1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run 11 // both before and after the DAG is legalized. 12 // 13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is 14 // primarily intended to handle simplification opportunities that are implicit 15 // in the LLVM IR and exposed by the various codegen lowering phases. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/SelectionDAG.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallBitVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetOptions.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "dagcombine" 45 46 STATISTIC(NodesCombined , "Number of dag nodes combined"); 47 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); 48 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); 49 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); 50 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); 51 STATISTIC(SlicedLoads, "Number of load sliced"); 52 53 namespace { 54 static cl::opt<bool> 55 CombinerAA("combiner-alias-analysis", cl::Hidden, 56 cl::desc("Enable DAG combiner alias-analysis heuristics")); 57 58 static cl::opt<bool> 59 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, 60 cl::desc("Enable DAG combiner's use of IR alias analysis")); 61 62 static cl::opt<bool> 63 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), 64 cl::desc("Enable DAG combiner's use of TBAA")); 65 66 #ifndef NDEBUG 67 static cl::opt<std::string> 68 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, 69 cl::desc("Only use DAG-combiner alias analysis in this" 70 " function")); 71 #endif 72 73 /// Hidden option to stress test load slicing, i.e., when this option 74 /// is enabled, load slicing bypasses most of its profitability guards. 75 static cl::opt<bool> 76 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, 77 cl::desc("Bypass the profitability model of load " 78 "slicing"), 79 cl::init(false)); 80 81 static cl::opt<bool> 82 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), 83 cl::desc("DAG combiner may split indexing from loads")); 84 85 //------------------------------ DAGCombiner ---------------------------------// 86 87 class DAGCombiner { 88 SelectionDAG &DAG; 89 const TargetLowering &TLI; 90 CombineLevel Level; 91 CodeGenOpt::Level OptLevel; 92 bool LegalOperations; 93 bool LegalTypes; 94 bool ForCodeSize; 95 96 /// \brief Worklist of all of the nodes that need to be simplified. 97 /// 98 /// This must behave as a stack -- new nodes to process are pushed onto the 99 /// back and when processing we pop off of the back. 100 /// 101 /// The worklist will not contain duplicates but may contain null entries 102 /// due to nodes being deleted from the underlying DAG. 103 SmallVector<SDNode *, 64> Worklist; 104 105 /// \brief Mapping from an SDNode to its position on the worklist. 106 /// 107 /// This is used to find and remove nodes from the worklist (by nulling 108 /// them) when they are deleted from the underlying DAG. It relies on 109 /// stable indices of nodes within the worklist. 110 DenseMap<SDNode *, unsigned> WorklistMap; 111 112 /// \brief Set of nodes which have been combined (at least once). 113 /// 114 /// This is used to allow us to reliably add any operands of a DAG node 115 /// which have not yet been combined to the worklist. 116 SmallPtrSet<SDNode *, 32> CombinedNodes; 117 118 // AA - Used for DAG load/store alias analysis. 119 AliasAnalysis &AA; 120 121 /// When an instruction is simplified, add all users of the instruction to 122 /// the work lists because they might get more simplified now. 123 void AddUsersToWorklist(SDNode *N) { 124 for (SDNode *Node : N->uses()) 125 AddToWorklist(Node); 126 } 127 128 /// Call the node-specific routine that folds each particular type of node. 129 SDValue visit(SDNode *N); 130 131 public: 132 /// Add to the worklist making sure its instance is at the back (next to be 133 /// processed.) 134 void AddToWorklist(SDNode *N) { 135 // Skip handle nodes as they can't usefully be combined and confuse the 136 // zero-use deletion strategy. 137 if (N->getOpcode() == ISD::HANDLENODE) 138 return; 139 140 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) 141 Worklist.push_back(N); 142 } 143 144 /// Remove all instances of N from the worklist. 145 void removeFromWorklist(SDNode *N) { 146 CombinedNodes.erase(N); 147 148 auto It = WorklistMap.find(N); 149 if (It == WorklistMap.end()) 150 return; // Not in the worklist. 151 152 // Null out the entry rather than erasing it to avoid a linear operation. 153 Worklist[It->second] = nullptr; 154 WorklistMap.erase(It); 155 } 156 157 void deleteAndRecombine(SDNode *N); 158 bool recursivelyDeleteUnusedNodes(SDNode *N); 159 160 /// Replaces all uses of the results of one DAG node with new values. 161 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 162 bool AddTo = true); 163 164 /// Replaces all uses of the results of one DAG node with new values. 165 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { 166 return CombineTo(N, &Res, 1, AddTo); 167 } 168 169 /// Replaces all uses of the results of one DAG node with new values. 170 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, 171 bool AddTo = true) { 172 SDValue To[] = { Res0, Res1 }; 173 return CombineTo(N, To, 2, AddTo); 174 } 175 176 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); 177 178 private: 179 180 /// Check the specified integer node value to see if it can be simplified or 181 /// if things it uses can be simplified by bit propagation. 182 /// If so, return true. 183 bool SimplifyDemandedBits(SDValue Op) { 184 unsigned BitWidth = Op.getScalarValueSizeInBits(); 185 APInt Demanded = APInt::getAllOnesValue(BitWidth); 186 return SimplifyDemandedBits(Op, Demanded); 187 } 188 189 bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded); 190 191 bool CombineToPreIndexedLoadStore(SDNode *N); 192 bool CombineToPostIndexedLoadStore(SDNode *N); 193 SDValue SplitIndexingFromLoad(LoadSDNode *LD); 194 bool SliceUpLoad(SDNode *N); 195 196 /// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed 197 /// load. 198 /// 199 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. 200 /// \param InVecVT type of the input vector to EVE with bitcasts resolved. 201 /// \param EltNo index of the vector element to load. 202 /// \param OriginalLoad load that EVE came from to be replaced. 203 /// \returns EVE on success SDValue() on failure. 204 SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad( 205 SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad); 206 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); 207 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); 208 SDValue SExtPromoteOperand(SDValue Op, EVT PVT); 209 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); 210 SDValue PromoteIntBinOp(SDValue Op); 211 SDValue PromoteIntShiftOp(SDValue Op); 212 SDValue PromoteExtend(SDValue Op); 213 bool PromoteLoad(SDValue Op); 214 215 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, SDValue Trunc, 216 SDValue ExtLoad, const SDLoc &DL, 217 ISD::NodeType ExtType); 218 219 /// Call the node-specific routine that knows how to fold each 220 /// particular type of node. If that doesn't do anything, try the 221 /// target-specific DAG combines. 222 SDValue combine(SDNode *N); 223 224 // Visitation implementation - Implement dag node combining for different 225 // node types. The semantics are as follows: 226 // Return Value: 227 // SDValue.getNode() == 0 - No change was made 228 // SDValue.getNode() == N - N was replaced, is dead and has been handled. 229 // otherwise - N should be replaced by the returned Operand. 230 // 231 SDValue visitTokenFactor(SDNode *N); 232 SDValue visitMERGE_VALUES(SDNode *N); 233 SDValue visitADD(SDNode *N); 234 SDValue visitSUB(SDNode *N); 235 SDValue visitADDC(SDNode *N); 236 SDValue visitSUBC(SDNode *N); 237 SDValue visitADDE(SDNode *N); 238 SDValue visitSUBE(SDNode *N); 239 SDValue visitMUL(SDNode *N); 240 SDValue useDivRem(SDNode *N); 241 SDValue visitSDIV(SDNode *N); 242 SDValue visitUDIV(SDNode *N); 243 SDValue visitREM(SDNode *N); 244 SDValue visitMULHU(SDNode *N); 245 SDValue visitMULHS(SDNode *N); 246 SDValue visitSMUL_LOHI(SDNode *N); 247 SDValue visitUMUL_LOHI(SDNode *N); 248 SDValue visitSMULO(SDNode *N); 249 SDValue visitUMULO(SDNode *N); 250 SDValue visitIMINMAX(SDNode *N); 251 SDValue visitAND(SDNode *N); 252 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *LocReference); 253 SDValue visitOR(SDNode *N); 254 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *LocReference); 255 SDValue visitXOR(SDNode *N); 256 SDValue SimplifyVBinOp(SDNode *N); 257 SDValue visitSHL(SDNode *N); 258 SDValue visitSRA(SDNode *N); 259 SDValue visitSRL(SDNode *N); 260 SDValue visitRotate(SDNode *N); 261 SDValue visitBSWAP(SDNode *N); 262 SDValue visitBITREVERSE(SDNode *N); 263 SDValue visitCTLZ(SDNode *N); 264 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); 265 SDValue visitCTTZ(SDNode *N); 266 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); 267 SDValue visitCTPOP(SDNode *N); 268 SDValue visitSELECT(SDNode *N); 269 SDValue visitVSELECT(SDNode *N); 270 SDValue visitSELECT_CC(SDNode *N); 271 SDValue visitSETCC(SDNode *N); 272 SDValue visitSETCCE(SDNode *N); 273 SDValue visitSIGN_EXTEND(SDNode *N); 274 SDValue visitZERO_EXTEND(SDNode *N); 275 SDValue visitANY_EXTEND(SDNode *N); 276 SDValue visitSIGN_EXTEND_INREG(SDNode *N); 277 SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); 278 SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N); 279 SDValue visitTRUNCATE(SDNode *N); 280 SDValue visitBITCAST(SDNode *N); 281 SDValue visitBUILD_PAIR(SDNode *N); 282 SDValue visitFADD(SDNode *N); 283 SDValue visitFSUB(SDNode *N); 284 SDValue visitFMUL(SDNode *N); 285 SDValue visitFMA(SDNode *N); 286 SDValue visitFDIV(SDNode *N); 287 SDValue visitFREM(SDNode *N); 288 SDValue visitFSQRT(SDNode *N); 289 SDValue visitFCOPYSIGN(SDNode *N); 290 SDValue visitSINT_TO_FP(SDNode *N); 291 SDValue visitUINT_TO_FP(SDNode *N); 292 SDValue visitFP_TO_SINT(SDNode *N); 293 SDValue visitFP_TO_UINT(SDNode *N); 294 SDValue visitFP_ROUND(SDNode *N); 295 SDValue visitFP_ROUND_INREG(SDNode *N); 296 SDValue visitFP_EXTEND(SDNode *N); 297 SDValue visitFNEG(SDNode *N); 298 SDValue visitFABS(SDNode *N); 299 SDValue visitFCEIL(SDNode *N); 300 SDValue visitFTRUNC(SDNode *N); 301 SDValue visitFFLOOR(SDNode *N); 302 SDValue visitFMINNUM(SDNode *N); 303 SDValue visitFMAXNUM(SDNode *N); 304 SDValue visitBRCOND(SDNode *N); 305 SDValue visitBR_CC(SDNode *N); 306 SDValue visitLOAD(SDNode *N); 307 308 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); 309 SDValue replaceStoreOfFPConstant(StoreSDNode *ST); 310 311 SDValue visitSTORE(SDNode *N); 312 SDValue visitINSERT_VECTOR_ELT(SDNode *N); 313 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); 314 SDValue visitBUILD_VECTOR(SDNode *N); 315 SDValue visitCONCAT_VECTORS(SDNode *N); 316 SDValue visitEXTRACT_SUBVECTOR(SDNode *N); 317 SDValue visitVECTOR_SHUFFLE(SDNode *N); 318 SDValue visitSCALAR_TO_VECTOR(SDNode *N); 319 SDValue visitINSERT_SUBVECTOR(SDNode *N); 320 SDValue visitMLOAD(SDNode *N); 321 SDValue visitMSTORE(SDNode *N); 322 SDValue visitMGATHER(SDNode *N); 323 SDValue visitMSCATTER(SDNode *N); 324 SDValue visitFP_TO_FP16(SDNode *N); 325 SDValue visitFP16_TO_FP(SDNode *N); 326 327 SDValue visitFADDForFMACombine(SDNode *N); 328 SDValue visitFSUBForFMACombine(SDNode *N); 329 SDValue visitFMULForFMACombine(SDNode *N); 330 331 SDValue XformToShuffleWithZero(SDNode *N); 332 SDValue ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue LHS, 333 SDValue RHS); 334 335 SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt); 336 337 SDValue foldSelectOfConstants(SDNode *N); 338 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); 339 SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N); 340 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); 341 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 342 SDValue N2, SDValue N3, ISD::CondCode CC, 343 bool NotExtCompare = false); 344 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 345 const SDLoc &DL, bool foldBooleans = true); 346 347 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 348 SDValue &CC) const; 349 bool isOneUseSetCC(SDValue N) const; 350 351 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 352 unsigned HiOp); 353 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); 354 SDValue CombineExtLoad(SDNode *N); 355 SDValue combineRepeatedFPDivisors(SDNode *N); 356 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); 357 SDValue BuildSDIV(SDNode *N); 358 SDValue BuildSDIVPow2(SDNode *N); 359 SDValue BuildUDIV(SDNode *N); 360 SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags); 361 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags); 362 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags *Flags); 363 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags *Flags, bool Recip); 364 SDValue buildSqrtNROneConst(SDValue Op, SDValue Est, unsigned Iterations, 365 SDNodeFlags *Flags, bool Reciprocal); 366 SDValue buildSqrtNRTwoConst(SDValue Op, SDValue Est, unsigned Iterations, 367 SDNodeFlags *Flags, bool Reciprocal); 368 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 369 bool DemandHighBits = true); 370 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); 371 SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, 372 SDValue InnerPos, SDValue InnerNeg, 373 unsigned PosOpcode, unsigned NegOpcode, 374 const SDLoc &DL); 375 SDNode *MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); 376 SDValue ReduceLoadWidth(SDNode *N); 377 SDValue ReduceLoadOpStoreWidth(SDNode *N); 378 SDValue splitMergedValStore(StoreSDNode *ST); 379 SDValue TransformFPLoadStorePair(SDNode *N); 380 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); 381 SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N); 382 SDValue reduceBuildVecToShuffle(SDNode *N); 383 SDValue createBuildVecShuffle(SDLoc DL, SDNode *N, ArrayRef<int> VectorMask, 384 SDValue VecIn1, SDValue VecIn2, 385 unsigned LeftIdx); 386 387 SDValue GetDemandedBits(SDValue V, const APInt &Mask); 388 389 /// Walk up chain skipping non-aliasing memory nodes, 390 /// looking for aliasing nodes and adding them to the Aliases vector. 391 void GatherAllAliases(SDNode *N, SDValue OriginalChain, 392 SmallVectorImpl<SDValue> &Aliases); 393 394 /// Return true if there is any possibility that the two addresses overlap. 395 bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const; 396 397 /// Walk up chain skipping non-aliasing memory nodes, looking for a better 398 /// chain (aliasing node.) 399 SDValue FindBetterChain(SDNode *N, SDValue Chain); 400 401 /// Try to replace a store and any possibly adjacent stores on 402 /// consecutive chains with better chains. Return true only if St is 403 /// replaced. 404 /// 405 /// Notice that other chains may still be replaced even if the function 406 /// returns false. 407 bool findBetterNeighborChains(StoreSDNode *St); 408 409 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 410 bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask); 411 412 /// Holds a pointer to an LSBaseSDNode as well as information on where it 413 /// is located in a sequence of memory operations connected by a chain. 414 struct MemOpLink { 415 MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq): 416 MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { } 417 // Ptr to the mem node. 418 LSBaseSDNode *MemNode; 419 // Offset from the base ptr. 420 int64_t OffsetFromBase; 421 // What is the sequence number of this mem node. 422 // Lowest mem operand in the DAG starts at zero. 423 unsigned SequenceNum; 424 }; 425 426 /// This is a helper function for visitMUL to check the profitability 427 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 428 /// MulNode is the original multiply, AddNode is (add x, c1), 429 /// and ConstNode is c2. 430 bool isMulAddWithConstProfitable(SDNode *MulNode, 431 SDValue &AddNode, 432 SDValue &ConstNode); 433 434 /// This is a helper function for MergeStoresOfConstantsOrVecElts. Returns a 435 /// constant build_vector of the stored constant values in Stores. 436 SDValue getMergedConstantVectorStore(SelectionDAG &DAG, const SDLoc &SL, 437 ArrayRef<MemOpLink> Stores, 438 SmallVectorImpl<SDValue> &Chains, 439 EVT Ty) const; 440 441 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns 442 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns 443 /// the type of the loaded value to be extended. LoadedVT returns the type 444 /// of the original loaded value. NarrowLoad returns whether the load would 445 /// need to be narrowed in order to match. 446 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 447 EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT, 448 bool &NarrowLoad); 449 450 /// This is a helper function for MergeConsecutiveStores. When the source 451 /// elements of the consecutive stores are all constants or all extracted 452 /// vector elements, try to merge them into one larger store. 453 /// \return True if a merged store was created. 454 bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, 455 EVT MemVT, unsigned NumStores, 456 bool IsConstantSrc, bool UseVector); 457 458 /// This is a helper function for MergeConsecutiveStores. 459 /// Stores that may be merged are placed in StoreNodes. 460 /// Loads that may alias with those stores are placed in AliasLoadNodes. 461 void getStoreMergeAndAliasCandidates( 462 StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes, 463 SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes); 464 465 /// Helper function for MergeConsecutiveStores. Checks if 466 /// Candidate stores have indirect dependency through their 467 /// operands. \return True if safe to merge 468 bool checkMergeStoreCandidatesForDependencies( 469 SmallVectorImpl<MemOpLink> &StoreNodes); 470 471 /// Merge consecutive store operations into a wide store. 472 /// This optimization uses wide integers or vectors when possible. 473 /// \return True if some memory operations were changed. 474 bool MergeConsecutiveStores(StoreSDNode *N); 475 476 /// \brief Try to transform a truncation where C is a constant: 477 /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) 478 /// 479 /// \p N needs to be a truncation and its first operand an AND. Other 480 /// requirements are checked by the function (e.g. that trunc is 481 /// single-use) and if missed an empty SDValue is returned. 482 SDValue distributeTruncateThroughAnd(SDNode *N); 483 484 public: 485 DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL) 486 : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), 487 OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) { 488 ForCodeSize = DAG.getMachineFunction().getFunction()->optForSize(); 489 } 490 491 /// Runs the dag combiner on all nodes in the work list 492 void Run(CombineLevel AtLevel); 493 494 SelectionDAG &getDAG() const { return DAG; } 495 496 /// Returns a type large enough to hold any valid shift amount - before type 497 /// legalization these can be huge. 498 EVT getShiftAmountTy(EVT LHSTy) { 499 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 500 if (LHSTy.isVector()) 501 return LHSTy; 502 auto &DL = DAG.getDataLayout(); 503 return LegalTypes ? TLI.getScalarShiftAmountTy(DL, LHSTy) 504 : TLI.getPointerTy(DL); 505 } 506 507 /// This method returns true if we are running before type legalization or 508 /// if the specified VT is legal. 509 bool isTypeLegal(const EVT &VT) { 510 if (!LegalTypes) return true; 511 return TLI.isTypeLegal(VT); 512 } 513 514 /// Convenience wrapper around TargetLowering::getSetCCResultType 515 EVT getSetCCResultType(EVT VT) const { 516 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 517 } 518 }; 519 } 520 521 522 namespace { 523 /// This class is a DAGUpdateListener that removes any deleted 524 /// nodes from the worklist. 525 class WorklistRemover : public SelectionDAG::DAGUpdateListener { 526 DAGCombiner &DC; 527 public: 528 explicit WorklistRemover(DAGCombiner &dc) 529 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 530 531 void NodeDeleted(SDNode *N, SDNode *E) override { 532 DC.removeFromWorklist(N); 533 } 534 }; 535 } 536 537 //===----------------------------------------------------------------------===// 538 // TargetLowering::DAGCombinerInfo implementation 539 //===----------------------------------------------------------------------===// 540 541 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { 542 ((DAGCombiner*)DC)->AddToWorklist(N); 543 } 544 545 SDValue TargetLowering::DAGCombinerInfo:: 546 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { 547 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); 548 } 549 550 SDValue TargetLowering::DAGCombinerInfo:: 551 CombineTo(SDNode *N, SDValue Res, bool AddTo) { 552 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); 553 } 554 555 556 SDValue TargetLowering::DAGCombinerInfo:: 557 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { 558 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); 559 } 560 561 void TargetLowering::DAGCombinerInfo:: 562 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 563 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); 564 } 565 566 //===----------------------------------------------------------------------===// 567 // Helper Functions 568 //===----------------------------------------------------------------------===// 569 570 void DAGCombiner::deleteAndRecombine(SDNode *N) { 571 removeFromWorklist(N); 572 573 // If the operands of this node are only used by the node, they will now be 574 // dead. Make sure to re-visit them and recursively delete dead nodes. 575 for (const SDValue &Op : N->ops()) 576 // For an operand generating multiple values, one of the values may 577 // become dead allowing further simplification (e.g. split index 578 // arithmetic from an indexed load). 579 if (Op->hasOneUse() || Op->getNumValues() > 1) 580 AddToWorklist(Op.getNode()); 581 582 DAG.DeleteNode(N); 583 } 584 585 /// Return 1 if we can compute the negated form of the specified expression for 586 /// the same cost as the expression itself, or 2 if we can compute the negated 587 /// form more cheaply than the expression itself. 588 static char isNegatibleForFree(SDValue Op, bool LegalOperations, 589 const TargetLowering &TLI, 590 const TargetOptions *Options, 591 unsigned Depth = 0) { 592 // fneg is removable even if it has multiple uses. 593 if (Op.getOpcode() == ISD::FNEG) return 2; 594 595 // Don't allow anything with multiple uses. 596 if (!Op.hasOneUse()) return 0; 597 598 // Don't recurse exponentially. 599 if (Depth > 6) return 0; 600 601 switch (Op.getOpcode()) { 602 default: return false; 603 case ISD::ConstantFP: 604 // Don't invert constant FP values after legalize. The negated constant 605 // isn't necessarily legal. 606 return LegalOperations ? 0 : 1; 607 case ISD::FADD: 608 // FIXME: determine better conditions for this xform. 609 if (!Options->UnsafeFPMath) return 0; 610 611 // After operation legalization, it might not be legal to create new FSUBs. 612 if (LegalOperations && 613 !TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) 614 return 0; 615 616 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 617 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 618 Options, Depth + 1)) 619 return V; 620 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 621 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 622 Depth + 1); 623 case ISD::FSUB: 624 // We can't turn -(A-B) into B-A when we honor signed zeros. 625 if (!Options->UnsafeFPMath) return 0; 626 627 // fold (fneg (fsub A, B)) -> (fsub B, A) 628 return 1; 629 630 case ISD::FMUL: 631 case ISD::FDIV: 632 if (Options->HonorSignDependentRoundingFPMath()) return 0; 633 634 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 635 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 636 Options, Depth + 1)) 637 return V; 638 639 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 640 Depth + 1); 641 642 case ISD::FP_EXTEND: 643 case ISD::FP_ROUND: 644 case ISD::FSIN: 645 return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options, 646 Depth + 1); 647 } 648 } 649 650 /// If isNegatibleForFree returns true, return the newly negated expression. 651 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, 652 bool LegalOperations, unsigned Depth = 0) { 653 const TargetOptions &Options = DAG.getTarget().Options; 654 // fneg is removable even if it has multiple uses. 655 if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); 656 657 // Don't allow anything with multiple uses. 658 assert(Op.hasOneUse() && "Unknown reuse!"); 659 660 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); 661 662 const SDNodeFlags *Flags = Op.getNode()->getFlags(); 663 664 switch (Op.getOpcode()) { 665 default: llvm_unreachable("Unknown code"); 666 case ISD::ConstantFP: { 667 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 668 V.changeSign(); 669 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 670 } 671 case ISD::FADD: 672 // FIXME: determine better conditions for this xform. 673 assert(Options.UnsafeFPMath); 674 675 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 676 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 677 DAG.getTargetLoweringInfo(), &Options, Depth+1)) 678 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 679 GetNegatedExpression(Op.getOperand(0), DAG, 680 LegalOperations, Depth+1), 681 Op.getOperand(1), Flags); 682 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 683 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 684 GetNegatedExpression(Op.getOperand(1), DAG, 685 LegalOperations, Depth+1), 686 Op.getOperand(0), Flags); 687 case ISD::FSUB: 688 // We can't turn -(A-B) into B-A when we honor signed zeros. 689 assert(Options.UnsafeFPMath); 690 691 // fold (fneg (fsub 0, B)) -> B 692 if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0))) 693 if (N0CFP->isZero()) 694 return Op.getOperand(1); 695 696 // fold (fneg (fsub A, B)) -> (fsub B, A) 697 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 698 Op.getOperand(1), Op.getOperand(0), Flags); 699 700 case ISD::FMUL: 701 case ISD::FDIV: 702 assert(!Options.HonorSignDependentRoundingFPMath()); 703 704 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 705 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 706 DAG.getTargetLoweringInfo(), &Options, Depth+1)) 707 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 708 GetNegatedExpression(Op.getOperand(0), DAG, 709 LegalOperations, Depth+1), 710 Op.getOperand(1), Flags); 711 712 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 713 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 714 Op.getOperand(0), 715 GetNegatedExpression(Op.getOperand(1), DAG, 716 LegalOperations, Depth+1), Flags); 717 718 case ISD::FP_EXTEND: 719 case ISD::FSIN: 720 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 721 GetNegatedExpression(Op.getOperand(0), DAG, 722 LegalOperations, Depth+1)); 723 case ISD::FP_ROUND: 724 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 725 GetNegatedExpression(Op.getOperand(0), DAG, 726 LegalOperations, Depth+1), 727 Op.getOperand(1)); 728 } 729 } 730 731 // APInts must be the same size for most operations, this helper 732 // function zero extends the shorter of the pair so that they match. 733 // We provide an Offset so that we can create bitwidths that won't overflow. 734 static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { 735 unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); 736 LHS = LHS.zextOrSelf(Bits); 737 RHS = RHS.zextOrSelf(Bits); 738 } 739 740 // Return true if this node is a setcc, or is a select_cc 741 // that selects between the target values used for true and false, making it 742 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to 743 // the appropriate nodes based on the type of node we are checking. This 744 // simplifies life a bit for the callers. 745 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 746 SDValue &CC) const { 747 if (N.getOpcode() == ISD::SETCC) { 748 LHS = N.getOperand(0); 749 RHS = N.getOperand(1); 750 CC = N.getOperand(2); 751 return true; 752 } 753 754 if (N.getOpcode() != ISD::SELECT_CC || 755 !TLI.isConstTrueVal(N.getOperand(2).getNode()) || 756 !TLI.isConstFalseVal(N.getOperand(3).getNode())) 757 return false; 758 759 if (TLI.getBooleanContents(N.getValueType()) == 760 TargetLowering::UndefinedBooleanContent) 761 return false; 762 763 LHS = N.getOperand(0); 764 RHS = N.getOperand(1); 765 CC = N.getOperand(4); 766 return true; 767 } 768 769 /// Return true if this is a SetCC-equivalent operation with only one use. 770 /// If this is true, it allows the users to invert the operation for free when 771 /// it is profitable to do so. 772 bool DAGCombiner::isOneUseSetCC(SDValue N) const { 773 SDValue N0, N1, N2; 774 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) 775 return true; 776 return false; 777 } 778 779 // \brief Returns the SDNode if it is a constant float BuildVector 780 // or constant float. 781 static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { 782 if (isa<ConstantFPSDNode>(N)) 783 return N.getNode(); 784 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 785 return N.getNode(); 786 return nullptr; 787 } 788 789 // \brief Returns the SDNode if it is a constant splat BuildVector or constant 790 // int. 791 static ConstantSDNode *isConstOrConstSplat(SDValue N) { 792 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 793 return CN; 794 795 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 796 BitVector UndefElements; 797 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 798 799 // BuildVectors can truncate their operands. Ignore that case here. 800 // FIXME: We blindly ignore splats which include undef which is overly 801 // pessimistic. 802 if (CN && UndefElements.none() && 803 CN->getValueType(0) == N.getValueType().getScalarType()) 804 return CN; 805 } 806 807 return nullptr; 808 } 809 810 // \brief Returns the SDNode if it is a constant splat BuildVector or constant 811 // float. 812 static ConstantFPSDNode *isConstOrConstSplatFP(SDValue N) { 813 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 814 return CN; 815 816 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 817 BitVector UndefElements; 818 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 819 820 if (CN && UndefElements.none()) 821 return CN; 822 } 823 824 return nullptr; 825 } 826 827 // Determines if it is a constant integer or a build vector of constant 828 // integers (and undefs). 829 // Do not permit build vector implicit truncation. 830 static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { 831 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) 832 return !(Const->isOpaque() && NoOpaques); 833 if (N.getOpcode() != ISD::BUILD_VECTOR) 834 return false; 835 unsigned BitWidth = N.getScalarValueSizeInBits(); 836 for (const SDValue &Op : N->op_values()) { 837 if (Op.isUndef()) 838 continue; 839 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); 840 if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || 841 (Const->isOpaque() && NoOpaques)) 842 return false; 843 } 844 return true; 845 } 846 847 // Determines if it is a constant null integer or a splatted vector of a 848 // constant null integer (with no undefs). 849 // Build vector implicit truncation is not an issue for null values. 850 static bool isNullConstantOrNullSplatConstant(SDValue N) { 851 if (ConstantSDNode *Splat = isConstOrConstSplat(N)) 852 return Splat->isNullValue(); 853 return false; 854 } 855 856 // Determines if it is a constant integer of one or a splatted vector of a 857 // constant integer of one (with no undefs). 858 // Do not permit build vector implicit truncation. 859 static bool isOneConstantOrOneSplatConstant(SDValue N) { 860 unsigned BitWidth = N.getScalarValueSizeInBits(); 861 if (ConstantSDNode *Splat = isConstOrConstSplat(N)) 862 return Splat->isOne() && Splat->getAPIntValue().getBitWidth() == BitWidth; 863 return false; 864 } 865 866 // Determines if it is a constant integer of all ones or a splatted vector of a 867 // constant integer of all ones (with no undefs). 868 // Do not permit build vector implicit truncation. 869 static bool isAllOnesConstantOrAllOnesSplatConstant(SDValue N) { 870 unsigned BitWidth = N.getScalarValueSizeInBits(); 871 if (ConstantSDNode *Splat = isConstOrConstSplat(N)) 872 return Splat->isAllOnesValue() && 873 Splat->getAPIntValue().getBitWidth() == BitWidth; 874 return false; 875 } 876 877 SDValue DAGCombiner::ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 878 SDValue N1) { 879 EVT VT = N0.getValueType(); 880 if (N0.getOpcode() == Opc) { 881 if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { 882 if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1)) { 883 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) 884 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R)) 885 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); 886 return SDValue(); 887 } 888 if (N0.hasOneUse()) { 889 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one 890 // use 891 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); 892 if (!OpNode.getNode()) 893 return SDValue(); 894 AddToWorklist(OpNode.getNode()); 895 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); 896 } 897 } 898 } 899 900 if (N1.getOpcode() == Opc) { 901 if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) { 902 if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 903 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) 904 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L)) 905 return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode); 906 return SDValue(); 907 } 908 if (N1.hasOneUse()) { 909 // reassoc. (op x, (op y, c1)) -> (op (op x, y), c1) iff x+c1 has one 910 // use 911 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0, N1.getOperand(0)); 912 if (!OpNode.getNode()) 913 return SDValue(); 914 AddToWorklist(OpNode.getNode()); 915 return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1)); 916 } 917 } 918 } 919 920 return SDValue(); 921 } 922 923 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 924 bool AddTo) { 925 assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); 926 ++NodesCombined; 927 DEBUG(dbgs() << "\nReplacing.1 "; 928 N->dump(&DAG); 929 dbgs() << "\nWith: "; 930 To[0].getNode()->dump(&DAG); 931 dbgs() << " and " << NumTo-1 << " other values\n"); 932 for (unsigned i = 0, e = NumTo; i != e; ++i) 933 assert((!To[i].getNode() || 934 N->getValueType(i) == To[i].getValueType()) && 935 "Cannot combine value to value of different type!"); 936 937 WorklistRemover DeadNodes(*this); 938 DAG.ReplaceAllUsesWith(N, To); 939 if (AddTo) { 940 // Push the new nodes and any users onto the worklist 941 for (unsigned i = 0, e = NumTo; i != e; ++i) { 942 if (To[i].getNode()) { 943 AddToWorklist(To[i].getNode()); 944 AddUsersToWorklist(To[i].getNode()); 945 } 946 } 947 } 948 949 // Finally, if the node is now dead, remove it from the graph. The node 950 // may not be dead if the replacement process recursively simplified to 951 // something else needing this node. 952 if (N->use_empty()) 953 deleteAndRecombine(N); 954 return SDValue(N, 0); 955 } 956 957 void DAGCombiner:: 958 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 959 // Replace all uses. If any nodes become isomorphic to other nodes and 960 // are deleted, make sure to remove them from our worklist. 961 WorklistRemover DeadNodes(*this); 962 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); 963 964 // Push the new node and any (possibly new) users onto the worklist. 965 AddToWorklist(TLO.New.getNode()); 966 AddUsersToWorklist(TLO.New.getNode()); 967 968 // Finally, if the node is now dead, remove it from the graph. The node 969 // may not be dead if the replacement process recursively simplified to 970 // something else needing this node. 971 if (TLO.Old.getNode()->use_empty()) 972 deleteAndRecombine(TLO.Old.getNode()); 973 } 974 975 /// Check the specified integer node value to see if it can be simplified or if 976 /// things it uses can be simplified by bit propagation. If so, return true. 977 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) { 978 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 979 APInt KnownZero, KnownOne; 980 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 981 return false; 982 983 // Revisit the node. 984 AddToWorklist(Op.getNode()); 985 986 // Replace the old value with the new one. 987 ++NodesCombined; 988 DEBUG(dbgs() << "\nReplacing.2 "; 989 TLO.Old.getNode()->dump(&DAG); 990 dbgs() << "\nWith: "; 991 TLO.New.getNode()->dump(&DAG); 992 dbgs() << '\n'); 993 994 CommitTargetLoweringOpt(TLO); 995 return true; 996 } 997 998 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { 999 SDLoc DL(Load); 1000 EVT VT = Load->getValueType(0); 1001 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); 1002 1003 DEBUG(dbgs() << "\nReplacing.9 "; 1004 Load->dump(&DAG); 1005 dbgs() << "\nWith: "; 1006 Trunc.getNode()->dump(&DAG); 1007 dbgs() << '\n'); 1008 WorklistRemover DeadNodes(*this); 1009 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); 1010 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); 1011 deleteAndRecombine(Load); 1012 AddToWorklist(Trunc.getNode()); 1013 } 1014 1015 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { 1016 Replace = false; 1017 SDLoc DL(Op); 1018 if (ISD::isUNINDEXEDLoad(Op.getNode())) { 1019 LoadSDNode *LD = cast<LoadSDNode>(Op); 1020 EVT MemVT = LD->getMemoryVT(); 1021 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) 1022 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD 1023 : ISD::EXTLOAD) 1024 : LD->getExtensionType(); 1025 Replace = true; 1026 return DAG.getExtLoad(ExtType, DL, PVT, 1027 LD->getChain(), LD->getBasePtr(), 1028 MemVT, LD->getMemOperand()); 1029 } 1030 1031 unsigned Opc = Op.getOpcode(); 1032 switch (Opc) { 1033 default: break; 1034 case ISD::AssertSext: 1035 return DAG.getNode(ISD::AssertSext, DL, PVT, 1036 SExtPromoteOperand(Op.getOperand(0), PVT), 1037 Op.getOperand(1)); 1038 case ISD::AssertZext: 1039 return DAG.getNode(ISD::AssertZext, DL, PVT, 1040 ZExtPromoteOperand(Op.getOperand(0), PVT), 1041 Op.getOperand(1)); 1042 case ISD::Constant: { 1043 unsigned ExtOpc = 1044 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 1045 return DAG.getNode(ExtOpc, DL, PVT, Op); 1046 } 1047 } 1048 1049 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) 1050 return SDValue(); 1051 return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); 1052 } 1053 1054 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { 1055 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) 1056 return SDValue(); 1057 EVT OldVT = Op.getValueType(); 1058 SDLoc DL(Op); 1059 bool Replace = false; 1060 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1061 if (!NewOp.getNode()) 1062 return SDValue(); 1063 AddToWorklist(NewOp.getNode()); 1064 1065 if (Replace) 1066 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1067 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, 1068 DAG.getValueType(OldVT)); 1069 } 1070 1071 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { 1072 EVT OldVT = Op.getValueType(); 1073 SDLoc DL(Op); 1074 bool Replace = false; 1075 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1076 if (!NewOp.getNode()) 1077 return SDValue(); 1078 AddToWorklist(NewOp.getNode()); 1079 1080 if (Replace) 1081 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1082 return DAG.getZeroExtendInReg(NewOp, DL, OldVT); 1083 } 1084 1085 /// Promote the specified integer binary operation if the target indicates it is 1086 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1087 /// i32 since i16 instructions are longer. 1088 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { 1089 if (!LegalOperations) 1090 return SDValue(); 1091 1092 EVT VT = Op.getValueType(); 1093 if (VT.isVector() || !VT.isInteger()) 1094 return SDValue(); 1095 1096 // If operation type is 'undesirable', e.g. i16 on x86, consider 1097 // promoting it. 1098 unsigned Opc = Op.getOpcode(); 1099 if (TLI.isTypeDesirableForOp(Opc, VT)) 1100 return SDValue(); 1101 1102 EVT PVT = VT; 1103 // Consult target whether it is a good idea to promote this operation and 1104 // what's the right type to promote it to. 1105 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1106 assert(PVT != VT && "Don't know what type to promote to!"); 1107 1108 bool Replace0 = false; 1109 SDValue N0 = Op.getOperand(0); 1110 SDValue NN0 = PromoteOperand(N0, PVT, Replace0); 1111 if (!NN0.getNode()) 1112 return SDValue(); 1113 1114 bool Replace1 = false; 1115 SDValue N1 = Op.getOperand(1); 1116 SDValue NN1; 1117 if (N0 == N1) 1118 NN1 = NN0; 1119 else { 1120 NN1 = PromoteOperand(N1, PVT, Replace1); 1121 if (!NN1.getNode()) 1122 return SDValue(); 1123 } 1124 1125 AddToWorklist(NN0.getNode()); 1126 if (NN1.getNode()) 1127 AddToWorklist(NN1.getNode()); 1128 1129 if (Replace0) 1130 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); 1131 if (Replace1) 1132 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); 1133 1134 DEBUG(dbgs() << "\nPromoting "; 1135 Op.getNode()->dump(&DAG)); 1136 SDLoc DL(Op); 1137 return DAG.getNode(ISD::TRUNCATE, DL, VT, 1138 DAG.getNode(Opc, DL, PVT, NN0, NN1)); 1139 } 1140 return SDValue(); 1141 } 1142 1143 /// Promote the specified integer shift operation if the target indicates it is 1144 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1145 /// i32 since i16 instructions are longer. 1146 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { 1147 if (!LegalOperations) 1148 return SDValue(); 1149 1150 EVT VT = Op.getValueType(); 1151 if (VT.isVector() || !VT.isInteger()) 1152 return SDValue(); 1153 1154 // If operation type is 'undesirable', e.g. i16 on x86, consider 1155 // promoting it. 1156 unsigned Opc = Op.getOpcode(); 1157 if (TLI.isTypeDesirableForOp(Opc, VT)) 1158 return SDValue(); 1159 1160 EVT PVT = VT; 1161 // Consult target whether it is a good idea to promote this operation and 1162 // what's the right type to promote it to. 1163 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1164 assert(PVT != VT && "Don't know what type to promote to!"); 1165 1166 bool Replace = false; 1167 SDValue N0 = Op.getOperand(0); 1168 if (Opc == ISD::SRA) 1169 N0 = SExtPromoteOperand(Op.getOperand(0), PVT); 1170 else if (Opc == ISD::SRL) 1171 N0 = ZExtPromoteOperand(Op.getOperand(0), PVT); 1172 else 1173 N0 = PromoteOperand(N0, PVT, Replace); 1174 if (!N0.getNode()) 1175 return SDValue(); 1176 1177 AddToWorklist(N0.getNode()); 1178 if (Replace) 1179 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); 1180 1181 DEBUG(dbgs() << "\nPromoting "; 1182 Op.getNode()->dump(&DAG)); 1183 SDLoc DL(Op); 1184 return DAG.getNode(ISD::TRUNCATE, DL, VT, 1185 DAG.getNode(Opc, DL, PVT, N0, Op.getOperand(1))); 1186 } 1187 return SDValue(); 1188 } 1189 1190 SDValue DAGCombiner::PromoteExtend(SDValue Op) { 1191 if (!LegalOperations) 1192 return SDValue(); 1193 1194 EVT VT = Op.getValueType(); 1195 if (VT.isVector() || !VT.isInteger()) 1196 return SDValue(); 1197 1198 // If operation type is 'undesirable', e.g. i16 on x86, consider 1199 // promoting it. 1200 unsigned Opc = Op.getOpcode(); 1201 if (TLI.isTypeDesirableForOp(Opc, VT)) 1202 return SDValue(); 1203 1204 EVT PVT = VT; 1205 // Consult target whether it is a good idea to promote this operation and 1206 // what's the right type to promote it to. 1207 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1208 assert(PVT != VT && "Don't know what type to promote to!"); 1209 // fold (aext (aext x)) -> (aext x) 1210 // fold (aext (zext x)) -> (zext x) 1211 // fold (aext (sext x)) -> (sext x) 1212 DEBUG(dbgs() << "\nPromoting "; 1213 Op.getNode()->dump(&DAG)); 1214 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); 1215 } 1216 return SDValue(); 1217 } 1218 1219 bool DAGCombiner::PromoteLoad(SDValue Op) { 1220 if (!LegalOperations) 1221 return false; 1222 1223 if (!ISD::isUNINDEXEDLoad(Op.getNode())) 1224 return false; 1225 1226 EVT VT = Op.getValueType(); 1227 if (VT.isVector() || !VT.isInteger()) 1228 return false; 1229 1230 // If operation type is 'undesirable', e.g. i16 on x86, consider 1231 // promoting it. 1232 unsigned Opc = Op.getOpcode(); 1233 if (TLI.isTypeDesirableForOp(Opc, VT)) 1234 return false; 1235 1236 EVT PVT = VT; 1237 // Consult target whether it is a good idea to promote this operation and 1238 // what's the right type to promote it to. 1239 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1240 assert(PVT != VT && "Don't know what type to promote to!"); 1241 1242 SDLoc DL(Op); 1243 SDNode *N = Op.getNode(); 1244 LoadSDNode *LD = cast<LoadSDNode>(N); 1245 EVT MemVT = LD->getMemoryVT(); 1246 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) 1247 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD 1248 : ISD::EXTLOAD) 1249 : LD->getExtensionType(); 1250 SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, 1251 LD->getChain(), LD->getBasePtr(), 1252 MemVT, LD->getMemOperand()); 1253 SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); 1254 1255 DEBUG(dbgs() << "\nPromoting "; 1256 N->dump(&DAG); 1257 dbgs() << "\nTo: "; 1258 Result.getNode()->dump(&DAG); 1259 dbgs() << '\n'); 1260 WorklistRemover DeadNodes(*this); 1261 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1262 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); 1263 deleteAndRecombine(N); 1264 AddToWorklist(Result.getNode()); 1265 return true; 1266 } 1267 return false; 1268 } 1269 1270 /// \brief Recursively delete a node which has no uses and any operands for 1271 /// which it is the only use. 1272 /// 1273 /// Note that this both deletes the nodes and removes them from the worklist. 1274 /// It also adds any nodes who have had a user deleted to the worklist as they 1275 /// may now have only one use and subject to other combines. 1276 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { 1277 if (!N->use_empty()) 1278 return false; 1279 1280 SmallSetVector<SDNode *, 16> Nodes; 1281 Nodes.insert(N); 1282 do { 1283 N = Nodes.pop_back_val(); 1284 if (!N) 1285 continue; 1286 1287 if (N->use_empty()) { 1288 for (const SDValue &ChildN : N->op_values()) 1289 Nodes.insert(ChildN.getNode()); 1290 1291 removeFromWorklist(N); 1292 DAG.DeleteNode(N); 1293 } else { 1294 AddToWorklist(N); 1295 } 1296 } while (!Nodes.empty()); 1297 return true; 1298 } 1299 1300 //===----------------------------------------------------------------------===// 1301 // Main DAG Combiner implementation 1302 //===----------------------------------------------------------------------===// 1303 1304 void DAGCombiner::Run(CombineLevel AtLevel) { 1305 // set the instance variables, so that the various visit routines may use it. 1306 Level = AtLevel; 1307 LegalOperations = Level >= AfterLegalizeVectorOps; 1308 LegalTypes = Level >= AfterLegalizeTypes; 1309 1310 // Add all the dag nodes to the worklist. 1311 for (SDNode &Node : DAG.allnodes()) 1312 AddToWorklist(&Node); 1313 1314 // Create a dummy node (which is not added to allnodes), that adds a reference 1315 // to the root node, preventing it from being deleted, and tracking any 1316 // changes of the root. 1317 HandleSDNode Dummy(DAG.getRoot()); 1318 1319 // While the worklist isn't empty, find a node and try to combine it. 1320 while (!WorklistMap.empty()) { 1321 SDNode *N; 1322 // The Worklist holds the SDNodes in order, but it may contain null entries. 1323 do { 1324 N = Worklist.pop_back_val(); 1325 } while (!N); 1326 1327 bool GoodWorklistEntry = WorklistMap.erase(N); 1328 (void)GoodWorklistEntry; 1329 assert(GoodWorklistEntry && 1330 "Found a worklist entry without a corresponding map entry!"); 1331 1332 // If N has no uses, it is dead. Make sure to revisit all N's operands once 1333 // N is deleted from the DAG, since they too may now be dead or may have a 1334 // reduced number of uses, allowing other xforms. 1335 if (recursivelyDeleteUnusedNodes(N)) 1336 continue; 1337 1338 WorklistRemover DeadNodes(*this); 1339 1340 // If this combine is running after legalizing the DAG, re-legalize any 1341 // nodes pulled off the worklist. 1342 if (Level == AfterLegalizeDAG) { 1343 SmallSetVector<SDNode *, 16> UpdatedNodes; 1344 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); 1345 1346 for (SDNode *LN : UpdatedNodes) { 1347 AddToWorklist(LN); 1348 AddUsersToWorklist(LN); 1349 } 1350 if (!NIsValid) 1351 continue; 1352 } 1353 1354 DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); 1355 1356 // Add any operands of the new node which have not yet been combined to the 1357 // worklist as well. Because the worklist uniques things already, this 1358 // won't repeatedly process the same operand. 1359 CombinedNodes.insert(N); 1360 for (const SDValue &ChildN : N->op_values()) 1361 if (!CombinedNodes.count(ChildN.getNode())) 1362 AddToWorklist(ChildN.getNode()); 1363 1364 SDValue RV = combine(N); 1365 1366 if (!RV.getNode()) 1367 continue; 1368 1369 ++NodesCombined; 1370 1371 // If we get back the same node we passed in, rather than a new node or 1372 // zero, we know that the node must have defined multiple values and 1373 // CombineTo was used. Since CombineTo takes care of the worklist 1374 // mechanics for us, we have no work to do in this case. 1375 if (RV.getNode() == N) 1376 continue; 1377 1378 assert(N->getOpcode() != ISD::DELETED_NODE && 1379 RV.getOpcode() != ISD::DELETED_NODE && 1380 "Node was deleted but visit returned new node!"); 1381 1382 DEBUG(dbgs() << " ... into: "; 1383 RV.getNode()->dump(&DAG)); 1384 1385 if (N->getNumValues() == RV.getNode()->getNumValues()) 1386 DAG.ReplaceAllUsesWith(N, RV.getNode()); 1387 else { 1388 assert(N->getValueType(0) == RV.getValueType() && 1389 N->getNumValues() == 1 && "Type mismatch"); 1390 SDValue OpV = RV; 1391 DAG.ReplaceAllUsesWith(N, &OpV); 1392 } 1393 1394 // Push the new node and any users onto the worklist 1395 AddToWorklist(RV.getNode()); 1396 AddUsersToWorklist(RV.getNode()); 1397 1398 // Finally, if the node is now dead, remove it from the graph. The node 1399 // may not be dead if the replacement process recursively simplified to 1400 // something else needing this node. This will also take care of adding any 1401 // operands which have lost a user to the worklist. 1402 recursivelyDeleteUnusedNodes(N); 1403 } 1404 1405 // If the root changed (e.g. it was a dead load, update the root). 1406 DAG.setRoot(Dummy.getValue()); 1407 DAG.RemoveDeadNodes(); 1408 } 1409 1410 SDValue DAGCombiner::visit(SDNode *N) { 1411 switch (N->getOpcode()) { 1412 default: break; 1413 case ISD::TokenFactor: return visitTokenFactor(N); 1414 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); 1415 case ISD::ADD: return visitADD(N); 1416 case ISD::SUB: return visitSUB(N); 1417 case ISD::ADDC: return visitADDC(N); 1418 case ISD::SUBC: return visitSUBC(N); 1419 case ISD::ADDE: return visitADDE(N); 1420 case ISD::SUBE: return visitSUBE(N); 1421 case ISD::MUL: return visitMUL(N); 1422 case ISD::SDIV: return visitSDIV(N); 1423 case ISD::UDIV: return visitUDIV(N); 1424 case ISD::SREM: 1425 case ISD::UREM: return visitREM(N); 1426 case ISD::MULHU: return visitMULHU(N); 1427 case ISD::MULHS: return visitMULHS(N); 1428 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); 1429 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); 1430 case ISD::SMULO: return visitSMULO(N); 1431 case ISD::UMULO: return visitUMULO(N); 1432 case ISD::SMIN: 1433 case ISD::SMAX: 1434 case ISD::UMIN: 1435 case ISD::UMAX: return visitIMINMAX(N); 1436 case ISD::AND: return visitAND(N); 1437 case ISD::OR: return visitOR(N); 1438 case ISD::XOR: return visitXOR(N); 1439 case ISD::SHL: return visitSHL(N); 1440 case ISD::SRA: return visitSRA(N); 1441 case ISD::SRL: return visitSRL(N); 1442 case ISD::ROTR: 1443 case ISD::ROTL: return visitRotate(N); 1444 case ISD::BSWAP: return visitBSWAP(N); 1445 case ISD::BITREVERSE: return visitBITREVERSE(N); 1446 case ISD::CTLZ: return visitCTLZ(N); 1447 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); 1448 case ISD::CTTZ: return visitCTTZ(N); 1449 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); 1450 case ISD::CTPOP: return visitCTPOP(N); 1451 case ISD::SELECT: return visitSELECT(N); 1452 case ISD::VSELECT: return visitVSELECT(N); 1453 case ISD::SELECT_CC: return visitSELECT_CC(N); 1454 case ISD::SETCC: return visitSETCC(N); 1455 case ISD::SETCCE: return visitSETCCE(N); 1456 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); 1457 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); 1458 case ISD::ANY_EXTEND: return visitANY_EXTEND(N); 1459 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); 1460 case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); 1461 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N); 1462 case ISD::TRUNCATE: return visitTRUNCATE(N); 1463 case ISD::BITCAST: return visitBITCAST(N); 1464 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); 1465 case ISD::FADD: return visitFADD(N); 1466 case ISD::FSUB: return visitFSUB(N); 1467 case ISD::FMUL: return visitFMUL(N); 1468 case ISD::FMA: return visitFMA(N); 1469 case ISD::FDIV: return visitFDIV(N); 1470 case ISD::FREM: return visitFREM(N); 1471 case ISD::FSQRT: return visitFSQRT(N); 1472 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); 1473 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); 1474 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); 1475 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); 1476 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); 1477 case ISD::FP_ROUND: return visitFP_ROUND(N); 1478 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); 1479 case ISD::FP_EXTEND: return visitFP_EXTEND(N); 1480 case ISD::FNEG: return visitFNEG(N); 1481 case ISD::FABS: return visitFABS(N); 1482 case ISD::FFLOOR: return visitFFLOOR(N); 1483 case ISD::FMINNUM: return visitFMINNUM(N); 1484 case ISD::FMAXNUM: return visitFMAXNUM(N); 1485 case ISD::FCEIL: return visitFCEIL(N); 1486 case ISD::FTRUNC: return visitFTRUNC(N); 1487 case ISD::BRCOND: return visitBRCOND(N); 1488 case ISD::BR_CC: return visitBR_CC(N); 1489 case ISD::LOAD: return visitLOAD(N); 1490 case ISD::STORE: return visitSTORE(N); 1491 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); 1492 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); 1493 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); 1494 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); 1495 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); 1496 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); 1497 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); 1498 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); 1499 case ISD::MGATHER: return visitMGATHER(N); 1500 case ISD::MLOAD: return visitMLOAD(N); 1501 case ISD::MSCATTER: return visitMSCATTER(N); 1502 case ISD::MSTORE: return visitMSTORE(N); 1503 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); 1504 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); 1505 } 1506 return SDValue(); 1507 } 1508 1509 SDValue DAGCombiner::combine(SDNode *N) { 1510 SDValue RV = visit(N); 1511 1512 // If nothing happened, try a target-specific DAG combine. 1513 if (!RV.getNode()) { 1514 assert(N->getOpcode() != ISD::DELETED_NODE && 1515 "Node was deleted but visit returned NULL!"); 1516 1517 if (N->getOpcode() >= ISD::BUILTIN_OP_END || 1518 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { 1519 1520 // Expose the DAG combiner to the target combiner impls. 1521 TargetLowering::DAGCombinerInfo 1522 DagCombineInfo(DAG, Level, false, this); 1523 1524 RV = TLI.PerformDAGCombine(N, DagCombineInfo); 1525 } 1526 } 1527 1528 // If nothing happened still, try promoting the operation. 1529 if (!RV.getNode()) { 1530 switch (N->getOpcode()) { 1531 default: break; 1532 case ISD::ADD: 1533 case ISD::SUB: 1534 case ISD::MUL: 1535 case ISD::AND: 1536 case ISD::OR: 1537 case ISD::XOR: 1538 RV = PromoteIntBinOp(SDValue(N, 0)); 1539 break; 1540 case ISD::SHL: 1541 case ISD::SRA: 1542 case ISD::SRL: 1543 RV = PromoteIntShiftOp(SDValue(N, 0)); 1544 break; 1545 case ISD::SIGN_EXTEND: 1546 case ISD::ZERO_EXTEND: 1547 case ISD::ANY_EXTEND: 1548 RV = PromoteExtend(SDValue(N, 0)); 1549 break; 1550 case ISD::LOAD: 1551 if (PromoteLoad(SDValue(N, 0))) 1552 RV = SDValue(N, 0); 1553 break; 1554 } 1555 } 1556 1557 // If N is a commutative binary node, try commuting it to enable more 1558 // sdisel CSE. 1559 if (!RV.getNode() && SelectionDAG::isCommutativeBinOp(N->getOpcode()) && 1560 N->getNumValues() == 1) { 1561 SDValue N0 = N->getOperand(0); 1562 SDValue N1 = N->getOperand(1); 1563 1564 // Constant operands are canonicalized to RHS. 1565 if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) { 1566 SDValue Ops[] = {N1, N0}; 1567 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 1568 N->getFlags()); 1569 if (CSENode) 1570 return SDValue(CSENode, 0); 1571 } 1572 } 1573 1574 return RV; 1575 } 1576 1577 /// Given a node, return its input chain if it has one, otherwise return a null 1578 /// sd operand. 1579 static SDValue getInputChainForNode(SDNode *N) { 1580 if (unsigned NumOps = N->getNumOperands()) { 1581 if (N->getOperand(0).getValueType() == MVT::Other) 1582 return N->getOperand(0); 1583 if (N->getOperand(NumOps-1).getValueType() == MVT::Other) 1584 return N->getOperand(NumOps-1); 1585 for (unsigned i = 1; i < NumOps-1; ++i) 1586 if (N->getOperand(i).getValueType() == MVT::Other) 1587 return N->getOperand(i); 1588 } 1589 return SDValue(); 1590 } 1591 1592 SDValue DAGCombiner::visitTokenFactor(SDNode *N) { 1593 // If N has two operands, where one has an input chain equal to the other, 1594 // the 'other' chain is redundant. 1595 if (N->getNumOperands() == 2) { 1596 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) 1597 return N->getOperand(0); 1598 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) 1599 return N->getOperand(1); 1600 } 1601 1602 SmallVector<SDNode *, 8> TFs; // List of token factors to visit. 1603 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. 1604 SmallPtrSet<SDNode*, 16> SeenOps; 1605 bool Changed = false; // If we should replace this token factor. 1606 1607 // Start out with this token factor. 1608 TFs.push_back(N); 1609 1610 // Iterate through token factors. The TFs grows when new token factors are 1611 // encountered. 1612 for (unsigned i = 0; i < TFs.size(); ++i) { 1613 SDNode *TF = TFs[i]; 1614 1615 // Check each of the operands. 1616 for (const SDValue &Op : TF->op_values()) { 1617 1618 switch (Op.getOpcode()) { 1619 case ISD::EntryToken: 1620 // Entry tokens don't need to be added to the list. They are 1621 // redundant. 1622 Changed = true; 1623 break; 1624 1625 case ISD::TokenFactor: 1626 if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { 1627 // Queue up for processing. 1628 TFs.push_back(Op.getNode()); 1629 // Clean up in case the token factor is removed. 1630 AddToWorklist(Op.getNode()); 1631 Changed = true; 1632 break; 1633 } 1634 LLVM_FALLTHROUGH; 1635 1636 default: 1637 // Only add if it isn't already in the list. 1638 if (SeenOps.insert(Op.getNode()).second) 1639 Ops.push_back(Op); 1640 else 1641 Changed = true; 1642 break; 1643 } 1644 } 1645 } 1646 1647 SDValue Result; 1648 1649 // If we've changed things around then replace token factor. 1650 if (Changed) { 1651 if (Ops.empty()) { 1652 // The entry token is the only possible outcome. 1653 Result = DAG.getEntryNode(); 1654 } else { 1655 // New and improved token factor. 1656 Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops); 1657 } 1658 1659 // Add users to worklist if AA is enabled, since it may introduce 1660 // a lot of new chained token factors while removing memory deps. 1661 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 1662 : DAG.getSubtarget().useAA(); 1663 return CombineTo(N, Result, UseAA /*add to worklist*/); 1664 } 1665 1666 return Result; 1667 } 1668 1669 /// MERGE_VALUES can always be eliminated. 1670 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { 1671 WorklistRemover DeadNodes(*this); 1672 // Replacing results may cause a different MERGE_VALUES to suddenly 1673 // be CSE'd with N, and carry its uses with it. Iterate until no 1674 // uses remain, to ensure that the node can be safely deleted. 1675 // First add the users of this node to the work list so that they 1676 // can be tried again once they have new operands. 1677 AddUsersToWorklist(N); 1678 do { 1679 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 1680 DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i)); 1681 } while (!N->use_empty()); 1682 deleteAndRecombine(N); 1683 return SDValue(N, 0); // Return N so it doesn't get rechecked! 1684 } 1685 1686 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a 1687 /// ConstantSDNode pointer else nullptr. 1688 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { 1689 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); 1690 return Const != nullptr && !Const->isOpaque() ? Const : nullptr; 1691 } 1692 1693 SDValue DAGCombiner::visitADD(SDNode *N) { 1694 SDValue N0 = N->getOperand(0); 1695 SDValue N1 = N->getOperand(1); 1696 EVT VT = N0.getValueType(); 1697 SDLoc DL(N); 1698 1699 // fold vector ops 1700 if (VT.isVector()) { 1701 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 1702 return FoldedVOp; 1703 1704 // fold (add x, 0) -> x, vector edition 1705 if (ISD::isBuildVectorAllZeros(N1.getNode())) 1706 return N0; 1707 if (ISD::isBuildVectorAllZeros(N0.getNode())) 1708 return N1; 1709 } 1710 1711 // fold (add x, undef) -> undef 1712 if (N0.isUndef()) 1713 return N0; 1714 1715 if (N1.isUndef()) 1716 return N1; 1717 1718 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 1719 // canonicalize constant to RHS 1720 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) 1721 return DAG.getNode(ISD::ADD, DL, VT, N1, N0); 1722 // fold (add c1, c2) -> c1+c2 1723 return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N0.getNode(), 1724 N1.getNode()); 1725 } 1726 1727 // fold (add x, 0) -> x 1728 if (isNullConstant(N1)) 1729 return N0; 1730 1731 // fold ((c1-A)+c2) -> (c1+c2)-A 1732 if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { 1733 if (N0.getOpcode() == ISD::SUB) 1734 if (isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { 1735 return DAG.getNode(ISD::SUB, DL, VT, 1736 DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)), 1737 N0.getOperand(1)); 1738 } 1739 } 1740 1741 // reassociate add 1742 if (SDValue RADD = ReassociateOps(ISD::ADD, DL, N0, N1)) 1743 return RADD; 1744 1745 // fold ((0-A) + B) -> B-A 1746 if (N0.getOpcode() == ISD::SUB && 1747 isNullConstantOrNullSplatConstant(N0.getOperand(0))) 1748 return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 1749 1750 // fold (A + (0-B)) -> A-B 1751 if (N1.getOpcode() == ISD::SUB && 1752 isNullConstantOrNullSplatConstant(N1.getOperand(0))) 1753 return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); 1754 1755 // fold (A+(B-A)) -> B 1756 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) 1757 return N1.getOperand(0); 1758 1759 // fold ((B-A)+A) -> B 1760 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) 1761 return N0.getOperand(0); 1762 1763 // fold (A+(B-(A+C))) to (B-C) 1764 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 1765 N0 == N1.getOperand(1).getOperand(0)) 1766 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 1767 N1.getOperand(1).getOperand(1)); 1768 1769 // fold (A+(B-(C+A))) to (B-C) 1770 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 1771 N0 == N1.getOperand(1).getOperand(1)) 1772 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 1773 N1.getOperand(1).getOperand(0)); 1774 1775 // fold (A+((B-A)+or-C)) to (B+or-C) 1776 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && 1777 N1.getOperand(0).getOpcode() == ISD::SUB && 1778 N0 == N1.getOperand(0).getOperand(1)) 1779 return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), 1780 N1.getOperand(1)); 1781 1782 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant 1783 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { 1784 SDValue N00 = N0.getOperand(0); 1785 SDValue N01 = N0.getOperand(1); 1786 SDValue N10 = N1.getOperand(0); 1787 SDValue N11 = N1.getOperand(1); 1788 1789 if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) 1790 return DAG.getNode(ISD::SUB, DL, VT, 1791 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), 1792 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); 1793 } 1794 1795 if (SimplifyDemandedBits(SDValue(N, 0))) 1796 return SDValue(N, 0); 1797 1798 // fold (a+b) -> (a|b) iff a and b share no bits. 1799 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && 1800 VT.isInteger() && DAG.haveNoCommonBitsSet(N0, N1)) 1801 return DAG.getNode(ISD::OR, DL, VT, N0, N1); 1802 1803 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) 1804 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && 1805 isNullConstantOrNullSplatConstant(N1.getOperand(0).getOperand(0))) 1806 return DAG.getNode(ISD::SUB, DL, VT, N0, 1807 DAG.getNode(ISD::SHL, DL, VT, 1808 N1.getOperand(0).getOperand(1), 1809 N1.getOperand(1))); 1810 if (N0.getOpcode() == ISD::SHL && N0.getOperand(0).getOpcode() == ISD::SUB && 1811 isNullConstantOrNullSplatConstant(N0.getOperand(0).getOperand(0))) 1812 return DAG.getNode(ISD::SUB, DL, VT, N1, 1813 DAG.getNode(ISD::SHL, DL, VT, 1814 N0.getOperand(0).getOperand(1), 1815 N0.getOperand(1))); 1816 1817 if (N1.getOpcode() == ISD::AND) { 1818 SDValue AndOp0 = N1.getOperand(0); 1819 unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0); 1820 unsigned DestBits = VT.getScalarSizeInBits(); 1821 1822 // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x)) 1823 // and similar xforms where the inner op is either ~0 or 0. 1824 if (NumSignBits == DestBits && 1825 isOneConstantOrOneSplatConstant(N1->getOperand(1))) 1826 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0); 1827 } 1828 1829 // add (sext i1), X -> sub X, (zext i1) 1830 if (N0.getOpcode() == ISD::SIGN_EXTEND && 1831 N0.getOperand(0).getValueType() == MVT::i1 && 1832 !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) { 1833 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 1834 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); 1835 } 1836 1837 // add X, (sextinreg Y i1) -> sub X, (and Y 1) 1838 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 1839 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 1840 if (TN->getVT() == MVT::i1) { 1841 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 1842 DAG.getConstant(1, DL, VT)); 1843 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); 1844 } 1845 } 1846 1847 return SDValue(); 1848 } 1849 1850 SDValue DAGCombiner::visitADDC(SDNode *N) { 1851 SDValue N0 = N->getOperand(0); 1852 SDValue N1 = N->getOperand(1); 1853 EVT VT = N0.getValueType(); 1854 1855 // If the flag result is dead, turn this into an ADD. 1856 if (!N->hasAnyUseOfValue(1)) 1857 return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1), 1858 DAG.getNode(ISD::CARRY_FALSE, 1859 SDLoc(N), MVT::Glue)); 1860 1861 // canonicalize constant to RHS. 1862 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1863 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1864 if (N0C && !N1C) 1865 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0); 1866 1867 // fold (addc x, 0) -> x + no carry out 1868 if (isNullConstant(N1)) 1869 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, 1870 SDLoc(N), MVT::Glue)); 1871 1872 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits. 1873 APInt LHSZero, LHSOne; 1874 APInt RHSZero, RHSOne; 1875 DAG.computeKnownBits(N0, LHSZero, LHSOne); 1876 1877 if (LHSZero.getBoolValue()) { 1878 DAG.computeKnownBits(N1, RHSZero, RHSOne); 1879 1880 // If all possibly-set bits on the LHS are clear on the RHS, return an OR. 1881 // If all possibly-set bits on the RHS are clear on the LHS, return an OR. 1882 if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero) 1883 return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1), 1884 DAG.getNode(ISD::CARRY_FALSE, 1885 SDLoc(N), MVT::Glue)); 1886 } 1887 1888 return SDValue(); 1889 } 1890 1891 SDValue DAGCombiner::visitADDE(SDNode *N) { 1892 SDValue N0 = N->getOperand(0); 1893 SDValue N1 = N->getOperand(1); 1894 SDValue CarryIn = N->getOperand(2); 1895 1896 // canonicalize constant to RHS 1897 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1898 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1899 if (N0C && !N1C) 1900 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), 1901 N1, N0, CarryIn); 1902 1903 // fold (adde x, y, false) -> (addc x, y) 1904 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 1905 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); 1906 1907 return SDValue(); 1908 } 1909 1910 // Since it may not be valid to emit a fold to zero for vector initializers 1911 // check if we can before folding. 1912 static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, 1913 SelectionDAG &DAG, bool LegalOperations, 1914 bool LegalTypes) { 1915 if (!VT.isVector()) 1916 return DAG.getConstant(0, DL, VT); 1917 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 1918 return DAG.getConstant(0, DL, VT); 1919 return SDValue(); 1920 } 1921 1922 SDValue DAGCombiner::visitSUB(SDNode *N) { 1923 SDValue N0 = N->getOperand(0); 1924 SDValue N1 = N->getOperand(1); 1925 EVT VT = N0.getValueType(); 1926 SDLoc DL(N); 1927 1928 // fold vector ops 1929 if (VT.isVector()) { 1930 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 1931 return FoldedVOp; 1932 1933 // fold (sub x, 0) -> x, vector edition 1934 if (ISD::isBuildVectorAllZeros(N1.getNode())) 1935 return N0; 1936 } 1937 1938 // fold (sub x, x) -> 0 1939 // FIXME: Refactor this and xor and other similar operations together. 1940 if (N0 == N1) 1941 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations, LegalTypes); 1942 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 1943 DAG.isConstantIntBuildVectorOrConstantInt(N1)) { 1944 // fold (sub c1, c2) -> c1-c2 1945 return DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(), 1946 N1.getNode()); 1947 } 1948 1949 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 1950 1951 // fold (sub x, c) -> (add x, -c) 1952 if (N1C) { 1953 return DAG.getNode(ISD::ADD, DL, VT, N0, 1954 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 1955 } 1956 1957 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) 1958 if (isAllOnesConstantOrAllOnesSplatConstant(N0)) 1959 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 1960 1961 // fold A-(A-B) -> B 1962 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) 1963 return N1.getOperand(1); 1964 1965 // fold (A+B)-A -> B 1966 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) 1967 return N0.getOperand(1); 1968 1969 // fold (A+B)-B -> A 1970 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) 1971 return N0.getOperand(0); 1972 1973 // fold C2-(A+C1) -> (C2-C1)-A 1974 if (N1.getOpcode() == ISD::ADD) { 1975 SDValue N11 = N1.getOperand(1); 1976 if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && 1977 isConstantOrConstantVector(N11, /* NoOpaques */ true)) { 1978 SDValue NewC = DAG.getNode(ISD::SUB, DL, VT, N0, N11); 1979 return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); 1980 } 1981 } 1982 1983 // fold ((A+(B+or-C))-B) -> A+or-C 1984 if (N0.getOpcode() == ISD::ADD && 1985 (N0.getOperand(1).getOpcode() == ISD::SUB || 1986 N0.getOperand(1).getOpcode() == ISD::ADD) && 1987 N0.getOperand(1).getOperand(0) == N1) 1988 return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), 1989 N0.getOperand(1).getOperand(1)); 1990 1991 // fold ((A+(C+B))-B) -> A+C 1992 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && 1993 N0.getOperand(1).getOperand(1) == N1) 1994 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), 1995 N0.getOperand(1).getOperand(0)); 1996 1997 // fold ((A-(B-C))-C) -> A-B 1998 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && 1999 N0.getOperand(1).getOperand(1) == N1) 2000 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 2001 N0.getOperand(1).getOperand(0)); 2002 2003 // If either operand of a sub is undef, the result is undef 2004 if (N0.isUndef()) 2005 return N0; 2006 if (N1.isUndef()) 2007 return N1; 2008 2009 // If the relocation model supports it, consider symbol offsets. 