1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run 10 // both before and after the DAG is legalized. 11 // 12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is 13 // primarily intended to handle simplification opportunities that are implicit 14 // in the LLVM IR and exposed by the various codegen lowering phases. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/IntervalMap.h" 23 #include "llvm/ADT/None.h" 24 #include "llvm/ADT/Optional.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/CodeGen/DAGCombine.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAG.h" 41 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 42 #include "llvm/CodeGen/SelectionDAGNodes.h" 43 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Attributes.h" 49 #include "llvm/IR/Constant.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CodeGen.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Target/TargetMachine.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <functional> 71 #include <iterator> 72 #include <string> 73 #include <tuple> 74 #include <utility> 75 76 using namespace llvm; 77 78 #define DEBUG_TYPE "dagcombine" 79 80 STATISTIC(NodesCombined , "Number of dag nodes combined"); 81 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); 82 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); 83 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); 84 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); 85 STATISTIC(SlicedLoads, "Number of load sliced"); 86 STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops"); 87 88 static cl::opt<bool> 89 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, 90 cl::desc("Enable DAG combiner's use of IR alias analysis")); 91 92 static cl::opt<bool> 93 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), 94 cl::desc("Enable DAG combiner's use of TBAA")); 95 96 #ifndef NDEBUG 97 static cl::opt<std::string> 98 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, 99 cl::desc("Only use DAG-combiner alias analysis in this" 100 " function")); 101 #endif 102 103 /// Hidden option to stress test load slicing, i.e., when this option 104 /// is enabled, load slicing bypasses most of its profitability guards. 105 static cl::opt<bool> 106 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, 107 cl::desc("Bypass the profitability model of load slicing"), 108 cl::init(false)); 109 110 static cl::opt<bool> 111 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), 112 cl::desc("DAG combiner may split indexing from loads")); 113 114 static cl::opt<bool> 115 EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true), 116 cl::desc("DAG combiner enable merging multiple stores " 117 "into a wider store")); 118 119 static cl::opt<unsigned> TokenFactorInlineLimit( 120 "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048), 121 cl::desc("Limit the number of operands to inline for Token Factors")); 122 123 static cl::opt<unsigned> StoreMergeDependenceLimit( 124 "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10), 125 cl::desc("Limit the number of times for the same StoreNode and RootNode " 126 "to bail out in store merging dependence check")); 127 128 namespace { 129 130 class DAGCombiner { 131 SelectionDAG &DAG; 132 const TargetLowering &TLI; 133 CombineLevel Level; 134 CodeGenOpt::Level OptLevel; 135 bool LegalDAG = false; 136 bool LegalOperations = false; 137 bool LegalTypes = false; 138 bool ForCodeSize; 139 140 /// Worklist of all of the nodes that need to be simplified. 141 /// 142 /// This must behave as a stack -- new nodes to process are pushed onto the 143 /// back and when processing we pop off of the back. 144 /// 145 /// The worklist will not contain duplicates but may contain null entries 146 /// due to nodes being deleted from the underlying DAG. 147 SmallVector<SDNode *, 64> Worklist; 148 149 /// Mapping from an SDNode to its position on the worklist. 150 /// 151 /// This is used to find and remove nodes from the worklist (by nulling 152 /// them) when they are deleted from the underlying DAG. It relies on 153 /// stable indices of nodes within the worklist. 154 DenseMap<SDNode *, unsigned> WorklistMap; 155 /// This records all nodes attempted to add to the worklist since we 156 /// considered a new worklist entry. As we keep do not add duplicate nodes 157 /// in the worklist, this is different from the tail of the worklist. 158 SmallSetVector<SDNode *, 32> PruningList; 159 160 /// Set of nodes which have been combined (at least once). 161 /// 162 /// This is used to allow us to reliably add any operands of a DAG node 163 /// which have not yet been combined to the worklist. 164 SmallPtrSet<SDNode *, 32> CombinedNodes; 165 166 /// Map from candidate StoreNode to the pair of RootNode and count. 167 /// The count is used to track how many times we have seen the StoreNode 168 /// with the same RootNode bail out in dependence check. If we have seen 169 /// the bail out for the same pair many times over a limit, we won't 170 /// consider the StoreNode with the same RootNode as store merging 171 /// candidate again. 172 DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap; 173 174 // AA - Used for DAG load/store alias analysis. 175 AliasAnalysis *AA; 176 177 /// When an instruction is simplified, add all users of the instruction to 178 /// the work lists because they might get more simplified now. 179 void AddUsersToWorklist(SDNode *N) { 180 for (SDNode *Node : N->uses()) 181 AddToWorklist(Node); 182 } 183 184 /// Convenient shorthand to add a node and all of its user to the worklist. 185 void AddToWorklistWithUsers(SDNode *N) { 186 AddUsersToWorklist(N); 187 AddToWorklist(N); 188 } 189 190 // Prune potentially dangling nodes. This is called after 191 // any visit to a node, but should also be called during a visit after any 192 // failed combine which may have created a DAG node. 193 void clearAddedDanglingWorklistEntries() { 194 // Check any nodes added to the worklist to see if they are prunable. 195 while (!PruningList.empty()) { 196 auto *N = PruningList.pop_back_val(); 197 if (N->use_empty()) 198 recursivelyDeleteUnusedNodes(N); 199 } 200 } 201 202 SDNode *getNextWorklistEntry() { 203 // Before we do any work, remove nodes that are not in use. 204 clearAddedDanglingWorklistEntries(); 205 SDNode *N = nullptr; 206 // The Worklist holds the SDNodes in order, but it may contain null 207 // entries. 208 while (!N && !Worklist.empty()) { 209 N = Worklist.pop_back_val(); 210 } 211 212 if (N) { 213 bool GoodWorklistEntry = WorklistMap.erase(N); 214 (void)GoodWorklistEntry; 215 assert(GoodWorklistEntry && 216 "Found a worklist entry without a corresponding map entry!"); 217 } 218 return N; 219 } 220 221 /// Call the node-specific routine that folds each particular type of node. 222 SDValue visit(SDNode *N); 223 224 public: 225 DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL) 226 : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), 227 OptLevel(OL), AA(AA) { 228 ForCodeSize = DAG.shouldOptForSize(); 229 230 MaximumLegalStoreInBits = 0; 231 // We use the minimum store size here, since that's all we can guarantee 232 // for the scalable vector types. 233 for (MVT VT : MVT::all_valuetypes()) 234 if (EVT(VT).isSimple() && VT != MVT::Other && 235 TLI.isTypeLegal(EVT(VT)) && 236 VT.getSizeInBits().getKnownMinSize() >= MaximumLegalStoreInBits) 237 MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinSize(); 238 } 239 240 void ConsiderForPruning(SDNode *N) { 241 // Mark this for potential pruning. 242 PruningList.insert(N); 243 } 244 245 /// Add to the worklist making sure its instance is at the back (next to be 246 /// processed.) 247 void AddToWorklist(SDNode *N) { 248 assert(N->getOpcode() != ISD::DELETED_NODE && 249 "Deleted Node added to Worklist"); 250 251 // Skip handle nodes as they can't usefully be combined and confuse the 252 // zero-use deletion strategy. 253 if (N->getOpcode() == ISD::HANDLENODE) 254 return; 255 256 ConsiderForPruning(N); 257 258 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) 259 Worklist.push_back(N); 260 } 261 262 /// Remove all instances of N from the worklist. 263 void removeFromWorklist(SDNode *N) { 264 CombinedNodes.erase(N); 265 PruningList.remove(N); 266 StoreRootCountMap.erase(N); 267 268 auto It = WorklistMap.find(N); 269 if (It == WorklistMap.end()) 270 return; // Not in the worklist. 271 272 // Null out the entry rather than erasing it to avoid a linear operation. 273 Worklist[It->second] = nullptr; 274 WorklistMap.erase(It); 275 } 276 277 void deleteAndRecombine(SDNode *N); 278 bool recursivelyDeleteUnusedNodes(SDNode *N); 279 280 /// Replaces all uses of the results of one DAG node with new values. 281 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 282 bool AddTo = true); 283 284 /// Replaces all uses of the results of one DAG node with new values. 285 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { 286 return CombineTo(N, &Res, 1, AddTo); 287 } 288 289 /// Replaces all uses of the results of one DAG node with new values. 290 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, 291 bool AddTo = true) { 292 SDValue To[] = { Res0, Res1 }; 293 return CombineTo(N, To, 2, AddTo); 294 } 295 296 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); 297 298 private: 299 unsigned MaximumLegalStoreInBits; 300 301 /// Check the specified integer node value to see if it can be simplified or 302 /// if things it uses can be simplified by bit propagation. 303 /// If so, return true. 304 bool SimplifyDemandedBits(SDValue Op) { 305 unsigned BitWidth = Op.getScalarValueSizeInBits(); 306 APInt DemandedBits = APInt::getAllOnesValue(BitWidth); 307 return SimplifyDemandedBits(Op, DemandedBits); 308 } 309 310 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) { 311 EVT VT = Op.getValueType(); 312 unsigned NumElts = VT.isVector() ? VT.getVectorNumElements() : 1; 313 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 314 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts); 315 } 316 317 /// Check the specified vector node value to see if it can be simplified or 318 /// if things it uses can be simplified as it only uses some of the 319 /// elements. If so, return true. 320 bool SimplifyDemandedVectorElts(SDValue Op) { 321 unsigned NumElts = Op.getValueType().getVectorNumElements(); 322 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 323 return SimplifyDemandedVectorElts(Op, DemandedElts); 324 } 325 326 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 327 const APInt &DemandedElts, 328 bool AssumeSingleUse = false); 329 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts, 330 bool AssumeSingleUse = false); 331 332 bool CombineToPreIndexedLoadStore(SDNode *N); 333 bool CombineToPostIndexedLoadStore(SDNode *N); 334 SDValue SplitIndexingFromLoad(LoadSDNode *LD); 335 bool SliceUpLoad(SDNode *N); 336 337 // Scalars have size 0 to distinguish from singleton vectors. 338 SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD); 339 bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val); 340 bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val); 341 342 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed 343 /// load. 344 /// 345 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. 346 /// \param InVecVT type of the input vector to EVE with bitcasts resolved. 347 /// \param EltNo index of the vector element to load. 348 /// \param OriginalLoad load that EVE came from to be replaced. 349 /// \returns EVE on success SDValue() on failure. 350 SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, 351 SDValue EltNo, 352 LoadSDNode *OriginalLoad); 353 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); 354 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); 355 SDValue SExtPromoteOperand(SDValue Op, EVT PVT); 356 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); 357 SDValue PromoteIntBinOp(SDValue Op); 358 SDValue PromoteIntShiftOp(SDValue Op); 359 SDValue PromoteExtend(SDValue Op); 360 bool PromoteLoad(SDValue Op); 361 362 /// Call the node-specific routine that knows how to fold each 363 /// particular type of node. If that doesn't do anything, try the 364 /// target-specific DAG combines. 365 SDValue combine(SDNode *N); 366 367 // Visitation implementation - Implement dag node combining for different 368 // node types. The semantics are as follows: 369 // Return Value: 370 // SDValue.getNode() == 0 - No change was made 371 // SDValue.getNode() == N - N was replaced, is dead and has been handled. 372 // otherwise - N should be replaced by the returned Operand. 373 // 374 SDValue visitTokenFactor(SDNode *N); 375 SDValue visitMERGE_VALUES(SDNode *N); 376 SDValue visitADD(SDNode *N); 377 SDValue visitADDLike(SDNode *N); 378 SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference); 379 SDValue visitSUB(SDNode *N); 380 SDValue visitADDSAT(SDNode *N); 381 SDValue visitSUBSAT(SDNode *N); 382 SDValue visitADDC(SDNode *N); 383 SDValue visitADDO(SDNode *N); 384 SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N); 385 SDValue visitSUBC(SDNode *N); 386 SDValue visitSUBO(SDNode *N); 387 SDValue visitADDE(SDNode *N); 388 SDValue visitADDCARRY(SDNode *N); 389 SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N); 390 SDValue visitSUBE(SDNode *N); 391 SDValue visitSUBCARRY(SDNode *N); 392 SDValue visitMUL(SDNode *N); 393 SDValue visitMULFIX(SDNode *N); 394 SDValue useDivRem(SDNode *N); 395 SDValue visitSDIV(SDNode *N); 396 SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N); 397 SDValue visitUDIV(SDNode *N); 398 SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N); 399 SDValue visitREM(SDNode *N); 400 SDValue visitMULHU(SDNode *N); 401 SDValue visitMULHS(SDNode *N); 402 SDValue visitSMUL_LOHI(SDNode *N); 403 SDValue visitUMUL_LOHI(SDNode *N); 404 SDValue visitMULO(SDNode *N); 405 SDValue visitIMINMAX(SDNode *N); 406 SDValue visitAND(SDNode *N); 407 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N); 408 SDValue visitOR(SDNode *N); 409 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N); 410 SDValue visitXOR(SDNode *N); 411 SDValue SimplifyVBinOp(SDNode *N); 412 SDValue visitSHL(SDNode *N); 413 SDValue visitSRA(SDNode *N); 414 SDValue visitSRL(SDNode *N); 415 SDValue visitFunnelShift(SDNode *N); 416 SDValue visitRotate(SDNode *N); 417 SDValue visitABS(SDNode *N); 418 SDValue visitBSWAP(SDNode *N); 419 SDValue visitBITREVERSE(SDNode *N); 420 SDValue visitCTLZ(SDNode *N); 421 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); 422 SDValue visitCTTZ(SDNode *N); 423 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); 424 SDValue visitCTPOP(SDNode *N); 425 SDValue visitSELECT(SDNode *N); 426 SDValue visitVSELECT(SDNode *N); 427 SDValue visitSELECT_CC(SDNode *N); 428 SDValue visitSETCC(SDNode *N); 429 SDValue visitSETCCCARRY(SDNode *N); 430 SDValue visitSIGN_EXTEND(SDNode *N); 431 SDValue visitZERO_EXTEND(SDNode *N); 432 SDValue visitANY_EXTEND(SDNode *N); 433 SDValue visitAssertExt(SDNode *N); 434 SDValue visitSIGN_EXTEND_INREG(SDNode *N); 435 SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); 436 SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N); 437 SDValue visitTRUNCATE(SDNode *N); 438 SDValue visitBITCAST(SDNode *N); 439 SDValue visitFREEZE(SDNode *N); 440 SDValue visitBUILD_PAIR(SDNode *N); 441 SDValue visitFADD(SDNode *N); 442 SDValue visitFSUB(SDNode *N); 443 SDValue visitFMUL(SDNode *N); 444 SDValue visitFMA(SDNode *N); 445 SDValue visitFDIV(SDNode *N); 446 SDValue visitFREM(SDNode *N); 447 SDValue visitFSQRT(SDNode *N); 448 SDValue visitFCOPYSIGN(SDNode *N); 449 SDValue visitFPOW(SDNode *N); 450 SDValue visitSINT_TO_FP(SDNode *N); 451 SDValue visitUINT_TO_FP(SDNode *N); 452 SDValue visitFP_TO_SINT(SDNode *N); 453 SDValue visitFP_TO_UINT(SDNode *N); 454 SDValue visitFP_ROUND(SDNode *N); 455 SDValue visitFP_EXTEND(SDNode *N); 456 SDValue visitFNEG(SDNode *N); 457 SDValue visitFABS(SDNode *N); 458 SDValue visitFCEIL(SDNode *N); 459 SDValue visitFTRUNC(SDNode *N); 460 SDValue visitFFLOOR(SDNode *N); 461 SDValue visitFMINNUM(SDNode *N); 462 SDValue visitFMAXNUM(SDNode *N); 463 SDValue visitFMINIMUM(SDNode *N); 464 SDValue visitFMAXIMUM(SDNode *N); 465 SDValue visitBRCOND(SDNode *N); 466 SDValue visitBR_CC(SDNode *N); 467 SDValue visitLOAD(SDNode *N); 468 469 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); 470 SDValue replaceStoreOfFPConstant(StoreSDNode *ST); 471 472 SDValue visitSTORE(SDNode *N); 473 SDValue visitLIFETIME_END(SDNode *N); 474 SDValue visitINSERT_VECTOR_ELT(SDNode *N); 475 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); 476 SDValue visitBUILD_VECTOR(SDNode *N); 477 SDValue visitCONCAT_VECTORS(SDNode *N); 478 SDValue visitEXTRACT_SUBVECTOR(SDNode *N); 479 SDValue visitVECTOR_SHUFFLE(SDNode *N); 480 SDValue visitSCALAR_TO_VECTOR(SDNode *N); 481 SDValue visitINSERT_SUBVECTOR(SDNode *N); 482 SDValue visitMLOAD(SDNode *N); 483 SDValue visitMSTORE(SDNode *N); 484 SDValue visitMGATHER(SDNode *N); 485 SDValue visitMSCATTER(SDNode *N); 486 SDValue visitFP_TO_FP16(SDNode *N); 487 SDValue visitFP16_TO_FP(SDNode *N); 488 SDValue visitVECREDUCE(SDNode *N); 489 490 SDValue visitFADDForFMACombine(SDNode *N); 491 SDValue visitFSUBForFMACombine(SDNode *N); 492 SDValue visitFMULForFMADistributiveCombine(SDNode *N); 493 494 SDValue XformToShuffleWithZero(SDNode *N); 495 bool reassociationCanBreakAddressingModePattern(unsigned Opc, 496 const SDLoc &DL, SDValue N0, 497 SDValue N1); 498 SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0, 499 SDValue N1); 500 SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 501 SDValue N1, SDNodeFlags Flags); 502 503 SDValue visitShiftByConstant(SDNode *N); 504 505 SDValue foldSelectOfConstants(SDNode *N); 506 SDValue foldVSelectOfConstants(SDNode *N); 507 SDValue foldBinOpIntoSelect(SDNode *BO); 508 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); 509 SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N); 510 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); 511 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 512 SDValue N2, SDValue N3, ISD::CondCode CC, 513 bool NotExtCompare = false); 514 SDValue convertSelectOfFPConstantsToLoadOffset( 515 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, 516 ISD::CondCode CC); 517 SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, 518 SDValue N2, SDValue N3, ISD::CondCode CC); 519 SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, 520 const SDLoc &DL); 521 SDValue unfoldMaskedMerge(SDNode *N); 522 SDValue unfoldExtremeBitClearingToShifts(SDNode *N); 523 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 524 const SDLoc &DL, bool foldBooleans); 525 SDValue rebuildSetCC(SDValue N); 526 527 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 528 SDValue &CC, bool MatchStrict = false) const; 529 bool isOneUseSetCC(SDValue N) const; 530 531 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 532 unsigned HiOp); 533 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); 534 SDValue CombineExtLoad(SDNode *N); 535 SDValue CombineZExtLogicopShiftLoad(SDNode *N); 536 SDValue combineRepeatedFPDivisors(SDNode *N); 537 SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex); 538 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); 539 SDValue BuildSDIV(SDNode *N); 540 SDValue BuildSDIVPow2(SDNode *N); 541 SDValue BuildUDIV(SDNode *N); 542 SDValue BuildLogBase2(SDValue V, const SDLoc &DL); 543 SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags); 544 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags); 545 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags); 546 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip); 547 SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations, 548 SDNodeFlags Flags, bool Reciprocal); 549 SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations, 550 SDNodeFlags Flags, bool Reciprocal); 551 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 552 bool DemandHighBits = true); 553 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); 554 SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, 555 SDValue InnerPos, SDValue InnerNeg, 556 unsigned PosOpcode, unsigned NegOpcode, 557 const SDLoc &DL); 558 SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg, 559 SDValue InnerPos, SDValue InnerNeg, 560 unsigned PosOpcode, unsigned NegOpcode, 561 const SDLoc &DL); 562 SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); 563 SDValue MatchLoadCombine(SDNode *N); 564 SDValue MatchStoreCombine(StoreSDNode *N); 565 SDValue ReduceLoadWidth(SDNode *N); 566 SDValue ReduceLoadOpStoreWidth(SDNode *N); 567 SDValue splitMergedValStore(StoreSDNode *ST); 568 SDValue TransformFPLoadStorePair(SDNode *N); 569 SDValue convertBuildVecZextToZext(SDNode *N); 570 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); 571 SDValue reduceBuildVecTruncToBitCast(SDNode *N); 572 SDValue reduceBuildVecToShuffle(SDNode *N); 573 SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, 574 ArrayRef<int> VectorMask, SDValue VecIn1, 575 SDValue VecIn2, unsigned LeftIdx, 576 bool DidSplitVec); 577 SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast); 578 579 /// Walk up chain skipping non-aliasing memory nodes, 580 /// looking for aliasing nodes and adding them to the Aliases vector. 581 void GatherAllAliases(SDNode *N, SDValue OriginalChain, 582 SmallVectorImpl<SDValue> &Aliases); 583 584 /// Return true if there is any possibility that the two addresses overlap. 585 bool isAlias(SDNode *Op0, SDNode *Op1) const; 586 587 /// Walk up chain skipping non-aliasing memory nodes, looking for a better 588 /// chain (aliasing node.) 589 SDValue FindBetterChain(SDNode *N, SDValue Chain); 590 591 /// Try to replace a store and any possibly adjacent stores on 592 /// consecutive chains with better chains. Return true only if St is 593 /// replaced. 594 /// 595 /// Notice that other chains may still be replaced even if the function 596 /// returns false. 597 bool findBetterNeighborChains(StoreSDNode *St); 598 599 // Helper for findBetterNeighborChains. Walk up store chain add additional 600 // chained stores that do not overlap and can be parallelized. 601 bool parallelizeChainedStores(StoreSDNode *St); 602 603 /// Holds a pointer to an LSBaseSDNode as well as information on where it 604 /// is located in a sequence of memory operations connected by a chain. 605 struct MemOpLink { 606 // Ptr to the mem node. 607 LSBaseSDNode *MemNode; 608 609 // Offset from the base ptr. 610 int64_t OffsetFromBase; 611 612 MemOpLink(LSBaseSDNode *N, int64_t Offset) 613 : MemNode(N), OffsetFromBase(Offset) {} 614 }; 615 616 /// This is a helper function for visitMUL to check the profitability 617 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 618 /// MulNode is the original multiply, AddNode is (add x, c1), 619 /// and ConstNode is c2. 620 bool isMulAddWithConstProfitable(SDNode *MulNode, 621 SDValue &AddNode, 622 SDValue &ConstNode); 623 624 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns 625 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns 626 /// the type of the loaded value to be extended. 627 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 628 EVT LoadResultTy, EVT &ExtVT); 629 630 /// Helper function to calculate whether the given Load/Store can have its 631 /// width reduced to ExtVT. 632 bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType, 633 EVT &MemVT, unsigned ShAmt = 0); 634 635 /// Used by BackwardsPropagateMask to find suitable loads. 636 bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads, 637 SmallPtrSetImpl<SDNode*> &NodesWithConsts, 638 ConstantSDNode *Mask, SDNode *&NodeToMask); 639 /// Attempt to propagate a given AND node back to load leaves so that they 640 /// can be combined into narrow loads. 641 bool BackwardsPropagateMask(SDNode *N); 642 643 /// Helper function for MergeConsecutiveStores which merges the 644 /// component store chains. 645 SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, 646 unsigned NumStores); 647 648 /// This is a helper function for MergeConsecutiveStores. When the 649 /// source elements of the consecutive stores are all constants or 650 /// all extracted vector elements, try to merge them into one 651 /// larger store introducing bitcasts if necessary. \return True 652 /// if a merged store was created. 653 bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, 654 EVT MemVT, unsigned NumStores, 655 bool IsConstantSrc, bool UseVector, 656 bool UseTrunc); 657 658 /// This is a helper function for MergeConsecutiveStores. Stores 659 /// that potentially may be merged with St are placed in 660 /// StoreNodes. RootNode is a chain predecessor to all store 661 /// candidates. 662 void getStoreMergeCandidates(StoreSDNode *St, 663 SmallVectorImpl<MemOpLink> &StoreNodes, 664 SDNode *&Root); 665 666 /// Helper function for MergeConsecutiveStores. Checks if 667 /// candidate stores have indirect dependency through their 668 /// operands. RootNode is the predecessor to all stores calculated 669 /// by getStoreMergeCandidates and is used to prune the dependency check. 670 /// \return True if safe to merge. 671 bool checkMergeStoreCandidatesForDependencies( 672 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, 673 SDNode *RootNode); 674 675 /// Merge consecutive store operations into a wide store. 676 /// This optimization uses wide integers or vectors when possible. 677 /// \return number of stores that were merged into a merged store (the 678 /// affected nodes are stored as a prefix in \p StoreNodes). 679 bool MergeConsecutiveStores(StoreSDNode *St); 680 681 /// Try to transform a truncation where C is a constant: 682 /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) 683 /// 684 /// \p N needs to be a truncation and its first operand an AND. Other 685 /// requirements are checked by the function (e.g. that trunc is 686 /// single-use) and if missed an empty SDValue is returned. 687 SDValue distributeTruncateThroughAnd(SDNode *N); 688 689 /// Helper function to determine whether the target supports operation 690 /// given by \p Opcode for type \p VT, that is, whether the operation 691 /// is legal or custom before legalizing operations, and whether is 692 /// legal (but not custom) after legalization. 693 bool hasOperation(unsigned Opcode, EVT VT) { 694 if (LegalOperations) 695 return TLI.isOperationLegal(Opcode, VT); 696 return TLI.isOperationLegalOrCustom(Opcode, VT); 697 } 698 699 public: 700 /// Runs the dag combiner on all nodes in the work list 701 void Run(CombineLevel AtLevel); 702 703 SelectionDAG &getDAG() const { return DAG; } 704 705 /// Returns a type large enough to hold any valid shift amount - before type 706 /// legalization these can be huge. 707 EVT getShiftAmountTy(EVT LHSTy) { 708 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 709 return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes); 710 } 711 712 /// This method returns true if we are running before type legalization or 713 /// if the specified VT is legal. 714 bool isTypeLegal(const EVT &VT) { 715 if (!LegalTypes) return true; 716 return TLI.isTypeLegal(VT); 717 } 718 719 /// Convenience wrapper around TargetLowering::getSetCCResultType 720 EVT getSetCCResultType(EVT VT) const { 721 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 722 } 723 724 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 725 SDValue OrigLoad, SDValue ExtLoad, 726 ISD::NodeType ExtType); 727 }; 728 729 /// This class is a DAGUpdateListener that removes any deleted 730 /// nodes from the worklist. 731 class WorklistRemover : public SelectionDAG::DAGUpdateListener { 732 DAGCombiner &DC; 733 734 public: 735 explicit WorklistRemover(DAGCombiner &dc) 736 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 737 738 void NodeDeleted(SDNode *N, SDNode *E) override { 739 DC.removeFromWorklist(N); 740 } 741 }; 742 743 class WorklistInserter : public SelectionDAG::DAGUpdateListener { 744 DAGCombiner &DC; 745 746 public: 747 explicit WorklistInserter(DAGCombiner &dc) 748 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 749 750 // FIXME: Ideally we could add N to the worklist, but this causes exponential 751 // compile time costs in large DAGs, e.g. Halide. 752 void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); } 753 }; 754 755 } // end anonymous namespace 756 757 //===----------------------------------------------------------------------===// 758 // TargetLowering::DAGCombinerInfo implementation 759 //===----------------------------------------------------------------------===// 760 761 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { 762 ((DAGCombiner*)DC)->AddToWorklist(N); 763 } 764 765 SDValue TargetLowering::DAGCombinerInfo:: 766 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { 767 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); 768 } 769 770 SDValue TargetLowering::DAGCombinerInfo:: 771 CombineTo(SDNode *N, SDValue Res, bool AddTo) { 772 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); 773 } 774 775 SDValue TargetLowering::DAGCombinerInfo:: 776 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { 777 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); 778 } 779 780 bool TargetLowering::DAGCombinerInfo:: 781 recursivelyDeleteUnusedNodes(SDNode *N) { 782 return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N); 783 } 784 785 void TargetLowering::DAGCombinerInfo:: 786 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 787 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); 788 } 789 790 //===----------------------------------------------------------------------===// 791 // Helper Functions 792 //===----------------------------------------------------------------------===// 793 794 void DAGCombiner::deleteAndRecombine(SDNode *N) { 795 removeFromWorklist(N); 796 797 // If the operands of this node are only used by the node, they will now be 798 // dead. Make sure to re-visit them and recursively delete dead nodes. 799 for (const SDValue &Op : N->ops()) 800 // For an operand generating multiple values, one of the values may 801 // become dead allowing further simplification (e.g. split index 802 // arithmetic from an indexed load). 803 if (Op->hasOneUse() || Op->getNumValues() > 1) 804 AddToWorklist(Op.getNode()); 805 806 DAG.DeleteNode(N); 807 } 808 809 // APInts must be the same size for most operations, this helper 810 // function zero extends the shorter of the pair so that they match. 811 // We provide an Offset so that we can create bitwidths that won't overflow. 812 static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { 813 unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); 814 LHS = LHS.zextOrSelf(Bits); 815 RHS = RHS.zextOrSelf(Bits); 816 } 817 818 // Return true if this node is a setcc, or is a select_cc 819 // that selects between the target values used for true and false, making it 820 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to 821 // the appropriate nodes based on the type of node we are checking. This 822 // simplifies life a bit for the callers. 823 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 824 SDValue &CC, bool MatchStrict) const { 825 if (N.getOpcode() == ISD::SETCC) { 826 LHS = N.getOperand(0); 827 RHS = N.getOperand(1); 828 CC = N.getOperand(2); 829 return true; 830 } 831 832 if (MatchStrict && 833 (N.getOpcode() == ISD::STRICT_FSETCC || 834 N.getOpcode() == ISD::STRICT_FSETCCS)) { 835 LHS = N.getOperand(1); 836 RHS = N.getOperand(2); 837 CC = N.getOperand(3); 838 return true; 839 } 840 841 if (N.getOpcode() != ISD::SELECT_CC || 842 !TLI.isConstTrueVal(N.getOperand(2).getNode()) || 843 !TLI.isConstFalseVal(N.getOperand(3).getNode())) 844 return false; 845 846 if (TLI.getBooleanContents(N.getValueType()) == 847 TargetLowering::UndefinedBooleanContent) 848 return false; 849 850 LHS = N.getOperand(0); 851 RHS = N.getOperand(1); 852 CC = N.getOperand(4); 853 return true; 854 } 855 856 /// Return true if this is a SetCC-equivalent operation with only one use. 857 /// If this is true, it allows the users to invert the operation for free when 858 /// it is profitable to do so. 859 bool DAGCombiner::isOneUseSetCC(SDValue N) const { 860 SDValue N0, N1, N2; 861 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) 862 return true; 863 return false; 864 } 865 866 // Returns the SDNode if it is a constant float BuildVector 867 // or constant float. 868 static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { 869 if (isa<ConstantFPSDNode>(N)) 870 return N.getNode(); 871 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 872 return N.getNode(); 873 return nullptr; 874 } 875 876 // Determines if it is a constant integer or a build vector of constant 877 // integers (and undefs). 878 // Do not permit build vector implicit truncation. 879 static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { 880 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) 881 return !(Const->isOpaque() && NoOpaques); 882 if (N.getOpcode() != ISD::BUILD_VECTOR) 883 return false; 884 unsigned BitWidth = N.getScalarValueSizeInBits(); 885 for (const SDValue &Op : N->op_values()) { 886 if (Op.isUndef()) 887 continue; 888 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); 889 if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || 890 (Const->isOpaque() && NoOpaques)) 891 return false; 892 } 893 return true; 894 } 895 896 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with 897 // undef's. 898 static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) { 899 if (V.getOpcode() != ISD::BUILD_VECTOR) 900 return false; 901 return isConstantOrConstantVector(V, NoOpaques) || 902 ISD::isBuildVectorOfConstantFPSDNodes(V.getNode()); 903 } 904 905 // Determine if this an indexed load with an opaque target constant index. 906 static bool canSplitIdx(LoadSDNode *LD) { 907 return MaySplitLoadIndex && 908 (LD->getOperand(2).getOpcode() != ISD::TargetConstant || 909 !cast<ConstantSDNode>(LD->getOperand(2))->isOpaque()); 910 } 911 912 bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc, 913 const SDLoc &DL, 914 SDValue N0, 915 SDValue N1) { 916 // Currently this only tries to ensure we don't undo the GEP splits done by 917 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this, 918 // we check if the following transformation would be problematic: 919 // (load/store (add, (add, x, offset1), offset2)) -> 920 // (load/store (add, x, offset1+offset2)). 921 922 if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD) 923 return false; 924 925 if (N0.hasOneUse()) 926 return false; 927 928 auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 929 auto *C2 = dyn_cast<ConstantSDNode>(N1); 930 if (!C1 || !C2) 931 return false; 932 933 const APInt &C1APIntVal = C1->getAPIntValue(); 934 const APInt &C2APIntVal = C2->getAPIntValue(); 935 if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64) 936 return false; 937 938 const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal; 939 if (CombinedValueIntVal.getBitWidth() > 64) 940 return false; 941 const int64_t CombinedValue = CombinedValueIntVal.getSExtValue(); 942 943 for (SDNode *Node : N0->uses()) { 944 auto LoadStore = dyn_cast<MemSDNode>(Node); 945 if (LoadStore) { 946 // Is x[offset2] already not a legal addressing mode? If so then 947 // reassociating the constants breaks nothing (we test offset2 because 948 // that's the one we hope to fold into the load or store). 949 TargetLoweringBase::AddrMode AM; 950 AM.HasBaseReg = true; 951 AM.BaseOffs = C2APIntVal.getSExtValue(); 952 EVT VT = LoadStore->getMemoryVT(); 953 unsigned AS = LoadStore->getAddressSpace(); 954 Type *AccessTy = VT.getTypeForEVT(*DAG.getContext()); 955 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) 956 continue; 957 958 // Would x[offset1+offset2] still be a legal addressing mode? 959 AM.BaseOffs = CombinedValue; 960 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) 961 return true; 962 } 963 } 964 965 return false; 966 } 967 968 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression 969 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc. 970 SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, 971 SDValue N0, SDValue N1) { 972 EVT VT = N0.getValueType(); 973 974 if (N0.getOpcode() != Opc) 975 return SDValue(); 976 977 if (DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { 978 if (DAG.isConstantIntBuildVectorOrConstantInt(N1)) { 979 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2)) 980 if (SDValue OpNode = 981 DAG.FoldConstantArithmetic(Opc, DL, VT, {N0.getOperand(1), N1})) 982 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); 983 return SDValue(); 984 } 985 if (N0.hasOneUse()) { 986 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) 987 // iff (op x, c1) has one use 988 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); 989 if (!OpNode.getNode()) 990 return SDValue(); 991 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); 992 } 993 } 994 return SDValue(); 995 } 996 997 // Try to reassociate commutative binops. 998 SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 999 SDValue N1, SDNodeFlags Flags) { 1000 assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative."); 1001 1002 // Floating-point reassociation is not allowed without loose FP math. 1003 if (N0.getValueType().isFloatingPoint() || 1004 N1.getValueType().isFloatingPoint()) 1005 if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros()) 1006 return SDValue(); 1007 1008 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1)) 1009 return Combined; 1010 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0)) 1011 return Combined; 1012 return SDValue(); 1013 } 1014 1015 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 1016 bool AddTo) { 1017 assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); 1018 ++NodesCombined; 1019 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; 1020 To[0].getNode()->dump(&DAG); 1021 dbgs() << " and " << NumTo - 1 << " other values\n"); 1022 for (unsigned i = 0, e = NumTo; i != e; ++i) 1023 assert((!To[i].getNode() || 1024 N->getValueType(i) == To[i].getValueType()) && 1025 "Cannot combine value to value of different type!"); 1026 1027 WorklistRemover DeadNodes(*this); 1028 DAG.ReplaceAllUsesWith(N, To); 1029 if (AddTo) { 1030 // Push the new nodes and any users onto the worklist 1031 for (unsigned i = 0, e = NumTo; i != e; ++i) { 1032 if (To[i].getNode()) { 1033 AddToWorklist(To[i].getNode()); 1034 AddUsersToWorklist(To[i].getNode()); 1035 } 1036 } 1037 } 1038 1039 // Finally, if the node is now dead, remove it from the graph. The node 1040 // may not be dead if the replacement process recursively simplified to 1041 // something else needing this node. 1042 if (N->use_empty()) 1043 deleteAndRecombine(N); 1044 return SDValue(N, 0); 1045 } 1046 1047 void DAGCombiner:: 1048 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 1049 // Replace all uses. If any nodes become isomorphic to other nodes and 1050 // are deleted, make sure to remove them from our worklist. 1051 WorklistRemover DeadNodes(*this); 1052 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); 1053 1054 // Push the new node and any (possibly new) users onto the worklist. 1055 AddToWorklistWithUsers(TLO.New.getNode()); 1056 1057 // Finally, if the node is now dead, remove it from the graph. The node 1058 // may not be dead if the replacement process recursively simplified to 1059 // something else needing this node. 1060 if (TLO.Old.getNode()->use_empty()) 1061 deleteAndRecombine(TLO.Old.getNode()); 1062 } 1063 1064 /// Check the specified integer node value to see if it can be simplified or if 1065 /// things it uses can be simplified by bit propagation. If so, return true. 1066 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 1067 const APInt &DemandedElts, 1068 bool AssumeSingleUse) { 1069 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 1070 KnownBits Known; 1071 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0, 1072 AssumeSingleUse)) 1073 return false; 1074 1075 // Revisit the node. 1076 AddToWorklist(Op.getNode()); 1077 1078 // Replace the old value with the new one. 1079 ++NodesCombined; 1080 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); 1081 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); 1082 dbgs() << '\n'); 1083 1084 CommitTargetLoweringOpt(TLO); 1085 return true; 1086 } 1087 1088 /// Check the specified vector node value to see if it can be simplified or 1089 /// if things it uses can be simplified as it only uses some of the elements. 1090 /// If so, return true. 1091 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, 1092 const APInt &DemandedElts, 1093 bool AssumeSingleUse) { 1094 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 1095 APInt KnownUndef, KnownZero; 1096 if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, 1097 TLO, 0, AssumeSingleUse)) 1098 return false; 1099 1100 // Revisit the node. 1101 AddToWorklist(Op.getNode()); 1102 1103 // Replace the old value with the new one. 1104 ++NodesCombined; 1105 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); 1106 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); 1107 dbgs() << '\n'); 1108 1109 CommitTargetLoweringOpt(TLO); 1110 return true; 1111 } 1112 1113 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { 1114 SDLoc DL(Load); 1115 EVT VT = Load->getValueType(0); 1116 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); 1117 1118 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; 1119 Trunc.getNode()->dump(&DAG); dbgs() << '\n'); 1120 WorklistRemover DeadNodes(*this); 1121 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); 1122 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); 1123 deleteAndRecombine(Load); 1124 AddToWorklist(Trunc.getNode()); 1125 } 1126 1127 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { 1128 Replace = false; 1129 SDLoc DL(Op); 1130 if (ISD::isUNINDEXEDLoad(Op.getNode())) { 1131 LoadSDNode *LD = cast<LoadSDNode>(Op); 1132 EVT MemVT = LD->getMemoryVT(); 1133 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD 1134 : LD->getExtensionType(); 1135 Replace = true; 1136 return DAG.getExtLoad(ExtType, DL, PVT, 1137 LD->getChain(), LD->getBasePtr(), 1138 MemVT, LD->getMemOperand()); 1139 } 1140 1141 unsigned Opc = Op.getOpcode(); 1142 switch (Opc) { 1143 default: break; 1144 case ISD::AssertSext: 1145 if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT)) 1146 return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1)); 1147 break; 1148 case ISD::AssertZext: 1149 if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT)) 1150 return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1)); 1151 break; 1152 case ISD::Constant: { 1153 unsigned ExtOpc = 1154 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 1155 return DAG.getNode(ExtOpc, DL, PVT, Op); 1156 } 1157 } 1158 1159 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) 1160 return SDValue(); 1161 return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); 1162 } 1163 1164 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { 1165 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) 1166 return SDValue(); 1167 EVT OldVT = Op.getValueType(); 1168 SDLoc DL(Op); 1169 bool Replace = false; 1170 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1171 if (!NewOp.getNode()) 1172 return SDValue(); 1173 AddToWorklist(NewOp.getNode()); 1174 1175 if (Replace) 1176 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1177 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, 1178 DAG.getValueType(OldVT)); 1179 } 1180 1181 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { 1182 EVT OldVT = Op.getValueType(); 1183 SDLoc DL(Op); 1184 bool Replace = false; 1185 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1186 if (!NewOp.getNode()) 1187 return SDValue(); 1188 AddToWorklist(NewOp.getNode()); 1189 1190 if (Replace) 1191 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1192 return DAG.getZeroExtendInReg(NewOp, DL, OldVT); 1193 } 1194 1195 /// Promote the specified integer binary operation if the target indicates it is 1196 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1197 /// i32 since i16 instructions are longer. 1198 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { 1199 if (!LegalOperations) 1200 return SDValue(); 1201 1202 EVT VT = Op.getValueType(); 1203 if (VT.isVector() || !VT.isInteger()) 1204 return SDValue(); 1205 1206 // If operation type is 'undesirable', e.g. i16 on x86, consider 1207 // promoting it. 1208 unsigned Opc = Op.getOpcode(); 1209 if (TLI.isTypeDesirableForOp(Opc, VT)) 1210 return SDValue(); 1211 1212 EVT PVT = VT; 1213 // Consult target whether it is a good idea to promote this operation and 1214 // what's the right type to promote it to. 1215 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1216 assert(PVT != VT && "Don't know what type to promote to!"); 1217 1218 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1219 1220 bool Replace0 = false; 1221 SDValue N0 = Op.getOperand(0); 1222 SDValue NN0 = PromoteOperand(N0, PVT, Replace0); 1223 1224 bool Replace1 = false; 1225 SDValue N1 = Op.getOperand(1); 1226 SDValue NN1 = PromoteOperand(N1, PVT, Replace1); 1227 SDLoc DL(Op); 1228 1229 SDValue RV = 1230 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); 1231 1232 // We are always replacing N0/N1's use in N and only need 1233 // additional replacements if there are additional uses. 1234 Replace0 &= !N0->hasOneUse(); 1235 Replace1 &= (N0 != N1) && !N1->hasOneUse(); 1236 1237 // Combine Op here so it is preserved past replacements. 1238 CombineTo(Op.getNode(), RV); 1239 1240 // If operands have a use ordering, make sure we deal with 1241 // predecessor first. 1242 if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) { 1243 std::swap(N0, N1); 1244 std::swap(NN0, NN1); 1245 } 1246 1247 if (Replace0) { 1248 AddToWorklist(NN0.getNode()); 1249 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); 1250 } 1251 if (Replace1) { 1252 AddToWorklist(NN1.getNode()); 1253 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); 1254 } 1255 return Op; 1256 } 1257 return SDValue(); 1258 } 1259 1260 /// Promote the specified integer shift operation if the target indicates it is 1261 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1262 /// i32 since i16 instructions are longer. 1263 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { 1264 if (!LegalOperations) 1265 return SDValue(); 1266 1267 EVT VT = Op.getValueType(); 1268 if (VT.isVector() || !VT.isInteger()) 1269 return SDValue(); 1270 1271 // If operation type is 'undesirable', e.g. i16 on x86, consider 1272 // promoting it. 1273 unsigned Opc = Op.getOpcode(); 1274 if (TLI.isTypeDesirableForOp(Opc, VT)) 1275 return SDValue(); 1276 1277 EVT PVT = VT; 1278 // Consult target whether it is a good idea to promote this operation and 1279 // what's the right type to promote it to. 1280 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1281 assert(PVT != VT && "Don't know what type to promote to!"); 1282 1283 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1284 1285 bool Replace = false; 1286 SDValue N0 = Op.getOperand(0); 1287 SDValue N1 = Op.getOperand(1); 1288 if (Opc == ISD::SRA) 1289 N0 = SExtPromoteOperand(N0, PVT); 1290 else if (Opc == ISD::SRL) 1291 N0 = ZExtPromoteOperand(N0, PVT); 1292 else 1293 N0 = PromoteOperand(N0, PVT, Replace); 1294 1295 if (!N0.getNode()) 1296 return SDValue(); 1297 1298 SDLoc DL(Op); 1299 SDValue RV = 1300 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); 1301 1302 if (Replace) 1303 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); 1304 1305 // Deal with Op being deleted. 1306 if (Op && Op.getOpcode() != ISD::DELETED_NODE) 1307 return RV; 1308 } 1309 return SDValue(); 1310 } 1311 1312 SDValue DAGCombiner::PromoteExtend(SDValue Op) { 1313 if (!LegalOperations) 1314 return SDValue(); 1315 1316 EVT VT = Op.getValueType(); 1317 if (VT.isVector() || !VT.isInteger()) 1318 return SDValue(); 1319 1320 // If operation type is 'undesirable', e.g. i16 on x86, consider 1321 // promoting it. 1322 unsigned Opc = Op.getOpcode(); 1323 if (TLI.isTypeDesirableForOp(Opc, VT)) 1324 return SDValue(); 1325 1326 EVT PVT = VT; 1327 // Consult target whether it is a good idea to promote this operation and 1328 // what's the right type to promote it to. 1329 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1330 assert(PVT != VT && "Don't know what type to promote to!"); 1331 // fold (aext (aext x)) -> (aext x) 1332 // fold (aext (zext x)) -> (zext x) 1333 // fold (aext (sext x)) -> (sext x) 1334 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1335 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); 1336 } 1337 return SDValue(); 1338 } 1339 1340 bool DAGCombiner::PromoteLoad(SDValue Op) { 1341 if (!LegalOperations) 1342 return false; 1343 1344 if (!ISD::isUNINDEXEDLoad(Op.getNode())) 1345 return false; 1346 1347 EVT VT = Op.getValueType(); 1348 if (VT.isVector() || !VT.isInteger()) 1349 return false; 1350 1351 // If operation type is 'undesirable', e.g. i16 on x86, consider 1352 // promoting it. 1353 unsigned Opc = Op.getOpcode(); 1354 if (TLI.isTypeDesirableForOp(Opc, VT)) 1355 return false; 1356 1357 EVT PVT = VT; 1358 // Consult target whether it is a good idea to promote this operation and 1359 // what's the right type to promote it to. 1360 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1361 assert(PVT != VT && "Don't know what type to promote to!"); 1362 1363 SDLoc DL(Op); 1364 SDNode *N = Op.getNode(); 1365 LoadSDNode *LD = cast<LoadSDNode>(N); 1366 EVT MemVT = LD->getMemoryVT(); 1367 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD 1368 : LD->getExtensionType(); 1369 SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, 1370 LD->getChain(), LD->getBasePtr(), 1371 MemVT, LD->getMemOperand()); 1372 SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); 1373 1374 LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; 1375 Result.getNode()->dump(&DAG); dbgs() << '\n'); 1376 WorklistRemover DeadNodes(*this); 1377 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1378 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); 1379 deleteAndRecombine(N); 1380 AddToWorklist(Result.getNode()); 1381 return true; 1382 } 1383 return false; 1384 } 1385 1386 /// Recursively delete a node which has no uses and any operands for 1387 /// which it is the only use. 1388 /// 1389 /// Note that this both deletes the nodes and removes them from the worklist. 1390 /// It also adds any nodes who have had a user deleted to the worklist as they 1391 /// may now have only one use and subject to other combines. 1392 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { 1393 if (!N->use_empty()) 1394 return false; 1395 1396 SmallSetVector<SDNode *, 16> Nodes; 1397 Nodes.insert(N); 1398 do { 1399 N = Nodes.pop_back_val(); 1400 if (!N) 1401 continue; 1402 1403 if (N->use_empty()) { 1404 for (const SDValue &ChildN : N->op_values()) 1405 Nodes.insert(ChildN.getNode()); 1406 1407 removeFromWorklist(N); 1408 DAG.DeleteNode(N); 1409 } else { 1410 AddToWorklist(N); 1411 } 1412 } while (!Nodes.empty()); 1413 return true; 1414 } 1415 1416 //===----------------------------------------------------------------------===// 1417 // Main DAG Combiner implementation 1418 //===----------------------------------------------------------------------===// 1419 1420 void DAGCombiner::Run(CombineLevel AtLevel) { 1421 // set the instance variables, so that the various visit routines may use it. 1422 Level = AtLevel; 1423 LegalDAG = Level >= AfterLegalizeDAG; 1424 LegalOperations = Level >= AfterLegalizeVectorOps; 1425 LegalTypes = Level >= AfterLegalizeTypes; 1426 1427 WorklistInserter AddNodes(*this); 1428 1429 // Add all the dag nodes to the worklist. 1430 for (SDNode &Node : DAG.allnodes()) 1431 AddToWorklist(&Node); 1432 1433 // Create a dummy node (which is not added to allnodes), that adds a reference 1434 // to the root node, preventing it from being deleted, and tracking any 1435 // changes of the root. 1436 HandleSDNode Dummy(DAG.getRoot()); 1437 1438 // While we have a valid worklist entry node, try to combine it. 1439 while (SDNode *N = getNextWorklistEntry()) { 1440 // If N has no uses, it is dead. Make sure to revisit all N's operands once 1441 // N is deleted from the DAG, since they too may now be dead or may have a 1442 // reduced number of uses, allowing other xforms. 1443 if (recursivelyDeleteUnusedNodes(N)) 1444 continue; 1445 1446 WorklistRemover DeadNodes(*this); 1447 1448 // If this combine is running after legalizing the DAG, re-legalize any 1449 // nodes pulled off the worklist. 1450 if (LegalDAG) { 1451 SmallSetVector<SDNode *, 16> UpdatedNodes; 1452 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); 1453 1454 for (SDNode *LN : UpdatedNodes) 1455 AddToWorklistWithUsers(LN); 1456 1457 if (!NIsValid) 1458 continue; 1459 } 1460 1461 LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); 1462 1463 // Add any operands of the new node which have not yet been combined to the 1464 // worklist as well. Because the worklist uniques things already, this 1465 // won't repeatedly process the same operand. 1466 CombinedNodes.insert(N); 1467 for (const SDValue &ChildN : N->op_values()) 1468 if (!CombinedNodes.count(ChildN.getNode())) 1469 AddToWorklist(ChildN.getNode()); 1470 1471 SDValue RV = combine(N); 1472 1473 if (!RV.getNode()) 1474 continue; 1475 1476 ++NodesCombined; 1477 1478 // If we get back the same node we passed in, rather than a new node or 1479 // zero, we know that the node must have defined multiple values and 1480 // CombineTo was used. Since CombineTo takes care of the worklist 1481 // mechanics for us, we have no work to do in this case. 1482 if (RV.getNode() == N) 1483 continue; 1484 1485 assert(N->getOpcode() != ISD::DELETED_NODE && 1486 RV.getOpcode() != ISD::DELETED_NODE && 1487 "Node was deleted but visit returned new node!"); 1488 1489 LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG)); 1490 1491 if (N->getNumValues() == RV.getNode()->getNumValues()) 1492 DAG.ReplaceAllUsesWith(N, RV.getNode()); 1493 else { 1494 assert(N->getValueType(0) == RV.getValueType() && 1495 N->getNumValues() == 1 && "Type mismatch"); 1496 DAG.ReplaceAllUsesWith(N, &RV); 1497 } 1498 1499 // Push the new node and any users onto the worklist 1500 AddToWorklist(RV.getNode()); 1501 AddUsersToWorklist(RV.getNode()); 1502 1503 // Finally, if the node is now dead, remove it from the graph. The node 1504 // may not be dead if the replacement process recursively simplified to 1505 // something else needing this node. This will also take care of adding any 1506 // operands which have lost a user to the worklist. 1507 recursivelyDeleteUnusedNodes(N); 1508 } 1509 1510 // If the root changed (e.g. it was a dead load, update the root). 1511 DAG.setRoot(Dummy.getValue()); 1512 DAG.RemoveDeadNodes(); 1513 } 1514 1515 SDValue DAGCombiner::visit(SDNode *N) { 1516 switch (N->getOpcode()) { 1517 default: break; 1518 case ISD::TokenFactor: return visitTokenFactor(N); 1519 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); 1520 case ISD::ADD: return visitADD(N); 1521 case ISD::SUB: return visitSUB(N); 1522 case ISD::SADDSAT: 1523 case ISD::UADDSAT: return visitADDSAT(N); 1524 case ISD::SSUBSAT: 1525 case ISD::USUBSAT: return visitSUBSAT(N); 1526 case ISD::ADDC: return visitADDC(N); 1527 case ISD::SADDO: 1528 case ISD::UADDO: return visitADDO(N); 1529 case ISD::SUBC: return visitSUBC(N); 1530 case ISD::SSUBO: 1531 case ISD::USUBO: return visitSUBO(N); 1532 case ISD::ADDE: return visitADDE(N); 1533 case ISD::ADDCARRY: return visitADDCARRY(N); 1534 case ISD::SUBE: return visitSUBE(N); 1535 case ISD::SUBCARRY: return visitSUBCARRY(N); 1536 case ISD::SMULFIX: 1537 case ISD::SMULFIXSAT: 1538 case ISD::UMULFIX: 1539 case ISD::UMULFIXSAT: return visitMULFIX(N); 1540 case ISD::MUL: return visitMUL(N); 1541 case ISD::SDIV: return visitSDIV(N); 1542 case ISD::UDIV: return visitUDIV(N); 1543 case ISD::SREM: 1544 case ISD::UREM: return visitREM(N); 1545 case ISD::MULHU: return visitMULHU(N); 1546 case ISD::MULHS: return visitMULHS(N); 1547 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); 1548 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); 1549 case ISD::SMULO: 1550 case ISD::UMULO: return visitMULO(N); 1551 case ISD::SMIN: 1552 case ISD::SMAX: 1553 case ISD::UMIN: 1554 case ISD::UMAX: return visitIMINMAX(N); 1555 case ISD::AND: return visitAND(N); 1556 case ISD::OR: return visitOR(N); 1557 case ISD::XOR: return visitXOR(N); 1558 case ISD::SHL: return visitSHL(N); 1559 case ISD::SRA: return visitSRA(N); 1560 case ISD::SRL: return visitSRL(N); 1561 case ISD::ROTR: 1562 case ISD::ROTL: return visitRotate(N); 1563 case ISD::FSHL: 1564 case ISD::FSHR: return visitFunnelShift(N); 1565 case ISD::ABS: return visitABS(N); 1566 case ISD::BSWAP: return visitBSWAP(N); 1567 case ISD::BITREVERSE: return visitBITREVERSE(N); 1568 case ISD::CTLZ: return visitCTLZ(N); 1569 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); 1570 case ISD::CTTZ: return visitCTTZ(N); 1571 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); 1572 case ISD::CTPOP: return visitCTPOP(N); 1573 case ISD::SELECT: return visitSELECT(N); 1574 case ISD::VSELECT: return visitVSELECT(N); 1575 case ISD::SELECT_CC: return visitSELECT_CC(N); 1576 case ISD::SETCC: return visitSETCC(N); 1577 case ISD::SETCCCARRY: return visitSETCCCARRY(N); 1578 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); 1579 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); 1580 case ISD::ANY_EXTEND: return visitANY_EXTEND(N); 1581 case ISD::AssertSext: 1582 case ISD::AssertZext: return visitAssertExt(N); 1583 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); 1584 case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); 1585 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N); 1586 case ISD::TRUNCATE: return visitTRUNCATE(N); 1587 case ISD::BITCAST: return visitBITCAST(N); 1588 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); 1589 case ISD::FADD: return visitFADD(N); 1590 case ISD::FSUB: return visitFSUB(N); 1591 case ISD::FMUL: return visitFMUL(N); 1592 case ISD::FMA: return visitFMA(N); 1593 case ISD::FDIV: return visitFDIV(N); 1594 case ISD::FREM: return visitFREM(N); 1595 case ISD::FSQRT: return visitFSQRT(N); 1596 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); 1597 case ISD::FPOW: return visitFPOW(N); 1598 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); 1599 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); 1600 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); 1601 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); 1602 case ISD::FP_ROUND: return visitFP_ROUND(N); 1603 case ISD::FP_EXTEND: return visitFP_EXTEND(N); 1604 case ISD::FNEG: return visitFNEG(N); 1605 case ISD::FABS: return visitFABS(N); 1606 case ISD::FFLOOR: return visitFFLOOR(N); 1607 case ISD::FMINNUM: return visitFMINNUM(N); 1608 case ISD::FMAXNUM: return visitFMAXNUM(N); 1609 case ISD::FMINIMUM: return visitFMINIMUM(N); 1610 case ISD::FMAXIMUM: return visitFMAXIMUM(N); 1611 case ISD::FCEIL: return visitFCEIL(N); 1612 case ISD::FTRUNC: return visitFTRUNC(N); 1613 case ISD::BRCOND: return visitBRCOND(N); 1614 case ISD::BR_CC: return visitBR_CC(N); 1615 case ISD::LOAD: return visitLOAD(N); 1616 case ISD::STORE: return visitSTORE(N); 1617 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); 1618 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); 1619 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); 1620 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); 1621 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); 1622 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); 1623 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); 1624 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); 1625 case ISD::MGATHER: return visitMGATHER(N); 1626 case ISD::MLOAD: return visitMLOAD(N); 1627 case ISD::MSCATTER: return visitMSCATTER(N); 1628 case ISD::MSTORE: return visitMSTORE(N); 1629 case ISD::LIFETIME_END: return visitLIFETIME_END(N); 1630 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); 1631 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); 1632 case ISD::FREEZE: return visitFREEZE(N); 1633 case ISD::VECREDUCE_FADD: 1634 case ISD::VECREDUCE_FMUL: 1635 case ISD::VECREDUCE_ADD: 1636 case ISD::VECREDUCE_MUL: 1637 case ISD::VECREDUCE_AND: 1638 case ISD::VECREDUCE_OR: 1639 case ISD::VECREDUCE_XOR: 1640 case ISD::VECREDUCE_SMAX: 1641 case ISD::VECREDUCE_SMIN: 1642 case ISD::VECREDUCE_UMAX: 1643 case ISD::VECREDUCE_UMIN: 1644 case ISD::VECREDUCE_FMAX: 1645 case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N); 1646 } 1647 return SDValue(); 1648 } 1649 1650 SDValue DAGCombiner::combine(SDNode *N) { 1651 SDValue RV = visit(N); 1652 1653 // If nothing happened, try a target-specific DAG combine. 1654 if (!RV.getNode()) { 1655 assert(N->getOpcode() != ISD::DELETED_NODE && 1656 "Node was deleted but visit returned NULL!"); 1657 1658 if (N->getOpcode() >= ISD::BUILTIN_OP_END || 1659 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { 1660 1661 // Expose the DAG combiner to the target combiner impls. 1662 TargetLowering::DAGCombinerInfo 1663 DagCombineInfo(DAG, Level, false, this); 1664 1665 RV = TLI.PerformDAGCombine(N, DagCombineInfo); 1666 } 1667 } 1668 1669 // If nothing happened still, try promoting the operation. 1670 if (!RV.getNode()) { 1671 switch (N->getOpcode()) { 1672 default: break; 1673 case ISD::ADD: 1674 case ISD::SUB: 1675 case ISD::MUL: 1676 case ISD::AND: 1677 case ISD::OR: 1678 case ISD::XOR: 1679 RV = PromoteIntBinOp(SDValue(N, 0)); 1680 break; 1681 case ISD::SHL: 1682 case ISD::SRA: 1683 case ISD::SRL: 1684 RV = PromoteIntShiftOp(SDValue(N, 0)); 1685 break; 1686 case ISD::SIGN_EXTEND: 1687 case ISD::ZERO_EXTEND: 1688 case ISD::ANY_EXTEND: 1689 RV = PromoteExtend(SDValue(N, 0)); 1690 break; 1691 case ISD::LOAD: 1692 if (PromoteLoad(SDValue(N, 0))) 1693 RV = SDValue(N, 0); 1694 break; 1695 } 1696 } 1697 1698 // If N is a commutative binary node, try to eliminate it if the commuted 1699 // version is already present in the DAG. 1700 if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) && 1701 N->getNumValues() == 1) { 1702 SDValue N0 = N->getOperand(0); 1703 SDValue N1 = N->getOperand(1); 1704 1705 // Constant operands are canonicalized to RHS. 1706 if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) { 1707 SDValue Ops[] = {N1, N0}; 1708 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 1709 N->getFlags()); 1710 if (CSENode) 1711 return SDValue(CSENode, 0); 1712 } 1713 } 1714 1715 return RV; 1716 } 1717 1718 /// Given a node, return its input chain if it has one, otherwise return a null 1719 /// sd operand. 1720 static SDValue getInputChainForNode(SDNode *N) { 1721 if (unsigned NumOps = N->getNumOperands()) { 1722 if (N->getOperand(0).getValueType() == MVT::Other) 1723 return N->getOperand(0); 1724 if (N->getOperand(NumOps-1).getValueType() == MVT::Other) 1725 return N->getOperand(NumOps-1); 1726 for (unsigned i = 1; i < NumOps-1; ++i) 1727 if (N->getOperand(i).getValueType() == MVT::Other) 1728 return N->getOperand(i); 1729 } 1730 return SDValue(); 1731 } 1732 1733 SDValue DAGCombiner::visitTokenFactor(SDNode *N) { 1734 // If N has two operands, where one has an input chain equal to the other, 1735 // the 'other' chain is redundant. 1736 if (N->getNumOperands() == 2) { 1737 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) 1738 return N->getOperand(0); 1739 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) 1740 return N->getOperand(1); 1741 } 1742 1743 // Don't simplify token factors if optnone. 1744 if (OptLevel == CodeGenOpt::None) 1745 return SDValue(); 1746 1747 // If the sole user is a token factor, we should make sure we have a 1748 // chance to merge them together. This prevents TF chains from inhibiting 1749 // optimizations. 1750 if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor) 1751 AddToWorklist(*(N->use_begin())); 1752 1753 SmallVector<SDNode *, 8> TFs; // List of token factors to visit. 1754 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. 1755 SmallPtrSet<SDNode*, 16> SeenOps; 1756 bool Changed = false; // If we should replace this token factor. 1757 1758 // Start out with this token factor. 1759 TFs.push_back(N); 1760 1761 // Iterate through token factors. The TFs grows when new token factors are 1762 // encountered. 1763 for (unsigned i = 0; i < TFs.size(); ++i) { 1764 // Limit number of nodes to inline, to avoid quadratic compile times. 1765 // We have to add the outstanding Token Factors to Ops, otherwise we might 1766 // drop Ops from the resulting Token Factors. 1767 if (Ops.size() > TokenFactorInlineLimit) { 1768 for (unsigned j = i; j < TFs.size(); j++) 1769 Ops.emplace_back(TFs[j], 0); 1770 // Drop unprocessed Token Factors from TFs, so we do not add them to the 1771 // combiner worklist later. 1772 TFs.resize(i); 1773 break; 1774 } 1775 1776 SDNode *TF = TFs[i]; 1777 // Check each of the operands. 1778 for (const SDValue &Op : TF->op_values()) { 1779 switch (Op.getOpcode()) { 1780 case ISD::EntryToken: 1781 // Entry tokens don't need to be added to the list. They are 1782 // redundant. 1783 Changed = true; 1784 break; 1785 1786 case ISD::TokenFactor: 1787 if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { 1788 // Queue up for processing. 1789 TFs.push_back(Op.getNode()); 1790 Changed = true; 1791 break; 1792 } 1793 LLVM_FALLTHROUGH; 1794 1795 default: 1796 // Only add if it isn't already in the list. 1797 if (SeenOps.insert(Op.getNode()).second) 1798 Ops.push_back(Op); 1799 else 1800 Changed = true; 1801 break; 1802 } 1803 } 1804 } 1805 1806 // Re-visit inlined Token Factors, to clean them up in case they have been 1807 // removed. Skip the first Token Factor, as this is the current node. 1808 for (unsigned i = 1, e = TFs.size(); i < e; i++) 1809 AddToWorklist(TFs[i]); 1810 1811 // Remove Nodes that are chained to another node in the list. Do so 1812 // by walking up chains breath-first stopping when we've seen 1813 // another operand. In general we must climb to the EntryNode, but we can exit 1814 // early if we find all remaining work is associated with just one operand as 1815 // no further pruning is possible. 1816 1817 // List of nodes to search through and original Ops from which they originate. 1818 SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; 1819 SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. 1820 SmallPtrSet<SDNode *, 16> SeenChains; 1821 bool DidPruneOps = false; 1822 1823 unsigned NumLeftToConsider = 0; 1824 for (const SDValue &Op : Ops) { 1825 Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); 1826 OpWorkCount.push_back(1); 1827 } 1828 1829 auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { 1830 // If this is an Op, we can remove the op from the list. Remark any 1831 // search associated with it as from the current OpNumber. 1832 if (SeenOps.count(Op) != 0) { 1833 Changed = true; 1834 DidPruneOps = true; 1835 unsigned OrigOpNumber = 0; 1836 while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) 1837 OrigOpNumber++; 1838 assert((OrigOpNumber != Ops.size()) && 1839 "expected to find TokenFactor Operand"); 1840 // Re-mark worklist from OrigOpNumber to OpNumber 1841 for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { 1842 if (Worklist[i].second == OrigOpNumber) { 1843 Worklist[i].second = OpNumber; 1844 } 1845 } 1846 OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; 1847 OpWorkCount[OrigOpNumber] = 0; 1848 NumLeftToConsider--; 1849 } 1850 // Add if it's a new chain 1851 if (SeenChains.insert(Op).second) { 1852 OpWorkCount[OpNumber]++; 1853 Worklist.push_back(std::make_pair(Op, OpNumber)); 1854 } 1855 }; 1856 1857 for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { 1858 // We need at least be consider at least 2 Ops to prune. 1859 if (NumLeftToConsider <= 1) 1860 break; 1861 auto CurNode = Worklist[i].first; 1862 auto CurOpNumber = Worklist[i].second; 1863 assert((OpWorkCount[CurOpNumber] > 0) && 1864 "Node should not appear in worklist"); 1865 switch (CurNode->getOpcode()) { 1866 case ISD::EntryToken: 1867 // Hitting EntryToken is the only way for the search to terminate without 1868 // hitting 1869 // another operand's search. Prevent us from marking this operand 1870 // considered. 1871 NumLeftToConsider++; 1872 break; 1873 case ISD::TokenFactor: 1874 for (const SDValue &Op : CurNode->op_values()) 1875 AddToWorklist(i, Op.getNode(), CurOpNumber); 1876 break; 1877 case ISD::LIFETIME_START: 1878 case ISD::LIFETIME_END: 1879 case ISD::CopyFromReg: 1880 case ISD::CopyToReg: 1881 AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); 1882 break; 1883 default: 1884 if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) 1885 AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); 1886 break; 1887 } 1888 OpWorkCount[CurOpNumber]--; 1889 if (OpWorkCount[CurOpNumber] == 0) 1890 NumLeftToConsider--; 1891 } 1892 1893 // If we've changed things around then replace token factor. 1894 if (Changed) { 1895 SDValue Result; 1896 if (Ops.empty()) { 1897 // The entry token is the only possible outcome. 1898 Result = DAG.getEntryNode(); 1899 } else { 1900 if (DidPruneOps) { 1901 SmallVector<SDValue, 8> PrunedOps; 1902 // 1903 for (const SDValue &Op : Ops) { 1904 if (SeenChains.count(Op.getNode()) == 0) 1905 PrunedOps.push_back(Op); 1906 } 1907 Result = DAG.getTokenFactor(SDLoc(N), PrunedOps); 1908 } else { 1909 Result = DAG.getTokenFactor(SDLoc(N), Ops); 1910 } 1911 } 1912 return Result; 1913 } 1914 return SDValue(); 1915 } 1916 1917 /// MERGE_VALUES can always be eliminated. 1918 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { 1919 WorklistRemover DeadNodes(*this); 1920 // Replacing results may cause a different MERGE_VALUES to suddenly 1921 // be CSE'd with N, and carry its uses with it. Iterate until no 1922 // uses remain, to ensure that the node can be safely deleted. 1923 // First add the users of this node to the work list so that they 1924 // can be tried again once they have new operands. 1925 AddUsersToWorklist(N); 1926 do { 1927 // Do as a single replacement to avoid rewalking use lists. 1928 SmallVector<SDValue, 8> Ops; 1929 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 1930 Ops.push_back(N->getOperand(i)); 1931 DAG.ReplaceAllUsesWith(N, Ops.data()); 1932 } while (!N->use_empty()); 1933 deleteAndRecombine(N); 1934 return SDValue(N, 0); // Return N so it doesn't get rechecked! 1935 } 1936 1937 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a 1938 /// ConstantSDNode pointer else nullptr. 1939 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { 1940 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); 1941 return Const != nullptr && !Const->isOpaque() ? Const : nullptr; 1942 } 1943 1944 SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { 1945 assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 && 1946 "Unexpected binary operator"); 1947 1948 // Don't do this unless the old select is going away. We want to eliminate the 1949 // binary operator, not replace a binop with a select. 1950 // TODO: Handle ISD::SELECT_CC. 1951 unsigned SelOpNo = 0; 1952 SDValue Sel = BO->getOperand(0); 1953 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { 1954 SelOpNo = 1; 1955 Sel = BO->getOperand(1); 1956 } 1957 1958 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) 1959 return SDValue(); 1960 1961 SDValue CT = Sel.getOperand(1); 1962 if (!isConstantOrConstantVector(CT, true) && 1963 !isConstantFPBuildVectorOrConstantFP(CT)) 1964 return SDValue(); 1965 1966 SDValue CF = Sel.getOperand(2); 1967 if (!isConstantOrConstantVector(CF, true) && 1968 !isConstantFPBuildVectorOrConstantFP(CF)) 1969 return SDValue(); 1970 1971 // Bail out if any constants are opaque because we can't constant fold those. 1972 // The exception is "and" and "or" with either 0 or -1 in which case we can 1973 // propagate non constant operands into select. I.e.: 1974 // and (select Cond, 0, -1), X --> select Cond, 0, X 1975 // or X, (select Cond, -1, 0) --> select Cond, -1, X 1976 auto BinOpcode = BO->getOpcode(); 1977 bool CanFoldNonConst = 1978 (BinOpcode == ISD::AND || BinOpcode == ISD::OR) && 1979 (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) && 1980 (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF)); 1981 1982 SDValue CBO = BO->getOperand(SelOpNo ^ 1); 1983 if (!CanFoldNonConst && 1984 !isConstantOrConstantVector(CBO, true) && 1985 !isConstantFPBuildVectorOrConstantFP(CBO)) 1986 return SDValue(); 1987 1988 EVT VT = Sel.getValueType(); 1989 1990 // In case of shift value and shift amount may have different VT. For instance 1991 // on x86 shift amount is i8 regardles of LHS type. Bail out if we have 1992 // swapped operands and value types do not match. NB: x86 is fine if operands 1993 // are not swapped with shift amount VT being not bigger than shifted value. 1994 // TODO: that is possible to check for a shift operation, correct VTs and 1995 // still perform optimization on x86 if needed. 1996 if (SelOpNo && VT != CBO.getValueType()) 1997 return SDValue(); 1998 1999 // We have a select-of-constants followed by a binary operator with a 2000 // constant. Eliminate the binop by pulling the constant math into the select. 2001 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO 2002 SDLoc DL(Sel); 2003 SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT) 2004 : DAG.getNode(BinOpcode, DL, VT, CT, CBO); 2005 if (!CanFoldNonConst && !NewCT.isUndef() && 2006 !isConstantOrConstantVector(NewCT, true) && 2007 !isConstantFPBuildVectorOrConstantFP(NewCT)) 2008 return SDValue(); 2009 2010 SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF) 2011 : DAG.getNode(BinOpcode, DL, VT, CF, CBO); 2012 if (!CanFoldNonConst && !NewCF.isUndef() && 2013 !isConstantOrConstantVector(NewCF, true) && 2014 !isConstantFPBuildVectorOrConstantFP(NewCF)) 2015 return SDValue(); 2016 2017 SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); 2018 SelectOp->setFlags(BO->getFlags()); 2019 return SelectOp; 2020 } 2021 2022 static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) { 2023 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 2024 "Expecting add or sub"); 2025 2026 // Match a constant operand and a zext operand for the math instruction: 2027 // add Z, C 2028 // sub C, Z 2029 bool IsAdd = N->getOpcode() == ISD::ADD; 2030 SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0); 2031 SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1); 2032 auto *CN = dyn_cast<ConstantSDNode>(C); 2033 if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND) 2034 return SDValue(); 2035 2036 // Match the zext operand as a setcc of a boolean. 2037 if (Z.getOperand(0).getOpcode() != ISD::SETCC || 2038 Z.getOperand(0).getValueType() != MVT::i1) 2039 return SDValue(); 2040 2041 // Match the compare as: setcc (X & 1), 0, eq. 2042 SDValue SetCC = Z.getOperand(0); 2043 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); 2044 if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) || 2045 SetCC.getOperand(0).getOpcode() != ISD::AND || 2046 !isOneConstant(SetCC.getOperand(0).getOperand(1))) 2047 return SDValue(); 2048 2049 // We are adding/subtracting a constant and an inverted low bit. Turn that 2050 // into a subtract/add of the low bit with incremented/decremented constant: 2051 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1)) 2052 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1)) 2053 EVT VT = C.getValueType(); 2054 SDLoc DL(N); 2055 SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT); 2056 SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) : 2057 DAG.getConstant(CN->getAPIntValue() - 1, DL, VT); 2058 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit); 2059 } 2060 2061 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into 2062 /// a shift and add with a different constant. 2063 static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) { 2064 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 2065 "Expecting add or sub"); 2066 2067 // We need a constant operand for the add/sub, and the other operand is a 2068 // logical shift right: add (srl), C or sub C, (srl). 2069 // TODO - support non-uniform vector amounts. 2070 bool IsAdd = N->getOpcode() == ISD::ADD; 2071 SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0); 2072 SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1); 2073 ConstantSDNode *C = isConstOrConstSplat(ConstantOp); 2074 if (!C || ShiftOp.getOpcode() != ISD::SRL) 2075 return SDValue(); 2076 2077 // The shift must be of a 'not' value. 2078 SDValue Not = ShiftOp.getOperand(0); 2079 if (!Not.hasOneUse() || !isBitwiseNot(Not)) 2080 return SDValue(); 2081 2082 // The shift must be moving the sign bit to the least-significant-bit. 2083 EVT VT = ShiftOp.getValueType(); 2084 SDValue ShAmt = ShiftOp.getOperand(1); 2085 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); 2086 if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1)) 2087 return SDValue(); 2088 2089 // Eliminate the 'not' by adjusting the shift and add/sub constant: 2090 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1) 2091 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1) 2092 SDLoc DL(N); 2093 auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL; 2094 SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt); 2095 APInt NewC = IsAdd ? C->getAPIntValue() + 1 : C->getAPIntValue() - 1; 2096 return DAG.getNode(ISD::ADD, DL, VT, NewShift, DAG.getConstant(NewC, DL, VT)); 2097 } 2098 2099 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily 2100 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there 2101 /// are no common bits set in the operands). 2102 SDValue DAGCombiner::visitADDLike(SDNode *N) { 2103 SDValue N0 = N->getOperand(0); 2104 SDValue N1 = N->getOperand(1); 2105 EVT VT = N0.getValueType(); 2106 SDLoc DL(N); 2107 2108 // fold vector ops 2109 if (VT.isVector()) { 2110 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2111 return FoldedVOp; 2112 2113 // fold (add x, 0) -> x, vector edition 2114 if (ISD::isBuildVectorAllZeros(N1.getNode())) 2115 return N0; 2116 if (ISD::isBuildVectorAllZeros(N0.getNode())) 2117 return N1; 2118 } 2119 2120 // fold (add x, undef) -> undef 2121 if (N0.isUndef()) 2122 return N0; 2123 2124 if (N1.isUndef()) 2125 return N1; 2126 2127 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 2128 // canonicalize constant to RHS 2129 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2130 return DAG.getNode(ISD::ADD, DL, VT, N1, N0); 2131 // fold (add c1, c2) -> c1+c2 2132 return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1}); 2133 } 2134 2135 // fold (add x, 0) -> x 2136 if (isNullConstant(N1)) 2137 return N0; 2138 2139 if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { 2140 // fold ((A-c1)+c2) -> (A+(c2-c1)) 2141 if (N0.getOpcode() == ISD::SUB && 2142 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) { 2143 SDValue Sub = 2144 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N0.getOperand(1)}); 2145 assert(Sub && "Constant folding failed"); 2146 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub); 2147 } 2148 2149 // fold ((c1-A)+c2) -> (c1+c2)-A 2150 if (N0.getOpcode() == ISD::SUB && 2151 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { 2152 SDValue Add = 2153 DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N0.getOperand(0)}); 2154 assert(Add && "Constant folding failed"); 2155 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); 2156 } 2157 2158 // add (sext i1 X), 1 -> zext (not i1 X) 2159 // We don't transform this pattern: 2160 // add (zext i1 X), -1 -> sext (not i1 X) 2161 // because most (?) targets generate better code for the zext form. 2162 if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && 2163 isOneOrOneSplat(N1)) { 2164 SDValue X = N0.getOperand(0); 2165 if ((!LegalOperations || 2166 (TLI.isOperationLegal(ISD::XOR, X.getValueType()) && 2167 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) && 2168 X.getScalarValueSizeInBits() == 1) { 2169 SDValue Not = DAG.getNOT(DL, X, X.getValueType()); 2170 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not); 2171 } 2172 } 2173 2174 // Undo the add -> or combine to merge constant offsets from a frame index. 2175 if (N0.getOpcode() == ISD::OR && 2176 isa<FrameIndexSDNode>(N0.getOperand(0)) && 2177 isa<ConstantSDNode>(N0.getOperand(1)) && 2178 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { 2179 SDValue Add0 = DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(1)); 2180 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0); 2181 } 2182 } 2183 2184 if (SDValue NewSel = foldBinOpIntoSelect(N)) 2185 return NewSel; 2186 2187 // reassociate add 2188 if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) { 2189 if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags())) 2190 return RADD; 2191 } 2192 // fold ((0-A) + B) -> B-A 2193 if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0))) 2194 return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 2195 2196 // fold (A + (0-B)) -> A-B 2197 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) 2198 return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); 2199 2200 // fold (A+(B-A)) -> B 2201 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) 2202 return N1.getOperand(0); 2203 2204 // fold ((B-A)+A) -> B 2205 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) 2206 return N0.getOperand(0); 2207 2208 // fold ((A-B)+(C-A)) -> (C-B) 2209 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && 2210 N0.getOperand(0) == N1.getOperand(1)) 2211 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2212 N0.getOperand(1)); 2213 2214 // fold ((A-B)+(B-C)) -> (A-C) 2215 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && 2216 N0.getOperand(1) == N1.getOperand(0)) 2217 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 2218 N1.getOperand(1)); 2219 2220 // fold (A+(B-(A+C))) to (B-C) 2221 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 2222 N0 == N1.getOperand(1).getOperand(0)) 2223 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2224 N1.getOperand(1).getOperand(1)); 2225 2226 // fold (A+(B-(C+A))) to (B-C) 2227 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 2228 N0 == N1.getOperand(1).getOperand(1)) 2229 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2230 N1.getOperand(1).getOperand(0)); 2231 2232 // fold (A+((B-A)+or-C)) to (B+or-C) 2233 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && 2234 N1.getOperand(0).getOpcode() == ISD::SUB && 2235 N0 == N1.getOperand(0).getOperand(1)) 2236 return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), 2237 N1.getOperand(1)); 2238 2239 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant 2240 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { 2241 SDValue N00 = N0.getOperand(0); 2242 SDValue N01 = N0.getOperand(1); 2243 SDValue N10 = N1.getOperand(0); 2244 SDValue N11 = N1.getOperand(1); 2245 2246 if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) 2247 return DAG.getNode(ISD::SUB, DL, VT, 2248 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), 2249 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); 2250 } 2251 2252 // fold (add (umax X, C), -C) --> (usubsat X, C) 2253 if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) { 2254 auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) { 2255 return (!Max && !Op) || 2256 (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue())); 2257 }; 2258 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT, 2259 /*AllowUndefs*/ true)) 2260 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), 2261 N0.getOperand(1)); 2262 } 2263 2264 if (SimplifyDemandedBits(SDValue(N, 0))) 2265 return SDValue(N, 0); 2266 2267 if (isOneOrOneSplat(N1)) { 2268 // fold (add (xor a, -1), 1) -> (sub 0, a) 2269 if (isBitwiseNot(N0)) 2270 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 2271 N0.getOperand(0)); 2272 2273 // fold (add (add (xor a, -1), b), 1) -> (sub b, a) 2274 if (N0.getOpcode() == ISD::ADD || 2275 N0.getOpcode() == ISD::UADDO || 2276 N0.getOpcode() == ISD::SADDO) { 2277 SDValue A, Xor; 2278 2279 if (isBitwiseNot(N0.getOperand(0))) { 2280 A = N0.getOperand(1); 2281 Xor = N0.getOperand(0); 2282 } else if (isBitwiseNot(N0.getOperand(1))) { 2283 A = N0.getOperand(0); 2284 Xor = N0.getOperand(1); 2285 } 2286 2287 if (Xor) 2288 return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0)); 2289 } 2290 2291 // Look for: 2292 // add (add x, y), 1 2293 // And if the target does not like this form then turn into: 2294 // sub y, (xor x, -1) 2295 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && 2296 N0.getOpcode() == ISD::ADD) { 2297 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 2298 DAG.getAllOnesConstant(DL, VT)); 2299 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not); 2300 } 2301 } 2302 2303 // (x - y) + -1 -> add (xor y, -1), x 2304 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2305 isAllOnesOrAllOnesSplat(N1)) { 2306 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1); 2307 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); 2308 } 2309 2310 if (SDValue Combined = visitADDLikeCommutative(N0, N1, N)) 2311 return Combined; 2312 2313 if (SDValue Combined = visitADDLikeCommutative(N1, N0, N)) 2314 return Combined; 2315 2316 return SDValue(); 2317 } 2318 2319 SDValue DAGCombiner::visitADD(SDNode *N) { 2320 SDValue N0 = N->getOperand(0); 2321 SDValue N1 = N->getOperand(1); 2322 EVT VT = N0.getValueType(); 2323 SDLoc DL(N); 2324 2325 if (SDValue Combined = visitADDLike(N)) 2326 return Combined; 2327 2328 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) 2329 return V; 2330 2331 if (SDValue V = foldAddSubOfSignBit(N, DAG)) 2332 return V; 2333 2334 // fold (a+b) -> (a|b) iff a and b share no bits. 2335 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && 2336 DAG.haveNoCommonBitsSet(N0, N1)) 2337 return DAG.getNode(ISD::OR, DL, VT, N0, N1); 2338 2339 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)). 2340 if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) { 2341 APInt C0 = N0->getConstantOperandAPInt(0); 2342 APInt C1 = N1->getConstantOperandAPInt(0); 2343 return DAG.getVScale(DL, VT, C0 + C1); 2344 } 2345 2346 return SDValue(); 2347 } 2348 2349 SDValue DAGCombiner::visitADDSAT(SDNode *N) { 2350 unsigned Opcode = N->getOpcode(); 2351 SDValue N0 = N->getOperand(0); 2352 SDValue N1 = N->getOperand(1); 2353 EVT VT = N0.getValueType(); 2354 SDLoc DL(N); 2355 2356 // fold vector ops 2357 if (VT.isVector()) { 2358 // TODO SimplifyVBinOp 2359 2360 // fold (add_sat x, 0) -> x, vector edition 2361 if (ISD::isBuildVectorAllZeros(N1.getNode())) 2362 return N0; 2363 if (ISD::isBuildVectorAllZeros(N0.getNode())) 2364 return N1; 2365 } 2366 2367 // fold (add_sat x, undef) -> -1 2368 if (N0.isUndef() || N1.isUndef()) 2369 return DAG.getAllOnesConstant(DL, VT); 2370 2371 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 2372 // canonicalize constant to RHS 2373 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2374 return DAG.getNode(Opcode, DL, VT, N1, N0); 2375 // fold (add_sat c1, c2) -> c3 2376 return DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}); 2377 } 2378 2379 // fold (add_sat x, 0) -> x 2380 if (isNullConstant(N1)) 2381 return N0; 2382 2383 // If it cannot overflow, transform into an add. 2384 if (Opcode == ISD::UADDSAT) 2385 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2386 return DAG.getNode(ISD::ADD, DL, VT, N0, N1); 2387 2388 return SDValue(); 2389 } 2390 2391 static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) { 2392 bool Masked = false; 2393 2394 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization. 2395 while (true) { 2396 if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) { 2397 V = V.getOperand(0); 2398 continue; 2399 } 2400 2401 if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) { 2402 Masked = true; 2403 V = V.getOperand(0); 2404 continue; 2405 } 2406 2407 break; 2408 } 2409 2410 // If this is not a carry, return. 2411 if (V.getResNo() != 1) 2412 return SDValue(); 2413 2414 if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY && 2415 V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO) 2416 return SDValue(); 2417 2418 EVT VT = V.getNode()->getValueType(0); 2419 if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT)) 2420 return SDValue(); 2421 2422 // If the result is masked, then no matter what kind of bool it is we can 2423 // return. If it isn't, then we need to make sure the bool type is either 0 or 2424 // 1 and not other values. 2425 if (Masked || 2426 TLI.getBooleanContents(V.getValueType()) == 2427 TargetLoweringBase::ZeroOrOneBooleanContent) 2428 return V; 2429 2430 return SDValue(); 2431 } 2432 2433 /// Given the operands of an add/sub operation, see if the 2nd operand is a 2434 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert 2435 /// the opcode and bypass the mask operation. 2436 static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1, 2437 SelectionDAG &DAG, const SDLoc &DL) { 2438 if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1))) 2439 return SDValue(); 2440 2441 EVT VT = N0.getValueType(); 2442 if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits()) 2443 return SDValue(); 2444 2445 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X 2446 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X 2447 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0)); 2448 } 2449 2450 /// Helper for doing combines based on N0 and N1 being added to each other. 2451 SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1, 2452 SDNode *LocReference) { 2453 EVT VT = N0.getValueType(); 2454 SDLoc DL(LocReference); 2455 2456 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) 2457 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && 2458 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) 2459 return DAG.getNode(ISD::SUB, DL, VT, N0, 2460 DAG.getNode(ISD::SHL, DL, VT, 2461 N1.getOperand(0).getOperand(1), 2462 N1.getOperand(1))); 2463 2464 if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL)) 2465 return V; 2466 2467 // Look for: 2468 // add (add x, 1), y 2469 // And if the target does not like this form then turn into: 2470 // sub y, (xor x, -1) 2471 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && 2472 N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) { 2473 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 2474 DAG.getAllOnesConstant(DL, VT)); 2475 return DAG.getNode(ISD::SUB, DL, VT, N1, Not); 2476 } 2477 2478 // Hoist one-use subtraction by non-opaque constant: 2479 // (x - C) + y -> (x + y) - C 2480 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. 2481 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2482 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 2483 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1); 2484 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); 2485 } 2486 // Hoist one-use subtraction from non-opaque constant: 2487 // (C - x) + y -> (y - x) + C 2488 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2489 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { 2490 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 2491 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0)); 2492 } 2493 2494 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1' 2495 // rather than 'add 0/-1' (the zext should get folded). 2496 // add (sext i1 Y), X --> sub X, (zext i1 Y) 2497 if (N0.getOpcode() == ISD::SIGN_EXTEND && 2498 N0.getOperand(0).getScalarValueSizeInBits() == 1 && 2499 TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) { 2500 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 2501 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); 2502 } 2503 2504 // add X, (sextinreg Y i1) -> sub X, (and Y 1) 2505 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 2506 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 2507 if (TN->getVT() == MVT::i1) { 2508 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 2509 DAG.getConstant(1, DL, VT)); 2510 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); 2511 } 2512 } 2513 2514 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) 2515 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) && 2516 N1.getResNo() == 0) 2517 return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(), 2518 N0, N1.getOperand(0), N1.getOperand(2)); 2519 2520 // (add X, Carry) -> (addcarry X, 0, Carry) 2521 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) 2522 if (SDValue Carry = getAsCarry(TLI, N1)) 2523 return DAG.getNode(ISD::ADDCARRY, DL, 2524 DAG.getVTList(VT, Carry.getValueType()), N0, 2525 DAG.getConstant(0, DL, VT), Carry); 2526 2527 return SDValue(); 2528 } 2529 2530 SDValue DAGCombiner::visitADDC(SDNode *N) { 2531 SDValue N0 = N->getOperand(0); 2532 SDValue N1 = N->getOperand(1); 2533 EVT VT = N0.getValueType(); 2534 SDLoc DL(N); 2535 2536 // If the flag result is dead, turn this into an ADD. 2537 if (!N->hasAnyUseOfValue(1)) 2538 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2539 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2540 2541 // canonicalize constant to RHS. 2542 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2543 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2544 if (N0C && !N1C) 2545 return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); 2546 2547 // fold (addc x, 0) -> x + no carry out 2548 if (isNullConstant(N1)) 2549 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, 2550 DL, MVT::Glue)); 2551 2552 // If it cannot overflow, transform into an add. 2553 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2554 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2555 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2556 2557 return SDValue(); 2558 } 2559 2560 static SDValue flipBoolean(SDValue V, const SDLoc &DL, 2561 SelectionDAG &DAG, const TargetLowering &TLI) { 2562 EVT VT = V.getValueType(); 2563 2564 SDValue Cst; 2565 switch (TLI.getBooleanContents(VT)) { 2566 case TargetLowering::ZeroOrOneBooleanContent: 2567 case TargetLowering::UndefinedBooleanContent: 2568 Cst = DAG.getConstant(1, DL, VT); 2569 break; 2570 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2571 Cst = DAG.getAllOnesConstant(DL, VT); 2572 break; 2573 } 2574 2575 return DAG.getNode(ISD::XOR, DL, VT, V, Cst); 2576 } 2577 2578 /** 2579 * Flips a boolean if it is cheaper to compute. If the Force parameters is set, 2580 * then the flip also occurs if computing the inverse is the same cost. 2581 * This function returns an empty SDValue in case it cannot flip the boolean 2582 * without increasing the cost of the computation. If you want to flip a boolean 2583 * no matter what, use flipBoolean. 2584 */ 2585 static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG, 2586 const TargetLowering &TLI, 2587 bool Force) { 2588 if (Force && isa<ConstantSDNode>(V)) 2589 return flipBoolean(V, SDLoc(V), DAG, TLI); 2590 2591 if (V.getOpcode() != ISD::XOR) 2592 return SDValue(); 2593 2594 ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false); 2595 if (!Const) 2596 return SDValue(); 2597 2598 EVT VT = V.getValueType(); 2599 2600 bool IsFlip = false; 2601 switch(TLI.getBooleanContents(VT)) { 2602 case TargetLowering::ZeroOrOneBooleanContent: 2603 IsFlip = Const->isOne(); 2604 break; 2605 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2606 IsFlip = Const->isAllOnesValue(); 2607 break; 2608 case TargetLowering::UndefinedBooleanContent: 2609 IsFlip = (Const->getAPIntValue() & 0x01) == 1; 2610 break; 2611 } 2612 2613 if (IsFlip) 2614 return V.getOperand(0); 2615 if (Force) 2616 return flipBoolean(V, SDLoc(V), DAG, TLI); 2617 return SDValue(); 2618 } 2619 2620 SDValue DAGCombiner::visitADDO(SDNode *N) { 2621 SDValue N0 = N->getOperand(0); 2622 SDValue N1 = N->getOperand(1); 2623 EVT VT = N0.getValueType(); 2624 bool IsSigned = (ISD::SADDO == N->getOpcode()); 2625 2626 EVT CarryVT = N->getValueType(1); 2627 SDLoc DL(N); 2628 2629 // If the flag result is dead, turn this into an ADD. 2630 if (!N->hasAnyUseOfValue(1)) 2631 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2632 DAG.getUNDEF(CarryVT)); 2633 2634 // canonicalize constant to RHS. 2635 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2636 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2637 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); 2638 2639 // fold (addo x, 0) -> x + no carry out 2640 if (isNullOrNullSplat(N1)) 2641 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); 2642 2643 if (!IsSigned) { 2644 // If it cannot overflow, transform into an add. 2645 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2646 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2647 DAG.getConstant(0, DL, CarryVT)); 2648 2649 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry. 2650 if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) { 2651 SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(), 2652 DAG.getConstant(0, DL, VT), N0.getOperand(0)); 2653 return CombineTo(N, Sub, 2654 flipBoolean(Sub.getValue(1), DL, DAG, TLI)); 2655 } 2656 2657 if (SDValue Combined = visitUADDOLike(N0, N1, N)) 2658 return Combined; 2659 2660 if (SDValue Combined = visitUADDOLike(N1, N0, N)) 2661 return Combined; 2662 } 2663 2664 return SDValue(); 2665 } 2666 2667 SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) { 2668 EVT VT = N0.getValueType(); 2669 if (VT.isVector()) 2670 return SDValue(); 2671 2672 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) 2673 // If Y + 1 cannot overflow. 2674 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) { 2675 SDValue Y = N1.getOperand(0); 2676 SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType()); 2677 if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never) 2678 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y, 2679 N1.getOperand(2)); 2680 } 2681 2682 // (uaddo X, Carry) -> (addcarry X, 0, Carry) 2683 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) 2684 if (SDValue Carry = getAsCarry(TLI, N1)) 2685 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, 2686 DAG.getConstant(0, SDLoc(N), VT), Carry); 2687 2688 return SDValue(); 2689 } 2690 2691 SDValue DAGCombiner::visitADDE(SDNode *N) { 2692 SDValue N0 = N->getOperand(0); 2693 SDValue N1 = N->getOperand(1); 2694 SDValue CarryIn = N->getOperand(2); 2695 2696 // canonicalize constant to RHS 2697 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2698 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2699 if (N0C && !N1C) 2700 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), 2701 N1, N0, CarryIn); 2702 2703 // fold (adde x, y, false) -> (addc x, y) 2704 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 2705 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); 2706 2707 return SDValue(); 2708 } 2709 2710 SDValue DAGCombiner::visitADDCARRY(SDNode *N) { 2711 SDValue N0 = N->getOperand(0); 2712 SDValue N1 = N->getOperand(1); 2713 SDValue CarryIn = N->getOperand(2); 2714 SDLoc DL(N); 2715 2716 // canonicalize constant to RHS 2717 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2718 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2719 if (N0C && !N1C) 2720 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn); 2721 2722 // fold (addcarry x, y, false) -> (uaddo x, y) 2723 if (isNullConstant(CarryIn)) { 2724 if (!LegalOperations || 2725 TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0))) 2726 return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1); 2727 } 2728 2729 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry. 2730 if (isNullConstant(N0) && isNullConstant(N1)) { 2731 EVT VT = N0.getValueType(); 2732 EVT CarryVT = CarryIn.getValueType(); 2733 SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT); 2734 AddToWorklist(CarryExt.getNode()); 2735 return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt, 2736 DAG.getConstant(1, DL, VT)), 2737 DAG.getConstant(0, DL, CarryVT)); 2738 } 2739 2740 if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N)) 2741 return Combined; 2742 2743 if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N)) 2744 return Combined; 2745 2746 return SDValue(); 2747 } 2748 2749 /** 2750 * If we are facing some sort of diamond carry propapagtion pattern try to 2751 * break it up to generate something like: 2752 * (addcarry X, 0, (addcarry A, B, Z):Carry) 2753 * 2754 * The end result is usually an increase in operation required, but because the 2755 * carry is now linearized, other tranforms can kick in and optimize the DAG. 2756 * 2757 * Patterns typically look something like 2758 * (uaddo A, B) 2759 * / \ 2760 * Carry Sum 2761 * | \ 2762 * | (addcarry *, 0, Z) 2763 * | / 2764 * \ Carry 2765 * | / 2766 * (addcarry X, *, *) 2767 * 2768 * But numerous variation exist. Our goal is to identify A, B, X and Z and 2769 * produce a combine with a single path for carry propagation. 2770 */ 2771 static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, 2772 SDValue X, SDValue Carry0, SDValue Carry1, 2773 SDNode *N) { 2774 if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1) 2775 return SDValue(); 2776 if (Carry1.getOpcode() != ISD::UADDO) 2777 return SDValue(); 2778 2779 SDValue Z; 2780 2781 /** 2782 * First look for a suitable Z. It will present itself in the form of 2783 * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true 2784 */ 2785 if (Carry0.getOpcode() == ISD::ADDCARRY && 2786 isNullConstant(Carry0.getOperand(1))) { 2787 Z = Carry0.getOperand(2); 2788 } else if (Carry0.getOpcode() == ISD::UADDO && 2789 isOneConstant(Carry0.getOperand(1))) { 2790 EVT VT = Combiner.getSetCCResultType(Carry0.getValueType()); 2791 Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT); 2792 } else { 2793 // We couldn't find a suitable Z. 2794 return SDValue(); 2795 } 2796 2797 2798 auto cancelDiamond = [&](SDValue A,SDValue B) { 2799 SDLoc DL(N); 2800 SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z); 2801 Combiner.AddToWorklist(NewY.getNode()); 2802 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X, 2803 DAG.getConstant(0, DL, X.getValueType()), 2804 NewY.getValue(1)); 2805 }; 2806 2807 /** 2808 * (uaddo A, B) 2809 * | 2810 * Sum 2811 * | 2812 * (addcarry *, 0, Z) 2813 */ 2814 if (Carry0.getOperand(0) == Carry1.getValue(0)) { 2815 return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1)); 2816 } 2817 2818 /** 2819 * (addcarry A, 0, Z) 2820 * | 2821 * Sum 2822 * | 2823 * (uaddo *, B) 2824 */ 2825 if (Carry1.getOperand(0) == Carry0.getValue(0)) { 2826 return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1)); 2827 } 2828 2829 if (Carry1.getOperand(1) == Carry0.getValue(0)) { 2830 return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0)); 2831 } 2832 2833 return SDValue(); 2834 } 2835 2836 // If we are facing some sort of diamond carry/borrow in/out pattern try to 2837 // match patterns like: 2838 // 2839 // (uaddo A, B) CarryIn 2840 // | \ | 2841 // | \ | 2842 // PartialSum PartialCarryOutX / 2843 // | | / 2844 // | ____|____________/ 2845 // | / | 2846 // (uaddo *, *) \________ 2847 // | \ \ 2848 // | \ | 2849 // | PartialCarryOutY | 2850 // | \ | 2851 // | \ / 2852 // AddCarrySum | ______/ 2853 // | / 2854 // CarryOut = (or *, *) 2855 // 2856 // And generate ADDCARRY (or SUBCARRY) with two result values: 2857 // 2858 // {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn) 2859 // 2860 // Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with 2861 // a single path for carry/borrow out propagation: 2862 static SDValue combineCarryDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, 2863 const TargetLowering &TLI, SDValue Carry0, 2864 SDValue Carry1, SDNode *N) { 2865 if (Carry0.getResNo() != 1 || Carry1.getResNo() != 1) 2866 return SDValue(); 2867 unsigned Opcode = Carry0.getOpcode(); 2868 if (Opcode != Carry1.getOpcode()) 2869 return SDValue(); 2870 if (Opcode != ISD::UADDO && Opcode != ISD::USUBO) 2871 return SDValue(); 2872 2873 // Canonicalize the add/sub of A and B as Carry0 and the add/sub of the 2874 // carry/borrow in as Carry1. (The top and middle uaddo nodes respectively in 2875 // the above ASCII art.) 2876 if (Carry1.getOperand(0) != Carry0.getValue(0) && 2877 Carry1.getOperand(1) != Carry0.getValue(0)) 2878 std::swap(Carry0, Carry1); 2879 if (Carry1.getOperand(0) != Carry0.getValue(0) && 2880 Carry1.getOperand(1) != Carry0.getValue(0)) 2881 return SDValue(); 2882 2883 // The carry in value must be on the righthand side for subtraction. 2884 unsigned CarryInOperandNum = 2885 Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0; 2886 if (Opcode == ISD::USUBO && CarryInOperandNum != 1) 2887 return SDValue(); 2888 SDValue CarryIn = Carry1.getOperand(CarryInOperandNum); 2889 2890 unsigned NewOp = Opcode == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY; 2891 if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType())) 2892 return SDValue(); 2893 2894 // Verify that the carry/borrow in is plausibly a carry/borrow bit. 2895 // TODO: make getAsCarry() aware of how partial carries are merged. 