 7850 N21, N0)); 7851 } 7852 7853 if (AllowFusion && LookThroughFPExt) { 7854 // fold (fsub (fma x, y, (fpext (fmul u, v))), z) 7855 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) 7856 if (N0.getOpcode() == PreferredFusedOpcode) { 7857 SDValue N02 = N0.getOperand(2); 7858 if (N02.getOpcode() == ISD::FP_EXTEND) { 7859 SDValue N020 = N02.getOperand(0); 7860 if (N020.getOpcode() == ISD::FMUL) 7861 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7862 N0.getOperand(0), N0.getOperand(1), 7863 DAG.getNode(PreferredFusedOpcode, SL, VT, 7864 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7865 N020.getOperand(0)), 7866 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7867 N020.getOperand(1)), 7868 DAG.getNode(ISD::FNEG, SL, VT, 7869 N1))); 7870 } 7871 } 7872 7873 // fold (fsub (fpext (fma x, y, (fmul u, v))), z) 7874 // -> (fma (fpext x), (fpext y), 7875 // (fma (fpext u), (fpext v), (fneg z))) 7876 // FIXME: This turns two single-precision and one double-precision 7877 // operation into two double-precision operations, which might not be 7878 // interesting for all targets, especially GPUs. 7879 if (N0.getOpcode() == ISD::FP_EXTEND) { 7880 SDValue N00 = N0.getOperand(0); 7881 if (N00.getOpcode() == PreferredFusedOpcode) { 7882 SDValue N002 = N00.getOperand(2); 7883 if (N002.getOpcode() == ISD::FMUL) 7884 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7885 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7886 N00.getOperand(0)), 7887 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7888 N00.getOperand(1)), 7889 DAG.getNode(PreferredFusedOpcode, SL, VT, 7890 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7891 N002.getOperand(0)), 7892 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7893 N002.getOperand(1)), 7894 DAG.getNode(ISD::FNEG, SL, VT, 7895 N1))); 7896 } 7897 } 7898 7899 // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) 7900 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) 7901 if (N1.getOpcode() == PreferredFusedOpcode && 7902 N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) { 7903 SDValue N120 = N1.getOperand(2).getOperand(0); 7904 if (N120.getOpcode() == ISD::FMUL) { 7905 SDValue N1200 = N120.getOperand(0); 7906 SDValue N1201 = N120.getOperand(1); 7907 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7908 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), 7909 N1.getOperand(1), 7910 DAG.getNode(PreferredFusedOpcode, SL, VT, 7911 DAG.getNode(ISD::FNEG, SL, VT, 7912 DAG.getNode(ISD::FP_EXTEND, SL, 7913 VT, N1200)), 7914 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7915 N1201), 7916 N0)); 7917 } 7918 } 7919 7920 // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) 7921 // -> (fma (fneg (fpext y)), (fpext z), 7922 // (fma (fneg (fpext u)), (fpext v), x)) 7923 // FIXME: This turns two single-precision and one double-precision 7924 // operation into two double-precision operations, which might not be 7925 // interesting for all targets, especially GPUs. 7926 if (N1.getOpcode() == ISD::FP_EXTEND && 7927 N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { 7928 SDValue N100 = N1.getOperand(0).getOperand(0); 7929 SDValue N101 = N1.getOperand(0).getOperand(1); 7930 SDValue N102 = N1.getOperand(0).getOperand(2); 7931 if (N102.getOpcode() == ISD::FMUL) { 7932 SDValue N1020 = N102.getOperand(0); 7933 SDValue N1021 = N102.getOperand(1); 7934 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7935 DAG.getNode(ISD::FNEG, SL, VT, 7936 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7937 N100)), 7938 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), 7939 DAG.getNode(PreferredFusedOpcode, SL, VT, 7940 DAG.getNode(ISD::FNEG, SL, VT, 7941 DAG.getNode(ISD::FP_EXTEND, SL, 7942 VT, N1020)), 7943 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7944 N1021), 7945 N0)); 7946 } 7947 } 7948 } 7949 } 7950 7951 return SDValue(); 7952 } 7953 7954 /// Try to perform FMA combining on a given FMUL node. 7955 SDValue DAGCombiner::visitFMULForFMACombine(SDNode *N) { 7956 SDValue N0 = N->getOperand(0); 7957 SDValue N1 = N->getOperand(1); 7958 EVT VT = N->getValueType(0); 7959 SDLoc SL(N); 7960 7961 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); 7962 7963 const TargetOptions &Options = DAG.getTarget().Options; 7964 bool AllowFusion = 7965 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 7966 7967 // Floating-point multiply-add with intermediate rounding. 7968 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 7969 7970 // Floating-point multiply-add without intermediate rounding. 7971 bool HasFMA = 7972 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 7973 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 7974 7975 // No valid opcode, do not combine. 7976 if (!HasFMAD && !HasFMA) 7977 return SDValue(); 7978 7979 // Always prefer FMAD to FMA for precision. 7980 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 7981 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 7982 7983 // fold (fmul (fadd x, +1.0), y) -> (fma x, y, y) 7984 // fold (fmul (fadd x, -1.0), y) -> (fma x, y, (fneg y)) 7985 auto FuseFADD = [&](SDValue X, SDValue Y) { 7986 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { 7987 auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); 7988 if (XC1 && XC1->isExactlyValue(+1.0)) 7989 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); 7990 if (XC1 && XC1->isExactlyValue(-1.0)) 7991 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 7992 DAG.getNode(ISD::FNEG, SL, VT, Y)); 7993 } 7994 return SDValue(); 7995 }; 7996 7997 if (SDValue FMA = FuseFADD(N0, N1)) 7998 return FMA; 7999 if (SDValue FMA = FuseFADD(N1, N0)) 8000 return FMA; 8001 8002 // fold (fmul (fsub +1.0, x), y) -> (fma (fneg x), y, y) 8003 // fold (fmul (fsub -1.0, x), y) -> (fma (fneg x), y, (fneg y)) 8004 // fold (fmul (fsub x, +1.0), y) -> (fma x, y, (fneg y)) 8005 // fold (fmul (fsub x, -1.0), y) -> (fma x, y, y) 8006 auto FuseFSUB = [&](SDValue X, SDValue Y) { 8007 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { 8008 auto XC0 = isConstOrConstSplatFP(X.getOperand(0)); 8009 if (XC0 && XC0->isExactlyValue(+1.0)) 8010 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8011 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 8012 Y); 8013 if (XC0 && XC0->isExactlyValue(-1.0)) 8014 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8015 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 8016 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8017 8018 auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); 8019 if (XC1 && XC1->isExactlyValue(+1.0)) 8020 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 8021 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8022 if (XC1 && XC1->isExactlyValue(-1.0)) 8023 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); 8024 } 8025 return SDValue(); 8026 }; 8027 8028 if (SDValue FMA = FuseFSUB(N0, N1)) 8029 return FMA; 8030 if (SDValue FMA = FuseFSUB(N1, N0)) 8031 return FMA; 8032 8033 return SDValue(); 8034 } 8035 8036 SDValue DAGCombiner::visitFADD(SDNode *N) { 8037 SDValue N0 = N->getOperand(0); 8038 SDValue N1 = N->getOperand(1); 8039 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); 8040 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); 8041 EVT VT = N->getValueType(0); 8042 SDLoc DL(N); 8043 const TargetOptions &Options = DAG.getTarget().Options; 8044 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8045 8046 // fold vector ops 8047 if (VT.isVector()) 8048 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8049 return FoldedVOp; 8050 8051 // fold (fadd c1, c2) -> c1 + c2 8052 if (N0CFP && N1CFP) 8053 return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags); 8054 8055 // canonicalize constant to RHS 8056 if (N0CFP && !N1CFP) 8057 return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags); 8058 8059 // fold (fadd A, (fneg B)) -> (fsub A, B) 8060 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 8061 isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2) 8062 return DAG.getNode(ISD::FSUB, DL, VT, N0, 8063 GetNegatedExpression(N1, DAG, LegalOperations), Flags); 8064 8065 // fold (fadd (fneg A), B) -> (fsub B, A) 8066 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 8067 isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2) 8068 return DAG.getNode(ISD::FSUB, DL, VT, N1, 8069 GetNegatedExpression(N0, DAG, LegalOperations), Flags); 8070 8071 // If 'unsafe math' is enabled, fold lots of things. 8072 if (Options.UnsafeFPMath) { 8073 // No FP constant should be created after legalization as Instruction 8074 // Selection pass has a hard time dealing with FP constants. 8075 bool AllowNewConst = (Level < AfterLegalizeDAG); 8076 8077 // fold (fadd A, 0) -> A 8078 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1)) 8079 if (N1C->isZero()) 8080 return N0; 8081 8082 // fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2)) 8083 if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() && 8084 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) 8085 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), 8086 DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, 8087 Flags), 8088 Flags); 8089 8090 // If allowed, fold (fadd (fneg x), x) -> 0.0 8091 if (AllowNewConst && N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) 8092 return DAG.getConstantFP(0.0, DL, VT); 8093 8094 // If allowed, fold (fadd x, (fneg x)) -> 0.0 8095 if (AllowNewConst && N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) 8096 return DAG.getConstantFP(0.0, DL, VT); 8097 8098 // We can fold chains of FADD's of the same value into multiplications. 8099 // This transform is not safe in general because we are reducing the number 8100 // of rounding steps. 8101 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { 8102 if (N0.getOpcode() == ISD::FMUL) { 8103 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 8104 bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); 8105 8106 // (fadd (fmul x, c), x) -> (fmul x, c+1) 8107 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { 8108 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 8109 DAG.getConstantFP(1.0, DL, VT), Flags); 8110 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags); 8111 } 8112 8113 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) 8114 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && 8115 N1.getOperand(0) == N1.getOperand(1) && 8116 N0.getOperand(0) == N1.getOperand(0)) { 8117 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 8118 DAG.getConstantFP(2.0, DL, VT), Flags); 8119 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags); 8120 } 8121 } 8122 8123 if (N1.getOpcode() == ISD::FMUL) { 8124 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 8125 bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); 8126 8127 // (fadd x, (fmul x, c)) -> (fmul x, c+1) 8128 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { 8129 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 8130 DAG.getConstantFP(1.0, DL, VT), Flags); 8131 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags); 8132 } 8133 8134 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) 8135 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && 8136 N0.getOperand(0) == N0.getOperand(1) && 8137 N1.getOperand(0) == N0.getOperand(0)) { 8138 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 8139 DAG.getConstantFP(2.0, DL, VT), Flags); 8140 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags); 8141 } 8142 } 8143 8144 if (N0.getOpcode() == ISD::FADD && AllowNewConst) { 8145 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 8146 // (fadd (fadd x, x), x) -> (fmul x, 3.0) 8147 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && 8148 (N0.getOperand(0) == N1)) { 8149 return DAG.getNode(ISD::FMUL, DL, VT, 8150 N1, DAG.getConstantFP(3.0, DL, VT), Flags); 8151 } 8152 } 8153 8154 if (N1.getOpcode() == ISD::FADD && AllowNewConst) { 8155 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 8156 // (fadd x, (fadd x, x)) -> (fmul x, 3.0) 8157 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && 8158 N1.getOperand(0) == N0) { 8159 return DAG.getNode(ISD::FMUL, DL, VT, 8160 N0, DAG.getConstantFP(3.0, DL, VT), Flags); 8161 } 8162 } 8163 8164 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) 8165 if (AllowNewConst && 8166 N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && 8167 N0.getOperand(0) == N0.getOperand(1) && 8168 N1.getOperand(0) == N1.getOperand(1) && 8169 N0.getOperand(0) == N1.getOperand(0)) { 8170 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), 8171 DAG.getConstantFP(4.0, DL, VT), Flags); 8172 } 8173 } 8174 } // enable-unsafe-fp-math 8175 8176 // FADD -> FMA combines: 8177 if (SDValue Fused = visitFADDForFMACombine(N)) { 8178 AddToWorklist(Fused.getNode()); 8179 return Fused; 8180 } 8181 8182 return SDValue(); 8183 } 8184 8185 SDValue DAGCombiner::visitFSUB(SDNode *N) { 8186 SDValue N0 = N->getOperand(0); 8187 SDValue N1 = N->getOperand(1); 8188 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 8189 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 8190 EVT VT = N->getValueType(0); 8191 SDLoc dl(N); 8192 const TargetOptions &Options = DAG.getTarget().Options; 8193 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8194 8195 // fold vector ops 8196 if (VT.isVector()) 8197 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8198 return FoldedVOp; 8199 8200 // fold (fsub c1, c2) -> c1-c2 8201 if (N0CFP && N1CFP) 8202 return DAG.getNode(ISD::FSUB, dl, VT, N0, N1, Flags); 8203 8204 // fold (fsub A, (fneg B)) -> (fadd A, B) 8205 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) 8206 return DAG.getNode(ISD::FADD, dl, VT, N0, 8207 GetNegatedExpression(N1, DAG, LegalOperations), Flags); 8208 8209 // If 'unsafe math' is enabled, fold lots of things. 8210 if (Options.UnsafeFPMath) { 8211 // (fsub A, 0) -> A 8212 if (N1CFP && N1CFP->isZero()) 8213 return N0; 8214 8215 // (fsub 0, B) -> -B 8216 if (N0CFP && N0CFP->isZero()) { 8217 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) 8218 return GetNegatedExpression(N1, DAG, LegalOperations); 8219 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8220 return DAG.getNode(ISD::FNEG, dl, VT, N1); 8221 } 8222 8223 // (fsub x, x) -> 0.0 8224 if (N0 == N1) 8225 return DAG.getConstantFP(0.0f, dl, VT); 8226 8227 // (fsub x, (fadd x, y)) -> (fneg y) 8228 // (fsub x, (fadd y, x)) -> (fneg y) 8229 if (N1.getOpcode() == ISD::FADD) { 8230 SDValue N10 = N1->getOperand(0); 8231 SDValue N11 = N1->getOperand(1); 8232 8233 if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options)) 8234 return GetNegatedExpression(N11, DAG, LegalOperations); 8235 8236 if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options)) 8237 return GetNegatedExpression(N10, DAG, LegalOperations); 8238 } 8239 } 8240 8241 // FSUB -> FMA combines: 8242 if (SDValue Fused = visitFSUBForFMACombine(N)) { 8243 AddToWorklist(Fused.getNode()); 8244 return Fused; 8245 } 8246 8247 return SDValue(); 8248 } 8249 8250 SDValue DAGCombiner::visitFMUL(SDNode *N) { 8251 SDValue N0 = N->getOperand(0); 8252 SDValue N1 = N->getOperand(1); 8253 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 8254 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 8255 EVT VT = N->getValueType(0); 8256 SDLoc DL(N); 8257 const TargetOptions &Options = DAG.getTarget().Options; 8258 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8259 8260 // fold vector ops 8261 if (VT.isVector()) { 8262 // This just handles C1 * C2 for vectors. Other vector folds are below. 8263 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8264 return FoldedVOp; 8265 } 8266 8267 // fold (fmul c1, c2) -> c1*c2 8268 if (N0CFP && N1CFP) 8269 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags); 8270 8271 // canonicalize constant to RHS 8272 if (isConstantFPBuildVectorOrConstantFP(N0) && 8273 !isConstantFPBuildVectorOrConstantFP(N1)) 8274 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags); 8275 8276 // fold (fmul A, 1.0) -> A 8277 if (N1CFP && N1CFP->isExactlyValue(1.0)) 8278 return N0; 8279 8280 if (Options.UnsafeFPMath) { 8281 // fold (fmul A, 0) -> 0 8282 if (N1CFP && N1CFP->isZero()) 8283 return N1; 8284 8285 // fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2)) 8286 if (N0.getOpcode() == ISD::FMUL) { 8287 // Fold scalars or any vector constants (not just splats). 8288 // This fold is done in general by InstCombine, but extra fmul insts 8289 // may have been generated during lowering. 8290 SDValue N00 = N0.getOperand(0); 8291 SDValue N01 = N0.getOperand(1); 8292 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 8293 auto *BV00 = dyn_cast<BuildVectorSDNode>(N00); 8294 auto *BV01 = dyn_cast<BuildVectorSDNode>(N01); 8295 8296 // Check 1: Make sure that the first operand of the inner multiply is NOT 8297 // a constant. Otherwise, we may induce infinite looping. 8298 if (!(isConstOrConstSplatFP(N00) || (BV00 && BV00->isConstant()))) { 8299 // Check 2: Make sure that the second operand of the inner multiply and 8300 // the second operand of the outer multiply are constants. 8301 if ((N1CFP && isConstOrConstSplatFP(N01)) || 8302 (BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) { 8303 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags); 8304 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags); 8305 } 8306 } 8307 } 8308 8309 // fold (fmul (fadd x, x), c) -> (fmul x, (fmul 2.0, c)) 8310 // Undo the fmul 2.0, x -> fadd x, x transformation, since if it occurs 8311 // during an early run of DAGCombiner can prevent folding with fmuls 8312 // inserted during lowering. 8313 if (N0.getOpcode() == ISD::FADD && 8314 (N0.getOperand(0) == N0.getOperand(1)) && 8315 N0.hasOneUse()) { 8316 const SDValue Two = DAG.getConstantFP(2.0, DL, VT); 8317 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags); 8318 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags); 8319 } 8320 } 8321 8322 // fold (fmul X, 2.0) -> (fadd X, X) 8323 if (N1CFP && N1CFP->isExactlyValue(+2.0)) 8324 return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags); 8325 8326 // fold (fmul X, -1.0) -> (fneg X) 8327 if (N1CFP && N1CFP->isExactlyValue(-1.0)) 8328 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8329 return DAG.getNode(ISD::FNEG, DL, VT, N0); 8330 8331 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) 8332 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { 8333 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { 8334 // Both can be negated for free, check to see if at least one is cheaper 8335 // negated. 8336 if (LHSNeg == 2 || RHSNeg == 2) 8337 return DAG.getNode(ISD::FMUL, DL, VT, 8338 GetNegatedExpression(N0, DAG, LegalOperations), 8339 GetNegatedExpression(N1, DAG, LegalOperations), 8340 Flags); 8341 } 8342 } 8343 8344 // FMUL -> FMA combines: 8345 if (SDValue Fused = visitFMULForFMACombine(N)) { 8346 AddToWorklist(Fused.getNode()); 8347 return Fused; 8348 } 8349 8350 return SDValue(); 8351 } 8352 8353 SDValue DAGCombiner::visitFMA(SDNode *N) { 8354 SDValue N0 = N->getOperand(0); 8355 SDValue N1 = N->getOperand(1); 8356 SDValue N2 = N->getOperand(2); 8357 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8358 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8359 EVT VT = N->getValueType(0); 8360 SDLoc dl(N); 8361 const TargetOptions &Options = DAG.getTarget().Options; 8362 8363 // Constant fold FMA. 8364 if (isa<ConstantFPSDNode>(N0) && 8365 isa<ConstantFPSDNode>(N1) && 8366 isa<ConstantFPSDNode>(N2)) { 8367 return DAG.getNode(ISD::FMA, dl, VT, N0, N1, N2); 8368 } 8369 8370 if (Options.UnsafeFPMath) { 8371 if (N0CFP && N0CFP->isZero()) 8372 return N2; 8373 if (N1CFP && N1CFP->isZero()) 8374 return N2; 8375 } 8376 // TODO: The FMA node should have flags that propagate to these nodes. 8377 if (N0CFP && N0CFP->isExactlyValue(1.0)) 8378 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); 8379 if (N1CFP && N1CFP->isExactlyValue(1.0)) 8380 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); 8381 8382 // Canonicalize (fma c, x, y) -> (fma x, c, y) 8383 if (isConstantFPBuildVectorOrConstantFP(N0) && 8384 !isConstantFPBuildVectorOrConstantFP(N1)) 8385 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); 8386 8387 // TODO: FMA nodes should have flags that propagate to the created nodes. 8388 // For now, create a Flags object for use with all unsafe math transforms. 8389 SDNodeFlags Flags; 8390 Flags.setUnsafeAlgebra(true); 8391 8392 if (Options.UnsafeFPMath) { 8393 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) 8394 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && 8395 isConstantFPBuildVectorOrConstantFP(N1) && 8396 isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { 8397 return DAG.getNode(ISD::FMUL, dl, VT, N0, 8398 DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1), 8399 &Flags), &Flags); 8400 } 8401 8402 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) 8403 if (N0.getOpcode() == ISD::FMUL && 8404 isConstantFPBuildVectorOrConstantFP(N1) && 8405 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 8406 return DAG.getNode(ISD::FMA, dl, VT, 8407 N0.getOperand(0), 8408 DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1), 8409 &Flags), 8410 N2); 8411 } 8412 } 8413 8414 // (fma x, 1, y) -> (fadd x, y) 8415 // (fma x, -1, y) -> (fadd (fneg x), y) 8416 if (N1CFP) { 8417 if (N1CFP->isExactlyValue(1.0)) 8418 // TODO: The FMA node should have flags that propagate to this node. 8419 return DAG.getNode(ISD::FADD, dl, VT, N0, N2); 8420 8421 if (N1CFP->isExactlyValue(-1.0) && 8422 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { 8423 SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0); 8424 AddToWorklist(RHSNeg.getNode()); 8425 // TODO: The FMA node should have flags that propagate to this node. 8426 return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg); 8427 } 8428 } 8429 8430 if (Options.UnsafeFPMath) { 8431 // (fma x, c, x) -> (fmul x, (c+1)) 8432 if (N1CFP && N0 == N2) { 8433 return DAG.getNode(ISD::FMUL, dl, VT, N0, 8434 DAG.getNode(ISD::FADD, dl, VT, 8435 N1, DAG.getConstantFP(1.0, dl, VT), 8436 &Flags), &Flags); 8437 } 8438 8439 // (fma x, c, (fneg x)) -> (fmul x, (c-1)) 8440 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { 8441 return DAG.getNode(ISD::FMUL, dl, VT, N0, 8442 DAG.getNode(ISD::FADD, dl, VT, 8443 N1, DAG.getConstantFP(-1.0, dl, VT), 8444 &Flags), &Flags); 8445 } 8446 } 8447 8448 return SDValue(); 8449 } 8450 8451 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 8452 // reciprocal. 8453 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) 8454 // Notice that this is not always beneficial. One reason is different target 8455 // may have different costs for FDIV and FMUL, so sometimes the cost of two 8456 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason 8457 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". 8458 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { 8459 if (!DAG.getTarget().Options.UnsafeFPMath) 8460 return SDValue(); 8461 8462 // Skip if current node is a reciprocal. 8463 SDValue N0 = N->getOperand(0); 8464 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8465 if (N0CFP && N0CFP->isExactlyValue(1.0)) 8466 return SDValue(); 8467 8468 // Exit early if the target does not want this transform or if there can't 8469 // possibly be enough uses of the divisor to make the transform worthwhile. 8470 SDValue N1 = N->getOperand(1); 8471 unsigned MinUses = TLI.combineRepeatedFPDivisors(); 8472 if (!MinUses || N1->use_size() < MinUses) 8473 return SDValue(); 8474 8475 // Find all FDIV users of the same divisor. 8476 // Use a set because duplicates may be present in the user list. 8477 SetVector<SDNode *> Users; 8478 for (auto *U : N1->uses()) 8479 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) 8480 Users.insert(U); 8481 8482 // Now that we have the actual number of divisor uses, make sure it meets 8483 // the minimum threshold specified by the target. 8484 if (Users.size() < MinUses) 8485 return SDValue(); 8486 8487 EVT VT = N->getValueType(0); 8488 SDLoc DL(N); 8489 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 8490 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8491 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); 8492 8493 // Dividend / Divisor -> Dividend * Reciprocal 8494 for (auto *U : Users) { 8495 SDValue Dividend = U->getOperand(0); 8496 if (Dividend != FPOne) { 8497 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, 8498 Reciprocal, Flags); 8499 CombineTo(U, NewNode); 8500 } else if (U != Reciprocal.getNode()) { 8501 // In the absence of fast-math-flags, this user node is always the 8502 // same node as Reciprocal, but with FMF they may be different nodes. 8503 CombineTo(U, Reciprocal); 8504 } 8505 } 8506 return SDValue(N, 0); // N was replaced. 8507 } 8508 8509 SDValue DAGCombiner::visitFDIV(SDNode *N) { 8510 SDValue N0 = N->getOperand(0); 8511 SDValue N1 = N->getOperand(1); 8512 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8513 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8514 EVT VT = N->getValueType(0); 8515 SDLoc DL(N); 8516 const TargetOptions &Options = DAG.getTarget().Options; 8517 SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8518 8519 // fold vector ops 8520 if (VT.isVector()) 8521 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8522 return FoldedVOp; 8523 8524 // fold (fdiv c1, c2) -> c1/c2 8525 if (N0CFP && N1CFP) 8526 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags); 8527 8528 if (Options.UnsafeFPMath) { 8529 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. 8530 if (N1CFP) { 8531 // Compute the reciprocal 1.0 / c2. 8532 APFloat N1APF = N1CFP->getValueAPF(); 8533 APFloat Recip(N1APF.getSemantics(), 1); // 1.0 8534 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); 8535 // Only do the transform if the reciprocal is a legal fp immediate that 8536 // isn't too nasty (eg NaN, denormal, ...). 8537 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty 8538 (!LegalOperations || 8539 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM 8540 // backend)... we should handle this gracefully after Legalize. 8541 // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) || 8542 TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) || 8543 TLI.isFPImmLegal(Recip, VT))) 8544 return DAG.getNode(ISD::FMUL, DL, VT, N0, 8545 DAG.getConstantFP(Recip, DL, VT), Flags); 8546 } 8547 8548 // If this FDIV is part of a reciprocal square root, it may be folded 8549 // into a target-specific square root estimate instruction. 8550 if (N1.getOpcode() == ISD::FSQRT) { 8551 if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0), Flags)) { 8552 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8553 } 8554 } else if (N1.getOpcode() == ISD::FP_EXTEND && 8555 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8556 if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0), 8557 Flags)) { 8558 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); 8559 AddToWorklist(RV.getNode()); 8560 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8561 } 8562 } else if (N1.getOpcode() == ISD::FP_ROUND && 8563 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8564 if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0), 8565 Flags)) { 8566 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); 8567 AddToWorklist(RV.getNode()); 8568 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8569 } 8570 } else if (N1.getOpcode() == ISD::FMUL) { 8571 // Look through an FMUL. Even though this won't remove the FDIV directly, 8572 // it's still worthwhile to get rid of the FSQRT if possible. 8573 SDValue SqrtOp; 8574 SDValue OtherOp; 8575 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8576 SqrtOp = N1.getOperand(0); 8577 OtherOp = N1.getOperand(1); 8578 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { 8579 SqrtOp = N1.getOperand(1); 8580 OtherOp = N1.getOperand(0); 8581 } 8582 if (SqrtOp.getNode()) { 8583 // We found a FSQRT, so try to make this fold: 8584 // x / (y * sqrt(z)) -> x * (rsqrt(z) / y) 8585 if (SDValue RV = BuildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) { 8586 RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags); 8587 AddToWorklist(RV.getNode()); 8588 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8589 } 8590 } 8591 } 8592 8593 // Fold into a reciprocal estimate and multiply instead of a real divide. 8594 if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) { 8595 AddToWorklist(RV.getNode()); 8596 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8597 } 8598 } 8599 8600 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) 8601 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { 8602 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { 8603 // Both can be negated for free, check to see if at least one is cheaper 8604 // negated. 8605 if (LHSNeg == 2 || RHSNeg == 2) 8606 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, 8607 GetNegatedExpression(N0, DAG, LegalOperations), 8608 GetNegatedExpression(N1, DAG, LegalOperations), 8609 Flags); 8610 } 8611 } 8612 8613 if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N)) 8614 return CombineRepeatedDivisors; 8615 8616 return SDValue(); 8617 } 8618 8619 SDValue DAGCombiner::visitFREM(SDNode *N) { 8620 SDValue N0 = N->getOperand(0); 8621 SDValue N1 = N->getOperand(1); 8622 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8623 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8624 EVT VT = N->getValueType(0); 8625 8626 // fold (frem c1, c2) -> fmod(c1,c2) 8627 if (N0CFP && N1CFP) 8628 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, 8629 &cast<BinaryWithFlagsSDNode>(N)->Flags); 8630 8631 return SDValue(); 8632 } 8633 8634 SDValue DAGCombiner::visitFSQRT(SDNode *N) { 8635 if (!DAG.getTarget().Options.UnsafeFPMath || TLI.isFsqrtCheap()) 8636 return SDValue(); 8637 8638 // TODO: FSQRT nodes should have flags that propagate to the created nodes. 8639 // For now, create a Flags object for use with all unsafe math transforms. 8640 SDNodeFlags Flags; 8641 Flags.setUnsafeAlgebra(true); 8642 8643 // Compute this as X * (1/sqrt(X)) = X * (X ** -0.5) 8644 SDValue RV = BuildRsqrtEstimate(N->getOperand(0), &Flags); 8645 if (!RV) 8646 return SDValue(); 8647 8648 EVT VT = RV.getValueType(); 8649 SDLoc DL(N); 8650 RV = DAG.getNode(ISD::FMUL, DL, VT, N->getOperand(0), RV, &Flags); 8651 AddToWorklist(RV.getNode()); 8652 8653 // Unfortunately, RV is now NaN if the input was exactly 0. 8654 // Select out this case and force the answer to 0. 8655 SDValue Zero = DAG.getConstantFP(0.0, DL, VT); 8656 EVT CCVT = getSetCCResultType(VT); 8657 SDValue ZeroCmp = DAG.getSetCC(DL, CCVT, N->getOperand(0), Zero, ISD::SETEQ); 8658 AddToWorklist(ZeroCmp.getNode()); 8659 AddToWorklist(RV.getNode()); 8660 8661 return DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, 8662 ZeroCmp, Zero, RV); 8663 } 8664 8665 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { 8666 SDValue N0 = N->getOperand(0); 8667 SDValue N1 = N->getOperand(1); 8668 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8669 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8670 EVT VT = N->getValueType(0); 8671 8672 if (N0CFP && N1CFP) // Constant fold 8673 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); 8674 8675 if (N1CFP) { 8676 const APFloat& V = N1CFP->getValueAPF(); 8677 // copysign(x, c1) -> fabs(x) iff ispos(c1) 8678 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) 8679 if (!V.isNegative()) { 8680 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) 8681 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 8682 } else { 8683 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8684 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, 8685 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); 8686 } 8687 } 8688 8689 // copysign(fabs(x), y) -> copysign(x, y) 8690 // copysign(fneg(x), y) -> copysign(x, y) 8691 // copysign(copysign(x,z), y) -> copysign(x, y) 8692 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || 8693 N0.getOpcode() == ISD::FCOPYSIGN) 8694 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8695 N0.getOperand(0), N1); 8696 8697 // copysign(x, abs(y)) -> abs(x) 8698 if (N1.getOpcode() == ISD::FABS) 8699 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 8700 8701 // copysign(x, copysign(y,z)) -> copysign(x, z) 8702 if (N1.getOpcode() == ISD::FCOPYSIGN) 8703 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8704 N0, N1.getOperand(1)); 8705 8706 // copysign(x, fp_extend(y)) -> copysign(x, y) 8707 // copysign(x, fp_round(y)) -> copysign(x, y) 8708 if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND) 8709 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8710 N0, N1.getOperand(0)); 8711 8712 return SDValue(); 8713 } 8714 8715 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { 8716 SDValue N0 = N->getOperand(0); 8717 EVT VT = N->getValueType(0); 8718 EVT OpVT = N0.getValueType(); 8719 8720 // fold (sint_to_fp c1) -> c1fp 8721 if (isConstantIntBuildVectorOrConstantInt(N0) && 8722 // ...but only if the target supports immediate floating-point values 8723 (!LegalOperations || 8724 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) 8725 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 8726 8727 // If the input is a legal type, and SINT_TO_FP is not legal on this target, 8728 // but UINT_TO_FP is legal on this target, try to convert. 