2010 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 2011 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { 2012 // fold (sub Sym, c) -> Sym-c 2013 if (N1C && GA->getOpcode() == ISD::GlobalAddress) 2014 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 2015 GA->getOffset() - 2016 (uint64_t)N1C->getSExtValue()); 2017 // fold (sub Sym+c1, Sym+c2) -> c1-c2 2018 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) 2019 if (GA->getGlobal() == GB->getGlobal()) 2020 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), 2021 DL, VT); 2022 } 2023 2024 // sub X, (sextinreg Y i1) -> add X, (and Y 1) 2025 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 2026 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 2027 if (TN->getVT() == MVT::i1) { 2028 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 2029 DAG.getConstant(1, DL, VT)); 2030 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); 2031 } 2032 } 2033 2034 return SDValue(); 2035 } 2036 2037 SDValue DAGCombiner::visitSUBC(SDNode *N) { 2038 SDValue N0 = N->getOperand(0); 2039 SDValue N1 = N->getOperand(1); 2040 EVT VT = N0.getValueType(); 2041 SDLoc DL(N); 2042 2043 // If the flag result is dead, turn this into an SUB. 2044 if (!N->hasAnyUseOfValue(1)) 2045 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 2046 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2047 2048 // fold (subc x, x) -> 0 + no borrow 2049 if (N0 == N1) 2050 return CombineTo(N, DAG.getConstant(0, DL, VT), 2051 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2052 2053 // fold (subc x, 0) -> x + no borrow 2054 if (isNullConstant(N1)) 2055 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2056 2057 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow 2058 if (isAllOnesConstant(N0)) 2059 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 2060 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2061 2062 return SDValue(); 2063 } 2064 2065 SDValue DAGCombiner::visitSUBE(SDNode *N) { 2066 SDValue N0 = N->getOperand(0); 2067 SDValue N1 = N->getOperand(1); 2068 SDValue CarryIn = N->getOperand(2); 2069 2070 // fold (sube x, y, false) -> (subc x, y) 2071 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 2072 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); 2073 2074 return SDValue(); 2075 } 2076 2077 SDValue DAGCombiner::visitMUL(SDNode *N) { 2078 SDValue N0 = N->getOperand(0); 2079 SDValue N1 = N->getOperand(1); 2080 EVT VT = N0.getValueType(); 2081 2082 // fold (mul x, undef) -> 0 2083 if (N0.isUndef() || N1.isUndef()) 2084 return DAG.getConstant(0, SDLoc(N), VT); 2085 2086 bool N0IsConst = false; 2087 bool N1IsConst = false; 2088 bool N1IsOpaqueConst = false; 2089 bool N0IsOpaqueConst = false; 2090 APInt ConstValue0, ConstValue1; 2091 // fold vector ops 2092 if (VT.isVector()) { 2093 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2094 return FoldedVOp; 2095 2096 N0IsConst = ISD::isConstantSplatVector(N0.getNode(), ConstValue0); 2097 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); 2098 } else { 2099 N0IsConst = isa<ConstantSDNode>(N0); 2100 if (N0IsConst) { 2101 ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue(); 2102 N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque(); 2103 } 2104 N1IsConst = isa<ConstantSDNode>(N1); 2105 if (N1IsConst) { 2106 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); 2107 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); 2108 } 2109 } 2110 2111 // fold (mul c1, c2) -> c1*c2 2112 if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst) 2113 return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, 2114 N0.getNode(), N1.getNode()); 2115 2116 // canonicalize constant to RHS (vector doesn't have to splat) 2117 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2118 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2119 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); 2120 // fold (mul x, 0) -> 0 2121 if (N1IsConst && ConstValue1 == 0) 2122 return N1; 2123 // We require a splat of the entire scalar bit width for non-contiguous 2124 // bit patterns. 2125 bool IsFullSplat = 2126 ConstValue1.getBitWidth() == VT.getScalarSizeInBits(); 2127 // fold (mul x, 1) -> x 2128 if (N1IsConst && ConstValue1 == 1 && IsFullSplat) 2129 return N0; 2130 // fold (mul x, -1) -> 0-x 2131 if (N1IsConst && ConstValue1.isAllOnesValue()) { 2132 SDLoc DL(N); 2133 return DAG.getNode(ISD::SUB, DL, VT, 2134 DAG.getConstant(0, DL, VT), N0); 2135 } 2136 // fold (mul x, (1 << c)) -> x << c 2137 if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isPowerOf2() && 2138 IsFullSplat) { 2139 SDLoc DL(N); 2140 return DAG.getNode(ISD::SHL, DL, VT, N0, 2141 DAG.getConstant(ConstValue1.logBase2(), DL, 2142 getShiftAmountTy(N0.getValueType()))); 2143 } 2144 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c 2145 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2() && 2146 IsFullSplat) { 2147 unsigned Log2Val = (-ConstValue1).logBase2(); 2148 SDLoc DL(N); 2149 // FIXME: If the input is something that is easily negated (e.g. a 2150 // single-use add), we should put the negate there. 2151 return DAG.getNode(ISD::SUB, DL, VT, 2152 DAG.getConstant(0, DL, VT), 2153 DAG.getNode(ISD::SHL, DL, VT, N0, 2154 DAG.getConstant(Log2Val, DL, 2155 getShiftAmountTy(N0.getValueType())))); 2156 } 2157 2158 // (mul (shl X, c1), c2) -> (mul X, c2 << c1) 2159 if (N0.getOpcode() == ISD::SHL && 2160 isConstantOrConstantVector(N1) && 2161 isConstantOrConstantVector(N0.getOperand(1))) { 2162 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); 2163 AddToWorklist(C3.getNode()); 2164 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); 2165 } 2166 2167 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one 2168 // use. 2169 { 2170 SDValue Sh(nullptr, 0), Y(nullptr, 0); 2171 2172 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). 2173 if (N0.getOpcode() == ISD::SHL && 2174 isConstantOrConstantVector(N0.getOperand(1)) && 2175 N0.getNode()->hasOneUse()) { 2176 Sh = N0; Y = N1; 2177 } else if (N1.getOpcode() == ISD::SHL && 2178 isConstantOrConstantVector(N1.getOperand(1)) && 2179 N1.getNode()->hasOneUse()) { 2180 Sh = N1; Y = N0; 2181 } 2182 2183 if (Sh.getNode()) { 2184 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); 2185 return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); 2186 } 2187 } 2188 2189 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) 2190 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 2191 N0.getOpcode() == ISD::ADD && 2192 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && 2193 isMulAddWithConstProfitable(N, N0, N1)) 2194 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 2195 DAG.getNode(ISD::MUL, SDLoc(N0), VT, 2196 N0.getOperand(0), N1), 2197 DAG.getNode(ISD::MUL, SDLoc(N1), VT, 2198 N0.getOperand(1), N1)); 2199 2200 // reassociate mul 2201 if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1)) 2202 return RMUL; 2203 2204 return SDValue(); 2205 } 2206 2207 /// Return true if divmod libcall is available. 2208 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 2209 const TargetLowering &TLI) { 2210 RTLIB::Libcall LC; 2211 EVT NodeType = Node->getValueType(0); 2212 if (!NodeType.isSimple()) 2213 return false; 2214 switch (NodeType.getSimpleVT().SimpleTy) { 2215 default: return false; // No libcall for vector types. 2216 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2217 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2218 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2219 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2220 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2221 } 2222 2223 return TLI.getLibcallName(LC) != nullptr; 2224 } 2225 2226 /// Issue divrem if both quotient and remainder are needed. 2227 SDValue DAGCombiner::useDivRem(SDNode *Node) { 2228 if (Node->use_empty()) 2229 return SDValue(); // This is a dead node, leave it alone. 2230 2231 unsigned Opcode = Node->getOpcode(); 2232 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); 2233 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 2234 2235 // DivMod lib calls can still work on non-legal types if using lib-calls. 2236 EVT VT = Node->getValueType(0); 2237 if (VT.isVector() || !VT.isInteger()) 2238 return SDValue(); 2239 2240 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) 2241 return SDValue(); 2242 2243 // If DIVREM is going to get expanded into a libcall, 2244 // but there is no libcall available, then don't combine. 2245 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && 2246 !isDivRemLibcallAvailable(Node, isSigned, TLI)) 2247 return SDValue(); 2248 2249 // If div is legal, it's better to do the normal expansion 2250 unsigned OtherOpcode = 0; 2251 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { 2252 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; 2253 if (TLI.isOperationLegalOrCustom(Opcode, VT)) 2254 return SDValue(); 2255 } else { 2256 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 2257 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) 2258 return SDValue(); 2259 } 2260 2261 SDValue Op0 = Node->getOperand(0); 2262 SDValue Op1 = Node->getOperand(1); 2263 SDValue combined; 2264 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2265 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2266 SDNode *User = *UI; 2267 if (User == Node || User->use_empty()) 2268 continue; 2269 // Convert the other matching node(s), too; 2270 // otherwise, the DIVREM may get target-legalized into something 2271 // target-specific that we won't be able to recognize. 2272 unsigned UserOpc = User->getOpcode(); 2273 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && 2274 User->getOperand(0) == Op0 && 2275 User->getOperand(1) == Op1) { 2276 if (!combined) { 2277 if (UserOpc == OtherOpcode) { 2278 SDVTList VTs = DAG.getVTList(VT, VT); 2279 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); 2280 } else if (UserOpc == DivRemOpc) { 2281 combined = SDValue(User, 0); 2282 } else { 2283 assert(UserOpc == Opcode); 2284 continue; 2285 } 2286 } 2287 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) 2288 CombineTo(User, combined); 2289 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) 2290 CombineTo(User, combined.getValue(1)); 2291 } 2292 } 2293 return combined; 2294 } 2295 2296 SDValue DAGCombiner::visitSDIV(SDNode *N) { 2297 SDValue N0 = N->getOperand(0); 2298 SDValue N1 = N->getOperand(1); 2299 EVT VT = N->getValueType(0); 2300 2301 // fold vector ops 2302 if (VT.isVector()) 2303 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2304 return FoldedVOp; 2305 2306 SDLoc DL(N); 2307 2308 // fold (sdiv c1, c2) -> c1/c2 2309 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2310 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2311 if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque()) 2312 return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C); 2313 // fold (sdiv X, 1) -> X 2314 if (N1C && N1C->isOne()) 2315 return N0; 2316 // fold (sdiv X, -1) -> 0-X 2317 if (N1C && N1C->isAllOnesValue()) 2318 return DAG.getNode(ISD::SUB, DL, VT, 2319 DAG.getConstant(0, DL, VT), N0); 2320 2321 // If we know the sign bits of both operands are zero, strength reduce to a 2322 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 2323 if (!VT.isVector()) { 2324 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 2325 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); 2326 } 2327 2328 // fold (sdiv X, pow2) -> simple ops after legalize 2329 // FIXME: We check for the exact bit here because the generic lowering gives 2330 // better results in that case. The target-specific lowering should learn how 2331 // to handle exact sdivs efficiently. 2332 if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && 2333 !cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact() && 2334 (N1C->getAPIntValue().isPowerOf2() || 2335 (-N1C->getAPIntValue()).isPowerOf2())) { 2336 // Target-specific implementation of sdiv x, pow2. 2337 if (SDValue Res = BuildSDIVPow2(N)) 2338 return Res; 2339 2340 unsigned lg2 = N1C->getAPIntValue().countTrailingZeros(); 2341 2342 // Splat the sign bit into the register 2343 SDValue SGN = 2344 DAG.getNode(ISD::SRA, DL, VT, N0, 2345 DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, 2346 getShiftAmountTy(N0.getValueType()))); 2347 AddToWorklist(SGN.getNode()); 2348 2349 // Add (N0 < 0) ? abs2 - 1 : 0; 2350 SDValue SRL = 2351 DAG.getNode(ISD::SRL, DL, VT, SGN, 2352 DAG.getConstant(VT.getScalarSizeInBits() - lg2, DL, 2353 getShiftAmountTy(SGN.getValueType()))); 2354 SDValue ADD = DAG.getNode(ISD::ADD, DL, VT, N0, SRL); 2355 AddToWorklist(SRL.getNode()); 2356 AddToWorklist(ADD.getNode()); // Divide by pow2 2357 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, ADD, 2358 DAG.getConstant(lg2, DL, 2359 getShiftAmountTy(ADD.getValueType()))); 2360 2361 // If we're dividing by a positive value, we're done. Otherwise, we must 2362 // negate the result. 2363 if (N1C->getAPIntValue().isNonNegative()) 2364 return SRA; 2365 2366 AddToWorklist(SRA.getNode()); 2367 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 2368 } 2369 2370 // If integer divide is expensive and we satisfy the requirements, emit an 2371 // alternate sequence. Targets may check function attributes for size/speed 2372 // trade-offs. 2373 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2374 if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) 2375 if (SDValue Op = BuildSDIV(N)) 2376 return Op; 2377 2378 // sdiv, srem -> sdivrem 2379 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true. 2380 // Otherwise, we break the simplification logic in visitREM(). 2381 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 2382 if (SDValue DivRem = useDivRem(N)) 2383 return DivRem; 2384 2385 // undef / X -> 0 2386 if (N0.isUndef()) 2387 return DAG.getConstant(0, DL, VT); 2388 // X / undef -> undef 2389 if (N1.isUndef()) 2390 return N1; 2391 2392 return SDValue(); 2393 } 2394 2395 SDValue DAGCombiner::visitUDIV(SDNode *N) { 2396 SDValue N0 = N->getOperand(0); 2397 SDValue N1 = N->getOperand(1); 2398 EVT VT = N->getValueType(0); 2399 2400 // fold vector ops 2401 if (VT.isVector()) 2402 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2403 return FoldedVOp; 2404 2405 SDLoc DL(N); 2406 2407 // fold (udiv c1, c2) -> c1/c2 2408 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2409 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2410 if (N0C && N1C) 2411 if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, 2412 N0C, N1C)) 2413 return Folded; 2414 // fold (udiv x, (1 << c)) -> x >>u c 2415 if (N1C && !N1C->isOpaque() && N1C->getAPIntValue().isPowerOf2()) 2416 return DAG.getNode(ISD::SRL, DL, VT, N0, 2417 DAG.getConstant(N1C->getAPIntValue().logBase2(), DL, 2418 getShiftAmountTy(N0.getValueType()))); 2419 2420 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 2421 if (N1.getOpcode() == ISD::SHL) { 2422 if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) { 2423 if (SHC->getAPIntValue().isPowerOf2()) { 2424 EVT ADDVT = N1.getOperand(1).getValueType(); 2425 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, 2426 N1.getOperand(1), 2427 DAG.getConstant(SHC->getAPIntValue() 2428 .logBase2(), 2429 DL, ADDVT)); 2430 AddToWorklist(Add.getNode()); 2431 return DAG.getNode(ISD::SRL, DL, VT, N0, Add); 2432 } 2433 } 2434 } 2435 2436 // fold (udiv x, c) -> alternate 2437 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2438 if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) 2439 if (SDValue Op = BuildUDIV(N)) 2440 return Op; 2441 2442 // sdiv, srem -> sdivrem 2443 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true. 2444 // Otherwise, we break the simplification logic in visitREM(). 2445 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 2446 if (SDValue DivRem = useDivRem(N)) 2447 return DivRem; 2448 2449 // undef / X -> 0 2450 if (N0.isUndef()) 2451 return DAG.getConstant(0, DL, VT); 2452 // X / undef -> undef 2453 if (N1.isUndef()) 2454 return N1; 2455 2456 return SDValue(); 2457 } 2458 2459 // handles ISD::SREM and ISD::UREM 2460 SDValue DAGCombiner::visitREM(SDNode *N) { 2461 unsigned Opcode = N->getOpcode(); 2462 SDValue N0 = N->getOperand(0); 2463 SDValue N1 = N->getOperand(1); 2464 EVT VT = N->getValueType(0); 2465 bool isSigned = (Opcode == ISD::SREM); 2466 SDLoc DL(N); 2467 2468 // fold (rem c1, c2) -> c1%c2 2469 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2470 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2471 if (N0C && N1C) 2472 if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C)) 2473 return Folded; 2474 2475 if (isSigned) { 2476 // If we know the sign bits of both operands are zero, strength reduce to a 2477 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 2478 if (!VT.isVector()) { 2479 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 2480 return DAG.getNode(ISD::UREM, DL, VT, N0, N1); 2481 } 2482 } else { 2483 // fold (urem x, pow2) -> (and x, pow2-1) 2484 if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && 2485 N1C->getAPIntValue().isPowerOf2()) { 2486 return DAG.getNode(ISD::AND, DL, VT, N0, 2487 DAG.getConstant(N1C->getAPIntValue() - 1, DL, VT)); 2488 } 2489 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) 2490 if (N1.getOpcode() == ISD::SHL) { 2491 ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0)); 2492 if (SHC && SHC->getAPIntValue().isPowerOf2()) { 2493 APInt NegOne = APInt::getAllOnesValue(VT.getSizeInBits()); 2494 SDValue Add = 2495 DAG.getNode(ISD::ADD, DL, VT, N1, DAG.getConstant(NegOne, DL, VT)); 2496 AddToWorklist(Add.getNode()); 2497 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 2498 } 2499 } 2500 } 2501 2502 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2503 2504 // If X/C can be simplified by the division-by-constant logic, lower 2505 // X%C to the equivalent of X-X/C*C. 2506 // To avoid mangling nodes, this simplification requires that the combine() 2507 // call for the speculative DIV must not cause a DIVREM conversion. We guard 2508 // against this by skipping the simplification if isIntDivCheap(). When 2509 // div is not cheap, combine will not return a DIVREM. Regardless, 2510 // checking cheapness here makes sense since the simplification results in 2511 // fatter code. 2512 if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap(VT, Attr)) { 2513 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 2514 SDValue Div = DAG.getNode(DivOpcode, DL, VT, N0, N1); 2515 AddToWorklist(Div.getNode()); 2516 SDValue OptimizedDiv = combine(Div.getNode()); 2517 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { 2518 assert((OptimizedDiv.getOpcode() != ISD::UDIVREM) && 2519 (OptimizedDiv.getOpcode() != ISD::SDIVREM)); 2520 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); 2521 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 2522 AddToWorklist(Mul.getNode()); 2523 return Sub; 2524 } 2525 } 2526 2527 // sdiv, srem -> sdivrem 2528 if (SDValue DivRem = useDivRem(N)) 2529 return DivRem.getValue(1); 2530 2531 // undef % X -> 0 2532 if (N0.isUndef()) 2533 return DAG.getConstant(0, DL, VT); 2534 // X % undef -> undef 2535 if (N1.isUndef()) 2536 return N1; 2537 2538 return SDValue(); 2539 } 2540 2541 SDValue DAGCombiner::visitMULHS(SDNode *N) { 2542 SDValue N0 = N->getOperand(0); 2543 SDValue N1 = N->getOperand(1); 2544 EVT VT = N->getValueType(0); 2545 SDLoc DL(N); 2546 2547 // fold (mulhs x, 0) -> 0 2548 if (isNullConstant(N1)) 2549 return N1; 2550 // fold (mulhs x, 1) -> (sra x, size(x)-1) 2551 if (isOneConstant(N1)) { 2552 SDLoc DL(N); 2553 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, 2554 DAG.getConstant(N0.getValueSizeInBits() - 1, DL, 2555 getShiftAmountTy(N0.getValueType()))); 2556 } 2557 // fold (mulhs x, undef) -> 0 2558 if (N0.isUndef() || N1.isUndef()) 2559 return DAG.getConstant(0, SDLoc(N), VT); 2560 2561 // If the type twice as wide is legal, transform the mulhs to a wider multiply 2562 // plus a shift. 2563 if (VT.isSimple() && !VT.isVector()) { 2564 MVT Simple = VT.getSimpleVT(); 2565 unsigned SimpleSize = Simple.getSizeInBits(); 2566 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2567 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2568 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); 2569 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); 2570 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 2571 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 2572 DAG.getConstant(SimpleSize, DL, 2573 getShiftAmountTy(N1.getValueType()))); 2574 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 2575 } 2576 } 2577 2578 return SDValue(); 2579 } 2580 2581 SDValue DAGCombiner::visitMULHU(SDNode *N) { 2582 SDValue N0 = N->getOperand(0); 2583 SDValue N1 = N->getOperand(1); 2584 EVT VT = N->getValueType(0); 2585 SDLoc DL(N); 2586 2587 // fold (mulhu x, 0) -> 0 2588 if (isNullConstant(N1)) 2589 return N1; 2590 // fold (mulhu x, 1) -> 0 2591 if (isOneConstant(N1)) 2592 return DAG.getConstant(0, DL, N0.getValueType()); 2593 // fold (mulhu x, undef) -> 0 2594 if (N0.isUndef() || N1.isUndef()) 2595 return DAG.getConstant(0, DL, VT); 2596 2597 // If the type twice as wide is legal, transform the mulhu to a wider multiply 2598 // plus a shift. 2599 if (VT.isSimple() && !VT.isVector()) { 2600 MVT Simple = VT.getSimpleVT(); 2601 unsigned SimpleSize = Simple.getSizeInBits(); 2602 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2603 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2604 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); 2605 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); 2606 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 2607 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 2608 DAG.getConstant(SimpleSize, DL, 2609 getShiftAmountTy(N1.getValueType()))); 2610 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 2611 } 2612 } 2613 2614 return SDValue(); 2615 } 2616 2617 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp 2618 /// give the opcodes for the two computations that are being performed. Return 2619 /// true if a simplification was made. 2620 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 2621 unsigned HiOp) { 2622 // If the high half is not needed, just compute the low half. 2623 bool HiExists = N->hasAnyUseOfValue(1); 2624 if (!HiExists && 2625 (!LegalOperations || 2626 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { 2627 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 2628 return CombineTo(N, Res, Res); 2629 } 2630 2631 // If the low half is not needed, just compute the high half. 2632 bool LoExists = N->hasAnyUseOfValue(0); 2633 if (!LoExists && 2634 (!LegalOperations || 2635 TLI.isOperationLegal(HiOp, N->getValueType(1)))) { 2636 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 2637 return CombineTo(N, Res, Res); 2638 } 2639 2640 // If both halves are used, return as it is. 2641 if (LoExists && HiExists) 2642 return SDValue(); 2643 2644 // If the two computed results can be simplified separately, separate them. 2645 if (LoExists) { 2646 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 2647 AddToWorklist(Lo.getNode()); 2648 SDValue LoOpt = combine(Lo.getNode()); 2649 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && 2650 (!LegalOperations || 2651 TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))) 2652 return CombineTo(N, LoOpt, LoOpt); 2653 } 2654 2655 if (HiExists) { 2656 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 2657 AddToWorklist(Hi.getNode()); 2658 SDValue HiOpt = combine(Hi.getNode()); 2659 if (HiOpt.getNode() && HiOpt != Hi && 2660 (!LegalOperations || 2661 TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))) 2662 return CombineTo(N, HiOpt, HiOpt); 2663 } 2664 2665 return SDValue(); 2666 } 2667 2668 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { 2669 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) 2670 return Res; 2671 2672 EVT VT = N->getValueType(0); 2673 SDLoc DL(N); 2674 2675 // If the type is twice as wide is legal, transform the mulhu to a wider 2676 // multiply plus a shift. 2677 if (VT.isSimple() && !VT.isVector()) { 2678 MVT Simple = VT.getSimpleVT(); 2679 unsigned SimpleSize = Simple.getSizeInBits(); 2680 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2681 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2682 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); 2683 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); 2684 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 2685 // Compute the high part as N1. 2686 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 2687 DAG.getConstant(SimpleSize, DL, 2688 getShiftAmountTy(Lo.getValueType()))); 2689 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 2690 // Compute the low part as N0. 2691 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 2692 return CombineTo(N, Lo, Hi); 2693 } 2694 } 2695 2696 return SDValue(); 2697 } 2698 2699 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { 2700 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) 2701 return Res; 2702 2703 EVT VT = N->getValueType(0); 2704 SDLoc DL(N); 2705 2706 // If the type is twice as wide is legal, transform the mulhu to a wider 2707 // multiply plus a shift. 2708 if (VT.isSimple() && !VT.isVector()) { 2709 MVT Simple = VT.getSimpleVT(); 2710 unsigned SimpleSize = Simple.getSizeInBits(); 2711 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2712 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2713 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); 2714 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); 2715 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 2716 // Compute the high part as N1. 2717 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 2718 DAG.getConstant(SimpleSize, DL, 2719 getShiftAmountTy(Lo.getValueType()))); 2720 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 2721 // Compute the low part as N0. 2722 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 2723 return CombineTo(N, Lo, Hi); 2724 } 2725 } 2726 2727 return SDValue(); 2728 } 2729 2730 SDValue DAGCombiner::visitSMULO(SDNode *N) { 2731 // (smulo x, 2) -> (saddo x, x) 2732 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2733 if (C2->getAPIntValue() == 2) 2734 return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(), 2735 N->getOperand(0), N->getOperand(0)); 2736 2737 return SDValue(); 2738 } 2739 2740 SDValue DAGCombiner::visitUMULO(SDNode *N) { 2741 // (umulo x, 2) -> (uaddo x, x) 2742 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2743 if (C2->getAPIntValue() == 2) 2744 return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(), 2745 N->getOperand(0), N->getOperand(0)); 2746 2747 return SDValue(); 2748 } 2749 2750 SDValue DAGCombiner::visitIMINMAX(SDNode *N) { 2751 SDValue N0 = N->getOperand(0); 2752 SDValue N1 = N->getOperand(1); 2753 EVT VT = N0.getValueType(); 2754 2755 // fold vector ops 2756 if (VT.isVector()) 2757 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2758 return FoldedVOp; 2759 2760 // fold (add c1, c2) -> c1+c2 2761 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 2762 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 2763 if (N0C && N1C) 2764 return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C); 2765 2766 // canonicalize constant to RHS 2767 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2768 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2769 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 2770 2771 return SDValue(); 2772 } 2773 2774 /// If this is a binary operator with two operands of the same opcode, try to 2775 /// simplify it. 2776 SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { 2777 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 2778 EVT VT = N0.getValueType(); 2779 assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); 2780 2781 // Bail early if none of these transforms apply. 2782 if (N0.getNode()->getNumOperands() == 0) return SDValue(); 2783 2784 // For each of OP in AND/OR/XOR: 2785 // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) 2786 // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) 2787 // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) 2788 // fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y)) 2789 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free) 2790 // 2791 // do not sink logical op inside of a vector extend, since it may combine 2792 // into a vsetcc. 2793 EVT Op0VT = N0.getOperand(0).getValueType(); 2794 if ((N0.getOpcode() == ISD::ZERO_EXTEND || 2795 N0.getOpcode() == ISD::SIGN_EXTEND || 2796 N0.getOpcode() == ISD::BSWAP || 2797 // Avoid infinite looping with PromoteIntBinOp. 2798 (N0.getOpcode() == ISD::ANY_EXTEND && 2799 (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) || 2800 (N0.getOpcode() == ISD::TRUNCATE && 2801 (!TLI.isZExtFree(VT, Op0VT) || 2802 !TLI.isTruncateFree(Op0VT, VT)) && 2803 TLI.isTypeLegal(Op0VT))) && 2804 !VT.isVector() && 2805 Op0VT == N1.getOperand(0).getValueType() && 2806 (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) { 2807 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), 2808 N0.getOperand(0).getValueType(), 2809 N0.getOperand(0), N1.getOperand(0)); 2810 AddToWorklist(ORNode.getNode()); 2811 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode); 2812 } 2813 2814 // For each of OP in SHL/SRL/SRA/AND... 2815 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) 2816 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z) 2817 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) 2818 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || 2819 N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && 2820 N0.getOperand(1) == N1.getOperand(1)) { 2821 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), 2822 N0.getOperand(0).getValueType(), 2823 N0.getOperand(0), N1.getOperand(0)); 2824 AddToWorklist(ORNode.getNode()); 2825 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, 2826 ORNode, N0.getOperand(1)); 2827 } 2828 2829 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) 2830 // Only perform this optimization up until type legalization, before 2831 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by 2832 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and 2833 // we don't want to undo this promotion. 2834 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper 2835 // on scalars. 2836 if ((N0.getOpcode() == ISD::BITCAST || 2837 N0.getOpcode() == ISD::SCALAR_TO_VECTOR) && 2838 Level <= AfterLegalizeTypes) { 2839 SDValue In0 = N0.getOperand(0); 2840 SDValue In1 = N1.getOperand(0); 2841 EVT In0Ty = In0.getValueType(); 2842 EVT In1Ty = In1.getValueType(); 2843 SDLoc DL(N); 2844 // If both incoming values are integers, and the original types are the 2845 // same. 2846 if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) { 2847 SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1); 2848 SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op); 2849 AddToWorklist(Op.getNode()); 2850 return BC; 2851 } 2852 } 2853 2854 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). 2855 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) 2856 // If both shuffles use the same mask, and both shuffle within a single 2857 // vector, then it is worthwhile to move the swizzle after the operation. 2858 // The type-legalizer generates this pattern when loading illegal 2859 // vector types from memory. In many cases this allows additional shuffle 2860 // optimizations. 2861 // There are other cases where moving the shuffle after the xor/and/or 2862 // is profitable even if shuffles don't perform a swizzle. 2863 // If both shuffles use the same mask, and both shuffles have the same first 2864 // or second operand, then it might still be profitable to move the shuffle 2865 // after the xor/and/or operation. 2866 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { 2867 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0); 2868 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1); 2869 2870 assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() && 2871 "Inputs to shuffles are not the same type"); 2872 2873 // Check that both shuffles use the same mask. The masks are known to be of 2874 // the same length because the result vector type is the same. 2875 // Check also that shuffles have only one use to avoid introducing extra 2876 // instructions. 2877 if (SVN0->hasOneUse() && SVN1->hasOneUse() && 2878 SVN0->getMask().equals(SVN1->getMask())) { 2879 SDValue ShOp = N0->getOperand(1); 2880 2881 // Don't try to fold this node if it requires introducing a 2882 // build vector of all zeros that might be illegal at this stage. 2883 if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) { 2884 if (!LegalTypes) 2885 ShOp = DAG.getConstant(0, SDLoc(N), VT); 2886 else 2887 ShOp = SDValue(); 2888 } 2889 2890 // (AND (shuf (A, C), shuf (B, C)) -> shuf (AND (A, B), C) 2891 // (OR (shuf (A, C), shuf (B, C)) -> shuf (OR (A, B), C) 2892 // (XOR (shuf (A, C), shuf (B, C)) -> shuf (XOR (A, B), V_0) 2893 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { 2894 SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 2895 N0->getOperand(0), N1->getOperand(0)); 2896 AddToWorklist(NewNode.getNode()); 2897 return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp, 2898 SVN0->getMask()); 2899 } 2900 2901 // Don't try to fold this node if it requires introducing a 2902 // build vector of all zeros that might be illegal at this stage. 2903 ShOp = N0->getOperand(0); 2904 if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) { 2905 if (!LegalTypes) 2906 ShOp = DAG.getConstant(0, SDLoc(N), VT); 2907 else 2908 ShOp = SDValue(); 2909 } 2910 2911 // (AND (shuf (C, A), shuf (C, B)) -> shuf (C, AND (A, B)) 2912 // (OR (shuf (C, A), shuf (C, B)) -> shuf (C, OR (A, B)) 2913 // (XOR (shuf (C, A), shuf (C, B)) -> shuf (V_0, XOR (A, B)) 2914 if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) { 2915 SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 2916 N0->getOperand(1), N1->getOperand(1)); 2917 AddToWorklist(NewNode.getNode()); 2918 return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode, 2919 SVN0->getMask()); 2920 } 2921 } 2922 } 2923 2924 return SDValue(); 2925 } 2926 2927 /// This contains all DAGCombine rules which reduce two values combined by 2928 /// an And operation to a single value. This makes them reusable in the context 2929 /// of visitSELECT(). Rules involving constants are not included as 2930 /// visitSELECT() already handles those cases. 2931 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, 2932 SDNode *LocReference) { 2933 EVT VT = N1.getValueType(); 2934 2935 // fold (and x, undef) -> 0 2936 if (N0.isUndef() || N1.isUndef()) 2937 return DAG.getConstant(0, SDLoc(LocReference), VT); 2938 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) 2939 SDValue LL, LR, RL, RR, CC0, CC1; 2940 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ 2941 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); 2942 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); 2943 2944 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && 2945 LL.getValueType().isInteger()) { 2946 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0) 2947 if (isNullConstant(LR) && Op1 == ISD::SETEQ) { 2948 EVT CCVT = getSetCCResultType(LR.getValueType()); 2949 if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) { 2950 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), 2951 LR.getValueType(), LL, RL); 2952 AddToWorklist(ORNode.getNode()); 2953 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 2954 } 2955 } 2956 if (isAllOnesConstant(LR)) { 2957 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1) 2958 if (Op1 == ISD::SETEQ) { 2959 EVT CCVT = getSetCCResultType(LR.getValueType()); 2960 if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) { 2961 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0), 2962 LR.getValueType(), LL, RL); 2963 AddToWorklist(ANDNode.getNode()); 2964 return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); 2965 } 2966 } 2967 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1) 2968 if (Op1 == ISD::SETGT) { 2969 EVT CCVT = getSetCCResultType(LR.getValueType()); 2970 if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) { 2971 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), 2972 LR.getValueType(), LL, RL); 2973 AddToWorklist(ORNode.getNode()); 2974 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 2975 } 2976 } 2977 } 2978 } 2979 // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2) 2980 if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) && 2981 Op0 == Op1 && LL.getValueType().isInteger() && 2982 Op0 == ISD::SETNE && ((isNullConstant(LR) && isAllOnesConstant(RR)) || 2983 (isAllOnesConstant(LR) && isNullConstant(RR)))) { 2984 EVT CCVT = getSetCCResultType(LL.getValueType()); 2985 if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) { 2986 SDLoc DL(N0); 2987 SDValue ADDNode = DAG.getNode(ISD::ADD, DL, LL.getValueType(), 2988 LL, DAG.getConstant(1, DL, 2989 LL.getValueType())); 2990 AddToWorklist(ADDNode.getNode()); 2991 return DAG.getSetCC(SDLoc(LocReference), VT, ADDNode, 2992 DAG.getConstant(2, DL, LL.getValueType()), 2993 ISD::SETUGE); 2994 } 2995 } 2996 // canonicalize equivalent to ll == rl 2997 if (LL == RR && LR == RL) { 2998 Op1 = ISD::getSetCCSwappedOperands(Op1); 2999 std::swap(RL, RR); 3000 } 3001 if (LL == RL && LR == RR) { 3002 bool isInteger = LL.getValueType().isInteger(); 3003 ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); 3004 if (Result != ISD::SETCC_INVALID && 3005 (!LegalOperations || 3006 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && 3007 TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { 3008 EVT CCVT = getSetCCResultType(LL.getValueType()); 3009 if (N0.getValueType() == CCVT || 3010 (!LegalOperations && N0.getValueType() == MVT::i1)) 3011 return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), 3012 LL, LR, Result); 3013 } 3014 } 3015 } 3016 3017 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && 3018 VT.getSizeInBits() <= 64) { 3019 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3020 APInt ADDC = ADDI->getAPIntValue(); 3021 if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 3022 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal 3023 // immediate for an add, but it is legal if its top c2 bits are set, 3024 // transform the ADD so the immediate doesn't need to be materialized 3025 // in a register. 3026 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { 3027 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 3028 SRLI->getZExtValue()); 3029 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { 3030 ADDC |= Mask; 3031 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 3032 SDLoc DL(N0); 3033 SDValue NewAdd = 3034 DAG.getNode(ISD::ADD, DL, VT, 3035 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); 3036 CombineTo(N0.getNode(), NewAdd); 3037 // Return N so it doesn't get rechecked! 3038 return SDValue(LocReference, 0); 3039 } 3040 } 3041 } 3042 } 3043 } 3044 } 3045 3046 // Reduce bit extract of low half of an integer to the narrower type. 3047 // (and (srl i64:x, K), KMask) -> 3048 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) 3049 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 3050 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { 3051 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3052 unsigned Size = VT.getSizeInBits(); 3053 const APInt &AndMask = CAnd->getAPIntValue(); 3054 unsigned ShiftBits = CShift->getZExtValue(); 3055 unsigned MaskBits = AndMask.countTrailingOnes(); 3056 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); 3057 3058 if (APIntOps::isMask(AndMask) && 3059 // Required bits must not span the two halves of the integer and 3060 // must fit in the half size type. 3061 (ShiftBits + MaskBits <= Size / 2) && 3062 TLI.isNarrowingProfitable(VT, HalfVT) && 3063 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && 3064 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && 3065 TLI.isTruncateFree(VT, HalfVT) && 3066 TLI.isZExtFree(HalfVT, VT)) { 3067 // The isNarrowingProfitable is to avoid regressions on PPC and 3068 // AArch64 which match a few 64-bit bit insert / bit extract patterns 3069 // on downstream users of this. Those patterns could probably be 3070 // extended to handle extensions mixed in. 3071 3072 SDValue SL(N0); 3073 assert(ShiftBits != 0 && MaskBits <= Size); 3074 3075 // Extracting the highest bit of the low half. 3076 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); 3077 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, 3078 N0.getOperand(0)); 3079 3080 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); 3081 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); 3082 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); 3083 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); 3084 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); 3085 } 3086 } 3087 } 3088 } 3089 3090 return SDValue(); 3091 } 3092 3093 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 3094 EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT, 3095 bool &NarrowLoad) { 3096 uint32_t ActiveBits = AndC->getAPIntValue().getActiveBits(); 3097 3098 if (ActiveBits == 0 || !APIntOps::isMask(ActiveBits, AndC->getAPIntValue())) 3099 return false; 3100 3101 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 3102 LoadedVT = LoadN->getMemoryVT(); 3103 3104 if (ExtVT == LoadedVT && 3105 (!LegalOperations || 3106 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { 3107 // ZEXTLOAD will match without needing to change the size of the value being 3108 // loaded. 3109 NarrowLoad = false; 3110 return true; 3111 } 3112 3113 // Do not change the width of a volatile load. 3114 if (LoadN->isVolatile()) 3115 return false; 3116 3117 // Do not generate loads of non-round integer types since these can 3118 // be expensive (and would be wrong if the type is not byte sized). 3119 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) 3120 return false; 3121 3122 if (LegalOperations && 3123 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) 3124 return false; 3125 3126 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) 3127 return false; 3128 3129 NarrowLoad = true; 3130 return true; 3131 } 3132 3133 SDValue DAGCombiner::visitAND(SDNode *N) { 3134 SDValue N0 = N->getOperand(0); 3135 SDValue N1 = N->getOperand(1); 3136 EVT VT = N1.getValueType(); 3137 3138 // fold vector ops 3139 if (VT.isVector()) { 3140 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3141 return FoldedVOp; 3142 3143 // fold (and x, 0) -> 0, vector edition 3144 if (ISD::isBuildVectorAllZeros(N0.getNode())) 3145 // do not return N0, because undef node may exist in N0 3146 return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()), 3147 SDLoc(N), N0.getValueType()); 3148 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3149 // do not return N1, because undef node may exist in N1 3150 return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()), 3151 SDLoc(N), N1.getValueType()); 3152 3153 // fold (and x, -1) -> x, vector edition 3154 if (ISD::isBuildVectorAllOnes(N0.getNode())) 3155 return N1; 3156 if (ISD::isBuildVectorAllOnes(N1.getNode())) 3157 return N0; 3158 } 3159 3160 // fold (and c1, c2) -> c1&c2 3161 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 3162 ConstantSDNode *N1C = isConstOrConstSplat(N1); 3163 if (N0C && N1C && !N1C->isOpaque()) 3164 return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C); 3165 // canonicalize constant to RHS 3166 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3167 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3168 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); 3169 // fold (and x, -1) -> x 3170 if (isAllOnesConstant(N1)) 3171 return N0; 3172 // if (and x, c) is known to be zero, return 0 3173 unsigned BitWidth = VT.getScalarSizeInBits(); 3174 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 3175 APInt::getAllOnesValue(BitWidth))) 3176 return DAG.getConstant(0, SDLoc(N), VT); 3177 // reassociate and 3178 if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1)) 3179 return RAND; 3180 // fold (and (or x, C), D) -> D if (C & D) == D 3181 if (N1C && N0.getOpcode() == ISD::OR) 3182 if (ConstantSDNode *ORI = isConstOrConstSplat(N0.getOperand(1))) 3183 if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue()) 3184 return N1; 3185 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. 3186 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 3187 SDValue N0Op0 = N0.getOperand(0); 3188 APInt Mask = ~N1C->getAPIntValue(); 3189 Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); 3190 if (DAG.MaskedValueIsZero(N0Op0, Mask)) { 3191 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 3192 N0.getValueType(), N0Op0); 3193 3194 // Replace uses of the AND with uses of the Zero extend node. 3195 CombineTo(N, Zext); 3196 3197 // We actually want to replace all uses of the any_extend with the 3198 // zero_extend, to avoid duplicating things. This will later cause this 3199 // AND to be folded. 3200 CombineTo(N0.getNode(), Zext); 3201 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3202 } 3203 } 3204 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> 3205 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must 3206 // already be zero by virtue of the width of the base type of the load. 3207 // 3208 // the 'X' node here can either be nothing or an extract_vector_elt to catch 3209 // more cases. 3210 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 3211 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && 3212 N0.getOperand(0).getOpcode() == ISD::LOAD && 3213 N0.getOperand(0).getResNo() == 0) || 3214 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { 3215 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? 3216 N0 : N0.getOperand(0) ); 3217 3218 // Get the constant (if applicable) the zero'th operand is being ANDed with. 3219 // This can be a pure constant or a vector splat, in which case we treat the 3220 // vector as a scalar and use the splat value. 3221 APInt Constant = APInt::getNullValue(1); 3222 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 3223 Constant = C->getAPIntValue(); 3224 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { 3225 APInt SplatValue, SplatUndef; 3226 unsigned SplatBitSize; 3227 bool HasAnyUndefs; 3228 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, 3229 SplatBitSize, HasAnyUndefs); 3230 if (IsSplat) { 3231 // Undef bits can contribute to a possible optimisation if set, so 3232 // set them. 3233 SplatValue |= SplatUndef; 3234 3235 // The splat value may be something like "0x00FFFFFF", which means 0 for 3236 // the first vector value and FF for the rest, repeating. We need a mask 3237 // that will apply equally to all members of the vector, so AND all the 3238 // lanes of the constant together. 3239 EVT VT = Vector->getValueType(0); 3240 unsigned BitWidth = VT.getScalarSizeInBits(); 3241 3242 // If the splat value has been compressed to a bitlength lower 3243 // than the size of the vector lane, we need to re-expand it to 3244 // the lane size. 3245 if (BitWidth > SplatBitSize) 3246 for (SplatValue = SplatValue.zextOrTrunc(BitWidth); 3247 SplatBitSize < BitWidth; 3248 SplatBitSize = SplatBitSize * 2) 3249 SplatValue |= SplatValue.shl(SplatBitSize); 3250 3251 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a 3252 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. 3253 if (SplatBitSize % BitWidth == 0) { 3254 Constant = APInt::getAllOnesValue(BitWidth); 3255 for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i) 3256 Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth); 3257 } 3258 } 3259 } 3260 3261 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is 3262 // actually legal and isn't going to get expanded, else this is a false 3263 // optimisation. 3264 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, 3265 Load->getValueType(0), 3266 Load->getMemoryVT()); 3267 3268 // Resize the constant to the same size as the original memory access before 3269 // extension. If it is still the AllOnesValue then this AND is completely 3270 // unneeded. 3271 Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); 3272 3273 bool B; 3274 switch (Load->getExtensionType()) { 3275 default: B = false; break; 3276 case ISD::EXTLOAD: B = CanZextLoadProfitably; break; 3277 case ISD::ZEXTLOAD: 3278 case ISD::NON_EXTLOAD: B = true; break; 3279 } 3280 3281 if (B && Constant.isAllOnesValue()) { 3282 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to 3283 // preserve semantics once we get rid of the AND. 3284 SDValue NewLoad(Load, 0); 3285 if (Load->getExtensionType() == ISD::EXTLOAD) { 3286 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, 3287 Load->getValueType(0), SDLoc(Load), 3288 Load->getChain(), Load->getBasePtr(), 3289 Load->getOffset(), Load->getMemoryVT(), 3290 Load->getMemOperand()); 3291 // Replace uses of the EXTLOAD with the new ZEXTLOAD. 3292 if (Load->getNumValues() == 3) { 3293 // PRE/POST_INC loads have 3 values. 3294 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), 3295 NewLoad.getValue(2) }; 3296 CombineTo(Load, To, 3, true); 3297 } else { 3298 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); 3299 } 3300 } 3301 3302 // Fold the AND away, taking care not to fold to the old load node if we 3303 // replaced it. 3304 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); 3305 3306 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3307 } 3308 } 3309 3310 // fold (and (load x), 255) -> (zextload x, i8) 3311 // fold (and (extload x, i16), 255) -> (zextload x, i8) 3312 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) 3313 if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || 3314 (N0.getOpcode() == ISD::ANY_EXTEND && 3315 N0.getOperand(0).getOpcode() == ISD::LOAD))) { 3316 bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND; 3317 LoadSDNode *LN0 = HasAnyExt 3318 ? cast<LoadSDNode>(N0.getOperand(0)) 3319 : cast<LoadSDNode>(N0); 3320 if (LN0->getExtensionType() != ISD::SEXTLOAD && 3321 LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) { 3322 auto NarrowLoad = false; 3323 EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; 3324 EVT ExtVT, LoadedVT; 3325 if (isAndLoadExtLoad(N1C, LN0, LoadResultTy, ExtVT, LoadedVT, 3326 NarrowLoad)) { 3327 if (!NarrowLoad) { 3328 SDValue NewLoad = 3329 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, 3330 LN0->getChain(), LN0->getBasePtr(), ExtVT, 3331 LN0->getMemOperand()); 3332 AddToWorklist(N); 3333 CombineTo(LN0, NewLoad, NewLoad.getValue(1)); 3334 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3335 } else { 3336 EVT PtrType = LN0->getOperand(1).getValueType(); 3337 3338 unsigned Alignment = LN0->getAlignment(); 3339 SDValue NewPtr = LN0->getBasePtr(); 3340 3341 // For big endian targets, we need to add an offset to the pointer 3342 // to load the correct bytes. For little endian systems, we merely 3343 // need to read fewer bytes from the same pointer. 3344 if (DAG.getDataLayout().isBigEndian()) { 3345 unsigned LVTStoreBytes = LoadedVT.getStoreSize(); 3346 unsigned EVTStoreBytes = ExtVT.getStoreSize(); 3347 unsigned PtrOff = LVTStoreBytes - EVTStoreBytes; 3348 SDLoc DL(LN0); 3349 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, 3350 NewPtr, DAG.getConstant(PtrOff, DL, PtrType)); 3351 Alignment = MinAlign(Alignment, PtrOff); 3352 } 3353 3354 AddToWorklist(NewPtr.getNode()); 3355 3356 SDValue Load = DAG.getExtLoad( 3357 ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, LN0->getChain(), NewPtr, 3358 LN0->getPointerInfo(), ExtVT, Alignment, 3359 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 3360 AddToWorklist(N); 3361 CombineTo(LN0, Load, Load.getValue(1)); 3362 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3363 } 3364 } 3365 } 3366 } 3367 3368 if (SDValue Combined = visitANDLike(N0, N1, N)) 3369 return Combined; 3370 3371 // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) 3372 if (N0.getOpcode() == N1.getOpcode()) 3373 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 3374 return Tmp; 3375 3376 // Masking the negated extension of a boolean is just the zero-extended 3377 // boolean: 3378 // and (sub 0, zext(bool X)), 1 --> zext(bool X) 3379 // and (sub 0, sext(bool X)), 1 --> zext(bool X) 3380 // 3381 // Note: the SimplifyDemandedBits fold below can make an information-losing 3382 // transform, and then we have no way to find this better fold. 3383 if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { 3384 ConstantSDNode *SubLHS = isConstOrConstSplat(N0.getOperand(0)); 3385 SDValue SubRHS = N0.getOperand(1); 3386 if (SubLHS && SubLHS->isNullValue()) { 3387 if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && 3388 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 3389 return SubRHS; 3390 if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && 3391 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 3392 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); 3393 } 3394 } 3395 3396 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) 3397 // fold (and (sra)) -> (and (srl)) when possible. 3398 if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) 3399 return SDValue(N, 0); 3400 3401 // fold (zext_inreg (extload x)) -> (zextload x) 3402 if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { 3403 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 3404 EVT MemVT = LN0->getMemoryVT(); 3405 // If we zero all the possible extended bits, then we can turn this into 3406 // a zextload if we are running before legalize or the operation is legal. 3407 unsigned BitWidth = N1.getScalarValueSizeInBits(); 3408 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 3409 BitWidth - MemVT.getScalarSizeInBits())) && 3410 ((!LegalOperations && !LN0->isVolatile()) || 3411 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 3412 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 3413 LN0->getChain(), LN0->getBasePtr(), 3414 MemVT, LN0->getMemOperand()); 3415 AddToWorklist(N); 3416 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 3417 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3418 } 3419 } 3420 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use 3421 if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 3422 N0.hasOneUse()) { 3423 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 3424 EVT MemVT = LN0->getMemoryVT(); 3425 // If we zero all the possible extended bits, then we can turn this into 3426 // a zextload if we are running before legalize or the operation is legal. 3427 unsigned BitWidth = N1.getScalarValueSizeInBits(); 3428 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 3429 BitWidth - MemVT.getScalarSizeInBits())) && 3430 ((!LegalOperations && !LN0->isVolatile()) || 3431 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 3432 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 3433 LN0->getChain(), LN0->getBasePtr(), 3434 MemVT, LN0->getMemOperand()); 3435 AddToWorklist(N); 3436 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 3437 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3438 } 3439 } 3440 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) 3441 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { 3442 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 3443 N0.getOperand(1), false)) 3444 return BSwap; 3445 } 3446 3447 return SDValue(); 3448 } 3449 3450 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. 3451 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 3452 bool DemandHighBits) { 3453 if (!LegalOperations) 3454 return SDValue(); 3455 3456 EVT VT = N->getValueType(0); 3457 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) 3458 return SDValue(); 3459 if (!TLI.isOperationLegal(ISD::BSWAP, VT)) 3460 return SDValue(); 3461 3462 // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00) 3463 bool LookPassAnd0 = false; 3464 bool LookPassAnd1 = false; 3465 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) 3466 std::swap(N0, N1); 3467 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) 3468 std::swap(N0, N1); 3469 if (N0.getOpcode() == ISD::AND) { 3470 if (!N0.getNode()->hasOneUse()) 3471 return SDValue(); 3472 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3473 if (!N01C || N01C->getZExtValue() != 0xFF00) 3474 return SDValue(); 3475 N0 = N0.getOperand(0); 3476 LookPassAnd0 = true; 3477 } 3478 3479 if (N1.getOpcode() == ISD::AND) { 3480 if (!N1.getNode()->hasOneUse()) 3481 return SDValue(); 3482 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 3483 if (!N11C || N11C->getZExtValue() != 0xFF) 3484 return SDValue(); 3485 N1 = N1.getOperand(0); 3486 LookPassAnd1 = true; 3487 } 3488 3489 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 3490 std::swap(N0, N1); 3491 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 3492 return SDValue(); 3493 if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) 3494 return SDValue(); 3495 3496 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3497 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 3498 if (!N01C || !N11C) 3499 return SDValue(); 3500 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) 3501 return SDValue(); 3502 3503 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) 3504 SDValue N00 = N0->getOperand(0); 3505 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { 3506 if (!N00.getNode()->hasOneUse()) 3507 return SDValue(); 3508 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); 3509 if (!N001C || N001C->getZExtValue() != 0xFF) 3510 return SDValue(); 3511 N00 = N00.getOperand(0); 3512 LookPassAnd0 = true; 3513 } 3514 3515 SDValue N10 = N1->getOperand(0); 3516 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { 3517 if (!N10.getNode()->hasOneUse()) 3518 return SDValue(); 3519 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); 3520 if (!N101C || N101C->getZExtValue() != 0xFF00) 3521 return SDValue(); 3522 N10 = N10.getOperand(0); 3523 LookPassAnd1 = true; 3524 } 3525 3526 if (N00 != N10) 3527 return SDValue(); 3528 3529 // Make sure everything beyond the low halfword gets set to zero since the SRL 3530 // 16 will clear the top bits. 3531 unsigned OpSizeInBits = VT.getSizeInBits(); 3532 if (DemandHighBits && OpSizeInBits > 16) { 3533 // If the left-shift isn't masked out then the only way this is a bswap is 3534 // if all bits beyond the low 8 are 0. In that case the entire pattern 3535 // reduces to a left shift anyway: leave it for other parts of the combiner. 3536 if (!LookPassAnd0) 3537 return SDValue(); 3538 3539 // However, if the right shift isn't masked out then it might be because 3540 // it's not needed. See if we can spot that too. 3541 if (!LookPassAnd1 && 3542 !DAG.MaskedValueIsZero( 3543 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) 3544 return SDValue(); 3545 } 3546 3547 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); 3548 if (OpSizeInBits > 16) { 3549 SDLoc DL(N); 3550 Res = DAG.getNode(ISD::SRL, DL, VT, Res, 3551 DAG.getConstant(OpSizeInBits - 16, DL, 3552 getShiftAmountTy(VT))); 3553 } 3554 return Res; 3555 } 3556 3557 /// Return true if the specified node is an element that makes up a 32-bit 3558 /// packed halfword byteswap. 3559 /// ((x & 0x000000ff) << 8) | 3560 /// ((x & 0x0000ff00) >> 8) | 3561 /// ((x & 0x00ff0000) << 8) | 3562 /// ((x & 0xff000000) >> 8) 3563 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { 3564 if (!N.getNode()->hasOneUse()) 3565 return false; 3566 3567 unsigned Opc = N.getOpcode(); 3568 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) 3569 return false; 3570 3571 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3572 if (!N1C) 3573 return false; 3574 3575 unsigned Num; 3576 switch (N1C->getZExtValue()) { 3577 default: 3578 return false; 3579 case 0xFF: Num = 0; break; 3580 case 0xFF00: Num = 1; break; 3581 case 0xFF0000: Num = 2; break; 3582 case 0xFF000000: Num = 3; break; 3583 } 3584 3585 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). 3586 SDValue N0 = N.getOperand(0); 3587 if (Opc == ISD::AND) { 3588 if (Num == 0 || Num == 2) { 3589 // (x >> 8) & 0xff 3590 // (x >> 8) & 0xff0000 3591 if (N0.getOpcode() != ISD::SRL) 3592 return false; 3593 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3594 if (!C || C->getZExtValue() != 8) 3595 return false; 3596 } else { 3597 // (x << 8) & 0xff00 3598 // (x << 8) & 0xff000000 3599 if (N0.getOpcode() != ISD::SHL) 3600 return false; 3601 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3602 if (!C || C->getZExtValue() != 8) 3603 return false; 3604 } 3605 } else if (Opc == ISD::SHL) { 3606 // (x & 0xff) << 8 3607 // (x & 0xff0000) << 8 3608 if (Num != 0 && Num != 2) 3609 return false; 3610 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3611 if (!C || C->getZExtValue() != 8) 3612 return false; 3613 } else { // Opc == ISD::SRL 3614 // (x & 0xff00) >> 8 3615 // (x & 0xff000000) >> 8 3616 if (Num != 1 && Num != 3) 3617 return false; 3618 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3619 if (!C || C->getZExtValue() != 8) 3620 return false; 3621 } 3622 3623 if (Parts[Num]) 3624 return false; 3625 3626 Parts[Num] = N0.getOperand(0).getNode(); 3627 return true; 3628 } 3629 3630 /// Match a 32-bit packed halfword bswap. That is 3631 /// ((x & 0x000000ff) << 8) | 3632 /// ((x & 0x0000ff00) >> 8) | 3633 /// ((x & 0x00ff0000) << 8) | 3634 /// ((x & 0xff000000) >> 8) 3635 /// => (rotl (bswap x), 16) 3636 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { 3637 if (!LegalOperations) 3638 return SDValue(); 3639 3640 EVT VT = N->getValueType(0); 3641 if (VT != MVT::i32) 3642 return SDValue(); 3643 if (!TLI.isOperationLegal(ISD::BSWAP, VT)) 3644 return SDValue(); 3645 3646 // Look for either 3647 // (or (or (and), (and)), (or (and), (and))) 3648 // (or (or (or (and), (and)), (and)), (and)) 3649 if (N0.getOpcode() != ISD::OR) 3650 return SDValue(); 3651 SDValue N00 = N0.getOperand(0); 3652 SDValue N01 = N0.getOperand(1); 3653 SDNode *Parts[4] = {}; 3654 3655 if (N1.getOpcode() == ISD::OR && 3656 N00.getNumOperands() == 2 && N01.getNumOperands() == 2) { 3657 // (or (or (and), (and)), (or (and), (and))) 3658 SDValue N000 = N00.getOperand(0); 3659 if (!isBSwapHWordElement(N000, Parts)) 3660 return SDValue(); 3661 3662 SDValue N001 = N00.getOperand(1); 3663 if (!isBSwapHWordElement(N001, Parts)) 3664 return SDValue(); 3665 SDValue N010 = N01.getOperand(0); 3666 if (!isBSwapHWordElement(N010, Parts)) 3667 return SDValue(); 3668 SDValue N011 = N01.getOperand(1); 3669 if (!isBSwapHWordElement(N011, Parts)) 3670 return SDValue(); 3671 } else { 3672 // (or (or (or (and), (and)), (and)), (and)) 3673 if (!isBSwapHWordElement(N1, Parts)) 3674 return SDValue(); 3675 if (!isBSwapHWordElement(N01, Parts)) 3676 return SDValue(); 3677 if (N00.getOpcode() != ISD::OR) 3678 return SDValue(); 3679 SDValue N000 = N00.getOperand(0); 3680 if (!isBSwapHWordElement(N000, Parts)) 3681 return SDValue(); 3682 SDValue N001 = N00.getOperand(1); 3683 if (!isBSwapHWordElement(N001, Parts)) 3684 return SDValue(); 3685 } 3686 3687 // Make sure the parts are all coming from the same node. 3688 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) 3689 return SDValue(); 3690 3691 SDLoc DL(N); 3692 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, 3693 SDValue(Parts[0], 0)); 3694 3695 // Result of the bswap should be rotated by 16. If it's not legal, then 3696 // do (x << 16) | (x >> 16). 3697 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); 3698 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) 3699 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); 3700 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 3701 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 3702 return DAG.getNode(ISD::OR, DL, VT, 3703 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), 3704 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); 3705 } 3706 3707 /// This contains all DAGCombine rules which reduce two values combined by 3708 /// an Or operation to a single value \see visitANDLike(). 3709 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *LocReference) { 3710 EVT VT = N1.getValueType(); 3711 // fold (or x, undef) -> -1 3712 if (!LegalOperations && 3713 (N0.isUndef() || N1.isUndef())) { 3714 EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; 3715 return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), 3716 SDLoc(LocReference), VT); 3717 } 3718 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) 3719 SDValue LL, LR, RL, RR, CC0, CC1; 3720 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ 3721 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); 3722 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); 3723 3724 if (LR == RR && Op0 == Op1 && LL.getValueType().isInteger()) { 3725 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0) 3726 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0) 3727 if (isNullConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { 3728 EVT CCVT = getSetCCResultType(LR.getValueType()); 3729 if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) { 3730 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR), 3731 LR.getValueType(), LL, RL); 3732 AddToWorklist(ORNode.getNode()); 3733 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 3734 } 3735 } 3736 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1) 3737 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1) 3738 if (isAllOnesConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { 3739 EVT CCVT = getSetCCResultType(LR.getValueType()); 3740 if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) { 3741 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR), 3742 LR.getValueType(), LL, RL); 3743 AddToWorklist(ANDNode.getNode()); 3744 return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); 3745 } 3746 } 3747 } 3748 // canonicalize equivalent to ll == rl 3749 if (LL == RR && LR == RL) { 3750 Op1 = ISD::getSetCCSwappedOperands(Op1); 3751 std::swap(RL, RR); 3752 } 3753 if (LL == RL && LR == RR) { 3754 bool isInteger = LL.getValueType().isInteger(); 3755 ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); 3756 if (Result != ISD::SETCC_INVALID && 3757 (!LegalOperations || 3758 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && 3759 TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { 3760 EVT CCVT = getSetCCResultType(LL.getValueType()); 3761 if (N0.getValueType() == CCVT || 3762 (!LegalOperations && N0.getValueType() == MVT::i1)) 3763 return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), 3764 LL, LR, Result); 3765 } 3766 } 3767 } 3768 3769 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. 3770 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && 3771 // Don't increase # computations. 3772 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 3773 // We can only do this xform if we know that bits from X that are set in C2 3774 // but not in C1 are already zero. Likewise for Y. 3775 if (const ConstantSDNode *N0O1C = 3776 getAsNonOpaqueConstant(N0.getOperand(1))) { 3777 if (const ConstantSDNode *N1O1C = 3778 getAsNonOpaqueConstant(N1.getOperand(1))) { 3779 // We can only do this xform if we know that bits from X that are set in 3780 // C2 but not in C1 are already zero. Likewise for Y. 3781 const APInt &LHSMask = N0O1C->getAPIntValue(); 3782 const APInt &RHSMask = N1O1C->getAPIntValue(); 3783 3784 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && 3785 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { 3786 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 3787 N0.getOperand(0), N1.getOperand(0)); 3788 SDLoc DL(LocReference); 3789 return DAG.getNode(ISD::AND, DL, VT, X, 3790 DAG.getConstant(LHSMask | RHSMask, DL, VT)); 3791 } 3792 } 3793 } 3794 } 3795 3796 // (or (and X, M), (and X, N)) -> (and X, (or M, N)) 3797 if (N0.getOpcode() == ISD::AND && 3798 N1.getOpcode() == ISD::AND && 3799 N0.getOperand(0) == N1.getOperand(0) && 3800 // Don't increase # computations. 3801 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 3802 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 3803 N0.getOperand(1), N1.getOperand(1)); 3804 return DAG.getNode(ISD::AND, SDLoc(LocReference), VT, N0.getOperand(0), X); 3805 } 3806 3807 return SDValue(); 3808 } 3809 3810 SDValue DAGCombiner::visitOR(SDNode *N) { 3811 SDValue N0 = N->getOperand(0); 3812 SDValue N1 = N->getOperand(1); 3813 EVT VT = N1.getValueType(); 3814 3815 // fold vector ops 3816 if (VT.isVector()) { 3817 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3818 return FoldedVOp; 3819 3820 // fold (or x, 0) -> x, vector edition 3821 if (ISD::isBuildVectorAllZeros(N0.getNode())) 3822 return N1; 3823 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3824 return N0; 3825 3826 // fold (or x, -1) -> -1, vector edition 3827 if (ISD::isBuildVectorAllOnes(N0.getNode())) 3828 // do not return N0, because undef node may exist in N0 3829 return DAG.getConstant( 3830 APInt::getAllOnesValue(N0.getScalarValueSizeInBits()), SDLoc(N), 3831 N0.getValueType()); 3832 if (ISD::isBuildVectorAllOnes(N1.getNode())) 3833 // do not return N1, because undef node may exist in N1 3834 return DAG.getConstant( 3835 APInt::getAllOnesValue(N1.getScalarValueSizeInBits()), SDLoc(N), 3836 N1.getValueType()); 3837 3838 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) 3839 // Do this only if the resulting shuffle is legal. 3840 if (isa<ShuffleVectorSDNode>(N0) && 3841 isa<ShuffleVectorSDNode>(N1) && 3842 // Avoid folding a node with illegal type. 3843 TLI.isTypeLegal(VT)) { 3844 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); 3845 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); 3846 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 3847 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); 3848 // Ensure both shuffles have a zero input. 3849 if ((ZeroN00 || ZeroN01) && (ZeroN10 || ZeroN11)) { 3850 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); 3851 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); 3852 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); 3853 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); 3854 bool CanFold = true; 3855 int NumElts = VT.getVectorNumElements(); 3856 SmallVector<int, 4> Mask(NumElts); 3857 3858 for (int i = 0; i != NumElts; ++i) { 3859 int M0 = SV0->getMaskElt(i); 3860 int M1 = SV1->getMaskElt(i); 3861 3862 // Determine if either index is pointing to a zero vector. 3863 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); 3864 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); 3865 3866 // If one element is zero and the otherside is undef, keep undef. 3867 // This also handles the case that both are undef. 3868 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { 3869 Mask[i] = -1; 3870 continue; 3871 } 3872 3873 // Make sure only one of the elements is zero. 3874 if (M0Zero == M1Zero) { 3875 CanFold = false; 3876 break; 3877 } 3878 3879 assert((M0 >= 0 || M1 >= 0) && "Undef index!"); 3880 3881 // We have a zero and non-zero element. If the non-zero came from 3882 // SV0 make the index a LHS index. If it came from SV1, make it 3883 // a RHS index. We need to mod by NumElts because we don't care 3884 // which operand it came from in the original shuffles. 3885 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; 3886 } 3887 3888 if (CanFold) { 3889 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); 3890 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); 3891 3892 bool LegalMask = TLI.isShuffleMaskLegal(Mask, VT); 3893 if (!LegalMask) { 3894 std::swap(NewLHS, NewRHS); 3895 ShuffleVectorSDNode::commuteMask(Mask); 3896 LegalMask = TLI.isShuffleMaskLegal(Mask, VT); 3897 } 3898 3899 if (LegalMask) 3900 return DAG.getVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, Mask); 3901 } 3902 } 3903 } 3904 } 3905 3906 // fold (or c1, c2) -> c1|c2 3907 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 3908 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3909 if (N0C && N1C && !N1C->isOpaque()) 3910 return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C); 3911 // canonicalize constant to RHS 3912 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3913 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3914 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); 3915 // fold (or x, 0) -> x 3916 if (isNullConstant(N1)) 3917 return N0; 3918 // fold (or x, -1) -> -1 3919 if (isAllOnesConstant(N1)) 3920 return N1; 3921 // fold (or x, c) -> c iff (x & ~c) == 0 3922 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) 3923 return N1; 3924 3925 if (SDValue Combined = visitORLike(N0, N1, N)) 3926 return Combined; 3927 3928 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) 3929 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) 3930 return BSwap; 3931 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) 3932 return BSwap; 3933 3934 // reassociate or 3935 if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1)) 3936 return ROR; 3937 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) 3938 // iff (c1 & c2) == 0. 