2896 if (CarryIn.getOpcode() != ISD::ZERO_EXTEND) 2897 return SDValue(); 2898 CarryIn = CarryIn.getOperand(0); 2899 if (CarryIn.getValueType() != MVT::i1) 2900 return SDValue(); 2901 2902 SDLoc DL(N); 2903 SDValue Merged = 2904 DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0), 2905 Carry0.getOperand(1), CarryIn); 2906 2907 // Please note that because we have proven that the result of the UADDO/USUBO 2908 // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can 2909 // therefore prove that if the first UADDO/USUBO overflows, the second 2910 // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the 2911 // maximum value. 2912 // 2913 // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry 2914 // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow) 2915 // 2916 // This is important because it means that OR and XOR can be used to merge 2917 // carry flags; and that AND can return a constant zero. 2918 // 2919 // TODO: match other operations that can merge flags (ADD, etc) 2920 DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0)); 2921 if (N->getOpcode() == ISD::AND) 2922 return DAG.getConstant(0, DL, MVT::i1); 2923 return Merged.getValue(1); 2924 } 2925 2926 SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, 2927 SDNode *N) { 2928 // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry. 2929 if (isBitwiseNot(N0)) 2930 if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) { 2931 SDLoc DL(N); 2932 SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1, 2933 N0.getOperand(0), NotC); 2934 return CombineTo(N, Sub, 2935 flipBoolean(Sub.getValue(1), DL, DAG, TLI)); 2936 } 2937 2938 // Iff the flag result is dead: 2939 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry) 2940 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo 2941 // or the dependency between the instructions. 2942 if ((N0.getOpcode() == ISD::ADD || 2943 (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 && 2944 N0.getValue(1) != CarryIn)) && 2945 isNullConstant(N1) && !N->hasAnyUseOfValue(1)) 2946 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), 2947 N0.getOperand(0), N0.getOperand(1), CarryIn); 2948 2949 /** 2950 * When one of the addcarry argument is itself a carry, we may be facing 2951 * a diamond carry propagation. In which case we try to transform the DAG 2952 * to ensure linear carry propagation if that is possible. 2953 */ 2954 if (auto Y = getAsCarry(TLI, N1)) { 2955 // Because both are carries, Y and Z can be swapped. 2956 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N)) 2957 return R; 2958 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N)) 2959 return R; 2960 } 2961 2962 return SDValue(); 2963 } 2964 2965 // Since it may not be valid to emit a fold to zero for vector initializers 2966 // check if we can before folding. 2967 static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, 2968 SelectionDAG &DAG, bool LegalOperations) { 2969 if (!VT.isVector()) 2970 return DAG.getConstant(0, DL, VT); 2971 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 2972 return DAG.getConstant(0, DL, VT); 2973 return SDValue(); 2974 } 2975 2976 SDValue DAGCombiner::visitSUB(SDNode *N) { 2977 SDValue N0 = N->getOperand(0); 2978 SDValue N1 = N->getOperand(1); 2979 EVT VT = N0.getValueType(); 2980 SDLoc DL(N); 2981 2982 // fold vector ops 2983 if (VT.isVector()) { 2984 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2985 return FoldedVOp; 2986 2987 // fold (sub x, 0) -> x, vector edition 2988 if (ISD::isBuildVectorAllZeros(N1.getNode())) 2989 return N0; 2990 } 2991 2992 // fold (sub x, x) -> 0 2993 // FIXME: Refactor this and xor and other similar operations together. 2994 if (N0 == N1) 2995 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 2996 2997 // fold (sub c1, c2) -> c3 2998 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1})) 2999 return C; 3000 3001 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3002 return NewSel; 3003 3004 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 3005 3006 // fold (sub x, c) -> (add x, -c) 3007 if (N1C) { 3008 return DAG.getNode(ISD::ADD, DL, VT, N0, 3009 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 3010 } 3011 3012 if (isNullOrNullSplat(N0)) { 3013 unsigned BitWidth = VT.getScalarSizeInBits(); 3014 // Right-shifting everything out but the sign bit followed by negation is 3015 // the same as flipping arithmetic/logical shift type without the negation: 3016 // -(X >>u 31) -> (X >>s 31) 3017 // -(X >>s 31) -> (X >>u 31) 3018 if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { 3019 ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); 3020 if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) { 3021 auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; 3022 if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) 3023 return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); 3024 } 3025 } 3026 3027 // 0 - X --> 0 if the sub is NUW. 3028 if (N->getFlags().hasNoUnsignedWrap()) 3029 return N0; 3030 3031 if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { 3032 // N1 is either 0 or the minimum signed value. If the sub is NSW, then 3033 // N1 must be 0 because negating the minimum signed value is undefined. 3034 if (N->getFlags().hasNoSignedWrap()) 3035 return N0; 3036 3037 // 0 - X --> X if X is 0 or the minimum signed value. 3038 return N1; 3039 } 3040 } 3041 3042 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) 3043 if (isAllOnesOrAllOnesSplat(N0)) 3044 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 3045 3046 // fold (A - (0-B)) -> A+B 3047 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) 3048 return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1)); 3049 3050 // fold A-(A-B) -> B 3051 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) 3052 return N1.getOperand(1); 3053 3054 // fold (A+B)-A -> B 3055 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) 3056 return N0.getOperand(1); 3057 3058 // fold (A+B)-B -> A 3059 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) 3060 return N0.getOperand(0); 3061 3062 // fold (A+C1)-C2 -> A+(C1-C2) 3063 if (N0.getOpcode() == ISD::ADD && 3064 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3065 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3066 SDValue NewC = 3067 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(1), N1}); 3068 assert(NewC && "Constant folding failed"); 3069 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC); 3070 } 3071 3072 // fold C2-(A+C1) -> (C2-C1)-A 3073 if (N1.getOpcode() == ISD::ADD) { 3074 SDValue N11 = N1.getOperand(1); 3075 if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && 3076 isConstantOrConstantVector(N11, /* NoOpaques */ true)) { 3077 SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11}); 3078 assert(NewC && "Constant folding failed"); 3079 return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); 3080 } 3081 } 3082 3083 // fold (A-C1)-C2 -> A-(C1+C2) 3084 if (N0.getOpcode() == ISD::SUB && 3085 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3086 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3087 SDValue NewC = 3088 DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0.getOperand(1), N1}); 3089 assert(NewC && "Constant folding failed"); 3090 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC); 3091 } 3092 3093 // fold (c1-A)-c2 -> (c1-c2)-A 3094 if (N0.getOpcode() == ISD::SUB && 3095 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3096 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) { 3097 SDValue NewC = 3098 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(0), N1}); 3099 assert(NewC && "Constant folding failed"); 3100 return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1)); 3101 } 3102 3103 // fold ((A+(B+or-C))-B) -> A+or-C 3104 if (N0.getOpcode() == ISD::ADD && 3105 (N0.getOperand(1).getOpcode() == ISD::SUB || 3106 N0.getOperand(1).getOpcode() == ISD::ADD) && 3107 N0.getOperand(1).getOperand(0) == N1) 3108 return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), 3109 N0.getOperand(1).getOperand(1)); 3110 3111 // fold ((A+(C+B))-B) -> A+C 3112 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && 3113 N0.getOperand(1).getOperand(1) == N1) 3114 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), 3115 N0.getOperand(1).getOperand(0)); 3116 3117 // fold ((A-(B-C))-C) -> A-B 3118 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && 3119 N0.getOperand(1).getOperand(1) == N1) 3120 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 3121 N0.getOperand(1).getOperand(0)); 3122 3123 // fold (A-(B-C)) -> A+(C-B) 3124 if (N1.getOpcode() == ISD::SUB && N1.hasOneUse()) 3125 return DAG.getNode(ISD::ADD, DL, VT, N0, 3126 DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1), 3127 N1.getOperand(0))); 3128 3129 // A - (A & B) -> A & (~B) 3130 if (N1.getOpcode() == ISD::AND) { 3131 SDValue A = N1.getOperand(0); 3132 SDValue B = N1.getOperand(1); 3133 if (A != N0) 3134 std::swap(A, B); 3135 if (A == N0 && 3136 (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true))) { 3137 SDValue InvB = 3138 DAG.getNode(ISD::XOR, DL, VT, B, DAG.getAllOnesConstant(DL, VT)); 3139 return DAG.getNode(ISD::AND, DL, VT, A, InvB); 3140 } 3141 } 3142 3143 // fold (X - (-Y * Z)) -> (X + (Y * Z)) 3144 if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) { 3145 if (N1.getOperand(0).getOpcode() == ISD::SUB && 3146 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) { 3147 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, 3148 N1.getOperand(0).getOperand(1), 3149 N1.getOperand(1)); 3150 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); 3151 } 3152 if (N1.getOperand(1).getOpcode() == ISD::SUB && 3153 isNullOrNullSplat(N1.getOperand(1).getOperand(0))) { 3154 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, 3155 N1.getOperand(0), 3156 N1.getOperand(1).getOperand(1)); 3157 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); 3158 } 3159 } 3160 3161 // If either operand of a sub is undef, the result is undef 3162 if (N0.isUndef()) 3163 return N0; 3164 if (N1.isUndef()) 3165 return N1; 3166 3167 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) 3168 return V; 3169 3170 if (SDValue V = foldAddSubOfSignBit(N, DAG)) 3171 return V; 3172 3173 if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N))) 3174 return V; 3175 3176 // (x - y) - 1 -> add (xor y, -1), x 3177 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) { 3178 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), 3179 DAG.getAllOnesConstant(DL, VT)); 3180 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); 3181 } 3182 3183 // Look for: 3184 // sub y, (xor x, -1) 3185 // And if the target does not like this form then turn into: 3186 // add (add x, y), 1 3187 if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) { 3188 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0)); 3189 return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT)); 3190 } 3191 3192 // Hoist one-use addition by non-opaque constant: 3193 // (x + C) - y -> (x - y) + C 3194 if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD && 3195 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 3196 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); 3197 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1)); 3198 } 3199 // y - (x + C) -> (y - x) - C 3200 if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD && 3201 isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) { 3202 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0)); 3203 return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1)); 3204 } 3205 // (x - C) - y -> (x - y) - C 3206 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. 3207 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 3208 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 3209 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); 3210 return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1)); 3211 } 3212 // (C - x) - y -> C - (x + y) 3213 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 3214 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { 3215 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1); 3216 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add); 3217 } 3218 3219 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1' 3220 // rather than 'sub 0/1' (the sext should get folded). 3221 // sub X, (zext i1 Y) --> add X, (sext i1 Y) 3222 if (N1.getOpcode() == ISD::ZERO_EXTEND && 3223 N1.getOperand(0).getScalarValueSizeInBits() == 1 && 3224 TLI.getBooleanContents(VT) == 3225 TargetLowering::ZeroOrNegativeOneBooleanContent) { 3226 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0)); 3227 return DAG.getNode(ISD::ADD, DL, VT, N0, SExt); 3228 } 3229 3230 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X) 3231 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { 3232 if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) { 3233 SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1); 3234 SDValue S0 = N1.getOperand(0); 3235 if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) { 3236 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 3237 if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1))) 3238 if (C->getAPIntValue() == (OpSizeInBits - 1)) 3239 return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0); 3240 } 3241 } 3242 } 3243 3244 // If the relocation model supports it, consider symbol offsets. 3245 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 3246 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { 3247 // fold (sub Sym, c) -> Sym-c 3248 if (N1C && GA->getOpcode() == ISD::GlobalAddress) 3249 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 3250 GA->getOffset() - 3251 (uint64_t)N1C->getSExtValue()); 3252 // fold (sub Sym+c1, Sym+c2) -> c1-c2 3253 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) 3254 if (GA->getGlobal() == GB->getGlobal()) 3255 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), 3256 DL, VT); 3257 } 3258 3259 // sub X, (sextinreg Y i1) -> add X, (and Y 1) 3260 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 3261 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 3262 if (TN->getVT() == MVT::i1) { 3263 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 3264 DAG.getConstant(1, DL, VT)); 3265 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); 3266 } 3267 } 3268 3269 // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C)) 3270 if (N1.getOpcode() == ISD::VSCALE) { 3271 APInt IntVal = N1.getConstantOperandAPInt(0); 3272 return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal)); 3273 } 3274 3275 // Prefer an add for more folding potential and possibly better codegen: 3276 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1) 3277 if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) { 3278 SDValue ShAmt = N1.getOperand(1); 3279 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); 3280 if (ShAmtC && 3281 ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) { 3282 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt); 3283 return DAG.getNode(ISD::ADD, DL, VT, N0, SRA); 3284 } 3285 } 3286 3287 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) { 3288 // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry) 3289 if (SDValue Carry = getAsCarry(TLI, N0)) { 3290 SDValue X = N1; 3291 SDValue Zero = DAG.getConstant(0, DL, VT); 3292 SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X); 3293 return DAG.getNode(ISD::ADDCARRY, DL, 3294 DAG.getVTList(VT, Carry.getValueType()), NegX, Zero, 3295 Carry); 3296 } 3297 } 3298 3299 return SDValue(); 3300 } 3301 3302 SDValue DAGCombiner::visitSUBSAT(SDNode *N) { 3303 SDValue N0 = N->getOperand(0); 3304 SDValue N1 = N->getOperand(1); 3305 EVT VT = N0.getValueType(); 3306 SDLoc DL(N); 3307 3308 // fold vector ops 3309 if (VT.isVector()) { 3310 // TODO SimplifyVBinOp 3311 3312 // fold (sub_sat x, 0) -> x, vector edition 3313 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3314 return N0; 3315 } 3316 3317 // fold (sub_sat x, undef) -> 0 3318 if (N0.isUndef() || N1.isUndef()) 3319 return DAG.getConstant(0, DL, VT); 3320 3321 // fold (sub_sat x, x) -> 0 3322 if (N0 == N1) 3323 return DAG.getConstant(0, DL, VT); 3324 3325 // fold (sub_sat c1, c2) -> c3 3326 if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1})) 3327 return C; 3328 3329 // fold (sub_sat x, 0) -> x 3330 if (isNullConstant(N1)) 3331 return N0; 3332 3333 return SDValue(); 3334 } 3335 3336 SDValue DAGCombiner::visitSUBC(SDNode *N) { 3337 SDValue N0 = N->getOperand(0); 3338 SDValue N1 = N->getOperand(1); 3339 EVT VT = N0.getValueType(); 3340 SDLoc DL(N); 3341 3342 // If the flag result is dead, turn this into an SUB. 3343 if (!N->hasAnyUseOfValue(1)) 3344 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 3345 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3346 3347 // fold (subc x, x) -> 0 + no borrow 3348 if (N0 == N1) 3349 return CombineTo(N, DAG.getConstant(0, DL, VT), 3350 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3351 3352 // fold (subc x, 0) -> x + no borrow 3353 if (isNullConstant(N1)) 3354 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3355 3356 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow 3357 if (isAllOnesConstant(N0)) 3358 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 3359 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3360 3361 return SDValue(); 3362 } 3363 3364 SDValue DAGCombiner::visitSUBO(SDNode *N) { 3365 SDValue N0 = N->getOperand(0); 3366 SDValue N1 = N->getOperand(1); 3367 EVT VT = N0.getValueType(); 3368 bool IsSigned = (ISD::SSUBO == N->getOpcode()); 3369 3370 EVT CarryVT = N->getValueType(1); 3371 SDLoc DL(N); 3372 3373 // If the flag result is dead, turn this into an SUB. 3374 if (!N->hasAnyUseOfValue(1)) 3375 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 3376 DAG.getUNDEF(CarryVT)); 3377 3378 // fold (subo x, x) -> 0 + no borrow 3379 if (N0 == N1) 3380 return CombineTo(N, DAG.getConstant(0, DL, VT), 3381 DAG.getConstant(0, DL, CarryVT)); 3382 3383 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 3384 3385 // fold (subox, c) -> (addo x, -c) 3386 if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) { 3387 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, 3388 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 3389 } 3390 3391 // fold (subo x, 0) -> x + no borrow 3392 if (isNullOrNullSplat(N1)) 3393 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); 3394 3395 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow 3396 if (!IsSigned && isAllOnesOrAllOnesSplat(N0)) 3397 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 3398 DAG.getConstant(0, DL, CarryVT)); 3399 3400 return SDValue(); 3401 } 3402 3403 SDValue DAGCombiner::visitSUBE(SDNode *N) { 3404 SDValue N0 = N->getOperand(0); 3405 SDValue N1 = N->getOperand(1); 3406 SDValue CarryIn = N->getOperand(2); 3407 3408 // fold (sube x, y, false) -> (subc x, y) 3409 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 3410 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); 3411 3412 return SDValue(); 3413 } 3414 3415 SDValue DAGCombiner::visitSUBCARRY(SDNode *N) { 3416 SDValue N0 = N->getOperand(0); 3417 SDValue N1 = N->getOperand(1); 3418 SDValue CarryIn = N->getOperand(2); 3419 3420 // fold (subcarry x, y, false) -> (usubo x, y) 3421 if (isNullConstant(CarryIn)) { 3422 if (!LegalOperations || 3423 TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0))) 3424 return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1); 3425 } 3426 3427 return SDValue(); 3428 } 3429 3430 // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and 3431 // UMULFIXSAT here. 3432 SDValue DAGCombiner::visitMULFIX(SDNode *N) { 3433 SDValue N0 = N->getOperand(0); 3434 SDValue N1 = N->getOperand(1); 3435 SDValue Scale = N->getOperand(2); 3436 EVT VT = N0.getValueType(); 3437 3438 // fold (mulfix x, undef, scale) -> 0 3439 if (N0.isUndef() || N1.isUndef()) 3440 return DAG.getConstant(0, SDLoc(N), VT); 3441 3442 // Canonicalize constant to RHS (vector doesn't have to splat) 3443 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3444 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3445 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale); 3446 3447 // fold (mulfix x, 0, scale) -> 0 3448 if (isNullConstant(N1)) 3449 return DAG.getConstant(0, SDLoc(N), VT); 3450 3451 return SDValue(); 3452 } 3453 3454 SDValue DAGCombiner::visitMUL(SDNode *N) { 3455 SDValue N0 = N->getOperand(0); 3456 SDValue N1 = N->getOperand(1); 3457 EVT VT = N0.getValueType(); 3458 3459 // fold (mul x, undef) -> 0 3460 if (N0.isUndef() || N1.isUndef()) 3461 return DAG.getConstant(0, SDLoc(N), VT); 3462 3463 bool N1IsConst = false; 3464 bool N1IsOpaqueConst = false; 3465 APInt ConstValue1; 3466 3467 // fold vector ops 3468 if (VT.isVector()) { 3469 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3470 return FoldedVOp; 3471 3472 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); 3473 assert((!N1IsConst || 3474 ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && 3475 "Splat APInt should be element width"); 3476 } else { 3477 N1IsConst = isa<ConstantSDNode>(N1); 3478 if (N1IsConst) { 3479 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); 3480 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); 3481 } 3482 } 3483 3484 // fold (mul c1, c2) -> c1*c2 3485 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, {N0, N1})) 3486 return C; 3487 3488 // canonicalize constant to RHS (vector doesn't have to splat) 3489 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3490 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3491 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); 3492 3493 // fold (mul x, 0) -> 0 3494 if (N1IsConst && ConstValue1.isNullValue()) 3495 return N1; 3496 3497 // fold (mul x, 1) -> x 3498 if (N1IsConst && ConstValue1.isOneValue()) 3499 return N0; 3500 3501 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3502 return NewSel; 3503 3504 // fold (mul x, -1) -> 0-x 3505 if (N1IsConst && ConstValue1.isAllOnesValue()) { 3506 SDLoc DL(N); 3507 return DAG.getNode(ISD::SUB, DL, VT, 3508 DAG.getConstant(0, DL, VT), N0); 3509 } 3510 3511 // fold (mul x, (1 << c)) -> x << c 3512 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 3513 DAG.isKnownToBeAPowerOfTwo(N1) && 3514 (!VT.isVector() || Level <= AfterLegalizeVectorOps)) { 3515 SDLoc DL(N); 3516 SDValue LogBase2 = BuildLogBase2(N1, DL); 3517 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 3518 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); 3519 return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc); 3520 } 3521 3522 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c 3523 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) { 3524 unsigned Log2Val = (-ConstValue1).logBase2(); 3525 SDLoc DL(N); 3526 // FIXME: If the input is something that is easily negated (e.g. a 3527 // single-use add), we should put the negate there. 3528 return DAG.getNode(ISD::SUB, DL, VT, 3529 DAG.getConstant(0, DL, VT), 3530 DAG.getNode(ISD::SHL, DL, VT, N0, 3531 DAG.getConstant(Log2Val, DL, 3532 getShiftAmountTy(N0.getValueType())))); 3533 } 3534 3535 // Try to transform multiply-by-(power-of-2 +/- 1) into shift and add/sub. 3536 // mul x, (2^N + 1) --> add (shl x, N), x 3537 // mul x, (2^N - 1) --> sub (shl x, N), x 3538 // Examples: x * 33 --> (x << 5) + x 3539 // x * 15 --> (x << 4) - x 3540 // x * -33 --> -((x << 5) + x) 3541 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4) 3542 if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) { 3543 // TODO: We could handle more general decomposition of any constant by 3544 // having the target set a limit on number of ops and making a 3545 // callback to determine that sequence (similar to sqrt expansion). 3546 unsigned MathOp = ISD::DELETED_NODE; 3547 APInt MulC = ConstValue1.abs(); 3548 if ((MulC - 1).isPowerOf2()) 3549 MathOp = ISD::ADD; 3550 else if ((MulC + 1).isPowerOf2()) 3551 MathOp = ISD::SUB; 3552 3553 if (MathOp != ISD::DELETED_NODE) { 3554 unsigned ShAmt = 3555 MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2(); 3556 assert(ShAmt < VT.getScalarSizeInBits() && 3557 "multiply-by-constant generated out of bounds shift"); 3558 SDLoc DL(N); 3559 SDValue Shl = 3560 DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT)); 3561 SDValue R = DAG.getNode(MathOp, DL, VT, Shl, N0); 3562 if (ConstValue1.isNegative()) 3563 R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R); 3564 return R; 3565 } 3566 } 3567 3568 // (mul (shl X, c1), c2) -> (mul X, c2 << c1) 3569 if (N0.getOpcode() == ISD::SHL && 3570 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3571 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3572 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); 3573 if (isConstantOrConstantVector(C3)) 3574 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); 3575 } 3576 3577 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one 3578 // use. 3579 { 3580 SDValue Sh(nullptr, 0), Y(nullptr, 0); 3581 3582 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). 3583 if (N0.getOpcode() == ISD::SHL && 3584 isConstantOrConstantVector(N0.getOperand(1)) && 3585 N0.getNode()->hasOneUse()) { 3586 Sh = N0; Y = N1; 3587 } else if (N1.getOpcode() == ISD::SHL && 3588 isConstantOrConstantVector(N1.getOperand(1)) && 3589 N1.getNode()->hasOneUse()) { 3590 Sh = N1; Y = N0; 3591 } 3592 3593 if (Sh.getNode()) { 3594 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); 3595 return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); 3596 } 3597 } 3598 3599 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) 3600 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 3601 N0.getOpcode() == ISD::ADD && 3602 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && 3603 isMulAddWithConstProfitable(N, N0, N1)) 3604 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 3605 DAG.getNode(ISD::MUL, SDLoc(N0), VT, 3606 N0.getOperand(0), N1), 3607 DAG.getNode(ISD::MUL, SDLoc(N1), VT, 3608 N0.getOperand(1), N1)); 3609 3610 // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)). 3611 if (N0.getOpcode() == ISD::VSCALE) 3612 if (ConstantSDNode *NC1 = isConstOrConstSplat(N1)) { 3613 APInt C0 = N0.getConstantOperandAPInt(0); 3614 APInt C1 = NC1->getAPIntValue(); 3615 return DAG.getVScale(SDLoc(N), VT, C0 * C1); 3616 } 3617 3618 // reassociate mul 3619 if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags())) 3620 return RMUL; 3621 3622 return SDValue(); 3623 } 3624 3625 /// Return true if divmod libcall is available. 3626 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 3627 const TargetLowering &TLI) { 3628 RTLIB::Libcall LC; 3629 EVT NodeType = Node->getValueType(0); 3630 if (!NodeType.isSimple()) 3631 return false; 3632 switch (NodeType.getSimpleVT().SimpleTy) { 3633 default: return false; // No libcall for vector types. 3634 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 3635 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 3636 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 3637 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 3638 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 3639 } 3640 3641 return TLI.getLibcallName(LC) != nullptr; 3642 } 3643 3644 /// Issue divrem if both quotient and remainder are needed. 3645 SDValue DAGCombiner::useDivRem(SDNode *Node) { 3646 if (Node->use_empty()) 3647 return SDValue(); // This is a dead node, leave it alone. 3648 3649 unsigned Opcode = Node->getOpcode(); 3650 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); 3651 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3652 3653 // DivMod lib calls can still work on non-legal types if using lib-calls. 3654 EVT VT = Node->getValueType(0); 3655 if (VT.isVector() || !VT.isInteger()) 3656 return SDValue(); 3657 3658 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) 3659 return SDValue(); 3660 3661 // If DIVREM is going to get expanded into a libcall, 3662 // but there is no libcall available, then don't combine. 3663 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && 3664 !isDivRemLibcallAvailable(Node, isSigned, TLI)) 3665 return SDValue(); 3666 3667 // If div is legal, it's better to do the normal expansion 3668 unsigned OtherOpcode = 0; 3669 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { 3670 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; 3671 if (TLI.isOperationLegalOrCustom(Opcode, VT)) 3672 return SDValue(); 3673 } else { 3674 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 3675 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) 3676 return SDValue(); 3677 } 3678 3679 SDValue Op0 = Node->getOperand(0); 3680 SDValue Op1 = Node->getOperand(1); 3681 SDValue combined; 3682 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 3683 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 3684 SDNode *User = *UI; 3685 if (User == Node || User->getOpcode() == ISD::DELETED_NODE || 3686 User->use_empty()) 3687 continue; 3688 // Convert the other matching node(s), too; 3689 // otherwise, the DIVREM may get target-legalized into something 3690 // target-specific that we won't be able to recognize. 3691 unsigned UserOpc = User->getOpcode(); 3692 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && 3693 User->getOperand(0) == Op0 && 3694 User->getOperand(1) == Op1) { 3695 if (!combined) { 3696 if (UserOpc == OtherOpcode) { 3697 SDVTList VTs = DAG.getVTList(VT, VT); 3698 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); 3699 } else if (UserOpc == DivRemOpc) { 3700 combined = SDValue(User, 0); 3701 } else { 3702 assert(UserOpc == Opcode); 3703 continue; 3704 } 3705 } 3706 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) 3707 CombineTo(User, combined); 3708 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) 3709 CombineTo(User, combined.getValue(1)); 3710 } 3711 } 3712 return combined; 3713 } 3714 3715 static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { 3716 SDValue N0 = N->getOperand(0); 3717 SDValue N1 = N->getOperand(1); 3718 EVT VT = N->getValueType(0); 3719 SDLoc DL(N); 3720 3721 unsigned Opc = N->getOpcode(); 3722 bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc); 3723 ConstantSDNode *N1C = isConstOrConstSplat(N1); 3724 3725 // X / undef -> undef 3726 // X % undef -> undef 3727 // X / 0 -> undef 3728 // X % 0 -> undef 3729 // NOTE: This includes vectors where any divisor element is zero/undef. 3730 if (DAG.isUndef(Opc, {N0, N1})) 3731 return DAG.getUNDEF(VT); 3732 3733 // undef / X -> 0 3734 // undef % X -> 0 3735 if (N0.isUndef()) 3736 return DAG.getConstant(0, DL, VT); 3737 3738 // 0 / X -> 0 3739 // 0 % X -> 0 3740 ConstantSDNode *N0C = isConstOrConstSplat(N0); 3741 if (N0C && N0C->isNullValue()) 3742 return N0; 3743 3744 // X / X -> 1 3745 // X % X -> 0 3746 if (N0 == N1) 3747 return DAG.getConstant(IsDiv ? 1 : 0, DL, VT); 3748 3749 // X / 1 -> X 3750 // X % 1 -> 0 3751 // If this is a boolean op (single-bit element type), we can't have 3752 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 3753 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume 3754 // it's a 1. 3755 if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1)) 3756 return IsDiv ? N0 : DAG.getConstant(0, DL, VT); 3757 3758 return SDValue(); 3759 } 3760 3761 SDValue DAGCombiner::visitSDIV(SDNode *N) { 3762 SDValue N0 = N->getOperand(0); 3763 SDValue N1 = N->getOperand(1); 3764 EVT VT = N->getValueType(0); 3765 EVT CCVT = getSetCCResultType(VT); 3766 3767 // fold vector ops 3768 if (VT.isVector()) 3769 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3770 return FoldedVOp; 3771 3772 SDLoc DL(N); 3773 3774 // fold (sdiv c1, c2) -> c1/c2 3775 ConstantSDNode *N1C = isConstOrConstSplat(N1); 3776 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1})) 3777 return C; 3778 3779 // fold (sdiv X, -1) -> 0-X 3780 if (N1C && N1C->isAllOnesValue()) 3781 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); 3782 3783 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0) 3784 if (N1C && N1C->getAPIntValue().isMinSignedValue()) 3785 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 3786 DAG.getConstant(1, DL, VT), 3787 DAG.getConstant(0, DL, VT)); 3788 3789 if (SDValue V = simplifyDivRem(N, DAG)) 3790 return V; 3791 3792 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3793 return NewSel; 3794 3795 // If we know the sign bits of both operands are zero, strength reduce to a 3796 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 3797 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 3798 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); 3799 3800 if (SDValue V = visitSDIVLike(N0, N1, N)) { 3801 // If the corresponding remainder node exists, update its users with 3802 // (Dividend - (Quotient * Divisor). 3803 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(), 3804 { N0, N1 })) { 3805 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); 3806 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 3807 AddToWorklist(Mul.getNode()); 3808 AddToWorklist(Sub.getNode()); 3809 CombineTo(RemNode, Sub); 3810 } 3811 return V; 3812 } 3813 3814 // sdiv, srem -> sdivrem 3815 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is 3816 // true. Otherwise, we break the simplification logic in visitREM(). 3817 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3818 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 3819 if (SDValue DivRem = useDivRem(N)) 3820 return DivRem; 3821 3822 return SDValue(); 3823 } 3824 3825 SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) { 3826 SDLoc DL(N); 3827 EVT VT = N->getValueType(0); 3828 EVT CCVT = getSetCCResultType(VT); 3829 unsigned BitWidth = VT.getScalarSizeInBits(); 3830 3831 // Helper for determining whether a value is a power-2 constant scalar or a 3832 // vector of such elements. 3833 auto IsPowerOfTwo = [](ConstantSDNode *C) { 3834 if (C->isNullValue() || C->isOpaque()) 3835 return false; 3836 if (C->getAPIntValue().isPowerOf2()) 3837 return true; 3838 if ((-C->getAPIntValue()).isPowerOf2()) 3839 return true; 3840 return false; 3841 }; 3842 3843 // fold (sdiv X, pow2) -> simple ops after legalize 3844 // FIXME: We check for the exact bit here because the generic lowering gives 3845 // better results in that case. The target-specific lowering should learn how 3846 // to handle exact sdivs efficiently. 3847 if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) { 3848 // Target-specific implementation of sdiv x, pow2. 3849 if (SDValue Res = BuildSDIVPow2(N)) 3850 return Res; 3851 3852 // Create constants that are functions of the shift amount value. 3853 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); 3854 SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy); 3855 SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1); 3856 C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy); 3857 SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1); 3858 if (!isConstantOrConstantVector(Inexact)) 3859 return SDValue(); 3860 3861 // Splat the sign bit into the register 3862 SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0, 3863 DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy)); 3864 AddToWorklist(Sign.getNode()); 3865 3866 // Add (N0 < 0) ? abs2 - 1 : 0; 3867 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact); 3868 AddToWorklist(Srl.getNode()); 3869 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl); 3870 AddToWorklist(Add.getNode()); 3871 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1); 3872 AddToWorklist(Sra.getNode()); 3873 3874 // Special case: (sdiv X, 1) -> X 3875 // Special Case: (sdiv X, -1) -> 0-X 3876 SDValue One = DAG.getConstant(1, DL, VT); 3877 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); 3878 SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ); 3879 SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ); 3880 SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes); 3881 Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra); 3882 3883 // If dividing by a positive value, we're done. Otherwise, the result must 3884 // be negated. 3885 SDValue Zero = DAG.getConstant(0, DL, VT); 3886 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra); 3887 3888 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding. 3889 SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT); 3890 SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra); 3891 return Res; 3892 } 3893 3894 // If integer divide is expensive and we satisfy the requirements, emit an 3895 // alternate sequence. Targets may check function attributes for size/speed 3896 // trade-offs. 3897 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3898 if (isConstantOrConstantVector(N1) && 3899 !TLI.isIntDivCheap(N->getValueType(0), Attr)) 3900 if (SDValue Op = BuildSDIV(N)) 3901 return Op; 3902 3903 return SDValue(); 3904 } 3905 3906 SDValue DAGCombiner::visitUDIV(SDNode *N) { 3907 SDValue N0 = N->getOperand(0); 3908 SDValue N1 = N->getOperand(1); 3909 EVT VT = N->getValueType(0); 3910 EVT CCVT = getSetCCResultType(VT); 3911 3912 // fold vector ops 3913 if (VT.isVector()) 3914 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3915 return FoldedVOp; 3916 3917 SDLoc DL(N); 3918 3919 // fold (udiv c1, c2) -> c1/c2 3920 ConstantSDNode *N1C = isConstOrConstSplat(N1); 3921 if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1})) 3922 return C; 3923 3924 // fold (udiv X, -1) -> select(X == -1, 1, 0) 3925 if (N1C && N1C->getAPIntValue().isAllOnesValue()) 3926 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 3927 DAG.getConstant(1, DL, VT), 3928 DAG.getConstant(0, DL, VT)); 3929 3930 if (SDValue V = simplifyDivRem(N, DAG)) 3931 return V; 3932 3933 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3934 return NewSel; 3935 3936 if (SDValue V = visitUDIVLike(N0, N1, N)) { 3937 // If the corresponding remainder node exists, update its users with 3938 // (Dividend - (Quotient * Divisor). 3939 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(), 3940 { N0, N1 })) { 3941 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); 3942 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 3943 AddToWorklist(Mul.getNode()); 3944 AddToWorklist(Sub.getNode()); 3945 CombineTo(RemNode, Sub); 3946 } 3947 return V; 3948 } 3949 3950 // sdiv, srem -> sdivrem 3951 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is 3952 // true. Otherwise, we break the simplification logic in visitREM(). 3953 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3954 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 3955 if (SDValue DivRem = useDivRem(N)) 3956 return DivRem; 3957 3958 return SDValue(); 3959 } 3960 3961 SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) { 3962 SDLoc DL(N); 3963 EVT VT = N->getValueType(0); 3964 3965 // fold (udiv x, (1 << c)) -> x >>u c 3966 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 3967 DAG.isKnownToBeAPowerOfTwo(N1)) { 3968 SDValue LogBase2 = BuildLogBase2(N1, DL); 3969 AddToWorklist(LogBase2.getNode()); 3970 3971 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 3972 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); 3973 AddToWorklist(Trunc.getNode()); 3974 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); 3975 } 3976 3977 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 3978 if (N1.getOpcode() == ISD::SHL) { 3979 SDValue N10 = N1.getOperand(0); 3980 if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) && 3981 DAG.isKnownToBeAPowerOfTwo(N10)) { 3982 SDValue LogBase2 = BuildLogBase2(N10, DL); 3983 AddToWorklist(LogBase2.getNode()); 3984 3985 EVT ADDVT = N1.getOperand(1).getValueType(); 3986 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); 3987 AddToWorklist(Trunc.getNode()); 3988 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); 3989 AddToWorklist(Add.getNode()); 3990 return DAG.getNode(ISD::SRL, DL, VT, N0, Add); 3991 } 3992 } 3993 3994 // fold (udiv x, c) -> alternate 3995 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3996 if (isConstantOrConstantVector(N1) && 3997 !TLI.isIntDivCheap(N->getValueType(0), Attr)) 3998 if (SDValue Op = BuildUDIV(N)) 3999 return Op; 4000 4001 return SDValue(); 4002 } 4003 4004 // handles ISD::SREM and ISD::UREM 4005 SDValue DAGCombiner::visitREM(SDNode *N) { 4006 unsigned Opcode = N->getOpcode(); 4007 SDValue N0 = N->getOperand(0); 4008 SDValue N1 = N->getOperand(1); 4009 EVT VT = N->getValueType(0); 4010 EVT CCVT = getSetCCResultType(VT); 4011 4012 bool isSigned = (Opcode == ISD::SREM); 4013 SDLoc DL(N); 4014 4015 // fold (rem c1, c2) -> c1%c2 4016 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4017 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) 4018 return C; 4019 4020 // fold (urem X, -1) -> select(X == -1, 0, x) 4021 if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue()) 4022 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4023 DAG.getConstant(0, DL, VT), N0); 4024 4025 if (SDValue V = simplifyDivRem(N, DAG)) 4026 return V; 4027 4028 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4029 return NewSel; 4030 4031 if (isSigned) { 4032 // If we know the sign bits of both operands are zero, strength reduce to a 4033 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 4034 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 4035 return DAG.getNode(ISD::UREM, DL, VT, N0, N1); 4036 } else { 4037 SDValue NegOne = DAG.getAllOnesConstant(DL, VT); 4038 if (DAG.isKnownToBeAPowerOfTwo(N1)) { 4039 // fold (urem x, pow2) -> (and x, pow2-1) 4040 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); 4041 AddToWorklist(Add.getNode()); 4042 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 4043 } 4044 if (N1.getOpcode() == ISD::SHL && 4045 DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { 4046 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) 4047 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); 4048 AddToWorklist(Add.getNode()); 4049 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 4050 } 4051 } 4052 4053 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4054 4055 // If X/C can be simplified by the division-by-constant logic, lower 4056 // X%C to the equivalent of X-X/C*C. 4057 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the 4058 // speculative DIV must not cause a DIVREM conversion. We guard against this 4059 // by skipping the simplification if isIntDivCheap(). When div is not cheap, 4060 // combine will not return a DIVREM. Regardless, checking cheapness here 4061 // makes sense since the simplification results in fatter code. 4062 if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) { 4063 SDValue OptimizedDiv = 4064 isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N); 4065 if (OptimizedDiv.getNode()) { 4066 // If the equivalent Div node also exists, update its users. 4067 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 4068 if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(), 4069 { N0, N1 })) 4070 CombineTo(DivNode, OptimizedDiv); 4071 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); 4072 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4073 AddToWorklist(OptimizedDiv.getNode()); 4074 AddToWorklist(Mul.getNode()); 4075 return Sub; 4076 } 4077 } 4078 4079 // sdiv, srem -> sdivrem 4080 if (SDValue DivRem = useDivRem(N)) 4081 return DivRem.getValue(1); 4082 4083 return SDValue(); 4084 } 4085 4086 SDValue DAGCombiner::visitMULHS(SDNode *N) { 4087 SDValue N0 = N->getOperand(0); 4088 SDValue N1 = N->getOperand(1); 4089 EVT VT = N->getValueType(0); 4090 SDLoc DL(N); 4091 4092 if (VT.isVector()) { 4093 // fold (mulhs x, 0) -> 0 4094 // do not return N0/N1, because undef node may exist. 4095 if (ISD::isBuildVectorAllZeros(N0.getNode()) || 4096 ISD::isBuildVectorAllZeros(N1.getNode())) 4097 return DAG.getConstant(0, DL, VT); 4098 } 4099 4100 // fold (mulhs x, 0) -> 0 4101 if (isNullConstant(N1)) 4102 return N1; 4103 // fold (mulhs x, 1) -> (sra x, size(x)-1) 4104 if (isOneConstant(N1)) 4105 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, 4106 DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL, 4107 getShiftAmountTy(N0.getValueType()))); 4108 4109 // fold (mulhs x, undef) -> 0 4110 if (N0.isUndef() || N1.isUndef()) 4111 return DAG.getConstant(0, DL, VT); 4112 4113 // If the type twice as wide is legal, transform the mulhs to a wider multiply 4114 // plus a shift. 4115 if (VT.isSimple() && !VT.isVector()) { 4116 MVT Simple = VT.getSimpleVT(); 4117 unsigned SimpleSize = Simple.getSizeInBits(); 4118 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4119 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4120 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); 4121 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); 4122 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 4123 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 4124 DAG.getConstant(SimpleSize, DL, 4125 getShiftAmountTy(N1.getValueType()))); 4126 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 4127 } 4128 } 4129 4130 return SDValue(); 4131 } 4132 4133 SDValue DAGCombiner::visitMULHU(SDNode *N) { 4134 SDValue N0 = N->getOperand(0); 4135 SDValue N1 = N->getOperand(1); 4136 EVT VT = N->getValueType(0); 4137 SDLoc DL(N); 4138 4139 if (VT.isVector()) { 4140 // fold (mulhu x, 0) -> 0 4141 // do not return N0/N1, because undef node may exist. 4142 if (ISD::isBuildVectorAllZeros(N0.getNode()) || 4143 ISD::isBuildVectorAllZeros(N1.getNode())) 4144 return DAG.getConstant(0, DL, VT); 4145 } 4146 4147 // fold (mulhu x, 0) -> 0 4148 if (isNullConstant(N1)) 4149 return N1; 4150 // fold (mulhu x, 1) -> 0 4151 if (isOneConstant(N1)) 4152 return DAG.getConstant(0, DL, N0.getValueType()); 4153 // fold (mulhu x, undef) -> 0 4154 if (N0.isUndef() || N1.isUndef()) 4155 return DAG.getConstant(0, DL, VT); 4156 4157 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c) 4158 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 4159 DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) { 4160 unsigned NumEltBits = VT.getScalarSizeInBits(); 4161 SDValue LogBase2 = BuildLogBase2(N1, DL); 4162 SDValue SRLAmt = DAG.getNode( 4163 ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2); 4164 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 4165 SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT); 4166 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); 4167 } 4168 4169 // If the type twice as wide is legal, transform the mulhu to a wider multiply 4170 // plus a shift. 4171 if (VT.isSimple() && !VT.isVector()) { 4172 MVT Simple = VT.getSimpleVT(); 4173 unsigned SimpleSize = Simple.getSizeInBits(); 4174 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4175 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4176 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); 4177 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); 4178 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 4179 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 4180 DAG.getConstant(SimpleSize, DL, 4181 getShiftAmountTy(N1.getValueType()))); 4182 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 4183 } 4184 } 4185 4186 return SDValue(); 4187 } 4188 4189 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp 4190 /// give the opcodes for the two computations that are being performed. Return 4191 /// true if a simplification was made. 4192 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 4193 unsigned HiOp) { 4194 // If the high half is not needed, just compute the low half. 4195 bool HiExists = N->hasAnyUseOfValue(1); 4196 if (!HiExists && (!LegalOperations || 4197 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { 4198 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 4199 return CombineTo(N, Res, Res); 4200 } 4201 4202 // If the low half is not needed, just compute the high half. 4203 bool LoExists = N->hasAnyUseOfValue(0); 4204 if (!LoExists && (!LegalOperations || 4205 TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) { 4206 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 4207 return CombineTo(N, Res, Res); 4208 } 4209 4210 // If both halves are used, return as it is. 4211 if (LoExists && HiExists) 4212 return SDValue(); 4213 4214 // If the two computed results can be simplified separately, separate them. 4215 if (LoExists) { 4216 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 4217 AddToWorklist(Lo.getNode()); 4218 SDValue LoOpt = combine(Lo.getNode()); 4219 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && 4220 (!LegalOperations || 4221 TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType()))) 4222 return CombineTo(N, LoOpt, LoOpt); 4223 } 4224 4225 if (HiExists) { 4226 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 4227 AddToWorklist(Hi.getNode()); 4228 SDValue HiOpt = combine(Hi.getNode()); 4229 if (HiOpt.getNode() && HiOpt != Hi && 4230 (!LegalOperations || 4231 TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType()))) 4232 return CombineTo(N, HiOpt, HiOpt); 4233 } 4234 4235 return SDValue(); 4236 } 4237 4238 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { 4239 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) 4240 return Res; 4241 4242 EVT VT = N->getValueType(0); 4243 SDLoc DL(N); 4244 4245 // If the type is twice as wide is legal, transform the mulhu to a wider 4246 // multiply plus a shift. 4247 if (VT.isSimple() && !VT.isVector()) { 4248 MVT Simple = VT.getSimpleVT(); 4249 unsigned SimpleSize = Simple.getSizeInBits(); 4250 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4251 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4252 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); 4253 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); 4254 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 4255 // Compute the high part as N1. 4256 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 4257 DAG.getConstant(SimpleSize, DL, 4258 getShiftAmountTy(Lo.getValueType()))); 4259 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 4260 // Compute the low part as N0. 4261 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 4262 return CombineTo(N, Lo, Hi); 4263 } 4264 } 4265 4266 return SDValue(); 4267 } 4268 4269 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { 4270 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) 4271 return Res; 4272 4273 EVT VT = N->getValueType(0); 4274 SDLoc DL(N); 4275 4276 // (umul_lohi N0, 0) -> (0, 0) 4277 if (isNullConstant(N->getOperand(1))) { 4278 SDValue Zero = DAG.getConstant(0, DL, VT); 4279 return CombineTo(N, Zero, Zero); 4280 } 4281 4282 // (umul_lohi N0, 1) -> (N0, 0) 4283 if (isOneConstant(N->getOperand(1))) { 4284 SDValue Zero = DAG.getConstant(0, DL, VT); 4285 return CombineTo(N, N->getOperand(0), Zero); 4286 } 4287 4288 // If the type is twice as wide is legal, transform the mulhu to a wider 4289 // multiply plus a shift. 4290 if (VT.isSimple() && !VT.isVector()) { 4291 MVT Simple = VT.getSimpleVT(); 4292 unsigned SimpleSize = Simple.getSizeInBits(); 4293 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4294 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4295 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); 4296 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); 4297 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 4298 // Compute the high part as N1. 4299 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 4300 DAG.getConstant(SimpleSize, DL, 4301 getShiftAmountTy(Lo.getValueType()))); 4302 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 4303 // Compute the low part as N0. 4304 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 4305 return CombineTo(N, Lo, Hi); 4306 } 4307 } 4308 4309 return SDValue(); 4310 } 4311 4312 SDValue DAGCombiner::visitMULO(SDNode *N) { 4313 SDValue N0 = N->getOperand(0); 4314 SDValue N1 = N->getOperand(1); 4315 EVT VT = N0.getValueType(); 4316 bool IsSigned = (ISD::SMULO == N->getOpcode()); 4317 4318 EVT CarryVT = N->getValueType(1); 4319 SDLoc DL(N); 4320 4321 // canonicalize constant to RHS. 4322 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4323 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4324 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); 4325 4326 // fold (mulo x, 0) -> 0 + no carry out 4327 if (isNullOrNullSplat(N1)) 4328 return CombineTo(N, DAG.getConstant(0, DL, VT), 4329 DAG.getConstant(0, DL, CarryVT)); 4330 4331 // (mulo x, 2) -> (addo x, x) 4332 if (ConstantSDNode *C2 = isConstOrConstSplat(N1)) 4333 if (C2->getAPIntValue() == 2) 4334 return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL, 4335 N->getVTList(), N0, N0); 4336 4337 return SDValue(); 4338 } 4339 4340 SDValue DAGCombiner::visitIMINMAX(SDNode *N) { 4341 SDValue N0 = N->getOperand(0); 4342 SDValue N1 = N->getOperand(1); 4343 EVT VT = N0.getValueType(); 4344 unsigned Opcode = N->getOpcode(); 4345 4346 // fold vector ops 4347 if (VT.isVector()) 4348 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4349 return FoldedVOp; 4350 4351 // fold operation with constant operands. 4352 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, SDLoc(N), VT, {N0, N1})) 4353 return C; 4354 4355 // canonicalize constant to RHS 4356 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4357 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4358 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 4359 4360 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX. 4361 // Only do this if the current op isn't legal and the flipped is. 4362 if (!TLI.isOperationLegal(Opcode, VT) && 4363 (N0.isUndef() || DAG.SignBitIsZero(N0)) && 4364 (N1.isUndef() || DAG.SignBitIsZero(N1))) { 4365 unsigned AltOpcode; 4366 switch (Opcode) { 4367 case ISD::SMIN: AltOpcode = ISD::UMIN; break; 4368 case ISD::SMAX: AltOpcode = ISD::UMAX; break; 4369 case ISD::UMIN: AltOpcode = ISD::SMIN; break; 4370 case ISD::UMAX: AltOpcode = ISD::SMAX; break; 4371 default: llvm_unreachable("Unknown MINMAX opcode"); 4372 } 4373 if (TLI.isOperationLegal(AltOpcode, VT)) 4374 return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1); 4375 } 4376 4377 return SDValue(); 4378 } 4379 4380 /// If this is a bitwise logic instruction and both operands have the same 4381 /// opcode, try to sink the other opcode after the logic instruction. 4382 SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) { 4383 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 4384 EVT VT = N0.getValueType(); 4385 unsigned LogicOpcode = N->getOpcode(); 4386 unsigned HandOpcode = N0.getOpcode(); 4387 assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || 4388 LogicOpcode == ISD::XOR) && "Expected logic opcode"); 4389 assert(HandOpcode == N1.getOpcode() && "Bad input!"); 4390 4391 // Bail early if none of these transforms apply. 4392 if (N0.getNumOperands() == 0) 4393 return SDValue(); 4394 4395 // FIXME: We should check number of uses of the operands to not increase 4396 // the instruction count for all transforms. 4397 4398 // Handle size-changing casts. 4399 SDValue X = N0.getOperand(0); 4400 SDValue Y = N1.getOperand(0); 4401 EVT XVT = X.getValueType(); 4402 SDLoc DL(N); 4403 if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND || 4404 HandOpcode == ISD::SIGN_EXTEND) { 4405 // If both operands have other uses, this transform would create extra 4406 // instructions without eliminating anything. 4407 if (!N0.hasOneUse() && !N1.hasOneUse()) 4408 return SDValue(); 4409 // We need matching integer source types. 4410 if (XVT != Y.getValueType()) 4411 return SDValue(); 4412 // Don't create an illegal op during or after legalization. Don't ever 4413 // create an unsupported vector op. 4414 if ((VT.isVector() || LegalOperations) && 4415 !TLI.isOperationLegalOrCustom(LogicOpcode, XVT)) 4416 return SDValue(); 4417 // Avoid infinite looping with PromoteIntBinOp. 4418 // TODO: Should we apply desirable/legal constraints to all opcodes? 4419 if (HandOpcode == ISD::ANY_EXTEND && LegalTypes && 4420 !TLI.isTypeDesirableForOp(LogicOpcode, XVT)) 4421 return SDValue(); 4422 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y) 4423 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4424 return DAG.getNode(HandOpcode, DL, VT, Logic); 4425 } 4426 4427 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y) 4428 if (HandOpcode == ISD::TRUNCATE) { 4429 // If both operands have other uses, this transform would create extra 4430 // instructions without eliminating anything. 4431 if (!N0.hasOneUse() && !N1.hasOneUse()) 4432 return SDValue(); 4433 // We need matching source types. 4434 if (XVT != Y.getValueType()) 4435 return SDValue(); 4436 // Don't create an illegal op during or after legalization. 4437 if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT)) 4438 return SDValue(); 4439 // Be extra careful sinking truncate. If it's free, there's no benefit in 4440 // widening a binop. Also, don't create a logic op on an illegal type. 4441 if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT)) 4442 return SDValue(); 4443 if (!TLI.isTypeLegal(XVT)) 4444 return SDValue(); 4445 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4446 return DAG.getNode(HandOpcode, DL, VT, Logic); 4447 } 4448 4449 // For binops SHL/SRL/SRA/AND: 4450 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z 4451 if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL || 4452 HandOpcode == ISD::SRA || HandOpcode == ISD::AND) && 4453 N0.getOperand(1) == N1.getOperand(1)) { 4454 // If either operand has other uses, this transform is not an improvement. 4455 if (!N0.hasOneUse() || !N1.hasOneUse()) 4456 return SDValue(); 4457 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4458 return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1)); 4459 } 4460 4461 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y) 4462 if (HandOpcode == ISD::BSWAP) { 4463 // If either operand has other uses, this transform is not an improvement. 4464 if (!N0.hasOneUse() || !N1.hasOneUse()) 4465 return SDValue(); 4466 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4467 return DAG.getNode(HandOpcode, DL, VT, Logic); 4468 } 4469 4470 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) 4471 // Only perform this optimization up until type legalization, before 4472 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by 4473 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and 4474 // we don't want to undo this promotion. 4475 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper 4476 // on scalars. 4477 if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) && 4478 Level <= AfterLegalizeTypes) { 4479 // Input types must be integer and the same. 4480 if (XVT.isInteger() && XVT == Y.getValueType() && 4481 !(VT.isVector() && TLI.isTypeLegal(VT) && 4482 !XVT.isVector() && !TLI.isTypeLegal(XVT))) { 4483 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4484 return DAG.getNode(HandOpcode, DL, VT, Logic); 4485 } 4486 } 4487 4488 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). 4489 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) 4490 // If both shuffles use the same mask, and both shuffle within a single 4491 // vector, then it is worthwhile to move the swizzle after the operation. 4492 // The type-legalizer generates this pattern when loading illegal 4493 // vector types from memory. In many cases this allows additional shuffle 4494 // optimizations. 4495 // There are other cases where moving the shuffle after the xor/and/or 4496 // is profitable even if shuffles don't perform a swizzle. 4497 // If both shuffles use the same mask, and both shuffles have the same first 4498 // or second operand, then it might still be profitable to move the shuffle 4499 // after the xor/and/or operation. 4500 if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { 4501 auto *SVN0 = cast<ShuffleVectorSDNode>(N0); 4502 auto *SVN1 = cast<ShuffleVectorSDNode>(N1); 4503 assert(X.getValueType() == Y.getValueType() && 4504 "Inputs to shuffles are not the same type"); 4505 4506 // Check that both shuffles use the same mask. The masks are known to be of 4507 // the same length because the result vector type is the same. 4508 // Check also that shuffles have only one use to avoid introducing extra 4509 // instructions. 4510 if (!SVN0->hasOneUse() || !SVN1->hasOneUse() || 4511 !SVN0->getMask().equals(SVN1->getMask())) 4512 return SDValue(); 4513 4514 // Don't try to fold this node if it requires introducing a 4515 // build vector of all zeros that might be illegal at this stage. 4516 SDValue ShOp = N0.getOperand(1); 4517 if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) 4518 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 4519 4520 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C) 4521 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { 4522 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, 4523 N0.getOperand(0), N1.getOperand(0)); 4524 return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask()); 4525 } 4526 4527 // Don't try to fold this node if it requires introducing a 4528 // build vector of all zeros that might be illegal at this stage. 4529 ShOp = N0.getOperand(0); 4530 if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) 4531 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 4532 4533 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B)) 4534 if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) { 4535 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1), 4536 N1.getOperand(1)); 4537 return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask()); 4538 } 4539 } 4540 4541 return SDValue(); 4542 } 4543 4544 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. 4545 SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, 4546 const SDLoc &DL) { 4547 SDValue LL, LR, RL, RR, N0CC, N1CC; 4548 if (!isSetCCEquivalent(N0, LL, LR, N0CC) || 4549 !isSetCCEquivalent(N1, RL, RR, N1CC)) 4550 return SDValue(); 4551 4552 assert(N0.getValueType() == N1.getValueType() && 4553 "Unexpected operand types for bitwise logic op"); 4554 assert(LL.getValueType() == LR.getValueType() && 4555 RL.getValueType() == RR.getValueType() && 4556 "Unexpected operand types for setcc"); 4557 4558 // If we're here post-legalization or the logic op type is not i1, the logic 4559 // op type must match a setcc result type. Also, all folds require new 4560 // operations on the left and right operands, so those types must match. 4561 EVT VT = N0.getValueType(); 4562 EVT OpVT = LL.getValueType(); 4563 if (LegalOperations || VT.getScalarType() != MVT::i1) 4564 if (VT != getSetCCResultType(OpVT)) 4565 return SDValue(); 4566 if (OpVT != RL.getValueType()) 4567 return SDValue(); 4568 4569 ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); 4570 ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); 4571 bool IsInteger = OpVT.isInteger(); 4572 if (LR == RR && CC0 == CC1 && IsInteger) { 4573 bool IsZero = isNullOrNullSplat(LR); 4574 bool IsNeg1 = isAllOnesOrAllOnesSplat(LR); 4575 4576 // All bits clear? 4577 bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; 4578 // All sign bits clear? 4579 bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; 4580 // Any bits set? 4581 bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; 4582 // Any sign bits set? 4583 bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; 4584 4585 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0) 4586 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) 4587 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0) 4588 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0) 4589 if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { 4590 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); 4591 AddToWorklist(Or.getNode()); 4592 return DAG.getSetCC(DL, VT, Or, LR, CC1); 4593 } 4594 4595 // All bits set? 4596 bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; 4597 // All sign bits set? 4598 bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; 4599 // Any bits clear? 4600 bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; 4601 // Any sign bits clear? 4602 bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; 4603 4604 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) 4605 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0) 4606 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) 4607 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1) 4608 if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { 4609 SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); 4610 AddToWorklist(And.getNode()); 4611 return DAG.getSetCC(DL, VT, And, LR, CC1); 4612 } 4613 } 4614 4615 // TODO: What is the 'or' equivalent of this fold? 4616 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) 4617 if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 && 4618 IsInteger && CC0 == ISD::SETNE && 4619 ((isNullConstant(LR) && isAllOnesConstant(RR)) || 4620 (isAllOnesConstant(LR) && isNullConstant(RR)))) { 4621 SDValue One = DAG.getConstant(1, DL, OpVT); 4622 SDValue Two = DAG.getConstant(2, DL, OpVT); 4623 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); 4624 AddToWorklist(Add.getNode()); 4625 return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); 4626 } 4627 4628 // Try more general transforms if the predicates match and the only user of 4629 // the compares is the 'and' or 'or'. 4630 if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && 4631 N0.hasOneUse() && N1.hasOneUse()) { 4632 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 4633 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 4634 if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { 4635 SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); 4636 SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); 4637 SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); 4638 SDValue Zero = DAG.getConstant(0, DL, OpVT); 4639 return DAG.getSetCC(DL, VT, Or, Zero, CC1); 4640 } 4641 4642 // Turn compare of constants whose difference is 1 bit into add+and+setcc. 4643 // TODO - support non-uniform vector amounts. 4644 if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) { 4645 // Match a shared variable operand and 2 non-opaque constant operands. 4646 ConstantSDNode *C0 = isConstOrConstSplat(LR); 4647 ConstantSDNode *C1 = isConstOrConstSplat(RR); 4648 if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) { 4649 // Canonicalize larger constant as C0. 4650 if (C1->getAPIntValue().ugt(C0->getAPIntValue())) 4651 std::swap(C0, C1); 4652 4653 // The difference of the constants must be a single bit. 4654 const APInt &C0Val = C0->getAPIntValue(); 4655 const APInt &C1Val = C1->getAPIntValue(); 4656 if ((C0Val - C1Val).isPowerOf2()) { 4657 // and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) --> 4658 // setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq 4659 SDValue OffsetC = DAG.getConstant(-C1Val, DL, OpVT); 4660 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LL, OffsetC); 4661 SDValue MaskC = DAG.getConstant(~(C0Val - C1Val), DL, OpVT); 4662 SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Add, MaskC); 4663 SDValue Zero = DAG.getConstant(0, DL, OpVT); 4664 return DAG.getSetCC(DL, VT, And, Zero, CC0); 4665 } 4666 } 4667 } 4668 } 4669 4670 // Canonicalize equivalent operands to LL == RL. 4671 if (LL == RR && LR == RL) { 4672 CC1 = ISD::getSetCCSwappedOperands(CC1); 4673 std::swap(RL, RR); 4674 } 4675 4676 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) 4677 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) 4678 if (LL == RL && LR == RR) { 4679 ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT) 4680 : ISD::getSetCCOrOperation(CC0, CC1, OpVT); 4681 if (NewCC != ISD::SETCC_INVALID && 4682 (!LegalOperations || 4683 (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && 4684 TLI.isOperationLegal(ISD::SETCC, OpVT)))) 4685 return DAG.getSetCC(DL, VT, LL, LR, NewCC); 4686 } 4687 4688 return SDValue(); 4689 } 4690 4691 /// This contains all DAGCombine rules which reduce two values combined by 4692 /// an And operation to a single value. This makes them reusable in the context 4693 /// of visitSELECT(). Rules involving constants are not included as 4694 /// visitSELECT() already handles those cases. 4695 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { 4696 EVT VT = N1.getValueType(); 4697 SDLoc DL(N); 4698 4699 // fold (and x, undef) -> 0 4700 if (N0.isUndef() || N1.isUndef()) 4701 return DAG.getConstant(0, DL, VT); 4702 4703 if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) 4704 return V; 4705 4706 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && 4707 VT.getSizeInBits() <= 64) { 4708 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4709 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { 4710 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal 4711 // immediate for an add, but it is legal if its top c2 bits are set, 4712 // transform the ADD so the immediate doesn't need to be materialized 4713 // in a register. 4714 APInt ADDC = ADDI->getAPIntValue(); 4715 APInt SRLC = SRLI->getAPIntValue(); 4716 if (ADDC.getMinSignedBits() <= 64 && 4717 SRLC.ult(VT.getSizeInBits()) && 4718 !TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 4719 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 4720 SRLC.getZExtValue()); 4721 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { 4722 ADDC |= Mask; 4723 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 4724 SDLoc DL0(N0); 4725 SDValue NewAdd = 4726 DAG.getNode(ISD::ADD, DL0, VT, 4727 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); 4728 CombineTo(N0.getNode(), NewAdd); 4729 // Return N so it doesn't get rechecked! 4730 return SDValue(N, 0); 4731 } 4732 } 4733 } 4734 } 4735 } 4736 } 4737 4738 // Reduce bit extract of low half of an integer to the narrower type. 4739 // (and (srl i64:x, K), KMask) -> 4740 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) 4741 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 4742 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { 4743 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4744 unsigned Size = VT.getSizeInBits(); 4745 const APInt &AndMask = CAnd->getAPIntValue(); 4746 unsigned ShiftBits = CShift->getZExtValue(); 4747 4748 // Bail out, this node will probably disappear anyway. 4749 if (ShiftBits == 0) 4750 return SDValue(); 4751 4752 unsigned MaskBits = AndMask.countTrailingOnes(); 4753 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); 4754 4755 if (AndMask.isMask() && 4756 // Required bits must not span the two halves of the integer and 4757 // must fit in the half size type. 4758 (ShiftBits + MaskBits <= Size / 2) && 4759 TLI.isNarrowingProfitable(VT, HalfVT) && 4760 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && 4761 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && 4762 TLI.isTruncateFree(VT, HalfVT) && 4763 TLI.isZExtFree(HalfVT, VT)) { 4764 // The isNarrowingProfitable is to avoid regressions on PPC and 4765 // AArch64 which match a few 64-bit bit insert / bit extract patterns 4766 // on downstream users of this. Those patterns could probably be 4767 // extended to handle extensions mixed in. 4768 4769 SDValue SL(N0); 4770 assert(MaskBits <= Size); 4771 4772 // Extracting the highest bit of the low half. 4773 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); 4774 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, 4775 N0.getOperand(0)); 4776 4777 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); 4778 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); 4779 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); 4780 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); 4781 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); 4782 } 4783 } 4784 } 4785 } 4786 4787 return SDValue(); 4788 } 4789 4790 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 4791 EVT LoadResultTy, EVT &ExtVT) { 4792 if (!AndC->getAPIntValue().isMask()) 4793 return false; 4794 4795 unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes(); 4796 4797 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 4798 EVT LoadedVT = LoadN->getMemoryVT(); 4799 4800 if (ExtVT == LoadedVT && 4801 (!LegalOperations || 4802 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { 4803 // ZEXTLOAD will match without needing to change the size of the value being 4804 // loaded. 4805 return true; 4806 } 4807 4808 // Do not change the width of a volatile or atomic loads. 4809 if (!LoadN->isSimple()) 4810 return false; 4811 4812 // Do not generate loads of non-round integer types since these can 4813 // be expensive (and would be wrong if the type is not byte sized). 4814 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) 4815 return false; 4816 4817 if (LegalOperations && 4818 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) 4819 return false; 4820 4821 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) 4822 return false; 4823 4824 return true; 4825 } 4826 4827 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, 4828 ISD::LoadExtType ExtType, EVT &MemVT, 4829 unsigned ShAmt) { 4830 if (!LDST) 4831 return false; 4832 // Only allow byte offsets. 4833 if (ShAmt % 8) 4834 return false; 4835 4836 // Do not generate loads of non-round integer types since these can 4837 // be expensive (and would be wrong if the type is not byte sized). 4838 if (!MemVT.isRound()) 4839 return false; 4840 4841 // Don't change the width of a volatile or atomic loads. 4842 if (!LDST->isSimple()) 4843 return false; 4844 4845 // Verify that we are actually reducing a load width here. 4846 if (LDST->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits()) 4847 return false; 4848 4849 // Ensure that this isn't going to produce an unsupported memory access. 4850 if (ShAmt && 4851 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 4852 LDST->getAddressSpace(), ShAmt / 8, 4853 LDST->getMemOperand()->getFlags())) 4854 return false; 4855 4856 // It's not possible to generate a constant of extended or untyped type. 4857 EVT PtrType = LDST->getBasePtr().getValueType(); 4858 if (PtrType == MVT::Untyped || PtrType.isExtended()) 4859 return false; 4860 4861 if (isa<LoadSDNode>(LDST)) { 4862 LoadSDNode *Load = cast<LoadSDNode>(LDST); 4863 // Don't transform one with multiple uses, this would require adding a new 4864 // load. 4865 if (!SDValue(Load, 0).hasOneUse()) 4866 return false; 4867 4868 if (LegalOperations && 4869 !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT)) 4870 return false; 4871 4872 // For the transform to be legal, the load must produce only two values 4873 // (the value loaded and the chain). Don't transform a pre-increment 4874 // load, for example, which produces an extra value. Otherwise the 4875 // transformation is not equivalent, and the downstream logic to replace 4876 // uses gets things wrong. 4877 if (Load->getNumValues() > 2) 4878 return false; 4879 4880 // If the load that we're shrinking is an extload and we're not just 4881 // discarding the extension we can't simply shrink the load. Bail. 4882 // TODO: It would be possible to merge the extensions in some cases. 4883 if (Load->getExtensionType() != ISD::NON_EXTLOAD && 4884 Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) 4885 return false; 4886 4887 if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT)) 4888 return false; 4889 } else { 4890 assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"); 4891 StoreSDNode *Store = cast<StoreSDNode>(LDST); 4892 // Can't write outside the original store 4893 if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) 4894 return false; 4895 4896 if (LegalOperations && 4897 !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT)) 4898 return false; 4899 } 4900 return true; 4901 } 4902 4903 bool DAGCombiner::SearchForAndLoads(SDNode *N, 4904 SmallVectorImpl<LoadSDNode*> &Loads, 4905 SmallPtrSetImpl<SDNode*> &NodesWithConsts, 4906 ConstantSDNode *Mask, 4907 SDNode *&NodeToMask) { 4908 // Recursively search for the operands, looking for loads which can be 4909 // narrowed. 4910 for (SDValue Op : N->op_values()) { 4911 if (Op.getValueType().isVector()) 4912 return false; 4913 4914 // Some constants may need fixing up later if they are too large. 4915 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 4916 if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) && 4917 (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue()) 4918 NodesWithConsts.insert(N); 4919 continue; 4920 } 4921 4922 if (!Op.hasOneUse()) 4923 return false; 4924 4925 switch(Op.getOpcode()) { 4926 case ISD::LOAD: { 4927 auto *Load = cast<LoadSDNode>(Op); 4928 EVT ExtVT; 4929 if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) && 4930 isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) { 4931 4932 // ZEXTLOAD is already small enough. 4933 if (Load->getExtensionType() == ISD::ZEXTLOAD && 4934 ExtVT.bitsGE(Load->getMemoryVT())) 4935 continue; 4936 4937 // Use LE to convert equal sized loads to zext. 4938 if (ExtVT.bitsLE(Load->getMemoryVT())) 4939 Loads.push_back(Load); 4940 4941 continue; 4942 } 4943 return false; 4944 } 4945 case ISD::ZERO_EXTEND: 4946 case ISD::AssertZext: { 4947 unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes(); 4948 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 4949 EVT VT = Op.getOpcode() == ISD::AssertZext ? 4950 cast<VTSDNode>(Op.getOperand(1))->getVT() : 4951 Op.getOperand(0).getValueType(); 4952 4953 // We can accept extending nodes if the mask is wider or an equal 4954 // width to the original type. 4955 if (ExtVT.bitsGE(VT)) 4956 continue; 4957 break; 4958 } 4959 case ISD::OR: 4960 case ISD::XOR: 4961 case ISD::AND: 4962 if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask, 4963 NodeToMask)) 4964 return false; 4965 continue; 4966 } 4967 4968 // Allow one node which will masked along with any loads found. 4969 if (NodeToMask) 4970 return false; 4971 4972 // Also ensure that the node to be masked only produces one data result. 4973 NodeToMask = Op.getNode(); 4974 if (NodeToMask->getNumValues() > 1) { 4975 bool HasValue = false; 4976 for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) { 4977 MVT VT = SDValue(NodeToMask, i).getSimpleValueType(); 4978 if (VT != MVT::Glue && VT != MVT::Other) { 4979 if (HasValue) { 4980 NodeToMask = nullptr; 4981 return false; 4982 } 4983 HasValue = true; 4984 } 4985 } 4986 assert(HasValue && "Node to be masked has no data result?"); 4987 } 4988 } 4989 return true; 4990 } 4991 4992 bool DAGCombiner::BackwardsPropagateMask(SDNode *N) { 4993 auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4994 if (!Mask) 4995 return false; 4996 4997 if (!Mask->getAPIntValue().isMask()) 4998 return false; 4999 5000 // No need to do anything if the and directly uses a load. 5001 if (isa<LoadSDNode>(N->getOperand(0))) 5002 return false; 5003 5004 SmallVector<LoadSDNode*, 8> Loads; 5005 SmallPtrSet<SDNode*, 2> NodesWithConsts; 5006 SDNode *FixupNode = nullptr; 5007 if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) { 5008 if (Loads.size() == 0) 5009 return false; 5010 5011 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump()); 5012 SDValue MaskOp = N->getOperand(1); 5013 5014 // If it exists, fixup the single node we allow in the tree that needs 5015 // masking. 5016 if (FixupNode) { 5017 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump()); 5018 SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode), 5019 FixupNode->getValueType(0), 5020 SDValue(FixupNode, 0), MaskOp); 5021 DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And); 5022 if (And.getOpcode() == ISD ::AND) 5023 DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp); 5024 } 5025 5026 // Narrow any constants that need it. 5027 for (auto *LogicN : NodesWithConsts) { 5028 SDValue Op0 = LogicN->getOperand(0); 5029 SDValue Op1 = LogicN->getOperand(1); 5030 5031 if (isa<ConstantSDNode>(Op0)) 5032 std::swap(Op0, Op1); 5033 5034 SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), 5035 Op1, MaskOp); 5036 5037 DAG.UpdateNodeOperands(LogicN, Op0, And); 5038 } 5039 5040 // Create narrow loads. 5041 for (auto *Load : Loads) { 5042 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump()); 5043 SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0), 5044 SDValue(Load, 0), MaskOp); 5045 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And); 5046 if (And.getOpcode() == ISD ::AND) 5047 And = SDValue( 5048 DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0); 5049 SDValue NewLoad = ReduceLoadWidth(And.getNode()); 5050 assert(NewLoad && 5051 "Shouldn't be masking the load if it can't be narrowed"); 5052 CombineTo(Load, NewLoad, NewLoad.getValue(1)); 5053 } 5054 DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode()); 5055 return true; 5056 } 5057 return false; 5058 } 5059 5060 // Unfold 5061 // x & (-1 'logical shift' y) 5062 // To 5063 // (x 'opposite logical shift' y) 'logical shift' y 5064 // if it is better for performance. 5065 SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) { 5066 assert(N->getOpcode() == ISD::AND); 5067 5068 SDValue N0 = N->getOperand(0); 5069 SDValue N1 = N->getOperand(1); 5070 5071 // Do we actually prefer shifts over mask? 5072 if (!TLI.shouldFoldMaskToVariableShiftPair(N0)) 5073 return SDValue(); 5074 5075 // Try to match (-1 '[outer] logical shift' y) 5076 unsigned OuterShift; 5077 unsigned InnerShift; // The opposite direction to the OuterShift. 5078 SDValue Y; // Shift amount. 5079 auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool { 5080 if (!M.hasOneUse()) 5081 return false; 5082 OuterShift = M->getOpcode(); 5083 if (OuterShift == ISD::SHL) 5084 InnerShift = ISD::SRL; 5085 else if (OuterShift == ISD::SRL) 5086 InnerShift = ISD::SHL; 5087 else 5088 return false; 5089 if (!isAllOnesConstant(M->getOperand(0))) 5090 return false; 5091 Y = M->getOperand(1); 5092 return true; 5093 }; 5094 5095 SDValue X; 5096 if (matchMask(N1)) 5097 X = N0; 5098 else if (matchMask(N0)) 5099 X = N1; 5100 else 5101 return SDValue(); 5102 5103 SDLoc DL(N); 5104 EVT VT = N->getValueType(0); 5105 5106 // tmp = x 'opposite logical shift' y 5107 SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y); 5108 // ret = tmp 'logical shift' y 5109 SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y); 5110 5111 return T1; 5112 } 5113 5114 /// Try to replace shift/logic that tests if a bit is clear with mask + setcc. 5115 /// For a target with a bit test, this is expected to become test + set and save 5116 /// at least 1 instruction. 5117 static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) { 5118 assert(And->getOpcode() == ISD::AND && "Expected an 'and' op"); 5119 5120 // This is probably not worthwhile without a supported type. 5121 EVT VT = And->getValueType(0); 5122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5123 if (!TLI.isTypeLegal(VT)) 5124 return SDValue(); 5125 5126 // Look through an optional extension and find a 'not'. 5127 // TODO: Should we favor test+set even without the 'not' op? 5128 SDValue Not = And->getOperand(0), And1 = And->getOperand(1); 5129 if (Not.getOpcode() == ISD::ANY_EXTEND) 5130 Not = Not.getOperand(0); 5131 if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1)) 5132 return SDValue(); 5133 5134 // Look though an optional truncation. The source operand may not be the same 5135 // type as the original 'and', but that is ok because we are masking off 5136 // everything but the low bit. 5137 SDValue Srl = Not.getOperand(0); 5138 if (Srl.getOpcode() == ISD::TRUNCATE) 5139 Srl = Srl.getOperand(0); 5140 5141 // Match a shift-right by constant. 5142 if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() || 5143 !isa<ConstantSDNode>(Srl.getOperand(1))) 5144 return SDValue(); 5145 5146 // We might have looked through casts that make this transform invalid. 5147 // TODO: If the source type is wider than the result type, do the mask and 5148 // compare in the source type. 5149 const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1); 5150 unsigned VTBitWidth = VT.getSizeInBits(); 5151 if (ShiftAmt.uge(VTBitWidth)) 5152 return SDValue(); 5153 5154 // Turn this into a bit-test pattern using mask op + setcc: 5155 // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0 5156 SDLoc DL(And); 5157 SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT); 5158 EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5159 SDValue Mask = DAG.getConstant( 5160 APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT); 5161 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask); 5162 SDValue Zero = DAG.getConstant(0, DL, VT); 5163 SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ); 5164 return DAG.getZExtOrTrunc(Setcc, DL, VT); 5165 } 5166 5167 SDValue DAGCombiner::visitAND(SDNode *N) { 5168 SDValue N0 = N->getOperand(0); 5169 SDValue N1 = N->getOperand(1); 5170 EVT VT = N1.getValueType(); 5171 5172 // x & x --> x 5173 if (N0 == N1) 5174 return N0; 5175 5176 // fold vector ops 5177 if (VT.isVector()) { 5178 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 5179 return FoldedVOp; 5180 5181 // fold (and x, 0) -> 0, vector edition 5182 if (ISD::isBuildVectorAllZeros(N0.getNode())) 5183 // do not return N0, because undef node may exist in N0 5184 return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()), 5185 SDLoc(N), N0.getValueType()); 5186 if (ISD::isBuildVectorAllZeros(N1.getNode())) 5187 // do not return N1, because undef node may exist in N1 5188 return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()), 5189 SDLoc(N), N1.getValueType()); 5190 5191 // fold (and x, -1) -> x, vector edition 5192 if (ISD::isBuildVectorAllOnes(N0.getNode())) 5193 return N1; 5194 if (ISD::isBuildVectorAllOnes(N1.getNode())) 5195 return N0; 5196 } 5197 5198 // fold (and c1, c2) -> c1&c2 5199 ConstantSDNode *N1C = isConstOrConstSplat(N1); 5200 if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, {N0, N1})) 5201 return C; 5202 5203 // canonicalize constant to RHS 5204 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 5205 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 5206 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); 5207 5208 // fold (and x, -1) -> x 5209 if (isAllOnesConstant(N1)) 5210 return N0; 5211 5212 // if (and x, c) is known to be zero, return 0 5213 unsigned BitWidth = VT.getScalarSizeInBits(); 5214 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 5215 APInt::getAllOnesValue(BitWidth))) 5216 return DAG.getConstant(0, SDLoc(N), VT); 5217 5218 if (SDValue NewSel = foldBinOpIntoSelect(N)) 5219 return NewSel; 5220 5221 // reassociate and 5222 if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags())) 5223 return RAND; 5224 5225 // Try to convert a constant mask AND into a shuffle clear mask. 5226 if (VT.isVector()) 5227 if (SDValue Shuffle = XformToShuffleWithZero(N)) 5228 return Shuffle; 5229 5230 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) 5231 return Combined; 5232 5233 // fold (and (or x, C), D) -> D if (C & D) == D 5234 auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { 5235 return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue()); 5236 }; 5237 if (N0.getOpcode() == ISD::OR && 5238 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset)) 5239 return N1; 5240 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. 5241 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 5242 SDValue N0Op0 = N0.getOperand(0); 5243 APInt Mask = ~N1C->getAPIntValue(); 5244 Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); 5245 if (DAG.MaskedValueIsZero(N0Op0, Mask)) { 5246 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 5247 N0.getValueType(), N0Op0); 5248 5249 // Replace uses of the AND with uses of the Zero extend node. 5250 CombineTo(N, Zext); 5251 5252 // We actually want to replace all uses of the any_extend with the 5253 // zero_extend, to avoid duplicating things. This will later cause this 5254 // AND to be folded. 5255 CombineTo(N0.getNode(), Zext); 5256 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5257 } 5258 } 5259 5260 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> 5261 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must 5262 // already be zero by virtue of the width of the base type of the load. 5263 // 5264 // the 'X' node here can either be nothing or an extract_vector_elt to catch 5265 // more cases. 5266 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5267 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && 5268 N0.getOperand(0).getOpcode() == ISD::LOAD && 5269 N0.getOperand(0).getResNo() == 0) || 5270 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { 5271 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? 5272 N0 : N0.getOperand(0) ); 5273 5274 // Get the constant (if applicable) the zero'th operand is being ANDed with. 5275 // This can be a pure constant or a vector splat, in which case we treat the 5276 // vector as a scalar and use the splat value. 5277 APInt Constant = APInt::getNullValue(1); 5278 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 5279 Constant = C->getAPIntValue(); 5280 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { 5281 APInt SplatValue, SplatUndef; 5282 unsigned SplatBitSize; 5283 bool HasAnyUndefs; 5284 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, 5285 SplatBitSize, HasAnyUndefs); 5286 if (IsSplat) { 5287 // Undef bits can contribute to a possible optimisation if set, so 5288 // set them. 5289 SplatValue |= SplatUndef; 5290 5291 // The splat value may be something like "0x00FFFFFF", which means 0 for 5292 // the first vector value and FF for the rest, repeating. We need a mask 5293 // that will apply equally to all members of the vector, so AND all the 5294 // lanes of the constant together. 5295 unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits(); 5296 5297 // If the splat value has been compressed to a bitlength lower 5298 // than the size of the vector lane, we need to re-expand it to 5299 // the lane size. 5300 if (EltBitWidth > SplatBitSize) 5301 for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth); 5302 SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2) 5303 SplatValue |= SplatValue.shl(SplatBitSize); 5304 5305 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a 5306 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. 5307 if ((SplatBitSize % EltBitWidth) == 0) { 5308 Constant = APInt::getAllOnesValue(EltBitWidth); 5309 for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i) 5310 Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth); 5311 } 5312 } 5313 } 5314 5315 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is 5316 // actually legal and isn't going to get expanded, else this is a false 5317 // optimisation. 5318 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, 5319 Load->getValueType(0), 5320 Load->getMemoryVT()); 5321 5322 // Resize the constant to the same size as the original memory access before 5323 // extension. If it is still the AllOnesValue then this AND is completely 5324 // unneeded. 5325 Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); 5326 5327 bool B; 5328 switch (Load->getExtensionType()) { 5329 default: B = false; break; 5330 case ISD::EXTLOAD: B = CanZextLoadProfitably; break; 5331 case ISD::ZEXTLOAD: 5332 case ISD::NON_EXTLOAD: B = true; break; 5333 } 5334 5335 if (B && Constant.isAllOnesValue()) { 5336 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to 5337 // preserve semantics once we get rid of the AND. 5338 SDValue NewLoad(Load, 0); 5339 5340 // Fold the AND away. NewLoad may get replaced immediately. 5341 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); 5342 5343 if (Load->getExtensionType() == ISD::EXTLOAD) { 5344 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, 5345 Load->getValueType(0), SDLoc(Load), 5346 Load->getChain(), Load->getBasePtr(), 5347 Load->getOffset(), Load->getMemoryVT(), 5348 Load->getMemOperand()); 5349 // Replace uses of the EXTLOAD with the new ZEXTLOAD. 5350 if (Load->getNumValues() == 3) { 5351 // PRE/POST_INC loads have 3 values. 5352 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), 5353 NewLoad.getValue(2) }; 5354 CombineTo(Load, To, 3, true); 5355 } else { 5356 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); 5357 } 5358 } 5359 5360 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5361 } 5362 } 5363 5364 // fold (and (load x), 255) -> (zextload x, i8) 5365 // fold (and (extload x, i16), 255) -> (zextload x, i8) 5366 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) 5367 if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || 5368 (N0.getOpcode() == ISD::ANY_EXTEND && 5369 N0.getOperand(0).getOpcode() == ISD::LOAD))) { 5370 if (SDValue Res = ReduceLoadWidth(N)) { 5371 LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND 5372 ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0); 5373 AddToWorklist(N); 5374 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res); 5375 return SDValue(N, 0); 5376 } 5377 } 5378 5379 if (LegalTypes) { 5380 // Attempt to propagate the AND back up to the leaves which, if they're 5381 // loads, can be combined to narrow loads and the AND node can be removed. 5382 // Perform after legalization so that extend nodes will already be 5383 // combined into the loads. 5384 if (BackwardsPropagateMask(N)) 5385 return SDValue(N, 0); 5386 } 5387 5388 if (SDValue Combined = visitANDLike(N0, N1, N)) 5389 return Combined; 5390 5391 // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) 5392 if (N0.getOpcode() == N1.getOpcode()) 5393 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 5394 return V; 5395 5396 // Masking the negated extension of a boolean is just the zero-extended 5397 // boolean: 5398 // and (sub 0, zext(bool X)), 1 --> zext(bool X) 5399 // and (sub 0, sext(bool X)), 1 --> zext(bool X) 5400 // 5401 // Note: the SimplifyDemandedBits fold below can make an information-losing 5402 // transform, and then we have no way to find this better fold. 5403 if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { 5404 if (isNullOrNullSplat(N0.getOperand(0))) { 5405 SDValue SubRHS = N0.getOperand(1); 5406 if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && 5407 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 5408 return SubRHS; 5409 if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && 5410 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 5411 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); 5412 } 5413 } 5414 5415 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) 5416 // fold (and (sra)) -> (and (srl)) when possible. 5417 if (SimplifyDemandedBits(SDValue(N, 0))) 5418 return SDValue(N, 0); 5419 5420 // fold (zext_inreg (extload x)) -> (zextload x) 5421 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use 5422 if (ISD::isUNINDEXEDLoad(N0.getNode()) && 5423 (ISD::isEXTLoad(N0.getNode()) || 5424 (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) { 5425 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 5426 EVT MemVT = LN0->getMemoryVT(); 5427 // If we zero all the possible extended bits, then we can turn this into 5428 // a zextload if we are running before legalize or the operation is legal. 5429 unsigned ExtBitSize = N1.getScalarValueSizeInBits(); 5430 unsigned MemBitSize = MemVT.getScalarSizeInBits(); 5431 APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize); 5432 if (DAG.MaskedValueIsZero(N1, ExtBits) && 5433 ((!LegalOperations && LN0->isSimple()) || 5434 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 5435 SDValue ExtLoad = 5436 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(), 5437 LN0->getBasePtr(), MemVT, LN0->getMemOperand()); 5438 AddToWorklist(N); 5439 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 5440 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5441 } 5442 } 5443 5444 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) 5445 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { 5446 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 5447 N0.getOperand(1), false)) 5448 return BSwap; 5449 } 5450 5451 if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N)) 5452 return Shifts; 5453 5454 if (TLI.hasBitTest(N0, N1)) 5455 if (SDValue V = combineShiftAnd1ToBitTest(N, DAG)) 5456 return V; 5457 5458 return SDValue(); 5459 } 5460 5461 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. 5462 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 5463 bool DemandHighBits) { 5464 if (!LegalOperations) 5465 return SDValue(); 5466 5467 EVT VT = N->getValueType(0); 5468 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) 5469 return SDValue(); 5470 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) 5471 return SDValue(); 5472 5473 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff) 5474 bool LookPassAnd0 = false; 5475 bool LookPassAnd1 = false; 5476 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) 5477 std::swap(N0, N1); 5478 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) 5479 std::swap(N0, N1); 5480 if (N0.getOpcode() == ISD::AND) { 5481 if (!N0.getNode()->hasOneUse()) 5482 return SDValue(); 5483 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5484 // Also handle 0xffff since the LHS is guaranteed to have zeros there. 5485 // This is needed for X86. 5486 if (!N01C || (N01C->getZExtValue() != 0xFF00 && 5487 N01C->getZExtValue() != 0xFFFF)) 5488 return SDValue(); 5489 N0 = N0.getOperand(0); 5490 LookPassAnd0 = true; 5491 } 5492 5493 if (N1.getOpcode() == ISD::AND) { 5494 if (!N1.getNode()->hasOneUse()) 5495 return SDValue(); 5496 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 5497 if (!N11C || N11C->getZExtValue() != 0xFF) 5498 return SDValue(); 5499 N1 = N1.getOperand(0); 5500 LookPassAnd1 = true; 5501 } 5502 5503 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 5504 std::swap(N0, N1); 5505 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 5506 return SDValue(); 5507 if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) 5508 return SDValue(); 5509 5510 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5511 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 5512 if (!N01C || !N11C) 5513 return SDValue(); 5514 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) 5515 return SDValue(); 5516 5517 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) 5518 SDValue N00 = N0->getOperand(0); 5519 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { 5520 if (!N00.getNode()->hasOneUse()) 5521 return SDValue(); 5522 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); 5523 if (!N001C || N001C->getZExtValue() != 0xFF) 5524 return SDValue(); 5525 N00 = N00.getOperand(0); 5526 LookPassAnd0 = true; 5527 } 5528 5529 SDValue N10 = N1->getOperand(0); 5530 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { 5531 if (!N10.getNode()->hasOneUse()) 5532 return SDValue(); 5533 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); 5534 // Also allow 0xFFFF since the bits will be shifted out. This is needed 5535 // for X86. 5536 if (!N101C || (N101C->getZExtValue() != 0xFF00 && 5537 N101C->getZExtValue() != 0xFFFF)) 5538 return SDValue(); 5539 N10 = N10.getOperand(0); 5540 LookPassAnd1 = true; 5541 } 5542 5543 if (N00 != N10) 5544 return SDValue(); 5545 5546 // Make sure everything beyond the low halfword gets set to zero since the SRL 5547 // 16 will clear the top bits. 5548 unsigned OpSizeInBits = VT.getSizeInBits(); 5549 if (DemandHighBits && OpSizeInBits > 16) { 5550 // If the left-shift isn't masked out then the only way this is a bswap is 5551 // if all bits beyond the low 8 are 0. In that case the entire pattern 5552 // reduces to a left shift anyway: leave it for other parts of the combiner. 5553 if (!LookPassAnd0) 5554 return SDValue(); 5555 5556 // However, if the right shift isn't masked out then it might be because 5557 // it's not needed. See if we can spot that too. 5558 if (!LookPassAnd1 && 5559 !DAG.MaskedValueIsZero( 5560 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) 5561 return SDValue(); 5562 } 5563 5564 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); 5565 if (OpSizeInBits > 16) { 5566 SDLoc DL(N); 5567 Res = DAG.getNode(ISD::SRL, DL, VT, Res, 5568 DAG.getConstant(OpSizeInBits - 16, DL, 5569 getShiftAmountTy(VT))); 5570 } 5571 return Res; 5572 } 5573 5574 /// Return true if the specified node is an element that makes up a 32-bit 5575 /// packed halfword byteswap. 5576 /// ((x & 0x000000ff) << 8) | 5577 /// ((x & 0x0000ff00) >> 8) | 5578 /// ((x & 0x00ff0000) << 8) | 5579 /// ((x & 0xff000000) >> 8) 5580 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { 5581 if (!N.getNode()->hasOneUse()) 5582 return false; 5583 5584 unsigned Opc = N.getOpcode(); 5585 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) 5586 return false; 5587 5588 SDValue N0 = N.getOperand(0); 5589 unsigned Opc0 = N0.getOpcode(); 5590 if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL) 5591 return false; 5592 5593 ConstantSDNode *N1C = nullptr; 5594 // SHL or SRL: look upstream for AND mask operand 5595 if (Opc == ISD::AND) 5596 N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 5597 else if (Opc0 == ISD::AND) 5598 N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5599 if (!N1C) 5600 return false; 5601 5602 unsigned MaskByteOffset; 5603 switch (N1C->getZExtValue()) { 5604 default: 5605 return false; 5606 case 0xFF: MaskByteOffset = 0; break; 5607 case 0xFF00: MaskByteOffset = 1; break; 5608 case 0xFFFF: 5609 // In case demanded bits didn't clear the bits that will be shifted out. 5610 // This is needed for X86. 5611 if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) { 5612 MaskByteOffset = 1; 5613 break; 5614 } 5615 return false; 5616 case 0xFF0000: MaskByteOffset = 2; break; 5617 case 0xFF000000: MaskByteOffset = 3; break; 5618 } 5619 5620 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). 5621 if (Opc == ISD::AND) { 5622 if (MaskByteOffset == 0 || MaskByteOffset == 2) { 5623 // (x >> 8) & 0xff 5624 // (x >> 8) & 0xff0000 5625 if (Opc0 != ISD::SRL) 5626 return false; 5627 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5628 if (!C || C->getZExtValue() != 8) 5629 return false; 5630 } else { 5631 // (x << 8) & 0xff00 5632 // (x << 8) & 0xff000000 5633 if (Opc0 != ISD::SHL) 5634 return false; 5635 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5636 if (!C || C->getZExtValue() != 8) 5637 return false; 5638 } 5639 } else if (Opc == ISD::SHL) { 5640 // (x & 0xff) << 8 5641 // (x & 0xff0000) << 8 5642 if (MaskByteOffset != 0 && MaskByteOffset != 2) 5643 return false; 5644 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 5645 if (!C || C->getZExtValue() != 8) 5646 return false; 5647 } else { // Opc == ISD::SRL 5648 // (x & 0xff00) >> 8 5649 // (x & 0xff000000) >> 8 5650 if (MaskByteOffset != 1 && MaskByteOffset != 3) 5651 return false; 5652 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 5653 if (!C || C->getZExtValue() != 8) 5654 return false; 5655 } 5656 5657 if (Parts[MaskByteOffset]) 5658 return false; 5659 5660 Parts[MaskByteOffset] = N0.getOperand(0).getNode(); 5661 return true; 5662 } 5663 5664 // Match 2 elements of a packed halfword bswap. 5665 static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) { 5666 if (N.getOpcode() == ISD::OR) 5667 return isBSwapHWordElement(N.getOperand(0), Parts) && 5668 isBSwapHWordElement(N.getOperand(1), Parts); 5669 5670 if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) { 5671 ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1)); 5672 if (!C || C->getAPIntValue() != 16) 5673 return false; 5674 Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode(); 5675 return true; 5676 } 5677 5678 return false; 5679 } 5680 5681 // Match this pattern: 5682 // (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff)) 5683 // And rewrite this to: 5684 // (rotr (bswap A), 16) 5685 static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI, 5686 SelectionDAG &DAG, SDNode *N, SDValue N0, 5687 SDValue N1, EVT VT, EVT ShiftAmountTy) { 5688 assert(N->getOpcode() == ISD::OR && VT == MVT::i32 && 5689 "MatchBSwapHWordOrAndAnd: expecting i32"); 5690 if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 5691 return SDValue(); 5692 if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND) 5693 return SDValue(); 5694 // TODO: this is too restrictive; lifting this restriction requires more tests 5695 if (!N0->hasOneUse() || !N1->hasOneUse()) 5696 return SDValue(); 5697 ConstantSDNode *Mask0 = isConstOrConstSplat(N0.getOperand(1)); 5698 ConstantSDNode *Mask1 = isConstOrConstSplat(N1.getOperand(1)); 5699 if (!Mask0 || !Mask1) 5700 return SDValue(); 5701 if (Mask0->getAPIntValue() != 0xff00ff00 || 5702 Mask1->getAPIntValue() != 0x00ff00ff) 5703 return SDValue(); 5704 SDValue Shift0 = N0.getOperand(0); 5705 SDValue Shift1 = N1.getOperand(0); 5706 if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL) 5707 return SDValue(); 5708 ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1)); 5709 ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1)); 5710 if (!ShiftAmt0 || !ShiftAmt1) 5711 return SDValue(); 5712 if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8) 5713 return SDValue(); 5714 if (Shift0.getOperand(0) != Shift1.getOperand(0)) 5715 return SDValue(); 5716 5717 SDLoc DL(N); 5718 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0)); 5719 SDValue ShAmt = DAG.getConstant(16, DL, ShiftAmountTy); 5720 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 5721 } 5722 5723 /// Match a 32-bit packed halfword bswap. That is 5724 /// ((x & 0x000000ff) << 8) | 5725 /// ((x & 0x0000ff00) >> 8) | 5726 /// ((x & 0x00ff0000) << 8) | 5727 /// ((x & 0xff000000) >> 8) 5728 /// => (rotl (bswap x), 16) 5729 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { 5730 if (!LegalOperations) 5731 return SDValue(); 5732 5733 EVT VT = N->getValueType(0); 5734 if (VT != MVT::i32) 5735 return SDValue(); 5736 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) 5737 return SDValue(); 5738 5739 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT, 5740 getShiftAmountTy(VT))) 5741 return BSwap; 5742 5743 // Try again with commuted operands. 