1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run 10 // both before and after the DAG is legalized. 11 // 12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is 13 // primarily intended to handle simplification opportunities that are implicit 14 // in the LLVM IR and exposed by the various codegen lowering phases. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/IntervalMap.h" 23 #include "llvm/ADT/None.h" 24 #include "llvm/ADT/Optional.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/MemoryLocation.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/CodeGen/DAGCombine.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineMemOperand.h" 40 #include "llvm/CodeGen/RuntimeLibcalls.h" 41 #include "llvm/CodeGen/SelectionDAG.h" 42 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 43 #include "llvm/CodeGen/SelectionDAGNodes.h" 44 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetRegisterInfo.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/CodeGen/ValueTypes.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/Constant.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CodeGen.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Target/TargetMachine.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <functional> 71 #include <iterator> 72 #include <string> 73 #include <tuple> 74 #include <utility> 75 76 using namespace llvm; 77 78 #define DEBUG_TYPE "dagcombine" 79 80 STATISTIC(NodesCombined , "Number of dag nodes combined"); 81 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); 82 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); 83 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); 84 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); 85 STATISTIC(SlicedLoads, "Number of load sliced"); 86 STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops"); 87 88 static cl::opt<bool> 89 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, 90 cl::desc("Enable DAG combiner's use of IR alias analysis")); 91 92 static cl::opt<bool> 93 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), 94 cl::desc("Enable DAG combiner's use of TBAA")); 95 96 #ifndef NDEBUG 97 static cl::opt<std::string> 98 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, 99 cl::desc("Only use DAG-combiner alias analysis in this" 100 " function")); 101 #endif 102 103 /// Hidden option to stress test load slicing, i.e., when this option 104 /// is enabled, load slicing bypasses most of its profitability guards. 105 static cl::opt<bool> 106 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, 107 cl::desc("Bypass the profitability model of load slicing"), 108 cl::init(false)); 109 110 static cl::opt<bool> 111 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), 112 cl::desc("DAG combiner may split indexing from loads")); 113 114 static cl::opt<bool> 115 EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true), 116 cl::desc("DAG combiner enable merging multiple stores " 117 "into a wider store")); 118 119 static cl::opt<unsigned> TokenFactorInlineLimit( 120 "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048), 121 cl::desc("Limit the number of operands to inline for Token Factors")); 122 123 static cl::opt<unsigned> StoreMergeDependenceLimit( 124 "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10), 125 cl::desc("Limit the number of times for the same StoreNode and RootNode " 126 "to bail out in store merging dependence check")); 127 128 static cl::opt<bool> EnableReduceLoadOpStoreWidth( 129 "combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true), 130 cl::desc("DAG combiner enable reducing the width of load/op/store " 131 "sequence")); 132 133 static cl::opt<bool> EnableShrinkLoadReplaceStoreWithStore( 134 "combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true), 135 cl::desc("DAG combiner enable load/<replace bytes>/store with " 136 "a narrower store")); 137 138 namespace { 139 140 class DAGCombiner { 141 SelectionDAG &DAG; 142 const TargetLowering &TLI; 143 const SelectionDAGTargetInfo *STI; 144 CombineLevel Level = BeforeLegalizeTypes; 145 CodeGenOpt::Level OptLevel; 146 bool LegalDAG = false; 147 bool LegalOperations = false; 148 bool LegalTypes = false; 149 bool ForCodeSize; 150 bool DisableGenericCombines; 151 152 /// Worklist of all of the nodes that need to be simplified. 153 /// 154 /// This must behave as a stack -- new nodes to process are pushed onto the 155 /// back and when processing we pop off of the back. 156 /// 157 /// The worklist will not contain duplicates but may contain null entries 158 /// due to nodes being deleted from the underlying DAG. 159 SmallVector<SDNode *, 64> Worklist; 160 161 /// Mapping from an SDNode to its position on the worklist. 162 /// 163 /// This is used to find and remove nodes from the worklist (by nulling 164 /// them) when they are deleted from the underlying DAG. It relies on 165 /// stable indices of nodes within the worklist. 166 DenseMap<SDNode *, unsigned> WorklistMap; 167 /// This records all nodes attempted to add to the worklist since we 168 /// considered a new worklist entry. As we keep do not add duplicate nodes 169 /// in the worklist, this is different from the tail of the worklist. 170 SmallSetVector<SDNode *, 32> PruningList; 171 172 /// Set of nodes which have been combined (at least once). 173 /// 174 /// This is used to allow us to reliably add any operands of a DAG node 175 /// which have not yet been combined to the worklist. 176 SmallPtrSet<SDNode *, 32> CombinedNodes; 177 178 /// Map from candidate StoreNode to the pair of RootNode and count. 179 /// The count is used to track how many times we have seen the StoreNode 180 /// with the same RootNode bail out in dependence check. If we have seen 181 /// the bail out for the same pair many times over a limit, we won't 182 /// consider the StoreNode with the same RootNode as store merging 183 /// candidate again. 184 DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap; 185 186 // AA - Used for DAG load/store alias analysis. 187 AliasAnalysis *AA; 188 189 /// When an instruction is simplified, add all users of the instruction to 190 /// the work lists because they might get more simplified now. 191 void AddUsersToWorklist(SDNode *N) { 192 for (SDNode *Node : N->uses()) 193 AddToWorklist(Node); 194 } 195 196 /// Convenient shorthand to add a node and all of its user to the worklist. 197 void AddToWorklistWithUsers(SDNode *N) { 198 AddUsersToWorklist(N); 199 AddToWorklist(N); 200 } 201 202 // Prune potentially dangling nodes. This is called after 203 // any visit to a node, but should also be called during a visit after any 204 // failed combine which may have created a DAG node. 205 void clearAddedDanglingWorklistEntries() { 206 // Check any nodes added to the worklist to see if they are prunable. 207 while (!PruningList.empty()) { 208 auto *N = PruningList.pop_back_val(); 209 if (N->use_empty()) 210 recursivelyDeleteUnusedNodes(N); 211 } 212 } 213 214 SDNode *getNextWorklistEntry() { 215 // Before we do any work, remove nodes that are not in use. 216 clearAddedDanglingWorklistEntries(); 217 SDNode *N = nullptr; 218 // The Worklist holds the SDNodes in order, but it may contain null 219 // entries. 220 while (!N && !Worklist.empty()) { 221 N = Worklist.pop_back_val(); 222 } 223 224 if (N) { 225 bool GoodWorklistEntry = WorklistMap.erase(N); 226 (void)GoodWorklistEntry; 227 assert(GoodWorklistEntry && 228 "Found a worklist entry without a corresponding map entry!"); 229 } 230 return N; 231 } 232 233 /// Call the node-specific routine that folds each particular type of node. 234 SDValue visit(SDNode *N); 235 236 public: 237 DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL) 238 : DAG(D), TLI(D.getTargetLoweringInfo()), 239 STI(D.getSubtarget().getSelectionDAGInfo()), OptLevel(OL), AA(AA) { 240 ForCodeSize = DAG.shouldOptForSize(); 241 DisableGenericCombines = STI && STI->disableGenericCombines(OptLevel); 242 243 MaximumLegalStoreInBits = 0; 244 // We use the minimum store size here, since that's all we can guarantee 245 // for the scalable vector types. 246 for (MVT VT : MVT::all_valuetypes()) 247 if (EVT(VT).isSimple() && VT != MVT::Other && 248 TLI.isTypeLegal(EVT(VT)) && 249 VT.getSizeInBits().getKnownMinSize() >= MaximumLegalStoreInBits) 250 MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinSize(); 251 } 252 253 void ConsiderForPruning(SDNode *N) { 254 // Mark this for potential pruning. 255 PruningList.insert(N); 256 } 257 258 /// Add to the worklist making sure its instance is at the back (next to be 259 /// processed.) 260 void AddToWorklist(SDNode *N) { 261 assert(N->getOpcode() != ISD::DELETED_NODE && 262 "Deleted Node added to Worklist"); 263 264 // Skip handle nodes as they can't usefully be combined and confuse the 265 // zero-use deletion strategy. 266 if (N->getOpcode() == ISD::HANDLENODE) 267 return; 268 269 ConsiderForPruning(N); 270 271 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) 272 Worklist.push_back(N); 273 } 274 275 /// Remove all instances of N from the worklist. 276 void removeFromWorklist(SDNode *N) { 277 CombinedNodes.erase(N); 278 PruningList.remove(N); 279 StoreRootCountMap.erase(N); 280 281 auto It = WorklistMap.find(N); 282 if (It == WorklistMap.end()) 283 return; // Not in the worklist. 284 285 // Null out the entry rather than erasing it to avoid a linear operation. 286 Worklist[It->second] = nullptr; 287 WorklistMap.erase(It); 288 } 289 290 void deleteAndRecombine(SDNode *N); 291 bool recursivelyDeleteUnusedNodes(SDNode *N); 292 293 /// Replaces all uses of the results of one DAG node with new values. 294 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 295 bool AddTo = true); 296 297 /// Replaces all uses of the results of one DAG node with new values. 