8729 if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) && 8730 TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) { 8731 // If the sign bit is known to be zero, we can change this to UINT_TO_FP. 8732 if (DAG.SignBitIsZero(N0)) 8733 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 8734 } 8735 8736 // The next optimizations are desirable only if SELECT_CC can be lowered. 8737 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 8738 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 8739 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && 8740 !VT.isVector() && 8741 (!LegalOperations || 8742 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 8743 SDLoc DL(N); 8744 SDValue Ops[] = 8745 { N0.getOperand(0), N0.getOperand(1), 8746 DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 8747 N0.getOperand(2) }; 8748 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 8749 } 8750 8751 // fold (sint_to_fp (zext (setcc x, y, cc))) -> 8752 // (select_cc x, y, 1.0, 0.0,, cc) 8753 if (N0.getOpcode() == ISD::ZERO_EXTEND && 8754 N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() && 8755 (!LegalOperations || 8756 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 8757 SDLoc DL(N); 8758 SDValue Ops[] = 8759 { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1), 8760 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 8761 N0.getOperand(0).getOperand(2) }; 8762 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 8763 } 8764 } 8765 8766 return SDValue(); 8767 } 8768 8769 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { 8770 SDValue N0 = N->getOperand(0); 8771 EVT VT = N->getValueType(0); 8772 EVT OpVT = N0.getValueType(); 8773 8774 // fold (uint_to_fp c1) -> c1fp 8775 if (isConstantIntBuildVectorOrConstantInt(N0) && 8776 // ...but only if the target supports immediate floating-point values 8777 (!LegalOperations || 8778 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) 8779 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 8780 8781 // If the input is a legal type, and UINT_TO_FP is not legal on this target, 8782 // but SINT_TO_FP is legal on this target, try to convert. 8783 if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) && 8784 TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) { 8785 // If the sign bit is known to be zero, we can change this to SINT_TO_FP. 8786 if (DAG.SignBitIsZero(N0)) 8787 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 8788 } 8789 8790 // The next optimizations are desirable only if SELECT_CC can be lowered. 8791 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 8792 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 8793 8794 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && 8795 (!LegalOperations || 8796 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 8797 SDLoc DL(N); 8798 SDValue Ops[] = 8799 { N0.getOperand(0), N0.getOperand(1), 8800 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 8801 N0.getOperand(2) }; 8802 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 8803 } 8804 } 8805 8806 return SDValue(); 8807 } 8808 8809 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x 8810 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { 8811 SDValue N0 = N->getOperand(0); 8812 EVT VT = N->getValueType(0); 8813 8814 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) 8815 return SDValue(); 8816 8817 SDValue Src = N0.getOperand(0); 8818 EVT SrcVT = Src.getValueType(); 8819 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; 8820 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; 8821 8822 // We can safely assume the conversion won't overflow the output range, 8823 // because (for example) (uint8_t)18293.f is undefined behavior. 8824 8825 // Since we can assume the conversion won't overflow, our decision as to 8826 // whether the input will fit in the float should depend on the minimum 8827 // of the input range and output range. 8828 8829 // This means this is also safe for a signed input and unsigned output, since 8830 // a negative input would lead to undefined behavior. 8831 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; 8832 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; 8833 unsigned ActualSize = std::min(InputSize, OutputSize); 8834 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); 8835 8836 // We can only fold away the float conversion if the input range can be 8837 // represented exactly in the float range. 8838 if (APFloat::semanticsPrecision(sem) >= ActualSize) { 8839 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { 8840 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND 8841 : ISD::ZERO_EXTEND; 8842 return DAG.getNode(ExtOp, SDLoc(N), VT, Src); 8843 } 8844 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) 8845 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); 8846 if (SrcVT == VT) 8847 return Src; 8848 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Src); 8849 } 8850 return SDValue(); 8851 } 8852 8853 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { 8854 SDValue N0 = N->getOperand(0); 8855 EVT VT = N->getValueType(0); 8856 8857 // fold (fp_to_sint c1fp) -> c1 8858 if (isConstantFPBuildVectorOrConstantFP(N0)) 8859 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); 8860 8861 return FoldIntToFPToInt(N, DAG); 8862 } 8863 8864 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { 8865 SDValue N0 = N->getOperand(0); 8866 EVT VT = N->getValueType(0); 8867 8868 // fold (fp_to_uint c1fp) -> c1 8869 if (isConstantFPBuildVectorOrConstantFP(N0)) 8870 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); 8871 8872 return FoldIntToFPToInt(N, DAG); 8873 } 8874 8875 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { 8876 SDValue N0 = N->getOperand(0); 8877 SDValue N1 = N->getOperand(1); 8878 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8879 EVT VT = N->getValueType(0); 8880 8881 // fold (fp_round c1fp) -> c1fp 8882 if (N0CFP) 8883 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); 8884 8885 // fold (fp_round (fp_extend x)) -> x 8886 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) 8887 return N0.getOperand(0); 8888 8889 // fold (fp_round (fp_round x)) -> (fp_round x) 8890 if (N0.getOpcode() == ISD::FP_ROUND) { 8891 const bool NIsTrunc = N->getConstantOperandVal(1) == 1; 8892 const bool N0IsTrunc = N0.getNode()->getConstantOperandVal(1) == 1; 8893 // If the first fp_round isn't a value preserving truncation, it might 8894 // introduce a tie in the second fp_round, that wouldn't occur in the 8895 // single-step fp_round we want to fold to. 8896 // In other words, double rounding isn't the same as rounding. 8897 // Also, this is a value preserving truncation iff both fp_round's are. 8898 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { 8899 SDLoc DL(N); 8900 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), 8901 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); 8902 } 8903 } 8904 8905 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) 8906 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { 8907 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, 8908 N0.getOperand(0), N1); 8909 AddToWorklist(Tmp.getNode()); 8910 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8911 Tmp, N0.getOperand(1)); 8912 } 8913 8914 return SDValue(); 8915 } 8916 8917 SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { 8918 SDValue N0 = N->getOperand(0); 8919 EVT VT = N->getValueType(0); 8920 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 8921 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8922 8923 // fold (fp_round_inreg c1fp) -> c1fp 8924 if (N0CFP && isTypeLegal(EVT)) { 8925 SDLoc DL(N); 8926 SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT); 8927 return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round); 8928 } 8929 8930 return SDValue(); 8931 } 8932 8933 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { 8934 SDValue N0 = N->getOperand(0); 8935 EVT VT = N->getValueType(0); 8936 8937 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. 8938 if (N->hasOneUse() && 8939 N->use_begin()->getOpcode() == ISD::FP_ROUND) 8940 return SDValue(); 8941 8942 // fold (fp_extend c1fp) -> c1fp 8943 if (isConstantFPBuildVectorOrConstantFP(N0)) 8944 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); 8945 8946 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) 8947 if (N0.getOpcode() == ISD::FP16_TO_FP && 8948 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) 8949 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); 8950 8951 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the 8952 // value of X. 8953 if (N0.getOpcode() == ISD::FP_ROUND 8954 && N0.getNode()->getConstantOperandVal(1) == 1) { 8955 SDValue In = N0.getOperand(0); 8956 if (In.getValueType() == VT) return In; 8957 if (VT.bitsLT(In.getValueType())) 8958 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, 8959 In, N0.getOperand(1)); 8960 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); 8961 } 8962 8963 // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) 8964 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 8965 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 8966 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 8967 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 8968 LN0->getChain(), 8969 LN0->getBasePtr(), N0.getValueType(), 8970 LN0->getMemOperand()); 8971 CombineTo(N, ExtLoad); 8972 CombineTo(N0.getNode(), 8973 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), 8974 N0.getValueType(), ExtLoad, 8975 DAG.getIntPtrConstant(1, SDLoc(N0))), 8976 ExtLoad.getValue(1)); 8977 return SDValue(N, 0); // Return N so it doesn't get rechecked! 8978 } 8979 8980 return SDValue(); 8981 } 8982 8983 SDValue DAGCombiner::visitFCEIL(SDNode *N) { 8984 SDValue N0 = N->getOperand(0); 8985 EVT VT = N->getValueType(0); 8986 8987 // fold (fceil c1) -> fceil(c1) 8988 if (isConstantFPBuildVectorOrConstantFP(N0)) 8989 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); 8990 8991 return SDValue(); 8992 } 8993 8994 SDValue DAGCombiner::visitFTRUNC(SDNode *N) { 8995 SDValue N0 = N->getOperand(0); 8996 EVT VT = N->getValueType(0); 8997 8998 // fold (ftrunc c1) -> ftrunc(c1) 8999 if (isConstantFPBuildVectorOrConstantFP(N0)) 9000 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); 9001 9002 return SDValue(); 9003 } 9004 9005 SDValue DAGCombiner::visitFFLOOR(SDNode *N) { 9006 SDValue N0 = N->getOperand(0); 9007 EVT VT = N->getValueType(0); 9008 9009 // fold (ffloor c1) -> ffloor(c1) 9010 if (isConstantFPBuildVectorOrConstantFP(N0)) 9011 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); 9012 9013 return SDValue(); 9014 } 9015 9016 // FIXME: FNEG and FABS have a lot in common; refactor. 9017 SDValue DAGCombiner::visitFNEG(SDNode *N) { 9018 SDValue N0 = N->getOperand(0); 9019 EVT VT = N->getValueType(0); 9020 9021 // Constant fold FNEG. 9022 if (isConstantFPBuildVectorOrConstantFP(N0)) 9023 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); 9024 9025 if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(), 9026 &DAG.getTarget().Options)) 9027 return GetNegatedExpression(N0, DAG, LegalOperations); 9028 9029 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading 9030 // constant pool values. 9031 if (!TLI.isFNegFree(VT) && 9032 N0.getOpcode() == ISD::BITCAST && 9033 N0.getNode()->hasOneUse()) { 9034 SDValue Int = N0.getOperand(0); 9035 EVT IntVT = Int.getValueType(); 9036 if (IntVT.isInteger() && !IntVT.isVector()) { 9037 APInt SignMask; 9038 if (N0.getValueType().isVector()) { 9039 // For a vector, get a mask such as 0x80... per scalar element 9040 // and splat it. 9041 SignMask = APInt::getSignBit(N0.getValueType().getScalarSizeInBits()); 9042 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 9043 } else { 9044 // For a scalar, just generate 0x80... 9045 SignMask = APInt::getSignBit(IntVT.getSizeInBits()); 9046 } 9047 SDLoc DL0(N0); 9048 Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int, 9049 DAG.getConstant(SignMask, DL0, IntVT)); 9050 AddToWorklist(Int.getNode()); 9051 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Int); 9052 } 9053 } 9054 9055 // (fneg (fmul c, x)) -> (fmul -c, x) 9056 if (N0.getOpcode() == ISD::FMUL && 9057 (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) { 9058 ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 9059 if (CFP1) { 9060 APFloat CVal = CFP1->getValueAPF(); 9061 CVal.changeSign(); 9062 if (Level >= AfterLegalizeDAG && 9063 (TLI.isFPImmLegal(CVal, N->getValueType(0)) || 9064 TLI.isOperationLegal(ISD::ConstantFP, N->getValueType(0)))) 9065 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), 9066 DAG.getNode(ISD::FNEG, SDLoc(N), VT, 9067 N0.getOperand(1)), 9068 &cast<BinaryWithFlagsSDNode>(N0)->Flags); 9069 } 9070 } 9071 9072 return SDValue(); 9073 } 9074 9075 SDValue DAGCombiner::visitFMINNUM(SDNode *N) { 9076 SDValue N0 = N->getOperand(0); 9077 SDValue N1 = N->getOperand(1); 9078 EVT VT = N->getValueType(0); 9079 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 9080 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 9081 9082 if (N0CFP && N1CFP) { 9083 const APFloat &C0 = N0CFP->getValueAPF(); 9084 const APFloat &C1 = N1CFP->getValueAPF(); 9085 return DAG.getConstantFP(minnum(C0, C1), SDLoc(N), VT); 9086 } 9087 9088 // Canonicalize to constant on RHS. 9089 if (isConstantFPBuildVectorOrConstantFP(N0) && 9090 !isConstantFPBuildVectorOrConstantFP(N1)) 9091 return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0); 9092 9093 return SDValue(); 9094 } 9095 9096 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { 9097 SDValue N0 = N->getOperand(0); 9098 SDValue N1 = N->getOperand(1); 9099 EVT VT = N->getValueType(0); 9100 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 9101 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 9102 9103 if (N0CFP && N1CFP) { 9104 const APFloat &C0 = N0CFP->getValueAPF(); 9105 const APFloat &C1 = N1CFP->getValueAPF(); 9106 return DAG.getConstantFP(maxnum(C0, C1), SDLoc(N), VT); 9107 } 9108 9109 // Canonicalize to constant on RHS. 9110 if (isConstantFPBuildVectorOrConstantFP(N0) && 9111 !isConstantFPBuildVectorOrConstantFP(N1)) 9112 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0); 9113 9114 return SDValue(); 9115 } 9116 9117 SDValue DAGCombiner::visitFABS(SDNode *N) { 9118 SDValue N0 = N->getOperand(0); 9119 EVT VT = N->getValueType(0); 9120 9121 // fold (fabs c1) -> fabs(c1) 9122 if (isConstantFPBuildVectorOrConstantFP(N0)) 9123 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 9124 9125 // fold (fabs (fabs x)) -> (fabs x) 9126 if (N0.getOpcode() == ISD::FABS) 9127 return N->getOperand(0); 9128 9129 // fold (fabs (fneg x)) -> (fabs x) 9130 // fold (fabs (fcopysign x, y)) -> (fabs x) 9131 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) 9132 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); 9133 9134 // Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading 9135 // constant pool values. 9136 if (!TLI.isFAbsFree(VT) && 9137 N0.getOpcode() == ISD::BITCAST && 9138 N0.getNode()->hasOneUse()) { 9139 SDValue Int = N0.getOperand(0); 9140 EVT IntVT = Int.getValueType(); 9141 if (IntVT.isInteger() && !IntVT.isVector()) { 9142 APInt SignMask; 9143 if (N0.getValueType().isVector()) { 9144 // For a vector, get a mask such as 0x7f... per scalar element 9145 // and splat it. 9146 SignMask = ~APInt::getSignBit(N0.getValueType().getScalarSizeInBits()); 9147 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 9148 } else { 9149 // For a scalar, just generate 0x7f... 9150 SignMask = ~APInt::getSignBit(IntVT.getSizeInBits()); 9151 } 9152 SDLoc DL(N0); 9153 Int = DAG.getNode(ISD::AND, DL, IntVT, Int, 9154 DAG.getConstant(SignMask, DL, IntVT)); 9155 AddToWorklist(Int.getNode()); 9156 return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Int); 9157 } 9158 } 9159 9160 return SDValue(); 9161 } 9162 9163 SDValue DAGCombiner::visitBRCOND(SDNode *N) { 9164 SDValue Chain = N->getOperand(0); 9165 SDValue N1 = N->getOperand(1); 9166 SDValue N2 = N->getOperand(2); 9167 9168 // If N is a constant we could fold this into a fallthrough or unconditional 9169 // branch. However that doesn't happen very often in normal code, because 9170 // Instcombine/SimplifyCFG should have handled the available opportunities. 9171 // If we did this folding here, it would be necessary to update the 9172 // MachineBasicBlock CFG, which is awkward. 9173 9174 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal 9175 // on the target. 9176 if (N1.getOpcode() == ISD::SETCC && 9177 TLI.isOperationLegalOrCustom(ISD::BR_CC, 9178 N1.getOperand(0).getValueType())) { 9179 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 9180 Chain, N1.getOperand(2), 9181 N1.getOperand(0), N1.getOperand(1), N2); 9182 } 9183 9184 if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) || 9185 ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) && 9186 (N1.getOperand(0).hasOneUse() && 9187 N1.getOperand(0).getOpcode() == ISD::SRL))) { 9188 SDNode *Trunc = nullptr; 9189 if (N1.getOpcode() == ISD::TRUNCATE) { 9190 // Look pass the truncate. 9191 Trunc = N1.getNode(); 9192 N1 = N1.getOperand(0); 9193 } 9194 9195 // Match this pattern so that we can generate simpler code: 9196 // 9197 // %a = ... 9198 // %b = and i32 %a, 2 9199 // %c = srl i32 %b, 1 9200 // brcond i32 %c ... 9201 // 9202 // into 9203 // 9204 // %a = ... 9205 // %b = and i32 %a, 2 9206 // %c = setcc eq %b, 0 9207 // brcond %c ... 9208 // 9209 // This applies only when the AND constant value has one bit set and the 9210 // SRL constant is equal to the log2 of the AND constant. The back-end is 9211 // smart enough to convert the result into a TEST/JMP sequence. 9212 SDValue Op0 = N1.getOperand(0); 9213 SDValue Op1 = N1.getOperand(1); 9214 9215 if (Op0.getOpcode() == ISD::AND && 9216 Op1.getOpcode() == ISD::Constant) { 9217 SDValue AndOp1 = Op0.getOperand(1); 9218 9219 if (AndOp1.getOpcode() == ISD::Constant) { 9220 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); 9221 9222 if (AndConst.isPowerOf2() && 9223 cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) { 9224 SDLoc DL(N); 9225 SDValue SetCC = 9226 DAG.getSetCC(DL, 9227 getSetCCResultType(Op0.getValueType()), 9228 Op0, DAG.getConstant(0, DL, Op0.getValueType()), 9229 ISD::SETNE); 9230 9231 SDValue NewBRCond = DAG.getNode(ISD::BRCOND, DL, 9232 MVT::Other, Chain, SetCC, N2); 9233 // Don't add the new BRCond into the worklist or else SimplifySelectCC 9234 // will convert it back to (X & C1) >> C2. 9235 CombineTo(N, NewBRCond, false); 9236 // Truncate is dead. 9237 if (Trunc) 9238 deleteAndRecombine(Trunc); 9239 // Replace the uses of SRL with SETCC 9240 WorklistRemover DeadNodes(*this); 9241 DAG.ReplaceAllUsesOfValueWith(N1, SetCC); 9242 deleteAndRecombine(N1.getNode()); 9243 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9244 } 9245 } 9246 } 9247 9248 if (Trunc) 9249 // Restore N1 if the above transformation doesn't match. 9250 N1 = N->getOperand(1); 9251 } 9252 9253 // Transform br(xor(x, y)) -> br(x != y) 9254 // Transform br(xor(xor(x,y), 1)) -> br (x == y) 9255 if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) { 9256 SDNode *TheXor = N1.getNode(); 9257 SDValue Op0 = TheXor->getOperand(0); 9258 SDValue Op1 = TheXor->getOperand(1); 9259 if (Op0.getOpcode() == Op1.getOpcode()) { 9260 // Avoid missing important xor optimizations. 9261 if (SDValue Tmp = visitXOR(TheXor)) { 9262 if (Tmp.getNode() != TheXor) { 9263 DEBUG(dbgs() << "\nReplacing.8 "; 9264 TheXor->dump(&DAG); 9265 dbgs() << "\nWith: "; 9266 Tmp.getNode()->dump(&DAG); 9267 dbgs() << '\n'); 9268 WorklistRemover DeadNodes(*this); 9269 DAG.ReplaceAllUsesOfValueWith(N1, Tmp); 9270 deleteAndRecombine(TheXor); 9271 return DAG.getNode(ISD::BRCOND, SDLoc(N), 9272 MVT::Other, Chain, Tmp, N2); 9273 } 9274 9275 // visitXOR has changed XOR's operands or replaced the XOR completely, 9276 // bail out. 9277 return SDValue(N, 0); 9278 } 9279 } 9280 9281 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { 9282 bool Equal = false; 9283 if (isOneConstant(Op0) && Op0.hasOneUse() && 9284 Op0.getOpcode() == ISD::XOR) { 9285 TheXor = Op0.getNode(); 9286 Equal = true; 9287 } 9288 9289 EVT SetCCVT = N1.getValueType(); 9290 if (LegalTypes) 9291 SetCCVT = getSetCCResultType(SetCCVT); 9292 SDValue SetCC = DAG.getSetCC(SDLoc(TheXor), 9293 SetCCVT, 9294 Op0, Op1, 9295 Equal ? ISD::SETEQ : ISD::SETNE); 9296 // Replace the uses of XOR with SETCC 9297 WorklistRemover DeadNodes(*this); 9298 DAG.ReplaceAllUsesOfValueWith(N1, SetCC); 9299 deleteAndRecombine(N1.getNode()); 9300 return DAG.getNode(ISD::BRCOND, SDLoc(N), 9301 MVT::Other, Chain, SetCC, N2); 9302 } 9303 } 9304 9305 return SDValue(); 9306 } 9307 9308 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. 9309 // 9310 SDValue DAGCombiner::visitBR_CC(SDNode *N) { 9311 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); 9312 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); 9313 9314 // If N is a constant we could fold this into a fallthrough or unconditional 9315 // branch. However that doesn't happen very often in normal code, because 9316 // Instcombine/SimplifyCFG should have handled the available opportunities. 9317 // If we did this folding here, it would be necessary to update the 9318 // MachineBasicBlock CFG, which is awkward. 9319 9320 // Use SimplifySetCC to simplify SETCC's. 9321 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), 9322 CondLHS, CondRHS, CC->get(), SDLoc(N), 9323 false); 9324 if (Simp.getNode()) AddToWorklist(Simp.getNode()); 9325 9326 // fold to a simpler setcc 9327 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) 9328 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 9329 N->getOperand(0), Simp.getOperand(2), 9330 Simp.getOperand(0), Simp.getOperand(1), 9331 N->getOperand(4)); 9332 9333 return SDValue(); 9334 } 9335 9336 /// Return true if 'Use' is a load or a store that uses N as its base pointer 9337 /// and that N may be folded in the load / store addressing mode. 9338 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, 9339 SelectionDAG &DAG, 9340 const TargetLowering &TLI) { 9341 EVT VT; 9342 unsigned AS; 9343 9344 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { 9345 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 9346 return false; 9347 VT = LD->getMemoryVT(); 9348 AS = LD->getAddressSpace(); 9349 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { 9350 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 9351 return false; 9352 VT = ST->getMemoryVT(); 9353 AS = ST->getAddressSpace(); 9354 } else 9355 return false; 9356 9357 TargetLowering::AddrMode AM; 9358 if (N->getOpcode() == ISD::ADD) { 9359 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9360 if (Offset) 9361 // [reg +/- imm] 9362 AM.BaseOffs = Offset->getSExtValue(); 9363 else 9364 // [reg +/- reg] 9365 AM.Scale = 1; 9366 } else if (N->getOpcode() == ISD::SUB) { 9367 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9368 if (Offset) 9369 // [reg +/- imm] 9370 AM.BaseOffs = -Offset->getSExtValue(); 9371 else 9372 // [reg +/- reg] 9373 AM.Scale = 1; 9374 } else 9375 return false; 9376 9377 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, 9378 VT.getTypeForEVT(*DAG.getContext()), AS); 9379 } 9380 9381 /// Try turning a load/store into a pre-indexed load/store when the base 9382 /// pointer is an add or subtract and it has other uses besides the load/store. 9383 /// After the transformation, the new indexed load/store has effectively folded 9384 /// the add/subtract in and all of its other uses are redirected to the 9385 /// new load/store. 9386 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { 9387 if (Level < AfterLegalizeDAG) 9388 return false; 9389 9390 bool isLoad = true; 9391 SDValue Ptr; 9392 EVT VT; 9393 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 9394 if (LD->isIndexed()) 9395 return false; 9396 VT = LD->getMemoryVT(); 9397 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && 9398 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) 9399 return false; 9400 Ptr = LD->getBasePtr(); 9401 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 9402 if (ST->isIndexed()) 9403 return false; 9404 VT = ST->getMemoryVT(); 9405 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && 9406 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) 9407 return false; 9408 Ptr = ST->getBasePtr(); 9409 isLoad = false; 9410 } else { 9411 return false; 9412 } 9413 9414 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail 9415 // out. There is no reason to make this a preinc/predec. 9416 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || 9417 Ptr.getNode()->hasOneUse()) 9418 return false; 9419 9420 // Ask the target to do addressing mode selection. 9421 SDValue BasePtr; 9422 SDValue Offset; 9423 ISD::MemIndexedMode AM = ISD::UNINDEXED; 9424 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) 9425 return false; 9426 9427 // Backends without true r+i pre-indexed forms may need to pass a 9428 // constant base with a variable offset so that constant coercion 9429 // will work with the patterns in canonical form. 9430 bool Swapped = false; 9431 if (isa<ConstantSDNode>(BasePtr)) { 9432 std::swap(BasePtr, Offset); 9433 Swapped = true; 9434 } 9435 9436 // Don't create a indexed load / store with zero offset. 9437 if (isNullConstant(Offset)) 9438 return false; 9439 9440 // Try turning it into a pre-indexed load / store except when: 9441 // 1) The new base ptr is a frame index. 9442 // 2) If N is a store and the new base ptr is either the same as or is a 9443 // predecessor of the value being stored. 9444 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded 9445 // that would create a cycle. 9446 // 4) All uses are load / store ops that use it as old base ptr. 9447 9448 // Check #1. Preinc'ing a frame index would require copying the stack pointer 9449 // (plus the implicit offset) to a register to preinc anyway. 9450 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 9451 return false; 9452 9453 // Check #2. 9454 if (!isLoad) { 9455 SDValue Val = cast<StoreSDNode>(N)->getValue(); 9456 if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode())) 9457 return false; 9458 } 9459 9460 // If the offset is a constant, there may be other adds of constants that 9461 // can be folded with this one. We should do this to avoid having to keep 9462 // a copy of the original base pointer. 9463 SmallVector<SDNode *, 16> OtherUses; 9464 if (isa<ConstantSDNode>(Offset)) 9465 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), 9466 UE = BasePtr.getNode()->use_end(); 9467 UI != UE; ++UI) { 9468 SDUse &Use = UI.getUse(); 9469 // Skip the use that is Ptr and uses of other results from BasePtr's 9470 // node (important for nodes that return multiple results). 9471 if (Use.getUser() == Ptr.getNode() || Use != BasePtr) 9472 continue; 9473 9474 if (Use.getUser()->isPredecessorOf(N)) 9475 continue; 9476 9477 if (Use.getUser()->getOpcode() != ISD::ADD && 9478 Use.getUser()->getOpcode() != ISD::SUB) { 9479 OtherUses.clear(); 9480 break; 9481 } 9482 9483 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); 9484 if (!isa<ConstantSDNode>(Op1)) { 9485 OtherUses.clear(); 9486 break; 9487 } 9488 9489 // FIXME: In some cases, we can be smarter about this. 9490 if (Op1.getValueType() != Offset.getValueType()) { 9491 OtherUses.clear(); 9492 break; 9493 } 9494 9495 OtherUses.push_back(Use.getUser()); 9496 } 9497 9498 if (Swapped) 9499 std::swap(BasePtr, Offset); 9500 9501 // Now check for #3 and #4. 9502 bool RealUse = false; 9503 9504 // Caches for hasPredecessorHelper 9505 SmallPtrSet<const SDNode *, 32> Visited; 9506 SmallVector<const SDNode *, 16> Worklist; 9507 9508 for (SDNode *Use : Ptr.getNode()->uses()) { 9509 if (Use == N) 9510 continue; 9511 if (N->hasPredecessorHelper(Use, Visited, Worklist)) 9512 return false; 9513 9514 // If Ptr may be folded in addressing mode of other use, then it's 9515 // not profitable to do this transformation. 9516 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) 9517 RealUse = true; 9518 } 9519 9520 if (!RealUse) 9521 return false; 9522 9523 SDValue Result; 9524 if (isLoad) 9525 Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 9526 BasePtr, Offset, AM); 9527 else 9528 Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 9529 BasePtr, Offset, AM); 9530 ++PreIndexedNodes; 9531 ++NodesCombined; 9532 DEBUG(dbgs() << "\nReplacing.4 "; 9533 N->dump(&DAG); 9534 dbgs() << "\nWith: "; 9535 Result.getNode()->dump(&DAG); 9536 dbgs() << '\n'); 9537 WorklistRemover DeadNodes(*this); 9538 if (isLoad) { 9539 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 9540 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 9541 } else { 9542 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 9543 } 9544 9545 // Finally, since the node is now dead, remove it from the graph. 9546 deleteAndRecombine(N); 9547 9548 if (Swapped) 9549 std::swap(BasePtr, Offset); 9550 9551 // Replace other uses of BasePtr that can be updated to use Ptr 9552 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { 9553 unsigned OffsetIdx = 1; 9554 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) 9555 OffsetIdx = 0; 9556 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == 9557 BasePtr.getNode() && "Expected BasePtr operand"); 9558 9559 // We need to replace ptr0 in the following expression: 9560 // x0 * offset0 + y0 * ptr0 = t0 9561 // knowing that 9562 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) 9563 // 9564 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the 9565 // indexed load/store and the expresion that needs to be re-written. 9566 // 9567 // Therefore, we have: 9568 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 9569 9570 ConstantSDNode *CN = 9571 cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); 9572 int X0, X1, Y0, Y1; 9573 APInt Offset0 = CN->getAPIntValue(); 9574 APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); 9575 9576 X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; 9577 Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; 9578 X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; 9579 Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; 9580 9581 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; 9582 9583 APInt CNV = Offset0; 9584 if (X0 < 0) CNV = -CNV; 9585 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; 9586 else CNV = CNV - Offset1; 9587 9588 SDLoc DL(OtherUses[i]); 9589 9590 // We can now generate the new expression. 9591 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); 9592 SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0); 9593 9594 SDValue NewUse = DAG.getNode(Opcode, 9595 DL, 9596 OtherUses[i]->getValueType(0), NewOp1, NewOp2); 9597 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); 9598 deleteAndRecombine(OtherUses[i]); 9599 } 9600 9601 // Replace the uses of Ptr with uses of the updated base value. 