5744 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT, 5745 getShiftAmountTy(VT))) 5746 return BSwap; 5747 5748 5749 // Look for either 5750 // (or (bswaphpair), (bswaphpair)) 5751 // (or (or (bswaphpair), (and)), (and)) 5752 // (or (or (and), (bswaphpair)), (and)) 5753 SDNode *Parts[4] = {}; 5754 5755 if (isBSwapHWordPair(N0, Parts)) { 5756 // (or (or (and), (and)), (or (and), (and))) 5757 if (!isBSwapHWordPair(N1, Parts)) 5758 return SDValue(); 5759 } else if (N0.getOpcode() == ISD::OR) { 5760 // (or (or (or (and), (and)), (and)), (and)) 5761 if (!isBSwapHWordElement(N1, Parts)) 5762 return SDValue(); 5763 SDValue N00 = N0.getOperand(0); 5764 SDValue N01 = N0.getOperand(1); 5765 if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) && 5766 !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts))) 5767 return SDValue(); 5768 } else 5769 return SDValue(); 5770 5771 // Make sure the parts are all coming from the same node. 5772 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) 5773 return SDValue(); 5774 5775 SDLoc DL(N); 5776 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, 5777 SDValue(Parts[0], 0)); 5778 5779 // Result of the bswap should be rotated by 16. If it's not legal, then 5780 // do (x << 16) | (x >> 16). 5781 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); 5782 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) 5783 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); 5784 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 5785 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 5786 return DAG.getNode(ISD::OR, DL, VT, 5787 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), 5788 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); 5789 } 5790 5791 /// This contains all DAGCombine rules which reduce two values combined by 5792 /// an Or operation to a single value \see visitANDLike(). 5793 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) { 5794 EVT VT = N1.getValueType(); 5795 SDLoc DL(N); 5796 5797 // fold (or x, undef) -> -1 5798 if (!LegalOperations && (N0.isUndef() || N1.isUndef())) 5799 return DAG.getAllOnesConstant(DL, VT); 5800 5801 if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) 5802 return V; 5803 5804 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. 5805 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && 5806 // Don't increase # computations. 5807 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 5808 // We can only do this xform if we know that bits from X that are set in C2 5809 // but not in C1 are already zero. Likewise for Y. 5810 if (const ConstantSDNode *N0O1C = 5811 getAsNonOpaqueConstant(N0.getOperand(1))) { 5812 if (const ConstantSDNode *N1O1C = 5813 getAsNonOpaqueConstant(N1.getOperand(1))) { 5814 // We can only do this xform if we know that bits from X that are set in 5815 // C2 but not in C1 are already zero. Likewise for Y. 5816 const APInt &LHSMask = N0O1C->getAPIntValue(); 5817 const APInt &RHSMask = N1O1C->getAPIntValue(); 5818 5819 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && 5820 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { 5821 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 5822 N0.getOperand(0), N1.getOperand(0)); 5823 return DAG.getNode(ISD::AND, DL, VT, X, 5824 DAG.getConstant(LHSMask | RHSMask, DL, VT)); 5825 } 5826 } 5827 } 5828 } 5829 5830 // (or (and X, M), (and X, N)) -> (and X, (or M, N)) 5831 if (N0.getOpcode() == ISD::AND && 5832 N1.getOpcode() == ISD::AND && 5833 N0.getOperand(0) == N1.getOperand(0) && 5834 // Don't increase # computations. 5835 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 5836 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 5837 N0.getOperand(1), N1.getOperand(1)); 5838 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); 5839 } 5840 5841 return SDValue(); 5842 } 5843 5844 /// OR combines for which the commuted variant will be tried as well. 5845 static SDValue visitORCommutative( 5846 SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) { 5847 EVT VT = N0.getValueType(); 5848 if (N0.getOpcode() == ISD::AND) { 5849 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y) 5850 if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1) 5851 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1); 5852 5853 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y) 5854 if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1) 5855 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1); 5856 } 5857 5858 return SDValue(); 5859 } 5860 5861 SDValue DAGCombiner::visitOR(SDNode *N) { 5862 SDValue N0 = N->getOperand(0); 5863 SDValue N1 = N->getOperand(1); 5864 EVT VT = N1.getValueType(); 5865 5866 // x | x --> x 5867 if (N0 == N1) 5868 return N0; 5869 5870 // fold vector ops 5871 if (VT.isVector()) { 5872 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 5873 return FoldedVOp; 5874 5875 // fold (or x, 0) -> x, vector edition 5876 if (ISD::isBuildVectorAllZeros(N0.getNode())) 5877 return N1; 5878 if (ISD::isBuildVectorAllZeros(N1.getNode())) 5879 return N0; 5880 5881 // fold (or x, -1) -> -1, vector edition 5882 if (ISD::isBuildVectorAllOnes(N0.getNode())) 5883 // do not return N0, because undef node may exist in N0 5884 return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType()); 5885 if (ISD::isBuildVectorAllOnes(N1.getNode())) 5886 // do not return N1, because undef node may exist in N1 5887 return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType()); 5888 5889 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) 5890 // Do this only if the resulting shuffle is legal. 5891 if (isa<ShuffleVectorSDNode>(N0) && 5892 isa<ShuffleVectorSDNode>(N1) && 5893 // Avoid folding a node with illegal type. 5894 TLI.isTypeLegal(VT)) { 5895 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); 5896 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); 5897 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 5898 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); 5899 // Ensure both shuffles have a zero input. 5900 if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { 5901 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); 5902 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); 5903 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); 5904 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); 5905 bool CanFold = true; 5906 int NumElts = VT.getVectorNumElements(); 5907 SmallVector<int, 4> Mask(NumElts); 5908 5909 for (int i = 0; i != NumElts; ++i) { 5910 int M0 = SV0->getMaskElt(i); 5911 int M1 = SV1->getMaskElt(i); 5912 5913 // Determine if either index is pointing to a zero vector. 5914 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); 5915 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); 5916 5917 // If one element is zero and the otherside is undef, keep undef. 5918 // This also handles the case that both are undef. 5919 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { 5920 Mask[i] = -1; 5921 continue; 5922 } 5923 5924 // Make sure only one of the elements is zero. 5925 if (M0Zero == M1Zero) { 5926 CanFold = false; 5927 break; 5928 } 5929 5930 assert((M0 >= 0 || M1 >= 0) && "Undef index!"); 5931 5932 // We have a zero and non-zero element. If the non-zero came from 5933 // SV0 make the index a LHS index. If it came from SV1, make it 5934 // a RHS index. We need to mod by NumElts because we don't care 5935 // which operand it came from in the original shuffles. 5936 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; 5937 } 5938 5939 if (CanFold) { 5940 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); 5941 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); 5942 5943 SDValue LegalShuffle = 5944 TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, 5945 Mask, DAG); 5946 if (LegalShuffle) 5947 return LegalShuffle; 5948 } 5949 } 5950 } 5951 } 5952 5953 // fold (or c1, c2) -> c1|c2 5954 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5955 if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, {N0, N1})) 5956 return C; 5957 5958 // canonicalize constant to RHS 5959 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 5960 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 5961 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); 5962 5963 // fold (or x, 0) -> x 5964 if (isNullConstant(N1)) 5965 return N0; 5966 5967 // fold (or x, -1) -> -1 5968 if (isAllOnesConstant(N1)) 5969 return N1; 5970 5971 if (SDValue NewSel = foldBinOpIntoSelect(N)) 5972 return NewSel; 5973 5974 // fold (or x, c) -> c iff (x & ~c) == 0 5975 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) 5976 return N1; 5977 5978 if (SDValue Combined = visitORLike(N0, N1, N)) 5979 return Combined; 5980 5981 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) 5982 return Combined; 5983 5984 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) 5985 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) 5986 return BSwap; 5987 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) 5988 return BSwap; 5989 5990 // reassociate or 5991 if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags())) 5992 return ROR; 5993 5994 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) 5995 // iff (c1 & c2) != 0 or c1/c2 are undef. 5996 auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) { 5997 return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue()); 5998 }; 5999 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 6000 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) { 6001 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, 6002 {N1, N0.getOperand(1)})) { 6003 SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1); 6004 AddToWorklist(IOR.getNode()); 6005 return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR); 6006 } 6007 } 6008 6009 if (SDValue Combined = visitORCommutative(DAG, N0, N1, N)) 6010 return Combined; 6011 if (SDValue Combined = visitORCommutative(DAG, N1, N0, N)) 6012 return Combined; 6013 6014 // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) 6015 if (N0.getOpcode() == N1.getOpcode()) 6016 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 6017 return V; 6018 6019 // See if this is some rotate idiom. 6020 if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N))) 6021 return Rot; 6022 6023 if (SDValue Load = MatchLoadCombine(N)) 6024 return Load; 6025 6026 // Simplify the operands using demanded-bits information. 6027 if (SimplifyDemandedBits(SDValue(N, 0))) 6028 return SDValue(N, 0); 6029 6030 // If OR can be rewritten into ADD, try combines based on ADD. 6031 if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) && 6032 DAG.haveNoCommonBitsSet(N0, N1)) 6033 if (SDValue Combined = visitADDLike(N)) 6034 return Combined; 6035 6036 return SDValue(); 6037 } 6038 6039 static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) { 6040 if (Op.getOpcode() == ISD::AND && 6041 DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { 6042 Mask = Op.getOperand(1); 6043 return Op.getOperand(0); 6044 } 6045 return Op; 6046 } 6047 6048 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 6049 static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift, 6050 SDValue &Mask) { 6051 Op = stripConstantMask(DAG, Op, Mask); 6052 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { 6053 Shift = Op; 6054 return true; 6055 } 6056 return false; 6057 } 6058 6059 /// Helper function for visitOR to extract the needed side of a rotate idiom 6060 /// from a shl/srl/mul/udiv. This is meant to handle cases where 6061 /// InstCombine merged some outside op with one of the shifts from 6062 /// the rotate pattern. 6063 /// \returns An empty \c SDValue if the needed shift couldn't be extracted. 6064 /// Otherwise, returns an expansion of \p ExtractFrom based on the following 6065 /// patterns: 6066 /// 6067 /// (or (add v v) (shrl v bitwidth-1)): 6068 /// expands (add v v) -> (shl v 1) 6069 /// 6070 /// (or (mul v c0) (shrl (mul v c1) c2)): 6071 /// expands (mul v c0) -> (shl (mul v c1) c3) 6072 /// 6073 /// (or (udiv v c0) (shl (udiv v c1) c2)): 6074 /// expands (udiv v c0) -> (shrl (udiv v c1) c3) 6075 /// 6076 /// (or (shl v c0) (shrl (shl v c1) c2)): 6077 /// expands (shl v c0) -> (shl (shl v c1) c3) 6078 /// 6079 /// (or (shrl v c0) (shl (shrl v c1) c2)): 6080 /// expands (shrl v c0) -> (shrl (shrl v c1) c3) 6081 /// 6082 /// Such that in all cases, c3+c2==bitwidth(op v c1). 6083 static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, 6084 SDValue ExtractFrom, SDValue &Mask, 6085 const SDLoc &DL) { 6086 assert(OppShift && ExtractFrom && "Empty SDValue"); 6087 assert( 6088 (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && 6089 "Existing shift must be valid as a rotate half"); 6090 6091 ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask); 6092 6093 // Value and Type of the shift. 6094 SDValue OppShiftLHS = OppShift.getOperand(0); 6095 EVT ShiftedVT = OppShiftLHS.getValueType(); 6096 6097 // Amount of the existing shift. 6098 ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1)); 6099 6100 // (add v v) -> (shl v 1) 6101 // TODO: Should this be a general DAG canonicalization? 6102 if (OppShift.getOpcode() == ISD::SRL && OppShiftCst && 6103 ExtractFrom.getOpcode() == ISD::ADD && 6104 ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) && 6105 ExtractFrom.getOperand(0) == OppShiftLHS && 6106 OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1) 6107 return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS, 6108 DAG.getShiftAmountConstant(1, ShiftedVT, DL)); 6109 6110 // Preconditions: 6111 // (or (op0 v c0) (shiftl/r (op0 v c1) c2)) 6112 // 6113 // Find opcode of the needed shift to be extracted from (op0 v c0). 6114 unsigned Opcode = ISD::DELETED_NODE; 6115 bool IsMulOrDiv = false; 6116 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift 6117 // opcode or its arithmetic (mul or udiv) variant. 6118 auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) { 6119 IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant; 6120 if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift) 6121 return false; 6122 Opcode = NeededShift; 6123 return true; 6124 }; 6125 // op0 must be either the needed shift opcode or the mul/udiv equivalent 6126 // that the needed shift can be extracted from. 6127 if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) && 6128 (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV))) 6129 return SDValue(); 6130 6131 // op0 must be the same opcode on both sides, have the same LHS argument, 6132 // and produce the same value type. 6133 if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() || 6134 OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) || 6135 ShiftedVT != ExtractFrom.getValueType()) 6136 return SDValue(); 6137 6138 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op. 6139 ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1)); 6140 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op. 6141 ConstantSDNode *ExtractFromCst = 6142 isConstOrConstSplat(ExtractFrom.getOperand(1)); 6143 // TODO: We should be able to handle non-uniform constant vectors for these values 6144 // Check that we have constant values. 6145 if (!OppShiftCst || !OppShiftCst->getAPIntValue() || 6146 !OppLHSCst || !OppLHSCst->getAPIntValue() || 6147 !ExtractFromCst || !ExtractFromCst->getAPIntValue()) 6148 return SDValue(); 6149 6150 // Compute the shift amount we need to extract to complete the rotate. 6151 const unsigned VTWidth = ShiftedVT.getScalarSizeInBits(); 6152 if (OppShiftCst->getAPIntValue().ugt(VTWidth)) 6153 return SDValue(); 6154 APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue(); 6155 // Normalize the bitwidth of the two mul/udiv/shift constant operands. 6156 APInt ExtractFromAmt = ExtractFromCst->getAPIntValue(); 6157 APInt OppLHSAmt = OppLHSCst->getAPIntValue(); 6158 zeroExtendToMatch(ExtractFromAmt, OppLHSAmt); 6159 6160 // Now try extract the needed shift from the ExtractFrom op and see if the 6161 // result matches up with the existing shift's LHS op. 6162 if (IsMulOrDiv) { 6163 // Op to extract from is a mul or udiv by a constant. 6164 // Check: 6165 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0 6166 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0 6167 const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(), 6168 NeededShiftAmt.getZExtValue()); 6169 APInt ResultAmt; 6170 APInt Rem; 6171 APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem); 6172 if (Rem != 0 || ResultAmt != OppLHSAmt) 6173 return SDValue(); 6174 } else { 6175 // Op to extract from is a shift by a constant. 6176 // Check: 6177 // c2 - (bitwidth(op0 v c0) - c1) == c0 6178 if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc( 6179 ExtractFromAmt.getBitWidth())) 6180 return SDValue(); 6181 } 6182 6183 // Return the expanded shift op that should allow a rotate to be formed. 6184 EVT ShiftVT = OppShift.getOperand(1).getValueType(); 6185 EVT ResVT = ExtractFrom.getValueType(); 6186 SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT); 6187 return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode); 6188 } 6189 6190 // Return true if we can prove that, whenever Neg and Pos are both in the 6191 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that 6192 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: 6193 // 6194 // (or (shift1 X, Neg), (shift2 X, Pos)) 6195 // 6196 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate 6197 // in direction shift1 by Neg. The range [0, EltSize) means that we only need 6198 // to consider shift amounts with defined behavior. 6199 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, 6200 SelectionDAG &DAG) { 6201 // If EltSize is a power of 2 then: 6202 // 6203 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) 6204 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). 6205 // 6206 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check 6207 // for the stronger condition: 6208 // 6209 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] 6210 // 6211 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) 6212 // we can just replace Neg with Neg' for the rest of the function. 6213 // 6214 // In other cases we check for the even stronger condition: 6215 // 6216 // Neg == EltSize - Pos [B] 6217 // 6218 // for all Neg and Pos. Note that the (or ...) then invokes undefined 6219 // behavior if Pos == 0 (and consequently Neg == EltSize). 6220 // 6221 // We could actually use [A] whenever EltSize is a power of 2, but the 6222 // only extra cases that it would match are those uninteresting ones 6223 // where Neg and Pos are never in range at the same time. E.g. for 6224 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) 6225 // as well as (sub 32, Pos), but: 6226 // 6227 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) 6228 // 6229 // always invokes undefined behavior for 32-bit X. 6230 // 6231 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. 6232 unsigned MaskLoBits = 0; 6233 if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { 6234 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { 6235 KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0)); 6236 unsigned Bits = Log2_64(EltSize); 6237 if (NegC->getAPIntValue().getActiveBits() <= Bits && 6238 ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) { 6239 Neg = Neg.getOperand(0); 6240 MaskLoBits = Bits; 6241 } 6242 } 6243 } 6244 6245 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. 6246 if (Neg.getOpcode() != ISD::SUB) 6247 return false; 6248 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); 6249 if (!NegC) 6250 return false; 6251 SDValue NegOp1 = Neg.getOperand(1); 6252 6253 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with 6254 // Pos'. The truncation is redundant for the purpose of the equality. 6255 if (MaskLoBits && Pos.getOpcode() == ISD::AND) { 6256 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) { 6257 KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0)); 6258 if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits && 6259 ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >= 6260 MaskLoBits)) 6261 Pos = Pos.getOperand(0); 6262 } 6263 } 6264 6265 // The condition we need is now: 6266 // 6267 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask 6268 // 6269 // If NegOp1 == Pos then we need: 6270 // 6271 // EltSize & Mask == NegC & Mask 6272 // 6273 // (because "x & Mask" is a truncation and distributes through subtraction). 6274 // 6275 // We also need to account for a potential truncation of NegOp1 if the amount 6276 // has already been legalized to a shift amount type. 6277 APInt Width; 6278 if ((Pos == NegOp1) || 6279 (NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0))) 6280 Width = NegC->getAPIntValue(); 6281 6282 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. 6283 // Then the condition we want to prove becomes: 6284 // 6285 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask 6286 // 6287 // which, again because "x & Mask" is a truncation, becomes: 6288 // 6289 // NegC & Mask == (EltSize - PosC) & Mask 6290 // EltSize & Mask == (NegC + PosC) & Mask 6291 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { 6292 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 6293 Width = PosC->getAPIntValue() + NegC->getAPIntValue(); 6294 else 6295 return false; 6296 } else 6297 return false; 6298 6299 // Now we just need to check that EltSize & Mask == Width & Mask. 6300 if (MaskLoBits) 6301 // EltSize & Mask is 0 since Mask is EltSize - 1. 6302 return Width.getLoBits(MaskLoBits) == 0; 6303 return Width == EltSize; 6304 } 6305 6306 // A subroutine of MatchRotate used once we have found an OR of two opposite 6307 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces 6308 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the 6309 // former being preferred if supported. InnerPos and InnerNeg are Pos and 6310 // Neg with outer conversions stripped away. 6311 SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, 6312 SDValue Neg, SDValue InnerPos, 6313 SDValue InnerNeg, unsigned PosOpcode, 6314 unsigned NegOpcode, const SDLoc &DL) { 6315 // fold (or (shl x, (*ext y)), 6316 // (srl x, (*ext (sub 32, y)))) -> 6317 // (rotl x, y) or (rotr x, (sub 32, y)) 6318 // 6319 // fold (or (shl x, (*ext (sub 32, y))), 6320 // (srl x, (*ext y))) -> 6321 // (rotr x, y) or (rotl x, (sub 32, y)) 6322 EVT VT = Shifted.getValueType(); 6323 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG)) { 6324 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 6325 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, 6326 HasPos ? Pos : Neg); 6327 } 6328 6329 return SDValue(); 6330 } 6331 6332 // A subroutine of MatchRotate used once we have found an OR of two opposite 6333 // shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces 6334 // to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the 6335 // former being preferred if supported. InnerPos and InnerNeg are Pos and 6336 // Neg with outer conversions stripped away. 6337 // TODO: Merge with MatchRotatePosNeg. 6338 SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, 6339 SDValue Neg, SDValue InnerPos, 6340 SDValue InnerNeg, unsigned PosOpcode, 6341 unsigned NegOpcode, const SDLoc &DL) { 6342 EVT VT = N0.getValueType(); 6343 unsigned EltBits = VT.getScalarSizeInBits(); 6344 6345 // fold (or (shl x0, (*ext y)), 6346 // (srl x1, (*ext (sub 32, y)))) -> 6347 // (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y)) 6348 // 6349 // fold (or (shl x0, (*ext (sub 32, y))), 6350 // (srl x1, (*ext y))) -> 6351 // (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y)) 6352 if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG)) { 6353 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 6354 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1, 6355 HasPos ? Pos : Neg); 6356 } 6357 6358 // Matching the shift+xor cases, we can't easily use the xor'd shift amount 6359 // so for now just use the PosOpcode case if its legal. 6360 // TODO: When can we use the NegOpcode case? 6361 if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) { 6362 auto IsBinOpImm = [](SDValue Op, unsigned BinOpc, unsigned Imm) { 6363 if (Op.getOpcode() != BinOpc) 6364 return false; 6365 ConstantSDNode *Cst = isConstOrConstSplat(Op.getOperand(1)); 6366 return Cst && (Cst->getAPIntValue() == Imm); 6367 }; 6368 6369 // fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31))) 6370 // -> (fshl x0, x1, y) 6371 if (IsBinOpImm(N1, ISD::SRL, 1) && 6372 IsBinOpImm(InnerNeg, ISD::XOR, EltBits - 1) && 6373 InnerPos == InnerNeg.getOperand(0) && 6374 TLI.isOperationLegalOrCustom(ISD::FSHL, VT)) { 6375 return DAG.getNode(ISD::FSHL, DL, VT, N0, N1.getOperand(0), Pos); 6376 } 6377 6378 // fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y)) 6379 // -> (fshr x0, x1, y) 6380 if (IsBinOpImm(N0, ISD::SHL, 1) && 6381 IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && 6382 InnerNeg == InnerPos.getOperand(0) && 6383 TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { 6384 return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); 6385 } 6386 6387 // fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y)) 6388 // -> (fshr x0, x1, y) 6389 // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization? 6390 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N0.getOperand(1) && 6391 IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && 6392 InnerNeg == InnerPos.getOperand(0) && 6393 TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { 6394 return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); 6395 } 6396 } 6397 6398 return SDValue(); 6399 } 6400 6401 // MatchRotate - Handle an 'or' of two operands. If this is one of the many 6402 // idioms for rotate, and if the target supports rotation instructions, generate 6403 // a rot[lr]. This also matches funnel shift patterns, similar to rotation but 6404 // with different shifted sources. 6405 SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { 6406 // Must be a legal type. Expanded 'n promoted things won't work with rotates. 6407 EVT VT = LHS.getValueType(); 6408 if (!TLI.isTypeLegal(VT)) 6409 return SDValue(); 6410 6411 // The target must have at least one rotate/funnel flavor. 6412 bool HasROTL = hasOperation(ISD::ROTL, VT); 6413 bool HasROTR = hasOperation(ISD::ROTR, VT); 6414 bool HasFSHL = hasOperation(ISD::FSHL, VT); 6415 bool HasFSHR = hasOperation(ISD::FSHR, VT); 6416 if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR) 6417 return SDValue(); 6418 6419 // Check for truncated rotate. 6420 if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE && 6421 LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) { 6422 assert(LHS.getValueType() == RHS.getValueType()); 6423 if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) { 6424 return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot); 6425 } 6426 } 6427 6428 // Match "(X shl/srl V1) & V2" where V2 may not be present. 6429 SDValue LHSShift; // The shift. 6430 SDValue LHSMask; // AND value if any. 6431 matchRotateHalf(DAG, LHS, LHSShift, LHSMask); 6432 6433 SDValue RHSShift; // The shift. 6434 SDValue RHSMask; // AND value if any. 6435 matchRotateHalf(DAG, RHS, RHSShift, RHSMask); 6436 6437 // If neither side matched a rotate half, bail 6438 if (!LHSShift && !RHSShift) 6439 return SDValue(); 6440 6441 // InstCombine may have combined a constant shl, srl, mul, or udiv with one 6442 // side of the rotate, so try to handle that here. In all cases we need to 6443 // pass the matched shift from the opposite side to compute the opcode and 6444 // needed shift amount to extract. We still want to do this if both sides 6445 // matched a rotate half because one half may be a potential overshift that 6446 // can be broken down (ie if InstCombine merged two shl or srl ops into a 6447 // single one). 6448 6449 // Have LHS side of the rotate, try to extract the needed shift from the RHS. 6450 if (LHSShift) 6451 if (SDValue NewRHSShift = 6452 extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL)) 6453 RHSShift = NewRHSShift; 6454 // Have RHS side of the rotate, try to extract the needed shift from the LHS. 6455 if (RHSShift) 6456 if (SDValue NewLHSShift = 6457 extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL)) 6458 LHSShift = NewLHSShift; 6459 6460 // If a side is still missing, nothing else we can do. 6461 if (!RHSShift || !LHSShift) 6462 return SDValue(); 6463 6464 // At this point we've matched or extracted a shift op on each side. 6465 6466 if (LHSShift.getOpcode() == RHSShift.getOpcode()) 6467 return SDValue(); // Shifts must disagree. 6468 6469 bool IsRotate = LHSShift.getOperand(0) == RHSShift.getOperand(0); 6470 if (!IsRotate && !(HasFSHL || HasFSHR)) 6471 return SDValue(); // Requires funnel shift support. 6472 6473 // Canonicalize shl to left side in a shl/srl pair. 6474 if (RHSShift.getOpcode() == ISD::SHL) { 6475 std::swap(LHS, RHS); 6476 std::swap(LHSShift, RHSShift); 6477 std::swap(LHSMask, RHSMask); 6478 } 6479 6480 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6481 SDValue LHSShiftArg = LHSShift.getOperand(0); 6482 SDValue LHSShiftAmt = LHSShift.getOperand(1); 6483 SDValue RHSShiftArg = RHSShift.getOperand(0); 6484 SDValue RHSShiftAmt = RHSShift.getOperand(1); 6485 6486 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) 6487 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) 6488 // fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1) 6489 // fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2) 6490 // iff C1+C2 == EltSizeInBits 6491 auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS, 6492 ConstantSDNode *RHS) { 6493 return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits; 6494 }; 6495 if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { 6496 SDValue Res; 6497 if (IsRotate && (HasROTL || HasROTR)) 6498 Res = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg, 6499 HasROTL ? LHSShiftAmt : RHSShiftAmt); 6500 else 6501 Res = DAG.getNode(HasFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg, 6502 RHSShiftArg, HasFSHL ? LHSShiftAmt : RHSShiftAmt); 6503 6504 // If there is an AND of either shifted operand, apply it to the result. 6505 if (LHSMask.getNode() || RHSMask.getNode()) { 6506 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); 6507 SDValue Mask = AllOnes; 6508 6509 if (LHSMask.getNode()) { 6510 SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt); 6511 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 6512 DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits)); 6513 } 6514 if (RHSMask.getNode()) { 6515 SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt); 6516 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 6517 DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits)); 6518 } 6519 6520 Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask); 6521 } 6522 6523 return Res; 6524 } 6525 6526 // If there is a mask here, and we have a variable shift, we can't be sure 6527 // that we're masking out the right stuff. 6528 if (LHSMask.getNode() || RHSMask.getNode()) 6529 return SDValue(); 6530 6531 // If the shift amount is sign/zext/any-extended just peel it off. 6532 SDValue LExtOp0 = LHSShiftAmt; 6533 SDValue RExtOp0 = RHSShiftAmt; 6534 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 6535 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 6536 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 6537 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && 6538 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 6539 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 6540 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 6541 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { 6542 LExtOp0 = LHSShiftAmt.getOperand(0); 6543 RExtOp0 = RHSShiftAmt.getOperand(0); 6544 } 6545 6546 if (IsRotate && (HasROTL || HasROTR)) { 6547 SDValue TryL = 6548 MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, LExtOp0, 6549 RExtOp0, ISD::ROTL, ISD::ROTR, DL); 6550 if (TryL) 6551 return TryL; 6552 6553 SDValue TryR = 6554 MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, RExtOp0, 6555 LExtOp0, ISD::ROTR, ISD::ROTL, DL); 6556 if (TryR) 6557 return TryR; 6558 } 6559 6560 SDValue TryL = 6561 MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt, RHSShiftAmt, 6562 LExtOp0, RExtOp0, ISD::FSHL, ISD::FSHR, DL); 6563 if (TryL) 6564 return TryL; 6565 6566 SDValue TryR = 6567 MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt, LHSShiftAmt, 6568 RExtOp0, LExtOp0, ISD::FSHR, ISD::FSHL, DL); 6569 if (TryR) 6570 return TryR; 6571 6572 return SDValue(); 6573 } 6574 6575 namespace { 6576 6577 /// Represents known origin of an individual byte in load combine pattern. The 6578 /// value of the byte is either constant zero or comes from memory. 6579 struct ByteProvider { 6580 // For constant zero providers Load is set to nullptr. For memory providers 6581 // Load represents the node which loads the byte from memory. 6582 // ByteOffset is the offset of the byte in the value produced by the load. 6583 LoadSDNode *Load = nullptr; 6584 unsigned ByteOffset = 0; 6585 6586 ByteProvider() = default; 6587 6588 static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) { 6589 return ByteProvider(Load, ByteOffset); 6590 } 6591 6592 static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); } 6593 6594 bool isConstantZero() const { return !Load; } 6595 bool isMemory() const { return Load; } 6596 6597 bool operator==(const ByteProvider &Other) const { 6598 return Other.Load == Load && Other.ByteOffset == ByteOffset; 6599 } 6600 6601 private: 6602 ByteProvider(LoadSDNode *Load, unsigned ByteOffset) 6603 : Load(Load), ByteOffset(ByteOffset) {} 6604 }; 6605 6606 } // end anonymous namespace 6607 6608 /// Recursively traverses the expression calculating the origin of the requested 6609 /// byte of the given value. Returns None if the provider can't be calculated. 6610 /// 6611 /// For all the values except the root of the expression verifies that the value 6612 /// has exactly one use and if it's not true return None. This way if the origin 6613 /// of the byte is returned it's guaranteed that the values which contribute to 6614 /// the byte are not used outside of this expression. 6615 /// 6616 /// Because the parts of the expression are not allowed to have more than one 6617 /// use this function iterates over trees, not DAGs. So it never visits the same 6618 /// node more than once. 6619 static const Optional<ByteProvider> 6620 calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, 6621 bool Root = false) { 6622 // Typical i64 by i8 pattern requires recursion up to 8 calls depth 6623 if (Depth == 10) 6624 return None; 6625 6626 if (!Root && !Op.hasOneUse()) 6627 return None; 6628 6629 assert(Op.getValueType().isScalarInteger() && "can't handle other types"); 6630 unsigned BitWidth = Op.getValueSizeInBits(); 6631 if (BitWidth % 8 != 0) 6632 return None; 6633 unsigned ByteWidth = BitWidth / 8; 6634 assert(Index < ByteWidth && "invalid index requested"); 6635 (void) ByteWidth; 6636 6637 switch (Op.getOpcode()) { 6638 case ISD::OR: { 6639 auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1); 6640 if (!LHS) 6641 return None; 6642 auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1); 6643 if (!RHS) 6644 return None; 6645 6646 if (LHS->isConstantZero()) 6647 return RHS; 6648 if (RHS->isConstantZero()) 6649 return LHS; 6650 return None; 6651 } 6652 case ISD::SHL: { 6653 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 6654 if (!ShiftOp) 6655 return None; 6656 6657 uint64_t BitShift = ShiftOp->getZExtValue(); 6658 if (BitShift % 8 != 0) 6659 return None; 6660 uint64_t ByteShift = BitShift / 8; 6661 6662 return Index < ByteShift 6663 ? ByteProvider::getConstantZero() 6664 : calculateByteProvider(Op->getOperand(0), Index - ByteShift, 6665 Depth + 1); 6666 } 6667 case ISD::ANY_EXTEND: 6668 case ISD::SIGN_EXTEND: 6669 case ISD::ZERO_EXTEND: { 6670 SDValue NarrowOp = Op->getOperand(0); 6671 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); 6672 if (NarrowBitWidth % 8 != 0) 6673 return None; 6674 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 6675 6676 if (Index >= NarrowByteWidth) 6677 return Op.getOpcode() == ISD::ZERO_EXTEND 6678 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) 6679 : None; 6680 return calculateByteProvider(NarrowOp, Index, Depth + 1); 6681 } 6682 case ISD::BSWAP: 6683 return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, 6684 Depth + 1); 6685 case ISD::LOAD: { 6686 auto L = cast<LoadSDNode>(Op.getNode()); 6687 if (!L->isSimple() || L->isIndexed()) 6688 return None; 6689 6690 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); 6691 if (NarrowBitWidth % 8 != 0) 6692 return None; 6693 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 6694 6695 if (Index >= NarrowByteWidth) 6696 return L->getExtensionType() == ISD::ZEXTLOAD 6697 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) 6698 : None; 6699 return ByteProvider::getMemory(L, Index); 6700 } 6701 } 6702 6703 return None; 6704 } 6705 6706 static unsigned LittleEndianByteAt(unsigned BW, unsigned i) { 6707 return i; 6708 } 6709 6710 static unsigned BigEndianByteAt(unsigned BW, unsigned i) { 6711 return BW - i - 1; 6712 } 6713 6714 // Check if the bytes offsets we are looking at match with either big or 6715 // little endian value loaded. Return true for big endian, false for little 6716 // endian, and None if match failed. 6717 static Optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets, 6718 int64_t FirstOffset) { 6719 // The endian can be decided only when it is 2 bytes at least. 6720 unsigned Width = ByteOffsets.size(); 6721 if (Width < 2) 6722 return None; 6723 6724 bool BigEndian = true, LittleEndian = true; 6725 for (unsigned i = 0; i < Width; i++) { 6726 int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; 6727 LittleEndian &= CurrentByteOffset == LittleEndianByteAt(Width, i); 6728 BigEndian &= CurrentByteOffset == BigEndianByteAt(Width, i); 6729 if (!BigEndian && !LittleEndian) 6730 return None; 6731 } 6732 6733 assert((BigEndian != LittleEndian) && "It should be either big endian or" 6734 "little endian"); 6735 return BigEndian; 6736 } 6737 6738 static SDValue stripTruncAndExt(SDValue Value) { 6739 switch (Value.getOpcode()) { 6740 case ISD::TRUNCATE: 6741 case ISD::ZERO_EXTEND: 6742 case ISD::SIGN_EXTEND: 6743 case ISD::ANY_EXTEND: 6744 return stripTruncAndExt(Value.getOperand(0)); 6745 } 6746 return Value; 6747 } 6748 6749 /// Match a pattern where a wide type scalar value is stored by several narrow 6750 /// stores. Fold it into a single store or a BSWAP and a store if the targets 6751 /// supports it. 6752 /// 6753 /// Assuming little endian target: 6754 /// i8 *p = ... 6755 /// i32 val = ... 6756 /// p[0] = (val >> 0) & 0xFF; 6757 /// p[1] = (val >> 8) & 0xFF; 6758 /// p[2] = (val >> 16) & 0xFF; 6759 /// p[3] = (val >> 24) & 0xFF; 6760 /// => 6761 /// *((i32)p) = val; 6762 /// 6763 /// i8 *p = ... 6764 /// i32 val = ... 6765 /// p[0] = (val >> 24) & 0xFF; 6766 /// p[1] = (val >> 16) & 0xFF; 6767 /// p[2] = (val >> 8) & 0xFF; 6768 /// p[3] = (val >> 0) & 0xFF; 6769 /// => 6770 /// *((i32)p) = BSWAP(val); 6771 SDValue DAGCombiner::MatchStoreCombine(StoreSDNode *N) { 6772 // Collect all the stores in the chain. 6773 SDValue Chain; 6774 SmallVector<StoreSDNode *, 8> Stores; 6775 for (StoreSDNode *Store = N; Store; Store = dyn_cast<StoreSDNode>(Chain)) { 6776 // TODO: Allow unordered atomics when wider type is legal (see D66309) 6777 if (Store->getMemoryVT() != MVT::i8 || 6778 !Store->isSimple() || Store->isIndexed()) 6779 return SDValue(); 6780 Stores.push_back(Store); 6781 Chain = Store->getChain(); 6782 } 6783 // Handle the simple type only. 6784 unsigned Width = Stores.size(); 6785 EVT VT = EVT::getIntegerVT( 6786 *DAG.getContext(), Width * N->getMemoryVT().getSizeInBits()); 6787 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) 6788 return SDValue(); 6789 6790 if (LegalOperations && !TLI.isOperationLegal(ISD::STORE, VT)) 6791 return SDValue(); 6792 6793 // Check if all the bytes of the combined value we are looking at are stored 6794 // to the same base address. Collect bytes offsets from Base address into 6795 // ByteOffsets. 6796 SDValue CombinedValue; 6797 SmallVector<int64_t, 8> ByteOffsets(Width, INT64_MAX); 6798 int64_t FirstOffset = INT64_MAX; 6799 StoreSDNode *FirstStore = nullptr; 6800 Optional<BaseIndexOffset> Base; 6801 for (auto Store : Stores) { 6802 // All the stores store different byte of the CombinedValue. A truncate is 6803 // required to get that byte value. 6804 SDValue Trunc = Store->getValue(); 6805 if (Trunc.getOpcode() != ISD::TRUNCATE) 6806 return SDValue(); 6807 // A shift operation is required to get the right byte offset, except the 6808 // first byte. 6809 int64_t Offset = 0; 6810 SDValue Value = Trunc.getOperand(0); 6811 if (Value.getOpcode() == ISD::SRL || 6812 Value.getOpcode() == ISD::SRA) { 6813 auto *ShiftOffset = dyn_cast<ConstantSDNode>(Value.getOperand(1)); 6814 // Trying to match the following pattern. The shift offset must be 6815 // a constant and a multiple of 8. It is the byte offset in "y". 6816 // 6817 // x = srl y, offset 6818 // i8 z = trunc x 6819 // store z, ... 6820 if (!ShiftOffset || (ShiftOffset->getSExtValue() % 8)) 6821 return SDValue(); 6822 6823 Offset = ShiftOffset->getSExtValue()/8; 6824 Value = Value.getOperand(0); 6825 } 6826 6827 // Stores must share the same combined value with different offsets. 6828 if (!CombinedValue) 6829 CombinedValue = Value; 6830 else if (stripTruncAndExt(CombinedValue) != stripTruncAndExt(Value)) 6831 return SDValue(); 6832 6833 // The trunc and all the extend operation should be stripped to get the 6834 // real value we are stored. 6835 else if (CombinedValue.getValueType() != VT) { 6836 if (Value.getValueType() == VT || 6837 Value.getValueSizeInBits() > CombinedValue.getValueSizeInBits()) 6838 CombinedValue = Value; 6839 // Give up if the combined value type is smaller than the store size. 6840 if (CombinedValue.getValueSizeInBits() < VT.getSizeInBits()) 6841 return SDValue(); 6842 } 6843 6844 // Stores must share the same base address 6845 BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG); 6846 int64_t ByteOffsetFromBase = 0; 6847 if (!Base) 6848 Base = Ptr; 6849 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) 6850 return SDValue(); 6851 6852 // Remember the first byte store 6853 if (ByteOffsetFromBase < FirstOffset) { 6854 FirstStore = Store; 6855 FirstOffset = ByteOffsetFromBase; 6856 } 6857 // Map the offset in the store and the offset in the combined value, and 6858 // early return if it has been set before. 6859 if (Offset < 0 || Offset >= Width || ByteOffsets[Offset] != INT64_MAX) 6860 return SDValue(); 6861 ByteOffsets[Offset] = ByteOffsetFromBase; 6862 } 6863 6864 assert(FirstOffset != INT64_MAX && "First byte offset must be set"); 6865 assert(FirstStore && "First store must be set"); 6866 6867 // Check if the bytes of the combined value we are looking at match with 6868 // either big or little endian value store. 6869 Optional<bool> IsBigEndian = isBigEndian(ByteOffsets, FirstOffset); 6870 if (!IsBigEndian.hasValue()) 6871 return SDValue(); 6872 6873 // The node we are looking at matches with the pattern, check if we can 6874 // replace it with a single bswap if needed and store. 6875 6876 // If the store needs byte swap check if the target supports it 6877 bool NeedsBswap = DAG.getDataLayout().isBigEndian() != *IsBigEndian; 6878 6879 // Before legalize we can introduce illegal bswaps which will be later 6880 // converted to an explicit bswap sequence. This way we end up with a single 6881 // store and byte shuffling instead of several stores and byte shuffling. 6882 if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT)) 6883 return SDValue(); 6884 6885 // Check that a store of the wide type is both allowed and fast on the target 6886 bool Fast = false; 6887 bool Allowed = 6888 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 6889 *FirstStore->getMemOperand(), &Fast); 6890 if (!Allowed || !Fast) 6891 return SDValue(); 6892 6893 if (VT != CombinedValue.getValueType()) { 6894 assert(CombinedValue.getValueType().getSizeInBits() > VT.getSizeInBits() && 6895 "Get unexpected store value to combine"); 6896 CombinedValue = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, 6897 CombinedValue); 6898 } 6899 6900 if (NeedsBswap) 6901 CombinedValue = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, CombinedValue); 6902 6903 SDValue NewStore = 6904 DAG.getStore(Chain, SDLoc(N), CombinedValue, FirstStore->getBasePtr(), 6905 FirstStore->getPointerInfo(), FirstStore->getAlignment()); 6906 6907 // Rely on other DAG combine rules to remove the other individual stores. 6908 DAG.ReplaceAllUsesWith(N, NewStore.getNode()); 6909 return NewStore; 6910 } 6911 6912 /// Match a pattern where a wide type scalar value is loaded by several narrow 6913 /// loads and combined by shifts and ors. Fold it into a single load or a load 6914 /// and a BSWAP if the targets supports it. 6915 /// 6916 /// Assuming little endian target: 6917 /// i8 *a = ... 6918 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 6919 /// => 6920 /// i32 val = *((i32)a) 6921 /// 6922 /// i8 *a = ... 6923 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 6924 /// => 6925 /// i32 val = BSWAP(*((i32)a)) 6926 /// 6927 /// TODO: This rule matches complex patterns with OR node roots and doesn't 6928 /// interact well with the worklist mechanism. When a part of the pattern is 6929 /// updated (e.g. one of the loads) its direct users are put into the worklist, 6930 /// but the root node of the pattern which triggers the load combine is not 6931 /// necessarily a direct user of the changed node. For example, once the address 6932 /// of t28 load is reassociated load combine won't be triggered: 6933 /// t25: i32 = add t4, Constant:i32<2> 6934 /// t26: i64 = sign_extend t25 6935 /// t27: i64 = add t2, t26 6936 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 6937 /// t29: i32 = zero_extend t28 6938 /// t32: i32 = shl t29, Constant:i8<8> 6939 /// t33: i32 = or t23, t32 6940 /// As a possible fix visitLoad can check if the load can be a part of a load 6941 /// combine pattern and add corresponding OR roots to the worklist. 6942 SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { 6943 assert(N->getOpcode() == ISD::OR && 6944 "Can only match load combining against OR nodes"); 6945 6946 // Handles simple types only 6947 EVT VT = N->getValueType(0); 6948 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) 6949 return SDValue(); 6950 unsigned ByteWidth = VT.getSizeInBits() / 8; 6951 6952 bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); 6953 auto MemoryByteOffset = [&] (ByteProvider P) { 6954 assert(P.isMemory() && "Must be a memory byte provider"); 6955 unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits(); 6956 assert(LoadBitWidth % 8 == 0 && 6957 "can only analyze providers for individual bytes not bit"); 6958 unsigned LoadByteWidth = LoadBitWidth / 8; 6959 return IsBigEndianTarget 6960 ? BigEndianByteAt(LoadByteWidth, P.ByteOffset) 6961 : LittleEndianByteAt(LoadByteWidth, P.ByteOffset); 6962 }; 6963 6964 Optional<BaseIndexOffset> Base; 6965 SDValue Chain; 6966 6967 SmallPtrSet<LoadSDNode *, 8> Loads; 6968 Optional<ByteProvider> FirstByteProvider; 6969 int64_t FirstOffset = INT64_MAX; 6970 6971 // Check if all the bytes of the OR we are looking at are loaded from the same 6972 // base address. Collect bytes offsets from Base address in ByteOffsets. 6973 SmallVector<int64_t, 8> ByteOffsets(ByteWidth); 6974 unsigned ZeroExtendedBytes = 0; 6975 for (int i = ByteWidth - 1; i >= 0; --i) { 6976 auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true); 6977 if (!P) 6978 return SDValue(); 6979 6980 if (P->isConstantZero()) { 6981 // It's OK for the N most significant bytes to be 0, we can just 6982 // zero-extend the load. 6983 if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i))) 6984 return SDValue(); 6985 continue; 6986 } 6987 assert(P->isMemory() && "provenance should either be memory or zero"); 6988 6989 LoadSDNode *L = P->Load; 6990 assert(L->hasNUsesOfValue(1, 0) && L->isSimple() && 6991 !L->isIndexed() && 6992 "Must be enforced by calculateByteProvider"); 6993 assert(L->getOffset().isUndef() && "Unindexed load must have undef offset"); 6994 6995 // All loads must share the same chain 6996 SDValue LChain = L->getChain(); 6997 if (!Chain) 6998 Chain = LChain; 6999 else if (Chain != LChain) 7000 return SDValue(); 7001 7002 // Loads must share the same base address 7003 BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG); 7004 int64_t ByteOffsetFromBase = 0; 7005 if (!Base) 7006 Base = Ptr; 7007 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) 7008 return SDValue(); 7009 7010 // Calculate the offset of the current byte from the base address 7011 ByteOffsetFromBase += MemoryByteOffset(*P); 7012 ByteOffsets[i] = ByteOffsetFromBase; 7013 7014 // Remember the first byte load 7015 if (ByteOffsetFromBase < FirstOffset) { 7016 FirstByteProvider = P; 7017 FirstOffset = ByteOffsetFromBase; 7018 } 7019 7020 Loads.insert(L); 7021 } 7022 assert(!Loads.empty() && "All the bytes of the value must be loaded from " 7023 "memory, so there must be at least one load which produces the value"); 7024 assert(Base && "Base address of the accessed memory location must be set"); 7025 assert(FirstOffset != INT64_MAX && "First byte offset must be set"); 7026 7027 bool NeedsZext = ZeroExtendedBytes > 0; 7028 7029 EVT MemVT = 7030 EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8); 7031 7032 if (!MemVT.isSimple()) 7033 return SDValue(); 7034 7035 // Before legalize we can introduce too wide illegal loads which will be later 7036 // split into legal sized loads. This enables us to combine i64 load by i8 7037 // patterns to a couple of i32 loads on 32 bit targets. 7038 if (LegalOperations && 7039 !TLI.isOperationLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, 7040 MemVT)) 7041 return SDValue(); 7042 7043 // Check if the bytes of the OR we are looking at match with either big or 7044 // little endian value load 7045 Optional<bool> IsBigEndian = isBigEndian( 7046 makeArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset); 7047 if (!IsBigEndian.hasValue()) 7048 return SDValue(); 7049 7050 assert(FirstByteProvider && "must be set"); 7051 7052 // Ensure that the first byte is loaded from zero offset of the first load. 7053 // So the combined value can be loaded from the first load address. 7054 if (MemoryByteOffset(*FirstByteProvider) != 0) 7055 return SDValue(); 7056 LoadSDNode *FirstLoad = FirstByteProvider->Load; 7057 7058 // The node we are looking at matches with the pattern, check if we can 7059 // replace it with a single (possibly zero-extended) load and bswap + shift if 7060 // needed. 7061 7062 // If the load needs byte swap check if the target supports it 7063 bool NeedsBswap = IsBigEndianTarget != *IsBigEndian; 7064 7065 // Before legalize we can introduce illegal bswaps which will be later 7066 // converted to an explicit bswap sequence. This way we end up with a single 7067 // load and byte shuffling instead of several loads and byte shuffling. 7068 // We do not introduce illegal bswaps when zero-extending as this tends to 7069 // introduce too many arithmetic instructions. 7070 if (NeedsBswap && (LegalOperations || NeedsZext) && 7071 !TLI.isOperationLegal(ISD::BSWAP, VT)) 7072 return SDValue(); 7073 7074 // If we need to bswap and zero extend, we have to insert a shift. Check that 7075 // it is legal. 7076 if (NeedsBswap && NeedsZext && LegalOperations && 7077 !TLI.isOperationLegal(ISD::SHL, VT)) 7078 return SDValue(); 7079 7080 // Check that a load of the wide type is both allowed and fast on the target 7081 bool Fast = false; 7082 bool Allowed = 7083 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 7084 *FirstLoad->getMemOperand(), &Fast); 7085 if (!Allowed || !Fast) 7086 return SDValue(); 7087 7088 SDValue NewLoad = DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, 7089 SDLoc(N), VT, Chain, FirstLoad->getBasePtr(), 7090 FirstLoad->getPointerInfo(), MemVT, 7091 FirstLoad->getAlignment()); 7092 7093 // Transfer chain users from old loads to the new load. 7094 for (LoadSDNode *L : Loads) 7095 DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1)); 7096 7097 if (!NeedsBswap) 7098 return NewLoad; 7099 7100 SDValue ShiftedLoad = 7101 NeedsZext 7102 ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad, 7103 DAG.getShiftAmountConstant(ZeroExtendedBytes * 8, VT, 7104 SDLoc(N), LegalOperations)) 7105 : NewLoad; 7106 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad); 7107 } 7108 7109 // If the target has andn, bsl, or a similar bit-select instruction, 7110 // we want to unfold masked merge, with canonical pattern of: 7111 // | A | |B| 7112 // ((x ^ y) & m) ^ y 7113 // | D | 7114 // Into: 7115 // (x & m) | (y & ~m) 7116 // If y is a constant, and the 'andn' does not work with immediates, 7117 // we unfold into a different pattern: 7118 // ~(~x & m) & (m | y) 7119 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at 7120 // the very least that breaks andnpd / andnps patterns, and because those 7121 // patterns are simplified in IR and shouldn't be created in the DAG 7122 SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) { 7123 assert(N->getOpcode() == ISD::XOR); 7124 7125 // Don't touch 'not' (i.e. where y = -1). 7126 if (isAllOnesOrAllOnesSplat(N->getOperand(1))) 7127 return SDValue(); 7128 7129 EVT VT = N->getValueType(0); 7130 7131 // There are 3 commutable operators in the pattern, 7132 // so we have to deal with 8 possible variants of the basic pattern. 7133 SDValue X, Y, M; 7134 auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) { 7135 if (And.getOpcode() != ISD::AND || !And.hasOneUse()) 7136 return false; 7137 SDValue Xor = And.getOperand(XorIdx); 7138 if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) 7139 return false; 7140 SDValue Xor0 = Xor.getOperand(0); 7141 SDValue Xor1 = Xor.getOperand(1); 7142 // Don't touch 'not' (i.e. where y = -1). 7143 if (isAllOnesOrAllOnesSplat(Xor1)) 7144 return false; 7145 if (Other == Xor0) 7146 std::swap(Xor0, Xor1); 7147 if (Other != Xor1) 7148 return false; 7149 X = Xor0; 7150 Y = Xor1; 7151 M = And.getOperand(XorIdx ? 0 : 1); 7152 return true; 7153 }; 7154 7155 SDValue N0 = N->getOperand(0); 7156 SDValue N1 = N->getOperand(1); 7157 if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) && 7158 !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0)) 7159 return SDValue(); 7160 7161 // Don't do anything if the mask is constant. This should not be reachable. 7162 // InstCombine should have already unfolded this pattern, and DAGCombiner 7163 // probably shouldn't produce it, too. 7164 if (isa<ConstantSDNode>(M.getNode())) 7165 return SDValue(); 7166 7167 // We can transform if the target has AndNot 7168 if (!TLI.hasAndNot(M)) 7169 return SDValue(); 7170 7171 SDLoc DL(N); 7172 7173 // If Y is a constant, check that 'andn' works with immediates. 7174 if (!TLI.hasAndNot(Y)) { 7175 assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."); 7176 // If not, we need to do a bit more work to make sure andn is still used. 7177 SDValue NotX = DAG.getNOT(DL, X, VT); 7178 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M); 7179 SDValue NotLHS = DAG.getNOT(DL, LHS, VT); 7180 SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y); 7181 return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS); 7182 } 7183 7184 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M); 7185 SDValue NotM = DAG.getNOT(DL, M, VT); 7186 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM); 7187 7188 return DAG.getNode(ISD::OR, DL, VT, LHS, RHS); 7189 } 7190 7191 SDValue DAGCombiner::visitXOR(SDNode *N) { 7192 SDValue N0 = N->getOperand(0); 7193 SDValue N1 = N->getOperand(1); 7194 EVT VT = N0.getValueType(); 7195 7196 // fold vector ops 7197 if (VT.isVector()) { 7198 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 7199 return FoldedVOp; 7200 7201 // fold (xor x, 0) -> x, vector edition 7202 if (ISD::isBuildVectorAllZeros(N0.getNode())) 7203 return N1; 7204 if (ISD::isBuildVectorAllZeros(N1.getNode())) 7205 return N0; 7206 } 7207 7208 // fold (xor undef, undef) -> 0. This is a common idiom (misuse). 7209 SDLoc DL(N); 7210 if (N0.isUndef() && N1.isUndef()) 7211 return DAG.getConstant(0, DL, VT); 7212 7213 // fold (xor x, undef) -> undef 7214 if (N0.isUndef()) 7215 return N0; 7216 if (N1.isUndef()) 7217 return N1; 7218 7219 // fold (xor c1, c2) -> c1^c2 7220 if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1})) 7221 return C; 7222 7223 // canonicalize constant to RHS 7224 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 7225 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 7226 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 7227 7228 // fold (xor x, 0) -> x 7229 if (isNullConstant(N1)) 7230 return N0; 7231 7232 if (SDValue NewSel = foldBinOpIntoSelect(N)) 7233 return NewSel; 7234 7235 // reassociate xor 7236 if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags())) 7237 return RXOR; 7238 7239 // fold !(x cc y) -> (x !cc y) 7240 unsigned N0Opcode = N0.getOpcode(); 7241 SDValue LHS, RHS, CC; 7242 if (TLI.isConstTrueVal(N1.getNode()) && 7243 isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/true)) { 7244 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 7245 LHS.getValueType()); 7246 if (!LegalOperations || 7247 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { 7248 switch (N0Opcode) { 7249 default: 7250 llvm_unreachable("Unhandled SetCC Equivalent!"); 7251 case ISD::SETCC: 7252 return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); 7253 case ISD::SELECT_CC: 7254 return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), 7255 N0.getOperand(3), NotCC); 7256 case ISD::STRICT_FSETCC: 7257 case ISD::STRICT_FSETCCS: { 7258 if (N0.hasOneUse()) { 7259 // FIXME Can we handle multiple uses? Could we token factor the chain 7260 // results from the new/old setcc? 7261 SDValue SetCC = DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC, 7262 N0.getOperand(0), 7263 N0Opcode == ISD::STRICT_FSETCCS); 7264 CombineTo(N, SetCC); 7265 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1)); 7266 recursivelyDeleteUnusedNodes(N0.getNode()); 7267 return SDValue(N, 0); // Return N so it doesn't get rechecked! 7268 } 7269 break; 7270 } 7271 } 7272 } 7273 } 7274 7275 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) 7276 if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() && 7277 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ 7278 SDValue V = N0.getOperand(0); 7279 SDLoc DL0(N0); 7280 V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V, 7281 DAG.getConstant(1, DL0, V.getValueType())); 7282 AddToWorklist(V.getNode()); 7283 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V); 7284 } 7285 7286 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc 7287 if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() && 7288 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { 7289 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); 7290 if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) { 7291 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; 7292 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 7293 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 7294 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); 7295 return DAG.getNode(NewOpcode, DL, VT, N00, N01); 7296 } 7297 } 7298 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants 7299 if (isAllOnesConstant(N1) && N0.hasOneUse() && 7300 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { 7301 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); 7302 if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) { 7303 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; 7304 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 7305 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 7306 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); 7307 return DAG.getNode(NewOpcode, DL, VT, N00, N01); 7308 } 7309 } 7310 7311 // fold (not (neg x)) -> (add X, -1) 7312 // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if 7313 // Y is a constant or the subtract has a single use. 7314 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB && 7315 isNullConstant(N0.getOperand(0))) { 7316 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), 7317 DAG.getAllOnesConstant(DL, VT)); 7318 } 7319 7320 // fold (not (add X, -1)) -> (neg X) 7321 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::ADD && 7322 isAllOnesOrAllOnesSplat(N0.getOperand(1))) { 7323 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 7324 N0.getOperand(0)); 7325 } 7326 7327 // fold (xor (and x, y), y) -> (and (not x), y) 7328 if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) { 7329 SDValue X = N0.getOperand(0); 7330 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); 7331 AddToWorklist(NotX.getNode()); 7332 return DAG.getNode(ISD::AND, DL, VT, NotX, N1); 7333 } 7334 7335 if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) { 7336 ConstantSDNode *XorC = isConstOrConstSplat(N1); 7337 ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1)); 7338 unsigned BitWidth = VT.getScalarSizeInBits(); 7339 if (XorC && ShiftC) { 7340 // Don't crash on an oversized shift. We can not guarantee that a bogus 7341 // shift has been simplified to undef. 7342 uint64_t ShiftAmt = ShiftC->getLimitedValue(); 7343 if (ShiftAmt < BitWidth) { 7344 APInt Ones = APInt::getAllOnesValue(BitWidth); 7345 Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt); 7346 if (XorC->getAPIntValue() == Ones) { 7347 // If the xor constant is a shifted -1, do a 'not' before the shift: 7348 // xor (X << ShiftC), XorC --> (not X) << ShiftC 7349 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 7350 SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT); 7351 return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1)); 7352 } 7353 } 7354 } 7355 } 7356 7357 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) 7358 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { 7359 SDValue A = N0Opcode == ISD::ADD ? N0 : N1; 7360 SDValue S = N0Opcode == ISD::SRA ? N0 : N1; 7361 if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) { 7362 SDValue A0 = A.getOperand(0), A1 = A.getOperand(1); 7363 SDValue S0 = S.getOperand(0); 7364 if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) { 7365 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 7366 if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1))) 7367 if (C->getAPIntValue() == (OpSizeInBits - 1)) 7368 return DAG.getNode(ISD::ABS, DL, VT, S0); 7369 } 7370 } 7371 } 7372 7373 // fold (xor x, x) -> 0 7374 if (N0 == N1) 7375 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 7376 7377 // fold (xor (shl 1, x), -1) -> (rotl ~1, x) 7378 // Here is a concrete example of this equivalence: 7379 // i16 x == 14 7380 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 7381 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 7382 // 7383 // => 7384 // 7385 // i16 ~1 == 0b1111111111111110 7386 // i16 rol(~1, 14) == 0b1011111111111111 7387 // 7388 // Some additional tips to help conceptualize this transform: 7389 // - Try to see the operation as placing a single zero in a value of all ones. 7390 // - There exists no value for x which would allow the result to contain zero. 7391 // - Values of x larger than the bitwidth are undefined and do not require a 7392 // consistent result. 7393 // - Pushing the zero left requires shifting one bits in from the right. 7394 // A rotate left of ~1 is a nice way of achieving the desired result. 7395 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL && 7396 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { 7397 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), 7398 N0.getOperand(1)); 7399 } 7400 7401 // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) 7402 if (N0Opcode == N1.getOpcode()) 7403 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 7404 return V; 7405 7406 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable 7407 if (SDValue MM = unfoldMaskedMerge(N)) 7408 return MM; 7409 7410 // Simplify the expression using non-local knowledge. 7411 if (SimplifyDemandedBits(SDValue(N, 0))) 7412 return SDValue(N, 0); 7413 7414 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) 7415 return Combined; 7416 7417 return SDValue(); 7418 } 7419 7420 /// If we have a shift-by-constant of a bitwise logic op that itself has a 7421 /// shift-by-constant operand with identical opcode, we may be able to convert 7422 /// that into 2 independent shifts followed by the logic op. This is a 7423 /// throughput improvement. 7424 static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) { 7425 // Match a one-use bitwise logic op. 7426 SDValue LogicOp = Shift->getOperand(0); 7427 if (!LogicOp.hasOneUse()) 7428 return SDValue(); 7429 7430 unsigned LogicOpcode = LogicOp.getOpcode(); 7431 if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR && 7432 LogicOpcode != ISD::XOR) 7433 return SDValue(); 7434 7435 // Find a matching one-use shift by constant. 7436 unsigned ShiftOpcode = Shift->getOpcode(); 7437 SDValue C1 = Shift->getOperand(1); 7438 ConstantSDNode *C1Node = isConstOrConstSplat(C1); 7439 assert(C1Node && "Expected a shift with constant operand"); 7440 const APInt &C1Val = C1Node->getAPIntValue(); 7441 auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp, 7442 const APInt *&ShiftAmtVal) { 7443 if (V.getOpcode() != ShiftOpcode || !V.hasOneUse()) 7444 return false; 7445 7446 ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1)); 7447 if (!ShiftCNode) 7448 return false; 7449 7450 // Capture the shifted operand and shift amount value. 7451 ShiftOp = V.getOperand(0); 7452 ShiftAmtVal = &ShiftCNode->getAPIntValue(); 7453 7454 // Shift amount types do not have to match their operand type, so check that 7455 // the constants are the same width. 7456 if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth()) 7457 return false; 7458 7459 // The fold is not valid if the sum of the shift values exceeds bitwidth. 7460 if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits())) 7461 return false; 7462 7463 return true; 7464 }; 7465 7466 // Logic ops are commutative, so check each operand for a match. 7467 SDValue X, Y; 7468 const APInt *C0Val; 7469 if (matchFirstShift(LogicOp.getOperand(0), X, C0Val)) 7470 Y = LogicOp.getOperand(1); 7471 else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val)) 7472 Y = LogicOp.getOperand(0); 7473 else 7474 return SDValue(); 7475 7476 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1) 7477 SDLoc DL(Shift); 7478 EVT VT = Shift->getValueType(0); 7479 EVT ShiftAmtVT = Shift->getOperand(1).getValueType(); 7480 SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT); 7481 SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC); 7482 SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1); 7483 return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2); 7484 } 7485 7486 /// Handle transforms common to the three shifts, when the shift amount is a 7487 /// constant. 7488 /// We are looking for: (shift being one of shl/sra/srl) 7489 /// shift (binop X, C0), C1 7490 /// And want to transform into: 7491 /// binop (shift X, C1), (shift C0, C1) 7492 SDValue DAGCombiner::visitShiftByConstant(SDNode *N) { 7493 assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand"); 7494 7495 // Do not turn a 'not' into a regular xor. 7496 if (isBitwiseNot(N->getOperand(0))) 7497 return SDValue(); 7498 7499 // The inner binop must be one-use, since we want to replace it. 7500 SDValue LHS = N->getOperand(0); 7501 if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level)) 7502 return SDValue(); 7503 7504 // TODO: This is limited to early combining because it may reveal regressions 7505 // otherwise. But since we just checked a target hook to see if this is 7506 // desirable, that should have filtered out cases where this interferes 7507 // with some other pattern matching. 7508 if (!LegalTypes) 7509 if (SDValue R = combineShiftOfShiftedLogic(N, DAG)) 7510 return R; 7511 7512 // We want to pull some binops through shifts, so that we have (and (shift)) 7513 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of 7514 // thing happens with address calculations, so it's important to canonicalize 7515 // it. 7516 switch (LHS.getOpcode()) { 7517 default: 7518 return SDValue(); 7519 case ISD::OR: 7520 case ISD::XOR: 7521 case ISD::AND: 7522 break; 7523 case ISD::ADD: 7524 if (N->getOpcode() != ISD::SHL) 7525 return SDValue(); // only shl(add) not sr[al](add). 7526 break; 7527 } 7528 7529 // We require the RHS of the binop to be a constant and not opaque as well. 7530 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1)); 7531 if (!BinOpCst) 7532 return SDValue(); 7533 7534 // FIXME: disable this unless the input to the binop is a shift by a constant 7535 // or is copy/select. Enable this in other cases when figure out it's exactly 7536 // profitable. 7537 SDValue BinOpLHSVal = LHS.getOperand(0); 7538 bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL || 7539 BinOpLHSVal.getOpcode() == ISD::SRA || 7540 BinOpLHSVal.getOpcode() == ISD::SRL) && 7541 isa<ConstantSDNode>(BinOpLHSVal.getOperand(1)); 7542 bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg || 7543 BinOpLHSVal.getOpcode() == ISD::SELECT; 7544 7545 if (!IsShiftByConstant && !IsCopyOrSelect) 7546 return SDValue(); 7547 7548 if (IsCopyOrSelect && N->hasOneUse()) 7549 return SDValue(); 7550 7551 // Fold the constants, shifting the binop RHS by the shift amount. 7552 SDLoc DL(N); 7553 EVT VT = N->getValueType(0); 7554 SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1), 7555 N->getOperand(1)); 7556 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); 7557 7558 SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0), 7559 N->getOperand(1)); 7560 return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS); 7561 } 7562 7563 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { 7564 assert(N->getOpcode() == ISD::TRUNCATE); 7565 assert(N->getOperand(0).getOpcode() == ISD::AND); 7566 7567 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) 7568 EVT TruncVT = N->getValueType(0); 7569 if (N->hasOneUse() && N->getOperand(0).hasOneUse() && 7570 TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) { 7571 SDValue N01 = N->getOperand(0).getOperand(1); 7572 if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { 7573 SDLoc DL(N); 7574 SDValue N00 = N->getOperand(0).getOperand(0); 7575 SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); 7576 SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); 7577 AddToWorklist(Trunc00.getNode()); 7578 AddToWorklist(Trunc01.getNode()); 7579 return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); 7580 } 7581 } 7582 7583 return SDValue(); 7584 } 7585 7586 SDValue DAGCombiner::visitRotate(SDNode *N) { 7587 SDLoc dl(N); 7588 SDValue N0 = N->getOperand(0); 7589 SDValue N1 = N->getOperand(1); 7590 EVT VT = N->getValueType(0); 7591 unsigned Bitsize = VT.getScalarSizeInBits(); 7592 7593 // fold (rot x, 0) -> x 7594 if (isNullOrNullSplat(N1)) 7595 return N0; 7596 7597 // fold (rot x, c) -> x iff (c % BitSize) == 0 7598 if (isPowerOf2_32(Bitsize) && Bitsize > 1) { 7599 APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1); 7600 if (DAG.MaskedValueIsZero(N1, ModuloMask)) 7601 return N0; 7602 } 7603 7604 // fold (rot x, c) -> (rot x, c % BitSize) 7605 bool OutOfRange = false; 7606 auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) { 7607 OutOfRange |= C->getAPIntValue().uge(Bitsize); 7608 return true; 7609 }; 7610 if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) { 7611 EVT AmtVT = N1.getValueType(); 7612 SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT); 7613 if (SDValue Amt = 7614 DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits})) 7615 return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt); 7616 } 7617 7618 // Simplify the operands using demanded-bits information. 7619 if (SimplifyDemandedBits(SDValue(N, 0))) 7620 return SDValue(N, 0); 7621 7622 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). 7623 if (N1.getOpcode() == ISD::TRUNCATE && 7624 N1.getOperand(0).getOpcode() == ISD::AND) { 7625 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 7626 return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1); 7627 } 7628 7629 unsigned NextOp = N0.getOpcode(); 7630 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize) 7631 if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) { 7632 SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1); 7633 SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)); 7634 if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) { 7635 EVT ShiftVT = C1->getValueType(0); 7636 bool SameSide = (N->getOpcode() == NextOp); 7637 unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB; 7638 if (SDValue CombinedShift = DAG.FoldConstantArithmetic( 7639 CombineOp, dl, ShiftVT, {N1, N0.getOperand(1)})) { 7640 SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT); 7641 SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic( 7642 ISD::SREM, dl, ShiftVT, {CombinedShift, BitsizeC}); 7643 return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0), 7644 CombinedShiftNorm); 7645 } 7646 } 7647 } 7648 return SDValue(); 7649 } 7650 7651 SDValue DAGCombiner::visitSHL(SDNode *N) { 7652 SDValue N0 = N->getOperand(0); 7653 SDValue N1 = N->getOperand(1); 7654 if (SDValue V = DAG.simplifyShift(N0, N1)) 7655 return V; 7656 7657 EVT VT = N0.getValueType(); 7658 EVT ShiftVT = N1.getValueType(); 7659 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 7660 7661 // fold vector ops 7662 if (VT.isVector()) { 7663 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 7664 return FoldedVOp; 7665 7666 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); 7667 // If setcc produces all-one true value then: 7668 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) 7669 if (N1CV && N1CV->isConstant()) { 7670 if (N0.getOpcode() == ISD::AND) { 7671 SDValue N00 = N0->getOperand(0); 7672 SDValue N01 = N0->getOperand(1); 7673 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); 7674 7675 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && 7676 TLI.getBooleanContents(N00.getOperand(0).getValueType()) == 7677 TargetLowering::ZeroOrNegativeOneBooleanContent) { 7678 if (SDValue C = 7679 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N01, N1})) 7680 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); 7681 } 7682 } 7683 } 7684 } 7685 7686 ConstantSDNode *N1C = isConstOrConstSplat(N1); 7687 7688 // fold (shl c1, c2) -> c1<<c2 7689 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N0, N1})) 7690 return C; 7691 7692 if (SDValue NewSel = foldBinOpIntoSelect(N)) 7693 return NewSel; 7694 7695 // if (shl x, c) is known to be zero, return 0 7696 if (DAG.MaskedValueIsZero(SDValue(N, 0), 7697 APInt::getAllOnesValue(OpSizeInBits))) 7698 return DAG.getConstant(0, SDLoc(N), VT); 7699 7700 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). 7701 if (N1.getOpcode() == ISD::TRUNCATE && 7702 N1.getOperand(0).getOpcode() == ISD::AND) { 7703 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 7704 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); 7705 } 7706 7707 if (SimplifyDemandedBits(SDValue(N, 0))) 7708 return SDValue(N, 0); 7709 7710 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) 7711 if (N0.getOpcode() == ISD::SHL) { 7712 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, 7713 ConstantSDNode *RHS) { 7714 APInt c1 = LHS->getAPIntValue(); 7715 APInt c2 = RHS->getAPIntValue(); 7716 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 7717 return (c1 + c2).uge(OpSizeInBits); 7718 }; 7719 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) 7720 return DAG.getConstant(0, SDLoc(N), VT); 7721 7722 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, 7723 ConstantSDNode *RHS) { 7724 APInt c1 = LHS->getAPIntValue(); 7725 APInt c2 = RHS->getAPIntValue(); 7726 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 7727 return (c1 + c2).ult(OpSizeInBits); 7728 }; 7729 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { 7730 SDLoc DL(N); 7731 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); 7732 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum); 7733 } 7734 } 7735 7736 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2)) 7737 // For this to be valid, the second form must not preserve any of the bits 7738 // that are shifted out by the inner shift in the first form. This means 7739 // the outer shift size must be >= the number of bits added by the ext. 7740 // As a corollary, we don't care what kind of ext it is. 7741 if ((N0.getOpcode() == ISD::ZERO_EXTEND || 7742 N0.getOpcode() == ISD::ANY_EXTEND || 7743 N0.getOpcode() == ISD::SIGN_EXTEND) && 7744 N0.getOperand(0).getOpcode() == ISD::SHL) { 7745 SDValue N0Op0 = N0.getOperand(0); 7746 SDValue InnerShiftAmt = N0Op0.getOperand(1); 7747 EVT InnerVT = N0Op0.getValueType(); 7748 uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits(); 7749 7750 auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, 7751 ConstantSDNode *RHS) { 7752 APInt c1 = LHS->getAPIntValue(); 7753 APInt c2 = RHS->getAPIntValue(); 7754 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 7755 return c2.uge(OpSizeInBits - InnerBitwidth) && 7756 (c1 + c2).uge(OpSizeInBits); 7757 }; 7758 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange, 7759 /*AllowUndefs*/ false, 7760 /*AllowTypeMismatch*/ true)) 7761 return DAG.getConstant(0, SDLoc(N), VT); 7762 7763 auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, 7764 ConstantSDNode *RHS) { 7765 APInt c1 = LHS->getAPIntValue(); 7766 APInt c2 = RHS->getAPIntValue(); 7767 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 7768 return c2.uge(OpSizeInBits - InnerBitwidth) && 7769 (c1 + c2).ult(OpSizeInBits); 7770 }; 7771 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange, 7772 /*AllowUndefs*/ false, 7773 /*AllowTypeMismatch*/ true)) { 7774 SDLoc DL(N); 7775 SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0)); 7776 SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT); 7777 Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1); 7778 return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum); 7779 } 7780 } 7781 7782 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) 7783 // Only fold this if the inner zext has no other uses to avoid increasing 7784 // the total number of instructions. 7785 if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && 7786 N0.getOperand(0).getOpcode() == ISD::SRL) { 7787 SDValue N0Op0 = N0.getOperand(0); 7788 SDValue InnerShiftAmt = N0Op0.getOperand(1); 7789 7790 auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) { 7791 APInt c1 = LHS->getAPIntValue(); 7792 APInt c2 = RHS->getAPIntValue(); 7793 zeroExtendToMatch(c1, c2); 7794 return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2); 7795 }; 7796 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual, 7797 /*AllowUndefs*/ false, 7798 /*AllowTypeMismatch*/ true)) { 7799 SDLoc DL(N); 7800 EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType(); 7801 SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT); 7802 NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL); 7803 AddToWorklist(NewSHL.getNode()); 7804 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); 7805 } 7806 } 7807 7808 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 7809 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 7810 // TODO - support non-uniform vector shift amounts. 7811 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && 7812 N0->getFlags().hasExact()) { 7813 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 7814 uint64_t C1 = N0C1->getZExtValue(); 7815 uint64_t C2 = N1C->getZExtValue(); 7816 SDLoc DL(N); 7817 if (C1 <= C2) 7818 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 7819 DAG.getConstant(C2 - C1, DL, ShiftVT)); 7820 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), 7821 DAG.getConstant(C1 - C2, DL, ShiftVT)); 7822 } 7823 } 7824 7825 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or 7826 // (and (srl x, (sub c1, c2), MASK) 7827 // Only fold this if the inner shift has no other uses -- if it does, folding 7828 // this will increase the total number of instructions. 7829 // TODO - drop hasOneUse requirement if c1 == c2? 7830 // TODO - support non-uniform vector shift amounts. 7831 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() && 7832 TLI.shouldFoldConstantShiftPairToMask(N, Level)) { 7833 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 7834 if (N0C1->getAPIntValue().ult(OpSizeInBits)) { 7835 uint64_t c1 = N0C1->getZExtValue(); 7836 uint64_t c2 = N1C->getZExtValue(); 7837 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); 7838 SDValue Shift; 7839 if (c2 > c1) { 7840 Mask <<= c2 - c1; 7841 SDLoc DL(N); 7842 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 7843 DAG.getConstant(c2 - c1, DL, ShiftVT)); 7844 } else { 7845 Mask.lshrInPlace(c1 - c2); 7846 SDLoc DL(N); 7847 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 7848 DAG.getConstant(c1 - c2, DL, ShiftVT)); 7849 } 7850 SDLoc DL(N0); 7851 return DAG.getNode(ISD::AND, DL, VT, Shift, 7852 DAG.getConstant(Mask, DL, VT)); 7853 } 7854 } 7855 } 7856 7857 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) 7858 if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && 7859 isConstantOrConstantVector(N1, /* No Opaques */ true)) { 7860 SDLoc DL(N); 7861 SDValue AllBits = DAG.getAllOnesConstant(DL, VT); 7862 SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); 7863 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); 7864 } 7865 7866 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7867 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7868 // Variant of version done on multiply, except mul by a power of 2 is turned 7869 // into a shift. 7870 if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) && 7871 N0.getNode()->hasOneUse() && 7872 isConstantOrConstantVector(N1, /* No Opaques */ true) && 7873 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) && 7874 TLI.isDesirableToCommuteWithShift(N, Level)) { 7875 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); 7876 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 7877 AddToWorklist(Shl0.getNode()); 7878 AddToWorklist(Shl1.getNode()); 7879 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1); 7880 } 7881 7882 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) 7883 if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() && 7884 isConstantOrConstantVector(N1, /* No Opaques */ true) && 7885 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { 7886 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 7887 if (isConstantOrConstantVector(Shl)) 7888 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); 7889 } 7890 7891 if (N1C && !N1C->isOpaque()) 7892 if (SDValue NewSHL = visitShiftByConstant(N)) 7893 return NewSHL; 7894 7895 // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)). 7896 if (N0.getOpcode() == ISD::VSCALE) 7897 if (ConstantSDNode *NC1 = isConstOrConstSplat(N->getOperand(1))) { 7898 auto DL = SDLoc(N); 7899 APInt C0 = N0.getConstantOperandAPInt(0); 7900 APInt C1 = NC1->getAPIntValue(); 7901 return DAG.getVScale(DL, VT, C0 << C1); 7902 } 7903 7904 return SDValue(); 7905 } 7906 7907 SDValue DAGCombiner::visitSRA(SDNode *N) { 7908 SDValue N0 = N->getOperand(0); 7909 SDValue N1 = N->getOperand(1); 7910 if (SDValue V = DAG.simplifyShift(N0, N1)) 7911 return V; 7912 7913 EVT VT = N0.getValueType(); 7914 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 7915 7916 // Arithmetic shifting an all-sign-bit value is a no-op. 7917 // fold (sra 0, x) -> 0 7918 // fold (sra -1, x) -> -1 7919 if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) 7920 return N0; 7921 7922 // fold vector ops 7923 if (VT.isVector()) 7924 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 7925 return FoldedVOp; 7926 7927 ConstantSDNode *N1C = isConstOrConstSplat(N1); 7928 7929 // fold (sra c1, c2) -> (sra c1, c2) 7930 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, {N0, N1})) 7931 return C; 7932 7933 if (SDValue NewSel = foldBinOpIntoSelect(N)) 7934 return NewSel; 7935 7936 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports 7937 // sext_inreg. 7938 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { 7939 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); 7940 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); 7941 if (VT.isVector()) 7942 ExtVT = EVT::getVectorVT(*DAG.getContext(), 7943 ExtVT, VT.getVectorNumElements()); 7944 if (!LegalOperations || 7945 TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == 7946 TargetLowering::Legal) 7947 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 7948 N0.getOperand(0), DAG.getValueType(ExtVT)); 7949 } 7950 7951 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) 7952 // clamp (add c1, c2) to max shift. 7953 if (N0.getOpcode() == ISD::SRA) { 7954 SDLoc DL(N); 7955 EVT ShiftVT = N1.getValueType(); 7956 EVT ShiftSVT = ShiftVT.getScalarType(); 7957 SmallVector<SDValue, 16> ShiftValues; 7958 7959 auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) { 7960 APInt c1 = LHS->getAPIntValue(); 7961 APInt c2 = RHS->getAPIntValue(); 7962 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 7963 APInt Sum = c1 + c2; 7964 unsigned ShiftSum = 7965 Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue(); 7966 ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT)); 7967 return true; 7968 }; 7969 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) { 7970 SDValue ShiftValue; 7971 if (VT.isVector()) 7972 ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues); 7973 else 7974 ShiftValue = ShiftValues[0]; 7975 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue); 7976 } 7977 } 7978 7979 // fold (sra (shl X, m), (sub result_size, n)) 7980 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for 7981 // result_size - n != m. 7982 // If truncate is free for the target sext(shl) is likely to result in better 7983 // code. 7984 if (N0.getOpcode() == ISD::SHL && N1C) { 7985 // Get the two constanst of the shifts, CN0 = m, CN = n. 7986 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); 7987 if (N01C) { 7988 LLVMContext &Ctx = *DAG.getContext(); 7989 // Determine what the truncate's result bitsize and type would be. 7990 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); 7991 7992 if (VT.isVector()) 7993 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); 7994 7995 // Determine the residual right-shift amount. 7996 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); 7997 7998 // If the shift is not a no-op (in which case this should be just a sign 7999 // extend already), the truncated to type is legal, sign_extend is legal 8000 // on that type, and the truncate to that type is both legal and free, 8001 // perform the transform. 8002 if ((ShiftAmt > 0) && 8003 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && 8004 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && 8005 TLI.isTruncateFree(VT, TruncVT)) { 8006 SDLoc DL(N); 8007 SDValue Amt = DAG.getConstant(ShiftAmt, DL, 8008 getShiftAmountTy(N0.getOperand(0).getValueType())); 8009 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, 8010 N0.getOperand(0), Amt); 8011 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, 8012 Shift); 8013 return DAG.getNode(ISD::SIGN_EXTEND, DL, 8014 N->getValueType(0), Trunc); 8015 } 8016 } 8017 } 8018 8019 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper. 8020 // sra (add (shl X, N1C), AddC), N1C --> 8021 // sext (add (trunc X to (width - N1C)), AddC') 8022 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C && 8023 N0.getOperand(0).getOpcode() == ISD::SHL && 8024 N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) { 8025 if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) { 8026 SDValue Shl = N0.getOperand(0); 8027 // Determine what the truncate's type would be and ask the target if that 8028 // is a free operation. 8029 LLVMContext &Ctx = *DAG.getContext(); 8030 unsigned ShiftAmt = N1C->getZExtValue(); 8031 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt); 8032 if (VT.isVector()) 8033 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); 8034 8035 // TODO: The simple type check probably belongs in the default hook 8036 // implementation and/or target-specific overrides (because 8037 // non-simple types likely require masking when legalized), but that 8038 // restriction may conflict with other transforms. 8039 if (TruncVT.isSimple() && isTypeLegal(TruncVT) && 8040 TLI.isTruncateFree(VT, TruncVT)) { 8041 SDLoc DL(N); 8042 SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT); 8043 SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt). 8044 trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT); 8045 SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC); 8046 return DAG.getSExtOrTrunc(Add, DL, VT); 8047 } 8048 } 8049 } 8050 8051 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). 8052 if (N1.getOpcode() == ISD::TRUNCATE && 8053 N1.getOperand(0).getOpcode() == ISD::AND) { 8054 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8055 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); 8056 } 8057 8058 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2)) 8059 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) 8060 // if c1 is equal to the number of bits the trunc removes 8061 // TODO - support non-uniform vector shift amounts. 8062 if (N0.getOpcode() == ISD::TRUNCATE && 8063 (N0.getOperand(0).getOpcode() == ISD::SRL || 8064 N0.getOperand(0).getOpcode() == ISD::SRA) && 8065 N0.getOperand(0).hasOneUse() && 8066 N0.getOperand(0).getOperand(1).hasOneUse() && N1C) { 8067 SDValue N0Op0 = N0.getOperand(0); 8068 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { 8069 EVT LargeVT = N0Op0.getValueType(); 8070 unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits; 8071 if (LargeShift->getAPIntValue() == TruncBits) { 8072 SDLoc DL(N); 8073 SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL, 8074 getShiftAmountTy(LargeVT)); 8075 SDValue SRA = 8076 DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt); 8077 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); 8078 } 8079 } 8080 } 8081 8082 // Simplify, based on bits shifted out of the LHS. 8083 if (SimplifyDemandedBits(SDValue(N, 0))) 8084 return SDValue(N, 0); 8085 8086 // If the sign bit is known to be zero, switch this to a SRL. 8087 if (DAG.SignBitIsZero(N0)) 8088 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); 8089 8090 if (N1C && !N1C->isOpaque()) 8091 if (SDValue NewSRA = visitShiftByConstant(N)) 8092 return NewSRA; 8093 8094 return SDValue(); 8095 } 8096 8097 SDValue DAGCombiner::visitSRL(SDNode *N) { 8098 SDValue N0 = N->getOperand(0); 8099 SDValue N1 = N->getOperand(1); 8100 if (SDValue V = DAG.simplifyShift(N0, N1)) 8101 return V; 8102 8103 EVT VT = N0.getValueType(); 8104 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8105 8106 // fold vector ops 8107 if (VT.isVector()) 8108 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8109 return FoldedVOp; 8110 8111 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8112 8113 // fold (srl c1, c2) -> c1 >>u c2 8114 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, {N0, N1})) 8115 return C; 8116 8117 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8118 return NewSel; 8119 8120 // if (srl x, c) is known to be zero, return 0 8121 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 8122 APInt::getAllOnesValue(OpSizeInBits))) 8123 return DAG.getConstant(0, SDLoc(N), VT); 8124 8125 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) 8126 if (N0.getOpcode() == ISD::SRL) { 8127 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, 8128 ConstantSDNode *RHS) { 8129 APInt c1 = LHS->getAPIntValue(); 8130 APInt c2 = RHS->getAPIntValue(); 8131 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8132 return (c1 + c2).uge(OpSizeInBits); 8133 }; 8134 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) 8135 return DAG.getConstant(0, SDLoc(N), VT); 8136 8137 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, 8138 ConstantSDNode *RHS) { 8139 APInt c1 = LHS->getAPIntValue(); 8140 APInt c2 = RHS->getAPIntValue(); 8141 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8142 return (c1 + c2).ult(OpSizeInBits); 8143 }; 8144 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { 8145 SDLoc DL(N); 8146 EVT ShiftVT = N1.getValueType(); 8147 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); 8148 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum); 8149 } 8150 } 8151 8152 if (N1C && N0.getOpcode() == ISD::TRUNCATE && 8153 N0.getOperand(0).getOpcode() == ISD::SRL) { 8154 SDValue InnerShift = N0.getOperand(0); 8155 // TODO - support non-uniform vector shift amounts. 8156 if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) { 8157 uint64_t c1 = N001C->getZExtValue(); 8158 uint64_t c2 = N1C->getZExtValue(); 8159 EVT InnerShiftVT = InnerShift.getValueType(); 8160 EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType(); 8161 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 8162 // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2))) 8163 // This is only valid if the OpSizeInBits + c1 = size of inner shift. 8164 if (c1 + OpSizeInBits == InnerShiftSize) { 8165 SDLoc DL(N); 8166 if (c1 + c2 >= InnerShiftSize) 8167 return DAG.getConstant(0, DL, VT); 8168 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); 8169 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, 8170 InnerShift.getOperand(0), NewShiftAmt); 8171 return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift); 8172 } 8173 // In the more general case, we can clear the high bits after the shift: 8174 // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask) 8175 if (N0.hasOneUse() && InnerShift.hasOneUse() && 8176 c1 + c2 < InnerShiftSize) { 8177 SDLoc DL(N); 8178 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); 8179 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, 8180 InnerShift.getOperand(0), NewShiftAmt); 8181 SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize, 8182 OpSizeInBits - c2), 8183 DL, InnerShiftVT); 8184 SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask); 8185 return DAG.getNode(ISD::TRUNCATE, DL, VT, And); 8186 } 8187 } 8188 } 8189 8190 // fold (srl (shl x, c), c) -> (and x, cst2) 8191 // TODO - (srl (shl x, c1), c2). 8192 if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && 8193 isConstantOrConstantVector(N1, /* NoOpaques */ true)) { 8194 SDLoc DL(N); 8195 SDValue Mask = 8196 DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1); 8197 AddToWorklist(Mask.getNode()); 8198 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask); 8199 } 8200 8201 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) 8202 // TODO - support non-uniform vector shift amounts. 8203 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 8204 // Shifting in all undef bits? 8205 EVT SmallVT = N0.getOperand(0).getValueType(); 8206 unsigned BitSize = SmallVT.getScalarSizeInBits(); 8207 if (N1C->getAPIntValue().uge(BitSize)) 8208 return DAG.getUNDEF(VT); 8209 8210 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { 8211 uint64_t ShiftAmt = N1C->getZExtValue(); 8212 SDLoc DL0(N0); 8213 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, 8214 N0.getOperand(0), 8215 DAG.getConstant(ShiftAmt, DL0, 8216 getShiftAmountTy(SmallVT))); 8217 AddToWorklist(SmallShift.getNode()); 8218 APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); 8219 SDLoc DL(N); 8220 return DAG.getNode(ISD::AND, DL, VT, 8221 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), 8222 DAG.getConstant(Mask, DL, VT)); 8223 } 8224 } 8225 8226 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign 8227 // bit, which is unmodified by sra. 8228 if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) { 8229 if (N0.getOpcode() == ISD::SRA) 8230 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); 8231 } 8232 8233 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). 8234 if (N1C && N0.getOpcode() == ISD::CTLZ && 8235 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { 8236 KnownBits Known = DAG.computeKnownBits(N0.getOperand(0)); 8237 8238 // If any of the input bits are KnownOne, then the input couldn't be all 8239 // zeros, thus the result of the srl will always be zero. 8240 if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); 8241 8242 // If all of the bits input the to ctlz node are known to be zero, then 8243 // the result of the ctlz is "32" and the result of the shift is one. 8244 APInt UnknownBits = ~Known.Zero; 8245 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); 8246 8247 // Otherwise, check to see if there is exactly one bit input to the ctlz. 8248 if (UnknownBits.isPowerOf2()) { 8249 // Okay, we know that only that the single bit specified by UnknownBits 8250 // could be set on input to the CTLZ node. If this bit is set, the SRL 8251 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair 8252 // to an SRL/XOR pair, which is likely to simplify more. 8253 unsigned ShAmt = UnknownBits.countTrailingZeros(); 8254 SDValue Op = N0.getOperand(0); 8255 8256 if (ShAmt) { 8257 SDLoc DL(N0); 8258 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 8259 DAG.getConstant(ShAmt, DL, 8260 getShiftAmountTy(Op.getValueType()))); 8261 AddToWorklist(Op.getNode()); 8262 } 8263 8264 SDLoc DL(N); 8265 return DAG.getNode(ISD::XOR, DL, VT, 8266 Op, DAG.getConstant(1, DL, VT)); 8267 } 8268 } 8269 8270 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). 8271 if (N1.getOpcode() == ISD::TRUNCATE && 8272 N1.getOperand(0).getOpcode() == ISD::AND) { 8273 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8274 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); 8275 } 8276 8277 // fold operands of srl based on knowledge that the low bits are not 8278 // demanded. 8279 if (SimplifyDemandedBits(SDValue(N, 0))) 8280 return SDValue(N, 0); 8281 8282 if (N1C && !N1C->isOpaque()) 8283 if (SDValue NewSRL = visitShiftByConstant(N)) 8284 return NewSRL; 8285 8286 // Attempt to convert a srl of a load into a narrower zero-extending load. 8287 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 8288 return NarrowLoad; 8289 8290 // Here is a common situation. We want to optimize: 8291 // 8292 // %a = ... 8293 // %b = and i32 %a, 2 8294 // %c = srl i32 %b, 1 8295 // brcond i32 %c ... 8296 // 8297 // into 8298 // 8299 // %a = ... 8300 // %b = and %a, 2 8301 // %c = setcc eq %b, 0 8302 // brcond %c ... 8303 // 8304 // However when after the source operand of SRL is optimized into AND, the SRL 8305 // itself may not be optimized further. Look for it and add the BRCOND into 8306 // the worklist. 8307 if (N->hasOneUse()) { 8308 SDNode *Use = *N->use_begin(); 8309 if (Use->getOpcode() == ISD::BRCOND) 8310 AddToWorklist(Use); 8311 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { 8312 // Also look pass the truncate. 8313 Use = *Use->use_begin(); 8314 if (Use->getOpcode() == ISD::BRCOND) 8315 AddToWorklist(Use); 8316 } 8317 } 8318 8319 return SDValue(); 8320 } 8321 8322 SDValue DAGCombiner::visitFunnelShift(SDNode *N) { 8323 EVT VT = N->getValueType(0); 8324 SDValue N0 = N->getOperand(0); 8325 SDValue N1 = N->getOperand(1); 8326 SDValue N2 = N->getOperand(2); 8327 bool IsFSHL = N->getOpcode() == ISD::FSHL; 8328 unsigned BitWidth = VT.getScalarSizeInBits(); 8329 8330 // fold (fshl N0, N1, 0) -> N0 8331 // fold (fshr N0, N1, 0) -> N1 8332 if (isPowerOf2_32(BitWidth)) 8333 if (DAG.MaskedValueIsZero( 8334 N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1))) 8335 return IsFSHL ? N0 : N1; 8336 8337 auto IsUndefOrZero = [](SDValue V) { 8338 return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true); 8339 }; 8340 8341 // TODO - support non-uniform vector shift amounts. 8342 if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) { 8343 EVT ShAmtTy = N2.getValueType(); 8344 8345 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth) 8346 if (Cst->getAPIntValue().uge(BitWidth)) { 8347 uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth); 8348 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1, 8349 DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy)); 8350 } 8351 8352 unsigned ShAmt = Cst->getZExtValue(); 8353 if (ShAmt == 0) 8354 return IsFSHL ? N0 : N1; 8355 8356 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C) 8357 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C) 8358 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C) 8359 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C) 8360 if (IsUndefOrZero(N0)) 8361 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, 8362 DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, 8363 SDLoc(N), ShAmtTy)); 8364 if (IsUndefOrZero(N1)) 8365 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, 8366 DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, 8367 SDLoc(N), ShAmtTy)); 8368 8369 // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. 8370 // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. 8371 // TODO - bigendian support once we have test coverage. 8372 // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine? 8373 // TODO - permit LHS EXTLOAD if extensions are shifted out. 8374 if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() && 8375 !DAG.getDataLayout().isBigEndian()) { 8376 auto *LHS = dyn_cast<LoadSDNode>(N0); 8377 auto *RHS = dyn_cast<LoadSDNode>(N1); 8378 if (LHS && RHS && LHS->isSimple() && RHS->isSimple() && 8379 LHS->getAddressSpace() == RHS->getAddressSpace() && 8380 (LHS->hasOneUse() || RHS->hasOneUse()) && ISD::isNON_EXTLoad(RHS) && 8381 ISD::isNON_EXTLoad(LHS)) { 8382 if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) { 8383 SDLoc DL(RHS); 8384 uint64_t PtrOff = 8385 IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8); 8386 unsigned NewAlign = MinAlign(RHS->getAlignment(), PtrOff); 8387 bool Fast = false; 8388 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 8389 RHS->getAddressSpace(), NewAlign, 8390 RHS->getMemOperand()->getFlags(), &Fast) && 8391 Fast) { 8392 SDValue NewPtr = 8393 DAG.getMemBasePlusOffset(RHS->getBasePtr(), PtrOff, DL); 8394 AddToWorklist(NewPtr.getNode()); 8395 SDValue Load = DAG.getLoad( 8396 VT, DL, RHS->getChain(), NewPtr, 8397 RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign, 8398 RHS->getMemOperand()->getFlags(), RHS->getAAInfo()); 8399 // Replace the old load's chain with the new load's chain. 8400 WorklistRemover DeadNodes(*this); 8401 DAG.ReplaceAllUsesOfValueWith(N1.getValue(1), Load.getValue(1)); 8402 return Load; 8403 } 8404 } 8405 } 8406 } 8407 } 8408 8409 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2) 8410 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2) 8411 // iff We know the shift amount is in range. 8412 // TODO: when is it worth doing SUB(BW, N2) as well? 8413 if (isPowerOf2_32(BitWidth)) { 8414 APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1); 8415 if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) 8416 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2); 8417 if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) 8418 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2); 8419 } 8420 8421 // fold (fshl N0, N0, N2) -> (rotl N0, N2) 8422 // fold (fshr N0, N0, N2) -> (rotr N0, N2) 8423 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift 8424 // is legal as well we might be better off avoiding non-constant (BW - N2). 8425 unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR; 8426 if (N0 == N1 && hasOperation(RotOpc, VT)) 8427 return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2); 8428 8429 // Simplify, based on bits shifted out of N0/N1. 8430 if (SimplifyDemandedBits(SDValue(N, 0))) 8431 return SDValue(N, 0); 8432 8433 return SDValue(); 8434 } 8435 8436 SDValue DAGCombiner::visitABS(SDNode *N) { 8437 SDValue N0 = N->getOperand(0); 8438 EVT VT = N->getValueType(0); 8439 8440 // fold (abs c1) -> c2 8441 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8442 return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0); 8443 // fold (abs (abs x)) -> (abs x) 8444 if (N0.getOpcode() == ISD::ABS) 8445 return N0; 8446 // fold (abs x) -> x iff not-negative 8447 if (DAG.SignBitIsZero(N0)) 8448 return N0; 8449 return SDValue(); 8450 } 8451 8452 SDValue DAGCombiner::visitBSWAP(SDNode *N) { 8453 SDValue N0 = N->getOperand(0); 8454 EVT VT = N->getValueType(0); 8455 8456 // fold (bswap c1) -> c2 8457 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8458 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); 8459 // fold (bswap (bswap x)) -> x 8460 if (N0.getOpcode() == ISD::BSWAP) 8461 return N0->getOperand(0); 8462 return SDValue(); 8463 } 8464 8465 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { 8466 SDValue N0 = N->getOperand(0); 8467 EVT VT = N->getValueType(0); 8468 8469 // fold (bitreverse c1) -> c2 8470 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8471 return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0); 8472 // fold (bitreverse (bitreverse x)) -> x 8473 if (N0.getOpcode() == ISD::BITREVERSE) 8474 return N0.getOperand(0); 8475 return SDValue(); 8476 } 8477 8478 SDValue DAGCombiner::visitCTLZ(SDNode *N) { 8479 SDValue N0 = N->getOperand(0); 8480 EVT VT = N->getValueType(0); 8481 8482 // fold (ctlz c1) -> c2 8483 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8484 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); 8485 8486 // If the value is known never to be zero, switch to the undef version. 