298 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { 299 return CombineTo(N, &Res, 1, AddTo); 300 } 301 302 /// Replaces all uses of the results of one DAG node with new values. 303 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, 304 bool AddTo = true) { 305 SDValue To[] = { Res0, Res1 }; 306 return CombineTo(N, To, 2, AddTo); 307 } 308 309 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); 310 311 private: 312 unsigned MaximumLegalStoreInBits; 313 314 /// Check the specified integer node value to see if it can be simplified or 315 /// if things it uses can be simplified by bit propagation. 316 /// If so, return true. 317 bool SimplifyDemandedBits(SDValue Op) { 318 unsigned BitWidth = Op.getScalarValueSizeInBits(); 319 APInt DemandedBits = APInt::getAllOnes(BitWidth); 320 return SimplifyDemandedBits(Op, DemandedBits); 321 } 322 323 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) { 324 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 325 KnownBits Known; 326 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, false)) 327 return false; 328 329 // Revisit the node. 330 AddToWorklist(Op.getNode()); 331 332 CommitTargetLoweringOpt(TLO); 333 return true; 334 } 335 336 /// Check the specified vector node value to see if it can be simplified or 337 /// if things it uses can be simplified as it only uses some of the 338 /// elements. If so, return true. 339 bool SimplifyDemandedVectorElts(SDValue Op) { 340 // TODO: For now just pretend it cannot be simplified. 341 if (Op.getValueType().isScalableVector()) 342 return false; 343 344 unsigned NumElts = Op.getValueType().getVectorNumElements(); 345 APInt DemandedElts = APInt::getAllOnes(NumElts); 346 return SimplifyDemandedVectorElts(Op, DemandedElts); 347 } 348 349 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 350 const APInt &DemandedElts, 351 bool AssumeSingleUse = false); 352 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts, 353 bool AssumeSingleUse = false); 354 355 bool CombineToPreIndexedLoadStore(SDNode *N); 356 bool CombineToPostIndexedLoadStore(SDNode *N); 357 SDValue SplitIndexingFromLoad(LoadSDNode *LD); 358 bool SliceUpLoad(SDNode *N); 359 360 // Scalars have size 0 to distinguish from singleton vectors. 361 SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD); 362 bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val); 363 bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val); 364 365 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed 366 /// load. 367 /// 368 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. 369 /// \param InVecVT type of the input vector to EVE with bitcasts resolved. 370 /// \param EltNo index of the vector element to load. 371 /// \param OriginalLoad load that EVE came from to be replaced. 372 /// \returns EVE on success SDValue() on failure. 373 SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, 374 SDValue EltNo, 375 LoadSDNode *OriginalLoad); 376 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); 377 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); 378 SDValue SExtPromoteOperand(SDValue Op, EVT PVT); 379 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); 380 SDValue PromoteIntBinOp(SDValue Op); 381 SDValue PromoteIntShiftOp(SDValue Op); 382 SDValue PromoteExtend(SDValue Op); 383 bool PromoteLoad(SDValue Op); 384 385 /// Call the node-specific routine that knows how to fold each 386 /// particular type of node. If that doesn't do anything, try the 387 /// target-specific DAG combines. 388 SDValue combine(SDNode *N); 389 390 // Visitation implementation - Implement dag node combining for different 391 // node types. The semantics are as follows: 392 // Return Value: 393 // SDValue.getNode() == 0 - No change was made 394 // SDValue.getNode() == N - N was replaced, is dead and has been handled. 395 // otherwise - N should be replaced by the returned Operand. 396 // 397 SDValue visitTokenFactor(SDNode *N); 398 SDValue visitMERGE_VALUES(SDNode *N); 399 SDValue visitADD(SDNode *N); 400 SDValue visitADDLike(SDNode *N); 401 SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference); 402 SDValue visitSUB(SDNode *N); 403 SDValue visitADDSAT(SDNode *N); 404 SDValue visitSUBSAT(SDNode *N); 405 SDValue visitADDC(SDNode *N); 406 SDValue visitADDO(SDNode *N); 407 SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N); 408 SDValue visitSUBC(SDNode *N); 409 SDValue visitSUBO(SDNode *N); 410 SDValue visitADDE(SDNode *N); 411 SDValue visitADDCARRY(SDNode *N); 412 SDValue visitSADDO_CARRY(SDNode *N); 413 SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N); 414 SDValue visitSUBE(SDNode *N); 415 SDValue visitSUBCARRY(SDNode *N); 416 SDValue visitSSUBO_CARRY(SDNode *N); 417 SDValue visitMUL(SDNode *N); 418 SDValue visitMULFIX(SDNode *N); 419 SDValue useDivRem(SDNode *N); 420 SDValue visitSDIV(SDNode *N); 421 SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N); 422 SDValue visitUDIV(SDNode *N); 423 SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N); 424 SDValue visitREM(SDNode *N); 425 SDValue visitMULHU(SDNode *N); 426 SDValue visitMULHS(SDNode *N); 427 SDValue visitAVG(SDNode *N); 428 SDValue visitSMUL_LOHI(SDNode *N); 429 SDValue visitUMUL_LOHI(SDNode *N); 430 SDValue visitMULO(SDNode *N); 431 SDValue visitIMINMAX(SDNode *N); 432 SDValue visitAND(SDNode *N); 433 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N); 434 SDValue visitOR(SDNode *N); 435 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N); 436 SDValue visitXOR(SDNode *N); 437 SDValue SimplifyVBinOp(SDNode *N, const SDLoc &DL); 438 SDValue visitSHL(SDNode *N); 439 SDValue visitSRA(SDNode *N); 440 SDValue visitSRL(SDNode *N); 441 SDValue visitFunnelShift(SDNode *N); 442 SDValue visitSHLSAT(SDNode *N); 443 SDValue visitRotate(SDNode *N); 444 SDValue visitABS(SDNode *N); 445 SDValue visitBSWAP(SDNode *N); 446 SDValue visitBITREVERSE(SDNode *N); 447 SDValue visitCTLZ(SDNode *N); 448 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); 449 SDValue visitCTTZ(SDNode *N); 450 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); 451 SDValue visitCTPOP(SDNode *N); 452 SDValue visitSELECT(SDNode *N); 453 SDValue visitVSELECT(SDNode *N); 454 SDValue visitSELECT_CC(SDNode *N); 455 SDValue visitSETCC(SDNode *N); 456 SDValue visitSETCCCARRY(SDNode *N); 457 SDValue visitSIGN_EXTEND(SDNode *N); 458 SDValue visitZERO_EXTEND(SDNode *N); 459 SDValue visitANY_EXTEND(SDNode *N); 460 SDValue visitAssertExt(SDNode *N); 461 SDValue visitAssertAlign(SDNode *N); 462 SDValue visitSIGN_EXTEND_INREG(SDNode *N); 463 SDValue visitEXTEND_VECTOR_INREG(SDNode *N); 464 SDValue visitTRUNCATE(SDNode *N); 465 SDValue visitBITCAST(SDNode *N); 466 SDValue visitFREEZE(SDNode *N); 467 SDValue visitBUILD_PAIR(SDNode *N); 468 SDValue visitFADD(SDNode *N); 469 SDValue visitSTRICT_FADD(SDNode *N); 470 SDValue visitFSUB(SDNode *N); 471 SDValue visitFMUL(SDNode *N); 472 SDValue visitFMA(SDNode *N); 473 SDValue visitFDIV(SDNode *N); 474 SDValue visitFREM(SDNode *N); 475 SDValue visitFSQRT(SDNode *N); 476 SDValue visitFCOPYSIGN(SDNode *N); 477 SDValue visitFPOW(SDNode *N); 478 SDValue visitSINT_TO_FP(SDNode *N); 479 SDValue visitUINT_TO_FP(SDNode *N); 480 SDValue visitFP_TO_SINT(SDNode *N); 481 SDValue visitFP_TO_UINT(SDNode *N); 482 SDValue visitFP_ROUND(SDNode *N); 483 SDValue visitFP_EXTEND(SDNode *N); 484 SDValue visitFNEG(SDNode *N); 485 SDValue visitFABS(SDNode *N); 486 SDValue visitFCEIL(SDNode *N); 487 SDValue visitFTRUNC(SDNode *N); 488 SDValue visitFFLOOR(SDNode *N); 489 SDValue visitFMinMax(SDNode *N); 490 SDValue visitBRCOND(SDNode *N); 491 SDValue visitBR_CC(SDNode *N); 492 SDValue visitLOAD(SDNode *N); 493 494 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); 495 SDValue replaceStoreOfFPConstant(StoreSDNode *ST); 496 497 SDValue visitSTORE(SDNode *N); 498 SDValue visitLIFETIME_END(SDNode *N); 499 SDValue visitINSERT_VECTOR_ELT(SDNode *N); 500 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); 501 SDValue visitBUILD_VECTOR(SDNode *N); 502 SDValue visitCONCAT_VECTORS(SDNode *N); 503 SDValue visitEXTRACT_SUBVECTOR(SDNode *N); 504 SDValue visitVECTOR_SHUFFLE(SDNode *N); 505 SDValue visitSCALAR_TO_VECTOR(SDNode *N); 506 SDValue visitINSERT_SUBVECTOR(SDNode *N); 507 SDValue visitMLOAD(SDNode *N); 508 SDValue visitMSTORE(SDNode *N); 509 SDValue visitMGATHER(SDNode *N); 510 SDValue visitMSCATTER(SDNode *N); 511 SDValue visitFP_TO_FP16(SDNode *N); 512 SDValue visitFP16_TO_FP(SDNode *N); 513 SDValue visitVECREDUCE(SDNode *N); 514 SDValue visitVPOp(SDNode *N); 515 516 SDValue visitFADDForFMACombine(SDNode *N); 517 SDValue visitFSUBForFMACombine(SDNode *N); 518 SDValue visitFMULForFMADistributiveCombine(SDNode *N); 519 520 SDValue XformToShuffleWithZero(SDNode *N); 521 bool reassociationCanBreakAddressingModePattern(unsigned Opc, 522 const SDLoc &DL, SDValue N0, 523 SDValue N1); 524 SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0, 525 SDValue N1); 526 SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 527 SDValue N1, SDNodeFlags Flags); 528 529 SDValue visitShiftByConstant(SDNode *N); 530 531 SDValue foldSelectOfConstants(SDNode *N); 532 SDValue foldVSelectOfConstants(SDNode *N); 533 SDValue foldBinOpIntoSelect(SDNode *BO); 534 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); 535 SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N); 536 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); 537 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 538 SDValue N2, SDValue N3, ISD::CondCode CC, 539 bool NotExtCompare = false); 540 SDValue convertSelectOfFPConstantsToLoadOffset( 541 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, 542 ISD::CondCode CC); 543 SDValue foldSignChangeInBitcast(SDNode *N); 544 SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, 545 SDValue N2, SDValue