3939 if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 3940 isa<ConstantSDNode>(N0.getOperand(1))) { 3941 ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1)); 3942 if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) { 3943 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, 3944 N1C, C1)) 3945 return DAG.getNode( 3946 ISD::AND, SDLoc(N), VT, 3947 DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1), COR); 3948 return SDValue(); 3949 } 3950 } 3951 // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) 3952 if (N0.getOpcode() == N1.getOpcode()) 3953 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 3954 return Tmp; 3955 3956 // See if this is some rotate idiom. 3957 if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N))) 3958 return SDValue(Rot, 0); 3959 3960 // Simplify the operands using demanded-bits information. 3961 if (!VT.isVector() && 3962 SimplifyDemandedBits(SDValue(N, 0))) 3963 return SDValue(N, 0); 3964 3965 return SDValue(); 3966 } 3967 3968 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 3969 bool DAGCombiner::MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) { 3970 if (Op.getOpcode() == ISD::AND) { 3971 if (DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { 3972 Mask = Op.getOperand(1); 3973 Op = Op.getOperand(0); 3974 } else { 3975 return false; 3976 } 3977 } 3978 3979 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { 3980 Shift = Op; 3981 return true; 3982 } 3983 3984 return false; 3985 } 3986 3987 // Return true if we can prove that, whenever Neg and Pos are both in the 3988 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that 3989 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: 3990 // 3991 // (or (shift1 X, Neg), (shift2 X, Pos)) 3992 // 3993 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate 3994 // in direction shift1 by Neg. The range [0, EltSize) means that we only need 3995 // to consider shift amounts with defined behavior. 3996 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize) { 3997 // If EltSize is a power of 2 then: 3998 // 3999 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) 4000 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). 4001 // 4002 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check 4003 // for the stronger condition: 4004 // 4005 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] 4006 // 4007 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) 4008 // we can just replace Neg with Neg' for the rest of the function. 4009 // 4010 // In other cases we check for the even stronger condition: 4011 // 4012 // Neg == EltSize - Pos [B] 4013 // 4014 // for all Neg and Pos. Note that the (or ...) then invokes undefined 4015 // behavior if Pos == 0 (and consequently Neg == EltSize). 4016 // 4017 // We could actually use [A] whenever EltSize is a power of 2, but the 4018 // only extra cases that it would match are those uninteresting ones 4019 // where Neg and Pos are never in range at the same time. E.g. for 4020 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) 4021 // as well as (sub 32, Pos), but: 4022 // 4023 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) 4024 // 4025 // always invokes undefined behavior for 32-bit X. 4026 // 4027 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. 4028 unsigned MaskLoBits = 0; 4029 if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { 4030 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { 4031 if (NegC->getAPIntValue() == EltSize - 1) { 4032 Neg = Neg.getOperand(0); 4033 MaskLoBits = Log2_64(EltSize); 4034 } 4035 } 4036 } 4037 4038 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. 4039 if (Neg.getOpcode() != ISD::SUB) 4040 return false; 4041 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); 4042 if (!NegC) 4043 return false; 4044 SDValue NegOp1 = Neg.getOperand(1); 4045 4046 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with 4047 // Pos'. The truncation is redundant for the purpose of the equality. 4048 if (MaskLoBits && Pos.getOpcode() == ISD::AND) 4049 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 4050 if (PosC->getAPIntValue() == EltSize - 1) 4051 Pos = Pos.getOperand(0); 4052 4053 // The condition we need is now: 4054 // 4055 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask 4056 // 4057 // If NegOp1 == Pos then we need: 4058 // 4059 // EltSize & Mask == NegC & Mask 4060 // 4061 // (because "x & Mask" is a truncation and distributes through subtraction). 4062 APInt Width; 4063 if (Pos == NegOp1) 4064 Width = NegC->getAPIntValue(); 4065 4066 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. 4067 // Then the condition we want to prove becomes: 4068 // 4069 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask 4070 // 4071 // which, again because "x & Mask" is a truncation, becomes: 4072 // 4073 // NegC & Mask == (EltSize - PosC) & Mask 4074 // EltSize & Mask == (NegC + PosC) & Mask 4075 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { 4076 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 4077 Width = PosC->getAPIntValue() + NegC->getAPIntValue(); 4078 else 4079 return false; 4080 } else 4081 return false; 4082 4083 // Now we just need to check that EltSize & Mask == Width & Mask. 4084 if (MaskLoBits) 4085 // EltSize & Mask is 0 since Mask is EltSize - 1. 4086 return Width.getLoBits(MaskLoBits) == 0; 4087 return Width == EltSize; 4088 } 4089 4090 // A subroutine of MatchRotate used once we have found an OR of two opposite 4091 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces 4092 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the 4093 // former being preferred if supported. InnerPos and InnerNeg are Pos and 4094 // Neg with outer conversions stripped away. 4095 SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, 4096 SDValue Neg, SDValue InnerPos, 4097 SDValue InnerNeg, unsigned PosOpcode, 4098 unsigned NegOpcode, const SDLoc &DL) { 4099 // fold (or (shl x, (*ext y)), 4100 // (srl x, (*ext (sub 32, y)))) -> 4101 // (rotl x, y) or (rotr x, (sub 32, y)) 4102 // 4103 // fold (or (shl x, (*ext (sub 32, y))), 4104 // (srl x, (*ext y))) -> 4105 // (rotr x, y) or (rotl x, (sub 32, y)) 4106 EVT VT = Shifted.getValueType(); 4107 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits())) { 4108 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 4109 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, 4110 HasPos ? Pos : Neg).getNode(); 4111 } 4112 4113 return nullptr; 4114 } 4115 4116 // MatchRotate - Handle an 'or' of two operands. If this is one of the many 4117 // idioms for rotate, and if the target supports rotation instructions, generate 4118 // a rot[lr]. 4119 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { 4120 // Must be a legal type. Expanded 'n promoted things won't work with rotates. 4121 EVT VT = LHS.getValueType(); 4122 if (!TLI.isTypeLegal(VT)) return nullptr; 4123 4124 // The target must have at least one rotate flavor. 4125 bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT); 4126 bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT); 4127 if (!HasROTL && !HasROTR) return nullptr; 4128 4129 // Match "(X shl/srl V1) & V2" where V2 may not be present. 4130 SDValue LHSShift; // The shift. 4131 SDValue LHSMask; // AND value if any. 4132 if (!MatchRotateHalf(LHS, LHSShift, LHSMask)) 4133 return nullptr; // Not part of a rotate. 4134 4135 SDValue RHSShift; // The shift. 4136 SDValue RHSMask; // AND value if any. 4137 if (!MatchRotateHalf(RHS, RHSShift, RHSMask)) 4138 return nullptr; // Not part of a rotate. 4139 4140 if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) 4141 return nullptr; // Not shifting the same value. 4142 4143 if (LHSShift.getOpcode() == RHSShift.getOpcode()) 4144 return nullptr; // Shifts must disagree. 4145 4146 // Canonicalize shl to left side in a shl/srl pair. 4147 if (RHSShift.getOpcode() == ISD::SHL) { 4148 std::swap(LHS, RHS); 4149 std::swap(LHSShift, RHSShift); 4150 std::swap(LHSMask, RHSMask); 4151 } 4152 4153 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4154 SDValue LHSShiftArg = LHSShift.getOperand(0); 4155 SDValue LHSShiftAmt = LHSShift.getOperand(1); 4156 SDValue RHSShiftArg = RHSShift.getOperand(0); 4157 SDValue RHSShiftAmt = RHSShift.getOperand(1); 4158 4159 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) 4160 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) 4161 if (isConstOrConstSplat(LHSShiftAmt) && isConstOrConstSplat(RHSShiftAmt)) { 4162 uint64_t LShVal = isConstOrConstSplat(LHSShiftAmt)->getZExtValue(); 4163 uint64_t RShVal = isConstOrConstSplat(RHSShiftAmt)->getZExtValue(); 4164 if ((LShVal + RShVal) != EltSizeInBits) 4165 return nullptr; 4166 4167 SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, 4168 LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt); 4169 4170 // If there is an AND of either shifted operand, apply it to the result. 4171 if (LHSMask.getNode() || RHSMask.getNode()) { 4172 APInt AllBits = APInt::getAllOnesValue(EltSizeInBits); 4173 SDValue Mask = DAG.getConstant(AllBits, DL, VT); 4174 4175 if (LHSMask.getNode()) { 4176 APInt RHSBits = APInt::getLowBitsSet(EltSizeInBits, LShVal); 4177 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 4178 DAG.getNode(ISD::OR, DL, VT, LHSMask, 4179 DAG.getConstant(RHSBits, DL, VT))); 4180 } 4181 if (RHSMask.getNode()) { 4182 APInt LHSBits = APInt::getHighBitsSet(EltSizeInBits, RShVal); 4183 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 4184 DAG.getNode(ISD::OR, DL, VT, RHSMask, 4185 DAG.getConstant(LHSBits, DL, VT))); 4186 } 4187 4188 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask); 4189 } 4190 4191 return Rot.getNode(); 4192 } 4193 4194 // If there is a mask here, and we have a variable shift, we can't be sure 4195 // that we're masking out the right stuff. 4196 if (LHSMask.getNode() || RHSMask.getNode()) 4197 return nullptr; 4198 4199 // If the shift amount is sign/zext/any-extended just peel it off. 4200 SDValue LExtOp0 = LHSShiftAmt; 4201 SDValue RExtOp0 = RHSShiftAmt; 4202 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 4203 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 4204 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 4205 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && 4206 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 4207 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 4208 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 4209 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { 4210 LExtOp0 = LHSShiftAmt.getOperand(0); 4211 RExtOp0 = RHSShiftAmt.getOperand(0); 4212 } 4213 4214 SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, 4215 LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL); 4216 if (TryL) 4217 return TryL; 4218 4219 SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, 4220 RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL); 4221 if (TryR) 4222 return TryR; 4223 4224 return nullptr; 4225 } 4226 4227 SDValue DAGCombiner::visitXOR(SDNode *N) { 4228 SDValue N0 = N->getOperand(0); 4229 SDValue N1 = N->getOperand(1); 4230 EVT VT = N0.getValueType(); 4231 4232 // fold vector ops 4233 if (VT.isVector()) { 4234 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4235 return FoldedVOp; 4236 4237 // fold (xor x, 0) -> x, vector edition 4238 if (ISD::isBuildVectorAllZeros(N0.getNode())) 4239 return N1; 4240 if (ISD::isBuildVectorAllZeros(N1.getNode())) 4241 return N0; 4242 } 4243 4244 // fold (xor undef, undef) -> 0. This is a common idiom (misuse). 4245 if (N0.isUndef() && N1.isUndef()) 4246 return DAG.getConstant(0, SDLoc(N), VT); 4247 // fold (xor x, undef) -> undef 4248 if (N0.isUndef()) 4249 return N0; 4250 if (N1.isUndef()) 4251 return N1; 4252 // fold (xor c1, c2) -> c1^c2 4253 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4254 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 4255 if (N0C && N1C) 4256 return DAG.FoldConstantArithmetic(ISD::XOR, SDLoc(N), VT, N0C, N1C); 4257 // canonicalize constant to RHS 4258 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4259 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4260 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); 4261 // fold (xor x, 0) -> x 4262 if (isNullConstant(N1)) 4263 return N0; 4264 // reassociate xor 4265 if (SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1)) 4266 return RXOR; 4267 4268 // fold !(x cc y) -> (x !cc y) 4269 SDValue LHS, RHS, CC; 4270 if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) { 4271 bool isInt = LHS.getValueType().isInteger(); 4272 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 4273 isInt); 4274 4275 if (!LegalOperations || 4276 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { 4277 switch (N0.getOpcode()) { 4278 default: 4279 llvm_unreachable("Unhandled SetCC Equivalent!"); 4280 case ISD::SETCC: 4281 return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC); 4282 case ISD::SELECT_CC: 4283 return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2), 4284 N0.getOperand(3), NotCC); 4285 } 4286 } 4287 } 4288 4289 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) 4290 if (isOneConstant(N1) && N0.getOpcode() == ISD::ZERO_EXTEND && 4291 N0.getNode()->hasOneUse() && 4292 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ 4293 SDValue V = N0.getOperand(0); 4294 SDLoc DL(N0); 4295 V = DAG.getNode(ISD::XOR, DL, V.getValueType(), V, 4296 DAG.getConstant(1, DL, V.getValueType())); 4297 AddToWorklist(V.getNode()); 4298 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V); 4299 } 4300 4301 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc 4302 if (isOneConstant(N1) && VT == MVT::i1 && 4303 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { 4304 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 4305 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { 4306 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; 4307 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 4308 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 4309 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 4310 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); 4311 } 4312 } 4313 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants 4314 if (isAllOnesConstant(N1) && 4315 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { 4316 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 4317 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { 4318 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; 4319 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 4320 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 4321 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 4322 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); 4323 } 4324 } 4325 // fold (xor (and x, y), y) -> (and (not x), y) 4326 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 4327 N0->getOperand(1) == N1) { 4328 SDValue X = N0->getOperand(0); 4329 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); 4330 AddToWorklist(NotX.getNode()); 4331 return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1); 4332 } 4333 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2)) 4334 if (N1C && N0.getOpcode() == ISD::XOR) { 4335 if (const ConstantSDNode *N00C = getAsNonOpaqueConstant(N0.getOperand(0))) { 4336 SDLoc DL(N); 4337 return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), 4338 DAG.getConstant(N1C->getAPIntValue() ^ 4339 N00C->getAPIntValue(), DL, VT)); 4340 } 4341 if (const ConstantSDNode *N01C = getAsNonOpaqueConstant(N0.getOperand(1))) { 4342 SDLoc DL(N); 4343 return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 4344 DAG.getConstant(N1C->getAPIntValue() ^ 4345 N01C->getAPIntValue(), DL, VT)); 4346 } 4347 } 4348 // fold (xor x, x) -> 0 4349 if (N0 == N1) 4350 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); 4351 4352 // fold (xor (shl 1, x), -1) -> (rotl ~1, x) 4353 // Here is a concrete example of this equivalence: 4354 // i16 x == 14 4355 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 4356 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 4357 // 4358 // => 4359 // 4360 // i16 ~1 == 0b1111111111111110 4361 // i16 rol(~1, 14) == 0b1011111111111111 4362 // 4363 // Some additional tips to help conceptualize this transform: 4364 // - Try to see the operation as placing a single zero in a value of all ones. 4365 // - There exists no value for x which would allow the result to contain zero. 4366 // - Values of x larger than the bitwidth are undefined and do not require a 4367 // consistent result. 4368 // - Pushing the zero left requires shifting one bits in from the right. 4369 // A rotate left of ~1 is a nice way of achieving the desired result. 4370 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0.getOpcode() == ISD::SHL 4371 && isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { 4372 SDLoc DL(N); 4373 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), 4374 N0.getOperand(1)); 4375 } 4376 4377 // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) 4378 if (N0.getOpcode() == N1.getOpcode()) 4379 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 4380 return Tmp; 4381 4382 // Simplify the expression using non-local knowledge. 4383 if (!VT.isVector() && 4384 SimplifyDemandedBits(SDValue(N, 0))) 4385 return SDValue(N, 0); 4386 4387 return SDValue(); 4388 } 4389 4390 /// Handle transforms common to the three shifts, when the shift amount is a 4391 /// constant. 4392 SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) { 4393 SDNode *LHS = N->getOperand(0).getNode(); 4394 if (!LHS->hasOneUse()) return SDValue(); 4395 4396 // We want to pull some binops through shifts, so that we have (and (shift)) 4397 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of 4398 // thing happens with address calculations, so it's important to canonicalize 4399 // it. 4400 bool HighBitSet = false; // Can we transform this if the high bit is set? 4401 4402 switch (LHS->getOpcode()) { 4403 default: return SDValue(); 4404 case ISD::OR: 4405 case ISD::XOR: 4406 HighBitSet = false; // We can only transform sra if the high bit is clear. 4407 break; 4408 case ISD::AND: 4409 HighBitSet = true; // We can only transform sra if the high bit is set. 4410 break; 4411 case ISD::ADD: 4412 if (N->getOpcode() != ISD::SHL) 4413 return SDValue(); // only shl(add) not sr[al](add). 4414 HighBitSet = false; // We can only transform sra if the high bit is clear. 4415 break; 4416 } 4417 4418 // We require the RHS of the binop to be a constant and not opaque as well. 4419 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1)); 4420 if (!BinOpCst) return SDValue(); 4421 4422 // FIXME: disable this unless the input to the binop is a shift by a constant. 4423 // If it is not a shift, it pessimizes some common cases like: 4424 // 4425 // void foo(int *X, int i) { X[i & 1235] = 1; } 4426 // int bar(int *X, int i) { return X[i & 255]; } 4427 SDNode *BinOpLHSVal = LHS->getOperand(0).getNode(); 4428 if ((BinOpLHSVal->getOpcode() != ISD::SHL && 4429 BinOpLHSVal->getOpcode() != ISD::SRA && 4430 BinOpLHSVal->getOpcode() != ISD::SRL) || 4431 !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) 4432 return SDValue(); 4433 4434 EVT VT = N->getValueType(0); 4435 4436 // If this is a signed shift right, and the high bit is modified by the 4437 // logical operation, do not perform the transformation. The highBitSet 4438 // boolean indicates the value of the high bit of the constant which would 4439 // cause it to be modified for this operation. 4440 if (N->getOpcode() == ISD::SRA) { 4441 bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); 4442 if (BinOpRHSSignSet != HighBitSet) 4443 return SDValue(); 4444 } 4445 4446 if (!TLI.isDesirableToCommuteWithShift(LHS)) 4447 return SDValue(); 4448 4449 // Fold the constants, shifting the binop RHS by the shift amount. 4450 SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)), 4451 N->getValueType(0), 4452 LHS->getOperand(1), N->getOperand(1)); 4453 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); 4454 4455 // Create the new shift. 4456 SDValue NewShift = DAG.getNode(N->getOpcode(), 4457 SDLoc(LHS->getOperand(0)), 4458 VT, LHS->getOperand(0), N->getOperand(1)); 4459 4460 // Create the new binop. 4461 return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS); 4462 } 4463 4464 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { 4465 assert(N->getOpcode() == ISD::TRUNCATE); 4466 assert(N->getOperand(0).getOpcode() == ISD::AND); 4467 4468 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) 4469 if (N->hasOneUse() && N->getOperand(0).hasOneUse()) { 4470 SDValue N01 = N->getOperand(0).getOperand(1); 4471 4472 if (ConstantSDNode *N01C = isConstOrConstSplat(N01)) { 4473 if (!N01C->isOpaque()) { 4474 EVT TruncVT = N->getValueType(0); 4475 SDValue N00 = N->getOperand(0).getOperand(0); 4476 APInt TruncC = N01C->getAPIntValue(); 4477 TruncC = TruncC.trunc(TruncVT.getScalarSizeInBits()); 4478 SDLoc DL(N); 4479 4480 return DAG.getNode(ISD::AND, DL, TruncVT, 4481 DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00), 4482 DAG.getConstant(TruncC, DL, TruncVT)); 4483 } 4484 } 4485 } 4486 4487 return SDValue(); 4488 } 4489 4490 SDValue DAGCombiner::visitRotate(SDNode *N) { 4491 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). 4492 if (N->getOperand(1).getOpcode() == ISD::TRUNCATE && 4493 N->getOperand(1).getOperand(0).getOpcode() == ISD::AND) { 4494 if (SDValue NewOp1 = 4495 distributeTruncateThroughAnd(N->getOperand(1).getNode())) 4496 return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), 4497 N->getOperand(0), NewOp1); 4498 } 4499 return SDValue(); 4500 } 4501 4502 SDValue DAGCombiner::visitSHL(SDNode *N) { 4503 SDValue N0 = N->getOperand(0); 4504 SDValue N1 = N->getOperand(1); 4505 EVT VT = N0.getValueType(); 4506 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 4507 4508 // fold vector ops 4509 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4510 if (VT.isVector()) { 4511 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4512 return FoldedVOp; 4513 4514 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); 4515 // If setcc produces all-one true value then: 4516 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) 4517 if (N1CV && N1CV->isConstant()) { 4518 if (N0.getOpcode() == ISD::AND) { 4519 SDValue N00 = N0->getOperand(0); 4520 SDValue N01 = N0->getOperand(1); 4521 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); 4522 4523 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && 4524 TLI.getBooleanContents(N00.getOperand(0).getValueType()) == 4525 TargetLowering::ZeroOrNegativeOneBooleanContent) { 4526 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, 4527 N01CV, N1CV)) 4528 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); 4529 } 4530 } else { 4531 N1C = isConstOrConstSplat(N1); 4532 } 4533 } 4534 } 4535 4536 // fold (shl c1, c2) -> c1<<c2 4537 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4538 if (N0C && N1C && !N1C->isOpaque()) 4539 return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C); 4540 // fold (shl 0, x) -> 0 4541 if (isNullConstant(N0)) 4542 return N0; 4543 // fold (shl x, c >= size(x)) -> undef 4544 if (N1C && N1C->getAPIntValue().uge(OpSizeInBits)) 4545 return DAG.getUNDEF(VT); 4546 // fold (shl x, 0) -> x 4547 if (N1C && N1C->isNullValue()) 4548 return N0; 4549 // fold (shl undef, x) -> 0 4550 if (N0.isUndef()) 4551 return DAG.getConstant(0, SDLoc(N), VT); 4552 // if (shl x, c) is known to be zero, return 0 4553 if (DAG.MaskedValueIsZero(SDValue(N, 0), 4554 APInt::getAllOnesValue(OpSizeInBits))) 4555 return DAG.getConstant(0, SDLoc(N), VT); 4556 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). 4557 if (N1.getOpcode() == ISD::TRUNCATE && 4558 N1.getOperand(0).getOpcode() == ISD::AND) { 4559 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 4560 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); 4561 } 4562 4563 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4564 return SDValue(N, 0); 4565 4566 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) 4567 if (N1C && N0.getOpcode() == ISD::SHL) { 4568 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4569 SDLoc DL(N); 4570 APInt c1 = N0C1->getAPIntValue(); 4571 APInt c2 = N1C->getAPIntValue(); 4572 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 4573 4574 APInt Sum = c1 + c2; 4575 if (Sum.uge(OpSizeInBits)) 4576 return DAG.getConstant(0, DL, VT); 4577 4578 return DAG.getNode( 4579 ISD::SHL, DL, VT, N0.getOperand(0), 4580 DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType())); 4581 } 4582 } 4583 4584 // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2))) 4585 // For this to be valid, the second form must not preserve any of the bits 4586 // that are shifted out by the inner shift in the first form. This means 4587 // the outer shift size must be >= the number of bits added by the ext. 4588 // As a corollary, we don't care what kind of ext it is. 4589 if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND || 4590 N0.getOpcode() == ISD::ANY_EXTEND || 4591 N0.getOpcode() == ISD::SIGN_EXTEND) && 4592 N0.getOperand(0).getOpcode() == ISD::SHL) { 4593 SDValue N0Op0 = N0.getOperand(0); 4594 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 4595 APInt c1 = N0Op0C1->getAPIntValue(); 4596 APInt c2 = N1C->getAPIntValue(); 4597 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 4598 4599 EVT InnerShiftVT = N0Op0.getValueType(); 4600 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 4601 if (c2.uge(OpSizeInBits - InnerShiftSize)) { 4602 SDLoc DL(N0); 4603 APInt Sum = c1 + c2; 4604 if (Sum.uge(OpSizeInBits)) 4605 return DAG.getConstant(0, DL, VT); 4606 4607 return DAG.getNode( 4608 ISD::SHL, DL, VT, 4609 DAG.getNode(N0.getOpcode(), DL, VT, N0Op0->getOperand(0)), 4610 DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType())); 4611 } 4612 } 4613 } 4614 4615 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) 4616 // Only fold this if the inner zext has no other uses to avoid increasing 4617 // the total number of instructions. 4618 if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && 4619 N0.getOperand(0).getOpcode() == ISD::SRL) { 4620 SDValue N0Op0 = N0.getOperand(0); 4621 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 4622 if (N0Op0C1->getAPIntValue().ult(VT.getScalarSizeInBits())) { 4623 uint64_t c1 = N0Op0C1->getZExtValue(); 4624 uint64_t c2 = N1C->getZExtValue(); 4625 if (c1 == c2) { 4626 SDValue NewOp0 = N0.getOperand(0); 4627 EVT CountVT = NewOp0.getOperand(1).getValueType(); 4628 SDLoc DL(N); 4629 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(), 4630 NewOp0, 4631 DAG.getConstant(c2, DL, CountVT)); 4632 AddToWorklist(NewSHL.getNode()); 4633 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); 4634 } 4635 } 4636 } 4637 } 4638 4639 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 4640 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 4641 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && 4642 cast<BinaryWithFlagsSDNode>(N0)->Flags.hasExact()) { 4643 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4644 uint64_t C1 = N0C1->getZExtValue(); 4645 uint64_t C2 = N1C->getZExtValue(); 4646 SDLoc DL(N); 4647 if (C1 <= C2) 4648 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4649 DAG.getConstant(C2 - C1, DL, N1.getValueType())); 4650 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), 4651 DAG.getConstant(C1 - C2, DL, N1.getValueType())); 4652 } 4653 } 4654 4655 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or 4656 // (and (srl x, (sub c1, c2), MASK) 4657 // Only fold this if the inner shift has no other uses -- if it does, folding 4658 // this will increase the total number of instructions. 4659 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 4660 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4661 uint64_t c1 = N0C1->getZExtValue(); 4662 if (c1 < OpSizeInBits) { 4663 uint64_t c2 = N1C->getZExtValue(); 4664 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); 4665 SDValue Shift; 4666 if (c2 > c1) { 4667 Mask = Mask.shl(c2 - c1); 4668 SDLoc DL(N); 4669 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4670 DAG.getConstant(c2 - c1, DL, N1.getValueType())); 4671 } else { 4672 Mask = Mask.lshr(c1 - c2); 4673 SDLoc DL(N); 4674 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 4675 DAG.getConstant(c1 - c2, DL, N1.getValueType())); 4676 } 4677 SDLoc DL(N0); 4678 return DAG.getNode(ISD::AND, DL, VT, Shift, 4679 DAG.getConstant(Mask, DL, VT)); 4680 } 4681 } 4682 } 4683 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) 4684 if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) { 4685 unsigned BitSize = VT.getScalarSizeInBits(); 4686 SDLoc DL(N); 4687 SDValue HiBitsMask = 4688 DAG.getConstant(APInt::getHighBitsSet(BitSize, 4689 BitSize - N1C->getZExtValue()), 4690 DL, VT); 4691 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), 4692 HiBitsMask); 4693 } 4694 4695 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 4696 // Variant of version done on multiply, except mul by a power of 2 is turned 4697 // into a shift. 4698 APInt Val; 4699 if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() && 4700 (isa<ConstantSDNode>(N0.getOperand(1)) || 4701 ISD::isConstantSplatVector(N0.getOperand(1).getNode(), Val))) { 4702 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); 4703 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 4704 return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1); 4705 } 4706 4707 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) 4708 if (N1C && N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse()) { 4709 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4710 if (SDValue Folded = 4711 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, N0C1, N1C)) 4712 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Folded); 4713 } 4714 } 4715 4716 if (N1C && !N1C->isOpaque()) 4717 if (SDValue NewSHL = visitShiftByConstant(N, N1C)) 4718 return NewSHL; 4719 4720 return SDValue(); 4721 } 4722 4723 SDValue DAGCombiner::visitSRA(SDNode *N) { 4724 SDValue N0 = N->getOperand(0); 4725 SDValue N1 = N->getOperand(1); 4726 EVT VT = N0.getValueType(); 4727 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 4728 4729 // fold vector ops 4730 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4731 if (VT.isVector()) { 4732 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4733 return FoldedVOp; 4734 4735 N1C = isConstOrConstSplat(N1); 4736 } 4737 4738 // fold (sra c1, c2) -> (sra c1, c2) 4739 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4740 if (N0C && N1C && !N1C->isOpaque()) 4741 return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C); 4742 // fold (sra 0, x) -> 0 4743 if (isNullConstant(N0)) 4744 return N0; 4745 // fold (sra -1, x) -> -1 4746 if (isAllOnesConstant(N0)) 4747 return N0; 4748 // fold (sra x, c >= size(x)) -> undef 4749 if (N1C && N1C->getAPIntValue().uge(OpSizeInBits)) 4750 return DAG.getUNDEF(VT); 4751 // fold (sra x, 0) -> x 4752 if (N1C && N1C->isNullValue()) 4753 return N0; 4754 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports 4755 // sext_inreg. 4756 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { 4757 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); 4758 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); 4759 if (VT.isVector()) 4760 ExtVT = EVT::getVectorVT(*DAG.getContext(), 4761 ExtVT, VT.getVectorNumElements()); 4762 if ((!LegalOperations || 4763 TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) 4764 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 4765 N0.getOperand(0), DAG.getValueType(ExtVT)); 4766 } 4767 4768 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) 4769 if (N1C && N0.getOpcode() == ISD::SRA) { 4770 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4771 SDLoc DL(N); 4772 APInt c1 = N0C1->getAPIntValue(); 4773 APInt c2 = N1C->getAPIntValue(); 4774 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 4775 4776 APInt Sum = c1 + c2; 4777 if (Sum.uge(OpSizeInBits)) 4778 Sum = APInt(OpSizeInBits, OpSizeInBits - 1); 4779 4780 return DAG.getNode( 4781 ISD::SRA, DL, VT, N0.getOperand(0), 4782 DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType())); 4783 } 4784 } 4785 4786 // fold (sra (shl X, m), (sub result_size, n)) 4787 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for 4788 // result_size - n != m. 4789 // If truncate is free for the target sext(shl) is likely to result in better 4790 // code. 4791 if (N0.getOpcode() == ISD::SHL && N1C) { 4792 // Get the two constanst of the shifts, CN0 = m, CN = n. 4793 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); 4794 if (N01C) { 4795 LLVMContext &Ctx = *DAG.getContext(); 4796 // Determine what the truncate's result bitsize and type would be. 4797 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); 4798 4799 if (VT.isVector()) 4800 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); 4801 4802 // Determine the residual right-shift amount. 4803 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); 4804 4805 // If the shift is not a no-op (in which case this should be just a sign 4806 // extend already), the truncated to type is legal, sign_extend is legal 4807 // on that type, and the truncate to that type is both legal and free, 4808 // perform the transform. 4809 if ((ShiftAmt > 0) && 4810 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && 4811 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && 4812 TLI.isTruncateFree(VT, TruncVT)) { 4813 4814 SDLoc DL(N); 4815 SDValue Amt = DAG.getConstant(ShiftAmt, DL, 4816 getShiftAmountTy(N0.getOperand(0).getValueType())); 4817 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, 4818 N0.getOperand(0), Amt); 4819 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, 4820 Shift); 4821 return DAG.getNode(ISD::SIGN_EXTEND, DL, 4822 N->getValueType(0), Trunc); 4823 } 4824 } 4825 } 4826 4827 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). 4828 if (N1.getOpcode() == ISD::TRUNCATE && 4829 N1.getOperand(0).getOpcode() == ISD::AND) { 4830 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 4831 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); 4832 } 4833 4834 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) 4835 // if c1 is equal to the number of bits the trunc removes 4836 if (N0.getOpcode() == ISD::TRUNCATE && 4837 (N0.getOperand(0).getOpcode() == ISD::SRL || 4838 N0.getOperand(0).getOpcode() == ISD::SRA) && 4839 N0.getOperand(0).hasOneUse() && 4840 N0.getOperand(0).getOperand(1).hasOneUse() && 4841 N1C) { 4842 SDValue N0Op0 = N0.getOperand(0); 4843 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { 4844 unsigned LargeShiftVal = LargeShift->getZExtValue(); 4845 EVT LargeVT = N0Op0.getValueType(); 4846 4847 if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) { 4848 SDLoc DL(N); 4849 SDValue Amt = 4850 DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL, 4851 getShiftAmountTy(N0Op0.getOperand(0).getValueType())); 4852 SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT, 4853 N0Op0.getOperand(0), Amt); 4854 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); 4855 } 4856 } 4857 } 4858 4859 // Simplify, based on bits shifted out of the LHS. 4860 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4861 return SDValue(N, 0); 4862 4863 4864 // If the sign bit is known to be zero, switch this to a SRL. 4865 if (DAG.SignBitIsZero(N0)) 4866 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); 4867 4868 if (N1C && !N1C->isOpaque()) 4869 if (SDValue NewSRA = visitShiftByConstant(N, N1C)) 4870 return NewSRA; 4871 4872 return SDValue(); 4873 } 4874 4875 SDValue DAGCombiner::visitSRL(SDNode *N) { 4876 SDValue N0 = N->getOperand(0); 4877 SDValue N1 = N->getOperand(1); 4878 EVT VT = N0.getValueType(); 4879 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 4880 4881 // fold vector ops 4882 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4883 if (VT.isVector()) { 4884 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4885 return FoldedVOp; 4886 4887 N1C = isConstOrConstSplat(N1); 4888 } 4889 4890 // fold (srl c1, c2) -> c1 >>u c2 4891 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4892 if (N0C && N1C && !N1C->isOpaque()) 4893 return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C); 4894 // fold (srl 0, x) -> 0 4895 if (isNullConstant(N0)) 4896 return N0; 4897 // fold (srl x, c >= size(x)) -> undef 4898 if (N1C && N1C->getAPIntValue().uge(OpSizeInBits)) 4899 return DAG.getUNDEF(VT); 4900 // fold (srl x, 0) -> x 4901 if (N1C && N1C->isNullValue()) 4902 return N0; 4903 // if (srl x, c) is known to be zero, return 0 4904 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 4905 APInt::getAllOnesValue(OpSizeInBits))) 4906 return DAG.getConstant(0, SDLoc(N), VT); 4907 4908 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) 4909 if (N1C && N0.getOpcode() == ISD::SRL) { 4910 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4911 SDLoc DL(N); 4912 APInt c1 = N0C1->getAPIntValue(); 4913 APInt c2 = N1C->getAPIntValue(); 4914 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 4915 4916 APInt Sum = c1 + c2; 4917 if (Sum.uge(OpSizeInBits)) 4918 return DAG.getConstant(0, DL, VT); 4919 4920 return DAG.getNode( 4921 ISD::SRL, DL, VT, N0.getOperand(0), 4922 DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType())); 4923 } 4924 } 4925 4926 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) 4927 if (N1C && N0.getOpcode() == ISD::TRUNCATE && 4928 N0.getOperand(0).getOpcode() == ISD::SRL && 4929 isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) { 4930 uint64_t c1 = 4931 cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue(); 4932 uint64_t c2 = N1C->getZExtValue(); 4933 EVT InnerShiftVT = N0.getOperand(0).getValueType(); 4934 EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType(); 4935 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 4936 // This is only valid if the OpSizeInBits + c1 = size of inner shift. 4937 if (c1 + OpSizeInBits == InnerShiftSize) { 4938 SDLoc DL(N0); 4939 if (c1 + c2 >= InnerShiftSize) 4940 return DAG.getConstant(0, DL, VT); 4941 return DAG.getNode(ISD::TRUNCATE, DL, VT, 4942 DAG.getNode(ISD::SRL, DL, InnerShiftVT, 4943 N0.getOperand(0)->getOperand(0), 4944 DAG.getConstant(c1 + c2, DL, 4945 ShiftCountVT))); 4946 } 4947 } 4948 4949 // fold (srl (shl x, c), c) -> (and x, cst2) 4950 if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1) { 4951 unsigned BitSize = N0.getScalarValueSizeInBits(); 4952 if (BitSize <= 64) { 4953 uint64_t ShAmt = N1C->getZExtValue() + 64 - BitSize; 4954 SDLoc DL(N); 4955 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), 4956 DAG.getConstant(~0ULL >> ShAmt, DL, VT)); 4957 } 4958 } 4959 4960 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) 4961 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 4962 // Shifting in all undef bits? 4963 EVT SmallVT = N0.getOperand(0).getValueType(); 4964 unsigned BitSize = SmallVT.getScalarSizeInBits(); 4965 if (N1C->getZExtValue() >= BitSize) 4966 return DAG.getUNDEF(VT); 4967 4968 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { 4969 uint64_t ShiftAmt = N1C->getZExtValue(); 4970 SDLoc DL0(N0); 4971 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, 4972 N0.getOperand(0), 4973 DAG.getConstant(ShiftAmt, DL0, 4974 getShiftAmountTy(SmallVT))); 4975 AddToWorklist(SmallShift.getNode()); 4976 APInt Mask = APInt::getAllOnesValue(OpSizeInBits).lshr(ShiftAmt); 4977 SDLoc DL(N); 4978 return DAG.getNode(ISD::AND, DL, VT, 4979 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), 4980 DAG.getConstant(Mask, DL, VT)); 4981 } 4982 } 4983 4984 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign 4985 // bit, which is unmodified by sra. 4986 if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) { 4987 if (N0.getOpcode() == ISD::SRA) 4988 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); 4989 } 4990 4991 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). 4992 if (N1C && N0.getOpcode() == ISD::CTLZ && 4993 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { 4994 APInt KnownZero, KnownOne; 4995 DAG.computeKnownBits(N0.getOperand(0), KnownZero, KnownOne); 4996 4997 // If any of the input bits are KnownOne, then the input couldn't be all 4998 // zeros, thus the result of the srl will always be zero. 4999 if (KnownOne.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); 5000 5001 // If all of the bits input the to ctlz node are known to be zero, then 5002 // the result of the ctlz is "32" and the result of the shift is one. 5003 APInt UnknownBits = ~KnownZero; 5004 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); 5005 5006 // Otherwise, check to see if there is exactly one bit input to the ctlz. 5007 if ((UnknownBits & (UnknownBits - 1)) == 0) { 5008 // Okay, we know that only that the single bit specified by UnknownBits 5009 // could be set on input to the CTLZ node. If this bit is set, the SRL 5010 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair 5011 // to an SRL/XOR pair, which is likely to simplify more. 5012 unsigned ShAmt = UnknownBits.countTrailingZeros(); 5013 SDValue Op = N0.getOperand(0); 5014 5015 if (ShAmt) { 5016 SDLoc DL(N0); 5017 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 5018 DAG.getConstant(ShAmt, DL, 5019 getShiftAmountTy(Op.getValueType()))); 5020 AddToWorklist(Op.getNode()); 5021 } 5022 5023 SDLoc DL(N); 5024 return DAG.getNode(ISD::XOR, DL, VT, 5025 Op, DAG.getConstant(1, DL, VT)); 5026 } 5027 } 5028 5029 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). 5030 if (N1.getOpcode() == ISD::TRUNCATE && 5031 N1.getOperand(0).getOpcode() == ISD::AND) { 5032 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 5033 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); 5034 } 5035 5036 // fold operands of srl based on knowledge that the low bits are not 5037 // demanded. 5038 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 5039 return SDValue(N, 0); 5040 5041 if (N1C && !N1C->isOpaque()) 5042 if (SDValue NewSRL = visitShiftByConstant(N, N1C)) 5043 return NewSRL; 5044 5045 // Attempt to convert a srl of a load into a narrower zero-extending load. 5046 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 5047 return NarrowLoad; 5048 5049 // Here is a common situation. We want to optimize: 5050 // 5051 // %a = ... 5052 // %b = and i32 %a, 2 5053 // %c = srl i32 %b, 1 5054 // brcond i32 %c ... 5055 // 5056 // into 5057 // 5058 // %a = ... 5059 // %b = and %a, 2 5060 // %c = setcc eq %b, 0 5061 // brcond %c ... 5062 // 5063 // However when after the source operand of SRL is optimized into AND, the SRL 5064 // itself may not be optimized further. Look for it and add the BRCOND into 5065 // the worklist. 5066 if (N->hasOneUse()) { 5067 SDNode *Use = *N->use_begin(); 5068 if (Use->getOpcode() == ISD::BRCOND) 5069 AddToWorklist(Use); 5070 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { 5071 // Also look pass the truncate. 5072 Use = *Use->use_begin(); 5073 if (Use->getOpcode() == ISD::BRCOND) 5074 AddToWorklist(Use); 5075 } 5076 } 5077 5078 return SDValue(); 5079 } 5080 5081 SDValue DAGCombiner::visitBSWAP(SDNode *N) { 5082 SDValue N0 = N->getOperand(0); 5083 EVT VT = N->getValueType(0); 5084 5085 // fold (bswap c1) -> c2 5086 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5087 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); 5088 // fold (bswap (bswap x)) -> x 5089 if (N0.getOpcode() == ISD::BSWAP) 5090 return N0->getOperand(0); 5091 return SDValue(); 5092 } 5093 5094 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { 5095 SDValue N0 = N->getOperand(0); 5096 5097 // fold (bitreverse (bitreverse x)) -> x 5098 if (N0.getOpcode() == ISD::BITREVERSE) 5099 return N0.getOperand(0); 5100 return SDValue(); 5101 } 5102 5103 SDValue DAGCombiner::visitCTLZ(SDNode *N) { 5104 SDValue N0 = N->getOperand(0); 5105 EVT VT = N->getValueType(0); 5106 5107 // fold (ctlz c1) -> c2 5108 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5109 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); 5110 return SDValue(); 5111 } 5112 5113 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { 5114 SDValue N0 = N->getOperand(0); 5115 EVT VT = N->getValueType(0); 5116 5117 // fold (ctlz_zero_undef c1) -> c2 5118 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5119 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 5120 return SDValue(); 5121 } 5122 5123 SDValue DAGCombiner::visitCTTZ(SDNode *N) { 5124 SDValue N0 = N->getOperand(0); 5125 EVT VT = N->getValueType(0); 5126 5127 // fold (cttz c1) -> c2 5128 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5129 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); 5130 return SDValue(); 5131 } 5132 5133 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { 5134 SDValue N0 = N->getOperand(0); 5135 EVT VT = N->getValueType(0); 5136 5137 // fold (cttz_zero_undef c1) -> c2 5138 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5139 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 5140 return SDValue(); 5141 } 5142 5143 SDValue DAGCombiner::visitCTPOP(SDNode *N) { 5144 SDValue N0 = N->getOperand(0); 5145 EVT VT = N->getValueType(0); 5146 5147 // fold (ctpop c1) -> c2 5148 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5149 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); 5150 return SDValue(); 5151 } 5152 5153 5154 /// \brief Generate Min/Max node 5155 static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, 5156 SDValue RHS, SDValue True, SDValue False, 5157 ISD::CondCode CC, const TargetLowering &TLI, 5158 SelectionDAG &DAG) { 5159 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 5160 return SDValue(); 5161 5162 switch (CC) { 5163 case ISD::SETOLT: 5164 case ISD::SETOLE: 5165 case ISD::SETLT: 5166 case ISD::SETLE: 5167 case ISD::SETULT: 5168 case ISD::SETULE: { 5169 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; 5170 if (TLI.isOperationLegal(Opcode, VT)) 5171 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 5172 return SDValue(); 5173 } 5174 case ISD::SETOGT: 5175 case ISD::SETOGE: 5176 case ISD::SETGT: 5177 case ISD::SETGE: 5178 case ISD::SETUGT: 5179 case ISD::SETUGE: { 5180 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; 5181 if (TLI.isOperationLegal(Opcode, VT)) 5182 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 5183 return SDValue(); 5184 } 5185 default: 5186 return SDValue(); 5187 } 5188 } 5189 5190 // TODO: We should handle other cases of selecting between {-1,0,1} here. 5191 SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { 5192 SDValue Cond = N->getOperand(0); 5193 SDValue N1 = N->getOperand(1); 5194 SDValue N2 = N->getOperand(2); 5195 EVT VT = N->getValueType(0); 5196 EVT CondVT = Cond.getValueType(); 5197 SDLoc DL(N); 5198 5199 // fold (select Cond, 0, 1) -> (xor Cond, 1) 5200 // We can't do this reliably if integer based booleans have different contents 5201 // to floating point based booleans. This is because we can't tell whether we 5202 // have an integer-based boolean or a floating-point-based boolean unless we 5203 // can find the SETCC that produced it and inspect its operands. This is 5204 // fairly easy if C is the SETCC node, but it can potentially be 5205 // undiscoverable (or not reasonably discoverable). For example, it could be 5206 // in another basic block or it could require searching a complicated 5207 // expression. 5208 if (VT.isInteger() && 5209 (CondVT == MVT::i1 || (CondVT.isInteger() && 5210 TLI.getBooleanContents(false, true) == 5211 TargetLowering::ZeroOrOneBooleanContent && 5212 TLI.getBooleanContents(false, false) == 5213 TargetLowering::ZeroOrOneBooleanContent)) && 5214 isNullConstant(N1) && isOneConstant(N2)) { 5215 SDValue NotCond = DAG.getNode(ISD::XOR, DL, CondVT, Cond, 5216 DAG.getConstant(1, DL, CondVT)); 5217 if (VT.bitsEq(CondVT)) 5218 return NotCond; 5219 return DAG.getZExtOrTrunc(NotCond, DL, VT); 5220 } 5221 5222 return SDValue(); 5223 } 5224 5225 SDValue DAGCombiner::visitSELECT(SDNode *N) { 5226 SDValue N0 = N->getOperand(0); 5227 SDValue N1 = N->getOperand(1); 5228 SDValue N2 = N->getOperand(2); 5229 EVT VT = N->getValueType(0); 5230 EVT VT0 = N0.getValueType(); 5231 5232 // fold (select C, X, X) -> X 5233 if (N1 == N2) 5234 return N1; 5235 if (const ConstantSDNode *N0C = dyn_cast<const ConstantSDNode>(N0)) { 5236 // fold (select true, X, Y) -> X 5237 // fold (select false, X, Y) -> Y 5238 return !N0C->isNullValue() ? N1 : N2; 5239 } 5240 // fold (select C, 1, X) -> (or C, X) 5241 if (VT == MVT::i1 && isOneConstant(N1)) 5242 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); 5243 5244 if (SDValue V = foldSelectOfConstants(N)) 5245 return V; 5246 5247 // fold (select C, 0, X) -> (and (not C), X) 5248 if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { 5249 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 5250 AddToWorklist(NOTNode.getNode()); 5251 return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2); 5252 } 5253 // fold (select C, X, 1) -> (or (not C), X) 5254 if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { 5255 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 5256 AddToWorklist(NOTNode.getNode()); 5257 return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1); 5258 } 5259 // fold (select C, X, 0) -> (and C, X) 5260 if (VT == MVT::i1 && isNullConstant(N2)) 5261 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); 5262 // fold (select X, X, Y) -> (or X, Y) 5263 // fold (select X, 1, Y) -> (or X, Y) 5264 if (VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) 5265 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); 5266 // fold (select X, Y, X) -> (and X, Y) 5267 // fold (select X, Y, 0) -> (and X, Y) 5268 if (VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) 5269 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); 5270 5271 // If we can fold this based on the true/false value, do so. 5272 if (SimplifySelectOps(N, N1, N2)) 5273 return SDValue(N, 0); // Don't revisit N. 5274 5275 if (VT0 == MVT::i1) { 5276 // The code in this block deals with the following 2 equivalences: 5277 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) 5278 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) 5279 // The target can specify its prefered form with the 5280 // shouldNormalizeToSelectSequence() callback. However we always transform 5281 // to the right anyway if we find the inner select exists in the DAG anyway 5282 // and we always transform to the left side if we know that we can further 5283 // optimize the combination of the conditions. 5284 bool normalizeToSequence 5285 = TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); 5286 // select (and Cond0, Cond1), X, Y 5287 // -> select Cond0, (select Cond1, X, Y), Y 5288 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { 5289 SDValue Cond0 = N0->getOperand(0); 5290 SDValue Cond1 = N0->getOperand(1); 5291 SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), 5292 N1.getValueType(), Cond1, N1, N2); 5293 if (normalizeToSequence || !InnerSelect.use_empty()) 5294 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, 5295 InnerSelect, N2); 5296 } 5297 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) 5298 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { 5299 SDValue Cond0 = N0->getOperand(0); 5300 SDValue Cond1 = N0->getOperand(1); 5301 SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), 5302 N1.getValueType(), Cond1, N1, N2); 5303 if (normalizeToSequence || !InnerSelect.use_empty()) 5304 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, N1, 5305 InnerSelect); 5306 } 5307 5308 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y 5309 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { 5310 SDValue N1_0 = N1->getOperand(0); 5311 SDValue N1_1 = N1->getOperand(1); 5312 SDValue N1_2 = N1->getOperand(2); 5313 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { 5314 // Create the actual and node if we can generate good code for it. 5315 if (!normalizeToSequence) { 5316 SDValue And = DAG.getNode(ISD::AND, SDLoc(N), N0.getValueType(), 5317 N0, N1_0); 5318 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), And, 5319 N1_1, N2); 5320 } 5321 // Otherwise see if we can optimize the "and" to a better pattern. 5322 if (SDValue Combined = visitANDLike(N0, N1_0, N)) 5323 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, 5324 N1_1, N2); 5325 } 5326 } 5327 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y 5328 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { 5329 SDValue N2_0 = N2->getOperand(0); 5330 SDValue N2_1 = N2->getOperand(1); 5331 SDValue N2_2 = N2->getOperand(2); 5332 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { 5333 // Create the actual or node if we can generate good code for it. 5334 if (!normalizeToSequence) { 5335 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N), N0.getValueType(), 5336 N0, N2_0); 5337 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Or, 5338 N1, N2_2); 5339 } 5340 // Otherwise see if we can optimize to a better pattern. 5341 if (SDValue Combined = visitORLike(N0, N2_0, N)) 5342 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, 5343 N1, N2_2); 5344 } 5345 } 5346 } 5347 5348 // select (xor Cond, 1), X, Y -> select Cond, Y, X 5349 // select (xor Cond, 0), X, Y -> selext Cond, X, Y 5350 if (VT0 == MVT::i1) { 5351 if (N0->getOpcode() == ISD::XOR) { 5352 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) { 5353 SDValue Cond0 = N0->getOperand(0); 5354 if (C->isOne()) 5355 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), 5356 Cond0, N2, N1); 5357 else 5358 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), 5359 Cond0, N1, N2); 5360 } 5361 } 5362 } 5363 5364 // fold selects based on a setcc into other things, such as min/max/abs 5365 if (N0.getOpcode() == ISD::SETCC) { 5366 // select x, y (fcmp lt x, y) -> fminnum x, y 5367 // select x, y (fcmp gt x, y) -> fmaxnum x, y 5368 // 5369 // This is OK if we don't care about what happens if either operand is a 5370 // NaN. 5371 // 5372 5373 // FIXME: Instead of testing for UnsafeFPMath, this should be checking for 5374 // no signed zeros as well as no nans. 5375 const TargetOptions &Options = DAG.getTarget().Options; 5376 if (Options.UnsafeFPMath && 5377 VT.isFloatingPoint() && N0.hasOneUse() && 5378 DAG.isKnownNeverNaN(N1) && DAG.isKnownNeverNaN(N2)) { 5379 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 5380 5381 if (SDValue FMinMax = combineMinNumMaxNum(SDLoc(N), VT, N0.getOperand(0), 5382 N0.getOperand(1), N1, N2, CC, 5383 TLI, DAG)) 5384 return FMinMax; 5385 } 5386 5387 if ((!LegalOperations && 5388 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) || 5389 TLI.isOperationLegal(ISD::SELECT_CC, VT)) 5390 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, 5391 N0.getOperand(0), N0.getOperand(1), 5392 N1, N2, N0.getOperand(2)); 5393 return SimplifySelect(SDLoc(N), N0, N1, N2); 5394 } 5395 5396 return SDValue(); 5397 } 5398 5399 static 5400 std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) { 5401 SDLoc DL(N); 5402 EVT LoVT, HiVT; 5403 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); 5404 5405 // Split the inputs. 5406 SDValue Lo, Hi, LL, LH, RL, RH; 5407 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0); 5408 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1); 5409 5410 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2)); 5411 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2)); 5412 5413 return std::make_pair(Lo, Hi); 5414 } 5415 5416 // This function assumes all the vselect's arguments are CONCAT_VECTOR 5417 // nodes and that the condition is a BV of ConstantSDNodes (or undefs). 5418 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { 5419 SDLoc DL(N); 5420 SDValue Cond = N->getOperand(0); 5421 SDValue LHS = N->getOperand(1); 5422 SDValue RHS = N->getOperand(2); 5423 EVT VT = N->getValueType(0); 5424 int NumElems = VT.getVectorNumElements(); 5425 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && 5426 RHS.getOpcode() == ISD::CONCAT_VECTORS && 5427 Cond.getOpcode() == ISD::BUILD_VECTOR); 5428 5429 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about 5430 // binary ones here. 5431 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) 5432 return SDValue(); 5433 5434 // We're sure we have an even number of elements due to the 5435 // concat_vectors we have as arguments to vselect. 5436 // Skip BV elements until we find one that's not an UNDEF 5437 // After we find an UNDEF element, keep looping until we get to half the 5438 // length of the BV and see if all the non-undef nodes are the same. 5439 ConstantSDNode *BottomHalf = nullptr; 5440 for (int i = 0; i < NumElems / 2; ++i) { 5441 if (Cond->getOperand(i)->isUndef()) 5442 continue; 5443 5444 if (BottomHalf == nullptr) 5445 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 5446 else if (Cond->getOperand(i).getNode() != BottomHalf) 5447 return SDValue(); 5448 } 5449 5450 // Do the same for the second half of the BuildVector 5451 ConstantSDNode *TopHalf = nullptr; 5452 for (int i = NumElems / 2; i < NumElems; ++i) { 5453 if (Cond->getOperand(i)->isUndef()) 5454 continue; 5455 5456 if (TopHalf == nullptr) 5457 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 5458 else if (Cond->getOperand(i).getNode() != TopHalf) 5459 return SDValue(); 5460 } 5461 5462 assert(TopHalf && BottomHalf && 5463 "One half of the selector was all UNDEFs and the other was all the " 5464 "same value. This should have been addressed before this function."); 5465 return DAG.getNode( 5466 ISD::CONCAT_VECTORS, DL, VT, 5467 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), 5468 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); 5469 } 5470 5471 SDValue DAGCombiner::visitMSCATTER(SDNode *N) { 5472 5473 if (Level >= AfterLegalizeTypes) 5474 return SDValue(); 5475 5476 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); 5477 SDValue Mask = MSC->getMask(); 5478 SDValue Data = MSC->getValue(); 5479 SDLoc DL(N); 5480 5481 // If the MSCATTER data type requires splitting and the mask is provided by a 5482 // SETCC, then split both nodes and its operands before legalization. This 5483 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5484 // and enables future optimizations (e.g. min/max pattern matching on X86). 5485 if (Mask.getOpcode() != ISD::SETCC) 5486 return SDValue(); 5487 5488 // Check if any splitting is required. 5489 if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != 5490 TargetLowering::TypeSplitVector) 5491 return SDValue(); 5492 SDValue MaskLo, MaskHi, Lo, Hi; 5493 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5494 5495 EVT LoVT, HiVT; 5496 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0)); 5497 5498 SDValue Chain = MSC->getChain(); 5499 5500 EVT MemoryVT = MSC->getMemoryVT(); 5501 unsigned Alignment = MSC->getOriginalAlignment(); 5502 5503 EVT LoMemVT, HiMemVT; 5504 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5505 5506 SDValue DataLo, DataHi; 5507 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); 5508 5509 SDValue BasePtr = MSC->getBasePtr(); 5510 SDValue IndexLo, IndexHi; 5511 std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL); 5512 5513 MachineMemOperand *MMO = DAG.getMachineFunction(). 5514 getMachineMemOperand(MSC->getPointerInfo(), 5515 MachineMemOperand::MOStore, LoMemVT.getStoreSize(), 5516 Alignment, MSC->getAAInfo(), MSC->getRanges()); 5517 5518 SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo }; 5519 Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(), 5520 DL, OpsLo, MMO); 5521 5522 SDValue OpsHi[] = {Chain, DataHi, MaskHi, BasePtr, IndexHi}; 5523 Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(), 5524 DL, OpsHi, MMO); 5525 5526 AddToWorklist(Lo.getNode()); 5527 AddToWorklist(Hi.getNode()); 5528 5529 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 5530 } 5531 5532 SDValue DAGCombiner::visitMSTORE(SDNode *N) { 5533 5534 if (Level >= AfterLegalizeTypes) 5535 return SDValue(); 5536 5537 MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N); 5538 SDValue Mask = MST->getMask(); 5539 SDValue Data = MST->getValue(); 5540 SDLoc DL(N); 5541 5542 // If the MSTORE data type requires splitting and the mask is provided by a 5543 // SETCC, then split both nodes and its operands before legalization. This 5544 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5545 // and enables future optimizations (e.g. min/max pattern matching on X86). 5546 if (Mask.getOpcode() == ISD::SETCC) { 5547 5548 // Check if any splitting is required. 5549 if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != 5550 TargetLowering::TypeSplitVector) 5551 return SDValue(); 5552 5553 SDValue MaskLo, MaskHi, Lo, Hi; 5554 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5555 5556 EVT LoVT, HiVT; 5557 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MST->getValueType(0)); 5558 5559 SDValue Chain = MST->getChain(); 5560 SDValue Ptr = MST->getBasePtr(); 5561 5562 EVT MemoryVT = MST->getMemoryVT(); 5563 unsigned Alignment = MST->getOriginalAlignment(); 5564 5565 // if Alignment is equal to the vector size, 5566 // take the half of it for the second part 5567 unsigned SecondHalfAlignment = 5568 (Alignment == Data->getValueType(0).getSizeInBits()/8) ? 5569 Alignment/2 : Alignment; 5570 5571 EVT LoMemVT, HiMemVT; 5572 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5573 5574 SDValue DataLo, DataHi; 5575 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); 5576 5577 MachineMemOperand *MMO = DAG.getMachineFunction(). 5578 getMachineMemOperand(MST->getPointerInfo(), 5579 MachineMemOperand::MOStore, LoMemVT.getStoreSize(), 5580 Alignment, MST->getAAInfo(), MST->getRanges()); 5581 5582 Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO, 5583 MST->isTruncatingStore()); 5584 5585 unsigned IncrementSize = LoMemVT.getSizeInBits()/8; 5586 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 5587 DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); 5588 5589 MMO = DAG.getMachineFunction(). 5590 getMachineMemOperand(MST->getPointerInfo(), 5591 MachineMemOperand::MOStore, HiMemVT.getStoreSize(), 5592 SecondHalfAlignment, MST->getAAInfo(), 5593 MST->getRanges()); 5594 5595 Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO, 5596 MST->isTruncatingStore()); 5597 5598 AddToWorklist(Lo.getNode()); 5599 AddToWorklist(Hi.getNode()); 5600 5601 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 5602 } 5603 return SDValue(); 5604 } 5605 5606 SDValue DAGCombiner::visitMGATHER(SDNode *N) { 5607 5608 if (Level >= AfterLegalizeTypes) 5609 return SDValue(); 5610 5611 MaskedGatherSDNode *MGT = dyn_cast<MaskedGatherSDNode>(N); 5612 SDValue Mask = MGT->getMask(); 5613 SDLoc DL(N); 5614 5615 // If the MGATHER result requires splitting and the mask is provided by a 5616 // SETCC, then split both nodes and its operands before legalization. This 5617 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5618 // and enables future optimizations (e.g. min/max pattern matching on X86). 5619 5620 if (Mask.getOpcode() != ISD::SETCC) 5621 return SDValue(); 5622 5623 EVT VT = N->getValueType(0); 5624 5625 // Check if any splitting is required. 5626 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5627 TargetLowering::TypeSplitVector) 5628 return SDValue(); 5629 5630 SDValue MaskLo, MaskHi, Lo, Hi; 5631 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5632 5633 SDValue Src0 = MGT->getValue(); 5634 SDValue Src0Lo, Src0Hi; 5635 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); 5636 5637 EVT LoVT, HiVT; 5638 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 5639 5640 SDValue Chain = MGT->getChain(); 5641 EVT MemoryVT = MGT->getMemoryVT(); 5642 unsigned Alignment = MGT->getOriginalAlignment(); 5643 5644 EVT LoMemVT, HiMemVT; 5645 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5646 5647 SDValue BasePtr = MGT->getBasePtr(); 5648 SDValue Index = MGT->getIndex(); 5649 SDValue IndexLo, IndexHi; 5650 std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL); 5651 5652 MachineMemOperand *MMO = DAG.getMachineFunction(). 5653 getMachineMemOperand(MGT->getPointerInfo(), 5654 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), 5655 Alignment, MGT->getAAInfo(), MGT->getRanges()); 5656 5657 SDValue OpsLo[] = { Chain, Src0Lo, MaskLo, BasePtr, IndexLo }; 5658 Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo, 5659 MMO); 5660 5661 SDValue OpsHi[] = {Chain, Src0Hi, MaskHi, BasePtr, IndexHi}; 5662 Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi, 5663 MMO); 5664 5665 AddToWorklist(Lo.getNode()); 5666 AddToWorklist(Hi.getNode()); 5667 5668 // Build a factor node to remember that this load is independent of the 5669 // other one. 5670 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), 5671 Hi.getValue(1)); 5672 5673 // Legalized the chain result - switch anything that used the old chain to 5674 // use the new one. 5675 DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain); 5676 5677 SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5678 5679 SDValue RetOps[] = { GatherRes, Chain }; 5680 return DAG.getMergeValues(RetOps, DL); 5681 } 5682 5683 SDValue DAGCombiner::visitMLOAD(SDNode *N) { 5684 5685 if (Level >= AfterLegalizeTypes) 5686 return SDValue(); 5687 5688 MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N); 5689 SDValue Mask = MLD->getMask(); 5690 SDLoc DL(N); 5691 5692 // If the MLOAD result requires splitting and the mask is provided by a 5693 // SETCC, then split both nodes and its operands before legalization. This 5694 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5695 // and enables future optimizations (e.g. min/max pattern matching on X86). 5696 5697 if (Mask.getOpcode() == ISD::SETCC) { 5698 EVT VT = N->getValueType(0); 5699 5700 // Check if any splitting is required. 5701 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5702 TargetLowering::TypeSplitVector) 5703 return SDValue(); 5704 5705 SDValue MaskLo, MaskHi, Lo, Hi; 5706 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5707 5708 SDValue Src0 = MLD->getSrc0(); 5709 SDValue Src0Lo, Src0Hi; 5710 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); 5711 5712 EVT LoVT, HiVT; 5713 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0)); 5714 5715 SDValue Chain = MLD->getChain(); 5716 SDValue Ptr = MLD->getBasePtr(); 5717 EVT MemoryVT = MLD->getMemoryVT(); 5718 unsigned Alignment = MLD->getOriginalAlignment(); 5719 5720 // if Alignment is equal to the vector size, 5721 // take the half of it for the second part 5722 unsigned SecondHalfAlignment = 5723 (Alignment == MLD->getValueType(0).getSizeInBits()/8) ? 5724 Alignment/2 : Alignment; 5725 5726 EVT LoMemVT, HiMemVT; 5727 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5728 5729 MachineMemOperand *MMO = DAG.getMachineFunction(). 5730 getMachineMemOperand(MLD->getPointerInfo(), 5731 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), 5732 Alignment, MLD->getAAInfo(), MLD->getRanges()); 5733 5734 Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, LoMemVT, MMO, 5735 ISD::NON_EXTLOAD); 5736 5737 unsigned IncrementSize = LoMemVT.getSizeInBits()/8; 5738 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 5739 DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); 5740 5741 MMO = DAG.getMachineFunction(). 5742 getMachineMemOperand(MLD->getPointerInfo(), 5743 MachineMemOperand::MOLoad, HiMemVT.getStoreSize(), 5744 SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges()); 5745 5746 Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, HiMemVT, MMO, 5747 ISD::NON_EXTLOAD); 5748 5749 AddToWorklist(Lo.getNode()); 5750 AddToWorklist(Hi.getNode()); 5751 5752 // Build a factor node to remember that this load is independent of the 5753 // other one. 5754 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), 5755 Hi.getValue(1)); 5756 5757 // Legalized the chain result - switch anything that used the old chain to 5758 // use the new one. 5759 DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain); 5760 5761 SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5762 5763 SDValue RetOps[] = { LoadRes, Chain }; 5764 return DAG.getMergeValues(RetOps, DL); 5765 } 5766 return SDValue(); 5767 } 5768 5769 SDValue DAGCombiner::visitVSELECT(SDNode *N) { 5770 SDValue N0 = N->getOperand(0); 5771 SDValue N1 = N->getOperand(1); 5772 SDValue N2 = N->getOperand(2); 5773 SDLoc DL(N); 5774 5775 // Canonicalize integer abs. 5776 // vselect (setg[te] X, 0), X, -X -> 5777 // vselect (setgt X, -1), X, -X -> 5778 // vselect (setl[te] X, 0), -X, X -> 5779 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 5780 if (N0.getOpcode() == ISD::SETCC) { 5781 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 5782 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 5783 bool isAbs = false; 5784 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); 5785 5786 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || 5787 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && 5788 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) 5789 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); 5790 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && 5791 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) 5792 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 5793 5794 if (isAbs) { 5795 EVT VT = LHS.getValueType(); 5796 SDValue Shift = DAG.getNode( 5797 ISD::SRA, DL, VT, LHS, 5798 DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT)); 5799 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); 5800 AddToWorklist(Shift.getNode()); 5801 AddToWorklist(Add.getNode()); 5802 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); 5803 } 5804 } 5805 5806 if (SimplifySelectOps(N, N1, N2)) 5807 return SDValue(N, 0); // Don't revisit N. 5808 5809 // If the VSELECT result requires splitting and the mask is provided by a 5810 // SETCC, then split both nodes and its operands before legalization. This 5811 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5812 // and enables future optimizations (e.g. min/max pattern matching on X86). 5813 if (N0.getOpcode() == ISD::SETCC) { 5814 EVT VT = N->getValueType(0); 5815 5816 // Check if any splitting is required. 5817 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5818 TargetLowering::TypeSplitVector) 5819 return SDValue(); 5820 5821 SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH; 5822 std::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG); 5823 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 1); 5824 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 2); 5825 5826 Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL); 5827 Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH); 5828 5829 // Add the new VSELECT nodes to the work list in case they need to be split 5830 // again. 5831 AddToWorklist(Lo.getNode()); 5832 AddToWorklist(Hi.getNode()); 5833 5834 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5835 } 5836 5837 // Fold (vselect (build_vector all_ones), N1, N2) -> N1 5838 if (ISD::isBuildVectorAllOnes(N0.getNode())) 5839 return N1; 5840 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 5841 if (ISD::isBuildVectorAllZeros(N0.getNode())) 5842 return N2; 5843 5844 // The ConvertSelectToConcatVector function is assuming both the above 5845 // checks for (vselect (build_vector all{ones,zeros) ...) have been made 5846 // and addressed. 5847 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 5848 N2.getOpcode() == ISD::CONCAT_VECTORS && 5849 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 5850 if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) 5851 return CV; 5852 } 5853 5854 return SDValue(); 5855 } 5856 5857 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { 5858 SDValue N0 = N->getOperand(0); 5859 SDValue N1 = N->getOperand(1); 5860 SDValue N2 = N->getOperand(2); 5861 SDValue N3 = N->getOperand(3); 5862 SDValue N4 = N->getOperand(4); 5863 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); 5864 5865 // fold select_cc lhs, rhs, x, x, cc -> x 5866 if (N2 == N3) 5867 return N2; 5868 5869 // Determine if the condition we're dealing with is constant 5870 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, 5871 CC, SDLoc(N), false)) { 5872 AddToWorklist(SCC.getNode()); 5873 5874 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { 5875 if (!SCCC->isNullValue()) 5876 return N2; // cond always true -> true val 5877 else 5878 return N3; // cond always false -> false val 5879 } else if (SCC->isUndef()) { 5880 // When the condition is UNDEF, just return the first operand. This is 5881 // coherent the DAG creation, no setcc node is created in this case 5882 return N2; 5883 } else if (SCC.getOpcode() == ISD::SETCC) { 5884 // Fold to a simpler select_cc 5885 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(), 5886 SCC.getOperand(0), SCC.getOperand(1), N2, N3, 5887 SCC.getOperand(2)); 5888 } 5889 } 5890 5891 // If we can fold this based on the true/false value, do so. 5892 if (SimplifySelectOps(N, N2, N3)) 5893 return SDValue(N, 0); // Don't revisit N. 5894 5895 // fold select_cc into other things, such as min/max/abs 5896 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); 5897 } 5898 5899 SDValue DAGCombiner::visitSETCC(SDNode *N) { 5900 return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), 5901 cast<CondCodeSDNode>(N->getOperand(2))->get(), 5902 SDLoc(N)); 5903 } 5904 5905 SDValue DAGCombiner::visitSETCCE(SDNode *N) { 5906 SDValue LHS = N->getOperand(0); 5907 SDValue RHS = N->getOperand(1); 5908 SDValue Carry = N->getOperand(2); 5909 SDValue Cond = N->getOperand(3); 5910 5911 // If Carry is false, fold to a regular SETCC. 