8487 if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) { 8488 if (DAG.isKnownNeverZero(N0)) 8489 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 8490 } 8491 8492 return SDValue(); 8493 } 8494 8495 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { 8496 SDValue N0 = N->getOperand(0); 8497 EVT VT = N->getValueType(0); 8498 8499 // fold (ctlz_zero_undef c1) -> c2 8500 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8501 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 8502 return SDValue(); 8503 } 8504 8505 SDValue DAGCombiner::visitCTTZ(SDNode *N) { 8506 SDValue N0 = N->getOperand(0); 8507 EVT VT = N->getValueType(0); 8508 8509 // fold (cttz c1) -> c2 8510 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8511 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); 8512 8513 // If the value is known never to be zero, switch to the undef version. 8514 if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) { 8515 if (DAG.isKnownNeverZero(N0)) 8516 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 8517 } 8518 8519 return SDValue(); 8520 } 8521 8522 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { 8523 SDValue N0 = N->getOperand(0); 8524 EVT VT = N->getValueType(0); 8525 8526 // fold (cttz_zero_undef c1) -> c2 8527 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8528 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 8529 return SDValue(); 8530 } 8531 8532 SDValue DAGCombiner::visitCTPOP(SDNode *N) { 8533 SDValue N0 = N->getOperand(0); 8534 EVT VT = N->getValueType(0); 8535 8536 // fold (ctpop c1) -> c2 8537 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8538 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); 8539 return SDValue(); 8540 } 8541 8542 // FIXME: This should be checking for no signed zeros on individual operands, as 8543 // well as no nans. 8544 static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, 8545 SDValue RHS, 8546 const TargetLowering &TLI) { 8547 const TargetOptions &Options = DAG.getTarget().Options; 8548 EVT VT = LHS.getValueType(); 8549 8550 return Options.NoSignedZerosFPMath && VT.isFloatingPoint() && 8551 TLI.isProfitableToCombineMinNumMaxNum(VT) && 8552 DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS); 8553 } 8554 8555 /// Generate Min/Max node 8556 static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, 8557 SDValue RHS, SDValue True, SDValue False, 8558 ISD::CondCode CC, const TargetLowering &TLI, 8559 SelectionDAG &DAG) { 8560 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 8561 return SDValue(); 8562 8563 EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 8564 switch (CC) { 8565 case ISD::SETOLT: 8566 case ISD::SETOLE: 8567 case ISD::SETLT: 8568 case ISD::SETLE: 8569 case ISD::SETULT: 8570 case ISD::SETULE: { 8571 // Since it's known never nan to get here already, either fminnum or 8572 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is 8573 // expanded in terms of it. 8574 unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 8575 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) 8576 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); 8577 8578 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; 8579 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) 8580 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 8581 return SDValue(); 8582 } 8583 case ISD::SETOGT: 8584 case ISD::SETOGE: 8585 case ISD::SETGT: 8586 case ISD::SETGE: 8587 case ISD::SETUGT: 8588 case ISD::SETUGE: { 8589 unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; 8590 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) 8591 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); 8592 8593 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; 8594 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) 8595 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 8596 return SDValue(); 8597 } 8598 default: 8599 return SDValue(); 8600 } 8601 } 8602 8603 /// If a (v)select has a condition value that is a sign-bit test, try to smear 8604 /// the condition operand sign-bit across the value width and use it as a mask. 8605 static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) { 8606 SDValue Cond = N->getOperand(0); 8607 SDValue C1 = N->getOperand(1); 8608 SDValue C2 = N->getOperand(2); 8609 assert(isConstantOrConstantVector(C1) && isConstantOrConstantVector(C2) && 8610 "Expected select-of-constants"); 8611 8612 EVT VT = N->getValueType(0); 8613 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() || 8614 VT != Cond.getOperand(0).getValueType()) 8615 return SDValue(); 8616 8617 // The inverted-condition + commuted-select variants of these patterns are 8618 // canonicalized to these forms in IR. 8619 SDValue X = Cond.getOperand(0); 8620 SDValue CondC = Cond.getOperand(1); 8621 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 8622 if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) && 8623 isAllOnesOrAllOnesSplat(C2)) { 8624 // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1 8625 SDLoc DL(N); 8626 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); 8627 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); 8628 return DAG.getNode(ISD::OR, DL, VT, Sra, C1); 8629 } 8630 if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) { 8631 // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1 8632 SDLoc DL(N); 8633 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); 8634 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); 8635 return DAG.getNode(ISD::AND, DL, VT, Sra, C1); 8636 } 8637 return SDValue(); 8638 } 8639 8640 SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { 8641 SDValue Cond = N->getOperand(0); 8642 SDValue N1 = N->getOperand(1); 8643 SDValue N2 = N->getOperand(2); 8644 EVT VT = N->getValueType(0); 8645 EVT CondVT = Cond.getValueType(); 8646 SDLoc DL(N); 8647 8648 if (!VT.isInteger()) 8649 return SDValue(); 8650 8651 auto *C1 = dyn_cast<ConstantSDNode>(N1); 8652 auto *C2 = dyn_cast<ConstantSDNode>(N2); 8653 if (!C1 || !C2) 8654 return SDValue(); 8655 8656 // Only do this before legalization to avoid conflicting with target-specific 8657 // transforms in the other direction (create a select from a zext/sext). There 8658 // is also a target-independent combine here in DAGCombiner in the other 8659 // direction for (select Cond, -1, 0) when the condition is not i1. 8660 if (CondVT == MVT::i1 && !LegalOperations) { 8661 if (C1->isNullValue() && C2->isOne()) { 8662 // select Cond, 0, 1 --> zext (!Cond) 8663 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); 8664 if (VT != MVT::i1) 8665 NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond); 8666 return NotCond; 8667 } 8668 if (C1->isNullValue() && C2->isAllOnesValue()) { 8669 // select Cond, 0, -1 --> sext (!Cond) 8670 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); 8671 if (VT != MVT::i1) 8672 NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond); 8673 return NotCond; 8674 } 8675 if (C1->isOne() && C2->isNullValue()) { 8676 // select Cond, 1, 0 --> zext (Cond) 8677 if (VT != MVT::i1) 8678 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 8679 return Cond; 8680 } 8681 if (C1->isAllOnesValue() && C2->isNullValue()) { 8682 // select Cond, -1, 0 --> sext (Cond) 8683 if (VT != MVT::i1) 8684 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); 8685 return Cond; 8686 } 8687 8688 // Use a target hook because some targets may prefer to transform in the 8689 // other direction. 8690 if (TLI.convertSelectOfConstantsToMath(VT)) { 8691 // For any constants that differ by 1, we can transform the select into an 8692 // extend and add. 8693 const APInt &C1Val = C1->getAPIntValue(); 8694 const APInt &C2Val = C2->getAPIntValue(); 8695 if (C1Val - 1 == C2Val) { 8696 // select Cond, C1, C1-1 --> add (zext Cond), C1-1 8697 if (VT != MVT::i1) 8698 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 8699 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); 8700 } 8701 if (C1Val + 1 == C2Val) { 8702 // select Cond, C1, C1+1 --> add (sext Cond), C1+1 8703 if (VT != MVT::i1) 8704 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); 8705 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); 8706 } 8707 8708 // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2) 8709 if (C1Val.isPowerOf2() && C2Val.isNullValue()) { 8710 if (VT != MVT::i1) 8711 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 8712 SDValue ShAmtC = DAG.getConstant(C1Val.exactLogBase2(), DL, VT); 8713 return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC); 8714 } 8715 8716 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) 8717 return V; 8718 } 8719 8720 return SDValue(); 8721 } 8722 8723 // fold (select Cond, 0, 1) -> (xor Cond, 1) 8724 // We can't do this reliably if integer based booleans have different contents 8725 // to floating point based booleans. This is because we can't tell whether we 8726 // have an integer-based boolean or a floating-point-based boolean unless we 8727 // can find the SETCC that produced it and inspect its operands. This is 8728 // fairly easy if C is the SETCC node, but it can potentially be 8729 // undiscoverable (or not reasonably discoverable). For example, it could be 8730 // in another basic block or it could require searching a complicated 8731 // expression. 8732 if (CondVT.isInteger() && 8733 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) == 8734 TargetLowering::ZeroOrOneBooleanContent && 8735 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) == 8736 TargetLowering::ZeroOrOneBooleanContent && 8737 C1->isNullValue() && C2->isOne()) { 8738 SDValue NotCond = 8739 DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); 8740 if (VT.bitsEq(CondVT)) 8741 return NotCond; 8742 return DAG.getZExtOrTrunc(NotCond, DL, VT); 8743 } 8744 8745 return SDValue(); 8746 } 8747 8748 SDValue DAGCombiner::visitSELECT(SDNode *N) { 8749 SDValue N0 = N->getOperand(0); 8750 SDValue N1 = N->getOperand(1); 8751 SDValue N2 = N->getOperand(2); 8752 EVT VT = N->getValueType(0); 8753 EVT VT0 = N0.getValueType(); 8754 SDLoc DL(N); 8755 SDNodeFlags Flags = N->getFlags(); 8756 8757 if (SDValue V = DAG.simplifySelect(N0, N1, N2)) 8758 return V; 8759 8760 // fold (select X, X, Y) -> (or X, Y) 8761 // fold (select X, 1, Y) -> (or C, Y) 8762 if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) 8763 return DAG.getNode(ISD::OR, DL, VT, N0, N2); 8764 8765 if (SDValue V = foldSelectOfConstants(N)) 8766 return V; 8767 8768 // fold (select C, 0, X) -> (and (not C), X) 8769 if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { 8770 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 8771 AddToWorklist(NOTNode.getNode()); 8772 return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2); 8773 } 8774 // fold (select C, X, 1) -> (or (not C), X) 8775 if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { 8776 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 8777 AddToWorklist(NOTNode.getNode()); 8778 return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1); 8779 } 8780 // fold (select X, Y, X) -> (and X, Y) 8781 // fold (select X, Y, 0) -> (and X, Y) 8782 if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) 8783 return DAG.getNode(ISD::AND, DL, VT, N0, N1); 8784 8785 // If we can fold this based on the true/false value, do so. 8786 if (SimplifySelectOps(N, N1, N2)) 8787 return SDValue(N, 0); // Don't revisit N. 8788 8789 if (VT0 == MVT::i1) { 8790 // The code in this block deals with the following 2 equivalences: 8791 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) 8792 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) 8793 // The target can specify its preferred form with the 8794 // shouldNormalizeToSelectSequence() callback. However we always transform 8795 // to the right anyway if we find the inner select exists in the DAG anyway 8796 // and we always transform to the left side if we know that we can further 8797 // optimize the combination of the conditions. 8798 bool normalizeToSequence = 8799 TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); 8800 // select (and Cond0, Cond1), X, Y 8801 // -> select Cond0, (select Cond1, X, Y), Y 8802 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { 8803 SDValue Cond0 = N0->getOperand(0); 8804 SDValue Cond1 = N0->getOperand(1); 8805 SDValue InnerSelect = 8806 DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags); 8807 if (normalizeToSequence || !InnerSelect.use_empty()) 8808 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, 8809 InnerSelect, N2, Flags); 8810 // Cleanup on failure. 8811 if (InnerSelect.use_empty()) 8812 recursivelyDeleteUnusedNodes(InnerSelect.getNode()); 8813 } 8814 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) 8815 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { 8816 SDValue Cond0 = N0->getOperand(0); 8817 SDValue Cond1 = N0->getOperand(1); 8818 SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(), 8819 Cond1, N1, N2, Flags); 8820 if (normalizeToSequence || !InnerSelect.use_empty()) 8821 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1, 8822 InnerSelect, Flags); 8823 // Cleanup on failure. 8824 if (InnerSelect.use_empty()) 8825 recursivelyDeleteUnusedNodes(InnerSelect.getNode()); 8826 } 8827 8828 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y 8829 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { 8830 SDValue N1_0 = N1->getOperand(0); 8831 SDValue N1_1 = N1->getOperand(1); 8832 SDValue N1_2 = N1->getOperand(2); 8833 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { 8834 // Create the actual and node if we can generate good code for it. 8835 if (!normalizeToSequence) { 8836 SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0); 8837 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, 8838 N2, Flags); 8839 } 8840 // Otherwise see if we can optimize the "and" to a better pattern. 8841 if (SDValue Combined = visitANDLike(N0, N1_0, N)) { 8842 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1, 8843 N2, Flags); 8844 } 8845 } 8846 } 8847 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y 8848 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { 8849 SDValue N2_0 = N2->getOperand(0); 8850 SDValue N2_1 = N2->getOperand(1); 8851 SDValue N2_2 = N2->getOperand(2); 8852 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { 8853 // Create the actual or node if we can generate good code for it. 8854 if (!normalizeToSequence) { 8855 SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0); 8856 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, 8857 N2_2, Flags); 8858 } 8859 // Otherwise see if we can optimize to a better pattern. 8860 if (SDValue Combined = visitORLike(N0, N2_0, N)) 8861 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1, 8862 N2_2, Flags); 8863 } 8864 } 8865 } 8866 8867 // select (not Cond), N1, N2 -> select Cond, N2, N1 8868 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) { 8869 SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1); 8870 SelectOp->setFlags(Flags); 8871 return SelectOp; 8872 } 8873 8874 // Fold selects based on a setcc into other things, such as min/max/abs. 8875 if (N0.getOpcode() == ISD::SETCC) { 8876 SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1); 8877 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 8878 8879 // select (fcmp lt x, y), x, y -> fminnum x, y 8880 // select (fcmp gt x, y), x, y -> fmaxnum x, y 8881 // 8882 // This is OK if we don't care what happens if either operand is a NaN. 8883 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI)) 8884 if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, 8885 CC, TLI, DAG)) 8886 return FMinMax; 8887 8888 // Use 'unsigned add with overflow' to optimize an unsigned saturating add. 8889 // This is conservatively limited to pre-legal-operations to give targets 8890 // a chance to reverse the transform if they want to do that. Also, it is 8891 // unlikely that the pattern would be formed late, so it's probably not 8892 // worth going through the other checks. 8893 if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) && 8894 CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) && 8895 N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) { 8896 auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1)); 8897 auto *NotC = dyn_cast<ConstantSDNode>(Cond1); 8898 if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) { 8899 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) --> 8900 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0 8901 // 8902 // The IR equivalent of this transform would have this form: 8903 // %a = add %x, C 8904 // %c = icmp ugt %x, ~C 8905 // %r = select %c, -1, %a 8906 // => 8907 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C) 8908 // %u0 = extractvalue %u, 0 8909 // %u1 = extractvalue %u, 1 8910 // %r = select %u1, -1, %u0 8911 SDVTList VTs = DAG.getVTList(VT, VT0); 8912 SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1)); 8913 return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0)); 8914 } 8915 } 8916 8917 if (TLI.isOperationLegal(ISD::SELECT_CC, VT) || 8918 (!LegalOperations && 8919 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) { 8920 // Any flags available in a select/setcc fold will be on the setcc as they 8921 // migrated from fcmp 8922 Flags = N0.getNode()->getFlags(); 8923 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, 8924 N2, N0.getOperand(2)); 8925 SelectNode->setFlags(Flags); 8926 return SelectNode; 8927 } 8928 8929 return SimplifySelect(DL, N0, N1, N2); 8930 } 8931 8932 return SDValue(); 8933 } 8934 8935 // This function assumes all the vselect's arguments are CONCAT_VECTOR 8936 // nodes and that the condition is a BV of ConstantSDNodes (or undefs). 8937 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { 8938 SDLoc DL(N); 8939 SDValue Cond = N->getOperand(0); 8940 SDValue LHS = N->getOperand(1); 8941 SDValue RHS = N->getOperand(2); 8942 EVT VT = N->getValueType(0); 8943 int NumElems = VT.getVectorNumElements(); 8944 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && 8945 RHS.getOpcode() == ISD::CONCAT_VECTORS && 8946 Cond.getOpcode() == ISD::BUILD_VECTOR); 8947 8948 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about 8949 // binary ones here. 8950 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) 8951 return SDValue(); 8952 8953 // We're sure we have an even number of elements due to the 8954 // concat_vectors we have as arguments to vselect. 8955 // Skip BV elements until we find one that's not an UNDEF 8956 // After we find an UNDEF element, keep looping until we get to half the 8957 // length of the BV and see if all the non-undef nodes are the same. 8958 ConstantSDNode *BottomHalf = nullptr; 8959 for (int i = 0; i < NumElems / 2; ++i) { 8960 if (Cond->getOperand(i)->isUndef()) 8961 continue; 8962 8963 if (BottomHalf == nullptr) 8964 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 8965 else if (Cond->getOperand(i).getNode() != BottomHalf) 8966 return SDValue(); 8967 } 8968 8969 // Do the same for the second half of the BuildVector 8970 ConstantSDNode *TopHalf = nullptr; 8971 for (int i = NumElems / 2; i < NumElems; ++i) { 8972 if (Cond->getOperand(i)->isUndef()) 8973 continue; 8974 8975 if (TopHalf == nullptr) 8976 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 8977 else if (Cond->getOperand(i).getNode() != TopHalf) 8978 return SDValue(); 8979 } 8980 8981 assert(TopHalf && BottomHalf && 8982 "One half of the selector was all UNDEFs and the other was all the " 8983 "same value. This should have been addressed before this function."); 8984 return DAG.getNode( 8985 ISD::CONCAT_VECTORS, DL, VT, 8986 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), 8987 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); 8988 } 8989 8990 SDValue DAGCombiner::visitMSCATTER(SDNode *N) { 8991 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); 8992 SDValue Mask = MSC->getMask(); 8993 SDValue Chain = MSC->getChain(); 8994 SDLoc DL(N); 8995 8996 // Zap scatters with a zero mask. 8997 if (ISD::isBuildVectorAllZeros(Mask.getNode())) 8998 return Chain; 8999 9000 return SDValue(); 9001 } 9002 9003 SDValue DAGCombiner::visitMSTORE(SDNode *N) { 9004 MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 9005 SDValue Mask = MST->getMask(); 9006 SDValue Chain = MST->getChain(); 9007 SDLoc DL(N); 9008 9009 // Zap masked stores with a zero mask. 9010 if (ISD::isBuildVectorAllZeros(Mask.getNode())) 9011 return Chain; 9012 9013 // Try transforming N to an indexed store. 9014 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 9015 return SDValue(N, 0); 9016 9017 return SDValue(); 9018 } 9019 9020 SDValue DAGCombiner::visitMGATHER(SDNode *N) { 9021 MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N); 9022 SDValue Mask = MGT->getMask(); 9023 SDLoc DL(N); 9024 9025 // Zap gathers with a zero mask. 9026 if (ISD::isBuildVectorAllZeros(Mask.getNode())) 9027 return CombineTo(N, MGT->getPassThru(), MGT->getChain()); 9028 9029 return SDValue(); 9030 } 9031 9032 SDValue DAGCombiner::visitMLOAD(SDNode *N) { 9033 MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 9034 SDValue Mask = MLD->getMask(); 9035 SDLoc DL(N); 9036 9037 // Zap masked loads with a zero mask. 9038 if (ISD::isBuildVectorAllZeros(Mask.getNode())) 9039 return CombineTo(N, MLD->getPassThru(), MLD->getChain()); 9040 9041 // Try transforming N to an indexed load. 9042 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 9043 return SDValue(N, 0); 9044 9045 return SDValue(); 9046 } 9047 9048 /// A vector select of 2 constant vectors can be simplified to math/logic to 9049 /// avoid a variable select instruction and possibly avoid constant loads. 9050 SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) { 9051 SDValue Cond = N->getOperand(0); 9052 SDValue N1 = N->getOperand(1); 9053 SDValue N2 = N->getOperand(2); 9054 EVT VT = N->getValueType(0); 9055 if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 || 9056 !TLI.convertSelectOfConstantsToMath(VT) || 9057 !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) || 9058 !ISD::isBuildVectorOfConstantSDNodes(N2.getNode())) 9059 return SDValue(); 9060 9061 // Check if we can use the condition value to increment/decrement a single 9062 // constant value. This simplifies a select to an add and removes a constant 9063 // load/materialization from the general case. 9064 bool AllAddOne = true; 9065 bool AllSubOne = true; 9066 unsigned Elts = VT.getVectorNumElements(); 9067 for (unsigned i = 0; i != Elts; ++i) { 9068 SDValue N1Elt = N1.getOperand(i); 9069 SDValue N2Elt = N2.getOperand(i); 9070 if (N1Elt.isUndef() || N2Elt.isUndef()) 9071 continue; 9072 if (N1Elt.getValueType() != N2Elt.getValueType()) 9073 continue; 9074 9075 const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue(); 9076 const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue(); 9077 if (C1 != C2 + 1) 9078 AllAddOne = false; 9079 if (C1 != C2 - 1) 9080 AllSubOne = false; 9081 } 9082 9083 // Further simplifications for the extra-special cases where the constants are 9084 // all 0 or all -1 should be implemented as folds of these patterns. 9085 SDLoc DL(N); 9086 if (AllAddOne || AllSubOne) { 9087 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C 9088 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C 9089 auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; 9090 SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond); 9091 return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2); 9092 } 9093 9094 // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C) 9095 APInt Pow2C; 9096 if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() && 9097 isNullOrNullSplat(N2)) { 9098 SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT); 9099 SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT); 9100 return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC); 9101 } 9102 9103 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) 9104 return V; 9105 9106 // The general case for select-of-constants: 9107 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2 9108 // ...but that only makes sense if a vselect is slower than 2 logic ops, so 9109 // leave that to a machine-specific pass. 9110 return SDValue(); 9111 } 9112 9113 SDValue DAGCombiner::visitVSELECT(SDNode *N) { 9114 SDValue N0 = N->getOperand(0); 9115 SDValue N1 = N->getOperand(1); 9116 SDValue N2 = N->getOperand(2); 9117 EVT VT = N->getValueType(0); 9118 SDLoc DL(N); 9119 9120 if (SDValue V = DAG.simplifySelect(N0, N1, N2)) 9121 return V; 9122 9123 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1 9124 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) 9125 return DAG.getSelect(DL, VT, F, N2, N1); 9126 9127 // Canonicalize integer abs. 9128 // vselect (setg[te] X, 0), X, -X -> 9129 // vselect (setgt X, -1), X, -X -> 9130 // vselect (setl[te] X, 0), -X, X -> 9131 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 9132 if (N0.getOpcode() == ISD::SETCC) { 9133 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 9134 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 9135 bool isAbs = false; 9136 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); 9137 9138 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || 9139 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && 9140 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) 9141 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); 9142 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && 9143 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) 9144 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 9145 9146 if (isAbs) { 9147 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) 9148 return DAG.getNode(ISD::ABS, DL, VT, LHS); 9149 9150 SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS, 9151 DAG.getConstant(VT.getScalarSizeInBits() - 1, 9152 DL, getShiftAmountTy(VT))); 9153 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); 9154 AddToWorklist(Shift.getNode()); 9155 AddToWorklist(Add.getNode()); 9156 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); 9157 } 9158 9159 // vselect x, y (fcmp lt x, y) -> fminnum x, y 9160 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y 9161 // 9162 // This is OK if we don't care about what happens if either operand is a 9163 // NaN. 9164 // 9165 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) { 9166 if (SDValue FMinMax = 9167 combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG)) 9168 return FMinMax; 9169 } 9170 9171 // If this select has a condition (setcc) with narrower operands than the 9172 // select, try to widen the compare to match the select width. 9173 // TODO: This should be extended to handle any constant. 9174 // TODO: This could be extended to handle non-loading patterns, but that 9175 // requires thorough testing to avoid regressions. 9176 if (isNullOrNullSplat(RHS)) { 9177 EVT NarrowVT = LHS.getValueType(); 9178 EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger(); 9179 EVT SetCCVT = getSetCCResultType(LHS.getValueType()); 9180 unsigned SetCCWidth = SetCCVT.getScalarSizeInBits(); 9181 unsigned WideWidth = WideVT.getScalarSizeInBits(); 9182 bool IsSigned = isSignedIntSetCC(CC); 9183 auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 9184 if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() && 9185 SetCCWidth != 1 && SetCCWidth < WideWidth && 9186 TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) && 9187 TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) { 9188 // Both compare operands can be widened for free. The LHS can use an 9189 // extended load, and the RHS is a constant: 9190 // vselect (ext (setcc load(X), C)), N1, N2 --> 9191 // vselect (setcc extload(X), C'), N1, N2 9192 auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 9193 SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS); 9194 SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS); 9195 EVT WideSetCCVT = getSetCCResultType(WideVT); 9196 SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC); 9197 return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2); 9198 } 9199 } 9200 } 9201 9202 if (SimplifySelectOps(N, N1, N2)) 9203 return SDValue(N, 0); // Don't revisit N. 9204 9205 // Fold (vselect (build_vector all_ones), N1, N2) -> N1 9206 if (ISD::isBuildVectorAllOnes(N0.getNode())) 9207 return N1; 9208 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 9209 if (ISD::isBuildVectorAllZeros(N0.getNode())) 9210 return N2; 9211 9212 // The ConvertSelectToConcatVector function is assuming both the above 9213 // checks for (vselect (build_vector all{ones,zeros) ...) have been made 9214 // and addressed. 9215 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 9216 N2.getOpcode() == ISD::CONCAT_VECTORS && 9217 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 9218 if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) 9219 return CV; 9220 } 9221 9222 if (SDValue V = foldVSelectOfConstants(N)) 9223 return V; 9224 9225 return SDValue(); 9226 } 9227 9228 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { 9229 SDValue N0 = N->getOperand(0); 9230 SDValue N1 = N->getOperand(1); 9231 SDValue N2 = N->getOperand(2); 9232 SDValue N3 = N->getOperand(3); 9233 SDValue N4 = N->getOperand(4); 9234 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); 9235 9236 // fold select_cc lhs, rhs, x, x, cc -> x 9237 if (N2 == N3) 9238 return N2; 9239 9240 // Determine if the condition we're dealing with is constant 9241 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, 9242 CC, SDLoc(N), false)) { 9243 AddToWorklist(SCC.getNode()); 9244 9245 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { 9246 if (!SCCC->isNullValue()) 9247 return N2; // cond always true -> true val 9248 else 9249 return N3; // cond always false -> false val 9250 } else if (SCC->isUndef()) { 9251 // When the condition is UNDEF, just return the first operand. This is 9252 // coherent the DAG creation, no setcc node is created in this case 9253 return N2; 9254 } else if (SCC.getOpcode() == ISD::SETCC) { 9255 // Fold to a simpler select_cc 9256 SDValue SelectOp = DAG.getNode( 9257 ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0), 9258 SCC.getOperand(1), N2, N3, SCC.getOperand(2)); 9259 SelectOp->setFlags(SCC->getFlags()); 9260 return SelectOp; 9261 } 9262 } 9263 9264 // If we can fold this based on the true/false value, do so. 9265 if (SimplifySelectOps(N, N2, N3)) 9266 return SDValue(N, 0); // Don't revisit N. 9267 9268 // fold select_cc into other things, such as min/max/abs 9269 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); 9270 } 9271 9272 SDValue DAGCombiner::visitSETCC(SDNode *N) { 9273 // setcc is very commonly used as an argument to brcond. This pattern 9274 // also lend itself to numerous combines and, as a result, it is desired 9275 // we keep the argument to a brcond as a setcc as much as possible. 9276 bool PreferSetCC = 9277 N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND; 9278 9279 SDValue Combined = SimplifySetCC( 9280 N->getValueType(0), N->getOperand(0), N->getOperand(1), 9281 cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC); 9282 9283 if (!Combined) 9284 return SDValue(); 9285 9286 // If we prefer to have a setcc, and we don't, we'll try our best to 9287 // recreate one using rebuildSetCC. 9288 if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) { 9289 SDValue NewSetCC = rebuildSetCC(Combined); 9290 9291 // We don't have anything interesting to combine to. 9292 if (NewSetCC.getNode() == N) 9293 return SDValue(); 9294 9295 if (NewSetCC) 9296 return NewSetCC; 9297 } 9298 9299 return Combined; 9300 } 9301 9302 SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) { 9303 SDValue LHS = N->getOperand(0); 9304 SDValue RHS = N->getOperand(1); 9305 SDValue Carry = N->getOperand(2); 9306 SDValue Cond = N->getOperand(3); 9307 9308 // If Carry is false, fold to a regular SETCC. 9309 if (isNullConstant(Carry)) 9310 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); 9311 9312 return SDValue(); 9313 } 9314 9315 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or 9316 /// a build_vector of constants. 9317 /// This function is called by the DAGCombiner when visiting sext/zext/aext 9318 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 9319 /// Vector extends are not folded if operations are legal; this is to 9320 /// avoid introducing illegal build_vector dag nodes. 9321 static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, 9322 SelectionDAG &DAG, bool LegalTypes) { 9323 unsigned Opcode = N->getOpcode(); 9324 SDValue N0 = N->getOperand(0); 9325 EVT VT = N->getValueType(0); 9326 SDLoc DL(N); 9327 9328 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 9329 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 9330 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) 9331 && "Expected EXTEND dag node in input!"); 9332 9333 // fold (sext c1) -> c1 9334 // fold (zext c1) -> c1 9335 // fold (aext c1) -> c1 9336 if (isa<ConstantSDNode>(N0)) 9337 return DAG.getNode(Opcode, DL, VT, N0); 9338 9339 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) 9340 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2) 9341 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) 9342 if (N0->getOpcode() == ISD::SELECT) { 9343 SDValue Op1 = N0->getOperand(1); 9344 SDValue Op2 = N0->getOperand(2); 9345 if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) && 9346 (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) { 9347 // For any_extend, choose sign extension of the constants to allow a 9348 // possible further transform to sign_extend_inreg.i.e. 9349 // 9350 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0> 9351 // t2: i64 = any_extend t1 9352 // --> 9353 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0> 9354 // --> 9355 // t4: i64 = sign_extend_inreg t3 9356 unsigned FoldOpc = Opcode; 9357 if (FoldOpc == ISD::ANY_EXTEND) 9358 FoldOpc = ISD::SIGN_EXTEND; 9359 return DAG.getSelect(DL, VT, N0->getOperand(0), 9360 DAG.getNode(FoldOpc, DL, VT, Op1), 9361 DAG.getNode(FoldOpc, DL, VT, Op2)); 9362 } 9363 } 9364 9365 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) 9366 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) 9367 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) 9368 EVT SVT = VT.getScalarType(); 9369 if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) && 9370 ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) 9371 return SDValue(); 9372 9373 // We can fold this node into a build_vector. 9374 unsigned VTBits = SVT.getSizeInBits(); 9375 unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); 9376 SmallVector<SDValue, 8> Elts; 9377 unsigned NumElts = VT.getVectorNumElements(); 9378 9379 // For zero-extensions, UNDEF elements still guarantee to have the upper 9380 // bits set to zero. 9381 bool IsZext = 9382 Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG; 9383 9384 for (unsigned i = 0; i != NumElts; ++i) { 9385 SDValue Op = N0.getOperand(i); 9386 if (Op.isUndef()) { 9387 Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT)); 9388 continue; 9389 } 9390 9391 SDLoc DL(Op); 9392 // Get the constant value and if needed trunc it to the size of the type. 9393 // Nodes like build_vector might have constants wider than the scalar type. 9394 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); 9395 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 9396 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); 9397 else 9398 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); 9399 } 9400 9401 return DAG.getBuildVector(VT, DL, Elts); 9402 } 9403 9404 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: 9405 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" 9406 // transformation. Returns true if extension are possible and the above 9407 // mentioned transformation is profitable. 9408 static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, 9409 unsigned ExtOpc, 9410 SmallVectorImpl<SDNode *> &ExtendNodes, 9411 const TargetLowering &TLI) { 9412 bool HasCopyToRegUses = false; 9413 bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType()); 9414 for (SDNode::use_iterator UI = N0.getNode()->use_begin(), 9415 UE = N0.getNode()->use_end(); 9416 UI != UE; ++UI) { 9417 SDNode *User = *UI; 9418 if (User == N) 9419 continue; 9420 if (UI.getUse().getResNo() != N0.getResNo()) 9421 continue; 9422 // FIXME: Only extend SETCC N, N and SETCC N, c for now. 9423 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { 9424 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); 9425 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) 9426 // Sign bits will be lost after a zext. 9427 return false; 9428 bool Add = false; 9429 for (unsigned i = 0; i != 2; ++i) { 9430 SDValue UseOp = User->getOperand(i); 9431 if (UseOp == N0) 9432 continue; 9433 if (!isa<ConstantSDNode>(UseOp)) 9434 return false; 9435 Add = true; 9436 } 9437 if (Add) 9438 ExtendNodes.push_back(User); 9439 continue; 9440 } 9441 // If truncates aren't free and there are users we can't 9442 // extend, it isn't worthwhile. 9443 if (!isTruncFree) 9444 return false; 9445 // Remember if this value is live-out. 9446 if (User->getOpcode() == ISD::CopyToReg) 9447 HasCopyToRegUses = true; 9448 } 9449 9450 if (HasCopyToRegUses) { 9451 bool BothLiveOut = false; 9452 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 9453 UI != UE; ++UI) { 9454 SDUse &Use = UI.getUse(); 9455 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { 9456 BothLiveOut = true; 9457 break; 9458 } 9459 } 9460 if (BothLiveOut) 9461 // Both unextended and extended values are live out. There had better be 9462 // a good reason for the transformation. 9463 return ExtendNodes.size(); 9464 } 9465 return true; 9466 } 9467 9468 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 9469 SDValue OrigLoad, SDValue ExtLoad, 9470 ISD::NodeType ExtType) { 9471 // Extend SetCC uses if necessary. 9472 SDLoc DL(ExtLoad); 9473 for (SDNode *SetCC : SetCCs) { 9474 SmallVector<SDValue, 4> Ops; 9475 9476 for (unsigned j = 0; j != 2; ++j) { 9477 SDValue SOp = SetCC->getOperand(j); 9478 if (SOp == OrigLoad) 9479 Ops.push_back(ExtLoad); 9480 else 9481 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); 9482 } 9483 9484 Ops.push_back(SetCC->getOperand(2)); 9485 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 9486 } 9487 } 9488 9489 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). 9490 SDValue DAGCombiner::CombineExtLoad(SDNode *N) { 9491 SDValue N0 = N->getOperand(0); 9492 EVT DstVT = N->getValueType(0); 9493 EVT SrcVT = N0.getValueType(); 9494 9495 assert((N->getOpcode() == ISD::SIGN_EXTEND || 9496 N->getOpcode() == ISD::ZERO_EXTEND) && 9497 "Unexpected node type (not an extend)!"); 9498 9499 // fold (sext (load x)) to multiple smaller sextloads; same for zext. 9500 // For example, on a target with legal v4i32, but illegal v8i32, turn: 9501 // (v8i32 (sext (v8i16 (load x)))) 9502 // into: 9503 // (v8i32 (concat_vectors (v4i32 (sextload x)), 9504 // (v4i32 (sextload (x + 16))))) 9505 // Where uses of the original load, i.e.: 9506 // (v8i16 (load x)) 9507 // are replaced with: 9508 // (v8i16 (truncate 9509 // (v8i32 (concat_vectors (v4i32 (sextload x)), 9510 // (v4i32 (sextload (x + 16))))))) 9511 // 9512 // This combine is only applicable to illegal, but splittable, vectors. 9513 // All legal types, and illegal non-vector types, are handled elsewhere. 9514 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. 9515 // 9516 if (N0->getOpcode() != ISD::LOAD) 9517 return SDValue(); 9518 9519 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 9520 9521 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || 9522 !N0.hasOneUse() || !LN0->isSimple() || 9523 !DstVT.isVector() || !DstVT.isPow2VectorType() || 9524 !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 9525 return SDValue(); 9526 9527 SmallVector<SDNode *, 4> SetCCs; 9528 if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI)) 9529 return SDValue(); 9530 9531 ISD::LoadExtType ExtType = 9532 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 9533 9534 // Try to split the vector types to get down to legal types. 9535 EVT SplitSrcVT = SrcVT; 9536 EVT SplitDstVT = DstVT; 9537 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && 9538 SplitSrcVT.getVectorNumElements() > 1) { 9539 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; 9540 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; 9541 } 9542 9543 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) 9544 return SDValue(); 9545 9546 assert(!DstVT.isScalableVector() && "Unexpected scalable vector type"); 9547 9548 SDLoc DL(N); 9549 const unsigned NumSplits = 9550 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); 9551 const unsigned Stride = SplitSrcVT.getStoreSize(); 9552 SmallVector<SDValue, 4> Loads; 9553 SmallVector<SDValue, 4> Chains; 9554 9555 SDValue BasePtr = LN0->getBasePtr(); 9556 for (unsigned Idx = 0; Idx < NumSplits; Idx++) { 9557 const unsigned Offset = Idx * Stride; 9558 const unsigned Align = MinAlign(LN0->getAlignment(), Offset); 9559 9560 SDValue SplitLoad = DAG.getExtLoad( 9561 ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr, 9562 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, 9563 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 9564 9565 BasePtr = DAG.getMemBasePlusOffset(BasePtr, Stride, DL); 9566 9567 Loads.push_back(SplitLoad.getValue(0)); 9568 Chains.push_back(SplitLoad.getValue(1)); 9569 } 9570 9571 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 9572 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); 9573 9574 // Simplify TF. 9575 AddToWorklist(NewChain.getNode()); 9576 9577 CombineTo(N, NewValue); 9578 9579 // Replace uses of the original load (before extension) 9580 // with a truncate of the concatenated sextloaded vectors. 9581 SDValue Trunc = 9582 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); 9583 ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode()); 9584 CombineTo(N0.getNode(), Trunc, NewChain); 9585 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9586 } 9587 9588 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> 9589 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) 9590 SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) { 9591 assert(N->getOpcode() == ISD::ZERO_EXTEND); 9592 EVT VT = N->getValueType(0); 9593 EVT OrigVT = N->getOperand(0).getValueType(); 9594 if (TLI.isZExtFree(OrigVT, VT)) 9595 return SDValue(); 9596 9597 // and/or/xor 9598 SDValue N0 = N->getOperand(0); 9599 if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 9600 N0.getOpcode() == ISD::XOR) || 9601 N0.getOperand(1).getOpcode() != ISD::Constant || 9602 (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT))) 9603 return SDValue(); 9604 9605 // shl/shr 9606 SDValue N1 = N0->getOperand(0); 9607 if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) || 9608 N1.getOperand(1).getOpcode() != ISD::Constant || 9609 (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT))) 9610 return SDValue(); 9611 9612 // load 9613 if (!isa<LoadSDNode>(N1.getOperand(0))) 9614 return SDValue(); 9615 LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0)); 9616 EVT MemVT = Load->getMemoryVT(); 9617 if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) || 9618 Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed()) 9619 return SDValue(); 9620 9621 9622 // If the shift op is SHL, the logic op must be AND, otherwise the result 9623 // will be wrong. 9624 if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND) 9625 return SDValue(); 9626 9627 if (!N0.hasOneUse() || !N1.hasOneUse()) 9628 return SDValue(); 9629 9630 SmallVector<SDNode*, 4> SetCCs; 9631 if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0), 9632 ISD::ZERO_EXTEND, SetCCs, TLI)) 9633 return SDValue(); 9634 9635 // Actually do the transformation. 9636 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT, 9637 Load->getChain(), Load->getBasePtr(), 9638 Load->getMemoryVT(), Load->getMemOperand()); 9639 9640 SDLoc DL1(N1); 9641 SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad, 9642 N1.getOperand(1)); 9643 9644 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 9645 SDLoc DL0(N0); 9646 SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift, 9647 DAG.getConstant(Mask, DL0, VT)); 9648 9649 ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); 9650 CombineTo(N, And); 9651 if (SDValue(Load, 0).hasOneUse()) { 9652 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1)); 9653 } else { 9654 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load), 9655 Load->getValueType(0), ExtLoad); 9656 CombineTo(Load, Trunc, ExtLoad.getValue(1)); 9657 } 9658 9659 // N0 is dead at this point. 9660 recursivelyDeleteUnusedNodes(N0.getNode()); 9661 9662 return SDValue(N,0); // Return N so it doesn't get rechecked! 9663 } 9664 9665 /// If we're narrowing or widening the result of a vector select and the final 9666 /// size is the same size as a setcc (compare) feeding the select, then try to 9667 /// apply the cast operation to the select's operands because matching vector 9668 /// sizes for a select condition and other operands should be more efficient. 9669 SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) { 9670 unsigned CastOpcode = Cast->getOpcode(); 9671 assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || 9672 CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || 9673 CastOpcode == ISD::FP_ROUND) && 9674 "Unexpected opcode for vector select narrowing/widening"); 9675 9676 // We only do this transform before legal ops because the pattern may be 9677 // obfuscated by target-specific operations after legalization. Do not create 9678 // an illegal select op, however, because that may be difficult to lower. 9679 EVT VT = Cast->getValueType(0); 9680 if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) 9681 return SDValue(); 9682 9683 SDValue VSel = Cast->getOperand(0); 9684 if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() || 9685 VSel.getOperand(0).getOpcode() != ISD::SETCC) 9686 return SDValue(); 9687 9688 // Does the setcc have the same vector size as the casted select? 9689 SDValue SetCC = VSel.getOperand(0); 9690 EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType()); 9691 if (SetCCVT.getSizeInBits() != VT.getSizeInBits()) 9692 return SDValue(); 9693 9694 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B) 9695 SDValue A = VSel.getOperand(1); 9696 SDValue B = VSel.getOperand(2); 9697 SDValue CastA, CastB; 9698 SDLoc DL(Cast); 9699 if (CastOpcode == ISD::FP_ROUND) { 9700 // FP_ROUND (fptrunc) has an extra flag operand to pass along. 9701 CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1)); 9702 CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1)); 9703 } else { 9704 CastA = DAG.getNode(CastOpcode, DL, VT, A); 9705 CastB = DAG.getNode(CastOpcode, DL, VT, B); 9706 } 9707 return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB); 9708 } 9709 9710 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) 9711 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) 9712 static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, 9713 const TargetLowering &TLI, EVT VT, 9714 bool LegalOperations, SDNode *N, 9715 SDValue N0, ISD::LoadExtType ExtLoadType) { 9716 SDNode *N0Node = N0.getNode(); 9717 bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node) 9718 : ISD::isZEXTLoad(N0Node); 9719 if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) || 9720 !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse()) 9721 return SDValue(); 9722 9723 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 9724 EVT MemVT = LN0->getMemoryVT(); 9725 if ((LegalOperations || !LN0->isSimple() || 9726 VT.isVector()) && 9727 !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT)) 9728 return SDValue(); 9729 9730 SDValue ExtLoad = 9731 DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), 9732 LN0->getBasePtr(), MemVT, LN0->getMemOperand()); 9733 Combiner.CombineTo(N, ExtLoad); 9734 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 9735 if (LN0->use_empty()) 9736 Combiner.recursivelyDeleteUnusedNodes(LN0); 9737 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9738 } 9739 9740 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x))) 9741 // Only generate vector extloads when 1) they're legal, and 2) they are 9742 // deemed desirable by the target. 9743 static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, 9744 const TargetLowering &TLI, EVT VT, 9745 bool LegalOperations, SDNode *N, SDValue N0, 9746 ISD::LoadExtType ExtLoadType, 9747 ISD::NodeType ExtOpc) { 9748 if (!ISD::isNON_EXTLoad(N0.getNode()) || 9749 !ISD::isUNINDEXEDLoad(N0.getNode()) || 9750 ((LegalOperations || VT.isVector() || 9751 !cast<LoadSDNode>(N0)->isSimple()) && 9752 !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))) 9753 return {}; 9754 9755 bool DoXform = true; 9756 SmallVector<SDNode *, 4> SetCCs; 9757 if (!N0.hasOneUse()) 9758 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI); 9759 if (VT.isVector()) 9760 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 9761 if (!DoXform) 9762 return {}; 9763 9764 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 9765 SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), 9766 LN0->getBasePtr(), N0.getValueType(), 9767 LN0->getMemOperand()); 9768 Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc); 9769 // If the load value is used only by N, replace it via CombineTo N. 9770 bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse(); 9771 Combiner.CombineTo(N, ExtLoad); 9772 if (NoReplaceTrunc) { 9773 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 9774 Combiner.recursivelyDeleteUnusedNodes(LN0); 9775 } else { 9776 SDValue Trunc = 9777 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); 9778 Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1)); 9779 } 9780 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9781 } 9782 9783 static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG, 9784 const TargetLowering &TLI, EVT VT, 9785 SDNode *N, SDValue N0, 9786 ISD::LoadExtType ExtLoadType, 9787 ISD::NodeType ExtOpc) { 9788 if (!N0.hasOneUse()) 9789 return SDValue(); 9790 9791 MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0); 9792 if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD) 9793 return SDValue(); 9794 9795 if (!TLI.isLoadExtLegal(ExtLoadType, VT, Ld->getValueType(0))) 9796 return SDValue(); 9797 9798 if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 9799 return SDValue(); 9800 9801 SDLoc dl(Ld); 9802 SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru()); 9803 SDValue NewLoad = DAG.getMaskedLoad( 9804 VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(), 9805 PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(), 9806 ExtLoadType, Ld->isExpandingLoad()); 9807 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1)); 9808 return NewLoad; 9809 } 9810 9811 static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, 9812 bool LegalOperations) { 9813 assert((N->getOpcode() == ISD::SIGN_EXTEND || 9814 N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext"); 9815 9816 SDValue SetCC = N->getOperand(0); 9817 if (LegalOperations || SetCC.getOpcode() != ISD::SETCC || 9818 !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1) 9819 return SDValue(); 9820 9821 SDValue X = SetCC.getOperand(0); 9822 SDValue Ones = SetCC.getOperand(1); 9823 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); 9824 EVT VT = N->getValueType(0); 9825 EVT XVT = X.getValueType(); 9826 // setge X, C is canonicalized to setgt, so we do not need to match that 9827 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does 9828 // not require the 'not' op. 9829 if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) { 9830 // Invert and smear/shift the sign bit: 9831 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1) 9832 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1) 9833 SDLoc DL(N); 9834 unsigned ShCt = VT.getSizeInBits() - 1; 9835 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9836 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { 9837 SDValue NotX = DAG.getNOT(DL, X, VT); 9838 SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT); 9839 auto ShiftOpcode = 9840 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL; 9841 return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount); 9842 } 9843 } 9844 return SDValue(); 9845 } 9846 9847 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { 9848 SDValue N0 = N->getOperand(0); 9849 EVT VT = N->getValueType(0); 9850 SDLoc DL(N); 9851 9852 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 9853 return Res; 9854 9855 // fold (sext (sext x)) -> (sext x) 9856 // fold (sext (aext x)) -> (sext x) 9857 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 9858 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); 9859 9860 if (N0.getOpcode() == ISD::TRUNCATE) { 9861 // fold (sext (truncate (load x))) -> (sext (smaller load x)) 9862 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) 9863 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 9864 SDNode *oye = N0.getOperand(0).getNode(); 9865 if (NarrowLoad.getNode() != N0.getNode()) { 9866 CombineTo(N0.getNode(), NarrowLoad); 9867 // CombineTo deleted the truncate, if needed, but not what's under it. 9868 AddToWorklist(oye); 9869 } 9870 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9871 } 9872 9873 // See if the value being truncated is already sign extended. If so, just 9874 // eliminate the trunc/sext pair. 9875 SDValue Op = N0.getOperand(0); 9876 unsigned OpBits = Op.getScalarValueSizeInBits(); 9877 unsigned MidBits = N0.getScalarValueSizeInBits(); 9878 unsigned DestBits = VT.getScalarSizeInBits(); 9879 unsigned NumSignBits = DAG.ComputeNumSignBits(Op); 9880 9881 if (OpBits == DestBits) { 9882 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign 9883 // bits, it is already ready. 9884 if (NumSignBits > DestBits-MidBits) 9885 return Op; 9886 } else if (OpBits < DestBits) { 9887 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign 9888 // bits, just sext from i32. 9889 if (NumSignBits > OpBits-MidBits) 9890 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); 9891 } else { 9892 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign 9893 // bits, just truncate to i32. 9894 if (NumSignBits > OpBits-MidBits) 9895 return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 9896 } 9897 9898 // fold (sext (truncate x)) -> (sextinreg x). 9899 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, 9900 N0.getValueType())) { 9901 if (OpBits < DestBits) 9902 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); 9903 else if (OpBits > DestBits) 9904 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); 9905 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, 9906 DAG.getValueType(N0.getValueType())); 9907 } 9908 } 9909 9910 // Try to simplify (sext (load x)). 9911 if (SDValue foldedExt = 9912 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 9913 ISD::SEXTLOAD, ISD::SIGN_EXTEND)) 9914 return foldedExt; 9915 9916 if (SDValue foldedExt = 9917 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD, 9918 ISD::SIGN_EXTEND)) 9919 return foldedExt; 9920 9921 // fold (sext (load x)) to multiple smaller sextloads. 9922 // Only on illegal but splittable vectors. 9923 if (SDValue ExtLoad = CombineExtLoad(N)) 9924 return ExtLoad; 9925 9926 // Try to simplify (sext (sextload x)). 9927 if (SDValue foldedExt = tryToFoldExtOfExtload( 9928 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD)) 9929 return foldedExt; 9930 9931 // fold (sext (and/or/xor (load x), cst)) -> 9932 // (and/or/xor (sextload x), (sext cst)) 9933 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 9934 N0.getOpcode() == ISD::XOR) && 9935 isa<LoadSDNode>(N0.getOperand(0)) && 9936 N0.getOperand(1).getOpcode() == ISD::Constant && 9937 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 9938 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); 9939 EVT MemVT = LN00->getMemoryVT(); 9940 if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) && 9941 LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) { 9942 SmallVector<SDNode*, 4> SetCCs; 9943 bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), 9944 ISD::SIGN_EXTEND, SetCCs, TLI); 9945 if (DoXform) { 9946 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT, 9947 LN00->getChain(), LN00->getBasePtr(), 9948 LN00->getMemoryVT(), 9949 LN00->getMemOperand()); 9950 APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits()); 9951 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 9952 ExtLoad, DAG.getConstant(Mask, DL, VT)); 9953 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND); 9954 bool NoReplaceTruncAnd = !N0.hasOneUse(); 9955 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); 9956 CombineTo(N, And); 9957 // If N0 has multiple uses, change other uses as well. 9958 if (NoReplaceTruncAnd) { 9959 SDValue TruncAnd = 9960 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); 9961 CombineTo(N0.getNode(), TruncAnd); 9962 } 9963 if (NoReplaceTrunc) { 9964 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); 9965 } else { 9966 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), 9967 LN00->getValueType(0), ExtLoad); 9968 CombineTo(LN00, Trunc, ExtLoad.getValue(1)); 9969 } 9970 return SDValue(N,0); // Return N so it doesn't get rechecked! 9971 } 9972 } 9973 } 9974 9975 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) 9976 return V; 9977 9978 if (N0.getOpcode() == ISD::SETCC) { 9979 SDValue N00 = N0.getOperand(0); 9980 SDValue N01 = N0.getOperand(1); 9981 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 9982 EVT N00VT = N0.getOperand(0).getValueType(); 9983 9984 // sext(setcc) -> sext_in_reg(vsetcc) for vectors. 9985 // Only do this before legalize for now. 9986 if (VT.isVector() && !LegalOperations && 9987 TLI.getBooleanContents(N00VT) == 9988 TargetLowering::ZeroOrNegativeOneBooleanContent) { 9989 // On some architectures (such as SSE/NEON/etc) the SETCC result type is 9990 // of the same size as the compared operands. Only optimize sext(setcc()) 9991 // if this is the case. 9992 EVT SVT = getSetCCResultType(N00VT); 9993 9994 // If we already have the desired type, don't change it. 9995 if (SVT != N0.getValueType()) { 9996 // We know that the # elements of the results is the same as the 9997 // # elements of the compare (and the # elements of the compare result 9998 // for that matter). Check to see that they are the same size. If so, 9999 // we know that the element size of the sext'd result matches the 10000 // element size of the compare operands. 10001 if (VT.getSizeInBits() == SVT.getSizeInBits()) 10002 return DAG.getSetCC(DL, VT, N00, N01, CC); 10003 10004 // If the desired elements are smaller or larger than the source 10005 // elements, we can use a matching integer vector type and then 10006 // truncate/sign extend. 10007 EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); 10008 if (SVT == MatchingVecType) { 10009 SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); 10010 return DAG.getSExtOrTrunc(VsetCC, DL, VT); 10011 } 10012 } 10013 } 10014 10015 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) 10016 // Here, T can be 1 or -1, depending on the type of the setcc and 10017 // getBooleanContents(). 10018 unsigned SetCCWidth = N0.getScalarValueSizeInBits(); 10019 10020 // To determine the "true" side of the select, we need to know the high bit 10021 // of the value returned by the setcc if it evaluates to true. 10022 // If the type of the setcc is i1, then the true case of the select is just 10023 // sext(i1 1), that is, -1. 10024 // If the type of the setcc is larger (say, i8) then the value of the high 10025 // bit depends on getBooleanContents(), so ask TLI for a real "true" value 10026 // of the appropriate width. 10027 SDValue ExtTrueVal = (SetCCWidth == 1) 10028 ? DAG.getAllOnesConstant(DL, VT) 10029 : DAG.getBoolConstant(true, DL, VT, N00VT); 10030 SDValue Zero = DAG.getConstant(0, DL, VT); 10031 if (SDValue SCC = 10032 SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) 10033 return SCC; 10034 10035 if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) { 10036 EVT SetCCVT = getSetCCResultType(N00VT); 10037 // Don't do this transform for i1 because there's a select transform 10038 // that would reverse it. 10039 // TODO: We should not do this transform at all without a target hook 10040 // because a sext is likely cheaper than a select? 10041 if (SetCCVT.getScalarSizeInBits() != 1 && 10042 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { 10043 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); 10044 return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); 10045 } 10046 } 10047 } 10048 10049 // fold (sext x) -> (zext x) if the sign bit is known zero. 10050 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && 10051 DAG.SignBitIsZero(N0)) 10052 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0); 10053 10054 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 10055 return NewVSel; 10056 10057 // Eliminate this sign extend by doing a negation in the destination type: 10058 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64) 10059 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && 10060 isNullOrNullSplat(N0.getOperand(0)) && 10061 N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND && 10062 TLI.isOperationLegalOrCustom(ISD::SUB, VT)) { 10063 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT); 10064 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext); 10065 } 10066 // Eliminate this sign extend by doing a decrement in the destination type: 10067 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1) 10068 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && 10069 isAllOnesOrAllOnesSplat(N0.getOperand(1)) && 10070 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 10071 TLI.isOperationLegalOrCustom(ISD::ADD, VT)) { 10072 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); 10073 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); 10074 } 10075 10076 return SDValue(); 10077 } 10078 10079 // isTruncateOf - If N is a truncate of some other value, return true, record 10080 // the value being truncated in Op and which of Op's bits are zero/one in Known. 10081 // This function computes KnownBits to avoid a duplicated call to 10082 // computeKnownBits in the caller. 10083 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, 10084 KnownBits &Known) { 10085 if (N->getOpcode() == ISD::TRUNCATE) { 10086 Op = N->getOperand(0); 10087 Known = DAG.computeKnownBits(Op); 10088 return true; 10089 } 10090 10091 if (N.getOpcode() != ISD::SETCC || 10092 N.getValueType().getScalarType() != MVT::i1 || 10093 cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE) 10094 return false; 10095 10096 SDValue Op0 = N->getOperand(0); 10097 SDValue Op1 = N->getOperand(1); 10098 assert(Op0.getValueType() == Op1.getValueType()); 10099 10100 if (isNullOrNullSplat(Op0)) 10101 Op = Op1; 10102 else if (isNullOrNullSplat(Op1)) 10103 Op = Op0; 10104 else 10105 return false; 10106 10107 Known = DAG.computeKnownBits(Op); 10108 10109 return (Known.Zero | 1).isAllOnesValue(); 10110 } 10111 10112 /// Given an extending node with a pop-count operand, if the target does not 10113 /// support a pop-count in the narrow source type but does support it in the 10114 /// destination type, widen the pop-count to the destination type. 10115 static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG) { 10116 assert((Extend->getOpcode() == ISD::ZERO_EXTEND || 10117 Extend->getOpcode() == ISD::ANY_EXTEND) && "Expected extend op"); 10118 10119 SDValue CtPop = Extend->getOperand(0); 10120 if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse()) 10121 return SDValue(); 10122 10123 EVT VT = Extend->getValueType(0); 10124 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10125 if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) || 10126 !TLI.isOperationLegalOrCustom(ISD::CTPOP, VT)) 10127 return SDValue(); 10128 10129 // zext (ctpop X) --> ctpop (zext X) 10130 SDLoc DL(Extend); 10131 SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT); 10132 return DAG.getNode(ISD::CTPOP, DL, VT, NewZext); 10133 } 10134 10135 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { 10136 SDValue N0 = N->getOperand(0); 10137 EVT VT = N->getValueType(0); 10138 10139 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 10140 return Res; 10141 10142 // fold (zext (zext x)) -> (zext x) 10143 // fold (zext (aext x)) -> (zext x) 10144 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 10145 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, 10146 N0.getOperand(0)); 10147 10148 // fold (zext (truncate x)) -> (zext x) or 10149 // (zext (truncate x)) -> (truncate x) 10150 // This is valid when the truncated bits of x are already zero. 10151 SDValue Op; 10152 KnownBits Known; 10153 if (isTruncateOf(DAG, N0, Op, Known)) { 10154 APInt TruncatedBits = 10155 (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ? 10156 APInt(Op.getScalarValueSizeInBits(), 0) : 10157 APInt::getBitsSet(Op.getScalarValueSizeInBits(), 10158 N0.getScalarValueSizeInBits(), 10159 std::min(Op.getScalarValueSizeInBits(), 10160 VT.getScalarSizeInBits())); 10161 if (TruncatedBits.isSubsetOf(Known.Zero)) 10162 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 10163 } 10164 10165 // fold (zext (truncate x)) -> (and x, mask) 10166 if (N0.getOpcode() == ISD::TRUNCATE) { 10167 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 10168 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) 10169 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 10170 SDNode *oye = N0.getOperand(0).getNode(); 10171 if (NarrowLoad.getNode() != N0.getNode()) { 10172 CombineTo(N0.getNode(), NarrowLoad); 10173 // CombineTo deleted the truncate, if needed, but not what's under it. 10174 AddToWorklist(oye); 10175 } 10176 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10177 } 10178 10179 EVT SrcVT = N0.getOperand(0).getValueType(); 10180 EVT MinVT = N0.getValueType(); 10181 10182 // Try to mask before the extension to avoid having to generate a larger mask, 10183 // possibly over several sub-vectors. 10184 if (SrcVT.bitsLT(VT) && VT.isVector()) { 10185 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && 10186 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { 10187 SDValue Op = N0.getOperand(0); 10188 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); 10189 AddToWorklist(Op.getNode()); 10190 SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 10191 // Transfer the debug info; the new node is equivalent to N0. 10192 DAG.transferDbgValues(N0, ZExtOrTrunc); 10193 return ZExtOrTrunc; 10194 } 10195 } 10196 10197 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { 10198 SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); 10199 AddToWorklist(Op.getNode()); 10200 SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); 10201 // We may safely transfer the debug info describing the truncate node over 10202 // to the equivalent and operation. 10203 DAG.transferDbgValues(N0, And); 10204 return And; 10205 } 10206 } 10207 10208 // Fold (zext (and (trunc x), cst)) -> (and x, cst), 10209 // if either of the casts is not free. 10210 if (N0.getOpcode() == ISD::AND && 10211 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 10212 N0.getOperand(1).getOpcode() == ISD::Constant && 10213 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 10214 N0.getValueType()) || 10215 !TLI.isZExtFree(N0.getValueType(), VT))) { 10216 SDValue X = N0.getOperand(0).getOperand(0); 10217 X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT); 10218 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 10219 SDLoc DL(N); 10220 return DAG.getNode(ISD::AND, DL, VT, 10221 X, DAG.getConstant(Mask, DL, VT)); 10222 } 10223 10224 // Try to simplify (zext (load x)). 10225 if (SDValue foldedExt = 10226 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 10227 ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) 10228 return foldedExt; 10229 10230 if (SDValue foldedExt = 10231 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD, 10232 ISD::ZERO_EXTEND)) 10233 return foldedExt; 10234 10235 // fold (zext (load x)) to multiple smaller zextloads. 10236 // Only on illegal but splittable vectors. 10237 if (SDValue ExtLoad = CombineExtLoad(N)) 10238 return ExtLoad; 10239 10240 // fold (zext (and/or/xor (load x), cst)) -> 10241 // (and/or/xor (zextload x), (zext cst)) 10242 // Unless (and (load x) cst) will match as a zextload already and has 10243 // additional users. 10244 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 10245 N0.getOpcode() == ISD::XOR) && 10246 isa<LoadSDNode>(N0.getOperand(0)) && 10247 N0.getOperand(1).getOpcode() == ISD::Constant && 10248 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 10249 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); 10250 EVT MemVT = LN00->getMemoryVT(); 10251 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) && 10252 LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) { 10253 bool DoXform = true; 10254 SmallVector<SDNode*, 4> SetCCs; 10255 if (!N0.hasOneUse()) { 10256 if (N0.getOpcode() == ISD::AND) { 10257 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); 10258 EVT LoadResultTy = AndC->getValueType(0); 10259 EVT ExtVT; 10260 if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT)) 10261 DoXform = false; 10262 } 10263 } 10264 if (DoXform) 10265 DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), 10266 ISD::ZERO_EXTEND, SetCCs, TLI); 10267 if (DoXform) { 10268 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT, 10269 LN00->getChain(), LN00->getBasePtr(), 10270 LN00->getMemoryVT(), 10271 LN00->getMemOperand()); 10272 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 10273 SDLoc DL(N); 10274 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 10275 ExtLoad, DAG.getConstant(Mask, DL, VT)); 10276 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); 10277 bool NoReplaceTruncAnd = !N0.hasOneUse(); 10278 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); 10279 CombineTo(N, And); 10280 // If N0 has multiple uses, change other uses as well. 10281 if (NoReplaceTruncAnd) { 10282 SDValue TruncAnd = 10283 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); 10284 CombineTo(N0.getNode(), TruncAnd); 10285 } 10286 if (NoReplaceTrunc) { 10287 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); 10288 } else { 10289 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), 10290 LN00->getValueType(0), ExtLoad); 10291 CombineTo(LN00, Trunc, ExtLoad.getValue(1)); 10292 } 10293 return SDValue(N,0); // Return N so it doesn't get rechecked! 10294 } 10295 } 10296 } 10297 10298 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> 10299 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) 10300 if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N)) 10301 return ZExtLoad; 10302 10303 // Try to simplify (zext (zextload x)). 10304 if (SDValue foldedExt = tryToFoldExtOfExtload( 10305 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD)) 10306 return foldedExt; 10307 10308 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) 10309 return V; 10310 10311 if (N0.getOpcode() == ISD::SETCC) { 10312 // Only do this before legalize for now. 10313 if (!LegalOperations && VT.isVector() && 10314 N0.getValueType().getVectorElementType() == MVT::i1) { 10315 EVT N00VT = N0.getOperand(0).getValueType(); 10316 if (getSetCCResultType(N00VT) == N0.getValueType()) 10317 return SDValue(); 10318 10319 // We know that the # elements of the results is the same as the # 10320 // elements of the compare (and the # elements of the compare result for 10321 // that matter). Check to see that they are the same size. If so, we know 10322 // that the element size of the sext'd result matches the element size of 10323 // the compare operands. 10324 SDLoc DL(N); 10325 if (VT.getSizeInBits() == N00VT.getSizeInBits()) { 10326 // zext(setcc) -> zext_in_reg(vsetcc) for vectors. 10327 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), 10328 N0.getOperand(1), N0.getOperand(2)); 10329 return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType()); 10330 } 10331 10332 // If the desired elements are smaller or larger than the source 10333 // elements we can use a matching integer vector type and then 10334 // truncate/any extend followed by zext_in_reg. 10335 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); 10336 SDValue VsetCC = 10337 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), 10338 N0.getOperand(1), N0.getOperand(2)); 10339 return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL, 10340 N0.getValueType()); 10341 } 10342 10343 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 10344 SDLoc DL(N); 10345 if (SDValue SCC = SimplifySelectCC( 10346 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 10347 DAG.getConstant(0, DL, VT), 10348 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 10349 return SCC; 10350 } 10351 10352 // (zext (shl (zext x), cst)) -> (shl (zext x), cst) 10353 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && 10354 isa<ConstantSDNode>(N0.getOperand(1)) && 10355 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 10356 N0.hasOneUse()) { 10357 SDValue ShAmt = N0.getOperand(1); 10358 if (N0.getOpcode() == ISD::SHL) { 10359 SDValue InnerZExt = N0.getOperand(0); 10360 // If the original shl may be shifting out bits, do not perform this 10361 // transformation. 10362 unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - 10363 InnerZExt.getOperand(0).getValueSizeInBits(); 10364 if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits)) 10365 return SDValue(); 10366 } 10367 10368 SDLoc DL(N); 10369 10370 // Ensure that the shift amount is wide enough for the shifted value. 10371 if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits()) 10372 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); 10373 10374 return DAG.getNode(N0.getOpcode(), DL, VT, 10375 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), 10376 ShAmt); 10377 } 10378 10379 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 10380 return NewVSel; 10381 10382 if (SDValue NewCtPop = widenCtPop(N, DAG)) 10383 return NewCtPop; 10384 10385 return SDValue(); 10386 } 10387 10388 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { 10389 SDValue N0 = N->getOperand(0); 10390 EVT VT = N->getValueType(0); 10391 10392 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 10393 return Res; 10394 10395 // fold (aext (aext x)) -> (aext x) 10396 // fold (aext (zext x)) -> (zext x) 10397 // fold (aext (sext x)) -> (sext x) 10398 if (N0.getOpcode() == ISD::ANY_EXTEND || 10399 N0.getOpcode() == ISD::ZERO_EXTEND || 10400 N0.getOpcode() == ISD::SIGN_EXTEND) 10401 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 10402 10403 // fold (aext (truncate (load x))) -> (aext (smaller load x)) 10404 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) 10405 if (N0.getOpcode() == ISD::TRUNCATE) { 10406 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 10407 SDNode *oye = N0.getOperand(0).getNode(); 10408 if (NarrowLoad.getNode() != N0.getNode()) { 10409 CombineTo(N0.getNode(), NarrowLoad); 10410 // CombineTo deleted the truncate, if needed, but not what's under it. 10411 AddToWorklist(oye); 10412 } 10413 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10414 } 10415 } 10416 10417 // fold (aext (truncate x)) 10418 if (N0.getOpcode() == ISD::TRUNCATE) 10419 return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); 10420 10421 // Fold (aext (and (trunc x), cst)) -> (and x, cst) 10422 // if the trunc is not free. 10423 if (N0.getOpcode() == ISD::AND && 10424 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 10425 N0.getOperand(1).getOpcode() == ISD::Constant && 10426 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 10427 N0.getValueType())) { 10428 SDLoc DL(N); 10429 SDValue X = N0.getOperand(0).getOperand(0); 10430 X = DAG.getAnyExtOrTrunc(X, DL, VT); 10431 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 10432 return DAG.getNode(ISD::AND, DL, VT, 10433 X, DAG.getConstant(Mask, DL, VT)); 10434 } 10435 10436 // fold (aext (load x)) -> (aext (truncate (extload x))) 10437 // None of the supported targets knows how to perform load and any_ext 10438 // on vectors in one instruction. We only perform this transformation on 10439 // scalars. 10440 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && 10441 ISD::isUNINDEXEDLoad(N0.getNode()) && 10442 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 10443 bool DoXform = true; 10444 SmallVector<SDNode*, 4> SetCCs; 10445 if (!N0.hasOneUse()) 10446 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, 10447 TLI); 10448 if (DoXform) { 10449 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10450 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 10451 LN0->getChain(), 10452 LN0->getBasePtr(), N0.getValueType(), 10453 LN0->getMemOperand()); 10454 ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND); 10455 // If the load value is used only by N, replace it via CombineTo N. 10456 bool NoReplaceTrunc = N0.hasOneUse(); 10457 CombineTo(N, ExtLoad); 10458 if (NoReplaceTrunc) { 10459 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 10460 recursivelyDeleteUnusedNodes(LN0); 10461 } else { 10462 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 10463 N0.getValueType(), ExtLoad); 10464 CombineTo(LN0, Trunc, ExtLoad.getValue(1)); 10465 } 10466 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10467 } 10468 } 10469 10470 // fold (aext (zextload x)) -> (aext (truncate (zextload x))) 10471 // fold (aext (sextload x)) -> (aext (truncate (sextload x))) 10472 // fold (aext ( extload x)) -> (aext (truncate (extload x))) 10473 if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && 10474 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 10475 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10476 ISD::LoadExtType ExtType = LN0->getExtensionType(); 10477 EVT MemVT = LN0->getMemoryVT(); 10478 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { 10479 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), 10480 VT, LN0->getChain(), LN0->getBasePtr(), 10481 MemVT, LN0->getMemOperand()); 10482 CombineTo(N, ExtLoad); 10483 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 10484 recursivelyDeleteUnusedNodes(LN0); 10485 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10486 } 10487 } 10488 10489 if (N0.getOpcode() == ISD::SETCC) { 10490 // For vectors: 10491 // aext(setcc) -> vsetcc 10492 // aext(setcc) -> truncate(vsetcc) 10493 // aext(setcc) -> aext(vsetcc) 10494 // Only do this before legalize for now. 10495 if (VT.isVector() && !LegalOperations) { 10496 EVT N00VT = N0.getOperand(0).getValueType(); 10497 if (getSetCCResultType(N00VT) == N0.getValueType()) 10498 return SDValue(); 10499 10500 // We know that the # elements of the results is the same as the 10501 // # elements of the compare (and the # elements of the compare result 10502 // for that matter). Check to see that they are the same size. If so, 10503 // we know that the element size of the sext'd result matches the 10504 // element size of the compare operands. 10505 if (VT.getSizeInBits() == N00VT.getSizeInBits()) 10506 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 10507 N0.getOperand(1), 10508 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 10509 10510 // If the desired elements are smaller or larger than the source 10511 // elements we can use a matching integer vector type and then 10512 // truncate/any extend 10513 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); 10514 SDValue VsetCC = 10515 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 10516 N0.getOperand(1), 10517 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 10518 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); 10519 } 10520 10521 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 10522 SDLoc DL(N); 10523 if (SDValue SCC = SimplifySelectCC( 10524 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 10525 DAG.getConstant(0, DL, VT), 10526 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 10527 return SCC; 10528 } 10529 10530 if (SDValue NewCtPop = widenCtPop(N, DAG)) 10531 return NewCtPop; 10532 10533 return SDValue(); 10534 } 10535 10536 SDValue DAGCombiner::visitAssertExt(SDNode *N) { 10537 unsigned Opcode = N->getOpcode(); 10538 SDValue N0 = N->getOperand(0); 10539 SDValue N1 = N->getOperand(1); 10540 EVT AssertVT = cast<VTSDNode>(N1)->getVT(); 10541 10542 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt) 10543 if (N0.getOpcode() == Opcode && 10544 AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) 10545 return N0; 10546 10547 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 10548 N0.getOperand(0).getOpcode() == Opcode) { 10549 // We have an assert, truncate, assert sandwich. Make one stronger assert 10550 // by asserting on the smallest asserted type to the larger source type. 10551 // This eliminates the later assert: 10552 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN 10553 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN 10554 SDValue BigA = N0.getOperand(0); 10555 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); 10556 assert(BigA_AssertVT.bitsLE(N0.getValueType()) && 10557 "Asserting zero/sign-extended bits to a type larger than the " 10558 "truncated destination does not provide information"); 10559 10560 SDLoc DL(N); 10561 EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT; 10562 SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT); 10563 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), 10564 BigA.getOperand(0), MinAssertVTVal); 10565 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); 10566 } 10567 10568 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller 10569 // than X. Just move the AssertZext in front of the truncate and drop the 10570 // AssertSExt. 10571 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 10572 N0.getOperand(0).getOpcode() == ISD::AssertSext && 10573 Opcode == ISD::AssertZext) { 10574 SDValue BigA = N0.getOperand(0); 10575 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); 10576 assert(BigA_AssertVT.bitsLE(N0.getValueType()) && 10577 "Asserting zero/sign-extended bits to a type larger than the " 10578 "truncated destination does not provide information"); 10579 10580 if (AssertVT.bitsLT(BigA_AssertVT)) { 10581 SDLoc DL(N); 10582 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), 10583 BigA.getOperand(0), N1); 10584 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); 10585 } 10586 } 10587 10588 return SDValue(); 10589 } 10590 10591 /// If the result of a wider load is shifted to right of N bits and then 10592 /// truncated to a narrower type and where N is a multiple of number of bits of 10593 /// the narrower type, transform it to a narrower load from address + N / num of 10594 /// bits of new type. Also narrow the load if the result is masked with an AND 10595 /// to effectively produce a smaller type. If the result is to be extended, also 10596 /// fold the extension to form a extending load. 10597 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { 10598 unsigned Opc = N->getOpcode(); 10599 10600 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 10601 SDValue N0 = N->getOperand(0); 10602 EVT VT = N->getValueType(0); 10603 EVT ExtVT = VT; 10604 10605 // This transformation isn't valid for vector loads. 10606 if (VT.isVector()) 10607 return SDValue(); 10608 10609 unsigned ShAmt = 0; 10610 bool HasShiftedOffset = false; 10611 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then 10612 // extended to VT. 10613 if (Opc == ISD::SIGN_EXTEND_INREG) { 10614 ExtType = ISD::SEXTLOAD; 10615 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 10616 } else if (Opc == ISD::SRL) { 10617 // Another special-case: SRL is basically zero-extending a narrower value, 10618 // or it maybe shifting a higher subword, half or byte into the lowest 10619 // bits. 10620 ExtType = ISD::ZEXTLOAD; 10621 N0 = SDValue(N, 0); 10622 10623 auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0)); 10624 auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 10625 if (!N01 || !LN0) 10626 return SDValue(); 10627 10628 uint64_t ShiftAmt = N01->getZExtValue(); 10629 uint64_t MemoryWidth = LN0->getMemoryVT().getSizeInBits(); 10630 if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt) 10631 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt); 10632 else 10633 ExtVT = EVT::getIntegerVT(*DAG.getContext(), 10634 VT.getSizeInBits() - ShiftAmt); 10635 } else if (Opc == ISD::AND) { 10636 // An AND with a constant mask is the same as a truncate + zero-extend. 10637 auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1)); 10638 if (!AndC) 10639 return SDValue(); 10640 10641 const APInt &Mask = AndC->getAPIntValue(); 10642 unsigned ActiveBits = 0; 10643 if (Mask.isMask()) { 10644 ActiveBits = Mask.countTrailingOnes(); 10645 } else if (Mask.isShiftedMask()) { 10646 ShAmt = Mask.countTrailingZeros(); 10647 APInt ShiftedMask = Mask.lshr(ShAmt); 10648 ActiveBits = ShiftedMask.countTrailingOnes(); 10649 HasShiftedOffset = true; 10650 } else 10651 return SDValue(); 10652 10653 ExtType = ISD::ZEXTLOAD; 10654 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 10655 } 10656 10657 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 10658 SDValue SRL = N0; 10659 if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) { 10660 ShAmt = ConstShift->getZExtValue(); 10661 unsigned EVTBits = ExtVT.getSizeInBits(); 10662 // Is the shift amount a multiple of size of VT? 10663 if ((ShAmt & (EVTBits-1)) == 0) { 10664 N0 = N0.getOperand(0); 10665 // Is the load width a multiple of size of VT? 10666 if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0) 10667 return SDValue(); 10668 } 10669 10670 // At this point, we must have a load or else we can't do the transform. 10671 auto *LN0 = dyn_cast<LoadSDNode>(N0); 10672 if (!LN0) return SDValue(); 10673 10674 // Because a SRL must be assumed to *need* to zero-extend the high bits 10675 // (as opposed to anyext the high bits), we can't combine the zextload 10676 // lowering of SRL and an sextload. 10677 if (LN0->getExtensionType() == ISD::SEXTLOAD) 10678 return SDValue(); 10679 10680 // If the shift amount is larger than the input type then we're not 10681 // accessing any of the loaded bytes. If the load was a zextload/extload 10682 // then the result of the shift+trunc is zero/undef (handled elsewhere). 10683 if (ShAmt >= LN0->getMemoryVT().getSizeInBits()) 10684 return SDValue(); 10685 10686 // If the SRL is only used by a masking AND, we may be able to adjust 10687 // the ExtVT to make the AND redundant. 10688 SDNode *Mask = *(SRL->use_begin()); 10689 if (Mask->getOpcode() == ISD::AND && 10690 isa<ConstantSDNode>(Mask->getOperand(1))) { 10691 const APInt& ShiftMask = Mask->getConstantOperandAPInt(1); 10692 if (ShiftMask.isMask()) { 10693 EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), 10694 ShiftMask.countTrailingOnes()); 10695 // If the mask is smaller, recompute the type. 10696 if ((ExtVT.getSizeInBits() > MaskedVT.getSizeInBits()) && 10697 TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT)) 10698 ExtVT = MaskedVT; 10699 } 10700 } 10701 } 10702 } 10703 10704 // If the load is shifted left (and the result isn't shifted back right), 10705 // we can fold the truncate through the shift. 10706 unsigned ShLeftAmt = 0; 10707 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 10708 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { 10709 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 10710 ShLeftAmt = N01->getZExtValue(); 10711 N0 = N0.getOperand(0); 10712 } 10713 } 10714 10715 // If we haven't found a load, we can't narrow it. 10716 if (!isa<LoadSDNode>(N0)) 10717 return SDValue(); 10718 10719 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10720 // Reducing the width of a volatile load is illegal. For atomics, we may be 10721 // able to reduce the width provided we never widen again. (see D66309) 10722 if (!LN0->isSimple() || 10723 !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt)) 10724 return SDValue(); 10725 10726 auto AdjustBigEndianShift = [&](unsigned ShAmt) { 10727 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); 10728 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); 10729 return LVTStoreBits - EVTStoreBits - ShAmt; 10730 }; 10731 10732 // For big endian targets, we need to adjust the offset to the pointer to 10733 // load the correct bytes. 10734 if (DAG.getDataLayout().isBigEndian()) 10735 ShAmt = AdjustBigEndianShift(ShAmt); 10736 10737 uint64_t PtrOff = ShAmt / 8; 10738 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); 10739 SDLoc DL(LN0); 10740 // The original load itself didn't wrap, so an offset within it doesn't. 10741 SDNodeFlags Flags; 10742 Flags.setNoUnsignedWrap(true); 10743 SDValue NewPtr = 10744 DAG.getMemBasePlusOffset(LN0->getBasePtr(), PtrOff, DL, Flags); 10745 AddToWorklist(NewPtr.getNode()); 10746 10747 SDValue Load; 10748 if (ExtType == ISD::NON_EXTLOAD) 10749 Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr, 10750 LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, 10751 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 10752 else 10753 Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr, 10754 LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, 10755 NewAlign, LN0->getMemOperand()->getFlags(), 10756 LN0->getAAInfo()); 10757 10758 // Replace the old load's chain with the new load's chain. 10759 WorklistRemover DeadNodes(*this); 10760 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 10761 10762 // Shift the result left, if we've swallowed a left shift. 10763 SDValue Result = Load; 10764 if (ShLeftAmt != 0) { 10765 EVT ShImmTy = getShiftAmountTy(Result.getValueType()); 10766 if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) 10767 ShImmTy = VT; 10768 // If the shift amount is as large as the result size (but, presumably, 10769 // no larger than the source) then the useful bits of the result are 10770 // zero; we can't simply return the shortened shift, because the result 10771 // of that operation is undefined. 10772 if (ShLeftAmt >= VT.getSizeInBits()) 10773 Result = DAG.getConstant(0, DL, VT); 10774 else 10775 Result = DAG.getNode(ISD::SHL, DL, VT, 10776 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); 10777 } 10778 10779 if (HasShiftedOffset) { 10780 // Recalculate the shift amount after it has been altered to calculate 10781 // the offset. 10782 if (DAG.getDataLayout().isBigEndian()) 10783 ShAmt = AdjustBigEndianShift(ShAmt); 10784 10785 // We're using a shifted mask, so the load now has an offset. This means 10786 // that data has been loaded into the lower bytes than it would have been 10787 // before, so we need to shl the loaded data into the correct position in the 10788 // register. 10789 SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT); 10790 Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC); 10791 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 10792 } 10793 10794 // Return the new loaded value. 10795 return Result; 10796 } 10797 10798 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { 10799 SDValue N0 = N->getOperand(0); 10800 SDValue N1 = N->getOperand(1); 10801 EVT VT = N->getValueType(0); 10802 EVT EVT = cast<VTSDNode>(N1)->getVT(); 10803 unsigned VTBits = VT.getScalarSizeInBits(); 10804 unsigned EVTBits = EVT.getScalarSizeInBits(); 10805 10806 if (N0.isUndef()) 10807 return DAG.getUNDEF(VT); 10808 10809 // fold (sext_in_reg c1) -> c1 10810 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 10811 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); 10812 10813 // If the input is already sign extended, just drop the extension. 10814 if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) 10815 return N0; 10816 10817 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 10818 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 10819 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) 10820 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 10821 N0.getOperand(0), N1); 10822 10823 // fold (sext_in_reg (sext x)) -> (sext x) 10824 // fold (sext_in_reg (aext x)) -> (sext x) 10825 // if x is small enough or if we know that x has more than 1 sign bit and the 10826 // sign_extend_inreg is extending from one of them. 10827 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { 10828 SDValue N00 = N0.getOperand(0); 10829 unsigned N00Bits = N00.getScalarValueSizeInBits(); 10830 if ((N00Bits <= EVTBits || 10831 (N00Bits - DAG.ComputeNumSignBits(N00)) < EVTBits) && 10832 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 10833 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00); 10834 } 10835 10836 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x) 10837 if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || 10838 N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || 10839 N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) && 10840 N0.getOperand(0).getScalarValueSizeInBits() == EVTBits) { 10841 if (!LegalOperations || 10842 TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT)) 10843 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, 10844 N0.getOperand(0)); 10845 } 10846 10847 // fold (sext_in_reg (zext x)) -> (sext x) 10848 // iff we are extending the source sign bit. 10849 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 10850 SDValue N00 = N0.getOperand(0); 10851 if (N00.getScalarValueSizeInBits() == EVTBits && 10852 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 10853 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); 10854 } 10855 10856 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. 10857 if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, EVTBits - 1))) 10858 return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT); 10859 10860 // fold operands of sext_in_reg based on knowledge that the top bits are not 10861 // demanded. 10862 if (SimplifyDemandedBits(SDValue(N, 0))) 10863 return SDValue(N, 0); 10864 10865 // fold (sext_in_reg (load x)) -> (smaller sextload x) 10866 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) 10867 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 10868 return NarrowLoad; 10869 10870 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) 10871 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. 10872 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. 10873 if (N0.getOpcode() == ISD::SRL) { 10874 if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 10875 if (ShAmt->getAPIntValue().ule(VTBits - EVTBits)) { 10876 // We can turn this into an SRA iff the input to the SRL is already sign 10877 // extended enough. 10878 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); 10879 if (((VTBits - EVTBits) - ShAmt->getZExtValue()) < InSignBits) 10880 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0), 10881 N0.getOperand(1)); 10882 } 10883 } 10884 10885 // fold (sext_inreg (extload x)) -> (sextload x) 10886 // If sextload is not supported by target, we can only do the combine when 10887 // load has one use. Doing otherwise can block folding the extload with other 10888 // extends that the target does support. 10889 if (ISD::isEXTLoad(N0.getNode()) && 10890 ISD::isUNINDEXEDLoad(N0.getNode()) && 10891 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 10892 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() && 10893 N0.hasOneUse()) || 10894 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 10895 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10896 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 10897 LN0->getChain(), 10898 LN0->getBasePtr(), EVT, 10899 LN0->getMemOperand()); 10900 CombineTo(N, ExtLoad); 10901 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 10902 AddToWorklist(ExtLoad.getNode()); 10903 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10904 } 10905 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use 10906 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 10907 N0.hasOneUse() && 10908 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 10909 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) && 10910 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 10911 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10912 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 10913 LN0->getChain(), 10914 LN0->getBasePtr(), EVT, 10915 LN0->getMemOperand()); 10916 CombineTo(N, ExtLoad); 10917 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 10918 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10919 } 10920 10921 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) 10922 if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { 10923 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 10924 N0.getOperand(1), false)) 10925 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 10926 BSwap, N1); 10927 } 10928 10929 return SDValue(); 10930 } 10931 10932 SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { 10933 SDValue N0 = N->getOperand(0); 10934 EVT VT = N->getValueType(0); 10935 10936 if (N0.isUndef()) 10937 return DAG.getUNDEF(VT); 10938 10939 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 10940 return Res; 10941 10942 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 10943 return SDValue(N, 0); 10944 10945 return SDValue(); 10946 } 10947 10948 SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) { 10949 SDValue N0 = N->getOperand(0); 10950 EVT VT = N->getValueType(0); 10951 10952 if (N0.isUndef()) 10953 return DAG.getUNDEF(VT); 10954 10955 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 10956 return Res; 10957 10958 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 10959 return SDValue(N, 0); 10960 10961 return SDValue(); 10962 } 10963 10964 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { 10965 SDValue N0 = N->getOperand(0); 10966 EVT VT = N->getValueType(0); 10967 EVT SrcVT = N0.getValueType(); 10968 bool isLE = DAG.getDataLayout().isLittleEndian(); 10969 10970 // noop truncate 10971 if (SrcVT == VT) 10972 return N0; 10973 10974 // fold (truncate (truncate x)) -> (truncate x) 10975 if (N0.getOpcode() == ISD::TRUNCATE) 10976 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 10977 10978 // fold (truncate c1) -> c1 10979 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 10980 SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); 10981 if (C.getNode() != N) 10982 return C; 10983 } 10984 10985 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x 10986 if (N0.getOpcode() == ISD::ZERO_EXTEND || 10987 N0.getOpcode() == ISD::SIGN_EXTEND || 10988 N0.getOpcode() == ISD::ANY_EXTEND) { 10989 // if the source is smaller than the dest, we still need an extend. 10990 if (N0.getOperand(0).getValueType().bitsLT(VT)) 10991 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 10992 // if the source is larger than the dest, than we just need the truncate. 10993 if (N0.getOperand(0).getValueType().bitsGT(VT)) 10994 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 10995 // if the source and dest are the same type, we can drop both the extend 10996 // and the truncate. 10997 return N0.getOperand(0); 10998 } 10999 11000 // If this is anyext(trunc), don't fold it, allow ourselves to be folded. 11001 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) 11002 return SDValue(); 11003 11004 // Fold extract-and-trunc into a narrow extract. For example: 11005 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) 11006 // i32 y = TRUNCATE(i64 x) 11007 // -- becomes -- 11008 // v16i8 b = BITCAST (v2i64 val) 11009 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) 11010 // 11011 // Note: We only run this optimization after type legalization (which often 11012 // creates this pattern) and before operation legalization after which 11013 // we need to be more careful about the vector instructions that we generate. 11014 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 11015 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { 11016 EVT VecTy = N0.getOperand(0).getValueType(); 11017 EVT ExTy = N0.getValueType(); 11018 EVT TrTy = N->getValueType(0); 11019 11020 unsigned NumElem = VecTy.getVectorNumElements(); 11021 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); 11022 11023 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); 11024 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); 11025 11026 SDValue EltNo = N0->getOperand(1); 11027 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { 11028 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 11029 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); 11030 11031 SDLoc DL(N); 11032 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, 11033 DAG.getBitcast(NVT, N0.getOperand(0)), 11034 DAG.getVectorIdxConstant(Index, DL)); 11035 } 11036 } 11037 11038 // trunc (select c, a, b) -> select c, (trunc a), (trunc b) 11039 if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) { 11040 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && 11041 TLI.isTruncateFree(SrcVT, VT)) { 11042 SDLoc SL(N0); 11043 SDValue Cond = N0.getOperand(0); 11044 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 11045 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); 11046 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); 11047 } 11048 } 11049 11050 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() 11051 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 11052 (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) && 11053 TLI.isTypeDesirableForOp(ISD::SHL, VT)) { 11054 SDValue Amt = N0.getOperand(1); 11055 KnownBits Known = DAG.computeKnownBits(Amt); 11056 unsigned Size = VT.getScalarSizeInBits(); 11057 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 11058 SDLoc SL(N); 11059 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 11060 11061 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 11062 if (AmtVT != Amt.getValueType()) { 11063 Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT); 11064 AddToWorklist(Amt.getNode()); 11065 } 11066 return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt); 11067 } 11068 } 11069 11070 // Attempt to pre-truncate BUILD_VECTOR sources. 11071 if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations && 11072 TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) && 11073 // Avoid creating illegal types if running after type legalizer. 11074 (!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) { 11075 SDLoc DL(N); 11076 EVT SVT = VT.getScalarType(); 11077 SmallVector<SDValue, 8> TruncOps; 11078 for (const SDValue &Op : N0->op_values()) { 11079 SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op); 11080 TruncOps.push_back(TruncOp); 11081 } 11082 return DAG.getBuildVector(VT, DL, TruncOps); 11083 } 11084 11085 // Fold a series of buildvector, bitcast, and truncate if possible. 11086 // For example fold 11087 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to 11088 // (2xi32 (buildvector x, y)). 11089 if (Level == AfterLegalizeVectorOps && VT.isVector() && 11090 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 11091 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 11092 N0.getOperand(0).hasOneUse()) { 11093 SDValue BuildVect = N0.getOperand(0); 11094 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); 11095 EVT TruncVecEltTy = VT.getVectorElementType(); 11096 11097 // Check that the element types match. 11098 if (BuildVectEltTy == TruncVecEltTy) { 11099 // Now we only need to compute the offset of the truncated elements. 11100 unsigned BuildVecNumElts = BuildVect.getNumOperands(); 11101 unsigned TruncVecNumElts = VT.getVectorNumElements(); 11102 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; 11103 11104 assert((BuildVecNumElts % TruncVecNumElts) == 0 && 11105 "Invalid number of elements"); 11106 11107 SmallVector<SDValue, 8> Opnds; 11108 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) 11109 Opnds.push_back(BuildVect.getOperand(i)); 11110 11111 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 11112 } 11113 } 11114 11115 // See if we can simplify the input to this truncate through knowledge that 11116 // only the low bits are being used. 11117 // For example "trunc (or (shl x, 8), y)" // -> trunc y 11118 // Currently we only perform this optimization on scalars because vectors 11119 // may have different active low bits. 11120 if (!VT.isVector()) { 11121 APInt Mask = 11122 APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits()); 11123 if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask)) 11124 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); 11125 } 11126 11127 // fold (truncate (load x)) -> (smaller load x) 11128 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) 11129 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { 11130 if (SDValue Reduced = ReduceLoadWidth(N)) 11131 return Reduced; 11132 11133 // Handle the case where the load remains an extending load even 11134 // after truncation. 