N3, ISD::CondCode CC); 546 SDValue foldSelectOfBinops(SDNode *N); 547 SDValue foldSextSetcc(SDNode *N); 548 SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, 549 const SDLoc &DL); 550 SDValue foldSubToUSubSat(EVT DstVT, SDNode *N); 551 SDValue unfoldMaskedMerge(SDNode *N); 552 SDValue unfoldExtremeBitClearingToShifts(SDNode *N); 553 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 554 const SDLoc &DL, bool foldBooleans); 555 SDValue rebuildSetCC(SDValue N); 556 557 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 558 SDValue &CC, bool MatchStrict = false) const; 559 bool isOneUseSetCC(SDValue N) const; 560 561 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 562 unsigned HiOp); 563 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); 564 SDValue CombineExtLoad(SDNode *N); 565 SDValue CombineZExtLogicopShiftLoad(SDNode *N); 566 SDValue combineRepeatedFPDivisors(SDNode *N); 567 SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex); 568 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); 569 SDValue BuildSDIV(SDNode *N); 570 SDValue BuildSDIVPow2(SDNode *N); 571 SDValue BuildUDIV(SDNode *N); 572 SDValue BuildLogBase2(SDValue V, const SDLoc &DL); 573 SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags); 574 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags); 575 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags); 576 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip); 577 SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations, 578 SDNodeFlags Flags, bool Reciprocal); 579 SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations, 580 SDNodeFlags Flags, bool Reciprocal); 581 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 582 bool DemandHighBits = true); 583 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); 584 SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, 585 SDValue InnerPos, SDValue InnerNeg, bool HasPos, 586 unsigned PosOpcode, unsigned NegOpcode, 587 const SDLoc &DL); 588 SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg, 589 SDValue InnerPos, SDValue InnerNeg, bool HasPos, 590 unsigned PosOpcode, unsigned NegOpcode, 591 const SDLoc &DL); 592 SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); 593 SDValue MatchLoadCombine(SDNode *N); 594 SDValue mergeTruncStores(StoreSDNode *N); 595 SDValue reduceLoadWidth(SDNode *N); 596 SDValue ReduceLoadOpStoreWidth(SDNode *N); 597 SDValue splitMergedValStore(StoreSDNode *ST); 598 SDValue TransformFPLoadStorePair(SDNode *N); 599 SDValue convertBuildVecZextToZext(SDNode *N); 600 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); 601 SDValue reduceBuildVecTruncToBitCast(SDNode *N); 602 SDValue reduceBuildVecToShuffle(SDNode *N); 603 SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, 604 ArrayRef<int> VectorMask, SDValue VecIn1, 605 SDValue VecIn2, unsigned LeftIdx, 606 bool DidSplitVec); 607 SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast); 608 609 /// Walk up chain skipping non-aliasing memory nodes, 610 /// looking for aliasing nodes and adding them to the Aliases vector. 611 void GatherAllAliases(SDNode *N, SDValue OriginalChain, 612 SmallVectorImpl<SDValue> &Aliases); 613 614 /// Return true if there is any possibility that the two addresses overlap. 615 bool mayAlias(SDNode *Op0, SDNode *Op1) const; 616 617 /// Walk up chain skipping non-aliasing memory nodes, looking for a better 618 /// chain (aliasing node.) 619 SDValue FindBetterChain(SDNode *N, SDValue Chain); 620 621 /// Try to replace a store and any possibly adjacent stores on 622 /// consecutive chains with better chains. Return true only if St is 623 /// replaced. 624 /// 625 /// Notice that other chains may still be replaced even if the function 626 /// returns false. 627 bool findBetterNeighborChains(StoreSDNode *St); 628 629 // Helper for findBetterNeighborChains. Walk up store chain add additional 630 // chained stores that do not overlap and can be parallelized. 631 bool parallelizeChainedStores(StoreSDNode *St); 632 633 /// Holds a pointer to an LSBaseSDNode as well as information on where it 634 /// is located in a sequence of memory operations connected by a chain. 635 struct MemOpLink { 636 // Ptr to the mem node. 637 LSBaseSDNode *MemNode; 638 639 // Offset from the base ptr. 640 int64_t OffsetFromBase; 641 642 MemOpLink(LSBaseSDNode *N, int64_t Offset) 643 : MemNode(N), OffsetFromBase(Offset) {} 644 }; 645 646 // Classify the origin of a stored value. 647 enum class StoreSource { Unknown, Constant, Extract, Load }; 648 StoreSource getStoreSource(SDValue StoreVal) { 649 switch (StoreVal.getOpcode()) { 650 case ISD::Constant: 651 case ISD::ConstantFP: 652 return StoreSource::Constant; 653 case ISD::EXTRACT_VECTOR_ELT: 654 case ISD::EXTRACT_SUBVECTOR: 655 return StoreSource::Extract; 656 case ISD::LOAD: 657 return StoreSource::Load; 658 default: 659 return StoreSource::Unknown; 660 } 661 } 662 663 /// This is a helper function for visitMUL to check the profitability 664 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 665 /// MulNode is the original multiply, AddNode is (add x, c1), 666 /// and ConstNode is c2. 667 bool isMulAddWithConstProfitable(SDNode *MulNode, SDValue AddNode, 668 SDValue ConstNode); 669 670 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns 671 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns 672 /// the type of the loaded value to be extended. 673 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 674 EVT LoadResultTy, EVT &ExtVT); 675 676 /// Helper function to calculate whether the given Load/Store can have its 677 /// width reduced to ExtVT. 678 bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType, 679 EVT &MemVT, unsigned ShAmt = 0); 680 681 /// Used by BackwardsPropagateMask to find suitable loads. 682 bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads, 683 SmallPtrSetImpl<SDNode*> &NodesWithConsts, 684 ConstantSDNode *Mask, SDNode *&NodeToMask); 685 /// Attempt to propagate a given AND node back to load leaves so that they 686 /// can be combined into narrow loads. 687 bool BackwardsPropagateMask(SDNode *N); 688 689 /// Helper function for mergeConsecutiveStores which merges the component 690 /// store chains. 691 SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, 692 unsigned NumStores); 693 694 /// This is a helper function for mergeConsecutiveStores. When the source 695 /// elements of the consecutive stores are all constants or all extracted 696 /// vector elements, try to merge them into one larger store introducing 697 /// bitcasts if necessary. \return True if a merged store was created. 698 bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, 699 EVT MemVT, unsigned NumStores, 700 bool IsConstantSrc, bool UseVector, 701 bool UseTrunc); 702 703 /// This is a helper function for mergeConsecutiveStores. Stores that 704 /// potentially may be merged with St are placed in StoreNodes. RootNode is 705 /// a chain predecessor to all store candidates. 706 void getStoreMergeCandidates(StoreSDNode *St, 707 SmallVectorImpl<MemOpLink> &StoreNodes, 708 SDNode *&Root); 709 710 /// Helper function for mergeConsecutiveStores. Checks if candidate stores 711 /// have indirect dependency through their operands. RootNode is the 712 /// predecessor to all stores calculated by getStoreMergeCandidates and is 713 /// used to prune the dependency check. \return True if safe to merge. 714 bool checkMergeStoreCandidatesForDependencies( 715 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, 716 SDNode *RootNode); 717 718 /// This is a helper function for mergeConsecutiveStores. Given a list of 719 /// store candidates, find the first N that are consecutive in memory. 720 /// Returns 0 if there are not at least 2 consecutive stores to try merging. 721 unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, 722 int64_t ElementSizeBytes) const; 723 724 /// This is a helper function for mergeConsecutiveStores. It is used for 725 /// store chains that are composed entirely of constant values. 726 bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes, 727 unsigned NumConsecutiveStores, 728 EVT MemVT, SDNode *Root, bool AllowVectors); 729 730 /// This is a helper function for mergeConsecutiveStores. It is used for 731 /// store chains that are composed entirely of extracted vector elements. 732 /// When extracting multiple vector elements, try to store them in one 733 /// vector store rather than a sequence of scalar stores. 734 bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes, 735 unsigned NumConsecutiveStores, EVT MemVT, 736 SDNode *Root); 737 738 /// This is a helper function for mergeConsecutiveStores. It is used for 739 /// store chains that are composed entirely of loaded values. 740 bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, 741 unsigned NumConsecutiveStores, EVT MemVT, 742 SDNode *Root, bool AllowVectors, 743 bool IsNonTemporalStore, bool IsNonTemporalLoad); 744 745 /// Merge consecutive store operations into a wide store. 746 /// This optimization uses wide integers or vectors when possible. 747 /// \return true if stores were merged. 748 bool mergeConsecutiveStores(StoreSDNode *St); 749 750 /// Try to transform a truncation where C is a constant: 751 /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) 752 /// 753 /// \p N needs to be a truncation and its first operand an AND. Other 754 /// requirements are checked by the function (e.g. that trunc is 755 /// single-use) and if missed an empty SDValue is returned. 756 SDValue distributeTruncateThroughAnd(SDNode *N); 757 758 /// Helper function to determine whether the target supports operation 759 /// given by \p Opcode for type \p VT, that is, whether the operation 760 /// is legal or custom before legalizing operations, and whether is 761 /// legal (but not custom) after legalization. 