9602 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0)); 9603 deleteAndRecombine(Ptr.getNode()); 9604 9605 return true; 9606 } 9607 9608 /// Try to combine a load/store with a add/sub of the base pointer node into a 9609 /// post-indexed load/store. The transformation folded the add/subtract into the 9610 /// new indexed load/store effectively and all of its uses are redirected to the 9611 /// new load/store. 9612 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { 9613 if (Level < AfterLegalizeDAG) 9614 return false; 9615 9616 bool isLoad = true; 9617 SDValue Ptr; 9618 EVT VT; 9619 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 9620 if (LD->isIndexed()) 9621 return false; 9622 VT = LD->getMemoryVT(); 9623 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && 9624 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) 9625 return false; 9626 Ptr = LD->getBasePtr(); 9627 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 9628 if (ST->isIndexed()) 9629 return false; 9630 VT = ST->getMemoryVT(); 9631 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && 9632 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) 9633 return false; 9634 Ptr = ST->getBasePtr(); 9635 isLoad = false; 9636 } else { 9637 return false; 9638 } 9639 9640 if (Ptr.getNode()->hasOneUse()) 9641 return false; 9642 9643 for (SDNode *Op : Ptr.getNode()->uses()) { 9644 if (Op == N || 9645 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) 9646 continue; 9647 9648 SDValue BasePtr; 9649 SDValue Offset; 9650 ISD::MemIndexedMode AM = ISD::UNINDEXED; 9651 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { 9652 // Don't create a indexed load / store with zero offset. 9653 if (isNullConstant(Offset)) 9654 continue; 9655 9656 // Try turning it into a post-indexed load / store except when 9657 // 1) All uses are load / store ops that use it as base ptr (and 9658 // it may be folded as addressing mmode). 9659 // 2) Op must be independent of N, i.e. Op is neither a predecessor 9660 // nor a successor of N. Otherwise, if Op is folded that would 9661 // create a cycle. 9662 9663 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 9664 continue; 9665 9666 // Check for #1. 9667 bool TryNext = false; 9668 for (SDNode *Use : BasePtr.getNode()->uses()) { 9669 if (Use == Ptr.getNode()) 9670 continue; 9671 9672 // If all the uses are load / store addresses, then don't do the 9673 // transformation. 9674 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ 9675 bool RealUse = false; 9676 for (SDNode *UseUse : Use->uses()) { 9677 if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI)) 9678 RealUse = true; 9679 } 9680 9681 if (!RealUse) { 9682 TryNext = true; 9683 break; 9684 } 9685 } 9686 } 9687 9688 if (TryNext) 9689 continue; 9690 9691 // Check for #2 9692 if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) { 9693 SDValue Result = isLoad 9694 ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 9695 BasePtr, Offset, AM) 9696 : DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 9697 BasePtr, Offset, AM); 9698 ++PostIndexedNodes; 9699 ++NodesCombined; 9700 DEBUG(dbgs() << "\nReplacing.5 "; 9701 N->dump(&DAG); 9702 dbgs() << "\nWith: "; 9703 Result.getNode()->dump(&DAG); 9704 dbgs() << '\n'); 9705 WorklistRemover DeadNodes(*this); 9706 if (isLoad) { 9707 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 9708 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 9709 } else { 9710 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 9711 } 9712 9713 // Finally, since the node is now dead, remove it from the graph. 9714 deleteAndRecombine(N); 9715 9716 // Replace the uses of Use with uses of the updated base value. 9717 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), 9718 Result.getValue(isLoad ? 1 : 0)); 9719 deleteAndRecombine(Op); 9720 return true; 9721 } 9722 } 9723 } 9724 9725 return false; 9726 } 9727 9728 /// \brief Return the base-pointer arithmetic from an indexed \p LD. 9729 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { 9730 ISD::MemIndexedMode AM = LD->getAddressingMode(); 9731 assert(AM != ISD::UNINDEXED); 9732 SDValue BP = LD->getOperand(1); 9733 SDValue Inc = LD->getOperand(2); 9734 9735 // Some backends use TargetConstants for load offsets, but don't expect 9736 // TargetConstants in general ADD nodes. We can convert these constants into 9737 // regular Constants (if the constant is not opaque). 9738 assert((Inc.getOpcode() != ISD::TargetConstant || 9739 !cast<ConstantSDNode>(Inc)->isOpaque()) && 9740 "Cannot split out indexing using opaque target constants"); 9741 if (Inc.getOpcode() == ISD::TargetConstant) { 9742 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); 9743 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), 9744 ConstInc->getValueType(0)); 9745 } 9746 9747 unsigned Opc = 9748 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); 9749 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); 9750 } 9751 9752 SDValue DAGCombiner::visitLOAD(SDNode *N) { 9753 LoadSDNode *LD = cast<LoadSDNode>(N); 9754 SDValue Chain = LD->getChain(); 9755 SDValue Ptr = LD->getBasePtr(); 9756 9757 // If load is not volatile and there are no uses of the loaded value (and 9758 // the updated indexed value in case of indexed loads), change uses of the 9759 // chain value into uses of the chain input (i.e. delete the dead load). 9760 if (!LD->isVolatile()) { 9761 if (N->getValueType(1) == MVT::Other) { 9762 // Unindexed loads. 9763 if (!N->hasAnyUseOfValue(0)) { 9764 // It's not safe to use the two value CombineTo variant here. e.g. 9765 // v1, chain2 = load chain1, loc 9766 // v2, chain3 = load chain2, loc 9767 // v3 = add v2, c 9768 // Now we replace use of chain2 with chain1. This makes the second load 9769 // isomorphic to the one we are deleting, and thus makes this load live. 9770 DEBUG(dbgs() << "\nReplacing.6 "; 9771 N->dump(&DAG); 9772 dbgs() << "\nWith chain: "; 9773 Chain.getNode()->dump(&DAG); 9774 dbgs() << "\n"); 9775 WorklistRemover DeadNodes(*this); 9776 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 9777 9778 if (N->use_empty()) 9779 deleteAndRecombine(N); 9780 9781 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9782 } 9783 } else { 9784 // Indexed loads. 9785 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); 9786 9787 // If this load has an opaque TargetConstant offset, then we cannot split 9788 // the indexing into an add/sub directly (that TargetConstant may not be 9789 // valid for a different type of node, and we cannot convert an opaque 9790 // target constant into a regular constant). 9791 bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant && 9792 cast<ConstantSDNode>(LD->getOperand(2))->isOpaque(); 9793 9794 if (!N->hasAnyUseOfValue(0) && 9795 ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) { 9796 SDValue Undef = DAG.getUNDEF(N->getValueType(0)); 9797 SDValue Index; 9798 if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) { 9799 Index = SplitIndexingFromLoad(LD); 9800 // Try to fold the base pointer arithmetic into subsequent loads and 9801 // stores. 9802 AddUsersToWorklist(N); 9803 } else 9804 Index = DAG.getUNDEF(N->getValueType(1)); 9805 DEBUG(dbgs() << "\nReplacing.7 "; 9806 N->dump(&DAG); 9807 dbgs() << "\nWith: "; 9808 Undef.getNode()->dump(&DAG); 9809 dbgs() << " and 2 other values\n"); 9810 WorklistRemover DeadNodes(*this); 9811 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); 9812 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); 9813 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); 9814 deleteAndRecombine(N); 9815 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9816 } 9817 } 9818 } 9819 9820 // If this load is directly stored, replace the load value with the stored 9821 // value. 9822 // TODO: Handle store large -> read small portion. 9823 // TODO: Handle TRUNCSTORE/LOADEXT 9824 if (ISD::isNormalLoad(N) && !LD->isVolatile()) { 9825 if (ISD::isNON_TRUNCStore(Chain.getNode())) { 9826 StoreSDNode *PrevST = cast<StoreSDNode>(Chain); 9827 if (PrevST->getBasePtr() == Ptr && 9828 PrevST->getValue().getValueType() == N->getValueType(0)) 9829 return CombineTo(N, Chain.getOperand(1), Chain); 9830 } 9831 } 9832 9833 // Try to infer better alignment information than the load already has. 9834 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) { 9835 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 9836 if (Align > LD->getMemOperand()->getBaseAlignment()) { 9837 SDValue NewLoad = 9838 DAG.getExtLoad(LD->getExtensionType(), SDLoc(N), 9839 LD->getValueType(0), 9840 Chain, Ptr, LD->getPointerInfo(), 9841 LD->getMemoryVT(), 9842 LD->isVolatile(), LD->isNonTemporal(), 9843 LD->isInvariant(), Align, LD->getAAInfo()); 9844 if (NewLoad.getNode() != N) 9845 return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true); 9846 } 9847 } 9848 } 9849 9850 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 9851 : DAG.getSubtarget().useAA(); 9852 #ifndef NDEBUG 9853 if (CombinerAAOnlyFunc.getNumOccurrences() && 9854 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 9855 UseAA = false; 9856 #endif 9857 if (UseAA && LD->isUnindexed()) { 9858 // Walk up chain skipping non-aliasing memory nodes. 9859 SDValue BetterChain = FindBetterChain(N, Chain); 9860 9861 // If there is a better chain. 9862 if (Chain != BetterChain) { 9863 SDValue ReplLoad; 9864 9865 // Replace the chain to void dependency. 9866 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 9867 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), 9868 BetterChain, Ptr, LD->getMemOperand()); 9869 } else { 9870 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), 9871 LD->getValueType(0), 9872 BetterChain, Ptr, LD->getMemoryVT(), 9873 LD->getMemOperand()); 9874 } 9875 9876 // Create token factor to keep old chain connected. 9877 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 9878 MVT::Other, Chain, ReplLoad.getValue(1)); 9879 9880 // Make sure the new and old chains are cleaned up. 9881 AddToWorklist(Token.getNode()); 9882 9883 // Replace uses with load result and token factor. Don't add users 9884 // to work list. 9885 return CombineTo(N, ReplLoad.getValue(0), Token, false); 9886 } 9887 } 9888 9889 // Try transforming N to an indexed load. 9890 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 9891 return SDValue(N, 0); 9892 9893 // Try to slice up N to more direct loads if the slices are mapped to 9894 // different register banks or pairing can take place. 9895 if (SliceUpLoad(N)) 9896 return SDValue(N, 0); 9897 9898 return SDValue(); 9899 } 9900 9901 namespace { 9902 /// \brief Helper structure used to slice a load in smaller loads. 9903 /// Basically a slice is obtained from the following sequence: 9904 /// Origin = load Ty1, Base 9905 /// Shift = srl Ty1 Origin, CstTy Amount 9906 /// Inst = trunc Shift to Ty2 9907 /// 9908 /// Then, it will be rewriten into: 9909 /// Slice = load SliceTy, Base + SliceOffset 9910 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 9911 /// 9912 /// SliceTy is deduced from the number of bits that are actually used to 9913 /// build Inst. 9914 struct LoadedSlice { 9915 /// \brief Helper structure used to compute the cost of a slice. 9916 struct Cost { 9917 /// Are we optimizing for code size. 9918 bool ForCodeSize; 9919 /// Various cost. 9920 unsigned Loads; 9921 unsigned Truncates; 9922 unsigned CrossRegisterBanksCopies; 9923 unsigned ZExts; 9924 unsigned Shift; 9925 9926 Cost(bool ForCodeSize = false) 9927 : ForCodeSize(ForCodeSize), Loads(0), Truncates(0), 9928 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {} 9929 9930 /// \brief Get the cost of one isolated slice. 9931 Cost(const LoadedSlice &LS, bool ForCodeSize = false) 9932 : ForCodeSize(ForCodeSize), Loads(1), Truncates(0), 9933 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) { 9934 EVT TruncType = LS.Inst->getValueType(0); 9935 EVT LoadedType = LS.getLoadedType(); 9936 if (TruncType != LoadedType && 9937 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) 9938 ZExts = 1; 9939 } 9940 9941 /// \brief Account for slicing gain in the current cost. 9942 /// Slicing provide a few gains like removing a shift or a 9943 /// truncate. This method allows to grow the cost of the original 9944 /// load with the gain from this slice. 9945 void addSliceGain(const LoadedSlice &LS) { 9946 // Each slice saves a truncate. 9947 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); 9948 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), 9949 LS.Inst->getValueType(0))) 9950 ++Truncates; 9951 // If there is a shift amount, this slice gets rid of it. 9952 if (LS.Shift) 9953 ++Shift; 9954 // If this slice can merge a cross register bank copy, account for it. 9955 if (LS.canMergeExpensiveCrossRegisterBankCopy()) 9956 ++CrossRegisterBanksCopies; 9957 } 9958 9959 Cost &operator+=(const Cost &RHS) { 9960 Loads += RHS.Loads; 9961 Truncates += RHS.Truncates; 9962 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; 9963 ZExts += RHS.ZExts; 9964 Shift += RHS.Shift; 9965 return *this; 9966 } 9967 9968 bool operator==(const Cost &RHS) const { 9969 return Loads == RHS.Loads && Truncates == RHS.Truncates && 9970 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && 9971 ZExts == RHS.ZExts && Shift == RHS.Shift; 9972 } 9973 9974 bool operator!=(const Cost &RHS) const { return !(*this == RHS); } 9975 9976 bool operator<(const Cost &RHS) const { 9977 // Assume cross register banks copies are as expensive as loads. 9978 // FIXME: Do we want some more target hooks? 9979 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; 9980 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; 9981 // Unless we are optimizing for code size, consider the 9982 // expensive operation first. 9983 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) 9984 return ExpensiveOpsLHS < ExpensiveOpsRHS; 9985 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < 9986 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); 9987 } 9988 9989 bool operator>(const Cost &RHS) const { return RHS < *this; } 9990 9991 bool operator<=(const Cost &RHS) const { return !(RHS < *this); } 9992 9993 bool operator>=(const Cost &RHS) const { return !(*this < RHS); } 9994 }; 9995 // The last instruction that represent the slice. This should be a 9996 // truncate instruction. 9997 SDNode *Inst; 9998 // The original load instruction. 9999 LoadSDNode *Origin; 10000 // The right shift amount in bits from the original load. 10001 unsigned Shift; 10002 // The DAG from which Origin came from. 10003 // This is used to get some contextual information about legal types, etc. 10004 SelectionDAG *DAG; 10005 10006 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, 10007 unsigned Shift = 0, SelectionDAG *DAG = nullptr) 10008 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} 10009 10010 /// \brief Get the bits used in a chunk of bits \p BitWidth large. 10011 /// \return Result is \p BitWidth and has used bits set to 1 and 10012 /// not used bits set to 0. 10013 APInt getUsedBits() const { 10014 // Reproduce the trunc(lshr) sequence: 10015 // - Start from the truncated value. 10016 // - Zero extend to the desired bit width. 10017 // - Shift left. 10018 assert(Origin && "No original load to compare against."); 10019 unsigned BitWidth = Origin->getValueSizeInBits(0); 10020 assert(Inst && "This slice is not bound to an instruction"); 10021 assert(Inst->getValueSizeInBits(0) <= BitWidth && 10022 "Extracted slice is bigger than the whole type!"); 10023 APInt UsedBits(Inst->getValueSizeInBits(0), 0); 10024 UsedBits.setAllBits(); 10025 UsedBits = UsedBits.zext(BitWidth); 10026 UsedBits <<= Shift; 10027 return UsedBits; 10028 } 10029 10030 /// \brief Get the size of the slice to be loaded in bytes. 10031 unsigned getLoadedSize() const { 10032 unsigned SliceSize = getUsedBits().countPopulation(); 10033 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); 10034 return SliceSize / 8; 10035 } 10036 10037 /// \brief Get the type that will be loaded for this slice. 10038 /// Note: This may not be the final type for the slice. 10039 EVT getLoadedType() const { 10040 assert(DAG && "Missing context"); 10041 LLVMContext &Ctxt = *DAG->getContext(); 10042 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); 10043 } 10044 10045 /// \brief Get the alignment of the load used for this slice. 10046 unsigned getAlignment() const { 10047 unsigned Alignment = Origin->getAlignment(); 10048 unsigned Offset = getOffsetFromBase(); 10049 if (Offset != 0) 10050 Alignment = MinAlign(Alignment, Alignment + Offset); 10051 return Alignment; 10052 } 10053 10054 /// \brief Check if this slice can be rewritten with legal operations. 10055 bool isLegal() const { 10056 // An invalid slice is not legal. 10057 if (!Origin || !Inst || !DAG) 10058 return false; 10059 10060 // Offsets are for indexed load only, we do not handle that. 10061 if (Origin->getOffset().getOpcode() != ISD::UNDEF) 10062 return false; 10063 10064 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 10065 10066 // Check that the type is legal. 10067 EVT SliceType = getLoadedType(); 10068 if (!TLI.isTypeLegal(SliceType)) 10069 return false; 10070 10071 // Check that the load is legal for this type. 10072 if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) 10073 return false; 10074 10075 // Check that the offset can be computed. 10076 // 1. Check its type. 10077 EVT PtrType = Origin->getBasePtr().getValueType(); 10078 if (PtrType == MVT::Untyped || PtrType.isExtended()) 10079 return false; 10080 10081 // 2. Check that it fits in the immediate. 10082 if (!TLI.isLegalAddImmediate(getOffsetFromBase())) 10083 return false; 10084 10085 // 3. Check that the computation is legal. 10086 if (!TLI.isOperationLegal(ISD::ADD, PtrType)) 10087 return false; 10088 10089 // Check that the zext is legal if it needs one. 10090 EVT TruncateType = Inst->getValueType(0); 10091 if (TruncateType != SliceType && 10092 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) 10093 return false; 10094 10095 return true; 10096 } 10097 10098 /// \brief Get the offset in bytes of this slice in the original chunk of 10099 /// bits. 10100 /// \pre DAG != nullptr. 10101 uint64_t getOffsetFromBase() const { 10102 assert(DAG && "Missing context."); 10103 bool IsBigEndian = DAG->getDataLayout().isBigEndian(); 10104 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); 10105 uint64_t Offset = Shift / 8; 10106 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; 10107 assert(!(Origin->getValueSizeInBits(0) & 0x7) && 10108 "The size of the original loaded type is not a multiple of a" 10109 " byte."); 10110 // If Offset is bigger than TySizeInBytes, it means we are loading all 10111 // zeros. This should have been optimized before in the process. 10112 assert(TySizeInBytes > Offset && 10113 "Invalid shift amount for given loaded size"); 10114 if (IsBigEndian) 10115 Offset = TySizeInBytes - Offset - getLoadedSize(); 10116 return Offset; 10117 } 10118 10119 /// \brief Generate the sequence of instructions to load the slice 10120 /// represented by this object and redirect the uses of this slice to 10121 /// this new sequence of instructions. 10122 /// \pre this->Inst && this->Origin are valid Instructions and this 10123 /// object passed the legal check: LoadedSlice::isLegal returned true. 10124 /// \return The last instruction of the sequence used to load the slice. 10125 SDValue loadSlice() const { 10126 assert(Inst && Origin && "Unable to replace a non-existing slice."); 10127 const SDValue &OldBaseAddr = Origin->getBasePtr(); 10128 SDValue BaseAddr = OldBaseAddr; 10129 // Get the offset in that chunk of bytes w.r.t. the endianess. 10130 int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); 10131 assert(Offset >= 0 && "Offset too big to fit in int64_t!"); 10132 if (Offset) { 10133 // BaseAddr = BaseAddr + Offset. 10134 EVT ArithType = BaseAddr.getValueType(); 10135 SDLoc DL(Origin); 10136 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, 10137 DAG->getConstant(Offset, DL, ArithType)); 10138 } 10139 10140 // Create the type of the loaded slice according to its size. 10141 EVT SliceType = getLoadedType(); 10142 10143 // Create the load for the slice. 10144 SDValue LastInst = DAG->getLoad( 10145 SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, 10146 Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(), 10147 Origin->isNonTemporal(), Origin->isInvariant(), getAlignment()); 10148 // If the final type is not the same as the loaded type, this means that 10149 // we have to pad with zero. Create a zero extend for that. 10150 EVT FinalType = Inst->getValueType(0); 10151 if (SliceType != FinalType) 10152 LastInst = 10153 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); 10154 return LastInst; 10155 } 10156 10157 /// \brief Check if this slice can be merged with an expensive cross register 10158 /// bank copy. E.g., 10159 /// i = load i32 10160 /// f = bitcast i32 i to float 10161 bool canMergeExpensiveCrossRegisterBankCopy() const { 10162 if (!Inst || !Inst->hasOneUse()) 10163 return false; 10164 SDNode *Use = *Inst->use_begin(); 10165 if (Use->getOpcode() != ISD::BITCAST) 10166 return false; 10167 assert(DAG && "Missing context"); 10168 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 10169 EVT ResVT = Use->getValueType(0); 10170 const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT()); 10171 const TargetRegisterClass *ArgRC = 10172 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT()); 10173 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) 10174 return false; 10175 10176 // At this point, we know that we perform a cross-register-bank copy. 10177 // Check if it is expensive. 10178 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); 10179 // Assume bitcasts are cheap, unless both register classes do not 10180 // explicitly share a common sub class. 10181 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) 10182 return false; 10183 10184 // Check if it will be merged with the load. 10185 // 1. Check the alignment constraint. 10186 unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment( 10187 ResVT.getTypeForEVT(*DAG->getContext())); 10188 10189 if (RequiredAlignment > getAlignment()) 10190 return false; 10191 10192 // 2. Check that the load is a legal operation for that type. 10193 if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) 10194 return false; 10195 10196 // 3. Check that we do not have a zext in the way. 10197 if (Inst->getValueType(0) != getLoadedType()) 10198 return false; 10199 10200 return true; 10201 } 10202 }; 10203 } 10204 10205 /// \brief Check that all bits set in \p UsedBits form a dense region, i.e., 10206 /// \p UsedBits looks like 0..0 1..1 0..0. 10207 static bool areUsedBitsDense(const APInt &UsedBits) { 10208 // If all the bits are one, this is dense! 10209 if (UsedBits.isAllOnesValue()) 10210 return true; 10211 10212 // Get rid of the unused bits on the right. 10213 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); 10214 // Get rid of the unused bits on the left. 10215 if (NarrowedUsedBits.countLeadingZeros()) 10216 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); 10217 // Check that the chunk of bits is completely used. 10218 return NarrowedUsedBits.isAllOnesValue(); 10219 } 10220 10221 /// \brief Check whether or not \p First and \p Second are next to each other 10222 /// in memory. This means that there is no hole between the bits loaded 10223 /// by \p First and the bits loaded by \p Second. 10224 static bool areSlicesNextToEachOther(const LoadedSlice &First, 10225 const LoadedSlice &Second) { 10226 assert(First.Origin == Second.Origin && First.Origin && 10227 "Unable to match different memory origins."); 10228 APInt UsedBits = First.getUsedBits(); 10229 assert((UsedBits & Second.getUsedBits()) == 0 && 10230 "Slices are not supposed to overlap."); 10231 UsedBits |= Second.getUsedBits(); 10232 return areUsedBitsDense(UsedBits); 10233 } 10234 10235 /// \brief Adjust the \p GlobalLSCost according to the target 10236 /// paring capabilities and the layout of the slices. 10237 /// \pre \p GlobalLSCost should account for at least as many loads as 10238 /// there is in the slices in \p LoadedSlices. 10239 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, 10240 LoadedSlice::Cost &GlobalLSCost) { 10241 unsigned NumberOfSlices = LoadedSlices.size(); 10242 // If there is less than 2 elements, no pairing is possible. 10243 if (NumberOfSlices < 2) 10244 return; 10245 10246 // Sort the slices so that elements that are likely to be next to each 10247 // other in memory are next to each other in the list. 10248 std::sort(LoadedSlices.begin(), LoadedSlices.end(), 10249 [](const LoadedSlice &LHS, const LoadedSlice &RHS) { 10250 assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); 10251 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); 10252 }); 10253 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); 10254 // First (resp. Second) is the first (resp. Second) potentially candidate 10255 // to be placed in a paired load. 10256 const LoadedSlice *First = nullptr; 10257 const LoadedSlice *Second = nullptr; 10258 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, 10259 // Set the beginning of the pair. 10260 First = Second) { 10261 10262 Second = &LoadedSlices[CurrSlice]; 10263 10264 // If First is NULL, it means we start a new pair. 10265 // Get to the next slice. 10266 if (!First) 10267 continue; 10268 10269 EVT LoadedType = First->getLoadedType(); 10270 10271 // If the types of the slices are different, we cannot pair them. 10272 if (LoadedType != Second->getLoadedType()) 10273 continue; 10274 10275 // Check if the target supplies paired loads for this type. 10276 unsigned RequiredAlignment = 0; 10277 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { 10278 // move to the next pair, this type is hopeless. 10279 Second = nullptr; 10280 continue; 10281 } 10282 // Check if we meet the alignment requirement. 10283 if (RequiredAlignment > First->getAlignment()) 10284 continue; 10285 10286 // Check that both loads are next to each other in memory. 10287 if (!areSlicesNextToEachOther(*First, *Second)) 10288 continue; 10289 10290 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); 10291 --GlobalLSCost.Loads; 10292 // Move to the next pair. 10293 Second = nullptr; 10294 } 10295 } 10296 10297 /// \brief Check the profitability of all involved LoadedSlice. 10298 /// Currently, it is considered profitable if there is exactly two 10299 /// involved slices (1) which are (2) next to each other in memory, and 10300 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). 10301 /// 10302 /// Note: The order of the elements in \p LoadedSlices may be modified, but not 10303 /// the elements themselves. 10304 /// 10305 /// FIXME: When the cost model will be mature enough, we can relax 10306 /// constraints (1) and (2). 10307 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, 10308 const APInt &UsedBits, bool ForCodeSize) { 10309 unsigned NumberOfSlices = LoadedSlices.size(); 10310 if (StressLoadSlicing) 10311 return NumberOfSlices > 1; 10312 10313 // Check (1). 10314 if (NumberOfSlices != 2) 10315 return false; 10316 10317 // Check (2). 10318 if (!areUsedBitsDense(UsedBits)) 10319 return false; 10320 10321 // Check (3). 10322 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); 10323 // The original code has one big load. 10324 OrigCost.Loads = 1; 10325 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { 10326 const LoadedSlice &LS = LoadedSlices[CurrSlice]; 10327 // Accumulate the cost of all the slices. 10328 LoadedSlice::Cost SliceCost(LS, ForCodeSize); 10329 GlobalSlicingCost += SliceCost; 10330 10331 // Account as cost in the original configuration the gain obtained 10332 // with the current slices. 10333 OrigCost.addSliceGain(LS); 10334 } 10335 10336 // If the target supports paired load, adjust the cost accordingly. 10337 adjustCostForPairing(LoadedSlices, GlobalSlicingCost); 10338 return OrigCost > GlobalSlicingCost; 10339 } 10340 10341 /// \brief If the given load, \p LI, is used only by trunc or trunc(lshr) 10342 /// operations, split it in the various pieces being extracted. 10343 /// 10344 /// This sort of thing is introduced by SROA. 10345 /// This slicing takes care not to insert overlapping loads. 10346 /// \pre LI is a simple load (i.e., not an atomic or volatile load). 10347 bool DAGCombiner::SliceUpLoad(SDNode *N) { 10348 if (Level < AfterLegalizeDAG) 10349 return false; 10350 10351 LoadSDNode *LD = cast<LoadSDNode>(N); 10352 if (LD->isVolatile() || !ISD::isNormalLoad(LD) || 10353 !LD->getValueType(0).isInteger()) 10354 return false; 10355 10356 // Keep track of already used bits to detect overlapping values. 10357 // In that case, we will just abort the transformation. 10358 APInt UsedBits(LD->getValueSizeInBits(0), 0); 10359 10360 SmallVector<LoadedSlice, 4> LoadedSlices; 10361 10362 // Check if this load is used as several smaller chunks of bits. 10363 // Basically, look for uses in trunc or trunc(lshr) and record a new chain 10364 // of computation for each trunc. 10365 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 10366 UI != UIEnd; ++UI) { 10367 // Skip the uses of the chain. 10368 if (UI.getUse().getResNo() != 0) 10369 continue; 10370 10371 SDNode *User = *UI; 10372 unsigned Shift = 0; 10373 10374 // Check if this is a trunc(lshr). 10375 if (User->getOpcode() == ISD::SRL && User->hasOneUse() && 10376 isa<ConstantSDNode>(User->getOperand(1))) { 10377 Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue(); 10378 User = *User->use_begin(); 10379 } 10380 10381 // At this point, User is a Truncate, iff we encountered, trunc or 10382 // trunc(lshr). 10383 if (User->getOpcode() != ISD::TRUNCATE) 10384 return false; 10385 10386 // The width of the type must be a power of 2 and greater than 8-bits. 10387 // Otherwise the load cannot be represented in LLVM IR. 10388 // Moreover, if we shifted with a non-8-bits multiple, the slice 10389 // will be across several bytes. We do not support that. 10390 unsigned Width = User->getValueSizeInBits(0); 10391 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) 10392 return 0; 10393 10394 // Build the slice for this chain of computations. 10395 LoadedSlice LS(User, LD, Shift, &DAG); 10396 APInt CurrentUsedBits = LS.getUsedBits(); 10397 10398 // Check if this slice overlaps with another. 10399 if ((CurrentUsedBits & UsedBits) != 0) 10400 return false; 10401 // Update the bits used globally. 10402 UsedBits |= CurrentUsedBits; 10403 10404 // Check if the new slice would be legal. 10405 if (!LS.isLegal()) 10406 return false; 10407 10408 // Record the slice. 10409 LoadedSlices.push_back(LS); 10410 } 10411 10412 // Abort slicing if it does not seem to be profitable. 10413 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) 10414 return false; 10415 10416 ++SlicedLoads; 10417 10418 // Rewrite each chain to use an independent load. 10419 // By construction, each chain can be represented by a unique load. 10420 10421 // Prepare the argument for the new token factor for all the slices. 10422 SmallVector<SDValue, 8> ArgChains; 10423 for (SmallVectorImpl<LoadedSlice>::const_iterator 10424 LSIt = LoadedSlices.begin(), 10425 LSItEnd = LoadedSlices.end(); 10426 LSIt != LSItEnd; ++LSIt) { 10427 SDValue SliceInst = LSIt->loadSlice(); 10428 CombineTo(LSIt->Inst, SliceInst, true); 10429 if (SliceInst.getNode()->getOpcode() != ISD::LOAD) 10430 SliceInst = SliceInst.getOperand(0); 10431 assert(SliceInst->getOpcode() == ISD::LOAD && 10432 "It takes more than a zext to get to the loaded slice!!"); 10433 ArgChains.push_back(SliceInst.getValue(1)); 10434 } 10435 10436 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, 10437 ArgChains); 10438 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 10439 return true; 10440 } 10441 10442 /// Check to see if V is (and load (ptr), imm), where the load is having 10443 /// specific bytes cleared out. If so, return the byte size being masked out 10444 /// and the shift amount. 