5912 if (Carry.getOpcode() == ISD::CARRY_FALSE) 5913 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); 5914 5915 return SDValue(); 5916 } 5917 5918 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or 5919 /// a build_vector of constants. 5920 /// This function is called by the DAGCombiner when visiting sext/zext/aext 5921 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 5922 /// Vector extends are not folded if operations are legal; this is to 5923 /// avoid introducing illegal build_vector dag nodes. 5924 static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, 5925 SelectionDAG &DAG, bool LegalTypes, 5926 bool LegalOperations) { 5927 unsigned Opcode = N->getOpcode(); 5928 SDValue N0 = N->getOperand(0); 5929 EVT VT = N->getValueType(0); 5930 5931 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 5932 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5933 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) 5934 && "Expected EXTEND dag node in input!"); 5935 5936 // fold (sext c1) -> c1 5937 // fold (zext c1) -> c1 5938 // fold (aext c1) -> c1 5939 if (isa<ConstantSDNode>(N0)) 5940 return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode(); 5941 5942 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) 5943 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) 5944 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) 5945 EVT SVT = VT.getScalarType(); 5946 if (!(VT.isVector() && 5947 (!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) && 5948 ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) 5949 return nullptr; 5950 5951 // We can fold this node into a build_vector. 5952 unsigned VTBits = SVT.getSizeInBits(); 5953 unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); 5954 SmallVector<SDValue, 8> Elts; 5955 unsigned NumElts = VT.getVectorNumElements(); 5956 SDLoc DL(N); 5957 5958 for (unsigned i=0; i != NumElts; ++i) { 5959 SDValue Op = N0->getOperand(i); 5960 if (Op->isUndef()) { 5961 Elts.push_back(DAG.getUNDEF(SVT)); 5962 continue; 5963 } 5964 5965 SDLoc DL(Op); 5966 // Get the constant value and if needed trunc it to the size of the type. 5967 // Nodes like build_vector might have constants wider than the scalar type. 5968 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); 5969 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 5970 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); 5971 else 5972 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); 5973 } 5974 5975 return DAG.getBuildVector(VT, DL, Elts).getNode(); 5976 } 5977 5978 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: 5979 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" 5980 // transformation. Returns true if extension are possible and the above 5981 // mentioned transformation is profitable. 5982 static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0, 5983 unsigned ExtOpc, 5984 SmallVectorImpl<SDNode *> &ExtendNodes, 5985 const TargetLowering &TLI) { 5986 bool HasCopyToRegUses = false; 5987 bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType()); 5988 for (SDNode::use_iterator UI = N0.getNode()->use_begin(), 5989 UE = N0.getNode()->use_end(); 5990 UI != UE; ++UI) { 5991 SDNode *User = *UI; 5992 if (User == N) 5993 continue; 5994 if (UI.getUse().getResNo() != N0.getResNo()) 5995 continue; 5996 // FIXME: Only extend SETCC N, N and SETCC N, c for now. 5997 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { 5998 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); 5999 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) 6000 // Sign bits will be lost after a zext. 6001 return false; 6002 bool Add = false; 6003 for (unsigned i = 0; i != 2; ++i) { 6004 SDValue UseOp = User->getOperand(i); 6005 if (UseOp == N0) 6006 continue; 6007 if (!isa<ConstantSDNode>(UseOp)) 6008 return false; 6009 Add = true; 6010 } 6011 if (Add) 6012 ExtendNodes.push_back(User); 6013 continue; 6014 } 6015 // If truncates aren't free and there are users we can't 6016 // extend, it isn't worthwhile. 6017 if (!isTruncFree) 6018 return false; 6019 // Remember if this value is live-out. 6020 if (User->getOpcode() == ISD::CopyToReg) 6021 HasCopyToRegUses = true; 6022 } 6023 6024 if (HasCopyToRegUses) { 6025 bool BothLiveOut = false; 6026 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6027 UI != UE; ++UI) { 6028 SDUse &Use = UI.getUse(); 6029 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { 6030 BothLiveOut = true; 6031 break; 6032 } 6033 } 6034 if (BothLiveOut) 6035 // Both unextended and extended values are live out. There had better be 6036 // a good reason for the transformation. 6037 return ExtendNodes.size(); 6038 } 6039 return true; 6040 } 6041 6042 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 6043 SDValue Trunc, SDValue ExtLoad, 6044 const SDLoc &DL, ISD::NodeType ExtType) { 6045 // Extend SetCC uses if necessary. 6046 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { 6047 SDNode *SetCC = SetCCs[i]; 6048 SmallVector<SDValue, 4> Ops; 6049 6050 for (unsigned j = 0; j != 2; ++j) { 6051 SDValue SOp = SetCC->getOperand(j); 6052 if (SOp == Trunc) 6053 Ops.push_back(ExtLoad); 6054 else 6055 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); 6056 } 6057 6058 Ops.push_back(SetCC->getOperand(2)); 6059 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6060 } 6061 } 6062 6063 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). 6064 SDValue DAGCombiner::CombineExtLoad(SDNode *N) { 6065 SDValue N0 = N->getOperand(0); 6066 EVT DstVT = N->getValueType(0); 6067 EVT SrcVT = N0.getValueType(); 6068 6069 assert((N->getOpcode() == ISD::SIGN_EXTEND || 6070 N->getOpcode() == ISD::ZERO_EXTEND) && 6071 "Unexpected node type (not an extend)!"); 6072 6073 // fold (sext (load x)) to multiple smaller sextloads; same for zext. 6074 // For example, on a target with legal v4i32, but illegal v8i32, turn: 6075 // (v8i32 (sext (v8i16 (load x)))) 6076 // into: 6077 // (v8i32 (concat_vectors (v4i32 (sextload x)), 6078 // (v4i32 (sextload (x + 16))))) 6079 // Where uses of the original load, i.e.: 6080 // (v8i16 (load x)) 6081 // are replaced with: 6082 // (v8i16 (truncate 6083 // (v8i32 (concat_vectors (v4i32 (sextload x)), 6084 // (v4i32 (sextload (x + 16))))))) 6085 // 6086 // This combine is only applicable to illegal, but splittable, vectors. 6087 // All legal types, and illegal non-vector types, are handled elsewhere. 6088 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. 6089 // 6090 if (N0->getOpcode() != ISD::LOAD) 6091 return SDValue(); 6092 6093 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6094 6095 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || 6096 !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() || 6097 !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 6098 return SDValue(); 6099 6100 SmallVector<SDNode *, 4> SetCCs; 6101 if (!ExtendUsesToFormExtLoad(N, N0, N->getOpcode(), SetCCs, TLI)) 6102 return SDValue(); 6103 6104 ISD::LoadExtType ExtType = 6105 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 6106 6107 // Try to split the vector types to get down to legal types. 6108 EVT SplitSrcVT = SrcVT; 6109 EVT SplitDstVT = DstVT; 6110 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && 6111 SplitSrcVT.getVectorNumElements() > 1) { 6112 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; 6113 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; 6114 } 6115 6116 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) 6117 return SDValue(); 6118 6119 SDLoc DL(N); 6120 const unsigned NumSplits = 6121 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); 6122 const unsigned Stride = SplitSrcVT.getStoreSize(); 6123 SmallVector<SDValue, 4> Loads; 6124 SmallVector<SDValue, 4> Chains; 6125 6126 SDValue BasePtr = LN0->getBasePtr(); 6127 for (unsigned Idx = 0; Idx < NumSplits; Idx++) { 6128 const unsigned Offset = Idx * Stride; 6129 const unsigned Align = MinAlign(LN0->getAlignment(), Offset); 6130 6131 SDValue SplitLoad = DAG.getExtLoad( 6132 ExtType, DL, SplitDstVT, LN0->getChain(), BasePtr, 6133 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, 6134 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 6135 6136 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, 6137 DAG.getConstant(Stride, DL, BasePtr.getValueType())); 6138 6139 Loads.push_back(SplitLoad.getValue(0)); 6140 Chains.push_back(SplitLoad.getValue(1)); 6141 } 6142 6143 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 6144 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); 6145 6146 CombineTo(N, NewValue); 6147 6148 // Replace uses of the original load (before extension) 6149 // with a truncate of the concatenated sextloaded vectors. 6150 SDValue Trunc = 6151 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); 6152 CombineTo(N0.getNode(), Trunc, NewChain); 6153 ExtendSetCCUses(SetCCs, Trunc, NewValue, DL, 6154 (ISD::NodeType)N->getOpcode()); 6155 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6156 } 6157 6158 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { 6159 SDValue N0 = N->getOperand(0); 6160 EVT VT = N->getValueType(0); 6161 6162 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6163 LegalOperations)) 6164 return SDValue(Res, 0); 6165 6166 // fold (sext (sext x)) -> (sext x) 6167 // fold (sext (aext x)) -> (sext x) 6168 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 6169 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, 6170 N0.getOperand(0)); 6171 6172 if (N0.getOpcode() == ISD::TRUNCATE) { 6173 // fold (sext (truncate (load x))) -> (sext (smaller load x)) 6174 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) 6175 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6176 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6177 if (NarrowLoad.getNode() != N0.getNode()) { 6178 CombineTo(N0.getNode(), NarrowLoad); 6179 // CombineTo deleted the truncate, if needed, but not what's under it. 6180 AddToWorklist(oye); 6181 } 6182 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6183 } 6184 6185 // See if the value being truncated is already sign extended. If so, just 6186 // eliminate the trunc/sext pair. 6187 SDValue Op = N0.getOperand(0); 6188 unsigned OpBits = Op.getScalarValueSizeInBits(); 6189 unsigned MidBits = N0.getScalarValueSizeInBits(); 6190 unsigned DestBits = VT.getScalarSizeInBits(); 6191 unsigned NumSignBits = DAG.ComputeNumSignBits(Op); 6192 6193 if (OpBits == DestBits) { 6194 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign 6195 // bits, it is already ready. 6196 if (NumSignBits > DestBits-MidBits) 6197 return Op; 6198 } else if (OpBits < DestBits) { 6199 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign 6200 // bits, just sext from i32. 6201 if (NumSignBits > OpBits-MidBits) 6202 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op); 6203 } else { 6204 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign 6205 // bits, just truncate to i32. 6206 if (NumSignBits > OpBits-MidBits) 6207 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6208 } 6209 6210 // fold (sext (truncate x)) -> (sextinreg x). 6211 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, 6212 N0.getValueType())) { 6213 if (OpBits < DestBits) 6214 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); 6215 else if (OpBits > DestBits) 6216 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); 6217 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op, 6218 DAG.getValueType(N0.getValueType())); 6219 } 6220 } 6221 6222 // fold (sext (load x)) -> (sext (truncate (sextload x))) 6223 // Only generate vector extloads when 1) they're legal, and 2) they are 6224 // deemed desirable by the target. 6225 if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6226 ((!LegalOperations && !VT.isVector() && 6227 !cast<LoadSDNode>(N0)->isVolatile()) || 6228 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()))) { 6229 bool DoXform = true; 6230 SmallVector<SDNode*, 4> SetCCs; 6231 if (!N0.hasOneUse()) 6232 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI); 6233 if (VT.isVector()) 6234 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 6235 if (DoXform) { 6236 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6237 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6238 LN0->getChain(), 6239 LN0->getBasePtr(), N0.getValueType(), 6240 LN0->getMemOperand()); 6241 CombineTo(N, ExtLoad); 6242 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6243 N0.getValueType(), ExtLoad); 6244 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6245 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6246 ISD::SIGN_EXTEND); 6247 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6248 } 6249 } 6250 6251 // fold (sext (load x)) to multiple smaller sextloads. 6252 // Only on illegal but splittable vectors. 6253 if (SDValue ExtLoad = CombineExtLoad(N)) 6254 return ExtLoad; 6255 6256 // fold (sext (sextload x)) -> (sext (truncate (sextload x))) 6257 // fold (sext ( extload x)) -> (sext (truncate (sextload x))) 6258 if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && 6259 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 6260 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6261 EVT MemVT = LN0->getMemoryVT(); 6262 if ((!LegalOperations && !LN0->isVolatile()) || 6263 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT)) { 6264 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6265 LN0->getChain(), 6266 LN0->getBasePtr(), MemVT, 6267 LN0->getMemOperand()); 6268 CombineTo(N, ExtLoad); 6269 CombineTo(N0.getNode(), 6270 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6271 N0.getValueType(), ExtLoad), 6272 ExtLoad.getValue(1)); 6273 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6274 } 6275 } 6276 6277 // fold (sext (and/or/xor (load x), cst)) -> 6278 // (and/or/xor (sextload x), (sext cst)) 6279 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 6280 N0.getOpcode() == ISD::XOR) && 6281 isa<LoadSDNode>(N0.getOperand(0)) && 6282 N0.getOperand(1).getOpcode() == ISD::Constant && 6283 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()) && 6284 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 6285 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); 6286 if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) { 6287 bool DoXform = true; 6288 SmallVector<SDNode*, 4> SetCCs; 6289 if (!N0.hasOneUse()) 6290 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND, 6291 SetCCs, TLI); 6292 if (DoXform) { 6293 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT, 6294 LN0->getChain(), LN0->getBasePtr(), 6295 LN0->getMemoryVT(), 6296 LN0->getMemOperand()); 6297 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6298 Mask = Mask.sext(VT.getSizeInBits()); 6299 SDLoc DL(N); 6300 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 6301 ExtLoad, DAG.getConstant(Mask, DL, VT)); 6302 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, 6303 SDLoc(N0.getOperand(0)), 6304 N0.getOperand(0).getValueType(), ExtLoad); 6305 CombineTo(N, And); 6306 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); 6307 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, 6308 ISD::SIGN_EXTEND); 6309 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6310 } 6311 } 6312 } 6313 6314 if (N0.getOpcode() == ISD::SETCC) { 6315 EVT N0VT = N0.getOperand(0).getValueType(); 6316 // sext(setcc) -> sext_in_reg(vsetcc) for vectors. 6317 // Only do this before legalize for now. 6318 if (VT.isVector() && !LegalOperations && 6319 TLI.getBooleanContents(N0VT) == 6320 TargetLowering::ZeroOrNegativeOneBooleanContent) { 6321 // On some architectures (such as SSE/NEON/etc) the SETCC result type is 6322 // of the same size as the compared operands. Only optimize sext(setcc()) 6323 // if this is the case. 6324 EVT SVT = getSetCCResultType(N0VT); 6325 6326 // We know that the # elements of the results is the same as the 6327 // # elements of the compare (and the # elements of the compare result 6328 // for that matter). Check to see that they are the same size. If so, 6329 // we know that the element size of the sext'd result matches the 6330 // element size of the compare operands. 6331 if (VT.getSizeInBits() == SVT.getSizeInBits()) 6332 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 6333 N0.getOperand(1), 6334 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6335 6336 // If the desired elements are smaller or larger than the source 6337 // elements we can use a matching integer vector type and then 6338 // truncate/sign extend 6339 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); 6340 if (SVT == MatchingVectorType) { 6341 SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType, 6342 N0.getOperand(0), N0.getOperand(1), 6343 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6344 return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT); 6345 } 6346 } 6347 6348 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) 6349 // Here, T can be 1 or -1, depending on the type of the setcc and 6350 // getBooleanContents(). 6351 unsigned SetCCWidth = N0.getScalarValueSizeInBits(); 6352 6353 SDLoc DL(N); 6354 // To determine the "true" side of the select, we need to know the high bit 6355 // of the value returned by the setcc if it evaluates to true. 6356 // If the type of the setcc is i1, then the true case of the select is just 6357 // sext(i1 1), that is, -1. 6358 // If the type of the setcc is larger (say, i8) then the value of the high 6359 // bit depends on getBooleanContents(). So, ask TLI for a real "true" value 6360 // of the appropriate width. 6361 SDValue ExtTrueVal = 6362 (SetCCWidth == 1) 6363 ? DAG.getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()), 6364 DL, VT) 6365 : TLI.getConstTrueVal(DAG, VT, DL); 6366 6367 if (SDValue SCC = SimplifySelectCC( 6368 DL, N0.getOperand(0), N0.getOperand(1), ExtTrueVal, 6369 DAG.getConstant(0, DL, VT), 6370 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 6371 return SCC; 6372 6373 if (!VT.isVector()) { 6374 EVT SetCCVT = getSetCCResultType(N0.getOperand(0).getValueType()); 6375 if (!LegalOperations || 6376 TLI.isOperationLegal(ISD::SETCC, N0.getOperand(0).getValueType())) { 6377 SDLoc DL(N); 6378 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 6379 SDValue SetCC = 6380 DAG.getSetCC(DL, SetCCVT, N0.getOperand(0), N0.getOperand(1), CC); 6381 return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, 6382 DAG.getConstant(0, DL, VT)); 6383 } 6384 } 6385 } 6386 6387 // fold (sext x) -> (zext x) if the sign bit is known zero. 6388 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && 6389 DAG.SignBitIsZero(N0)) 6390 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0); 6391 6392 return SDValue(); 6393 } 6394 6395 // isTruncateOf - If N is a truncate of some other value, return true, record 6396 // the value being truncated in Op and which of Op's bits are zero in KnownZero. 6397 // This function computes KnownZero to avoid a duplicated call to 6398 // computeKnownBits in the caller. 6399 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, 6400 APInt &KnownZero) { 6401 APInt KnownOne; 6402 if (N->getOpcode() == ISD::TRUNCATE) { 6403 Op = N->getOperand(0); 6404 DAG.computeKnownBits(Op, KnownZero, KnownOne); 6405 return true; 6406 } 6407 6408 if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 || 6409 cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE) 6410 return false; 6411 6412 SDValue Op0 = N->getOperand(0); 6413 SDValue Op1 = N->getOperand(1); 6414 assert(Op0.getValueType() == Op1.getValueType()); 6415 6416 if (isNullConstant(Op0)) 6417 Op = Op1; 6418 else if (isNullConstant(Op1)) 6419 Op = Op0; 6420 else 6421 return false; 6422 6423 DAG.computeKnownBits(Op, KnownZero, KnownOne); 6424 6425 if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue()) 6426 return false; 6427 6428 return true; 6429 } 6430 6431 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { 6432 SDValue N0 = N->getOperand(0); 6433 EVT VT = N->getValueType(0); 6434 6435 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6436 LegalOperations)) 6437 return SDValue(Res, 0); 6438 6439 // fold (zext (zext x)) -> (zext x) 6440 // fold (zext (aext x)) -> (zext x) 6441 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 6442 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, 6443 N0.getOperand(0)); 6444 6445 // fold (zext (truncate x)) -> (zext x) or 6446 // (zext (truncate x)) -> (truncate x) 6447 // This is valid when the truncated bits of x are already zero. 6448 // FIXME: We should extend this to work for vectors too. 6449 SDValue Op; 6450 APInt KnownZero; 6451 if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) { 6452 APInt TruncatedBits = 6453 (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ? 6454 APInt(Op.getValueSizeInBits(), 0) : 6455 APInt::getBitsSet(Op.getValueSizeInBits(), 6456 N0.getValueSizeInBits(), 6457 std::min(Op.getValueSizeInBits(), 6458 VT.getSizeInBits())); 6459 if (TruncatedBits == (KnownZero & TruncatedBits)) { 6460 if (VT.bitsGT(Op.getValueType())) 6461 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op); 6462 if (VT.bitsLT(Op.getValueType())) 6463 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6464 6465 return Op; 6466 } 6467 } 6468 6469 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 6470 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n))) 6471 if (N0.getOpcode() == ISD::TRUNCATE) { 6472 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6473 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6474 if (NarrowLoad.getNode() != N0.getNode()) { 6475 CombineTo(N0.getNode(), NarrowLoad); 6476 // CombineTo deleted the truncate, if needed, but not what's under it. 6477 AddToWorklist(oye); 6478 } 6479 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6480 } 6481 } 6482 6483 // fold (zext (truncate x)) -> (and x, mask) 6484 if (N0.getOpcode() == ISD::TRUNCATE) { 6485 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 6486 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) 6487 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6488 SDNode *oye = N0.getNode()->getOperand(0).getNode(); 6489 if (NarrowLoad.getNode() != N0.getNode()) { 6490 CombineTo(N0.getNode(), NarrowLoad); 6491 // CombineTo deleted the truncate, if needed, but not what's under it. 6492 AddToWorklist(oye); 6493 } 6494 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6495 } 6496 6497 EVT SrcVT = N0.getOperand(0).getValueType(); 6498 EVT MinVT = N0.getValueType(); 6499 6500 // Try to mask before the extension to avoid having to generate a larger mask, 6501 // possibly over several sub-vectors. 6502 if (SrcVT.bitsLT(VT)) { 6503 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && 6504 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { 6505 SDValue Op = N0.getOperand(0); 6506 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); 6507 AddToWorklist(Op.getNode()); 6508 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 6509 } 6510 } 6511 6512 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { 6513 SDValue Op = N0.getOperand(0); 6514 if (SrcVT.bitsLT(VT)) { 6515 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op); 6516 AddToWorklist(Op.getNode()); 6517 } else if (SrcVT.bitsGT(VT)) { 6518 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6519 AddToWorklist(Op.getNode()); 6520 } 6521 return DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); 6522 } 6523 } 6524 6525 // Fold (zext (and (trunc x), cst)) -> (and x, cst), 6526 // if either of the casts is not free. 6527 if (N0.getOpcode() == ISD::AND && 6528 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 6529 N0.getOperand(1).getOpcode() == ISD::Constant && 6530 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 6531 N0.getValueType()) || 6532 !TLI.isZExtFree(N0.getValueType(), VT))) { 6533 SDValue X = N0.getOperand(0).getOperand(0); 6534 if (X.getValueType().bitsLT(VT)) { 6535 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X); 6536 } else if (X.getValueType().bitsGT(VT)) { 6537 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 6538 } 6539 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6540 Mask = Mask.zext(VT.getSizeInBits()); 6541 SDLoc DL(N); 6542 return DAG.getNode(ISD::AND, DL, VT, 6543 X, DAG.getConstant(Mask, DL, VT)); 6544 } 6545 6546 // fold (zext (load x)) -> (zext (truncate (zextload x))) 6547 // Only generate vector extloads when 1) they're legal, and 2) they are 6548 // deemed desirable by the target. 6549 if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6550 ((!LegalOperations && !VT.isVector() && 6551 !cast<LoadSDNode>(N0)->isVolatile()) || 6552 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()))) { 6553 bool DoXform = true; 6554 SmallVector<SDNode*, 4> SetCCs; 6555 if (!N0.hasOneUse()) 6556 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI); 6557 if (VT.isVector()) 6558 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 6559 if (DoXform) { 6560 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6561 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, 6562 LN0->getChain(), 6563 LN0->getBasePtr(), N0.getValueType(), 6564 LN0->getMemOperand()); 6565 CombineTo(N, ExtLoad); 6566 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6567 N0.getValueType(), ExtLoad); 6568 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6569 6570 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6571 ISD::ZERO_EXTEND); 6572 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6573 } 6574 } 6575 6576 // fold (zext (load x)) to multiple smaller zextloads. 6577 // Only on illegal but splittable vectors. 6578 if (SDValue ExtLoad = CombineExtLoad(N)) 6579 return ExtLoad; 6580 6581 // fold (zext (and/or/xor (load x), cst)) -> 6582 // (and/or/xor (zextload x), (zext cst)) 6583 // Unless (and (load x) cst) will match as a zextload already and has 6584 // additional users. 6585 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 6586 N0.getOpcode() == ISD::XOR) && 6587 isa<LoadSDNode>(N0.getOperand(0)) && 6588 N0.getOperand(1).getOpcode() == ISD::Constant && 6589 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()) && 6590 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 6591 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); 6592 if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) { 6593 bool DoXform = true; 6594 SmallVector<SDNode*, 4> SetCCs; 6595 if (!N0.hasOneUse()) { 6596 if (N0.getOpcode() == ISD::AND) { 6597 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); 6598 auto NarrowLoad = false; 6599 EVT LoadResultTy = AndC->getValueType(0); 6600 EVT ExtVT, LoadedVT; 6601 if (isAndLoadExtLoad(AndC, LN0, LoadResultTy, ExtVT, LoadedVT, 6602 NarrowLoad)) 6603 DoXform = false; 6604 } 6605 if (DoXform) 6606 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), 6607 ISD::ZERO_EXTEND, SetCCs, TLI); 6608 } 6609 if (DoXform) { 6610 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT, 6611 LN0->getChain(), LN0->getBasePtr(), 6612 LN0->getMemoryVT(), 6613 LN0->getMemOperand()); 6614 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6615 Mask = Mask.zext(VT.getSizeInBits()); 6616 SDLoc DL(N); 6617 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 6618 ExtLoad, DAG.getConstant(Mask, DL, VT)); 6619 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, 6620 SDLoc(N0.getOperand(0)), 6621 N0.getOperand(0).getValueType(), ExtLoad); 6622 CombineTo(N, And); 6623 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); 6624 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, 6625 ISD::ZERO_EXTEND); 6626 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6627 } 6628 } 6629 } 6630 6631 // fold (zext (zextload x)) -> (zext (truncate (zextload x))) 6632 // fold (zext ( extload x)) -> (zext (truncate (zextload x))) 6633 if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && 6634 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 6635 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6636 EVT MemVT = LN0->getMemoryVT(); 6637 if ((!LegalOperations && !LN0->isVolatile()) || 6638 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT)) { 6639 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, 6640 LN0->getChain(), 6641 LN0->getBasePtr(), MemVT, 6642 LN0->getMemOperand()); 6643 CombineTo(N, ExtLoad); 6644 CombineTo(N0.getNode(), 6645 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), 6646 ExtLoad), 6647 ExtLoad.getValue(1)); 6648 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6649 } 6650 } 6651 6652 if (N0.getOpcode() == ISD::SETCC) { 6653 // Only do this before legalize for now. 6654 if (!LegalOperations && VT.isVector() && 6655 N0.getValueType().getVectorElementType() == MVT::i1) { 6656 EVT N00VT = N0.getOperand(0).getValueType(); 6657 if (getSetCCResultType(N00VT) == N0.getValueType()) 6658 return SDValue(); 6659 6660 // We know that the # elements of the results is the same as the # 6661 // elements of the compare (and the # elements of the compare result for 6662 // that matter). Check to see that they are the same size. If so, we know 6663 // that the element size of the sext'd result matches the element size of 6664 // the compare operands. 6665 SDLoc DL(N); 6666 SDValue VecOnes = DAG.getConstant(1, DL, VT); 6667 if (VT.getSizeInBits() == N00VT.getSizeInBits()) { 6668 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. 6669 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), 6670 N0.getOperand(1), N0.getOperand(2)); 6671 return DAG.getNode(ISD::AND, DL, VT, VSetCC, VecOnes); 6672 } 6673 6674 // If the desired elements are smaller or larger than the source 6675 // elements we can use a matching integer vector type and then 6676 // truncate/sign extend. 6677 EVT MatchingElementType = EVT::getIntegerVT( 6678 *DAG.getContext(), N00VT.getScalarSizeInBits()); 6679 EVT MatchingVectorType = EVT::getVectorVT( 6680 *DAG.getContext(), MatchingElementType, N00VT.getVectorNumElements()); 6681 SDValue VsetCC = 6682 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), 6683 N0.getOperand(1), N0.getOperand(2)); 6684 return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT), 6685 VecOnes); 6686 } 6687 6688 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 6689 SDLoc DL(N); 6690 if (SDValue SCC = SimplifySelectCC( 6691 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 6692 DAG.getConstant(0, DL, VT), 6693 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 6694 return SCC; 6695 } 6696 6697 // (zext (shl (zext x), cst)) -> (shl (zext x), cst) 6698 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && 6699 isa<ConstantSDNode>(N0.getOperand(1)) && 6700 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 6701 N0.hasOneUse()) { 6702 SDValue ShAmt = N0.getOperand(1); 6703 unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue(); 6704 if (N0.getOpcode() == ISD::SHL) { 6705 SDValue InnerZExt = N0.getOperand(0); 6706 // If the original shl may be shifting out bits, do not perform this 6707 // transformation. 6708 unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - 6709 InnerZExt.getOperand(0).getValueSizeInBits(); 6710 if (ShAmtVal > KnownZeroBits) 6711 return SDValue(); 6712 } 6713 6714 SDLoc DL(N); 6715 6716 // Ensure that the shift amount is wide enough for the shifted value. 6717 if (VT.getSizeInBits() >= 256) 6718 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); 6719 6720 return DAG.getNode(N0.getOpcode(), DL, VT, 6721 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), 6722 ShAmt); 6723 } 6724 6725 return SDValue(); 6726 } 6727 6728 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { 6729 SDValue N0 = N->getOperand(0); 6730 EVT VT = N->getValueType(0); 6731 6732 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6733 LegalOperations)) 6734 return SDValue(Res, 0); 6735 6736 // fold (aext (aext x)) -> (aext x) 6737 // fold (aext (zext x)) -> (zext x) 6738 // fold (aext (sext x)) -> (sext x) 6739 if (N0.getOpcode() == ISD::ANY_EXTEND || 6740 N0.getOpcode() == ISD::ZERO_EXTEND || 6741 N0.getOpcode() == ISD::SIGN_EXTEND) 6742 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 6743 6744 // fold (aext (truncate (load x))) -> (aext (smaller load x)) 6745 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) 6746 if (N0.getOpcode() == ISD::TRUNCATE) { 6747 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6748 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6749 if (NarrowLoad.getNode() != N0.getNode()) { 6750 CombineTo(N0.getNode(), NarrowLoad); 6751 // CombineTo deleted the truncate, if needed, but not what's under it. 6752 AddToWorklist(oye); 6753 } 6754 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6755 } 6756 } 6757 6758 // fold (aext (truncate x)) 6759 if (N0.getOpcode() == ISD::TRUNCATE) { 6760 SDValue TruncOp = N0.getOperand(0); 6761 if (TruncOp.getValueType() == VT) 6762 return TruncOp; // x iff x size == zext size. 6763 if (TruncOp.getValueType().bitsGT(VT)) 6764 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp); 6765 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp); 6766 } 6767 6768 // Fold (aext (and (trunc x), cst)) -> (and x, cst) 6769 // if the trunc is not free. 6770 if (N0.getOpcode() == ISD::AND && 6771 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 6772 N0.getOperand(1).getOpcode() == ISD::Constant && 6773 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 6774 N0.getValueType())) { 6775 SDValue X = N0.getOperand(0).getOperand(0); 6776 if (X.getValueType().bitsLT(VT)) { 6777 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X); 6778 } else if (X.getValueType().bitsGT(VT)) { 6779 X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X); 6780 } 6781 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6782 Mask = Mask.zext(VT.getSizeInBits()); 6783 SDLoc DL(N); 6784 return DAG.getNode(ISD::AND, DL, VT, 6785 X, DAG.getConstant(Mask, DL, VT)); 6786 } 6787 6788 // fold (aext (load x)) -> (aext (truncate (extload x))) 6789 // None of the supported targets knows how to perform load and any_ext 6790 // on vectors in one instruction. We only perform this transformation on 6791 // scalars. 6792 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && 6793 ISD::isUNINDEXEDLoad(N0.getNode()) && 6794 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 6795 bool DoXform = true; 6796 SmallVector<SDNode*, 4> SetCCs; 6797 if (!N0.hasOneUse()) 6798 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI); 6799 if (DoXform) { 6800 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6801 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 6802 LN0->getChain(), 6803 LN0->getBasePtr(), N0.getValueType(), 6804 LN0->getMemOperand()); 6805 CombineTo(N, ExtLoad); 6806 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6807 N0.getValueType(), ExtLoad); 6808 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6809 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6810 ISD::ANY_EXTEND); 6811 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6812 } 6813 } 6814 6815 // fold (aext (zextload x)) -> (aext (truncate (zextload x))) 6816 // fold (aext (sextload x)) -> (aext (truncate (sextload x))) 6817 // fold (aext ( extload x)) -> (aext (truncate (extload x))) 6818 if (N0.getOpcode() == ISD::LOAD && 6819 !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6820 N0.hasOneUse()) { 6821 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6822 ISD::LoadExtType ExtType = LN0->getExtensionType(); 6823 EVT MemVT = LN0->getMemoryVT(); 6824 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { 6825 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), 6826 VT, LN0->getChain(), LN0->getBasePtr(), 6827 MemVT, LN0->getMemOperand()); 6828 CombineTo(N, ExtLoad); 6829 CombineTo(N0.getNode(), 6830 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6831 N0.getValueType(), ExtLoad), 6832 ExtLoad.getValue(1)); 6833 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6834 } 6835 } 6836 6837 if (N0.getOpcode() == ISD::SETCC) { 6838 // For vectors: 6839 // aext(setcc) -> vsetcc 6840 // aext(setcc) -> truncate(vsetcc) 6841 // aext(setcc) -> aext(vsetcc) 6842 // Only do this before legalize for now. 6843 if (VT.isVector() && !LegalOperations) { 6844 EVT N0VT = N0.getOperand(0).getValueType(); 6845 // We know that the # elements of the results is the same as the 6846 // # elements of the compare (and the # elements of the compare result 6847 // for that matter). Check to see that they are the same size. If so, 6848 // we know that the element size of the sext'd result matches the 6849 // element size of the compare operands. 6850 if (VT.getSizeInBits() == N0VT.getSizeInBits()) 6851 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 6852 N0.getOperand(1), 6853 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6854 // If the desired elements are smaller or larger than the source 6855 // elements we can use a matching integer vector type and then 6856 // truncate/any extend 6857 else { 6858 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); 6859 SDValue VsetCC = 6860 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 6861 N0.getOperand(1), 6862 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6863 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); 6864 } 6865 } 6866 6867 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 6868 SDLoc DL(N); 6869 if (SDValue SCC = SimplifySelectCC( 6870 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 6871 DAG.getConstant(0, DL, VT), 6872 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 6873 return SCC; 6874 } 6875 6876 return SDValue(); 6877 } 6878 6879 /// See if the specified operand can be simplified with the knowledge that only 6880 /// the bits specified by Mask are used. If so, return the simpler operand, 6881 /// otherwise return a null SDValue. 6882 SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) { 6883 switch (V.getOpcode()) { 6884 default: break; 6885 case ISD::Constant: { 6886 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 6887 assert(CV && "Const value should be ConstSDNode."); 6888 const APInt &CVal = CV->getAPIntValue(); 6889 APInt NewVal = CVal & Mask; 6890 if (NewVal != CVal) 6891 return DAG.getConstant(NewVal, SDLoc(V), V.getValueType()); 6892 break; 6893 } 6894 case ISD::OR: 6895 case ISD::XOR: 6896 // If the LHS or RHS don't contribute bits to the or, drop them. 6897 if (DAG.MaskedValueIsZero(V.getOperand(0), Mask)) 6898 return V.getOperand(1); 6899 if (DAG.MaskedValueIsZero(V.getOperand(1), Mask)) 6900 return V.getOperand(0); 6901 break; 6902 case ISD::SRL: 6903 // Only look at single-use SRLs. 6904 if (!V.getNode()->hasOneUse()) 6905 break; 6906 if (ConstantSDNode *RHSC = getAsNonOpaqueConstant(V.getOperand(1))) { 6907 // See if we can recursively simplify the LHS. 6908 unsigned Amt = RHSC->getZExtValue(); 6909 6910 // Watch out for shift count overflow though. 6911 if (Amt >= Mask.getBitWidth()) break; 6912 APInt NewMask = Mask << Amt; 6913 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 6914 return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(), 6915 SimplifyLHS, V.getOperand(1)); 6916 } 6917 } 6918 return SDValue(); 6919 } 6920 6921 /// If the result of a wider load is shifted to right of N bits and then 6922 /// truncated to a narrower type and where N is a multiple of number of bits of 6923 /// the narrower type, transform it to a narrower load from address + N / num of 6924 /// bits of new type. If the result is to be extended, also fold the extension 6925 /// to form a extending load. 6926 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { 6927 unsigned Opc = N->getOpcode(); 6928 6929 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 6930 SDValue N0 = N->getOperand(0); 6931 EVT VT = N->getValueType(0); 6932 EVT ExtVT = VT; 6933 6934 // This transformation isn't valid for vector loads. 6935 if (VT.isVector()) 6936 return SDValue(); 6937 6938 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then 6939 // extended to VT. 6940 if (Opc == ISD::SIGN_EXTEND_INREG) { 6941 ExtType = ISD::SEXTLOAD; 6942 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 6943 } else if (Opc == ISD::SRL) { 6944 // Another special-case: SRL is basically zero-extending a narrower value. 6945 ExtType = ISD::ZEXTLOAD; 6946 N0 = SDValue(N, 0); 6947 ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6948 if (!N01) return SDValue(); 6949 ExtVT = EVT::getIntegerVT(*DAG.getContext(), 6950 VT.getSizeInBits() - N01->getZExtValue()); 6951 } 6952 if (LegalOperations && !TLI.isLoadExtLegal(ExtType, VT, ExtVT)) 6953 return SDValue(); 6954 6955 unsigned EVTBits = ExtVT.getSizeInBits(); 6956 6957 // Do not generate loads of non-round integer types since these can 6958 // be expensive (and would be wrong if the type is not byte sized). 6959 if (!ExtVT.isRound()) 6960 return SDValue(); 6961 6962 unsigned ShAmt = 0; 6963 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 6964 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 6965 ShAmt = N01->getZExtValue(); 6966 // Is the shift amount a multiple of size of VT? 6967 if ((ShAmt & (EVTBits-1)) == 0) { 6968 N0 = N0.getOperand(0); 6969 // Is the load width a multiple of size of VT? 6970 if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0) 6971 return SDValue(); 6972 } 6973 6974 // At this point, we must have a load or else we can't do the transform. 6975 if (!isa<LoadSDNode>(N0)) return SDValue(); 6976 6977 // Because a SRL must be assumed to *need* to zero-extend the high bits 6978 // (as opposed to anyext the high bits), we can't combine the zextload 6979 // lowering of SRL and an sextload. 6980 if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD) 6981 return SDValue(); 6982 6983 // If the shift amount is larger than the input type then we're not 6984 // accessing any of the loaded bytes. If the load was a zextload/extload 6985 // then the result of the shift+trunc is zero/undef (handled elsewhere). 6986 if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits()) 6987 return SDValue(); 6988 } 6989 } 6990 6991 // If the load is shifted left (and the result isn't shifted back right), 6992 // we can fold the truncate through the shift. 6993 unsigned ShLeftAmt = 0; 6994 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 6995 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { 6996 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 6997 ShLeftAmt = N01->getZExtValue(); 6998 N0 = N0.getOperand(0); 6999 } 7000 } 7001 7002 // If we haven't found a load, we can't narrow it. Don't transform one with 7003 // multiple uses, this would require adding a new load. 7004 if (!isa<LoadSDNode>(N0) || !N0.hasOneUse()) 7005 return SDValue(); 7006 7007 // Don't change the width of a volatile load. 7008 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7009 if (LN0->isVolatile()) 7010 return SDValue(); 7011 7012 // Verify that we are actually reducing a load width here. 7013 if (LN0->getMemoryVT().getSizeInBits() < EVTBits) 7014 return SDValue(); 7015 7016 // For the transform to be legal, the load must produce only two values 7017 // (the value loaded and the chain). Don't transform a pre-increment 7018 // load, for example, which produces an extra value. Otherwise the 7019 // transformation is not equivalent, and the downstream logic to replace 7020 // uses gets things wrong. 7021 if (LN0->getNumValues() > 2) 7022 return SDValue(); 7023 7024 // If the load that we're shrinking is an extload and we're not just 7025 // discarding the extension we can't simply shrink the load. Bail. 7026 // TODO: It would be possible to merge the extensions in some cases. 7027 if (LN0->getExtensionType() != ISD::NON_EXTLOAD && 7028 LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt) 7029 return SDValue(); 7030 7031 if (!TLI.shouldReduceLoadWidth(LN0, ExtType, ExtVT)) 7032 return SDValue(); 7033 7034 EVT PtrType = N0.getOperand(1).getValueType(); 7035 7036 if (PtrType == MVT::Untyped || PtrType.isExtended()) 7037 // It's not possible to generate a constant of extended or untyped type. 7038 return SDValue(); 7039 7040 // For big endian targets, we need to adjust the offset to the pointer to 7041 // load the correct bytes. 7042 if (DAG.getDataLayout().isBigEndian()) { 7043 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); 7044 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); 7045 ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; 7046 } 7047 7048 uint64_t PtrOff = ShAmt / 8; 7049 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); 7050 SDLoc DL(LN0); 7051 // The original load itself didn't wrap, so an offset within it doesn't. 7052 SDNodeFlags Flags; 7053 Flags.setNoUnsignedWrap(true); 7054 SDValue NewPtr = DAG.getNode(ISD::ADD, DL, 7055 PtrType, LN0->getBasePtr(), 7056 DAG.getConstant(PtrOff, DL, PtrType), 7057 &Flags); 7058 AddToWorklist(NewPtr.getNode()); 7059 7060 SDValue Load; 7061 if (ExtType == ISD::NON_EXTLOAD) 7062 Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr, 7063 LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, 7064 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 7065 else 7066 Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(), NewPtr, 7067 LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, 7068 NewAlign, LN0->getMemOperand()->getFlags(), 7069 LN0->getAAInfo()); 7070 7071 // Replace the old load's chain with the new load's chain. 7072 WorklistRemover DeadNodes(*this); 7073 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 7074 7075 // Shift the result left, if we've swallowed a left shift. 7076 SDValue Result = Load; 7077 if (ShLeftAmt != 0) { 7078 EVT ShImmTy = getShiftAmountTy(Result.getValueType()); 7079 if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) 7080 ShImmTy = VT; 7081 // If the shift amount is as large as the result size (but, presumably, 7082 // no larger than the source) then the useful bits of the result are 7083 // zero; we can't simply return the shortened shift, because the result 7084 // of that operation is undefined. 7085 SDLoc DL(N0); 7086 if (ShLeftAmt >= VT.getSizeInBits()) 7087 Result = DAG.getConstant(0, DL, VT); 7088 else 7089 Result = DAG.getNode(ISD::SHL, DL, VT, 7090 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); 7091 } 7092 7093 // Return the new loaded value. 7094 return Result; 7095 } 7096 7097 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { 7098 SDValue N0 = N->getOperand(0); 7099 SDValue N1 = N->getOperand(1); 7100 EVT VT = N->getValueType(0); 7101 EVT EVT = cast<VTSDNode>(N1)->getVT(); 7102 unsigned VTBits = VT.getScalarSizeInBits(); 7103 unsigned EVTBits = EVT.getScalarSizeInBits(); 7104 7105 if (N0.isUndef()) 7106 return DAG.getUNDEF(VT); 7107 7108 // fold (sext_in_reg c1) -> c1 7109 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 7110 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); 7111 7112 // If the input is already sign extended, just drop the extension. 7113 if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) 7114 return N0; 7115 7116 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 7117 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 7118 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) 7119 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 7120 N0.getOperand(0), N1); 7121 7122 // fold (sext_in_reg (sext x)) -> (sext x) 7123 // fold (sext_in_reg (aext x)) -> (sext x) 7124 // if x is small enough. 7125 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { 7126 SDValue N00 = N0.getOperand(0); 7127 if (N00.getScalarValueSizeInBits() <= EVTBits && 7128 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 7129 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); 7130 } 7131 7132 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. 7133 if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits))) 7134 return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT.getScalarType()); 7135 7136 // fold operands of sext_in_reg based on knowledge that the top bits are not 7137 // demanded. 7138 if (SimplifyDemandedBits(SDValue(N, 0))) 7139 return SDValue(N, 0); 7140 7141 // fold (sext_in_reg (load x)) -> (smaller sextload x) 7142 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) 7143 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 7144 return NarrowLoad; 7145 7146 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) 7147 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. 7148 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. 7149 if (N0.getOpcode() == ISD::SRL) { 7150 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 7151 if (ShAmt->getZExtValue()+EVTBits <= VTBits) { 7152 // We can turn this into an SRA iff the input to the SRL is already sign 7153 // extended enough. 7154 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); 7155 if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits) 7156 return DAG.getNode(ISD::SRA, SDLoc(N), VT, 7157 N0.getOperand(0), N0.getOperand(1)); 7158 } 7159 } 7160 7161 // fold (sext_inreg (extload x)) -> (sextload x) 7162 if (ISD::isEXTLoad(N0.getNode()) && 7163 ISD::isUNINDEXEDLoad(N0.getNode()) && 7164 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 7165 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 7166 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 7167 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7168 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 7169 LN0->getChain(), 7170 LN0->getBasePtr(), EVT, 7171 LN0->getMemOperand()); 7172 CombineTo(N, ExtLoad); 7173 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 7174 AddToWorklist(ExtLoad.getNode()); 7175 return SDValue(N, 0); // Return N so it doesn't get rechecked! 7176 } 7177 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use 7178 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 7179 N0.hasOneUse() && 7180 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 7181 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 7182 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 7183 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7184 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 7185 LN0->getChain(), 7186 LN0->getBasePtr(), EVT, 7187 LN0->getMemOperand()); 7188 CombineTo(N, ExtLoad); 7189 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 7190 return SDValue(N, 0); // Return N so it doesn't get rechecked! 7191 } 7192 7193 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) 7194 if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { 7195 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 7196 N0.getOperand(1), false)) 7197 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 7198 BSwap, N1); 7199 } 7200 7201 return SDValue(); 7202 } 7203 7204 SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { 7205 SDValue N0 = N->getOperand(0); 7206 EVT VT = N->getValueType(0); 7207 7208 if (N0.isUndef()) 7209 return DAG.getUNDEF(VT); 7210 7211 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 7212 LegalOperations)) 7213 return SDValue(Res, 0); 7214 7215 return SDValue(); 7216 } 7217 7218 SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) { 7219 SDValue N0 = N->getOperand(0); 7220 EVT VT = N->getValueType(0); 7221 7222 if (N0.isUndef()) 7223 return DAG.getUNDEF(VT); 7224 7225 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 7226 LegalOperations)) 7227 return SDValue(Res, 0); 7228 7229 return SDValue(); 7230 } 7231 7232 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { 7233 SDValue N0 = N->getOperand(0); 7234 EVT VT = N->getValueType(0); 7235 bool isLE = DAG.getDataLayout().isLittleEndian(); 7236 7237 // noop truncate 7238 if (N0.getValueType() == N->getValueType(0)) 7239 return N0; 7240 // fold (truncate c1) -> c1 7241 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 7242 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); 7243 // fold (truncate (truncate x)) -> (truncate x) 7244 if (N0.getOpcode() == ISD::TRUNCATE) 7245 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 7246 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x 7247 if (N0.getOpcode() == ISD::ZERO_EXTEND || 7248 N0.getOpcode() == ISD::SIGN_EXTEND || 7249 N0.getOpcode() == ISD::ANY_EXTEND) { 7250 // if the source is smaller than the dest, we still need an extend. 7251 if (N0.getOperand(0).getValueType().bitsLT(VT)) 7252 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 7253 // if the source is larger than the dest, than we just need the truncate. 7254 if (N0.getOperand(0).getValueType().bitsGT(VT)) 7255 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 7256 // if the source and dest are the same type, we can drop both the extend 7257 // and the truncate. 7258 return N0.getOperand(0); 7259 } 7260 7261 // If this is anyext(trunc), don't fold it, allow ourselves to be folded. 7262 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) 7263 return SDValue(); 7264 7265 // Fold extract-and-trunc into a narrow extract. For example: 7266 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) 7267 // i32 y = TRUNCATE(i64 x) 7268 // -- becomes -- 7269 // v16i8 b = BITCAST (v2i64 val) 7270 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) 7271 // 7272 // Note: We only run this optimization after type legalization (which often 7273 // creates this pattern) and before operation legalization after which 7274 // we need to be more careful about the vector instructions that we generate. 7275 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7276 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { 7277 7278 EVT VecTy = N0.getOperand(0).getValueType(); 7279 EVT ExTy = N0.getValueType(); 7280 EVT TrTy = N->getValueType(0); 7281 7282 unsigned NumElem = VecTy.getVectorNumElements(); 7283 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); 7284 7285 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); 7286 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); 7287 7288 SDValue EltNo = N0->getOperand(1); 7289 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { 7290 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 7291 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7292 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); 7293 7294 SDLoc DL(N); 7295 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, 7296 DAG.getBitcast(NVT, N0.getOperand(0)), 7297 DAG.getConstant(Index, DL, IndexTy)); 7298 } 7299 } 7300 7301 // trunc (select c, a, b) -> select c, (trunc a), (trunc b) 7302 if (N0.getOpcode() == ISD::SELECT) { 7303 EVT SrcVT = N0.getValueType(); 7304 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && 7305 TLI.isTruncateFree(SrcVT, VT)) { 7306 SDLoc SL(N0); 7307 SDValue Cond = N0.getOperand(0); 7308 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 7309 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); 7310 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); 7311 } 7312 } 7313 7314 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() 7315 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 7316 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) && 7317 TLI.isTypeDesirableForOp(ISD::SHL, VT)) { 7318 if (const ConstantSDNode *CAmt = isConstOrConstSplat(N0.getOperand(1))) { 7319 uint64_t Amt = CAmt->getZExtValue(); 7320 unsigned Size = VT.getScalarSizeInBits(); 7321 7322 if (Amt < Size) { 7323 SDLoc SL(N); 7324 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 7325 7326 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 7327 return DAG.getNode(ISD::SHL, SL, VT, Trunc, 7328 DAG.getConstant(Amt, SL, AmtVT)); 7329 } 7330 } 7331 } 7332 7333 // Fold a series of buildvector, bitcast, and truncate if possible. 7334 // For example fold 7335 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to 7336 // (2xi32 (buildvector x, y)). 7337 if (Level == AfterLegalizeVectorOps && VT.isVector() && 7338 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 7339 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 7340 N0.getOperand(0).hasOneUse()) { 7341 7342 SDValue BuildVect = N0.getOperand(0); 7343 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); 7344 EVT TruncVecEltTy = VT.getVectorElementType(); 7345 7346 // Check that the element types match. 7347 if (BuildVectEltTy == TruncVecEltTy) { 7348 // Now we only need to compute the offset of the truncated elements. 7349 unsigned BuildVecNumElts = BuildVect.getNumOperands(); 7350 unsigned TruncVecNumElts = VT.getVectorNumElements(); 7351 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; 7352 7353 assert((BuildVecNumElts % TruncVecNumElts) == 0 && 7354 "Invalid number of elements"); 7355 7356 SmallVector<SDValue, 8> Opnds; 7357 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) 7358 Opnds.push_back(BuildVect.getOperand(i)); 7359 7360 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 7361 } 7362 } 7363 7364 // See if we can simplify the input to this truncate through knowledge that 7365 // only the low bits are being used. 7366 // For example "trunc (or (shl x, 8), y)" // -> trunc y 7367 // Currently we only perform this optimization on scalars because vectors 7368 // may have different active low bits. 7369 if (!VT.isVector()) { 7370 if (SDValue Shorter = 7371 GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(), 7372 VT.getSizeInBits()))) 7373 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); 7374 } 7375 // fold (truncate (load x)) -> (smaller load x) 7376 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) 7377 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { 7378 if (SDValue Reduced = ReduceLoadWidth(N)) 7379 return Reduced; 7380 7381 // Handle the case where the load remains an extending load even 7382 // after truncation. 7383 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { 7384 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7385 if (!LN0->isVolatile() && 7386 LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { 7387 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), 7388 VT, LN0->getChain(), LN0->getBasePtr(), 7389 LN0->getMemoryVT(), 7390 LN0->getMemOperand()); 7391 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); 7392 return NewLoad; 7393 } 7394 } 7395 } 7396 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), 7397 // where ... are all 'undef'. 7398 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { 7399 SmallVector<EVT, 8> VTs; 7400 SDValue V; 7401 unsigned Idx = 0; 7402 unsigned NumDefs = 0; 7403 7404 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 7405 SDValue X = N0.getOperand(i); 7406 if (!X.isUndef()) { 7407 V = X; 7408 Idx = i; 7409 NumDefs++; 7410 } 7411 // Stop if more than one members are non-undef. 7412 if (NumDefs > 1) 7413 break; 7414 VTs.push_back(EVT::getVectorVT(*DAG.getContext(), 7415 VT.getVectorElementType(), 7416 X.getValueType().getVectorNumElements())); 7417 } 7418 7419 if (NumDefs == 0) 7420 return DAG.getUNDEF(VT); 7421 7422 if (NumDefs == 1) { 7423 assert(V.getNode() && "The single defined operand is empty!"); 7424 SmallVector<SDValue, 8> Opnds; 7425 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 7426 if (i != Idx) { 7427 Opnds.push_back(DAG.getUNDEF(VTs[i])); 7428 continue; 7429 } 7430 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); 7431 AddToWorklist(NV.getNode()); 7432 Opnds.push_back(NV); 7433 } 7434 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); 7435 } 7436 } 7437 7438 // Fold truncate of a bitcast of a vector to an extract of the low vector 7439 // element. 7440 // 7441 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, 0 7442 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { 7443 SDValue VecSrc = N0.getOperand(0); 7444 EVT SrcVT = VecSrc.getValueType(); 7445 if (SrcVT.isVector() && SrcVT.getScalarType() == VT && 7446 (!LegalOperations || 7447 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) { 7448 SDLoc SL(N); 7449 7450 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 7451 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, 7452 VecSrc, DAG.getConstant(0, SL, IdxVT)); 7453 } 7454 } 7455 7456 // Simplify the operands using demanded-bits information. 7457 if (!VT.isVector() && 7458 SimplifyDemandedBits(SDValue(N, 0))) 7459 return SDValue(N, 0); 7460 7461 return SDValue(); 7462 } 7463 7464 static SDNode *getBuildPairElt(SDNode *N, unsigned i) { 7465 SDValue Elt = N->getOperand(i); 7466 if (Elt.getOpcode() != ISD::MERGE_VALUES) 7467 return Elt.getNode(); 7468 return Elt.getOperand(Elt.getResNo()).getNode(); 7469 } 7470 7471 /// build_pair (load, load) -> load 7472 /// if load locations are consecutive. 7473 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { 7474 assert(N->getOpcode() == ISD::BUILD_PAIR); 7475 7476 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); 7477 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); 7478 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || 7479 LD1->getAddressSpace() != LD2->getAddressSpace()) 7480 return SDValue(); 7481 EVT LD1VT = LD1->getValueType(0); 7482 unsigned LD1Bytes = LD1VT.getSizeInBits() / 8; 7483 if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && 7484 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) { 7485 unsigned Align = LD1->getAlignment(); 7486 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 7487 VT.getTypeForEVT(*DAG.getContext())); 7488 7489 if (NewAlign <= Align && 7490 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) 7491 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), 7492 LD1->getPointerInfo(), Align); 7493 } 7494 7495 return SDValue(); 7496 } 7497 7498 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { 7499 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi 7500 // and Lo parts; on big-endian machines it doesn't. 7501 return DAG.getDataLayout().isBigEndian() ? 1 : 0; 7502 } 7503 7504 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, 7505 const TargetLowering &TLI) { 7506 // If this is not a bitcast to an FP type or if the target doesn't have 7507 // IEEE754-compliant FP logic, we're done. 7508 EVT VT = N->getValueType(0); 7509 if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) 7510 return SDValue(); 7511 7512 // TODO: Use splat values for the constant-checking below and remove this 7513 // restriction. 7514 SDValue N0 = N->getOperand(0); 7515 EVT SourceVT = N0.getValueType(); 7516 if (SourceVT.isVector()) 7517 return SDValue(); 7518 7519 unsigned FPOpcode; 7520 APInt SignMask; 7521 switch (N0.getOpcode()) { 7522 case ISD::AND: 7523 FPOpcode = ISD::FABS; 7524 SignMask = ~APInt::getSignBit(SourceVT.getSizeInBits()); 7525 break; 7526 case ISD::XOR: 7527 FPOpcode = ISD::FNEG; 7528 SignMask = APInt::getSignBit(SourceVT.getSizeInBits()); 7529 break; 7530 // TODO: ISD::OR --> ISD::FNABS? 7531 default: 7532 return SDValue(); 7533 } 7534 7535 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X 7536 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X 7537 SDValue LogicOp0 = N0.getOperand(0); 7538 ConstantSDNode *LogicOp1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 7539 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && 7540 LogicOp0.getOpcode() == ISD::BITCAST && 7541 LogicOp0->getOperand(0).getValueType() == VT) 7542 return DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0->getOperand(0)); 7543 7544 return SDValue(); 7545 } 7546 7547 SDValue DAGCombiner::visitBITCAST(SDNode *N) { 7548 SDValue N0 = N->getOperand(0); 7549 EVT VT = N->getValueType(0); 7550 7551 // If the input is a BUILD_VECTOR with all constant elements, fold this now. 7552 // Only do this before legalize, since afterward the target may be depending 7553 // on the bitconvert. 7554 // First check to see if this is all constant. 7555 if (!LegalTypes && 7556 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && 7557 VT.isVector()) { 7558 bool isSimple = cast<BuildVectorSDNode>(N0)->isConstant(); 7559 7560 EVT DestEltVT = N->getValueType(0).getVectorElementType(); 7561 assert(!DestEltVT.isVector() && 7562 "Element type of vector ValueType must not be vector!"); 7563 if (isSimple) 7564 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT); 7565 } 7566 7567 // If the input is a constant, let getNode fold it. 7568 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { 7569 // If we can't allow illegal operations, we need to check that this is just 7570 // a fp -> int or int -> conversion and that the resulting operation will 7571 // be legal. 7572 if (!LegalOperations || 7573 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && 7574 TLI.isOperationLegal(ISD::ConstantFP, VT)) || 7575 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && 7576 TLI.isOperationLegal(ISD::Constant, VT))) 7577 return DAG.getBitcast(VT, N0); 7578 } 7579 7580 // (conv (conv x, t1), t2) -> (conv x, t2) 7581 if (N0.getOpcode() == ISD::BITCAST) 7582 return DAG.getBitcast(VT, N0.getOperand(0)); 7583 7584 // fold (conv (load x)) -> (load (conv*)x) 7585 // If the resultant load doesn't need a higher alignment than the original! 7586 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 7587 // Do not change the width of a volatile load. 7588 !cast<LoadSDNode>(N0)->isVolatile() && 7589 // Do not remove the cast if the types differ in endian layout. 7590 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == 7591 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && 7592 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && 7593 TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) { 7594 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7595 unsigned OrigAlign = LN0->getAlignment(); 7596 7597 bool Fast = false; 7598 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 7599 LN0->getAddressSpace(), OrigAlign, &Fast) && 7600 Fast) { 7601 SDValue Load = 7602 DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), 7603 LN0->getPointerInfo(), OrigAlign, 7604 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 7605 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 7606 return Load; 7607 } 7608 } 7609 7610 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) 7611 return V; 7612 7613 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7614 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7615 // 7616 // For ppc_fp128: 7617 // fold (bitcast (fneg x)) -> 7618 // flipbit = signbit 7619 // (xor (bitcast x) (build_pair flipbit, flipbit)) 7620 // 7621 // fold (bitcast (fabs x)) -> 7622 // flipbit = (and (extract_element (bitcast x), 0), signbit) 7623 // (xor (bitcast x) (build_pair flipbit, flipbit)) 7624 // This often reduces constant pool loads. 7625 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || 7626 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && 7627 N0.getNode()->hasOneUse() && VT.isInteger() && 7628 !VT.isVector() && !N0.getValueType().isVector()) { 7629 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); 7630 AddToWorklist(NewConv.getNode()); 7631 7632 SDLoc DL(N); 7633 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 7634 assert(VT.getSizeInBits() == 128); 7635 SDValue SignBit = DAG.getConstant( 7636 APInt::getSignBit(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); 7637 SDValue FlipBit; 7638 if (N0.getOpcode() == ISD::FNEG) { 7639 FlipBit = SignBit; 7640 AddToWorklist(FlipBit.getNode()); 7641 } else { 7642 assert(N0.getOpcode() == ISD::FABS); 7643 SDValue Hi = 7644 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, 7645 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 7646 SDLoc(NewConv))); 7647 AddToWorklist(Hi.getNode()); 7648 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); 7649 AddToWorklist(FlipBit.getNode()); 7650 } 7651 SDValue FlipBits = 7652 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 7653 AddToWorklist(FlipBits.getNode()); 7654 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); 7655 } 7656 APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); 7657 if (N0.getOpcode() == ISD::FNEG) 7658 return DAG.getNode(ISD::XOR, DL, VT, 7659 NewConv, DAG.getConstant(SignBit, DL, VT)); 7660 assert(N0.getOpcode() == ISD::FABS); 7661 return DAG.getNode(ISD::AND, DL, VT, 7662 NewConv, DAG.getConstant(~SignBit, DL, VT)); 7663 } 7664 7665 // fold (bitconvert (fcopysign cst, x)) -> 7666 // (or (and (bitconvert x), sign), (and cst, (not sign))) 7667 // Note that we don't handle (copysign x, cst) because this can always be 7668 // folded to an fneg or fabs. 7669 // 7670 // For ppc_fp128: 7671 // fold (bitcast (fcopysign cst, x)) -> 7672 // flipbit = (and (extract_element 7673 // (xor (bitcast cst), (bitcast x)), 0), 7674 // signbit) 7675 // (xor (bitcast cst) (build_pair flipbit, flipbit)) 7676 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && 7677 isa<ConstantFPSDNode>(N0.getOperand(0)) && 7678 VT.isInteger() && !VT.isVector()) { 7679 unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); 7680 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); 7681 if (isTypeLegal(IntXVT)) { 7682 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); 7683 AddToWorklist(X.getNode()); 7684 7685 // If X has a different width than the result/lhs, sext it or truncate it. 7686 unsigned VTWidth = VT.getSizeInBits(); 7687 if (OrigXWidth < VTWidth) { 7688 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); 7689 AddToWorklist(X.getNode()); 7690 } else if (OrigXWidth > VTWidth) { 7691 // To get the sign bit in the right place, we have to shift it right 7692 // before truncating. 7693 SDLoc DL(X); 7694 X = DAG.getNode(ISD::SRL, DL, 7695 X.getValueType(), X, 7696 DAG.getConstant(OrigXWidth-VTWidth, DL, 7697 X.getValueType())); 7698 AddToWorklist(X.getNode()); 7699 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 7700 AddToWorklist(X.getNode()); 7701 } 7702 7703 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 7704 APInt SignBit = APInt::getSignBit(VT.getSizeInBits() / 2); 7705 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 7706 AddToWorklist(Cst.getNode()); 7707 SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); 7708 AddToWorklist(X.getNode()); 7709 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); 7710 AddToWorklist(XorResult.getNode()); 7711 SDValue XorResult64 = DAG.getNode( 7712 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, 7713 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 7714 SDLoc(XorResult))); 7715 AddToWorklist(XorResult64.getNode()); 7716 SDValue FlipBit = 7717 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, 7718 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); 7719 AddToWorklist(FlipBit.getNode()); 7720 SDValue FlipBits = 7721 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 7722 AddToWorklist(FlipBits.getNode()); 7723 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); 7724 } 7725 APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); 7726 X = DAG.getNode(ISD::AND, SDLoc(X), VT, 7727 X, DAG.getConstant(SignBit, SDLoc(X), VT)); 7728 AddToWorklist(X.getNode()); 7729 7730 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 7731 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, 7732 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); 7733 AddToWorklist(Cst.getNode()); 7734 7735 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); 7736 } 7737 } 7738 7739 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. 7740 if (N0.getOpcode() == ISD::BUILD_PAIR) 7741 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) 7742 return CombineLD; 7743 7744 // Remove double bitcasts from shuffles - this is often a legacy of 7745 // XformToShuffleWithZero being used to combine bitmaskings (of 7746 // float vectors bitcast to integer vectors) into shuffles. 