762 bool hasOperation(unsigned Opcode, EVT VT) { 763 return TLI.isOperationLegalOrCustom(Opcode, VT, LegalOperations); 764 } 765 766 public: 767 /// Runs the dag combiner on all nodes in the work list 768 void Run(CombineLevel AtLevel); 769 770 SelectionDAG &getDAG() const { return DAG; } 771 772 /// Returns a type large enough to hold any valid shift amount - before type 773 /// legalization these can be huge. 774 EVT getShiftAmountTy(EVT LHSTy) { 775 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 776 return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes); 777 } 778 779 /// This method returns true if we are running before type legalization or 780 /// if the specified VT is legal. 781 bool isTypeLegal(const EVT &VT) { 782 if (!LegalTypes) return true; 783 return TLI.isTypeLegal(VT); 784 } 785 786 /// Convenience wrapper around TargetLowering::getSetCCResultType 787 EVT getSetCCResultType(EVT VT) const { 788 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 789 } 790 791 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 792 SDValue OrigLoad, SDValue ExtLoad, 793 ISD::NodeType ExtType); 794 }; 795 796 /// This class is a DAGUpdateListener that removes any deleted 797 /// nodes from the worklist. 798 class WorklistRemover : public SelectionDAG::DAGUpdateListener { 799 DAGCombiner &DC; 800 801 public: 802 explicit WorklistRemover(DAGCombiner &dc) 803 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 804 805 void NodeDeleted(SDNode *N, SDNode *E) override { 806 DC.removeFromWorklist(N); 807 } 808 }; 809 810 class WorklistInserter : public SelectionDAG::DAGUpdateListener { 811 DAGCombiner &DC; 812 813 public: 814 explicit WorklistInserter(DAGCombiner &dc) 815 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 816 817 // FIXME: Ideally we could add N to the worklist, but this causes exponential 818 // compile time costs in large DAGs, e.g. Halide. 819 void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); } 820 }; 821 822 } // end anonymous namespace 823 824 //===----------------------------------------------------------------------===// 825 // TargetLowering::DAGCombinerInfo implementation 826 //===----------------------------------------------------------------------===// 827 828 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { 829 ((DAGCombiner*)DC)->AddToWorklist(N); 830 } 831 832 SDValue TargetLowering::DAGCombinerInfo:: 833 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { 834 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); 835 } 836 837 SDValue TargetLowering::DAGCombinerInfo:: 838 CombineTo(SDNode *N, SDValue Res, bool AddTo) { 839 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); 840 } 841 842 SDValue TargetLowering::DAGCombinerInfo:: 843 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { 844 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); 845 } 846 847 bool TargetLowering::DAGCombinerInfo:: 848 recursivelyDeleteUnusedNodes(SDNode *N) { 849 return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N); 850 } 851 852 void TargetLowering::DAGCombinerInfo:: 853 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 854 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); 855 } 856 857 //===----------------------------------------------------------------------===// 858 // Helper Functions 859 //===----------------------------------------------------------------------===// 860 861 void DAGCombiner::deleteAndRecombine(SDNode *N) { 862 removeFromWorklist(N); 863 864 // If the operands of this node are only used by the node, they will now be 865 // dead. Make sure to re-visit them and recursively delete dead nodes. 866 for (const SDValue &Op : N->ops()) 867 // For an operand generating multiple values, one of the values may 868 // become dead allowing further simplification (e.g. split index 869 // arithmetic from an indexed load). 870 if (Op->hasOneUse() || Op->getNumValues() > 1) 871 AddToWorklist(Op.getNode()); 872 873 DAG.DeleteNode(N); 874 } 875 876 // APInts must be the same size for most operations, this helper 877 // function zero extends the shorter of the pair so that they match. 878 // We provide an Offset so that we can create bitwidths that won't overflow. 879 static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { 880 unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); 881 LHS = LHS.zextOrSelf(Bits); 882 RHS = RHS.zextOrSelf(Bits); 883 } 884 885 // Return true if this node is a setcc, or is a select_cc 886 // that selects between the target values used for true and false, making it 887 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to 888 // the appropriate nodes based on the type of node we are checking. This 889 // simplifies life a bit for the callers. 890 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 891 SDValue &CC, bool MatchStrict) const { 892 if (N.getOpcode() == ISD::SETCC) { 893 LHS = N.getOperand(0); 894 RHS = N.getOperand(1); 895 CC = N.getOperand(2); 896 return true; 897 } 898 899 if (MatchStrict && 900 (N.getOpcode() == ISD::STRICT_FSETCC || 901 N.getOpcode() == ISD::STRICT_FSETCCS)) { 902 LHS = N.getOperand(1); 903 RHS = N.getOperand(2); 904 CC = N.getOperand(3); 905 return true; 906 } 907 908 if (N.getOpcode() != ISD::SELECT_CC || !TLI.isConstTrueVal(N.getOperand(2)) || 909 !TLI.isConstFalseVal(N.getOperand(3))) 910 return false; 911 912 if (TLI.getBooleanContents(N.getValueType()) == 913 TargetLowering::UndefinedBooleanContent) 914 return false; 915 916 LHS = N.getOperand(0); 917 RHS = N.getOperand(1); 918 CC = N.getOperand(4); 919 return true; 920 } 921 922 /// Return true if this is a SetCC-equivalent operation with only one use. 923 /// If this is true, it allows the users to invert the operation for free when 924 /// it is profitable to do so. 925 bool DAGCombiner::isOneUseSetCC(SDValue N) const { 926 SDValue N0, N1, N2; 927 if (isSetCCEquivalent(N, N0, N1, N2) && N->hasOneUse()) 928 return true; 929 return false; 930 } 931 932 static bool isConstantSplatVectorMaskForType(SDNode *N, EVT ScalarTy) { 933 if (!ScalarTy.isSimple()) 934 return false; 935 936 uint64_t MaskForTy = 0ULL; 937 switch (ScalarTy.getSimpleVT().SimpleTy) { 938 case MVT::i8: 939 MaskForTy = 0xFFULL; 940 break; 941 case MVT::i16: 942 MaskForTy = 0xFFFFULL; 943 break; 944 case MVT::i32: 945 MaskForTy = 0xFFFFFFFFULL; 946 break; 947 default: 948 return false; 949 break; 950 } 951 952 APInt Val; 953 if (ISD::isConstantSplatVector(N, Val)) 954 return Val.getLimitedValue() == MaskForTy; 955 956 return false; 957 } 958 959 // Determines if it is a constant integer or a splat/build vector of constant 960 // integers (and undefs). 961 // Do not permit build vector implicit truncation. 962 static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { 963 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) 964 return !(Const->isOpaque() && NoOpaques); 965 if (N.getOpcode() != ISD::BUILD_VECTOR && N.getOpcode() != ISD::SPLAT_VECTOR) 966 return false; 967 unsigned BitWidth = N.getScalarValueSizeInBits(); 968 for (const SDValue &Op : N->op_values()) { 969 if (Op.isUndef()) 970 continue; 971 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); 972 if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || 973 (Const->isOpaque() && NoOpaques)) 974 return false; 975 } 976 return true; 977 } 978 979 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with 980 // undef's. 981 static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) { 982 if (V.getOpcode() != ISD::BUILD_VECTOR) 983 return false; 984 return isConstantOrConstantVector(V, NoOpaques) || 985 ISD::isBuildVectorOfConstantFPSDNodes(V.getNode()); 986 } 987 988 // Determine if this an indexed load with an opaque target constant index. 989 static bool canSplitIdx(LoadSDNode *LD) { 990 return MaySplitLoadIndex && 991 (LD->getOperand(2).getOpcode() != ISD::TargetConstant || 992 !cast<ConstantSDNode>(LD->getOperand(2))->isOpaque()); 993 } 994 995 bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc, 996 const SDLoc &DL, 997 SDValue N0, 998 SDValue N1) { 999 // Currently this only tries to ensure we don't undo the GEP splits done by 1000 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this, 1001 // we check if the following transformation would be problematic: 1002 // (load/store (add, (add, x, offset1), offset2)) -> 1003 // (load/store (add, x, offset1+offset2)). 1004 1005 if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD) 1006 return false; 1007 1008 if (N0.hasOneUse()) 1009 return false; 1010 1011 auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 1012 auto *C2 = dyn_cast<ConstantSDNode>(N1); 1013 if (!C1 || !C2) 1014 return false; 1015 1016 const APInt &C1APIntVal = C1->getAPIntValue(); 1017 const APInt &C2APIntVal = C2->getAPIntValue(); 1018 if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64) 1019 return false; 1020 1021 const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal; 1022 if (CombinedValueIntVal.getBitWidth() > 64) 1023 return false; 1024 const int64_t CombinedValue = CombinedValueIntVal.getSExtValue(); 1025 1026 for (SDNode *Node : N0->uses()) { 1027 auto LoadStore = dyn_cast<MemSDNode>(Node); 1028 if (LoadStore) { 1029 // Is x[offset2] already not a legal addressing mode? If so then 1030 // reassociating the constants breaks nothing (we test offset2 because 1031 // that's the one we hope to fold into the load or store). 