10445 static std::pair<unsigned, unsigned> 10446 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { 10447 std::pair<unsigned, unsigned> Result(0, 0); 10448 10449 // Check for the structure we're looking for. 10450 if (V->getOpcode() != ISD::AND || 10451 !isa<ConstantSDNode>(V->getOperand(1)) || 10452 !ISD::isNormalLoad(V->getOperand(0).getNode())) 10453 return Result; 10454 10455 // Check the chain and pointer. 10456 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); 10457 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. 10458 10459 // The store should be chained directly to the load or be an operand of a 10460 // tokenfactor. 10461 if (LD == Chain.getNode()) 10462 ; // ok. 10463 else if (Chain->getOpcode() != ISD::TokenFactor) 10464 return Result; // Fail. 10465 else { 10466 bool isOk = false; 10467 for (const SDValue &ChainOp : Chain->op_values()) 10468 if (ChainOp.getNode() == LD) { 10469 isOk = true; 10470 break; 10471 } 10472 if (!isOk) return Result; 10473 } 10474 10475 // This only handles simple types. 10476 if (V.getValueType() != MVT::i16 && 10477 V.getValueType() != MVT::i32 && 10478 V.getValueType() != MVT::i64) 10479 return Result; 10480 10481 // Check the constant mask. Invert it so that the bits being masked out are 10482 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits 10483 // follow the sign bit for uniformity. 10484 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); 10485 unsigned NotMaskLZ = countLeadingZeros(NotMask); 10486 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. 10487 unsigned NotMaskTZ = countTrailingZeros(NotMask); 10488 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. 10489 if (NotMaskLZ == 64) return Result; // All zero mask. 10490 10491 // See if we have a continuous run of bits. If so, we have 0*1+0* 10492 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) 10493 return Result; 10494 10495 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. 10496 if (V.getValueType() != MVT::i64 && NotMaskLZ) 10497 NotMaskLZ -= 64-V.getValueSizeInBits(); 10498 10499 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; 10500 switch (MaskedBytes) { 10501 case 1: 10502 case 2: 10503 case 4: break; 10504 default: return Result; // All one mask, or 5-byte mask. 10505 } 10506 10507 // Verify that the first bit starts at a multiple of mask so that the access 10508 // is aligned the same as the access width. 10509 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; 10510 10511 Result.first = MaskedBytes; 10512 Result.second = NotMaskTZ/8; 10513 return Result; 10514 } 10515 10516 10517 /// Check to see if IVal is something that provides a value as specified by 10518 /// MaskInfo. If so, replace the specified store with a narrower store of 10519 /// truncated IVal. 10520 static SDNode * 10521 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, 10522 SDValue IVal, StoreSDNode *St, 10523 DAGCombiner *DC) { 10524 unsigned NumBytes = MaskInfo.first; 10525 unsigned ByteShift = MaskInfo.second; 10526 SelectionDAG &DAG = DC->getDAG(); 10527 10528 // Check to see if IVal is all zeros in the part being masked in by the 'or' 10529 // that uses this. If not, this is not a replacement. 10530 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), 10531 ByteShift*8, (ByteShift+NumBytes)*8); 10532 if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr; 10533 10534 // Check that it is legal on the target to do this. It is legal if the new 10535 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type 10536 // legalization. 10537 MVT VT = MVT::getIntegerVT(NumBytes*8); 10538 if (!DC->isTypeLegal(VT)) 10539 return nullptr; 10540 10541 // Okay, we can do this! Replace the 'St' store with a store of IVal that is 10542 // shifted by ByteShift and truncated down to NumBytes. 10543 if (ByteShift) { 10544 SDLoc DL(IVal); 10545 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, 10546 DAG.getConstant(ByteShift*8, DL, 10547 DC->getShiftAmountTy(IVal.getValueType()))); 10548 } 10549 10550 // Figure out the offset for the store and the alignment of the access. 10551 unsigned StOffset; 10552 unsigned NewAlign = St->getAlignment(); 10553 10554 if (DAG.getDataLayout().isLittleEndian()) 10555 StOffset = ByteShift; 10556 else 10557 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; 10558 10559 SDValue Ptr = St->getBasePtr(); 10560 if (StOffset) { 10561 SDLoc DL(IVal); 10562 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), 10563 Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType())); 10564 NewAlign = MinAlign(NewAlign, StOffset); 10565 } 10566 10567 // Truncate down to the new size. 10568 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); 10569 10570 ++OpsNarrowed; 10571 return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr, 10572 St->getPointerInfo().getWithOffset(StOffset), 10573 false, false, NewAlign).getNode(); 10574 } 10575 10576 10577 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and 10578 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try 10579 /// narrowing the load and store if it would end up being a win for performance 10580 /// or code size. 10581 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { 10582 StoreSDNode *ST = cast<StoreSDNode>(N); 10583 if (ST->isVolatile()) 10584 return SDValue(); 10585 10586 SDValue Chain = ST->getChain(); 10587 SDValue Value = ST->getValue(); 10588 SDValue Ptr = ST->getBasePtr(); 10589 EVT VT = Value.getValueType(); 10590 10591 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) 10592 return SDValue(); 10593 10594 unsigned Opc = Value.getOpcode(); 10595 10596 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst 10597 // is a byte mask indicating a consecutive number of bytes, check to see if 10598 // Y is known to provide just those bytes. If so, we try to replace the 10599 // load + replace + store sequence with a single (narrower) store, which makes 10600 // the load dead. 10601 if (Opc == ISD::OR) { 10602 std::pair<unsigned, unsigned> MaskedLoad; 10603 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); 10604 if (MaskedLoad.first) 10605 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 10606 Value.getOperand(1), ST,this)) 10607 return SDValue(NewST, 0); 10608 10609 // Or is commutative, so try swapping X and Y. 10610 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); 10611 if (MaskedLoad.first) 10612 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 10613 Value.getOperand(0), ST,this)) 10614 return SDValue(NewST, 0); 10615 } 10616 10617 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || 10618 Value.getOperand(1).getOpcode() != ISD::Constant) 10619 return SDValue(); 10620 10621 SDValue N0 = Value.getOperand(0); 10622 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 10623 Chain == SDValue(N0.getNode(), 1)) { 10624 LoadSDNode *LD = cast<LoadSDNode>(N0); 10625 if (LD->getBasePtr() != Ptr || 10626 LD->getPointerInfo().getAddrSpace() != 10627 ST->getPointerInfo().getAddrSpace()) 10628 return SDValue(); 10629 10630 // Find the type to narrow it the load / op / store to. 10631 SDValue N1 = Value.getOperand(1); 10632 unsigned BitWidth = N1.getValueSizeInBits(); 10633 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); 10634 if (Opc == ISD::AND) 10635 Imm ^= APInt::getAllOnesValue(BitWidth); 10636 if (Imm == 0 || Imm.isAllOnesValue()) 10637 return SDValue(); 10638 unsigned ShAmt = Imm.countTrailingZeros(); 10639 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; 10640 unsigned NewBW = NextPowerOf2(MSB - ShAmt); 10641 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 10642 // The narrowing should be profitable, the load/store operation should be 10643 // legal (or custom) and the store size should be equal to the NewVT width. 10644 while (NewBW < BitWidth && 10645 (NewVT.getStoreSizeInBits() != NewBW || 10646 !TLI.isOperationLegalOrCustom(Opc, NewVT) || 10647 !TLI.isNarrowingProfitable(VT, NewVT))) { 10648 NewBW = NextPowerOf2(NewBW); 10649 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 10650 } 10651 if (NewBW >= BitWidth) 10652 return SDValue(); 10653 10654 // If the lsb changed does not start at the type bitwidth boundary, 10655 // start at the previous one. 10656 if (ShAmt % NewBW) 10657 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; 10658 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, 10659 std::min(BitWidth, ShAmt + NewBW)); 10660 if ((Imm & Mask) == Imm) { 10661 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); 10662 if (Opc == ISD::AND) 10663 NewImm ^= APInt::getAllOnesValue(NewBW); 10664 uint64_t PtrOff = ShAmt / 8; 10665 // For big endian targets, we need to adjust the offset to the pointer to 10666 // load the correct bytes. 10667 if (DAG.getDataLayout().isBigEndian()) 10668 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; 10669 10670 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); 10671 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); 10672 if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy)) 10673 return SDValue(); 10674 10675 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD), 10676 Ptr.getValueType(), Ptr, 10677 DAG.getConstant(PtrOff, SDLoc(LD), 10678 Ptr.getValueType())); 10679 SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0), 10680 LD->getChain(), NewPtr, 10681 LD->getPointerInfo().getWithOffset(PtrOff), 10682 LD->isVolatile(), LD->isNonTemporal(), 10683 LD->isInvariant(), NewAlign, 10684 LD->getAAInfo()); 10685 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, 10686 DAG.getConstant(NewImm, SDLoc(Value), 10687 NewVT)); 10688 SDValue NewST = DAG.getStore(Chain, SDLoc(N), 10689 NewVal, NewPtr, 10690 ST->getPointerInfo().getWithOffset(PtrOff), 10691 false, false, NewAlign); 10692 10693 AddToWorklist(NewPtr.getNode()); 10694 AddToWorklist(NewLD.getNode()); 10695 AddToWorklist(NewVal.getNode()); 10696 WorklistRemover DeadNodes(*this); 10697 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); 10698 ++OpsNarrowed; 10699 return NewST; 10700 } 10701 } 10702 10703 return SDValue(); 10704 } 10705 10706 /// For a given floating point load / store pair, if the load value isn't used 10707 /// by any other operations, then consider transforming the pair to integer 10708 /// load / store operations if the target deems the transformation profitable. 10709 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { 10710 StoreSDNode *ST = cast<StoreSDNode>(N); 10711 SDValue Chain = ST->getChain(); 10712 SDValue Value = ST->getValue(); 10713 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && 10714 Value.hasOneUse() && 10715 Chain == SDValue(Value.getNode(), 1)) { 10716 LoadSDNode *LD = cast<LoadSDNode>(Value); 10717 EVT VT = LD->getMemoryVT(); 10718 if (!VT.isFloatingPoint() || 10719 VT != ST->getMemoryVT() || 10720 LD->isNonTemporal() || 10721 ST->isNonTemporal() || 10722 LD->getPointerInfo().getAddrSpace() != 0 || 10723 ST->getPointerInfo().getAddrSpace() != 0) 10724 return SDValue(); 10725 10726 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 10727 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || 10728 !TLI.isOperationLegal(ISD::STORE, IntVT) || 10729 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || 10730 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) 10731 return SDValue(); 10732 10733 unsigned LDAlign = LD->getAlignment(); 10734 unsigned STAlign = ST->getAlignment(); 10735 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); 10736 unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy); 10737 if (LDAlign < ABIAlign || STAlign < ABIAlign) 10738 return SDValue(); 10739 10740 SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value), 10741 LD->getChain(), LD->getBasePtr(), 10742 LD->getPointerInfo(), 10743 false, false, false, LDAlign); 10744 10745 SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N), 10746 NewLD, ST->getBasePtr(), 10747 ST->getPointerInfo(), 10748 false, false, STAlign); 10749 10750 AddToWorklist(NewLD.getNode()); 10751 AddToWorklist(NewST.getNode()); 10752 WorklistRemover DeadNodes(*this); 10753 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); 10754 ++LdStFP2Int; 10755 return NewST; 10756 } 10757 10758 return SDValue(); 10759 } 10760 10761 namespace { 10762 /// Helper struct to parse and store a memory address as base + index + offset. 10763 /// We ignore sign extensions when it is safe to do so. 10764 /// The following two expressions are not equivalent. To differentiate we need 10765 /// to store whether there was a sign extension involved in the index 10766 /// computation. 10767 /// (load (i64 add (i64 copyfromreg %c) 10768 /// (i64 signextend (add (i8 load %index) 10769 /// (i8 1)))) 10770 /// vs 10771 /// 10772 /// (load (i64 add (i64 copyfromreg %c) 10773 /// (i64 signextend (i32 add (i32 signextend (i8 load %index)) 10774 /// (i32 1))))) 10775 struct BaseIndexOffset { 10776 SDValue Base; 10777 SDValue Index; 10778 int64_t Offset; 10779 bool IsIndexSignExt; 10780 10781 BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {} 10782 10783 BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset, 10784 bool IsIndexSignExt) : 10785 Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {} 10786 10787 bool equalBaseIndex(const BaseIndexOffset &Other) { 10788 return Other.Base == Base && Other.Index == Index && 10789 Other.IsIndexSignExt == IsIndexSignExt; 10790 } 10791 10792 /// Parses tree in Ptr for base, index, offset addresses. 10793 static BaseIndexOffset match(SDValue Ptr) { 10794 bool IsIndexSignExt = false; 10795 10796 // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD 10797 // instruction, then it could be just the BASE or everything else we don't 10798 // know how to handle. Just use Ptr as BASE and give up. 10799 if (Ptr->getOpcode() != ISD::ADD) 10800 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 10801 10802 // We know that we have at least an ADD instruction. Try to pattern match 10803 // the simple case of BASE + OFFSET. 10804 if (isa<ConstantSDNode>(Ptr->getOperand(1))) { 10805 int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue(); 10806 return BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset, 10807 IsIndexSignExt); 10808 } 10809 10810 // Inside a loop the current BASE pointer is calculated using an ADD and a 10811 // MUL instruction. In this case Ptr is the actual BASE pointer. 10812 // (i64 add (i64 %array_ptr) 10813 // (i64 mul (i64 %induction_var) 10814 // (i64 %element_size))) 10815 if (Ptr->getOperand(1)->getOpcode() == ISD::MUL) 10816 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 10817 10818 // Look at Base + Index + Offset cases. 10819 SDValue Base = Ptr->getOperand(0); 10820 SDValue IndexOffset = Ptr->getOperand(1); 10821 10822 // Skip signextends. 10823 if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) { 10824 IndexOffset = IndexOffset->getOperand(0); 10825 IsIndexSignExt = true; 10826 } 10827 10828 // Either the case of Base + Index (no offset) or something else. 10829 if (IndexOffset->getOpcode() != ISD::ADD) 10830 return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt); 10831 10832 // Now we have the case of Base + Index + offset. 10833 SDValue Index = IndexOffset->getOperand(0); 10834 SDValue Offset = IndexOffset->getOperand(1); 10835 10836 if (!isa<ConstantSDNode>(Offset)) 10837 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 10838 10839 // Ignore signextends. 10840 if (Index->getOpcode() == ISD::SIGN_EXTEND) { 10841 Index = Index->getOperand(0); 10842 IsIndexSignExt = true; 10843 } else IsIndexSignExt = false; 10844 10845 int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue(); 10846 return BaseIndexOffset(Base, Index, Off, IsIndexSignExt); 10847 } 10848 }; 10849 } // namespace 10850 10851 // This is a helper function for visitMUL to check the profitability 10852 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 10853 // MulNode is the original multiply, AddNode is (add x, c1), 10854 // and ConstNode is c2. 10855 // 10856 // If the (add x, c1) has multiple uses, we could increase 10857 // the number of adds if we make this transformation. 10858 // It would only be worth doing this if we can remove a 10859 // multiply in the process. Check for that here. 10860 // To illustrate: 10861 // (A + c1) * c3 10862 // (A + c2) * c3 10863 // We're checking for cases where we have common "c3 * A" expressions. 10864 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, 10865 SDValue &AddNode, 10866 SDValue &ConstNode) { 10867 APInt Val; 10868 10869 // If the add only has one use, this would be OK to do. 10870 if (AddNode.getNode()->hasOneUse()) 10871 return true; 10872 10873 // Walk all the users of the constant with which we're multiplying. 10874 for (SDNode *Use : ConstNode->uses()) { 10875 10876 if (Use == MulNode) // This use is the one we're on right now. Skip it. 10877 continue; 10878 10879 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. 10880 SDNode *OtherOp; 10881 SDNode *MulVar = AddNode.getOperand(0).getNode(); 10882 10883 // OtherOp is what we're multiplying against the constant. 10884 if (Use->getOperand(0) == ConstNode) 10885 OtherOp = Use->getOperand(1).getNode(); 10886 else 10887 OtherOp = Use->getOperand(0).getNode(); 10888 10889 // Check to see if multiply is with the same operand of our "add". 10890 // 10891 // ConstNode = CONST 10892 // Use = ConstNode * A <-- visiting Use. OtherOp is A. 10893 // ... 10894 // AddNode = (A + c1) <-- MulVar is A. 10895 // = AddNode * ConstNode <-- current visiting instruction. 10896 // 10897 // If we make this transformation, we will have a common 10898 // multiply (ConstNode * A) that we can save. 10899 if (OtherOp == MulVar) 10900 return true; 10901 10902 // Now check to see if a future expansion will give us a common 10903 // multiply. 10904 // 10905 // ConstNode = CONST 10906 // AddNode = (A + c1) 10907 // ... = AddNode * ConstNode <-- current visiting instruction. 10908 // ... 10909 // OtherOp = (A + c2) 10910 // Use = OtherOp * ConstNode <-- visiting Use. 10911 // 10912 // If we make this transformation, we will have a common 10913 // multiply (CONST * A) after we also do the same transformation 10914 // to the "t2" instruction. 10915 if (OtherOp->getOpcode() == ISD::ADD && 10916 isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && 10917 OtherOp->getOperand(0).getNode() == MulVar) 10918 return true; 10919 } 10920 } 10921 10922 // Didn't find a case where this would be profitable. 10923 return false; 10924 } 10925 10926 SDValue DAGCombiner::getMergedConstantVectorStore(SelectionDAG &DAG, 10927 SDLoc SL, 10928 ArrayRef<MemOpLink> Stores, 10929 SmallVectorImpl<SDValue> &Chains, 10930 EVT Ty) const { 10931 SmallVector<SDValue, 8> BuildVector; 10932 10933 for (unsigned I = 0, E = Ty.getVectorNumElements(); I != E; ++I) { 10934 StoreSDNode *St = cast<StoreSDNode>(Stores[I].MemNode); 10935 Chains.push_back(St->getChain()); 10936 BuildVector.push_back(St->getValue()); 10937 } 10938 10939 return DAG.getNode(ISD::BUILD_VECTOR, SL, Ty, BuildVector); 10940 } 10941 10942 bool DAGCombiner::MergeStoresOfConstantsOrVecElts( 10943 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, 10944 unsigned NumStores, bool IsConstantSrc, bool UseVector) { 10945 // Make sure we have something to merge. 10946 if (NumStores < 2) 10947 return false; 10948 10949 int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; 10950 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 10951 unsigned LatestNodeUsed = 0; 10952 10953 for (unsigned i=0; i < NumStores; ++i) { 10954 // Find a chain for the new wide-store operand. Notice that some 10955 // of the store nodes that we found may not be selected for inclusion 10956 // in the wide store. The chain we use needs to be the chain of the 10957 // latest store node which is *used* and replaced by the wide store. 10958 if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum) 10959 LatestNodeUsed = i; 10960 } 10961 10962 SmallVector<SDValue, 8> Chains; 10963 10964 // The latest Node in the DAG. 10965 LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode; 10966 SDLoc DL(StoreNodes[0].MemNode); 10967 10968 SDValue StoredVal; 10969 if (UseVector) { 10970 bool IsVec = MemVT.isVector(); 10971 unsigned Elts = NumStores; 10972 if (IsVec) { 10973 // When merging vector stores, get the total number of elements. 10974 Elts *= MemVT.getVectorNumElements(); 10975 } 10976 // Get the type for the merged vector store. 10977 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 10978 assert(TLI.isTypeLegal(Ty) && "Illegal vector store"); 10979 10980 if (IsConstantSrc) { 10981 StoredVal = getMergedConstantVectorStore(DAG, DL, StoreNodes, Chains, Ty); 10982 } else { 10983 SmallVector<SDValue, 8> Ops; 10984 for (unsigned i = 0; i < NumStores; ++i) { 10985 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 10986 SDValue Val = St->getValue(); 10987 // All operands of BUILD_VECTOR / CONCAT_VECTOR must have the same type. 10988 if (Val.getValueType() != MemVT) 10989 return false; 10990 Ops.push_back(Val); 10991 Chains.push_back(St->getChain()); 10992 } 10993 10994 // Build the extracted vector elements back into a vector. 10995 StoredVal = DAG.getNode(IsVec ? ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, 10996 DL, Ty, Ops); } 10997 } else { 10998 // We should always use a vector store when merging extracted vector 10999 // elements, so this path implies a store of constants. 11000 assert(IsConstantSrc && "Merged vector elements should use vector store"); 11001 11002 unsigned SizeInBits = NumStores * ElementSizeBytes * 8; 11003 APInt StoreInt(SizeInBits, 0); 11004 11005 // Construct a single integer constant which is made of the smaller 11006 // constant inputs. 11007 bool IsLE = DAG.getDataLayout().isLittleEndian(); 11008 for (unsigned i = 0; i < NumStores; ++i) { 11009 unsigned Idx = IsLE ? (NumStores - 1 - i) : i; 11010 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); 11011 Chains.push_back(St->getChain()); 11012 11013 SDValue Val = St->getValue(); 11014 StoreInt <<= ElementSizeBytes * 8; 11015 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { 11016 StoreInt |= C->getAPIntValue().zext(SizeInBits); 11017 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { 11018 StoreInt |= C->getValueAPF().bitcastToAPInt().zext(SizeInBits); 11019 } else { 11020 llvm_unreachable("Invalid constant element type"); 11021 } 11022 } 11023 11024 // Create the new Load and Store operations. 11025 EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); 11026 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); 11027 } 11028 11029 assert(!Chains.empty()); 11030 11031 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 11032 SDValue NewStore = DAG.getStore(NewChain, DL, StoredVal, 11033 FirstInChain->getBasePtr(), 11034 FirstInChain->getPointerInfo(), 11035 false, false, 11036 FirstInChain->getAlignment()); 11037 11038 // Replace the last store with the new store 11039 CombineTo(LatestOp, NewStore); 11040 // Erase all other stores. 11041 for (unsigned i = 0; i < NumStores; ++i) { 11042 if (StoreNodes[i].MemNode == LatestOp) 11043 continue; 11044 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11045 // ReplaceAllUsesWith will replace all uses that existed when it was 11046 // called, but graph optimizations may cause new ones to appear. For 11047 // example, the case in pr14333 looks like 11048 // 11049 // St's chain -> St -> another store -> X 11050 // 11051 // And the only difference from St to the other store is the chain. 11052 // When we change it's chain to be St's chain they become identical, 11053 // get CSEed and the net result is that X is now a use of St. 11054 // Since we know that St is redundant, just iterate. 11055 while (!St->use_empty()) 11056 DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain()); 11057 deleteAndRecombine(St); 11058 } 11059 11060 return true; 11061 } 11062 11063 void DAGCombiner::getStoreMergeAndAliasCandidates( 11064 StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes, 11065 SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes) { 11066 // This holds the base pointer, index, and the offset in bytes from the base 11067 // pointer. 11068 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr()); 11069 11070 // We must have a base and an offset. 11071 if (!BasePtr.Base.getNode()) 11072 return; 11073 11074 // Do not handle stores to undef base pointers. 11075 if (BasePtr.Base.getOpcode() == ISD::UNDEF) 11076 return; 11077 11078 // Walk up the chain and look for nodes with offsets from the same 11079 // base pointer. Stop when reaching an instruction with a different kind 11080 // or instruction which has a different base pointer. 11081 EVT MemVT = St->getMemoryVT(); 11082 unsigned Seq = 0; 11083 StoreSDNode *Index = St; 11084 11085 11086 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11087 : DAG.getSubtarget().useAA(); 11088 11089 if (UseAA) { 11090 // Look at other users of the same chain. Stores on the same chain do not 11091 // alias. If combiner-aa is enabled, non-aliasing stores are canonicalized 11092 // to be on the same chain, so don't bother looking at adjacent chains. 11093 11094 SDValue Chain = St->getChain(); 11095 for (auto I = Chain->use_begin(), E = Chain->use_end(); I != E; ++I) { 11096 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) { 11097 if (I.getOperandNo() != 0) 11098 continue; 11099 11100 if (OtherST->isVolatile() || OtherST->isIndexed()) 11101 continue; 11102 11103 if (OtherST->getMemoryVT() != MemVT) 11104 continue; 11105 11106 BaseIndexOffset Ptr = BaseIndexOffset::match(OtherST->getBasePtr()); 11107 11108 if (Ptr.equalBaseIndex(BasePtr)) 11109 StoreNodes.push_back(MemOpLink(OtherST, Ptr.Offset, Seq++)); 11110 } 11111 } 11112 11113 return; 11114 } 11115 11116 while (Index) { 11117 // If the chain has more than one use, then we can't reorder the mem ops. 11118 if (Index != St && !SDValue(Index, 0)->hasOneUse()) 11119 break; 11120 11121 // Find the base pointer and offset for this memory node. 11122 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr()); 11123 11124 // Check that the base pointer is the same as the original one. 11125 if (!Ptr.equalBaseIndex(BasePtr)) 11126 break; 11127 11128 // The memory operands must not be volatile. 11129 if (Index->isVolatile() || Index->isIndexed()) 11130 break; 11131 11132 // No truncation. 11133 if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index)) 11134 if (St->isTruncatingStore()) 11135 break; 11136 11137 // The stored memory type must be the same. 11138 if (Index->getMemoryVT() != MemVT) 11139 break; 11140 11141 // We found a potential memory operand to merge. 11142 StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++)); 11143 11144 // Find the next memory operand in the chain. If the next operand in the 11145 // chain is a store then move up and continue the scan with the next 11146 // memory operand. If the next operand is a load save it and use alias 11147 // information to check if it interferes with anything. 11148 SDNode *NextInChain = Index->getChain().getNode(); 11149 while (1) { 11150 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { 11151 // We found a store node. Use it for the next iteration. 11152 Index = STn; 11153 break; 11154 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { 11155 if (Ldn->isVolatile()) { 11156 Index = nullptr; 11157 break; 11158 } 11159 11160 // Save the load node for later. Continue the scan. 11161 AliasLoadNodes.push_back(Ldn); 11162 NextInChain = Ldn->getChain().getNode(); 11163 continue; 11164 } else { 11165 Index = nullptr; 11166 break; 11167 } 11168 } 11169 } 11170 } 11171 11172 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) { 11173 if (OptLevel == CodeGenOpt::None) 11174 return false; 11175 11176 EVT MemVT = St->getMemoryVT(); 11177 int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; 11178 bool NoVectors = DAG.getMachineFunction().getFunction()->hasFnAttribute( 11179 Attribute::NoImplicitFloat); 11180 11181 // This function cannot currently deal with non-byte-sized memory sizes. 11182 if (ElementSizeBytes * 8 != MemVT.getSizeInBits()) 11183 return false; 11184 11185 if (!MemVT.isSimple()) 11186 return false; 11187 11188 // Perform an early exit check. Do not bother looking at stored values that 11189 // are not constants, loads, or extracted vector elements. 11190 SDValue StoredVal = St->getValue(); 11191 bool IsLoadSrc = isa<LoadSDNode>(StoredVal); 11192 bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) || 11193 isa<ConstantFPSDNode>(StoredVal); 11194 bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 11195 StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR); 11196 11197 if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc) 11198 return false; 11199 11200 // Don't merge vectors into wider vectors if the source data comes from loads. 11201 // TODO: This restriction can be lifted by using logic similar to the 11202 // ExtractVecSrc case. 11203 if (MemVT.isVector() && IsLoadSrc) 11204 return false; 11205 11206 // Only look at ends of store sequences. 11207 SDValue Chain = SDValue(St, 0); 11208 if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE) 11209 return false; 11210 11211 // Save the LoadSDNodes that we find in the chain. 11212 // We need to make sure that these nodes do not interfere with 11213 // any of the store nodes. 11214 SmallVector<LSBaseSDNode*, 8> AliasLoadNodes; 11215 11216 // Save the StoreSDNodes that we find in the chain. 11217 SmallVector<MemOpLink, 8> StoreNodes; 11218 11219 getStoreMergeAndAliasCandidates(St, StoreNodes, AliasLoadNodes); 11220 11221 // Check if there is anything to merge. 11222 if (StoreNodes.size() < 2) 11223 return false; 11224 11225 // Sort the memory operands according to their distance from the base pointer. 11226 std::sort(StoreNodes.begin(), StoreNodes.end(), 11227 [](MemOpLink LHS, MemOpLink RHS) { 11228 return LHS.OffsetFromBase < RHS.OffsetFromBase || 11229 (LHS.OffsetFromBase == RHS.OffsetFromBase && 11230 LHS.SequenceNum > RHS.SequenceNum); 11231 }); 11232 11233 // Scan the memory operations on the chain and find the first non-consecutive 11234 // store memory address. 11235 unsigned LastConsecutiveStore = 0; 11236 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 11237 for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) { 11238 11239 // Check that the addresses are consecutive starting from the second 11240 // element in the list of stores. 11241 if (i > 0) { 11242 int64_t CurrAddress = StoreNodes[i].OffsetFromBase; 11243 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 11244 break; 11245 } 11246 11247 bool Alias = false; 11248 // Check if this store interferes with any of the loads that we found. 11249 for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld) 11250 if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) { 11251 Alias = true; 11252 break; 11253 } 11254 // We found a load that alias with this store. Stop the sequence. 11255 if (Alias) 11256 break; 11257 11258 // Mark this node as useful. 11259 LastConsecutiveStore = i; 11260 } 11261 11262 // The node with the lowest store address. 11263 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 11264 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 11265 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 11266 LLVMContext &Context = *DAG.getContext(); 11267 const DataLayout &DL = DAG.getDataLayout(); 11268 11269 // Store the constants into memory as one consecutive store. 11270 if (IsConstantSrc) { 11271 unsigned LastLegalType = 0; 11272 unsigned LastLegalVectorType = 0; 11273 bool NonZero = false; 11274 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { 11275 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11276 SDValue StoredVal = St->getValue(); 11277 11278 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) { 11279 NonZero |= !C->isNullValue(); 11280 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) { 11281 NonZero |= !C->getConstantFPValue()->isNullValue(); 11282 } else { 11283 // Non-constant. 11284 break; 11285 } 11286 11287 // Find a legal type for the constant store. 