7747 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) 7748 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && 7749 N0->getOpcode() == ISD::VECTOR_SHUFFLE && 7750 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && 7751 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { 7752 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); 7753 7754 // If operands are a bitcast, peek through if it casts the original VT. 7755 // If operands are a constant, just bitcast back to original VT. 7756 auto PeekThroughBitcast = [&](SDValue Op) { 7757 if (Op.getOpcode() == ISD::BITCAST && 7758 Op.getOperand(0).getValueType() == VT) 7759 return SDValue(Op.getOperand(0)); 7760 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || 7761 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) 7762 return DAG.getBitcast(VT, Op); 7763 return SDValue(); 7764 }; 7765 7766 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); 7767 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); 7768 if (!(SV0 && SV1)) 7769 return SDValue(); 7770 7771 int MaskScale = 7772 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); 7773 SmallVector<int, 8> NewMask; 7774 for (int M : SVN->getMask()) 7775 for (int i = 0; i != MaskScale; ++i) 7776 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); 7777 7778 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); 7779 if (!LegalMask) { 7780 std::swap(SV0, SV1); 7781 ShuffleVectorSDNode::commuteMask(NewMask); 7782 LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); 7783 } 7784 7785 if (LegalMask) 7786 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask); 7787 } 7788 7789 return SDValue(); 7790 } 7791 7792 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { 7793 EVT VT = N->getValueType(0); 7794 return CombineConsecutiveLoads(N, VT); 7795 } 7796 7797 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef 7798 /// operands. DstEltVT indicates the destination element value type. 7799 SDValue DAGCombiner:: 7800 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { 7801 EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); 7802 7803 // If this is already the right type, we're done. 7804 if (SrcEltVT == DstEltVT) return SDValue(BV, 0); 7805 7806 unsigned SrcBitSize = SrcEltVT.getSizeInBits(); 7807 unsigned DstBitSize = DstEltVT.getSizeInBits(); 7808 7809 // If this is a conversion of N elements of one type to N elements of another 7810 // type, convert each element. This handles FP<->INT cases. 7811 if (SrcBitSize == DstBitSize) { 7812 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 7813 BV->getValueType(0).getVectorNumElements()); 7814 7815 // Due to the FP element handling below calling this routine recursively, 7816 // we can end up with a scalar-to-vector node here. 7817 if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR) 7818 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT, 7819 DAG.getBitcast(DstEltVT, BV->getOperand(0))); 7820 7821 SmallVector<SDValue, 8> Ops; 7822 for (SDValue Op : BV->op_values()) { 7823 // If the vector element type is not legal, the BUILD_VECTOR operands 7824 // are promoted and implicitly truncated. Make that explicit here. 7825 if (Op.getValueType() != SrcEltVT) 7826 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); 7827 Ops.push_back(DAG.getBitcast(DstEltVT, Op)); 7828 AddToWorklist(Ops.back().getNode()); 7829 } 7830 return DAG.getBuildVector(VT, SDLoc(BV), Ops); 7831 } 7832 7833 // Otherwise, we're growing or shrinking the elements. To avoid having to 7834 // handle annoying details of growing/shrinking FP values, we convert them to 7835 // int first. 7836 if (SrcEltVT.isFloatingPoint()) { 7837 // Convert the input float vector to a int vector where the elements are the 7838 // same sizes. 7839 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); 7840 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); 7841 SrcEltVT = IntVT; 7842 } 7843 7844 // Now we know the input is an integer vector. If the output is a FP type, 7845 // convert to integer first, then to FP of the right size. 7846 if (DstEltVT.isFloatingPoint()) { 7847 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); 7848 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); 7849 7850 // Next, convert to FP elements of the same size. 7851 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); 7852 } 7853 7854 SDLoc DL(BV); 7855 7856 // Okay, we know the src/dst types are both integers of differing types. 7857 // Handling growing first. 7858 assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); 7859 if (SrcBitSize < DstBitSize) { 7860 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; 7861 7862 SmallVector<SDValue, 8> Ops; 7863 for (unsigned i = 0, e = BV->getNumOperands(); i != e; 7864 i += NumInputsPerOutput) { 7865 bool isLE = DAG.getDataLayout().isLittleEndian(); 7866 APInt NewBits = APInt(DstBitSize, 0); 7867 bool EltIsUndef = true; 7868 for (unsigned j = 0; j != NumInputsPerOutput; ++j) { 7869 // Shift the previously computed bits over. 7870 NewBits <<= SrcBitSize; 7871 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); 7872 if (Op.isUndef()) continue; 7873 EltIsUndef = false; 7874 7875 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). 7876 zextOrTrunc(SrcBitSize).zext(DstBitSize); 7877 } 7878 7879 if (EltIsUndef) 7880 Ops.push_back(DAG.getUNDEF(DstEltVT)); 7881 else 7882 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); 7883 } 7884 7885 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); 7886 return DAG.getBuildVector(VT, DL, Ops); 7887 } 7888 7889 // Finally, this must be the case where we are shrinking elements: each input 7890 // turns into multiple outputs. 7891 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; 7892 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 7893 NumOutputsPerInput*BV->getNumOperands()); 7894 SmallVector<SDValue, 8> Ops; 7895 7896 for (const SDValue &Op : BV->op_values()) { 7897 if (Op.isUndef()) { 7898 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); 7899 continue; 7900 } 7901 7902 APInt OpVal = cast<ConstantSDNode>(Op)-> 7903 getAPIntValue().zextOrTrunc(SrcBitSize); 7904 7905 for (unsigned j = 0; j != NumOutputsPerInput; ++j) { 7906 APInt ThisVal = OpVal.trunc(DstBitSize); 7907 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); 7908 OpVal = OpVal.lshr(DstBitSize); 7909 } 7910 7911 // For big endian targets, swap the order of the pieces of each element. 7912 if (DAG.getDataLayout().isBigEndian()) 7913 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); 7914 } 7915 7916 return DAG.getBuildVector(VT, DL, Ops); 7917 } 7918 7919 /// Try to perform FMA combining on a given FADD node. 7920 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { 7921 SDValue N0 = N->getOperand(0); 7922 SDValue N1 = N->getOperand(1); 7923 EVT VT = N->getValueType(0); 7924 SDLoc SL(N); 7925 7926 const TargetOptions &Options = DAG.getTarget().Options; 7927 bool AllowFusion = 7928 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 7929 7930 // Floating-point multiply-add with intermediate rounding. 7931 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 7932 7933 // Floating-point multiply-add without intermediate rounding. 7934 bool HasFMA = 7935 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 7936 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 7937 7938 // No valid opcode, do not combine. 7939 if (!HasFMAD && !HasFMA) 7940 return SDValue(); 7941 7942 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); 7943 ; 7944 if (AllowFusion && STI && STI->generateFMAsInMachineCombiner(OptLevel)) 7945 return SDValue(); 7946 7947 // Always prefer FMAD to FMA for precision. 7948 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 7949 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 7950 bool LookThroughFPExt = TLI.isFPExtFree(VT); 7951 7952 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 7953 // prefer to fold the multiply with fewer uses. 7954 if (Aggressive && N0.getOpcode() == ISD::FMUL && 7955 N1.getOpcode() == ISD::FMUL) { 7956 if (N0.getNode()->use_size() > N1.getNode()->use_size()) 7957 std::swap(N0, N1); 7958 } 7959 7960 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 7961 if (N0.getOpcode() == ISD::FMUL && 7962 (Aggressive || N0->hasOneUse())) { 7963 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7964 N0.getOperand(0), N0.getOperand(1), N1); 7965 } 7966 7967 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 7968 // Note: Commutes FADD operands. 7969 if (N1.getOpcode() == ISD::FMUL && 7970 (Aggressive || N1->hasOneUse())) { 7971 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7972 N1.getOperand(0), N1.getOperand(1), N0); 7973 } 7974 7975 // Look through FP_EXTEND nodes to do more combining. 7976 if (AllowFusion && LookThroughFPExt) { 7977 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 7978 if (N0.getOpcode() == ISD::FP_EXTEND) { 7979 SDValue N00 = N0.getOperand(0); 7980 if (N00.getOpcode() == ISD::FMUL) 7981 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7982 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7983 N00.getOperand(0)), 7984 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7985 N00.getOperand(1)), N1); 7986 } 7987 7988 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) 7989 // Note: Commutes FADD operands. 7990 if (N1.getOpcode() == ISD::FP_EXTEND) { 7991 SDValue N10 = N1.getOperand(0); 7992 if (N10.getOpcode() == ISD::FMUL) 7993 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7994 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7995 N10.getOperand(0)), 7996 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7997 N10.getOperand(1)), N0); 7998 } 7999 } 8000 8001 // More folding opportunities when target permits. 8002 if ((AllowFusion || HasFMAD) && Aggressive) { 8003 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z)) 8004 if (N0.getOpcode() == PreferredFusedOpcode && 8005 N0.getOperand(2).getOpcode() == ISD::FMUL) { 8006 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8007 N0.getOperand(0), N0.getOperand(1), 8008 DAG.getNode(PreferredFusedOpcode, SL, VT, 8009 N0.getOperand(2).getOperand(0), 8010 N0.getOperand(2).getOperand(1), 8011 N1)); 8012 } 8013 8014 // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x)) 8015 if (N1->getOpcode() == PreferredFusedOpcode && 8016 N1.getOperand(2).getOpcode() == ISD::FMUL) { 8017 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8018 N1.getOperand(0), N1.getOperand(1), 8019 DAG.getNode(PreferredFusedOpcode, SL, VT, 8020 N1.getOperand(2).getOperand(0), 8021 N1.getOperand(2).getOperand(1), 8022 N0)); 8023 } 8024 8025 if (AllowFusion && LookThroughFPExt) { 8026 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 8027 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 8028 auto FoldFAddFMAFPExtFMul = [&] ( 8029 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { 8030 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, 8031 DAG.getNode(PreferredFusedOpcode, SL, VT, 8032 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 8033 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 8034 Z)); 8035 }; 8036 if (N0.getOpcode() == PreferredFusedOpcode) { 8037 SDValue N02 = N0.getOperand(2); 8038 if (N02.getOpcode() == ISD::FP_EXTEND) { 8039 SDValue N020 = N02.getOperand(0); 8040 if (N020.getOpcode() == ISD::FMUL) 8041 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), 8042 N020.getOperand(0), N020.getOperand(1), 8043 N1); 8044 } 8045 } 8046 8047 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 8048 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 8049 // FIXME: This turns two single-precision and one double-precision 8050 // operation into two double-precision operations, which might not be 8051 // interesting for all targets, especially GPUs. 8052 auto FoldFAddFPExtFMAFMul = [&] ( 8053 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { 8054 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8055 DAG.getNode(ISD::FP_EXTEND, SL, VT, X), 8056 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), 8057 DAG.getNode(PreferredFusedOpcode, SL, VT, 8058 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 8059 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 8060 Z)); 8061 }; 8062 if (N0.getOpcode() == ISD::FP_EXTEND) { 8063 SDValue N00 = N0.getOperand(0); 8064 if (N00.getOpcode() == PreferredFusedOpcode) { 8065 SDValue N002 = N00.getOperand(2); 8066 if (N002.getOpcode() == ISD::FMUL) 8067 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), 8068 N002.getOperand(0), N002.getOperand(1), 8069 N1); 8070 } 8071 } 8072 8073 // fold (fadd x, (fma y, z, (fpext (fmul u, v))) 8074 // -> (fma y, z, (fma (fpext u), (fpext v), x)) 8075 if (N1.getOpcode() == PreferredFusedOpcode) { 8076 SDValue N12 = N1.getOperand(2); 8077 if (N12.getOpcode() == ISD::FP_EXTEND) { 8078 SDValue N120 = N12.getOperand(0); 8079 if (N120.getOpcode() == ISD::FMUL) 8080 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), 8081 N120.getOperand(0), N120.getOperand(1), 8082 N0); 8083 } 8084 } 8085 8086 // fold (fadd x, (fpext (fma y, z, (fmul u, v))) 8087 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) 8088 // FIXME: This turns two single-precision and one double-precision 8089 // operation into two double-precision operations, which might not be 8090 // interesting for all targets, especially GPUs. 8091 if (N1.getOpcode() == ISD::FP_EXTEND) { 8092 SDValue N10 = N1.getOperand(0); 8093 if (N10.getOpcode() == PreferredFusedOpcode) { 8094 SDValue N102 = N10.getOperand(2); 8095 if (N102.getOpcode() == ISD::FMUL) 8096 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), 8097 N102.getOperand(0), N102.getOperand(1), 8098 N0); 8099 } 8100 } 8101 } 8102 } 8103 8104 return SDValue(); 8105 } 8106 8107 /// Try to perform FMA combining on a given FSUB node. 8108 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { 8109 SDValue N0 = N->getOperand(0); 8110 SDValue N1 = N->getOperand(1); 8111 EVT VT = N->getValueType(0); 8112 SDLoc SL(N); 8113 8114 const TargetOptions &Options = DAG.getTarget().Options; 8115 bool AllowFusion = 8116 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 8117 8118 // Floating-point multiply-add with intermediate rounding. 8119 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 8120 8121 // Floating-point multiply-add without intermediate rounding. 8122 bool HasFMA = 8123 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 8124 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 8125 8126 // No valid opcode, do not combine. 8127 if (!HasFMAD && !HasFMA) 8128 return SDValue(); 8129 8130 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); 8131 if (AllowFusion && STI && STI->generateFMAsInMachineCombiner(OptLevel)) 8132 return SDValue(); 8133 8134 // Always prefer FMAD to FMA for precision. 8135 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 8136 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 8137 bool LookThroughFPExt = TLI.isFPExtFree(VT); 8138 8139 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 8140 if (N0.getOpcode() == ISD::FMUL && 8141 (Aggressive || N0->hasOneUse())) { 8142 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8143 N0.getOperand(0), N0.getOperand(1), 8144 DAG.getNode(ISD::FNEG, SL, VT, N1)); 8145 } 8146 8147 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 8148 // Note: Commutes FSUB operands. 8149 if (N1.getOpcode() == ISD::FMUL && 8150 (Aggressive || N1->hasOneUse())) 8151 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8152 DAG.getNode(ISD::FNEG, SL, VT, 8153 N1.getOperand(0)), 8154 N1.getOperand(1), N0); 8155 8156 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) 8157 if (N0.getOpcode() == ISD::FNEG && 8158 N0.getOperand(0).getOpcode() == ISD::FMUL && 8159 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { 8160 SDValue N00 = N0.getOperand(0).getOperand(0); 8161 SDValue N01 = N0.getOperand(0).getOperand(1); 8162 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8163 DAG.getNode(ISD::FNEG, SL, VT, N00), N01, 8164 DAG.getNode(ISD::FNEG, SL, VT, N1)); 8165 } 8166 8167 // Look through FP_EXTEND nodes to do more combining. 8168 if (AllowFusion && LookThroughFPExt) { 8169 // fold (fsub (fpext (fmul x, y)), z) 8170 // -> (fma (fpext x), (fpext y), (fneg z)) 8171 if (N0.getOpcode() == ISD::FP_EXTEND) { 8172 SDValue N00 = N0.getOperand(0); 8173 if (N00.getOpcode() == ISD::FMUL) 8174 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8175 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8176 N00.getOperand(0)), 8177 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8178 N00.getOperand(1)), 8179 DAG.getNode(ISD::FNEG, SL, VT, N1)); 8180 } 8181 8182 // fold (fsub x, (fpext (fmul y, z))) 8183 // -> (fma (fneg (fpext y)), (fpext z), x) 8184 // Note: Commutes FSUB operands. 8185 if (N1.getOpcode() == ISD::FP_EXTEND) { 8186 SDValue N10 = N1.getOperand(0); 8187 if (N10.getOpcode() == ISD::FMUL) 8188 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8189 DAG.getNode(ISD::FNEG, SL, VT, 8190 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8191 N10.getOperand(0))), 8192 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8193 N10.getOperand(1)), 8194 N0); 8195 } 8196 8197 // fold (fsub (fpext (fneg (fmul, x, y))), z) 8198 // -> (fneg (fma (fpext x), (fpext y), z)) 8199 // Note: This could be removed with appropriate canonicalization of the 8200 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 8201 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 8202 // from implementing the canonicalization in visitFSUB. 8203 if (N0.getOpcode() == ISD::FP_EXTEND) { 8204 SDValue N00 = N0.getOperand(0); 8205 if (N00.getOpcode() == ISD::FNEG) { 8206 SDValue N000 = N00.getOperand(0); 8207 if (N000.getOpcode() == ISD::FMUL) { 8208 return DAG.getNode(ISD::FNEG, SL, VT, 8209 DAG.getNode(PreferredFusedOpcode, SL, VT, 8210 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8211 N000.getOperand(0)), 8212 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8213 N000.getOperand(1)), 8214 N1)); 8215 } 8216 } 8217 } 8218 8219 // fold (fsub (fneg (fpext (fmul, x, y))), z) 8220 // -> (fneg (fma (fpext x)), (fpext y), z) 8221 // Note: This could be removed with appropriate canonicalization of the 8222 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 8223 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 8224 // from implementing the canonicalization in visitFSUB. 8225 if (N0.getOpcode() == ISD::FNEG) { 8226 SDValue N00 = N0.getOperand(0); 8227 if (N00.getOpcode() == ISD::FP_EXTEND) { 8228 SDValue N000 = N00.getOperand(0); 8229 if (N000.getOpcode() == ISD::FMUL) { 8230 return DAG.getNode(ISD::FNEG, SL, VT, 8231 DAG.getNode(PreferredFusedOpcode, SL, VT, 8232 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8233 N000.getOperand(0)), 8234 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8235 N000.getOperand(1)), 8236 N1)); 8237 } 8238 } 8239 } 8240 8241 } 8242 8243 // More folding opportunities when target permits. 8244 if ((AllowFusion || HasFMAD) && Aggressive) { 8245 // fold (fsub (fma x, y, (fmul u, v)), z) 8246 // -> (fma x, y (fma u, v, (fneg z))) 8247 if (N0.getOpcode() == PreferredFusedOpcode && 8248 N0.getOperand(2).getOpcode() == ISD::FMUL) { 8249 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8250 N0.getOperand(0), N0.getOperand(1), 8251 DAG.getNode(PreferredFusedOpcode, SL, VT, 8252 N0.getOperand(2).getOperand(0), 8253 N0.getOperand(2).getOperand(1), 8254 DAG.getNode(ISD::FNEG, SL, VT, 8255 N1))); 8256 } 8257 8258 // fold (fsub x, (fma y, z, (fmul u, v))) 8259 // -> (fma (fneg y), z, (fma (fneg u), v, x)) 8260 if (N1.getOpcode() == PreferredFusedOpcode && 8261 N1.getOperand(2).getOpcode() == ISD::FMUL) { 8262 SDValue N20 = N1.getOperand(2).getOperand(0); 8263 SDValue N21 = N1.getOperand(2).getOperand(1); 8264 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8265 DAG.getNode(ISD::FNEG, SL, VT, 8266 N1.getOperand(0)), 8267 N1.getOperand(1), 8268 DAG.getNode(PreferredFusedOpcode, SL, VT, 8269 DAG.getNode(ISD::FNEG, SL, VT, N20), 8270 8271 N21, N0)); 8272 } 8273 8274 if (AllowFusion && LookThroughFPExt) { 8275 // fold (fsub (fma x, y, (fpext (fmul u, v))), z) 8276 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) 8277 if (N0.getOpcode() == PreferredFusedOpcode) { 8278 SDValue N02 = N0.getOperand(2); 8279 if (N02.getOpcode() == ISD::FP_EXTEND) { 8280 SDValue N020 = N02.getOperand(0); 8281 if (N020.getOpcode() == ISD::FMUL) 8282 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8283 N0.getOperand(0), N0.getOperand(1), 8284 DAG.getNode(PreferredFusedOpcode, SL, VT, 8285 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8286 N020.getOperand(0)), 8287 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8288 N020.getOperand(1)), 8289 DAG.getNode(ISD::FNEG, SL, VT, 8290 N1))); 8291 } 8292 } 8293 8294 // fold (fsub (fpext (fma x, y, (fmul u, v))), z) 8295 // -> (fma (fpext x), (fpext y), 8296 // (fma (fpext u), (fpext v), (fneg z))) 8297 // FIXME: This turns two single-precision and one double-precision 8298 // operation into two double-precision operations, which might not be 8299 // interesting for all targets, especially GPUs. 8300 if (N0.getOpcode() == ISD::FP_EXTEND) { 8301 SDValue N00 = N0.getOperand(0); 8302 if (N00.getOpcode() == PreferredFusedOpcode) { 8303 SDValue N002 = N00.getOperand(2); 8304 if (N002.getOpcode() == ISD::FMUL) 8305 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8306 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8307 N00.getOperand(0)), 8308 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8309 N00.getOperand(1)), 8310 DAG.getNode(PreferredFusedOpcode, SL, VT, 8311 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8312 N002.getOperand(0)), 8313 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8314 N002.getOperand(1)), 8315 DAG.getNode(ISD::FNEG, SL, VT, 8316 N1))); 8317 } 8318 } 8319 8320 // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) 8321 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) 8322 if (N1.getOpcode() == PreferredFusedOpcode && 8323 N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) { 8324 SDValue N120 = N1.getOperand(2).getOperand(0); 8325 if (N120.getOpcode() == ISD::FMUL) { 8326 SDValue N1200 = N120.getOperand(0); 8327 SDValue N1201 = N120.getOperand(1); 8328 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8329 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), 8330 N1.getOperand(1), 8331 DAG.getNode(PreferredFusedOpcode, SL, VT, 8332 DAG.getNode(ISD::FNEG, SL, VT, 8333 DAG.getNode(ISD::FP_EXTEND, SL, 8334 VT, N1200)), 8335 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8336 N1201), 8337 N0)); 8338 } 8339 } 8340 8341 // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) 8342 // -> (fma (fneg (fpext y)), (fpext z), 8343 // (fma (fneg (fpext u)), (fpext v), x)) 8344 // FIXME: This turns two single-precision and one double-precision 8345 // operation into two double-precision operations, which might not be 8346 // interesting for all targets, especially GPUs. 8347 if (N1.getOpcode() == ISD::FP_EXTEND && 8348 N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { 8349 SDValue N100 = N1.getOperand(0).getOperand(0); 8350 SDValue N101 = N1.getOperand(0).getOperand(1); 8351 SDValue N102 = N1.getOperand(0).getOperand(2); 8352 if (N102.getOpcode() == ISD::FMUL) { 8353 SDValue N1020 = N102.getOperand(0); 8354 SDValue N1021 = N102.getOperand(1); 8355 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8356 DAG.getNode(ISD::FNEG, SL, VT, 8357 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8358 N100)), 8359 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), 8360 DAG.getNode(PreferredFusedOpcode, SL, VT, 8361 DAG.getNode(ISD::FNEG, SL, VT, 8362 DAG.getNode(ISD::FP_EXTEND, SL, 8363 VT, N1020)), 8364 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8365 N1021), 8366 N0)); 8367 } 8368 } 8369 } 8370 } 8371 8372 return SDValue(); 8373 } 8374 8375 /// Try to perform FMA combining on a given FMUL node. 8376 SDValue DAGCombiner::visitFMULForFMACombine(SDNode *N) { 8377 SDValue N0 = N->getOperand(0); 8378 SDValue N1 = N->getOperand(1); 8379 EVT VT = N->getValueType(0); 8380 SDLoc SL(N); 8381 8382 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); 8383 8384 const TargetOptions &Options = DAG.getTarget().Options; 8385 bool AllowFusion = 8386 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 8387 8388 // Floating-point multiply-add with intermediate rounding. 8389 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 8390 8391 // Floating-point multiply-add without intermediate rounding. 8392 bool HasFMA = 8393 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 8394 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 8395 8396 // No valid opcode, do not combine. 8397 if (!HasFMAD && !HasFMA) 8398 return SDValue(); 8399 8400 // Always prefer FMAD to FMA for precision. 8401 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 8402 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 8403 8404 // fold (fmul (fadd x, +1.0), y) -> (fma x, y, y) 8405 // fold (fmul (fadd x, -1.0), y) -> (fma x, y, (fneg y)) 8406 auto FuseFADD = [&](SDValue X, SDValue Y) { 8407 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { 8408 auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); 8409 if (XC1 && XC1->isExactlyValue(+1.0)) 8410 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); 8411 if (XC1 && XC1->isExactlyValue(-1.0)) 8412 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 8413 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8414 } 8415 return SDValue(); 8416 }; 8417 8418 if (SDValue FMA = FuseFADD(N0, N1)) 8419 return FMA; 8420 if (SDValue FMA = FuseFADD(N1, N0)) 8421 return FMA; 8422 8423 // fold (fmul (fsub +1.0, x), y) -> (fma (fneg x), y, y) 8424 // fold (fmul (fsub -1.0, x), y) -> (fma (fneg x), y, (fneg y)) 8425 // fold (fmul (fsub x, +1.0), y) -> (fma x, y, (fneg y)) 8426 // fold (fmul (fsub x, -1.0), y) -> (fma x, y, y) 8427 auto FuseFSUB = [&](SDValue X, SDValue Y) { 8428 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { 8429 auto XC0 = isConstOrConstSplatFP(X.getOperand(0)); 8430 if (XC0 && XC0->isExactlyValue(+1.0)) 8431 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8432 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 8433 Y); 8434 if (XC0 && XC0->isExactlyValue(-1.0)) 8435 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8436 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 8437 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8438 8439 auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); 8440 if (XC1 && XC1->isExactlyValue(+1.0)) 8441 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 8442 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8443 if (XC1 && XC1->isExactlyValue(-1.0)) 8444 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); 8445 } 8446 return SDValue(); 8447 }; 8448 8449 if (SDValue FMA = FuseFSUB(N0, N1)) 8450 return FMA; 8451 if (SDValue FMA = FuseFSUB(N1, N0)) 8452 return FMA; 8453 8454 return SDValue(); 8455 } 8456 8457 SDValue DAGCombiner::visitFADD(SDNode *N) { 8458 SDValue N0 = N->getOperand(0); 8459 SDValue N1 = N->getOperand(1); 8460 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); 8461 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); 8462 EVT VT = N->getValueType(0); 8463 SDLoc DL(N); 8464 const TargetOptions &Options = DAG.getTarget().Options; 8465 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8466 8467 // fold vector ops 8468 if (VT.isVector()) 8469 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8470 return FoldedVOp; 8471 8472 // fold (fadd c1, c2) -> c1 + c2 8473 if (N0CFP && N1CFP) 8474 return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags); 8475 8476 // canonicalize constant to RHS 8477 if (N0CFP && !N1CFP) 8478 return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags); 8479 8480 // fold (fadd A, (fneg B)) -> (fsub A, B) 8481 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 8482 isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2) 8483 return DAG.getNode(ISD::FSUB, DL, VT, N0, 8484 GetNegatedExpression(N1, DAG, LegalOperations), Flags); 8485 8486 // fold (fadd (fneg A), B) -> (fsub B, A) 8487 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 8488 isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2) 8489 return DAG.getNode(ISD::FSUB, DL, VT, N1, 8490 GetNegatedExpression(N0, DAG, LegalOperations), Flags); 8491 8492 // If 'unsafe math' is enabled, fold lots of things. 8493 if (Options.UnsafeFPMath) { 8494 // No FP constant should be created after legalization as Instruction 8495 // Selection pass has a hard time dealing with FP constants. 8496 bool AllowNewConst = (Level < AfterLegalizeDAG); 8497 8498 // fold (fadd A, 0) -> A 8499 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1)) 8500 if (N1C->isZero()) 8501 return N0; 8502 8503 // fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2)) 8504 if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() && 8505 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) 8506 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), 8507 DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, 8508 Flags), 8509 Flags); 8510 8511 // If allowed, fold (fadd (fneg x), x) -> 0.0 8512 if (AllowNewConst && N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) 8513 return DAG.getConstantFP(0.0, DL, VT); 8514 8515 // If allowed, fold (fadd x, (fneg x)) -> 0.0 8516 if (AllowNewConst && N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) 8517 return DAG.getConstantFP(0.0, DL, VT); 8518 8519 // We can fold chains of FADD's of the same value into multiplications. 8520 // This transform is not safe in general because we are reducing the number 8521 // of rounding steps. 8522 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { 8523 if (N0.getOpcode() == ISD::FMUL) { 8524 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 8525 bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); 8526 8527 // (fadd (fmul x, c), x) -> (fmul x, c+1) 8528 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { 8529 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 8530 DAG.getConstantFP(1.0, DL, VT), Flags); 8531 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags); 8532 } 8533 8534 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) 8535 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && 8536 N1.getOperand(0) == N1.getOperand(1) && 8537 N0.getOperand(0) == N1.getOperand(0)) { 8538 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 8539 DAG.getConstantFP(2.0, DL, VT), Flags); 8540 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags); 8541 } 8542 } 8543 8544 if (N1.getOpcode() == ISD::FMUL) { 8545 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 8546 bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); 8547 8548 // (fadd x, (fmul x, c)) -> (fmul x, c+1) 8549 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { 8550 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 8551 DAG.getConstantFP(1.0, DL, VT), Flags); 8552 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags); 8553 } 8554 8555 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) 8556 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && 8557 N0.getOperand(0) == N0.getOperand(1) && 8558 N1.getOperand(0) == N0.getOperand(0)) { 8559 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 8560 DAG.getConstantFP(2.0, DL, VT), Flags); 8561 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags); 8562 } 8563 } 8564 8565 if (N0.getOpcode() == ISD::FADD && AllowNewConst) { 8566 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 8567 // (fadd (fadd x, x), x) -> (fmul x, 3.0) 8568 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && 8569 (N0.getOperand(0) == N1)) { 8570 return DAG.getNode(ISD::FMUL, DL, VT, 8571 N1, DAG.getConstantFP(3.0, DL, VT), Flags); 8572 } 8573 } 8574 8575 if (N1.getOpcode() == ISD::FADD && AllowNewConst) { 8576 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 8577 // (fadd x, (fadd x, x)) -> (fmul x, 3.0) 8578 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && 8579 N1.getOperand(0) == N0) { 8580 return DAG.getNode(ISD::FMUL, DL, VT, 8581 N0, DAG.getConstantFP(3.0, DL, VT), Flags); 8582 } 8583 } 8584 8585 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) 8586 if (AllowNewConst && 8587 N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && 8588 N0.getOperand(0) == N0.getOperand(1) && 8589 N1.getOperand(0) == N1.getOperand(1) && 8590 N0.getOperand(0) == N1.getOperand(0)) { 8591 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), 8592 DAG.getConstantFP(4.0, DL, VT), Flags); 8593 } 8594 } 8595 } // enable-unsafe-fp-math 8596 8597 // FADD -> FMA combines: 8598 if (SDValue Fused = visitFADDForFMACombine(N)) { 8599 AddToWorklist(Fused.getNode()); 8600 return Fused; 8601 } 8602 return SDValue(); 8603 } 8604 8605 SDValue DAGCombiner::visitFSUB(SDNode *N) { 8606 SDValue N0 = N->getOperand(0); 8607 SDValue N1 = N->getOperand(1); 8608 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 8609 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 8610 EVT VT = N->getValueType(0); 8611 SDLoc DL(N); 8612 const TargetOptions &Options = DAG.getTarget().Options; 8613 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8614 8615 // fold vector ops 8616 if (VT.isVector()) 8617 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8618 return FoldedVOp; 8619 8620 // fold (fsub c1, c2) -> c1-c2 8621 if (N0CFP && N1CFP) 8622 return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags); 8623 8624 // fold (fsub A, (fneg B)) -> (fadd A, B) 8625 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) 8626 return DAG.getNode(ISD::FADD, DL, VT, N0, 8627 GetNegatedExpression(N1, DAG, LegalOperations), Flags); 8628 8629 // If 'unsafe math' is enabled, fold lots of things. 8630 if (Options.UnsafeFPMath) { 8631 // (fsub A, 0) -> A 8632 if (N1CFP && N1CFP->isZero()) 8633 return N0; 8634 8635 // (fsub 0, B) -> -B 8636 if (N0CFP && N0CFP->isZero()) { 8637 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) 8638 return GetNegatedExpression(N1, DAG, LegalOperations); 8639 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8640 return DAG.getNode(ISD::FNEG, DL, VT, N1); 8641 } 8642 8643 // (fsub x, x) -> 0.0 8644 if (N0 == N1) 8645 return DAG.getConstantFP(0.0f, DL, VT); 8646 8647 // (fsub x, (fadd x, y)) -> (fneg y) 8648 // (fsub x, (fadd y, x)) -> (fneg y) 8649 if (N1.getOpcode() == ISD::FADD) { 8650 SDValue N10 = N1->getOperand(0); 8651 SDValue N11 = N1->getOperand(1); 8652 8653 if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options)) 8654 return GetNegatedExpression(N11, DAG, LegalOperations); 8655 8656 if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options)) 8657 return GetNegatedExpression(N10, DAG, LegalOperations); 8658 } 8659 } 8660 8661 // FSUB -> FMA combines: 8662 if (SDValue Fused = visitFSUBForFMACombine(N)) { 8663 AddToWorklist(Fused.getNode()); 8664 return Fused; 8665 } 8666 8667 return SDValue(); 8668 } 8669 8670 SDValue DAGCombiner::visitFMUL(SDNode *N) { 8671 SDValue N0 = N->getOperand(0); 8672 SDValue N1 = N->getOperand(1); 8673 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 8674 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 8675 EVT VT = N->getValueType(0); 8676 SDLoc DL(N); 8677 const TargetOptions &Options = DAG.getTarget().Options; 8678 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8679 8680 // fold vector ops 8681 if (VT.isVector()) { 8682 // This just handles C1 * C2 for vectors. Other vector folds are below. 8683 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8684 return FoldedVOp; 8685 } 8686 8687 // fold (fmul c1, c2) -> c1*c2 8688 if (N0CFP && N1CFP) 8689 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags); 8690 8691 // canonicalize constant to RHS 8692 if (isConstantFPBuildVectorOrConstantFP(N0) && 8693 !isConstantFPBuildVectorOrConstantFP(N1)) 8694 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags); 8695 8696 // fold (fmul A, 1.0) -> A 8697 if (N1CFP && N1CFP->isExactlyValue(1.0)) 8698 return N0; 8699 8700 if (Options.UnsafeFPMath) { 8701 // fold (fmul A, 0) -> 0 8702 if (N1CFP && N1CFP->isZero()) 8703 return N1; 8704 8705 // fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2)) 8706 if (N0.getOpcode() == ISD::FMUL) { 8707 // Fold scalars or any vector constants (not just splats). 8708 // This fold is done in general by InstCombine, but extra fmul insts 8709 // may have been generated during lowering. 8710 SDValue N00 = N0.getOperand(0); 8711 SDValue N01 = N0.getOperand(1); 8712 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 8713 auto *BV00 = dyn_cast<BuildVectorSDNode>(N00); 8714 auto *BV01 = dyn_cast<BuildVectorSDNode>(N01); 8715 8716 // Check 1: Make sure that the first operand of the inner multiply is NOT 8717 // a constant. Otherwise, we may induce infinite looping. 8718 if (!(isConstOrConstSplatFP(N00) || (BV00 && BV00->isConstant()))) { 8719 // Check 2: Make sure that the second operand of the inner multiply and 8720 // the second operand of the outer multiply are constants. 8721 if ((N1CFP && isConstOrConstSplatFP(N01)) || 8722 (BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) { 8723 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags); 8724 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags); 8725 } 8726 } 8727 } 8728 8729 // fold (fmul (fadd x, x), c) -> (fmul x, (fmul 2.0, c)) 8730 // Undo the fmul 2.0, x -> fadd x, x transformation, since if it occurs 8731 // during an early run of DAGCombiner can prevent folding with fmuls 8732 // inserted during lowering. 8733 if (N0.getOpcode() == ISD::FADD && 8734 (N0.getOperand(0) == N0.getOperand(1)) && 8735 N0.hasOneUse()) { 8736 const SDValue Two = DAG.getConstantFP(2.0, DL, VT); 8737 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags); 8738 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags); 8739 } 8740 } 8741 8742 // fold (fmul X, 2.0) -> (fadd X, X) 8743 if (N1CFP && N1CFP->isExactlyValue(+2.0)) 8744 return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags); 8745 8746 // fold (fmul X, -1.0) -> (fneg X) 8747 if (N1CFP && N1CFP->isExactlyValue(-1.0)) 8748 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8749 return DAG.getNode(ISD::FNEG, DL, VT, N0); 8750 8751 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) 8752 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { 8753 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { 8754 // Both can be negated for free, check to see if at least one is cheaper 8755 // negated. 8756 if (LHSNeg == 2 || RHSNeg == 2) 8757 return DAG.getNode(ISD::FMUL, DL, VT, 8758 GetNegatedExpression(N0, DAG, LegalOperations), 8759 GetNegatedExpression(N1, DAG, LegalOperations), 8760 Flags); 8761 } 8762 } 8763 8764 // FMUL -> FMA combines: 8765 if (SDValue Fused = visitFMULForFMACombine(N)) { 8766 AddToWorklist(Fused.getNode()); 8767 return Fused; 8768 } 8769 8770 return SDValue(); 8771 } 8772 8773 SDValue DAGCombiner::visitFMA(SDNode *N) { 8774 SDValue N0 = N->getOperand(0); 8775 SDValue N1 = N->getOperand(1); 8776 SDValue N2 = N->getOperand(2); 8777 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8778 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8779 EVT VT = N->getValueType(0); 8780 SDLoc DL(N); 8781 const TargetOptions &Options = DAG.getTarget().Options; 8782 8783 // Constant fold FMA. 8784 if (isa<ConstantFPSDNode>(N0) && 8785 isa<ConstantFPSDNode>(N1) && 8786 isa<ConstantFPSDNode>(N2)) { 8787 return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); 8788 } 8789 8790 if (Options.UnsafeFPMath) { 8791 if (N0CFP && N0CFP->isZero()) 8792 return N2; 8793 if (N1CFP && N1CFP->isZero()) 8794 return N2; 8795 } 8796 // TODO: The FMA node should have flags that propagate to these nodes. 8797 if (N0CFP && N0CFP->isExactlyValue(1.0)) 8798 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); 8799 if (N1CFP && N1CFP->isExactlyValue(1.0)) 8800 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); 8801 8802 // Canonicalize (fma c, x, y) -> (fma x, c, y) 8803 if (isConstantFPBuildVectorOrConstantFP(N0) && 8804 !isConstantFPBuildVectorOrConstantFP(N1)) 8805 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); 8806 8807 // TODO: FMA nodes should have flags that propagate to the created nodes. 8808 // For now, create a Flags object for use with all unsafe math transforms. 8809 SDNodeFlags Flags; 8810 Flags.setUnsafeAlgebra(true); 8811 8812 if (Options.UnsafeFPMath) { 8813 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) 8814 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && 8815 isConstantFPBuildVectorOrConstantFP(N1) && 8816 isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { 8817 return DAG.getNode(ISD::FMUL, DL, VT, N0, 8818 DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1), 8819 &Flags), &Flags); 8820 } 8821 8822 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) 8823 if (N0.getOpcode() == ISD::FMUL && 8824 isConstantFPBuildVectorOrConstantFP(N1) && 8825 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 8826 return DAG.getNode(ISD::FMA, DL, VT, 8827 N0.getOperand(0), 8828 DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1), 8829 &Flags), 8830 N2); 8831 } 8832 } 8833 8834 // (fma x, 1, y) -> (fadd x, y) 8835 // (fma x, -1, y) -> (fadd (fneg x), y) 8836 if (N1CFP) { 8837 if (N1CFP->isExactlyValue(1.0)) 8838 // TODO: The FMA node should have flags that propagate to this node. 8839 return DAG.getNode(ISD::FADD, DL, VT, N0, N2); 8840 8841 if (N1CFP->isExactlyValue(-1.0) && 8842 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { 8843 SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); 8844 AddToWorklist(RHSNeg.getNode()); 8845 // TODO: The FMA node should have flags that propagate to this node. 8846 return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); 8847 } 8848 } 8849 8850 if (Options.UnsafeFPMath) { 8851 // (fma x, c, x) -> (fmul x, (c+1)) 8852 if (N1CFP && N0 == N2) { 8853 return DAG.getNode(ISD::FMUL, DL, VT, N0, 8854 DAG.getNode(ISD::FADD, DL, VT, N1, 8855 DAG.getConstantFP(1.0, DL, VT), &Flags), 8856 &Flags); 8857 } 8858 8859 // (fma x, c, (fneg x)) -> (fmul x, (c-1)) 8860 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { 8861 return DAG.getNode(ISD::FMUL, DL, VT, N0, 8862 DAG.getNode(ISD::FADD, DL, VT, N1, 8863 DAG.getConstantFP(-1.0, DL, VT), &Flags), 8864 &Flags); 8865 } 8866 } 8867 8868 return SDValue(); 8869 } 8870 8871 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 8872 // reciprocal. 8873 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) 8874 // Notice that this is not always beneficial. One reason is different target 8875 // may have different costs for FDIV and FMUL, so sometimes the cost of two 8876 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason 8877 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". 8878 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { 8879 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; 8880 const SDNodeFlags *Flags = N->getFlags(); 8881 if (!UnsafeMath && !Flags->hasAllowReciprocal()) 8882 return SDValue(); 8883 8884 // Skip if current node is a reciprocal. 8885 SDValue N0 = N->getOperand(0); 8886 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8887 if (N0CFP && N0CFP->isExactlyValue(1.0)) 8888 return SDValue(); 8889 8890 // Exit early if the target does not want this transform or if there can't 8891 // possibly be enough uses of the divisor to make the transform worthwhile. 8892 SDValue N1 = N->getOperand(1); 8893 unsigned MinUses = TLI.combineRepeatedFPDivisors(); 8894 if (!MinUses || N1->use_size() < MinUses) 8895 return SDValue(); 8896 8897 // Find all FDIV users of the same divisor. 8898 // Use a set because duplicates may be present in the user list. 8899 SetVector<SDNode *> Users; 8900 for (auto *U : N1->uses()) { 8901 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { 8902 // This division is eligible for optimization only if global unsafe math 8903 // is enabled or if this division allows reciprocal formation. 8904 if (UnsafeMath || U->getFlags()->hasAllowReciprocal()) 8905 Users.insert(U); 8906 } 8907 } 8908 8909 // Now that we have the actual number of divisor uses, make sure it meets 8910 // the minimum threshold specified by the target. 8911 if (Users.size() < MinUses) 8912 return SDValue(); 8913 8914 EVT VT = N->getValueType(0); 8915 SDLoc DL(N); 8916 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 8917 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); 8918 8919 // Dividend / Divisor -> Dividend * Reciprocal 8920 for (auto *U : Users) { 8921 SDValue Dividend = U->getOperand(0); 8922 if (Dividend != FPOne) { 8923 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, 8924 Reciprocal, Flags); 8925 CombineTo(U, NewNode); 8926 } else if (U != Reciprocal.getNode()) { 8927 // In the absence of fast-math-flags, this user node is always the 8928 // same node as Reciprocal, but with FMF they may be different nodes. 8929 CombineTo(U, Reciprocal); 8930 } 8931 } 8932 return SDValue(N, 0); // N was replaced. 8933 } 8934 8935 SDValue DAGCombiner::visitFDIV(SDNode *N) { 8936 SDValue N0 = N->getOperand(0); 8937 SDValue N1 = N->getOperand(1); 8938 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8939 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8940 EVT VT = N->getValueType(0); 8941 SDLoc DL(N); 8942 const TargetOptions &Options = DAG.getTarget().Options; 8943 SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8944 8945 // fold vector ops 8946 if (VT.isVector()) 8947 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8948 return FoldedVOp; 8949 8950 // fold (fdiv c1, c2) -> c1/c2 8951 if (N0CFP && N1CFP) 8952 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags); 8953 8954 if (Options.UnsafeFPMath) { 8955 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. 8956 if (N1CFP) { 8957 // Compute the reciprocal 1.0 / c2. 8958 const APFloat &N1APF = N1CFP->getValueAPF(); 8959 APFloat Recip(N1APF.getSemantics(), 1); // 1.0 8960 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); 8961 // Only do the transform if the reciprocal is a legal fp immediate that 8962 // isn't too nasty (eg NaN, denormal, ...). 8963 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty 8964 (!LegalOperations || 8965 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM 8966 // backend)... we should handle this gracefully after Legalize. 8967 // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) || 8968 TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) || 8969 TLI.isFPImmLegal(Recip, VT))) 8970 return DAG.getNode(ISD::FMUL, DL, VT, N0, 8971 DAG.getConstantFP(Recip, DL, VT), Flags); 8972 } 8973 8974 // If this FDIV is part of a reciprocal square root, it may be folded 8975 // into a target-specific square root estimate instruction. 8976 if (N1.getOpcode() == ISD::FSQRT) { 8977 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) { 8978 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8979 } 8980 } else if (N1.getOpcode() == ISD::FP_EXTEND && 8981 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8982 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), 8983 Flags)) { 8984 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); 8985 AddToWorklist(RV.getNode()); 8986 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8987 } 8988 } else if (N1.getOpcode() == ISD::FP_ROUND && 8989 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8990 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), 8991 Flags)) { 8992 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); 8993 AddToWorklist(RV.getNode()); 8994 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8995 } 8996 } else if (N1.getOpcode() == ISD::FMUL) { 8997 // Look through an FMUL. Even though this won't remove the FDIV directly, 8998 // it's still worthwhile to get rid of the FSQRT if possible. 8999 SDValue SqrtOp; 9000 SDValue OtherOp; 9001 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { 9002 SqrtOp = N1.getOperand(0); 9003 OtherOp = N1.getOperand(1); 9004 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { 9005 SqrtOp = N1.getOperand(1); 9006 OtherOp = N1.getOperand(0); 9007 } 9008 if (SqrtOp.getNode()) { 9009 // We found a FSQRT, so try to make this fold: 9010 // x / (y * sqrt(z)) -> x * (rsqrt(z) / y) 9011 if (SDValue RV = buildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) { 9012 RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags); 9013 AddToWorklist(RV.getNode()); 9014 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 9015 } 9016 } 9017 } 9018 9019 // Fold into a reciprocal estimate and multiply instead of a real divide. 9020 if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) { 9021 AddToWorklist(RV.getNode()); 9022 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 9023 } 9024 } 9025 9026 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) 9027 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { 9028 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { 9029 // Both can be negated for free, check to see if at least one is cheaper 9030 // negated. 9031 if (LHSNeg == 2 || RHSNeg == 2) 9032 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, 9033 GetNegatedExpression(N0, DAG, LegalOperations), 9034 GetNegatedExpression(N1, DAG, LegalOperations), 9035 Flags); 9036 } 9037 } 9038 9039 if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N)) 9040 return CombineRepeatedDivisors; 9041 9042 return SDValue(); 9043 } 9044 9045 SDValue DAGCombiner::visitFREM(SDNode *N) { 9046 SDValue N0 = N->getOperand(0); 9047 SDValue N1 = N->getOperand(1); 9048 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 9049 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 9050 EVT VT = N->getValueType(0); 9051 9052 // fold (frem c1, c2) -> fmod(c1,c2) 9053 if (N0CFP && N1CFP) 9054 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, 9055 &cast<BinaryWithFlagsSDNode>(N)->Flags); 9056 9057 return SDValue(); 9058 } 9059 9060 SDValue DAGCombiner::visitFSQRT(SDNode *N) { 9061 if (!DAG.getTarget().Options.UnsafeFPMath) 9062 return SDValue(); 9063 9064 SDValue N0 = N->getOperand(0); 9065 if (TLI.isFsqrtCheap(N0, DAG)) 9066 return SDValue(); 9067 9068 // TODO: FSQRT nodes should have flags that propagate to the created nodes. 9069 // For now, create a Flags object for use with all unsafe math transforms. 9070 SDNodeFlags Flags; 9071 Flags.setUnsafeAlgebra(true); 9072 return buildSqrtEstimate(N0, &Flags); 9073 } 9074 9075 /// copysign(x, fp_extend(y)) -> copysign(x, y) 9076 /// copysign(x, fp_round(y)) -> copysign(x, y) 9077 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { 9078 SDValue N1 = N->getOperand(1); 9079 if ((N1.getOpcode() == ISD::FP_EXTEND || 9080 N1.getOpcode() == ISD::FP_ROUND)) { 9081 // Do not optimize out type conversion of f128 type yet. 9082 // For some targets like x86_64, configuration is changed to keep one f128 9083 // value in one SSE register, but instruction selection cannot handle 9084 // FCOPYSIGN on SSE registers yet. 9085 EVT N1VT = N1->getValueType(0); 9086 EVT N1Op0VT = N1->getOperand(0)->getValueType(0); 9087 return (N1VT == N1Op0VT || N1Op0VT != MVT::f128); 9088 } 9089 return false; 9090 } 9091 9092 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { 9093 SDValue N0 = N->getOperand(0); 9094 SDValue N1 = N->getOperand(1); 9095 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 9096 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 9097 EVT VT = N->getValueType(0); 9098 9099 if (N0CFP && N1CFP) // Constant fold 9100 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); 9101 9102 if (N1CFP) { 9103 const APFloat &V = N1CFP->getValueAPF(); 9104 // copysign(x, c1) -> fabs(x) iff ispos(c1) 9105 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) 9106 if (!V.isNegative()) { 9107 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) 9108 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 9109 } else { 9110 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 9111 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, 9112 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); 9113 } 9114 } 9115 9116 // copysign(fabs(x), y) -> copysign(x, y) 9117 // copysign(fneg(x), y) -> copysign(x, y) 9118 // copysign(copysign(x,z), y) -> copysign(x, y) 9119 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || 9120 N0.getOpcode() == ISD::FCOPYSIGN) 9121 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); 9122 9123 // copysign(x, abs(y)) -> abs(x) 9124 if (N1.getOpcode() == ISD::FABS) 9125 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 9126 9127 // copysign(x, copysign(y,z)) -> copysign(x, z) 9128 if (N1.getOpcode() == ISD::FCOPYSIGN) 9129 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); 9130 9131 // copysign(x, fp_extend(y)) -> copysign(x, y) 9132 // copysign(x, fp_round(y)) -> copysign(x, y) 9133 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) 9134 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); 9135 9136 return SDValue(); 9137 } 9138 9139 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { 9140 SDValue N0 = N->getOperand(0); 9141 EVT VT = N->getValueType(0); 9142 EVT OpVT = N0.getValueType(); 9143 9144 // fold (sint_to_fp c1) -> c1fp 9145 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 9146 // ...but only if the target supports immediate floating-point values 9147 (!LegalOperations || 9148 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) 9149 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 9150 9151 // If the input is a legal type, and SINT_TO_FP is not legal on this target, 9152 // but UINT_TO_FP is legal on this target, try to convert. 9153 if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) && 9154 TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) { 9155 // If the sign bit is known to be zero, we can change this to UINT_TO_FP. 9156 if (DAG.SignBitIsZero(N0)) 9157 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 9158 } 9159 9160 // The next optimizations are desirable only if SELECT_CC can be lowered. 9161 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 9162 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 9163 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && 9164 !VT.isVector() && 9165 (!LegalOperations || 9166 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 9167 SDLoc DL(N); 9168 SDValue Ops[] = 9169 { N0.getOperand(0), N0.getOperand(1), 9170 DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 9171 N0.getOperand(2) }; 9172 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 9173 } 9174 9175 // fold (sint_to_fp (zext (setcc x, y, cc))) -> 9176 // (select_cc x, y, 1.0, 0.0,, cc) 9177 if (N0.getOpcode() == ISD::ZERO_EXTEND && 9178 N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() && 9179 (!LegalOperations || 9180 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 9181 SDLoc DL(N); 9182 SDValue Ops[] = 9183 { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1), 9184 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 9185 N0.getOperand(0).getOperand(2) }; 9186 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 9187 } 9188 } 9189 9190 return SDValue(); 9191 } 9192 9193 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { 9194 SDValue N0 = N->getOperand(0); 9195 EVT VT = N->getValueType(0); 9196 EVT OpVT = N0.getValueType(); 9197 9198 // fold (uint_to_fp c1) -> c1fp 9199 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 9200 // ...but only if the target supports immediate floating-point values 9201 (!LegalOperations || 9202 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) 9203 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 9204 9205 // If the input is a legal type, and UINT_TO_FP is not legal on this target, 9206 // but SINT_TO_FP is legal on this target, try to convert. 9207 if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) && 9208 TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) { 9209 // If the sign bit is known to be zero, we can change this to SINT_TO_FP. 9210 if (DAG.SignBitIsZero(N0)) 9211 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 9212 } 9213 9214 // The next optimizations are desirable only if SELECT_CC can be lowered. 9215 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 9216 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 9217 9218 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && 9219 (!LegalOperations || 9220 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 9221 SDLoc DL(N); 9222 SDValue Ops[] = 9223 { N0.getOperand(0), N0.getOperand(1), 9224 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 9225 N0.getOperand(2) }; 9226 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 9227 } 9228 } 9229 9230 return SDValue(); 9231 } 9232 9233 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x 9234 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { 9235 SDValue N0 = N->getOperand(0); 9236 EVT VT = N->getValueType(0); 9237 9238 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) 9239 return SDValue(); 9240 9241 SDValue Src = N0.getOperand(0); 9242 EVT SrcVT = Src.getValueType(); 9243 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; 9244 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; 9245 9246 // We can safely assume the conversion won't overflow the output range, 9247 // because (for example) (uint8_t)18293.f is undefined behavior. 9248 9249 // Since we can assume the conversion won't overflow, our decision as to 9250 // whether the input will fit in the float should depend on the minimum 9251 // of the input range and output range. 9252 9253 // This means this is also safe for a signed input and unsigned output, since 9254 // a negative input would lead to undefined behavior. 9255 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; 9256 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; 9257 unsigned ActualSize = std::min(InputSize, OutputSize); 9258 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); 9259 9260 // We can only fold away the float conversion if the input range can be 9261 // represented exactly in the float range. 9262 if (APFloat::semanticsPrecision(sem) >= ActualSize) { 9263 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { 9264 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND 9265 : ISD::ZERO_EXTEND; 9266 return DAG.getNode(ExtOp, SDLoc(N), VT, Src); 9267 } 9268 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) 9269 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); 9270 return DAG.getBitcast(VT, Src); 9271 } 9272 return SDValue(); 9273 } 9274 9275 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { 9276 SDValue N0 = N->getOperand(0); 9277 EVT VT = N->getValueType(0); 9278 9279 // fold (fp_to_sint c1fp) -> c1 9280 if (isConstantFPBuildVectorOrConstantFP(N0)) 9281 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); 9282 9283 return FoldIntToFPToInt(N, DAG); 9284 } 9285 9286 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { 9287 SDValue N0 = N->getOperand(0); 9288 EVT VT = N->getValueType(0); 9289 9290 // fold (fp_to_uint c1fp) -> c1 9291 if (isConstantFPBuildVectorOrConstantFP(N0)) 9292 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); 9293 9294 return FoldIntToFPToInt(N, DAG); 9295 } 9296 9297 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { 9298 SDValue N0 = N->getOperand(0); 9299 SDValue N1 = N->getOperand(1); 9300 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 9301 EVT VT = N->getValueType(0); 9302 9303 // fold (fp_round c1fp) -> c1fp 9304 if (N0CFP) 9305 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); 9306 9307 // fold (fp_round (fp_extend x)) -> x 9308 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) 9309 return N0.getOperand(0); 9310 9311 // fold (fp_round (fp_round x)) -> (fp_round x) 9312 if (N0.getOpcode() == ISD::FP_ROUND) { 9313 const bool NIsTrunc = N->getConstantOperandVal(1) == 1; 9314 const bool N0IsTrunc = N0.getNode()->getConstantOperandVal(1) == 1; 9315 9316 // Skip this folding if it results in an fp_round from f80 to f16. 9317 // 9318 // f80 to f16 always generates an expensive (and as yet, unimplemented) 9319 // libcall to __truncxfhf2 instead of selecting native f16 conversion 9320 // instructions from f32 or f64. Moreover, the first (value-preserving) 9321 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like 9322 // x86. 9323 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) 9324 return SDValue(); 9325 9326 // If the first fp_round isn't a value preserving truncation, it might 9327 // introduce a tie in the second fp_round, that wouldn't occur in the 9328 // single-step fp_round we want to fold to. 9329 // In other words, double rounding isn't the same as rounding. 9330 // Also, this is a value preserving truncation iff both fp_round's are. 9331 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { 9332 SDLoc DL(N); 9333 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), 9334 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); 9335 } 9336 } 9337 9338 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) 9339 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { 9340 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, 9341 N0.getOperand(0), N1); 9342 AddToWorklist(Tmp.getNode()); 9343 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 9344 Tmp, N0.getOperand(1)); 9345 } 9346 9347 return SDValue(); 9348 } 9349 9350 SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { 9351 SDValue N0 = N->getOperand(0); 9352 EVT VT = N->getValueType(0); 9353 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 9354 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 9355 9356 // fold (fp_round_inreg c1fp) -> c1fp 9357 if (N0CFP && isTypeLegal(EVT)) { 9358 SDLoc DL(N); 9359 SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT); 9360 return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round); 9361 } 9362 9363 return SDValue(); 9364 } 9365 9366 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { 9367 SDValue N0 = N->getOperand(0); 9368 EVT VT = N->getValueType(0); 9369 9370 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. 9371 if (N->hasOneUse() && 9372 N->use_begin()->getOpcode() == ISD::FP_ROUND) 9373 return SDValue(); 9374 9375 // fold (fp_extend c1fp) -> c1fp 9376 if (isConstantFPBuildVectorOrConstantFP(N0)) 9377 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); 9378 9379 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) 9380 if (N0.getOpcode() == ISD::FP16_TO_FP && 9381 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) 9382 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); 9383 9384 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the 9385 // value of X. 9386 if (N0.getOpcode() == ISD::FP_ROUND 9387 && N0.getNode()->getConstantOperandVal(1) == 1) { 9388 SDValue In = N0.getOperand(0); 9389 if (In.getValueType() == VT) return In; 9390 if (VT.bitsLT(In.getValueType())) 9391 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, 9392 In, N0.getOperand(1)); 9393 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); 9394 } 9395 9396 // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) 9397 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 9398 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 9399 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 9400 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 9401 LN0->getChain(), 9402 LN0->getBasePtr(), N0.getValueType(), 9403 LN0->getMemOperand()); 9404 CombineTo(N, ExtLoad); 9405 CombineTo(N0.getNode(), 9406 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), 9407 N0.getValueType(), ExtLoad, 9408 DAG.getIntPtrConstant(1, SDLoc(N0))), 9409 ExtLoad.getValue(1)); 9410 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9411 } 9412 9413 return SDValue(); 9414 } 9415 9416 SDValue DAGCombiner::visitFCEIL(SDNode *N) { 9417 SDValue N0 = N->getOperand(0); 9418 EVT VT = N->getValueType(0); 9419 9420 // fold (fceil c1) -> fceil(c1) 9421 if (isConstantFPBuildVectorOrConstantFP(N0)) 9422 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); 9423 9424 return SDValue(); 9425 } 9426 9427 SDValue DAGCombiner::visitFTRUNC(SDNode *N) { 9428 SDValue N0 = N->getOperand(0); 9429 EVT VT = N->getValueType(0); 9430 9431 // fold (ftrunc c1) -> ftrunc(c1) 9432 if (isConstantFPBuildVectorOrConstantFP(N0)) 9433 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); 9434 9435 return SDValue(); 9436 } 9437 9438 SDValue DAGCombiner::visitFFLOOR(SDNode *N) { 9439 SDValue N0 = N->getOperand(0); 9440 EVT VT = N->getValueType(0); 9441 9442 // fold (ffloor c1) -> ffloor(c1) 9443 if (isConstantFPBuildVectorOrConstantFP(N0)) 9444 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); 9445 9446 return SDValue(); 9447 } 9448 9449 // FIXME: FNEG and FABS have a lot in common; refactor. 9450 SDValue DAGCombiner::visitFNEG(SDNode *N) { 9451 SDValue N0 = N->getOperand(0); 9452 EVT VT = N->getValueType(0); 9453 9454 // Constant fold FNEG. 9455 if (isConstantFPBuildVectorOrConstantFP(N0)) 9456 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); 9457 9458 if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(), 9459 &DAG.getTarget().Options)) 9460 return GetNegatedExpression(N0, DAG, LegalOperations); 9461 9462 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading 9463 // constant pool values. 9464 if (!TLI.isFNegFree(VT) && 9465 N0.getOpcode() == ISD::BITCAST && 9466 N0.getNode()->hasOneUse()) { 9467 SDValue Int = N0.getOperand(0); 9468 EVT IntVT = Int.getValueType(); 9469 if (IntVT.isInteger() && !IntVT.isVector()) { 9470 APInt SignMask; 9471 if (N0.getValueType().isVector()) { 9472 // For a vector, get a mask such as 0x80... per scalar element 9473 // and splat it. 9474 SignMask = APInt::getSignBit(N0.getScalarValueSizeInBits()); 9475 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 9476 } else { 9477 // For a scalar, just generate 0x80... 9478 SignMask = APInt::getSignBit(IntVT.getSizeInBits()); 9479 } 9480 SDLoc DL0(N0); 9481 Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int, 9482 DAG.getConstant(SignMask, DL0, IntVT)); 9483 AddToWorklist(Int.getNode()); 9484 return DAG.getBitcast(VT, Int); 9485 } 9486 } 9487 9488 // (fneg (fmul c, x)) -> (fmul -c, x) 9489 if (N0.getOpcode() == ISD::FMUL && 9490 (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) { 9491 ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 9492 if (CFP1) { 9493 APFloat CVal = CFP1->getValueAPF(); 9494 CVal.changeSign(); 9495 if (Level >= AfterLegalizeDAG && 9496 (TLI.isFPImmLegal(CVal, VT) || 9497 TLI.isOperationLegal(ISD::ConstantFP, VT))) 9498 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), 9499 DAG.getNode(ISD::FNEG, SDLoc(N), VT, 9500 N0.getOperand(1)), 9501 &cast<BinaryWithFlagsSDNode>(N0)->Flags); 9502 } 9503 } 9504 9505 return SDValue(); 9506 } 9507 9508 SDValue DAGCombiner::visitFMINNUM(SDNode *N) { 9509 SDValue N0 = N->getOperand(0); 9510 SDValue N1 = N->getOperand(1); 9511 EVT VT = N->getValueType(0); 9512 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 9513 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 9514 9515 if (N0CFP && N1CFP) { 9516 const APFloat &C0 = N0CFP->getValueAPF(); 9517 const APFloat &C1 = N1CFP->getValueAPF(); 9518 return DAG.getConstantFP(minnum(C0, C1), SDLoc(N), VT); 9519 } 9520 9521 // Canonicalize to constant on RHS. 9522 if (isConstantFPBuildVectorOrConstantFP(N0) && 9523 !isConstantFPBuildVectorOrConstantFP(N1)) 9524 return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0); 9525 9526 return SDValue(); 9527 } 9528 9529 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { 9530 SDValue N0 = N->getOperand(0); 9531 SDValue N1 = N->getOperand(1); 9532 EVT VT = N->getValueType(0); 9533 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 9534 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 9535 9536 if (N0CFP && N1CFP) { 9537 const APFloat &C0 = N0CFP->getValueAPF(); 9538 const APFloat &C1 = N1CFP->getValueAPF(); 9539 return DAG.getConstantFP(maxnum(C0, C1), SDLoc(N), VT); 9540 } 9541 9542 // Canonicalize to constant on RHS. 9543 if (isConstantFPBuildVectorOrConstantFP(N0) && 9544 !isConstantFPBuildVectorOrConstantFP(N1)) 9545 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0); 9546 9547 return SDValue(); 9548 } 9549 9550 SDValue DAGCombiner::visitFABS(SDNode *N) { 9551 SDValue N0 = N->getOperand(0); 9552 EVT VT = N->getValueType(0); 9553 9554 // fold (fabs c1) -> fabs(c1) 9555 if (isConstantFPBuildVectorOrConstantFP(N0)) 9556 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 9557 9558 // fold (fabs (fabs x)) -> (fabs x) 9559 if (N0.getOpcode() == ISD::FABS) 9560 return N->getOperand(0); 9561 9562 // fold (fabs (fneg x)) -> (fabs x) 9563 // fold (fabs (fcopysign x, y)) -> (fabs x) 9564 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) 9565 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); 9566 9567 // Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading 9568 // constant pool values. 9569 if (!TLI.isFAbsFree(VT) && 9570 N0.getOpcode() == ISD::BITCAST && 9571 N0.getNode()->hasOneUse()) { 9572 SDValue Int = N0.getOperand(0); 9573 EVT IntVT = Int.getValueType(); 9574 if (IntVT.isInteger() && !IntVT.isVector()) { 9575 APInt SignMask; 9576 if (N0.getValueType().isVector()) { 9577 // For a vector, get a mask such as 0x7f... per scalar element 9578 // and splat it. 9579 SignMask = ~APInt::getSignBit(N0.getScalarValueSizeInBits()); 9580 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 9581 } else { 9582 // For a scalar, just generate 0x7f... 9583 SignMask = ~APInt::getSignBit(IntVT.getSizeInBits()); 9584 } 9585 SDLoc DL(N0); 9586 Int = DAG.getNode(ISD::AND, DL, IntVT, Int, 9587 DAG.getConstant(SignMask, DL, IntVT)); 9588 AddToWorklist(Int.getNode()); 9589 return DAG.getBitcast(N->getValueType(0), Int); 9590 } 9591 } 9592 9593 return SDValue(); 9594 } 9595 9596 SDValue DAGCombiner::visitBRCOND(SDNode *N) { 9597 SDValue Chain = N->getOperand(0); 9598 SDValue N1 = N->getOperand(1); 9599 SDValue N2 = N->getOperand(2); 9600 9601 // If N is a constant we could fold this into a fallthrough or unconditional 9602 // branch. However that doesn't happen very often in normal code, because 9603 // Instcombine/SimplifyCFG should have handled the available opportunities. 9604 // If we did this folding here, it would be necessary to update the 9605 // MachineBasicBlock CFG, which is awkward. 9606 9607 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal 9608 // on the target. 9609 if (N1.getOpcode() == ISD::SETCC && 9610 TLI.isOperationLegalOrCustom(ISD::BR_CC, 9611 N1.getOperand(0).getValueType())) { 9612 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 9613 Chain, N1.getOperand(2), 9614 N1.getOperand(0), N1.getOperand(1), N2); 9615 } 9616 9617 if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) || 9618 ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) && 9619 (N1.getOperand(0).hasOneUse() && 9620 N1.getOperand(0).getOpcode() == ISD::SRL))) { 9621 SDNode *Trunc = nullptr; 9622 if (N1.getOpcode() == ISD::TRUNCATE) { 9623 // Look pass the truncate. 9624 Trunc = N1.getNode(); 9625 N1 = N1.getOperand(0); 9626 } 9627 9628 // Match this pattern so that we can generate simpler code: 9629 // 9630 // %a = ... 9631 // %b = and i32 %a, 2 9632 // %c = srl i32 %b, 1 9633 // brcond i32 %c ... 9634 // 9635 // into 9636 // 9637 // %a = ... 9638 // %b = and i32 %a, 2 9639 // %c = setcc eq %b, 0 9640 // brcond %c ... 9641 // 9642 // This applies only when the AND constant value has one bit set and the 9643 // SRL constant is equal to the log2 of the AND constant. The back-end is 9644 // smart enough to convert the result into a TEST/JMP sequence. 9645 SDValue Op0 = N1.getOperand(0); 9646 SDValue Op1 = N1.getOperand(1); 9647 9648 if (Op0.getOpcode() == ISD::AND && 9649 Op1.getOpcode() == ISD::Constant) { 9650 SDValue AndOp1 = Op0.getOperand(1); 9651 9652 if (AndOp1.getOpcode() == ISD::Constant) { 9653 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); 9654 9655 if (AndConst.isPowerOf2() && 9656 cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) { 9657 SDLoc DL(N); 9658 SDValue SetCC = 9659 DAG.getSetCC(DL, 9660 getSetCCResultType(Op0.getValueType()), 9661 Op0, DAG.getConstant(0, DL, Op0.getValueType()), 9662 ISD::SETNE); 9663 9664 SDValue NewBRCond = DAG.getNode(ISD::BRCOND, DL, 9665 MVT::Other, Chain, SetCC, N2); 9666 // Don't add the new BRCond into the worklist or else SimplifySelectCC 9667 // will convert it back to (X & C1) >> C2. 9668 CombineTo(N, NewBRCond, false); 9669 // Truncate is dead. 9670 if (Trunc) 9671 deleteAndRecombine(Trunc); 9672 // Replace the uses of SRL with SETCC 9673 WorklistRemover DeadNodes(*this); 9674 DAG.ReplaceAllUsesOfValueWith(N1, SetCC); 9675 deleteAndRecombine(N1.getNode()); 9676 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9677 } 9678 } 9679 } 9680 9681 if (Trunc) 9682 // Restore N1 if the above transformation doesn't match. 