1032 TargetLoweringBase::AddrMode AM; 1033 AM.HasBaseReg = true; 1034 AM.BaseOffs = C2APIntVal.getSExtValue(); 1035 EVT VT = LoadStore->getMemoryVT(); 1036 unsigned AS = LoadStore->getAddressSpace(); 1037 Type *AccessTy = VT.getTypeForEVT(*DAG.getContext()); 1038 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) 1039 continue; 1040 1041 // Would x[offset1+offset2] still be a legal addressing mode? 1042 AM.BaseOffs = CombinedValue; 1043 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) 1044 return true; 1045 } 1046 } 1047 1048 return false; 1049 } 1050 1051 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression 1052 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc. 1053 SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, 1054 SDValue N0, SDValue N1) { 1055 EVT VT = N0.getValueType(); 1056 1057 if (N0.getOpcode() != Opc) 1058 return SDValue(); 1059 1060 SDValue N00 = N0.getOperand(0); 1061 SDValue N01 = N0.getOperand(1); 1062 1063 if (DAG.isConstantIntBuildVectorOrConstantInt(peekThroughBitcasts(N01))) { 1064 if (DAG.isConstantIntBuildVectorOrConstantInt(peekThroughBitcasts(N1))) { 1065 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2)) 1066 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, {N01, N1})) 1067 return DAG.getNode(Opc, DL, VT, N00, OpNode); 1068 return SDValue(); 1069 } 1070 if (TLI.isReassocProfitable(DAG, N0, N1)) { 1071 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) 1072 // iff (op x, c1) has one use 1073 if (SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N00, N1)) 1074 return DAG.getNode(Opc, DL, VT, OpNode, N01); 1075 return SDValue(); 1076 } 1077 } 1078 1079 // Check for repeated operand logic simplifications. 1080 if (Opc == ISD::AND || Opc == ISD::OR) { 1081 // (N00 & N01) & N00 --> N00 & N01 1082 // (N00 & N01) & N01 --> N00 & N01 1083 // (N00 | N01) | N00 --> N00 | N01 1084 // (N00 | N01) | N01 --> N00 | N01 1085 if (N1 == N00 || N1 == N01) 1086 return N0; 1087 } 1088 if (Opc == ISD::XOR) { 1089 // (N00 ^ N01) ^ N00 --> N01 1090 if (N1 == N00) 1091 return N01; 1092 // (N00 ^ N01) ^ N01 --> N00 1093 if (N1 == N01) 1094 return N00; 1095 } 1096 1097 return SDValue(); 1098 } 1099 1100 // Try to reassociate commutative binops. 1101 SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 1102 SDValue N1, SDNodeFlags Flags) { 1103 assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative."); 1104 1105 // Floating-point reassociation is not allowed without loose FP math. 1106 if (N0.getValueType().isFloatingPoint() || 1107 N1.getValueType().isFloatingPoint()) 1108 if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros()) 1109 return SDValue(); 1110 1111 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1)) 1112 return Combined; 1113 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0)) 1114 return Combined; 1115 return SDValue(); 1116 } 1117 1118 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 1119 bool AddTo) { 1120 assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); 1121 ++NodesCombined; 1122 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; 1123 To[0].dump(&DAG); 1124 dbgs() << " and " << NumTo - 1 << " other values\n"); 1125 for (unsigned i = 0, e = NumTo; i != e; ++i) 1126 assert((!To[i].getNode() || 1127 N->getValueType(i) == To[i].getValueType()) && 1128 "Cannot combine value to value of different type!"); 1129 1130 WorklistRemover DeadNodes(*this); 1131 DAG.ReplaceAllUsesWith(N, To); 1132 if (AddTo) { 1133 // Push the new nodes and any users onto the worklist 1134 for (unsigned i = 0, e = NumTo; i != e; ++i) { 1135 if (To[i].getNode()) { 1136 AddToWorklist(To[i].getNode()); 1137 AddUsersToWorklist(To[i].getNode()); 1138 } 1139 } 1140 } 1141 1142 // Finally, if the node is now dead, remove it from the graph. The node 1143 // may not be dead if the replacement process recursively simplified to 1144 // something else needing this node. 1145 if (N->use_empty()) 1146 deleteAndRecombine(N); 1147 return SDValue(N, 0); 1148 } 1149 1150 void DAGCombiner:: 1151 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 1152 // Replace the old value with the new one. 1153 ++NodesCombined; 1154 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.dump(&DAG); 1155 dbgs() << "\nWith: "; TLO.New.dump(&DAG); dbgs() << '\n'); 1156 1157 // Replace all uses. If any nodes become isomorphic to other nodes and 1158 // are deleted, make sure to remove them from our worklist. 1159 WorklistRemover DeadNodes(*this); 1160 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); 1161 1162 // Push the new node and any (possibly new) users onto the worklist. 1163 AddToWorklistWithUsers(TLO.New.getNode()); 1164 1165 // Finally, if the node is now dead, remove it from the graph. The node 1166 // may not be dead if the replacement process recursively simplified to 1167 // something else needing this node. 1168 if (TLO.Old->use_empty()) 1169 deleteAndRecombine(TLO.Old.getNode()); 1170 } 1171 1172 /// Check the specified integer node value to see if it can be simplified or if 1173 /// things it uses can be simplified by bit propagation. If so, return true. 1174 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 1175 const APInt &DemandedElts, 1176 bool AssumeSingleUse) { 1177 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 1178 KnownBits Known; 1179 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0, 1180 AssumeSingleUse)) 1181 return false; 1182 1183 // Revisit the node. 1184 AddToWorklist(Op.getNode()); 1185 1186 CommitTargetLoweringOpt(TLO); 1187 return true; 1188 } 1189 1190 /// Check the specified vector node value to see if it can be simplified or 1191 /// if things it uses can be simplified as it only uses some of the elements. 1192 /// If so, return true. 1193 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, 1194 const APInt &DemandedElts, 1195 bool AssumeSingleUse) { 1196 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 1197 APInt KnownUndef, KnownZero; 1198 if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, 1199 TLO, 0, AssumeSingleUse)) 1200 return false; 1201 1202 // Revisit the node. 1203 AddToWorklist(Op.getNode()); 1204 1205 CommitTargetLoweringOpt(TLO); 1206 return true; 1207 } 1208 1209 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { 1210 SDLoc DL(Load); 1211 EVT VT = Load->getValueType(0); 1212 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); 1213 1214 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; 1215 Trunc.dump(&DAG); dbgs() << '\n'); 1216 WorklistRemover DeadNodes(*this); 1217 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); 1218 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); 1219 deleteAndRecombine(Load); 1220 AddToWorklist(Trunc.getNode()); 1221 } 1222 1223 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { 1224 Replace = false; 1225 SDLoc DL(Op); 1226 if (ISD::isUNINDEXEDLoad(Op.getNode())) { 1227 LoadSDNode *LD = cast<LoadSDNode>(Op); 1228 EVT MemVT = LD->getMemoryVT(); 1229 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD 1230 : LD->getExtensionType(); 1231 Replace = true; 1232 return DAG.getExtLoad(ExtType, DL, PVT, 1233 LD->getChain(), LD->getBasePtr(), 1234 MemVT, LD->getMemOperand()); 1235 } 1236 1237 unsigned Opc = Op.getOpcode(); 1238 switch (Opc) { 1239 default: break; 1240 case ISD::AssertSext: 1241 if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT)) 1242 return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1)); 1243 break; 1244 case ISD::AssertZext: 1245 if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT)) 1246 return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1)); 1247 break; 1248 case ISD::Constant: { 1249 unsigned ExtOpc = 1250 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 1251 return DAG.getNode(ExtOpc, DL, PVT, Op); 1252 } 1253 } 1254 1255 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) 1256 return SDValue(); 1257 return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); 1258 } 1259 1260 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { 1261 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) 1262 return SDValue(); 1263 EVT OldVT = Op.getValueType(); 1264 SDLoc DL(Op); 1265 bool Replace = false; 1266 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1267 if (!NewOp.getNode()) 1268 return SDValue(); 1269 AddToWorklist(NewOp.getNode()); 1270 1271 if (Replace) 1272 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1273 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, 1274 DAG.getValueType(OldVT)); 1275 } 1276 1277 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { 1278 EVT OldVT = Op.getValueType(); 1279 SDLoc DL(Op); 1280 bool Replace = false; 1281 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1282 if (!NewOp.getNode()) 1283 return SDValue(); 1284 AddToWorklist(NewOp.getNode()); 1285 1286 if (Replace) 1287 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1288 return DAG.getZeroExtendInReg(NewOp, DL, OldVT); 1289 } 1290 1291 /// Promote the specified integer binary operation if the target indicates it is 1292 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1293 /// i32 since i16 instructions are longer. 1294 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { 1295 if (!LegalOperations) 1296 return SDValue(); 1297 1298 EVT VT = Op.getValueType(); 1299 if (VT.isVector() || !VT.isInteger()) 1300 return SDValue(); 1301 1302 // If operation type is 'undesirable', e.g. i16 on x86, consider 1303 // promoting it. 1304 unsigned Opc = Op.getOpcode(); 1305 if (TLI.isTypeDesirableForOp(Opc, VT)) 1306 return SDValue(); 1307 1308 EVT PVT = VT; 1309 // Consult target whether it is a good idea to promote this operation and 1310 // what's the right type to promote it to. 1311 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1312 assert(PVT != VT && "Don't know what type to promote to!"); 1313 1314 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG)); 1315 1316 bool Replace0 = false; 1317 SDValue N0 = Op.getOperand(0); 1318 SDValue NN0 = PromoteOperand(N0, PVT, Replace0); 1319 1320 bool Replace1 = false; 1321 SDValue N1 = Op.getOperand(1); 1322 SDValue NN1 = PromoteOperand(N1, PVT, Replace1); 1323 SDLoc DL(Op); 1324 1325 SDValue RV = 1326 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); 1327 1328 // We are always replacing N0/N1's use in N and only need additional 1329 // replacements if there are additional uses. 1330 // Note: We are checking uses of the *nodes* (SDNode) rather than values 1331 // (SDValue) here because the node may reference multiple values 1332 // (for example, the chain value of a load node). 