11288 unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; 11289 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); 11290 bool IsFast; 11291 if (TLI.isTypeLegal(StoreTy) && 11292 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11293 FirstStoreAlign, &IsFast) && IsFast) { 11294 LastLegalType = i+1; 11295 // Or check whether a truncstore is legal. 11296 } else if (TLI.getTypeAction(Context, StoreTy) == 11297 TargetLowering::TypePromoteInteger) { 11298 EVT LegalizedStoredValueTy = 11299 TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); 11300 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && 11301 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11302 FirstStoreAS, FirstStoreAlign, &IsFast) && 11303 IsFast) { 11304 LastLegalType = i + 1; 11305 } 11306 } 11307 11308 // We only use vectors if the constant is known to be zero or the target 11309 // allows it and the function is not marked with the noimplicitfloat 11310 // attribute. 11311 if ((!NonZero || TLI.storeOfVectorConstantIsCheap(MemVT, i+1, 11312 FirstStoreAS)) && 11313 !NoVectors) { 11314 // Find a legal type for the vector store. 11315 EVT Ty = EVT::getVectorVT(Context, MemVT, i+1); 11316 if (TLI.isTypeLegal(Ty) && 11317 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, 11318 FirstStoreAlign, &IsFast) && IsFast) 11319 LastLegalVectorType = i + 1; 11320 } 11321 } 11322 11323 // Check if we found a legal integer type to store. 11324 if (LastLegalType == 0 && LastLegalVectorType == 0) 11325 return false; 11326 11327 bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors; 11328 unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType; 11329 11330 return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, 11331 true, UseVector); 11332 } 11333 11334 // When extracting multiple vector elements, try to store them 11335 // in one vector store rather than a sequence of scalar stores. 11336 if (IsExtractVecSrc) { 11337 unsigned NumStoresToMerge = 0; 11338 bool IsVec = MemVT.isVector(); 11339 for (unsigned i = 0; i < LastConsecutiveStore + 1; ++i) { 11340 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11341 unsigned StoreValOpcode = St->getValue().getOpcode(); 11342 // This restriction could be loosened. 11343 // Bail out if any stored values are not elements extracted from a vector. 11344 // It should be possible to handle mixed sources, but load sources need 11345 // more careful handling (see the block of code below that handles 11346 // consecutive loads). 11347 if (StoreValOpcode != ISD::EXTRACT_VECTOR_ELT && 11348 StoreValOpcode != ISD::EXTRACT_SUBVECTOR) 11349 return false; 11350 11351 // Find a legal type for the vector store. 11352 unsigned Elts = i + 1; 11353 if (IsVec) { 11354 // When merging vector stores, get the total number of elements. 11355 Elts *= MemVT.getVectorNumElements(); 11356 } 11357 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 11358 bool IsFast; 11359 if (TLI.isTypeLegal(Ty) && 11360 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, 11361 FirstStoreAlign, &IsFast) && IsFast) 11362 NumStoresToMerge = i + 1; 11363 } 11364 11365 return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumStoresToMerge, 11366 false, true); 11367 } 11368 11369 // Below we handle the case of multiple consecutive stores that 11370 // come from multiple consecutive loads. We merge them into a single 11371 // wide load and a single wide store. 11372 11373 // Look for load nodes which are used by the stored values. 11374 SmallVector<MemOpLink, 8> LoadNodes; 11375 11376 // Find acceptable loads. Loads need to have the same chain (token factor), 11377 // must not be zext, volatile, indexed, and they must be consecutive. 11378 BaseIndexOffset LdBasePtr; 11379 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { 11380 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11381 LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue()); 11382 if (!Ld) break; 11383 11384 // Loads must only have one use. 11385 if (!Ld->hasNUsesOfValue(1, 0)) 11386 break; 11387 11388 // The memory operands must not be volatile. 11389 if (Ld->isVolatile() || Ld->isIndexed()) 11390 break; 11391 11392 // We do not accept ext loads. 11393 if (Ld->getExtensionType() != ISD::NON_EXTLOAD) 11394 break; 11395 11396 // The stored memory type must be the same. 11397 if (Ld->getMemoryVT() != MemVT) 11398 break; 11399 11400 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr()); 11401 // If this is not the first ptr that we check. 11402 if (LdBasePtr.Base.getNode()) { 11403 // The base ptr must be the same. 11404 if (!LdPtr.equalBaseIndex(LdBasePtr)) 11405 break; 11406 } else { 11407 // Check that all other base pointers are the same as this one. 11408 LdBasePtr = LdPtr; 11409 } 11410 11411 // We found a potential memory operand to merge. 11412 LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0)); 11413 } 11414 11415 if (LoadNodes.size() < 2) 11416 return false; 11417 11418 // If we have load/store pair instructions and we only have two values, 11419 // don't bother. 11420 unsigned RequiredAlignment; 11421 if (LoadNodes.size() == 2 && TLI.hasPairedLoad(MemVT, RequiredAlignment) && 11422 St->getAlignment() >= RequiredAlignment) 11423 return false; 11424 11425 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); 11426 unsigned FirstLoadAS = FirstLoad->getAddressSpace(); 11427 unsigned FirstLoadAlign = FirstLoad->getAlignment(); 11428 11429 // Scan the memory operations on the chain and find the first non-consecutive 11430 // load memory address. These variables hold the index in the store node 11431 // array. 11432 unsigned LastConsecutiveLoad = 0; 11433 // This variable refers to the size and not index in the array. 11434 unsigned LastLegalVectorType = 0; 11435 unsigned LastLegalIntegerType = 0; 11436 StartAddress = LoadNodes[0].OffsetFromBase; 11437 SDValue FirstChain = FirstLoad->getChain(); 11438 for (unsigned i = 1; i < LoadNodes.size(); ++i) { 11439 // All loads much share the same chain. 11440 if (LoadNodes[i].MemNode->getChain() != FirstChain) 11441 break; 11442 11443 int64_t CurrAddress = LoadNodes[i].OffsetFromBase; 11444 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 11445 break; 11446 LastConsecutiveLoad = i; 11447 // Find a legal type for the vector store. 11448 EVT StoreTy = EVT::getVectorVT(Context, MemVT, i+1); 11449 bool IsFastSt, IsFastLd; 11450 if (TLI.isTypeLegal(StoreTy) && 11451 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11452 FirstStoreAlign, &IsFastSt) && IsFastSt && 11453 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 11454 FirstLoadAlign, &IsFastLd) && IsFastLd) { 11455 LastLegalVectorType = i + 1; 11456 } 11457 11458 // Find a legal type for the integer store. 11459 unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; 11460 StoreTy = EVT::getIntegerVT(Context, SizeInBits); 11461 if (TLI.isTypeLegal(StoreTy) && 11462 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11463 FirstStoreAlign, &IsFastSt) && IsFastSt && 11464 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 11465 FirstLoadAlign, &IsFastLd) && IsFastLd) 11466 LastLegalIntegerType = i + 1; 11467 // Or check whether a truncstore and extload is legal. 11468 else if (TLI.getTypeAction(Context, StoreTy) == 11469 TargetLowering::TypePromoteInteger) { 11470 EVT LegalizedStoredValueTy = 11471 TLI.getTypeToTransformTo(Context, StoreTy); 11472 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && 11473 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValueTy, StoreTy) && 11474 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValueTy, StoreTy) && 11475 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValueTy, StoreTy) && 11476 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11477 FirstStoreAS, FirstStoreAlign, &IsFastSt) && 11478 IsFastSt && 11479 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11480 FirstLoadAS, FirstLoadAlign, &IsFastLd) && 11481 IsFastLd) 11482 LastLegalIntegerType = i+1; 11483 } 11484 } 11485 11486 // Only use vector types if the vector type is larger than the integer type. 11487 // If they are the same, use integers. 11488 bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors; 11489 unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType); 11490 11491 // We add +1 here because the LastXXX variables refer to location while 11492 // the NumElem refers to array/index size. 11493 unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1; 11494 NumElem = std::min(LastLegalType, NumElem); 11495 11496 if (NumElem < 2) 11497 return false; 11498 11499 // Collect the chains from all merged stores. 11500 SmallVector<SDValue, 8> MergeStoreChains; 11501 MergeStoreChains.push_back(StoreNodes[0].MemNode->getChain()); 11502 11503 // The latest Node in the DAG. 11504 unsigned LatestNodeUsed = 0; 11505 for (unsigned i=1; i<NumElem; ++i) { 11506 // Find a chain for the new wide-store operand. Notice that some 11507 // of the store nodes that we found may not be selected for inclusion 11508 // in the wide store. The chain we use needs to be the chain of the 11509 // latest store node which is *used* and replaced by the wide store. 11510 if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum) 11511 LatestNodeUsed = i; 11512 11513 MergeStoreChains.push_back(StoreNodes[i].MemNode->getChain()); 11514 } 11515 11516 LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode; 11517 11518 // Find if it is better to use vectors or integers to load and store 11519 // to memory. 11520 EVT JointMemOpVT; 11521 if (UseVectorTy) { 11522 JointMemOpVT = EVT::getVectorVT(Context, MemVT, NumElem); 11523 } else { 11524 unsigned SizeInBits = NumElem * ElementSizeBytes * 8; 11525 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); 11526 } 11527 11528 SDLoc LoadDL(LoadNodes[0].MemNode); 11529 SDLoc StoreDL(StoreNodes[0].MemNode); 11530 11531 // The merged loads are required to have the same chain, so using the first's 11532 // chain is acceptable. 11533 SDValue NewLoad = DAG.getLoad( 11534 JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(), 11535 FirstLoad->getPointerInfo(), false, false, false, FirstLoadAlign); 11536 11537 SDValue NewStoreChain = 11538 DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, MergeStoreChains); 11539 11540 SDValue NewStore = DAG.getStore( 11541 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), 11542 FirstInChain->getPointerInfo(), false, false, FirstStoreAlign); 11543 11544 // Replace one of the loads with the new load. 11545 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode); 11546 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), 11547 SDValue(NewLoad.getNode(), 1)); 11548 11549 // Remove the rest of the load chains. 11550 for (unsigned i = 1; i < NumElem ; ++i) { 11551 // Replace all chain users of the old load nodes with the chain of the new 11552 // load node. 11553 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); 11554 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain()); 11555 } 11556 11557 // Replace the last store with the new store. 11558 CombineTo(LatestOp, NewStore); 11559 // Erase all other stores. 11560 for (unsigned i = 0; i < NumElem ; ++i) { 11561 // Remove all Store nodes. 11562 if (StoreNodes[i].MemNode == LatestOp) 11563 continue; 11564 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11565 DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain()); 11566 deleteAndRecombine(St); 11567 } 11568 11569 return true; 11570 } 11571 11572 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { 11573 SDLoc SL(ST); 11574 SDValue ReplStore; 11575 11576 // Replace the chain to avoid dependency. 11577 if (ST->isTruncatingStore()) { 11578 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), 11579 ST->getBasePtr(), ST->getMemoryVT(), 11580 ST->getMemOperand()); 11581 } else { 11582 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), 11583 ST->getMemOperand()); 11584 } 11585 11586 // Create token to keep both nodes around. 11587 SDValue Token = DAG.getNode(ISD::TokenFactor, SL, 11588 MVT::Other, ST->getChain(), ReplStore); 11589 11590 // Make sure the new and old chains are cleaned up. 11591 AddToWorklist(Token.getNode()); 11592 11593 // Don't add users to work list. 11594 return CombineTo(ST, Token, false); 11595 } 11596 11597 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { 11598 SDValue Value = ST->getValue(); 11599 if (Value.getOpcode() == ISD::TargetConstantFP) 11600 return SDValue(); 11601 11602 SDLoc DL(ST); 11603 11604 SDValue Chain = ST->getChain(); 11605 SDValue Ptr = ST->getBasePtr(); 11606 11607 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); 11608 11609 // NOTE: If the original store is volatile, this transform must not increase 11610 // the number of stores. For example, on x86-32 an f64 can be stored in one 11611 // processor operation but an i64 (which is not legal) requires two. So the 11612 // transform should not be done in this case. 11613 11614 SDValue Tmp; 11615 switch (CFP->getSimpleValueType(0).SimpleTy) { 11616 default: 11617 llvm_unreachable("Unknown FP type"); 11618 case MVT::f16: // We don't do this for these yet. 11619 case MVT::f80: 11620 case MVT::f128: 11621 case MVT::ppcf128: 11622 return SDValue(); 11623 case MVT::f32: 11624 if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) || 11625 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 11626 ; 11627 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). 11628 bitcastToAPInt().getZExtValue(), SDLoc(CFP), 11629 MVT::i32); 11630 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); 11631 } 11632 11633 return SDValue(); 11634 case MVT::f64: 11635 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && 11636 !ST->isVolatile()) || 11637 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { 11638 ; 11639 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 11640 getZExtValue(), SDLoc(CFP), MVT::i64); 11641 return DAG.getStore(Chain, DL, Tmp, 11642 Ptr, ST->getMemOperand()); 11643 } 11644 11645 if (!ST->isVolatile() && 11646 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 11647 // Many FP stores are not made apparent until after legalize, e.g. for 11648 // argument passing. Since this is so common, custom legalize the 11649 // 64-bit integer store into two 32-bit stores. 11650 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 11651 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); 11652 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); 11653 if (DAG.getDataLayout().isBigEndian()) 11654 std::swap(Lo, Hi); 11655 11656 unsigned Alignment = ST->getAlignment(); 11657 bool isVolatile = ST->isVolatile(); 11658 bool isNonTemporal = ST->isNonTemporal(); 11659 AAMDNodes AAInfo = ST->getAAInfo(); 11660 11661 SDValue St0 = DAG.getStore(Chain, DL, Lo, 11662 Ptr, ST->getPointerInfo(), 11663 isVolatile, isNonTemporal, 11664 ST->getAlignment(), AAInfo); 11665 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 11666 DAG.getConstant(4, DL, Ptr.getValueType())); 11667 Alignment = MinAlign(Alignment, 4U); 11668 SDValue St1 = DAG.getStore(Chain, DL, Hi, 11669 Ptr, ST->getPointerInfo().getWithOffset(4), 11670 isVolatile, isNonTemporal, 11671 Alignment, AAInfo); 11672 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 11673 St0, St1); 11674 } 11675 11676 return SDValue(); 11677 } 11678 } 11679 11680 SDValue DAGCombiner::visitSTORE(SDNode *N) { 11681 StoreSDNode *ST = cast<StoreSDNode>(N); 11682 SDValue Chain = ST->getChain(); 11683 SDValue Value = ST->getValue(); 11684 SDValue Ptr = ST->getBasePtr(); 11685 11686 // If this is a store of a bit convert, store the input value if the 11687 // resultant store does not need a higher alignment than the original. 11688 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && 11689 ST->isUnindexed()) { 11690 unsigned OrigAlign = ST->getAlignment(); 11691 EVT SVT = Value.getOperand(0).getValueType(); 11692 unsigned Align = DAG.getDataLayout().getABITypeAlignment( 11693 SVT.getTypeForEVT(*DAG.getContext())); 11694 if (Align <= OrigAlign && 11695 ((!LegalOperations && !ST->isVolatile()) || 11696 TLI.isOperationLegalOrCustom(ISD::STORE, SVT))) 11697 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), 11698 Ptr, ST->getPointerInfo(), ST->isVolatile(), 11699 ST->isNonTemporal(), OrigAlign, 11700 ST->getAAInfo()); 11701 } 11702 11703 // Turn 'store undef, Ptr' -> nothing. 11704 if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed()) 11705 return Chain; 11706 11707 // Try to infer better alignment information than the store already has. 11708 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) { 11709 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 11710 if (Align > ST->getAlignment()) { 11711 SDValue NewStore = 11712 DAG.getTruncStore(Chain, SDLoc(N), Value, 11713 Ptr, ST->getPointerInfo(), ST->getMemoryVT(), 11714 ST->isVolatile(), ST->isNonTemporal(), Align, 11715 ST->getAAInfo()); 11716 if (NewStore.getNode() != N) 11717 return CombineTo(ST, NewStore, true); 11718 } 11719 } 11720 } 11721 11722 // Try transforming a pair floating point load / store ops to integer 11723 // load / store ops. 11724 if (SDValue NewST = TransformFPLoadStorePair(N)) 11725 return NewST; 11726 11727 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11728 : DAG.getSubtarget().useAA(); 11729 #ifndef NDEBUG 11730 if (CombinerAAOnlyFunc.getNumOccurrences() && 11731 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 11732 UseAA = false; 11733 #endif 11734 if (UseAA && ST->isUnindexed()) { 11735 // FIXME: We should do this even without AA enabled. AA will just allow 11736 // FindBetterChain to work in more situations. The problem with this is that 11737 // any combine that expects memory operations to be on consecutive chains 11738 // first needs to be updated to look for users of the same chain. 11739 11740 // Walk up chain skipping non-aliasing memory nodes, on this store and any 11741 // adjacent stores. 11742 if (findBetterNeighborChains(ST)) { 11743 // replaceStoreChain uses CombineTo, which handled all of the worklist 11744 // manipulation. Return the original node to not do anything else. 11745 return SDValue(ST, 0); 11746 } 11747 } 11748 11749 // Try transforming N to an indexed store. 11750 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 11751 return SDValue(N, 0); 11752 11753 // FIXME: is there such a thing as a truncating indexed store? 11754 if (ST->isTruncatingStore() && ST->isUnindexed() && 11755 Value.getValueType().isInteger()) { 11756 // See if we can simplify the input to this truncstore with knowledge that 11757 // only the low bits are being used. For example: 11758 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" 11759 SDValue Shorter = 11760 GetDemandedBits(Value, 11761 APInt::getLowBitsSet( 11762 Value.getValueType().getScalarType().getSizeInBits(), 11763 ST->getMemoryVT().getScalarType().getSizeInBits())); 11764 AddToWorklist(Value.getNode()); 11765 if (Shorter.getNode()) 11766 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, 11767 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 11768 11769 // Otherwise, see if we can simplify the operation with 11770 // SimplifyDemandedBits, which only works if the value has a single use. 11771 if (SimplifyDemandedBits(Value, 11772 APInt::getLowBitsSet( 11773 Value.getValueType().getScalarType().getSizeInBits(), 11774 ST->getMemoryVT().getScalarType().getSizeInBits()))) 11775 return SDValue(N, 0); 11776 } 11777 11778 // If this is a load followed by a store to the same location, then the store 11779 // is dead/noop. 11780 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { 11781 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && 11782 ST->isUnindexed() && !ST->isVolatile() && 11783 // There can't be any side effects between the load and store, such as 11784 // a call or store. 11785 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { 11786 // The store is dead, remove it. 11787 return Chain; 11788 } 11789 } 11790 11791 // If this is a store followed by a store with the same value to the same 11792 // location, then the store is dead/noop. 11793 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { 11794 if (ST1->getBasePtr() == Ptr && ST->getMemoryVT() == ST1->getMemoryVT() && 11795 ST1->getValue() == Value && ST->isUnindexed() && !ST->isVolatile() && 11796 ST1->isUnindexed() && !ST1->isVolatile()) { 11797 // The store is dead, remove it. 11798 return Chain; 11799 } 11800 } 11801 11802 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a 11803 // truncating store. We can do this even if this is already a truncstore. 11804 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) 11805 && Value.getNode()->hasOneUse() && ST->isUnindexed() && 11806 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), 11807 ST->getMemoryVT())) { 11808 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), 11809 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 11810 } 11811 11812 // Only perform this optimization before the types are legal, because we 11813 // don't want to perform this optimization on every DAGCombine invocation. 11814 if (!LegalTypes) { 11815 bool EverChanged = false; 11816 11817 do { 11818 // There can be multiple store sequences on the same chain. 11819 // Keep trying to merge store sequences until we are unable to do so 11820 // or until we merge the last store on the chain. 11821 bool Changed = MergeConsecutiveStores(ST); 11822 EverChanged |= Changed; 11823 if (!Changed) break; 11824 } while (ST->getOpcode() != ISD::DELETED_NODE); 11825 11826 if (EverChanged) 11827 return SDValue(N, 0); 11828 } 11829 11830 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 11831 // 11832 // Make sure to do this only after attempting to merge stores in order to 11833 // avoid changing the types of some subset of stores due to visit order, 11834 // preventing their merging. 11835 if (isa<ConstantFPSDNode>(Value)) { 11836 if (SDValue NewSt = replaceStoreOfFPConstant(ST)) 11837 return NewSt; 11838 } 11839 11840 return ReduceLoadOpStoreWidth(N); 11841 } 11842 11843 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { 11844 SDValue InVec = N->getOperand(0); 11845 SDValue InVal = N->getOperand(1); 11846 SDValue EltNo = N->getOperand(2); 11847 SDLoc dl(N); 11848 11849 // If the inserted element is an UNDEF, just use the input vector. 11850 if (InVal.getOpcode() == ISD::UNDEF) 11851 return InVec; 11852 11853 EVT VT = InVec.getValueType(); 11854 11855 // If we can't generate a legal BUILD_VECTOR, exit 11856 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 11857 return SDValue(); 11858 11859 // Check that we know which element is being inserted 11860 if (!isa<ConstantSDNode>(EltNo)) 11861 return SDValue(); 11862 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 11863 11864 // Canonicalize insert_vector_elt dag nodes. 11865 // Example: 11866 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) 11867 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) 11868 // 11869 // Do this only if the child insert_vector node has one use; also 11870 // do this only if indices are both constants and Idx1 < Idx0. 11871 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() 11872 && isa<ConstantSDNode>(InVec.getOperand(2))) { 11873 unsigned OtherElt = 11874 cast<ConstantSDNode>(InVec.getOperand(2))->getZExtValue(); 11875 if (Elt < OtherElt) { 11876 // Swap nodes. 11877 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VT, 11878 InVec.getOperand(0), InVal, EltNo); 11879 AddToWorklist(NewOp.getNode()); 11880 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), 11881 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); 11882 } 11883 } 11884 11885 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 11886 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 11887 // vector elements. 11888 SmallVector<SDValue, 8> Ops; 11889 // Do not combine these two vectors if the output vector will not replace 11890 // the input vector. 11891 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { 11892 Ops.append(InVec.getNode()->op_begin(), 11893 InVec.getNode()->op_end()); 11894 } else if (InVec.getOpcode() == ISD::UNDEF) { 11895 unsigned NElts = VT.getVectorNumElements(); 11896 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType())); 11897 } else { 11898 return SDValue(); 11899 } 11900 11901 // Insert the element 11902 if (Elt < Ops.size()) { 11903 // All the operands of BUILD_VECTOR must have the same type; 11904 // we enforce that here. 11905 EVT OpVT = Ops[0].getValueType(); 11906 if (InVal.getValueType() != OpVT) 11907 InVal = OpVT.bitsGT(InVal.getValueType()) ? 11908 DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) : 11909 DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal); 11910 Ops[Elt] = InVal; 11911 } 11912 11913 // Return the new vector 11914 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 11915 } 11916 11917 SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad( 11918 SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) { 11919 EVT ResultVT = EVE->getValueType(0); 11920 EVT VecEltVT = InVecVT.getVectorElementType(); 11921 unsigned Align = OriginalLoad->getAlignment(); 11922 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 11923 VecEltVT.getTypeForEVT(*DAG.getContext())); 11924 11925 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) 11926 return SDValue(); 11927 11928 Align = NewAlign; 11929 11930 SDValue NewPtr = OriginalLoad->getBasePtr(); 11931 SDValue Offset; 11932 EVT PtrType = NewPtr.getValueType(); 11933 MachinePointerInfo MPI; 11934 SDLoc DL(EVE); 11935 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { 11936 int Elt = ConstEltNo->getZExtValue(); 11937 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; 11938 Offset = DAG.getConstant(PtrOff, DL, PtrType); 11939 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); 11940 } else { 11941 Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); 11942 Offset = DAG.getNode( 11943 ISD::MUL, DL, PtrType, Offset, 11944 DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); 11945 MPI = OriginalLoad->getPointerInfo(); 11946 } 11947 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset); 11948 11949 // The replacement we need to do here is a little tricky: we need to 11950 // replace an extractelement of a load with a load. 11951 // Use ReplaceAllUsesOfValuesWith to do the replacement. 11952 // Note that this replacement assumes that the extractvalue is the only 11953 // use of the load; that's okay because we don't want to perform this 11954 // transformation in other cases anyway. 11955 SDValue Load; 11956 SDValue Chain; 11957 if (ResultVT.bitsGT(VecEltVT)) { 11958 // If the result type of vextract is wider than the load, then issue an 11959 // extending load instead. 11960 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, 11961 VecEltVT) 11962 ? ISD::ZEXTLOAD 11963 : ISD::EXTLOAD; 11964 Load = DAG.getExtLoad( 11965 ExtType, SDLoc(EVE), ResultVT, OriginalLoad->getChain(), NewPtr, MPI, 11966 VecEltVT, OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(), 11967 OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo()); 11968 Chain = Load.getValue(1); 11969 } else { 11970 Load = DAG.getLoad( 11971 VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, 11972 OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(), 11973 OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo()); 11974 Chain = Load.getValue(1); 11975 if (ResultVT.bitsLT(VecEltVT)) 11976 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); 11977 else 11978 Load = DAG.getNode(ISD::BITCAST, SDLoc(EVE), ResultVT, Load); 11979 } 11980 WorklistRemover DeadNodes(*this); 11981 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; 11982 SDValue To[] = { Load, Chain }; 11983 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 11984 // Since we're explicitly calling ReplaceAllUses, add the new node to the 11985 // worklist explicitly as well. 11986 AddToWorklist(Load.getNode()); 11987 AddUsersToWorklist(Load.getNode()); // Add users too 11988 // Make sure to revisit this node to clean it up; it will usually be dead. 11989 AddToWorklist(EVE); 11990 ++OpsNarrowed; 11991 return SDValue(EVE, 0); 11992 } 11993 11994 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { 11995 // (vextract (scalar_to_vector val, 0) -> val 11996 SDValue InVec = N->getOperand(0); 11997 EVT VT = InVec.getValueType(); 11998 EVT NVT = N->getValueType(0); 11999 12000 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { 12001 // Check if the result type doesn't match the inserted element type. A 12002 // SCALAR_TO_VECTOR may truncate the inserted element and the 12003 // EXTRACT_VECTOR_ELT may widen the extracted vector. 12004 SDValue InOp = InVec.getOperand(0); 12005 if (InOp.getValueType() != NVT) { 12006 assert(InOp.getValueType().isInteger() && NVT.isInteger()); 12007 return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT); 12008 } 12009 return InOp; 12010 } 12011 12012 SDValue EltNo = N->getOperand(1); 12013 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 12014 12015 // extract_vector_elt (build_vector x, y), 1 -> y 12016 if (ConstEltNo && 12017 InVec.getOpcode() == ISD::BUILD_VECTOR && 12018 TLI.isTypeLegal(VT) && 12019 (InVec.hasOneUse() || 12020 TLI.aggressivelyPreferBuildVectorSources(VT))) { 12021 SDValue Elt = InVec.getOperand(ConstEltNo->getZExtValue()); 12022 EVT InEltVT = Elt.getValueType(); 12023 12024 // Sometimes build_vector's scalar input types do not match result type. 12025 if (NVT == InEltVT) 12026 return Elt; 12027 12028 // TODO: It may be useful to truncate if free if the build_vector implicitly 12029 // converts. 12030 } 12031 12032 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. 12033 // We only perform this optimization before the op legalization phase because 12034 // we may introduce new vector instructions which are not backed by TD 12035 // patterns. For example on AVX, extracting elements from a wide vector 12036 // without using extract_subvector. However, if we can find an underlying 12037 // scalar value, then we can always use that. 12038 if (ConstEltNo && InVec.getOpcode() == ISD::VECTOR_SHUFFLE) { 12039 int NumElem = VT.getVectorNumElements(); 12040 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec); 12041 // Find the new index to extract from. 12042 int OrigElt = SVOp->getMaskElt(ConstEltNo->getZExtValue()); 12043 12044 // Extracting an undef index is undef. 12045 if (OrigElt == -1) 12046 return DAG.getUNDEF(NVT); 12047 12048 // Select the right vector half to extract from. 12049 SDValue SVInVec; 12050 if (OrigElt < NumElem) { 12051 SVInVec = InVec->getOperand(0); 12052 } else { 12053 SVInVec = InVec->getOperand(1); 12054 OrigElt -= NumElem; 12055 } 12056 12057 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { 12058 SDValue InOp = SVInVec.getOperand(OrigElt); 12059 if (InOp.getValueType() != NVT) { 12060 assert(InOp.getValueType().isInteger() && NVT.isInteger()); 12061 InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT); 12062 } 12063 12064 return InOp; 12065 } 12066 12067 // FIXME: We should handle recursing on other vector shuffles and 12068 // scalar_to_vector here as well. 12069 12070 if (!LegalOperations) { 12071 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 12072 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT, SVInVec, 12073 DAG.getConstant(OrigElt, SDLoc(SVOp), IndexTy)); 12074 } 12075 } 12076 12077 bool BCNumEltsChanged = false; 12078 EVT ExtVT = VT.getVectorElementType(); 12079 EVT LVT = ExtVT; 12080 12081 // If the result of load has to be truncated, then it's not necessarily 12082 // profitable. 