11135 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { 11136 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11137 if (LN0->isSimple() && 11138 LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { 11139 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), 11140 VT, LN0->getChain(), LN0->getBasePtr(), 11141 LN0->getMemoryVT(), 11142 LN0->getMemOperand()); 11143 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); 11144 return NewLoad; 11145 } 11146 } 11147 } 11148 11149 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), 11150 // where ... are all 'undef'. 11151 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { 11152 SmallVector<EVT, 8> VTs; 11153 SDValue V; 11154 unsigned Idx = 0; 11155 unsigned NumDefs = 0; 11156 11157 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 11158 SDValue X = N0.getOperand(i); 11159 if (!X.isUndef()) { 11160 V = X; 11161 Idx = i; 11162 NumDefs++; 11163 } 11164 // Stop if more than one members are non-undef. 11165 if (NumDefs > 1) 11166 break; 11167 VTs.push_back(EVT::getVectorVT(*DAG.getContext(), 11168 VT.getVectorElementType(), 11169 X.getValueType().getVectorNumElements())); 11170 } 11171 11172 if (NumDefs == 0) 11173 return DAG.getUNDEF(VT); 11174 11175 if (NumDefs == 1) { 11176 assert(V.getNode() && "The single defined operand is empty!"); 11177 SmallVector<SDValue, 8> Opnds; 11178 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 11179 if (i != Idx) { 11180 Opnds.push_back(DAG.getUNDEF(VTs[i])); 11181 continue; 11182 } 11183 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); 11184 AddToWorklist(NV.getNode()); 11185 Opnds.push_back(NV); 11186 } 11187 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); 11188 } 11189 } 11190 11191 // Fold truncate of a bitcast of a vector to an extract of the low vector 11192 // element. 11193 // 11194 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx 11195 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { 11196 SDValue VecSrc = N0.getOperand(0); 11197 EVT VecSrcVT = VecSrc.getValueType(); 11198 if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT && 11199 (!LegalOperations || 11200 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) { 11201 SDLoc SL(N); 11202 11203 unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1; 11204 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, VecSrc, 11205 DAG.getVectorIdxConstant(Idx, SL)); 11206 } 11207 } 11208 11209 // Simplify the operands using demanded-bits information. 11210 if (!VT.isVector() && 11211 SimplifyDemandedBits(SDValue(N, 0))) 11212 return SDValue(N, 0); 11213 11214 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) 11215 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry) 11216 // When the adde's carry is not used. 11217 if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) && 11218 N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) && 11219 // We only do for addcarry before legalize operation 11220 ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) || 11221 TLI.isOperationLegal(N0.getOpcode(), VT))) { 11222 SDLoc SL(N); 11223 auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 11224 auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 11225 auto VTs = DAG.getVTList(VT, N0->getValueType(1)); 11226 return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2)); 11227 } 11228 11229 // fold (truncate (extract_subvector(ext x))) -> 11230 // (extract_subvector x) 11231 // TODO: This can be generalized to cover cases where the truncate and extract 11232 // do not fully cancel each other out. 11233 if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) { 11234 SDValue N00 = N0.getOperand(0); 11235 if (N00.getOpcode() == ISD::SIGN_EXTEND || 11236 N00.getOpcode() == ISD::ZERO_EXTEND || 11237 N00.getOpcode() == ISD::ANY_EXTEND) { 11238 if (N00.getOperand(0)->getValueType(0).getVectorElementType() == 11239 VT.getVectorElementType()) 11240 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT, 11241 N00.getOperand(0), N0.getOperand(1)); 11242 } 11243 } 11244 11245 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 11246 return NewVSel; 11247 11248 // Narrow a suitable binary operation with a non-opaque constant operand by 11249 // moving it ahead of the truncate. This is limited to pre-legalization 11250 // because targets may prefer a wider type during later combines and invert 11251 // this transform. 11252 switch (N0.getOpcode()) { 11253 case ISD::ADD: 11254 case ISD::SUB: 11255 case ISD::MUL: 11256 case ISD::AND: 11257 case ISD::OR: 11258 case ISD::XOR: 11259 if (!LegalOperations && N0.hasOneUse() && 11260 (isConstantOrConstantVector(N0.getOperand(0), true) || 11261 isConstantOrConstantVector(N0.getOperand(1), true))) { 11262 // TODO: We already restricted this to pre-legalization, but for vectors 11263 // we are extra cautious to not create an unsupported operation. 11264 // Target-specific changes are likely needed to avoid regressions here. 11265 if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) { 11266 SDLoc DL(N); 11267 SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); 11268 SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); 11269 return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR); 11270 } 11271 } 11272 } 11273 11274 return SDValue(); 11275 } 11276 11277 static SDNode *getBuildPairElt(SDNode *N, unsigned i) { 11278 SDValue Elt = N->getOperand(i); 11279 if (Elt.getOpcode() != ISD::MERGE_VALUES) 11280 return Elt.getNode(); 11281 return Elt.getOperand(Elt.getResNo()).getNode(); 11282 } 11283 11284 /// build_pair (load, load) -> load 11285 /// if load locations are consecutive. 11286 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { 11287 assert(N->getOpcode() == ISD::BUILD_PAIR); 11288 11289 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); 11290 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); 11291 11292 // A BUILD_PAIR is always having the least significant part in elt 0 and the 11293 // most significant part in elt 1. So when combining into one large load, we 11294 // need to consider the endianness. 11295 if (DAG.getDataLayout().isBigEndian()) 11296 std::swap(LD1, LD2); 11297 11298 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || 11299 LD1->getAddressSpace() != LD2->getAddressSpace()) 11300 return SDValue(); 11301 EVT LD1VT = LD1->getValueType(0); 11302 unsigned LD1Bytes = LD1VT.getStoreSize(); 11303 if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && 11304 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) { 11305 unsigned Align = LD1->getAlignment(); 11306 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 11307 VT.getTypeForEVT(*DAG.getContext())); 11308 11309 if (NewAlign <= Align && 11310 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) 11311 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), 11312 LD1->getPointerInfo(), Align); 11313 } 11314 11315 return SDValue(); 11316 } 11317 11318 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { 11319 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi 11320 // and Lo parts; on big-endian machines it doesn't. 11321 return DAG.getDataLayout().isBigEndian() ? 1 : 0; 11322 } 11323 11324 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, 11325 const TargetLowering &TLI) { 11326 // If this is not a bitcast to an FP type or if the target doesn't have 11327 // IEEE754-compliant FP logic, we're done. 11328 EVT VT = N->getValueType(0); 11329 if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) 11330 return SDValue(); 11331 11332 // TODO: Handle cases where the integer constant is a different scalar 11333 // bitwidth to the FP. 11334 SDValue N0 = N->getOperand(0); 11335 EVT SourceVT = N0.getValueType(); 11336 if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits()) 11337 return SDValue(); 11338 11339 unsigned FPOpcode; 11340 APInt SignMask; 11341 switch (N0.getOpcode()) { 11342 case ISD::AND: 11343 FPOpcode = ISD::FABS; 11344 SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits()); 11345 break; 11346 case ISD::XOR: 11347 FPOpcode = ISD::FNEG; 11348 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); 11349 break; 11350 case ISD::OR: 11351 FPOpcode = ISD::FABS; 11352 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); 11353 break; 11354 default: 11355 return SDValue(); 11356 } 11357 11358 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X 11359 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X 11360 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) -> 11361 // fneg (fabs X) 11362 SDValue LogicOp0 = N0.getOperand(0); 11363 ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true); 11364 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && 11365 LogicOp0.getOpcode() == ISD::BITCAST && 11366 LogicOp0.getOperand(0).getValueType() == VT) { 11367 SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0)); 11368 NumFPLogicOpsConv++; 11369 if (N0.getOpcode() == ISD::OR) 11370 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp); 11371 return FPOp; 11372 } 11373 11374 return SDValue(); 11375 } 11376 11377 SDValue DAGCombiner::visitBITCAST(SDNode *N) { 11378 SDValue N0 = N->getOperand(0); 11379 EVT VT = N->getValueType(0); 11380 11381 if (N0.isUndef()) 11382 return DAG.getUNDEF(VT); 11383 11384 // If the input is a BUILD_VECTOR with all constant elements, fold this now. 11385 // Only do this before legalize types, unless both types are integer and the 11386 // scalar type is legal. Only do this before legalize ops, since the target 11387 // maybe depending on the bitcast. 11388 // First check to see if this is all constant. 11389 // TODO: Support FP bitcasts after legalize types. 11390 if (VT.isVector() && 11391 (!LegalTypes || 11392 (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() && 11393 TLI.isTypeLegal(VT.getVectorElementType()))) && 11394 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && 11395 cast<BuildVectorSDNode>(N0)->isConstant()) 11396 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), 11397 VT.getVectorElementType()); 11398 11399 // If the input is a constant, let getNode fold it. 11400 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { 11401 // If we can't allow illegal operations, we need to check that this is just 11402 // a fp -> int or int -> conversion and that the resulting operation will 11403 // be legal. 11404 if (!LegalOperations || 11405 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && 11406 TLI.isOperationLegal(ISD::ConstantFP, VT)) || 11407 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && 11408 TLI.isOperationLegal(ISD::Constant, VT))) { 11409 SDValue C = DAG.getBitcast(VT, N0); 11410 if (C.getNode() != N) 11411 return C; 11412 } 11413 } 11414 11415 // (conv (conv x, t1), t2) -> (conv x, t2) 11416 if (N0.getOpcode() == ISD::BITCAST) 11417 return DAG.getBitcast(VT, N0.getOperand(0)); 11418 11419 // fold (conv (load x)) -> (load (conv*)x) 11420 // If the resultant load doesn't need a higher alignment than the original! 11421 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 11422 // Do not remove the cast if the types differ in endian layout. 11423 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == 11424 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && 11425 // If the load is volatile, we only want to change the load type if the 11426 // resulting load is legal. Otherwise we might increase the number of 11427 // memory accesses. We don't care if the original type was legal or not 11428 // as we assume software couldn't rely on the number of accesses of an 11429 // illegal type. 11430 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) || 11431 TLI.isOperationLegal(ISD::LOAD, VT))) { 11432 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11433 11434 if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG, 11435 *LN0->getMemOperand())) { 11436 SDValue Load = 11437 DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), 11438 LN0->getPointerInfo(), LN0->getAlignment(), 11439 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 11440 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 11441 return Load; 11442 } 11443 } 11444 11445 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) 11446 return V; 11447 11448 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 11449 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 11450 // 11451 // For ppc_fp128: 11452 // fold (bitcast (fneg x)) -> 11453 // flipbit = signbit 11454 // (xor (bitcast x) (build_pair flipbit, flipbit)) 11455 // 11456 // fold (bitcast (fabs x)) -> 11457 // flipbit = (and (extract_element (bitcast x), 0), signbit) 11458 // (xor (bitcast x) (build_pair flipbit, flipbit)) 11459 // This often reduces constant pool loads. 11460 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || 11461 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && 11462 N0.getNode()->hasOneUse() && VT.isInteger() && 11463 !VT.isVector() && !N0.getValueType().isVector()) { 11464 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); 11465 AddToWorklist(NewConv.getNode()); 11466 11467 SDLoc DL(N); 11468 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 11469 assert(VT.getSizeInBits() == 128); 11470 SDValue SignBit = DAG.getConstant( 11471 APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); 11472 SDValue FlipBit; 11473 if (N0.getOpcode() == ISD::FNEG) { 11474 FlipBit = SignBit; 11475 AddToWorklist(FlipBit.getNode()); 11476 } else { 11477 assert(N0.getOpcode() == ISD::FABS); 11478 SDValue Hi = 11479 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, 11480 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 11481 SDLoc(NewConv))); 11482 AddToWorklist(Hi.getNode()); 11483 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); 11484 AddToWorklist(FlipBit.getNode()); 11485 } 11486 SDValue FlipBits = 11487 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 11488 AddToWorklist(FlipBits.getNode()); 11489 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); 11490 } 11491 APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); 11492 if (N0.getOpcode() == ISD::FNEG) 11493 return DAG.getNode(ISD::XOR, DL, VT, 11494 NewConv, DAG.getConstant(SignBit, DL, VT)); 11495 assert(N0.getOpcode() == ISD::FABS); 11496 return DAG.getNode(ISD::AND, DL, VT, 11497 NewConv, DAG.getConstant(~SignBit, DL, VT)); 11498 } 11499 11500 // fold (bitconvert (fcopysign cst, x)) -> 11501 // (or (and (bitconvert x), sign), (and cst, (not sign))) 11502 // Note that we don't handle (copysign x, cst) because this can always be 11503 // folded to an fneg or fabs. 11504 // 11505 // For ppc_fp128: 11506 // fold (bitcast (fcopysign cst, x)) -> 11507 // flipbit = (and (extract_element 11508 // (xor (bitcast cst), (bitcast x)), 0), 11509 // signbit) 11510 // (xor (bitcast cst) (build_pair flipbit, flipbit)) 11511 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && 11512 isa<ConstantFPSDNode>(N0.getOperand(0)) && 11513 VT.isInteger() && !VT.isVector()) { 11514 unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); 11515 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); 11516 if (isTypeLegal(IntXVT)) { 11517 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); 11518 AddToWorklist(X.getNode()); 11519 11520 // If X has a different width than the result/lhs, sext it or truncate it. 11521 unsigned VTWidth = VT.getSizeInBits(); 11522 if (OrigXWidth < VTWidth) { 11523 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); 11524 AddToWorklist(X.getNode()); 11525 } else if (OrigXWidth > VTWidth) { 11526 // To get the sign bit in the right place, we have to shift it right 11527 // before truncating. 11528 SDLoc DL(X); 11529 X = DAG.getNode(ISD::SRL, DL, 11530 X.getValueType(), X, 11531 DAG.getConstant(OrigXWidth-VTWidth, DL, 11532 X.getValueType())); 11533 AddToWorklist(X.getNode()); 11534 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 11535 AddToWorklist(X.getNode()); 11536 } 11537 11538 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 11539 APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); 11540 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 11541 AddToWorklist(Cst.getNode()); 11542 SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); 11543 AddToWorklist(X.getNode()); 11544 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); 11545 AddToWorklist(XorResult.getNode()); 11546 SDValue XorResult64 = DAG.getNode( 11547 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, 11548 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 11549 SDLoc(XorResult))); 11550 AddToWorklist(XorResult64.getNode()); 11551 SDValue FlipBit = 11552 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, 11553 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); 11554 AddToWorklist(FlipBit.getNode()); 11555 SDValue FlipBits = 11556 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 11557 AddToWorklist(FlipBits.getNode()); 11558 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); 11559 } 11560 APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); 11561 X = DAG.getNode(ISD::AND, SDLoc(X), VT, 11562 X, DAG.getConstant(SignBit, SDLoc(X), VT)); 11563 AddToWorklist(X.getNode()); 11564 11565 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 11566 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, 11567 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); 11568 AddToWorklist(Cst.getNode()); 11569 11570 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); 11571 } 11572 } 11573 11574 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. 11575 if (N0.getOpcode() == ISD::BUILD_PAIR) 11576 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) 11577 return CombineLD; 11578 11579 // Remove double bitcasts from shuffles - this is often a legacy of 11580 // XformToShuffleWithZero being used to combine bitmaskings (of 11581 // float vectors bitcast to integer vectors) into shuffles. 11582 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) 11583 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && 11584 N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() && 11585 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && 11586 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { 11587 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); 11588 11589 // If operands are a bitcast, peek through if it casts the original VT. 11590 // If operands are a constant, just bitcast back to original VT. 11591 auto PeekThroughBitcast = [&](SDValue Op) { 11592 if (Op.getOpcode() == ISD::BITCAST && 11593 Op.getOperand(0).getValueType() == VT) 11594 return SDValue(Op.getOperand(0)); 11595 if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || 11596 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) 11597 return DAG.getBitcast(VT, Op); 11598 return SDValue(); 11599 }; 11600 11601 // FIXME: If either input vector is bitcast, try to convert the shuffle to 11602 // the result type of this bitcast. This would eliminate at least one 11603 // bitcast. See the transform in InstCombine. 11604 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); 11605 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); 11606 if (!(SV0 && SV1)) 11607 return SDValue(); 11608 11609 int MaskScale = 11610 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); 11611 SmallVector<int, 8> NewMask; 11612 for (int M : SVN->getMask()) 11613 for (int i = 0; i != MaskScale; ++i) 11614 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); 11615 11616 SDValue LegalShuffle = 11617 TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG); 11618 if (LegalShuffle) 11619 return LegalShuffle; 11620 } 11621 11622 return SDValue(); 11623 } 11624 11625 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { 11626 EVT VT = N->getValueType(0); 11627 return CombineConsecutiveLoads(N, VT); 11628 } 11629 11630 SDValue DAGCombiner::visitFREEZE(SDNode *N) { 11631 SDValue N0 = N->getOperand(0); 11632 11633 // (freeze (freeze x)) -> (freeze x) 11634 if (N0.getOpcode() == ISD::FREEZE) 11635 return N0; 11636 11637 // If the input is a constant, return it. 11638 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) 11639 return N0; 11640 11641 return SDValue(); 11642 } 11643 11644 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef 11645 /// operands. DstEltVT indicates the destination element value type. 11646 SDValue DAGCombiner:: 11647 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { 11648 EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); 11649 11650 // If this is already the right type, we're done. 11651 if (SrcEltVT == DstEltVT) return SDValue(BV, 0); 11652 11653 unsigned SrcBitSize = SrcEltVT.getSizeInBits(); 11654 unsigned DstBitSize = DstEltVT.getSizeInBits(); 11655 11656 // If this is a conversion of N elements of one type to N elements of another 11657 // type, convert each element. This handles FP<->INT cases. 11658 if (SrcBitSize == DstBitSize) { 11659 SmallVector<SDValue, 8> Ops; 11660 for (SDValue Op : BV->op_values()) { 11661 // If the vector element type is not legal, the BUILD_VECTOR operands 11662 // are promoted and implicitly truncated. Make that explicit here. 11663 if (Op.getValueType() != SrcEltVT) 11664 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); 11665 Ops.push_back(DAG.getBitcast(DstEltVT, Op)); 11666 AddToWorklist(Ops.back().getNode()); 11667 } 11668 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 11669 BV->getValueType(0).getVectorNumElements()); 11670 return DAG.getBuildVector(VT, SDLoc(BV), Ops); 11671 } 11672 11673 // Otherwise, we're growing or shrinking the elements. To avoid having to 11674 // handle annoying details of growing/shrinking FP values, we convert them to 11675 // int first. 11676 if (SrcEltVT.isFloatingPoint()) { 11677 // Convert the input float vector to a int vector where the elements are the 11678 // same sizes. 11679 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); 11680 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); 11681 SrcEltVT = IntVT; 11682 } 11683 11684 // Now we know the input is an integer vector. If the output is a FP type, 11685 // convert to integer first, then to FP of the right size. 11686 if (DstEltVT.isFloatingPoint()) { 11687 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); 11688 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); 11689 11690 // Next, convert to FP elements of the same size. 11691 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); 11692 } 11693 11694 SDLoc DL(BV); 11695 11696 // Okay, we know the src/dst types are both integers of differing types. 11697 // Handling growing first. 11698 assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); 11699 if (SrcBitSize < DstBitSize) { 11700 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; 11701 11702 SmallVector<SDValue, 8> Ops; 11703 for (unsigned i = 0, e = BV->getNumOperands(); i != e; 11704 i += NumInputsPerOutput) { 11705 bool isLE = DAG.getDataLayout().isLittleEndian(); 11706 APInt NewBits = APInt(DstBitSize, 0); 11707 bool EltIsUndef = true; 11708 for (unsigned j = 0; j != NumInputsPerOutput; ++j) { 11709 // Shift the previously computed bits over. 11710 NewBits <<= SrcBitSize; 11711 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); 11712 if (Op.isUndef()) continue; 11713 EltIsUndef = false; 11714 11715 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). 11716 zextOrTrunc(SrcBitSize).zext(DstBitSize); 11717 } 11718 11719 if (EltIsUndef) 11720 Ops.push_back(DAG.getUNDEF(DstEltVT)); 11721 else 11722 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); 11723 } 11724 11725 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); 11726 return DAG.getBuildVector(VT, DL, Ops); 11727 } 11728 11729 // Finally, this must be the case where we are shrinking elements: each input 11730 // turns into multiple outputs. 11731 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; 11732 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 11733 NumOutputsPerInput*BV->getNumOperands()); 11734 SmallVector<SDValue, 8> Ops; 11735 11736 for (const SDValue &Op : BV->op_values()) { 11737 if (Op.isUndef()) { 11738 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); 11739 continue; 11740 } 11741 11742 APInt OpVal = cast<ConstantSDNode>(Op)-> 11743 getAPIntValue().zextOrTrunc(SrcBitSize); 11744 11745 for (unsigned j = 0; j != NumOutputsPerInput; ++j) { 11746 APInt ThisVal = OpVal.trunc(DstBitSize); 11747 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); 11748 OpVal.lshrInPlace(DstBitSize); 11749 } 11750 11751 // For big endian targets, swap the order of the pieces of each element. 11752 if (DAG.getDataLayout().isBigEndian()) 11753 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); 11754 } 11755 11756 return DAG.getBuildVector(VT, DL, Ops); 11757 } 11758 11759 static bool isContractable(SDNode *N) { 11760 SDNodeFlags F = N->getFlags(); 11761 return F.hasAllowContract() || F.hasAllowReassociation(); 11762 } 11763 11764 /// Try to perform FMA combining on a given FADD node. 11765 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { 11766 SDValue N0 = N->getOperand(0); 11767 SDValue N1 = N->getOperand(1); 11768 EVT VT = N->getValueType(0); 11769 SDLoc SL(N); 11770 11771 const TargetOptions &Options = DAG.getTarget().Options; 11772 11773 // Floating-point multiply-add with intermediate rounding. 11774 bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); 11775 11776 // Floating-point multiply-add without intermediate rounding. 11777 bool HasFMA = 11778 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 11779 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 11780 11781 // No valid opcode, do not combine. 11782 if (!HasFMAD && !HasFMA) 11783 return SDValue(); 11784 11785 SDNodeFlags Flags = N->getFlags(); 11786 bool CanFuse = Options.UnsafeFPMath || isContractable(N); 11787 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || 11788 CanFuse || HasFMAD); 11789 // If the addition is not contractable, do not combine. 11790 if (!AllowFusionGlobally && !isContractable(N)) 11791 return SDValue(); 11792 11793 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); 11794 if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) 11795 return SDValue(); 11796 11797 // Always prefer FMAD to FMA for precision. 11798 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 11799 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 11800 11801 // Is the node an FMUL and contractable either due to global flags or 11802 // SDNodeFlags. 11803 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { 11804 if (N.getOpcode() != ISD::FMUL) 11805 return false; 11806 return AllowFusionGlobally || isContractable(N.getNode()); 11807 }; 11808 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 11809 // prefer to fold the multiply with fewer uses. 11810 if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { 11811 if (N0.getNode()->use_size() > N1.getNode()->use_size()) 11812 std::swap(N0, N1); 11813 } 11814 11815 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 11816 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { 11817 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11818 N0.getOperand(0), N0.getOperand(1), N1, Flags); 11819 } 11820 11821 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 11822 // Note: Commutes FADD operands. 11823 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { 11824 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11825 N1.getOperand(0), N1.getOperand(1), N0, Flags); 11826 } 11827 11828 // Look through FP_EXTEND nodes to do more combining. 11829 11830 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 11831 if (N0.getOpcode() == ISD::FP_EXTEND) { 11832 SDValue N00 = N0.getOperand(0); 11833 if (isContractableFMUL(N00) && 11834 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 11835 N00.getValueType())) { 11836 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11837 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11838 N00.getOperand(0)), 11839 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11840 N00.getOperand(1)), N1, Flags); 11841 } 11842 } 11843 11844 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) 11845 // Note: Commutes FADD operands. 11846 if (N1.getOpcode() == ISD::FP_EXTEND) { 11847 SDValue N10 = N1.getOperand(0); 11848 if (isContractableFMUL(N10) && 11849 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 11850 N10.getValueType())) { 11851 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11852 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11853 N10.getOperand(0)), 11854 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11855 N10.getOperand(1)), N0, Flags); 11856 } 11857 } 11858 11859 // More folding opportunities when target permits. 11860 if (Aggressive) { 11861 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z)) 11862 if (CanFuse && 11863 N0.getOpcode() == PreferredFusedOpcode && 11864 N0.getOperand(2).getOpcode() == ISD::FMUL && 11865 N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) { 11866 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11867 N0.getOperand(0), N0.getOperand(1), 11868 DAG.getNode(PreferredFusedOpcode, SL, VT, 11869 N0.getOperand(2).getOperand(0), 11870 N0.getOperand(2).getOperand(1), 11871 N1, Flags), Flags); 11872 } 11873 11874 // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x)) 11875 if (CanFuse && 11876 N1->getOpcode() == PreferredFusedOpcode && 11877 N1.getOperand(2).getOpcode() == ISD::FMUL && 11878 N1->hasOneUse() && N1.getOperand(2)->hasOneUse()) { 11879 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11880 N1.getOperand(0), N1.getOperand(1), 11881 DAG.getNode(PreferredFusedOpcode, SL, VT, 11882 N1.getOperand(2).getOperand(0), 11883 N1.getOperand(2).getOperand(1), 11884 N0, Flags), Flags); 11885 } 11886 11887 11888 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 11889 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 11890 auto FoldFAddFMAFPExtFMul = [&] ( 11891 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z, 11892 SDNodeFlags Flags) { 11893 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, 11894 DAG.getNode(PreferredFusedOpcode, SL, VT, 11895 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 11896 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 11897 Z, Flags), Flags); 11898 }; 11899 if (N0.getOpcode() == PreferredFusedOpcode) { 11900 SDValue N02 = N0.getOperand(2); 11901 if (N02.getOpcode() == ISD::FP_EXTEND) { 11902 SDValue N020 = N02.getOperand(0); 11903 if (isContractableFMUL(N020) && 11904 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 11905 N020.getValueType())) { 11906 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), 11907 N020.getOperand(0), N020.getOperand(1), 11908 N1, Flags); 11909 } 11910 } 11911 } 11912 11913 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 11914 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 11915 // FIXME: This turns two single-precision and one double-precision 11916 // operation into two double-precision operations, which might not be 11917 // interesting for all targets, especially GPUs. 11918 auto FoldFAddFPExtFMAFMul = [&] ( 11919 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z, 11920 SDNodeFlags Flags) { 11921 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11922 DAG.getNode(ISD::FP_EXTEND, SL, VT, X), 11923 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), 11924 DAG.getNode(PreferredFusedOpcode, SL, VT, 11925 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 11926 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 11927 Z, Flags), Flags); 11928 }; 11929 if (N0.getOpcode() == ISD::FP_EXTEND) { 11930 SDValue N00 = N0.getOperand(0); 11931 if (N00.getOpcode() == PreferredFusedOpcode) { 11932 SDValue N002 = N00.getOperand(2); 11933 if (isContractableFMUL(N002) && 11934 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 11935 N00.getValueType())) { 11936 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), 11937 N002.getOperand(0), N002.getOperand(1), 11938 N1, Flags); 11939 } 11940 } 11941 } 11942 11943 // fold (fadd x, (fma y, z, (fpext (fmul u, v))) 11944 // -> (fma y, z, (fma (fpext u), (fpext v), x)) 11945 if (N1.getOpcode() == PreferredFusedOpcode) { 11946 SDValue N12 = N1.getOperand(2); 11947 if (N12.getOpcode() == ISD::FP_EXTEND) { 11948 SDValue N120 = N12.getOperand(0); 11949 if (isContractableFMUL(N120) && 11950 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 11951 N120.getValueType())) { 11952 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), 11953 N120.getOperand(0), N120.getOperand(1), 11954 N0, Flags); 11955 } 11956 } 11957 } 11958 11959 // fold (fadd x, (fpext (fma y, z, (fmul u, v))) 11960 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) 11961 // FIXME: This turns two single-precision and one double-precision 11962 // operation into two double-precision operations, which might not be 11963 // interesting for all targets, especially GPUs. 11964 if (N1.getOpcode() == ISD::FP_EXTEND) { 11965 SDValue N10 = N1.getOperand(0); 11966 if (N10.getOpcode() == PreferredFusedOpcode) { 11967 SDValue N102 = N10.getOperand(2); 11968 if (isContractableFMUL(N102) && 11969 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 11970 N10.getValueType())) { 11971 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), 11972 N102.getOperand(0), N102.getOperand(1), 11973 N0, Flags); 11974 } 11975 } 11976 } 11977 } 11978 11979 return SDValue(); 11980 } 11981 11982 /// Try to perform FMA combining on a given FSUB node. 11983 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { 11984 SDValue N0 = N->getOperand(0); 11985 SDValue N1 = N->getOperand(1); 11986 EVT VT = N->getValueType(0); 11987 SDLoc SL(N); 11988 11989 const TargetOptions &Options = DAG.getTarget().Options; 11990 // Floating-point multiply-add with intermediate rounding. 11991 bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); 11992 11993 // Floating-point multiply-add without intermediate rounding. 11994 bool HasFMA = 11995 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 11996 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 11997 11998 // No valid opcode, do not combine. 11999 if (!HasFMAD && !HasFMA) 12000 return SDValue(); 12001 12002 const SDNodeFlags Flags = N->getFlags(); 12003 bool CanFuse = Options.UnsafeFPMath || isContractable(N); 12004 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || 12005 CanFuse || HasFMAD); 12006 12007 // If the subtraction is not contractable, do not combine. 12008 if (!AllowFusionGlobally && !isContractable(N)) 12009 return SDValue(); 12010 12011 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); 12012 if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) 12013 return SDValue(); 12014 12015 // Always prefer FMAD to FMA for precision. 12016 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 12017 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 12018 bool NoSignedZero = Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros(); 12019 12020 // Is the node an FMUL and contractable either due to global flags or 12021 // SDNodeFlags. 12022 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { 12023 if (N.getOpcode() != ISD::FMUL) 12024 return false; 12025 return AllowFusionGlobally || isContractable(N.getNode()); 12026 }; 12027 12028 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 12029 auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) { 12030 if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) { 12031 return DAG.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0), 12032 XY.getOperand(1), DAG.getNode(ISD::FNEG, SL, VT, Z), 12033 Flags); 12034 } 12035 return SDValue(); 12036 }; 12037 12038 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 12039 // Note: Commutes FSUB operands. 12040 auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) { 12041 if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) { 12042 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12043 DAG.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)), 12044 YZ.getOperand(1), X, Flags); 12045 } 12046 return SDValue(); 12047 }; 12048 12049 // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)), 12050 // prefer to fold the multiply with fewer uses. 12051 if (isContractableFMUL(N0) && isContractableFMUL(N1) && 12052 (N0.getNode()->use_size() > N1.getNode()->use_size())) { 12053 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b)) 12054 if (SDValue V = tryToFoldXSubYZ(N0, N1)) 12055 return V; 12056 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d))) 12057 if (SDValue V = tryToFoldXYSubZ(N0, N1)) 12058 return V; 12059 } else { 12060 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 12061 if (SDValue V = tryToFoldXYSubZ(N0, N1)) 12062 return V; 12063 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 12064 if (SDValue V = tryToFoldXSubYZ(N0, N1)) 12065 return V; 12066 } 12067 12068 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) 12069 if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) && 12070 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { 12071 SDValue N00 = N0.getOperand(0).getOperand(0); 12072 SDValue N01 = N0.getOperand(0).getOperand(1); 12073 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12074 DAG.getNode(ISD::FNEG, SL, VT, N00), N01, 12075 DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); 12076 } 12077 12078 // Look through FP_EXTEND nodes to do more combining. 12079 12080 // fold (fsub (fpext (fmul x, y)), z) 12081 // -> (fma (fpext x), (fpext y), (fneg z)) 12082 if (N0.getOpcode() == ISD::FP_EXTEND) { 12083 SDValue N00 = N0.getOperand(0); 12084 if (isContractableFMUL(N00) && 12085 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12086 N00.getValueType())) { 12087 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12088 DAG.getNode(ISD::FP_EXTEND, SL, VT, 12089 N00.getOperand(0)), 12090 DAG.getNode(ISD::FP_EXTEND, SL, VT, 12091 N00.getOperand(1)), 12092 DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); 12093 } 12094 } 12095 12096 // fold (fsub x, (fpext (fmul y, z))) 12097 // -> (fma (fneg (fpext y)), (fpext z), x) 12098 // Note: Commutes FSUB operands. 12099 if (N1.getOpcode() == ISD::FP_EXTEND) { 12100 SDValue N10 = N1.getOperand(0); 12101 if (isContractableFMUL(N10) && 12102 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12103 N10.getValueType())) { 12104 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12105 DAG.getNode(ISD::FNEG, SL, VT, 12106 DAG.getNode(ISD::FP_EXTEND, SL, VT, 12107 N10.getOperand(0))), 12108 DAG.getNode(ISD::FP_EXTEND, SL, VT, 12109 N10.getOperand(1)), 12110 N0, Flags); 12111 } 12112 } 12113 12114 // fold (fsub (fpext (fneg (fmul, x, y))), z) 12115 // -> (fneg (fma (fpext x), (fpext y), z)) 12116 // Note: This could be removed with appropriate canonicalization of the 12117 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 12118 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 12119 // from implementing the canonicalization in visitFSUB. 12120 if (N0.getOpcode() == ISD::FP_EXTEND) { 12121 SDValue N00 = N0.getOperand(0); 12122 if (N00.getOpcode() == ISD::FNEG) { 12123 SDValue N000 = N00.getOperand(0); 12124 if (isContractableFMUL(N000) && 12125 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12126 N00.getValueType())) { 12127 return DAG.getNode(ISD::FNEG, SL, VT, 12128 DAG.getNode(PreferredFusedOpcode, SL, VT, 12129 DAG.getNode(ISD::FP_EXTEND, SL, VT, 12130 N000.getOperand(0)), 12131 DAG.getNode(ISD::FP_EXTEND, SL, VT, 12132 N000.getOperand(1)), 12133 N1, Flags)); 12134 } 12135 } 12136 } 12137 12138 // fold (fsub (fneg (fpext (fmul, x, y))), z) 12139 // -> (fneg (fma (fpext x)), (fpext y), z) 12140 // Note: This could be removed with appropriate canonicalization of the 12141 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 12142 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 12143 // from implementing the canonicalization in visitFSUB. 12144 if (N0.getOpcode() == ISD::FNEG) { 12145 SDValue N00 = N0.getOperand(0); 12146 if (N00.getOpcode() == ISD::FP_EXTEND) { 12147 SDValue N000 = N00.getOperand(0); 12148 if (isContractableFMUL(N000) && 12149 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12150 N000.getValueType())) { 12151 return DAG.getNode(ISD::FNEG, SL, VT, 12152 DAG.getNode(PreferredFusedOpcode, SL, VT, 12153 DAG.getNode(ISD::FP_EXTEND, SL, VT, 12154 N000.getOperand(0)), 12155 DAG.getNode(ISD::FP_EXTEND, SL, VT, 12156 N000.getOperand(1)), 12157 N1, Flags)); 12158 } 12159 } 12160 } 12161 12162 // More folding opportunities when target permits. 12163 if (Aggressive) { 12164 // fold (fsub (fma x, y, (fmul u, v)), z) 12165 // -> (fma x, y (fma u, v, (fneg z))) 12166 if (CanFuse && N0.getOpcode() == PreferredFusedOpcode && 12167 isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() && 12168 N0.getOperand(2)->hasOneUse()) { 12169 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12170 N0.getOperand(0), N0.getOperand(1), 12171 DAG.getNode(PreferredFusedOpcode, SL, VT, 12172 N0.getOperand(2).getOperand(0), 12173 N0.getOperand(2).getOperand(1), 12174 DAG.getNode(ISD::FNEG, SL, VT, 12175 N1), Flags), Flags); 12176 } 12177 12178 // fold (fsub x, (fma y, z, (fmul u, v))) 12179 // -> (fma (fneg y), z, (fma (fneg u), v, x)) 12180 if (CanFuse && N1.getOpcode() == PreferredFusedOpcode && 12181 isContractableFMUL(N1.getOperand(2)) && 12182 N1->hasOneUse() && NoSignedZero) { 12183 SDValue N20 = N1.getOperand(2).getOperand(0); 12184 SDValue N21 = N1.getOperand(2).getOperand(1); 12185 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12186 DAG.getNode(ISD::FNEG, SL, VT, 12187 N1.getOperand(0)), 12188 N1.getOperand(1), 12189 DAG.getNode(PreferredFusedOpcode, SL, VT, 12190 DAG.getNode(ISD::FNEG, SL, VT, N20), 12191 N21, N0, Flags), Flags); 12192 } 12193 12194 12195 // fold (fsub (fma x, y, (fpext (fmul u, v))), z) 12196 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) 12197 if (N0.getOpcode() == PreferredFusedOpcode && 12198 N0->hasOneUse()) { 12199 SDValue N02 = N0.getOperand(2); 12200 if (N02.getOpcode() == ISD::FP_EXTEND) { 12201 SDValue N020 = N02.getOperand(0); 12202 if (isContractableFMUL(N020) && 12203 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12204 N020.getValueType())) { 12205 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12206 N0.getOperand(0), N0.getOperand(1), 12207 DAG.getNode(PreferredFusedOpcode, SL, VT, 12208 DAG.getNode(ISD::FP_EXTEND, SL, VT, 12209 N020.getOperand(0)), 12210 DAG.getNode(ISD::FP_EXTEND, SL, VT, 12211 N020.getOperand(1)), 12212 DAG.getNode(ISD::FNEG, SL, VT, 12213 N1), Flags), Flags); 12214 } 12215 } 12216 } 12217 12218 // fold (fsub (fpext (fma x, y, (fmul u, v))), z) 12219 // -> (fma (fpext x), (fpext y), 12220 // (fma (fpext u), (fpext v), (fneg z))) 12221 // FIXME: This turns two single-precision and one double-precision 12222 // operation into two double-precision operations, which might not be 12223 // interesting for all targets, especially GPUs. 12224 if (N0.getOpcode() == ISD::FP_EXTEND) { 12225 SDValue N00 = N0.getOperand(0); 12226 if (N00.getOpcode() == PreferredFusedOpcode) { 12227 SDValue N002 = N00.getOperand(2); 12228 if (isContractableFMUL(N002) && 12229 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12230 N00.getValueType())) { 12231 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12232 DAG.getNode(ISD::FP_EXTEND, SL, VT, 12233 N00.getOperand(0)), 12234 DAG.getNode(ISD::FP_EXTEND, SL, VT, 12235 N00.getOperand(1)), 12236 DAG.getNode(PreferredFusedOpcode, SL, VT, 12237 DAG.getNode(ISD::FP_EXTEND, SL, VT, 12238 N002.getOperand(0)), 12239 DAG.getNode(ISD::FP_EXTEND, SL, VT, 12240 N002.getOperand(1)), 12241 DAG.getNode(ISD::FNEG, SL, VT, 12242 N1), Flags), Flags); 12243 } 12244 } 12245 } 12246 12247 // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) 12248 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) 12249 if (N1.getOpcode() == PreferredFusedOpcode && 12250 N1.getOperand(2).getOpcode() == ISD::FP_EXTEND && 12251 N1->hasOneUse()) { 12252 SDValue N120 = N1.getOperand(2).getOperand(0); 12253 if (isContractableFMUL(N120) && 12254 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12255 N120.getValueType())) { 12256 SDValue N1200 = N120.getOperand(0); 12257 SDValue N1201 = N120.getOperand(1); 12258 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12259 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), 12260 N1.getOperand(1), 12261 DAG.getNode(PreferredFusedOpcode, SL, VT, 12262 DAG.getNode(ISD::FNEG, SL, VT, 12263 DAG.getNode(ISD::FP_EXTEND, SL, 12264 VT, N1200)), 12265 DAG.getNode(ISD::FP_EXTEND, SL, VT, 12266 N1201), 12267 N0, Flags), Flags); 12268 } 12269 } 12270 12271 // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) 12272 // -> (fma (fneg (fpext y)), (fpext z), 12273 // (fma (fneg (fpext u)), (fpext v), x)) 12274 // FIXME: This turns two single-precision and one double-precision 12275 // operation into two double-precision operations, which might not be 12276 // interesting for all targets, especially GPUs. 12277 if (N1.getOpcode() == ISD::FP_EXTEND && 12278 N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { 12279 SDValue CvtSrc = N1.getOperand(0); 12280 SDValue N100 = CvtSrc.getOperand(0); 12281 SDValue N101 = CvtSrc.getOperand(1); 12282 SDValue N102 = CvtSrc.getOperand(2); 12283 if (isContractableFMUL(N102) && 12284 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12285 CvtSrc.getValueType())) { 12286 SDValue N1020 = N102.getOperand(0); 12287 SDValue N1021 = N102.getOperand(1); 12288 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12289 DAG.getNode(ISD::FNEG, SL, VT, 12290 DAG.getNode(ISD::FP_EXTEND, SL, VT, 12291 N100)), 12292 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), 12293 DAG.getNode(PreferredFusedOpcode, SL, VT, 12294 DAG.getNode(ISD::FNEG, SL, VT, 12295 DAG.getNode(ISD::FP_EXTEND, SL, 12296 VT, N1020)), 12297 DAG.getNode(ISD::FP_EXTEND, SL, VT, 12298 N1021), 12299 N0, Flags), Flags); 12300 } 12301 } 12302 } 12303 12304 return SDValue(); 12305 } 12306 12307 /// Try to perform FMA combining on a given FMUL node based on the distributive 12308 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions, 12309 /// subtraction instead of addition). 12310 SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { 12311 SDValue N0 = N->getOperand(0); 12312 SDValue N1 = N->getOperand(1); 12313 EVT VT = N->getValueType(0); 12314 SDLoc SL(N); 12315 const SDNodeFlags Flags = N->getFlags(); 12316 12317 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); 12318 12319 const TargetOptions &Options = DAG.getTarget().Options; 12320 12321 // The transforms below are incorrect when x == 0 and y == inf, because the 12322 // intermediate multiplication produces a nan. 12323 if (!Options.NoInfsFPMath) 12324 return SDValue(); 12325 12326 // Floating-point multiply-add without intermediate rounding. 12327 bool HasFMA = 12328 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) && 12329 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 12330 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 12331 12332 // Floating-point multiply-add with intermediate rounding. This can result 12333 // in a less precise result due to the changed rounding order. 12334 bool HasFMAD = Options.UnsafeFPMath && 12335 (LegalOperations && TLI.isFMADLegal(DAG, N)); 12336 12337 // No valid opcode, do not combine. 12338 if (!HasFMAD && !HasFMA) 12339 return SDValue(); 12340 12341 // Always prefer FMAD to FMA for precision. 12342 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 12343 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 12344 12345 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y) 12346 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y)) 12347 auto FuseFADD = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) { 12348 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { 12349 if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) { 12350 if (C->isExactlyValue(+1.0)) 12351 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 12352 Y, Flags); 12353 if (C->isExactlyValue(-1.0)) 12354 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 12355 DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); 12356 } 12357 } 12358 return SDValue(); 12359 }; 12360 12361 if (SDValue FMA = FuseFADD(N0, N1, Flags)) 12362 return FMA; 12363 if (SDValue FMA = FuseFADD(N1, N0, Flags)) 12364 return FMA; 12365 12366 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y) 12367 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y)) 12368 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y)) 12369 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y) 12370 auto FuseFSUB = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) { 12371 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { 12372 if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) { 12373 if (C0->isExactlyValue(+1.0)) 12374 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12375 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 12376 Y, Flags); 12377 if (C0->isExactlyValue(-1.0)) 12378 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12379 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 12380 DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); 12381 } 12382 if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) { 12383 if (C1->isExactlyValue(+1.0)) 12384 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 12385 DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); 12386 if (C1->isExactlyValue(-1.0)) 12387 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 12388 Y, Flags); 12389 } 12390 } 12391 return SDValue(); 12392 }; 12393 12394 if (SDValue FMA = FuseFSUB(N0, N1, Flags)) 12395 return FMA; 12396 if (SDValue FMA = FuseFSUB(N1, N0, Flags)) 12397 return FMA; 12398 12399 return SDValue(); 12400 } 12401 12402 SDValue DAGCombiner::visitFADD(SDNode *N) { 12403 SDValue N0 = N->getOperand(0); 12404 SDValue N1 = N->getOperand(1); 12405 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); 12406 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); 12407 EVT VT = N->getValueType(0); 12408 SDLoc DL(N); 12409 const TargetOptions &Options = DAG.getTarget().Options; 12410 const SDNodeFlags Flags = N->getFlags(); 12411 12412 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 12413 return R; 12414 12415 // fold vector ops 12416 if (VT.isVector()) 12417 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 12418 return FoldedVOp; 12419 12420 // fold (fadd c1, c2) -> c1 + c2 12421 if (N0CFP && N1CFP) 12422 return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags); 12423 12424 // canonicalize constant to RHS 12425 if (N0CFP && !N1CFP) 12426 return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags); 12427 12428 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math) 12429 ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true); 12430 if (N1C && N1C->isZero()) 12431 if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) 12432 return N0; 12433 12434 if (SDValue NewSel = foldBinOpIntoSelect(N)) 12435 return NewSel; 12436 12437 // fold (fadd A, (fneg B)) -> (fsub A, B) 12438 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) 12439 if (SDValue NegN1 = TLI.getCheaperNegatedExpression( 12440 N1, DAG, LegalOperations, ForCodeSize)) 12441 return DAG.getNode(ISD::FSUB, DL, VT, N0, NegN1, Flags); 12442 12443 // fold (fadd (fneg A), B) -> (fsub B, A) 12444 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) 12445 if (SDValue NegN0 = TLI.getCheaperNegatedExpression( 12446 N0, DAG, LegalOperations, ForCodeSize)) 12447 return DAG.getNode(ISD::FSUB, DL, VT, N1, NegN0, Flags); 12448 12449 auto isFMulNegTwo = [](SDValue FMul) { 12450 if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL) 12451 return false; 12452 auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true); 12453 return C && C->isExactlyValue(-2.0); 12454 }; 12455 12456 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B) 12457 if (isFMulNegTwo(N0)) { 12458 SDValue B = N0.getOperand(0); 12459 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags); 12460 return DAG.getNode(ISD::FSUB, DL, VT, N1, Add, Flags); 12461 } 12462 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B) 12463 if (isFMulNegTwo(N1)) { 12464 SDValue B = N1.getOperand(0); 12465 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags); 12466 return DAG.getNode(ISD::FSUB, DL, VT, N0, Add, Flags); 12467 } 12468 12469 // No FP constant should be created after legalization as Instruction 12470 // Selection pass has a hard time dealing with FP constants. 12471 bool AllowNewConst = (Level < AfterLegalizeDAG); 12472 12473 // If nnan is enabled, fold lots of things. 12474 if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) { 12475 // If allowed, fold (fadd (fneg x), x) -> 0.0 12476 if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) 12477 return DAG.getConstantFP(0.0, DL, VT); 12478 12479 // If allowed, fold (fadd x, (fneg x)) -> 0.0 12480 if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) 12481 return DAG.getConstantFP(0.0, DL, VT); 12482 } 12483 12484 // If 'unsafe math' or reassoc and nsz, fold lots of things. 12485 // TODO: break out portions of the transformations below for which Unsafe is 12486 // considered and which do not require both nsz and reassoc 12487 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || 12488 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && 12489 AllowNewConst) { 12490 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2 12491 if (N1CFP && N0.getOpcode() == ISD::FADD && 12492 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 12493 SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, Flags); 12494 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC, Flags); 12495 } 12496 12497 // We can fold chains of FADD's of the same value into multiplications. 12498 // This transform is not safe in general because we are reducing the number 12499 // of rounding steps. 12500 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { 12501 if (N0.getOpcode() == ISD::FMUL) { 12502 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 12503 bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); 12504 12505 // (fadd (fmul x, c), x) -> (fmul x, c+1) 12506 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { 12507 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 12508 DAG.getConstantFP(1.0, DL, VT), Flags); 12509 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags); 12510 } 12511 12512 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) 12513 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && 12514 N1.getOperand(0) == N1.getOperand(1) && 12515 N0.getOperand(0) == N1.getOperand(0)) { 12516 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 12517 DAG.getConstantFP(2.0, DL, VT), Flags); 12518 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags); 12519 } 12520 } 12521 12522 if (N1.getOpcode() == ISD::FMUL) { 12523 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 12524 bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); 12525 12526 // (fadd x, (fmul x, c)) -> (fmul x, c+1) 12527 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { 12528 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 12529 DAG.getConstantFP(1.0, DL, VT), Flags); 12530 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags); 12531 } 12532 12533 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) 12534 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && 12535 N0.getOperand(0) == N0.getOperand(1) && 12536 N1.getOperand(0) == N0.getOperand(0)) { 12537 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 12538 DAG.getConstantFP(2.0, DL, VT), Flags); 12539 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags); 12540 } 12541 } 12542 12543 if (N0.getOpcode() == ISD::FADD) { 12544 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 12545 // (fadd (fadd x, x), x) -> (fmul x, 3.0) 12546 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && 12547 (N0.getOperand(0) == N1)) { 12548 return DAG.getNode(ISD::FMUL, DL, VT, 12549 N1, DAG.getConstantFP(3.0, DL, VT), Flags); 12550 } 12551 } 12552 12553 if (N1.getOpcode() == ISD::FADD) { 12554 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 12555 // (fadd x, (fadd x, x)) -> (fmul x, 3.0) 12556 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && 12557 N1.getOperand(0) == N0) { 12558 return DAG.getNode(ISD::FMUL, DL, VT, 12559 N0, DAG.getConstantFP(3.0, DL, VT), Flags); 12560 } 12561 } 12562 12563 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) 12564 if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && 12565 N0.getOperand(0) == N0.getOperand(1) && 12566 N1.getOperand(0) == N1.getOperand(1) && 12567 N0.getOperand(0) == N1.getOperand(0)) { 12568 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), 12569 DAG.getConstantFP(4.0, DL, VT), Flags); 12570 } 12571 } 12572 } // enable-unsafe-fp-math 12573 12574 // FADD -> FMA combines: 12575 if (SDValue Fused = visitFADDForFMACombine(N)) { 12576 AddToWorklist(Fused.getNode()); 12577 return Fused; 12578 } 12579 return SDValue(); 12580 } 12581 12582 SDValue DAGCombiner::visitFSUB(SDNode *N) { 12583 SDValue N0 = N->getOperand(0); 12584 SDValue N1 = N->getOperand(1); 12585 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); 12586 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); 12587 EVT VT = N->getValueType(0); 12588 SDLoc DL(N); 12589 const TargetOptions &Options = DAG.getTarget().Options; 12590 const SDNodeFlags Flags = N->getFlags(); 12591 12592 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 12593 return R; 12594 12595 // fold vector ops 12596 if (VT.isVector()) 12597 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 12598 return FoldedVOp; 12599 12600 // fold (fsub c1, c2) -> c1-c2 12601 if (N0CFP && N1CFP) 12602 return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags); 12603 12604 if (SDValue NewSel = foldBinOpIntoSelect(N)) 12605 return NewSel; 12606 12607 // (fsub A, 0) -> A 12608 if (N1CFP && N1CFP->isZero()) { 12609 if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath || 12610 Flags.hasNoSignedZeros()) { 12611 return N0; 12612 } 12613 } 12614 12615 if (N0 == N1) { 12616 // (fsub x, x) -> 0.0 12617 if (Options.NoNaNsFPMath || Flags.hasNoNaNs()) 12618 return DAG.getConstantFP(0.0f, DL, VT); 12619 } 12620 12621 // (fsub -0.0, N1) -> -N1 12622 // NOTE: It is safe to transform an FSUB(-0.0,X) into an FNEG(X), since the 12623 // FSUB does not specify the sign bit of a NaN. Also note that for 12624 // the same reason, the inverse transform is not safe, unless fast math 12625 // flags are in play. 12626 if (N0CFP && N0CFP->isZero()) { 12627 if (N0CFP->isNegative() || 12628 (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) { 12629 if (SDValue NegN1 = 12630 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) 12631 return NegN1; 12632 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 12633 return DAG.getNode(ISD::FNEG, DL, VT, N1, Flags); 12634 } 12635 } 12636 12637 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || 12638 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && 12639 N1.getOpcode() == ISD::FADD) { 12640 // X - (X + Y) -> -Y 12641 if (N0 == N1->getOperand(0)) 12642 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1), Flags); 12643 // X - (Y + X) -> -Y 12644 if (N0 == N1->getOperand(1)) 12645 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0), Flags); 12646 } 12647 12648 // fold (fsub A, (fneg B)) -> (fadd A, B) 12649 if (SDValue NegN1 = 12650 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) 12651 return DAG.getNode(ISD::FADD, DL, VT, N0, NegN1, Flags); 12652 12653 // FSUB -> FMA combines: 12654 if (SDValue Fused = visitFSUBForFMACombine(N)) { 12655 AddToWorklist(Fused.getNode()); 12656 return Fused; 12657 } 12658 12659 return SDValue(); 12660 } 12661 12662 SDValue DAGCombiner::visitFMUL(SDNode *N) { 12663 SDValue N0 = N->getOperand(0); 12664 SDValue N1 = N->getOperand(1); 12665 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); 12666 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); 12667 EVT VT = N->getValueType(0); 12668 SDLoc DL(N); 12669 const TargetOptions &Options = DAG.getTarget().Options; 12670 const SDNodeFlags Flags = N->getFlags(); 12671 12672 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 12673 return R; 12674 12675 // fold vector ops 12676 if (VT.isVector()) { 12677 // This just handles C1 * C2 for vectors. Other vector folds are below. 12678 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 12679 return FoldedVOp; 12680 } 12681 12682 // fold (fmul c1, c2) -> c1*c2 12683 if (N0CFP && N1CFP) 12684 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags); 12685 12686 // canonicalize constant to RHS 12687 if (isConstantFPBuildVectorOrConstantFP(N0) && 12688 !isConstantFPBuildVectorOrConstantFP(N1)) 12689 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags); 12690 12691 if (SDValue NewSel = foldBinOpIntoSelect(N)) 12692 return NewSel; 12693 12694 if ((Options.NoNaNsFPMath && Options.NoSignedZerosFPMath) || 12695 (Flags.hasNoNaNs() && Flags.hasNoSignedZeros())) { 12696 // fold (fmul A, 0) -> 0 12697 if (N1CFP && N1CFP->isZero()) 12698 return N1; 12699 } 12700 12701 if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) { 12702 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2 12703 if (isConstantFPBuildVectorOrConstantFP(N1) && 12704 N0.getOpcode() == ISD::FMUL) { 12705 SDValue N00 = N0.getOperand(0); 12706 SDValue N01 = N0.getOperand(1); 12707 // Avoid an infinite loop by making sure that N00 is not a constant 12708 // (the inner multiply has not been constant folded yet). 12709 if (isConstantFPBuildVectorOrConstantFP(N01) && 12710 !isConstantFPBuildVectorOrConstantFP(N00)) { 12711 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags); 12712 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags); 12713 } 12714 } 12715 12716 // Match a special-case: we convert X * 2.0 into fadd. 12717 // fmul (fadd X, X), C -> fmul X, 2.0 * C 12718 if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() && 12719 N0.getOperand(0) == N0.getOperand(1)) { 12720 const SDValue Two = DAG.getConstantFP(2.0, DL, VT); 12721 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags); 12722 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags); 12723 } 12724 } 12725 12726 // fold (fmul X, 2.0) -> (fadd X, X) 12727 if (N1CFP && N1CFP->isExactlyValue(+2.0)) 12728 return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags); 12729 12730 // fold (fmul X, -1.0) -> (fneg X) 12731 if (N1CFP && N1CFP->isExactlyValue(-1.0)) 12732 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 12733 return DAG.getNode(ISD::FNEG, DL, VT, N0); 12734 12735 // -N0 * -N1 --> N0 * N1 12736 TargetLowering::NegatibleCost CostN0 = 12737 TargetLowering::NegatibleCost::Expensive; 12738 TargetLowering::NegatibleCost CostN1 = 12739 TargetLowering::NegatibleCost::Expensive; 12740 SDValue NegN0 = 12741 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 12742 SDValue NegN1 = 12743 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 12744 if (NegN0 && NegN1 && 12745 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 12746 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 12747 return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1, Flags); 12748 12749 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X)) 12750 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X) 12751 if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() && 12752 (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) && 12753 TLI.isOperationLegal(ISD::FABS, VT)) { 12754 SDValue Select = N0, X = N1; 12755 if (Select.getOpcode() != ISD::SELECT) 12756 std::swap(Select, X); 12757 12758 SDValue Cond = Select.getOperand(0); 12759 auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1)); 12760 auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2)); 12761 12762 if (TrueOpnd && FalseOpnd && 12763 Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X && 12764 isa<ConstantFPSDNode>(Cond.getOperand(1)) && 12765 cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) { 12766 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 12767 switch (CC) { 12768 default: break; 12769 case ISD::SETOLT: 12770 case ISD::SETULT: 12771 case ISD::SETOLE: 12772 case ISD::SETULE: 12773 case ISD::SETLT: 12774 case ISD::SETLE: 12775 std::swap(TrueOpnd, FalseOpnd); 12776 LLVM_FALLTHROUGH; 12777 case ISD::SETOGT: 12778 case ISD::SETUGT: 12779 case ISD::SETOGE: 12780 case ISD::SETUGE: 12781 case ISD::SETGT: 12782 case ISD::SETGE: 12783 if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) && 12784 TLI.isOperationLegal(ISD::FNEG, VT)) 12785 return DAG.getNode(ISD::FNEG, DL, VT, 12786 DAG.getNode(ISD::FABS, DL, VT, X)); 12787 if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0)) 12788 return DAG.getNode(ISD::FABS, DL, VT, X); 12789 12790 break; 12791 } 12792 } 12793 } 12794 12795 // FMUL -> FMA combines: 12796 if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) { 12797 AddToWorklist(Fused.getNode()); 12798 return Fused; 12799 } 12800 12801 return SDValue(); 12802 } 12803 12804 SDValue DAGCombiner::visitFMA(SDNode *N) { 12805 SDValue N0 = N->getOperand(0); 12806 SDValue N1 = N->getOperand(1); 12807 SDValue N2 = N->getOperand(2); 12808 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 12809 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 12810 EVT VT = N->getValueType(0); 12811 SDLoc DL(N); 12812 const TargetOptions &Options = DAG.getTarget().Options; 12813 12814 // FMA nodes have flags that propagate to the created nodes. 12815 const SDNodeFlags Flags = N->getFlags(); 12816 bool UnsafeFPMath = Options.UnsafeFPMath || isContractable(N); 12817 12818 // Constant fold FMA. 12819 if (isa<ConstantFPSDNode>(N0) && 12820 isa<ConstantFPSDNode>(N1) && 12821 isa<ConstantFPSDNode>(N2)) { 12822 return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); 12823 } 12824 12825 // (-N0 * -N1) + N2 --> (N0 * N1) + N2 12826 TargetLowering::NegatibleCost CostN0 = 12827 TargetLowering::NegatibleCost::Expensive; 12828 TargetLowering::NegatibleCost CostN1 = 12829 TargetLowering::NegatibleCost::Expensive; 12830 SDValue NegN0 = 12831 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 12832 SDValue NegN1 = 12833 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 12834 if (NegN0 && NegN1 && 12835 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 12836 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 12837 return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2, Flags); 12838 12839 if (UnsafeFPMath) { 12840 if (N0CFP && N0CFP->isZero()) 12841 return N2; 12842 if (N1CFP && N1CFP->isZero()) 12843 return N2; 12844 } 12845 // TODO: The FMA node should have flags that propagate to these nodes. 12846 if (N0CFP && N0CFP->isExactlyValue(1.0)) 12847 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); 12848 if (N1CFP && N1CFP->isExactlyValue(1.0)) 12849 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); 12850 12851 // Canonicalize (fma c, x, y) -> (fma x, c, y) 12852 if (isConstantFPBuildVectorOrConstantFP(N0) && 12853 !isConstantFPBuildVectorOrConstantFP(N1)) 12854 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); 12855 12856 if (UnsafeFPMath) { 12857 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) 12858 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && 12859 isConstantFPBuildVectorOrConstantFP(N1) && 12860 isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { 12861 return DAG.getNode(ISD::FMUL, DL, VT, N0, 12862 DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1), 12863 Flags), Flags); 12864 } 12865 12866 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) 12867 if (N0.getOpcode() == ISD::FMUL && 12868 isConstantFPBuildVectorOrConstantFP(N1) && 12869 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 12870 return DAG.getNode(ISD::FMA, DL, VT, 12871 N0.getOperand(0), 12872 DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1), 12873 Flags), 12874 N2); 12875 } 12876 } 12877 12878 // (fma x, 1, y) -> (fadd x, y) 12879 // (fma x, -1, y) -> (fadd (fneg x), y) 12880 if (N1CFP) { 12881 if (N1CFP->isExactlyValue(1.0)) 12882 // TODO: The FMA node should have flags that propagate to this node. 12883 return DAG.getNode(ISD::FADD, DL, VT, N0, N2); 12884 12885 if (N1CFP->isExactlyValue(-1.0) && 12886 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { 12887 SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); 12888 AddToWorklist(RHSNeg.getNode()); 12889 // TODO: The FMA node should have flags that propagate to this node. 12890 return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); 12891 } 12892 12893 // fma (fneg x), K, y -> fma x -K, y 12894 if (N0.getOpcode() == ISD::FNEG && 12895 (TLI.isOperationLegal(ISD::ConstantFP, VT) || 12896 (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT, 12897 ForCodeSize)))) { 12898 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), 12899 DAG.getNode(ISD::FNEG, DL, VT, N1, Flags), N2); 12900 } 12901 } 12902 12903 if (UnsafeFPMath) { 12904 // (fma x, c, x) -> (fmul x, (c+1)) 12905 if (N1CFP && N0 == N2) { 12906 return DAG.getNode(ISD::FMUL, DL, VT, N0, 12907 DAG.getNode(ISD::FADD, DL, VT, N1, 12908 DAG.getConstantFP(1.0, DL, VT), Flags), 12909 Flags); 12910 } 12911 12912 // (fma x, c, (fneg x)) -> (fmul x, (c-1)) 12913 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { 12914 return DAG.getNode(ISD::FMUL, DL, VT, N0, 12915 DAG.getNode(ISD::FADD, DL, VT, N1, 12916 DAG.getConstantFP(-1.0, DL, VT), Flags), 12917 Flags); 12918 } 12919 } 12920 12921 // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z)) 12922 // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z)) 12923 if (!TLI.isFNegFree(VT)) 12924 if (SDValue Neg = TLI.getCheaperNegatedExpression( 12925 SDValue(N, 0), DAG, LegalOperations, ForCodeSize)) 12926 return DAG.getNode(ISD::FNEG, DL, VT, Neg, Flags); 12927 return SDValue(); 12928 } 12929 12930 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12931 // reciprocal. 12932 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) 12933 // Notice that this is not always beneficial. One reason is different targets 12934 // may have different costs for FDIV and FMUL, so sometimes the cost of two 12935 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason 12936 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". 12937 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { 12938 // TODO: Limit this transform based on optsize/minsize - it always creates at 12939 // least 1 extra instruction. But the perf win may be substantial enough 12940 // that only minsize should restrict this. 12941 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; 12942 const SDNodeFlags Flags = N->getFlags(); 12943 if (!UnsafeMath && !Flags.hasAllowReciprocal()) 12944 return SDValue(); 12945 12946 // Skip if current node is a reciprocal/fneg-reciprocal. 12947 SDValue N0 = N->getOperand(0); 12948 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true); 12949 if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0))) 12950 return SDValue(); 12951 12952 // Exit early if the target does not want this transform or if there can't 12953 // possibly be enough uses of the divisor to make the transform worthwhile. 12954 SDValue N1 = N->getOperand(1); 12955 unsigned MinUses = TLI.combineRepeatedFPDivisors(); 12956 12957 // For splat vectors, scale the number of uses by the splat factor. If we can 12958 // convert the division into a scalar op, that will likely be much faster. 12959 unsigned NumElts = 1; 12960 EVT VT = N->getValueType(0); 12961 if (VT.isVector() && DAG.isSplatValue(N1)) 12962 NumElts = VT.getVectorNumElements(); 12963 12964 if (!MinUses || (N1->use_size() * NumElts) < MinUses) 12965 return SDValue(); 12966 12967 // Find all FDIV users of the same divisor. 12968 // Use a set because duplicates may be present in the user list. 12969 SetVector<SDNode *> Users; 12970 for (auto *U : N1->uses()) { 12971 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { 12972 // This division is eligible for optimization only if global unsafe math 12973 // is enabled or if this division allows reciprocal formation. 12974 if (UnsafeMath || U->getFlags().hasAllowReciprocal()) 12975 Users.insert(U); 12976 } 12977 } 12978 12979 // Now that we have the actual number of divisor uses, make sure it meets 12980 // the minimum threshold specified by the target. 12981 if ((Users.size() * NumElts) < MinUses) 12982 return SDValue(); 12983 12984 SDLoc DL(N); 12985 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 12986 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); 12987 12988 // Dividend / Divisor -> Dividend * Reciprocal 12989 for (auto *U : Users) { 12990 SDValue Dividend = U->getOperand(0); 12991 if (Dividend != FPOne) { 12992 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, 12993 Reciprocal, Flags); 12994 CombineTo(U, NewNode); 12995 } else if (U != Reciprocal.getNode()) { 12996 // In the absence of fast-math-flags, this user node is always the 12997 // same node as Reciprocal, but with FMF they may be different nodes. 12998 CombineTo(U, Reciprocal); 12999 } 13000 } 13001 return SDValue(N, 0); // N was replaced. 13002 } 13003 13004 SDValue DAGCombiner::visitFDIV(SDNode *N) { 13005 SDValue N0 = N->getOperand(0); 13006 SDValue N1 = N->getOperand(1); 13007 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 13008 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 13009 EVT VT = N->getValueType(0); 13010 SDLoc DL(N); 13011 const TargetOptions &Options = DAG.getTarget().Options; 13012 SDNodeFlags Flags = N->getFlags(); 13013 13014 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13015 return R; 13016 13017 // fold vector ops 13018 if (VT.isVector()) 13019 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 13020 return FoldedVOp; 13021 13022 // fold (fdiv c1, c2) -> c1/c2 13023 if (N0CFP && N1CFP) 13024 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags); 13025 13026 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13027 return NewSel; 13028 13029 if (SDValue V = combineRepeatedFPDivisors(N)) 13030 return V; 13031 13032 if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) { 13033 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. 13034 if (N1CFP) { 13035 // Compute the reciprocal 1.0 / c2. 13036 const APFloat &N1APF = N1CFP->getValueAPF(); 13037 APFloat Recip(N1APF.getSemantics(), 1); // 1.0 13038 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); 13039 // Only do the transform if the reciprocal is a legal fp immediate that 13040 // isn't too nasty (eg NaN, denormal, ...). 13041 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty 13042 (!LegalOperations || 13043 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM 13044 // backend)... we should handle this gracefully after Legalize. 13045 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) || 13046 TLI.isOperationLegal(ISD::ConstantFP, VT) || 13047 TLI.isFPImmLegal(Recip, VT, ForCodeSize))) 13048 return DAG.getNode(ISD::FMUL, DL, VT, N0, 13049 DAG.getConstantFP(Recip, DL, VT), Flags); 13050 } 13051 13052 // If this FDIV is part of a reciprocal square root, it may be folded 13053 // into a target-specific square root estimate instruction. 13054 if (N1.getOpcode() == ISD::FSQRT) { 13055 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) 13056 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 13057 } else if (N1.getOpcode() == ISD::FP_EXTEND && 13058 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 13059 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), 13060 Flags)) { 13061 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); 13062 AddToWorklist(RV.getNode()); 13063 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 13064 } 13065 } else if (N1.getOpcode() == ISD::FP_ROUND && 13066 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 13067 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), 13068 Flags)) { 13069 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); 13070 AddToWorklist(RV.getNode()); 13071 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 13072 } 13073 } else if (N1.getOpcode() == ISD::FMUL) { 13074 // Look through an FMUL. Even though this won't remove the FDIV directly, 13075 // it's still worthwhile to get rid of the FSQRT if possible. 13076 SDValue SqrtOp; 13077 SDValue OtherOp; 13078 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { 13079 SqrtOp = N1.getOperand(0); 13080 OtherOp = N1.getOperand(1); 13081 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { 13082 SqrtOp = N1.getOperand(1); 13083 OtherOp = N1.getOperand(0); 13084 } 13085 if (SqrtOp.getNode()) { 13086 // We found a FSQRT, so try to make this fold: 13087 // x / (y * sqrt(z)) -> x * (rsqrt(z) / y) 13088 if (SDValue RV = buildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) { 13089 RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags); 13090 AddToWorklist(RV.getNode()); 13091 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 13092 } 13093 } 13094 } 13095 13096 // Fold into a reciprocal estimate and multiply instead of a real divide. 13097 if (SDValue RV = BuildDivEstimate(N0, N1, Flags)) 13098 return RV; 13099 } 13100 13101 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) 13102 TargetLowering::NegatibleCost CostN0 = 13103 TargetLowering::NegatibleCost::Expensive; 13104 TargetLowering::NegatibleCost CostN1 = 13105 TargetLowering::NegatibleCost::Expensive; 13106 SDValue NegN0 = 13107 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 13108 SDValue NegN1 = 13109 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 13110 if (NegN0 && NegN1 && 13111 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 13112 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 13113 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, NegN0, NegN1, Flags); 13114 13115 return SDValue(); 13116 } 13117 13118 SDValue DAGCombiner::visitFREM(SDNode *N) { 13119 SDValue N0 = N->getOperand(0); 13120 SDValue N1 = N->getOperand(1); 13121 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 13122 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 13123 EVT VT = N->getValueType(0); 13124 SDNodeFlags Flags = N->getFlags(); 13125 13126 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13127 return R; 13128 13129 // fold (frem c1, c2) -> fmod(c1,c2) 13130 if (N0CFP && N1CFP) 13131 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, N->getFlags()); 13132 13133 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13134 return NewSel; 13135 13136 return SDValue(); 13137 } 13138 13139 SDValue DAGCombiner::visitFSQRT(SDNode *N) { 13140 SDNodeFlags Flags = N->getFlags(); 13141 const TargetOptions &Options = DAG.getTarget().Options; 13142 13143 // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as: 13144 // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN 13145 if ((!Options.UnsafeFPMath && !Flags.hasApproximateFuncs()) || 13146 (!Options.NoInfsFPMath && !Flags.hasNoInfs())) 13147 return SDValue(); 13148 13149 SDValue N0 = N->getOperand(0); 13150 if (TLI.isFsqrtCheap(N0, DAG)) 13151 return SDValue(); 13152 13153 // FSQRT nodes have flags that propagate to the created nodes. 13154 return buildSqrtEstimate(N0, Flags); 13155 } 13156 13157 /// copysign(x, fp_extend(y)) -> copysign(x, y) 13158 /// copysign(x, fp_round(y)) -> copysign(x, y) 13159 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { 13160 SDValue N1 = N->getOperand(1); 13161 if ((N1.getOpcode() == ISD::FP_EXTEND || 13162 N1.getOpcode() == ISD::FP_ROUND)) { 13163 // Do not optimize out type conversion of f128 type yet. 13164 // For some targets like x86_64, configuration is changed to keep one f128 13165 // value in one SSE register, but instruction selection cannot handle 13166 // FCOPYSIGN on SSE registers yet. 13167 EVT N1VT = N1->getValueType(0); 13168 EVT N1Op0VT = N1->getOperand(0).getValueType(); 13169 return (N1VT == N1Op0VT || N1Op0VT != MVT::f128); 13170 } 13171 return false; 13172 } 13173 13174 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { 13175 SDValue N0 = N->getOperand(0); 13176 SDValue N1 = N->getOperand(1); 13177 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); 13178 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); 13179 EVT VT = N->getValueType(0); 13180 13181 if (N0CFP && N1CFP) // Constant fold 13182 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); 13183 13184 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) { 13185 const APFloat &V = N1C->getValueAPF(); 13186 // copysign(x, c1) -> fabs(x) iff ispos(c1) 13187 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) 13188 if (!V.isNegative()) { 13189 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) 13190 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 13191 } else { 13192 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 13193 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, 13194 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); 13195 } 13196 } 13197 13198 // copysign(fabs(x), y) -> copysign(x, y) 13199 // copysign(fneg(x), y) -> copysign(x, y) 13200 // copysign(copysign(x,z), y) -> copysign(x, y) 13201 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || 13202 N0.getOpcode() == ISD::FCOPYSIGN) 13203 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); 13204 13205 // copysign(x, abs(y)) -> abs(x) 13206 if (N1.getOpcode() == ISD::FABS) 13207 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 13208 13209 // copysign(x, copysign(y,z)) -> copysign(x, z) 13210 if (N1.getOpcode() == ISD::FCOPYSIGN) 13211 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); 13212 13213 // copysign(x, fp_extend(y)) -> copysign(x, y) 13214 // copysign(x, fp_round(y)) -> copysign(x, y) 13215 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) 13216 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); 13217 13218 return SDValue(); 13219 } 13220 13221 SDValue DAGCombiner::visitFPOW(SDNode *N) { 13222 ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1)); 13223 if (!ExponentC) 13224 return SDValue(); 13225 13226 // Try to convert x ** (1/3) into cube root. 13227 // TODO: Handle the various flavors of long double. 13228 // TODO: Since we're approximating, we don't need an exact 1/3 exponent. 13229 // Some range near 1/3 should be fine. 13230 EVT VT = N->getValueType(0); 13231 if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) || 13232 (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) { 13233 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0. 13234 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf. 13235 // pow(-val, 1/3) = nan; cbrt(-val) = -num. 13236 // For regular numbers, rounding may cause the results to differ. 13237 // Therefore, we require { nsz ninf nnan afn } for this transform. 13238 // TODO: We could select out the special cases if we don't have nsz/ninf. 13239 SDNodeFlags Flags = N->getFlags(); 13240 if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() || 13241 !Flags.hasApproximateFuncs()) 13242 return SDValue(); 13243 13244 // Do not create a cbrt() libcall if the target does not have it, and do not 13245 // turn a pow that has lowering support into a cbrt() libcall. 13246 if (!DAG.getLibInfo().has(LibFunc_cbrt) || 13247 (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) && 13248 DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT))) 13249 return SDValue(); 13250 13251 return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0), Flags); 13252 } 13253 13254 // Try to convert x ** (1/4) and x ** (3/4) into square roots. 13255 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case. 13256 // TODO: This could be extended (using a target hook) to handle smaller 13257 // power-of-2 fractional exponents. 13258 bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25); 13259 bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75); 13260 if (ExponentIs025 || ExponentIs075) { 13261 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0. 13262 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN. 13263 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0. 13264 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN. 13265 // For regular numbers, rounding may cause the results to differ. 13266 // Therefore, we require { nsz ninf afn } for this transform. 13267 // TODO: We could select out the special cases if we don't have nsz/ninf. 13268 SDNodeFlags Flags = N->getFlags(); 13269 13270 // We only need no signed zeros for the 0.25 case. 13271 if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() || 13272 !Flags.hasApproximateFuncs()) 13273 return SDValue(); 13274 13275 // Don't double the number of libcalls. We are trying to inline fast code. 13276 if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT)) 13277 return SDValue(); 13278 13279 // Assume that libcalls are the smallest code. 13280 // TODO: This restriction should probably be lifted for vectors. 13281 if (ForCodeSize) 13282 return SDValue(); 13283 13284 // pow(X, 0.25) --> sqrt(sqrt(X)) 13285 SDLoc DL(N); 13286 SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0), Flags); 13287 SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt, Flags); 13288 if (ExponentIs025) 13289 return SqrtSqrt; 13290 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X)) 13291 return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt, Flags); 13292 } 13293 13294 return SDValue(); 13295 } 13296 13297 static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG, 13298 const TargetLowering &TLI) { 13299 // This optimization is guarded by a function attribute because it may produce 13300 // unexpected results. Ie, programs may be relying on the platform-specific 13301 // undefined behavior when the float-to-int conversion overflows. 13302 const Function &F = DAG.getMachineFunction().getFunction(); 13303 Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow"); 13304 if (StrictOverflow.getValueAsString().equals("false")) 13305 return SDValue(); 13306 13307 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be 13308 // replacing casts with a libcall. We also must be allowed to ignore -0.0 13309 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer 13310 // conversions would return +0.0. 13311 // FIXME: We should be able to use node-level FMF here. 13312 // TODO: If strict math, should we use FABS (+ range check for signed cast)? 13313 EVT VT = N->getValueType(0); 13314 if (!TLI.isOperationLegal(ISD::FTRUNC, VT) || 13315 !DAG.getTarget().Options.NoSignedZerosFPMath) 13316 return SDValue(); 13317 13318 // fptosi/fptoui round towards zero, so converting from FP to integer and 13319 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X 13320 SDValue N0 = N->getOperand(0); 13321 if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT && 13322 N0.getOperand(0).getValueType() == VT) 13323 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); 13324 13325 if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT && 13326 N0.getOperand(0).getValueType() == VT) 13327 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); 13328 13329 return SDValue(); 13330 } 13331 13332 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { 13333 SDValue N0 = N->getOperand(0); 13334 EVT VT = N->getValueType(0); 13335 EVT OpVT = N0.getValueType(); 13336 13337 // [us]itofp(undef) = 0, because the result value is bounded. 13338 if (N0.isUndef()) 13339 return DAG.getConstantFP(0.0, SDLoc(N), VT); 13340 13341 // fold (sint_to_fp c1) -> c1fp 13342 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 13343 // ...but only if the target supports immediate floating-point values 13344 (!LegalOperations || 13345 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) 13346 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 13347 13348 // If the input is a legal type, and SINT_TO_FP is not legal on this target, 13349 // but UINT_TO_FP is legal on this target, try to convert. 13350 if (!hasOperation(ISD::SINT_TO_FP, OpVT) && 13351 hasOperation(ISD::UINT_TO_FP, OpVT)) { 13352 // If the sign bit is known to be zero, we can change this to UINT_TO_FP. 13353 if (DAG.SignBitIsZero(N0)) 13354 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 13355 } 13356 13357 // The next optimizations are desirable only if SELECT_CC can be lowered. 13358 // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0) 13359 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && 13360 !VT.isVector() && 13361 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 13362 SDLoc DL(N); 13363 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT), 13364 DAG.getConstantFP(0.0, DL, VT)); 13365 } 13366 13367 // fold (sint_to_fp (zext (setcc x, y, cc))) -> 13368 // (select (setcc x, y, cc), 1.0, 0.0) 13369 if (N0.getOpcode() == ISD::ZERO_EXTEND && 13370 N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() && 13371 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 13372 SDLoc DL(N); 13373 return DAG.getSelect(DL, VT, N0.getOperand(0), 13374 DAG.getConstantFP(1.0, DL, VT), 13375 DAG.getConstantFP(0.0, DL, VT)); 13376 } 13377 13378 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) 13379 return FTrunc; 13380 13381 return SDValue(); 13382 } 13383 13384 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { 13385 SDValue N0 = N->getOperand(0); 13386 EVT VT = N->getValueType(0); 13387 EVT OpVT = N0.getValueType(); 13388 13389 // [us]itofp(undef) = 0, because the result value is bounded. 13390 if (N0.isUndef()) 13391 return DAG.getConstantFP(0.0, SDLoc(N), VT); 13392 13393 // fold (uint_to_fp c1) -> c1fp 13394 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 13395 // ...but only if the target supports immediate floating-point values 13396 (!LegalOperations || 13397 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) 13398 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 13399 13400 // If the input is a legal type, and UINT_TO_FP is not legal on this target, 13401 // but SINT_TO_FP is legal on this target, try to convert. 13402 if (!hasOperation(ISD::UINT_TO_FP, OpVT) && 13403 hasOperation(ISD::SINT_TO_FP, OpVT)) { 13404 // If the sign bit is known to be zero, we can change this to SINT_TO_FP. 13405 if (DAG.SignBitIsZero(N0)) 13406 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 13407 } 13408 13409 // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0) 13410 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && 13411 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 13412 SDLoc DL(N); 13413 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT), 13414 DAG.getConstantFP(0.0, DL, VT)); 13415 } 13416 13417 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) 13418 return FTrunc; 13419 13420 return SDValue(); 13421 } 13422 13423 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x 13424 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { 13425 SDValue N0 = N->getOperand(0); 13426 EVT VT = N->getValueType(0); 13427 13428 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) 13429 return SDValue(); 13430 13431 SDValue Src = N0.getOperand(0); 13432 EVT SrcVT = Src.getValueType(); 13433 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; 13434 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; 13435 13436 // We can safely assume the conversion won't overflow the output range, 13437 // because (for example) (uint8_t)18293.f is undefined behavior. 13438 13439 // Since we can assume the conversion won't overflow, our decision as to 13440 // whether the input will fit in the float should depend on the minimum 13441 // of the input range and output range. 13442 13443 // This means this is also safe for a signed input and unsigned output, since 13444 // a negative input would lead to undefined behavior. 13445 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; 13446 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; 13447 unsigned ActualSize = std::min(InputSize, OutputSize); 13448 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); 13449 13450 // We can only fold away the float conversion if the input range can be 13451 // represented exactly in the float range. 13452 if (APFloat::semanticsPrecision(sem) >= ActualSize) { 13453 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { 13454 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND 13455 : ISD::ZERO_EXTEND; 13456 return DAG.getNode(ExtOp, SDLoc(N), VT, Src); 13457 } 13458 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) 13459 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); 13460 return DAG.getBitcast(VT, Src); 13461 } 13462 return SDValue(); 13463 } 13464 13465 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { 13466 SDValue N0 = N->getOperand(0); 13467 EVT VT = N->getValueType(0); 13468 13469 // fold (fp_to_sint undef) -> undef 13470 if (N0.isUndef()) 13471 return DAG.getUNDEF(VT); 13472 13473 // fold (fp_to_sint c1fp) -> c1 13474 if (isConstantFPBuildVectorOrConstantFP(N0)) 13475 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); 13476 13477 return FoldIntToFPToInt(N, DAG); 13478 } 13479 13480 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { 13481 SDValue N0 = N->getOperand(0); 13482 EVT VT = N->getValueType(0); 13483 13484 // fold (fp_to_uint undef) -> undef 13485 if (N0.isUndef()) 13486 return DAG.getUNDEF(VT); 13487 13488 // fold (fp_to_uint c1fp) -> c1 13489 if (isConstantFPBuildVectorOrConstantFP(N0)) 13490 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); 13491 13492 return FoldIntToFPToInt(N, DAG); 13493 } 13494 13495 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { 13496 SDValue N0 = N->getOperand(0); 13497 SDValue N1 = N->getOperand(1); 13498 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 13499 EVT VT = N->getValueType(0); 13500 13501 // fold (fp_round c1fp) -> c1fp 13502 if (N0CFP) 13503 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); 13504 13505 // fold (fp_round (fp_extend x)) -> x 13506 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) 13507 return N0.getOperand(0); 13508 13509 // fold (fp_round (fp_round x)) -> (fp_round x) 13510 if (N0.getOpcode() == ISD::FP_ROUND) { 13511 const bool NIsTrunc = N->getConstantOperandVal(1) == 1; 13512 const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1; 13513 13514 // Skip this folding if it results in an fp_round from f80 to f16. 13515 // 13516 // f80 to f16 always generates an expensive (and as yet, unimplemented) 13517 // libcall to __truncxfhf2 instead of selecting native f16 conversion 13518 // instructions from f32 or f64. Moreover, the first (value-preserving) 13519 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like 13520 // x86. 13521 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) 13522 return SDValue(); 13523 13524 // If the first fp_round isn't a value preserving truncation, it might 13525 // introduce a tie in the second fp_round, that wouldn't occur in the 13526 // single-step fp_round we want to fold to. 13527 // In other words, double rounding isn't the same as rounding. 13528 // Also, this is a value preserving truncation iff both fp_round's are. 13529 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { 13530 SDLoc DL(N); 13531 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), 13532 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); 13533 } 13534 } 13535 13536 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) 13537 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { 13538 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, 13539 N0.getOperand(0), N1); 13540 AddToWorklist(Tmp.getNode()); 13541 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 13542 Tmp, N0.getOperand(1)); 13543 } 13544 13545 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 13546 return NewVSel; 13547 13548 return SDValue(); 13549 } 13550 13551 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { 13552 SDValue N0 = N->getOperand(0); 13553 EVT VT = N->getValueType(0); 13554 13555 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. 13556 if (N->hasOneUse() && 13557 N->use_begin()->getOpcode() == ISD::FP_ROUND) 13558 return SDValue(); 13559 13560 // fold (fp_extend c1fp) -> c1fp 13561 if (isConstantFPBuildVectorOrConstantFP(N0)) 13562 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); 13563 13564 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) 13565 if (N0.getOpcode() == ISD::FP16_TO_FP && 13566 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) 13567 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); 13568 13569 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the 13570 // value of X. 13571 if (N0.getOpcode() == ISD::FP_ROUND 13572 && N0.getConstantOperandVal(1) == 1) { 13573 SDValue In = N0.getOperand(0); 13574 if (In.getValueType() == VT) return In; 13575 if (VT.bitsLT(In.getValueType())) 13576 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, 13577 In, N0.getOperand(1)); 13578 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); 13579 } 13580 13581 // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) 13582 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 13583 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 13584 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 13585 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 13586 LN0->getChain(), 13587 LN0->getBasePtr(), N0.getValueType(), 13588 LN0->getMemOperand()); 13589 CombineTo(N, ExtLoad); 13590 CombineTo(N0.getNode(), 13591 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), 13592 N0.getValueType(), ExtLoad, 13593 DAG.getIntPtrConstant(1, SDLoc(N0))), 13594 ExtLoad.getValue(1)); 13595 return SDValue(N, 0); // Return N so it doesn't get rechecked! 13596 } 13597 13598 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 13599 return NewVSel; 13600 13601 return SDValue(); 13602 } 13603 13604 SDValue DAGCombiner::visitFCEIL(SDNode *N) { 13605 SDValue N0 = N->getOperand(0); 13606 EVT VT = N->getValueType(0); 13607 13608 // fold (fceil c1) -> fceil(c1) 13609 if (isConstantFPBuildVectorOrConstantFP(N0)) 13610 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); 13611 13612 return SDValue(); 13613 } 13614 13615 SDValue DAGCombiner::visitFTRUNC(SDNode *N) { 13616 SDValue N0 = N->getOperand(0); 13617 EVT VT = N->getValueType(0); 13618 13619 // fold (ftrunc c1) -> ftrunc(c1) 13620 if (isConstantFPBuildVectorOrConstantFP(N0)) 13621 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); 13622 13623 // fold ftrunc (known rounded int x) -> x 13624 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is 13625 // likely to be generated to extract integer from a rounded floating value. 13626 switch (N0.getOpcode()) { 13627 default: break; 13628 case ISD::FRINT: 13629 case ISD::FTRUNC: 13630 case ISD::FNEARBYINT: 13631 case ISD::FFLOOR: 13632 case ISD::FCEIL: 13633 return N0; 13634 } 13635 13636 return SDValue(); 13637 } 13638 13639 SDValue DAGCombiner::visitFFLOOR(SDNode *N) { 13640 SDValue N0 = N->getOperand(0); 13641 EVT VT = N->getValueType(0); 13642 13643 // fold (ffloor c1) -> ffloor(c1) 13644 if (isConstantFPBuildVectorOrConstantFP(N0)) 13645 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); 13646 13647 return SDValue(); 13648 } 13649 13650 // FIXME: FNEG and FABS have a lot in common; refactor. 13651 SDValue DAGCombiner::visitFNEG(SDNode *N) { 13652 SDValue N0 = N->getOperand(0); 13653 EVT VT = N->getValueType(0); 13654 13655 // Constant fold FNEG. 13656 if (isConstantFPBuildVectorOrConstantFP(N0)) 13657 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); 13658 13659 if (SDValue NegN0 = 13660 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize)) 13661 return NegN0; 13662 13663 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 13664 // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't 13665 // know it was called from a context with a nsz flag if the input fsub does 13666 // not. 13667 if (N0.getOpcode() == ISD::FSUB && 13668 (DAG.getTarget().Options.NoSignedZerosFPMath || 13669 N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) { 13670 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1), 13671 N0.getOperand(0), N->getFlags()); 13672 } 13673 13674 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading 13675 // constant pool values. 13676 if (!TLI.isFNegFree(VT) && 13677 N0.getOpcode() == ISD::BITCAST && 13678 N0.getNode()->hasOneUse()) { 13679 SDValue Int = N0.getOperand(0); 13680 EVT IntVT = Int.getValueType(); 13681 if (IntVT.isInteger() && !IntVT.isVector()) { 13682 APInt SignMask; 13683 if (N0.getValueType().isVector()) { 13684 // For a vector, get a mask such as 0x80... per scalar element 13685 // and splat it. 13686 SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits()); 13687 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 13688 } else { 13689 // For a scalar, just generate 0x80... 13690 SignMask = APInt::getSignMask(IntVT.getSizeInBits()); 13691 } 13692 SDLoc DL0(N0); 13693 Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int, 13694 DAG.getConstant(SignMask, DL0, IntVT)); 13695 AddToWorklist(Int.getNode()); 13696 return DAG.getBitcast(VT, Int); 13697 } 13698 } 13699 13700 // (fneg (fmul c, x)) -> (fmul -c, x) 13701 if (N0.getOpcode() == ISD::FMUL && 13702 (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) { 13703 ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 13704 if (CFP1) { 13705 APFloat CVal = CFP1->getValueAPF(); 13706 CVal.changeSign(); 13707 if (LegalDAG && (TLI.isFPImmLegal(CVal, VT, ForCodeSize) || 13708 TLI.isOperationLegal(ISD::ConstantFP, VT))) 13709 return DAG.getNode( 13710 ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), 13711 DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0.getOperand(1)), 13712 N0->getFlags()); 13713 } 13714 } 13715 13716 return SDValue(); 13717 } 13718 13719 static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N, 13720 APFloat (*Op)(const APFloat &, const APFloat &)) { 13721 SDValue N0 = N->getOperand(0); 13722 SDValue N1 = N->getOperand(1); 13723 EVT VT = N->getValueType(0); 13724 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 13725 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 13726 13727 if (N0CFP && N1CFP) { 13728 const APFloat &C0 = N0CFP->getValueAPF(); 13729 const APFloat &C1 = N1CFP->getValueAPF(); 13730 return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT); 13731 } 13732 13733 // Canonicalize to constant on RHS. 13734 if (isConstantFPBuildVectorOrConstantFP(N0) && 13735 !isConstantFPBuildVectorOrConstantFP(N1)) 13736 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 13737 13738 return SDValue(); 13739 } 13740 13741 SDValue DAGCombiner::visitFMINNUM(SDNode *N) { 13742 return visitFMinMax(DAG, N, minnum); 13743 } 13744 13745 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { 13746 return visitFMinMax(DAG, N, maxnum); 13747 } 13748 13749 SDValue DAGCombiner::visitFMINIMUM(SDNode *N) { 13750 return visitFMinMax(DAG, N, minimum); 13751 } 13752 13753 SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) { 13754 return visitFMinMax(DAG, N, maximum); 13755 } 13756 13757 SDValue DAGCombiner::visitFABS(SDNode *N) { 13758 SDValue N0 = N->getOperand(0); 13759 EVT VT = N->getValueType(0); 13760 13761 // fold (fabs c1) -> fabs(c1) 13762 if (isConstantFPBuildVectorOrConstantFP(N0)) 13763 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 13764 13765 // fold (fabs (fabs x)) -> (fabs x) 13766 if (N0.getOpcode() == ISD::FABS) 13767 return N->getOperand(0); 13768 13769 // fold (fabs (fneg x)) -> (fabs x) 13770 // fold (fabs (fcopysign x, y)) -> (fabs x) 13771 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) 13772 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); 13773 13774 // fabs(bitcast(x)) -> bitcast(x & ~sign) to avoid constant pool loads. 13775 if (!TLI.isFAbsFree(VT) && N0.getOpcode() == ISD::BITCAST && N0.hasOneUse()) { 13776 SDValue Int = N0.getOperand(0); 13777 EVT IntVT = Int.getValueType(); 13778 if (IntVT.isInteger() && !IntVT.isVector()) { 13779 APInt SignMask; 13780 if (N0.getValueType().isVector()) { 13781 // For a vector, get a mask such as 0x7f... per scalar element 13782 // and splat it. 13783 SignMask = ~APInt::getSignMask(N0.getScalarValueSizeInBits()); 13784 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 13785 } else { 13786 // For a scalar, just generate 0x7f... 13787 SignMask = ~APInt::getSignMask(IntVT.getSizeInBits()); 13788 } 13789 SDLoc DL(N0); 13790 Int = DAG.getNode(ISD::AND, DL, IntVT, Int, 13791 DAG.getConstant(SignMask, DL, IntVT)); 13792 AddToWorklist(Int.getNode()); 13793 return DAG.getBitcast(N->getValueType(0), Int); 13794 } 13795 } 13796 13797 return SDValue(); 13798 } 13799 13800 SDValue DAGCombiner::visitBRCOND(SDNode *N) { 13801 SDValue Chain = N->getOperand(0); 13802 SDValue N1 = N->getOperand(1); 13803 SDValue N2 = N->getOperand(2); 13804 13805 // If N is a constant we could fold this into a fallthrough or unconditional 13806 // branch. However that doesn't happen very often in normal code, because 13807 // Instcombine/SimplifyCFG should have handled the available opportunities. 13808 // If we did this folding here, it would be necessary to update the 13809 // MachineBasicBlock CFG, which is awkward. 