1333 Replace0 &= !N0->hasOneUse(); 1334 Replace1 &= (N0 != N1) && !N1->hasOneUse(); 1335 1336 // Combine Op here so it is preserved past replacements. 1337 CombineTo(Op.getNode(), RV); 1338 1339 // If operands have a use ordering, make sure we deal with 1340 // predecessor first. 1341 if (Replace0 && Replace1 && N0->isPredecessorOf(N1.getNode())) { 1342 std::swap(N0, N1); 1343 std::swap(NN0, NN1); 1344 } 1345 1346 if (Replace0) { 1347 AddToWorklist(NN0.getNode()); 1348 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); 1349 } 1350 if (Replace1) { 1351 AddToWorklist(NN1.getNode()); 1352 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); 1353 } 1354 return Op; 1355 } 1356 return SDValue(); 1357 } 1358 1359 /// Promote the specified integer shift operation if the target indicates it is 1360 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1361 /// i32 since i16 instructions are longer. 1362 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { 1363 if (!LegalOperations) 1364 return SDValue(); 1365 1366 EVT VT = Op.getValueType(); 1367 if (VT.isVector() || !VT.isInteger()) 1368 return SDValue(); 1369 1370 // If operation type is 'undesirable', e.g. i16 on x86, consider 1371 // promoting it. 1372 unsigned Opc = Op.getOpcode(); 1373 if (TLI.isTypeDesirableForOp(Opc, VT)) 1374 return SDValue(); 1375 1376 EVT PVT = VT; 1377 // Consult target whether it is a good idea to promote this operation and 1378 // what's the right type to promote it to. 1379 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1380 assert(PVT != VT && "Don't know what type to promote to!"); 1381 1382 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG)); 1383 1384 bool Replace = false; 1385 SDValue N0 = Op.getOperand(0); 1386 SDValue N1 = Op.getOperand(1); 1387 if (Opc == ISD::SRA) 1388 N0 = SExtPromoteOperand(N0, PVT); 1389 else if (Opc == ISD::SRL) 1390 N0 = ZExtPromoteOperand(N0, PVT); 1391 else 1392 N0 = PromoteOperand(N0, PVT, Replace); 1393 1394 if (!N0.getNode()) 1395 return SDValue(); 1396 1397 SDLoc DL(Op); 1398 SDValue RV = 1399 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); 1400 1401 if (Replace) 1402 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); 1403 1404 // Deal with Op being deleted. 1405 if (Op && Op.getOpcode() != ISD::DELETED_NODE) 1406 return RV; 1407 } 1408 return SDValue(); 1409 } 1410 1411 SDValue DAGCombiner::PromoteExtend(SDValue Op) { 1412 if (!LegalOperations) 1413 return SDValue(); 1414 1415 EVT VT = Op.getValueType(); 1416 if (VT.isVector() || !VT.isInteger()) 1417 return SDValue(); 1418 1419 // If operation type is 'undesirable', e.g. i16 on x86, consider 1420 // promoting it. 1421 unsigned Opc = Op.getOpcode(); 1422 if (TLI.isTypeDesirableForOp(Opc, VT)) 1423 return SDValue(); 1424 1425 EVT PVT = VT; 1426 // Consult target whether it is a good idea to promote this operation and 1427 // what's the right type to promote it to. 1428 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1429 assert(PVT != VT && "Don't know what type to promote to!"); 1430 // fold (aext (aext x)) -> (aext x) 1431 // fold (aext (zext x)) -> (zext x) 1432 // fold (aext (sext x)) -> (sext x) 1433 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG)); 1434 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); 1435 } 1436 return SDValue(); 1437 } 1438 1439 bool DAGCombiner::PromoteLoad(SDValue Op) { 1440 if (!LegalOperations) 1441 return false; 1442 1443 if (!ISD::isUNINDEXEDLoad(Op.getNode())) 1444 return false; 1445 1446 EVT VT = Op.getValueType(); 1447 if (VT.isVector() || !VT.isInteger()) 1448 return false; 1449 1450 // If operation type is 'undesirable', e.g. i16 on x86, consider 1451 // promoting it. 1452 unsigned Opc = Op.getOpcode(); 1453 if (TLI.isTypeDesirableForOp(Opc, VT)) 1454 return false; 1455 1456 EVT PVT = VT; 1457 // Consult target whether it is a good idea to promote this operation and 1458 // what's the right type to promote it to. 1459 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1460 assert(PVT != VT && "Don't know what type to promote to!"); 1461 1462 SDLoc DL(Op); 1463 SDNode *N = Op.getNode(); 1464 LoadSDNode *LD = cast<LoadSDNode>(N); 1465 EVT MemVT = LD->getMemoryVT(); 1466 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD 1467 : LD->getExtensionType(); 1468 SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, 1469 LD->getChain(), LD->getBasePtr(), 1470 MemVT, LD->getMemOperand()); 1471 SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); 1472 1473 LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; 1474 Result.dump(&DAG); dbgs() << '\n'); 1475 WorklistRemover DeadNodes(*this); 1476 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1477 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); 1478 deleteAndRecombine(N); 1479 AddToWorklist(Result.getNode()); 1480 return true; 1481 } 1482 return false; 1483 } 1484 1485 /// Recursively delete a node which has no uses and any operands for 1486 /// which it is the only use. 1487 /// 1488 /// Note that this both deletes the nodes and removes them from the worklist. 1489 /// It also adds any nodes who have had a user deleted to the worklist as they 1490 /// may now have only one use and subject to other combines. 1491 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { 1492 if (!N->use_empty()) 1493 return false; 1494 1495 SmallSetVector<SDNode *, 16> Nodes; 1496 Nodes.insert(N); 1497 do { 1498 N = Nodes.pop_back_val(); 1499 if (!N) 1500 continue; 1501 1502 if (N->use_empty()) { 1503 for (const SDValue &ChildN : N->op_values()) 1504 Nodes.insert(ChildN.getNode()); 1505 1506 removeFromWorklist(N); 1507 DAG.DeleteNode(N); 1508 } else { 1509 AddToWorklist(N); 1510 } 1511 } while (!Nodes.empty()); 1512 return true; 1513 } 1514 1515 //===----------------------------------------------------------------------===// 1516 // Main DAG Combiner implementation 1517 //===----------------------------------------------------------------------===// 1518 1519 void DAGCombiner::Run(CombineLevel AtLevel) { 1520 // set the instance variables, so that the various visit routines may use it. 1521 Level = AtLevel; 1522 LegalDAG = Level >= AfterLegalizeDAG; 1523 LegalOperations = Level >= AfterLegalizeVectorOps; 1524 LegalTypes = Level >= AfterLegalizeTypes; 1525 1526 WorklistInserter AddNodes(*this); 1527 1528 // Add all the dag nodes to the worklist. 1529 for (SDNode &Node : DAG.allnodes()) 1530 AddToWorklist(&Node); 1531 1532 // Create a dummy node (which is not added to allnodes), that adds a reference 1533 // to the root node, preventing it from being deleted, and tracking any 1534 // changes of the root. 1535 HandleSDNode Dummy(DAG.getRoot()); 1536 1537 // While we have a valid worklist entry node, try to combine it. 1538 while (SDNode *N = getNextWorklistEntry()) { 1539 // If N has no uses, it is dead. Make sure to revisit all N's operands once 1540 // N is deleted from the DAG, since they too may now be dead or may have a 1541 // reduced number of uses, allowing other xforms. 1542 if (recursivelyDeleteUnusedNodes(N)) 1543 continue; 1544 1545 WorklistRemover DeadNodes(*this); 1546 1547 // If this combine is running after legalizing the DAG, re-legalize any 1548 // nodes pulled off the worklist. 1549 if (LegalDAG) { 1550 SmallSetVector<SDNode *, 16> UpdatedNodes; 1551 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); 1552 1553 for (SDNode *LN : UpdatedNodes) 1554 AddToWorklistWithUsers(LN); 1555 1556 if (!NIsValid) 1557 continue; 1558 } 1559 1560 LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); 1561 1562 // Add any operands of the new node which have not yet been combined to the 1563 // worklist as well. Because the worklist uniques things already, this 1564 // won't repeatedly process the same operand. 1565 CombinedNodes.insert(N); 1566 for (const SDValue &ChildN : N->op_values()) 1567 if (!CombinedNodes.count(ChildN.getNode())) 1568 AddToWorklist(ChildN.getNode()); 1569 1570 SDValue RV = combine(N); 1571 1572 if (!RV.getNode()) 1573 continue; 1574 1575 ++NodesCombined; 1576 1577 // If we get back the same node we passed in, rather than a new node or 1578 // zero, we know that the node must have defined multiple values and 1579 // CombineTo was used. Since CombineTo takes care of the worklist 1580 // mechanics for us, we have no work to do in this case. 1581 if (RV.getNode() == N) 1582 continue; 1583 1584 assert(N->getOpcode() != ISD::DELETED_NODE && 1585 RV.getOpcode() != ISD::DELETED_NODE && 1586 "Node was deleted but visit returned new node!"); 1587 1588 LLVM_DEBUG(dbgs() << " ... into: "; RV.dump(&DAG)); 1589 1590 if (N->getNumValues() == RV->getNumValues()) 1591 DAG.ReplaceAllUsesWith(N, RV.getNode()); 1592 else { 1593 assert(N->getValueType(0) == RV.getValueType() && 1594 N->getNumValues() == 1 && "Type mismatch"); 1595 DAG.ReplaceAllUsesWith(N, &RV); 1596 } 1597 1598 // Push the new node and any users onto the worklist. Omit this if the 1599 // new node is the EntryToken (e.g. if a store managed to get optimized 1600 // out), because re-visiting the EntryToken and its users will not uncover 1601 // any additional opportunities, but there may be a large number of such 1602 // users, potentially causing compile time explosion. 