12083 if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT)) 12084 return SDValue(); 12085 12086 if (InVec.getOpcode() == ISD::BITCAST) { 12087 // Don't duplicate a load with other uses. 12088 if (!InVec.hasOneUse()) 12089 return SDValue(); 12090 12091 EVT BCVT = InVec.getOperand(0).getValueType(); 12092 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) 12093 return SDValue(); 12094 if (VT.getVectorNumElements() != BCVT.getVectorNumElements()) 12095 BCNumEltsChanged = true; 12096 InVec = InVec.getOperand(0); 12097 ExtVT = BCVT.getVectorElementType(); 12098 } 12099 12100 // (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size) 12101 if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() && 12102 ISD::isNormalLoad(InVec.getNode()) && 12103 !N->getOperand(1)->hasPredecessor(InVec.getNode())) { 12104 SDValue Index = N->getOperand(1); 12105 if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec)) 12106 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index, 12107 OrigLoad); 12108 } 12109 12110 // Perform only after legalization to ensure build_vector / vector_shuffle 12111 // optimizations have already been done. 12112 if (!LegalOperations) return SDValue(); 12113 12114 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) 12115 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) 12116 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) 12117 12118 if (ConstEltNo) { 12119 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 12120 12121 LoadSDNode *LN0 = nullptr; 12122 const ShuffleVectorSDNode *SVN = nullptr; 12123 if (ISD::isNormalLoad(InVec.getNode())) { 12124 LN0 = cast<LoadSDNode>(InVec); 12125 } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR && 12126 InVec.getOperand(0).getValueType() == ExtVT && 12127 ISD::isNormalLoad(InVec.getOperand(0).getNode())) { 12128 // Don't duplicate a load with other uses. 12129 if (!InVec.hasOneUse()) 12130 return SDValue(); 12131 12132 LN0 = cast<LoadSDNode>(InVec.getOperand(0)); 12133 } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) { 12134 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) 12135 // => 12136 // (load $addr+1*size) 12137 12138 // Don't duplicate a load with other uses. 12139 if (!InVec.hasOneUse()) 12140 return SDValue(); 12141 12142 // If the bit convert changed the number of elements, it is unsafe 12143 // to examine the mask. 12144 if (BCNumEltsChanged) 12145 return SDValue(); 12146 12147 // Select the input vector, guarding against out of range extract vector. 12148 unsigned NumElems = VT.getVectorNumElements(); 12149 int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt); 12150 InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); 12151 12152 if (InVec.getOpcode() == ISD::BITCAST) { 12153 // Don't duplicate a load with other uses. 12154 if (!InVec.hasOneUse()) 12155 return SDValue(); 12156 12157 InVec = InVec.getOperand(0); 12158 } 12159 if (ISD::isNormalLoad(InVec.getNode())) { 12160 LN0 = cast<LoadSDNode>(InVec); 12161 Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems; 12162 EltNo = DAG.getConstant(Elt, SDLoc(EltNo), EltNo.getValueType()); 12163 } 12164 } 12165 12166 // Make sure we found a non-volatile load and the extractelement is 12167 // the only use. 12168 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile()) 12169 return SDValue(); 12170 12171 // If Idx was -1 above, Elt is going to be -1, so just return undef. 12172 if (Elt == -1) 12173 return DAG.getUNDEF(LVT); 12174 12175 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0); 12176 } 12177 12178 return SDValue(); 12179 } 12180 12181 // Simplify (build_vec (ext )) to (bitcast (build_vec )) 12182 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { 12183 // We perform this optimization post type-legalization because 12184 // the type-legalizer often scalarizes integer-promoted vectors. 12185 // Performing this optimization before may create bit-casts which 12186 // will be type-legalized to complex code sequences. 12187 // We perform this optimization only before the operation legalizer because we 12188 // may introduce illegal operations. 12189 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) 12190 return SDValue(); 12191 12192 unsigned NumInScalars = N->getNumOperands(); 12193 SDLoc dl(N); 12194 EVT VT = N->getValueType(0); 12195 12196 // Check to see if this is a BUILD_VECTOR of a bunch of values 12197 // which come from any_extend or zero_extend nodes. If so, we can create 12198 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR 12199 // optimizations. We do not handle sign-extend because we can't fill the sign 12200 // using shuffles. 12201 EVT SourceType = MVT::Other; 12202 bool AllAnyExt = true; 12203 12204 for (unsigned i = 0; i != NumInScalars; ++i) { 12205 SDValue In = N->getOperand(i); 12206 // Ignore undef inputs. 12207 if (In.getOpcode() == ISD::UNDEF) continue; 12208 12209 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; 12210 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; 12211 12212 // Abort if the element is not an extension. 12213 if (!ZeroExt && !AnyExt) { 12214 SourceType = MVT::Other; 12215 break; 12216 } 12217 12218 // The input is a ZeroExt or AnyExt. Check the original type. 12219 EVT InTy = In.getOperand(0).getValueType(); 12220 12221 // Check that all of the widened source types are the same. 12222 if (SourceType == MVT::Other) 12223 // First time. 12224 SourceType = InTy; 12225 else if (InTy != SourceType) { 12226 // Multiple income types. Abort. 12227 SourceType = MVT::Other; 12228 break; 12229 } 12230 12231 // Check if all of the extends are ANY_EXTENDs. 12232 AllAnyExt &= AnyExt; 12233 } 12234 12235 // In order to have valid types, all of the inputs must be extended from the 12236 // same source type and all of the inputs must be any or zero extend. 12237 // Scalar sizes must be a power of two. 12238 EVT OutScalarTy = VT.getScalarType(); 12239 bool ValidTypes = SourceType != MVT::Other && 12240 isPowerOf2_32(OutScalarTy.getSizeInBits()) && 12241 isPowerOf2_32(SourceType.getSizeInBits()); 12242 12243 // Create a new simpler BUILD_VECTOR sequence which other optimizations can 12244 // turn into a single shuffle instruction. 12245 if (!ValidTypes) 12246 return SDValue(); 12247 12248 bool isLE = DAG.getDataLayout().isLittleEndian(); 12249 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); 12250 assert(ElemRatio > 1 && "Invalid element size ratio"); 12251 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): 12252 DAG.getConstant(0, SDLoc(N), SourceType); 12253 12254 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); 12255 SmallVector<SDValue, 8> Ops(NewBVElems, Filler); 12256 12257 // Populate the new build_vector 12258 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 12259 SDValue Cast = N->getOperand(i); 12260 assert((Cast.getOpcode() == ISD::ANY_EXTEND || 12261 Cast.getOpcode() == ISD::ZERO_EXTEND || 12262 Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode"); 12263 SDValue In; 12264 if (Cast.getOpcode() == ISD::UNDEF) 12265 In = DAG.getUNDEF(SourceType); 12266 else 12267 In = Cast->getOperand(0); 12268 unsigned Index = isLE ? (i * ElemRatio) : 12269 (i * ElemRatio + (ElemRatio - 1)); 12270 12271 assert(Index < Ops.size() && "Invalid index"); 12272 Ops[Index] = In; 12273 } 12274 12275 // The type of the new BUILD_VECTOR node. 12276 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); 12277 assert(VecVT.getSizeInBits() == VT.getSizeInBits() && 12278 "Invalid vector size"); 12279 // Check if the new vector type is legal. 12280 if (!isTypeLegal(VecVT)) return SDValue(); 12281 12282 // Make the new BUILD_VECTOR. 12283 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops); 12284 12285 // The new BUILD_VECTOR node has the potential to be further optimized. 12286 AddToWorklist(BV.getNode()); 12287 // Bitcast to the desired type. 12288 return DAG.getNode(ISD::BITCAST, dl, VT, BV); 12289 } 12290 12291 SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) { 12292 EVT VT = N->getValueType(0); 12293 12294 unsigned NumInScalars = N->getNumOperands(); 12295 SDLoc dl(N); 12296 12297 EVT SrcVT = MVT::Other; 12298 unsigned Opcode = ISD::DELETED_NODE; 12299 unsigned NumDefs = 0; 12300 12301 for (unsigned i = 0; i != NumInScalars; ++i) { 12302 SDValue In = N->getOperand(i); 12303 unsigned Opc = In.getOpcode(); 12304 12305 if (Opc == ISD::UNDEF) 12306 continue; 12307 12308 // If all scalar values are floats and converted from integers. 12309 if (Opcode == ISD::DELETED_NODE && 12310 (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) { 12311 Opcode = Opc; 12312 } 12313 12314 if (Opc != Opcode) 12315 return SDValue(); 12316 12317 EVT InVT = In.getOperand(0).getValueType(); 12318 12319 // If all scalar values are typed differently, bail out. It's chosen to 12320 // simplify BUILD_VECTOR of integer types. 12321 if (SrcVT == MVT::Other) 12322 SrcVT = InVT; 12323 if (SrcVT != InVT) 12324 return SDValue(); 12325 NumDefs++; 12326 } 12327 12328 // If the vector has just one element defined, it's not worth to fold it into 12329 // a vectorized one. 12330 if (NumDefs < 2) 12331 return SDValue(); 12332 12333 assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP) 12334 && "Should only handle conversion from integer to float."); 12335 assert(SrcVT != MVT::Other && "Cannot determine source type!"); 12336 12337 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars); 12338 12339 if (!TLI.isOperationLegalOrCustom(Opcode, NVT)) 12340 return SDValue(); 12341 12342 // Just because the floating-point vector type is legal does not necessarily 12343 // mean that the corresponding integer vector type is. 12344 if (!isTypeLegal(NVT)) 12345 return SDValue(); 12346 12347 SmallVector<SDValue, 8> Opnds; 12348 for (unsigned i = 0; i != NumInScalars; ++i) { 12349 SDValue In = N->getOperand(i); 12350 12351 if (In.getOpcode() == ISD::UNDEF) 12352 Opnds.push_back(DAG.getUNDEF(SrcVT)); 12353 else 12354 Opnds.push_back(In.getOperand(0)); 12355 } 12356 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Opnds); 12357 AddToWorklist(BV.getNode()); 12358 12359 return DAG.getNode(Opcode, dl, VT, BV); 12360 } 12361 12362 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { 12363 unsigned NumInScalars = N->getNumOperands(); 12364 SDLoc dl(N); 12365 EVT VT = N->getValueType(0); 12366 12367 // A vector built entirely of undefs is undef. 12368 if (ISD::allOperandsUndef(N)) 12369 return DAG.getUNDEF(VT); 12370 12371 if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) 12372 return V; 12373 12374 if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N)) 12375 return V; 12376 12377 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT 12378 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from 12379 // at most two distinct vectors, turn this into a shuffle node. 12380 12381 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. 12382 if (!isTypeLegal(VT)) 12383 return SDValue(); 12384 12385 // May only combine to shuffle after legalize if shuffle is legal. 12386 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) 12387 return SDValue(); 12388 12389 SDValue VecIn1, VecIn2; 12390 bool UsesZeroVector = false; 12391 for (unsigned i = 0; i != NumInScalars; ++i) { 12392 SDValue Op = N->getOperand(i); 12393 // Ignore undef inputs. 12394 if (Op.getOpcode() == ISD::UNDEF) continue; 12395 12396 // See if we can combine this build_vector into a blend with a zero vector. 12397 if (!VecIn2.getNode() && (isNullConstant(Op) || isNullFPConstant(Op))) { 12398 UsesZeroVector = true; 12399 continue; 12400 } 12401 12402 // If this input is something other than a EXTRACT_VECTOR_ELT with a 12403 // constant index, bail out. 12404 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12405 !isa<ConstantSDNode>(Op.getOperand(1))) { 12406 VecIn1 = VecIn2 = SDValue(nullptr, 0); 12407 break; 12408 } 12409 12410 // We allow up to two distinct input vectors. 12411 SDValue ExtractedFromVec = Op.getOperand(0); 12412 if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2) 12413 continue; 12414 12415 if (!VecIn1.getNode()) { 12416 VecIn1 = ExtractedFromVec; 12417 } else if (!VecIn2.getNode() && !UsesZeroVector) { 12418 VecIn2 = ExtractedFromVec; 12419 } else { 12420 // Too many inputs. 12421 VecIn1 = VecIn2 = SDValue(nullptr, 0); 12422 break; 12423 } 12424 } 12425 12426 // If everything is good, we can make a shuffle operation. 12427 if (VecIn1.getNode()) { 12428 unsigned InNumElements = VecIn1.getValueType().getVectorNumElements(); 12429 SmallVector<int, 8> Mask; 12430 for (unsigned i = 0; i != NumInScalars; ++i) { 12431 unsigned Opcode = N->getOperand(i).getOpcode(); 12432 if (Opcode == ISD::UNDEF) { 12433 Mask.push_back(-1); 12434 continue; 12435 } 12436 12437 // Operands can also be zero. 12438 if (Opcode != ISD::EXTRACT_VECTOR_ELT) { 12439 assert(UsesZeroVector && 12440 (Opcode == ISD::Constant || Opcode == ISD::ConstantFP) && 12441 "Unexpected node found!"); 12442 Mask.push_back(NumInScalars+i); 12443 continue; 12444 } 12445 12446 // If extracting from the first vector, just use the index directly. 12447 SDValue Extract = N->getOperand(i); 12448 SDValue ExtVal = Extract.getOperand(1); 12449 unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue(); 12450 if (Extract.getOperand(0) == VecIn1) { 12451 Mask.push_back(ExtIndex); 12452 continue; 12453 } 12454 12455 // Otherwise, use InIdx + InputVecSize 12456 Mask.push_back(InNumElements + ExtIndex); 12457 } 12458 12459 // Avoid introducing illegal shuffles with zero. 12460 if (UsesZeroVector && !TLI.isVectorClearMaskLegal(Mask, VT)) 12461 return SDValue(); 12462 12463 // We can't generate a shuffle node with mismatched input and output types. 12464 // Attempt to transform a single input vector to the correct type. 12465 if ((VT != VecIn1.getValueType())) { 12466 // If the input vector type has a different base type to the output 12467 // vector type, bail out. 12468 EVT VTElemType = VT.getVectorElementType(); 12469 if ((VecIn1.getValueType().getVectorElementType() != VTElemType) || 12470 (VecIn2.getNode() && 12471 (VecIn2.getValueType().getVectorElementType() != VTElemType))) 12472 return SDValue(); 12473 12474 // If the input vector is too small, widen it. 12475 // We only support widening of vectors which are half the size of the 12476 // output registers. For example XMM->YMM widening on X86 with AVX. 12477 EVT VecInT = VecIn1.getValueType(); 12478 if (VecInT.getSizeInBits() * 2 == VT.getSizeInBits()) { 12479 // If we only have one small input, widen it by adding undef values. 12480 if (!VecIn2.getNode()) 12481 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, 12482 DAG.getUNDEF(VecIn1.getValueType())); 12483 else if (VecIn1.getValueType() == VecIn2.getValueType()) { 12484 // If we have two small inputs of the same type, try to concat them. 12485 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, VecIn2); 12486 VecIn2 = SDValue(nullptr, 0); 12487 } else 12488 return SDValue(); 12489 } else if (VecInT.getSizeInBits() == VT.getSizeInBits() * 2) { 12490 // If the input vector is too large, try to split it. 12491 // We don't support having two input vectors that are too large. 12492 // If the zero vector was used, we can not split the vector, 12493 // since we'd need 3 inputs. 12494 if (UsesZeroVector || VecIn2.getNode()) 12495 return SDValue(); 12496 12497 if (!TLI.isExtractSubvectorCheap(VT, VT.getVectorNumElements())) 12498 return SDValue(); 12499 12500 // Try to replace VecIn1 with two extract_subvectors 12501 // No need to update the masks, they should still be correct. 12502 VecIn2 = DAG.getNode( 12503 ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1, 12504 DAG.getConstant(VT.getVectorNumElements(), dl, 12505 TLI.getVectorIdxTy(DAG.getDataLayout()))); 12506 VecIn1 = DAG.getNode( 12507 ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1, 12508 DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 12509 } else 12510 return SDValue(); 12511 } 12512 12513 if (UsesZeroVector) 12514 VecIn2 = VT.isInteger() ? DAG.getConstant(0, dl, VT) : 12515 DAG.getConstantFP(0.0, dl, VT); 12516 else 12517 // If VecIn2 is unused then change it to undef. 12518 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); 12519 12520 // Check that we were able to transform all incoming values to the same 12521 // type. 12522 if (VecIn2.getValueType() != VecIn1.getValueType() || 12523 VecIn1.getValueType() != VT) 12524 return SDValue(); 12525 12526 // Return the new VECTOR_SHUFFLE node. 12527 SDValue Ops[2]; 12528 Ops[0] = VecIn1; 12529 Ops[1] = VecIn2; 12530 return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]); 12531 } 12532 12533 return SDValue(); 12534 } 12535 12536 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { 12537 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12538 EVT OpVT = N->getOperand(0).getValueType(); 12539 12540 // If the operands are legal vectors, leave them alone. 12541 if (TLI.isTypeLegal(OpVT)) 12542 return SDValue(); 12543 12544 SDLoc DL(N); 12545 EVT VT = N->getValueType(0); 12546 SmallVector<SDValue, 8> Ops; 12547 12548 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); 12549 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 12550 12551 // Keep track of what we encounter. 12552 bool AnyInteger = false; 12553 bool AnyFP = false; 12554 for (const SDValue &Op : N->ops()) { 12555 if (ISD::BITCAST == Op.getOpcode() && 12556 !Op.getOperand(0).getValueType().isVector()) 12557 Ops.push_back(Op.getOperand(0)); 12558 else if (ISD::UNDEF == Op.getOpcode()) 12559 Ops.push_back(ScalarUndef); 12560 else 12561 return SDValue(); 12562 12563 // Note whether we encounter an integer or floating point scalar. 12564 // If it's neither, bail out, it could be something weird like x86mmx. 12565 EVT LastOpVT = Ops.back().getValueType(); 12566 if (LastOpVT.isFloatingPoint()) 12567 AnyFP = true; 12568 else if (LastOpVT.isInteger()) 12569 AnyInteger = true; 12570 else 12571 return SDValue(); 12572 } 12573 12574 // If any of the operands is a floating point scalar bitcast to a vector, 12575 // use floating point types throughout, and bitcast everything. 12576 // Replace UNDEFs by another scalar UNDEF node, of the final desired type. 12577 if (AnyFP) { 12578 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); 12579 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 12580 if (AnyInteger) { 12581 for (SDValue &Op : Ops) { 12582 if (Op.getValueType() == SVT) 12583 continue; 12584 if (Op.getOpcode() == ISD::UNDEF) 12585 Op = ScalarUndef; 12586 else 12587 Op = DAG.getNode(ISD::BITCAST, DL, SVT, Op); 12588 } 12589 } 12590 } 12591 12592 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, 12593 VT.getSizeInBits() / SVT.getSizeInBits()); 12594 return DAG.getNode(ISD::BITCAST, DL, VT, 12595 DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, Ops)); 12596 } 12597 12598 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR 12599 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at 12600 // most two distinct vectors the same size as the result, attempt to turn this 12601 // into a legal shuffle. 12602 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { 12603 EVT VT = N->getValueType(0); 12604 EVT OpVT = N->getOperand(0).getValueType(); 12605 int NumElts = VT.getVectorNumElements(); 12606 int NumOpElts = OpVT.getVectorNumElements(); 12607 12608 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); 12609 SmallVector<int, 8> Mask; 12610 12611 for (SDValue Op : N->ops()) { 12612 // Peek through any bitcast. 12613 while (Op.getOpcode() == ISD::BITCAST) 12614 Op = Op.getOperand(0); 12615 12616 // UNDEF nodes convert to UNDEF shuffle mask values. 12617 if (Op.getOpcode() == ISD::UNDEF) { 12618 Mask.append((unsigned)NumOpElts, -1); 12619 continue; 12620 } 12621 12622 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 12623 return SDValue(); 12624 12625 // What vector are we extracting the subvector from and at what index? 12626 SDValue ExtVec = Op.getOperand(0); 12627 12628 // We want the EVT of the original extraction to correctly scale the 12629 // extraction index. 12630 EVT ExtVT = ExtVec.getValueType(); 12631 12632 // Peek through any bitcast. 12633 while (ExtVec.getOpcode() == ISD::BITCAST) 12634 ExtVec = ExtVec.getOperand(0); 12635 12636 // UNDEF nodes convert to UNDEF shuffle mask values. 12637 if (ExtVec.getOpcode() == ISD::UNDEF) { 12638 Mask.append((unsigned)NumOpElts, -1); 12639 continue; 12640 } 12641 12642 if (!isa<ConstantSDNode>(Op.getOperand(1))) 12643 return SDValue(); 12644 int ExtIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 12645 12646 // Ensure that we are extracting a subvector from a vector the same 12647 // size as the result. 12648 if (ExtVT.getSizeInBits() != VT.getSizeInBits()) 12649 return SDValue(); 12650 12651 // Scale the subvector index to account for any bitcast. 12652 int NumExtElts = ExtVT.getVectorNumElements(); 12653 if (0 == (NumExtElts % NumElts)) 12654 ExtIdx /= (NumExtElts / NumElts); 12655 else if (0 == (NumElts % NumExtElts)) 12656 ExtIdx *= (NumElts / NumExtElts); 12657 else 12658 return SDValue(); 12659 12660 // At most we can reference 2 inputs in the final shuffle. 12661 if (SV0.getOpcode() == ISD::UNDEF || SV0 == ExtVec) { 12662 SV0 = ExtVec; 12663 for (int i = 0; i != NumOpElts; ++i) 12664 Mask.push_back(i + ExtIdx); 12665 } else if (SV1.getOpcode() == ISD::UNDEF || SV1 == ExtVec) { 12666 SV1 = ExtVec; 12667 for (int i = 0; i != NumOpElts; ++i) 12668 Mask.push_back(i + ExtIdx + NumElts); 12669 } else { 12670 return SDValue(); 12671 } 12672 } 12673 12674 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT)) 12675 return SDValue(); 12676 12677 return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), 12678 DAG.getBitcast(VT, SV1), Mask); 12679 } 12680 12681 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { 12682 // If we only have one input vector, we don't need to do any concatenation. 12683 if (N->getNumOperands() == 1) 12684 return N->getOperand(0); 12685 12686 // Check if all of the operands are undefs. 12687 EVT VT = N->getValueType(0); 12688 if (ISD::allOperandsUndef(N)) 12689 return DAG.getUNDEF(VT); 12690 12691 // Optimize concat_vectors where all but the first of the vectors are undef. 12692 if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) { 12693 return Op.getOpcode() == ISD::UNDEF; 12694 })) { 12695 SDValue In = N->getOperand(0); 12696 assert(In.getValueType().isVector() && "Must concat vectors"); 12697 12698 // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr). 12699 if (In->getOpcode() == ISD::BITCAST && 12700 !In->getOperand(0)->getValueType(0).isVector()) { 12701 SDValue Scalar = In->getOperand(0); 12702 12703 // If the bitcast type isn't legal, it might be a trunc of a legal type; 12704 // look through the trunc so we can still do the transform: 12705 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) 12706 if (Scalar->getOpcode() == ISD::TRUNCATE && 12707 !TLI.isTypeLegal(Scalar.getValueType()) && 12708 TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) 12709 Scalar = Scalar->getOperand(0); 12710 12711 EVT SclTy = Scalar->getValueType(0); 12712 12713 if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) 12714 return SDValue(); 12715 12716 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, 12717 VT.getSizeInBits() / SclTy.getSizeInBits()); 12718 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) 12719 return SDValue(); 12720 12721 SDLoc dl = SDLoc(N); 12722 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar); 12723 return DAG.getNode(ISD::BITCAST, dl, VT, Res); 12724 } 12725 } 12726 12727 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. 12728 // We have already tested above for an UNDEF only concatenation. 12729 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) 12730 // -> (BUILD_VECTOR A, B, ..., C, D, ...) 12731 auto IsBuildVectorOrUndef = [](const SDValue &Op) { 12732 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); 12733 }; 12734 bool AllBuildVectorsOrUndefs = 12735 std::all_of(N->op_begin(), N->op_end(), IsBuildVectorOrUndef); 12736 if (AllBuildVectorsOrUndefs) { 12737 SmallVector<SDValue, 8> Opnds; 12738 EVT SVT = VT.getScalarType(); 12739 12740 EVT MinVT = SVT; 12741 if (!SVT.isFloatingPoint()) { 12742 // If BUILD_VECTOR are from built from integer, they may have different 12743 // operand types. Get the smallest type and truncate all operands to it. 12744 bool FoundMinVT = false; 12745 for (const SDValue &Op : N->ops()) 12746 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 12747 EVT OpSVT = Op.getOperand(0)->getValueType(0); 12748 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; 12749 FoundMinVT = true; 12750 } 12751 assert(FoundMinVT && "Concat vector type mismatch"); 12752 } 12753 12754 for (const SDValue &Op : N->ops()) { 12755 EVT OpVT = Op.getValueType(); 12756 unsigned NumElts = OpVT.getVectorNumElements(); 12757 12758 if (ISD::UNDEF == Op.getOpcode()) 12759 Opnds.append(NumElts, DAG.getUNDEF(MinVT)); 12760 12761 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 12762 if (SVT.isFloatingPoint()) { 12763 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); 12764 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); 12765 } else { 12766 for (unsigned i = 0; i != NumElts; ++i) 12767 Opnds.push_back( 12768 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); 12769 } 12770 } 12771 } 12772 12773 assert(VT.getVectorNumElements() == Opnds.size() && 12774 "Concat vector type mismatch"); 12775 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds); 12776 } 12777 12778 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. 12779 if (SDValue V = combineConcatVectorOfScalars(N, DAG)) 12780 return V; 12781 12782 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. 12783 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) 12784 if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) 12785 return V; 12786 12787 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR 12788 // nodes often generate nop CONCAT_VECTOR nodes. 12789 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that 12790 // place the incoming vectors at the exact same location. 12791 SDValue SingleSource = SDValue(); 12792 unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements(); 12793 12794 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 12795 SDValue Op = N->getOperand(i); 12796 12797 if (Op.getOpcode() == ISD::UNDEF) 12798 continue; 12799 12800 // Check if this is the identity extract: 12801 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 12802 return SDValue(); 12803 12804 // Find the single incoming vector for the extract_subvector. 12805 if (SingleSource.getNode()) { 12806 if (Op.getOperand(0) != SingleSource) 12807 return SDValue(); 12808 } else { 12809 SingleSource = Op.getOperand(0); 12810 12811 // Check the source type is the same as the type of the result. 12812 // If not, this concat may extend the vector, so we can not 12813 // optimize it away. 12814 if (SingleSource.getValueType() != N->getValueType(0)) 12815 return SDValue(); 12816 } 12817 12818 unsigned IdentityIndex = i * PartNumElem; 12819 ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 12820 // The extract index must be constant. 12821 if (!CS) 12822 return SDValue(); 12823 12824 // Check that we are reading from the identity index. 12825 if (CS->getZExtValue() != IdentityIndex) 12826 return SDValue(); 12827 } 12828 12829 if (SingleSource.getNode()) 12830 return SingleSource; 12831 12832 return SDValue(); 12833 } 12834 12835 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) { 12836 EVT NVT = N->getValueType(0); 12837 SDValue V = N->getOperand(0); 12838 12839 if (V->getOpcode() == ISD::CONCAT_VECTORS) { 12840 // Combine: 12841 // (extract_subvec (concat V1, V2, ...), i) 12842 // Into: 12843 // Vi if possible 12844 // Only operand 0 is checked as 'concat' assumes all inputs of the same 12845 // type. 12846 if (V->getOperand(0).getValueType() != NVT) 12847 return SDValue(); 12848 unsigned Idx = N->getConstantOperandVal(1); 12849 unsigned NumElems = NVT.getVectorNumElements(); 12850 assert((Idx % NumElems) == 0 && 12851 "IDX in concat is not a multiple of the result vector length."); 12852 return V->getOperand(Idx / NumElems); 12853 } 12854 12855 // Skip bitcasting 12856 if (V->getOpcode() == ISD::BITCAST) 12857 V = V.getOperand(0); 12858 12859 if (V->getOpcode() == ISD::INSERT_SUBVECTOR) { 12860 SDLoc dl(N); 12861 // Handle only simple case where vector being inserted and vector 12862 // being extracted are of same type, and are half size of larger vectors. 12863 EVT BigVT = V->getOperand(0).getValueType(); 12864 EVT SmallVT = V->getOperand(1).getValueType(); 12865 if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits()) 12866 return SDValue(); 12867 12868 // Only handle cases where both indexes are constants with the same type. 12869 ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 12870 ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2)); 12871 12872 if (InsIdx && ExtIdx && 12873 InsIdx->getValueType(0).getSizeInBits() <= 64 && 12874 ExtIdx->getValueType(0).getSizeInBits() <= 64) { 12875 // Combine: 12876 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) 12877 // Into: 12878 // indices are equal or bit offsets are equal => V1 12879 // otherwise => (extract_subvec V1, ExtIdx) 12880 if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() == 12881 ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits()) 12882 return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1)); 12883 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, 12884 DAG.getNode(ISD::BITCAST, dl, 12885 N->getOperand(0).getValueType(), 12886 V->getOperand(0)), N->getOperand(1)); 12887 } 12888 } 12889 12890 return SDValue(); 12891 } 12892 12893 static SDValue simplifyShuffleOperandRecursively(SmallBitVector &UsedElements, 12894 SDValue V, SelectionDAG &DAG) { 12895 SDLoc DL(V); 12896 EVT VT = V.getValueType(); 12897 12898 switch (V.getOpcode()) { 12899 default: 12900 return V; 12901 12902 case ISD::CONCAT_VECTORS: { 12903 EVT OpVT = V->getOperand(0).getValueType(); 12904 int OpSize = OpVT.getVectorNumElements(); 12905 SmallBitVector OpUsedElements(OpSize, false); 12906 bool FoundSimplification = false; 12907 SmallVector<SDValue, 4> NewOps; 12908 NewOps.reserve(V->getNumOperands()); 12909 for (int i = 0, NumOps = V->getNumOperands(); i < NumOps; ++i) { 12910 SDValue Op = V->getOperand(i); 12911 bool OpUsed = false; 12912 for (int j = 0; j < OpSize; ++j) 12913 if (UsedElements[i * OpSize + j]) { 12914 OpUsedElements[j] = true; 12915 OpUsed = true; 12916 } 12917 NewOps.push_back( 12918 OpUsed ? simplifyShuffleOperandRecursively(OpUsedElements, Op, DAG) 12919 : DAG.getUNDEF(OpVT)); 12920 FoundSimplification |= Op == NewOps.back(); 12921 OpUsedElements.reset(); 12922 } 12923 if (FoundSimplification) 12924 V = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, NewOps); 12925 return V; 12926 } 12927 12928 case ISD::INSERT_SUBVECTOR: { 12929 SDValue BaseV = V->getOperand(0); 12930 SDValue SubV = V->getOperand(1); 12931 auto *IdxN = dyn_cast<ConstantSDNode>(V->getOperand(2)); 12932 if (!IdxN) 12933 return V; 12934 12935 int SubSize = SubV.getValueType().getVectorNumElements(); 12936 int Idx = IdxN->getZExtValue(); 12937 bool SubVectorUsed = false; 12938 SmallBitVector SubUsedElements(SubSize, false); 12939 for (int i = 0; i < SubSize; ++i) 12940 if (UsedElements[i + Idx]) { 12941 SubVectorUsed = true; 12942 SubUsedElements[i] = true; 12943 UsedElements[i + Idx] = false; 12944 } 12945 12946 // Now recurse on both the base and sub vectors. 12947 SDValue SimplifiedSubV = 12948 SubVectorUsed 12949 ? simplifyShuffleOperandRecursively(SubUsedElements, SubV, DAG) 12950 : DAG.getUNDEF(SubV.getValueType()); 12951 SDValue SimplifiedBaseV = simplifyShuffleOperandRecursively(UsedElements, BaseV, DAG); 12952 if (SimplifiedSubV != SubV || SimplifiedBaseV != BaseV) 12953 V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 12954 SimplifiedBaseV, SimplifiedSubV, V->getOperand(2)); 12955 return V; 12956 } 12957 } 12958 } 12959 12960 static SDValue simplifyShuffleOperands(ShuffleVectorSDNode *SVN, SDValue N0, 12961 SDValue N1, SelectionDAG &DAG) { 12962 EVT VT = SVN->getValueType(0); 12963 int NumElts = VT.getVectorNumElements(); 12964 SmallBitVector N0UsedElements(NumElts, false), N1UsedElements(NumElts, false); 12965 for (int M : SVN->getMask()) 12966 if (M >= 0 && M < NumElts) 12967 N0UsedElements[M] = true; 12968 else if (M >= NumElts) 12969 N1UsedElements[M - NumElts] = true; 12970 12971 SDValue S0 = simplifyShuffleOperandRecursively(N0UsedElements, N0, DAG); 12972 SDValue S1 = simplifyShuffleOperandRecursively(N1UsedElements, N1, DAG); 12973 if (S0 == N0 && S1 == N1) 12974 return SDValue(); 12975 12976 return DAG.getVectorShuffle(VT, SDLoc(SVN), S0, S1, SVN->getMask()); 12977 } 12978 12979 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, 12980 // or turn a shuffle of a single concat into simpler shuffle then concat. 