13810 13811 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal 13812 // on the target. 13813 if (N1.getOpcode() == ISD::SETCC && 13814 TLI.isOperationLegalOrCustom(ISD::BR_CC, 13815 N1.getOperand(0).getValueType())) { 13816 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 13817 Chain, N1.getOperand(2), 13818 N1.getOperand(0), N1.getOperand(1), N2); 13819 } 13820 13821 if (N1.hasOneUse()) { 13822 // rebuildSetCC calls visitXor which may change the Chain when there is a 13823 // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes. 13824 HandleSDNode ChainHandle(Chain); 13825 if (SDValue NewN1 = rebuildSetCC(N1)) 13826 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, 13827 ChainHandle.getValue(), NewN1, N2); 13828 } 13829 13830 return SDValue(); 13831 } 13832 13833 SDValue DAGCombiner::rebuildSetCC(SDValue N) { 13834 if (N.getOpcode() == ISD::SRL || 13835 (N.getOpcode() == ISD::TRUNCATE && 13836 (N.getOperand(0).hasOneUse() && 13837 N.getOperand(0).getOpcode() == ISD::SRL))) { 13838 // Look pass the truncate. 13839 if (N.getOpcode() == ISD::TRUNCATE) 13840 N = N.getOperand(0); 13841 13842 // Match this pattern so that we can generate simpler code: 13843 // 13844 // %a = ... 13845 // %b = and i32 %a, 2 13846 // %c = srl i32 %b, 1 13847 // brcond i32 %c ... 13848 // 13849 // into 13850 // 13851 // %a = ... 13852 // %b = and i32 %a, 2 13853 // %c = setcc eq %b, 0 13854 // brcond %c ... 13855 // 13856 // This applies only when the AND constant value has one bit set and the 13857 // SRL constant is equal to the log2 of the AND constant. The back-end is 13858 // smart enough to convert the result into a TEST/JMP sequence. 13859 SDValue Op0 = N.getOperand(0); 13860 SDValue Op1 = N.getOperand(1); 13861 13862 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) { 13863 SDValue AndOp1 = Op0.getOperand(1); 13864 13865 if (AndOp1.getOpcode() == ISD::Constant) { 13866 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); 13867 13868 if (AndConst.isPowerOf2() && 13869 cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) { 13870 SDLoc DL(N); 13871 return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()), 13872 Op0, DAG.getConstant(0, DL, Op0.getValueType()), 13873 ISD::SETNE); 13874 } 13875 } 13876 } 13877 } 13878 13879 // Transform br(xor(x, y)) -> br(x != y) 13880 // Transform br(xor(xor(x,y), 1)) -> br (x == y) 13881 if (N.getOpcode() == ISD::XOR) { 13882 // Because we may call this on a speculatively constructed 13883 // SimplifiedSetCC Node, we need to simplify this node first. 13884 // Ideally this should be folded into SimplifySetCC and not 13885 // here. For now, grab a handle to N so we don't lose it from 13886 // replacements interal to the visit. 13887 HandleSDNode XORHandle(N); 13888 while (N.getOpcode() == ISD::XOR) { 13889 SDValue Tmp = visitXOR(N.getNode()); 13890 // No simplification done. 13891 if (!Tmp.getNode()) 13892 break; 13893 // Returning N is form in-visit replacement that may invalidated 13894 // N. Grab value from Handle. 13895 if (Tmp.getNode() == N.getNode()) 13896 N = XORHandle.getValue(); 13897 else // Node simplified. Try simplifying again. 13898 N = Tmp; 13899 } 13900 13901 if (N.getOpcode() != ISD::XOR) 13902 return N; 13903 13904 SDNode *TheXor = N.getNode(); 13905 13906 SDValue Op0 = TheXor->getOperand(0); 13907 SDValue Op1 = TheXor->getOperand(1); 13908 13909 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { 13910 bool Equal = false; 13911 if (isOneConstant(Op0) && Op0.hasOneUse() && 13912 Op0.getOpcode() == ISD::XOR) { 13913 TheXor = Op0.getNode(); 13914 Equal = true; 13915 } 13916 13917 EVT SetCCVT = N.getValueType(); 13918 if (LegalTypes) 13919 SetCCVT = getSetCCResultType(SetCCVT); 13920 // Replace the uses of XOR with SETCC 13921 return DAG.getSetCC(SDLoc(TheXor), SetCCVT, Op0, Op1, 13922 Equal ? ISD::SETEQ : ISD::SETNE); 13923 } 13924 } 13925 13926 return SDValue(); 13927 } 13928 13929 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. 13930 // 13931 SDValue DAGCombiner::visitBR_CC(SDNode *N) { 13932 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); 13933 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); 13934 13935 // If N is a constant we could fold this into a fallthrough or unconditional 13936 // branch. However that doesn't happen very often in normal code, because 13937 // Instcombine/SimplifyCFG should have handled the available opportunities. 13938 // If we did this folding here, it would be necessary to update the 13939 // MachineBasicBlock CFG, which is awkward. 13940 13941 // Use SimplifySetCC to simplify SETCC's. 13942 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), 13943 CondLHS, CondRHS, CC->get(), SDLoc(N), 13944 false); 13945 if (Simp.getNode()) AddToWorklist(Simp.getNode()); 13946 13947 // fold to a simpler setcc 13948 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) 13949 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 13950 N->getOperand(0), Simp.getOperand(2), 13951 Simp.getOperand(0), Simp.getOperand(1), 13952 N->getOperand(4)); 13953 13954 return SDValue(); 13955 } 13956 13957 /// Return true if 'Use' is a load or a store that uses N as its base pointer 13958 /// and that N may be folded in the load / store addressing mode. 13959 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, 13960 SelectionDAG &DAG, 13961 const TargetLowering &TLI) { 13962 EVT VT; 13963 unsigned AS; 13964 13965 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { 13966 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 13967 return false; 13968 VT = LD->getMemoryVT(); 13969 AS = LD->getAddressSpace(); 13970 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { 13971 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 13972 return false; 13973 VT = ST->getMemoryVT(); 13974 AS = ST->getAddressSpace(); 13975 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(Use)) { 13976 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 13977 return false; 13978 VT = LD->getMemoryVT(); 13979 AS = LD->getAddressSpace(); 13980 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(Use)) { 13981 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 13982 return false; 13983 VT = ST->getMemoryVT(); 13984 AS = ST->getAddressSpace(); 13985 } else 13986 return false; 13987 13988 TargetLowering::AddrMode AM; 13989 if (N->getOpcode() == ISD::ADD) { 13990 AM.HasBaseReg = true; 13991 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 13992 if (Offset) 13993 // [reg +/- imm] 13994 AM.BaseOffs = Offset->getSExtValue(); 13995 else 13996 // [reg +/- reg] 13997 AM.Scale = 1; 13998 } else if (N->getOpcode() == ISD::SUB) { 13999 AM.HasBaseReg = true; 14000 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 14001 if (Offset) 14002 // [reg +/- imm] 14003 AM.BaseOffs = -Offset->getSExtValue(); 14004 else 14005 // [reg +/- reg] 14006 AM.Scale = 1; 14007 } else 14008 return false; 14009 14010 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, 14011 VT.getTypeForEVT(*DAG.getContext()), AS); 14012 } 14013 14014 static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec, 14015 bool &IsLoad, bool &IsMasked, SDValue &Ptr, 14016 const TargetLowering &TLI) { 14017 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 14018 if (LD->isIndexed()) 14019 return false; 14020 EVT VT = LD->getMemoryVT(); 14021 if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT)) 14022 return false; 14023 Ptr = LD->getBasePtr(); 14024 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 14025 if (ST->isIndexed()) 14026 return false; 14027 EVT VT = ST->getMemoryVT(); 14028 if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT)) 14029 return false; 14030 Ptr = ST->getBasePtr(); 14031 IsLoad = false; 14032 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) { 14033 if (LD->isIndexed()) 14034 return false; 14035 EVT VT = LD->getMemoryVT(); 14036 if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) && 14037 !TLI.isIndexedMaskedLoadLegal(Dec, VT)) 14038 return false; 14039 Ptr = LD->getBasePtr(); 14040 IsMasked = true; 14041 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) { 14042 if (ST->isIndexed()) 14043 return false; 14044 EVT VT = ST->getMemoryVT(); 14045 if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) && 14046 !TLI.isIndexedMaskedStoreLegal(Dec, VT)) 14047 return false; 14048 Ptr = ST->getBasePtr(); 14049 IsLoad = false; 14050 IsMasked = true; 14051 } else { 14052 return false; 14053 } 14054 return true; 14055 } 14056 14057 /// Try turning a load/store into a pre-indexed load/store when the base 14058 /// pointer is an add or subtract and it has other uses besides the load/store. 14059 /// After the transformation, the new indexed load/store has effectively folded 14060 /// the add/subtract in and all of its other uses are redirected to the 14061 /// new load/store. 14062 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { 14063 if (Level < AfterLegalizeDAG) 14064 return false; 14065 14066 bool IsLoad = true; 14067 bool IsMasked = false; 14068 SDValue Ptr; 14069 if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked, 14070 Ptr, TLI)) 14071 return false; 14072 14073 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail 14074 // out. There is no reason to make this a preinc/predec. 14075 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || 14076 Ptr.getNode()->hasOneUse()) 14077 return false; 14078 14079 // Ask the target to do addressing mode selection. 14080 SDValue BasePtr; 14081 SDValue Offset; 14082 ISD::MemIndexedMode AM = ISD::UNINDEXED; 14083 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) 14084 return false; 14085 14086 // Backends without true r+i pre-indexed forms may need to pass a 14087 // constant base with a variable offset so that constant coercion 14088 // will work with the patterns in canonical form. 14089 bool Swapped = false; 14090 if (isa<ConstantSDNode>(BasePtr)) { 14091 std::swap(BasePtr, Offset); 14092 Swapped = true; 14093 } 14094 14095 // Don't create a indexed load / store with zero offset. 14096 if (isNullConstant(Offset)) 14097 return false; 14098 14099 // Try turning it into a pre-indexed load / store except when: 14100 // 1) The new base ptr is a frame index. 14101 // 2) If N is a store and the new base ptr is either the same as or is a 14102 // predecessor of the value being stored. 14103 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded 14104 // that would create a cycle. 14105 // 4) All uses are load / store ops that use it as old base ptr. 14106 14107 // Check #1. Preinc'ing a frame index would require copying the stack pointer 14108 // (plus the implicit offset) to a register to preinc anyway. 14109 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 14110 return false; 14111 14112 // Check #2. 14113 if (!IsLoad) { 14114 SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue() 14115 : cast<StoreSDNode>(N)->getValue(); 14116 14117 // Would require a copy. 14118 if (Val == BasePtr) 14119 return false; 14120 14121 // Would create a cycle. 14122 if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode())) 14123 return false; 14124 } 14125 14126 // Caches for hasPredecessorHelper. 14127 SmallPtrSet<const SDNode *, 32> Visited; 14128 SmallVector<const SDNode *, 16> Worklist; 14129 Worklist.push_back(N); 14130 14131 // If the offset is a constant, there may be other adds of constants that 14132 // can be folded with this one. We should do this to avoid having to keep 14133 // a copy of the original base pointer. 14134 SmallVector<SDNode *, 16> OtherUses; 14135 if (isa<ConstantSDNode>(Offset)) 14136 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), 14137 UE = BasePtr.getNode()->use_end(); 14138 UI != UE; ++UI) { 14139 SDUse &Use = UI.getUse(); 14140 // Skip the use that is Ptr and uses of other results from BasePtr's 14141 // node (important for nodes that return multiple results). 14142 if (Use.getUser() == Ptr.getNode() || Use != BasePtr) 14143 continue; 14144 14145 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) 14146 continue; 14147 14148 if (Use.getUser()->getOpcode() != ISD::ADD && 14149 Use.getUser()->getOpcode() != ISD::SUB) { 14150 OtherUses.clear(); 14151 break; 14152 } 14153 14154 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); 14155 if (!isa<ConstantSDNode>(Op1)) { 14156 OtherUses.clear(); 14157 break; 14158 } 14159 14160 // FIXME: In some cases, we can be smarter about this. 14161 if (Op1.getValueType() != Offset.getValueType()) { 14162 OtherUses.clear(); 14163 break; 14164 } 14165 14166 OtherUses.push_back(Use.getUser()); 14167 } 14168 14169 if (Swapped) 14170 std::swap(BasePtr, Offset); 14171 14172 // Now check for #3 and #4. 14173 bool RealUse = false; 14174 14175 for (SDNode *Use : Ptr.getNode()->uses()) { 14176 if (Use == N) 14177 continue; 14178 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) 14179 return false; 14180 14181 // If Ptr may be folded in addressing mode of other use, then it's 14182 // not profitable to do this transformation. 14183 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) 14184 RealUse = true; 14185 } 14186 14187 if (!RealUse) 14188 return false; 14189 14190 SDValue Result; 14191 if (!IsMasked) { 14192 if (IsLoad) 14193 Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); 14194 else 14195 Result = 14196 DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); 14197 } else { 14198 if (IsLoad) 14199 Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr, 14200 Offset, AM); 14201 else 14202 Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr, 14203 Offset, AM); 14204 } 14205 ++PreIndexedNodes; 14206 ++NodesCombined; 14207 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: "; 14208 Result.getNode()->dump(&DAG); dbgs() << '\n'); 14209 WorklistRemover DeadNodes(*this); 14210 if (IsLoad) { 14211 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 14212 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 14213 } else { 14214 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 14215 } 14216 14217 // Finally, since the node is now dead, remove it from the graph. 14218 deleteAndRecombine(N); 14219 14220 if (Swapped) 14221 std::swap(BasePtr, Offset); 14222 14223 // Replace other uses of BasePtr that can be updated to use Ptr 14224 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { 14225 unsigned OffsetIdx = 1; 14226 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) 14227 OffsetIdx = 0; 14228 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == 14229 BasePtr.getNode() && "Expected BasePtr operand"); 14230 14231 // We need to replace ptr0 in the following expression: 14232 // x0 * offset0 + y0 * ptr0 = t0 14233 // knowing that 14234 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) 14235 // 14236 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the 14237 // indexed load/store and the expression that needs to be re-written. 14238 // 14239 // Therefore, we have: 14240 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 14241 14242 ConstantSDNode *CN = 14243 cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); 14244 int X0, X1, Y0, Y1; 14245 const APInt &Offset0 = CN->getAPIntValue(); 14246 APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); 14247 14248 X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; 14249 Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; 14250 X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; 14251 Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; 14252 14253 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; 14254 14255 APInt CNV = Offset0; 14256 if (X0 < 0) CNV = -CNV; 14257 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; 14258 else CNV = CNV - Offset1; 14259 14260 SDLoc DL(OtherUses[i]); 14261 14262 // We can now generate the new expression. 14263 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); 14264 SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0); 14265 14266 SDValue NewUse = DAG.getNode(Opcode, 14267 DL, 14268 OtherUses[i]->getValueType(0), NewOp1, NewOp2); 14269 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); 14270 deleteAndRecombine(OtherUses[i]); 14271 } 14272 14273 // Replace the uses of Ptr with uses of the updated base value. 14274 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0)); 14275 deleteAndRecombine(Ptr.getNode()); 14276 AddToWorklist(Result.getNode()); 14277 14278 return true; 14279 } 14280 14281 static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse, 14282 SDValue &BasePtr, SDValue &Offset, 14283 ISD::MemIndexedMode &AM, 14284 SelectionDAG &DAG, 14285 const TargetLowering &TLI) { 14286 if (PtrUse == N || 14287 (PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB)) 14288 return false; 14289 14290 if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG)) 14291 return false; 14292 14293 // Don't create a indexed load / store with zero offset. 14294 if (isNullConstant(Offset)) 14295 return false; 14296 14297 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 14298 return false; 14299 14300 SmallPtrSet<const SDNode *, 32> Visited; 14301 for (SDNode *Use : BasePtr.getNode()->uses()) { 14302 if (Use == Ptr.getNode()) 14303 continue; 14304 14305 // No if there's a later user which could perform the index instead. 14306 if (isa<MemSDNode>(Use)) { 14307 bool IsLoad = true; 14308 bool IsMasked = false; 14309 SDValue OtherPtr; 14310 if (getCombineLoadStoreParts(Use, ISD::POST_INC, ISD::POST_DEC, IsLoad, 14311 IsMasked, OtherPtr, TLI)) { 14312 SmallVector<const SDNode *, 2> Worklist; 14313 Worklist.push_back(Use); 14314 if (SDNode::hasPredecessorHelper(N, Visited, Worklist)) 14315 return false; 14316 } 14317 } 14318 14319 // If all the uses are load / store addresses, then don't do the 14320 // transformation. 14321 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB) { 14322 for (SDNode *UseUse : Use->uses()) 14323 if (canFoldInAddressingMode(Use, UseUse, DAG, TLI)) 14324 return false; 14325 } 14326 } 14327 return true; 14328 } 14329 14330 static SDNode *getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad, 14331 bool &IsMasked, SDValue &Ptr, 14332 SDValue &BasePtr, SDValue &Offset, 14333 ISD::MemIndexedMode &AM, 14334 SelectionDAG &DAG, 14335 const TargetLowering &TLI) { 14336 if (!getCombineLoadStoreParts(N, ISD::POST_INC, ISD::POST_DEC, IsLoad, 14337 IsMasked, Ptr, TLI) || 14338 Ptr.getNode()->hasOneUse()) 14339 return nullptr; 14340 14341 // Try turning it into a post-indexed load / store except when 14342 // 1) All uses are load / store ops that use it as base ptr (and 14343 // it may be folded as addressing mmode). 14344 // 2) Op must be independent of N, i.e. Op is neither a predecessor 14345 // nor a successor of N. Otherwise, if Op is folded that would 14346 // create a cycle. 14347 for (SDNode *Op : Ptr->uses()) { 14348 // Check for #1. 14349 if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI)) 14350 continue; 14351 14352 // Check for #2. 14353 SmallPtrSet<const SDNode *, 32> Visited; 14354 SmallVector<const SDNode *, 8> Worklist; 14355 // Ptr is predecessor to both N and Op. 14356 Visited.insert(Ptr.getNode()); 14357 Worklist.push_back(N); 14358 Worklist.push_back(Op); 14359 if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) && 14360 !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) 14361 return Op; 14362 } 14363 return nullptr; 14364 } 14365 14366 /// Try to combine a load/store with a add/sub of the base pointer node into a 14367 /// post-indexed load/store. The transformation folded the add/subtract into the 14368 /// new indexed load/store effectively and all of its uses are redirected to the 14369 /// new load/store. 14370 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { 14371 if (Level < AfterLegalizeDAG) 14372 return false; 14373 14374 bool IsLoad = true; 14375 bool IsMasked = false; 14376 SDValue Ptr; 14377 SDValue BasePtr; 14378 SDValue Offset; 14379 ISD::MemIndexedMode AM = ISD::UNINDEXED; 14380 SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr, 14381 Offset, AM, DAG, TLI); 14382 if (!Op) 14383 return false; 14384 14385 SDValue Result; 14386 if (!IsMasked) 14387 Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, 14388 Offset, AM) 14389 : DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), 14390 BasePtr, Offset, AM); 14391 else 14392 Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), 14393 BasePtr, Offset, AM) 14394 : DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), 14395 BasePtr, Offset, AM); 14396 ++PostIndexedNodes; 14397 ++NodesCombined; 14398 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); 14399 dbgs() << "\nWith: "; Result.getNode()->dump(&DAG); 14400 dbgs() << '\n'); 14401 WorklistRemover DeadNodes(*this); 14402 if (IsLoad) { 14403 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 14404 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 14405 } else { 14406 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 14407 } 14408 14409 // Finally, since the node is now dead, remove it from the graph. 14410 deleteAndRecombine(N); 14411 14412 // Replace the uses of Use with uses of the updated base value. 14413 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), 14414 Result.getValue(IsLoad ? 1 : 0)); 14415 deleteAndRecombine(Op); 14416 return true; 14417 } 14418 14419 /// Return the base-pointer arithmetic from an indexed \p LD. 14420 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { 14421 ISD::MemIndexedMode AM = LD->getAddressingMode(); 14422 assert(AM != ISD::UNINDEXED); 14423 SDValue BP = LD->getOperand(1); 14424 SDValue Inc = LD->getOperand(2); 14425 14426 // Some backends use TargetConstants for load offsets, but don't expect 14427 // TargetConstants in general ADD nodes. We can convert these constants into 14428 // regular Constants (if the constant is not opaque). 14429 assert((Inc.getOpcode() != ISD::TargetConstant || 14430 !cast<ConstantSDNode>(Inc)->isOpaque()) && 14431 "Cannot split out indexing using opaque target constants"); 14432 if (Inc.getOpcode() == ISD::TargetConstant) { 14433 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); 14434 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), 14435 ConstInc->getValueType(0)); 14436 } 14437 14438 unsigned Opc = 14439 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); 14440 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); 14441 } 14442 14443 static inline int numVectorEltsOrZero(EVT T) { 14444 return T.isVector() ? T.getVectorNumElements() : 0; 14445 } 14446 14447 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) { 14448 Val = ST->getValue(); 14449 EVT STType = Val.getValueType(); 14450 EVT STMemType = ST->getMemoryVT(); 14451 if (STType == STMemType) 14452 return true; 14453 if (isTypeLegal(STMemType)) 14454 return false; // fail. 14455 if (STType.isFloatingPoint() && STMemType.isFloatingPoint() && 14456 TLI.isOperationLegal(ISD::FTRUNC, STMemType)) { 14457 Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val); 14458 return true; 14459 } 14460 if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) && 14461 STType.isInteger() && STMemType.isInteger()) { 14462 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val); 14463 return true; 14464 } 14465 if (STType.getSizeInBits() == STMemType.getSizeInBits()) { 14466 Val = DAG.getBitcast(STMemType, Val); 14467 return true; 14468 } 14469 return false; // fail. 14470 } 14471 14472 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) { 14473 EVT LDMemType = LD->getMemoryVT(); 14474 EVT LDType = LD->getValueType(0); 14475 assert(Val.getValueType() == LDMemType && 14476 "Attempting to extend value of non-matching type"); 14477 if (LDType == LDMemType) 14478 return true; 14479 if (LDMemType.isInteger() && LDType.isInteger()) { 14480 switch (LD->getExtensionType()) { 14481 case ISD::NON_EXTLOAD: 14482 Val = DAG.getBitcast(LDType, Val); 14483 return true; 14484 case ISD::EXTLOAD: 14485 Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val); 14486 return true; 14487 case ISD::SEXTLOAD: 14488 Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val); 14489 return true; 14490 case ISD::ZEXTLOAD: 14491 Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val); 14492 return true; 14493 } 14494 } 14495 return false; 14496 } 14497 14498 SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) { 14499 if (OptLevel == CodeGenOpt::None || !LD->isSimple()) 14500 return SDValue(); 14501 SDValue Chain = LD->getOperand(0); 14502 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode()); 14503 // TODO: Relax this restriction for unordered atomics (see D66309) 14504 if (!ST || !ST->isSimple()) 14505 return SDValue(); 14506 14507 EVT LDType = LD->getValueType(0); 14508 EVT LDMemType = LD->getMemoryVT(); 14509 EVT STMemType = ST->getMemoryVT(); 14510 EVT STType = ST->getValue().getValueType(); 14511 14512 BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG); 14513 BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG); 14514 int64_t Offset; 14515 if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset)) 14516 return SDValue(); 14517 14518 // Normalize for Endianness. After this Offset=0 will denote that the least 14519 // significant bit in the loaded value maps to the least significant bit in 14520 // the stored value). With Offset=n (for n > 0) the loaded value starts at the 14521 // n:th least significant byte of the stored value. 14522 if (DAG.getDataLayout().isBigEndian()) 14523 Offset = ((int64_t)STMemType.getStoreSizeInBits() - 14524 (int64_t)LDMemType.getStoreSizeInBits()) / 8 - Offset; 14525 14526 // Check that the stored value cover all bits that are loaded. 14527 bool STCoversLD = 14528 (Offset >= 0) && 14529 (Offset * 8 + LDMemType.getSizeInBits() <= STMemType.getSizeInBits()); 14530 14531 auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue { 14532 if (LD->isIndexed()) { 14533 // Cannot handle opaque target constants and we must respect the user's 14534 // request not to split indexes from loads. 14535 if (!canSplitIdx(LD)) 14536 return SDValue(); 14537 SDValue Idx = SplitIndexingFromLoad(LD); 14538 SDValue Ops[] = {Val, Idx, Chain}; 14539 return CombineTo(LD, Ops, 3); 14540 } 14541 return CombineTo(LD, Val, Chain); 14542 }; 14543 14544 if (!STCoversLD) 14545 return SDValue(); 14546 14547 // Memory as copy space (potentially masked). 14548 if (Offset == 0 && LDType == STType && STMemType == LDMemType) { 14549 // Simple case: Direct non-truncating forwarding 14550 if (LDType.getSizeInBits() == LDMemType.getSizeInBits()) 14551 return ReplaceLd(LD, ST->getValue(), Chain); 14552 // Can we model the truncate and extension with an and mask? 14553 if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() && 14554 !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) { 14555 // Mask to size of LDMemType 14556 auto Mask = 14557 DAG.getConstant(APInt::getLowBitsSet(STType.getSizeInBits(), 14558 STMemType.getSizeInBits()), 14559 SDLoc(ST), STType); 14560 auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask); 14561 return ReplaceLd(LD, Val, Chain); 14562 } 14563 } 14564 14565 // TODO: Deal with nonzero offset. 14566 if (LD->getBasePtr().isUndef() || Offset != 0) 14567 return SDValue(); 14568 // Model necessary truncations / extenstions. 14569 SDValue Val; 14570 // Truncate Value To Stored Memory Size. 14571 do { 14572 if (!getTruncatedStoreValue(ST, Val)) 14573 continue; 14574 if (!isTypeLegal(LDMemType)) 14575 continue; 14576 if (STMemType != LDMemType) { 14577 // TODO: Support vectors? This requires extract_subvector/bitcast. 14578 if (!STMemType.isVector() && !LDMemType.isVector() && 14579 STMemType.isInteger() && LDMemType.isInteger()) 14580 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val); 14581 else 14582 continue; 14583 } 14584 if (!extendLoadedValueToExtension(LD, Val)) 14585 continue; 14586 return ReplaceLd(LD, Val, Chain); 14587 } while (false); 14588 14589 // On failure, cleanup dead nodes we may have created. 14590 if (Val->use_empty()) 14591 deleteAndRecombine(Val.getNode()); 14592 return SDValue(); 14593 } 14594 14595 SDValue DAGCombiner::visitLOAD(SDNode *N) { 14596 LoadSDNode *LD = cast<LoadSDNode>(N); 14597 SDValue Chain = LD->getChain(); 14598 SDValue Ptr = LD->getBasePtr(); 14599 14600 // If load is not volatile and there are no uses of the loaded value (and 14601 // the updated indexed value in case of indexed loads), change uses of the 14602 // chain value into uses of the chain input (i.e. delete the dead load). 14603 // TODO: Allow this for unordered atomics (see D66309) 14604 if (LD->isSimple()) { 14605 if (N->getValueType(1) == MVT::Other) { 14606 // Unindexed loads. 14607 if (!N->hasAnyUseOfValue(0)) { 14608 // It's not safe to use the two value CombineTo variant here. e.g. 14609 // v1, chain2 = load chain1, loc 14610 // v2, chain3 = load chain2, loc 14611 // v3 = add v2, c 14612 // Now we replace use of chain2 with chain1. This makes the second load 14613 // isomorphic to the one we are deleting, and thus makes this load live. 14614 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG); 14615 dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG); 14616 dbgs() << "\n"); 14617 WorklistRemover DeadNodes(*this); 14618 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 14619 AddUsersToWorklist(Chain.getNode()); 14620 if (N->use_empty()) 14621 deleteAndRecombine(N); 14622 14623 return SDValue(N, 0); // Return N so it doesn't get rechecked! 14624 } 14625 } else { 14626 // Indexed loads. 14627 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); 14628 14629 // If this load has an opaque TargetConstant offset, then we cannot split 14630 // the indexing into an add/sub directly (that TargetConstant may not be 14631 // valid for a different type of node, and we cannot convert an opaque 14632 // target constant into a regular constant). 14633 bool CanSplitIdx = canSplitIdx(LD); 14634 14635 if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) { 14636 SDValue Undef = DAG.getUNDEF(N->getValueType(0)); 14637 SDValue Index; 14638 if (N->hasAnyUseOfValue(1) && CanSplitIdx) { 14639 Index = SplitIndexingFromLoad(LD); 14640 // Try to fold the base pointer arithmetic into subsequent loads and 14641 // stores. 14642 AddUsersToWorklist(N); 14643 } else 14644 Index = DAG.getUNDEF(N->getValueType(1)); 14645 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG); 14646 dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG); 14647 dbgs() << " and 2 other values\n"); 14648 WorklistRemover DeadNodes(*this); 14649 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); 14650 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); 14651 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); 14652 deleteAndRecombine(N); 14653 return SDValue(N, 0); // Return N so it doesn't get rechecked! 14654 } 14655 } 14656 } 14657 14658 // If this load is directly stored, replace the load value with the stored 14659 // value. 14660 if (auto V = ForwardStoreValueToDirectLoad(LD)) 14661 return V; 14662 14663 // Try to infer better alignment information than the load already has. 14664 if (OptLevel != CodeGenOpt::None && LD->isUnindexed() && !LD->isAtomic()) { 14665 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { 14666 if (*Alignment > LD->getAlign() && 14667 isAligned(*Alignment, LD->getSrcValueOffset())) { 14668 SDValue NewLoad = DAG.getExtLoad( 14669 LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, 14670 LD->getPointerInfo(), LD->getMemoryVT(), *Alignment, 14671 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 14672 // NewLoad will always be N as we are only refining the alignment 14673 assert(NewLoad.getNode() == N); 14674 (void)NewLoad; 14675 } 14676 } 14677 } 14678 14679 if (LD->isUnindexed()) { 14680 // Walk up chain skipping non-aliasing memory nodes. 14681 SDValue BetterChain = FindBetterChain(LD, Chain); 14682 14683 // If there is a better chain. 14684 if (Chain != BetterChain) { 14685 SDValue ReplLoad; 14686 14687 // Replace the chain to void dependency. 14688 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 14689 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), 14690 BetterChain, Ptr, LD->getMemOperand()); 14691 } else { 14692 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), 14693 LD->getValueType(0), 14694 BetterChain, Ptr, LD->getMemoryVT(), 14695 LD->getMemOperand()); 14696 } 14697 14698 // Create token factor to keep old chain connected. 14699 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 14700 MVT::Other, Chain, ReplLoad.getValue(1)); 14701 14702 // Replace uses with load result and token factor 14703 return CombineTo(N, ReplLoad.getValue(0), Token); 14704 } 14705 } 14706 14707 // Try transforming N to an indexed load. 14708 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 14709 return SDValue(N, 0); 14710 14711 // Try to slice up N to more direct loads if the slices are mapped to 14712 // different register banks or pairing can take place. 14713 if (SliceUpLoad(N)) 14714 return SDValue(N, 0); 14715 14716 return SDValue(); 14717 } 14718 14719 namespace { 14720 14721 /// Helper structure used to slice a load in smaller loads. 14722 /// Basically a slice is obtained from the following sequence: 14723 /// Origin = load Ty1, Base 14724 /// Shift = srl Ty1 Origin, CstTy Amount 14725 /// Inst = trunc Shift to Ty2 14726 /// 14727 /// Then, it will be rewritten into: 14728 /// Slice = load SliceTy, Base + SliceOffset 14729 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 14730 /// 14731 /// SliceTy is deduced from the number of bits that are actually used to 14732 /// build Inst. 14733 struct LoadedSlice { 14734 /// Helper structure used to compute the cost of a slice. 14735 struct Cost { 14736 /// Are we optimizing for code size. 14737 bool ForCodeSize = false; 14738 14739 /// Various cost. 14740 unsigned Loads = 0; 14741 unsigned Truncates = 0; 14742 unsigned CrossRegisterBanksCopies = 0; 14743 unsigned ZExts = 0; 14744 unsigned Shift = 0; 14745 14746 explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {} 14747 14748 /// Get the cost of one isolated slice. 14749 Cost(const LoadedSlice &LS, bool ForCodeSize) 14750 : ForCodeSize(ForCodeSize), Loads(1) { 14751 EVT TruncType = LS.Inst->getValueType(0); 14752 EVT LoadedType = LS.getLoadedType(); 14753 if (TruncType != LoadedType && 14754 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) 14755 ZExts = 1; 14756 } 14757 14758 /// Account for slicing gain in the current cost. 14759 /// Slicing provide a few gains like removing a shift or a 14760 /// truncate. This method allows to grow the cost of the original 14761 /// load with the gain from this slice. 14762 void addSliceGain(const LoadedSlice &LS) { 14763 // Each slice saves a truncate. 14764 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); 14765 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), 14766 LS.Inst->getValueType(0))) 14767 ++Truncates; 14768 // If there is a shift amount, this slice gets rid of it. 14769 if (LS.Shift) 14770 ++Shift; 14771 // If this slice can merge a cross register bank copy, account for it. 14772 if (LS.canMergeExpensiveCrossRegisterBankCopy()) 14773 ++CrossRegisterBanksCopies; 14774 } 14775 14776 Cost &operator+=(const Cost &RHS) { 14777 Loads += RHS.Loads; 14778 Truncates += RHS.Truncates; 14779 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; 14780 ZExts += RHS.ZExts; 14781 Shift += RHS.Shift; 14782 return *this; 14783 } 14784 14785 bool operator==(const Cost &RHS) const { 14786 return Loads == RHS.Loads && Truncates == RHS.Truncates && 14787 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && 14788 ZExts == RHS.ZExts && Shift == RHS.Shift; 14789 } 14790 14791 bool operator!=(const Cost &RHS) const { return !(*this == RHS); } 14792 14793 bool operator<(const Cost &RHS) const { 14794 // Assume cross register banks copies are as expensive as loads. 14795 // FIXME: Do we want some more target hooks? 14796 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; 14797 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; 14798 // Unless we are optimizing for code size, consider the 14799 // expensive operation first. 14800 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) 14801 return ExpensiveOpsLHS < ExpensiveOpsRHS; 14802 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < 14803 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); 14804 } 14805 14806 bool operator>(const Cost &RHS) const { return RHS < *this; } 14807 14808 bool operator<=(const Cost &RHS) const { return !(RHS < *this); } 14809 14810 bool operator>=(const Cost &RHS) const { return !(*this < RHS); } 14811 }; 14812 14813 // The last instruction that represent the slice. This should be a 14814 // truncate instruction. 14815 SDNode *Inst; 14816 14817 // The original load instruction. 14818 LoadSDNode *Origin; 14819 14820 // The right shift amount in bits from the original load. 14821 unsigned Shift; 14822 14823 // The DAG from which Origin came from. 14824 // This is used to get some contextual information about legal types, etc. 14825 SelectionDAG *DAG; 14826 14827 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, 14828 unsigned Shift = 0, SelectionDAG *DAG = nullptr) 14829 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} 14830 14831 /// Get the bits used in a chunk of bits \p BitWidth large. 14832 /// \return Result is \p BitWidth and has used bits set to 1 and 14833 /// not used bits set to 0. 14834 APInt getUsedBits() const { 14835 // Reproduce the trunc(lshr) sequence: 14836 // - Start from the truncated value. 14837 // - Zero extend to the desired bit width. 14838 // - Shift left. 14839 assert(Origin && "No original load to compare against."); 14840 unsigned BitWidth = Origin->getValueSizeInBits(0); 14841 assert(Inst && "This slice is not bound to an instruction"); 14842 assert(Inst->getValueSizeInBits(0) <= BitWidth && 14843 "Extracted slice is bigger than the whole type!"); 14844 APInt UsedBits(Inst->getValueSizeInBits(0), 0); 14845 UsedBits.setAllBits(); 14846 UsedBits = UsedBits.zext(BitWidth); 14847 UsedBits <<= Shift; 14848 return UsedBits; 14849 } 14850 14851 /// Get the size of the slice to be loaded in bytes. 14852 unsigned getLoadedSize() const { 14853 unsigned SliceSize = getUsedBits().countPopulation(); 14854 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); 14855 return SliceSize / 8; 14856 } 14857 14858 /// Get the type that will be loaded for this slice. 14859 /// Note: This may not be the final type for the slice. 14860 EVT getLoadedType() const { 14861 assert(DAG && "Missing context"); 14862 LLVMContext &Ctxt = *DAG->getContext(); 14863 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); 14864 } 14865 14866 /// Get the alignment of the load used for this slice. 14867 unsigned getAlignment() const { 14868 unsigned Alignment = Origin->getAlignment(); 14869 uint64_t Offset = getOffsetFromBase(); 14870 if (Offset != 0) 14871 Alignment = MinAlign(Alignment, Alignment + Offset); 14872 return Alignment; 14873 } 14874 14875 /// Check if this slice can be rewritten with legal operations. 14876 bool isLegal() const { 14877 // An invalid slice is not legal. 14878 if (!Origin || !Inst || !DAG) 14879 return false; 14880 14881 // Offsets are for indexed load only, we do not handle that. 14882 if (!Origin->getOffset().isUndef()) 14883 return false; 14884 14885 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 14886 14887 // Check that the type is legal. 14888 EVT SliceType = getLoadedType(); 14889 if (!TLI.isTypeLegal(SliceType)) 14890 return false; 14891 14892 // Check that the load is legal for this type. 14893 if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) 14894 return false; 14895 14896 // Check that the offset can be computed. 14897 // 1. Check its type. 14898 EVT PtrType = Origin->getBasePtr().getValueType(); 14899 if (PtrType == MVT::Untyped || PtrType.isExtended()) 14900 return false; 14901 14902 // 2. Check that it fits in the immediate. 14903 if (!TLI.isLegalAddImmediate(getOffsetFromBase())) 14904 return false; 14905 14906 // 3. Check that the computation is legal. 14907 if (!TLI.isOperationLegal(ISD::ADD, PtrType)) 14908 return false; 14909 14910 // Check that the zext is legal if it needs one. 14911 EVT TruncateType = Inst->getValueType(0); 14912 if (TruncateType != SliceType && 14913 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) 14914 return false; 14915 14916 return true; 14917 } 14918 14919 /// Get the offset in bytes of this slice in the original chunk of 14920 /// bits. 14921 /// \pre DAG != nullptr. 14922 uint64_t getOffsetFromBase() const { 14923 assert(DAG && "Missing context."); 14924 bool IsBigEndian = DAG->getDataLayout().isBigEndian(); 14925 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); 14926 uint64_t Offset = Shift / 8; 14927 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; 14928 assert(!(Origin->getValueSizeInBits(0) & 0x7) && 14929 "The size of the original loaded type is not a multiple of a" 14930 " byte."); 14931 // If Offset is bigger than TySizeInBytes, it means we are loading all 14932 // zeros. This should have been optimized before in the process. 14933 assert(TySizeInBytes > Offset && 14934 "Invalid shift amount for given loaded size"); 14935 if (IsBigEndian) 14936 Offset = TySizeInBytes - Offset - getLoadedSize(); 14937 return Offset; 14938 } 14939 14940 /// Generate the sequence of instructions to load the slice 14941 /// represented by this object and redirect the uses of this slice to 14942 /// this new sequence of instructions. 14943 /// \pre this->Inst && this->Origin are valid Instructions and this 14944 /// object passed the legal check: LoadedSlice::isLegal returned true. 14945 /// \return The last instruction of the sequence used to load the slice. 14946 SDValue loadSlice() const { 14947 assert(Inst && Origin && "Unable to replace a non-existing slice."); 14948 const SDValue &OldBaseAddr = Origin->getBasePtr(); 14949 SDValue BaseAddr = OldBaseAddr; 14950 // Get the offset in that chunk of bytes w.r.t. the endianness. 14951 int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); 14952 assert(Offset >= 0 && "Offset too big to fit in int64_t!"); 14953 if (Offset) { 14954 // BaseAddr = BaseAddr + Offset. 14955 EVT ArithType = BaseAddr.getValueType(); 14956 SDLoc DL(Origin); 14957 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, 14958 DAG->getConstant(Offset, DL, ArithType)); 14959 } 14960 14961 // Create the type of the loaded slice according to its size. 14962 EVT SliceType = getLoadedType(); 14963 14964 // Create the load for the slice. 14965 SDValue LastInst = 14966 DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, 14967 Origin->getPointerInfo().getWithOffset(Offset), 14968 getAlignment(), Origin->getMemOperand()->getFlags()); 14969 // If the final type is not the same as the loaded type, this means that 14970 // we have to pad with zero. Create a zero extend for that. 14971 EVT FinalType = Inst->getValueType(0); 14972 if (SliceType != FinalType) 14973 LastInst = 14974 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); 14975 return LastInst; 14976 } 14977 14978 /// Check if this slice can be merged with an expensive cross register 14979 /// bank copy. E.g., 14980 /// i = load i32 14981 /// f = bitcast i32 i to float 14982 bool canMergeExpensiveCrossRegisterBankCopy() const { 14983 if (!Inst || !Inst->hasOneUse()) 14984 return false; 14985 SDNode *Use = *Inst->use_begin(); 14986 if (Use->getOpcode() != ISD::BITCAST) 14987 return false; 14988 assert(DAG && "Missing context"); 14989 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 14990 EVT ResVT = Use->getValueType(0); 14991 const TargetRegisterClass *ResRC = 14992 TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent()); 14993 const TargetRegisterClass *ArgRC = 14994 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(), 14995 Use->getOperand(0)->isDivergent()); 14996 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) 14997 return false; 14998 14999 // At this point, we know that we perform a cross-register-bank copy. 15000 // Check if it is expensive. 15001 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); 15002 // Assume bitcasts are cheap, unless both register classes do not 15003 // explicitly share a common sub class. 15004 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) 15005 return false; 15006 15007 // Check if it will be merged with the load. 15008 // 1. Check the alignment constraint. 15009 unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment( 15010 ResVT.getTypeForEVT(*DAG->getContext())); 15011 15012 if (RequiredAlignment > getAlignment()) 15013 return false; 15014 15015 // 2. Check that the load is a legal operation for that type. 15016 if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) 15017 return false; 15018 15019 // 3. Check that we do not have a zext in the way. 15020 if (Inst->getValueType(0) != getLoadedType()) 15021 return false; 15022 15023 return true; 15024 } 15025 }; 15026 15027 } // end anonymous namespace 15028 15029 /// Check that all bits set in \p UsedBits form a dense region, i.e., 15030 /// \p UsedBits looks like 0..0 1..1 0..0. 15031 static bool areUsedBitsDense(const APInt &UsedBits) { 15032 // If all the bits are one, this is dense! 15033 if (UsedBits.isAllOnesValue()) 15034 return true; 15035 15036 // Get rid of the unused bits on the right. 15037 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); 15038 // Get rid of the unused bits on the left. 15039 if (NarrowedUsedBits.countLeadingZeros()) 15040 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); 15041 // Check that the chunk of bits is completely used. 15042 return NarrowedUsedBits.isAllOnesValue(); 15043 } 15044 15045 /// Check whether or not \p First and \p Second are next to each other 15046 /// in memory. This means that there is no hole between the bits loaded 15047 /// by \p First and the bits loaded by \p Second. 15048 static bool areSlicesNextToEachOther(const LoadedSlice &First, 15049 const LoadedSlice &Second) { 15050 assert(First.Origin == Second.Origin && First.Origin && 15051 "Unable to match different memory origins."); 15052 APInt UsedBits = First.getUsedBits(); 15053 assert((UsedBits & Second.getUsedBits()) == 0 && 15054 "Slices are not supposed to overlap."); 15055 UsedBits |= Second.getUsedBits(); 15056 return areUsedBitsDense(UsedBits); 15057 } 15058 15059 /// Adjust the \p GlobalLSCost according to the target 15060 /// paring capabilities and the layout of the slices. 15061 /// \pre \p GlobalLSCost should account for at least as many loads as 15062 /// there is in the slices in \p LoadedSlices. 15063 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, 15064 LoadedSlice::Cost &GlobalLSCost) { 15065 unsigned NumberOfSlices = LoadedSlices.size(); 15066 // If there is less than 2 elements, no pairing is possible. 15067 if (NumberOfSlices < 2) 15068 return; 15069 15070 // Sort the slices so that elements that are likely to be next to each 15071 // other in memory are next to each other in the list. 15072 llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) { 15073 assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); 15074 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); 15075 }); 15076 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); 15077 // First (resp. Second) is the first (resp. Second) potentially candidate 15078 // to be placed in a paired load. 15079 const LoadedSlice *First = nullptr; 15080 const LoadedSlice *Second = nullptr; 15081 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, 15082 // Set the beginning of the pair. 15083 First = Second) { 15084 Second = &LoadedSlices[CurrSlice]; 15085 15086 // If First is NULL, it means we start a new pair. 15087 // Get to the next slice. 15088 if (!First) 15089 continue; 15090 15091 EVT LoadedType = First->getLoadedType(); 15092 15093 // If the types of the slices are different, we cannot pair them. 15094 if (LoadedType != Second->getLoadedType()) 15095 continue; 15096 15097 // Check if the target supplies paired loads for this type. 15098 unsigned RequiredAlignment = 0; 15099 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { 15100 // move to the next pair, this type is hopeless. 15101 Second = nullptr; 15102 continue; 15103 } 15104 // Check if we meet the alignment requirement. 15105 if (RequiredAlignment > First->getAlignment()) 15106 continue; 15107 15108 // Check that both loads are next to each other in memory. 15109 if (!areSlicesNextToEachOther(*First, *Second)) 15110 continue; 15111 15112 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); 15113 --GlobalLSCost.Loads; 15114 // Move to the next pair. 15115 Second = nullptr; 15116 } 15117 } 15118 15119 /// Check the profitability of all involved LoadedSlice. 15120 /// Currently, it is considered profitable if there is exactly two 15121 /// involved slices (1) which are (2) next to each other in memory, and 15122 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). 15123 /// 15124 /// Note: The order of the elements in \p LoadedSlices may be modified, but not 15125 /// the elements themselves. 15126 /// 15127 /// FIXME: When the cost model will be mature enough, we can relax 15128 /// constraints (1) and (2). 15129 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, 15130 const APInt &UsedBits, bool ForCodeSize) { 15131 unsigned NumberOfSlices = LoadedSlices.size(); 15132 if (StressLoadSlicing) 15133 return NumberOfSlices > 1; 15134 15135 // Check (1). 15136 if (NumberOfSlices != 2) 15137 return false; 15138 15139 // Check (2). 15140 if (!areUsedBitsDense(UsedBits)) 15141 return false; 15142 15143 // Check (3). 15144 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); 15145 // The original code has one big load. 15146 OrigCost.Loads = 1; 15147 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { 15148 const LoadedSlice &LS = LoadedSlices[CurrSlice]; 15149 // Accumulate the cost of all the slices. 15150 LoadedSlice::Cost SliceCost(LS, ForCodeSize); 15151 GlobalSlicingCost += SliceCost; 15152 15153 // Account as cost in the original configuration the gain obtained 15154 // with the current slices. 15155 OrigCost.addSliceGain(LS); 15156 } 15157 15158 // If the target supports paired load, adjust the cost accordingly. 15159 adjustCostForPairing(LoadedSlices, GlobalSlicingCost); 15160 return OrigCost > GlobalSlicingCost; 15161 } 15162 15163 /// If the given load, \p LI, is used only by trunc or trunc(lshr) 15164 /// operations, split it in the various pieces being extracted. 15165 /// 15166 /// This sort of thing is introduced by SROA. 15167 /// This slicing takes care not to insert overlapping loads. 15168 /// \pre LI is a simple load (i.e., not an atomic or volatile load). 15169 bool DAGCombiner::SliceUpLoad(SDNode *N) { 15170 if (Level < AfterLegalizeDAG) 15171 return false; 15172 15173 LoadSDNode *LD = cast<LoadSDNode>(N); 15174 if (!LD->isSimple() || !ISD::isNormalLoad(LD) || 15175 !LD->getValueType(0).isInteger()) 15176 return false; 15177 15178 // The algorithm to split up a load of a scalable vector into individual 15179 // elements currently requires knowing the length of the loaded type, 15180 // so will need adjusting to work on scalable vectors. 15181 if (LD->getValueType(0).isScalableVector()) 15182 return false; 15183 15184 // Keep track of already used bits to detect overlapping values. 15185 // In that case, we will just abort the transformation. 15186 APInt UsedBits(LD->getValueSizeInBits(0), 0); 15187 15188 SmallVector<LoadedSlice, 4> LoadedSlices; 15189 15190 // Check if this load is used as several smaller chunks of bits. 15191 // Basically, look for uses in trunc or trunc(lshr) and record a new chain 15192 // of computation for each trunc. 15193 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 15194 UI != UIEnd; ++UI) { 15195 // Skip the uses of the chain. 15196 if (UI.getUse().getResNo() != 0) 15197 continue; 15198 15199 SDNode *User = *UI; 15200 unsigned Shift = 0; 15201 15202 // Check if this is a trunc(lshr). 15203 if (User->getOpcode() == ISD::SRL && User->hasOneUse() && 15204 isa<ConstantSDNode>(User->getOperand(1))) { 15205 Shift = User->getConstantOperandVal(1); 15206 User = *User->use_begin(); 15207 } 15208 15209 // At this point, User is a Truncate, iff we encountered, trunc or 15210 // trunc(lshr). 15211 if (User->getOpcode() != ISD::TRUNCATE) 15212 return false; 15213 15214 // The width of the type must be a power of 2 and greater than 8-bits. 15215 // Otherwise the load cannot be represented in LLVM IR. 15216 // Moreover, if we shifted with a non-8-bits multiple, the slice 15217 // will be across several bytes. We do not support that. 15218 unsigned Width = User->getValueSizeInBits(0); 15219 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) 15220 return false; 15221 15222 // Build the slice for this chain of computations. 15223 LoadedSlice LS(User, LD, Shift, &DAG); 15224 APInt CurrentUsedBits = LS.getUsedBits(); 15225 15226 // Check if this slice overlaps with another. 15227 if ((CurrentUsedBits & UsedBits) != 0) 15228 return false; 15229 // Update the bits used globally. 15230 UsedBits |= CurrentUsedBits; 15231 15232 // Check if the new slice would be legal. 15233 if (!LS.isLegal()) 15234 return false; 15235 15236 // Record the slice. 15237 LoadedSlices.push_back(LS); 15238 } 15239 15240 // Abort slicing if it does not seem to be profitable. 15241 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) 15242 return false; 15243 15244 ++SlicedLoads; 15245 15246 // Rewrite each chain to use an independent load. 15247 // By construction, each chain can be represented by a unique load. 15248 15249 // Prepare the argument for the new token factor for all the slices. 15250 SmallVector<SDValue, 8> ArgChains; 15251 for (SmallVectorImpl<LoadedSlice>::const_iterator 15252 LSIt = LoadedSlices.begin(), 15253 LSItEnd = LoadedSlices.end(); 15254 LSIt != LSItEnd; ++LSIt) { 15255 SDValue SliceInst = LSIt->loadSlice(); 15256 CombineTo(LSIt->Inst, SliceInst, true); 15257 if (SliceInst.getOpcode() != ISD::LOAD) 15258 SliceInst = SliceInst.getOperand(0); 15259 assert(SliceInst->getOpcode() == ISD::LOAD && 15260 "It takes more than a zext to get to the loaded slice!!"); 15261 ArgChains.push_back(SliceInst.getValue(1)); 15262 } 15263 15264 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, 15265 ArgChains); 15266 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 15267 AddToWorklist(Chain.getNode()); 15268 return true; 15269 } 15270 15271 /// Check to see if V is (and load (ptr), imm), where the load is having 15272 /// specific bytes cleared out. If so, return the byte size being masked out 15273 /// and the shift amount. 15274 static std::pair<unsigned, unsigned> 15275 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { 15276 std::pair<unsigned, unsigned> Result(0, 0); 15277 15278 // Check for the structure we're looking for. 15279 if (V->getOpcode() != ISD::AND || 15280 !isa<ConstantSDNode>(V->getOperand(1)) || 15281 !ISD::isNormalLoad(V->getOperand(0).getNode())) 15282 return Result; 15283 15284 // Check the chain and pointer. 15285 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); 15286 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. 15287 15288 // This only handles simple types. 15289 if (V.getValueType() != MVT::i16 && 15290 V.getValueType() != MVT::i32 && 15291 V.getValueType() != MVT::i64) 15292 return Result; 15293 15294 // Check the constant mask. Invert it so that the bits being masked out are 15295 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits 15296 // follow the sign bit for uniformity. 15297 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); 15298 unsigned NotMaskLZ = countLeadingZeros(NotMask); 15299 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. 15300 unsigned NotMaskTZ = countTrailingZeros(NotMask); 15301 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. 15302 if (NotMaskLZ == 64) return Result; // All zero mask. 15303 15304 // See if we have a continuous run of bits. If so, we have 0*1+0* 15305 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) 15306 return Result; 15307 15308 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. 15309 if (V.getValueType() != MVT::i64 && NotMaskLZ) 15310 NotMaskLZ -= 64-V.getValueSizeInBits(); 15311 15312 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; 15313 switch (MaskedBytes) { 15314 case 1: 15315 case 2: 15316 case 4: break; 15317 default: return Result; // All one mask, or 5-byte mask. 15318 } 15319 15320 // Verify that the first bit starts at a multiple of mask so that the access 15321 // is aligned the same as the access width. 15322 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; 15323 15324 // For narrowing to be valid, it must be the case that the load the 15325 // immediately preceding memory operation before the store. 15326 if (LD == Chain.getNode()) 15327 ; // ok. 15328 else if (Chain->getOpcode() == ISD::TokenFactor && 15329 SDValue(LD, 1).hasOneUse()) { 15330 // LD has only 1 chain use so they are no indirect dependencies. 15331 if (!LD->isOperandOf(Chain.getNode())) 15332 return Result; 15333 } else 15334 return Result; // Fail. 15335 15336 Result.first = MaskedBytes; 15337 Result.second = NotMaskTZ/8; 15338 return Result; 15339 } 15340 15341 /// Check to see if IVal is something that provides a value as specified by 15342 /// MaskInfo. If so, replace the specified store with a narrower store of 15343 /// truncated IVal. 15344 static SDValue 15345 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, 15346 SDValue IVal, StoreSDNode *St, 15347 DAGCombiner *DC) { 15348 unsigned NumBytes = MaskInfo.first; 15349 unsigned ByteShift = MaskInfo.second; 15350 SelectionDAG &DAG = DC->getDAG(); 15351 15352 // Check to see if IVal is all zeros in the part being masked in by the 'or' 15353 // that uses this. If not, this is not a replacement. 15354 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), 15355 ByteShift*8, (ByteShift+NumBytes)*8); 15356 if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue(); 15357 15358 // Check that it is legal on the target to do this. It is legal if the new 15359 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type 15360 // legalization (and the target doesn't explicitly think this is a bad idea). 15361 MVT VT = MVT::getIntegerVT(NumBytes * 8); 15362 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 15363 if (!DC->isTypeLegal(VT)) 15364 return SDValue(); 15365 if (St->getMemOperand() && 15366 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 15367 *St->getMemOperand())) 15368 return SDValue(); 15369 15370 // Okay, we can do this! Replace the 'St' store with a store of IVal that is 15371 // shifted by ByteShift and truncated down to NumBytes. 15372 if (ByteShift) { 15373 SDLoc DL(IVal); 15374 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, 15375 DAG.getConstant(ByteShift*8, DL, 15376 DC->getShiftAmountTy(IVal.getValueType()))); 15377 } 15378 15379 // Figure out the offset for the store and the alignment of the access. 15380 unsigned StOffset; 15381 unsigned NewAlign = St->getAlignment(); 15382 15383 if (DAG.getDataLayout().isLittleEndian()) 15384 StOffset = ByteShift; 15385 else 15386 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; 15387 15388 SDValue Ptr = St->getBasePtr(); 15389 if (StOffset) { 15390 SDLoc DL(IVal); 15391 Ptr = DAG.getMemBasePlusOffset(Ptr, StOffset, DL); 15392 NewAlign = MinAlign(NewAlign, StOffset); 15393 } 15394 15395 // Truncate down to the new size. 15396 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); 15397 15398 ++OpsNarrowed; 15399 return DAG 15400 .getStore(St->getChain(), SDLoc(St), IVal, Ptr, 15401 St->getPointerInfo().getWithOffset(StOffset), NewAlign); 15402 } 15403 15404 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and 15405 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try 15406 /// narrowing the load and store if it would end up being a win for performance 15407 /// or code size. 15408 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { 15409 StoreSDNode *ST = cast<StoreSDNode>(N); 15410 if (!ST->isSimple()) 15411 return SDValue(); 15412 15413 SDValue Chain = ST->getChain(); 15414 SDValue Value = ST->getValue(); 15415 SDValue Ptr = ST->getBasePtr(); 15416 EVT VT = Value.getValueType(); 15417 15418 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) 15419 return SDValue(); 15420 15421 unsigned Opc = Value.getOpcode(); 15422 15423 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst 15424 // is a byte mask indicating a consecutive number of bytes, check to see if 15425 // Y is known to provide just those bytes. If so, we try to replace the 15426 // load + replace + store sequence with a single (narrower) store, which makes 15427 // the load dead. 15428 if (Opc == ISD::OR) { 15429 std::pair<unsigned, unsigned> MaskedLoad; 15430 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); 15431 if (MaskedLoad.first) 15432 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 15433 Value.getOperand(1), ST,this)) 15434 return NewST; 15435 15436 // Or is commutative, so try swapping X and Y. 15437 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); 15438 if (MaskedLoad.first) 15439 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 15440 Value.getOperand(0), ST,this)) 15441 return NewST; 15442 } 15443 15444 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || 15445 Value.getOperand(1).getOpcode() != ISD::Constant) 15446 return SDValue(); 15447 15448 SDValue N0 = Value.getOperand(0); 15449 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 15450 Chain == SDValue(N0.getNode(), 1)) { 15451 LoadSDNode *LD = cast<LoadSDNode>(N0); 15452 if (LD->getBasePtr() != Ptr || 15453 LD->getPointerInfo().getAddrSpace() != 15454 ST->getPointerInfo().getAddrSpace()) 15455 return SDValue(); 15456 15457 // Find the type to narrow it the load / op / store to. 15458 SDValue N1 = Value.getOperand(1); 15459 unsigned BitWidth = N1.getValueSizeInBits(); 15460 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); 15461 if (Opc == ISD::AND) 15462 Imm ^= APInt::getAllOnesValue(BitWidth); 15463 if (Imm == 0 || Imm.isAllOnesValue()) 15464 return SDValue(); 15465 unsigned ShAmt = Imm.countTrailingZeros(); 15466 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; 15467 unsigned NewBW = NextPowerOf2(MSB - ShAmt); 15468 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 15469 // The narrowing should be profitable, the load/store operation should be 15470 // legal (or custom) and the store size should be equal to the NewVT width. 15471 while (NewBW < BitWidth && 15472 (NewVT.getStoreSizeInBits() != NewBW || 15473 !TLI.isOperationLegalOrCustom(Opc, NewVT) || 15474 !TLI.isNarrowingProfitable(VT, NewVT))) { 15475 NewBW = NextPowerOf2(NewBW); 15476 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 15477 } 15478 if (NewBW >= BitWidth) 15479 return SDValue(); 15480 15481 // If the lsb changed does not start at the type bitwidth boundary, 15482 // start at the previous one. 15483 if (ShAmt % NewBW) 15484 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; 15485 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, 15486 std::min(BitWidth, ShAmt + NewBW)); 15487 if ((Imm & Mask) == Imm) { 15488 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); 15489 if (Opc == ISD::AND) 15490 NewImm ^= APInt::getAllOnesValue(NewBW); 15491 uint64_t PtrOff = ShAmt / 8; 15492 // For big endian targets, we need to adjust the offset to the pointer to 15493 // load the correct bytes. 15494 if (DAG.getDataLayout().isBigEndian()) 15495 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; 15496 15497 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); 15498 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); 15499 if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy)) 15500 return SDValue(); 15501 15502 SDValue NewPtr = DAG.getMemBasePlusOffset(Ptr, PtrOff, SDLoc(LD)); 15503 SDValue NewLD = 15504 DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, 15505 LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, 15506 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 15507 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, 15508 DAG.getConstant(NewImm, SDLoc(Value), 15509 NewVT)); 15510 SDValue NewST = 15511 DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, 15512 ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); 15513 15514 AddToWorklist(NewPtr.getNode()); 15515 AddToWorklist(NewLD.getNode()); 15516 AddToWorklist(NewVal.getNode()); 15517 WorklistRemover DeadNodes(*this); 15518 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); 15519 ++OpsNarrowed; 15520 return NewST; 15521 } 15522 } 15523 15524 return SDValue(); 15525 } 15526 15527 /// For a given floating point load / store pair, if the load value isn't used 15528 /// by any other operations, then consider transforming the pair to integer 15529 /// load / store operations if the target deems the transformation profitable. 15530 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { 15531 StoreSDNode *ST = cast<StoreSDNode>(N); 15532 SDValue Value = ST->getValue(); 15533 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && 15534 Value.hasOneUse()) { 15535 LoadSDNode *LD = cast<LoadSDNode>(Value); 15536 EVT VT = LD->getMemoryVT(); 15537 if (!VT.isFloatingPoint() || 15538 VT != ST->getMemoryVT() || 15539 LD->isNonTemporal() || 15540 ST->isNonTemporal() || 15541 LD->getPointerInfo().getAddrSpace() != 0 || 15542 ST->getPointerInfo().getAddrSpace() != 0) 15543 return SDValue(); 15544 15545 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 15546 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || 15547 !TLI.isOperationLegal(ISD::STORE, IntVT) || 15548 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || 15549 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) 15550 return SDValue(); 15551 15552 unsigned LDAlign = LD->getAlignment(); 15553 unsigned STAlign = ST->getAlignment(); 15554 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); 15555 unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy); 15556 if (LDAlign < ABIAlign || STAlign < ABIAlign) 15557 return SDValue(); 15558 15559 SDValue NewLD = 15560 DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), 15561 LD->getPointerInfo(), LDAlign); 15562 15563 SDValue NewST = 15564 DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(), 15565 ST->getPointerInfo(), STAlign); 15566 15567 AddToWorklist(NewLD.getNode()); 15568 AddToWorklist(NewST.getNode()); 15569 WorklistRemover DeadNodes(*this); 15570 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); 15571 ++LdStFP2Int; 15572 return NewST; 15573 } 15574 15575 return SDValue(); 15576 } 15577 15578 // This is a helper function for visitMUL to check the profitability 15579 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 15580 // MulNode is the original multiply, AddNode is (add x, c1), 15581 // and ConstNode is c2. 15582 // 15583 // If the (add x, c1) has multiple uses, we could increase 15584 // the number of adds if we make this transformation. 15585 // It would only be worth doing this if we can remove a 15586 // multiply in the process. Check for that here. 15587 // To illustrate: 15588 // (A + c1) * c3 15589 // (A + c2) * c3 15590 // We're checking for cases where we have common "c3 * A" expressions. 15591 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, 15592 SDValue &AddNode, 15593 SDValue &ConstNode) { 15594 APInt Val; 15595 15596 // If the add only has one use, this would be OK to do. 15597 if (AddNode.getNode()->hasOneUse()) 15598 return true; 15599 15600 // Walk all the users of the constant with which we're multiplying. 15601 for (SDNode *Use : ConstNode->uses()) { 15602 if (Use == MulNode) // This use is the one we're on right now. Skip it. 15603 continue; 15604 15605 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. 15606 SDNode *OtherOp; 15607 SDNode *MulVar = AddNode.getOperand(0).getNode(); 15608 15609 // OtherOp is what we're multiplying against the constant. 15610 if (Use->getOperand(0) == ConstNode) 15611 OtherOp = Use->getOperand(1).getNode(); 15612 else 15613 OtherOp = Use->getOperand(0).getNode(); 15614 15615 // Check to see if multiply is with the same operand of our "add". 15616 // 15617 // ConstNode = CONST 15618 // Use = ConstNode * A <-- visiting Use. OtherOp is A. 15619 // ... 15620 // AddNode = (A + c1) <-- MulVar is A. 15621 // = AddNode * ConstNode <-- current visiting instruction. 15622 // 15623 // If we make this transformation, we will have a common 15624 // multiply (ConstNode * A) that we can save. 15625 if (OtherOp == MulVar) 15626 return true; 15627 15628 // Now check to see if a future expansion will give us a common 15629 // multiply. 15630 // 15631 // ConstNode = CONST 15632 // AddNode = (A + c1) 15633 // ... = AddNode * ConstNode <-- current visiting instruction. 15634 // ... 15635 // OtherOp = (A + c2) 15636 // Use = OtherOp * ConstNode <-- visiting Use. 15637 // 15638 // If we make this transformation, we will have a common 15639 // multiply (CONST * A) after we also do the same transformation 15640 // to the "t2" instruction. 15641 if (OtherOp->getOpcode() == ISD::ADD && 15642 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && 15643 OtherOp->getOperand(0).getNode() == MulVar) 15644 return true; 15645 } 15646 } 15647 15648 // Didn't find a case where this would be profitable. 15649 return false; 15650 } 15651 15652 SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, 15653 unsigned NumStores) { 15654 SmallVector<SDValue, 8> Chains; 15655 SmallPtrSet<const SDNode *, 8> Visited; 15656 SDLoc StoreDL(StoreNodes[0].MemNode); 15657 15658 for (unsigned i = 0; i < NumStores; ++i) { 15659 Visited.insert(StoreNodes[i].MemNode); 15660 } 15661 15662 // don't include nodes that are children or repeated nodes. 15663 for (unsigned i = 0; i < NumStores; ++i) { 15664 if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second) 15665 Chains.push_back(StoreNodes[i].MemNode->getChain()); 15666 } 15667 15668 assert(Chains.size() > 0 && "Chain should have generated a chain"); 15669 return DAG.getTokenFactor(StoreDL, Chains); 15670 } 15671 15672 bool DAGCombiner::MergeStoresOfConstantsOrVecElts( 15673 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores, 15674 bool IsConstantSrc, bool UseVector, bool UseTrunc) { 15675 // Make sure we have something to merge. 15676 if (NumStores < 2) 15677 return false; 15678 15679 // The latest Node in the DAG. 15680 SDLoc DL(StoreNodes[0].MemNode); 15681 15682 TypeSize ElementSizeBits = MemVT.getStoreSizeInBits(); 15683 unsigned SizeInBits = NumStores * ElementSizeBits; 15684 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 15685 15686 EVT StoreTy; 15687 if (UseVector) { 15688 unsigned Elts = NumStores * NumMemElts; 15689 // Get the type for the merged vector store. 15690 StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 15691 } else 15692 StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); 15693 15694 SDValue StoredVal; 15695 if (UseVector) { 15696 if (IsConstantSrc) { 15697 SmallVector<SDValue, 8> BuildVector; 15698 for (unsigned I = 0; I != NumStores; ++I) { 15699 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); 15700 SDValue Val = St->getValue(); 15701 // If constant is of the wrong type, convert it now. 15702 if (MemVT != Val.getValueType()) { 15703 Val = peekThroughBitcasts(Val); 15704 // Deal with constants of wrong size. 15705 if (ElementSizeBits != Val.getValueSizeInBits()) { 15706 EVT IntMemVT = 15707 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 15708 if (isa<ConstantFPSDNode>(Val)) { 15709 // Not clear how to truncate FP values. 15710 return false; 15711 } else if (auto *C = dyn_cast<ConstantSDNode>(Val)) 15712 Val = DAG.getConstant(C->getAPIntValue() 15713 .zextOrTrunc(Val.getValueSizeInBits()) 15714 .zextOrTrunc(ElementSizeBits), 15715 SDLoc(C), IntMemVT); 15716 } 15717 // Make sure correctly size type is the correct type. 15718 Val = DAG.getBitcast(MemVT, Val); 15719 } 15720 BuildVector.push_back(Val); 15721 } 15722 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS 15723 : ISD::BUILD_VECTOR, 15724 DL, StoreTy, BuildVector); 15725 } else { 15726 SmallVector<SDValue, 8> Ops; 15727 for (unsigned i = 0; i < NumStores; ++i) { 15728 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 15729 SDValue Val = peekThroughBitcasts(St->getValue()); 15730 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of 15731 // type MemVT. If the underlying value is not the correct 15732 // type, but it is an extraction of an appropriate vector we 15733 // can recast Val to be of the correct type. This may require 15734 // converting between EXTRACT_VECTOR_ELT and 15735 // EXTRACT_SUBVECTOR. 15736 if ((MemVT != Val.getValueType()) && 15737 (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 15738 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) { 15739 EVT MemVTScalarTy = MemVT.getScalarType(); 15740 // We may need to add a bitcast here to get types to line up. 15741 if (MemVTScalarTy != Val.getValueType().getScalarType()) { 15742 Val = DAG.getBitcast(MemVT, Val); 15743 } else { 15744 unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR 15745 : ISD::EXTRACT_VECTOR_ELT; 15746 SDValue Vec = Val.getOperand(0); 15747 SDValue Idx = Val.getOperand(1); 15748 Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx); 15749 } 15750 } 15751 Ops.push_back(Val); 15752 } 15753 15754 // Build the extracted vector elements back into a vector. 15755 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS 15756 : ISD::BUILD_VECTOR, 15757 DL, StoreTy, Ops); 15758 } 15759 } else { 15760 // We should always use a vector store when merging extracted vector 15761 // elements, so this path implies a store of constants. 15762 assert(IsConstantSrc && "Merged vector elements should use vector store"); 15763 15764 APInt StoreInt(SizeInBits, 0); 15765 15766 // Construct a single integer constant which is made of the smaller 15767 // constant inputs. 15768 bool IsLE = DAG.getDataLayout().isLittleEndian(); 15769 for (unsigned i = 0; i < NumStores; ++i) { 15770 unsigned Idx = IsLE ? (NumStores - 1 - i) : i; 15771 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); 15772 15773 SDValue Val = St->getValue(); 15774 Val = peekThroughBitcasts(Val); 15775 StoreInt <<= ElementSizeBits; 15776 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { 15777 StoreInt |= C->getAPIntValue() 15778 .zextOrTrunc(ElementSizeBits) 15779 .zextOrTrunc(SizeInBits); 15780 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { 15781 StoreInt |= C->getValueAPF() 15782 .bitcastToAPInt() 15783 .zextOrTrunc(ElementSizeBits) 15784 .zextOrTrunc(SizeInBits); 15785 // If fp truncation is necessary give up for now. 15786 if (MemVT.getSizeInBits() != ElementSizeBits) 15787 return false; 15788 } else { 15789 llvm_unreachable("Invalid constant element type"); 15790 } 15791 } 15792 15793 // Create the new Load and Store operations. 15794 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); 15795 } 15796 15797 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 15798 SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores); 15799 15800 // make sure we use trunc store if it's necessary to be legal. 15801 SDValue NewStore; 15802 if (!UseTrunc) { 15803 NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(), 15804 FirstInChain->getPointerInfo(), 15805 FirstInChain->getAlignment()); 15806 } else { // Must be realized as a trunc store 15807 EVT LegalizedStoredValTy = 15808 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType()); 15809 unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits(); 15810 ConstantSDNode *C = cast<ConstantSDNode>(StoredVal); 15811 SDValue ExtendedStoreVal = 15812 DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL, 15813 LegalizedStoredValTy); 15814 NewStore = DAG.getTruncStore( 15815 NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(), 15816 FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/, 15817 FirstInChain->getAlignment(), 15818 FirstInChain->getMemOperand()->getFlags()); 15819 } 15820 15821 // Replace all merged stores with the new store. 15822 for (unsigned i = 0; i < NumStores; ++i) 15823 CombineTo(StoreNodes[i].MemNode, NewStore); 15824 15825 AddToWorklist(NewChain.getNode()); 15826 return true; 15827 } 15828 15829 void DAGCombiner::getStoreMergeCandidates( 15830 StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes, 15831 SDNode *&RootNode) { 15832 // This holds the base pointer, index, and the offset in bytes from the base 15833 // pointer. 15834 BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 15835 EVT MemVT = St->getMemoryVT(); 15836 15837 SDValue Val = peekThroughBitcasts(St->getValue()); 15838 // We must have a base and an offset. 15839 if (!BasePtr.getBase().getNode()) 15840 return; 15841 15842 // Do not handle stores to undef base pointers. 15843 if (BasePtr.getBase().isUndef()) 15844 return; 15845 15846 bool IsConstantSrc = isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val); 15847 bool IsExtractVecSrc = (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 15848 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR); 15849 bool IsLoadSrc = isa<LoadSDNode>(Val); 15850 BaseIndexOffset LBasePtr; 15851 // Match on loadbaseptr if relevant. 15852 EVT LoadVT; 15853 if (IsLoadSrc) { 15854 auto *Ld = cast<LoadSDNode>(Val); 15855 LBasePtr = BaseIndexOffset::match(Ld, DAG); 15856 LoadVT = Ld->getMemoryVT(); 15857 // Load and store should be the same type. 15858 if (MemVT != LoadVT) 15859 return; 15860 // Loads must only have one use. 15861 if (!Ld->hasNUsesOfValue(1, 0)) 15862 return; 15863 // The memory operands must not be volatile/indexed/atomic. 15864 // TODO: May be able to relax for unordered atomics (see D66309) 15865 if (!Ld->isSimple() || Ld->isIndexed()) 15866 return; 15867 } 15868 auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr, 15869 int64_t &Offset) -> bool { 15870 // The memory operands must not be volatile/indexed/atomic. 15871 // TODO: May be able to relax for unordered atomics (see D66309) 15872 if (!Other->isSimple() || Other->isIndexed()) 15873 return false; 15874 // Don't mix temporal stores with non-temporal stores. 15875 if (St->isNonTemporal() != Other->isNonTemporal()) 15876 return false; 15877 SDValue OtherBC = peekThroughBitcasts(Other->getValue()); 15878 // Allow merging constants of different types as integers. 15879 bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT()) 15880 : Other->getMemoryVT() != MemVT; 15881 if (IsLoadSrc) { 15882 if (NoTypeMatch) 15883 return false; 15884 // The Load's Base Ptr must also match 15885 if (LoadSDNode *OtherLd = dyn_cast<LoadSDNode>(OtherBC)) { 15886 BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG); 15887 if (LoadVT != OtherLd->getMemoryVT()) 15888 return false; 15889 // Loads must only have one use. 15890 if (!OtherLd->hasNUsesOfValue(1, 0)) 15891 return false; 15892 // The memory operands must not be volatile/indexed/atomic. 15893 // TODO: May be able to relax for unordered atomics (see D66309) 15894 if (!OtherLd->isSimple() || 15895 OtherLd->isIndexed()) 15896 return false; 15897 // Don't mix temporal loads with non-temporal loads. 15898 if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal()) 15899 return false; 15900 if (!(LBasePtr.equalBaseIndex(LPtr, DAG))) 15901 return false; 15902 } else 15903 return false; 15904 } 15905 if (IsConstantSrc) { 15906 if (NoTypeMatch) 15907 return false; 15908 if (!(isa<ConstantSDNode>(OtherBC) || isa<ConstantFPSDNode>(OtherBC))) 15909 return false; 15910 } 15911 if (IsExtractVecSrc) { 15912 // Do not merge truncated stores here. 15913 if (Other->isTruncatingStore()) 15914 return false; 15915 if (!MemVT.bitsEq(OtherBC.getValueType())) 15916 return false; 15917 if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT && 15918 OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR) 15919 return false; 15920 } 15921 Ptr = BaseIndexOffset::match(Other, DAG); 15922 return (BasePtr.equalBaseIndex(Ptr, DAG, Offset)); 15923 }; 15924 15925 // Check if the pair of StoreNode and the RootNode already bail out many 15926 // times which is over the limit in dependence check. 15927 auto OverLimitInDependenceCheck = [&](SDNode *StoreNode, 15928 SDNode *RootNode) -> bool { 15929 auto RootCount = StoreRootCountMap.find(StoreNode); 15930 if (RootCount != StoreRootCountMap.end() && 15931 RootCount->second.first == RootNode && 15932 RootCount->second.second > StoreMergeDependenceLimit) 15933 return true; 15934 return false; 15935 }; 15936 15937 // We looking for a root node which is an ancestor to all mergable 15938 // stores. We search up through a load, to our root and then down 15939 // through all children. For instance we will find Store{1,2,3} if 15940 // St is Store1, Store2. or Store3 where the root is not a load 15941 // which always true for nonvolatile ops. TODO: Expand 15942 // the search to find all valid candidates through multiple layers of loads. 15943 // 15944 // Root 15945 // |-------|-------| 15946 // Load Load Store3 15947 // | | 15948 // Store1 Store2 15949 // 15950 // FIXME: We should be able to climb and 15951 // descend TokenFactors to find candidates as well. 15952 15953 RootNode = St->getChain().getNode(); 15954 15955 unsigned NumNodesExplored = 0; 15956 if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(RootNode)) { 15957 RootNode = Ldn->getChain().getNode(); 15958 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); 15959 I != E && NumNodesExplored < 1024; ++I, ++NumNodesExplored) 15960 if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) // walk down chain 15961 for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2) 15962 if (I2.getOperandNo() == 0) 15963 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I2)) { 15964 BaseIndexOffset Ptr; 15965 int64_t PtrDiff; 15966 if (CandidateMatch(OtherST, Ptr, PtrDiff) && 15967 !OverLimitInDependenceCheck(OtherST, RootNode)) 15968 StoreNodes.push_back(MemOpLink(OtherST, PtrDiff)); 15969 } 15970 } else 15971 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); 15972 I != E && NumNodesExplored < 1024; ++I, ++NumNodesExplored) 15973 if (I.getOperandNo() == 0) 15974 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) { 15975 BaseIndexOffset Ptr; 15976 int64_t PtrDiff; 15977 if (CandidateMatch(OtherST, Ptr, PtrDiff) && 15978 !OverLimitInDependenceCheck(OtherST, RootNode)) 15979 StoreNodes.push_back(MemOpLink(OtherST, PtrDiff)); 15980 } 15981 } 15982 15983 // We need to check that merging these stores does not cause a loop in 15984 // the DAG. Any store candidate may depend on another candidate 15985 // indirectly through its operand (we already consider dependencies 15986 // through the chain). Check in parallel by searching up from 15987 // non-chain operands of candidates. 15988 bool DAGCombiner::checkMergeStoreCandidatesForDependencies( 15989 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, 15990 SDNode *RootNode) { 15991 // FIXME: We should be able to truncate a full search of 15992 // predecessors by doing a BFS and keeping tabs the originating 15993 // stores from which worklist nodes come from in a similar way to 15994 // TokenFactor simplfication. 15995 15996 SmallPtrSet<const SDNode *, 32> Visited; 15997 SmallVector<const SDNode *, 8> Worklist; 15998 15999 // RootNode is a predecessor to all candidates so we need not search 16000 // past it. Add RootNode (peeking through TokenFactors). Do not count 16001 // these towards size check. 16002 16003 Worklist.push_back(RootNode); 16004 while (!Worklist.empty()) { 16005 auto N = Worklist.pop_back_val(); 16006 if (!Visited.insert(N).second) 16007 continue; // Already present in Visited. 16008 if (N->getOpcode() == ISD::TokenFactor) { 16009 for (SDValue Op : N->ops()) 16010 Worklist.push_back(Op.getNode()); 16011 } 16012 } 16013 16014 // Don't count pruning nodes towards max. 16015 unsigned int Max = 1024 + Visited.size(); 16016 // Search Ops of store candidates. 16017 for (unsigned i = 0; i < NumStores; ++i) { 16018 SDNode *N = StoreNodes[i].MemNode; 16019 // Of the 4 Store Operands: 16020 // * Chain (Op 0) -> We have already considered these 16021 // in candidate selection and can be 16022 // safely ignored 16023 // * Value (Op 1) -> Cycles may happen (e.g. through load chains) 16024 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant, 16025 // but aren't necessarily fromt the same base node, so 16026 // cycles possible (e.g. via indexed store). 16027 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for 16028 // non-indexed stores). Not constant on all targets (e.g. ARM) 16029 // and so can participate in a cycle. 16030 for (unsigned j = 1; j < N->getNumOperands(); ++j) 16031 Worklist.push_back(N->getOperand(j).getNode()); 16032 } 16033 // Search through DAG. We can stop early if we find a store node. 16034 for (unsigned i = 0; i < NumStores; ++i) 16035 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist, 16036 Max)) { 16037 // If the searching bail out, record the StoreNode and RootNode in the 16038 // StoreRootCountMap. If we have seen the pair many times over a limit, 16039 // we won't add the StoreNode into StoreNodes set again. 16040 if (Visited.size() >= Max) { 16041 auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode]; 16042 if (RootCount.first == RootNode) 16043 RootCount.second++; 16044 else 16045 RootCount = {RootNode, 1}; 16046 } 16047 return false; 16048 } 16049 return true; 16050 } 16051 16052 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode *St) { 16053 if (OptLevel == CodeGenOpt::None || !EnableStoreMerging) 16054 return false; 16055 16056 // TODO: Extend this function to merge stores of scalable vectors. 16057 // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8> 16058 // store since we know <vscale x 16 x i8> is exactly twice as large as 16059 // <vscale x 8 x i8>). Until then, bail out for scalable vectors. 16060 EVT MemVT = St->getMemoryVT(); 16061 if (MemVT.isScalableVector()) 16062 return false; 16063 16064 int64_t ElementSizeBytes = MemVT.getStoreSize(); 16065 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 16066 16067 if (MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits) 16068 return false; 16069 16070 bool NoVectors = DAG.getMachineFunction().getFunction().hasFnAttribute( 16071 Attribute::NoImplicitFloat); 16072 16073 // This function cannot currently deal with non-byte-sized memory sizes. 16074 if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits()) 16075 return false; 16076 16077 if (!MemVT.isSimple()) 16078 return false; 16079 16080 // Perform an early exit check. Do not bother looking at stored values that 16081 // are not constants, loads, or extracted vector elements. 16082 SDValue StoredVal = peekThroughBitcasts(St->getValue()); 16083 bool IsLoadSrc = isa<LoadSDNode>(StoredVal); 16084 bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) || 16085 isa<ConstantFPSDNode>(StoredVal); 16086 bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 16087 StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR); 16088 bool IsNonTemporalStore = St->isNonTemporal(); 16089 bool IsNonTemporalLoad = 16090 IsLoadSrc && cast<LoadSDNode>(StoredVal)->isNonTemporal(); 16091 16092 if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc) 16093 return false; 16094 16095 SmallVector<MemOpLink, 8> StoreNodes; 16096 SDNode *RootNode; 16097 // Find potential store merge candidates by searching through chain sub-DAG 16098 getStoreMergeCandidates(St, StoreNodes, RootNode); 16099 16100 // Check if there is anything to merge. 16101 if (StoreNodes.size() < 2) 16102 return false; 16103 16104 // Sort the memory operands according to their distance from the 16105 // base pointer. 16106 llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) { 16107 return LHS.OffsetFromBase < RHS.OffsetFromBase; 16108 }); 16109 16110 // Store Merge attempts to merge the lowest stores. This generally 16111 // works out as if successful, as the remaining stores are checked 16112 // after the first collection of stores is merged. However, in the 16113 // case that a non-mergeable store is found first, e.g., {p[-2], 16114 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent 16115 // mergeable cases. To prevent this, we prune such stores from the 16116 // front of StoreNodes here. 16117 16118 bool RV = false; 16119 while (StoreNodes.size() > 1) { 16120 size_t StartIdx = 0; 16121 while ((StartIdx + 1 < StoreNodes.size()) && 16122 StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes != 16123 StoreNodes[StartIdx + 1].OffsetFromBase) 16124 ++StartIdx; 16125 16126 // Bail if we don't have enough candidates to merge. 16127 if (StartIdx + 1 >= StoreNodes.size()) 16128 return RV; 16129 16130 if (StartIdx) 16131 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx); 16132 16133 // Scan the memory operations on the chain and find the first 16134 // non-consecutive store memory address. 16135 unsigned NumConsecutiveStores = 1; 16136 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 16137 // Check that the addresses are consecutive starting from the second 16138 // element in the list of stores. 16139 for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) { 16140 int64_t CurrAddress = StoreNodes[i].OffsetFromBase; 16141 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 16142 break; 16143 NumConsecutiveStores = i + 1; 16144 } 16145 16146 if (NumConsecutiveStores < 2) { 16147 StoreNodes.erase(StoreNodes.begin(), 16148 StoreNodes.begin() + NumConsecutiveStores); 16149 continue; 16150 } 16151 16152 // The node with the lowest store address. 16153 LLVMContext &Context = *DAG.getContext(); 16154 const DataLayout &DL = DAG.getDataLayout(); 16155 16156 // Store the constants into memory as one consecutive store. 16157 if (IsConstantSrc) { 16158 while (NumConsecutiveStores >= 2) { 16159 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 16160 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 16161 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 16162 unsigned LastLegalType = 1; 16163 unsigned LastLegalVectorType = 1; 16164 bool LastIntegerTrunc = false; 16165 bool NonZero = false; 16166 unsigned FirstZeroAfterNonZero = NumConsecutiveStores; 16167 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 16168 StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode); 16169 SDValue StoredVal = ST->getValue(); 16170 bool IsElementZero = false; 16171 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) 16172 IsElementZero = C->isNullValue(); 16173 else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) 16174 IsElementZero = C->getConstantFPValue()->isNullValue(); 16175 if (IsElementZero) { 16176 if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores) 16177 FirstZeroAfterNonZero = i; 16178 } 16179 NonZero |= !IsElementZero; 16180 16181 // Find a legal type for the constant store. 16182 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; 16183 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); 16184 bool IsFast = false; 16185 16186 // Break early when size is too large to be legal. 16187 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) 16188 break; 16189 16190 if (TLI.isTypeLegal(StoreTy) && 16191 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && 16192 TLI.allowsMemoryAccess(Context, DL, StoreTy, 16193 *FirstInChain->getMemOperand(), &IsFast) && 16194 IsFast) { 16195 LastIntegerTrunc = false; 16196 LastLegalType = i + 1; 16197 // Or check whether a truncstore is legal. 16198 } else if (TLI.getTypeAction(Context, StoreTy) == 16199 TargetLowering::TypePromoteInteger) { 16200 EVT LegalizedStoredValTy = 16201 TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); 16202 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && 16203 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && 16204 TLI.allowsMemoryAccess(Context, DL, StoreTy, 16205 *FirstInChain->getMemOperand(), 16206 &IsFast) && 16207 IsFast) { 16208 LastIntegerTrunc = true; 16209 LastLegalType = i + 1; 16210 } 16211 } 16212 16213 // We only use vectors if the constant is known to be zero or the 16214 // target allows it and the function is not marked with the 16215 // noimplicitfloat attribute. 16216 if ((!NonZero || 16217 TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) && 16218 !NoVectors) { 16219 // Find a legal type for the vector store. 16220 unsigned Elts = (i + 1) * NumMemElts; 16221 EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 16222 if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) && 16223 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && 16224 TLI.allowsMemoryAccess( 16225 Context, DL, Ty, *FirstInChain->getMemOperand(), &IsFast) && 16226 IsFast) 16227 LastLegalVectorType = i + 1; 16228 } 16229 } 16230 16231 bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors; 16232 unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType; 16233 16234 // Check if we found a legal integer type that creates a meaningful 16235 // merge. 16236 if (NumElem < 2) { 16237 // We know that candidate stores are in order and of correct 16238 // shape. While there is no mergeable sequence from the 16239 // beginning one may start later in the sequence. The only 16240 // reason a merge of size N could have failed where another of 16241 // the same size would not have, is if the alignment has 16242 // improved or we've dropped a non-zero value. Drop as many 16243 // candidates as we can here. 16244 unsigned NumSkip = 1; 16245 while ( 16246 (NumSkip < NumConsecutiveStores) && 16247 (NumSkip < FirstZeroAfterNonZero) && 16248 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 16249 NumSkip++; 16250 16251 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 16252 NumConsecutiveStores -= NumSkip; 16253 continue; 16254 } 16255 16256 // Check that we can merge these candidates without causing a cycle. 16257 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, 16258 RootNode)) { 16259 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 16260 NumConsecutiveStores -= NumElem; 16261 continue; 16262 } 16263 16264 RV |= MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, true, 16265 UseVector, LastIntegerTrunc); 16266 16267 // Remove merged stores for next iteration. 16268 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 16269 NumConsecutiveStores -= NumElem; 16270 } 16271 continue; 16272 } 16273 16274 // When extracting multiple vector elements, try to store them 16275 // in one vector store rather than a sequence of scalar stores. 16276 if (IsExtractVecSrc) { 16277 // Loop on Consecutive Stores on success. 16278 while (NumConsecutiveStores >= 2) { 16279 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 16280 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 16281 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 16282 unsigned NumStoresToMerge = 1; 16283 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 16284 // Find a legal type for the vector store. 16285 unsigned Elts = (i + 1) * NumMemElts; 16286 EVT Ty = 16287 EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 16288 bool IsFast = false; 16289 16290 // Break early when size is too large to be legal. 16291 if (Ty.getSizeInBits() > MaximumLegalStoreInBits) 16292 break; 16293 16294 if (TLI.isTypeLegal(Ty) && 16295 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && 16296 TLI.allowsMemoryAccess(Context, DL, Ty, 16297 *FirstInChain->getMemOperand(), &IsFast) && 16298 IsFast) 16299 NumStoresToMerge = i + 1; 16300 } 16301 16302 // Check if we found a legal integer type creating a meaningful 16303 // merge. 16304 if (NumStoresToMerge < 2) { 16305 // We know that candidate stores are in order and of correct 16306 // shape. While there is no mergeable sequence from the 16307 // beginning one may start later in the sequence. The only 16308 // reason a merge of size N could have failed where another of 16309 // the same size would not have, is if the alignment has 16310 // improved. Drop as many candidates as we can here. 16311 unsigned NumSkip = 1; 16312 while ( 16313 (NumSkip < NumConsecutiveStores) && 16314 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 16315 NumSkip++; 16316 16317 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 16318 NumConsecutiveStores -= NumSkip; 16319 continue; 16320 } 16321 16322 // Check that we can merge these candidates without causing a cycle. 16323 if (!checkMergeStoreCandidatesForDependencies( 16324 StoreNodes, NumStoresToMerge, RootNode)) { 16325 StoreNodes.erase(StoreNodes.begin(), 16326 StoreNodes.begin() + NumStoresToMerge); 16327 NumConsecutiveStores -= NumStoresToMerge; 16328 continue; 16329 } 16330 16331 RV |= MergeStoresOfConstantsOrVecElts( 16332 StoreNodes, MemVT, NumStoresToMerge, false, true, false); 16333 16334 StoreNodes.erase(StoreNodes.begin(), 16335 StoreNodes.begin() + NumStoresToMerge); 16336 NumConsecutiveStores -= NumStoresToMerge; 16337 } 16338 continue; 16339 } 16340 16341 // Below we handle the case of multiple consecutive stores that 16342 // come from multiple consecutive loads. We merge them into a single 16343 // wide load and a single wide store. 16344 16345 // Look for load nodes which are used by the stored values. 16346 SmallVector<MemOpLink, 8> LoadNodes; 16347 16348 // Find acceptable loads. Loads need to have the same chain (token factor), 16349 // must not be zext, volatile, indexed, and they must be consecutive. 16350 BaseIndexOffset LdBasePtr; 16351 16352 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 16353 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 16354 SDValue Val = peekThroughBitcasts(St->getValue()); 16355 LoadSDNode *Ld = cast<LoadSDNode>(Val); 16356 16357 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG); 16358 // If this is not the first ptr that we check. 16359 int64_t LdOffset = 0; 16360 if (LdBasePtr.getBase().getNode()) { 16361 // The base ptr must be the same. 16362 if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset)) 16363 break; 16364 } else { 16365 // Check that all other base pointers are the same as this one. 16366 LdBasePtr = LdPtr; 16367 } 16368 16369 // We found a potential memory operand to merge. 16370 LoadNodes.push_back(MemOpLink(Ld, LdOffset)); 16371 } 16372 16373 while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) { 16374 // If we have load/store pair instructions and we only have two values, 16375 // don't bother merging. 16376 unsigned RequiredAlignment; 16377 if (LoadNodes.size() == 2 && 16378 TLI.hasPairedLoad(MemVT, RequiredAlignment) && 16379 StoreNodes[0].MemNode->getAlignment() >= RequiredAlignment) { 16380 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2); 16381 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2); 16382 break; 16383 } 16384 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 16385 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 16386 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 16387 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); 16388 unsigned FirstLoadAlign = FirstLoad->getAlignment(); 16389 16390 // Scan the memory operations on the chain and find the first 16391 // non-consecutive load memory address. These variables hold the index in 16392 // the store node array. 16393 16394 unsigned LastConsecutiveLoad = 1; 16395 16396 // This variable refers to the size and not index in the array. 16397 unsigned LastLegalVectorType = 1; 16398 unsigned LastLegalIntegerType = 1; 16399 bool isDereferenceable = true; 16400 bool DoIntegerTruncate = false; 16401 StartAddress = LoadNodes[0].OffsetFromBase; 16402 SDValue FirstChain = FirstLoad->getChain(); 16403 for (unsigned i = 1; i < LoadNodes.size(); ++i) { 16404 // All loads must share the same chain. 16405 if (LoadNodes[i].MemNode->getChain() != FirstChain) 16406 break; 16407 16408 int64_t CurrAddress = LoadNodes[i].OffsetFromBase; 16409 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 16410 break; 16411 LastConsecutiveLoad = i; 16412 16413 if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable()) 16414 isDereferenceable = false; 16415 16416 // Find a legal type for the vector store. 16417 unsigned Elts = (i + 1) * NumMemElts; 16418 EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 16419 16420 // Break early when size is too large to be legal. 16421 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) 16422 break; 16423 16424 bool IsFastSt = false; 16425 bool IsFastLd = false; 16426 if (TLI.isTypeLegal(StoreTy) && 16427 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && 16428 TLI.allowsMemoryAccess(Context, DL, StoreTy, 16429 *FirstInChain->getMemOperand(), &IsFastSt) && 16430 IsFastSt && 16431 TLI.allowsMemoryAccess(Context, DL, StoreTy, 16432 *FirstLoad->getMemOperand(), &IsFastLd) && 16433 IsFastLd) { 16434 LastLegalVectorType = i + 1; 16435 } 16436 16437 // Find a legal type for the integer store. 16438 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; 16439 StoreTy = EVT::getIntegerVT(Context, SizeInBits); 16440 if (TLI.isTypeLegal(StoreTy) && 16441 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && 16442 TLI.allowsMemoryAccess(Context, DL, StoreTy, 16443 *FirstInChain->getMemOperand(), &IsFastSt) && 16444 IsFastSt && 16445 TLI.allowsMemoryAccess(Context, DL, StoreTy, 16446 *FirstLoad->getMemOperand(), &IsFastLd) && 16447 IsFastLd) { 16448 LastLegalIntegerType = i + 1; 16449 DoIntegerTruncate = false; 16450 // Or check whether a truncstore and extload is legal. 16451 } else if (TLI.getTypeAction(Context, StoreTy) == 16452 TargetLowering::TypePromoteInteger) { 16453 EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy); 16454 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && 16455 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && 16456 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, 16457 StoreTy) && 16458 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, 16459 StoreTy) && 16460 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) && 16461 TLI.allowsMemoryAccess(Context, DL, StoreTy, 16462 *FirstInChain->getMemOperand(), 16463 &IsFastSt) && 16464 IsFastSt && 16465 TLI.allowsMemoryAccess(Context, DL, StoreTy, 16466 *FirstLoad->getMemOperand(), &IsFastLd) && 16467 IsFastLd) { 16468 LastLegalIntegerType = i + 1; 16469 DoIntegerTruncate = true; 16470 } 16471 } 16472 } 16473 16474 // Only use vector types if the vector type is larger than the integer 16475 // type. If they are the same, use integers. 16476 bool UseVectorTy = 16477 LastLegalVectorType > LastLegalIntegerType && !NoVectors; 16478 unsigned LastLegalType = 16479 std::max(LastLegalVectorType, LastLegalIntegerType); 16480 16481 // We add +1 here because the LastXXX variables refer to location while 16482 // the NumElem refers to array/index size. 16483 unsigned NumElem = 16484 std::min(NumConsecutiveStores, LastConsecutiveLoad + 1); 16485 NumElem = std::min(LastLegalType, NumElem); 16486 16487 if (NumElem < 2) { 16488 // We know that candidate stores are in order and of correct 16489 // shape. While there is no mergeable sequence from the 16490 // beginning one may start later in the sequence. The only 16491 // reason a merge of size N could have failed where another of 16492 // the same size would not have is if the alignment or either 16493 // the load or store has improved. Drop as many candidates as we 16494 // can here. 16495 unsigned NumSkip = 1; 16496 while ((NumSkip < LoadNodes.size()) && 16497 (LoadNodes[NumSkip].MemNode->getAlignment() <= FirstLoadAlign) && 16498 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 16499 NumSkip++; 16500 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 16501 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip); 16502 NumConsecutiveStores -= NumSkip; 16503 continue; 16504 } 16505 16506 // Check that we can merge these candidates without causing a cycle. 16507 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, 16508 RootNode)) { 16509 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 16510 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); 16511 NumConsecutiveStores -= NumElem; 16512 continue; 16513 } 16514 16515 // Find if it is better to use vectors or integers to load and store 16516 // to memory. 16517 EVT JointMemOpVT; 16518 if (UseVectorTy) { 16519 // Find a legal type for the vector store. 16520 unsigned Elts = NumElem * NumMemElts; 16521 JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 16522 } else { 16523 unsigned SizeInBits = NumElem * ElementSizeBytes * 8; 16524 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); 16525 } 16526 16527 SDLoc LoadDL(LoadNodes[0].MemNode); 16528 SDLoc StoreDL(StoreNodes[0].MemNode); 16529 16530 // The merged loads are required to have the same incoming chain, so 16531 // using the first's chain is acceptable. 