1603 if (RV.getOpcode() != ISD::EntryToken) { 1604 AddToWorklist(RV.getNode()); 1605 AddUsersToWorklist(RV.getNode()); 1606 } 1607 1608 // Finally, if the node is now dead, remove it from the graph. The node 1609 // may not be dead if the replacement process recursively simplified to 1610 // something else needing this node. This will also take care of adding any 1611 // operands which have lost a user to the worklist. 1612 recursivelyDeleteUnusedNodes(N); 1613 } 1614 1615 // If the root changed (e.g. it was a dead load, update the root). 1616 DAG.setRoot(Dummy.getValue()); 1617 DAG.RemoveDeadNodes(); 1618 } 1619 1620 SDValue DAGCombiner::visit(SDNode *N) { 1621 switch (N->getOpcode()) { 1622 default: break; 1623 case ISD::TokenFactor: return visitTokenFactor(N); 1624 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); 1625 case ISD::ADD: return visitADD(N); 1626 case ISD::SUB: return visitSUB(N); 1627 case ISD::SADDSAT: 1628 case ISD::UADDSAT: return visitADDSAT(N); 1629 case ISD::SSUBSAT: 1630 case ISD::USUBSAT: return visitSUBSAT(N); 1631 case ISD::ADDC: return visitADDC(N); 1632 case ISD::SADDO: 1633 case ISD::UADDO: return visitADDO(N); 1634 case ISD::SUBC: return visitSUBC(N); 1635 case ISD::SSUBO: 1636 case ISD::USUBO: return visitSUBO(N); 1637 case ISD::ADDE: return visitADDE(N); 1638 case ISD::ADDCARRY: return visitADDCARRY(N); 1639 case ISD::SADDO_CARRY: return visitSADDO_CARRY(N); 1640 case ISD::SUBE: return visitSUBE(N); 1641 case ISD::SUBCARRY: return visitSUBCARRY(N); 1642 case ISD::SSUBO_CARRY: return visitSSUBO_CARRY(N); 1643 case ISD::SMULFIX: 1644 case ISD::SMULFIXSAT: 1645 case ISD::UMULFIX: 1646 case ISD::UMULFIXSAT: return visitMULFIX(N); 1647 case ISD::MUL: return visitMUL(N); 1648 case ISD::SDIV: return visitSDIV(N); 1649 case ISD::UDIV: return visitUDIV(N); 1650 case ISD::SREM: 1651 case ISD::UREM: return visitREM(N); 1652 case ISD::MULHU: return visitMULHU(N); 1653 case ISD::MULHS: return visitMULHS(N); 1654 case ISD::AVGFLOORS: 1655 case ISD::AVGFLOORU: 1656 case ISD::AVGCEILS: 1657 case ISD::AVGCEILU: return visitAVG(N); 1658 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); 1659 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); 1660 case ISD::SMULO: 1661 case ISD::UMULO: return visitMULO(N); 1662 case ISD::SMIN: 1663 case ISD::SMAX: 1664 case ISD::UMIN: 1665 case ISD::UMAX: return visitIMINMAX(N); 1666 case ISD::AND: return visitAND(N); 1667 case ISD::OR: return visitOR(N); 1668 case ISD::XOR: return visitXOR(N); 1669 case ISD::SHL: return visitSHL(N); 1670 case ISD::SRA: return visitSRA(N); 1671 case ISD::SRL: return visitSRL(N); 1672 case ISD::ROTR: 1673 case ISD::ROTL: return visitRotate(N); 1674 case ISD::FSHL: 1675 case ISD::FSHR: return visitFunnelShift(N); 1676 case ISD::SSHLSAT: 1677 case ISD::USHLSAT: return visitSHLSAT(N); 1678 case ISD::ABS: return visitABS(N); 1679 case ISD::BSWAP: return visitBSWAP(N); 1680 case ISD::BITREVERSE: return visitBITREVERSE(N); 1681 case ISD::CTLZ: return visitCTLZ(N); 1682 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); 1683 case ISD::CTTZ: return visitCTTZ(N); 1684 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); 1685 case ISD::CTPOP: return visitCTPOP(N); 1686 case ISD::SELECT: return visitSELECT(N); 1687 case ISD::VSELECT: return visitVSELECT(N); 1688 case ISD::SELECT_CC: return visitSELECT_CC(N); 1689 case ISD::SETCC: return visitSETCC(N); 1690 case ISD::SETCCCARRY: return visitSETCCCARRY(N); 1691 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); 1692 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); 1693 case ISD::ANY_EXTEND: return visitANY_EXTEND(N); 1694 case ISD::AssertSext: 1695 case ISD::AssertZext: return visitAssertExt(N); 1696 case ISD::AssertAlign: return visitAssertAlign(N); 1697 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); 1698 case ISD::SIGN_EXTEND_VECTOR_INREG: 1699 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitEXTEND_VECTOR_INREG(N); 1700 case ISD::TRUNCATE: return visitTRUNCATE(N); 1701 case ISD::BITCAST: return visitBITCAST(N); 1702 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); 1703 case ISD::FADD: return visitFADD(N); 1704 case ISD::STRICT_FADD: return visitSTRICT_FADD(N); 1705 case ISD::FSUB: return visitFSUB(N); 1706 case ISD::FMUL: return visitFMUL(N); 1707 case ISD::FMA: return visitFMA(N); 1708 case ISD::FDIV: return visitFDIV(N); 1709 case ISD::FREM: return visitFREM(N); 1710 case ISD::FSQRT: return visitFSQRT(N); 1711 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); 1712 case ISD::FPOW: return visitFPOW(N); 1713 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); 1714 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); 1715 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); 1716 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); 1717 case ISD::FP_ROUND: return visitFP_ROUND(N); 1718 case ISD::FP_EXTEND: return visitFP_EXTEND(N); 1719 case ISD::FNEG: return visitFNEG(N); 1720 case ISD::FABS: return visitFABS(N); 1721 case ISD::FFLOOR: return visitFFLOOR(N); 1722 case ISD::FMINNUM: 1723 case ISD::FMAXNUM: 1724 case ISD::FMINIMUM: 1725 case ISD::FMAXIMUM: return visitFMinMax(N); 1726 case ISD::FCEIL: return visitFCEIL(N); 1727 case ISD::FTRUNC: return visitFTRUNC(N); 1728 case ISD::BRCOND: return visitBRCOND(N); 1729 case ISD::BR_CC: return visitBR_CC(N); 1730 case ISD::LOAD: return visitLOAD(N); 1731 case ISD::STORE: return visitSTORE(N); 1732 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); 1733 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); 1734 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); 1735 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); 1736 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); 1737 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); 1738 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); 1739 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); 1740 case ISD::MGATHER: return visitMGATHER(N); 1741 case ISD::MLOAD: return visitMLOAD(N); 1742 case ISD::MSCATTER: return visitMSCATTER(N); 1743 case ISD::MSTORE: return visitMSTORE(N); 1744 case ISD::LIFETIME_END: return visitLIFETIME_END(N); 1745 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); 1746 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); 1747 case ISD::FREEZE: return visitFREEZE(N); 1748 case ISD::VECREDUCE_FADD: 1749 case ISD::VECREDUCE_FMUL: 1750 case ISD::VECREDUCE_ADD: 1751 case ISD::VECREDUCE_MUL: 1752 case ISD::VECREDUCE_AND: 1753 case ISD::VECREDUCE_OR: 1754 case ISD::VECREDUCE_XOR: 1755 case ISD::VECREDUCE_SMAX: 1756 case ISD::VECREDUCE_SMIN: 1757 case ISD::VECREDUCE_UMAX: 1758 case ISD::VECREDUCE_UMIN: 1759 case ISD::VECREDUCE_FMAX: 1760 case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N); 1761 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) case ISD::SDOPC: 1762 #include "llvm/IR/VPIntrinsics.def" 1763 return visitVPOp(N); 1764 } 1765 return SDValue(); 1766 } 1767 1768 SDValue DAGCombiner::combine(SDNode *N) { 1769 SDValue RV; 1770 if (!DisableGenericCombines) 1771 RV = visit(N); 1772 1773 // If nothing happened, try a target-specific DAG combine. 1774 if (!RV.getNode()) { 1775 assert(N->getOpcode() != ISD::DELETED_NODE && 1776 "Node was deleted but visit returned NULL!"); 1777 1778 if (N->getOpcode() >= ISD::BUILTIN_OP_END || 1779 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { 1780 1781 // Expose the DAG combiner to the target combiner impls. 1782 TargetLowering::DAGCombinerInfo 1783 DagCombineInfo(DAG, Level, false, this); 1784 1785 RV = TLI.PerformDAGCombine(N, DagCombineInfo); 1786 } 1787 } 1788 1789 // If nothing happened still, try promoting the operation. 1790 if (!RV.getNode()) { 1791 switch (N->getOpcode()) { 1792 default: break; 1793 case ISD::ADD: 1794 case ISD::SUB: 1795 case ISD::MUL: 1796 case ISD::AND: 1797 case ISD::OR: 1798 case ISD::XOR: 1799 RV = PromoteIntBinOp(SDValue(N, 0)); 1800 break; 1801 case ISD::SHL: 1802 case ISD::SRA: 1803 case ISD::SRL: 1804 RV = PromoteIntShiftOp(SDValue(N, 0)); 1805 break; 1806 case ISD::SIGN_EXTEND: 1807 case ISD::ZERO_EXTEND: 1808 case ISD::ANY_EXTEND: 1809 RV = PromoteExtend(SDValue(N, 0)); 1810 break; 1811 case ISD::LOAD: 1812 if (PromoteLoad(SDValue(N, 0))) 1813 RV = SDValue(N, 0); 1814 break; 1815 } 1816 } 1817 1818 // If N is a commutative binary node, try to eliminate it if the commuted 1819 // version is already present in the DAG. 1820 if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) && 1821 N->getNumValues() == 1) { 1822 SDValue N0 = N->getOperand(0); 1823 SDValue N1 = N->getOperand(1); 1824 1825 // Constant operands are canonicalized to RHS. 1826 if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) { 1827 SDValue Ops[] = {N1, N0}; 1828 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 1829 N->getFlags()); 1830 if (CSENode) 1831 return SDValue(CSENode, 0); 1832 } 1833 } 1834 1835 return RV; 1836 } 1837 1838 /// Given a node, return its input chain if it has one, otherwise return a null 1839 /// sd operand. 1840 static SDValue getInputChainForNode(SDNode *N) { 1841 if (unsigned NumOps = N->getNumOperands()) { 1842 if (N->getOperand(0).getValueType() == MVT::Other) 1843 return N->getOperand(0); 1844 if (N->getOperand(NumOps-1).getValueType() == MVT::Other) 1845 return N->getOperand(NumOps-1); 1846 for (unsigned i = 1; i < NumOps-1; ++i) 1847 if (N->getOperand(i).getValueType() == MVT::Other) 1848 return N->getOperand(i); 1849 } 1850 return SDValue(); 1851 } 1852 1853 SDValue DAGCombiner::visitTokenFactor(SDNode *N) { 1854 // If N has two operands, where one has an input chain equal to the other, 1855 // the 'other' chain is redundant. 1856 if (N->getNumOperands() == 2) { 1857 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) 1858 return N->getOperand(0); 1859 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) 1860 return N->getOperand(1); 1861 } 1862 1863 // Don't simplify token factors if optnone. 