9683 N1 = N->getOperand(1); 9684 } 9685 9686 // Transform br(xor(x, y)) -> br(x != y) 9687 // Transform br(xor(xor(x,y), 1)) -> br (x == y) 9688 if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) { 9689 SDNode *TheXor = N1.getNode(); 9690 SDValue Op0 = TheXor->getOperand(0); 9691 SDValue Op1 = TheXor->getOperand(1); 9692 if (Op0.getOpcode() == Op1.getOpcode()) { 9693 // Avoid missing important xor optimizations. 9694 if (SDValue Tmp = visitXOR(TheXor)) { 9695 if (Tmp.getNode() != TheXor) { 9696 DEBUG(dbgs() << "\nReplacing.8 "; 9697 TheXor->dump(&DAG); 9698 dbgs() << "\nWith: "; 9699 Tmp.getNode()->dump(&DAG); 9700 dbgs() << '\n'); 9701 WorklistRemover DeadNodes(*this); 9702 DAG.ReplaceAllUsesOfValueWith(N1, Tmp); 9703 deleteAndRecombine(TheXor); 9704 return DAG.getNode(ISD::BRCOND, SDLoc(N), 9705 MVT::Other, Chain, Tmp, N2); 9706 } 9707 9708 // visitXOR has changed XOR's operands or replaced the XOR completely, 9709 // bail out. 9710 return SDValue(N, 0); 9711 } 9712 } 9713 9714 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { 9715 bool Equal = false; 9716 if (isOneConstant(Op0) && Op0.hasOneUse() && 9717 Op0.getOpcode() == ISD::XOR) { 9718 TheXor = Op0.getNode(); 9719 Equal = true; 9720 } 9721 9722 EVT SetCCVT = N1.getValueType(); 9723 if (LegalTypes) 9724 SetCCVT = getSetCCResultType(SetCCVT); 9725 SDValue SetCC = DAG.getSetCC(SDLoc(TheXor), 9726 SetCCVT, 9727 Op0, Op1, 9728 Equal ? ISD::SETEQ : ISD::SETNE); 9729 // Replace the uses of XOR with SETCC 9730 WorklistRemover DeadNodes(*this); 9731 DAG.ReplaceAllUsesOfValueWith(N1, SetCC); 9732 deleteAndRecombine(N1.getNode()); 9733 return DAG.getNode(ISD::BRCOND, SDLoc(N), 9734 MVT::Other, Chain, SetCC, N2); 9735 } 9736 } 9737 9738 return SDValue(); 9739 } 9740 9741 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. 9742 // 9743 SDValue DAGCombiner::visitBR_CC(SDNode *N) { 9744 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); 9745 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); 9746 9747 // If N is a constant we could fold this into a fallthrough or unconditional 9748 // branch. However that doesn't happen very often in normal code, because 9749 // Instcombine/SimplifyCFG should have handled the available opportunities. 9750 // If we did this folding here, it would be necessary to update the 9751 // MachineBasicBlock CFG, which is awkward. 9752 9753 // Use SimplifySetCC to simplify SETCC's. 9754 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), 9755 CondLHS, CondRHS, CC->get(), SDLoc(N), 9756 false); 9757 if (Simp.getNode()) AddToWorklist(Simp.getNode()); 9758 9759 // fold to a simpler setcc 9760 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) 9761 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 9762 N->getOperand(0), Simp.getOperand(2), 9763 Simp.getOperand(0), Simp.getOperand(1), 9764 N->getOperand(4)); 9765 9766 return SDValue(); 9767 } 9768 9769 /// Return true if 'Use' is a load or a store that uses N as its base pointer 9770 /// and that N may be folded in the load / store addressing mode. 9771 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, 9772 SelectionDAG &DAG, 9773 const TargetLowering &TLI) { 9774 EVT VT; 9775 unsigned AS; 9776 9777 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { 9778 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 9779 return false; 9780 VT = LD->getMemoryVT(); 9781 AS = LD->getAddressSpace(); 9782 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { 9783 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 9784 return false; 9785 VT = ST->getMemoryVT(); 9786 AS = ST->getAddressSpace(); 9787 } else 9788 return false; 9789 9790 TargetLowering::AddrMode AM; 9791 if (N->getOpcode() == ISD::ADD) { 9792 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9793 if (Offset) 9794 // [reg +/- imm] 9795 AM.BaseOffs = Offset->getSExtValue(); 9796 else 9797 // [reg +/- reg] 9798 AM.Scale = 1; 9799 } else if (N->getOpcode() == ISD::SUB) { 9800 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9801 if (Offset) 9802 // [reg +/- imm] 9803 AM.BaseOffs = -Offset->getSExtValue(); 9804 else 9805 // [reg +/- reg] 9806 AM.Scale = 1; 9807 } else 9808 return false; 9809 9810 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, 9811 VT.getTypeForEVT(*DAG.getContext()), AS); 9812 } 9813 9814 /// Try turning a load/store into a pre-indexed load/store when the base 9815 /// pointer is an add or subtract and it has other uses besides the load/store. 9816 /// After the transformation, the new indexed load/store has effectively folded 9817 /// the add/subtract in and all of its other uses are redirected to the 9818 /// new load/store. 9819 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { 9820 if (Level < AfterLegalizeDAG) 9821 return false; 9822 9823 bool isLoad = true; 9824 SDValue Ptr; 9825 EVT VT; 9826 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 9827 if (LD->isIndexed()) 9828 return false; 9829 VT = LD->getMemoryVT(); 9830 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && 9831 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) 9832 return false; 9833 Ptr = LD->getBasePtr(); 9834 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 9835 if (ST->isIndexed()) 9836 return false; 9837 VT = ST->getMemoryVT(); 9838 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && 9839 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) 9840 return false; 9841 Ptr = ST->getBasePtr(); 9842 isLoad = false; 9843 } else { 9844 return false; 9845 } 9846 9847 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail 9848 // out. There is no reason to make this a preinc/predec. 9849 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || 9850 Ptr.getNode()->hasOneUse()) 9851 return false; 9852 9853 // Ask the target to do addressing mode selection. 9854 SDValue BasePtr; 9855 SDValue Offset; 9856 ISD::MemIndexedMode AM = ISD::UNINDEXED; 9857 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) 9858 return false; 9859 9860 // Backends without true r+i pre-indexed forms may need to pass a 9861 // constant base with a variable offset so that constant coercion 9862 // will work with the patterns in canonical form. 9863 bool Swapped = false; 9864 if (isa<ConstantSDNode>(BasePtr)) { 9865 std::swap(BasePtr, Offset); 9866 Swapped = true; 9867 } 9868 9869 // Don't create a indexed load / store with zero offset. 9870 if (isNullConstant(Offset)) 9871 return false; 9872 9873 // Try turning it into a pre-indexed load / store except when: 9874 // 1) The new base ptr is a frame index. 9875 // 2) If N is a store and the new base ptr is either the same as or is a 9876 // predecessor of the value being stored. 9877 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded 9878 // that would create a cycle. 9879 // 4) All uses are load / store ops that use it as old base ptr. 9880 9881 // Check #1. Preinc'ing a frame index would require copying the stack pointer 9882 // (plus the implicit offset) to a register to preinc anyway. 9883 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 9884 return false; 9885 9886 // Check #2. 9887 if (!isLoad) { 9888 SDValue Val = cast<StoreSDNode>(N)->getValue(); 9889 if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode())) 9890 return false; 9891 } 9892 9893 // Caches for hasPredecessorHelper. 9894 SmallPtrSet<const SDNode *, 32> Visited; 9895 SmallVector<const SDNode *, 16> Worklist; 9896 Worklist.push_back(N); 9897 9898 // If the offset is a constant, there may be other adds of constants that 9899 // can be folded with this one. We should do this to avoid having to keep 9900 // a copy of the original base pointer. 9901 SmallVector<SDNode *, 16> OtherUses; 9902 if (isa<ConstantSDNode>(Offset)) 9903 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), 9904 UE = BasePtr.getNode()->use_end(); 9905 UI != UE; ++UI) { 9906 SDUse &Use = UI.getUse(); 9907 // Skip the use that is Ptr and uses of other results from BasePtr's 9908 // node (important for nodes that return multiple results). 9909 if (Use.getUser() == Ptr.getNode() || Use != BasePtr) 9910 continue; 9911 9912 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) 9913 continue; 9914 9915 if (Use.getUser()->getOpcode() != ISD::ADD && 9916 Use.getUser()->getOpcode() != ISD::SUB) { 9917 OtherUses.clear(); 9918 break; 9919 } 9920 9921 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); 9922 if (!isa<ConstantSDNode>(Op1)) { 9923 OtherUses.clear(); 9924 break; 9925 } 9926 9927 // FIXME: In some cases, we can be smarter about this. 9928 if (Op1.getValueType() != Offset.getValueType()) { 9929 OtherUses.clear(); 9930 break; 9931 } 9932 9933 OtherUses.push_back(Use.getUser()); 9934 } 9935 9936 if (Swapped) 9937 std::swap(BasePtr, Offset); 9938 9939 // Now check for #3 and #4. 9940 bool RealUse = false; 9941 9942 for (SDNode *Use : Ptr.getNode()->uses()) { 9943 if (Use == N) 9944 continue; 9945 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) 9946 return false; 9947 9948 // If Ptr may be folded in addressing mode of other use, then it's 9949 // not profitable to do this transformation. 9950 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) 9951 RealUse = true; 9952 } 9953 9954 if (!RealUse) 9955 return false; 9956 9957 SDValue Result; 9958 if (isLoad) 9959 Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 9960 BasePtr, Offset, AM); 9961 else 9962 Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 9963 BasePtr, Offset, AM); 9964 ++PreIndexedNodes; 9965 ++NodesCombined; 9966 DEBUG(dbgs() << "\nReplacing.4 "; 9967 N->dump(&DAG); 9968 dbgs() << "\nWith: "; 9969 Result.getNode()->dump(&DAG); 9970 dbgs() << '\n'); 9971 WorklistRemover DeadNodes(*this); 9972 if (isLoad) { 9973 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 9974 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 9975 } else { 9976 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 9977 } 9978 9979 // Finally, since the node is now dead, remove it from the graph. 9980 deleteAndRecombine(N); 9981 9982 if (Swapped) 9983 std::swap(BasePtr, Offset); 9984 9985 // Replace other uses of BasePtr that can be updated to use Ptr 9986 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { 9987 unsigned OffsetIdx = 1; 9988 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) 9989 OffsetIdx = 0; 9990 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == 9991 BasePtr.getNode() && "Expected BasePtr operand"); 9992 9993 // We need to replace ptr0 in the following expression: 9994 // x0 * offset0 + y0 * ptr0 = t0 9995 // knowing that 9996 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) 9997 // 9998 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the 9999 // indexed load/store and the expresion that needs to be re-written. 10000 // 10001 // Therefore, we have: 10002 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 10003 10004 ConstantSDNode *CN = 10005 cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); 10006 int X0, X1, Y0, Y1; 10007 const APInt &Offset0 = CN->getAPIntValue(); 10008 APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); 10009 10010 X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; 10011 Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; 10012 X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; 10013 Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; 10014 10015 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; 10016 10017 APInt CNV = Offset0; 10018 if (X0 < 0) CNV = -CNV; 10019 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; 10020 else CNV = CNV - Offset1; 10021 10022 SDLoc DL(OtherUses[i]); 10023 10024 // We can now generate the new expression. 10025 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); 10026 SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0); 10027 10028 SDValue NewUse = DAG.getNode(Opcode, 10029 DL, 10030 OtherUses[i]->getValueType(0), NewOp1, NewOp2); 10031 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); 10032 deleteAndRecombine(OtherUses[i]); 10033 } 10034 10035 // Replace the uses of Ptr with uses of the updated base value. 10036 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0)); 10037 deleteAndRecombine(Ptr.getNode()); 10038 10039 return true; 10040 } 10041 10042 /// Try to combine a load/store with a add/sub of the base pointer node into a 10043 /// post-indexed load/store. The transformation folded the add/subtract into the 10044 /// new indexed load/store effectively and all of its uses are redirected to the 10045 /// new load/store. 10046 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { 10047 if (Level < AfterLegalizeDAG) 10048 return false; 10049 10050 bool isLoad = true; 10051 SDValue Ptr; 10052 EVT VT; 10053 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 10054 if (LD->isIndexed()) 10055 return false; 10056 VT = LD->getMemoryVT(); 10057 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && 10058 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) 10059 return false; 10060 Ptr = LD->getBasePtr(); 10061 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 10062 if (ST->isIndexed()) 10063 return false; 10064 VT = ST->getMemoryVT(); 10065 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && 10066 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) 10067 return false; 10068 Ptr = ST->getBasePtr(); 10069 isLoad = false; 10070 } else { 10071 return false; 10072 } 10073 10074 if (Ptr.getNode()->hasOneUse()) 10075 return false; 10076 10077 for (SDNode *Op : Ptr.getNode()->uses()) { 10078 if (Op == N || 10079 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) 10080 continue; 10081 10082 SDValue BasePtr; 10083 SDValue Offset; 10084 ISD::MemIndexedMode AM = ISD::UNINDEXED; 10085 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { 10086 // Don't create a indexed load / store with zero offset. 10087 if (isNullConstant(Offset)) 10088 continue; 10089 10090 // Try turning it into a post-indexed load / store except when 10091 // 1) All uses are load / store ops that use it as base ptr (and 10092 // it may be folded as addressing mmode). 10093 // 2) Op must be independent of N, i.e. Op is neither a predecessor 10094 // nor a successor of N. Otherwise, if Op is folded that would 10095 // create a cycle. 10096 10097 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 10098 continue; 10099 10100 // Check for #1. 10101 bool TryNext = false; 10102 for (SDNode *Use : BasePtr.getNode()->uses()) { 10103 if (Use == Ptr.getNode()) 10104 continue; 10105 10106 // If all the uses are load / store addresses, then don't do the 10107 // transformation. 10108 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ 10109 bool RealUse = false; 10110 for (SDNode *UseUse : Use->uses()) { 10111 if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI)) 10112 RealUse = true; 10113 } 10114 10115 if (!RealUse) { 10116 TryNext = true; 10117 break; 10118 } 10119 } 10120 } 10121 10122 if (TryNext) 10123 continue; 10124 10125 // Check for #2 10126 if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) { 10127 SDValue Result = isLoad 10128 ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 10129 BasePtr, Offset, AM) 10130 : DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 10131 BasePtr, Offset, AM); 10132 ++PostIndexedNodes; 10133 ++NodesCombined; 10134 DEBUG(dbgs() << "\nReplacing.5 "; 10135 N->dump(&DAG); 10136 dbgs() << "\nWith: "; 10137 Result.getNode()->dump(&DAG); 10138 dbgs() << '\n'); 10139 WorklistRemover DeadNodes(*this); 10140 if (isLoad) { 10141 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 10142 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 10143 } else { 10144 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 10145 } 10146 10147 // Finally, since the node is now dead, remove it from the graph. 10148 deleteAndRecombine(N); 10149 10150 // Replace the uses of Use with uses of the updated base value. 10151 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), 10152 Result.getValue(isLoad ? 1 : 0)); 10153 deleteAndRecombine(Op); 10154 return true; 10155 } 10156 } 10157 } 10158 10159 return false; 10160 } 10161 10162 /// \brief Return the base-pointer arithmetic from an indexed \p LD. 10163 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { 10164 ISD::MemIndexedMode AM = LD->getAddressingMode(); 10165 assert(AM != ISD::UNINDEXED); 10166 SDValue BP = LD->getOperand(1); 10167 SDValue Inc = LD->getOperand(2); 10168 10169 // Some backends use TargetConstants for load offsets, but don't expect 10170 // TargetConstants in general ADD nodes. We can convert these constants into 10171 // regular Constants (if the constant is not opaque). 10172 assert((Inc.getOpcode() != ISD::TargetConstant || 10173 !cast<ConstantSDNode>(Inc)->isOpaque()) && 10174 "Cannot split out indexing using opaque target constants"); 10175 if (Inc.getOpcode() == ISD::TargetConstant) { 10176 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); 10177 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), 10178 ConstInc->getValueType(0)); 10179 } 10180 10181 unsigned Opc = 10182 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); 10183 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); 10184 } 10185 10186 SDValue DAGCombiner::visitLOAD(SDNode *N) { 10187 LoadSDNode *LD = cast<LoadSDNode>(N); 10188 SDValue Chain = LD->getChain(); 10189 SDValue Ptr = LD->getBasePtr(); 10190 10191 // If load is not volatile and there are no uses of the loaded value (and 10192 // the updated indexed value in case of indexed loads), change uses of the 10193 // chain value into uses of the chain input (i.e. delete the dead load). 10194 if (!LD->isVolatile()) { 10195 if (N->getValueType(1) == MVT::Other) { 10196 // Unindexed loads. 10197 if (!N->hasAnyUseOfValue(0)) { 10198 // It's not safe to use the two value CombineTo variant here. e.g. 10199 // v1, chain2 = load chain1, loc 10200 // v2, chain3 = load chain2, loc 10201 // v3 = add v2, c 10202 // Now we replace use of chain2 with chain1. This makes the second load 10203 // isomorphic to the one we are deleting, and thus makes this load live. 10204 DEBUG(dbgs() << "\nReplacing.6 "; 10205 N->dump(&DAG); 10206 dbgs() << "\nWith chain: "; 10207 Chain.getNode()->dump(&DAG); 10208 dbgs() << "\n"); 10209 WorklistRemover DeadNodes(*this); 10210 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 10211 10212 if (N->use_empty()) 10213 deleteAndRecombine(N); 10214 10215 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10216 } 10217 } else { 10218 // Indexed loads. 10219 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); 10220 10221 // If this load has an opaque TargetConstant offset, then we cannot split 10222 // the indexing into an add/sub directly (that TargetConstant may not be 10223 // valid for a different type of node, and we cannot convert an opaque 10224 // target constant into a regular constant). 10225 bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant && 10226 cast<ConstantSDNode>(LD->getOperand(2))->isOpaque(); 10227 10228 if (!N->hasAnyUseOfValue(0) && 10229 ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) { 10230 SDValue Undef = DAG.getUNDEF(N->getValueType(0)); 10231 SDValue Index; 10232 if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) { 10233 Index = SplitIndexingFromLoad(LD); 10234 // Try to fold the base pointer arithmetic into subsequent loads and 10235 // stores. 10236 AddUsersToWorklist(N); 10237 } else 10238 Index = DAG.getUNDEF(N->getValueType(1)); 10239 DEBUG(dbgs() << "\nReplacing.7 "; 10240 N->dump(&DAG); 10241 dbgs() << "\nWith: "; 10242 Undef.getNode()->dump(&DAG); 10243 dbgs() << " and 2 other values\n"); 10244 WorklistRemover DeadNodes(*this); 10245 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); 10246 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); 10247 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); 10248 deleteAndRecombine(N); 10249 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10250 } 10251 } 10252 } 10253 10254 // If this load is directly stored, replace the load value with the stored 10255 // value. 10256 // TODO: Handle store large -> read small portion. 10257 // TODO: Handle TRUNCSTORE/LOADEXT 10258 if (OptLevel != CodeGenOpt::None && 10259 ISD::isNormalLoad(N) && !LD->isVolatile()) { 10260 if (ISD::isNON_TRUNCStore(Chain.getNode())) { 10261 StoreSDNode *PrevST = cast<StoreSDNode>(Chain); 10262 if (PrevST->getBasePtr() == Ptr && 10263 PrevST->getValue().getValueType() == N->getValueType(0)) 10264 return CombineTo(N, Chain.getOperand(1), Chain); 10265 } 10266 } 10267 10268 // Try to infer better alignment information than the load already has. 10269 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) { 10270 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 10271 if (Align > LD->getMemOperand()->getBaseAlignment()) { 10272 SDValue NewLoad = DAG.getExtLoad( 10273 LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, 10274 LD->getPointerInfo(), LD->getMemoryVT(), Align, 10275 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 10276 if (NewLoad.getNode() != N) 10277 return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true); 10278 } 10279 } 10280 } 10281 10282 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 10283 : DAG.getSubtarget().useAA(); 10284 #ifndef NDEBUG 10285 if (CombinerAAOnlyFunc.getNumOccurrences() && 10286 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 10287 UseAA = false; 10288 #endif 10289 if (UseAA && LD->isUnindexed()) { 10290 // Walk up chain skipping non-aliasing memory nodes. 10291 SDValue BetterChain = FindBetterChain(N, Chain); 10292 10293 // If there is a better chain. 10294 if (Chain != BetterChain) { 10295 SDValue ReplLoad; 10296 10297 // Replace the chain to void dependency. 10298 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 10299 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), 10300 BetterChain, Ptr, LD->getMemOperand()); 10301 } else { 10302 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), 10303 LD->getValueType(0), 10304 BetterChain, Ptr, LD->getMemoryVT(), 10305 LD->getMemOperand()); 10306 } 10307 10308 // Create token factor to keep old chain connected. 10309 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 10310 MVT::Other, Chain, ReplLoad.getValue(1)); 10311 10312 // Make sure the new and old chains are cleaned up. 10313 AddToWorklist(Token.getNode()); 10314 10315 // Replace uses with load result and token factor. Don't add users 10316 // to work list. 10317 return CombineTo(N, ReplLoad.getValue(0), Token, false); 10318 } 10319 } 10320 10321 // Try transforming N to an indexed load. 10322 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 10323 return SDValue(N, 0); 10324 10325 // Try to slice up N to more direct loads if the slices are mapped to 10326 // different register banks or pairing can take place. 10327 if (SliceUpLoad(N)) 10328 return SDValue(N, 0); 10329 10330 return SDValue(); 10331 } 10332 10333 namespace { 10334 /// \brief Helper structure used to slice a load in smaller loads. 10335 /// Basically a slice is obtained from the following sequence: 10336 /// Origin = load Ty1, Base 10337 /// Shift = srl Ty1 Origin, CstTy Amount 10338 /// Inst = trunc Shift to Ty2 10339 /// 10340 /// Then, it will be rewriten into: 10341 /// Slice = load SliceTy, Base + SliceOffset 10342 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 10343 /// 10344 /// SliceTy is deduced from the number of bits that are actually used to 10345 /// build Inst. 10346 struct LoadedSlice { 10347 /// \brief Helper structure used to compute the cost of a slice. 10348 struct Cost { 10349 /// Are we optimizing for code size. 10350 bool ForCodeSize; 10351 /// Various cost. 10352 unsigned Loads; 10353 unsigned Truncates; 10354 unsigned CrossRegisterBanksCopies; 10355 unsigned ZExts; 10356 unsigned Shift; 10357 10358 Cost(bool ForCodeSize = false) 10359 : ForCodeSize(ForCodeSize), Loads(0), Truncates(0), 10360 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {} 10361 10362 /// \brief Get the cost of one isolated slice. 10363 Cost(const LoadedSlice &LS, bool ForCodeSize = false) 10364 : ForCodeSize(ForCodeSize), Loads(1), Truncates(0), 10365 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) { 10366 EVT TruncType = LS.Inst->getValueType(0); 10367 EVT LoadedType = LS.getLoadedType(); 10368 if (TruncType != LoadedType && 10369 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) 10370 ZExts = 1; 10371 } 10372 10373 /// \brief Account for slicing gain in the current cost. 10374 /// Slicing provide a few gains like removing a shift or a 10375 /// truncate. This method allows to grow the cost of the original 10376 /// load with the gain from this slice. 10377 void addSliceGain(const LoadedSlice &LS) { 10378 // Each slice saves a truncate. 10379 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); 10380 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), 10381 LS.Inst->getValueType(0))) 10382 ++Truncates; 10383 // If there is a shift amount, this slice gets rid of it. 10384 if (LS.Shift) 10385 ++Shift; 10386 // If this slice can merge a cross register bank copy, account for it. 10387 if (LS.canMergeExpensiveCrossRegisterBankCopy()) 10388 ++CrossRegisterBanksCopies; 10389 } 10390 10391 Cost &operator+=(const Cost &RHS) { 10392 Loads += RHS.Loads; 10393 Truncates += RHS.Truncates; 10394 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; 10395 ZExts += RHS.ZExts; 10396 Shift += RHS.Shift; 10397 return *this; 10398 } 10399 10400 bool operator==(const Cost &RHS) const { 10401 return Loads == RHS.Loads && Truncates == RHS.Truncates && 10402 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && 10403 ZExts == RHS.ZExts && Shift == RHS.Shift; 10404 } 10405 10406 bool operator!=(const Cost &RHS) const { return !(*this == RHS); } 10407 10408 bool operator<(const Cost &RHS) const { 10409 // Assume cross register banks copies are as expensive as loads. 10410 // FIXME: Do we want some more target hooks? 10411 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; 10412 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; 10413 // Unless we are optimizing for code size, consider the 10414 // expensive operation first. 10415 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) 10416 return ExpensiveOpsLHS < ExpensiveOpsRHS; 10417 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < 10418 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); 10419 } 10420 10421 bool operator>(const Cost &RHS) const { return RHS < *this; } 10422 10423 bool operator<=(const Cost &RHS) const { return !(RHS < *this); } 10424 10425 bool operator>=(const Cost &RHS) const { return !(*this < RHS); } 10426 }; 10427 // The last instruction that represent the slice. This should be a 10428 // truncate instruction. 10429 SDNode *Inst; 10430 // The original load instruction. 10431 LoadSDNode *Origin; 10432 // The right shift amount in bits from the original load. 10433 unsigned Shift; 10434 // The DAG from which Origin came from. 10435 // This is used to get some contextual information about legal types, etc. 10436 SelectionDAG *DAG; 10437 10438 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, 10439 unsigned Shift = 0, SelectionDAG *DAG = nullptr) 10440 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} 10441 10442 /// \brief Get the bits used in a chunk of bits \p BitWidth large. 10443 /// \return Result is \p BitWidth and has used bits set to 1 and 10444 /// not used bits set to 0. 10445 APInt getUsedBits() const { 10446 // Reproduce the trunc(lshr) sequence: 10447 // - Start from the truncated value. 10448 // - Zero extend to the desired bit width. 10449 // - Shift left. 10450 assert(Origin && "No original load to compare against."); 10451 unsigned BitWidth = Origin->getValueSizeInBits(0); 10452 assert(Inst && "This slice is not bound to an instruction"); 10453 assert(Inst->getValueSizeInBits(0) <= BitWidth && 10454 "Extracted slice is bigger than the whole type!"); 10455 APInt UsedBits(Inst->getValueSizeInBits(0), 0); 10456 UsedBits.setAllBits(); 10457 UsedBits = UsedBits.zext(BitWidth); 10458 UsedBits <<= Shift; 10459 return UsedBits; 10460 } 10461 10462 /// \brief Get the size of the slice to be loaded in bytes. 10463 unsigned getLoadedSize() const { 10464 unsigned SliceSize = getUsedBits().countPopulation(); 10465 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); 10466 return SliceSize / 8; 10467 } 10468 10469 /// \brief Get the type that will be loaded for this slice. 10470 /// Note: This may not be the final type for the slice. 10471 EVT getLoadedType() const { 10472 assert(DAG && "Missing context"); 10473 LLVMContext &Ctxt = *DAG->getContext(); 10474 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); 10475 } 10476 10477 /// \brief Get the alignment of the load used for this slice. 10478 unsigned getAlignment() const { 10479 unsigned Alignment = Origin->getAlignment(); 10480 unsigned Offset = getOffsetFromBase(); 10481 if (Offset != 0) 10482 Alignment = MinAlign(Alignment, Alignment + Offset); 10483 return Alignment; 10484 } 10485 10486 /// \brief Check if this slice can be rewritten with legal operations. 10487 bool isLegal() const { 10488 // An invalid slice is not legal. 10489 if (!Origin || !Inst || !DAG) 10490 return false; 10491 10492 // Offsets are for indexed load only, we do not handle that. 10493 if (!Origin->getOffset().isUndef()) 10494 return false; 10495 10496 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 10497 10498 // Check that the type is legal. 10499 EVT SliceType = getLoadedType(); 10500 if (!TLI.isTypeLegal(SliceType)) 10501 return false; 10502 10503 // Check that the load is legal for this type. 10504 if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) 10505 return false; 10506 10507 // Check that the offset can be computed. 10508 // 1. Check its type. 10509 EVT PtrType = Origin->getBasePtr().getValueType(); 10510 if (PtrType == MVT::Untyped || PtrType.isExtended()) 10511 return false; 10512 10513 // 2. Check that it fits in the immediate. 10514 if (!TLI.isLegalAddImmediate(getOffsetFromBase())) 10515 return false; 10516 10517 // 3. Check that the computation is legal. 10518 if (!TLI.isOperationLegal(ISD::ADD, PtrType)) 10519 return false; 10520 10521 // Check that the zext is legal if it needs one. 10522 EVT TruncateType = Inst->getValueType(0); 10523 if (TruncateType != SliceType && 10524 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) 10525 return false; 10526 10527 return true; 10528 } 10529 10530 /// \brief Get the offset in bytes of this slice in the original chunk of 10531 /// bits. 10532 /// \pre DAG != nullptr. 10533 uint64_t getOffsetFromBase() const { 10534 assert(DAG && "Missing context."); 10535 bool IsBigEndian = DAG->getDataLayout().isBigEndian(); 10536 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); 10537 uint64_t Offset = Shift / 8; 10538 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; 10539 assert(!(Origin->getValueSizeInBits(0) & 0x7) && 10540 "The size of the original loaded type is not a multiple of a" 10541 " byte."); 10542 // If Offset is bigger than TySizeInBytes, it means we are loading all 10543 // zeros. This should have been optimized before in the process. 10544 assert(TySizeInBytes > Offset && 10545 "Invalid shift amount for given loaded size"); 10546 if (IsBigEndian) 10547 Offset = TySizeInBytes - Offset - getLoadedSize(); 10548 return Offset; 10549 } 10550 10551 /// \brief Generate the sequence of instructions to load the slice 10552 /// represented by this object and redirect the uses of this slice to 10553 /// this new sequence of instructions. 10554 /// \pre this->Inst && this->Origin are valid Instructions and this 10555 /// object passed the legal check: LoadedSlice::isLegal returned true. 10556 /// \return The last instruction of the sequence used to load the slice. 10557 SDValue loadSlice() const { 10558 assert(Inst && Origin && "Unable to replace a non-existing slice."); 10559 const SDValue &OldBaseAddr = Origin->getBasePtr(); 10560 SDValue BaseAddr = OldBaseAddr; 10561 // Get the offset in that chunk of bytes w.r.t. the endianess. 10562 int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); 10563 assert(Offset >= 0 && "Offset too big to fit in int64_t!"); 10564 if (Offset) { 10565 // BaseAddr = BaseAddr + Offset. 10566 EVT ArithType = BaseAddr.getValueType(); 10567 SDLoc DL(Origin); 10568 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, 10569 DAG->getConstant(Offset, DL, ArithType)); 10570 } 10571 10572 // Create the type of the loaded slice according to its size. 10573 EVT SliceType = getLoadedType(); 10574 10575 // Create the load for the slice. 10576 SDValue LastInst = 10577 DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, 10578 Origin->getPointerInfo().getWithOffset(Offset), 10579 getAlignment(), Origin->getMemOperand()->getFlags()); 10580 // If the final type is not the same as the loaded type, this means that 10581 // we have to pad with zero. Create a zero extend for that. 10582 EVT FinalType = Inst->getValueType(0); 10583 if (SliceType != FinalType) 10584 LastInst = 10585 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); 10586 return LastInst; 10587 } 10588 10589 /// \brief Check if this slice can be merged with an expensive cross register 10590 /// bank copy. E.g., 10591 /// i = load i32 10592 /// f = bitcast i32 i to float 10593 bool canMergeExpensiveCrossRegisterBankCopy() const { 10594 if (!Inst || !Inst->hasOneUse()) 10595 return false; 10596 SDNode *Use = *Inst->use_begin(); 10597 if (Use->getOpcode() != ISD::BITCAST) 10598 return false; 10599 assert(DAG && "Missing context"); 10600 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 10601 EVT ResVT = Use->getValueType(0); 10602 const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT()); 10603 const TargetRegisterClass *ArgRC = 10604 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT()); 10605 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) 10606 return false; 10607 10608 // At this point, we know that we perform a cross-register-bank copy. 10609 // Check if it is expensive. 10610 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); 10611 // Assume bitcasts are cheap, unless both register classes do not 10612 // explicitly share a common sub class. 10613 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) 10614 return false; 10615 10616 // Check if it will be merged with the load. 10617 // 1. Check the alignment constraint. 10618 unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment( 10619 ResVT.getTypeForEVT(*DAG->getContext())); 10620 10621 if (RequiredAlignment > getAlignment()) 10622 return false; 10623 10624 // 2. Check that the load is a legal operation for that type. 10625 if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) 10626 return false; 10627 10628 // 3. Check that we do not have a zext in the way. 10629 if (Inst->getValueType(0) != getLoadedType()) 10630 return false; 10631 10632 return true; 10633 } 10634 }; 10635 } 10636 10637 /// \brief Check that all bits set in \p UsedBits form a dense region, i.e., 10638 /// \p UsedBits looks like 0..0 1..1 0..0. 10639 static bool areUsedBitsDense(const APInt &UsedBits) { 10640 // If all the bits are one, this is dense! 10641 if (UsedBits.isAllOnesValue()) 10642 return true; 10643 10644 // Get rid of the unused bits on the right. 10645 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); 10646 // Get rid of the unused bits on the left. 10647 if (NarrowedUsedBits.countLeadingZeros()) 10648 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); 10649 // Check that the chunk of bits is completely used. 10650 return NarrowedUsedBits.isAllOnesValue(); 10651 } 10652 10653 /// \brief Check whether or not \p First and \p Second are next to each other 10654 /// in memory. This means that there is no hole between the bits loaded 10655 /// by \p First and the bits loaded by \p Second. 10656 static bool areSlicesNextToEachOther(const LoadedSlice &First, 10657 const LoadedSlice &Second) { 10658 assert(First.Origin == Second.Origin && First.Origin && 10659 "Unable to match different memory origins."); 10660 APInt UsedBits = First.getUsedBits(); 10661 assert((UsedBits & Second.getUsedBits()) == 0 && 10662 "Slices are not supposed to overlap."); 10663 UsedBits |= Second.getUsedBits(); 10664 return areUsedBitsDense(UsedBits); 10665 } 10666 10667 /// \brief Adjust the \p GlobalLSCost according to the target 10668 /// paring capabilities and the layout of the slices. 10669 /// \pre \p GlobalLSCost should account for at least as many loads as 10670 /// there is in the slices in \p LoadedSlices. 10671 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, 10672 LoadedSlice::Cost &GlobalLSCost) { 10673 unsigned NumberOfSlices = LoadedSlices.size(); 10674 // If there is less than 2 elements, no pairing is possible. 10675 if (NumberOfSlices < 2) 10676 return; 10677 10678 // Sort the slices so that elements that are likely to be next to each 10679 // other in memory are next to each other in the list. 10680 std::sort(LoadedSlices.begin(), LoadedSlices.end(), 10681 [](const LoadedSlice &LHS, const LoadedSlice &RHS) { 10682 assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); 10683 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); 10684 }); 10685 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); 10686 // First (resp. Second) is the first (resp. Second) potentially candidate 10687 // to be placed in a paired load. 10688 const LoadedSlice *First = nullptr; 10689 const LoadedSlice *Second = nullptr; 10690 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, 10691 // Set the beginning of the pair. 10692 First = Second) { 10693 10694 Second = &LoadedSlices[CurrSlice]; 10695 10696 // If First is NULL, it means we start a new pair. 10697 // Get to the next slice. 10698 if (!First) 10699 continue; 10700 10701 EVT LoadedType = First->getLoadedType(); 10702 10703 // If the types of the slices are different, we cannot pair them. 10704 if (LoadedType != Second->getLoadedType()) 10705 continue; 10706 10707 // Check if the target supplies paired loads for this type. 10708 unsigned RequiredAlignment = 0; 10709 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { 10710 // move to the next pair, this type is hopeless. 10711 Second = nullptr; 10712 continue; 10713 } 10714 // Check if we meet the alignment requirement. 10715 if (RequiredAlignment > First->getAlignment()) 10716 continue; 10717 10718 // Check that both loads are next to each other in memory. 10719 if (!areSlicesNextToEachOther(*First, *Second)) 10720 continue; 10721 10722 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); 10723 --GlobalLSCost.Loads; 10724 // Move to the next pair. 10725 Second = nullptr; 10726 } 10727 } 10728 10729 /// \brief Check the profitability of all involved LoadedSlice. 10730 /// Currently, it is considered profitable if there is exactly two 10731 /// involved slices (1) which are (2) next to each other in memory, and 10732 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). 10733 /// 10734 /// Note: The order of the elements in \p LoadedSlices may be modified, but not 10735 /// the elements themselves. 10736 /// 10737 /// FIXME: When the cost model will be mature enough, we can relax 10738 /// constraints (1) and (2). 10739 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, 10740 const APInt &UsedBits, bool ForCodeSize) { 10741 unsigned NumberOfSlices = LoadedSlices.size(); 10742 if (StressLoadSlicing) 10743 return NumberOfSlices > 1; 10744 10745 // Check (1). 10746 if (NumberOfSlices != 2) 10747 return false; 10748 10749 // Check (2). 10750 if (!areUsedBitsDense(UsedBits)) 10751 return false; 10752 10753 // Check (3). 10754 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); 10755 // The original code has one big load. 10756 OrigCost.Loads = 1; 10757 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { 10758 const LoadedSlice &LS = LoadedSlices[CurrSlice]; 10759 // Accumulate the cost of all the slices. 10760 LoadedSlice::Cost SliceCost(LS, ForCodeSize); 10761 GlobalSlicingCost += SliceCost; 10762 10763 // Account as cost in the original configuration the gain obtained 10764 // with the current slices. 10765 OrigCost.addSliceGain(LS); 10766 } 10767 10768 // If the target supports paired load, adjust the cost accordingly. 10769 adjustCostForPairing(LoadedSlices, GlobalSlicingCost); 10770 return OrigCost > GlobalSlicingCost; 10771 } 10772 10773 /// \brief If the given load, \p LI, is used only by trunc or trunc(lshr) 10774 /// operations, split it in the various pieces being extracted. 10775 /// 10776 /// This sort of thing is introduced by SROA. 10777 /// This slicing takes care not to insert overlapping loads. 10778 /// \pre LI is a simple load (i.e., not an atomic or volatile load). 10779 bool DAGCombiner::SliceUpLoad(SDNode *N) { 10780 if (Level < AfterLegalizeDAG) 10781 return false; 10782 10783 LoadSDNode *LD = cast<LoadSDNode>(N); 10784 if (LD->isVolatile() || !ISD::isNormalLoad(LD) || 10785 !LD->getValueType(0).isInteger()) 10786 return false; 10787 10788 // Keep track of already used bits to detect overlapping values. 10789 // In that case, we will just abort the transformation. 10790 APInt UsedBits(LD->getValueSizeInBits(0), 0); 10791 10792 SmallVector<LoadedSlice, 4> LoadedSlices; 10793 10794 // Check if this load is used as several smaller chunks of bits. 10795 // Basically, look for uses in trunc or trunc(lshr) and record a new chain 10796 // of computation for each trunc. 10797 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 10798 UI != UIEnd; ++UI) { 10799 // Skip the uses of the chain. 10800 if (UI.getUse().getResNo() != 0) 10801 continue; 10802 10803 SDNode *User = *UI; 10804 unsigned Shift = 0; 10805 10806 // Check if this is a trunc(lshr). 10807 if (User->getOpcode() == ISD::SRL && User->hasOneUse() && 10808 isa<ConstantSDNode>(User->getOperand(1))) { 10809 Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue(); 10810 User = *User->use_begin(); 10811 } 10812 10813 // At this point, User is a Truncate, iff we encountered, trunc or 10814 // trunc(lshr). 10815 if (User->getOpcode() != ISD::TRUNCATE) 10816 return false; 10817 10818 // The width of the type must be a power of 2 and greater than 8-bits. 10819 // Otherwise the load cannot be represented in LLVM IR. 10820 // Moreover, if we shifted with a non-8-bits multiple, the slice 10821 // will be across several bytes. We do not support that. 10822 unsigned Width = User->getValueSizeInBits(0); 10823 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) 10824 return 0; 10825 10826 // Build the slice for this chain of computations. 10827 LoadedSlice LS(User, LD, Shift, &DAG); 10828 APInt CurrentUsedBits = LS.getUsedBits(); 10829 10830 // Check if this slice overlaps with another. 10831 if ((CurrentUsedBits & UsedBits) != 0) 10832 return false; 10833 // Update the bits used globally. 10834 UsedBits |= CurrentUsedBits; 10835 10836 // Check if the new slice would be legal. 10837 if (!LS.isLegal()) 10838 return false; 10839 10840 // Record the slice. 10841 LoadedSlices.push_back(LS); 10842 } 10843 10844 // Abort slicing if it does not seem to be profitable. 10845 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) 10846 return false; 10847 10848 ++SlicedLoads; 10849 10850 // Rewrite each chain to use an independent load. 10851 // By construction, each chain can be represented by a unique load. 10852 10853 // Prepare the argument for the new token factor for all the slices. 10854 SmallVector<SDValue, 8> ArgChains; 10855 for (SmallVectorImpl<LoadedSlice>::const_iterator 10856 LSIt = LoadedSlices.begin(), 10857 LSItEnd = LoadedSlices.end(); 10858 LSIt != LSItEnd; ++LSIt) { 10859 SDValue SliceInst = LSIt->loadSlice(); 10860 CombineTo(LSIt->Inst, SliceInst, true); 10861 if (SliceInst.getOpcode() != ISD::LOAD) 10862 SliceInst = SliceInst.getOperand(0); 10863 assert(SliceInst->getOpcode() == ISD::LOAD && 10864 "It takes more than a zext to get to the loaded slice!!"); 10865 ArgChains.push_back(SliceInst.getValue(1)); 10866 } 10867 10868 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, 10869 ArgChains); 10870 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 10871 return true; 10872 } 10873 10874 /// Check to see if V is (and load (ptr), imm), where the load is having 10875 /// specific bytes cleared out. If so, return the byte size being masked out 10876 /// and the shift amount. 10877 static std::pair<unsigned, unsigned> 10878 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { 10879 std::pair<unsigned, unsigned> Result(0, 0); 10880 10881 // Check for the structure we're looking for. 10882 if (V->getOpcode() != ISD::AND || 10883 !isa<ConstantSDNode>(V->getOperand(1)) || 10884 !ISD::isNormalLoad(V->getOperand(0).getNode())) 10885 return Result; 10886 10887 // Check the chain and pointer. 10888 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); 10889 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. 10890 10891 // The store should be chained directly to the load or be an operand of a 10892 // tokenfactor. 10893 if (LD == Chain.getNode()) 10894 ; // ok. 10895 else if (Chain->getOpcode() != ISD::TokenFactor) 10896 return Result; // Fail. 10897 else { 10898 bool isOk = false; 10899 for (const SDValue &ChainOp : Chain->op_values()) 10900 if (ChainOp.getNode() == LD) { 10901 isOk = true; 10902 break; 10903 } 10904 if (!isOk) return Result; 10905 } 10906 10907 // This only handles simple types. 10908 if (V.getValueType() != MVT::i16 && 10909 V.getValueType() != MVT::i32 && 10910 V.getValueType() != MVT::i64) 10911 return Result; 10912 10913 // Check the constant mask. Invert it so that the bits being masked out are 10914 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits 10915 // follow the sign bit for uniformity. 10916 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); 10917 unsigned NotMaskLZ = countLeadingZeros(NotMask); 10918 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. 10919 unsigned NotMaskTZ = countTrailingZeros(NotMask); 10920 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. 10921 if (NotMaskLZ == 64) return Result; // All zero mask. 10922 10923 // See if we have a continuous run of bits. If so, we have 0*1+0* 10924 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) 10925 return Result; 10926 10927 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. 10928 if (V.getValueType() != MVT::i64 && NotMaskLZ) 10929 NotMaskLZ -= 64-V.getValueSizeInBits(); 10930 10931 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; 10932 switch (MaskedBytes) { 10933 case 1: 10934 case 2: 10935 case 4: break; 10936 default: return Result; // All one mask, or 5-byte mask. 10937 } 10938 10939 // Verify that the first bit starts at a multiple of mask so that the access 10940 // is aligned the same as the access width. 10941 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; 10942 10943 Result.first = MaskedBytes; 10944 Result.second = NotMaskTZ/8; 10945 return Result; 10946 } 10947 10948 10949 /// Check to see if IVal is something that provides a value as specified by 10950 /// MaskInfo. If so, replace the specified store with a narrower store of 10951 /// truncated IVal. 10952 static SDNode * 10953 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, 10954 SDValue IVal, StoreSDNode *St, 10955 DAGCombiner *DC) { 10956 unsigned NumBytes = MaskInfo.first; 10957 unsigned ByteShift = MaskInfo.second; 10958 SelectionDAG &DAG = DC->getDAG(); 10959 10960 // Check to see if IVal is all zeros in the part being masked in by the 'or' 10961 // that uses this. If not, this is not a replacement. 10962 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), 10963 ByteShift*8, (ByteShift+NumBytes)*8); 10964 if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr; 10965 10966 // Check that it is legal on the target to do this. It is legal if the new 10967 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type 10968 // legalization. 10969 MVT VT = MVT::getIntegerVT(NumBytes*8); 10970 if (!DC->isTypeLegal(VT)) 10971 return nullptr; 10972 10973 // Okay, we can do this! Replace the 'St' store with a store of IVal that is 10974 // shifted by ByteShift and truncated down to NumBytes. 10975 if (ByteShift) { 10976 SDLoc DL(IVal); 10977 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, 10978 DAG.getConstant(ByteShift*8, DL, 10979 DC->getShiftAmountTy(IVal.getValueType()))); 10980 } 10981 10982 // Figure out the offset for the store and the alignment of the access. 10983 unsigned StOffset; 10984 unsigned NewAlign = St->getAlignment(); 10985 10986 if (DAG.getDataLayout().isLittleEndian()) 10987 StOffset = ByteShift; 10988 else 10989 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; 10990 10991 SDValue Ptr = St->getBasePtr(); 10992 if (StOffset) { 10993 SDLoc DL(IVal); 10994 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), 10995 Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType())); 10996 NewAlign = MinAlign(NewAlign, StOffset); 10997 } 10998 10999 // Truncate down to the new size. 11000 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); 11001 11002 ++OpsNarrowed; 11003 return DAG 11004 .getStore(St->getChain(), SDLoc(St), IVal, Ptr, 11005 St->getPointerInfo().getWithOffset(StOffset), NewAlign) 11006 .getNode(); 11007 } 11008 11009 11010 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and 11011 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try 11012 /// narrowing the load and store if it would end up being a win for performance 11013 /// or code size. 11014 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { 11015 StoreSDNode *ST = cast<StoreSDNode>(N); 11016 if (ST->isVolatile()) 11017 return SDValue(); 11018 11019 SDValue Chain = ST->getChain(); 11020 SDValue Value = ST->getValue(); 11021 SDValue Ptr = ST->getBasePtr(); 11022 EVT VT = Value.getValueType(); 11023 11024 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) 11025 return SDValue(); 11026 11027 unsigned Opc = Value.getOpcode(); 11028 11029 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst 11030 // is a byte mask indicating a consecutive number of bytes, check to see if 11031 // Y is known to provide just those bytes. If so, we try to replace the 11032 // load + replace + store sequence with a single (narrower) store, which makes 11033 // the load dead. 11034 if (Opc == ISD::OR) { 11035 std::pair<unsigned, unsigned> MaskedLoad; 11036 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); 11037 if (MaskedLoad.first) 11038 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 11039 Value.getOperand(1), ST,this)) 11040 return SDValue(NewST, 0); 11041 11042 // Or is commutative, so try swapping X and Y. 11043 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); 11044 if (MaskedLoad.first) 11045 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 11046 Value.getOperand(0), ST,this)) 11047 return SDValue(NewST, 0); 11048 } 11049 11050 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || 11051 Value.getOperand(1).getOpcode() != ISD::Constant) 11052 return SDValue(); 11053 11054 SDValue N0 = Value.getOperand(0); 11055 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 11056 Chain == SDValue(N0.getNode(), 1)) { 11057 LoadSDNode *LD = cast<LoadSDNode>(N0); 11058 if (LD->getBasePtr() != Ptr || 11059 LD->getPointerInfo().getAddrSpace() != 11060 ST->getPointerInfo().getAddrSpace()) 11061 return SDValue(); 11062 11063 // Find the type to narrow it the load / op / store to. 11064 SDValue N1 = Value.getOperand(1); 11065 unsigned BitWidth = N1.getValueSizeInBits(); 11066 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); 11067 if (Opc == ISD::AND) 11068 Imm ^= APInt::getAllOnesValue(BitWidth); 11069 if (Imm == 0 || Imm.isAllOnesValue()) 11070 return SDValue(); 11071 unsigned ShAmt = Imm.countTrailingZeros(); 11072 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; 11073 unsigned NewBW = NextPowerOf2(MSB - ShAmt); 11074 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 11075 // The narrowing should be profitable, the load/store operation should be 11076 // legal (or custom) and the store size should be equal to the NewVT width. 11077 while (NewBW < BitWidth && 11078 (NewVT.getStoreSizeInBits() != NewBW || 11079 !TLI.isOperationLegalOrCustom(Opc, NewVT) || 11080 !TLI.isNarrowingProfitable(VT, NewVT))) { 11081 NewBW = NextPowerOf2(NewBW); 11082 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 11083 } 11084 if (NewBW >= BitWidth) 11085 return SDValue(); 11086 11087 // If the lsb changed does not start at the type bitwidth boundary, 11088 // start at the previous one. 11089 if (ShAmt % NewBW) 11090 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; 11091 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, 11092 std::min(BitWidth, ShAmt + NewBW)); 11093 if ((Imm & Mask) == Imm) { 11094 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); 11095 if (Opc == ISD::AND) 11096 NewImm ^= APInt::getAllOnesValue(NewBW); 11097 uint64_t PtrOff = ShAmt / 8; 11098 // For big endian targets, we need to adjust the offset to the pointer to 11099 // load the correct bytes. 11100 if (DAG.getDataLayout().isBigEndian()) 11101 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; 11102 11103 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); 11104 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); 11105 if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy)) 11106 return SDValue(); 11107 11108 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD), 11109 Ptr.getValueType(), Ptr, 11110 DAG.getConstant(PtrOff, SDLoc(LD), 11111 Ptr.getValueType())); 11112 SDValue NewLD = 11113 DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, 11114 LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, 11115 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 11116 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, 11117 DAG.getConstant(NewImm, SDLoc(Value), 11118 NewVT)); 11119 SDValue NewST = 11120 DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, 11121 ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); 11122 11123 AddToWorklist(NewPtr.getNode()); 11124 AddToWorklist(NewLD.getNode()); 11125 AddToWorklist(NewVal.getNode()); 11126 WorklistRemover DeadNodes(*this); 11127 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); 11128 ++OpsNarrowed; 11129 return NewST; 11130 } 11131 } 11132 11133 return SDValue(); 11134 } 11135 11136 /// For a given floating point load / store pair, if the load value isn't used 11137 /// by any other operations, then consider transforming the pair to integer 11138 /// load / store operations if the target deems the transformation profitable. 11139 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { 11140 StoreSDNode *ST = cast<StoreSDNode>(N); 11141 SDValue Chain = ST->getChain(); 11142 SDValue Value = ST->getValue(); 11143 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && 11144 Value.hasOneUse() && 11145 Chain == SDValue(Value.getNode(), 1)) { 11146 LoadSDNode *LD = cast<LoadSDNode>(Value); 11147 EVT VT = LD->getMemoryVT(); 11148 if (!VT.isFloatingPoint() || 11149 VT != ST->getMemoryVT() || 11150 LD->isNonTemporal() || 11151 ST->isNonTemporal() || 11152 LD->getPointerInfo().getAddrSpace() != 0 || 11153 ST->getPointerInfo().getAddrSpace() != 0) 11154 return SDValue(); 11155 11156 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 11157 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || 11158 !TLI.isOperationLegal(ISD::STORE, IntVT) || 11159 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || 11160 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) 11161 return SDValue(); 11162 11163 unsigned LDAlign = LD->getAlignment(); 11164 unsigned STAlign = ST->getAlignment(); 11165 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); 11166 unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy); 11167 if (LDAlign < ABIAlign || STAlign < ABIAlign) 11168 return SDValue(); 11169 11170 SDValue NewLD = 11171 DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), 11172 LD->getPointerInfo(), LDAlign); 11173 11174 SDValue NewST = 11175 DAG.getStore(NewLD.getValue(1), SDLoc(N), NewLD, ST->getBasePtr(), 11176 ST->getPointerInfo(), STAlign); 11177 11178 AddToWorklist(NewLD.getNode()); 11179 AddToWorklist(NewST.getNode()); 11180 WorklistRemover DeadNodes(*this); 11181 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); 11182 ++LdStFP2Int; 11183 return NewST; 11184 } 11185 11186 return SDValue(); 11187 } 11188 11189 namespace { 11190 /// Helper struct to parse and store a memory address as base + index + offset. 11191 /// We ignore sign extensions when it is safe to do so. 11192 /// The following two expressions are not equivalent. To differentiate we need 11193 /// to store whether there was a sign extension involved in the index 11194 /// computation. 11195 /// (load (i64 add (i64 copyfromreg %c) 11196 /// (i64 signextend (add (i8 load %index) 11197 /// (i8 1)))) 11198 /// vs 11199 /// 11200 /// (load (i64 add (i64 copyfromreg %c) 11201 /// (i64 signextend (i32 add (i32 signextend (i8 load %index)) 11202 /// (i32 1))))) 11203 struct BaseIndexOffset { 11204 SDValue Base; 11205 SDValue Index; 11206 int64_t Offset; 11207 bool IsIndexSignExt; 11208 11209 BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {} 11210 11211 BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset, 11212 bool IsIndexSignExt) : 11213 Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {} 11214 11215 bool equalBaseIndex(const BaseIndexOffset &Other) { 11216 return Other.Base == Base && Other.Index == Index && 11217 Other.IsIndexSignExt == IsIndexSignExt; 11218 } 11219 11220 /// Parses tree in Ptr for base, index, offset addresses. 11221 static BaseIndexOffset match(SDValue Ptr, SelectionDAG &DAG) { 11222 bool IsIndexSignExt = false; 11223 11224 // Split up a folded GlobalAddress+Offset into its component parts. 11225 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ptr)) 11226 if (GA->getOpcode() == ISD::GlobalAddress && GA->getOffset() != 0) { 11227 return BaseIndexOffset(DAG.getGlobalAddress(GA->getGlobal(), 11228 SDLoc(GA), 11229 GA->getValueType(0), 11230 /*Offset=*/0, 11231 /*isTargetGA=*/false, 11232 GA->getTargetFlags()), 11233 SDValue(), 11234 GA->getOffset(), 11235 IsIndexSignExt); 11236 } 11237 11238 // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD 11239 // instruction, then it could be just the BASE or everything else we don't 11240 // know how to handle. Just use Ptr as BASE and give up. 11241 if (Ptr->getOpcode() != ISD::ADD) 11242 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 11243 11244 // We know that we have at least an ADD instruction. Try to pattern match 11245 // the simple case of BASE + OFFSET. 11246 if (isa<ConstantSDNode>(Ptr->getOperand(1))) { 11247 int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue(); 11248 return BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset, 11249 IsIndexSignExt); 11250 } 11251 11252 // Inside a loop the current BASE pointer is calculated using an ADD and a 11253 // MUL instruction. In this case Ptr is the actual BASE pointer. 11254 // (i64 add (i64 %array_ptr) 11255 // (i64 mul (i64 %induction_var) 11256 // (i64 %element_size))) 11257 if (Ptr->getOperand(1)->getOpcode() == ISD::MUL) 11258 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 11259 11260 // Look at Base + Index + Offset cases. 11261 SDValue Base = Ptr->getOperand(0); 11262 SDValue IndexOffset = Ptr->getOperand(1); 11263 11264 // Skip signextends. 11265 if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) { 11266 IndexOffset = IndexOffset->getOperand(0); 11267 IsIndexSignExt = true; 11268 } 11269 11270 // Either the case of Base + Index (no offset) or something else. 11271 if (IndexOffset->getOpcode() != ISD::ADD) 11272 return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt); 11273 11274 // Now we have the case of Base + Index + offset. 11275 SDValue Index = IndexOffset->getOperand(0); 11276 SDValue Offset = IndexOffset->getOperand(1); 11277 11278 if (!isa<ConstantSDNode>(Offset)) 11279 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 11280 11281 // Ignore signextends. 11282 if (Index->getOpcode() == ISD::SIGN_EXTEND) { 11283 Index = Index->getOperand(0); 11284 IsIndexSignExt = true; 11285 } else IsIndexSignExt = false; 11286 11287 int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue(); 11288 return BaseIndexOffset(Base, Index, Off, IsIndexSignExt); 11289 } 11290 }; 11291 } // namespace 11292 11293 // This is a helper function for visitMUL to check the profitability 11294 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 11295 // MulNode is the original multiply, AddNode is (add x, c1), 11296 // and ConstNode is c2. 11297 // 11298 // If the (add x, c1) has multiple uses, we could increase 11299 // the number of adds if we make this transformation. 11300 // It would only be worth doing this if we can remove a 11301 // multiply in the process. Check for that here. 11302 // To illustrate: 11303 // (A + c1) * c3 11304 // (A + c2) * c3 11305 // We're checking for cases where we have common "c3 * A" expressions. 11306 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, 11307 SDValue &AddNode, 11308 SDValue &ConstNode) { 11309 APInt Val; 11310 11311 // If the add only has one use, this would be OK to do. 11312 if (AddNode.getNode()->hasOneUse()) 11313 return true; 11314 11315 // Walk all the users of the constant with which we're multiplying. 11316 for (SDNode *Use : ConstNode->uses()) { 11317 11318 if (Use == MulNode) // This use is the one we're on right now. Skip it. 11319 continue; 11320 11321 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. 11322 SDNode *OtherOp; 11323 SDNode *MulVar = AddNode.getOperand(0).getNode(); 11324 11325 // OtherOp is what we're multiplying against the constant. 11326 if (Use->getOperand(0) == ConstNode) 11327 OtherOp = Use->getOperand(1).getNode(); 11328 else 11329 OtherOp = Use->getOperand(0).getNode(); 11330 11331 // Check to see if multiply is with the same operand of our "add". 11332 // 11333 // ConstNode = CONST 11334 // Use = ConstNode * A <-- visiting Use. OtherOp is A. 11335 // ... 11336 // AddNode = (A + c1) <-- MulVar is A. 11337 // = AddNode * ConstNode <-- current visiting instruction. 11338 // 11339 // If we make this transformation, we will have a common 11340 // multiply (ConstNode * A) that we can save. 11341 if (OtherOp == MulVar) 11342 return true; 11343 11344 // Now check to see if a future expansion will give us a common 11345 // multiply. 11346 // 11347 // ConstNode = CONST 11348 // AddNode = (A + c1) 11349 // ... = AddNode * ConstNode <-- current visiting instruction. 11350 // ... 11351 // OtherOp = (A + c2) 11352 // Use = OtherOp * ConstNode <-- visiting Use. 11353 // 11354 // If we make this transformation, we will have a common 11355 // multiply (CONST * A) after we also do the same transformation 11356 // to the "t2" instruction. 11357 if (OtherOp->getOpcode() == ISD::ADD && 11358 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && 11359 OtherOp->getOperand(0).getNode() == MulVar) 11360 return true; 11361 } 11362 } 11363 11364 // Didn't find a case where this would be profitable. 11365 return false; 11366 } 11367 11368 SDValue DAGCombiner::getMergedConstantVectorStore( 11369 SelectionDAG &DAG, const SDLoc &SL, ArrayRef<MemOpLink> Stores, 11370 SmallVectorImpl<SDValue> &Chains, EVT Ty) const { 11371 SmallVector<SDValue, 8> BuildVector; 11372 11373 for (unsigned I = 0, E = Ty.getVectorNumElements(); I != E; ++I) { 11374 StoreSDNode *St = cast<StoreSDNode>(Stores[I].MemNode); 11375 Chains.push_back(St->getChain()); 11376 BuildVector.push_back(St->getValue()); 11377 } 11378 11379 return DAG.getBuildVector(Ty, SL, BuildVector); 11380 } 11381 11382 bool DAGCombiner::MergeStoresOfConstantsOrVecElts( 11383 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, 11384 unsigned NumStores, bool IsConstantSrc, bool UseVector) { 11385 // Make sure we have something to merge. 11386 if (NumStores < 2) 11387 return false; 11388 11389 int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; 11390 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 11391 unsigned LatestNodeUsed = 0; 11392 11393 for (unsigned i=0; i < NumStores; ++i) { 11394 // Find a chain for the new wide-store operand. Notice that some 11395 // of the store nodes that we found may not be selected for inclusion 11396 // in the wide store. The chain we use needs to be the chain of the 11397 // latest store node which is *used* and replaced by the wide store. 11398 if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum) 11399 LatestNodeUsed = i; 11400 } 11401 11402 SmallVector<SDValue, 8> Chains; 11403 11404 // The latest Node in the DAG. 11405 LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode; 11406 SDLoc DL(StoreNodes[0].MemNode); 11407 11408 SDValue StoredVal; 11409 if (UseVector) { 11410 bool IsVec = MemVT.isVector(); 11411 unsigned Elts = NumStores; 11412 if (IsVec) { 11413 // When merging vector stores, get the total number of elements. 11414 Elts *= MemVT.getVectorNumElements(); 11415 } 11416 // Get the type for the merged vector store. 11417 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 11418 assert(TLI.isTypeLegal(Ty) && "Illegal vector store"); 11419 11420 if (IsConstantSrc) { 11421 StoredVal = getMergedConstantVectorStore(DAG, DL, StoreNodes, Chains, Ty); 11422 } else { 11423 SmallVector<SDValue, 8> Ops; 11424 for (unsigned i = 0; i < NumStores; ++i) { 11425 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11426 SDValue Val = St->getValue(); 11427 // All operands of BUILD_VECTOR / CONCAT_VECTOR must have the same type. 11428 if (Val.getValueType() != MemVT) 11429 return false; 11430 Ops.push_back(Val); 11431 Chains.push_back(St->getChain()); 11432 } 11433 11434 // Build the extracted vector elements back into a vector. 11435 StoredVal = DAG.getNode(IsVec ? ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, 11436 DL, Ty, Ops); } 11437 } else { 11438 // We should always use a vector store when merging extracted vector 11439 // elements, so this path implies a store of constants. 11440 assert(IsConstantSrc && "Merged vector elements should use vector store"); 11441 11442 unsigned SizeInBits = NumStores * ElementSizeBytes * 8; 11443 APInt StoreInt(SizeInBits, 0); 11444 11445 // Construct a single integer constant which is made of the smaller 11446 // constant inputs. 11447 bool IsLE = DAG.getDataLayout().isLittleEndian(); 11448 for (unsigned i = 0; i < NumStores; ++i) { 11449 unsigned Idx = IsLE ? (NumStores - 1 - i) : i; 11450 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); 11451 Chains.push_back(St->getChain()); 11452 11453 SDValue Val = St->getValue(); 11454 StoreInt <<= ElementSizeBytes * 8; 11455 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { 11456 StoreInt |= C->getAPIntValue().zext(SizeInBits); 11457 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { 11458 StoreInt |= C->getValueAPF().bitcastToAPInt().zext(SizeInBits); 11459 } else { 11460 llvm_unreachable("Invalid constant element type"); 11461 } 11462 } 11463 11464 // Create the new Load and Store operations. 11465 EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); 11466 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); 11467 } 11468 11469 assert(!Chains.empty()); 11470 11471 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 11472 SDValue NewStore = DAG.getStore(NewChain, DL, StoredVal, 11473 FirstInChain->getBasePtr(), 11474 FirstInChain->getPointerInfo(), 11475 FirstInChain->getAlignment()); 11476 11477 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11478 : DAG.getSubtarget().useAA(); 11479 if (UseAA) { 11480 // Replace all merged stores with the new store. 11481 for (unsigned i = 0; i < NumStores; ++i) 11482 CombineTo(StoreNodes[i].MemNode, NewStore); 11483 } else { 11484 // Replace the last store with the new store. 11485 CombineTo(LatestOp, NewStore); 11486 // Erase all other stores. 11487 for (unsigned i = 0; i < NumStores; ++i) { 11488 if (StoreNodes[i].MemNode == LatestOp) 11489 continue; 11490 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11491 // ReplaceAllUsesWith will replace all uses that existed when it was 11492 // called, but graph optimizations may cause new ones to appear. For 11493 // example, the case in pr14333 looks like 11494 // 11495 // St's chain -> St -> another store -> X 11496 // 11497 // And the only difference from St to the other store is the chain. 11498 // When we change it's chain to be St's chain they become identical, 11499 // get CSEed and the net result is that X is now a use of St. 11500 // Since we know that St is redundant, just iterate. 11501 while (!St->use_empty()) 11502 DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain()); 11503 deleteAndRecombine(St); 11504 } 11505 } 11506 11507 return true; 11508 } 11509 11510 void DAGCombiner::getStoreMergeAndAliasCandidates( 11511 StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes, 11512 SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes) { 11513 // This holds the base pointer, index, and the offset in bytes from the base 11514 // pointer. 11515 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr(), DAG); 11516 11517 // We must have a base and an offset. 11518 if (!BasePtr.Base.getNode()) 11519 return; 11520 11521 // Do not handle stores to undef base pointers. 11522 if (BasePtr.Base.isUndef()) 11523 return; 11524 11525 // Walk up the chain and look for nodes with offsets from the same 11526 // base pointer. Stop when reaching an instruction with a different kind 11527 // or instruction which has a different base pointer. 11528 EVT MemVT = St->getMemoryVT(); 11529 unsigned Seq = 0; 11530 StoreSDNode *Index = St; 11531 11532 11533 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11534 : DAG.getSubtarget().useAA(); 11535 11536 if (UseAA) { 11537 // Look at other users of the same chain. Stores on the same chain do not 11538 // alias. If combiner-aa is enabled, non-aliasing stores are canonicalized 11539 // to be on the same chain, so don't bother looking at adjacent chains. 11540 11541 SDValue Chain = St->getChain(); 11542 for (auto I = Chain->use_begin(), E = Chain->use_end(); I != E; ++I) { 11543 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) { 11544 if (I.getOperandNo() != 0) 11545 continue; 11546 11547 if (OtherST->isVolatile() || OtherST->isIndexed()) 11548 continue; 11549 11550 if (OtherST->getMemoryVT() != MemVT) 11551 continue; 11552 11553 BaseIndexOffset Ptr = BaseIndexOffset::match(OtherST->getBasePtr(), DAG); 11554 11555 if (Ptr.equalBaseIndex(BasePtr)) 11556 StoreNodes.push_back(MemOpLink(OtherST, Ptr.Offset, Seq++)); 11557 } 11558 } 11559 11560 return; 11561 } 11562 11563 while (Index) { 11564 // If the chain has more than one use, then we can't reorder the mem ops. 11565 if (Index != St && !SDValue(Index, 0)->hasOneUse()) 11566 break; 11567 11568 // Find the base pointer and offset for this memory node. 11569 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr(), DAG); 11570 11571 // Check that the base pointer is the same as the original one. 11572 if (!Ptr.equalBaseIndex(BasePtr)) 11573 break; 11574 11575 // The memory operands must not be volatile. 11576 if (Index->isVolatile() || Index->isIndexed()) 11577 break; 11578 11579 // No truncation. 11580 if (Index->isTruncatingStore()) 11581 break; 11582 11583 // The stored memory type must be the same. 11584 if (Index->getMemoryVT() != MemVT) 11585 break; 11586 11587 // We do not allow under-aligned stores in order to prevent 11588 // overriding stores. NOTE: this is a bad hack. Alignment SHOULD 11589 // be irrelevant here; what MATTERS is that we not move memory 11590 // operations that potentially overlap past each-other. 11591 if (Index->getAlignment() < MemVT.getStoreSize()) 11592 break; 11593 11594 // We found a potential memory operand to merge. 11595 StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++)); 11596 11597 // Find the next memory operand in the chain. If the next operand in the 11598 // chain is a store then move up and continue the scan with the next 11599 // memory operand. If the next operand is a load save it and use alias 11600 // information to check if it interferes with anything. 11601 SDNode *NextInChain = Index->getChain().getNode(); 11602 while (1) { 11603 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { 11604 // We found a store node. Use it for the next iteration. 