12981 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { 12982 EVT VT = N->getValueType(0); 12983 unsigned NumElts = VT.getVectorNumElements(); 12984 12985 SDValue N0 = N->getOperand(0); 12986 SDValue N1 = N->getOperand(1); 12987 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 12988 12989 SmallVector<SDValue, 4> Ops; 12990 EVT ConcatVT = N0.getOperand(0).getValueType(); 12991 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); 12992 unsigned NumConcats = NumElts / NumElemsPerConcat; 12993 12994 // Special case: shuffle(concat(A,B)) can be more efficiently represented 12995 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high 12996 // half vector elements. 12997 if (NumElemsPerConcat * 2 == NumElts && N1.getOpcode() == ISD::UNDEF && 12998 std::all_of(SVN->getMask().begin() + NumElemsPerConcat, 12999 SVN->getMask().end(), [](int i) { return i == -1; })) { 13000 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1), 13001 makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat)); 13002 N1 = DAG.getUNDEF(ConcatVT); 13003 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); 13004 } 13005 13006 // Look at every vector that's inserted. We're looking for exact 13007 // subvector-sized copies from a concatenated vector 13008 for (unsigned I = 0; I != NumConcats; ++I) { 13009 // Make sure we're dealing with a copy. 13010 unsigned Begin = I * NumElemsPerConcat; 13011 bool AllUndef = true, NoUndef = true; 13012 for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) { 13013 if (SVN->getMaskElt(J) >= 0) 13014 AllUndef = false; 13015 else 13016 NoUndef = false; 13017 } 13018 13019 if (NoUndef) { 13020 if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0) 13021 return SDValue(); 13022 13023 for (unsigned J = 1; J != NumElemsPerConcat; ++J) 13024 if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J)) 13025 return SDValue(); 13026 13027 unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat; 13028 if (FirstElt < N0.getNumOperands()) 13029 Ops.push_back(N0.getOperand(FirstElt)); 13030 else 13031 Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands())); 13032 13033 } else if (AllUndef) { 13034 Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType())); 13035 } else { // Mixed with general masks and undefs, can't do optimization. 13036 return SDValue(); 13037 } 13038 } 13039 13040 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 13041 } 13042 13043 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { 13044 EVT VT = N->getValueType(0); 13045 unsigned NumElts = VT.getVectorNumElements(); 13046 13047 SDValue N0 = N->getOperand(0); 13048 SDValue N1 = N->getOperand(1); 13049 13050 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); 13051 13052 // Canonicalize shuffle undef, undef -> undef 13053 if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF) 13054 return DAG.getUNDEF(VT); 13055 13056 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 13057 13058 // Canonicalize shuffle v, v -> v, undef 13059 if (N0 == N1) { 13060 SmallVector<int, 8> NewMask; 13061 for (unsigned i = 0; i != NumElts; ++i) { 13062 int Idx = SVN->getMaskElt(i); 13063 if (Idx >= (int)NumElts) Idx -= NumElts; 13064 NewMask.push_back(Idx); 13065 } 13066 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), 13067 &NewMask[0]); 13068 } 13069 13070 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 13071 if (N0.getOpcode() == ISD::UNDEF) { 13072 SmallVector<int, 8> NewMask; 13073 for (unsigned i = 0; i != NumElts; ++i) { 13074 int Idx = SVN->getMaskElt(i); 13075 if (Idx >= 0) { 13076 if (Idx >= (int)NumElts) 13077 Idx -= NumElts; 13078 else 13079 Idx = -1; // remove reference to lhs 13080 } 13081 NewMask.push_back(Idx); 13082 } 13083 return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT), 13084 &NewMask[0]); 13085 } 13086 13087 // Remove references to rhs if it is undef 13088 if (N1.getOpcode() == ISD::UNDEF) { 13089 bool Changed = false; 13090 SmallVector<int, 8> NewMask; 13091 for (unsigned i = 0; i != NumElts; ++i) { 13092 int Idx = SVN->getMaskElt(i); 13093 if (Idx >= (int)NumElts) { 13094 Idx = -1; 13095 Changed = true; 13096 } 13097 NewMask.push_back(Idx); 13098 } 13099 if (Changed) 13100 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]); 13101 } 13102 13103 // If it is a splat, check if the argument vector is another splat or a 13104 // build_vector. 13105 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { 13106 SDNode *V = N0.getNode(); 13107 13108 // If this is a bit convert that changes the element type of the vector but 13109 // not the number of vector elements, look through it. Be careful not to 13110 // look though conversions that change things like v4f32 to v2f64. 13111 if (V->getOpcode() == ISD::BITCAST) { 13112 SDValue ConvInput = V->getOperand(0); 13113 if (ConvInput.getValueType().isVector() && 13114 ConvInput.getValueType().getVectorNumElements() == NumElts) 13115 V = ConvInput.getNode(); 13116 } 13117 13118 if (V->getOpcode() == ISD::BUILD_VECTOR) { 13119 assert(V->getNumOperands() == NumElts && 13120 "BUILD_VECTOR has wrong number of operands"); 13121 SDValue Base; 13122 bool AllSame = true; 13123 for (unsigned i = 0; i != NumElts; ++i) { 13124 if (V->getOperand(i).getOpcode() != ISD::UNDEF) { 13125 Base = V->getOperand(i); 13126 break; 13127 } 13128 } 13129 // Splat of <u, u, u, u>, return <u, u, u, u> 13130 if (!Base.getNode()) 13131 return N0; 13132 for (unsigned i = 0; i != NumElts; ++i) { 13133 if (V->getOperand(i) != Base) { 13134 AllSame = false; 13135 break; 13136 } 13137 } 13138 // Splat of <x, x, x, x>, return <x, x, x, x> 13139 if (AllSame) 13140 return N0; 13141 13142 // Canonicalize any other splat as a build_vector. 13143 const SDValue &Splatted = V->getOperand(SVN->getSplatIndex()); 13144 SmallVector<SDValue, 8> Ops(NumElts, Splatted); 13145 SDValue NewBV = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), 13146 V->getValueType(0), Ops); 13147 13148 // We may have jumped through bitcasts, so the type of the 13149 // BUILD_VECTOR may not match the type of the shuffle. 13150 if (V->getValueType(0) != VT) 13151 NewBV = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, NewBV); 13152 return NewBV; 13153 } 13154 } 13155 13156 // There are various patterns used to build up a vector from smaller vectors, 13157 // subvectors, or elements. Scan chains of these and replace unused insertions 13158 // or components with undef. 13159 if (SDValue S = simplifyShuffleOperands(SVN, N0, N1, DAG)) 13160 return S; 13161 13162 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 13163 Level < AfterLegalizeVectorOps && 13164 (N1.getOpcode() == ISD::UNDEF || 13165 (N1.getOpcode() == ISD::CONCAT_VECTORS && 13166 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { 13167 SDValue V = partitionShuffleOfConcats(N, DAG); 13168 13169 if (V.getNode()) 13170 return V; 13171 } 13172 13173 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 13174 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 13175 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) { 13176 SmallVector<SDValue, 8> Ops; 13177 for (int M : SVN->getMask()) { 13178 SDValue Op = DAG.getUNDEF(VT.getScalarType()); 13179 if (M >= 0) { 13180 int Idx = M % NumElts; 13181 SDValue &S = (M < (int)NumElts ? N0 : N1); 13182 if (S.getOpcode() == ISD::BUILD_VECTOR && S.hasOneUse()) { 13183 Op = S.getOperand(Idx); 13184 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR && S.hasOneUse()) { 13185 if (Idx == 0) 13186 Op = S.getOperand(0); 13187 } else { 13188 // Operand can't be combined - bail out. 13189 break; 13190 } 13191 } 13192 Ops.push_back(Op); 13193 } 13194 if (Ops.size() == VT.getVectorNumElements()) { 13195 // BUILD_VECTOR requires all inputs to be of the same type, find the 13196 // maximum type and extend them all. 13197 EVT SVT = VT.getScalarType(); 13198 if (SVT.isInteger()) 13199 for (SDValue &Op : Ops) 13200 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 13201 if (SVT != VT.getScalarType()) 13202 for (SDValue &Op : Ops) 13203 Op = TLI.isZExtFree(Op.getValueType(), SVT) 13204 ? DAG.getZExtOrTrunc(Op, SDLoc(N), SVT) 13205 : DAG.getSExtOrTrunc(Op, SDLoc(N), SVT); 13206 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Ops); 13207 } 13208 } 13209 13210 // If this shuffle only has a single input that is a bitcasted shuffle, 13211 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output 13212 // back to their original types. 13213 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 13214 N1.getOpcode() == ISD::UNDEF && Level < AfterLegalizeVectorOps && 13215 TLI.isTypeLegal(VT)) { 13216 13217 // Peek through the bitcast only if there is one user. 13218 SDValue BC0 = N0; 13219 while (BC0.getOpcode() == ISD::BITCAST) { 13220 if (!BC0.hasOneUse()) 13221 break; 13222 BC0 = BC0.getOperand(0); 13223 } 13224 13225 auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) { 13226 if (Scale == 1) 13227 return SmallVector<int, 8>(Mask.begin(), Mask.end()); 13228 13229 SmallVector<int, 8> NewMask; 13230 for (int M : Mask) 13231 for (int s = 0; s != Scale; ++s) 13232 NewMask.push_back(M < 0 ? -1 : Scale * M + s); 13233 return NewMask; 13234 }; 13235 13236 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { 13237 EVT SVT = VT.getScalarType(); 13238 EVT InnerVT = BC0->getValueType(0); 13239 EVT InnerSVT = InnerVT.getScalarType(); 13240 13241 // Determine which shuffle works with the smaller scalar type. 13242 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; 13243 EVT ScaleSVT = ScaleVT.getScalarType(); 13244 13245 if (TLI.isTypeLegal(ScaleVT) && 13246 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && 13247 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { 13248 13249 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 13250 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 13251 13252 // Scale the shuffle masks to the smaller scalar type. 13253 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); 13254 SmallVector<int, 8> InnerMask = 13255 ScaleShuffleMask(InnerSVN->getMask(), InnerScale); 13256 SmallVector<int, 8> OuterMask = 13257 ScaleShuffleMask(SVN->getMask(), OuterScale); 13258 13259 // Merge the shuffle masks. 13260 SmallVector<int, 8> NewMask; 13261 for (int M : OuterMask) 13262 NewMask.push_back(M < 0 ? -1 : InnerMask[M]); 13263 13264 // Test for shuffle mask legality over both commutations. 13265 SDValue SV0 = BC0->getOperand(0); 13266 SDValue SV1 = BC0->getOperand(1); 13267 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 13268 if (!LegalMask) { 13269 std::swap(SV0, SV1); 13270 ShuffleVectorSDNode::commuteMask(NewMask); 13271 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 13272 } 13273 13274 if (LegalMask) { 13275 SV0 = DAG.getNode(ISD::BITCAST, SDLoc(N), ScaleVT, SV0); 13276 SV1 = DAG.getNode(ISD::BITCAST, SDLoc(N), ScaleVT, SV1); 13277 return DAG.getNode( 13278 ISD::BITCAST, SDLoc(N), VT, 13279 DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); 13280 } 13281 } 13282 } 13283 } 13284 13285 // Canonicalize shuffles according to rules: 13286 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) 13287 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) 13288 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) 13289 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && 13290 N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && 13291 TLI.isTypeLegal(VT)) { 13292 // The incoming shuffle must be of the same type as the result of the 13293 // current shuffle. 13294 assert(N1->getOperand(0).getValueType() == VT && 13295 "Shuffle types don't match"); 13296 13297 SDValue SV0 = N1->getOperand(0); 13298 SDValue SV1 = N1->getOperand(1); 13299 bool HasSameOp0 = N0 == SV0; 13300 bool IsSV1Undef = SV1.getOpcode() == ISD::UNDEF; 13301 if (HasSameOp0 || IsSV1Undef || N0 == SV1) 13302 // Commute the operands of this shuffle so that next rule 13303 // will trigger. 13304 return DAG.getCommutedVectorShuffle(*SVN); 13305 } 13306 13307 // Try to fold according to rules: 13308 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 13309 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 13310 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 13311 // Don't try to fold shuffles with illegal type. 13312 // Only fold if this shuffle is the only user of the other shuffle. 13313 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && 13314 Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { 13315 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); 13316 13317 // The incoming shuffle must be of the same type as the result of the 13318 // current shuffle. 13319 assert(OtherSV->getOperand(0).getValueType() == VT && 13320 "Shuffle types don't match"); 13321 13322 SDValue SV0, SV1; 13323 SmallVector<int, 4> Mask; 13324 // Compute the combined shuffle mask for a shuffle with SV0 as the first 13325 // operand, and SV1 as the second operand. 13326 for (unsigned i = 0; i != NumElts; ++i) { 13327 int Idx = SVN->getMaskElt(i); 13328 if (Idx < 0) { 13329 // Propagate Undef. 13330 Mask.push_back(Idx); 13331 continue; 13332 } 13333 13334 SDValue CurrentVec; 13335 if (Idx < (int)NumElts) { 13336 // This shuffle index refers to the inner shuffle N0. Lookup the inner 13337 // shuffle mask to identify which vector is actually referenced. 13338 Idx = OtherSV->getMaskElt(Idx); 13339 if (Idx < 0) { 13340 // Propagate Undef. 13341 Mask.push_back(Idx); 13342 continue; 13343 } 13344 13345 CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0) 13346 : OtherSV->getOperand(1); 13347 } else { 13348 // This shuffle index references an element within N1. 13349 CurrentVec = N1; 13350 } 13351 13352 // Simple case where 'CurrentVec' is UNDEF. 13353 if (CurrentVec.getOpcode() == ISD::UNDEF) { 13354 Mask.push_back(-1); 13355 continue; 13356 } 13357 13358 // Canonicalize the shuffle index. We don't know yet if CurrentVec 13359 // will be the first or second operand of the combined shuffle. 13360 Idx = Idx % NumElts; 13361 if (!SV0.getNode() || SV0 == CurrentVec) { 13362 // Ok. CurrentVec is the left hand side. 13363 // Update the mask accordingly. 13364 SV0 = CurrentVec; 13365 Mask.push_back(Idx); 13366 continue; 13367 } 13368 13369 // Bail out if we cannot convert the shuffle pair into a single shuffle. 13370 if (SV1.getNode() && SV1 != CurrentVec) 13371 return SDValue(); 13372 13373 // Ok. CurrentVec is the right hand side. 13374 // Update the mask accordingly. 13375 SV1 = CurrentVec; 13376 Mask.push_back(Idx + NumElts); 13377 } 13378 13379 // Check if all indices in Mask are Undef. In case, propagate Undef. 13380 bool isUndefMask = true; 13381 for (unsigned i = 0; i != NumElts && isUndefMask; ++i) 13382 isUndefMask &= Mask[i] < 0; 13383 13384 if (isUndefMask) 13385 return DAG.getUNDEF(VT); 13386 13387 if (!SV0.getNode()) 13388 SV0 = DAG.getUNDEF(VT); 13389 if (!SV1.getNode()) 13390 SV1 = DAG.getUNDEF(VT); 13391 13392 // Avoid introducing shuffles with illegal mask. 13393 if (!TLI.isShuffleMaskLegal(Mask, VT)) { 13394 ShuffleVectorSDNode::commuteMask(Mask); 13395 13396 if (!TLI.isShuffleMaskLegal(Mask, VT)) 13397 return SDValue(); 13398 13399 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) 13400 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) 13401 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) 13402 std::swap(SV0, SV1); 13403 } 13404 13405 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 13406 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 13407 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 13408 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, &Mask[0]); 13409 } 13410 13411 return SDValue(); 13412 } 13413 13414 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { 13415 SDValue InVal = N->getOperand(0); 13416 EVT VT = N->getValueType(0); 13417 13418 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern 13419 // with a VECTOR_SHUFFLE. 13420 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 13421 SDValue InVec = InVal->getOperand(0); 13422 SDValue EltNo = InVal->getOperand(1); 13423 13424 // FIXME: We could support implicit truncation if the shuffle can be 13425 // scaled to a smaller vector scalar type. 13426 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo); 13427 if (C0 && VT == InVec.getValueType() && 13428 VT.getScalarType() == InVal.getValueType()) { 13429 SmallVector<int, 8> NewMask(VT.getVectorNumElements(), -1); 13430 int Elt = C0->getZExtValue(); 13431 NewMask[0] = Elt; 13432 13433 if (TLI.isShuffleMaskLegal(NewMask, VT)) 13434 return DAG.getVectorShuffle(VT, SDLoc(N), InVec, DAG.getUNDEF(VT), 13435 NewMask); 13436 } 13437 } 13438 13439 return SDValue(); 13440 } 13441 13442 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { 13443 SDValue N0 = N->getOperand(0); 13444 SDValue N2 = N->getOperand(2); 13445 13446 // If the input vector is a concatenation, and the insert replaces 13447 // one of the halves, we can optimize into a single concat_vectors. 13448 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 13449 N0->getNumOperands() == 2 && N2.getOpcode() == ISD::Constant) { 13450 APInt InsIdx = cast<ConstantSDNode>(N2)->getAPIntValue(); 13451 EVT VT = N->getValueType(0); 13452 13453 // Lower half: fold (insert_subvector (concat_vectors X, Y), Z) -> 13454 // (concat_vectors Z, Y) 13455 if (InsIdx == 0) 13456 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 13457 N->getOperand(1), N0.getOperand(1)); 13458 13459 // Upper half: fold (insert_subvector (concat_vectors X, Y), Z) -> 13460 // (concat_vectors X, Z) 13461 if (InsIdx == VT.getVectorNumElements()/2) 13462 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 13463 N0.getOperand(0), N->getOperand(1)); 13464 } 13465 13466 return SDValue(); 13467 } 13468 13469 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { 13470 SDValue N0 = N->getOperand(0); 13471 13472 // fold (fp_to_fp16 (fp16_to_fp op)) -> op 13473 if (N0->getOpcode() == ISD::FP16_TO_FP) 13474 return N0->getOperand(0); 13475 13476 return SDValue(); 13477 } 13478 13479 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { 13480 SDValue N0 = N->getOperand(0); 13481 13482 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) 13483 if (N0->getOpcode() == ISD::AND) { 13484 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); 13485 if (AndConst && AndConst->getAPIntValue() == 0xffff) { 13486 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), 13487 N0.getOperand(0)); 13488 } 13489 } 13490 13491 return SDValue(); 13492 } 13493 13494 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle 13495 /// with the destination vector and a zero vector. 13496 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> 13497 /// vector_shuffle V, Zero, <0, 4, 2, 4> 13498 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { 13499 EVT VT = N->getValueType(0); 13500 SDValue LHS = N->getOperand(0); 13501 SDValue RHS = N->getOperand(1); 13502 SDLoc dl(N); 13503 13504 // Make sure we're not running after operation legalization where it 13505 // may have custom lowered the vector shuffles. 13506 if (LegalOperations) 13507 return SDValue(); 13508 13509 if (N->getOpcode() != ISD::AND) 13510 return SDValue(); 13511 13512 if (RHS.getOpcode() == ISD::BITCAST) 13513 RHS = RHS.getOperand(0); 13514 13515 if (RHS.getOpcode() != ISD::BUILD_VECTOR) 13516 return SDValue(); 13517 13518 EVT RVT = RHS.getValueType(); 13519 unsigned NumElts = RHS.getNumOperands(); 13520 13521 // Attempt to create a valid clear mask, splitting the mask into 13522 // sub elements and checking to see if each is 13523 // all zeros or all ones - suitable for shuffle masking. 13524 auto BuildClearMask = [&](int Split) { 13525 int NumSubElts = NumElts * Split; 13526 int NumSubBits = RVT.getScalarSizeInBits() / Split; 13527 13528 SmallVector<int, 8> Indices; 13529 for (int i = 0; i != NumSubElts; ++i) { 13530 int EltIdx = i / Split; 13531 int SubIdx = i % Split; 13532 SDValue Elt = RHS.getOperand(EltIdx); 13533 if (Elt.getOpcode() == ISD::UNDEF) { 13534 Indices.push_back(-1); 13535 continue; 13536 } 13537 13538 APInt Bits; 13539 if (isa<ConstantSDNode>(Elt)) 13540 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); 13541 else if (isa<ConstantFPSDNode>(Elt)) 13542 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); 13543 else 13544 return SDValue(); 13545 13546 // Extract the sub element from the constant bit mask. 13547 if (DAG.getDataLayout().isBigEndian()) { 13548 Bits = Bits.lshr((Split - SubIdx - 1) * NumSubBits); 13549 } else { 13550 Bits = Bits.lshr(SubIdx * NumSubBits); 13551 } 13552 13553 if (Split > 1) 13554 Bits = Bits.trunc(NumSubBits); 13555 13556 if (Bits.isAllOnesValue()) 13557 Indices.push_back(i); 13558 else if (Bits == 0) 13559 Indices.push_back(i + NumSubElts); 13560 else 13561 return SDValue(); 13562 } 13563 13564 // Let's see if the target supports this vector_shuffle. 13565 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); 13566 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); 13567 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) 13568 return SDValue(); 13569 13570 SDValue Zero = DAG.getConstant(0, dl, ClearVT); 13571 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, dl, 13572 DAG.getBitcast(ClearVT, LHS), 13573 Zero, &Indices[0])); 13574 }; 13575 13576 // Determine maximum split level (byte level masking). 13577 int MaxSplit = 1; 13578 if (RVT.getScalarSizeInBits() % 8 == 0) 13579 MaxSplit = RVT.getScalarSizeInBits() / 8; 13580 13581 for (int Split = 1; Split <= MaxSplit; ++Split) 13582 if (RVT.getScalarSizeInBits() % Split == 0) 13583 if (SDValue S = BuildClearMask(Split)) 13584 return S; 13585 13586 return SDValue(); 13587 } 13588 13589 /// Visit a binary vector operation, like ADD. 13590 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { 13591 assert(N->getValueType(0).isVector() && 13592 "SimplifyVBinOp only works on vectors!"); 13593 13594 SDValue LHS = N->getOperand(0); 13595 SDValue RHS = N->getOperand(1); 13596 SDValue Ops[] = {LHS, RHS}; 13597 13598 // See if we can constant fold the vector operation. 13599 if (SDValue Fold = DAG.FoldConstantVectorArithmetic( 13600 N->getOpcode(), SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) 13601 return Fold; 13602 13603 // Try to convert a constant mask AND into a shuffle clear mask. 13604 if (SDValue Shuffle = XformToShuffleWithZero(N)) 13605 return Shuffle; 13606 13607 // Type legalization might introduce new shuffles in the DAG. 13608 // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask))) 13609 // -> (shuffle (VBinOp (A, B)), Undef, Mask). 13610 if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) && 13611 isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() && 13612 LHS.getOperand(1).getOpcode() == ISD::UNDEF && 13613 RHS.getOperand(1).getOpcode() == ISD::UNDEF) { 13614 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS); 13615 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS); 13616 13617 if (SVN0->getMask().equals(SVN1->getMask())) { 13618 EVT VT = N->getValueType(0); 13619 SDValue UndefVector = LHS.getOperand(1); 13620 SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 13621 LHS.getOperand(0), RHS.getOperand(0), 13622 N->getFlags()); 13623 AddUsersToWorklist(N); 13624 return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector, 13625 &SVN0->getMask()[0]); 13626 } 13627 } 13628 13629 return SDValue(); 13630 } 13631 13632 SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0, 13633 SDValue N1, SDValue N2){ 13634 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); 13635 13636 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, 13637 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 13638 13639 // If we got a simplified select_cc node back from SimplifySelectCC, then 13640 // break it down into a new SETCC node, and a new SELECT node, and then return 13641 // the SELECT node, since we were called with a SELECT node. 13642 if (SCC.getNode()) { 13643 // Check to see if we got a select_cc back (to turn into setcc/select). 13644 // Otherwise, just return whatever node we got back, like fabs. 13645 if (SCC.getOpcode() == ISD::SELECT_CC) { 13646 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), 13647 N0.getValueType(), 13648 SCC.getOperand(0), SCC.getOperand(1), 13649 SCC.getOperand(4)); 13650 AddToWorklist(SETCC.getNode()); 13651 return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, 13652 SCC.getOperand(2), SCC.getOperand(3)); 13653 } 13654 13655 return SCC; 13656 } 13657 return SDValue(); 13658 } 13659 13660 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values 13661 /// being selected between, see if we can simplify the select. Callers of this 13662 /// should assume that TheSelect is deleted if this returns true. As such, they 13663 /// should return the appropriate thing (e.g. the node) back to the top-level of 13664 /// the DAG combiner loop to avoid it being looked at. 13665 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, 13666 SDValue RHS) { 13667 13668 // fold (select (setcc x, -0.0, *lt), NaN, (fsqrt x)) 13669 // The select + setcc is redundant, because fsqrt returns NaN for X < -0. 13670 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { 13671 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { 13672 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) 13673 SDValue Sqrt = RHS; 13674 ISD::CondCode CC; 13675 SDValue CmpLHS; 13676 const ConstantFPSDNode *NegZero = nullptr; 13677 13678 if (TheSelect->getOpcode() == ISD::SELECT_CC) { 13679 CC = dyn_cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); 13680 CmpLHS = TheSelect->getOperand(0); 13681 NegZero = isConstOrConstSplatFP(TheSelect->getOperand(1)); 13682 } else { 13683 // SELECT or VSELECT 13684 SDValue Cmp = TheSelect->getOperand(0); 13685 if (Cmp.getOpcode() == ISD::SETCC) { 13686 CC = dyn_cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); 13687 CmpLHS = Cmp.getOperand(0); 13688 NegZero = isConstOrConstSplatFP(Cmp.getOperand(1)); 13689 } 13690 } 13691 if (NegZero && NegZero->isNegative() && NegZero->isZero() && 13692 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || 13693 CC == ISD::SETULT || CC == ISD::SETLT)) { 13694 // We have: (select (setcc x, -0.0, *lt), NaN, (fsqrt x)) 13695 CombineTo(TheSelect, Sqrt); 13696 return true; 13697 } 13698 } 13699 } 13700 // Cannot simplify select with vector condition 13701 if (TheSelect->getOperand(0).getValueType().isVector()) return false; 13702 13703 // If this is a select from two identical things, try to pull the operation 13704 // through the select. 13705 if (LHS.getOpcode() != RHS.getOpcode() || 13706 !LHS.hasOneUse() || !RHS.hasOneUse()) 13707 return false; 13708 13709 // If this is a load and the token chain is identical, replace the select 13710 // of two loads with a load through a select of the address to load from. 13711 // This triggers in things like "select bool X, 10.0, 123.0" after the FP 13712 // constants have been dropped into the constant pool. 13713 if (LHS.getOpcode() == ISD::LOAD) { 13714 LoadSDNode *LLD = cast<LoadSDNode>(LHS); 13715 LoadSDNode *RLD = cast<LoadSDNode>(RHS); 13716 13717 // Token chains must be identical. 13718 if (LHS.getOperand(0) != RHS.getOperand(0) || 13719 // Do not let this transformation reduce the number of volatile loads. 13720 LLD->isVolatile() || RLD->isVolatile() || 13721 // FIXME: If either is a pre/post inc/dec load, 13722 // we'd need to split out the address adjustment. 13723 LLD->isIndexed() || RLD->isIndexed() || 13724 // If this is an EXTLOAD, the VT's must match. 13725 LLD->getMemoryVT() != RLD->getMemoryVT() || 13726 // If this is an EXTLOAD, the kind of extension must match. 13727 (LLD->getExtensionType() != RLD->getExtensionType() && 13728 // The only exception is if one of the extensions is anyext. 13729 LLD->getExtensionType() != ISD::EXTLOAD && 13730 RLD->getExtensionType() != ISD::EXTLOAD) || 13731 // FIXME: this discards src value information. This is 13732 // over-conservative. It would be beneficial to be able to remember 13733 // both potential memory locations. Since we are discarding 13734 // src value info, don't do the transformation if the memory 13735 // locations are not in the default address space. 13736 LLD->getPointerInfo().getAddrSpace() != 0 || 13737 RLD->getPointerInfo().getAddrSpace() != 0 || 13738 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), 13739 LLD->getBasePtr().getValueType())) 13740 return false; 13741 13742 // Check that the select condition doesn't reach either load. If so, 13743 // folding this will induce a cycle into the DAG. If not, this is safe to 13744 // xform, so create a select of the addresses. 13745 SDValue Addr; 13746 if (TheSelect->getOpcode() == ISD::SELECT) { 13747 SDNode *CondNode = TheSelect->getOperand(0).getNode(); 13748 if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) || 13749 (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode))) 13750 return false; 13751 // The loads must not depend on one another. 13752 if (LLD->isPredecessorOf(RLD) || 13753 RLD->isPredecessorOf(LLD)) 13754 return false; 13755 Addr = DAG.getSelect(SDLoc(TheSelect), 13756 LLD->getBasePtr().getValueType(), 13757 TheSelect->getOperand(0), LLD->getBasePtr(), 13758 RLD->getBasePtr()); 13759 } else { // Otherwise SELECT_CC 13760 SDNode *CondLHS = TheSelect->getOperand(0).getNode(); 13761 SDNode *CondRHS = TheSelect->getOperand(1).getNode(); 13762 13763 if ((LLD->hasAnyUseOfValue(1) && 13764 (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) || 13765 (RLD->hasAnyUseOfValue(1) && 13766 (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS)))) 13767 return false; 13768 13769 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), 13770 LLD->getBasePtr().getValueType(), 13771 TheSelect->getOperand(0), 13772 TheSelect->getOperand(1), 13773 LLD->getBasePtr(), RLD->getBasePtr(), 13774 TheSelect->getOperand(4)); 13775 } 13776 13777 SDValue Load; 13778 // It is safe to replace the two loads if they have different alignments, 13779 // but the new load must be the minimum (most restrictive) alignment of the 13780 // inputs. 13781 bool isInvariant = LLD->isInvariant() & RLD->isInvariant(); 13782 unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment()); 13783 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { 13784 Load = DAG.getLoad(TheSelect->getValueType(0), 13785 SDLoc(TheSelect), 13786 // FIXME: Discards pointer and AA info. 13787 LLD->getChain(), Addr, MachinePointerInfo(), 13788 LLD->isVolatile(), LLD->isNonTemporal(), 13789 isInvariant, Alignment); 13790 } else { 13791 Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ? 