16532 16533 SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem); 16534 AddToWorklist(NewStoreChain.getNode()); 16535 16536 MachineMemOperand::Flags LdMMOFlags = 16537 isDereferenceable ? MachineMemOperand::MODereferenceable 16538 : MachineMemOperand::MONone; 16539 if (IsNonTemporalLoad) 16540 LdMMOFlags |= MachineMemOperand::MONonTemporal; 16541 16542 MachineMemOperand::Flags StMMOFlags = 16543 IsNonTemporalStore ? MachineMemOperand::MONonTemporal 16544 : MachineMemOperand::MONone; 16545 16546 SDValue NewLoad, NewStore; 16547 if (UseVectorTy || !DoIntegerTruncate) { 16548 NewLoad = 16549 DAG.getLoad(JointMemOpVT, LoadDL, FirstLoad->getChain(), 16550 FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(), 16551 FirstLoadAlign, LdMMOFlags); 16552 NewStore = DAG.getStore( 16553 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), 16554 FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags); 16555 } else { // This must be the truncstore/extload case 16556 EVT ExtendedTy = 16557 TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT); 16558 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy, 16559 FirstLoad->getChain(), FirstLoad->getBasePtr(), 16560 FirstLoad->getPointerInfo(), JointMemOpVT, 16561 FirstLoadAlign, LdMMOFlags); 16562 NewStore = DAG.getTruncStore(NewStoreChain, StoreDL, NewLoad, 16563 FirstInChain->getBasePtr(), 16564 FirstInChain->getPointerInfo(), 16565 JointMemOpVT, FirstInChain->getAlignment(), 16566 FirstInChain->getMemOperand()->getFlags()); 16567 } 16568 16569 // Transfer chain users from old loads to the new load. 16570 for (unsigned i = 0; i < NumElem; ++i) { 16571 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); 16572 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), 16573 SDValue(NewLoad.getNode(), 1)); 16574 } 16575 16576 // Replace the all stores with the new store. Recursively remove 16577 // corresponding value if its no longer used. 16578 for (unsigned i = 0; i < NumElem; ++i) { 16579 SDValue Val = StoreNodes[i].MemNode->getOperand(1); 16580 CombineTo(StoreNodes[i].MemNode, NewStore); 16581 if (Val.getNode()->use_empty()) 16582 recursivelyDeleteUnusedNodes(Val.getNode()); 16583 } 16584 16585 RV = true; 16586 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 16587 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); 16588 NumConsecutiveStores -= NumElem; 16589 } 16590 } 16591 return RV; 16592 } 16593 16594 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { 16595 SDLoc SL(ST); 16596 SDValue ReplStore; 16597 16598 // Replace the chain to avoid dependency. 16599 if (ST->isTruncatingStore()) { 16600 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), 16601 ST->getBasePtr(), ST->getMemoryVT(), 16602 ST->getMemOperand()); 16603 } else { 16604 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), 16605 ST->getMemOperand()); 16606 } 16607 16608 // Create token to keep both nodes around. 16609 SDValue Token = DAG.getNode(ISD::TokenFactor, SL, 16610 MVT::Other, ST->getChain(), ReplStore); 16611 16612 // Make sure the new and old chains are cleaned up. 16613 AddToWorklist(Token.getNode()); 16614 16615 // Don't add users to work list. 16616 return CombineTo(ST, Token, false); 16617 } 16618 16619 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { 16620 SDValue Value = ST->getValue(); 16621 if (Value.getOpcode() == ISD::TargetConstantFP) 16622 return SDValue(); 16623 16624 if (!ISD::isNormalStore(ST)) 16625 return SDValue(); 16626 16627 SDLoc DL(ST); 16628 16629 SDValue Chain = ST->getChain(); 16630 SDValue Ptr = ST->getBasePtr(); 16631 16632 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); 16633 16634 // NOTE: If the original store is volatile, this transform must not increase 16635 // the number of stores. For example, on x86-32 an f64 can be stored in one 16636 // processor operation but an i64 (which is not legal) requires two. So the 16637 // transform should not be done in this case. 16638 16639 SDValue Tmp; 16640 switch (CFP->getSimpleValueType(0).SimpleTy) { 16641 default: 16642 llvm_unreachable("Unknown FP type"); 16643 case MVT::f16: // We don't do this for these yet. 16644 case MVT::f80: 16645 case MVT::f128: 16646 case MVT::ppcf128: 16647 return SDValue(); 16648 case MVT::f32: 16649 if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) || 16650 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 16651 ; 16652 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). 16653 bitcastToAPInt().getZExtValue(), SDLoc(CFP), 16654 MVT::i32); 16655 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); 16656 } 16657 16658 return SDValue(); 16659 case MVT::f64: 16660 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && 16661 ST->isSimple()) || 16662 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { 16663 ; 16664 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 16665 getZExtValue(), SDLoc(CFP), MVT::i64); 16666 return DAG.getStore(Chain, DL, Tmp, 16667 Ptr, ST->getMemOperand()); 16668 } 16669 16670 if (ST->isSimple() && 16671 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 16672 // Many FP stores are not made apparent until after legalize, e.g. for 16673 // argument passing. Since this is so common, custom legalize the 16674 // 64-bit integer store into two 32-bit stores. 16675 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 16676 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); 16677 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); 16678 if (DAG.getDataLayout().isBigEndian()) 16679 std::swap(Lo, Hi); 16680 16681 unsigned Alignment = ST->getAlignment(); 16682 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 16683 AAMDNodes AAInfo = ST->getAAInfo(); 16684 16685 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 16686 ST->getAlignment(), MMOFlags, AAInfo); 16687 Ptr = DAG.getMemBasePlusOffset(Ptr, 4, DL); 16688 Alignment = MinAlign(Alignment, 4U); 16689 SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, 16690 ST->getPointerInfo().getWithOffset(4), 16691 Alignment, MMOFlags, AAInfo); 16692 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 16693 St0, St1); 16694 } 16695 16696 return SDValue(); 16697 } 16698 } 16699 16700 SDValue DAGCombiner::visitSTORE(SDNode *N) { 16701 StoreSDNode *ST = cast<StoreSDNode>(N); 16702 SDValue Chain = ST->getChain(); 16703 SDValue Value = ST->getValue(); 16704 SDValue Ptr = ST->getBasePtr(); 16705 16706 // If this is a store of a bit convert, store the input value if the 16707 // resultant store does not need a higher alignment than the original. 16708 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && 16709 ST->isUnindexed()) { 16710 EVT SVT = Value.getOperand(0).getValueType(); 16711 // If the store is volatile, we only want to change the store type if the 16712 // resulting store is legal. Otherwise we might increase the number of 16713 // memory accesses. We don't care if the original type was legal or not 16714 // as we assume software couldn't rely on the number of accesses of an 16715 // illegal type. 16716 // TODO: May be able to relax for unordered atomics (see D66309) 16717 if (((!LegalOperations && ST->isSimple()) || 16718 TLI.isOperationLegal(ISD::STORE, SVT)) && 16719 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT, 16720 DAG, *ST->getMemOperand())) { 16721 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, 16722 ST->getMemOperand()); 16723 } 16724 } 16725 16726 // Turn 'store undef, Ptr' -> nothing. 16727 if (Value.isUndef() && ST->isUnindexed()) 16728 return Chain; 16729 16730 // Try to infer better alignment information than the store already has. 16731 if (OptLevel != CodeGenOpt::None && ST->isUnindexed() && !ST->isAtomic()) { 16732 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { 16733 if (*Alignment > ST->getAlign() && 16734 isAligned(*Alignment, ST->getSrcValueOffset())) { 16735 SDValue NewStore = 16736 DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), 16737 ST->getMemoryVT(), *Alignment, 16738 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 16739 // NewStore will always be N as we are only refining the alignment 16740 assert(NewStore.getNode() == N); 16741 (void)NewStore; 16742 } 16743 } 16744 } 16745 16746 // Try transforming a pair floating point load / store ops to integer 16747 // load / store ops. 16748 if (SDValue NewST = TransformFPLoadStorePair(N)) 16749 return NewST; 16750 16751 // Try transforming several stores into STORE (BSWAP). 16752 if (SDValue Store = MatchStoreCombine(ST)) 16753 return Store; 16754 16755 if (ST->isUnindexed()) { 16756 // Walk up chain skipping non-aliasing memory nodes, on this store and any 16757 // adjacent stores. 16758 if (findBetterNeighborChains(ST)) { 16759 // replaceStoreChain uses CombineTo, which handled all of the worklist 16760 // manipulation. Return the original node to not do anything else. 16761 return SDValue(ST, 0); 16762 } 16763 Chain = ST->getChain(); 16764 } 16765 16766 // FIXME: is there such a thing as a truncating indexed store? 16767 if (ST->isTruncatingStore() && ST->isUnindexed() && 16768 Value.getValueType().isInteger() && 16769 (!isa<ConstantSDNode>(Value) || 16770 !cast<ConstantSDNode>(Value)->isOpaque())) { 16771 APInt TruncDemandedBits = 16772 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), 16773 ST->getMemoryVT().getScalarSizeInBits()); 16774 16775 // See if we can simplify the input to this truncstore with knowledge that 16776 // only the low bits are being used. For example: 16777 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" 16778 AddToWorklist(Value.getNode()); 16779 if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits)) 16780 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(), 16781 ST->getMemOperand()); 16782 16783 // Otherwise, see if we can simplify the operation with 16784 // SimplifyDemandedBits, which only works if the value has a single use. 16785 if (SimplifyDemandedBits(Value, TruncDemandedBits)) { 16786 // Re-visit the store if anything changed and the store hasn't been merged 16787 // with another node (N is deleted) SimplifyDemandedBits will add Value's 16788 // node back to the worklist if necessary, but we also need to re-visit 16789 // the Store node itself. 16790 if (N->getOpcode() != ISD::DELETED_NODE) 16791 AddToWorklist(N); 16792 return SDValue(N, 0); 16793 } 16794 } 16795 16796 // If this is a load followed by a store to the same location, then the store 16797 // is dead/noop. 16798 // TODO: Can relax for unordered atomics (see D66309) 16799 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { 16800 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && 16801 ST->isUnindexed() && ST->isSimple() && 16802 // There can't be any side effects between the load and store, such as 16803 // a call or store. 16804 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { 16805 // The store is dead, remove it. 16806 return Chain; 16807 } 16808 } 16809 16810 // TODO: Can relax for unordered atomics (see D66309) 16811 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { 16812 if (ST->isUnindexed() && ST->isSimple() && 16813 ST1->isUnindexed() && ST1->isSimple()) { 16814 if (ST1->getBasePtr() == Ptr && ST1->getValue() == Value && 16815 ST->getMemoryVT() == ST1->getMemoryVT()) { 16816 // If this is a store followed by a store with the same value to the 16817 // same location, then the store is dead/noop. 16818 return Chain; 16819 } 16820 16821 if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() && 16822 !ST1->getBasePtr().isUndef() && 16823 // BaseIndexOffset and the code below requires knowing the size 16824 // of a vector, so bail out if MemoryVT is scalable. 16825 !ST1->getMemoryVT().isScalableVector()) { 16826 const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG); 16827 const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG); 16828 unsigned STBitSize = ST->getMemoryVT().getSizeInBits(); 16829 unsigned ChainBitSize = ST1->getMemoryVT().getSizeInBits(); 16830 // If this is a store who's preceding store to a subset of the current 16831 // location and no one other node is chained to that store we can 16832 // effectively drop the store. Do not remove stores to undef as they may 16833 // be used as data sinks. 16834 if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) { 16835 CombineTo(ST1, ST1->getChain()); 16836 return SDValue(); 16837 } 16838 } 16839 } 16840 } 16841 16842 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a 16843 // truncating store. We can do this even if this is already a truncstore. 16844 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) 16845 && Value.getNode()->hasOneUse() && ST->isUnindexed() && 16846 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), 16847 ST->getMemoryVT())) { 16848 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), 16849 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 16850 } 16851 16852 // Always perform this optimization before types are legal. If the target 16853 // prefers, also try this after legalization to catch stores that were created 16854 // by intrinsics or other nodes. 16855 if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) { 16856 while (true) { 16857 // There can be multiple store sequences on the same chain. 16858 // Keep trying to merge store sequences until we are unable to do so 16859 // or until we merge the last store on the chain. 16860 bool Changed = MergeConsecutiveStores(ST); 16861 if (!Changed) break; 16862 // Return N as merge only uses CombineTo and no worklist clean 16863 // up is necessary. 16864 if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N)) 16865 return SDValue(N, 0); 16866 } 16867 } 16868 16869 // Try transforming N to an indexed store. 16870 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 16871 return SDValue(N, 0); 16872 16873 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 16874 // 16875 // Make sure to do this only after attempting to merge stores in order to 16876 // avoid changing the types of some subset of stores due to visit order, 16877 // preventing their merging. 16878 if (isa<ConstantFPSDNode>(ST->getValue())) { 16879 if (SDValue NewSt = replaceStoreOfFPConstant(ST)) 16880 return NewSt; 16881 } 16882 16883 if (SDValue NewSt = splitMergedValStore(ST)) 16884 return NewSt; 16885 16886 return ReduceLoadOpStoreWidth(N); 16887 } 16888 16889 SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) { 16890 const auto *LifetimeEnd = cast<LifetimeSDNode>(N); 16891 if (!LifetimeEnd->hasOffset()) 16892 return SDValue(); 16893 16894 const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(), 16895 LifetimeEnd->getOffset(), false); 16896 16897 // We walk up the chains to find stores. 16898 SmallVector<SDValue, 8> Chains = {N->getOperand(0)}; 16899 while (!Chains.empty()) { 16900 SDValue Chain = Chains.back(); 16901 Chains.pop_back(); 16902 if (!Chain.hasOneUse()) 16903 continue; 16904 switch (Chain.getOpcode()) { 16905 case ISD::TokenFactor: 16906 for (unsigned Nops = Chain.getNumOperands(); Nops;) 16907 Chains.push_back(Chain.getOperand(--Nops)); 16908 break; 16909 case ISD::LIFETIME_START: 16910 case ISD::LIFETIME_END: 16911 // We can forward past any lifetime start/end that can be proven not to 16912 // alias the node. 16913 if (!isAlias(Chain.getNode(), N)) 16914 Chains.push_back(Chain.getOperand(0)); 16915 break; 16916 case ISD::STORE: { 16917 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain); 16918 // TODO: Can relax for unordered atomics (see D66309) 16919 if (!ST->isSimple() || ST->isIndexed()) 16920 continue; 16921 const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG); 16922 // If we store purely within object bounds just before its lifetime ends, 16923 // we can remove the store. 16924 if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase, 16925 ST->getMemoryVT().getStoreSizeInBits())) { 16926 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump(); 16927 dbgs() << "\nwithin LIFETIME_END of : "; 16928 LifetimeEndBase.dump(); dbgs() << "\n"); 16929 CombineTo(ST, ST->getChain()); 16930 return SDValue(N, 0); 16931 } 16932 } 16933 } 16934 } 16935 return SDValue(); 16936 } 16937 16938 /// For the instruction sequence of store below, F and I values 16939 /// are bundled together as an i64 value before being stored into memory. 16940 /// Sometimes it is more efficent to generate separate stores for F and I, 16941 /// which can remove the bitwise instructions or sink them to colder places. 16942 /// 16943 /// (store (or (zext (bitcast F to i32) to i64), 16944 /// (shl (zext I to i64), 32)), addr) --> 16945 /// (store F, addr) and (store I, addr+4) 16946 /// 16947 /// Similarly, splitting for other merged store can also be beneficial, like: 16948 /// For pair of {i32, i32}, i64 store --> two i32 stores. 16949 /// For pair of {i32, i16}, i64 store --> two i32 stores. 16950 /// For pair of {i16, i16}, i32 store --> two i16 stores. 16951 /// For pair of {i16, i8}, i32 store --> two i16 stores. 16952 /// For pair of {i8, i8}, i16 store --> two i8 stores. 16953 /// 16954 /// We allow each target to determine specifically which kind of splitting is 16955 /// supported. 16956 /// 16957 /// The store patterns are commonly seen from the simple code snippet below 16958 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 16959 /// void goo(const std::pair<int, float> &); 16960 /// hoo() { 16961 /// ... 16962 /// goo(std::make_pair(tmp, ftmp)); 16963 /// ... 16964 /// } 16965 /// 16966 SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { 16967 if (OptLevel == CodeGenOpt::None) 16968 return SDValue(); 16969 16970 // Can't change the number of memory accesses for a volatile store or break 16971 // atomicity for an atomic one. 16972 if (!ST->isSimple()) 16973 return SDValue(); 16974 16975 SDValue Val = ST->getValue(); 16976 SDLoc DL(ST); 16977 16978 // Match OR operand. 16979 if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) 16980 return SDValue(); 16981 16982 // Match SHL operand and get Lower and Higher parts of Val. 16983 SDValue Op1 = Val.getOperand(0); 16984 SDValue Op2 = Val.getOperand(1); 16985 SDValue Lo, Hi; 16986 if (Op1.getOpcode() != ISD::SHL) { 16987 std::swap(Op1, Op2); 16988 if (Op1.getOpcode() != ISD::SHL) 16989 return SDValue(); 16990 } 16991 Lo = Op2; 16992 Hi = Op1.getOperand(0); 16993 if (!Op1.hasOneUse()) 16994 return SDValue(); 16995 16996 // Match shift amount to HalfValBitSize. 16997 unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; 16998 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); 16999 if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) 17000 return SDValue(); 17001 17002 // Lo and Hi are zero-extended from int with size less equal than 32 17003 // to i64. 17004 if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || 17005 !Lo.getOperand(0).getValueType().isScalarInteger() || 17006 Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || 17007 Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || 17008 !Hi.getOperand(0).getValueType().isScalarInteger() || 17009 Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) 17010 return SDValue(); 17011 17012 // Use the EVT of low and high parts before bitcast as the input 17013 // of target query. 17014 EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST) 17015 ? Lo.getOperand(0).getValueType() 17016 : Lo.getValueType(); 17017 EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST) 17018 ? Hi.getOperand(0).getValueType() 17019 : Hi.getValueType(); 17020 if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 17021 return SDValue(); 17022 17023 // Start to split store. 17024 unsigned Alignment = ST->getAlignment(); 17025 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 17026 AAMDNodes AAInfo = ST->getAAInfo(); 17027 17028 // Change the sizes of Lo and Hi's value types to HalfValBitSize. 17029 EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); 17030 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); 17031 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); 17032 17033 SDValue Chain = ST->getChain(); 17034 SDValue Ptr = ST->getBasePtr(); 17035 // Lower value store. 17036 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 17037 ST->getAlignment(), MMOFlags, AAInfo); 17038 Ptr = DAG.getMemBasePlusOffset(Ptr, HalfValBitSize / 8, DL); 17039 // Higher value store. 17040 SDValue St1 = 17041 DAG.getStore(St0, DL, Hi, Ptr, 17042 ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), 17043 Alignment / 2, MMOFlags, AAInfo); 17044 return St1; 17045 } 17046 17047 /// Convert a disguised subvector insertion into a shuffle: 17048 SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) { 17049 assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && 17050 "Expected extract_vector_elt"); 17051 SDValue InsertVal = N->getOperand(1); 17052 SDValue Vec = N->getOperand(0); 17053 17054 // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N), 17055 // InsIndex) 17056 // --> (vector_shuffle X, Y) and variations where shuffle operands may be 17057 // CONCAT_VECTORS. 17058 if (Vec.getOpcode() == ISD::VECTOR_SHUFFLE && Vec.hasOneUse() && 17059 InsertVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 17060 isa<ConstantSDNode>(InsertVal.getOperand(1))) { 17061 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Vec.getNode()); 17062 ArrayRef<int> Mask = SVN->getMask(); 17063 17064 SDValue X = Vec.getOperand(0); 17065 SDValue Y = Vec.getOperand(1); 17066 17067 // Vec's operand 0 is using indices from 0 to N-1 and 17068 // operand 1 from N to 2N - 1, where N is the number of 17069 // elements in the vectors. 17070 SDValue InsertVal0 = InsertVal.getOperand(0); 17071 int ElementOffset = -1; 17072 17073 // We explore the inputs of the shuffle in order to see if we find the 17074 // source of the extract_vector_elt. If so, we can use it to modify the 17075 // shuffle rather than perform an insert_vector_elt. 17076 SmallVector<std::pair<int, SDValue>, 8> ArgWorkList; 17077 ArgWorkList.emplace_back(Mask.size(), Y); 17078 ArgWorkList.emplace_back(0, X); 17079 17080 while (!ArgWorkList.empty()) { 17081 int ArgOffset; 17082 SDValue ArgVal; 17083 std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val(); 17084 17085 if (ArgVal == InsertVal0) { 17086 ElementOffset = ArgOffset; 17087 break; 17088 } 17089 17090 // Peek through concat_vector. 17091 if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) { 17092 int CurrentArgOffset = 17093 ArgOffset + ArgVal.getValueType().getVectorNumElements(); 17094 int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements(); 17095 for (SDValue Op : reverse(ArgVal->ops())) { 17096 CurrentArgOffset -= Step; 17097 ArgWorkList.emplace_back(CurrentArgOffset, Op); 17098 } 17099 17100 // Make sure we went through all the elements and did not screw up index 17101 // computation. 17102 assert(CurrentArgOffset == ArgOffset); 17103 } 17104 } 17105 17106 if (ElementOffset != -1) { 17107 SmallVector<int, 16> NewMask(Mask.begin(), Mask.end()); 17108 17109 auto *ExtrIndex = cast<ConstantSDNode>(InsertVal.getOperand(1)); 17110 NewMask[InsIndex] = ElementOffset + ExtrIndex->getZExtValue(); 17111 assert(NewMask[InsIndex] < 17112 (int)(2 * Vec.getValueType().getVectorNumElements()) && 17113 NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound"); 17114 17115 SDValue LegalShuffle = 17116 TLI.buildLegalVectorShuffle(Vec.getValueType(), SDLoc(N), X, 17117 Y, NewMask, DAG); 17118 if (LegalShuffle) 17119 return LegalShuffle; 17120 } 17121 } 17122 17123 // insert_vector_elt V, (bitcast X from vector type), IdxC --> 17124 // bitcast(shuffle (bitcast V), (extended X), Mask) 17125 // Note: We do not use an insert_subvector node because that requires a 17126 // legal subvector type. 17127 if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() || 17128 !InsertVal.getOperand(0).getValueType().isVector()) 17129 return SDValue(); 17130 17131 SDValue SubVec = InsertVal.getOperand(0); 17132 SDValue DestVec = N->getOperand(0); 17133 EVT SubVecVT = SubVec.getValueType(); 17134 EVT VT = DestVec.getValueType(); 17135 unsigned NumSrcElts = SubVecVT.getVectorNumElements(); 17136 unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits(); 17137 unsigned NumMaskVals = ExtendRatio * NumSrcElts; 17138 17139 // Step 1: Create a shuffle mask that implements this insert operation. The 17140 // vector that we are inserting into will be operand 0 of the shuffle, so 17141 // those elements are just 'i'. The inserted subvector is in the first 17142 // positions of operand 1 of the shuffle. Example: 17143 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7} 17144 SmallVector<int, 16> Mask(NumMaskVals); 17145 for (unsigned i = 0; i != NumMaskVals; ++i) { 17146 if (i / NumSrcElts == InsIndex) 17147 Mask[i] = (i % NumSrcElts) + NumMaskVals; 17148 else 17149 Mask[i] = i; 17150 } 17151 17152 // Bail out if the target can not handle the shuffle we want to create. 17153 EVT SubVecEltVT = SubVecVT.getVectorElementType(); 17154 EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals); 17155 if (!TLI.isShuffleMaskLegal(Mask, ShufVT)) 17156 return SDValue(); 17157 17158 // Step 2: Create a wide vector from the inserted source vector by appending 17159 // undefined elements. This is the same size as our destination vector. 17160 SDLoc DL(N); 17161 SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT)); 17162 ConcatOps[0] = SubVec; 17163 SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps); 17164 17165 // Step 3: Shuffle in the padded subvector. 17166 SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec); 17167 SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask); 17168 AddToWorklist(PaddedSubV.getNode()); 17169 AddToWorklist(DestVecBC.getNode()); 17170 AddToWorklist(Shuf.getNode()); 17171 return DAG.getBitcast(VT, Shuf); 17172 } 17173 17174 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { 17175 SDValue InVec = N->getOperand(0); 17176 SDValue InVal = N->getOperand(1); 17177 SDValue EltNo = N->getOperand(2); 17178 SDLoc DL(N); 17179 17180 EVT VT = InVec.getValueType(); 17181 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo); 17182 17183 // Insert into out-of-bounds element is undefined. 17184 if (IndexC && VT.isFixedLengthVector() && 17185 IndexC->getZExtValue() >= VT.getVectorNumElements()) 17186 return DAG.getUNDEF(VT); 17187 17188 // Remove redundant insertions: 17189 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x 17190 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 17191 InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1)) 17192 return InVec; 17193 17194 if (!IndexC) { 17195 // If this is variable insert to undef vector, it might be better to splat: 17196 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... > 17197 if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) { 17198 if (VT.isScalableVector()) 17199 return DAG.getSplatVector(VT, DL, InVal); 17200 else { 17201 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), InVal); 17202 return DAG.getBuildVector(VT, DL, Ops); 17203 } 17204 } 17205 return SDValue(); 17206 } 17207 17208 if (VT.isScalableVector()) 17209 return SDValue(); 17210 17211 unsigned NumElts = VT.getVectorNumElements(); 17212 17213 // We must know which element is being inserted for folds below here. 17214 unsigned Elt = IndexC->getZExtValue(); 17215 if (SDValue Shuf = combineInsertEltToShuffle(N, Elt)) 17216 return Shuf; 17217 17218 // Canonicalize insert_vector_elt dag nodes. 17219 // Example: 17220 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) 17221 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) 17222 // 17223 // Do this only if the child insert_vector node has one use; also 17224 // do this only if indices are both constants and Idx1 < Idx0. 17225 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() 17226 && isa<ConstantSDNode>(InVec.getOperand(2))) { 17227 unsigned OtherElt = InVec.getConstantOperandVal(2); 17228 if (Elt < OtherElt) { 17229 // Swap nodes. 17230 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, 17231 InVec.getOperand(0), InVal, EltNo); 17232 AddToWorklist(NewOp.getNode()); 17233 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), 17234 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); 17235 } 17236 } 17237 17238 // If we can't generate a legal BUILD_VECTOR, exit 17239 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 17240 return SDValue(); 17241 17242 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 17243 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 17244 // vector elements. 17245 SmallVector<SDValue, 8> Ops; 17246 // Do not combine these two vectors if the output vector will not replace 17247 // the input vector. 17248 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { 17249 Ops.append(InVec.getNode()->op_begin(), 17250 InVec.getNode()->op_end()); 17251 } else if (InVec.isUndef()) { 17252 Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType())); 17253 } else { 17254 return SDValue(); 17255 } 17256 assert(Ops.size() == NumElts && "Unexpected vector size"); 17257 17258 // Insert the element 17259 if (Elt < Ops.size()) { 17260 // All the operands of BUILD_VECTOR must have the same type; 17261 // we enforce that here. 17262 EVT OpVT = Ops[0].getValueType(); 17263 Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal; 17264 } 17265 17266 // Return the new vector 17267 return DAG.getBuildVector(VT, DL, Ops); 17268 } 17269 17270 SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, 17271 SDValue EltNo, 17272 LoadSDNode *OriginalLoad) { 17273 assert(OriginalLoad->isSimple()); 17274 17275 EVT ResultVT = EVE->getValueType(0); 17276 EVT VecEltVT = InVecVT.getVectorElementType(); 17277 unsigned Align = OriginalLoad->getAlignment(); 17278 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 17279 VecEltVT.getTypeForEVT(*DAG.getContext())); 17280 17281 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) 17282 return SDValue(); 17283 17284 ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ? 17285 ISD::NON_EXTLOAD : ISD::EXTLOAD; 17286 if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT)) 17287 return SDValue(); 17288 17289 Align = NewAlign; 17290 17291 SDValue NewPtr = OriginalLoad->getBasePtr(); 17292 SDValue Offset; 17293 EVT PtrType = NewPtr.getValueType(); 17294 MachinePointerInfo MPI; 17295 SDLoc DL(EVE); 17296 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { 17297 int Elt = ConstEltNo->getZExtValue(); 17298 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; 17299 Offset = DAG.getConstant(PtrOff, DL, PtrType); 17300 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); 17301 } else { 17302 Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); 17303 Offset = DAG.getNode( 17304 ISD::MUL, DL, PtrType, Offset, 17305 DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); 17306 // Discard the pointer info except the address space because the memory 17307 // operand can't represent this new access since the offset is variable. 17308 MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace()); 17309 } 17310 NewPtr = DAG.getMemBasePlusOffset(NewPtr, Offset, DL); 17311 17312 // The replacement we need to do here is a little tricky: we need to 17313 // replace an extractelement of a load with a load. 17314 // Use ReplaceAllUsesOfValuesWith to do the replacement. 17315 // Note that this replacement assumes that the extractvalue is the only 17316 // use of the load; that's okay because we don't want to perform this 17317 // transformation in other cases anyway. 17318 SDValue Load; 17319 SDValue Chain; 17320 if (ResultVT.bitsGT(VecEltVT)) { 17321 // If the result type of vextract is wider than the load, then issue an 17322 // extending load instead. 17323 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, 17324 VecEltVT) 17325 ? ISD::ZEXTLOAD 17326 : ISD::EXTLOAD; 17327 Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT, 17328 OriginalLoad->getChain(), NewPtr, MPI, VecEltVT, 17329 Align, OriginalLoad->getMemOperand()->getFlags(), 17330 OriginalLoad->getAAInfo()); 17331 Chain = Load.getValue(1); 17332 } else { 17333 Load = DAG.getLoad(VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, 17334 MPI, Align, OriginalLoad->getMemOperand()->getFlags(), 17335 OriginalLoad->getAAInfo()); 17336 Chain = Load.getValue(1); 17337 if (ResultVT.bitsLT(VecEltVT)) 17338 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); 17339 else 17340 Load = DAG.getBitcast(ResultVT, Load); 17341 } 17342 WorklistRemover DeadNodes(*this); 17343 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; 17344 SDValue To[] = { Load, Chain }; 17345 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 17346 // Make sure to revisit this node to clean it up; it will usually be dead. 17347 AddToWorklist(EVE); 17348 // Since we're explicitly calling ReplaceAllUses, add the new node to the 17349 // worklist explicitly as well. 17350 AddToWorklistWithUsers(Load.getNode()); 17351 ++OpsNarrowed; 17352 return SDValue(EVE, 0); 17353 } 17354 17355 /// Transform a vector binary operation into a scalar binary operation by moving 17356 /// the math/logic after an extract element of a vector. 17357 static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG, 17358 bool LegalOperations) { 17359 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 17360 SDValue Vec = ExtElt->getOperand(0); 17361 SDValue Index = ExtElt->getOperand(1); 17362 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 17363 if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() || 17364 Vec.getNode()->getNumValues() != 1) 17365 return SDValue(); 17366 17367 // Targets may want to avoid this to prevent an expensive register transfer. 17368 if (!TLI.shouldScalarizeBinop(Vec)) 17369 return SDValue(); 17370 17371 // Extracting an element of a vector constant is constant-folded, so this 17372 // transform is just replacing a vector op with a scalar op while moving the 17373 // extract. 17374 SDValue Op0 = Vec.getOperand(0); 17375 SDValue Op1 = Vec.getOperand(1); 17376 if (isAnyConstantBuildVector(Op0, true) || 17377 isAnyConstantBuildVector(Op1, true)) { 17378 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C' 17379 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC) 17380 SDLoc DL(ExtElt); 17381 EVT VT = ExtElt->getValueType(0); 17382 SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index); 17383 SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index); 17384 return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1); 17385 } 17386 17387 return SDValue(); 17388 } 17389 17390 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { 17391 SDValue VecOp = N->getOperand(0); 17392 SDValue Index = N->getOperand(1); 17393 EVT ScalarVT = N->getValueType(0); 17394 EVT VecVT = VecOp.getValueType(); 17395 if (VecOp.isUndef()) 17396 return DAG.getUNDEF(ScalarVT); 17397 17398 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val 17399 // 17400 // This only really matters if the index is non-constant since other combines 17401 // on the constant elements already work. 17402 SDLoc DL(N); 17403 if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT && 17404 Index == VecOp.getOperand(2)) { 17405 SDValue Elt = VecOp.getOperand(1); 17406 return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt; 17407 } 17408 17409 // (vextract (scalar_to_vector val, 0) -> val 17410 if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) { 17411 // Only 0'th element of SCALAR_TO_VECTOR is defined. 17412 if (DAG.isKnownNeverZero(Index)) 17413 return DAG.getUNDEF(ScalarVT); 17414 17415 // Check if the result type doesn't match the inserted element type. A 17416 // SCALAR_TO_VECTOR may truncate the inserted element and the 17417 // EXTRACT_VECTOR_ELT may widen the extracted vector. 17418 SDValue InOp = VecOp.getOperand(0); 17419 if (InOp.getValueType() != ScalarVT) { 17420 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); 17421 return DAG.getSExtOrTrunc(InOp, DL, ScalarVT); 17422 } 17423 return InOp; 17424 } 17425 17426 // extract_vector_elt of out-of-bounds element -> UNDEF 17427 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 17428 unsigned NumElts = VecVT.getVectorNumElements(); 17429 unsigned VecEltBitWidth = VecVT.getScalarSizeInBits(); 17430 if (IndexC && IndexC->getAPIntValue().uge(NumElts)) 17431 return DAG.getUNDEF(ScalarVT); 17432 17433 // extract_vector_elt (build_vector x, y), 1 -> y 17434 if (IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR && 17435 TLI.isTypeLegal(VecVT) && 17436 (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) { 17437 SDValue Elt = VecOp.getOperand(IndexC->getZExtValue()); 17438 EVT InEltVT = Elt.getValueType(); 17439 17440 // Sometimes build_vector's scalar input types do not match result type. 17441 if (ScalarVT == InEltVT) 17442 return Elt; 17443 17444 // TODO: It may be useful to truncate if free if the build_vector implicitly 17445 // converts. 17446 } 17447 17448 // TODO: These transforms should not require the 'hasOneUse' restriction, but 17449 // there are regressions on multiple targets without it. We can end up with a 17450 // mess of scalar and vector code if we reduce only part of the DAG to scalar. 17451 if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() && 17452 VecOp.hasOneUse()) { 17453 // The vector index of the LSBs of the source depend on the endian-ness. 17454 bool IsLE = DAG.getDataLayout().isLittleEndian(); 17455 unsigned ExtractIndex = IndexC->getZExtValue(); 17456 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x) 17457 unsigned BCTruncElt = IsLE ? 0 : NumElts - 1; 17458 SDValue BCSrc = VecOp.getOperand(0); 17459 if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger()) 17460 return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc); 17461 17462 if (LegalTypes && BCSrc.getValueType().isInteger() && 17463 BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) { 17464 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt --> 17465 // trunc i64 X to i32 17466 SDValue X = BCSrc.getOperand(0); 17467 assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() && 17468 "Extract element and scalar to vector can't change element type " 17469 "from FP to integer."); 17470 unsigned XBitWidth = X.getValueSizeInBits(); 17471 BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1; 17472 17473 // An extract element return value type can be wider than its vector 17474 // operand element type. In that case, the high bits are undefined, so 17475 // it's possible that we may need to extend rather than truncate. 17476 if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) { 17477 assert(XBitWidth % VecEltBitWidth == 0 && 17478 "Scalar bitwidth must be a multiple of vector element bitwidth"); 17479 return DAG.getAnyExtOrTrunc(X, DL, ScalarVT); 17480 } 17481 } 17482 } 17483 17484 if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations)) 17485 return BO; 17486 17487 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. 17488 // We only perform this optimization before the op legalization phase because 17489 // we may introduce new vector instructions which are not backed by TD 17490 // patterns. For example on AVX, extracting elements from a wide vector 17491 // without using extract_subvector. However, if we can find an underlying 17492 // scalar value, then we can always use that. 17493 if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) { 17494 auto *Shuf = cast<ShuffleVectorSDNode>(VecOp); 17495 // Find the new index to extract from. 17496 int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue()); 17497 17498 // Extracting an undef index is undef. 17499 if (OrigElt == -1) 17500 return DAG.getUNDEF(ScalarVT); 17501 17502 // Select the right vector half to extract from. 17503 SDValue SVInVec; 17504 if (OrigElt < (int)NumElts) { 17505 SVInVec = VecOp.getOperand(0); 17506 } else { 17507 SVInVec = VecOp.getOperand(1); 17508 OrigElt -= NumElts; 17509 } 17510 17511 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { 17512 SDValue InOp = SVInVec.getOperand(OrigElt); 17513 if (InOp.getValueType() != ScalarVT) { 17514 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); 17515 InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT); 17516 } 17517 17518 return InOp; 17519 } 17520 17521 // FIXME: We should handle recursing on other vector shuffles and 17522 // scalar_to_vector here as well. 17523 17524 if (!LegalOperations || 17525 // FIXME: Should really be just isOperationLegalOrCustom. 17526 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) || 17527 TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) { 17528 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec, 17529 DAG.getVectorIdxConstant(OrigElt, DL)); 17530 } 17531 } 17532 17533 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can 17534 // simplify it based on the (valid) extraction indices. 17535 if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) { 17536 return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 17537 Use->getOperand(0) == VecOp && 17538 isa<ConstantSDNode>(Use->getOperand(1)); 17539 })) { 17540 APInt DemandedElts = APInt::getNullValue(NumElts); 17541 for (SDNode *Use : VecOp->uses()) { 17542 auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1)); 17543 if (CstElt->getAPIntValue().ult(NumElts)) 17544 DemandedElts.setBit(CstElt->getZExtValue()); 17545 } 17546 if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) { 17547 // We simplified the vector operand of this extract element. If this 17548 // extract is not dead, visit it again so it is folded properly. 17549 if (N->getOpcode() != ISD::DELETED_NODE) 17550 AddToWorklist(N); 17551 return SDValue(N, 0); 17552 } 17553 APInt DemandedBits = APInt::getAllOnesValue(VecEltBitWidth); 17554 if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) { 17555 // We simplified the vector operand of this extract element. If this 17556 // extract is not dead, visit it again so it is folded properly. 17557 if (N->getOpcode() != ISD::DELETED_NODE) 17558 AddToWorklist(N); 17559 return SDValue(N, 0); 17560 } 17561 } 17562 17563 // Everything under here is trying to match an extract of a loaded value. 17564 // If the result of load has to be truncated, then it's not necessarily 17565 // profitable. 17566 bool BCNumEltsChanged = false; 17567 EVT ExtVT = VecVT.getVectorElementType(); 17568 EVT LVT = ExtVT; 17569 if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT)) 17570 return SDValue(); 17571 17572 if (VecOp.getOpcode() == ISD::BITCAST) { 17573 // Don't duplicate a load with other uses. 17574 if (!VecOp.hasOneUse()) 17575 return SDValue(); 17576 17577 EVT BCVT = VecOp.getOperand(0).getValueType(); 17578 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) 17579 return SDValue(); 17580 if (NumElts != BCVT.getVectorNumElements()) 17581 BCNumEltsChanged = true; 17582 VecOp = VecOp.getOperand(0); 17583 ExtVT = BCVT.getVectorElementType(); 17584 } 17585 17586 // extract (vector load $addr), i --> load $addr + i * size 17587 if (!LegalOperations && !IndexC && VecOp.hasOneUse() && 17588 ISD::isNormalLoad(VecOp.getNode()) && 17589 !Index->hasPredecessor(VecOp.getNode())) { 17590 auto *VecLoad = dyn_cast<LoadSDNode>(VecOp); 17591 if (VecLoad && VecLoad->isSimple()) 17592 return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad); 17593 } 17594 17595 // Perform only after legalization to ensure build_vector / vector_shuffle 17596 // optimizations have already been done. 17597 if (!LegalOperations || !IndexC) 17598 return SDValue(); 17599 17600 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) 17601 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) 17602 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) 17603 int Elt = IndexC->getZExtValue(); 17604 LoadSDNode *LN0 = nullptr; 17605 if (ISD::isNormalLoad(VecOp.getNode())) { 17606 LN0 = cast<LoadSDNode>(VecOp); 17607 } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR && 17608 VecOp.getOperand(0).getValueType() == ExtVT && 17609 ISD::isNormalLoad(VecOp.getOperand(0).getNode())) { 17610 // Don't duplicate a load with other uses. 17611 if (!VecOp.hasOneUse()) 17612 return SDValue(); 17613 17614 LN0 = cast<LoadSDNode>(VecOp.getOperand(0)); 17615 } 17616 if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) { 17617 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) 17618 // => 17619 // (load $addr+1*size) 17620 17621 // Don't duplicate a load with other uses. 17622 if (!VecOp.hasOneUse()) 17623 return SDValue(); 17624 17625 // If the bit convert changed the number of elements, it is unsafe 17626 // to examine the mask. 17627 if (BCNumEltsChanged) 17628 return SDValue(); 17629 17630 // Select the input vector, guarding against out of range extract vector. 17631 int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt); 17632 VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1); 17633 17634 if (VecOp.getOpcode() == ISD::BITCAST) { 17635 // Don't duplicate a load with other uses. 17636 if (!VecOp.hasOneUse()) 17637 return SDValue(); 17638 17639 VecOp = VecOp.getOperand(0); 17640 } 17641 if (ISD::isNormalLoad(VecOp.getNode())) { 17642 LN0 = cast<LoadSDNode>(VecOp); 17643 Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts; 17644 Index = DAG.getConstant(Elt, DL, Index.getValueType()); 17645 } 17646 } else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && 17647 !BCNumEltsChanged && VecVT.getVectorElementType() == ScalarVT) { 17648 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0 17649 // -> extract_vector_elt a, 0 17650 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1 17651 // -> extract_vector_elt a, 1 17652 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2 17653 // -> extract_vector_elt b, 0 17654 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3 17655 // -> extract_vector_elt b, 1 17656 SDLoc SL(N); 17657 EVT ConcatVT = VecOp.getOperand(0).getValueType(); 17658 unsigned ConcatNumElts = ConcatVT.getVectorNumElements(); 17659 SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, SL, 17660 Index.getValueType()); 17661 17662 SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts); 17663 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, 17664 ConcatVT.getVectorElementType(), 17665 ConcatOp, NewIdx); 17666 return DAG.getNode(ISD::BITCAST, SL, ScalarVT, Elt); 17667 } 17668 17669 // Make sure we found a non-volatile load and the extractelement is 17670 // the only use. 17671 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple()) 17672 return SDValue(); 17673 17674 // If Idx was -1 above, Elt is going to be -1, so just return undef. 17675 if (Elt == -1) 17676 return DAG.getUNDEF(LVT); 17677 17678 return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0); 17679 } 17680 17681 // Simplify (build_vec (ext )) to (bitcast (build_vec )) 17682 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { 17683 // We perform this optimization post type-legalization because 17684 // the type-legalizer often scalarizes integer-promoted vectors. 17685 // Performing this optimization before may create bit-casts which 17686 // will be type-legalized to complex code sequences. 17687 // We perform this optimization only before the operation legalizer because we 17688 // may introduce illegal operations. 17689 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) 17690 return SDValue(); 17691 17692 unsigned NumInScalars = N->getNumOperands(); 17693 SDLoc DL(N); 17694 EVT VT = N->getValueType(0); 17695 17696 // Check to see if this is a BUILD_VECTOR of a bunch of values 17697 // which come from any_extend or zero_extend nodes. If so, we can create 17698 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR 17699 // optimizations. We do not handle sign-extend because we can't fill the sign 17700 // using shuffles. 17701 EVT SourceType = MVT::Other; 17702 bool AllAnyExt = true; 17703 17704 for (unsigned i = 0; i != NumInScalars; ++i) { 17705 SDValue In = N->getOperand(i); 17706 // Ignore undef inputs. 17707 if (In.isUndef()) continue; 17708 17709 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; 17710 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; 17711 17712 // Abort if the element is not an extension. 17713 if (!ZeroExt && !AnyExt) { 17714 SourceType = MVT::Other; 17715 break; 17716 } 17717 17718 // The input is a ZeroExt or AnyExt. Check the original type. 17719 EVT InTy = In.getOperand(0).getValueType(); 17720 17721 // Check that all of the widened source types are the same. 17722 if (SourceType == MVT::Other) 17723 // First time. 17724 SourceType = InTy; 17725 else if (InTy != SourceType) { 17726 // Multiple income types. Abort. 17727 SourceType = MVT::Other; 17728 break; 17729 } 17730 17731 // Check if all of the extends are ANY_EXTENDs. 17732 AllAnyExt &= AnyExt; 17733 } 17734 17735 // In order to have valid types, all of the inputs must be extended from the 17736 // same source type and all of the inputs must be any or zero extend. 17737 // Scalar sizes must be a power of two. 17738 EVT OutScalarTy = VT.getScalarType(); 17739 bool ValidTypes = SourceType != MVT::Other && 17740 isPowerOf2_32(OutScalarTy.getSizeInBits()) && 17741 isPowerOf2_32(SourceType.getSizeInBits()); 17742 17743 // Create a new simpler BUILD_VECTOR sequence which other optimizations can 17744 // turn into a single shuffle instruction. 17745 if (!ValidTypes) 17746 return SDValue(); 17747 17748 bool isLE = DAG.getDataLayout().isLittleEndian(); 17749 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); 17750 assert(ElemRatio > 1 && "Invalid element size ratio"); 17751 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): 17752 DAG.getConstant(0, DL, SourceType); 17753 17754 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); 17755 SmallVector<SDValue, 8> Ops(NewBVElems, Filler); 17756 17757 // Populate the new build_vector 17758 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 17759 SDValue Cast = N->getOperand(i); 17760 assert((Cast.getOpcode() == ISD::ANY_EXTEND || 17761 Cast.getOpcode() == ISD::ZERO_EXTEND || 17762 Cast.isUndef()) && "Invalid cast opcode"); 17763 SDValue In; 17764 if (Cast.isUndef()) 17765 In = DAG.getUNDEF(SourceType); 17766 else 17767 In = Cast->getOperand(0); 17768 unsigned Index = isLE ? (i * ElemRatio) : 17769 (i * ElemRatio + (ElemRatio - 1)); 17770 17771 assert(Index < Ops.size() && "Invalid index"); 17772 Ops[Index] = In; 17773 } 17774 17775 // The type of the new BUILD_VECTOR node. 17776 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); 17777 assert(VecVT.getSizeInBits() == VT.getSizeInBits() && 17778 "Invalid vector size"); 17779 // Check if the new vector type is legal. 17780 if (!isTypeLegal(VecVT) || 17781 (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) && 17782 TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))) 17783 return SDValue(); 17784 17785 // Make the new BUILD_VECTOR. 17786 SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); 17787 17788 // The new BUILD_VECTOR node has the potential to be further optimized. 17789 AddToWorklist(BV.getNode()); 17790 // Bitcast to the desired type. 17791 return DAG.getBitcast(VT, BV); 17792 } 17793 17794 // Simplify (build_vec (trunc $1) 17795 // (trunc (srl $1 half-width)) 17796 // (trunc (srl $1 (2 * half-width))) …) 17797 // to (bitcast $1) 17798 SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) { 17799 assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); 17800 17801 // Only for little endian 17802 if (!DAG.getDataLayout().isLittleEndian()) 17803 return SDValue(); 17804 17805 SDLoc DL(N); 17806 EVT VT = N->getValueType(0); 17807 EVT OutScalarTy = VT.getScalarType(); 17808 uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits(); 17809 17810 // Only for power of two types to be sure that bitcast works well 17811 if (!isPowerOf2_64(ScalarTypeBitsize)) 17812 return SDValue(); 17813 17814 unsigned NumInScalars = N->getNumOperands(); 17815 17816 // Look through bitcasts 17817 auto PeekThroughBitcast = [](SDValue Op) { 17818 if (Op.getOpcode() == ISD::BITCAST) 17819 return Op.getOperand(0); 17820 return Op; 17821 }; 17822 17823 // The source value where all the parts are extracted. 17824 SDValue Src; 17825 for (unsigned i = 0; i != NumInScalars; ++i) { 17826 SDValue In = PeekThroughBitcast(N->getOperand(i)); 17827 // Ignore undef inputs. 17828 if (In.isUndef()) continue; 17829 17830 if (In.getOpcode() != ISD::TRUNCATE) 17831 return SDValue(); 17832 17833 In = PeekThroughBitcast(In.getOperand(0)); 17834 17835 if (In.getOpcode() != ISD::SRL) { 17836 // For now only build_vec without shuffling, handle shifts here in the 17837 // future. 17838 if (i != 0) 17839 return SDValue(); 17840 17841 Src = In; 17842 } else { 17843 // In is SRL 17844 SDValue part = PeekThroughBitcast(In.getOperand(0)); 17845 17846 if (!Src) { 17847 Src = part; 17848 } else if (Src != part) { 17849 // Vector parts do not stem from the same variable 17850 return SDValue(); 17851 } 17852 17853 SDValue ShiftAmtVal = In.getOperand(1); 17854 if (!isa<ConstantSDNode>(ShiftAmtVal)) 17855 return SDValue(); 17856 17857 uint64_t ShiftAmt = In.getNode()->getConstantOperandVal(1); 17858 17859 // The extracted value is not extracted at the right position 17860 if (ShiftAmt != i * ScalarTypeBitsize) 17861 return SDValue(); 17862 } 17863 } 17864 17865 // Only cast if the size is the same 17866 if (Src.getValueType().getSizeInBits() != VT.getSizeInBits()) 17867 return SDValue(); 17868 17869 return DAG.getBitcast(VT, Src); 17870 } 17871 17872 SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N, 17873 ArrayRef<int> VectorMask, 17874 SDValue VecIn1, SDValue VecIn2, 17875 unsigned LeftIdx, bool DidSplitVec) { 17876 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); 17877 17878 EVT VT = N->getValueType(0); 17879 EVT InVT1 = VecIn1.getValueType(); 17880 EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; 17881 17882 unsigned NumElems = VT.getVectorNumElements(); 17883 unsigned ShuffleNumElems = NumElems; 17884 17885 // If we artificially split a vector in two already, then the offsets in the 17886 // operands will all be based off of VecIn1, even those in VecIn2. 17887 unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements(); 17888 17889 // We can't generate a shuffle node with mismatched input and output types. 17890 // Try to make the types match the type of the output. 17891 if (InVT1 != VT || InVT2 != VT) { 17892 if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) { 17893 // If the output vector length is a multiple of both input lengths, 17894 // we can concatenate them and pad the rest with undefs. 17895 unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits(); 17896 assert(NumConcats >= 2 && "Concat needs at least two inputs!"); 17897 SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); 17898 ConcatOps[0] = VecIn1; 17899 ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); 17900 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 17901 VecIn2 = SDValue(); 17902 } else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) { 17903 if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems)) 17904 return SDValue(); 17905 17906 if (!VecIn2.getNode()) { 17907 // If we only have one input vector, and it's twice the size of the 17908 // output, split it in two. 17909 VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, 17910 DAG.getVectorIdxConstant(NumElems, DL)); 17911 VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); 17912 // Since we now have shorter input vectors, adjust the offset of the 17913 // second vector's start. 17914 Vec2Offset = NumElems; 17915 } else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) { 17916 // VecIn1 is wider than the output, and we have another, possibly 17917 // smaller input. Pad the smaller input with undefs, shuffle at the 17918 // input vector width, and extract the output. 17919 // The shuffle type is different than VT, so check legality again. 17920 if (LegalOperations && 17921 !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) 17922 return SDValue(); 17923 17924 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to 17925 // lower it back into a BUILD_VECTOR. So if the inserted type is 17926 // illegal, don't even try. 17927 if (InVT1 != InVT2) { 17928 if (!TLI.isTypeLegal(InVT2)) 17929 return SDValue(); 17930 VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, 17931 DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); 17932 } 17933 ShuffleNumElems = NumElems * 2; 17934 } else { 17935 // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider 17936 // than VecIn1. We can't handle this for now - this case will disappear 17937 // when we start sorting the vectors by type. 17938 return SDValue(); 17939 } 17940 } else if (InVT2.getSizeInBits() * 2 == VT.getSizeInBits() && 17941 InVT1.getSizeInBits() == VT.getSizeInBits()) { 17942 SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2)); 17943 ConcatOps[0] = VecIn2; 17944 VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 17945 } else { 17946 // TODO: Support cases where the length mismatch isn't exactly by a 17947 // factor of 2. 17948 // TODO: Move this check upwards, so that if we have bad type 17949 // mismatches, we don't create any DAG nodes. 17950 return SDValue(); 17951 } 17952 } 17953 17954 // Initialize mask to undef. 17955 SmallVector<int, 8> Mask(ShuffleNumElems, -1); 17956 17957 // Only need to run up to the number of elements actually used, not the 17958 // total number of elements in the shuffle - if we are shuffling a wider 17959 // vector, the high lanes should be set to undef. 17960 for (unsigned i = 0; i != NumElems; ++i) { 17961 if (VectorMask[i] <= 0) 17962 continue; 17963 17964 unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1); 17965 if (VectorMask[i] == (int)LeftIdx) { 17966 Mask[i] = ExtIndex; 17967 } else if (VectorMask[i] == (int)LeftIdx + 1) { 17968 Mask[i] = Vec2Offset + ExtIndex; 17969 } 17970 } 17971 17972 // The type the input vectors may have changed above. 17973 InVT1 = VecIn1.getValueType(); 17974 17975 // If we already have a VecIn2, it should have the same type as VecIn1. 17976 // If we don't, get an undef/zero vector of the appropriate type. 17977 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); 17978 assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); 17979 17980 SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); 17981 if (ShuffleNumElems > NumElems) 17982 Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); 17983 17984 return Shuffle; 17985 } 17986 17987 static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) { 17988 assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); 17989 17990 // First, determine where the build vector is not undef. 17991 // TODO: We could extend this to handle zero elements as well as undefs. 17992 int NumBVOps = BV->getNumOperands(); 17993 int ZextElt = -1; 17994 for (int i = 0; i != NumBVOps; ++i) { 17995 SDValue Op = BV->getOperand(i); 17996 if (Op.isUndef()) 17997 continue; 17998 if (ZextElt == -1) 17999 ZextElt = i; 18000 else 18001 return SDValue(); 18002 } 18003 // Bail out if there's no non-undef element. 18004 if (ZextElt == -1) 18005 return SDValue(); 18006 18007 // The build vector contains some number of undef elements and exactly 18008 // one other element. That other element must be a zero-extended scalar 18009 // extracted from a vector at a constant index to turn this into a shuffle. 18010 // Also, require that the build vector does not implicitly truncate/extend 18011 // its elements. 18012 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND. 18013 EVT VT = BV->getValueType(0); 18014 SDValue Zext = BV->getOperand(ZextElt); 18015 if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() || 18016 Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || 18017 !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) || 18018 Zext.getValueSizeInBits() != VT.getScalarSizeInBits()) 18019 return SDValue(); 18020 18021 // The zero-extend must be a multiple of the source size, and we must be 18022 // building a vector of the same size as the source of the extract element. 18023 SDValue Extract = Zext.getOperand(0); 18024 unsigned DestSize = Zext.getValueSizeInBits(); 18025 unsigned SrcSize = Extract.getValueSizeInBits(); 18026 if (DestSize % SrcSize != 0 || 18027 Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits()) 18028 return SDValue(); 18029 18030 // Create a shuffle mask that will combine the extracted element with zeros 18031 // and undefs. 18032 int ZextRatio = DestSize / SrcSize; 18033 int NumMaskElts = NumBVOps * ZextRatio; 18034 SmallVector<int, 32> ShufMask(NumMaskElts, -1); 18035 for (int i = 0; i != NumMaskElts; ++i) { 18036 if (i / ZextRatio == ZextElt) { 18037 // The low bits of the (potentially translated) extracted element map to 18038 // the source vector. The high bits map to zero. We will use a zero vector 18039 // as the 2nd source operand of the shuffle, so use the 1st element of 18040 // that vector (mask value is number-of-elements) for the high bits. 18041 if (i % ZextRatio == 0) 18042 ShufMask[i] = Extract.getConstantOperandVal(1); 18043 else 18044 ShufMask[i] = NumMaskElts; 18045 } 18046 18047 // Undef elements of the build vector remain undef because we initialize 18048 // the shuffle mask with -1. 18049 } 18050 18051 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... --> 18052 // bitcast (shuffle V, ZeroVec, VectorMask) 18053 SDLoc DL(BV); 18054 EVT VecVT = Extract.getOperand(0).getValueType(); 18055 SDValue ZeroVec = DAG.getConstant(0, DL, VecVT); 18056 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 18057 SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0), 18058 ZeroVec, ShufMask, DAG); 18059 if (!Shuf) 18060 return SDValue(); 18061 return DAG.getBitcast(VT, Shuf); 18062 } 18063 18064 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT 18065 // operations. If the types of the vectors we're extracting from allow it, 18066 // turn this into a vector_shuffle node. 18067 SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { 18068 SDLoc DL(N); 18069 EVT VT = N->getValueType(0); 18070 18071 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. 18072 if (!isTypeLegal(VT)) 18073 return SDValue(); 18074 18075 if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG)) 18076 return V; 18077 18078 // May only combine to shuffle after legalize if shuffle is legal. 18079 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) 18080 return SDValue(); 18081 18082 bool UsesZeroVector = false; 18083 unsigned NumElems = N->getNumOperands(); 18084 18085 // Record, for each element of the newly built vector, which input vector 18086 // that element comes from. -1 stands for undef, 0 for the zero vector, 18087 // and positive values for the input vectors. 18088 // VectorMask maps each element to its vector number, and VecIn maps vector 18089 // numbers to their initial SDValues. 18090 18091 SmallVector<int, 8> VectorMask(NumElems, -1); 18092 SmallVector<SDValue, 8> VecIn; 18093 VecIn.push_back(SDValue()); 18094 18095 for (unsigned i = 0; i != NumElems; ++i) { 18096 SDValue Op = N->getOperand(i); 18097 18098 if (Op.isUndef()) 18099 continue; 18100 18101 // See if we can use a blend with a zero vector. 18102 // TODO: Should we generalize this to a blend with an arbitrary constant 18103 // vector? 18104 if (isNullConstant(Op) || isNullFPConstant(Op)) { 18105 UsesZeroVector = true; 18106 VectorMask[i] = 0; 18107 continue; 18108 } 18109 18110 // Not an undef or zero. If the input is something other than an 18111 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out. 18112 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 18113 !isa<ConstantSDNode>(Op.getOperand(1))) 18114 return SDValue(); 18115 SDValue ExtractedFromVec = Op.getOperand(0); 18116 18117 const APInt &ExtractIdx = Op.getConstantOperandAPInt(1); 18118 if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements())) 18119 return SDValue(); 18120 18121 // All inputs must have the same element type as the output. 18122 if (VT.getVectorElementType() != 18123 ExtractedFromVec.getValueType().getVectorElementType()) 18124 return SDValue(); 18125 18126 // Have we seen this input vector before? 18127 // The vectors are expected to be tiny (usually 1 or 2 elements), so using 18128 // a map back from SDValues to numbers isn't worth it. 18129 unsigned Idx = std::distance( 18130 VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec)); 18131 if (Idx == VecIn.size()) 18132 VecIn.push_back(ExtractedFromVec); 18133 18134 VectorMask[i] = Idx; 18135 } 18136 18137 // If we didn't find at least one input vector, bail out. 18138 if (VecIn.size() < 2) 18139 return SDValue(); 18140 18141 // If all the Operands of BUILD_VECTOR extract from same 18142 // vector, then split the vector efficiently based on the maximum 18143 // vector access index and adjust the VectorMask and 18144 // VecIn accordingly. 18145 bool DidSplitVec = false; 18146 if (VecIn.size() == 2) { 18147 unsigned MaxIndex = 0; 18148 unsigned NearestPow2 = 0; 18149 SDValue Vec = VecIn.back(); 18150 EVT InVT = Vec.getValueType(); 18151 SmallVector<unsigned, 8> IndexVec(NumElems, 0); 18152 18153 for (unsigned i = 0; i < NumElems; i++) { 18154 if (VectorMask[i] <= 0) 18155 continue; 18156 unsigned Index = N->getOperand(i).getConstantOperandVal(1); 18157 IndexVec[i] = Index; 18158 MaxIndex = std::max(MaxIndex, Index); 18159 } 18160 18161 NearestPow2 = PowerOf2Ceil(MaxIndex); 18162 if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 && 18163 NumElems * 2 < NearestPow2) { 18164 unsigned SplitSize = NearestPow2 / 2; 18165 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), 18166 InVT.getVectorElementType(), SplitSize); 18167 if (TLI.isTypeLegal(SplitVT)) { 18168 SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, 18169 DAG.getVectorIdxConstant(SplitSize, DL)); 18170 SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, 18171 DAG.getVectorIdxConstant(0, DL)); 18172 VecIn.pop_back(); 18173 VecIn.push_back(VecIn1); 18174 VecIn.push_back(VecIn2); 18175 DidSplitVec = true; 18176 18177 for (unsigned i = 0; i < NumElems; i++) { 18178 if (VectorMask[i] <= 0) 18179 continue; 18180 VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2; 18181 } 18182 } 18183 } 18184 } 18185 18186 // TODO: We want to sort the vectors by descending length, so that adjacent 18187 // pairs have similar length, and the longer vector is always first in the 18188 // pair. 18189 18190 // TODO: Should this fire if some of the input vectors has illegal type (like 18191 // it does now), or should we let legalization run its course first? 18192 18193 // Shuffle phase: 18194 // Take pairs of vectors, and shuffle them so that the result has elements 18195 // from these vectors in the correct places. 18196 // For example, given: 18197 // t10: i32 = extract_vector_elt t1, Constant:i64<0> 18198 // t11: i32 = extract_vector_elt t2, Constant:i64<0> 18199 // t12: i32 = extract_vector_elt t3, Constant:i64<0> 18200 // t13: i32 = extract_vector_elt t1, Constant:i64<1> 18201 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 18202 // We will generate: 18203 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 18204 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef 18205 SmallVector<SDValue, 4> Shuffles; 18206 for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { 18207 unsigned LeftIdx = 2 * In + 1; 18208 SDValue VecLeft = VecIn[LeftIdx]; 18209 SDValue VecRight = 18210 (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); 18211 18212 if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, 18213 VecRight, LeftIdx, DidSplitVec)) 18214 Shuffles.push_back(Shuffle); 18215 else 18216 return SDValue(); 18217 } 18218 18219 // If we need the zero vector as an "ingredient" in the blend tree, add it 18220 // to the list of shuffles. 18221 if (UsesZeroVector) 18222 Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) 18223 : DAG.getConstantFP(0.0, DL, VT)); 18224 18225 // If we only have one shuffle, we're done. 18226 if (Shuffles.size() == 1) 18227 return Shuffles[0]; 18228 18229 // Update the vector mask to point to the post-shuffle vectors. 18230 for (int &Vec : VectorMask) 18231 if (Vec == 0) 18232 Vec = Shuffles.size() - 1; 18233 else 18234 Vec = (Vec - 1) / 2; 18235 18236 // More than one shuffle. Generate a binary tree of blends, e.g. if from 18237 // the previous step we got the set of shuffles t10, t11, t12, t13, we will 18238 // generate: 18239 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 18240 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 18241 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 18242 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 18243 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 18244 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 18245 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 18246 18247 // Make sure the initial size of the shuffle list is even. 18248 if (Shuffles.size() % 2) 18249 Shuffles.push_back(DAG.getUNDEF(VT)); 18250 18251 for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { 18252 if (CurSize % 2) { 18253 Shuffles[CurSize] = DAG.getUNDEF(VT); 18254 CurSize++; 18255 } 18256 for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { 18257 int Left = 2 * In; 18258 int Right = 2 * In + 1; 18259 SmallVector<int, 8> Mask(NumElems, -1); 18260 for (unsigned i = 0; i != NumElems; ++i) { 18261 if (VectorMask[i] == Left) { 18262 Mask[i] = i; 18263 VectorMask[i] = In; 18264 } else if (VectorMask[i] == Right) { 18265 Mask[i] = i + NumElems; 18266 VectorMask[i] = In; 18267 } 18268 } 18269 18270 Shuffles[In] = 18271 DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask); 18272 } 18273 } 18274 return Shuffles[0]; 18275 } 18276 18277 // Try to turn a build vector of zero extends of extract vector elts into a 18278 // a vector zero extend and possibly an extract subvector. 18279 // TODO: Support sign extend? 18280 // TODO: Allow undef elements? 18281 SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) { 18282 if (LegalOperations) 18283 return SDValue(); 18284 18285 EVT VT = N->getValueType(0); 18286 18287 bool FoundZeroExtend = false; 18288 SDValue Op0 = N->getOperand(0); 18289 auto checkElem = [&](SDValue Op) -> int64_t { 18290 unsigned Opc = Op.getOpcode(); 18291 FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND); 18292 if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) && 18293 Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && 18294 Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0)) 18295 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1))) 18296 return C->getZExtValue(); 18297 return -1; 18298 }; 18299 18300 // Make sure the first element matches 18301 // (zext (extract_vector_elt X, C)) 18302 int64_t Offset = checkElem(Op0); 18303 if (Offset < 0) 18304 return SDValue(); 18305 18306 unsigned NumElems = N->getNumOperands(); 18307 SDValue In = Op0.getOperand(0).getOperand(0); 18308 EVT InSVT = In.getValueType().getScalarType(); 18309 EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems); 18310 18311 // Don't create an illegal input type after type legalization. 18312 if (LegalTypes && !TLI.isTypeLegal(InVT)) 18313 return SDValue(); 18314 18315 // Ensure all the elements come from the same vector and are adjacent. 18316 for (unsigned i = 1; i != NumElems; ++i) { 18317 if ((Offset + i) != checkElem(N->getOperand(i))) 18318 return SDValue(); 18319 } 18320 18321 SDLoc DL(N); 18322 In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In, 18323 Op0.getOperand(0).getOperand(1)); 18324 return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL, 18325 VT, In); 18326 } 18327 18328 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { 18329 EVT VT = N->getValueType(0); 18330 18331 // A vector built entirely of undefs is undef. 18332 if (ISD::allOperandsUndef(N)) 18333 return DAG.getUNDEF(VT); 18334 18335 // If this is a splat of a bitcast from another vector, change to a 18336 // concat_vector. 18337 // For example: 18338 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) -> 18339 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X)))) 18340 // 18341 // If X is a build_vector itself, the concat can become a larger build_vector. 18342 // TODO: Maybe this is useful for non-splat too? 18343 if (!LegalOperations) { 18344 if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) { 18345 Splat = peekThroughBitcasts(Splat); 18346 EVT SrcVT = Splat.getValueType(); 18347 if (SrcVT.isVector()) { 18348 unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements(); 18349 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), 18350 SrcVT.getVectorElementType(), NumElts); 18351 if (!LegalTypes || TLI.isTypeLegal(NewVT)) { 18352 SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat); 18353 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), 18354 NewVT, Ops); 18355 return DAG.getBitcast(VT, Concat); 18356 } 18357 } 18358 } 18359 } 18360 18361 // A splat of a single element is a SPLAT_VECTOR if supported on the target. 18362 if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand) 18363 if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) { 18364 assert(!V.isUndef() && "Splat of undef should have been handled earlier"); 18365 return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V); 18366 } 18367 18368 // Check if we can express BUILD VECTOR via subvector extract. 18369 if (!LegalTypes && (N->getNumOperands() > 1)) { 18370 SDValue Op0 = N->getOperand(0); 18371 auto checkElem = [&](SDValue Op) -> uint64_t { 18372 if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) && 18373 (Op0.getOperand(0) == Op.getOperand(0))) 18374 if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 18375 return CNode->getZExtValue(); 18376 return -1; 18377 }; 18378 18379 int Offset = checkElem(Op0); 18380 for (unsigned i = 0; i < N->getNumOperands(); ++i) { 18381 if (Offset + i != checkElem(N->getOperand(i))) { 18382 Offset = -1; 18383 break; 18384 } 18385 } 18386 18387 if ((Offset == 0) && 18388 (Op0.getOperand(0).getValueType() == N->getValueType(0))) 18389 return Op0.getOperand(0); 18390 if ((Offset != -1) && 18391 ((Offset % N->getValueType(0).getVectorNumElements()) == 18392 0)) // IDX must be multiple of output size. 18393 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0), 18394 Op0.getOperand(0), Op0.getOperand(1)); 18395 } 18396 18397 if (SDValue V = convertBuildVecZextToZext(N)) 18398 return V; 18399 18400 if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) 18401 return V; 18402 18403 if (SDValue V = reduceBuildVecTruncToBitCast(N)) 18404 return V; 18405 18406 if (SDValue V = reduceBuildVecToShuffle(N)) 18407 return V; 18408 18409 return SDValue(); 18410 } 18411 18412 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { 18413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 18414 EVT OpVT = N->getOperand(0).getValueType(); 18415 18416 // If the operands are legal vectors, leave them alone. 18417 if (TLI.isTypeLegal(OpVT)) 18418 return SDValue(); 18419 18420 SDLoc DL(N); 18421 EVT VT = N->getValueType(0); 18422 SmallVector<SDValue, 8> Ops; 18423 18424 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); 18425 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 18426 18427 // Keep track of what we encounter. 18428 bool AnyInteger = false; 18429 bool AnyFP = false; 18430 for (const SDValue &Op : N->ops()) { 18431 if (ISD::BITCAST == Op.getOpcode() && 18432 !Op.getOperand(0).getValueType().isVector()) 18433 Ops.push_back(Op.getOperand(0)); 18434 else if (ISD::UNDEF == Op.getOpcode()) 18435 Ops.push_back(ScalarUndef); 18436 else 18437 return SDValue(); 18438 18439 // Note whether we encounter an integer or floating point scalar. 18440 // If it's neither, bail out, it could be something weird like x86mmx. 18441 EVT LastOpVT = Ops.back().getValueType(); 18442 if (LastOpVT.isFloatingPoint()) 18443 AnyFP = true; 18444 else if (LastOpVT.isInteger()) 18445 AnyInteger = true; 18446 else 18447 return SDValue(); 18448 } 18449 18450 // If any of the operands is a floating point scalar bitcast to a vector, 18451 // use floating point types throughout, and bitcast everything. 18452 // Replace UNDEFs by another scalar UNDEF node, of the final desired type. 18453 if (AnyFP) { 18454 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); 18455 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 18456 if (AnyInteger) { 18457 for (SDValue &Op : Ops) { 18458 if (Op.getValueType() == SVT) 18459 continue; 18460 if (Op.isUndef()) 18461 Op = ScalarUndef; 18462 else 18463 Op = DAG.getBitcast(SVT, Op); 18464 } 18465 } 18466 } 18467 18468 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, 18469 VT.getSizeInBits() / SVT.getSizeInBits()); 18470 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); 18471 } 18472 18473 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR 18474 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at 18475 // most two distinct vectors the same size as the result, attempt to turn this 18476 // into a legal shuffle. 18477 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { 18478 EVT VT = N->getValueType(0); 18479 EVT OpVT = N->getOperand(0).getValueType(); 18480 int NumElts = VT.getVectorNumElements(); 18481 int NumOpElts = OpVT.getVectorNumElements(); 18482 18483 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); 18484 SmallVector<int, 8> Mask; 18485 18486 for (SDValue Op : N->ops()) { 18487 Op = peekThroughBitcasts(Op); 18488 18489 // UNDEF nodes convert to UNDEF shuffle mask values. 18490 if (Op.isUndef()) { 18491 Mask.append((unsigned)NumOpElts, -1); 18492 continue; 18493 } 18494 18495 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 18496 return SDValue(); 18497 18498 // What vector are we extracting the subvector from and at what index? 18499 SDValue ExtVec = Op.getOperand(0); 18500 int ExtIdx = Op.getConstantOperandVal(1); 18501 18502 // We want the EVT of the original extraction to correctly scale the 18503 // extraction index. 18504 EVT ExtVT = ExtVec.getValueType(); 18505 ExtVec = peekThroughBitcasts(ExtVec); 18506 18507 // UNDEF nodes convert to UNDEF shuffle mask values. 18508 if (ExtVec.isUndef()) { 18509 Mask.append((unsigned)NumOpElts, -1); 18510 continue; 18511 } 18512 18513 // Ensure that we are extracting a subvector from a vector the same 18514 // size as the result. 18515 if (ExtVT.getSizeInBits() != VT.getSizeInBits()) 18516 return SDValue(); 18517 18518 // Scale the subvector index to account for any bitcast. 18519 int NumExtElts = ExtVT.getVectorNumElements(); 18520 if (0 == (NumExtElts % NumElts)) 18521 ExtIdx /= (NumExtElts / NumElts); 18522 else if (0 == (NumElts % NumExtElts)) 18523 ExtIdx *= (NumElts / NumExtElts); 18524 else 18525 return SDValue(); 18526 18527 // At most we can reference 2 inputs in the final shuffle. 18528 if (SV0.isUndef() || SV0 == ExtVec) { 18529 SV0 = ExtVec; 18530 for (int i = 0; i != NumOpElts; ++i) 18531 Mask.push_back(i + ExtIdx); 18532 } else if (SV1.isUndef() || SV1 == ExtVec) { 18533 SV1 = ExtVec; 18534 for (int i = 0; i != NumOpElts; ++i) 18535 Mask.push_back(i + ExtIdx + NumElts); 18536 } else { 18537 return SDValue(); 18538 } 18539 } 18540 18541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 18542 return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), 18543 DAG.getBitcast(VT, SV1), Mask, DAG); 18544 } 18545 18546 static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG) { 18547 unsigned CastOpcode = N->getOperand(0).getOpcode(); 18548 switch (CastOpcode) { 18549 case ISD::SINT_TO_FP: 18550 case ISD::UINT_TO_FP: 18551 case ISD::FP_TO_SINT: 18552 case ISD::FP_TO_UINT: 18553 // TODO: Allow more opcodes? 18554 // case ISD::BITCAST: 18555 // case ISD::TRUNCATE: 18556 // case ISD::ZERO_EXTEND: 18557 // case ISD::SIGN_EXTEND: 18558 // case ISD::FP_EXTEND: 18559 break; 18560 default: 18561 return SDValue(); 18562 } 18563 18564 EVT SrcVT = N->getOperand(0).getOperand(0).getValueType(); 18565 if (!SrcVT.isVector()) 18566 return SDValue(); 18567 18568 // All operands of the concat must be the same kind of cast from the same 18569 // source type. 18570 SmallVector<SDValue, 4> SrcOps; 18571 for (SDValue Op : N->ops()) { 18572 if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() || 18573 Op.getOperand(0).getValueType() != SrcVT) 18574 return SDValue(); 18575 SrcOps.push_back(Op.getOperand(0)); 18576 } 18577 18578 // The wider cast must be supported by the target. This is unusual because 18579 // the operation support type parameter depends on the opcode. In addition, 18580 // check the other type in the cast to make sure this is really legal. 18581 EVT VT = N->getValueType(0); 18582 EVT SrcEltVT = SrcVT.getVectorElementType(); 18583 unsigned NumElts = SrcVT.getVectorElementCount().Min * N->getNumOperands(); 18584 EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts); 18585 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 18586 switch (CastOpcode) { 18587 case ISD::SINT_TO_FP: 18588 case ISD::UINT_TO_FP: 18589 if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) || 18590 !TLI.isTypeLegal(VT)) 18591 return SDValue(); 18592 break; 18593 case ISD::FP_TO_SINT: 18594 case ISD::FP_TO_UINT: 18595 if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) || 18596 !TLI.isTypeLegal(ConcatSrcVT)) 18597 return SDValue(); 18598 break; 18599 default: 18600 llvm_unreachable("Unexpected cast opcode"); 18601 } 18602 18603 // concat (cast X), (cast Y)... -> cast (concat X, Y...) 18604 SDLoc DL(N); 18605 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps); 18606 return DAG.getNode(CastOpcode, DL, VT, NewConcat); 18607 } 18608 18609 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { 18610 // If we only have one input vector, we don't need to do any concatenation. 18611 if (N->getNumOperands() == 1) 18612 return N->getOperand(0); 18613 18614 // Check if all of the operands are undefs. 18615 EVT VT = N->getValueType(0); 18616 if (ISD::allOperandsUndef(N)) 18617 return DAG.getUNDEF(VT); 18618 18619 // Optimize concat_vectors where all but the first of the vectors are undef. 18620 if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) { 18621 return Op.isUndef(); 18622 })) { 18623 SDValue In = N->getOperand(0); 18624 assert(In.getValueType().isVector() && "Must concat vectors"); 18625 18626 // If the input is a concat_vectors, just make a larger concat by padding 18627 // with smaller undefs. 18628 if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) { 18629 unsigned NumOps = N->getNumOperands() * In.getNumOperands(); 18630 SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end()); 18631 Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType())); 18632 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 18633 } 18634 18635 SDValue Scalar = peekThroughOneUseBitcasts(In); 18636 18637 // concat_vectors(scalar_to_vector(scalar), undef) -> 18638 // scalar_to_vector(scalar) 18639 if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR && 18640 Scalar.hasOneUse()) { 18641 EVT SVT = Scalar.getValueType().getVectorElementType(); 18642 if (SVT == Scalar.getOperand(0).getValueType()) 18643 Scalar = Scalar.getOperand(0); 18644 } 18645 18646 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar) 18647 if (!Scalar.getValueType().isVector()) { 18648 // If the bitcast type isn't legal, it might be a trunc of a legal type; 18649 // look through the trunc so we can still do the transform: 18650 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) 18651 if (Scalar->getOpcode() == ISD::TRUNCATE && 18652 !TLI.isTypeLegal(Scalar.getValueType()) && 18653 TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) 18654 Scalar = Scalar->getOperand(0); 18655 18656 EVT SclTy = Scalar.getValueType(); 18657 18658 if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) 18659 return SDValue(); 18660 18661 // Bail out if the vector size is not a multiple of the scalar size. 18662 if (VT.getSizeInBits() % SclTy.getSizeInBits()) 18663 return SDValue(); 18664 18665 unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits(); 18666 if (VNTNumElms < 2) 18667 return SDValue(); 18668 18669 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms); 18670 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) 18671 return SDValue(); 18672 18673 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); 18674 return DAG.getBitcast(VT, Res); 18675 } 18676 } 18677 18678 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. 18679 // We have already tested above for an UNDEF only concatenation. 18680 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) 18681 // -> (BUILD_VECTOR A, B, ..., C, D, ...) 18682 auto IsBuildVectorOrUndef = [](const SDValue &Op) { 18683 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); 18684 }; 18685 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { 18686 SmallVector<SDValue, 8> Opnds; 18687 EVT SVT = VT.getScalarType(); 18688 18689 EVT MinVT = SVT; 18690 if (!SVT.isFloatingPoint()) { 18691 // If BUILD_VECTOR are from built from integer, they may have different 18692 // operand types. Get the smallest type and truncate all operands to it. 18693 bool FoundMinVT = false; 18694 for (const SDValue &Op : N->ops()) 18695 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 18696 EVT OpSVT = Op.getOperand(0).getValueType(); 18697 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; 18698 FoundMinVT = true; 18699 } 18700 assert(FoundMinVT && "Concat vector type mismatch"); 18701 } 18702 18703 for (const SDValue &Op : N->ops()) { 18704 EVT OpVT = Op.getValueType(); 18705 unsigned NumElts = OpVT.getVectorNumElements(); 18706 18707 if (ISD::UNDEF == Op.getOpcode()) 18708 Opnds.append(NumElts, DAG.getUNDEF(MinVT)); 18709 18710 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 18711 if (SVT.isFloatingPoint()) { 18712 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); 18713 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); 18714 } else { 18715 for (unsigned i = 0; i != NumElts; ++i) 18716 Opnds.push_back( 18717 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); 18718 } 18719 } 18720 } 18721 18722 assert(VT.getVectorNumElements() == Opnds.size() && 18723 "Concat vector type mismatch"); 18724 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 18725 } 18726 18727 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. 18728 if (SDValue V = combineConcatVectorOfScalars(N, DAG)) 18729 return V; 18730 18731 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. 18732 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) 18733 if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) 18734 return V; 18735 18736 if (SDValue V = combineConcatVectorOfCasts(N, DAG)) 18737 return V; 18738 18739 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR 18740 // nodes often generate nop CONCAT_VECTOR nodes. 18741 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that 18742 // place the incoming vectors at the exact same location. 18743 SDValue SingleSource = SDValue(); 18744 unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements(); 18745 18746 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 18747 SDValue Op = N->getOperand(i); 18748 18749 if (Op.isUndef()) 18750 continue; 18751 18752 // Check if this is the identity extract: 18753 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 18754 return SDValue(); 18755 18756 // Find the single incoming vector for the extract_subvector. 18757 if (SingleSource.getNode()) { 18758 if (Op.getOperand(0) != SingleSource) 18759 return SDValue(); 18760 } else { 18761 SingleSource = Op.getOperand(0); 18762 18763 // Check the source type is the same as the type of the result. 18764 // If not, this concat may extend the vector, so we can not 18765 // optimize it away. 18766 if (SingleSource.getValueType() != N->getValueType(0)) 18767 return SDValue(); 18768 } 18769 18770 // Check that we are reading from the identity index. 18771 unsigned IdentityIndex = i * PartNumElem; 18772 if (Op.getConstantOperandAPInt(1) != IdentityIndex) 18773 return SDValue(); 18774 } 18775 18776 if (SingleSource.getNode()) 18777 return SingleSource; 18778 18779 return SDValue(); 18780 } 18781 18782 // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find 18783 // if the subvector can be sourced for free. 18784 static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) { 18785 if (V.getOpcode() == ISD::INSERT_SUBVECTOR && 18786 V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) { 18787 return V.getOperand(1); 18788 } 18789 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 18790 if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS && 18791 V.getOperand(0).getValueType() == SubVT && 18792 (IndexC->getZExtValue() % SubVT.getVectorNumElements()) == 0) { 18793 uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorNumElements(); 18794 return V.getOperand(SubIdx); 18795 } 18796 return SDValue(); 18797 } 18798 18799 static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract, 18800 SelectionDAG &DAG) { 18801 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 18802 SDValue BinOp = Extract->getOperand(0); 18803 unsigned BinOpcode = BinOp.getOpcode(); 18804 if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1) 18805 return SDValue(); 18806 18807 EVT VecVT = BinOp.getValueType(); 18808 SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1); 18809 if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType()) 18810 return SDValue(); 18811 18812 SDValue Index = Extract->getOperand(1); 18813 EVT SubVT = Extract->getValueType(0); 18814 if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT)) 18815 return SDValue(); 18816 18817 SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT); 18818 SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT); 18819 18820 // TODO: We could handle the case where only 1 operand is being inserted by 18821 // creating an extract of the other operand, but that requires checking 18822 // number of uses and/or costs. 18823 if (!Sub0 || !Sub1) 18824 return SDValue(); 18825 18826 // We are inserting both operands of the wide binop only to extract back 18827 // to the narrow vector size. Eliminate all of the insert/extract: 18828 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y 18829 return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1, 18830 BinOp->getFlags()); 18831 } 18832 18833 /// If we are extracting a subvector produced by a wide binary operator try 18834 /// to use a narrow binary operator and/or avoid concatenation and extraction. 18835 static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG) { 18836 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share 18837 // some of these bailouts with other transforms. 18838 18839 if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG)) 18840 return V; 18841 18842 // The extract index must be a constant, so we can map it to a concat operand. 18843 auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); 18844 if (!ExtractIndexC) 18845 return SDValue(); 18846 18847 // We are looking for an optionally bitcasted wide vector binary operator 18848 // feeding an extract subvector. 18849 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 18850 SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0)); 18851 unsigned BOpcode = BinOp.getOpcode(); 18852 if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1) 18853 return SDValue(); 18854 18855 // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be 18856 // reduced to the unary fneg when it is visited, and we probably want to deal 18857 // with fneg in a target-specific way. 18858 if (BOpcode == ISD::FSUB) { 18859 auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true); 18860 if (C && C->getValueAPF().isNegZero()) 18861 return SDValue(); 18862 } 18863 18864 // The binop must be a vector type, so we can extract some fraction of it. 18865 EVT WideBVT = BinOp.getValueType(); 18866 if (!WideBVT.isVector()) 18867 return SDValue(); 18868 18869 EVT VT = Extract->getValueType(0); 18870 unsigned ExtractIndex = ExtractIndexC->getZExtValue(); 18871 assert(ExtractIndex % VT.getVectorNumElements() == 0 && 18872 "Extract index is not a multiple of the vector length."); 18873 18874 // Bail out if this is not a proper multiple width extraction. 18875 unsigned WideWidth = WideBVT.getSizeInBits(); 18876 unsigned NarrowWidth = VT.getSizeInBits(); 18877 if (WideWidth % NarrowWidth != 0) 18878 return SDValue(); 18879 18880 // Bail out if we are extracting a fraction of a single operation. This can 18881 // occur because we potentially looked through a bitcast of the binop. 18882 unsigned NarrowingRatio = WideWidth / NarrowWidth; 18883 unsigned WideNumElts = WideBVT.getVectorNumElements(); 18884 if (WideNumElts % NarrowingRatio != 0) 18885 return SDValue(); 18886 18887 // Bail out if the target does not support a narrower version of the binop. 18888 EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(), 18889 WideNumElts / NarrowingRatio); 18890 if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT)) 18891 return SDValue(); 18892 18893 // If extraction is cheap, we don't need to look at the binop operands 18894 // for concat ops. The narrow binop alone makes this transform profitable. 18895 // We can't just reuse the original extract index operand because we may have 18896 // bitcasted. 18897 unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements(); 18898 unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements(); 18899 if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) && 18900 BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) { 18901 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N) 18902 SDLoc DL(Extract); 18903 SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL); 18904 SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 18905 BinOp.getOperand(0), NewExtIndex); 18906 SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 18907 BinOp.getOperand(1), NewExtIndex); 18908 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, 18909 BinOp.getNode()->getFlags()); 18910 return DAG.getBitcast(VT, NarrowBinOp); 18911 } 18912 18913 // Only handle the case where we are doubling and then halving. A larger ratio 18914 // may require more than two narrow binops to replace the wide binop. 18915 if (NarrowingRatio != 2) 18916 return SDValue(); 18917 18918 // TODO: The motivating case for this transform is an x86 AVX1 target. That 18919 // target has temptingly almost legal versions of bitwise logic ops in 256-bit 18920 // flavors, but no other 256-bit integer support. This could be extended to 18921 // handle any binop, but that may require fixing/adding other folds to avoid 18922 // codegen regressions. 18923 if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR) 18924 return SDValue(); 18925 18926 // We need at least one concatenation operation of a binop operand to make 18927 // this transform worthwhile. The concat must double the input vector sizes. 18928 auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue { 18929 if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2) 18930 return V.getOperand(ConcatOpNum); 18931 return SDValue(); 18932 }; 18933 SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0))); 18934 SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1))); 18935 18936 if (SubVecL || SubVecR) { 18937 // If a binop operand was not the result of a concat, we must extract a 18938 // half-sized operand for our new narrow binop: 18939 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN 18940 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC) 18941 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN 18942 SDLoc DL(Extract); 18943 SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL); 18944 SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL) 18945 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 18946 BinOp.getOperand(0), IndexC); 18947 18948 SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR) 18949 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 18950 BinOp.getOperand(1), IndexC); 18951 18952 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y); 18953 return DAG.getBitcast(VT, NarrowBinOp); 18954 } 18955 18956 return SDValue(); 18957 } 18958 18959 /// If we are extracting a subvector from a wide vector load, convert to a 18960 /// narrow load to eliminate the extraction: 18961 /// (extract_subvector (load wide vector)) --> (load narrow vector) 18962 static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) { 18963 // TODO: Add support for big-endian. The offset calculation must be adjusted. 18964 if (DAG.getDataLayout().isBigEndian()) 18965 return SDValue(); 18966 18967 auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0)); 18968 auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); 18969 if (!Ld || Ld->getExtensionType() || !Ld->isSimple() || 18970 !ExtIdx) 18971 return SDValue(); 18972 18973 // Allow targets to opt-out. 18974 EVT VT = Extract->getValueType(0); 18975 18976 // We can only create byte sized loads. 18977 if (!VT.isByteSized()) 18978 return SDValue(); 18979 18980 unsigned Index = ExtIdx->getZExtValue(); 18981 unsigned NumElts = VT.getVectorNumElements(); 18982 18983 // If the index is a multiple of the extract element count, we can offset the 18984 // address by the store size multiplied by the subvector index. Otherwise if 18985 // the scalar type is byte sized, we can just use the index multiplied by 18986 // the element size in bytes as the offset. 18987 unsigned Offset; 18988 if (Index % NumElts == 0) 18989 Offset = (Index / NumElts) * VT.getStoreSize(); 18990 else if (VT.getScalarType().isByteSized()) 18991 Offset = Index * VT.getScalarType().getStoreSize(); 18992 else 18993 return SDValue(); 18994 18995 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 18996 if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT)) 18997 return SDValue(); 18998 18999 // The narrow load will be offset from the base address of the old load if 19000 // we are extracting from something besides index 0 (little-endian). 19001 SDLoc DL(Extract); 19002 SDValue BaseAddr = Ld->getBasePtr(); 19003 19004 // TODO: Use "BaseIndexOffset" to make this more effective. 19005 SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL); 19006 MachineFunction &MF = DAG.getMachineFunction(); 19007 MachineMemOperand *MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset, 19008 VT.getStoreSize()); 19009 SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO); 19010 DAG.makeEquivalentMemoryOrdering(Ld, NewLd); 19011 return NewLd; 19012 } 19013 19014 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) { 19015 EVT NVT = N->getValueType(0); 19016 SDValue V = N->getOperand(0); 19017 uint64_t ExtIdx = N->getConstantOperandVal(1); 19018 19019 // Extract from UNDEF is UNDEF. 19020 if (V.isUndef()) 19021 return DAG.getUNDEF(NVT); 19022 19023 if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT)) 19024 if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG)) 19025 return NarrowLoad; 19026 19027 // Combine an extract of an extract into a single extract_subvector. 19028 // ext (ext X, C), 0 --> ext X, C 19029 if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) { 19030 if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(), 19031 V.getConstantOperandVal(1)) && 19032 TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) { 19033 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0), 19034 V.getOperand(1)); 19035 } 19036 } 19037 19038 // Try to move vector bitcast after extract_subv by scaling extraction index: 19039 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index') 19040 if (V.getOpcode() == ISD::BITCAST && 19041 V.getOperand(0).getValueType().isVector()) { 19042 SDValue SrcOp = V.getOperand(0); 19043 EVT SrcVT = SrcOp.getValueType(); 19044 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 19045 unsigned DestNumElts = V.getValueType().getVectorNumElements(); 19046 if ((SrcNumElts % DestNumElts) == 0) { 19047 unsigned SrcDestRatio = SrcNumElts / DestNumElts; 19048 unsigned NewExtNumElts = NVT.getVectorNumElements() * SrcDestRatio; 19049 EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 19050 NewExtNumElts); 19051 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { 19052 SDLoc DL(N); 19053 SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL); 19054 SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, 19055 V.getOperand(0), NewIndex); 19056 return DAG.getBitcast(NVT, NewExtract); 19057 } 19058 } 19059 if ((DestNumElts % SrcNumElts) == 0) { 19060 unsigned DestSrcRatio = DestNumElts / SrcNumElts; 19061 if ((NVT.getVectorNumElements() % DestSrcRatio) == 0) { 19062 unsigned NewExtNumElts = NVT.getVectorNumElements() / DestSrcRatio; 19063 EVT ScalarVT = SrcVT.getScalarType(); 19064 if ((ExtIdx % DestSrcRatio) == 0) { 19065 SDLoc DL(N); 19066 unsigned IndexValScaled = ExtIdx / DestSrcRatio; 19067 EVT NewExtVT = 19068 EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtNumElts); 19069 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { 19070 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); 19071 SDValue NewExtract = 19072 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, 19073 V.getOperand(0), NewIndex); 19074 return DAG.getBitcast(NVT, NewExtract); 19075 } 19076 if (NewExtNumElts == 1 && 19077 TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, ScalarVT)) { 19078 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); 19079 SDValue NewExtract = 19080 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, 19081 V.getOperand(0), NewIndex); 19082 return DAG.getBitcast(NVT, NewExtract); 19083 } 19084 } 19085 } 19086 } 19087 } 19088 19089 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 19090 unsigned ExtNumElts = NVT.getVectorNumElements(); 19091 EVT ConcatSrcVT = V.getOperand(0).getValueType(); 19092 assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() && 19093 "Concat and extract subvector do not change element type"); 19094 assert((ExtIdx % ExtNumElts) == 0 && 19095 "Extract index is not a multiple of the input vector length."); 19096 19097 unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorNumElements(); 19098 unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts; 19099 19100 // If the concatenated source types match this extract, it's a direct 19101 // simplification: 19102 // extract_subvec (concat V1, V2, ...), i --> Vi 19103 if (ConcatSrcNumElts == ExtNumElts) 19104 return V.getOperand(ConcatOpIdx); 19105 19106 // If the concatenated source vectors are a multiple length of this extract, 19107 // then extract a fraction of one of those source vectors directly from a 19108 // concat operand. Example: 19109 // v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 --> 19110 // v2i8 extract_subvec v8i8 Y, 6 19111 if (ConcatSrcNumElts % ExtNumElts == 0) { 19112 SDLoc DL(N); 19113 unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts; 19114 assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts && 19115 "Trying to extract from >1 concat operand?"); 19116 assert(NewExtIdx % ExtNumElts == 0 && 19117 "Extract index is not a multiple of the input vector length."); 19118 SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL); 19119 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT, 19120 V.getOperand(ConcatOpIdx), NewIndexC); 19121 } 19122 } 19123 19124 V = peekThroughBitcasts(V); 19125 19126 // If the input is a build vector. Try to make a smaller build vector. 19127 if (V.getOpcode() == ISD::BUILD_VECTOR) { 19128 EVT InVT = V.getValueType(); 19129 unsigned ExtractSize = NVT.getSizeInBits(); 19130 unsigned EltSize = InVT.getScalarSizeInBits(); 19131 // Only do this if we won't split any elements. 19132 if (ExtractSize % EltSize == 0) { 19133 unsigned NumElems = ExtractSize / EltSize; 19134 EVT EltVT = InVT.getVectorElementType(); 19135 EVT ExtractVT = 19136 NumElems == 1 ? EltVT 19137 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems); 19138 if ((Level < AfterLegalizeDAG || 19139 (NumElems == 1 || 19140 TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) && 19141 (!LegalTypes || TLI.isTypeLegal(ExtractVT))) { 19142 unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize; 19143 19144 if (NumElems == 1) { 19145 SDValue Src = V->getOperand(IdxVal); 19146 if (EltVT != Src.getValueType()) 19147 Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src); 19148 return DAG.getBitcast(NVT, Src); 19149 } 19150 19151 // Extract the pieces from the original build_vector. 19152 SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N), 19153 V->ops().slice(IdxVal, NumElems)); 19154 return DAG.getBitcast(NVT, BuildVec); 19155 } 19156 } 19157 } 19158 19159 if (V.getOpcode() == ISD::INSERT_SUBVECTOR) { 19160 // Handle only simple case where vector being inserted and vector 19161 // being extracted are of same size. 19162 EVT SmallVT = V.getOperand(1).getValueType(); 19163 if (!NVT.bitsEq(SmallVT)) 19164 return SDValue(); 19165 19166 // Combine: 19167 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) 19168 // Into: 19169 // indices are equal or bit offsets are equal => V1 19170 // otherwise => (extract_subvec V1, ExtIdx) 19171 uint64_t InsIdx = V.getConstantOperandVal(2); 19172 if (InsIdx * SmallVT.getScalarSizeInBits() == 19173 ExtIdx * NVT.getScalarSizeInBits()) 19174 return DAG.getBitcast(NVT, V.getOperand(1)); 19175 return DAG.getNode( 19176 ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, 19177 DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)), 19178 N->getOperand(1)); 19179 } 19180 19181 if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG)) 19182 return NarrowBOp; 19183 19184 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 19185 return SDValue(N, 0); 19186 19187 return SDValue(); 19188 } 19189 19190 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles 19191 /// followed by concatenation. Narrow vector ops may have better performance 19192 /// than wide ops, and this can unlock further narrowing of other vector ops. 19193 /// Targets can invert this transform later if it is not profitable. 