11605 Index = STn; 11606 break; 11607 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { 11608 if (Ldn->isVolatile()) { 11609 Index = nullptr; 11610 break; 11611 } 11612 11613 // Save the load node for later. Continue the scan. 11614 AliasLoadNodes.push_back(Ldn); 11615 NextInChain = Ldn->getChain().getNode(); 11616 continue; 11617 } else { 11618 Index = nullptr; 11619 break; 11620 } 11621 } 11622 } 11623 } 11624 11625 // We need to check that merging these stores does not cause a loop 11626 // in the DAG. Any store candidate may depend on another candidate 11627 // indirectly through its operand (we already consider dependencies 11628 // through the chain). Check in parallel by searching up from 11629 // non-chain operands of candidates. 11630 bool DAGCombiner::checkMergeStoreCandidatesForDependencies( 11631 SmallVectorImpl<MemOpLink> &StoreNodes) { 11632 SmallPtrSet<const SDNode *, 16> Visited; 11633 SmallVector<const SDNode *, 8> Worklist; 11634 // search ops of store candidates 11635 for (unsigned i = 0; i < StoreNodes.size(); ++i) { 11636 SDNode *n = StoreNodes[i].MemNode; 11637 // Potential loops may happen only through non-chain operands 11638 for (unsigned j = 1; j < n->getNumOperands(); ++j) 11639 Worklist.push_back(n->getOperand(j).getNode()); 11640 } 11641 // search through DAG. We can stop early if we find a storenode 11642 for (unsigned i = 0; i < StoreNodes.size(); ++i) { 11643 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist)) 11644 return false; 11645 } 11646 return true; 11647 } 11648 11649 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) { 11650 if (OptLevel == CodeGenOpt::None) 11651 return false; 11652 11653 EVT MemVT = St->getMemoryVT(); 11654 int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; 11655 bool NoVectors = DAG.getMachineFunction().getFunction()->hasFnAttribute( 11656 Attribute::NoImplicitFloat); 11657 11658 // This function cannot currently deal with non-byte-sized memory sizes. 11659 if (ElementSizeBytes * 8 != MemVT.getSizeInBits()) 11660 return false; 11661 11662 if (!MemVT.isSimple()) 11663 return false; 11664 11665 // Perform an early exit check. Do not bother looking at stored values that 11666 // are not constants, loads, or extracted vector elements. 11667 SDValue StoredVal = St->getValue(); 11668 bool IsLoadSrc = isa<LoadSDNode>(StoredVal); 11669 bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) || 11670 isa<ConstantFPSDNode>(StoredVal); 11671 bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 11672 StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR); 11673 11674 if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc) 11675 return false; 11676 11677 // Don't merge vectors into wider vectors if the source data comes from loads. 11678 // TODO: This restriction can be lifted by using logic similar to the 11679 // ExtractVecSrc case. 11680 if (MemVT.isVector() && IsLoadSrc) 11681 return false; 11682 11683 // Only look at ends of store sequences. 11684 SDValue Chain = SDValue(St, 0); 11685 if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE) 11686 return false; 11687 11688 // Save the LoadSDNodes that we find in the chain. 11689 // We need to make sure that these nodes do not interfere with 11690 // any of the store nodes. 11691 SmallVector<LSBaseSDNode*, 8> AliasLoadNodes; 11692 11693 // Save the StoreSDNodes that we find in the chain. 11694 SmallVector<MemOpLink, 8> StoreNodes; 11695 11696 getStoreMergeAndAliasCandidates(St, StoreNodes, AliasLoadNodes); 11697 11698 // Check if there is anything to merge. 11699 if (StoreNodes.size() < 2) 11700 return false; 11701 11702 // only do dependence check in AA case 11703 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11704 : DAG.getSubtarget().useAA(); 11705 if (UseAA && !checkMergeStoreCandidatesForDependencies(StoreNodes)) 11706 return false; 11707 11708 // Sort the memory operands according to their distance from the 11709 // base pointer. As a secondary criteria: make sure stores coming 11710 // later in the code come first in the list. This is important for 11711 // the non-UseAA case, because we're merging stores into the FINAL 11712 // store along a chain which potentially contains aliasing stores. 11713 // Thus, if there are multiple stores to the same address, the last 11714 // one can be considered for merging but not the others. 11715 std::sort(StoreNodes.begin(), StoreNodes.end(), 11716 [](MemOpLink LHS, MemOpLink RHS) { 11717 return LHS.OffsetFromBase < RHS.OffsetFromBase || 11718 (LHS.OffsetFromBase == RHS.OffsetFromBase && 11719 LHS.SequenceNum < RHS.SequenceNum); 11720 }); 11721 11722 // Scan the memory operations on the chain and find the first non-consecutive 11723 // store memory address. 11724 unsigned LastConsecutiveStore = 0; 11725 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 11726 for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) { 11727 11728 // Check that the addresses are consecutive starting from the second 11729 // element in the list of stores. 11730 if (i > 0) { 11731 int64_t CurrAddress = StoreNodes[i].OffsetFromBase; 11732 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 11733 break; 11734 } 11735 11736 // Check if this store interferes with any of the loads that we found. 11737 // If we find a load that alias with this store. Stop the sequence. 11738 if (any_of(AliasLoadNodes, [&](LSBaseSDNode *Ldn) { 11739 return isAlias(Ldn, StoreNodes[i].MemNode); 11740 })) 11741 break; 11742 11743 // Mark this node as useful. 11744 LastConsecutiveStore = i; 11745 } 11746 11747 // The node with the lowest store address. 11748 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 11749 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 11750 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 11751 LLVMContext &Context = *DAG.getContext(); 11752 const DataLayout &DL = DAG.getDataLayout(); 11753 11754 // Store the constants into memory as one consecutive store. 11755 if (IsConstantSrc) { 11756 unsigned LastLegalType = 0; 11757 unsigned LastLegalVectorType = 0; 11758 bool NonZero = false; 11759 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { 11760 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11761 SDValue StoredVal = St->getValue(); 11762 11763 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) { 11764 NonZero |= !C->isNullValue(); 11765 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) { 11766 NonZero |= !C->getConstantFPValue()->isNullValue(); 11767 } else { 11768 // Non-constant. 11769 break; 11770 } 11771 11772 // Find a legal type for the constant store. 11773 unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; 11774 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); 11775 bool IsFast; 11776 if (TLI.isTypeLegal(StoreTy) && 11777 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11778 FirstStoreAlign, &IsFast) && IsFast) { 11779 LastLegalType = i+1; 11780 // Or check whether a truncstore is legal. 11781 } else if (TLI.getTypeAction(Context, StoreTy) == 11782 TargetLowering::TypePromoteInteger) { 11783 EVT LegalizedStoredValueTy = 11784 TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); 11785 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && 11786 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11787 FirstStoreAS, FirstStoreAlign, &IsFast) && 11788 IsFast) { 11789 LastLegalType = i + 1; 11790 } 11791 } 11792 11793 // We only use vectors if the constant is known to be zero or the target 11794 // allows it and the function is not marked with the noimplicitfloat 11795 // attribute. 11796 if ((!NonZero || TLI.storeOfVectorConstantIsCheap(MemVT, i+1, 11797 FirstStoreAS)) && 11798 !NoVectors) { 11799 // Find a legal type for the vector store. 11800 EVT Ty = EVT::getVectorVT(Context, MemVT, i+1); 11801 if (TLI.isTypeLegal(Ty) && 11802 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, 11803 FirstStoreAlign, &IsFast) && IsFast) 11804 LastLegalVectorType = i + 1; 11805 } 11806 } 11807 11808 // Check if we found a legal integer type to store. 11809 if (LastLegalType == 0 && LastLegalVectorType == 0) 11810 return false; 11811 11812 bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors; 11813 unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType; 11814 11815 return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, 11816 true, UseVector); 11817 } 11818 11819 // When extracting multiple vector elements, try to store them 11820 // in one vector store rather than a sequence of scalar stores. 11821 if (IsExtractVecSrc) { 11822 unsigned NumStoresToMerge = 0; 11823 bool IsVec = MemVT.isVector(); 11824 for (unsigned i = 0; i < LastConsecutiveStore + 1; ++i) { 11825 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11826 unsigned StoreValOpcode = St->getValue().getOpcode(); 11827 // This restriction could be loosened. 11828 // Bail out if any stored values are not elements extracted from a vector. 11829 // It should be possible to handle mixed sources, but load sources need 11830 // more careful handling (see the block of code below that handles 11831 // consecutive loads). 11832 if (StoreValOpcode != ISD::EXTRACT_VECTOR_ELT && 11833 StoreValOpcode != ISD::EXTRACT_SUBVECTOR) 11834 return false; 11835 11836 // Find a legal type for the vector store. 11837 unsigned Elts = i + 1; 11838 if (IsVec) { 11839 // When merging vector stores, get the total number of elements. 11840 Elts *= MemVT.getVectorNumElements(); 11841 } 11842 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 11843 bool IsFast; 11844 if (TLI.isTypeLegal(Ty) && 11845 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, 11846 FirstStoreAlign, &IsFast) && IsFast) 11847 NumStoresToMerge = i + 1; 11848 } 11849 11850 return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumStoresToMerge, 11851 false, true); 11852 } 11853 11854 // Below we handle the case of multiple consecutive stores that 11855 // come from multiple consecutive loads. We merge them into a single 11856 // wide load and a single wide store. 11857 11858 // Look for load nodes which are used by the stored values. 11859 SmallVector<MemOpLink, 8> LoadNodes; 11860 11861 // Find acceptable loads. Loads need to have the same chain (token factor), 11862 // must not be zext, volatile, indexed, and they must be consecutive. 11863 BaseIndexOffset LdBasePtr; 11864 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { 11865 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11866 LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue()); 11867 if (!Ld) break; 11868 11869 // Loads must only have one use. 11870 if (!Ld->hasNUsesOfValue(1, 0)) 11871 break; 11872 11873 // The memory operands must not be volatile. 11874 if (Ld->isVolatile() || Ld->isIndexed()) 11875 break; 11876 11877 // We do not accept ext loads. 11878 if (Ld->getExtensionType() != ISD::NON_EXTLOAD) 11879 break; 11880 11881 // The stored memory type must be the same. 11882 if (Ld->getMemoryVT() != MemVT) 11883 break; 11884 11885 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr(), DAG); 11886 // If this is not the first ptr that we check. 11887 if (LdBasePtr.Base.getNode()) { 11888 // The base ptr must be the same. 11889 if (!LdPtr.equalBaseIndex(LdBasePtr)) 11890 break; 11891 } else { 11892 // Check that all other base pointers are the same as this one. 11893 LdBasePtr = LdPtr; 11894 } 11895 11896 // We found a potential memory operand to merge. 11897 LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0)); 11898 } 11899 11900 if (LoadNodes.size() < 2) 11901 return false; 11902 11903 // If we have load/store pair instructions and we only have two values, 11904 // don't bother. 11905 unsigned RequiredAlignment; 11906 if (LoadNodes.size() == 2 && TLI.hasPairedLoad(MemVT, RequiredAlignment) && 11907 St->getAlignment() >= RequiredAlignment) 11908 return false; 11909 11910 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); 11911 unsigned FirstLoadAS = FirstLoad->getAddressSpace(); 11912 unsigned FirstLoadAlign = FirstLoad->getAlignment(); 11913 11914 // Scan the memory operations on the chain and find the first non-consecutive 11915 // load memory address. These variables hold the index in the store node 11916 // array. 11917 unsigned LastConsecutiveLoad = 0; 11918 // This variable refers to the size and not index in the array. 11919 unsigned LastLegalVectorType = 0; 11920 unsigned LastLegalIntegerType = 0; 11921 StartAddress = LoadNodes[0].OffsetFromBase; 11922 SDValue FirstChain = FirstLoad->getChain(); 11923 for (unsigned i = 1; i < LoadNodes.size(); ++i) { 11924 // All loads must share the same chain. 11925 if (LoadNodes[i].MemNode->getChain() != FirstChain) 11926 break; 11927 11928 int64_t CurrAddress = LoadNodes[i].OffsetFromBase; 11929 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 11930 break; 11931 LastConsecutiveLoad = i; 11932 // Find a legal type for the vector store. 11933 EVT StoreTy = EVT::getVectorVT(Context, MemVT, i+1); 11934 bool IsFastSt, IsFastLd; 11935 if (TLI.isTypeLegal(StoreTy) && 11936 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11937 FirstStoreAlign, &IsFastSt) && IsFastSt && 11938 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 11939 FirstLoadAlign, &IsFastLd) && IsFastLd) { 11940 LastLegalVectorType = i + 1; 11941 } 11942 11943 // Find a legal type for the integer store. 11944 unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; 11945 StoreTy = EVT::getIntegerVT(Context, SizeInBits); 11946 if (TLI.isTypeLegal(StoreTy) && 11947 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11948 FirstStoreAlign, &IsFastSt) && IsFastSt && 11949 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 11950 FirstLoadAlign, &IsFastLd) && IsFastLd) 11951 LastLegalIntegerType = i + 1; 11952 // Or check whether a truncstore and extload is legal. 11953 else if (TLI.getTypeAction(Context, StoreTy) == 11954 TargetLowering::TypePromoteInteger) { 11955 EVT LegalizedStoredValueTy = 11956 TLI.getTypeToTransformTo(Context, StoreTy); 11957 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && 11958 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValueTy, StoreTy) && 11959 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValueTy, StoreTy) && 11960 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValueTy, StoreTy) && 11961 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11962 FirstStoreAS, FirstStoreAlign, &IsFastSt) && 11963 IsFastSt && 11964 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11965 FirstLoadAS, FirstLoadAlign, &IsFastLd) && 11966 IsFastLd) 11967 LastLegalIntegerType = i+1; 11968 } 11969 } 11970 11971 // Only use vector types if the vector type is larger than the integer type. 11972 // If they are the same, use integers. 11973 bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors; 11974 unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType); 11975 11976 // We add +1 here because the LastXXX variables refer to location while 11977 // the NumElem refers to array/index size. 11978 unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1; 11979 NumElem = std::min(LastLegalType, NumElem); 11980 11981 if (NumElem < 2) 11982 return false; 11983 11984 // Collect the chains from all merged stores. 11985 SmallVector<SDValue, 8> MergeStoreChains; 11986 MergeStoreChains.push_back(StoreNodes[0].MemNode->getChain()); 11987 11988 // The latest Node in the DAG. 11989 unsigned LatestNodeUsed = 0; 11990 for (unsigned i=1; i<NumElem; ++i) { 11991 // Find a chain for the new wide-store operand. Notice that some 11992 // of the store nodes that we found may not be selected for inclusion 11993 // in the wide store. The chain we use needs to be the chain of the 11994 // latest store node which is *used* and replaced by the wide store. 11995 if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum) 11996 LatestNodeUsed = i; 11997 11998 MergeStoreChains.push_back(StoreNodes[i].MemNode->getChain()); 11999 } 12000 12001 LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode; 12002 12003 // Find if it is better to use vectors or integers to load and store 12004 // to memory. 12005 EVT JointMemOpVT; 12006 if (UseVectorTy) { 12007 JointMemOpVT = EVT::getVectorVT(Context, MemVT, NumElem); 12008 } else { 12009 unsigned SizeInBits = NumElem * ElementSizeBytes * 8; 12010 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); 12011 } 12012 12013 SDLoc LoadDL(LoadNodes[0].MemNode); 12014 SDLoc StoreDL(StoreNodes[0].MemNode); 12015 12016 // The merged loads are required to have the same incoming chain, so 12017 // using the first's chain is acceptable. 12018 SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL, FirstLoad->getChain(), 12019 FirstLoad->getBasePtr(), 12020 FirstLoad->getPointerInfo(), FirstLoadAlign); 12021 12022 SDValue NewStoreChain = 12023 DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, MergeStoreChains); 12024 12025 SDValue NewStore = 12026 DAG.getStore(NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), 12027 FirstInChain->getPointerInfo(), FirstStoreAlign); 12028 12029 // Transfer chain users from old loads to the new load. 12030 for (unsigned i = 0; i < NumElem; ++i) { 12031 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); 12032 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), 12033 SDValue(NewLoad.getNode(), 1)); 12034 } 12035 12036 if (UseAA) { 12037 // Replace the all stores with the new store. 12038 for (unsigned i = 0; i < NumElem; ++i) 12039 CombineTo(StoreNodes[i].MemNode, NewStore); 12040 } else { 12041 // Replace the last store with the new store. 12042 CombineTo(LatestOp, NewStore); 12043 // Erase all other stores. 12044 for (unsigned i = 0; i < NumElem; ++i) { 12045 // Remove all Store nodes. 12046 if (StoreNodes[i].MemNode == LatestOp) 12047 continue; 12048 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 12049 DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain()); 12050 deleteAndRecombine(St); 12051 } 12052 } 12053 12054 return true; 12055 } 12056 12057 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { 12058 SDLoc SL(ST); 12059 SDValue ReplStore; 12060 12061 // Replace the chain to avoid dependency. 12062 if (ST->isTruncatingStore()) { 12063 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), 12064 ST->getBasePtr(), ST->getMemoryVT(), 12065 ST->getMemOperand()); 12066 } else { 12067 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), 12068 ST->getMemOperand()); 12069 } 12070 12071 // Create token to keep both nodes around. 12072 SDValue Token = DAG.getNode(ISD::TokenFactor, SL, 12073 MVT::Other, ST->getChain(), ReplStore); 12074 12075 // Make sure the new and old chains are cleaned up. 12076 AddToWorklist(Token.getNode()); 12077 12078 // Don't add users to work list. 12079 return CombineTo(ST, Token, false); 12080 } 12081 12082 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { 12083 SDValue Value = ST->getValue(); 12084 if (Value.getOpcode() == ISD::TargetConstantFP) 12085 return SDValue(); 12086 12087 SDLoc DL(ST); 12088 12089 SDValue Chain = ST->getChain(); 12090 SDValue Ptr = ST->getBasePtr(); 12091 12092 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); 12093 12094 // NOTE: If the original store is volatile, this transform must not increase 12095 // the number of stores. For example, on x86-32 an f64 can be stored in one 12096 // processor operation but an i64 (which is not legal) requires two. So the 12097 // transform should not be done in this case. 12098 12099 SDValue Tmp; 12100 switch (CFP->getSimpleValueType(0).SimpleTy) { 12101 default: 12102 llvm_unreachable("Unknown FP type"); 12103 case MVT::f16: // We don't do this for these yet. 12104 case MVT::f80: 12105 case MVT::f128: 12106 case MVT::ppcf128: 12107 return SDValue(); 12108 case MVT::f32: 12109 if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) || 12110 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 12111 ; 12112 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). 12113 bitcastToAPInt().getZExtValue(), SDLoc(CFP), 12114 MVT::i32); 12115 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); 12116 } 12117 12118 return SDValue(); 12119 case MVT::f64: 12120 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && 12121 !ST->isVolatile()) || 12122 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { 12123 ; 12124 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 12125 getZExtValue(), SDLoc(CFP), MVT::i64); 12126 return DAG.getStore(Chain, DL, Tmp, 12127 Ptr, ST->getMemOperand()); 12128 } 12129 12130 if (!ST->isVolatile() && 12131 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 12132 // Many FP stores are not made apparent until after legalize, e.g. for 12133 // argument passing. Since this is so common, custom legalize the 12134 // 64-bit integer store into two 32-bit stores. 12135 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 12136 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); 12137 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); 12138 if (DAG.getDataLayout().isBigEndian()) 12139 std::swap(Lo, Hi); 12140 12141 unsigned Alignment = ST->getAlignment(); 12142 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 12143 AAMDNodes AAInfo = ST->getAAInfo(); 12144 12145 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 12146 ST->getAlignment(), MMOFlags, AAInfo); 12147 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 12148 DAG.getConstant(4, DL, Ptr.getValueType())); 12149 Alignment = MinAlign(Alignment, 4U); 12150 SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, 12151 ST->getPointerInfo().getWithOffset(4), 12152 Alignment, MMOFlags, AAInfo); 12153 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 12154 St0, St1); 12155 } 12156 12157 return SDValue(); 12158 } 12159 } 12160 12161 SDValue DAGCombiner::visitSTORE(SDNode *N) { 12162 StoreSDNode *ST = cast<StoreSDNode>(N); 12163 SDValue Chain = ST->getChain(); 12164 SDValue Value = ST->getValue(); 12165 SDValue Ptr = ST->getBasePtr(); 12166 12167 // If this is a store of a bit convert, store the input value if the 12168 // resultant store does not need a higher alignment than the original. 12169 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && 12170 ST->isUnindexed()) { 12171 EVT SVT = Value.getOperand(0).getValueType(); 12172 if (((!LegalOperations && !ST->isVolatile()) || 12173 TLI.isOperationLegalOrCustom(ISD::STORE, SVT)) && 12174 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT)) { 12175 unsigned OrigAlign = ST->getAlignment(); 12176 bool Fast = false; 12177 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), SVT, 12178 ST->getAddressSpace(), OrigAlign, &Fast) && 12179 Fast) { 12180 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, 12181 ST->getPointerInfo(), OrigAlign, 12182 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 12183 } 12184 } 12185 } 12186 12187 // Turn 'store undef, Ptr' -> nothing. 12188 if (Value.isUndef() && ST->isUnindexed()) 12189 return Chain; 12190 12191 // Try to infer better alignment information than the store already has. 12192 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) { 12193 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 12194 if (Align > ST->getAlignment()) { 12195 SDValue NewStore = 12196 DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), 12197 ST->getMemoryVT(), Align, 12198 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 12199 if (NewStore.getNode() != N) 12200 return CombineTo(ST, NewStore, true); 12201 } 12202 } 12203 } 12204 12205 // Try transforming a pair floating point load / store ops to integer 12206 // load / store ops. 12207 if (SDValue NewST = TransformFPLoadStorePair(N)) 12208 return NewST; 12209 12210 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 12211 : DAG.getSubtarget().useAA(); 12212 #ifndef NDEBUG 12213 if (CombinerAAOnlyFunc.getNumOccurrences() && 12214 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 12215 UseAA = false; 12216 #endif 12217 if (UseAA && ST->isUnindexed()) { 12218 // FIXME: We should do this even without AA enabled. AA will just allow 12219 // FindBetterChain to work in more situations. The problem with this is that 12220 // any combine that expects memory operations to be on consecutive chains 12221 // first needs to be updated to look for users of the same chain. 12222 12223 // Walk up chain skipping non-aliasing memory nodes, on this store and any 12224 // adjacent stores. 12225 if (findBetterNeighborChains(ST)) { 12226 // replaceStoreChain uses CombineTo, which handled all of the worklist 12227 // manipulation. Return the original node to not do anything else. 12228 return SDValue(ST, 0); 12229 } 12230 Chain = ST->getChain(); 12231 } 12232 12233 // Try transforming N to an indexed store. 12234 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 12235 return SDValue(N, 0); 12236 12237 // FIXME: is there such a thing as a truncating indexed store? 12238 if (ST->isTruncatingStore() && ST->isUnindexed() && 12239 Value.getValueType().isInteger()) { 12240 // See if we can simplify the input to this truncstore with knowledge that 12241 // only the low bits are being used. For example: 12242 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" 12243 SDValue Shorter = GetDemandedBits( 12244 Value, APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), 12245 ST->getMemoryVT().getScalarSizeInBits())); 12246 AddToWorklist(Value.getNode()); 12247 if (Shorter.getNode()) 12248 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, 12249 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 12250 12251 // Otherwise, see if we can simplify the operation with 12252 // SimplifyDemandedBits, which only works if the value has a single use. 12253 if (SimplifyDemandedBits( 12254 Value, 12255 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), 12256 ST->getMemoryVT().getScalarSizeInBits()))) 12257 return SDValue(N, 0); 12258 } 12259 12260 // If this is a load followed by a store to the same location, then the store 12261 // is dead/noop. 12262 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { 12263 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && 12264 ST->isUnindexed() && !ST->isVolatile() && 12265 // There can't be any side effects between the load and store, such as 12266 // a call or store. 12267 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { 12268 // The store is dead, remove it. 12269 return Chain; 12270 } 12271 } 12272 12273 // If this is a store followed by a store with the same value to the same 12274 // location, then the store is dead/noop. 12275 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { 12276 if (ST1->getBasePtr() == Ptr && ST->getMemoryVT() == ST1->getMemoryVT() && 12277 ST1->getValue() == Value && ST->isUnindexed() && !ST->isVolatile() && 12278 ST1->isUnindexed() && !ST1->isVolatile()) { 12279 // The store is dead, remove it. 12280 return Chain; 12281 } 12282 } 12283 12284 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a 12285 // truncating store. We can do this even if this is already a truncstore. 12286 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) 12287 && Value.getNode()->hasOneUse() && ST->isUnindexed() && 12288 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), 12289 ST->getMemoryVT())) { 12290 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), 12291 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 12292 } 12293 12294 // Only perform this optimization before the types are legal, because we 12295 // don't want to perform this optimization on every DAGCombine invocation. 12296 if (!LegalTypes) { 12297 bool EverChanged = false; 12298 12299 do { 12300 // There can be multiple store sequences on the same chain. 12301 // Keep trying to merge store sequences until we are unable to do so 12302 // or until we merge the last store on the chain. 12303 bool Changed = MergeConsecutiveStores(ST); 12304 EverChanged |= Changed; 12305 if (!Changed) break; 12306 } while (ST->getOpcode() != ISD::DELETED_NODE); 12307 12308 if (EverChanged) 12309 return SDValue(N, 0); 12310 } 12311 12312 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 12313 // 12314 // Make sure to do this only after attempting to merge stores in order to 12315 // avoid changing the types of some subset of stores due to visit order, 12316 // preventing their merging. 12317 if (isa<ConstantFPSDNode>(Value)) { 12318 if (SDValue NewSt = replaceStoreOfFPConstant(ST)) 12319 return NewSt; 12320 } 12321 12322 if (SDValue NewSt = splitMergedValStore(ST)) 12323 return NewSt; 12324 12325 return ReduceLoadOpStoreWidth(N); 12326 } 12327 12328 /// For the instruction sequence of store below, F and I values 12329 /// are bundled together as an i64 value before being stored into memory. 12330 /// Sometimes it is more efficent to generate separate stores for F and I, 12331 /// which can remove the bitwise instructions or sink them to colder places. 12332 /// 12333 /// (store (or (zext (bitcast F to i32) to i64), 12334 /// (shl (zext I to i64), 32)), addr) --> 12335 /// (store F, addr) and (store I, addr+4) 12336 /// 12337 /// Similarly, splitting for other merged store can also be beneficial, like: 12338 /// For pair of {i32, i32}, i64 store --> two i32 stores. 12339 /// For pair of {i32, i16}, i64 store --> two i32 stores. 12340 /// For pair of {i16, i16}, i32 store --> two i16 stores. 12341 /// For pair of {i16, i8}, i32 store --> two i16 stores. 12342 /// For pair of {i8, i8}, i16 store --> two i8 stores. 12343 /// 12344 /// We allow each target to determine specifically which kind of splitting is 12345 /// supported. 12346 /// 12347 /// The store patterns are commonly seen from the simple code snippet below 12348 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 12349 /// void goo(const std::pair<int, float> &); 12350 /// hoo() { 12351 /// ... 12352 /// goo(std::make_pair(tmp, ftmp)); 12353 /// ... 12354 /// } 12355 /// 12356 SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { 12357 if (OptLevel == CodeGenOpt::None) 12358 return SDValue(); 12359 12360 SDValue Val = ST->getValue(); 12361 SDLoc DL(ST); 12362 12363 // Match OR operand. 12364 if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) 12365 return SDValue(); 12366 12367 // Match SHL operand and get Lower and Higher parts of Val. 12368 SDValue Op1 = Val.getOperand(0); 12369 SDValue Op2 = Val.getOperand(1); 12370 SDValue Lo, Hi; 12371 if (Op1.getOpcode() != ISD::SHL) { 12372 std::swap(Op1, Op2); 12373 if (Op1.getOpcode() != ISD::SHL) 12374 return SDValue(); 12375 } 12376 Lo = Op2; 12377 Hi = Op1.getOperand(0); 12378 if (!Op1.hasOneUse()) 12379 return SDValue(); 12380 12381 // Match shift amount to HalfValBitSize. 12382 unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; 12383 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); 12384 if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) 12385 return SDValue(); 12386 12387 // Lo and Hi are zero-extended from int with size less equal than 32 12388 // to i64. 12389 if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || 12390 !Lo.getOperand(0).getValueType().isScalarInteger() || 12391 Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || 12392 Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || 12393 !Hi.getOperand(0).getValueType().isScalarInteger() || 12394 Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) 12395 return SDValue(); 12396 12397 if (!TLI.isMultiStoresCheaperThanBitsMerge(Lo.getOperand(0), 12398 Hi.getOperand(0))) 12399 return SDValue(); 12400 12401 // Start to split store. 12402 unsigned Alignment = ST->getAlignment(); 12403 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 12404 AAMDNodes AAInfo = ST->getAAInfo(); 12405 12406 // Change the sizes of Lo and Hi's value types to HalfValBitSize. 12407 EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); 12408 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); 12409 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); 12410 12411 SDValue Chain = ST->getChain(); 12412 SDValue Ptr = ST->getBasePtr(); 12413 // Lower value store. 12414 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 12415 ST->getAlignment(), MMOFlags, AAInfo); 12416 Ptr = 12417 DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 12418 DAG.getConstant(HalfValBitSize / 8, DL, Ptr.getValueType())); 12419 // Higher value store. 12420 SDValue St1 = 12421 DAG.getStore(St0, DL, Hi, Ptr, 12422 ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), 12423 Alignment / 2, MMOFlags, AAInfo); 12424 return St1; 12425 } 12426 12427 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { 12428 SDValue InVec = N->getOperand(0); 12429 SDValue InVal = N->getOperand(1); 12430 SDValue EltNo = N->getOperand(2); 12431 SDLoc DL(N); 12432 12433 // If the inserted element is an UNDEF, just use the input vector. 12434 if (InVal.isUndef()) 12435 return InVec; 12436 12437 EVT VT = InVec.getValueType(); 12438 12439 // If we can't generate a legal BUILD_VECTOR, exit 12440 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 12441 return SDValue(); 12442 12443 // Check that we know which element is being inserted 12444 if (!isa<ConstantSDNode>(EltNo)) 12445 return SDValue(); 12446 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 12447 12448 // Canonicalize insert_vector_elt dag nodes. 12449 // Example: 12450 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) 12451 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) 12452 // 12453 // Do this only if the child insert_vector node has one use; also 12454 // do this only if indices are both constants and Idx1 < Idx0. 12455 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() 12456 && isa<ConstantSDNode>(InVec.getOperand(2))) { 12457 unsigned OtherElt = 12458 cast<ConstantSDNode>(InVec.getOperand(2))->getZExtValue(); 12459 if (Elt < OtherElt) { 12460 // Swap nodes. 12461 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, 12462 InVec.getOperand(0), InVal, EltNo); 12463 AddToWorklist(NewOp.getNode()); 12464 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), 12465 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); 12466 } 12467 } 12468 12469 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 12470 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 12471 // vector elements. 12472 SmallVector<SDValue, 8> Ops; 12473 // Do not combine these two vectors if the output vector will not replace 12474 // the input vector. 12475 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { 12476 Ops.append(InVec.getNode()->op_begin(), 12477 InVec.getNode()->op_end()); 12478 } else if (InVec.isUndef()) { 12479 unsigned NElts = VT.getVectorNumElements(); 12480 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType())); 12481 } else { 12482 return SDValue(); 12483 } 12484 12485 // Insert the element 12486 if (Elt < Ops.size()) { 12487 // All the operands of BUILD_VECTOR must have the same type; 12488 // we enforce that here. 12489 EVT OpVT = Ops[0].getValueType(); 12490 if (InVal.getValueType() != OpVT) 12491 InVal = OpVT.bitsGT(InVal.getValueType()) ? 12492 DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) : 12493 DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal); 12494 Ops[Elt] = InVal; 12495 } 12496 12497 // Return the new vector 12498 return DAG.getBuildVector(VT, DL, Ops); 12499 } 12500 12501 SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad( 12502 SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) { 12503 assert(!OriginalLoad->isVolatile()); 12504 12505 EVT ResultVT = EVE->getValueType(0); 12506 EVT VecEltVT = InVecVT.getVectorElementType(); 12507 unsigned Align = OriginalLoad->getAlignment(); 12508 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 12509 VecEltVT.getTypeForEVT(*DAG.getContext())); 12510 12511 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) 12512 return SDValue(); 12513 12514 Align = NewAlign; 12515 12516 SDValue NewPtr = OriginalLoad->getBasePtr(); 12517 SDValue Offset; 12518 EVT PtrType = NewPtr.getValueType(); 12519 MachinePointerInfo MPI; 12520 SDLoc DL(EVE); 12521 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { 12522 int Elt = ConstEltNo->getZExtValue(); 12523 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; 12524 Offset = DAG.getConstant(PtrOff, DL, PtrType); 12525 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); 12526 } else { 12527 Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); 12528 Offset = DAG.getNode( 12529 ISD::MUL, DL, PtrType, Offset, 12530 DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); 12531 MPI = OriginalLoad->getPointerInfo(); 12532 } 12533 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset); 12534 12535 // The replacement we need to do here is a little tricky: we need to 12536 // replace an extractelement of a load with a load. 12537 // Use ReplaceAllUsesOfValuesWith to do the replacement. 12538 // Note that this replacement assumes that the extractvalue is the only 12539 // use of the load; that's okay because we don't want to perform this 12540 // transformation in other cases anyway. 12541 SDValue Load; 12542 SDValue Chain; 12543 if (ResultVT.bitsGT(VecEltVT)) { 12544 // If the result type of vextract is wider than the load, then issue an 12545 // extending load instead. 12546 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, 12547 VecEltVT) 12548 ? ISD::ZEXTLOAD 12549 : ISD::EXTLOAD; 12550 Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT, 12551 OriginalLoad->getChain(), NewPtr, MPI, VecEltVT, 12552 Align, OriginalLoad->getMemOperand()->getFlags(), 12553 OriginalLoad->getAAInfo()); 12554 Chain = Load.getValue(1); 12555 } else { 12556 Load = DAG.getLoad(VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, 12557 MPI, Align, OriginalLoad->getMemOperand()->getFlags(), 12558 OriginalLoad->getAAInfo()); 12559 Chain = Load.getValue(1); 12560 if (ResultVT.bitsLT(VecEltVT)) 12561 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); 12562 else 12563 Load = DAG.getBitcast(ResultVT, Load); 12564 } 12565 WorklistRemover DeadNodes(*this); 12566 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; 12567 SDValue To[] = { Load, Chain }; 12568 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 12569 // Since we're explicitly calling ReplaceAllUses, add the new node to the 12570 // worklist explicitly as well. 12571 AddToWorklist(Load.getNode()); 12572 AddUsersToWorklist(Load.getNode()); // Add users too 12573 // Make sure to revisit this node to clean it up; it will usually be dead. 12574 AddToWorklist(EVE); 12575 ++OpsNarrowed; 12576 return SDValue(EVE, 0); 12577 } 12578 12579 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { 12580 // (vextract (scalar_to_vector val, 0) -> val 12581 SDValue InVec = N->getOperand(0); 12582 EVT VT = InVec.getValueType(); 12583 EVT NVT = N->getValueType(0); 12584 12585 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { 12586 // Check if the result type doesn't match the inserted element type. A 12587 // SCALAR_TO_VECTOR may truncate the inserted element and the 12588 // EXTRACT_VECTOR_ELT may widen the extracted vector. 12589 SDValue InOp = InVec.getOperand(0); 12590 if (InOp.getValueType() != NVT) { 12591 assert(InOp.getValueType().isInteger() && NVT.isInteger()); 12592 return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT); 12593 } 12594 return InOp; 12595 } 12596 12597 SDValue EltNo = N->getOperand(1); 12598 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 12599 12600 // extract_vector_elt (build_vector x, y), 1 -> y 12601 if (ConstEltNo && 12602 InVec.getOpcode() == ISD::BUILD_VECTOR && 12603 TLI.isTypeLegal(VT) && 12604 (InVec.hasOneUse() || 12605 TLI.aggressivelyPreferBuildVectorSources(VT))) { 12606 SDValue Elt = InVec.getOperand(ConstEltNo->getZExtValue()); 12607 EVT InEltVT = Elt.getValueType(); 12608 12609 // Sometimes build_vector's scalar input types do not match result type. 12610 if (NVT == InEltVT) 12611 return Elt; 12612 12613 // TODO: It may be useful to truncate if free if the build_vector implicitly 12614 // converts. 12615 } 12616 12617 // extract_vector_elt (v2i32 (bitcast i64:x)), 0 -> i32 (trunc i64:x) 12618 if (ConstEltNo && InVec.getOpcode() == ISD::BITCAST && InVec.hasOneUse() && 12619 ConstEltNo->isNullValue() && VT.isInteger()) { 12620 SDValue BCSrc = InVec.getOperand(0); 12621 if (BCSrc.getValueType().isScalarInteger()) 12622 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, BCSrc); 12623 } 12624 12625 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val 12626 // 12627 // This only really matters if the index is non-constant since other combines 12628 // on the constant elements already work. 12629 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && 12630 EltNo == InVec.getOperand(2)) { 12631 SDValue Elt = InVec.getOperand(1); 12632 return VT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, SDLoc(N), NVT) : Elt; 12633 } 12634 12635 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. 12636 // We only perform this optimization before the op legalization phase because 12637 // we may introduce new vector instructions which are not backed by TD 12638 // patterns. For example on AVX, extracting elements from a wide vector 12639 // without using extract_subvector. However, if we can find an underlying 12640 // scalar value, then we can always use that. 12641 if (ConstEltNo && InVec.getOpcode() == ISD::VECTOR_SHUFFLE) { 12642 int NumElem = VT.getVectorNumElements(); 12643 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec); 12644 // Find the new index to extract from. 12645 int OrigElt = SVOp->getMaskElt(ConstEltNo->getZExtValue()); 12646 12647 // Extracting an undef index is undef. 12648 if (OrigElt == -1) 12649 return DAG.getUNDEF(NVT); 12650 12651 // Select the right vector half to extract from. 12652 SDValue SVInVec; 12653 if (OrigElt < NumElem) { 12654 SVInVec = InVec->getOperand(0); 12655 } else { 12656 SVInVec = InVec->getOperand(1); 12657 OrigElt -= NumElem; 12658 } 12659 12660 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { 12661 SDValue InOp = SVInVec.getOperand(OrigElt); 12662 if (InOp.getValueType() != NVT) { 12663 assert(InOp.getValueType().isInteger() && NVT.isInteger()); 12664 InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT); 12665 } 12666 12667 return InOp; 12668 } 12669 12670 // FIXME: We should handle recursing on other vector shuffles and 12671 // scalar_to_vector here as well. 12672 12673 if (!LegalOperations) { 12674 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 12675 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT, SVInVec, 12676 DAG.getConstant(OrigElt, SDLoc(SVOp), IndexTy)); 12677 } 12678 } 12679 12680 bool BCNumEltsChanged = false; 12681 EVT ExtVT = VT.getVectorElementType(); 12682 EVT LVT = ExtVT; 12683 12684 // If the result of load has to be truncated, then it's not necessarily 12685 // profitable. 12686 if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT)) 12687 return SDValue(); 12688 12689 if (InVec.getOpcode() == ISD::BITCAST) { 12690 // Don't duplicate a load with other uses. 12691 if (!InVec.hasOneUse()) 12692 return SDValue(); 12693 12694 EVT BCVT = InVec.getOperand(0).getValueType(); 12695 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) 12696 return SDValue(); 12697 if (VT.getVectorNumElements() != BCVT.getVectorNumElements()) 12698 BCNumEltsChanged = true; 12699 InVec = InVec.getOperand(0); 12700 ExtVT = BCVT.getVectorElementType(); 12701 } 12702 12703 // (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size) 12704 if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() && 12705 ISD::isNormalLoad(InVec.getNode()) && 12706 !N->getOperand(1)->hasPredecessor(InVec.getNode())) { 12707 SDValue Index = N->getOperand(1); 12708 if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec)) { 12709 if (!OrigLoad->isVolatile()) { 12710 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index, 12711 OrigLoad); 12712 } 12713 } 12714 } 12715 12716 // Perform only after legalization to ensure build_vector / vector_shuffle 12717 // optimizations have already been done. 12718 if (!LegalOperations) return SDValue(); 12719 12720 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) 12721 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) 12722 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) 12723 12724 if (ConstEltNo) { 12725 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 12726 12727 LoadSDNode *LN0 = nullptr; 12728 const ShuffleVectorSDNode *SVN = nullptr; 12729 if (ISD::isNormalLoad(InVec.getNode())) { 12730 LN0 = cast<LoadSDNode>(InVec); 12731 } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR && 12732 InVec.getOperand(0).getValueType() == ExtVT && 12733 ISD::isNormalLoad(InVec.getOperand(0).getNode())) { 12734 // Don't duplicate a load with other uses. 12735 if (!InVec.hasOneUse()) 12736 return SDValue(); 12737 12738 LN0 = cast<LoadSDNode>(InVec.getOperand(0)); 12739 } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) { 12740 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) 12741 // => 12742 // (load $addr+1*size) 12743 12744 // Don't duplicate a load with other uses. 12745 if (!InVec.hasOneUse()) 12746 return SDValue(); 12747 12748 // If the bit convert changed the number of elements, it is unsafe 12749 // to examine the mask. 12750 if (BCNumEltsChanged) 12751 return SDValue(); 12752 12753 // Select the input vector, guarding against out of range extract vector. 12754 unsigned NumElems = VT.getVectorNumElements(); 12755 int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt); 12756 InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); 12757 12758 if (InVec.getOpcode() == ISD::BITCAST) { 12759 // Don't duplicate a load with other uses. 12760 if (!InVec.hasOneUse()) 12761 return SDValue(); 12762 12763 InVec = InVec.getOperand(0); 12764 } 12765 if (ISD::isNormalLoad(InVec.getNode())) { 12766 LN0 = cast<LoadSDNode>(InVec); 12767 Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems; 12768 EltNo = DAG.getConstant(Elt, SDLoc(EltNo), EltNo.getValueType()); 12769 } 12770 } 12771 12772 // Make sure we found a non-volatile load and the extractelement is 12773 // the only use. 12774 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile()) 12775 return SDValue(); 12776 12777 // If Idx was -1 above, Elt is going to be -1, so just return undef. 12778 if (Elt == -1) 12779 return DAG.getUNDEF(LVT); 12780 12781 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0); 12782 } 12783 12784 return SDValue(); 12785 } 12786 12787 // Simplify (build_vec (ext )) to (bitcast (build_vec )) 12788 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { 12789 // We perform this optimization post type-legalization because 12790 // the type-legalizer often scalarizes integer-promoted vectors. 12791 // Performing this optimization before may create bit-casts which 12792 // will be type-legalized to complex code sequences. 12793 // We perform this optimization only before the operation legalizer because we 12794 // may introduce illegal operations. 12795 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) 12796 return SDValue(); 12797 12798 unsigned NumInScalars = N->getNumOperands(); 12799 SDLoc DL(N); 12800 EVT VT = N->getValueType(0); 12801 12802 // Check to see if this is a BUILD_VECTOR of a bunch of values 12803 // which come from any_extend or zero_extend nodes. If so, we can create 12804 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR 12805 // optimizations. We do not handle sign-extend because we can't fill the sign 12806 // using shuffles. 12807 EVT SourceType = MVT::Other; 12808 bool AllAnyExt = true; 12809 12810 for (unsigned i = 0; i != NumInScalars; ++i) { 12811 SDValue In = N->getOperand(i); 12812 // Ignore undef inputs. 12813 if (In.isUndef()) continue; 12814 12815 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; 12816 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; 12817 12818 // Abort if the element is not an extension. 12819 if (!ZeroExt && !AnyExt) { 12820 SourceType = MVT::Other; 12821 break; 12822 } 12823 12824 // The input is a ZeroExt or AnyExt. Check the original type. 12825 EVT InTy = In.getOperand(0).getValueType(); 12826 12827 // Check that all of the widened source types are the same. 12828 if (SourceType == MVT::Other) 12829 // First time. 12830 SourceType = InTy; 12831 else if (InTy != SourceType) { 12832 // Multiple income types. Abort. 12833 SourceType = MVT::Other; 12834 break; 12835 } 12836 12837 // Check if all of the extends are ANY_EXTENDs. 12838 AllAnyExt &= AnyExt; 12839 } 12840 12841 // In order to have valid types, all of the inputs must be extended from the 12842 // same source type and all of the inputs must be any or zero extend. 12843 // Scalar sizes must be a power of two. 12844 EVT OutScalarTy = VT.getScalarType(); 12845 bool ValidTypes = SourceType != MVT::Other && 12846 isPowerOf2_32(OutScalarTy.getSizeInBits()) && 12847 isPowerOf2_32(SourceType.getSizeInBits()); 12848 12849 // Create a new simpler BUILD_VECTOR sequence which other optimizations can 12850 // turn into a single shuffle instruction. 12851 if (!ValidTypes) 12852 return SDValue(); 12853 12854 bool isLE = DAG.getDataLayout().isLittleEndian(); 12855 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); 12856 assert(ElemRatio > 1 && "Invalid element size ratio"); 12857 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): 12858 DAG.getConstant(0, DL, SourceType); 12859 12860 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); 12861 SmallVector<SDValue, 8> Ops(NewBVElems, Filler); 12862 12863 // Populate the new build_vector 12864 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 12865 SDValue Cast = N->getOperand(i); 12866 assert((Cast.getOpcode() == ISD::ANY_EXTEND || 12867 Cast.getOpcode() == ISD::ZERO_EXTEND || 12868 Cast.isUndef()) && "Invalid cast opcode"); 12869 SDValue In; 12870 if (Cast.isUndef()) 12871 In = DAG.getUNDEF(SourceType); 12872 else 12873 In = Cast->getOperand(0); 12874 unsigned Index = isLE ? (i * ElemRatio) : 12875 (i * ElemRatio + (ElemRatio - 1)); 12876 12877 assert(Index < Ops.size() && "Invalid index"); 12878 Ops[Index] = In; 12879 } 12880 12881 // The type of the new BUILD_VECTOR node. 12882 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); 12883 assert(VecVT.getSizeInBits() == VT.getSizeInBits() && 12884 "Invalid vector size"); 12885 // Check if the new vector type is legal. 12886 if (!isTypeLegal(VecVT)) return SDValue(); 12887 12888 // Make the new BUILD_VECTOR. 12889 SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); 12890 12891 // The new BUILD_VECTOR node has the potential to be further optimized. 12892 AddToWorklist(BV.getNode()); 12893 // Bitcast to the desired type. 12894 return DAG.getBitcast(VT, BV); 12895 } 12896 12897 SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) { 12898 EVT VT = N->getValueType(0); 12899 12900 unsigned NumInScalars = N->getNumOperands(); 12901 SDLoc DL(N); 12902 12903 EVT SrcVT = MVT::Other; 12904 unsigned Opcode = ISD::DELETED_NODE; 12905 unsigned NumDefs = 0; 12906 12907 for (unsigned i = 0; i != NumInScalars; ++i) { 12908 SDValue In = N->getOperand(i); 12909 unsigned Opc = In.getOpcode(); 12910 12911 if (Opc == ISD::UNDEF) 12912 continue; 12913 12914 // If all scalar values are floats and converted from integers. 12915 if (Opcode == ISD::DELETED_NODE && 12916 (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) { 12917 Opcode = Opc; 12918 } 12919 12920 if (Opc != Opcode) 12921 return SDValue(); 12922 12923 EVT InVT = In.getOperand(0).getValueType(); 12924 12925 // If all scalar values are typed differently, bail out. It's chosen to 12926 // simplify BUILD_VECTOR of integer types. 12927 if (SrcVT == MVT::Other) 12928 SrcVT = InVT; 12929 if (SrcVT != InVT) 12930 return SDValue(); 12931 NumDefs++; 12932 } 12933 12934 // If the vector has just one element defined, it's not worth to fold it into 12935 // a vectorized one. 12936 if (NumDefs < 2) 12937 return SDValue(); 12938 12939 assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP) 12940 && "Should only handle conversion from integer to float."); 12941 assert(SrcVT != MVT::Other && "Cannot determine source type!"); 12942 12943 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars); 12944 12945 if (!TLI.isOperationLegalOrCustom(Opcode, NVT)) 12946 return SDValue(); 12947 12948 // Just because the floating-point vector type is legal does not necessarily 12949 // mean that the corresponding integer vector type is. 12950 if (!isTypeLegal(NVT)) 12951 return SDValue(); 12952 12953 SmallVector<SDValue, 8> Opnds; 12954 for (unsigned i = 0; i != NumInScalars; ++i) { 12955 SDValue In = N->getOperand(i); 12956 12957 if (In.isUndef()) 12958 Opnds.push_back(DAG.getUNDEF(SrcVT)); 12959 else 12960 Opnds.push_back(In.getOperand(0)); 12961 } 12962 SDValue BV = DAG.getBuildVector(NVT, DL, Opnds); 12963 AddToWorklist(BV.getNode()); 12964 12965 return DAG.getNode(Opcode, DL, VT, BV); 12966 } 12967 12968 SDValue DAGCombiner::createBuildVecShuffle(SDLoc DL, SDNode *N, 12969 ArrayRef<int> VectorMask, 12970 SDValue VecIn1, SDValue VecIn2, 12971 unsigned LeftIdx) { 12972 MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 12973 SDValue ZeroIdx = DAG.getConstant(0, DL, IdxTy); 12974 12975 EVT VT = N->getValueType(0); 12976 EVT InVT1 = VecIn1.getValueType(); 12977 EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; 12978 12979 unsigned Vec2Offset = InVT1.getVectorNumElements(); 12980 unsigned NumElems = VT.getVectorNumElements(); 12981 unsigned ShuffleNumElems = NumElems; 12982 12983 // We can't generate a shuffle node with mismatched input and output types. 12984 // Try to make the types match the type of the output. 12985 if (InVT1 != VT || InVT2 != VT) { 12986 if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) { 12987 // If the output vector length is a multiple of both input lengths, 12988 // we can concatenate them and pad the rest with undefs. 12989 unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits(); 12990 assert(NumConcats >= 2 && "Concat needs at least two inputs!"); 12991 SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); 12992 ConcatOps[0] = VecIn1; 12993 ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); 12994 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 12995 VecIn2 = SDValue(); 12996 } else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) { 12997 if (!TLI.isExtractSubvectorCheap(VT, NumElems)) 12998 return SDValue(); 12999 13000 if (!VecIn2.getNode()) { 13001 // If we only have one input vector, and it's twice the size of the 13002 // output, split it in two. 13003 VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, 13004 DAG.getConstant(NumElems, DL, IdxTy)); 13005 VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); 13006 // Since we now have shorter input vectors, adjust the offset of the 13007 // second vector's start. 13008 Vec2Offset = NumElems; 13009 } else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) { 13010 // VecIn1 is wider than the output, and we have another, possibly 13011 // smaller input. Pad the smaller input with undefs, shuffle at the 13012 // input vector width, and extract the output. 13013 // The shuffle type is different than VT, so check legality again. 13014 if (LegalOperations && 13015 !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) 13016 return SDValue(); 13017 13018 if (InVT1 != InVT2) 13019 VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, 13020 DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); 13021 ShuffleNumElems = NumElems * 2; 13022 } else { 13023 // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider 13024 // than VecIn1. We can't handle this for now - this case will disappear 13025 // when we start sorting the vectors by type. 13026 return SDValue(); 13027 } 13028 } else { 13029 // TODO: Support cases where the length mismatch isn't exactly by a 13030 // factor of 2. 13031 // TODO: Move this check upwards, so that if we have bad type 13032 // mismatches, we don't create any DAG nodes. 13033 return SDValue(); 13034 } 13035 } 13036 13037 // Initialize mask to undef. 13038 SmallVector<int, 8> Mask(ShuffleNumElems, -1); 13039 13040 // Only need to run up to the number of elements actually used, not the 13041 // total number of elements in the shuffle - if we are shuffling a wider 13042 // vector, the high lanes should be set to undef. 13043 for (unsigned i = 0; i != NumElems; ++i) { 13044 if (VectorMask[i] <= 0) 13045 continue; 13046 13047 SDValue Extract = N->getOperand(i); 13048 unsigned ExtIndex = 13049 cast<ConstantSDNode>(Extract.getOperand(1))->getZExtValue(); 13050 13051 if (VectorMask[i] == (int)LeftIdx) { 13052 Mask[i] = ExtIndex; 13053 } else if (VectorMask[i] == (int)LeftIdx + 1) { 13054 Mask[i] = Vec2Offset + ExtIndex; 13055 } 13056 } 13057 13058 // The type the input vectors may have changed above. 13059 InVT1 = VecIn1.getValueType(); 13060 13061 // If we already have a VecIn2, it should have the same type as VecIn1. 13062 // If we don't, get an undef/zero vector of the appropriate type. 13063 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); 13064 assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); 13065 13066 SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); 13067 if (ShuffleNumElems > NumElems) 13068 Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); 13069 13070 return Shuffle; 13071 } 13072 13073 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT 13074 // operations. If the types of the vectors we're extracting from allow it, 13075 // turn this into a vector_shuffle node. 13076 SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { 13077 SDLoc DL(N); 13078 EVT VT = N->getValueType(0); 13079 13080 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. 13081 if (!isTypeLegal(VT)) 13082 return SDValue(); 13083 13084 // May only combine to shuffle after legalize if shuffle is legal. 13085 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) 13086 return SDValue(); 13087 13088 bool UsesZeroVector = false; 13089 unsigned NumElems = N->getNumOperands(); 13090 13091 // Record, for each element of the newly built vector, which input vector 13092 // that element comes from. -1 stands for undef, 0 for the zero vector, 13093 // and positive values for the input vectors. 13094 // VectorMask maps each element to its vector number, and VecIn maps vector 13095 // numbers to their initial SDValues. 13096 13097 SmallVector<int, 8> VectorMask(NumElems, -1); 13098 SmallVector<SDValue, 8> VecIn; 13099 VecIn.push_back(SDValue()); 13100 13101 for (unsigned i = 0; i != NumElems; ++i) { 13102 SDValue Op = N->getOperand(i); 13103 13104 if (Op.isUndef()) 13105 continue; 13106 13107 // See if we can use a blend with a zero vector. 13108 // TODO: Should we generalize this to a blend with an arbitrary constant 13109 // vector? 13110 if (isNullConstant(Op) || isNullFPConstant(Op)) { 13111 UsesZeroVector = true; 13112 VectorMask[i] = 0; 13113 continue; 13114 } 13115 13116 // Not an undef or zero. If the input is something other than an 13117 // EXTRACT_VECTOR_ELT with a constant index, bail out. 13118 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13119 !isa<ConstantSDNode>(Op.getOperand(1))) 13120 return SDValue(); 13121 13122 SDValue ExtractedFromVec = Op.getOperand(0); 13123 13124 // All inputs must have the same element type as the output. 13125 if (VT.getVectorElementType() != 13126 ExtractedFromVec.getValueType().getVectorElementType()) 13127 return SDValue(); 13128 13129 // Have we seen this input vector before? 13130 // The vectors are expected to be tiny (usually 1 or 2 elements), so using 13131 // a map back from SDValues to numbers isn't worth it. 13132 unsigned Idx = std::distance( 13133 VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec)); 13134 if (Idx == VecIn.size()) 13135 VecIn.push_back(ExtractedFromVec); 13136 13137 VectorMask[i] = Idx; 13138 } 13139 13140 // If we didn't find at least one input vector, bail out. 13141 if (VecIn.size() < 2) 13142 return SDValue(); 13143 13144 // TODO: We want to sort the vectors by descending length, so that adjacent 13145 // pairs have similar length, and the longer vector is always first in the 13146 // pair. 13147 13148 // TODO: Should this fire if some of the input vectors has illegal type (like 13149 // it does now), or should we let legalization run its course first? 13150 13151 // Shuffle phase: 13152 // Take pairs of vectors, and shuffle them so that the result has elements 13153 // from these vectors in the correct places. 13154 // For example, given: 13155 // t10: i32 = extract_vector_elt t1, Constant:i64<0> 13156 // t11: i32 = extract_vector_elt t2, Constant:i64<0> 13157 // t12: i32 = extract_vector_elt t3, Constant:i64<0> 13158 // t13: i32 = extract_vector_elt t1, Constant:i64<1> 13159 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 13160 // We will generate: 13161 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 13162 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef 13163 SmallVector<SDValue, 4> Shuffles; 13164 for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { 13165 unsigned LeftIdx = 2 * In + 1; 13166 SDValue VecLeft = VecIn[LeftIdx]; 13167 SDValue VecRight = 13168 (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); 13169 13170 if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, 13171 VecRight, LeftIdx)) 13172 Shuffles.push_back(Shuffle); 13173 else 13174 return SDValue(); 13175 } 13176 13177 // If we need the zero vector as an "ingredient" in the blend tree, add it 13178 // to the list of shuffles. 13179 if (UsesZeroVector) 13180 Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) 13181 : DAG.getConstantFP(0.0, DL, VT)); 13182 13183 // If we only have one shuffle, we're done. 13184 if (Shuffles.size() == 1) 13185 return Shuffles[0]; 13186 13187 // Update the vector mask to point to the post-shuffle vectors. 13188 for (int &Vec : VectorMask) 13189 if (Vec == 0) 13190 Vec = Shuffles.size() - 1; 13191 else 13192 Vec = (Vec - 1) / 2; 13193 13194 // More than one shuffle. Generate a binary tree of blends, e.g. if from 13195 // the previous step we got the set of shuffles t10, t11, t12, t13, we will 13196 // generate: 13197 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 13198 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 13199 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 13200 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 13201 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 13202 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 13203 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 13204 13205 // Make sure the initial size of the shuffle list is even. 13206 if (Shuffles.size() % 2) 13207 Shuffles.push_back(DAG.getUNDEF(VT)); 13208 13209 for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { 13210 if (CurSize % 2) { 13211 Shuffles[CurSize] = DAG.getUNDEF(VT); 13212 CurSize++; 13213 } 13214 for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { 13215 int Left = 2 * In; 13216 int Right = 2 * In + 1; 13217 SmallVector<int, 8> Mask(NumElems, -1); 13218 for (unsigned i = 0; i != NumElems; ++i) { 13219 if (VectorMask[i] == Left) { 13220 Mask[i] = i; 13221 VectorMask[i] = In; 13222 } else if (VectorMask[i] == Right) { 13223 Mask[i] = i + NumElems; 13224 VectorMask[i] = In; 13225 } 13226 } 13227 13228 Shuffles[In] = 13229 DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask); 13230 } 13231 } 13232 13233 return Shuffles[0]; 13234 } 13235 13236 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { 13237 EVT VT = N->getValueType(0); 13238 13239 // A vector built entirely of undefs is undef. 13240 if (ISD::allOperandsUndef(N)) 13241 return DAG.getUNDEF(VT); 13242 13243 if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) 13244 return V; 13245 13246 if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N)) 13247 return V; 13248 13249 if (SDValue V = reduceBuildVecToShuffle(N)) 13250 return V; 13251 13252 return SDValue(); 13253 } 13254 13255 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { 13256 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 13257 EVT OpVT = N->getOperand(0).getValueType(); 13258 13259 // If the operands are legal vectors, leave them alone. 13260 if (TLI.isTypeLegal(OpVT)) 13261 return SDValue(); 13262 13263 SDLoc DL(N); 13264 EVT VT = N->getValueType(0); 13265 SmallVector<SDValue, 8> Ops; 13266 13267 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); 13268 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 13269 13270 // Keep track of what we encounter. 13271 bool AnyInteger = false; 13272 bool AnyFP = false; 13273 for (const SDValue &Op : N->ops()) { 13274 if (ISD::BITCAST == Op.getOpcode() && 13275 !Op.getOperand(0).getValueType().isVector()) 13276 Ops.push_back(Op.getOperand(0)); 13277 else if (ISD::UNDEF == Op.getOpcode()) 13278 Ops.push_back(ScalarUndef); 13279 else 13280 return SDValue(); 13281 13282 // Note whether we encounter an integer or floating point scalar. 13283 // If it's neither, bail out, it could be something weird like x86mmx. 13284 EVT LastOpVT = Ops.back().getValueType(); 13285 if (LastOpVT.isFloatingPoint()) 13286 AnyFP = true; 13287 else if (LastOpVT.isInteger()) 13288 AnyInteger = true; 13289 else 13290 return SDValue(); 13291 } 13292 13293 // If any of the operands is a floating point scalar bitcast to a vector, 13294 // use floating point types throughout, and bitcast everything. 13295 // Replace UNDEFs by another scalar UNDEF node, of the final desired type. 13296 if (AnyFP) { 13297 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); 13298 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 13299 if (AnyInteger) { 13300 for (SDValue &Op : Ops) { 13301 if (Op.getValueType() == SVT) 13302 continue; 13303 if (Op.isUndef()) 13304 Op = ScalarUndef; 13305 else 13306 Op = DAG.getBitcast(SVT, Op); 13307 } 13308 } 13309 } 13310 13311 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, 13312 VT.getSizeInBits() / SVT.getSizeInBits()); 13313 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); 13314 } 13315 13316 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR 13317 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at 13318 // most two distinct vectors the same size as the result, attempt to turn this 13319 // into a legal shuffle. 13320 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { 13321 EVT VT = N->getValueType(0); 13322 EVT OpVT = N->getOperand(0).getValueType(); 13323 int NumElts = VT.getVectorNumElements(); 13324 int NumOpElts = OpVT.getVectorNumElements(); 13325 13326 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); 13327 SmallVector<int, 8> Mask; 13328 13329 for (SDValue Op : N->ops()) { 13330 // Peek through any bitcast. 13331 while (Op.getOpcode() == ISD::BITCAST) 13332 Op = Op.getOperand(0); 13333 13334 // UNDEF nodes convert to UNDEF shuffle mask values. 13335 if (Op.isUndef()) { 13336 Mask.append((unsigned)NumOpElts, -1); 13337 continue; 13338 } 13339 13340 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 13341 return SDValue(); 13342 13343 // What vector are we extracting the subvector from and at what index? 13344 SDValue ExtVec = Op.getOperand(0); 13345 13346 // We want the EVT of the original extraction to correctly scale the 13347 // extraction index. 13348 EVT ExtVT = ExtVec.getValueType(); 13349 13350 // Peek through any bitcast. 13351 while (ExtVec.getOpcode() == ISD::BITCAST) 13352 ExtVec = ExtVec.getOperand(0); 13353 13354 // UNDEF nodes convert to UNDEF shuffle mask values. 13355 if (ExtVec.isUndef()) { 13356 Mask.append((unsigned)NumOpElts, -1); 13357 continue; 13358 } 13359 13360 if (!isa<ConstantSDNode>(Op.getOperand(1))) 13361 return SDValue(); 13362 int ExtIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 13363 13364 // Ensure that we are extracting a subvector from a vector the same 13365 // size as the result. 13366 if (ExtVT.getSizeInBits() != VT.getSizeInBits()) 13367 return SDValue(); 13368 13369 // Scale the subvector index to account for any bitcast. 13370 int NumExtElts = ExtVT.getVectorNumElements(); 13371 if (0 == (NumExtElts % NumElts)) 13372 ExtIdx /= (NumExtElts / NumElts); 13373 else if (0 == (NumElts % NumExtElts)) 13374 ExtIdx *= (NumElts / NumExtElts); 13375 else 13376 return SDValue(); 13377 13378 // At most we can reference 2 inputs in the final shuffle. 13379 if (SV0.isUndef() || SV0 == ExtVec) { 13380 SV0 = ExtVec; 13381 for (int i = 0; i != NumOpElts; ++i) 13382 Mask.push_back(i + ExtIdx); 13383 } else if (SV1.isUndef() || SV1 == ExtVec) { 13384 SV1 = ExtVec; 13385 for (int i = 0; i != NumOpElts; ++i) 13386 Mask.push_back(i + ExtIdx + NumElts); 13387 } else { 13388 return SDValue(); 13389 } 13390 } 13391 13392 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT)) 13393 return SDValue(); 13394 13395 return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), 13396 DAG.getBitcast(VT, SV1), Mask); 13397 } 13398 13399 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { 13400 // If we only have one input vector, we don't need to do any concatenation. 13401 if (N->getNumOperands() == 1) 13402 return N->getOperand(0); 13403 13404 // Check if all of the operands are undefs. 13405 EVT VT = N->getValueType(0); 13406 if (ISD::allOperandsUndef(N)) 13407 return DAG.getUNDEF(VT); 13408 13409 // Optimize concat_vectors where all but the first of the vectors are undef. 13410 if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) { 13411 return Op.isUndef(); 13412 })) { 13413 SDValue In = N->getOperand(0); 13414 assert(In.getValueType().isVector() && "Must concat vectors"); 13415 13416 // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr). 13417 if (In->getOpcode() == ISD::BITCAST && 13418 !In->getOperand(0)->getValueType(0).isVector()) { 13419 SDValue Scalar = In->getOperand(0); 13420 13421 // If the bitcast type isn't legal, it might be a trunc of a legal type; 13422 // look through the trunc so we can still do the transform: 13423 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) 13424 if (Scalar->getOpcode() == ISD::TRUNCATE && 13425 !TLI.isTypeLegal(Scalar.getValueType()) && 13426 TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) 13427 Scalar = Scalar->getOperand(0); 13428 13429 EVT SclTy = Scalar->getValueType(0); 13430 13431 if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) 13432 return SDValue(); 13433 13434 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, 13435 VT.getSizeInBits() / SclTy.getSizeInBits()); 13436 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) 13437 return SDValue(); 13438 13439 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); 13440 return DAG.getBitcast(VT, Res); 13441 } 13442 } 13443 13444 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. 13445 // We have already tested above for an UNDEF only concatenation. 13446 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) 13447 // -> (BUILD_VECTOR A, B, ..., C, D, ...) 13448 auto IsBuildVectorOrUndef = [](const SDValue &Op) { 13449 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); 13450 }; 13451 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { 13452 SmallVector<SDValue, 8> Opnds; 13453 EVT SVT = VT.getScalarType(); 13454 13455 EVT MinVT = SVT; 13456 if (!SVT.isFloatingPoint()) { 13457 // If BUILD_VECTOR are from built from integer, they may have different 13458 // operand types. Get the smallest type and truncate all operands to it. 13459 bool FoundMinVT = false; 13460 for (const SDValue &Op : N->ops()) 13461 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 13462 EVT OpSVT = Op.getOperand(0)->getValueType(0); 13463 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; 13464 FoundMinVT = true; 13465 } 13466 assert(FoundMinVT && "Concat vector type mismatch"); 13467 } 13468 13469 for (const SDValue &Op : N->ops()) { 13470 EVT OpVT = Op.getValueType(); 13471 unsigned NumElts = OpVT.getVectorNumElements(); 13472 13473 if (ISD::UNDEF == Op.getOpcode()) 13474 Opnds.append(NumElts, DAG.getUNDEF(MinVT)); 13475 13476 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 13477 if (SVT.isFloatingPoint()) { 13478 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); 13479 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); 13480 } else { 13481 for (unsigned i = 0; i != NumElts; ++i) 13482 Opnds.push_back( 13483 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); 13484 } 13485 } 13486 } 13487 13488 assert(VT.getVectorNumElements() == Opnds.size() && 13489 "Concat vector type mismatch"); 13490 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 13491 } 13492 13493 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. 13494 if (SDValue V = combineConcatVectorOfScalars(N, DAG)) 13495 return V; 13496 13497 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. 