13792 RLD->getExtensionType() : LLD->getExtensionType(), 13793 SDLoc(TheSelect), 13794 TheSelect->getValueType(0), 13795 // FIXME: Discards pointer and AA info. 13796 LLD->getChain(), Addr, MachinePointerInfo(), 13797 LLD->getMemoryVT(), LLD->isVolatile(), 13798 LLD->isNonTemporal(), isInvariant, Alignment); 13799 } 13800 13801 // Users of the select now use the result of the load. 13802 CombineTo(TheSelect, Load); 13803 13804 // Users of the old loads now use the new load's chain. We know the 13805 // old-load value is dead now. 13806 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); 13807 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); 13808 return true; 13809 } 13810 13811 return false; 13812 } 13813 13814 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 13815 /// where 'cond' is the comparison specified by CC. 13816 SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, 13817 SDValue N2, SDValue N3, 13818 ISD::CondCode CC, bool NotExtCompare) { 13819 // (x ? y : y) -> y. 13820 if (N2 == N3) return N2; 13821 13822 EVT VT = N2.getValueType(); 13823 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 13824 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 13825 13826 // Determine if the condition we're dealing with is constant 13827 SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), 13828 N0, N1, CC, DL, false); 13829 if (SCC.getNode()) AddToWorklist(SCC.getNode()); 13830 13831 if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) { 13832 // fold select_cc true, x, y -> x 13833 // fold select_cc false, x, y -> y 13834 return !SCCC->isNullValue() ? N2 : N3; 13835 } 13836 13837 // Check to see if we can simplify the select into an fabs node 13838 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) { 13839 // Allow either -0.0 or 0.0 13840 if (CFP->isZero()) { 13841 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs 13842 if ((CC == ISD::SETGE || CC == ISD::SETGT) && 13843 N0 == N2 && N3.getOpcode() == ISD::FNEG && 13844 N2 == N3.getOperand(0)) 13845 return DAG.getNode(ISD::FABS, DL, VT, N0); 13846 13847 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs 13848 if ((CC == ISD::SETLT || CC == ISD::SETLE) && 13849 N0 == N3 && N2.getOpcode() == ISD::FNEG && 13850 N2.getOperand(0) == N3) 13851 return DAG.getNode(ISD::FABS, DL, VT, N3); 13852 } 13853 } 13854 13855 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" 13856 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 13857 // in it. This is a win when the constant is not otherwise available because 13858 // it replaces two constant pool loads with one. We only do this if the FP 13859 // type is known to be legal, because if it isn't, then we are before legalize 13860 // types an we want the other legalization to happen first (e.g. to avoid 13861 // messing with soft float) and if the ConstantFP is not legal, because if 13862 // it is legal, we may not need to store the FP constant in a constant pool. 13863 if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2)) 13864 if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) { 13865 if (TLI.isTypeLegal(N2.getValueType()) && 13866 (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) != 13867 TargetLowering::Legal && 13868 !TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) && 13869 !TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) && 13870 // If both constants have multiple uses, then we won't need to do an 13871 // extra load, they are likely around in registers for other users. 13872 (TV->hasOneUse() || FV->hasOneUse())) { 13873 Constant *Elts[] = { 13874 const_cast<ConstantFP*>(FV->getConstantFPValue()), 13875 const_cast<ConstantFP*>(TV->getConstantFPValue()) 13876 }; 13877 Type *FPTy = Elts[0]->getType(); 13878 const DataLayout &TD = DAG.getDataLayout(); 13879 13880 // Create a ConstantArray of the two constants. 13881 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); 13882 SDValue CPIdx = 13883 DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), 13884 TD.getPrefTypeAlignment(FPTy)); 13885 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 13886 13887 // Get the offsets to the 0 and 1 element of the array so that we can 13888 // select between them. 13889 SDValue Zero = DAG.getIntPtrConstant(0, DL); 13890 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); 13891 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); 13892 13893 SDValue Cond = DAG.getSetCC(DL, 13894 getSetCCResultType(N0.getValueType()), 13895 N0, N1, CC); 13896 AddToWorklist(Cond.getNode()); 13897 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), 13898 Cond, One, Zero); 13899 AddToWorklist(CstOffset.getNode()); 13900 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, 13901 CstOffset); 13902 AddToWorklist(CPIdx.getNode()); 13903 return DAG.getLoad( 13904 TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, 13905 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 13906 false, false, false, Alignment); 13907 } 13908 } 13909 13910 // Check to see if we can perform the "gzip trick", transforming 13911 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A) 13912 if (isNullConstant(N3) && CC == ISD::SETLT && 13913 (isNullConstant(N1) || // (a < 0) ? b : 0 13914 (isOneConstant(N1) && N0 == N2))) { // (a < 1) ? a : 0 13915 EVT XType = N0.getValueType(); 13916 EVT AType = N2.getValueType(); 13917 if (XType.bitsGE(AType)) { 13918 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a 13919 // single-bit constant. 13920 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { 13921 unsigned ShCtV = N2C->getAPIntValue().logBase2(); 13922 ShCtV = XType.getSizeInBits() - ShCtV - 1; 13923 SDValue ShCt = DAG.getConstant(ShCtV, SDLoc(N0), 13924 getShiftAmountTy(N0.getValueType())); 13925 SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), 13926 XType, N0, ShCt); 13927 AddToWorklist(Shift.getNode()); 13928 13929 if (XType.bitsGT(AType)) { 13930 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 13931 AddToWorklist(Shift.getNode()); 13932 } 13933 13934 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 13935 } 13936 13937 SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), 13938 XType, N0, 13939 DAG.getConstant(XType.getSizeInBits() - 1, 13940 SDLoc(N0), 13941 getShiftAmountTy(N0.getValueType()))); 13942 AddToWorklist(Shift.getNode()); 13943 13944 if (XType.bitsGT(AType)) { 13945 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 13946 AddToWorklist(Shift.getNode()); 13947 } 13948 13949 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 13950 } 13951 } 13952 13953 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) 13954 // where y is has a single bit set. 13955 // A plaintext description would be, we can turn the SELECT_CC into an AND 13956 // when the condition can be materialized as an all-ones register. Any 13957 // single bit-test can be materialized as an all-ones register with 13958 // shift-left and shift-right-arith. 13959 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && 13960 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { 13961 SDValue AndLHS = N0->getOperand(0); 13962 ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 13963 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { 13964 // Shift the tested bit over the sign bit. 13965 APInt AndMask = ConstAndRHS->getAPIntValue(); 13966 SDValue ShlAmt = 13967 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), 13968 getShiftAmountTy(AndLHS.getValueType())); 13969 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); 13970 13971 // Now arithmetic right shift it all the way over, so the result is either 13972 // all-ones, or zero. 13973 SDValue ShrAmt = 13974 DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl), 13975 getShiftAmountTy(Shl.getValueType())); 13976 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); 13977 13978 return DAG.getNode(ISD::AND, DL, VT, Shr, N3); 13979 } 13980 } 13981 13982 // fold select C, 16, 0 -> shl C, 4 13983 if (N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2() && 13984 TLI.getBooleanContents(N0.getValueType()) == 13985 TargetLowering::ZeroOrOneBooleanContent) { 13986 13987 // If the caller doesn't want us to simplify this into a zext of a compare, 13988 // don't do it. 13989 if (NotExtCompare && N2C->isOne()) 13990 return SDValue(); 13991 13992 // Get a SetCC of the condition 13993 // NOTE: Don't create a SETCC if it's not legal on this target. 13994 if (!LegalOperations || 13995 TLI.isOperationLegal(ISD::SETCC, N0.getValueType())) { 13996 SDValue Temp, SCC; 13997 // cast from setcc result type to select result type 13998 if (LegalTypes) { 13999 SCC = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), 14000 N0, N1, CC); 14001 if (N2.getValueType().bitsLT(SCC.getValueType())) 14002 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), 14003 N2.getValueType()); 14004 else 14005 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), 14006 N2.getValueType(), SCC); 14007 } else { 14008 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); 14009 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), 14010 N2.getValueType(), SCC); 14011 } 14012 14013 AddToWorklist(SCC.getNode()); 14014 AddToWorklist(Temp.getNode()); 14015 14016 if (N2C->isOne()) 14017 return Temp; 14018 14019 // shl setcc result by log2 n2c 14020 return DAG.getNode( 14021 ISD::SHL, DL, N2.getValueType(), Temp, 14022 DAG.getConstant(N2C->getAPIntValue().logBase2(), SDLoc(Temp), 14023 getShiftAmountTy(Temp.getValueType()))); 14024 } 14025 } 14026 14027 // Check to see if this is an integer abs. 14028 // select_cc setg[te] X, 0, X, -X -> 14029 // select_cc setgt X, -1, X, -X -> 14030 // select_cc setl[te] X, 0, -X, X -> 14031 // select_cc setlt X, 1, -X, X -> 14032 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 14033 if (N1C) { 14034 ConstantSDNode *SubC = nullptr; 14035 if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) || 14036 (N1C->isAllOnesValue() && CC == ISD::SETGT)) && 14037 N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) 14038 SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0)); 14039 else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) || 14040 (N1C->isOne() && CC == ISD::SETLT)) && 14041 N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) 14042 SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0)); 14043 14044 EVT XType = N0.getValueType(); 14045 if (SubC && SubC->isNullValue() && XType.isInteger()) { 14046 SDLoc DL(N0); 14047 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, 14048 N0, 14049 DAG.getConstant(XType.getSizeInBits() - 1, DL, 14050 getShiftAmountTy(N0.getValueType()))); 14051 SDValue Add = DAG.getNode(ISD::ADD, DL, 14052 XType, N0, Shift); 14053 AddToWorklist(Shift.getNode()); 14054 AddToWorklist(Add.getNode()); 14055 return DAG.getNode(ISD::XOR, DL, XType, Add, Shift); 14056 } 14057 } 14058 14059 return SDValue(); 14060 } 14061 14062 /// This is a stub for TargetLowering::SimplifySetCC. 14063 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, 14064 SDValue N1, ISD::CondCode Cond, 14065 SDLoc DL, bool foldBooleans) { 14066 TargetLowering::DAGCombinerInfo 14067 DagCombineInfo(DAG, Level, false, this); 14068 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); 14069 } 14070 14071 /// Given an ISD::SDIV node expressing a divide by constant, return 14072 /// a DAG expression to select that will generate the same value by multiplying 14073 /// by a magic number. 14074 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 14075 SDValue DAGCombiner::BuildSDIV(SDNode *N) { 14076 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14077 if (!C) 14078 return SDValue(); 14079 14080 // Avoid division by zero. 14081 if (C->isNullValue()) 14082 return SDValue(); 14083 14084 std::vector<SDNode*> Built; 14085 SDValue S = 14086 TLI.BuildSDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); 14087 14088 for (SDNode *N : Built) 14089 AddToWorklist(N); 14090 return S; 14091 } 14092 14093 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a 14094 /// DAG expression that will generate the same value by right shifting. 14095 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { 14096 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14097 if (!C) 14098 return SDValue(); 14099 14100 // Avoid division by zero. 14101 if (C->isNullValue()) 14102 return SDValue(); 14103 14104 std::vector<SDNode *> Built; 14105 SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, &Built); 14106 14107 for (SDNode *N : Built) 14108 AddToWorklist(N); 14109 return S; 14110 } 14111 14112 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG 14113 /// expression that will generate the same value by multiplying by a magic 14114 /// number. 14115 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 14116 SDValue DAGCombiner::BuildUDIV(SDNode *N) { 14117 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14118 if (!C) 14119 return SDValue(); 14120 14121 // Avoid division by zero. 14122 if (C->isNullValue()) 14123 return SDValue(); 14124 14125 std::vector<SDNode*> Built; 14126 SDValue S = 14127 TLI.BuildUDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); 14128 14129 for (SDNode *N : Built) 14130 AddToWorklist(N); 14131 return S; 14132 } 14133 14134 SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags) { 14135 if (Level >= AfterLegalizeDAG) 14136 return SDValue(); 14137 14138 // Expose the DAG combiner to the target combiner implementations. 14139 TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this); 14140 14141 unsigned Iterations = 0; 14142 if (SDValue Est = TLI.getRecipEstimate(Op, DCI, Iterations)) { 14143 if (Iterations) { 14144 // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14145 // For the reciprocal, we need to find the zero of the function: 14146 // F(X) = A X - 1 [which has a zero at X = 1/A] 14147 // => 14148 // X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form 14149 // does not require additional intermediate precision] 14150 EVT VT = Op.getValueType(); 14151 SDLoc DL(Op); 14152 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 14153 14154 AddToWorklist(Est.getNode()); 14155 14156 // Newton iterations: Est = Est + Est (1 - Arg * Est) 14157 for (unsigned i = 0; i < Iterations; ++i) { 14158 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags); 14159 AddToWorklist(NewEst.getNode()); 14160 14161 NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags); 14162 AddToWorklist(NewEst.getNode()); 14163 14164 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 14165 AddToWorklist(NewEst.getNode()); 14166 14167 Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags); 14168 AddToWorklist(Est.getNode()); 14169 } 14170 } 14171 return Est; 14172 } 14173 14174 return SDValue(); 14175 } 14176 14177 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14178 /// For the reciprocal sqrt, we need to find the zero of the function: 14179 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 14180 /// => 14181 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) 14182 /// As a result, we precompute A/2 prior to the iteration loop. 14183 SDValue DAGCombiner::BuildRsqrtNROneConst(SDValue Arg, SDValue Est, 14184 unsigned Iterations, 14185 SDNodeFlags *Flags) { 14186 EVT VT = Arg.getValueType(); 14187 SDLoc DL(Arg); 14188 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); 14189 14190 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that 14191 // this entire sequence requires only one FP constant. 14192 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); 14193 AddToWorklist(HalfArg.getNode()); 14194 14195 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); 14196 AddToWorklist(HalfArg.getNode()); 14197 14198 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) 14199 for (unsigned i = 0; i < Iterations; ++i) { 14200 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 14201 AddToWorklist(NewEst.getNode()); 14202 14203 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); 14204 AddToWorklist(NewEst.getNode()); 14205 14206 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); 14207 AddToWorklist(NewEst.getNode()); 14208 14209 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 14210 AddToWorklist(Est.getNode()); 14211 } 14212 return Est; 14213 } 14214 14215 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14216 /// For the reciprocal sqrt, we need to find the zero of the function: 14217 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 14218 /// => 14219 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) 14220 SDValue DAGCombiner::BuildRsqrtNRTwoConst(SDValue Arg, SDValue Est, 14221 unsigned Iterations, 14222 SDNodeFlags *Flags) { 14223 EVT VT = Arg.getValueType(); 14224 SDLoc DL(Arg); 14225 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); 14226 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); 14227 14228 // Newton iterations: Est = -0.5 * Est * (-3.0 + Arg * Est * Est) 14229 for (unsigned i = 0; i < Iterations; ++i) { 14230 SDValue HalfEst = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); 14231 AddToWorklist(HalfEst.getNode()); 14232 14233 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 14234 AddToWorklist(Est.getNode()); 14235 14236 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); 14237 AddToWorklist(Est.getNode()); 14238 14239 Est = DAG.getNode(ISD::FADD, DL, VT, Est, MinusThree, Flags); 14240 AddToWorklist(Est.getNode()); 14241 14242 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, HalfEst, Flags); 14243 AddToWorklist(Est.getNode()); 14244 } 14245 return Est; 14246 } 14247 14248 SDValue DAGCombiner::BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags) { 14249 if (Level >= AfterLegalizeDAG) 14250 return SDValue(); 14251 14252 // Expose the DAG combiner to the target combiner implementations. 14253 TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this); 14254 unsigned Iterations = 0; 14255 bool UseOneConstNR = false; 14256 if (SDValue Est = TLI.getRsqrtEstimate(Op, DCI, Iterations, UseOneConstNR)) { 14257 AddToWorklist(Est.getNode()); 14258 if (Iterations) { 14259 Est = UseOneConstNR ? 14260 BuildRsqrtNROneConst(Op, Est, Iterations, Flags) : 14261 BuildRsqrtNRTwoConst(Op, Est, Iterations, Flags); 14262 } 14263 return Est; 14264 } 14265 14266 return SDValue(); 14267 } 14268 14269 /// Return true if base is a frame index, which is known not to alias with 14270 /// anything but itself. Provides base object and offset as results. 14271 static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset, 14272 const GlobalValue *&GV, const void *&CV) { 14273 // Assume it is a primitive operation. 14274 Base = Ptr; Offset = 0; GV = nullptr; CV = nullptr; 14275 14276 // If it's an adding a simple constant then integrate the offset. 14277 if (Base.getOpcode() == ISD::ADD) { 14278 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) { 14279 Base = Base.getOperand(0); 14280 Offset += C->getZExtValue(); 14281 } 14282 } 14283 14284 // Return the underlying GlobalValue, and update the Offset. Return false 14285 // for GlobalAddressSDNode since the same GlobalAddress may be represented 14286 // by multiple nodes with different offsets. 14287 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) { 14288 GV = G->getGlobal(); 14289 Offset += G->getOffset(); 14290 return false; 14291 } 14292 14293 // Return the underlying Constant value, and update the Offset. Return false 14294 // for ConstantSDNodes since the same constant pool entry may be represented 14295 // by multiple nodes with different offsets. 14296 if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) { 14297 CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal() 14298 : (const void *)C->getConstVal(); 14299 Offset += C->getOffset(); 14300 return false; 14301 } 14302 // If it's any of the following then it can't alias with anything but itself. 14303 return isa<FrameIndexSDNode>(Base); 14304 } 14305 14306 /// Return true if there is any possibility that the two addresses overlap. 14307 bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const { 14308 // If they are the same then they must be aliases. 14309 if (Op0->getBasePtr() == Op1->getBasePtr()) return true; 14310 14311 // If they are both volatile then they cannot be reordered. 14312 if (Op0->isVolatile() && Op1->isVolatile()) return true; 14313 14314 // If one operation reads from invariant memory, and the other may store, they 14315 // cannot alias. These should really be checking the equivalent of mayWrite, 14316 // but it only matters for memory nodes other than load /store. 14317 if (Op0->isInvariant() && Op1->writeMem()) 14318 return false; 14319 14320 if (Op1->isInvariant() && Op0->writeMem()) 14321 return false; 14322 14323 // Gather base node and offset information. 14324 SDValue Base1, Base2; 14325 int64_t Offset1, Offset2; 14326 const GlobalValue *GV1, *GV2; 14327 const void *CV1, *CV2; 14328 bool isFrameIndex1 = FindBaseOffset(Op0->getBasePtr(), 14329 Base1, Offset1, GV1, CV1); 14330 bool isFrameIndex2 = FindBaseOffset(Op1->getBasePtr(), 14331 Base2, Offset2, GV2, CV2); 14332 14333 // If they have a same base address then check to see if they overlap. 14334 if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2))) 14335 return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || 14336 (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); 14337 14338 // It is possible for different frame indices to alias each other, mostly 14339 // when tail call optimization reuses return address slots for arguments. 14340 // To catch this case, look up the actual index of frame indices to compute 14341 // the real alias relationship. 14342 if (isFrameIndex1 && isFrameIndex2) { 14343 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 14344 Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex()); 14345 Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex()); 14346 return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || 14347 (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); 14348 } 14349 14350 // Otherwise, if we know what the bases are, and they aren't identical, then 14351 // we know they cannot alias. 14352 if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2)) 14353 return false; 14354 14355 // If we know required SrcValue1 and SrcValue2 have relatively large alignment 14356 // compared to the size and offset of the access, we may be able to prove they 14357 // do not alias. This check is conservative for now to catch cases created by 14358 // splitting vector types. 14359 if ((Op0->getOriginalAlignment() == Op1->getOriginalAlignment()) && 14360 (Op0->getSrcValueOffset() != Op1->getSrcValueOffset()) && 14361 (Op0->getMemoryVT().getSizeInBits() >> 3 == 14362 Op1->getMemoryVT().getSizeInBits() >> 3) && 14363 (Op0->getOriginalAlignment() > Op0->getMemoryVT().getSizeInBits()) >> 3) { 14364 int64_t OffAlign1 = Op0->getSrcValueOffset() % Op0->getOriginalAlignment(); 14365 int64_t OffAlign2 = Op1->getSrcValueOffset() % Op1->getOriginalAlignment(); 14366 14367 // There is no overlap between these relatively aligned accesses of similar 14368 // size, return no alias. 14369 if ((OffAlign1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign2 || 14370 (OffAlign2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign1) 14371 return false; 14372 } 14373 14374 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 14375 ? CombinerGlobalAA 14376 : DAG.getSubtarget().useAA(); 14377 #ifndef NDEBUG 14378 if (CombinerAAOnlyFunc.getNumOccurrences() && 14379 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 14380 UseAA = false; 14381 #endif 14382 if (UseAA && 14383 Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) { 14384 // Use alias analysis information. 14385 int64_t MinOffset = std::min(Op0->getSrcValueOffset(), 14386 Op1->getSrcValueOffset()); 14387 int64_t Overlap1 = (Op0->getMemoryVT().getSizeInBits() >> 3) + 14388 Op0->getSrcValueOffset() - MinOffset; 14389 int64_t Overlap2 = (Op1->getMemoryVT().getSizeInBits() >> 3) + 14390 Op1->getSrcValueOffset() - MinOffset; 14391 AliasResult AAResult = 14392 AA.alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap1, 14393 UseTBAA ? Op0->getAAInfo() : AAMDNodes()), 14394 MemoryLocation(Op1->getMemOperand()->getValue(), Overlap2, 14395 UseTBAA ? Op1->getAAInfo() : AAMDNodes())); 14396 if (AAResult == NoAlias) 14397 return false; 14398 } 14399 14400 // Otherwise we have to assume they alias. 14401 return true; 14402 } 14403 14404 /// Walk up chain skipping non-aliasing memory nodes, 14405 /// looking for aliasing nodes and adding them to the Aliases vector. 14406 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, 14407 SmallVectorImpl<SDValue> &Aliases) { 14408 SmallVector<SDValue, 8> Chains; // List of chains to visit. 14409 SmallPtrSet<SDNode *, 16> Visited; // Visited node set. 14410 14411 // Get alias information for node. 14412 bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile(); 14413 14414 // Starting off. 14415 Chains.push_back(OriginalChain); 14416 unsigned Depth = 0; 14417 14418 // Look at each chain and determine if it is an alias. If so, add it to the 14419 // aliases list. If not, then continue up the chain looking for the next 14420 // candidate. 14421 while (!Chains.empty()) { 14422 SDValue Chain = Chains.pop_back_val(); 14423 14424 // For TokenFactor nodes, look at each operand and only continue up the 14425 // chain until we reach the depth limit. 14426 // 14427 // FIXME: The depth check could be made to return the last non-aliasing 14428 // chain we found before we hit a tokenfactor rather than the original 14429 // chain. 14430 if (Depth > 6) { 14431 Aliases.clear(); 14432 Aliases.push_back(OriginalChain); 14433 return; 14434 } 14435 14436 // Don't bother if we've been before. 14437 if (!Visited.insert(Chain.getNode()).second) 14438 continue; 14439 14440 switch (Chain.getOpcode()) { 14441 case ISD::EntryToken: 14442 // Entry token is ideal chain operand, but handled in FindBetterChain. 14443 break; 14444 14445 case ISD::LOAD: 14446 case ISD::STORE: { 14447 // Get alias information for Chain. 14448 bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) && 14449 !cast<LSBaseSDNode>(Chain.getNode())->isVolatile(); 14450 14451 // If chain is alias then stop here. 14452 if (!(IsLoad && IsOpLoad) && 14453 isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) { 14454 Aliases.push_back(Chain); 14455 } else { 14456 // Look further up the chain. 14457 Chains.push_back(Chain.getOperand(0)); 14458 ++Depth; 14459 } 14460 break; 14461 } 14462 14463 case ISD::TokenFactor: 14464 // We have to check each of the operands of the token factor for "small" 14465 // token factors, so we queue them up. Adding the operands to the queue 14466 // (stack) in reverse order maintains the original order and increases the 14467 // likelihood that getNode will find a matching token factor (CSE.) 14468 if (Chain.getNumOperands() > 16) { 14469 Aliases.push_back(Chain); 14470 break; 14471 } 14472 for (unsigned n = Chain.getNumOperands(); n;) 14473 Chains.push_back(Chain.getOperand(--n)); 14474 ++Depth; 14475 break; 14476 14477 default: 14478 // For all other instructions we will just have to take what we can get. 14479 Aliases.push_back(Chain); 14480 break; 14481 } 14482 } 14483 14484 // We need to be careful here to also search for aliases through the 14485 // value operand of a store, etc. Consider the following situation: 14486 // Token1 = ... 14487 // L1 = load Token1, %52 14488 // S1 = store Token1, L1, %51 14489 // L2 = load Token1, %52+8 14490 // S2 = store Token1, L2, %51+8 14491 // Token2 = Token(S1, S2) 14492 // L3 = load Token2, %53 14493 // S3 = store Token2, L3, %52 14494 // L4 = load Token2, %53+8 14495 // S4 = store Token2, L4, %52+8 14496 // If we search for aliases of S3 (which loads address %52), and we look 14497 // only through the chain, then we'll miss the trivial dependence on L1 14498 // (which also loads from %52). We then might change all loads and 14499 // stores to use Token1 as their chain operand, which could result in 14500 // copying %53 into %52 before copying %52 into %51 (which should 14501 // happen first). 14502 // 14503 // The problem is, however, that searching for such data dependencies 14504 // can become expensive, and the cost is not directly related to the 14505 // chain depth. Instead, we'll rule out such configurations here by 14506 // insisting that we've visited all chain users (except for users 14507 // of the original chain, which is not necessary). When doing this, 14508 // we need to look through nodes we don't care about (otherwise, things 14509 // like register copies will interfere with trivial cases). 14510 14511 SmallVector<const SDNode *, 16> Worklist; 14512 for (const SDNode *N : Visited) 14513 if (N != OriginalChain.getNode()) 14514 Worklist.push_back(N); 14515 14516 while (!Worklist.empty()) { 14517 const SDNode *M = Worklist.pop_back_val(); 14518 14519 // We have already visited M, and want to make sure we've visited any uses 14520 // of M that we care about. For uses that we've not visisted, and don't 14521 // care about, queue them to the worklist. 14522 14523 for (SDNode::use_iterator UI = M->use_begin(), 14524 UIE = M->use_end(); UI != UIE; ++UI) 14525 if (UI.getUse().getValueType() == MVT::Other && 14526 Visited.insert(*UI).second) { 14527 if (isa<MemSDNode>(*UI)) { 14528 // We've not visited this use, and we care about it (it could have an 14529 // ordering dependency with the original node). 14530 Aliases.clear(); 14531 Aliases.push_back(OriginalChain); 14532 return; 14533 } 14534 14535 // We've not visited this use, but we don't care about it. Mark it as 14536 // visited and enqueue it to the worklist. 14537 Worklist.push_back(*UI); 14538 } 14539 } 14540 } 14541 14542 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain 14543 /// (aliasing node.) 14544 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { 14545 SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor. 14546 14547 // Accumulate all the aliases to this node. 14548 GatherAllAliases(N, OldChain, Aliases); 14549 14550 // If no operands then chain to entry token. 14551 if (Aliases.size() == 0) 14552 return DAG.getEntryNode(); 14553 14554 // If a single operand then chain to it. We don't need to revisit it. 14555 if (Aliases.size() == 1) 14556 return Aliases[0]; 14557 14558 // Construct a custom tailored token factor. 14559 return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases); 14560 } 14561 14562 bool DAGCombiner::findBetterNeighborChains(StoreSDNode* St) { 14563 // This holds the base pointer, index, and the offset in bytes from the base 14564 // pointer. 14565 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr()); 14566 14567 // We must have a base and an offset. 14568 if (!BasePtr.Base.getNode()) 14569 return false; 14570 14571 // Do not handle stores to undef base pointers. 14572 if (BasePtr.Base.getOpcode() == ISD::UNDEF) 14573 return false; 14574 14575 SmallVector<StoreSDNode *, 8> ChainedStores; 14576 ChainedStores.push_back(St); 14577 14578 // Walk up the chain and look for nodes with offsets from the same 14579 // base pointer. Stop when reaching an instruction with a different kind 14580 // or instruction which has a different base pointer. 14581 StoreSDNode *Index = St; 14582 while (Index) { 14583 // If the chain has more than one use, then we can't reorder the mem ops. 14584 if (Index != St && !SDValue(Index, 0)->hasOneUse()) 14585 break; 14586 14587 if (Index->isVolatile() || Index->isIndexed()) 14588 break; 14589 14590 // Find the base pointer and offset for this memory node. 14591 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr()); 14592 14593 // Check that the base pointer is the same as the original one. 14594 if (!Ptr.equalBaseIndex(BasePtr)) 14595 break; 14596 14597 // Find the next memory operand in the chain. If the next operand in the 14598 // chain is a store then move up and continue the scan with the next 14599 // memory operand. If the next operand is a load save it and use alias 14600 // information to check if it interferes with anything. 14601 SDNode *NextInChain = Index->getChain().getNode(); 14602 while (true) { 14603 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { 14604 // We found a store node. Use it for the next iteration. 14605 ChainedStores.push_back(STn); 14606 Index = STn; 14607 break; 14608 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { 14609 NextInChain = Ldn->getChain().getNode(); 14610 continue; 14611 } else { 14612 Index = nullptr; 14613 break; 14614 } 14615 } 14616 } 14617 14618 bool MadeChange = false; 14619 SmallVector<std::pair<StoreSDNode *, SDValue>, 8> BetterChains; 14620 14621 for (StoreSDNode *ChainedStore : ChainedStores) { 14622 SDValue Chain = ChainedStore->getChain(); 14623 SDValue BetterChain = FindBetterChain(ChainedStore, Chain); 14624 14625 if (Chain != BetterChain) { 14626 MadeChange = true; 14627 BetterChains.push_back(std::make_pair(ChainedStore, BetterChain)); 14628 } 14629 } 14630 14631 // Do all replacements after finding the replacements to make to avoid making 14632 // the chains more complicated by introducing new TokenFactors. 14633 for (auto Replacement : BetterChains) 14634 replaceStoreChain(Replacement.first, Replacement.second); 14635 14636 return MadeChange; 14637 } 14638 14639 /// This is the entry point for the file. 14640 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA, 14641 CodeGenOpt::Level OptLevel) { 14642 /// This is the main entry point to this class. 14643 DAGCombiner(*this, AA, OptLevel).Run(Level); 14644 } 14645