19194 static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf, 19195 SelectionDAG &DAG) { 19196 SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1); 19197 if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 || 19198 N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 || 19199 !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef()) 19200 return SDValue(); 19201 19202 // Split the wide shuffle mask into halves. Any mask element that is accessing 19203 // operand 1 is offset down to account for narrowing of the vectors. 19204 ArrayRef<int> Mask = Shuf->getMask(); 19205 EVT VT = Shuf->getValueType(0); 19206 unsigned NumElts = VT.getVectorNumElements(); 19207 unsigned HalfNumElts = NumElts / 2; 19208 SmallVector<int, 16> Mask0(HalfNumElts, -1); 19209 SmallVector<int, 16> Mask1(HalfNumElts, -1); 19210 for (unsigned i = 0; i != NumElts; ++i) { 19211 if (Mask[i] == -1) 19212 continue; 19213 int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts; 19214 if (i < HalfNumElts) 19215 Mask0[i] = M; 19216 else 19217 Mask1[i - HalfNumElts] = M; 19218 } 19219 19220 // Ask the target if this is a valid transform. 19221 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19222 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 19223 HalfNumElts); 19224 if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) || 19225 !TLI.isShuffleMaskLegal(Mask1, HalfVT)) 19226 return SDValue(); 19227 19228 // shuffle (concat X, undef), (concat Y, undef), Mask --> 19229 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1) 19230 SDValue X = N0.getOperand(0), Y = N1.getOperand(0); 19231 SDLoc DL(Shuf); 19232 SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0); 19233 SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1); 19234 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1); 19235 } 19236 19237 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, 19238 // or turn a shuffle of a single concat into simpler shuffle then concat. 19239 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { 19240 EVT VT = N->getValueType(0); 19241 unsigned NumElts = VT.getVectorNumElements(); 19242 19243 SDValue N0 = N->getOperand(0); 19244 SDValue N1 = N->getOperand(1); 19245 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 19246 ArrayRef<int> Mask = SVN->getMask(); 19247 19248 SmallVector<SDValue, 4> Ops; 19249 EVT ConcatVT = N0.getOperand(0).getValueType(); 19250 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); 19251 unsigned NumConcats = NumElts / NumElemsPerConcat; 19252 19253 auto IsUndefMaskElt = [](int i) { return i == -1; }; 19254 19255 // Special case: shuffle(concat(A,B)) can be more efficiently represented 19256 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high 19257 // half vector elements. 19258 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && 19259 llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat), 19260 IsUndefMaskElt)) { 19261 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), 19262 N0.getOperand(1), 19263 Mask.slice(0, NumElemsPerConcat)); 19264 N1 = DAG.getUNDEF(ConcatVT); 19265 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); 19266 } 19267 19268 // Look at every vector that's inserted. We're looking for exact 19269 // subvector-sized copies from a concatenated vector 19270 for (unsigned I = 0; I != NumConcats; ++I) { 19271 unsigned Begin = I * NumElemsPerConcat; 19272 ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat); 19273 19274 // Make sure we're dealing with a copy. 19275 if (llvm::all_of(SubMask, IsUndefMaskElt)) { 19276 Ops.push_back(DAG.getUNDEF(ConcatVT)); 19277 continue; 19278 } 19279 19280 int OpIdx = -1; 19281 for (int i = 0; i != (int)NumElemsPerConcat; ++i) { 19282 if (IsUndefMaskElt(SubMask[i])) 19283 continue; 19284 if ((SubMask[i] % (int)NumElemsPerConcat) != i) 19285 return SDValue(); 19286 int EltOpIdx = SubMask[i] / NumElemsPerConcat; 19287 if (0 <= OpIdx && EltOpIdx != OpIdx) 19288 return SDValue(); 19289 OpIdx = EltOpIdx; 19290 } 19291 assert(0 <= OpIdx && "Unknown concat_vectors op"); 19292 19293 if (OpIdx < (int)N0.getNumOperands()) 19294 Ops.push_back(N0.getOperand(OpIdx)); 19295 else 19296 Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands())); 19297 } 19298 19299 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 19300 } 19301 19302 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 19303 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 19304 // 19305 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always 19306 // a simplification in some sense, but it isn't appropriate in general: some 19307 // BUILD_VECTORs are substantially cheaper than others. The general case 19308 // of a BUILD_VECTOR requires inserting each element individually (or 19309 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of 19310 // all constants is a single constant pool load. A BUILD_VECTOR where each 19311 // element is identical is a splat. A BUILD_VECTOR where most of the operands 19312 // are undef lowers to a small number of element insertions. 19313 // 19314 // To deal with this, we currently use a bunch of mostly arbitrary heuristics. 19315 // We don't fold shuffles where one side is a non-zero constant, and we don't 19316 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate 19317 // non-constant operands. This seems to work out reasonably well in practice. 19318 static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, 19319 SelectionDAG &DAG, 19320 const TargetLowering &TLI) { 19321 EVT VT = SVN->getValueType(0); 19322 unsigned NumElts = VT.getVectorNumElements(); 19323 SDValue N0 = SVN->getOperand(0); 19324 SDValue N1 = SVN->getOperand(1); 19325 19326 if (!N0->hasOneUse()) 19327 return SDValue(); 19328 19329 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as 19330 // discussed above. 19331 if (!N1.isUndef()) { 19332 if (!N1->hasOneUse()) 19333 return SDValue(); 19334 19335 bool N0AnyConst = isAnyConstantBuildVector(N0); 19336 bool N1AnyConst = isAnyConstantBuildVector(N1); 19337 if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode())) 19338 return SDValue(); 19339 if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode())) 19340 return SDValue(); 19341 } 19342 19343 // If both inputs are splats of the same value then we can safely merge this 19344 // to a single BUILD_VECTOR with undef elements based on the shuffle mask. 19345 bool IsSplat = false; 19346 auto *BV0 = dyn_cast<BuildVectorSDNode>(N0); 19347 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 19348 if (BV0 && BV1) 19349 if (SDValue Splat0 = BV0->getSplatValue()) 19350 IsSplat = (Splat0 == BV1->getSplatValue()); 19351 19352 SmallVector<SDValue, 8> Ops; 19353 SmallSet<SDValue, 16> DuplicateOps; 19354 for (int M : SVN->getMask()) { 19355 SDValue Op = DAG.getUNDEF(VT.getScalarType()); 19356 if (M >= 0) { 19357 int Idx = M < (int)NumElts ? M : M - NumElts; 19358 SDValue &S = (M < (int)NumElts ? N0 : N1); 19359 if (S.getOpcode() == ISD::BUILD_VECTOR) { 19360 Op = S.getOperand(Idx); 19361 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) { 19362 SDValue Op0 = S.getOperand(0); 19363 Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType()); 19364 } else { 19365 // Operand can't be combined - bail out. 19366 return SDValue(); 19367 } 19368 } 19369 19370 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're 19371 // generating a splat; semantically, this is fine, but it's likely to 19372 // generate low-quality code if the target can't reconstruct an appropriate 19373 // shuffle. 19374 if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op)) 19375 if (!IsSplat && !DuplicateOps.insert(Op).second) 19376 return SDValue(); 19377 19378 Ops.push_back(Op); 19379 } 19380 19381 // BUILD_VECTOR requires all inputs to be of the same type, find the 19382 // maximum type and extend them all. 19383 EVT SVT = VT.getScalarType(); 19384 if (SVT.isInteger()) 19385 for (SDValue &Op : Ops) 19386 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 19387 if (SVT != VT.getScalarType()) 19388 for (SDValue &Op : Ops) 19389 Op = TLI.isZExtFree(Op.getValueType(), SVT) 19390 ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT) 19391 : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT); 19392 return DAG.getBuildVector(VT, SDLoc(SVN), Ops); 19393 } 19394 19395 // Match shuffles that can be converted to any_vector_extend_in_reg. 19396 // This is often generated during legalization. 19397 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)) 19398 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case. 19399 static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN, 19400 SelectionDAG &DAG, 19401 const TargetLowering &TLI, 19402 bool LegalOperations) { 19403 EVT VT = SVN->getValueType(0); 19404 bool IsBigEndian = DAG.getDataLayout().isBigEndian(); 19405 19406 // TODO Add support for big-endian when we have a test case. 19407 if (!VT.isInteger() || IsBigEndian) 19408 return SDValue(); 19409 19410 unsigned NumElts = VT.getVectorNumElements(); 19411 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 19412 ArrayRef<int> Mask = SVN->getMask(); 19413 SDValue N0 = SVN->getOperand(0); 19414 19415 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32)) 19416 auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) { 19417 for (unsigned i = 0; i != NumElts; ++i) { 19418 if (Mask[i] < 0) 19419 continue; 19420 if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale)) 19421 continue; 19422 return false; 19423 } 19424 return true; 19425 }; 19426 19427 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for 19428 // power-of-2 extensions as they are the most likely. 19429 for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) { 19430 // Check for non power of 2 vector sizes 19431 if (NumElts % Scale != 0) 19432 continue; 19433 if (!isAnyExtend(Scale)) 19434 continue; 19435 19436 EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale); 19437 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale); 19438 // Never create an illegal type. Only create unsupported operations if we 19439 // are pre-legalization. 19440 if (TLI.isTypeLegal(OutVT)) 19441 if (!LegalOperations || 19442 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT)) 19443 return DAG.getBitcast(VT, 19444 DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, 19445 SDLoc(SVN), OutVT, N0)); 19446 } 19447 19448 return SDValue(); 19449 } 19450 19451 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of 19452 // each source element of a large type into the lowest elements of a smaller 19453 // destination type. This is often generated during legalization. 19454 // If the source node itself was a '*_extend_vector_inreg' node then we should 19455 // then be able to remove it. 19456 static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, 19457 SelectionDAG &DAG) { 19458 EVT VT = SVN->getValueType(0); 19459 bool IsBigEndian = DAG.getDataLayout().isBigEndian(); 19460 19461 // TODO Add support for big-endian when we have a test case. 19462 if (!VT.isInteger() || IsBigEndian) 19463 return SDValue(); 19464 19465 SDValue N0 = peekThroughBitcasts(SVN->getOperand(0)); 19466 19467 unsigned Opcode = N0.getOpcode(); 19468 if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG && 19469 Opcode != ISD::SIGN_EXTEND_VECTOR_INREG && 19470 Opcode != ISD::ZERO_EXTEND_VECTOR_INREG) 19471 return SDValue(); 19472 19473 SDValue N00 = N0.getOperand(0); 19474 ArrayRef<int> Mask = SVN->getMask(); 19475 unsigned NumElts = VT.getVectorNumElements(); 19476 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 19477 unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits(); 19478 unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits(); 19479 19480 if (ExtDstSizeInBits % ExtSrcSizeInBits != 0) 19481 return SDValue(); 19482 unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits; 19483 19484 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1> 19485 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1> 19486 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1> 19487 auto isTruncate = [&Mask, &NumElts](unsigned Scale) { 19488 for (unsigned i = 0; i != NumElts; ++i) { 19489 if (Mask[i] < 0) 19490 continue; 19491 if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale)) 19492 continue; 19493 return false; 19494 } 19495 return true; 19496 }; 19497 19498 // At the moment we just handle the case where we've truncated back to the 19499 // same size as before the extension. 19500 // TODO: handle more extension/truncation cases as cases arise. 19501 if (EltSizeInBits != ExtSrcSizeInBits) 19502 return SDValue(); 19503 19504 // We can remove *extend_vector_inreg only if the truncation happens at 19505 // the same scale as the extension. 19506 if (isTruncate(ExtScale)) 19507 return DAG.getBitcast(VT, N00); 19508 19509 return SDValue(); 19510 } 19511 19512 // Combine shuffles of splat-shuffles of the form: 19513 // shuffle (shuffle V, undef, splat-mask), undef, M 19514 // If splat-mask contains undef elements, we need to be careful about 19515 // introducing undef's in the folded mask which are not the result of composing 19516 // the masks of the shuffles. 19517 static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf, 19518 SelectionDAG &DAG) { 19519 if (!Shuf->getOperand(1).isUndef()) 19520 return SDValue(); 19521 auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); 19522 if (!Splat || !Splat->isSplat()) 19523 return SDValue(); 19524 19525 ArrayRef<int> ShufMask = Shuf->getMask(); 19526 ArrayRef<int> SplatMask = Splat->getMask(); 19527 assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch"); 19528 19529 // Prefer simplifying to the splat-shuffle, if possible. This is legal if 19530 // every undef mask element in the splat-shuffle has a corresponding undef 19531 // element in the user-shuffle's mask or if the composition of mask elements 19532 // would result in undef. 19533 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask): 19534 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u] 19535 // In this case it is not legal to simplify to the splat-shuffle because we 19536 // may be exposing the users of the shuffle an undef element at index 1 19537 // which was not there before the combine. 19538 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u] 19539 // In this case the composition of masks yields SplatMask, so it's ok to 19540 // simplify to the splat-shuffle. 19541 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u] 19542 // In this case the composed mask includes all undef elements of SplatMask 19543 // and in addition sets element zero to undef. It is safe to simplify to 19544 // the splat-shuffle. 19545 auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask, 19546 ArrayRef<int> SplatMask) { 19547 for (unsigned i = 0, e = UserMask.size(); i != e; ++i) 19548 if (UserMask[i] != -1 && SplatMask[i] == -1 && 19549 SplatMask[UserMask[i]] != -1) 19550 return false; 19551 return true; 19552 }; 19553 if (CanSimplifyToExistingSplat(ShufMask, SplatMask)) 19554 return Shuf->getOperand(0); 19555 19556 // Create a new shuffle with a mask that is composed of the two shuffles' 19557 // masks. 19558 SmallVector<int, 32> NewMask; 19559 for (int Idx : ShufMask) 19560 NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]); 19561 19562 return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat), 19563 Splat->getOperand(0), Splat->getOperand(1), 19564 NewMask); 19565 } 19566 19567 /// Combine shuffle of shuffle of the form: 19568 /// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X 19569 static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf, 19570 SelectionDAG &DAG) { 19571 if (!OuterShuf->getOperand(1).isUndef()) 19572 return SDValue(); 19573 auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0)); 19574 if (!InnerShuf || !InnerShuf->getOperand(1).isUndef()) 19575 return SDValue(); 19576 19577 ArrayRef<int> OuterMask = OuterShuf->getMask(); 19578 ArrayRef<int> InnerMask = InnerShuf->getMask(); 19579 unsigned NumElts = OuterMask.size(); 19580 assert(NumElts == InnerMask.size() && "Mask length mismatch"); 19581 SmallVector<int, 32> CombinedMask(NumElts, -1); 19582 int SplatIndex = -1; 19583 for (unsigned i = 0; i != NumElts; ++i) { 19584 // Undef lanes remain undef. 19585 int OuterMaskElt = OuterMask[i]; 19586 if (OuterMaskElt == -1) 19587 continue; 19588 19589 // Peek through the shuffle masks to get the underlying source element. 19590 int InnerMaskElt = InnerMask[OuterMaskElt]; 19591 if (InnerMaskElt == -1) 19592 continue; 19593 19594 // Initialize the splatted element. 19595 if (SplatIndex == -1) 19596 SplatIndex = InnerMaskElt; 19597 19598 // Non-matching index - this is not a splat. 19599 if (SplatIndex != InnerMaskElt) 19600 return SDValue(); 19601 19602 CombinedMask[i] = InnerMaskElt; 19603 } 19604 assert((all_of(CombinedMask, [](int M) { return M == -1; }) || 19605 getSplatIndex(CombinedMask) != -1) && 19606 "Expected a splat mask"); 19607 19608 // TODO: The transform may be a win even if the mask is not legal. 19609 EVT VT = OuterShuf->getValueType(0); 19610 assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types"); 19611 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT)) 19612 return SDValue(); 19613 19614 return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0), 19615 InnerShuf->getOperand(1), CombinedMask); 19616 } 19617 19618 /// If the shuffle mask is taking exactly one element from the first vector 19619 /// operand and passing through all other elements from the second vector 19620 /// operand, return the index of the mask element that is choosing an element 19621 /// from the first operand. Otherwise, return -1. 19622 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) { 19623 int MaskSize = Mask.size(); 19624 int EltFromOp0 = -1; 19625 // TODO: This does not match if there are undef elements in the shuffle mask. 19626 // Should we ignore undefs in the shuffle mask instead? The trade-off is 19627 // removing an instruction (a shuffle), but losing the knowledge that some 19628 // vector lanes are not needed. 19629 for (int i = 0; i != MaskSize; ++i) { 19630 if (Mask[i] >= 0 && Mask[i] < MaskSize) { 19631 // We're looking for a shuffle of exactly one element from operand 0. 19632 if (EltFromOp0 != -1) 19633 return -1; 19634 EltFromOp0 = i; 19635 } else if (Mask[i] != i + MaskSize) { 19636 // Nothing from operand 1 can change lanes. 19637 return -1; 19638 } 19639 } 19640 return EltFromOp0; 19641 } 19642 19643 /// If a shuffle inserts exactly one element from a source vector operand into 19644 /// another vector operand and we can access the specified element as a scalar, 19645 /// then we can eliminate the shuffle. 19646 static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf, 19647 SelectionDAG &DAG) { 19648 // First, check if we are taking one element of a vector and shuffling that 19649 // element into another vector. 19650 ArrayRef<int> Mask = Shuf->getMask(); 19651 SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end()); 19652 SDValue Op0 = Shuf->getOperand(0); 19653 SDValue Op1 = Shuf->getOperand(1); 19654 int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask); 19655 if (ShufOp0Index == -1) { 19656 // Commute mask and check again. 19657 ShuffleVectorSDNode::commuteMask(CommutedMask); 19658 ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask); 19659 if (ShufOp0Index == -1) 19660 return SDValue(); 19661 // Commute operands to match the commuted shuffle mask. 19662 std::swap(Op0, Op1); 19663 Mask = CommutedMask; 19664 } 19665 19666 // The shuffle inserts exactly one element from operand 0 into operand 1. 19667 // Now see if we can access that element as a scalar via a real insert element 19668 // instruction. 19669 // TODO: We can try harder to locate the element as a scalar. Examples: it 19670 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant. 19671 assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && 19672 "Shuffle mask value must be from operand 0"); 19673 if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT) 19674 return SDValue(); 19675 19676 auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2)); 19677 if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index]) 19678 return SDValue(); 19679 19680 // There's an existing insertelement with constant insertion index, so we 19681 // don't need to check the legality/profitability of a replacement operation 19682 // that differs at most in the constant value. The target should be able to 19683 // lower any of those in a similar way. If not, legalization will expand this 19684 // to a scalar-to-vector plus shuffle. 19685 // 19686 // Note that the shuffle may move the scalar from the position that the insert 19687 // element used. Therefore, our new insert element occurs at the shuffle's 19688 // mask index value, not the insert's index value. 19689 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C' 19690 SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf)); 19691 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(), 19692 Op1, Op0.getOperand(1), NewInsIndex); 19693 } 19694 19695 /// If we have a unary shuffle of a shuffle, see if it can be folded away 19696 /// completely. This has the potential to lose undef knowledge because the first 19697 /// shuffle may not have an undef mask element where the second one does. So 19698 /// only call this after doing simplifications based on demanded elements. 19699 static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) { 19700 // shuf (shuf0 X, Y, Mask0), undef, Mask 19701 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); 19702 if (!Shuf0 || !Shuf->getOperand(1).isUndef()) 19703 return SDValue(); 19704 19705 ArrayRef<int> Mask = Shuf->getMask(); 19706 ArrayRef<int> Mask0 = Shuf0->getMask(); 19707 for (int i = 0, e = (int)Mask.size(); i != e; ++i) { 19708 // Ignore undef elements. 19709 if (Mask[i] == -1) 19710 continue; 19711 assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value"); 19712 19713 // Is the element of the shuffle operand chosen by this shuffle the same as 19714 // the element chosen by the shuffle operand itself? 19715 if (Mask0[Mask[i]] != Mask0[i]) 19716 return SDValue(); 19717 } 19718 // Every element of this shuffle is identical to the result of the previous 19719 // shuffle, so we can replace this value. 19720 return Shuf->getOperand(0); 19721 } 19722 19723 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { 19724 EVT VT = N->getValueType(0); 19725 unsigned NumElts = VT.getVectorNumElements(); 19726 19727 SDValue N0 = N->getOperand(0); 19728 SDValue N1 = N->getOperand(1); 19729 19730 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); 19731 19732 // Canonicalize shuffle undef, undef -> undef 19733 if (N0.isUndef() && N1.isUndef()) 19734 return DAG.getUNDEF(VT); 19735 19736 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 19737 19738 // Canonicalize shuffle v, v -> v, undef 19739 if (N0 == N1) { 19740 SmallVector<int, 8> NewMask; 19741 for (unsigned i = 0; i != NumElts; ++i) { 19742 int Idx = SVN->getMaskElt(i); 19743 if (Idx >= (int)NumElts) Idx -= NumElts; 19744 NewMask.push_back(Idx); 19745 } 19746 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask); 19747 } 19748 19749 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 19750 if (N0.isUndef()) 19751 return DAG.getCommutedVectorShuffle(*SVN); 19752 19753 // Remove references to rhs if it is undef 19754 if (N1.isUndef()) { 19755 bool Changed = false; 19756 SmallVector<int, 8> NewMask; 19757 for (unsigned i = 0; i != NumElts; ++i) { 19758 int Idx = SVN->getMaskElt(i); 19759 if (Idx >= (int)NumElts) { 19760 Idx = -1; 19761 Changed = true; 19762 } 19763 NewMask.push_back(Idx); 19764 } 19765 if (Changed) 19766 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); 19767 } 19768 19769 if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG)) 19770 return InsElt; 19771 19772 // A shuffle of a single vector that is a splatted value can always be folded. 19773 if (SDValue V = combineShuffleOfSplatVal(SVN, DAG)) 19774 return V; 19775 19776 if (SDValue V = formSplatFromShuffles(SVN, DAG)) 19777 return V; 19778 19779 // If it is a splat, check if the argument vector is another splat or a 19780 // build_vector. 19781 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { 19782 int SplatIndex = SVN->getSplatIndex(); 19783 if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) && 19784 TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) { 19785 // splat (vector_bo L, R), Index --> 19786 // splat (scalar_bo (extelt L, Index), (extelt R, Index)) 19787 SDValue L = N0.getOperand(0), R = N0.getOperand(1); 19788 SDLoc DL(N); 19789 EVT EltVT = VT.getScalarType(); 19790 SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL); 19791 SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index); 19792 SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index); 19793 SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR, 19794 N0.getNode()->getFlags()); 19795 SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO); 19796 SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0); 19797 return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask); 19798 } 19799 19800 // If this is a bit convert that changes the element type of the vector but 19801 // not the number of vector elements, look through it. Be careful not to 19802 // look though conversions that change things like v4f32 to v2f64. 19803 SDNode *V = N0.getNode(); 19804 if (V->getOpcode() == ISD::BITCAST) { 19805 SDValue ConvInput = V->getOperand(0); 19806 if (ConvInput.getValueType().isVector() && 19807 ConvInput.getValueType().getVectorNumElements() == NumElts) 19808 V = ConvInput.getNode(); 19809 } 19810 19811 if (V->getOpcode() == ISD::BUILD_VECTOR) { 19812 assert(V->getNumOperands() == NumElts && 19813 "BUILD_VECTOR has wrong number of operands"); 19814 SDValue Base; 19815 bool AllSame = true; 19816 for (unsigned i = 0; i != NumElts; ++i) { 19817 if (!V->getOperand(i).isUndef()) { 19818 Base = V->getOperand(i); 19819 break; 19820 } 19821 } 19822 // Splat of <u, u, u, u>, return <u, u, u, u> 19823 if (!Base.getNode()) 19824 return N0; 19825 for (unsigned i = 0; i != NumElts; ++i) { 19826 if (V->getOperand(i) != Base) { 19827 AllSame = false; 19828 break; 19829 } 19830 } 19831 // Splat of <x, x, x, x>, return <x, x, x, x> 19832 if (AllSame) 19833 return N0; 19834 19835 // Canonicalize any other splat as a build_vector. 19836 SDValue Splatted = V->getOperand(SplatIndex); 19837 SmallVector<SDValue, 8> Ops(NumElts, Splatted); 19838 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); 19839 19840 // We may have jumped through bitcasts, so the type of the 19841 // BUILD_VECTOR may not match the type of the shuffle. 19842 if (V->getValueType(0) != VT) 19843 NewBV = DAG.getBitcast(VT, NewBV); 19844 return NewBV; 19845 } 19846 } 19847 19848 // Simplify source operands based on shuffle mask. 19849 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 19850 return SDValue(N, 0); 19851 19852 // This is intentionally placed after demanded elements simplification because 19853 // it could eliminate knowledge of undef elements created by this shuffle. 19854 if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN)) 19855 return ShufOp; 19856 19857 // Match shuffles that can be converted to any_vector_extend_in_reg. 19858 if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations)) 19859 return V; 19860 19861 // Combine "truncate_vector_in_reg" style shuffles. 19862 if (SDValue V = combineTruncationShuffle(SVN, DAG)) 19863 return V; 19864 19865 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 19866 Level < AfterLegalizeVectorOps && 19867 (N1.isUndef() || 19868 (N1.getOpcode() == ISD::CONCAT_VECTORS && 19869 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { 19870 if (SDValue V = partitionShuffleOfConcats(N, DAG)) 19871 return V; 19872 } 19873 19874 // A shuffle of a concat of the same narrow vector can be reduced to use 19875 // only low-half elements of a concat with undef: 19876 // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask' 19877 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() && 19878 N0.getNumOperands() == 2 && 19879 N0.getOperand(0) == N0.getOperand(1)) { 19880 int HalfNumElts = (int)NumElts / 2; 19881 SmallVector<int, 8> NewMask; 19882 for (unsigned i = 0; i != NumElts; ++i) { 19883 int Idx = SVN->getMaskElt(i); 19884 if (Idx >= HalfNumElts) { 19885 assert(Idx < (int)NumElts && "Shuffle mask chooses undef op"); 19886 Idx -= HalfNumElts; 19887 } 19888 NewMask.push_back(Idx); 19889 } 19890 if (TLI.isShuffleMaskLegal(NewMask, VT)) { 19891 SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType()); 19892 SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 19893 N0.getOperand(0), UndefVec); 19894 return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask); 19895 } 19896 } 19897 19898 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 19899 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 19900 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) 19901 if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI)) 19902 return Res; 19903 19904 // If this shuffle only has a single input that is a bitcasted shuffle, 19905 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output 19906 // back to their original types. 19907 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 19908 N1.isUndef() && Level < AfterLegalizeVectorOps && 19909 TLI.isTypeLegal(VT)) { 19910 19911 SDValue BC0 = peekThroughOneUseBitcasts(N0); 19912 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { 19913 EVT SVT = VT.getScalarType(); 19914 EVT InnerVT = BC0->getValueType(0); 19915 EVT InnerSVT = InnerVT.getScalarType(); 19916 19917 // Determine which shuffle works with the smaller scalar type. 19918 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; 19919 EVT ScaleSVT = ScaleVT.getScalarType(); 19920 19921 if (TLI.isTypeLegal(ScaleVT) && 19922 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && 19923 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { 19924 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 19925 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 19926 19927 // Scale the shuffle masks to the smaller scalar type. 19928 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); 19929 SmallVector<int, 8> InnerMask; 19930 SmallVector<int, 8> OuterMask; 19931 narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask); 19932 narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask); 19933 19934 // Merge the shuffle masks. 19935 SmallVector<int, 8> NewMask; 19936 for (int M : OuterMask) 19937 NewMask.push_back(M < 0 ? -1 : InnerMask[M]); 19938 19939 // Test for shuffle mask legality over both commutations. 19940 SDValue SV0 = BC0->getOperand(0); 19941 SDValue SV1 = BC0->getOperand(1); 19942 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 19943 if (!LegalMask) { 19944 std::swap(SV0, SV1); 19945 ShuffleVectorSDNode::commuteMask(NewMask); 19946 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 19947 } 19948 19949 if (LegalMask) { 19950 SV0 = DAG.getBitcast(ScaleVT, SV0); 19951 SV1 = DAG.getBitcast(ScaleVT, SV1); 19952 return DAG.getBitcast( 19953 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); 19954 } 19955 } 19956 } 19957 } 19958 19959 // Canonicalize shuffles according to rules: 19960 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) 19961 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) 19962 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) 19963 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && 19964 N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && 19965 TLI.isTypeLegal(VT)) { 19966 // The incoming shuffle must be of the same type as the result of the 19967 // current shuffle. 19968 assert(N1->getOperand(0).getValueType() == VT && 19969 "Shuffle types don't match"); 19970 19971 SDValue SV0 = N1->getOperand(0); 19972 SDValue SV1 = N1->getOperand(1); 19973 bool HasSameOp0 = N0 == SV0; 19974 bool IsSV1Undef = SV1.isUndef(); 19975 if (HasSameOp0 || IsSV1Undef || N0 == SV1) 19976 // Commute the operands of this shuffle so that next rule 19977 // will trigger. 19978 return DAG.getCommutedVectorShuffle(*SVN); 19979 } 19980 19981 // Try to fold according to rules: 19982 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 19983 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 19984 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 19985 // Don't try to fold shuffles with illegal type. 19986 // Only fold if this shuffle is the only user of the other shuffle. 19987 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && 19988 Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { 19989 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); 19990 19991 // Don't try to fold splats; they're likely to simplify somehow, or they 19992 // might be free. 19993 if (OtherSV->isSplat()) 19994 return SDValue(); 19995 19996 // The incoming shuffle must be of the same type as the result of the 19997 // current shuffle. 19998 assert(OtherSV->getOperand(0).getValueType() == VT && 19999 "Shuffle types don't match"); 20000 20001 SDValue SV0, SV1; 20002 SmallVector<int, 4> Mask; 20003 // Compute the combined shuffle mask for a shuffle with SV0 as the first 20004 // operand, and SV1 as the second operand. 20005 for (unsigned i = 0; i != NumElts; ++i) { 20006 int Idx = SVN->getMaskElt(i); 20007 if (Idx < 0) { 20008 // Propagate Undef. 20009 Mask.push_back(Idx); 20010 continue; 20011 } 20012 20013 SDValue CurrentVec; 20014 if (Idx < (int)NumElts) { 20015 // This shuffle index refers to the inner shuffle N0. Lookup the inner 20016 // shuffle mask to identify which vector is actually referenced. 20017 Idx = OtherSV->getMaskElt(Idx); 20018 if (Idx < 0) { 20019 // Propagate Undef. 20020 Mask.push_back(Idx); 20021 continue; 20022 } 20023 20024 CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0) 20025 : OtherSV->getOperand(1); 20026 } else { 20027 // This shuffle index references an element within N1. 20028 CurrentVec = N1; 20029 } 20030 20031 // Simple case where 'CurrentVec' is UNDEF. 20032 if (CurrentVec.isUndef()) { 20033 Mask.push_back(-1); 20034 continue; 20035 } 20036 20037 // Canonicalize the shuffle index. We don't know yet if CurrentVec 20038 // will be the first or second operand of the combined shuffle. 20039 Idx = Idx % NumElts; 20040 if (!SV0.getNode() || SV0 == CurrentVec) { 20041 // Ok. CurrentVec is the left hand side. 20042 // Update the mask accordingly. 20043 SV0 = CurrentVec; 20044 Mask.push_back(Idx); 20045 continue; 20046 } 20047 20048 // Bail out if we cannot convert the shuffle pair into a single shuffle. 20049 if (SV1.getNode() && SV1 != CurrentVec) 20050 return SDValue(); 20051 20052 // Ok. CurrentVec is the right hand side. 20053 // Update the mask accordingly. 20054 SV1 = CurrentVec; 20055 Mask.push_back(Idx + NumElts); 20056 } 20057 20058 // Check if all indices in Mask are Undef. In case, propagate Undef. 20059 bool isUndefMask = true; 20060 for (unsigned i = 0; i != NumElts && isUndefMask; ++i) 20061 isUndefMask &= Mask[i] < 0; 20062 20063 if (isUndefMask) 20064 return DAG.getUNDEF(VT); 20065 20066 if (!SV0.getNode()) 20067 SV0 = DAG.getUNDEF(VT); 20068 if (!SV1.getNode()) 20069 SV1 = DAG.getUNDEF(VT); 20070 20071 // Avoid introducing shuffles with illegal mask. 20072 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 20073 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 20074 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 20075 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) 20076 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) 20077 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) 20078 return TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask, DAG); 20079 } 20080 20081 if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG)) 20082 return V; 20083 20084 return SDValue(); 20085 } 20086 20087 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { 20088 SDValue InVal = N->getOperand(0); 20089 EVT VT = N->getValueType(0); 20090 20091 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern 20092 // with a VECTOR_SHUFFLE and possible truncate. 20093 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 20094 SDValue InVec = InVal->getOperand(0); 20095 SDValue EltNo = InVal->getOperand(1); 20096 auto InVecT = InVec.getValueType(); 20097 if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) { 20098 SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1); 20099 int Elt = C0->getZExtValue(); 20100 NewMask[0] = Elt; 20101 // If we have an implict truncate do truncate here as long as it's legal. 20102 // if it's not legal, this should 20103 if (VT.getScalarType() != InVal.getValueType() && 20104 InVal.getValueType().isScalarInteger() && 20105 isTypeLegal(VT.getScalarType())) { 20106 SDValue Val = 20107 DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal); 20108 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val); 20109 } 20110 if (VT.getScalarType() == InVecT.getScalarType() && 20111 VT.getVectorNumElements() <= InVecT.getVectorNumElements()) { 20112 SDValue LegalShuffle = 20113 TLI.buildLegalVectorShuffle(InVecT, SDLoc(N), InVec, 20114 DAG.getUNDEF(InVecT), NewMask, DAG); 20115 if (LegalShuffle) { 20116 // If the initial vector is the correct size this shuffle is a 20117 // valid result. 20118 if (VT == InVecT) 20119 return LegalShuffle; 20120 // If not we must truncate the vector. 20121 if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) { 20122 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N)); 20123 EVT SubVT = EVT::getVectorVT(*DAG.getContext(), 20124 InVecT.getVectorElementType(), 20125 VT.getVectorNumElements()); 20126 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, 20127 LegalShuffle, ZeroIdx); 20128 } 20129 } 20130 } 20131 } 20132 } 20133 20134 return SDValue(); 20135 } 20136 20137 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { 20138 EVT VT = N->getValueType(0); 20139 SDValue N0 = N->getOperand(0); 20140 SDValue N1 = N->getOperand(1); 20141 SDValue N2 = N->getOperand(2); 20142 uint64_t InsIdx = N->getConstantOperandVal(2); 20143 20144 // If inserting an UNDEF, just return the original vector. 20145 if (N1.isUndef()) 20146 return N0; 20147 20148 // If this is an insert of an extracted vector into an undef vector, we can 20149 // just use the input to the extract. 20150 if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 20151 N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT) 20152 return N1.getOperand(0); 20153 20154 // If we are inserting a bitcast value into an undef, with the same 20155 // number of elements, just use the bitcast input of the extract. 20156 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 -> 20157 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2) 20158 if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST && 20159 N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR && 20160 N1.getOperand(0).getOperand(1) == N2 && 20161 N1.getOperand(0).getOperand(0).getValueType().getVectorNumElements() == 20162 VT.getVectorNumElements() && 20163 N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() == 20164 VT.getSizeInBits()) { 20165 return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0)); 20166 } 20167 20168 // If both N1 and N2 are bitcast values on which insert_subvector 20169 // would makes sense, pull the bitcast through. 20170 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 -> 20171 // BITCAST (INSERT_SUBVECTOR N0 N1 N2) 20172 if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) { 20173 SDValue CN0 = N0.getOperand(0); 20174 SDValue CN1 = N1.getOperand(0); 20175 EVT CN0VT = CN0.getValueType(); 20176 EVT CN1VT = CN1.getValueType(); 20177 if (CN0VT.isVector() && CN1VT.isVector() && 20178 CN0VT.getVectorElementType() == CN1VT.getVectorElementType() && 20179 CN0VT.getVectorNumElements() == VT.getVectorNumElements()) { 20180 SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), 20181 CN0.getValueType(), CN0, CN1, N2); 20182 return DAG.getBitcast(VT, NewINSERT); 20183 } 20184 } 20185 20186 // Combine INSERT_SUBVECTORs where we are inserting to the same index. 20187 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) 20188 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) 20189 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && 20190 N0.getOperand(1).getValueType() == N1.getValueType() && 20191 N0.getOperand(2) == N2) 20192 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), 20193 N1, N2); 20194 20195 // Eliminate an intermediate insert into an undef vector: 20196 // insert_subvector undef, (insert_subvector undef, X, 0), N2 --> 20197 // insert_subvector undef, X, N2 20198 if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR && 20199 N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2))) 20200 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0, 20201 N1.getOperand(1), N2); 20202 20203 // Push subvector bitcasts to the output, adjusting the index as we go. 20204 // insert_subvector(bitcast(v), bitcast(s), c1) 20205 // -> bitcast(insert_subvector(v, s, c2)) 20206 if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) && 20207 N1.getOpcode() == ISD::BITCAST) { 20208 SDValue N0Src = peekThroughBitcasts(N0); 20209 SDValue N1Src = peekThroughBitcasts(N1); 20210 EVT N0SrcSVT = N0Src.getValueType().getScalarType(); 20211 EVT N1SrcSVT = N1Src.getValueType().getScalarType(); 20212 if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) && 20213 N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) { 20214 EVT NewVT; 20215 SDLoc DL(N); 20216 SDValue NewIdx; 20217 LLVMContext &Ctx = *DAG.getContext(); 20218 unsigned NumElts = VT.getVectorNumElements(); 20219 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 20220 if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) { 20221 unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits(); 20222 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale); 20223 NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL); 20224 } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) { 20225 unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits; 20226 if ((NumElts % Scale) == 0 && (InsIdx % Scale) == 0) { 20227 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts / Scale); 20228 NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL); 20229 } 20230 } 20231 if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) { 20232 SDValue Res = DAG.getBitcast(NewVT, N0Src); 20233 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx); 20234 return DAG.getBitcast(VT, Res); 20235 } 20236 } 20237 } 20238 20239 // Canonicalize insert_subvector dag nodes. 20240 // Example: 20241 // (insert_subvector (insert_subvector A, Idx0), Idx1) 20242 // -> (insert_subvector (insert_subvector A, Idx1), Idx0) 20243 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() && 20244 N1.getValueType() == N0.getOperand(1).getValueType()) { 20245 unsigned OtherIdx = N0.getConstantOperandVal(2); 20246 if (InsIdx < OtherIdx) { 20247 // Swap nodes. 20248 SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, 20249 N0.getOperand(0), N1, N2); 20250 AddToWorklist(NewOp.getNode()); 20251 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()), 20252 VT, NewOp, N0.getOperand(1), N0.getOperand(2)); 20253 } 20254 } 20255 20256 // If the input vector is a concatenation, and the insert replaces 20257 // one of the pieces, we can optimize into a single concat_vectors. 20258 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() && 20259 N0.getOperand(0).getValueType() == N1.getValueType()) { 20260 unsigned Factor = N1.getValueType().getVectorNumElements(); 20261 SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end()); 20262 Ops[InsIdx / Factor] = N1; 20263 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 20264 } 20265 20266 // Simplify source operands based on insertion. 20267 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 20268 return SDValue(N, 0); 20269 20270 return SDValue(); 20271 } 20272 20273 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { 20274 SDValue N0 = N->getOperand(0); 20275 20276 // fold (fp_to_fp16 (fp16_to_fp op)) -> op 20277 if (N0->getOpcode() == ISD::FP16_TO_FP) 20278 return N0->getOperand(0); 20279 20280 return SDValue(); 20281 } 20282 20283 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { 20284 SDValue N0 = N->getOperand(0); 20285 20286 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) 20287 if (N0->getOpcode() == ISD::AND) { 20288 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); 20289 if (AndConst && AndConst->getAPIntValue() == 0xffff) { 20290 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), 20291 N0.getOperand(0)); 20292 } 20293 } 20294 20295 return SDValue(); 20296 } 20297 20298 SDValue DAGCombiner::visitVECREDUCE(SDNode *N) { 20299 SDValue N0 = N->getOperand(0); 20300 EVT VT = N0.getValueType(); 20301 unsigned Opcode = N->getOpcode(); 20302 20303 // VECREDUCE over 1-element vector is just an extract. 20304 if (VT.getVectorNumElements() == 1) { 20305 SDLoc dl(N); 20306 SDValue Res = 20307 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0, 20308 DAG.getVectorIdxConstant(0, dl)); 20309 if (Res.getValueType() != N->getValueType(0)) 20310 Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res); 20311 return Res; 20312 } 20313 20314 // On an boolean vector an and/or reduction is the same as a umin/umax 20315 // reduction. Convert them if the latter is legal while the former isn't. 20316 if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) { 20317 unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND 20318 ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX; 20319 if (!TLI.isOperationLegalOrCustom(Opcode, VT) && 20320 TLI.isOperationLegalOrCustom(NewOpcode, VT) && 20321 DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits()) 20322 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0); 20323 } 20324 20325 return SDValue(); 20326 } 20327 20328 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle 20329 /// with the destination vector and a zero vector. 20330 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> 20331 /// vector_shuffle V, Zero, <0, 4, 2, 4> 20332 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { 20333 assert(N->getOpcode() == ISD::AND && "Unexpected opcode!"); 20334 20335 EVT VT = N->getValueType(0); 20336 SDValue LHS = N->getOperand(0); 20337 SDValue RHS = peekThroughBitcasts(N->getOperand(1)); 20338 SDLoc DL(N); 20339 20340 // Make sure we're not running after operation legalization where it 20341 // may have custom lowered the vector shuffles. 20342 if (LegalOperations) 20343 return SDValue(); 20344 20345 if (RHS.getOpcode() != ISD::BUILD_VECTOR) 20346 return SDValue(); 20347 20348 EVT RVT = RHS.getValueType(); 20349 unsigned NumElts = RHS.getNumOperands(); 20350 20351 // Attempt to create a valid clear mask, splitting the mask into 20352 // sub elements and checking to see if each is 20353 // all zeros or all ones - suitable for shuffle masking. 20354 auto BuildClearMask = [&](int Split) { 20355 int NumSubElts = NumElts * Split; 20356 int NumSubBits = RVT.getScalarSizeInBits() / Split; 20357 20358 SmallVector<int, 8> Indices; 20359 for (int i = 0; i != NumSubElts; ++i) { 20360 int EltIdx = i / Split; 20361 int SubIdx = i % Split; 20362 SDValue Elt = RHS.getOperand(EltIdx); 20363 // X & undef --> 0 (not undef). So this lane must be converted to choose 20364 // from the zero constant vector (same as if the element had all 0-bits). 20365 if (Elt.isUndef()) { 20366 Indices.push_back(i + NumSubElts); 20367 continue; 20368 } 20369 20370 APInt Bits; 20371 if (isa<ConstantSDNode>(Elt)) 20372 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); 20373 else if (isa<ConstantFPSDNode>(Elt)) 20374 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); 20375 else 20376 return SDValue(); 20377 20378 // Extract the sub element from the constant bit mask. 20379 if (DAG.getDataLayout().isBigEndian()) 20380 Bits = Bits.extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits); 20381 else 20382 Bits = Bits.extractBits(NumSubBits, SubIdx * NumSubBits); 20383 20384 if (Bits.isAllOnesValue()) 20385 Indices.push_back(i); 20386 else if (Bits == 0) 20387 Indices.push_back(i + NumSubElts); 20388 else 20389 return SDValue(); 20390 } 20391 20392 // Let's see if the target supports this vector_shuffle. 20393 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); 20394 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); 20395 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) 20396 return SDValue(); 20397 20398 SDValue Zero = DAG.getConstant(0, DL, ClearVT); 20399 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, 20400 DAG.getBitcast(ClearVT, LHS), 20401 Zero, Indices)); 20402 }; 20403 20404 // Determine maximum split level (byte level masking). 20405 int MaxSplit = 1; 20406 if (RVT.getScalarSizeInBits() % 8 == 0) 20407 MaxSplit = RVT.getScalarSizeInBits() / 8; 20408 20409 for (int Split = 1; Split <= MaxSplit; ++Split) 20410 if (RVT.getScalarSizeInBits() % Split == 0) 20411 if (SDValue S = BuildClearMask(Split)) 20412 return S; 20413 20414 return SDValue(); 20415 } 20416 20417 /// If a vector binop is performed on splat values, it may be profitable to 20418 /// extract, scalarize, and insert/splat. 20419 static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG) { 20420 SDValue N0 = N->getOperand(0); 20421 SDValue N1 = N->getOperand(1); 20422 unsigned Opcode = N->getOpcode(); 20423 EVT VT = N->getValueType(0); 20424 EVT EltVT = VT.getVectorElementType(); 20425 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20426 20427 // TODO: Remove/replace the extract cost check? If the elements are available 20428 // as scalars, then there may be no extract cost. Should we ask if 20429 // inserting a scalar back into a vector is cheap instead? 20430 int Index0, Index1; 20431 SDValue Src0 = DAG.getSplatSourceVector(N0, Index0); 20432 SDValue Src1 = DAG.getSplatSourceVector(N1, Index1); 20433 if (!Src0 || !Src1 || Index0 != Index1 || 20434 Src0.getValueType().getVectorElementType() != EltVT || 20435 Src1.getValueType().getVectorElementType() != EltVT || 20436 !TLI.isExtractVecEltCheap(VT, Index0) || 20437 !TLI.isOperationLegalOrCustom(Opcode, EltVT)) 20438 return SDValue(); 20439 20440 SDLoc DL(N); 20441 SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL); 20442 SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, N0, IndexC); 20443 SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, N1, IndexC); 20444 SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags()); 20445 20446 // If all lanes but 1 are undefined, no need to splat the scalar result. 20447 // TODO: Keep track of undefs and use that info in the general case. 20448 if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() && 20449 count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 && 20450 count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) { 20451 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) --> 20452 // build_vec ..undef, (bo X, Y), undef... 20453 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT)); 20454 Ops[Index0] = ScalarBO; 20455 return DAG.getBuildVector(VT, DL, Ops); 20456 } 20457 20458 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index 20459 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO); 20460 return DAG.getBuildVector(VT, DL, Ops); 20461 } 20462 20463 /// Visit a binary vector operation, like ADD. 20464 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { 20465 assert(N->getValueType(0).isVector() && 20466 "SimplifyVBinOp only works on vectors!"); 20467 20468 SDValue LHS = N->getOperand(0); 20469 SDValue RHS = N->getOperand(1); 20470 SDValue Ops[] = {LHS, RHS}; 20471 EVT VT = N->getValueType(0); 20472 unsigned Opcode = N->getOpcode(); 20473 20474 // See if we can constant fold the vector operation. 20475 if (SDValue Fold = DAG.FoldConstantVectorArithmetic( 20476 Opcode, SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) 20477 return Fold; 20478 20479 // Move unary shuffles with identical masks after a vector binop: 20480 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask)) 20481 // --> shuffle (VBinOp A, B), Undef, Mask 20482 // This does not require type legality checks because we are creating the 20483 // same types of operations that are in the original sequence. We do have to 20484 // restrict ops like integer div that have immediate UB (eg, div-by-zero) 20485 // though. This code is adapted from the identical transform in instcombine. 20486 if (Opcode != ISD::UDIV && Opcode != ISD::SDIV && 20487 Opcode != ISD::UREM && Opcode != ISD::SREM && 20488 Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) { 20489 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS); 20490 auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS); 20491 if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) && 20492 LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() && 20493 (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) { 20494 SDLoc DL(N); 20495 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0), 20496 RHS.getOperand(0), N->getFlags()); 20497 SDValue UndefV = LHS.getOperand(1); 20498 return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask()); 20499 } 20500 } 20501 20502 // The following pattern is likely to emerge with vector reduction ops. Moving 20503 // the binary operation ahead of insertion may allow using a narrower vector 20504 // instruction that has better performance than the wide version of the op: 20505 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z 20506 if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() && 20507 RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() && 20508 LHS.getOperand(2) == RHS.getOperand(2) && 20509 (LHS.hasOneUse() || RHS.hasOneUse())) { 20510 SDValue X = LHS.getOperand(1); 20511 SDValue Y = RHS.getOperand(1); 20512 SDValue Z = LHS.getOperand(2); 20513 EVT NarrowVT = X.getValueType(); 20514 if (NarrowVT == Y.getValueType() && 20515 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) { 20516 // (binop undef, undef) may not return undef, so compute that result. 20517 SDLoc DL(N); 20518 SDValue VecC = 20519 DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT)); 20520 SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y); 20521 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z); 20522 } 20523 } 20524 20525 // Make sure all but the first op are undef or constant. 20526 auto ConcatWithConstantOrUndef = [](SDValue Concat) { 20527 return Concat.getOpcode() == ISD::CONCAT_VECTORS && 20528 std::all_of(std::next(Concat->op_begin()), Concat->op_end(), 20529 [](const SDValue &Op) { 20530 return Op.isUndef() || 20531 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()); 20532 }); 20533 }; 20534 20535 // The following pattern is likely to emerge with vector reduction ops. Moving 20536 // the binary operation ahead of the concat may allow using a narrower vector 20537 // instruction that has better performance than the wide version of the op: 20538 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) --> 20539 // concat (VBinOp X, Y), VecC 20540 if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) && 20541 (LHS.hasOneUse() || RHS.hasOneUse())) { 20542 EVT NarrowVT = LHS.getOperand(0).getValueType(); 20543 if (NarrowVT == RHS.getOperand(0).getValueType() && 20544 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) { 20545 SDLoc DL(N); 20546 unsigned NumOperands = LHS.getNumOperands(); 20547 SmallVector<SDValue, 4> ConcatOps; 20548 for (unsigned i = 0; i != NumOperands; ++i) { 20549 // This constant fold for operands 1 and up. 20550 ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i), 20551 RHS.getOperand(i))); 20552 } 20553 20554 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 20555 } 20556 } 20557 20558 if (SDValue V = scalarizeBinOpOfSplats(N, DAG)) 20559 return V; 20560 20561 return SDValue(); 20562 } 20563 20564 SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, 20565 SDValue N2) { 20566 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); 20567 20568 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, 20569 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 20570 20571 // If we got a simplified select_cc node back from SimplifySelectCC, then 20572 // break it down into a new SETCC node, and a new SELECT node, and then return 20573 // the SELECT node, since we were called with a SELECT node. 20574 if (SCC.getNode()) { 20575 // Check to see if we got a select_cc back (to turn into setcc/select). 20576 // Otherwise, just return whatever node we got back, like fabs. 20577 if (SCC.getOpcode() == ISD::SELECT_CC) { 20578 const SDNodeFlags Flags = N0.getNode()->getFlags(); 20579 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), 20580 N0.getValueType(), 20581 SCC.getOperand(0), SCC.getOperand(1), 20582 SCC.getOperand(4), Flags); 20583 AddToWorklist(SETCC.getNode()); 20584 SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, 20585 SCC.getOperand(2), SCC.getOperand(3)); 20586 SelectNode->setFlags(Flags); 20587 return SelectNode; 20588 } 20589 20590 return SCC; 20591 } 20592 return SDValue(); 20593 } 20594 20595 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values 20596 /// being selected between, see if we can simplify the select. Callers of this 20597 /// should assume that TheSelect is deleted if this returns true. As such, they 20598 /// should return the appropriate thing (e.g. the node) back to the top-level of 20599 /// the DAG combiner loop to avoid it being looked at. 20600 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, 20601 SDValue RHS) { 20602 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 20603 // The select + setcc is redundant, because fsqrt returns NaN for X < 0. 20604 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { 20605 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { 20606 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) 20607 SDValue Sqrt = RHS; 20608 ISD::CondCode CC; 20609 SDValue CmpLHS; 20610 const ConstantFPSDNode *Zero = nullptr; 20611 20612 if (TheSelect->getOpcode() == ISD::SELECT_CC) { 20613 CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); 20614 CmpLHS = TheSelect->getOperand(0); 20615 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); 20616 } else { 20617 // SELECT or VSELECT 20618 SDValue Cmp = TheSelect->getOperand(0); 20619 if (Cmp.getOpcode() == ISD::SETCC) { 20620 CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); 20621 CmpLHS = Cmp.getOperand(0); 20622 Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); 20623 } 20624 } 20625 if (Zero && Zero->isZero() && 20626 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || 20627 CC == ISD::SETULT || CC == ISD::SETLT)) { 20628 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 20629 CombineTo(TheSelect, Sqrt); 20630 return true; 20631 } 20632 } 20633 } 20634 // Cannot simplify select with vector condition 20635 if (TheSelect->getOperand(0).getValueType().isVector()) return false; 20636 20637 // If this is a select from two identical things, try to pull the operation 20638 // through the select. 20639 if (LHS.getOpcode() != RHS.getOpcode() || 20640 !LHS.hasOneUse() || !RHS.hasOneUse()) 20641 return false; 20642 20643 // If this is a load and the token chain is identical, replace the select 20644 // of two loads with a load through a select of the address to load from. 20645 // This triggers in things like "select bool X, 10.0, 123.0" after the FP 20646 // constants have been dropped into the constant pool. 20647 if (LHS.getOpcode() == ISD::LOAD) { 20648 LoadSDNode *LLD = cast<LoadSDNode>(LHS); 20649 LoadSDNode *RLD = cast<LoadSDNode>(RHS); 20650 20651 // Token chains must be identical. 20652 if (LHS.getOperand(0) != RHS.getOperand(0) || 20653 // Do not let this transformation reduce the number of volatile loads. 20654 // Be conservative for atomics for the moment 20655 // TODO: This does appear to be legal for unordered atomics (see D66309) 20656 !LLD->isSimple() || !RLD->isSimple() || 20657 // FIXME: If either is a pre/post inc/dec load, 20658 // we'd need to split out the address adjustment. 20659 LLD->isIndexed() || RLD->isIndexed() || 20660 // If this is an EXTLOAD, the VT's must match. 20661 LLD->getMemoryVT() != RLD->getMemoryVT() || 20662 // If this is an EXTLOAD, the kind of extension must match. 20663 (LLD->getExtensionType() != RLD->getExtensionType() && 20664 // The only exception is if one of the extensions is anyext. 20665 LLD->getExtensionType() != ISD::EXTLOAD && 20666 RLD->getExtensionType() != ISD::EXTLOAD) || 20667 // FIXME: this discards src value information. This is 20668 // over-conservative. It would be beneficial to be able to remember 20669 // both potential memory locations. Since we are discarding 20670 // src value info, don't do the transformation if the memory 20671 // locations are not in the default address space. 20672 LLD->getPointerInfo().getAddrSpace() != 0 || 20673 RLD->getPointerInfo().getAddrSpace() != 0 || 20674 // We can't produce a CMOV of a TargetFrameIndex since we won't 20675 // generate the address generation required. 20676 LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || 20677 RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || 20678 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), 20679 LLD->getBasePtr().getValueType())) 20680 return false; 20681 20682 // The loads must not depend on one another. 20683 if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD)) 20684 return false; 20685 20686 // Check that the select condition doesn't reach either load. If so, 20687 // folding this will induce a cycle into the DAG. If not, this is safe to 20688 // xform, so create a select of the addresses. 20689 20690 SmallPtrSet<const SDNode *, 32> Visited; 20691 SmallVector<const SDNode *, 16> Worklist; 20692 20693 // Always fail if LLD and RLD are not independent. TheSelect is a 20694 // predecessor to all Nodes in question so we need not search past it. 20695 20696 Visited.insert(TheSelect); 20697 Worklist.push_back(LLD); 20698 Worklist.push_back(RLD); 20699 20700 if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) || 20701 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)) 20702 return false; 20703 20704 SDValue Addr; 20705 if (TheSelect->getOpcode() == ISD::SELECT) { 20706 // We cannot do this optimization if any pair of {RLD, LLD} is a 20707 // predecessor to {RLD, LLD, CondNode}. As we've already compared the 20708 // Loads, we only need to check if CondNode is a successor to one of the 20709 // loads. We can further avoid this if there's no use of their chain 20710 // value. 20711 SDNode *CondNode = TheSelect->getOperand(0).getNode(); 20712 Worklist.push_back(CondNode); 20713 20714 if ((LLD->hasAnyUseOfValue(1) && 20715 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || 20716 (RLD->hasAnyUseOfValue(1) && 20717 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) 20718 return false; 20719 20720 Addr = DAG.getSelect(SDLoc(TheSelect), 20721 LLD->getBasePtr().getValueType(), 20722 TheSelect->getOperand(0), LLD->getBasePtr(), 20723 RLD->getBasePtr()); 20724 } else { // Otherwise SELECT_CC 20725 // We cannot do this optimization if any pair of {RLD, LLD} is a 20726 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared 20727 // the Loads, we only need to check if CondLHS/CondRHS is a successor to 20728 // one of the loads. We can further avoid this if there's no use of their 20729 // chain value. 20730 20731 SDNode *CondLHS = TheSelect->getOperand(0).getNode(); 20732 SDNode *CondRHS = TheSelect->getOperand(1).getNode(); 20733 Worklist.push_back(CondLHS); 20734 Worklist.push_back(CondRHS); 20735 20736 if ((LLD->hasAnyUseOfValue(1) && 20737 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || 20738 (RLD->hasAnyUseOfValue(1) && 20739 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) 20740 return false; 20741 20742 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), 20743 LLD->getBasePtr().getValueType(), 20744 TheSelect->getOperand(0), 20745 TheSelect->getOperand(1), 20746 LLD->getBasePtr(), RLD->getBasePtr(), 20747 TheSelect->getOperand(4)); 20748 } 20749 20750 SDValue Load; 20751 // It is safe to replace the two loads if they have different alignments, 20752 // but the new load must be the minimum (most restrictive) alignment of the 20753 // inputs. 20754 unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment()); 20755 MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); 20756 if (!RLD->isInvariant()) 20757 MMOFlags &= ~MachineMemOperand::MOInvariant; 20758 if (!RLD->isDereferenceable()) 20759 MMOFlags &= ~MachineMemOperand::MODereferenceable; 20760 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { 20761 // FIXME: Discards pointer and AA info. 20762 Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), 20763 LLD->getChain(), Addr, MachinePointerInfo(), Alignment, 20764 MMOFlags); 20765 } else { 20766 // FIXME: Discards pointer and AA info. 20767 Load = DAG.getExtLoad( 20768 LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() 20769 : LLD->getExtensionType(), 20770 SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, 20771 MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); 20772 } 20773 20774 // Users of the select now use the result of the load. 20775 CombineTo(TheSelect, Load); 20776 20777 // Users of the old loads now use the new load's chain. We know the 20778 // old-load value is dead now. 20779 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); 20780 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); 20781 return true; 20782 } 20783 20784 return false; 20785 } 20786 20787 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and 20788 /// bitwise 'and'. 20789 SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, 20790 SDValue N1, SDValue N2, SDValue N3, 20791 ISD::CondCode CC) { 20792 // If this is a select where the false operand is zero and the compare is a 20793 // check of the sign bit, see if we can perform the "gzip trick": 20794 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A 20795 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A 20796 EVT XType = N0.getValueType(); 20797 EVT AType = N2.getValueType(); 20798 if (!isNullConstant(N3) || !XType.bitsGE(AType)) 20799 return SDValue(); 20800 20801 // If the comparison is testing for a positive value, we have to invert 20802 // the sign bit mask, so only do that transform if the target has a bitwise 20803 // 'and not' instruction (the invert is free). 20804 if (CC == ISD::SETGT && TLI.hasAndNot(N2)) { 20805 // (X > -1) ? A : 0 20806 // (X > 0) ? X : 0 <-- This is canonical signed max. 20807 if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2))) 20808 return SDValue(); 20809 } else if (CC == ISD::SETLT) { 20810 // (X < 0) ? A : 0 20811 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min. 20812 if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2))) 20813 return SDValue(); 20814 } else { 20815 return SDValue(); 20816 } 20817 20818 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit 20819 // constant. 20820 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); 20821 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 20822 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { 20823 unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1; 20824 if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) { 20825 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); 20826 SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt); 20827 AddToWorklist(Shift.getNode()); 20828 20829 if (XType.bitsGT(AType)) { 20830 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 20831 AddToWorklist(Shift.getNode()); 20832 } 20833 20834 if (CC == ISD::SETGT) 20835 Shift = DAG.getNOT(DL, Shift, AType); 20836 20837 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 20838 } 20839 } 20840 20841 unsigned ShCt = XType.getSizeInBits() - 1; 20842 if (TLI.shouldAvoidTransformToShift(XType, ShCt)) 20843 return SDValue(); 20844 20845 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); 20846 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt); 20847 AddToWorklist(Shift.getNode()); 20848 20849 if (XType.bitsGT(AType)) { 20850 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 20851 AddToWorklist(Shift.getNode()); 20852 } 20853 20854 if (CC == ISD::SETGT) 20855 Shift = DAG.getNOT(DL, Shift, AType); 20856 20857 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 20858 } 20859 20860 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" 20861 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 20862 /// in it. This may be a win when the constant is not otherwise available 20863 /// because it replaces two constant pool loads with one. 20864 SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset( 20865 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, 20866 ISD::CondCode CC) { 20867 if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType())) 20868 return SDValue(); 20869 20870 // If we are before legalize types, we want the other legalization to happen 20871 // first (for example, to avoid messing with soft float). 20872 auto *TV = dyn_cast<ConstantFPSDNode>(N2); 20873 auto *FV = dyn_cast<ConstantFPSDNode>(N3); 20874 EVT VT = N2.getValueType(); 20875 if (!TV || !FV || !TLI.isTypeLegal(VT)) 20876 return SDValue(); 20877 20878 // If a constant can be materialized without loads, this does not make sense. 20879 if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal || 20880 TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) || 20881 TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize)) 20882 return SDValue(); 20883 20884 // If both constants have multiple uses, then we won't need to do an extra 20885 // load. The values are likely around in registers for other users. 20886 if (!TV->hasOneUse() && !FV->hasOneUse()) 20887 return SDValue(); 20888 20889 Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()), 20890 const_cast<ConstantFP*>(TV->getConstantFPValue()) }; 20891 Type *FPTy = Elts[0]->getType(); 20892 const DataLayout &TD = DAG.getDataLayout(); 20893 20894 // Create a ConstantArray of the two constants. 20895 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); 20896 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), 20897 TD.getPrefTypeAlign(FPTy)); 20898 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 20899 20900 // Get offsets to the 0 and 1 elements of the array, so we can select between 20901 // them. 20902 SDValue Zero = DAG.getIntPtrConstant(0, DL); 20903 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); 20904 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); 20905 SDValue Cond = 20906 DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC); 20907 AddToWorklist(Cond.getNode()); 20908 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero); 20909 AddToWorklist(CstOffset.getNode()); 20910 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset); 20911 AddToWorklist(CPIdx.getNode()); 20912 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, 20913 MachinePointerInfo::getConstantPool( 20914 DAG.getMachineFunction()), Alignment); 20915 } 20916 20917 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 20918 /// where 'cond' is the comparison specified by CC. 20919 SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 20920 SDValue N2, SDValue N3, ISD::CondCode CC, 20921 bool NotExtCompare) { 20922 // (x ? y : y) -> y. 20923 if (N2 == N3) return N2; 20924 20925 EVT CmpOpVT = N0.getValueType(); 20926 EVT CmpResVT = getSetCCResultType(CmpOpVT); 20927 EVT VT = N2.getValueType(); 20928 auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 20929 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 20930 auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); 20931 20932 // Determine if the condition we're dealing with is constant. 20933 if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) { 20934 AddToWorklist(SCC.getNode()); 20935 if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) { 20936 // fold select_cc true, x, y -> x 20937 // fold select_cc false, x, y -> y 20938 return !(SCCC->isNullValue()) ? N2 : N3; 20939 } 20940 } 20941 20942 if (SDValue V = 20943 convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC)) 20944 return V; 20945 20946 if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC)) 20947 return V; 20948 20949 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) 20950 // where y is has a single bit set. 20951 // A plaintext description would be, we can turn the SELECT_CC into an AND 20952 // when the condition can be materialized as an all-ones register. Any 20953 // single bit-test can be materialized as an all-ones register with 20954 // shift-left and shift-right-arith. 20955 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && 20956 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { 20957 SDValue AndLHS = N0->getOperand(0); 20958 auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 20959 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { 20960 // Shift the tested bit over the sign bit. 20961 const APInt &AndMask = ConstAndRHS->getAPIntValue(); 20962 unsigned ShCt = AndMask.getBitWidth() - 1; 20963 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { 20964 SDValue ShlAmt = 20965 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), 20966 getShiftAmountTy(AndLHS.getValueType())); 20967 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); 20968 20969 // Now arithmetic right shift it all the way over, so the result is 20970 // either all-ones, or zero. 20971 SDValue ShrAmt = 20972 DAG.getConstant(ShCt, SDLoc(Shl), 20973 getShiftAmountTy(Shl.getValueType())); 20974 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); 20975 20976 return DAG.getNode(ISD::AND, DL, VT, Shr, N3); 20977 } 20978 } 20979 } 20980 20981 // fold select C, 16, 0 -> shl C, 4 20982 bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2(); 20983 bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2(); 20984 20985 if ((Fold || Swap) && 20986 TLI.getBooleanContents(CmpOpVT) == 20987 TargetLowering::ZeroOrOneBooleanContent && 20988 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) { 20989 20990 if (Swap) { 20991 CC = ISD::getSetCCInverse(CC, CmpOpVT); 20992 std::swap(N2C, N3C); 20993 } 20994 20995 // If the caller doesn't want us to simplify this into a zext of a compare, 20996 // don't do it. 20997 if (NotExtCompare && N2C->isOne()) 20998 return SDValue(); 20999 21000 SDValue Temp, SCC; 21001 // zext (setcc n0, n1) 21002 if (LegalTypes) { 21003 SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC); 21004 if (VT.bitsLT(SCC.getValueType())) 21005 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT); 21006 else 21007 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); 21008 } else { 21009 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); 21010 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); 21011 } 21012 21013 AddToWorklist(SCC.getNode()); 21014 AddToWorklist(Temp.getNode()); 21015 21016 if (N2C->isOne()) 21017 return Temp; 21018 21019 unsigned ShCt = N2C->getAPIntValue().logBase2(); 21020 if (TLI.shouldAvoidTransformToShift(VT, ShCt)) 21021 return SDValue(); 21022 21023 // shl setcc result by log2 n2c 21024 return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp, 21025 DAG.getConstant(ShCt, SDLoc(Temp), 21026 getShiftAmountTy(Temp.getValueType()))); 21027 } 21028 21029 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) 21030 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) 21031 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) 21032 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) 21033 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) 21034 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) 21035 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) 21036 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) 21037 if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 21038 SDValue ValueOnZero = N2; 21039 SDValue Count = N3; 21040 // If the condition is NE instead of E, swap the operands. 21041 if (CC == ISD::SETNE) 21042 std::swap(ValueOnZero, Count); 21043 // Check if the value on zero is a constant equal to the bits in the type. 21044 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { 21045 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { 21046 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is 21047 // legal, combine to just cttz. 21048 if ((Count.getOpcode() == ISD::CTTZ || 21049 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && 21050 N0 == Count.getOperand(0) && 21051 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) 21052 return DAG.getNode(ISD::CTTZ, DL, VT, N0); 21053 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is 21054 // legal, combine to just ctlz. 21055 if ((Count.getOpcode() == ISD::CTLZ || 21056 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && 21057 N0 == Count.getOperand(0) && 21058 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) 21059 return DAG.getNode(ISD::CTLZ, DL, VT, N0); 21060 } 21061 } 21062 } 21063 21064 return SDValue(); 21065 } 21066 21067 /// This is a stub for TargetLowering::SimplifySetCC. 21068 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 21069 ISD::CondCode Cond, const SDLoc &DL, 21070 bool foldBooleans) { 21071 TargetLowering::DAGCombinerInfo 21072 DagCombineInfo(DAG, Level, false, this); 21073 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); 21074 } 21075 21076 /// Given an ISD::SDIV node expressing a divide by constant, return 21077 /// a DAG expression to select that will generate the same value by multiplying 21078 /// by a magic number. 21079 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 21080 SDValue DAGCombiner::BuildSDIV(SDNode *N) { 21081 // when optimising for minimum size, we don't want to expand a div to a mul 21082 // and a shift. 21083 if (DAG.getMachineFunction().getFunction().hasMinSize()) 21084 return SDValue(); 21085 21086 SmallVector<SDNode *, 8> Built; 21087 if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) { 21088 for (SDNode *N : Built) 21089 AddToWorklist(N); 21090 return S; 21091 } 21092 21093 return SDValue(); 21094 } 21095 21096 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a 21097 /// DAG expression that will generate the same value by right shifting. 21098 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { 21099 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 21100 if (!C) 21101 return SDValue(); 21102 21103 // Avoid division by zero. 21104 if (C->isNullValue()) 21105 return SDValue(); 21106 21107 SmallVector<SDNode *, 8> Built; 21108 if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) { 21109 for (SDNode *N : Built) 21110 AddToWorklist(N); 21111 return S; 21112 } 21113 21114 return SDValue(); 21115 } 21116 21117 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG 21118 /// expression that will generate the same value by multiplying by a magic 21119 /// number. 21120 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 21121 SDValue DAGCombiner::BuildUDIV(SDNode *N) { 21122 // when optimising for minimum size, we don't want to expand a div to a mul 21123 // and a shift. 21124 if (DAG.getMachineFunction().getFunction().hasMinSize()) 21125 return SDValue(); 21126 21127 SmallVector<SDNode *, 8> Built; 21128 if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) { 21129 for (SDNode *N : Built) 21130 AddToWorklist(N); 21131 return S; 21132 } 21133 21134 return SDValue(); 21135 } 21136 21137 /// Determines the LogBase2 value for a non-null input value using the 21138 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 21139 SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) { 21140 EVT VT = V.getValueType(); 21141 unsigned EltBits = VT.getScalarSizeInBits(); 21142 SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V); 21143 SDValue Base = DAG.getConstant(EltBits - 1, DL, VT); 21144 SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz); 21145 return LogBase2; 21146 } 21147 21148 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 21149 /// For the reciprocal, we need to find the zero of the function: 21150 /// F(X) = A X - 1 [which has a zero at X = 1/A] 21151 /// => 21152 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form 21153 /// does not require additional intermediate precision] 21154 /// For the last iteration, put numerator N into it to gain more precision: 21155 /// Result = N X_i + X_i (N - N A X_i) 21156 SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op, 21157 SDNodeFlags Flags) { 21158 if (LegalDAG) 21159 return SDValue(); 21160 21161 // TODO: Handle half and/or extended types? 21162 EVT VT = Op.getValueType(); 21163 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) 21164 return SDValue(); 21165 21166 // If estimates are explicitly disabled for this function, we're done. 21167 MachineFunction &MF = DAG.getMachineFunction(); 21168 int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); 21169 if (Enabled == TLI.ReciprocalEstimate::Disabled) 21170 return SDValue(); 21171 21172 // Estimates may be explicitly enabled for this type with a custom number of 21173 // refinement steps. 21174 int Iterations = TLI.getDivRefinementSteps(VT, MF); 21175 if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { 21176 AddToWorklist(Est.getNode()); 21177 21178 SDLoc DL(Op); 21179 if (Iterations) { 21180 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 21181 21182 // Newton iterations: Est = Est + Est (N - Arg * Est) 21183 // If this is the last iteration, also multiply by the numerator. 21184 for (int i = 0; i < Iterations; ++i) { 21185 SDValue MulEst = Est; 21186 21187 if (i == Iterations - 1) { 21188 MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags); 21189 AddToWorklist(MulEst.getNode()); 21190 } 21191 21192 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags); 21193 AddToWorklist(NewEst.getNode()); 21194 21195 NewEst = DAG.getNode(ISD::FSUB, DL, VT, 21196 (i == Iterations - 1 ? N : FPOne), NewEst, Flags); 21197 AddToWorklist(NewEst.getNode()); 21198 21199 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 21200 AddToWorklist(NewEst.getNode()); 21201 21202 Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags); 21203 AddToWorklist(Est.getNode()); 21204 } 21205 } else { 21206 // If no iterations are available, multiply with N. 21207 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags); 21208 AddToWorklist(Est.getNode()); 21209 } 21210 21211 return Est; 21212 } 21213 21214 return SDValue(); 21215 } 21216 21217 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 21218 /// For the reciprocal sqrt, we need to find the zero of the function: 21219 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 21220 /// => 21221 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) 21222 /// As a result, we precompute A/2 prior to the iteration loop. 21223 SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, 21224 unsigned Iterations, 21225 SDNodeFlags Flags, bool Reciprocal) { 21226 EVT VT = Arg.getValueType(); 21227 SDLoc DL(Arg); 21228 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); 21229 21230 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that 21231 // this entire sequence requires only one FP constant. 21232 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); 21233 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); 21234 21235 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) 21236 for (unsigned i = 0; i < Iterations; ++i) { 21237 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 21238 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); 21239 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); 21240 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 21241 } 21242 21243 // If non-reciprocal square root is requested, multiply the result by Arg. 21244 if (!Reciprocal) 21245 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); 21246 21247 return Est; 21248 } 21249 21250 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 21251 /// For the reciprocal sqrt, we need to find the zero of the function: 21252 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 21253 /// => 21254 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) 21255 SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, 21256 unsigned Iterations, 21257 SDNodeFlags Flags, bool Reciprocal) { 21258 EVT VT = Arg.getValueType(); 21259 SDLoc DL(Arg); 21260 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); 21261 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); 21262 21263 // This routine must enter the loop below to work correctly 21264 // when (Reciprocal == false). 21265 assert(Iterations > 0); 21266 21267 // Newton iterations for reciprocal square root: 21268 // E = (E * -0.5) * ((A * E) * E + -3.0) 21269 for (unsigned i = 0; i < Iterations; ++i) { 21270 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); 21271 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); 21272 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); 21273 21274 // When calculating a square root at the last iteration build: 21275 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) 21276 // (notice a common subexpression) 21277 SDValue LHS; 21278 if (Reciprocal || (i + 1) < Iterations) { 21279 // RSQRT: LHS = (E * -0.5) 21280 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); 21281 } else { 21282 // SQRT: LHS = (A * E) * -0.5 21283 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); 21284 } 21285 21286 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); 21287 } 21288 21289 return Est; 21290 } 21291 21292 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case 21293 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if 21294 /// Op can be zero. 21295 SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, 21296 bool Reciprocal) { 21297 if (LegalDAG) 21298 return SDValue(); 21299 21300 // TODO: Handle half and/or extended types? 21301 EVT VT = Op.getValueType(); 21302 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) 21303 return SDValue(); 21304 21305 // If estimates are explicitly disabled for this function, we're done. 21306 MachineFunction &MF = DAG.getMachineFunction(); 21307 int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); 21308 if (Enabled == TLI.ReciprocalEstimate::Disabled) 21309 return SDValue(); 21310 21311 // Estimates may be explicitly enabled for this type with a custom number of 21312 // refinement steps. 21313 int Iterations = TLI.getSqrtRefinementSteps(VT, MF); 21314 21315 bool UseOneConstNR = false; 21316 if (SDValue Est = 21317 TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR, 21318 Reciprocal)) { 21319 AddToWorklist(Est.getNode()); 21320 21321 if (Iterations) { 21322 Est = UseOneConstNR 21323 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) 21324 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); 21325 21326 if (!Reciprocal) { 21327 // The estimate is now completely wrong if the input was exactly 0.0 or 21328 // possibly a denormal. Force the answer to 0.0 for those cases. 21329 SDLoc DL(Op); 21330 EVT CCVT = getSetCCResultType(VT); 21331 ISD::NodeType SelOpcode = VT.isVector() ? ISD::VSELECT : ISD::SELECT; 21332 DenormalMode DenormMode = DAG.getDenormalMode(VT); 21333 if (DenormMode.Input == DenormalMode::IEEE) { 21334 // This is specifically a check for the handling of denormal inputs, 21335 // not the result. 21336 21337 // fabs(X) < SmallestNormal ? 0.0 : Est 21338 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 21339 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 21340 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 21341 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 21342 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 21343 SDValue IsDenorm = DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 21344 Est = DAG.getNode(SelOpcode, DL, VT, IsDenorm, FPZero, Est); 21345 } else { 21346 // X == 0.0 ? 0.0 : Est 21347 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 21348 SDValue IsZero = DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 21349 Est = DAG.getNode(SelOpcode, DL, VT, IsZero, FPZero, Est); 21350 } 21351 } 21352 } 21353 return Est; 21354 } 21355 21356 return SDValue(); 21357 } 21358 21359 SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) { 21360 return buildSqrtEstimateImpl(Op, Flags, true); 21361 } 21362 21363 SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) { 21364 return buildSqrtEstimateImpl(Op, Flags, false); 21365 } 21366 21367 /// Return true if there is any possibility that the two addresses overlap. 21368 bool DAGCombiner::isAlias(SDNode *Op0, SDNode *Op1) const { 21369 21370 struct MemUseCharacteristics { 21371 bool IsVolatile; 21372 bool IsAtomic; 21373 SDValue BasePtr; 21374 int64_t Offset; 21375 Optional<int64_t> NumBytes; 21376 MachineMemOperand *MMO; 21377 }; 21378 21379 auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics { 21380 if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) { 21381 int64_t Offset = 0; 21382 if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset())) 21383 Offset = (LSN->getAddressingMode() == ISD::PRE_INC) 21384 ? C->getSExtValue() 21385 : (LSN->getAddressingMode() == ISD::PRE_DEC) 21386 ? -1 * C->getSExtValue() 21387 : 0; 21388 uint64_t Size = 21389 MemoryLocation::getSizeOrUnknown(LSN->getMemoryVT().getStoreSize()); 21390 return {LSN->isVolatile(), LSN->isAtomic(), LSN->getBasePtr(), 21391 Offset /*base offset*/, 21392 Optional<int64_t>(Size), 21393 LSN->getMemOperand()}; 21394 } 21395 if (const auto *LN = cast<LifetimeSDNode>(N)) 21396 return {false /*isVolatile*/, /*isAtomic*/ false, LN->getOperand(1), 21397 (LN->hasOffset()) ? LN->getOffset() : 0, 21398 (LN->hasOffset()) ? Optional<int64_t>(LN->getSize()) 21399 : Optional<int64_t>(), 21400 (MachineMemOperand *)nullptr}; 21401 // Default. 21402 return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(), 21403 (int64_t)0 /*offset*/, 21404 Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr}; 21405 }; 21406 21407 MemUseCharacteristics MUC0 = getCharacteristics(Op0), 21408 MUC1 = getCharacteristics(Op1); 21409 21410 // If they are to the same address, then they must be aliases. 21411 if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr && 21412 MUC0.Offset == MUC1.Offset) 21413 return true; 21414 21415 // If they are both volatile then they cannot be reordered. 21416 if (MUC0.IsVolatile && MUC1.IsVolatile) 21417 return true; 21418 21419 // Be conservative about atomics for the moment 21420 // TODO: This is way overconservative for unordered atomics (see D66309) 21421 if (MUC0.IsAtomic && MUC1.IsAtomic) 21422 return true; 21423 21424 if (MUC0.MMO && MUC1.MMO) { 21425 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 21426 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 21427 return false; 21428 } 21429 21430 // Try to prove that there is aliasing, or that there is no aliasing. Either 21431 // way, we can return now. If nothing can be proved, proceed with more tests. 21432 bool IsAlias; 21433 if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes, 21434 DAG, IsAlias)) 21435 return IsAlias; 21436 21437 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if 21438 // either are not known. 21439 if (!MUC0.MMO || !MUC1.MMO) 21440 return true; 21441 21442 // If one operation reads from invariant memory, and the other may store, they 21443 // cannot alias. These should really be checking the equivalent of mayWrite, 21444 // but it only matters for memory nodes other than load /store. 21445 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 21446 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 21447 return false; 21448 21449 // If we know required SrcValue1 and SrcValue2 have relatively large 21450 // alignment compared to the size and offset of the access, we may be able 21451 // to prove they do not alias. This check is conservative for now to catch 21452 // cases created by splitting vector types, it only works when the offsets are 21453 // multiples of the size of the data. 21454 int64_t SrcValOffset0 = MUC0.MMO->getOffset(); 21455 int64_t SrcValOffset1 = MUC1.MMO->getOffset(); 21456 Align OrigAlignment0 = MUC0.MMO->getBaseAlign(); 21457 Align OrigAlignment1 = MUC1.MMO->getBaseAlign(); 21458 auto &Size0 = MUC0.NumBytes; 21459 auto &Size1 = MUC1.NumBytes; 21460 if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 && 21461 Size0.hasValue() && Size1.hasValue() && *Size0 == *Size1 && 21462 OrigAlignment0 > *Size0 && SrcValOffset0 % *Size0 == 0 && 21463 SrcValOffset1 % *Size1 == 0) { 21464 int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value(); 21465 int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value(); 21466 21467 // There is no overlap between these relatively aligned accesses of 21468 // similar size. Return no alias. 21469 if ((OffAlign0 + *Size0) <= OffAlign1 || (OffAlign1 + *Size1) <= OffAlign0) 21470 return false; 21471 } 21472 21473 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 21474 ? CombinerGlobalAA 21475 : DAG.getSubtarget().useAA(); 21476 #ifndef NDEBUG 21477 if (CombinerAAOnlyFunc.getNumOccurrences() && 21478 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 21479 UseAA = false; 21480 #endif 21481 21482 if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && 21483 Size0.hasValue() && Size1.hasValue()) { 21484 // Use alias analysis information. 21485 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); 21486 int64_t Overlap0 = *Size0 + SrcValOffset0 - MinOffset; 21487 int64_t Overlap1 = *Size1 + SrcValOffset1 - MinOffset; 21488 AliasResult AAResult = AA->alias( 21489 MemoryLocation(MUC0.MMO->getValue(), Overlap0, 21490 UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()), 21491 MemoryLocation(MUC1.MMO->getValue(), Overlap1, 21492 UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes())); 21493 if (AAResult == NoAlias) 21494 return false; 21495 } 21496 21497 // Otherwise we have to assume they alias. 21498 return true; 21499 } 21500 21501 /// Walk up chain skipping non-aliasing memory nodes, 21502 /// looking for aliasing nodes and adding them to the Aliases vector. 21503 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, 21504 SmallVectorImpl<SDValue> &Aliases) { 21505 SmallVector<SDValue, 8> Chains; // List of chains to visit. 21506 SmallPtrSet<SDNode *, 16> Visited; // Visited node set. 21507 21508 // Get alias information for node. 21509 // TODO: relax aliasing for unordered atomics (see D66309) 21510 const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple(); 21511 21512 // Starting off. 21513 Chains.push_back(OriginalChain); 21514 unsigned Depth = 0; 21515 21516 // Attempt to improve chain by a single step 21517 std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool { 21518 switch (C.getOpcode()) { 21519 case ISD::EntryToken: 21520 // No need to mark EntryToken. 21521 C = SDValue(); 21522 return true; 21523 case ISD::LOAD: 21524 case ISD::STORE: { 21525 // Get alias information for C. 21526 // TODO: Relax aliasing for unordered atomics (see D66309) 21527 bool IsOpLoad = isa<LoadSDNode>(C.getNode()) && 21528 cast<LSBaseSDNode>(C.getNode())->isSimple(); 21529 if ((IsLoad && IsOpLoad) || !isAlias(N, C.getNode())) { 21530 // Look further up the chain. 21531 C = C.getOperand(0); 21532 return true; 21533 } 21534 // Alias, so stop here. 21535 return false; 21536 } 21537 21538 case ISD::CopyFromReg: 21539 // Always forward past past CopyFromReg. 21540 C = C.getOperand(0); 21541 return true; 21542 21543 case ISD::LIFETIME_START: 21544 case ISD::LIFETIME_END: { 21545 // We can forward past any lifetime start/end that can be proven not to 21546 // alias the memory access. 21547 if (!isAlias(N, C.getNode())) { 21548 // Look further up the chain. 21549 C = C.getOperand(0); 21550 return true; 21551 } 21552 return false; 21553 } 21554 default: 21555 return false; 21556 } 21557 }; 21558 21559 // Look at each chain and determine if it is an alias. If so, add it to the 21560 // aliases list. If not, then continue up the chain looking for the next 21561 // candidate. 21562 while (!Chains.empty()) { 21563 SDValue Chain = Chains.pop_back_val(); 21564 21565 // Don't bother if we've seen Chain before. 21566 if (!Visited.insert(Chain.getNode()).second) 21567 continue; 21568 21569 // For TokenFactor nodes, look at each operand and only continue up the 21570 // chain until we reach the depth limit. 21571 // 21572 // FIXME: The depth check could be made to return the last non-aliasing 21573 // chain we found before we hit a tokenfactor rather than the original 21574 // chain. 21575 if (Depth > TLI.getGatherAllAliasesMaxDepth()) { 21576 Aliases.clear(); 21577 Aliases.push_back(OriginalChain); 21578 return; 21579 } 21580 21581 if (Chain.getOpcode() == ISD::TokenFactor) { 21582 // We have to check each of the operands of the token factor for "small" 21583 // token factors, so we queue them up. Adding the operands to the queue 21584 // (stack) in reverse order maintains the original order and increases the 21585 // likelihood that getNode will find a matching token factor (CSE.) 21586 if (Chain.getNumOperands() > 16) { 21587 Aliases.push_back(Chain); 21588 continue; 21589 } 21590 for (unsigned n = Chain.getNumOperands(); n;) 21591 Chains.push_back(Chain.getOperand(--n)); 21592 ++Depth; 21593 continue; 21594 } 21595 // Everything else 21596 if (ImproveChain(Chain)) { 21597 // Updated Chain Found, Consider new chain if one exists. 21598 if (Chain.getNode()) 21599 Chains.push_back(Chain); 21600 ++Depth; 21601 continue; 21602 } 21603 // No Improved Chain Possible, treat as Alias. 21604 Aliases.push_back(Chain); 21605 } 21606 } 21607 21608 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain 21609 /// (aliasing node.) 21610 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { 21611 if (OptLevel == CodeGenOpt::None) 21612 return OldChain; 21613 21614 // Ops for replacing token factor. 21615 SmallVector<SDValue, 8> Aliases; 21616 21617 // Accumulate all the aliases to this node. 21618 GatherAllAliases(N, OldChain, Aliases); 21619 21620 // If no operands then chain to entry token. 21621 if (Aliases.size() == 0) 21622 return DAG.getEntryNode(); 21623 21624 // If a single operand then chain to it. We don't need to revisit it. 21625 if (Aliases.size() == 1) 21626 return Aliases[0]; 21627 21628 // Construct a custom tailored token factor. 21629 return DAG.getTokenFactor(SDLoc(N), Aliases); 21630 } 21631 21632 namespace { 21633 // TODO: Replace with with std::monostate when we move to C++17. 21634 struct UnitT { } Unit; 21635 bool operator==(const UnitT &, const UnitT &) { return true; } 21636 bool operator!=(const UnitT &, const UnitT &) { return false; } 21637 } // namespace 21638 21639 // This function tries to collect a bunch of potentially interesting 21640 // nodes to improve the chains of, all at once. This might seem 21641 // redundant, as this function gets called when visiting every store 21642 // node, so why not let the work be done on each store as it's visited? 21643 // 21644 // I believe this is mainly important because MergeConsecutiveStores 21645 // is unable to deal with merging stores of different sizes, so unless 21646 // we improve the chains of all the potential candidates up-front 21647 // before running MergeConsecutiveStores, it might only see some of 21648 // the nodes that will eventually be candidates, and then not be able 21649 // to go from a partially-merged state to the desired final 21650 // fully-merged state. 21651 21652 bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) { 21653 SmallVector<StoreSDNode *, 8> ChainedStores; 21654 StoreSDNode *STChain = St; 21655 // Intervals records which offsets from BaseIndex have been covered. In 21656 // the common case, every store writes to the immediately previous address 21657 // space and thus merged with the previous interval at insertion time. 21658 21659 using IMap = 21660 llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>; 21661 IMap::Allocator A; 21662 IMap Intervals(A); 21663 21664 // This holds the base pointer, index, and the offset in bytes from the base 21665 // pointer. 21666 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 21667 21668 // We must have a base and an offset. 21669 if (!BasePtr.getBase().getNode()) 21670 return false; 21671 21672 // Do not handle stores to undef base pointers. 21673 if (BasePtr.getBase().isUndef()) 21674 return false; 21675 21676 // BaseIndexOffset assumes that offsets are fixed-size, which 21677 // is not valid for scalable vectors where the offsets are 21678 // scaled by `vscale`, so bail out early. 21679 if (St->getMemoryVT().isScalableVector()) 21680 return false; 21681 21682 // Add ST's interval. 21683 Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit); 21684 21685 while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) { 21686 // If the chain has more than one use, then we can't reorder the mem ops. 21687 if (!SDValue(Chain, 0)->hasOneUse()) 21688 break; 21689 // TODO: Relax for unordered atomics (see D66309) 21690 if (!Chain->isSimple() || Chain->isIndexed()) 21691 break; 21692 21693 // Find the base pointer and offset for this memory node. 21694 const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG); 21695 // Check that the base pointer is the same as the original one. 21696 int64_t Offset; 21697 if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset)) 21698 break; 21699 int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8; 21700 // Make sure we don't overlap with other intervals by checking the ones to 21701 // the left or right before inserting. 21702 auto I = Intervals.find(Offset); 21703 // If there's a next interval, we should end before it. 21704 if (I != Intervals.end() && I.start() < (Offset + Length)) 21705 break; 21706 // If there's a previous interval, we should start after it. 21707 if (I != Intervals.begin() && (--I).stop() <= Offset) 21708 break; 21709 Intervals.insert(Offset, Offset + Length, Unit); 21710 21711 ChainedStores.push_back(Chain); 21712 STChain = Chain; 21713 } 21714 21715 // If we didn't find a chained store, exit. 21716 if (ChainedStores.size() == 0) 21717 return false; 21718 21719 // Improve all chained stores (St and ChainedStores members) starting from 21720 // where the store chain ended and return single TokenFactor. 21721 SDValue NewChain = STChain->getChain(); 21722 SmallVector<SDValue, 8> TFOps; 21723 for (unsigned I = ChainedStores.size(); I;) { 21724 StoreSDNode *S = ChainedStores[--I]; 21725 SDValue BetterChain = FindBetterChain(S, NewChain); 21726 S = cast<StoreSDNode>(DAG.UpdateNodeOperands( 21727 S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3))); 21728 TFOps.push_back(SDValue(S, 0)); 21729 ChainedStores[I] = S; 21730 } 21731 21732 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo. 21733 SDValue BetterChain = FindBetterChain(St, NewChain); 21734 SDValue NewST; 21735 if (St->isTruncatingStore()) 21736 NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(), 21737 St->getBasePtr(), St->getMemoryVT(), 21738 St->getMemOperand()); 21739 else 21740 NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(), 21741 St->getBasePtr(), St->getMemOperand()); 21742 21743 TFOps.push_back(NewST); 21744 21745 // If we improved every element of TFOps, then we've lost the dependence on 21746 // NewChain to successors of St and we need to add it back to TFOps. Do so at 21747 // the beginning to keep relative order consistent with FindBetterChains. 21748 auto hasImprovedChain = [&](SDValue ST) -> bool { 21749 return ST->getOperand(0) != NewChain; 21750 }; 21751 bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain); 21752 if (AddNewChain) 21753 TFOps.insert(TFOps.begin(), NewChain); 21754 21755 SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps); 21756 CombineTo(St, TF); 21757 21758 // Add TF and its operands to the worklist. 21759 AddToWorklist(TF.getNode()); 21760 for (const SDValue &Op : TF->ops()) 21761 AddToWorklist(Op.getNode()); 21762 AddToWorklist(STChain); 21763 return true; 21764 } 21765 21766 bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { 21767 if (OptLevel == CodeGenOpt::None) 21768 return false; 21769 21770 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 21771 21772 // We must have a base and an offset. 21773 if (!BasePtr.getBase().getNode()) 21774 return false; 21775 21776 // Do not handle stores to undef base pointers. 21777 if (BasePtr.getBase().isUndef()) 21778 return false; 21779 21780 // Directly improve a chain of disjoint stores starting at St. 21781 if (parallelizeChainedStores(St)) 21782 return true; 21783 21784 // Improve St's Chain.. 21785 SDValue BetterChain = FindBetterChain(St, St->getChain()); 21786 if (St->getChain() != BetterChain) { 21787 replaceStoreChain(St, BetterChain); 21788 return true; 21789 } 21790 return false; 21791 } 21792 21793 /// This is the entry point for the file. 21794 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA, 21795 CodeGenOpt::Level OptLevel) { 21796 /// This is the main entry point to this class. 21797 DAGCombiner(*this, AA, OptLevel).Run(Level); 21798 } 21799