13498 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) 13499 if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) 13500 return V; 13501 13502 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR 13503 // nodes often generate nop CONCAT_VECTOR nodes. 13504 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that 13505 // place the incoming vectors at the exact same location. 13506 SDValue SingleSource = SDValue(); 13507 unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements(); 13508 13509 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 13510 SDValue Op = N->getOperand(i); 13511 13512 if (Op.isUndef()) 13513 continue; 13514 13515 // Check if this is the identity extract: 13516 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 13517 return SDValue(); 13518 13519 // Find the single incoming vector for the extract_subvector. 13520 if (SingleSource.getNode()) { 13521 if (Op.getOperand(0) != SingleSource) 13522 return SDValue(); 13523 } else { 13524 SingleSource = Op.getOperand(0); 13525 13526 // Check the source type is the same as the type of the result. 13527 // If not, this concat may extend the vector, so we can not 13528 // optimize it away. 13529 if (SingleSource.getValueType() != N->getValueType(0)) 13530 return SDValue(); 13531 } 13532 13533 unsigned IdentityIndex = i * PartNumElem; 13534 ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 13535 // The extract index must be constant. 13536 if (!CS) 13537 return SDValue(); 13538 13539 // Check that we are reading from the identity index. 13540 if (CS->getZExtValue() != IdentityIndex) 13541 return SDValue(); 13542 } 13543 13544 if (SingleSource.getNode()) 13545 return SingleSource; 13546 13547 return SDValue(); 13548 } 13549 13550 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) { 13551 EVT NVT = N->getValueType(0); 13552 SDValue V = N->getOperand(0); 13553 13554 if (V->getOpcode() == ISD::CONCAT_VECTORS) { 13555 // Combine: 13556 // (extract_subvec (concat V1, V2, ...), i) 13557 // Into: 13558 // Vi if possible 13559 // Only operand 0 is checked as 'concat' assumes all inputs of the same 13560 // type. 13561 if (V->getOperand(0).getValueType() != NVT) 13562 return SDValue(); 13563 unsigned Idx = N->getConstantOperandVal(1); 13564 unsigned NumElems = NVT.getVectorNumElements(); 13565 assert((Idx % NumElems) == 0 && 13566 "IDX in concat is not a multiple of the result vector length."); 13567 return V->getOperand(Idx / NumElems); 13568 } 13569 13570 // Skip bitcasting 13571 if (V->getOpcode() == ISD::BITCAST) 13572 V = V.getOperand(0); 13573 13574 if (V->getOpcode() == ISD::INSERT_SUBVECTOR) { 13575 // Handle only simple case where vector being inserted and vector 13576 // being extracted are of same type, and are half size of larger vectors. 13577 EVT BigVT = V->getOperand(0).getValueType(); 13578 EVT SmallVT = V->getOperand(1).getValueType(); 13579 if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits()) 13580 return SDValue(); 13581 13582 // Only handle cases where both indexes are constants with the same type. 13583 ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 13584 ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2)); 13585 13586 if (InsIdx && ExtIdx && 13587 InsIdx->getValueType(0).getSizeInBits() <= 64 && 13588 ExtIdx->getValueType(0).getSizeInBits() <= 64) { 13589 // Combine: 13590 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) 13591 // Into: 13592 // indices are equal or bit offsets are equal => V1 13593 // otherwise => (extract_subvec V1, ExtIdx) 13594 if (InsIdx->getZExtValue() * SmallVT.getScalarSizeInBits() == 13595 ExtIdx->getZExtValue() * NVT.getScalarSizeInBits()) 13596 return DAG.getBitcast(NVT, V->getOperand(1)); 13597 return DAG.getNode( 13598 ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, 13599 DAG.getBitcast(N->getOperand(0).getValueType(), V->getOperand(0)), 13600 N->getOperand(1)); 13601 } 13602 } 13603 13604 return SDValue(); 13605 } 13606 13607 static SDValue simplifyShuffleOperandRecursively(SmallBitVector &UsedElements, 13608 SDValue V, SelectionDAG &DAG) { 13609 SDLoc DL(V); 13610 EVT VT = V.getValueType(); 13611 13612 switch (V.getOpcode()) { 13613 default: 13614 return V; 13615 13616 case ISD::CONCAT_VECTORS: { 13617 EVT OpVT = V->getOperand(0).getValueType(); 13618 int OpSize = OpVT.getVectorNumElements(); 13619 SmallBitVector OpUsedElements(OpSize, false); 13620 bool FoundSimplification = false; 13621 SmallVector<SDValue, 4> NewOps; 13622 NewOps.reserve(V->getNumOperands()); 13623 for (int i = 0, NumOps = V->getNumOperands(); i < NumOps; ++i) { 13624 SDValue Op = V->getOperand(i); 13625 bool OpUsed = false; 13626 for (int j = 0; j < OpSize; ++j) 13627 if (UsedElements[i * OpSize + j]) { 13628 OpUsedElements[j] = true; 13629 OpUsed = true; 13630 } 13631 NewOps.push_back( 13632 OpUsed ? simplifyShuffleOperandRecursively(OpUsedElements, Op, DAG) 13633 : DAG.getUNDEF(OpVT)); 13634 FoundSimplification |= Op == NewOps.back(); 13635 OpUsedElements.reset(); 13636 } 13637 if (FoundSimplification) 13638 V = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, NewOps); 13639 return V; 13640 } 13641 13642 case ISD::INSERT_SUBVECTOR: { 13643 SDValue BaseV = V->getOperand(0); 13644 SDValue SubV = V->getOperand(1); 13645 auto *IdxN = dyn_cast<ConstantSDNode>(V->getOperand(2)); 13646 if (!IdxN) 13647 return V; 13648 13649 int SubSize = SubV.getValueType().getVectorNumElements(); 13650 int Idx = IdxN->getZExtValue(); 13651 bool SubVectorUsed = false; 13652 SmallBitVector SubUsedElements(SubSize, false); 13653 for (int i = 0; i < SubSize; ++i) 13654 if (UsedElements[i + Idx]) { 13655 SubVectorUsed = true; 13656 SubUsedElements[i] = true; 13657 UsedElements[i + Idx] = false; 13658 } 13659 13660 // Now recurse on both the base and sub vectors. 13661 SDValue SimplifiedSubV = 13662 SubVectorUsed 13663 ? simplifyShuffleOperandRecursively(SubUsedElements, SubV, DAG) 13664 : DAG.getUNDEF(SubV.getValueType()); 13665 SDValue SimplifiedBaseV = simplifyShuffleOperandRecursively(UsedElements, BaseV, DAG); 13666 if (SimplifiedSubV != SubV || SimplifiedBaseV != BaseV) 13667 V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 13668 SimplifiedBaseV, SimplifiedSubV, V->getOperand(2)); 13669 return V; 13670 } 13671 } 13672 } 13673 13674 static SDValue simplifyShuffleOperands(ShuffleVectorSDNode *SVN, SDValue N0, 13675 SDValue N1, SelectionDAG &DAG) { 13676 EVT VT = SVN->getValueType(0); 13677 int NumElts = VT.getVectorNumElements(); 13678 SmallBitVector N0UsedElements(NumElts, false), N1UsedElements(NumElts, false); 13679 for (int M : SVN->getMask()) 13680 if (M >= 0 && M < NumElts) 13681 N0UsedElements[M] = true; 13682 else if (M >= NumElts) 13683 N1UsedElements[M - NumElts] = true; 13684 13685 SDValue S0 = simplifyShuffleOperandRecursively(N0UsedElements, N0, DAG); 13686 SDValue S1 = simplifyShuffleOperandRecursively(N1UsedElements, N1, DAG); 13687 if (S0 == N0 && S1 == N1) 13688 return SDValue(); 13689 13690 return DAG.getVectorShuffle(VT, SDLoc(SVN), S0, S1, SVN->getMask()); 13691 } 13692 13693 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, 13694 // or turn a shuffle of a single concat into simpler shuffle then concat. 13695 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { 13696 EVT VT = N->getValueType(0); 13697 unsigned NumElts = VT.getVectorNumElements(); 13698 13699 SDValue N0 = N->getOperand(0); 13700 SDValue N1 = N->getOperand(1); 13701 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 13702 13703 SmallVector<SDValue, 4> Ops; 13704 EVT ConcatVT = N0.getOperand(0).getValueType(); 13705 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); 13706 unsigned NumConcats = NumElts / NumElemsPerConcat; 13707 13708 // Special case: shuffle(concat(A,B)) can be more efficiently represented 13709 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high 13710 // half vector elements. 13711 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && 13712 std::all_of(SVN->getMask().begin() + NumElemsPerConcat, 13713 SVN->getMask().end(), [](int i) { return i == -1; })) { 13714 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1), 13715 makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat)); 13716 N1 = DAG.getUNDEF(ConcatVT); 13717 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); 13718 } 13719 13720 // Look at every vector that's inserted. We're looking for exact 13721 // subvector-sized copies from a concatenated vector 13722 for (unsigned I = 0; I != NumConcats; ++I) { 13723 // Make sure we're dealing with a copy. 13724 unsigned Begin = I * NumElemsPerConcat; 13725 bool AllUndef = true, NoUndef = true; 13726 for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) { 13727 if (SVN->getMaskElt(J) >= 0) 13728 AllUndef = false; 13729 else 13730 NoUndef = false; 13731 } 13732 13733 if (NoUndef) { 13734 if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0) 13735 return SDValue(); 13736 13737 for (unsigned J = 1; J != NumElemsPerConcat; ++J) 13738 if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J)) 13739 return SDValue(); 13740 13741 unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat; 13742 if (FirstElt < N0.getNumOperands()) 13743 Ops.push_back(N0.getOperand(FirstElt)); 13744 else 13745 Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands())); 13746 13747 } else if (AllUndef) { 13748 Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType())); 13749 } else { // Mixed with general masks and undefs, can't do optimization. 13750 return SDValue(); 13751 } 13752 } 13753 13754 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 13755 } 13756 13757 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { 13758 EVT VT = N->getValueType(0); 13759 unsigned NumElts = VT.getVectorNumElements(); 13760 13761 SDValue N0 = N->getOperand(0); 13762 SDValue N1 = N->getOperand(1); 13763 13764 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); 13765 13766 // Canonicalize shuffle undef, undef -> undef 13767 if (N0.isUndef() && N1.isUndef()) 13768 return DAG.getUNDEF(VT); 13769 13770 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 13771 13772 // Canonicalize shuffle v, v -> v, undef 13773 if (N0 == N1) { 13774 SmallVector<int, 8> NewMask; 13775 for (unsigned i = 0; i != NumElts; ++i) { 13776 int Idx = SVN->getMaskElt(i); 13777 if (Idx >= (int)NumElts) Idx -= NumElts; 13778 NewMask.push_back(Idx); 13779 } 13780 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask); 13781 } 13782 13783 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 13784 if (N0.isUndef()) 13785 return DAG.getCommutedVectorShuffle(*SVN); 13786 13787 // Remove references to rhs if it is undef 13788 if (N1.isUndef()) { 13789 bool Changed = false; 13790 SmallVector<int, 8> NewMask; 13791 for (unsigned i = 0; i != NumElts; ++i) { 13792 int Idx = SVN->getMaskElt(i); 13793 if (Idx >= (int)NumElts) { 13794 Idx = -1; 13795 Changed = true; 13796 } 13797 NewMask.push_back(Idx); 13798 } 13799 if (Changed) 13800 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); 13801 } 13802 13803 // If it is a splat, check if the argument vector is another splat or a 13804 // build_vector. 13805 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { 13806 SDNode *V = N0.getNode(); 13807 13808 // If this is a bit convert that changes the element type of the vector but 13809 // not the number of vector elements, look through it. Be careful not to 13810 // look though conversions that change things like v4f32 to v2f64. 13811 if (V->getOpcode() == ISD::BITCAST) { 13812 SDValue ConvInput = V->getOperand(0); 13813 if (ConvInput.getValueType().isVector() && 13814 ConvInput.getValueType().getVectorNumElements() == NumElts) 13815 V = ConvInput.getNode(); 13816 } 13817 13818 if (V->getOpcode() == ISD::BUILD_VECTOR) { 13819 assert(V->getNumOperands() == NumElts && 13820 "BUILD_VECTOR has wrong number of operands"); 13821 SDValue Base; 13822 bool AllSame = true; 13823 for (unsigned i = 0; i != NumElts; ++i) { 13824 if (!V->getOperand(i).isUndef()) { 13825 Base = V->getOperand(i); 13826 break; 13827 } 13828 } 13829 // Splat of <u, u, u, u>, return <u, u, u, u> 13830 if (!Base.getNode()) 13831 return N0; 13832 for (unsigned i = 0; i != NumElts; ++i) { 13833 if (V->getOperand(i) != Base) { 13834 AllSame = false; 13835 break; 13836 } 13837 } 13838 // Splat of <x, x, x, x>, return <x, x, x, x> 13839 if (AllSame) 13840 return N0; 13841 13842 // Canonicalize any other splat as a build_vector. 13843 const SDValue &Splatted = V->getOperand(SVN->getSplatIndex()); 13844 SmallVector<SDValue, 8> Ops(NumElts, Splatted); 13845 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); 13846 13847 // We may have jumped through bitcasts, so the type of the 13848 // BUILD_VECTOR may not match the type of the shuffle. 13849 if (V->getValueType(0) != VT) 13850 NewBV = DAG.getBitcast(VT, NewBV); 13851 return NewBV; 13852 } 13853 } 13854 13855 // There are various patterns used to build up a vector from smaller vectors, 13856 // subvectors, or elements. Scan chains of these and replace unused insertions 13857 // or components with undef. 13858 if (SDValue S = simplifyShuffleOperands(SVN, N0, N1, DAG)) 13859 return S; 13860 13861 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 13862 Level < AfterLegalizeVectorOps && 13863 (N1.isUndef() || 13864 (N1.getOpcode() == ISD::CONCAT_VECTORS && 13865 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { 13866 if (SDValue V = partitionShuffleOfConcats(N, DAG)) 13867 return V; 13868 } 13869 13870 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 13871 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 13872 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) { 13873 SmallVector<SDValue, 8> Ops; 13874 for (int M : SVN->getMask()) { 13875 SDValue Op = DAG.getUNDEF(VT.getScalarType()); 13876 if (M >= 0) { 13877 int Idx = M % NumElts; 13878 SDValue &S = (M < (int)NumElts ? N0 : N1); 13879 if (S.getOpcode() == ISD::BUILD_VECTOR && S.hasOneUse()) { 13880 Op = S.getOperand(Idx); 13881 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR && S.hasOneUse()) { 13882 if (Idx == 0) 13883 Op = S.getOperand(0); 13884 } else { 13885 // Operand can't be combined - bail out. 13886 break; 13887 } 13888 } 13889 Ops.push_back(Op); 13890 } 13891 if (Ops.size() == VT.getVectorNumElements()) { 13892 // BUILD_VECTOR requires all inputs to be of the same type, find the 13893 // maximum type and extend them all. 13894 EVT SVT = VT.getScalarType(); 13895 if (SVT.isInteger()) 13896 for (SDValue &Op : Ops) 13897 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 13898 if (SVT != VT.getScalarType()) 13899 for (SDValue &Op : Ops) 13900 Op = TLI.isZExtFree(Op.getValueType(), SVT) 13901 ? DAG.getZExtOrTrunc(Op, SDLoc(N), SVT) 13902 : DAG.getSExtOrTrunc(Op, SDLoc(N), SVT); 13903 return DAG.getBuildVector(VT, SDLoc(N), Ops); 13904 } 13905 } 13906 13907 // If this shuffle only has a single input that is a bitcasted shuffle, 13908 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output 13909 // back to their original types. 13910 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 13911 N1.isUndef() && Level < AfterLegalizeVectorOps && 13912 TLI.isTypeLegal(VT)) { 13913 13914 // Peek through the bitcast only if there is one user. 13915 SDValue BC0 = N0; 13916 while (BC0.getOpcode() == ISD::BITCAST) { 13917 if (!BC0.hasOneUse()) 13918 break; 13919 BC0 = BC0.getOperand(0); 13920 } 13921 13922 auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) { 13923 if (Scale == 1) 13924 return SmallVector<int, 8>(Mask.begin(), Mask.end()); 13925 13926 SmallVector<int, 8> NewMask; 13927 for (int M : Mask) 13928 for (int s = 0; s != Scale; ++s) 13929 NewMask.push_back(M < 0 ? -1 : Scale * M + s); 13930 return NewMask; 13931 }; 13932 13933 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { 13934 EVT SVT = VT.getScalarType(); 13935 EVT InnerVT = BC0->getValueType(0); 13936 EVT InnerSVT = InnerVT.getScalarType(); 13937 13938 // Determine which shuffle works with the smaller scalar type. 13939 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; 13940 EVT ScaleSVT = ScaleVT.getScalarType(); 13941 13942 if (TLI.isTypeLegal(ScaleVT) && 13943 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && 13944 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { 13945 13946 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 13947 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 13948 13949 // Scale the shuffle masks to the smaller scalar type. 13950 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); 13951 SmallVector<int, 8> InnerMask = 13952 ScaleShuffleMask(InnerSVN->getMask(), InnerScale); 13953 SmallVector<int, 8> OuterMask = 13954 ScaleShuffleMask(SVN->getMask(), OuterScale); 13955 13956 // Merge the shuffle masks. 13957 SmallVector<int, 8> NewMask; 13958 for (int M : OuterMask) 13959 NewMask.push_back(M < 0 ? -1 : InnerMask[M]); 13960 13961 // Test for shuffle mask legality over both commutations. 13962 SDValue SV0 = BC0->getOperand(0); 13963 SDValue SV1 = BC0->getOperand(1); 13964 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 13965 if (!LegalMask) { 13966 std::swap(SV0, SV1); 13967 ShuffleVectorSDNode::commuteMask(NewMask); 13968 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 13969 } 13970 13971 if (LegalMask) { 13972 SV0 = DAG.getBitcast(ScaleVT, SV0); 13973 SV1 = DAG.getBitcast(ScaleVT, SV1); 13974 return DAG.getBitcast( 13975 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); 13976 } 13977 } 13978 } 13979 } 13980 13981 // Canonicalize shuffles according to rules: 13982 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) 13983 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) 13984 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) 13985 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && 13986 N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && 13987 TLI.isTypeLegal(VT)) { 13988 // The incoming shuffle must be of the same type as the result of the 13989 // current shuffle. 13990 assert(N1->getOperand(0).getValueType() == VT && 13991 "Shuffle types don't match"); 13992 13993 SDValue SV0 = N1->getOperand(0); 13994 SDValue SV1 = N1->getOperand(1); 13995 bool HasSameOp0 = N0 == SV0; 13996 bool IsSV1Undef = SV1.isUndef(); 13997 if (HasSameOp0 || IsSV1Undef || N0 == SV1) 13998 // Commute the operands of this shuffle so that next rule 13999 // will trigger. 14000 return DAG.getCommutedVectorShuffle(*SVN); 14001 } 14002 14003 // Try to fold according to rules: 14004 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 14005 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 14006 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 14007 // Don't try to fold shuffles with illegal type. 14008 // Only fold if this shuffle is the only user of the other shuffle. 14009 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && 14010 Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { 14011 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); 14012 14013 // The incoming shuffle must be of the same type as the result of the 14014 // current shuffle. 14015 assert(OtherSV->getOperand(0).getValueType() == VT && 14016 "Shuffle types don't match"); 14017 14018 SDValue SV0, SV1; 14019 SmallVector<int, 4> Mask; 14020 // Compute the combined shuffle mask for a shuffle with SV0 as the first 14021 // operand, and SV1 as the second operand. 14022 for (unsigned i = 0; i != NumElts; ++i) { 14023 int Idx = SVN->getMaskElt(i); 14024 if (Idx < 0) { 14025 // Propagate Undef. 14026 Mask.push_back(Idx); 14027 continue; 14028 } 14029 14030 SDValue CurrentVec; 14031 if (Idx < (int)NumElts) { 14032 // This shuffle index refers to the inner shuffle N0. Lookup the inner 14033 // shuffle mask to identify which vector is actually referenced. 14034 Idx = OtherSV->getMaskElt(Idx); 14035 if (Idx < 0) { 14036 // Propagate Undef. 14037 Mask.push_back(Idx); 14038 continue; 14039 } 14040 14041 CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0) 14042 : OtherSV->getOperand(1); 14043 } else { 14044 // This shuffle index references an element within N1. 14045 CurrentVec = N1; 14046 } 14047 14048 // Simple case where 'CurrentVec' is UNDEF. 14049 if (CurrentVec.isUndef()) { 14050 Mask.push_back(-1); 14051 continue; 14052 } 14053 14054 // Canonicalize the shuffle index. We don't know yet if CurrentVec 14055 // will be the first or second operand of the combined shuffle. 14056 Idx = Idx % NumElts; 14057 if (!SV0.getNode() || SV0 == CurrentVec) { 14058 // Ok. CurrentVec is the left hand side. 14059 // Update the mask accordingly. 14060 SV0 = CurrentVec; 14061 Mask.push_back(Idx); 14062 continue; 14063 } 14064 14065 // Bail out if we cannot convert the shuffle pair into a single shuffle. 14066 if (SV1.getNode() && SV1 != CurrentVec) 14067 return SDValue(); 14068 14069 // Ok. CurrentVec is the right hand side. 14070 // Update the mask accordingly. 14071 SV1 = CurrentVec; 14072 Mask.push_back(Idx + NumElts); 14073 } 14074 14075 // Check if all indices in Mask are Undef. In case, propagate Undef. 14076 bool isUndefMask = true; 14077 for (unsigned i = 0; i != NumElts && isUndefMask; ++i) 14078 isUndefMask &= Mask[i] < 0; 14079 14080 if (isUndefMask) 14081 return DAG.getUNDEF(VT); 14082 14083 if (!SV0.getNode()) 14084 SV0 = DAG.getUNDEF(VT); 14085 if (!SV1.getNode()) 14086 SV1 = DAG.getUNDEF(VT); 14087 14088 // Avoid introducing shuffles with illegal mask. 14089 if (!TLI.isShuffleMaskLegal(Mask, VT)) { 14090 ShuffleVectorSDNode::commuteMask(Mask); 14091 14092 if (!TLI.isShuffleMaskLegal(Mask, VT)) 14093 return SDValue(); 14094 14095 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) 14096 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) 14097 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) 14098 std::swap(SV0, SV1); 14099 } 14100 14101 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 14102 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 14103 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 14104 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask); 14105 } 14106 14107 return SDValue(); 14108 } 14109 14110 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { 14111 SDValue InVal = N->getOperand(0); 14112 EVT VT = N->getValueType(0); 14113 14114 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern 14115 // with a VECTOR_SHUFFLE. 14116 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14117 SDValue InVec = InVal->getOperand(0); 14118 SDValue EltNo = InVal->getOperand(1); 14119 14120 // FIXME: We could support implicit truncation if the shuffle can be 14121 // scaled to a smaller vector scalar type. 14122 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo); 14123 if (C0 && VT == InVec.getValueType() && 14124 VT.getScalarType() == InVal.getValueType()) { 14125 SmallVector<int, 8> NewMask(VT.getVectorNumElements(), -1); 14126 int Elt = C0->getZExtValue(); 14127 NewMask[0] = Elt; 14128 14129 if (TLI.isShuffleMaskLegal(NewMask, VT)) 14130 return DAG.getVectorShuffle(VT, SDLoc(N), InVec, DAG.getUNDEF(VT), 14131 NewMask); 14132 } 14133 } 14134 14135 return SDValue(); 14136 } 14137 14138 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { 14139 EVT VT = N->getValueType(0); 14140 SDValue N0 = N->getOperand(0); 14141 SDValue N1 = N->getOperand(1); 14142 SDValue N2 = N->getOperand(2); 14143 14144 // Combine INSERT_SUBVECTORs where we are inserting to the same index. 14145 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) 14146 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) 14147 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && 14148 N0.getOperand(1).getValueType() == N1.getValueType() && 14149 N0.getOperand(2) == N2) 14150 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), 14151 N1, N2); 14152 14153 if (N0.getValueType() != N1.getValueType()) 14154 return SDValue(); 14155 14156 // If the input vector is a concatenation, and the insert replaces 14157 // one of the halves, we can optimize into a single concat_vectors. 14158 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0->getNumOperands() == 2 && 14159 N2.getOpcode() == ISD::Constant) { 14160 APInt InsIdx = cast<ConstantSDNode>(N2)->getAPIntValue(); 14161 14162 // Lower half: fold (insert_subvector (concat_vectors X, Y), Z) -> 14163 // (concat_vectors Z, Y) 14164 if (InsIdx == 0) 14165 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N1, 14166 N0.getOperand(1)); 14167 14168 // Upper half: fold (insert_subvector (concat_vectors X, Y), Z) -> 14169 // (concat_vectors X, Z) 14170 if (InsIdx == VT.getVectorNumElements() / 2) 14171 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0.getOperand(0), 14172 N1); 14173 } 14174 14175 return SDValue(); 14176 } 14177 14178 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { 14179 SDValue N0 = N->getOperand(0); 14180 14181 // fold (fp_to_fp16 (fp16_to_fp op)) -> op 14182 if (N0->getOpcode() == ISD::FP16_TO_FP) 14183 return N0->getOperand(0); 14184 14185 return SDValue(); 14186 } 14187 14188 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { 14189 SDValue N0 = N->getOperand(0); 14190 14191 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) 14192 if (N0->getOpcode() == ISD::AND) { 14193 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); 14194 if (AndConst && AndConst->getAPIntValue() == 0xffff) { 14195 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), 14196 N0.getOperand(0)); 14197 } 14198 } 14199 14200 return SDValue(); 14201 } 14202 14203 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle 14204 /// with the destination vector and a zero vector. 14205 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> 14206 /// vector_shuffle V, Zero, <0, 4, 2, 4> 14207 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { 14208 EVT VT = N->getValueType(0); 14209 SDValue LHS = N->getOperand(0); 14210 SDValue RHS = N->getOperand(1); 14211 SDLoc DL(N); 14212 14213 // Make sure we're not running after operation legalization where it 14214 // may have custom lowered the vector shuffles. 14215 if (LegalOperations) 14216 return SDValue(); 14217 14218 if (N->getOpcode() != ISD::AND) 14219 return SDValue(); 14220 14221 if (RHS.getOpcode() == ISD::BITCAST) 14222 RHS = RHS.getOperand(0); 14223 14224 if (RHS.getOpcode() != ISD::BUILD_VECTOR) 14225 return SDValue(); 14226 14227 EVT RVT = RHS.getValueType(); 14228 unsigned NumElts = RHS.getNumOperands(); 14229 14230 // Attempt to create a valid clear mask, splitting the mask into 14231 // sub elements and checking to see if each is 14232 // all zeros or all ones - suitable for shuffle masking. 14233 auto BuildClearMask = [&](int Split) { 14234 int NumSubElts = NumElts * Split; 14235 int NumSubBits = RVT.getScalarSizeInBits() / Split; 14236 14237 SmallVector<int, 8> Indices; 14238 for (int i = 0; i != NumSubElts; ++i) { 14239 int EltIdx = i / Split; 14240 int SubIdx = i % Split; 14241 SDValue Elt = RHS.getOperand(EltIdx); 14242 if (Elt.isUndef()) { 14243 Indices.push_back(-1); 14244 continue; 14245 } 14246 14247 APInt Bits; 14248 if (isa<ConstantSDNode>(Elt)) 14249 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); 14250 else if (isa<ConstantFPSDNode>(Elt)) 14251 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); 14252 else 14253 return SDValue(); 14254 14255 // Extract the sub element from the constant bit mask. 14256 if (DAG.getDataLayout().isBigEndian()) { 14257 Bits = Bits.lshr((Split - SubIdx - 1) * NumSubBits); 14258 } else { 14259 Bits = Bits.lshr(SubIdx * NumSubBits); 14260 } 14261 14262 if (Split > 1) 14263 Bits = Bits.trunc(NumSubBits); 14264 14265 if (Bits.isAllOnesValue()) 14266 Indices.push_back(i); 14267 else if (Bits == 0) 14268 Indices.push_back(i + NumSubElts); 14269 else 14270 return SDValue(); 14271 } 14272 14273 // Let's see if the target supports this vector_shuffle. 14274 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); 14275 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); 14276 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) 14277 return SDValue(); 14278 14279 SDValue Zero = DAG.getConstant(0, DL, ClearVT); 14280 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, 14281 DAG.getBitcast(ClearVT, LHS), 14282 Zero, Indices)); 14283 }; 14284 14285 // Determine maximum split level (byte level masking). 14286 int MaxSplit = 1; 14287 if (RVT.getScalarSizeInBits() % 8 == 0) 14288 MaxSplit = RVT.getScalarSizeInBits() / 8; 14289 14290 for (int Split = 1; Split <= MaxSplit; ++Split) 14291 if (RVT.getScalarSizeInBits() % Split == 0) 14292 if (SDValue S = BuildClearMask(Split)) 14293 return S; 14294 14295 return SDValue(); 14296 } 14297 14298 /// Visit a binary vector operation, like ADD. 14299 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { 14300 assert(N->getValueType(0).isVector() && 14301 "SimplifyVBinOp only works on vectors!"); 14302 14303 SDValue LHS = N->getOperand(0); 14304 SDValue RHS = N->getOperand(1); 14305 SDValue Ops[] = {LHS, RHS}; 14306 14307 // See if we can constant fold the vector operation. 14308 if (SDValue Fold = DAG.FoldConstantVectorArithmetic( 14309 N->getOpcode(), SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) 14310 return Fold; 14311 14312 // Try to convert a constant mask AND into a shuffle clear mask. 14313 if (SDValue Shuffle = XformToShuffleWithZero(N)) 14314 return Shuffle; 14315 14316 // Type legalization might introduce new shuffles in the DAG. 14317 // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask))) 14318 // -> (shuffle (VBinOp (A, B)), Undef, Mask). 14319 if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) && 14320 isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() && 14321 LHS.getOperand(1).isUndef() && 14322 RHS.getOperand(1).isUndef()) { 14323 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS); 14324 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS); 14325 14326 if (SVN0->getMask().equals(SVN1->getMask())) { 14327 EVT VT = N->getValueType(0); 14328 SDValue UndefVector = LHS.getOperand(1); 14329 SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 14330 LHS.getOperand(0), RHS.getOperand(0), 14331 N->getFlags()); 14332 AddUsersToWorklist(N); 14333 return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector, 14334 SVN0->getMask()); 14335 } 14336 } 14337 14338 return SDValue(); 14339 } 14340 14341 SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, 14342 SDValue N2) { 14343 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); 14344 14345 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, 14346 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 14347 14348 // If we got a simplified select_cc node back from SimplifySelectCC, then 14349 // break it down into a new SETCC node, and a new SELECT node, and then return 14350 // the SELECT node, since we were called with a SELECT node. 14351 if (SCC.getNode()) { 14352 // Check to see if we got a select_cc back (to turn into setcc/select). 14353 // Otherwise, just return whatever node we got back, like fabs. 14354 if (SCC.getOpcode() == ISD::SELECT_CC) { 14355 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), 14356 N0.getValueType(), 14357 SCC.getOperand(0), SCC.getOperand(1), 14358 SCC.getOperand(4)); 14359 AddToWorklist(SETCC.getNode()); 14360 return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, 14361 SCC.getOperand(2), SCC.getOperand(3)); 14362 } 14363 14364 return SCC; 14365 } 14366 return SDValue(); 14367 } 14368 14369 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values 14370 /// being selected between, see if we can simplify the select. Callers of this 14371 /// should assume that TheSelect is deleted if this returns true. As such, they 14372 /// should return the appropriate thing (e.g. the node) back to the top-level of 14373 /// the DAG combiner loop to avoid it being looked at. 14374 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, 14375 SDValue RHS) { 14376 14377 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 14378 // The select + setcc is redundant, because fsqrt returns NaN for X < 0. 14379 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { 14380 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { 14381 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) 14382 SDValue Sqrt = RHS; 14383 ISD::CondCode CC; 14384 SDValue CmpLHS; 14385 const ConstantFPSDNode *Zero = nullptr; 14386 14387 if (TheSelect->getOpcode() == ISD::SELECT_CC) { 14388 CC = dyn_cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); 14389 CmpLHS = TheSelect->getOperand(0); 14390 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); 14391 } else { 14392 // SELECT or VSELECT 14393 SDValue Cmp = TheSelect->getOperand(0); 14394 if (Cmp.getOpcode() == ISD::SETCC) { 14395 CC = dyn_cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); 14396 CmpLHS = Cmp.getOperand(0); 14397 Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); 14398 } 14399 } 14400 if (Zero && Zero->isZero() && 14401 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || 14402 CC == ISD::SETULT || CC == ISD::SETLT)) { 14403 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 14404 CombineTo(TheSelect, Sqrt); 14405 return true; 14406 } 14407 } 14408 } 14409 // Cannot simplify select with vector condition 14410 if (TheSelect->getOperand(0).getValueType().isVector()) return false; 14411 14412 // If this is a select from two identical things, try to pull the operation 14413 // through the select. 14414 if (LHS.getOpcode() != RHS.getOpcode() || 14415 !LHS.hasOneUse() || !RHS.hasOneUse()) 14416 return false; 14417 14418 // If this is a load and the token chain is identical, replace the select 14419 // of two loads with a load through a select of the address to load from. 14420 // This triggers in things like "select bool X, 10.0, 123.0" after the FP 14421 // constants have been dropped into the constant pool. 14422 if (LHS.getOpcode() == ISD::LOAD) { 14423 LoadSDNode *LLD = cast<LoadSDNode>(LHS); 14424 LoadSDNode *RLD = cast<LoadSDNode>(RHS); 14425 14426 // Token chains must be identical. 14427 if (LHS.getOperand(0) != RHS.getOperand(0) || 14428 // Do not let this transformation reduce the number of volatile loads. 14429 LLD->isVolatile() || RLD->isVolatile() || 14430 // FIXME: If either is a pre/post inc/dec load, 14431 // we'd need to split out the address adjustment. 14432 LLD->isIndexed() || RLD->isIndexed() || 14433 // If this is an EXTLOAD, the VT's must match. 14434 LLD->getMemoryVT() != RLD->getMemoryVT() || 14435 // If this is an EXTLOAD, the kind of extension must match. 14436 (LLD->getExtensionType() != RLD->getExtensionType() && 14437 // The only exception is if one of the extensions is anyext. 14438 LLD->getExtensionType() != ISD::EXTLOAD && 14439 RLD->getExtensionType() != ISD::EXTLOAD) || 14440 // FIXME: this discards src value information. This is 14441 // over-conservative. It would be beneficial to be able to remember 14442 // both potential memory locations. Since we are discarding 14443 // src value info, don't do the transformation if the memory 14444 // locations are not in the default address space. 14445 LLD->getPointerInfo().getAddrSpace() != 0 || 14446 RLD->getPointerInfo().getAddrSpace() != 0 || 14447 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), 14448 LLD->getBasePtr().getValueType())) 14449 return false; 14450 14451 // Check that the select condition doesn't reach either load. If so, 14452 // folding this will induce a cycle into the DAG. If not, this is safe to 14453 // xform, so create a select of the addresses. 14454 SDValue Addr; 14455 if (TheSelect->getOpcode() == ISD::SELECT) { 14456 SDNode *CondNode = TheSelect->getOperand(0).getNode(); 14457 if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) || 14458 (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode))) 14459 return false; 14460 // The loads must not depend on one another. 14461 if (LLD->isPredecessorOf(RLD) || 14462 RLD->isPredecessorOf(LLD)) 14463 return false; 14464 Addr = DAG.getSelect(SDLoc(TheSelect), 14465 LLD->getBasePtr().getValueType(), 14466 TheSelect->getOperand(0), LLD->getBasePtr(), 14467 RLD->getBasePtr()); 14468 } else { // Otherwise SELECT_CC 14469 SDNode *CondLHS = TheSelect->getOperand(0).getNode(); 14470 SDNode *CondRHS = TheSelect->getOperand(1).getNode(); 14471 14472 if ((LLD->hasAnyUseOfValue(1) && 14473 (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) || 14474 (RLD->hasAnyUseOfValue(1) && 14475 (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS)))) 14476 return false; 14477 14478 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), 14479 LLD->getBasePtr().getValueType(), 14480 TheSelect->getOperand(0), 14481 TheSelect->getOperand(1), 14482 LLD->getBasePtr(), RLD->getBasePtr(), 14483 TheSelect->getOperand(4)); 14484 } 14485 14486 SDValue Load; 14487 // It is safe to replace the two loads if they have different alignments, 14488 // but the new load must be the minimum (most restrictive) alignment of the 14489 // inputs. 14490 unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment()); 14491 MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); 14492 if (!RLD->isInvariant()) 14493 MMOFlags &= ~MachineMemOperand::MOInvariant; 14494 if (!RLD->isDereferenceable()) 14495 MMOFlags &= ~MachineMemOperand::MODereferenceable; 14496 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { 14497 // FIXME: Discards pointer and AA info. 14498 Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), 14499 LLD->getChain(), Addr, MachinePointerInfo(), Alignment, 14500 MMOFlags); 14501 } else { 14502 // FIXME: Discards pointer and AA info. 14503 Load = DAG.getExtLoad( 14504 LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() 14505 : LLD->getExtensionType(), 14506 SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, 14507 MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); 14508 } 14509 14510 // Users of the select now use the result of the load. 14511 CombineTo(TheSelect, Load); 14512 14513 // Users of the old loads now use the new load's chain. We know the 14514 // old-load value is dead now. 14515 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); 14516 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); 14517 return true; 14518 } 14519 14520 return false; 14521 } 14522 14523 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 14524 /// where 'cond' is the comparison specified by CC. 14525 SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 14526 SDValue N2, SDValue N3, ISD::CondCode CC, 14527 bool NotExtCompare) { 14528 // (x ? y : y) -> y. 14529 if (N2 == N3) return N2; 14530 14531 EVT VT = N2.getValueType(); 14532 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 14533 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 14534 14535 // Determine if the condition we're dealing with is constant 14536 SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), 14537 N0, N1, CC, DL, false); 14538 if (SCC.getNode()) AddToWorklist(SCC.getNode()); 14539 14540 if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) { 14541 // fold select_cc true, x, y -> x 14542 // fold select_cc false, x, y -> y 14543 return !SCCC->isNullValue() ? N2 : N3; 14544 } 14545 14546 // Check to see if we can simplify the select into an fabs node 14547 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) { 14548 // Allow either -0.0 or 0.0 14549 if (CFP->isZero()) { 14550 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs 14551 if ((CC == ISD::SETGE || CC == ISD::SETGT) && 14552 N0 == N2 && N3.getOpcode() == ISD::FNEG && 14553 N2 == N3.getOperand(0)) 14554 return DAG.getNode(ISD::FABS, DL, VT, N0); 14555 14556 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs 14557 if ((CC == ISD::SETLT || CC == ISD::SETLE) && 14558 N0 == N3 && N2.getOpcode() == ISD::FNEG && 14559 N2.getOperand(0) == N3) 14560 return DAG.getNode(ISD::FABS, DL, VT, N3); 14561 } 14562 } 14563 14564 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" 14565 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 14566 // in it. This is a win when the constant is not otherwise available because 14567 // it replaces two constant pool loads with one. We only do this if the FP 14568 // type is known to be legal, because if it isn't, then we are before legalize 14569 // types an we want the other legalization to happen first (e.g. to avoid 14570 // messing with soft float) and if the ConstantFP is not legal, because if 14571 // it is legal, we may not need to store the FP constant in a constant pool. 14572 if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2)) 14573 if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) { 14574 if (TLI.isTypeLegal(N2.getValueType()) && 14575 (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) != 14576 TargetLowering::Legal && 14577 !TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) && 14578 !TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) && 14579 // If both constants have multiple uses, then we won't need to do an 14580 // extra load, they are likely around in registers for other users. 14581 (TV->hasOneUse() || FV->hasOneUse())) { 14582 Constant *Elts[] = { 14583 const_cast<ConstantFP*>(FV->getConstantFPValue()), 14584 const_cast<ConstantFP*>(TV->getConstantFPValue()) 14585 }; 14586 Type *FPTy = Elts[0]->getType(); 14587 const DataLayout &TD = DAG.getDataLayout(); 14588 14589 // Create a ConstantArray of the two constants. 14590 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); 14591 SDValue CPIdx = 14592 DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), 14593 TD.getPrefTypeAlignment(FPTy)); 14594 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 14595 14596 // Get the offsets to the 0 and 1 element of the array so that we can 14597 // select between them. 14598 SDValue Zero = DAG.getIntPtrConstant(0, DL); 14599 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); 14600 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); 14601 14602 SDValue Cond = DAG.getSetCC(DL, 14603 getSetCCResultType(N0.getValueType()), 14604 N0, N1, CC); 14605 AddToWorklist(Cond.getNode()); 14606 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), 14607 Cond, One, Zero); 14608 AddToWorklist(CstOffset.getNode()); 14609 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, 14610 CstOffset); 14611 AddToWorklist(CPIdx.getNode()); 14612 return DAG.getLoad( 14613 TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, 14614 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 14615 Alignment); 14616 } 14617 } 14618 14619 // Check to see if we can perform the "gzip trick", transforming 14620 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A) 14621 if (isNullConstant(N3) && CC == ISD::SETLT && 14622 (isNullConstant(N1) || // (a < 0) ? b : 0 14623 (isOneConstant(N1) && N0 == N2))) { // (a < 1) ? a : 0 14624 EVT XType = N0.getValueType(); 14625 EVT AType = N2.getValueType(); 14626 if (XType.bitsGE(AType)) { 14627 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a 14628 // single-bit constant. 14629 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { 14630 unsigned ShCtV = N2C->getAPIntValue().logBase2(); 14631 ShCtV = XType.getSizeInBits() - ShCtV - 1; 14632 SDValue ShCt = DAG.getConstant(ShCtV, SDLoc(N0), 14633 getShiftAmountTy(N0.getValueType())); 14634 SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), 14635 XType, N0, ShCt); 14636 AddToWorklist(Shift.getNode()); 14637 14638 if (XType.bitsGT(AType)) { 14639 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 14640 AddToWorklist(Shift.getNode()); 14641 } 14642 14643 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 14644 } 14645 14646 SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), 14647 XType, N0, 14648 DAG.getConstant(XType.getSizeInBits() - 1, 14649 SDLoc(N0), 14650 getShiftAmountTy(N0.getValueType()))); 14651 AddToWorklist(Shift.getNode()); 14652 14653 if (XType.bitsGT(AType)) { 14654 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 14655 AddToWorklist(Shift.getNode()); 14656 } 14657 14658 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 14659 } 14660 } 14661 14662 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) 14663 // where y is has a single bit set. 14664 // A plaintext description would be, we can turn the SELECT_CC into an AND 14665 // when the condition can be materialized as an all-ones register. Any 14666 // single bit-test can be materialized as an all-ones register with 14667 // shift-left and shift-right-arith. 14668 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && 14669 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { 14670 SDValue AndLHS = N0->getOperand(0); 14671 ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 14672 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { 14673 // Shift the tested bit over the sign bit. 14674 const APInt &AndMask = ConstAndRHS->getAPIntValue(); 14675 SDValue ShlAmt = 14676 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), 14677 getShiftAmountTy(AndLHS.getValueType())); 14678 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); 14679 14680 // Now arithmetic right shift it all the way over, so the result is either 14681 // all-ones, or zero. 14682 SDValue ShrAmt = 14683 DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl), 14684 getShiftAmountTy(Shl.getValueType())); 14685 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); 14686 14687 return DAG.getNode(ISD::AND, DL, VT, Shr, N3); 14688 } 14689 } 14690 14691 // fold select C, 16, 0 -> shl C, 4 14692 if (N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2() && 14693 TLI.getBooleanContents(N0.getValueType()) == 14694 TargetLowering::ZeroOrOneBooleanContent) { 14695 14696 // If the caller doesn't want us to simplify this into a zext of a compare, 14697 // don't do it. 14698 if (NotExtCompare && N2C->isOne()) 14699 return SDValue(); 14700 14701 // Get a SetCC of the condition 14702 // NOTE: Don't create a SETCC if it's not legal on this target. 14703 if (!LegalOperations || 14704 TLI.isOperationLegal(ISD::SETCC, N0.getValueType())) { 14705 SDValue Temp, SCC; 14706 // cast from setcc result type to select result type 14707 if (LegalTypes) { 14708 SCC = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), 14709 N0, N1, CC); 14710 if (N2.getValueType().bitsLT(SCC.getValueType())) 14711 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), 14712 N2.getValueType()); 14713 else 14714 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), 14715 N2.getValueType(), SCC); 14716 } else { 14717 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); 14718 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), 14719 N2.getValueType(), SCC); 14720 } 14721 14722 AddToWorklist(SCC.getNode()); 14723 AddToWorklist(Temp.getNode()); 14724 14725 if (N2C->isOne()) 14726 return Temp; 14727 14728 // shl setcc result by log2 n2c 14729 return DAG.getNode( 14730 ISD::SHL, DL, N2.getValueType(), Temp, 14731 DAG.getConstant(N2C->getAPIntValue().logBase2(), SDLoc(Temp), 14732 getShiftAmountTy(Temp.getValueType()))); 14733 } 14734 } 14735 14736 // Check to see if this is an integer abs. 14737 // select_cc setg[te] X, 0, X, -X -> 14738 // select_cc setgt X, -1, X, -X -> 14739 // select_cc setl[te] X, 0, -X, X -> 14740 // select_cc setlt X, 1, -X, X -> 14741 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 14742 if (N1C) { 14743 ConstantSDNode *SubC = nullptr; 14744 if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) || 14745 (N1C->isAllOnesValue() && CC == ISD::SETGT)) && 14746 N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) 14747 SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0)); 14748 else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) || 14749 (N1C->isOne() && CC == ISD::SETLT)) && 14750 N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) 14751 SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0)); 14752 14753 EVT XType = N0.getValueType(); 14754 if (SubC && SubC->isNullValue() && XType.isInteger()) { 14755 SDLoc DL(N0); 14756 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, 14757 N0, 14758 DAG.getConstant(XType.getSizeInBits() - 1, DL, 14759 getShiftAmountTy(N0.getValueType()))); 14760 SDValue Add = DAG.getNode(ISD::ADD, DL, 14761 XType, N0, Shift); 14762 AddToWorklist(Shift.getNode()); 14763 AddToWorklist(Add.getNode()); 14764 return DAG.getNode(ISD::XOR, DL, XType, Add, Shift); 14765 } 14766 } 14767 14768 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) 14769 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) 14770 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) 14771 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) 14772 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) 14773 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) 14774 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) 14775 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) 14776 if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 14777 SDValue ValueOnZero = N2; 14778 SDValue Count = N3; 14779 // If the condition is NE instead of E, swap the operands. 14780 if (CC == ISD::SETNE) 14781 std::swap(ValueOnZero, Count); 14782 // Check if the value on zero is a constant equal to the bits in the type. 14783 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { 14784 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { 14785 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is 14786 // legal, combine to just cttz. 14787 if ((Count.getOpcode() == ISD::CTTZ || 14788 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && 14789 N0 == Count.getOperand(0) && 14790 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) 14791 return DAG.getNode(ISD::CTTZ, DL, VT, N0); 14792 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is 14793 // legal, combine to just ctlz. 14794 if ((Count.getOpcode() == ISD::CTLZ || 14795 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && 14796 N0 == Count.getOperand(0) && 14797 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) 14798 return DAG.getNode(ISD::CTLZ, DL, VT, N0); 14799 } 14800 } 14801 } 14802 14803 return SDValue(); 14804 } 14805 14806 /// This is a stub for TargetLowering::SimplifySetCC. 14807 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 14808 ISD::CondCode Cond, const SDLoc &DL, 14809 bool foldBooleans) { 14810 TargetLowering::DAGCombinerInfo 14811 DagCombineInfo(DAG, Level, false, this); 14812 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); 14813 } 14814 14815 /// Given an ISD::SDIV node expressing a divide by constant, return 14816 /// a DAG expression to select that will generate the same value by multiplying 14817 /// by a magic number. 14818 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 14819 SDValue DAGCombiner::BuildSDIV(SDNode *N) { 14820 // when optimising for minimum size, we don't want to expand a div to a mul 14821 // and a shift. 14822 if (DAG.getMachineFunction().getFunction()->optForMinSize()) 14823 return SDValue(); 14824 14825 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14826 if (!C) 14827 return SDValue(); 14828 14829 // Avoid division by zero. 14830 if (C->isNullValue()) 14831 return SDValue(); 14832 14833 std::vector<SDNode*> Built; 14834 SDValue S = 14835 TLI.BuildSDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); 14836 14837 for (SDNode *N : Built) 14838 AddToWorklist(N); 14839 return S; 14840 } 14841 14842 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a 14843 /// DAG expression that will generate the same value by right shifting. 14844 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { 14845 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14846 if (!C) 14847 return SDValue(); 14848 14849 // Avoid division by zero. 14850 if (C->isNullValue()) 14851 return SDValue(); 14852 14853 std::vector<SDNode *> Built; 14854 SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, &Built); 14855 14856 for (SDNode *N : Built) 14857 AddToWorklist(N); 14858 return S; 14859 } 14860 14861 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG 14862 /// expression that will generate the same value by multiplying by a magic 14863 /// number. 14864 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 14865 SDValue DAGCombiner::BuildUDIV(SDNode *N) { 14866 // when optimising for minimum size, we don't want to expand a div to a mul 14867 // and a shift. 14868 if (DAG.getMachineFunction().getFunction()->optForMinSize()) 14869 return SDValue(); 14870 14871 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14872 if (!C) 14873 return SDValue(); 14874 14875 // Avoid division by zero. 14876 if (C->isNullValue()) 14877 return SDValue(); 14878 14879 std::vector<SDNode*> Built; 14880 SDValue S = 14881 TLI.BuildUDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); 14882 14883 for (SDNode *N : Built) 14884 AddToWorklist(N); 14885 return S; 14886 } 14887 14888 SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags) { 14889 if (Level >= AfterLegalizeDAG) 14890 return SDValue(); 14891 14892 // Expose the DAG combiner to the target combiner implementations. 14893 TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this); 14894 14895 unsigned Iterations = 0; 14896 if (SDValue Est = TLI.getRecipEstimate(Op, DCI, Iterations)) { 14897 if (Iterations) { 14898 // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14899 // For the reciprocal, we need to find the zero of the function: 14900 // F(X) = A X - 1 [which has a zero at X = 1/A] 14901 // => 14902 // X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form 14903 // does not require additional intermediate precision] 14904 EVT VT = Op.getValueType(); 14905 SDLoc DL(Op); 14906 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 14907 14908 AddToWorklist(Est.getNode()); 14909 14910 // Newton iterations: Est = Est + Est (1 - Arg * Est) 14911 for (unsigned i = 0; i < Iterations; ++i) { 14912 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags); 14913 AddToWorklist(NewEst.getNode()); 14914 14915 NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags); 14916 AddToWorklist(NewEst.getNode()); 14917 14918 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 14919 AddToWorklist(NewEst.getNode()); 14920 14921 Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags); 14922 AddToWorklist(Est.getNode()); 14923 } 14924 } 14925 return Est; 14926 } 14927 14928 return SDValue(); 14929 } 14930 14931 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14932 /// For the reciprocal sqrt, we need to find the zero of the function: 14933 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 14934 /// => 14935 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) 14936 /// As a result, we precompute A/2 prior to the iteration loop. 14937 SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, 14938 unsigned Iterations, 14939 SDNodeFlags *Flags, bool Reciprocal) { 14940 EVT VT = Arg.getValueType(); 14941 SDLoc DL(Arg); 14942 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); 14943 14944 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that 14945 // this entire sequence requires only one FP constant. 14946 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); 14947 AddToWorklist(HalfArg.getNode()); 14948 14949 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); 14950 AddToWorklist(HalfArg.getNode()); 14951 14952 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) 14953 for (unsigned i = 0; i < Iterations; ++i) { 14954 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 14955 AddToWorklist(NewEst.getNode()); 14956 14957 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); 14958 AddToWorklist(NewEst.getNode()); 14959 14960 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); 14961 AddToWorklist(NewEst.getNode()); 14962 14963 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 14964 AddToWorklist(Est.getNode()); 14965 } 14966 14967 // If non-reciprocal square root is requested, multiply the result by Arg. 14968 if (!Reciprocal) { 14969 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); 14970 AddToWorklist(Est.getNode()); 14971 } 14972 14973 return Est; 14974 } 14975 14976 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14977 /// For the reciprocal sqrt, we need to find the zero of the function: 14978 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 14979 /// => 14980 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) 14981 SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, 14982 unsigned Iterations, 14983 SDNodeFlags *Flags, bool Reciprocal) { 14984 EVT VT = Arg.getValueType(); 14985 SDLoc DL(Arg); 14986 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); 14987 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); 14988 14989 // This routine must enter the loop below to work correctly 14990 // when (Reciprocal == false). 14991 assert(Iterations > 0); 14992 14993 // Newton iterations for reciprocal square root: 14994 // E = (E * -0.5) * ((A * E) * E + -3.0) 14995 for (unsigned i = 0; i < Iterations; ++i) { 14996 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); 14997 AddToWorklist(AE.getNode()); 14998 14999 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); 15000 AddToWorklist(AEE.getNode()); 15001 15002 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); 15003 AddToWorklist(RHS.getNode()); 15004 15005 // When calculating a square root at the last iteration build: 15006 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) 15007 // (notice a common subexpression) 15008 SDValue LHS; 15009 if (Reciprocal || (i + 1) < Iterations) { 15010 // RSQRT: LHS = (E * -0.5) 15011 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); 15012 } else { 15013 // SQRT: LHS = (A * E) * -0.5 15014 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); 15015 } 15016 AddToWorklist(LHS.getNode()); 15017 15018 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); 15019 AddToWorklist(Est.getNode()); 15020 } 15021 15022 return Est; 15023 } 15024 15025 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case 15026 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if 15027 /// Op can be zero. 15028 SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags *Flags, 15029 bool Reciprocal) { 15030 if (Level >= AfterLegalizeDAG) 15031 return SDValue(); 15032 15033 // Expose the DAG combiner to the target combiner implementations. 15034 TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this); 15035 unsigned Iterations = 0; 15036 bool UseOneConstNR = false; 15037 if (SDValue Est = TLI.getRsqrtEstimate(Op, DCI, Iterations, UseOneConstNR)) { 15038 AddToWorklist(Est.getNode()); 15039 if (Iterations) { 15040 Est = UseOneConstNR 15041 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) 15042 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); 15043 } 15044 return Est; 15045 } 15046 15047 return SDValue(); 15048 } 15049 15050 SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags) { 15051 return buildSqrtEstimateImpl(Op, Flags, true); 15052 } 15053 15054 SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags *Flags) { 15055 SDValue Est = buildSqrtEstimateImpl(Op, Flags, false); 15056 if (!Est) 15057 return SDValue(); 15058 15059 // Unfortunately, Est is now NaN if the input was exactly 0. 15060 // Select out this case and force the answer to 0. 15061 EVT VT = Est.getValueType(); 15062 SDLoc DL(Op); 15063 SDValue Zero = DAG.getConstantFP(0.0, DL, VT); 15064 EVT CCVT = getSetCCResultType(VT); 15065 SDValue ZeroCmp = DAG.getSetCC(DL, CCVT, Op, Zero, ISD::SETEQ); 15066 AddToWorklist(ZeroCmp.getNode()); 15067 15068 Est = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, ZeroCmp, 15069 Zero, Est); 15070 AddToWorklist(Est.getNode()); 15071 return Est; 15072 } 15073 15074 /// Return true if base is a frame index, which is known not to alias with 15075 /// anything but itself. Provides base object and offset as results. 15076 static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset, 15077 const GlobalValue *&GV, const void *&CV) { 15078 // Assume it is a primitive operation. 15079 Base = Ptr; Offset = 0; GV = nullptr; CV = nullptr; 15080 15081 // If it's an adding a simple constant then integrate the offset. 15082 if (Base.getOpcode() == ISD::ADD) { 15083 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) { 15084 Base = Base.getOperand(0); 15085 Offset += C->getZExtValue(); 15086 } 15087 } 15088 15089 // Return the underlying GlobalValue, and update the Offset. Return false 15090 // for GlobalAddressSDNode since the same GlobalAddress may be represented 15091 // by multiple nodes with different offsets. 15092 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) { 15093 GV = G->getGlobal(); 15094 Offset += G->getOffset(); 15095 return false; 15096 } 15097 15098 // Return the underlying Constant value, and update the Offset. Return false 15099 // for ConstantSDNodes since the same constant pool entry may be represented 15100 // by multiple nodes with different offsets. 15101 if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) { 15102 CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal() 15103 : (const void *)C->getConstVal(); 15104 Offset += C->getOffset(); 15105 return false; 15106 } 15107 // If it's any of the following then it can't alias with anything but itself. 15108 return isa<FrameIndexSDNode>(Base); 15109 } 15110 15111 /// Return true if there is any possibility that the two addresses overlap. 15112 bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const { 15113 // If they are the same then they must be aliases. 15114 if (Op0->getBasePtr() == Op1->getBasePtr()) return true; 15115 15116 // If they are both volatile then they cannot be reordered. 15117 if (Op0->isVolatile() && Op1->isVolatile()) return true; 15118 15119 // If one operation reads from invariant memory, and the other may store, they 15120 // cannot alias. These should really be checking the equivalent of mayWrite, 15121 // but it only matters for memory nodes other than load /store. 15122 if (Op0->isInvariant() && Op1->writeMem()) 15123 return false; 15124 15125 if (Op1->isInvariant() && Op0->writeMem()) 15126 return false; 15127 15128 // Gather base node and offset information. 15129 SDValue Base1, Base2; 15130 int64_t Offset1, Offset2; 15131 const GlobalValue *GV1, *GV2; 15132 const void *CV1, *CV2; 15133 bool isFrameIndex1 = FindBaseOffset(Op0->getBasePtr(), 15134 Base1, Offset1, GV1, CV1); 15135 bool isFrameIndex2 = FindBaseOffset(Op1->getBasePtr(), 15136 Base2, Offset2, GV2, CV2); 15137 15138 // If they have a same base address then check to see if they overlap. 15139 if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2))) 15140 return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || 15141 (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); 15142 15143 // It is possible for different frame indices to alias each other, mostly 15144 // when tail call optimization reuses return address slots for arguments. 15145 // To catch this case, look up the actual index of frame indices to compute 15146 // the real alias relationship. 15147 if (isFrameIndex1 && isFrameIndex2) { 15148 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 15149 Offset1 += MFI.getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex()); 15150 Offset2 += MFI.getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex()); 15151 return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || 15152 (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); 15153 } 15154 15155 // Otherwise, if we know what the bases are, and they aren't identical, then 15156 // we know they cannot alias. 15157 if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2)) 15158 return false; 15159 15160 // If we know required SrcValue1 and SrcValue2 have relatively large alignment 15161 // compared to the size and offset of the access, we may be able to prove they 15162 // do not alias. This check is conservative for now to catch cases created by 15163 // splitting vector types. 15164 if ((Op0->getOriginalAlignment() == Op1->getOriginalAlignment()) && 15165 (Op0->getSrcValueOffset() != Op1->getSrcValueOffset()) && 15166 (Op0->getMemoryVT().getSizeInBits() >> 3 == 15167 Op1->getMemoryVT().getSizeInBits() >> 3) && 15168 (Op0->getOriginalAlignment() > (Op0->getMemoryVT().getSizeInBits() >> 3))) { 15169 int64_t OffAlign1 = Op0->getSrcValueOffset() % Op0->getOriginalAlignment(); 15170 int64_t OffAlign2 = Op1->getSrcValueOffset() % Op1->getOriginalAlignment(); 15171 15172 // There is no overlap between these relatively aligned accesses of similar 15173 // size, return no alias. 15174 if ((OffAlign1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign2 || 15175 (OffAlign2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign1) 15176 return false; 15177 } 15178 15179 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 15180 ? CombinerGlobalAA 15181 : DAG.getSubtarget().useAA(); 15182 #ifndef NDEBUG 15183 if (CombinerAAOnlyFunc.getNumOccurrences() && 15184 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 15185 UseAA = false; 15186 #endif 15187 if (UseAA && 15188 Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) { 15189 // Use alias analysis information. 15190 int64_t MinOffset = std::min(Op0->getSrcValueOffset(), 15191 Op1->getSrcValueOffset()); 15192 int64_t Overlap1 = (Op0->getMemoryVT().getSizeInBits() >> 3) + 15193 Op0->getSrcValueOffset() - MinOffset; 15194 int64_t Overlap2 = (Op1->getMemoryVT().getSizeInBits() >> 3) + 15195 Op1->getSrcValueOffset() - MinOffset; 15196 AliasResult AAResult = 15197 AA.alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap1, 15198 UseTBAA ? Op0->getAAInfo() : AAMDNodes()), 15199 MemoryLocation(Op1->getMemOperand()->getValue(), Overlap2, 15200 UseTBAA ? Op1->getAAInfo() : AAMDNodes())); 15201 if (AAResult == NoAlias) 15202 return false; 15203 } 15204 15205 // Otherwise we have to assume they alias. 15206 return true; 15207 } 15208 15209 /// Walk up chain skipping non-aliasing memory nodes, 15210 /// looking for aliasing nodes and adding them to the Aliases vector. 15211 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, 15212 SmallVectorImpl<SDValue> &Aliases) { 15213 SmallVector<SDValue, 8> Chains; // List of chains to visit. 15214 SmallPtrSet<SDNode *, 16> Visited; // Visited node set. 15215 15216 // Get alias information for node. 15217 bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile(); 15218 15219 // Starting off. 15220 Chains.push_back(OriginalChain); 15221 unsigned Depth = 0; 15222 15223 // Look at each chain and determine if it is an alias. If so, add it to the 15224 // aliases list. If not, then continue up the chain looking for the next 15225 // candidate. 15226 while (!Chains.empty()) { 15227 SDValue Chain = Chains.pop_back_val(); 15228 15229 // For TokenFactor nodes, look at each operand and only continue up the 15230 // chain until we reach the depth limit. 15231 // 15232 // FIXME: The depth check could be made to return the last non-aliasing 15233 // chain we found before we hit a tokenfactor rather than the original 15234 // chain. 15235 if (Depth > TLI.getGatherAllAliasesMaxDepth()) { 15236 Aliases.clear(); 15237 Aliases.push_back(OriginalChain); 15238 return; 15239 } 15240 15241 // Don't bother if we've been before. 15242 if (!Visited.insert(Chain.getNode()).second) 15243 continue; 15244 15245 switch (Chain.getOpcode()) { 15246 case ISD::EntryToken: 15247 // Entry token is ideal chain operand, but handled in FindBetterChain. 15248 break; 15249 15250 case ISD::LOAD: 15251 case ISD::STORE: { 15252 // Get alias information for Chain. 15253 bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) && 15254 !cast<LSBaseSDNode>(Chain.getNode())->isVolatile(); 15255 15256 // If chain is alias then stop here. 15257 if (!(IsLoad && IsOpLoad) && 15258 isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) { 15259 Aliases.push_back(Chain); 15260 } else { 15261 // Look further up the chain. 15262 Chains.push_back(Chain.getOperand(0)); 15263 ++Depth; 15264 } 15265 break; 15266 } 15267 15268 case ISD::TokenFactor: 15269 // We have to check each of the operands of the token factor for "small" 15270 // token factors, so we queue them up. Adding the operands to the queue 15271 // (stack) in reverse order maintains the original order and increases the 15272 // likelihood that getNode will find a matching token factor (CSE.) 15273 if (Chain.getNumOperands() > 16) { 15274 Aliases.push_back(Chain); 15275 break; 15276 } 15277 for (unsigned n = Chain.getNumOperands(); n;) 15278 Chains.push_back(Chain.getOperand(--n)); 15279 ++Depth; 15280 break; 15281 15282 default: 15283 // For all other instructions we will just have to take what we can get. 15284 Aliases.push_back(Chain); 15285 break; 15286 } 15287 } 15288 } 15289 15290 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain 15291 /// (aliasing node.) 15292 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { 15293 SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor. 15294 15295 // Accumulate all the aliases to this node. 15296 GatherAllAliases(N, OldChain, Aliases); 15297 15298 // If no operands then chain to entry token. 15299 if (Aliases.size() == 0) 15300 return DAG.getEntryNode(); 15301 15302 // If a single operand then chain to it. We don't need to revisit it. 15303 if (Aliases.size() == 1) 15304 return Aliases[0]; 15305 15306 // Construct a custom tailored token factor. 15307 return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases); 15308 } 15309 15310 bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { 15311 // This holds the base pointer, index, and the offset in bytes from the base 15312 // pointer. 15313 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr(), DAG); 15314 15315 // We must have a base and an offset. 15316 if (!BasePtr.Base.getNode()) 15317 return false; 15318 15319 // Do not handle stores to undef base pointers. 15320 if (BasePtr.Base.isUndef()) 15321 return false; 15322 15323 SmallVector<StoreSDNode *, 8> ChainedStores; 15324 ChainedStores.push_back(St); 15325 15326 // Walk up the chain and look for nodes with offsets from the same 15327 // base pointer. Stop when reaching an instruction with a different kind 15328 // or instruction which has a different base pointer. 15329 StoreSDNode *Index = St; 15330 while (Index) { 15331 // If the chain has more than one use, then we can't reorder the mem ops. 15332 if (Index != St && !SDValue(Index, 0)->hasOneUse()) 15333 break; 15334 15335 if (Index->isVolatile() || Index->isIndexed()) 15336 break; 15337 15338 // Find the base pointer and offset for this memory node. 15339 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr(), DAG); 15340 15341 // Check that the base pointer is the same as the original one. 15342 if (!Ptr.equalBaseIndex(BasePtr)) 15343 break; 15344 15345 // Find the next memory operand in the chain. If the next operand in the 15346 // chain is a store then move up and continue the scan with the next 15347 // memory operand. If the next operand is a load save it and use alias 15348 // information to check if it interferes with anything. 15349 SDNode *NextInChain = Index->getChain().getNode(); 15350 while (true) { 15351 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { 15352 // We found a store node. Use it for the next iteration. 15353 if (STn->isVolatile() || STn->isIndexed()) { 15354 Index = nullptr; 15355 break; 15356 } 15357 ChainedStores.push_back(STn); 15358 Index = STn; 15359 break; 15360 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { 15361 NextInChain = Ldn->getChain().getNode(); 15362 continue; 15363 } else { 15364 Index = nullptr; 15365 break; 15366 } 15367 } 15368 } 15369 15370 bool MadeChangeToSt = false; 15371 SmallVector<std::pair<StoreSDNode *, SDValue>, 8> BetterChains; 15372 15373 for (StoreSDNode *ChainedStore : ChainedStores) { 15374 SDValue Chain = ChainedStore->getChain(); 15375 SDValue BetterChain = FindBetterChain(ChainedStore, Chain); 15376 15377 if (Chain != BetterChain) { 15378 if (ChainedStore == St) 15379 MadeChangeToSt = true; 15380 BetterChains.push_back(std::make_pair(ChainedStore, BetterChain)); 15381 } 15382 } 15383 15384 // Do all replacements after finding the replacements to make to avoid making 15385 // the chains more complicated by introducing new TokenFactors. 15386 for (auto Replacement : BetterChains) 15387 replaceStoreChain(Replacement.first, Replacement.second); 15388 15389 return MadeChangeToSt; 15390 } 15391 15392 /// This is the entry point for the file. 15393 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA, 15394 CodeGenOpt::Level OptLevel) { 15395 /// This is the main entry point to this class. 15396 DAGCombiner(*this, AA, OptLevel).Run(Level); 15397 } 15398