1864 if (OptLevel == CodeGenOpt::None) 1865 return SDValue(); 1866 1867 // Don't simplify the token factor if the node itself has too many operands. 1868 if (N->getNumOperands() > TokenFactorInlineLimit) 1869 return SDValue(); 1870 1871 // If the sole user is a token factor, we should make sure we have a 1872 // chance to merge them together. This prevents TF chains from inhibiting 1873 // optimizations. 1874 if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor) 1875 AddToWorklist(*(N->use_begin())); 1876 1877 SmallVector<SDNode *, 8> TFs; // List of token factors to visit. 1878 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. 1879 SmallPtrSet<SDNode*, 16> SeenOps; 1880 bool Changed = false; // If we should replace this token factor. 1881 1882 // Start out with this token factor. 1883 TFs.push_back(N); 1884 1885 // Iterate through token factors. The TFs grows when new token factors are 1886 // encountered. 1887 for (unsigned i = 0; i < TFs.size(); ++i) { 1888 // Limit number of nodes to inline, to avoid quadratic compile times. 1889 // We have to add the outstanding Token Factors to Ops, otherwise we might 1890 // drop Ops from the resulting Token Factors. 1891 if (Ops.size() > TokenFactorInlineLimit) { 1892 for (unsigned j = i; j < TFs.size(); j++) 1893 Ops.emplace_back(TFs[j], 0); 1894 // Drop unprocessed Token Factors from TFs, so we do not add them to the 1895 // combiner worklist later. 1896 TFs.resize(i); 1897 break; 1898 } 1899 1900 SDNode *TF = TFs[i]; 1901 // Check each of the operands. 1902 for (const SDValue &Op : TF->op_values()) { 1903 switch (Op.getOpcode()) { 1904 case ISD::EntryToken: 1905 // Entry tokens don't need to be added to the list. They are 1906 // redundant. 1907 Changed = true; 1908 break; 1909 1910 case ISD::TokenFactor: 1911 if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { 1912 // Queue up for processing. 1913 TFs.push_back(Op.getNode()); 1914 Changed = true; 1915 break; 1916 } 1917 LLVM_FALLTHROUGH; 1918 1919 default: 1920 // Only add if it isn't already in the list. 1921 if (SeenOps.insert(Op.getNode()).second) 1922 Ops.push_back(Op); 1923 else 1924 Changed = true; 1925 break; 1926 } 1927 } 1928 } 1929 1930 // Re-visit inlined Token Factors, to clean them up in case they have been 1931 // removed. Skip the first Token Factor, as this is the current node. 1932 for (unsigned i = 1, e = TFs.size(); i < e; i++) 1933 AddToWorklist(TFs[i]); 1934 1935 // Remove Nodes that are chained to another node in the list. Do so 1936 // by walking up chains breath-first stopping when we've seen 1937 // another operand. In general we must climb to the EntryNode, but we can exit 1938 // early if we find all remaining work is associated with just one operand as 1939 // no further pruning is possible. 1940 1941 // List of nodes to search through and original Ops from which they originate. 1942 SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; 1943 SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. 1944 SmallPtrSet<SDNode *, 16> SeenChains; 1945 bool DidPruneOps = false; 1946 1947 unsigned NumLeftToConsider = 0; 1948 for (const SDValue &Op : Ops) { 1949 Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); 1950 OpWorkCount.push_back(1); 1951 } 1952 1953 auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { 1954 // If this is an Op, we can remove the op from the list. Remark any 1955 // search associated with it as from the current OpNumber. 1956 if (SeenOps.contains(Op)) { 1957 Changed = true; 1958 DidPruneOps = true; 1959 unsigned OrigOpNumber = 0; 1960 while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) 1961 OrigOpNumber++; 1962 assert((OrigOpNumber != Ops.size()) && 1963 "expected to find TokenFactor Operand"); 1964 // Re-mark worklist from OrigOpNumber to OpNumber 1965 for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { 1966 if (Worklist[i].second == OrigOpNumber) { 1967 Worklist[i].second = OpNumber; 1968 } 1969 } 1970 OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; 1971 OpWorkCount[OrigOpNumber] = 0; 1972 NumLeftToConsider--; 1973 } 1974 // Add if it's a new chain 1975 if (SeenChains.insert(Op).second) { 1976 OpWorkCount[OpNumber]++; 1977 Worklist.push_back(std::make_pair(Op, OpNumber)); 1978 } 1979 }; 1980 1981 for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { 1982 // We need at least be consider at least 2 Ops to prune. 1983 if (NumLeftToConsider <= 1) 1984 break; 1985 auto CurNode = Worklist[i].first; 1986 auto CurOpNumber = Worklist[i].second; 1987 assert((OpWorkCount[CurOpNumber] > 0) && 1988 "Node should not appear in worklist"); 1989 switch (CurNode->getOpcode()) { 1990 case ISD::EntryToken: 1991 // Hitting EntryToken is the only way for the search to terminate without 1992 // hitting 1993 // another operand's search. Prevent us from marking this operand 1994 // considered. 1995 NumLeftToConsider++; 1996 break; 1997 case ISD::TokenFactor: 1998 for (const SDValue &Op : CurNode->op_values()) 1999 AddToWorklist(i, Op.getNode(), CurOpNumber); 2000 break; 2001 case ISD::LIFETIME_START: 2002 case ISD::LIFETIME_END: 2003 case ISD::CopyFromReg: 2004 case ISD::CopyToReg: 2005 AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); 2006 break; 2007 default: 2008 if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) 2009 AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); 2010 break; 2011 } 2012 OpWorkCount[CurOpNumber]--; 2013 if (OpWorkCount[CurOpNumber] == 0) 2014 NumLeftToConsider--; 2015 } 2016 2017 // If we've changed things around then replace token factor. 2018 if (Changed) { 2019 SDValue Result; 2020 if (Ops.empty()) { 2021 // The entry token is the only possible outcome. 2022 Result = DAG.getEntryNode(); 2023 } else { 2024 if (DidPruneOps) { 2025 SmallVector<SDValue, 8> PrunedOps; 2026 // 2027 for (const SDValue &Op : Ops) { 2028 if (SeenChains.count(Op.getNode()) == 0) 2029 PrunedOps.push_back(Op); 2030 } 2031 Result = DAG.getTokenFactor(SDLoc(N), PrunedOps); 2032 } else { 2033 Result = DAG.getTokenFactor(SDLoc(N), Ops); 2034 } 2035 } 2036 return Result; 2037 } 2038 return SDValue(); 2039 } 2040 2041 /// MERGE_VALUES can always be eliminated. 2042 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { 2043 WorklistRemover DeadNodes(*this); 2044 // Replacing results may cause a different MERGE_VALUES to suddenly 2045 // be CSE'd with N, and carry its uses with it. Iterate until no 2046 // uses remain, to ensure that the node can be safely deleted. 2047 // First add the users of this node to the work list so that they 2048 // can be tried again once they have new operands. 2049 AddUsersToWorklist(N); 2050 do { 2051 // Do as a single replacement to avoid rewalking use lists. 2052 SmallVector<SDValue, 8> Ops; 2053 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 2054 Ops.push_back(N->getOperand(i)); 2055 DAG.ReplaceAllUsesWith(N, Ops.data()); 2056 } while (!N->use_empty()); 2057 deleteAndRecombine(N); 2058 return SDValue(N, 0); // Return N so it doesn't get rechecked! 2059 } 2060 2061 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a 2062 /// ConstantSDNode pointer else nullptr. 2063 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { 2064 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); 2065 return Const != nullptr && !Const->isOpaque() ? Const : nullptr; 2066 } 2067 2068 /// Return true if 'Use' is a load or a store that uses N as its base pointer 2069 /// and that N may be folded in the load / store addressing mode. 2070 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, SelectionDAG &DAG, 2071 const TargetLowering &TLI) { 2072 EVT VT; 2073 unsigned AS; 2074 2075 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { 2076 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 2077 return false; 2078 VT = LD->getMemoryVT(); 2079 AS = LD->getAddressSpace(); 2080 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { 2081 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 2082 return false; 2083 VT = ST->getMemoryVT(); 2084 AS = ST->getAddressSpace(); 2085 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(Use)) { 2086 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 2087 return false; 2088 VT = LD->getMemoryVT(); 2089 AS = LD->getAddressSpace(); 2090 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(Use)) { 2091 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 2092 return false; 2093 VT = ST->getMemoryVT(); 2094 AS = ST->getAddressSpace(); 2095 } else 2096 return false; 2097 2098 TargetLowering::AddrMode AM; 2099 if (N->getOpcode() == ISD::ADD) { 2100 AM.HasBaseReg = true; 2101 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2102 if (Offset) 2103 // [reg +/- imm] 2104 AM.BaseOffs = Offset->getSExtValue(); 2105 else 2106 // [reg +/- reg] 2107 AM.Scale = 1; 2108 } else if (N->getOpcode() == ISD::SUB) { 2109 AM.HasBaseReg = true; 2110 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2111 if (Offset) 2112 // [reg +/- imm] 2113 AM.BaseOffs = -Offset->getSExtValue(); 2114 else 2115 // [reg +/- reg] 2116 AM.Scale = 1; 2117 } else 2118 return false; 2119 2120 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, 2121 VT.getTypeForEVT(*DAG.getContext()), AS); 2122 } 2123 2124 /// This inverts a canonicalization in IR that replaces a variable select arm 2125 /// with an identity constant. Codegen improves if we re-use the variable 2126 /// operand rather than load a constant. This can also be converted into a 2127 /// masked vector operation if the target supports it. 2128 static SDValue foldSelectWithIdentityConstant(SDNode *N, SelectionDAG &DAG, 2129 bool ShouldCommuteOperands) { 2130 // Match a select as operand 1. The identity constant that we are looking for 2131 // is only valid as operand 1 of a non-commutative binop. 2132 SDValue N0 = N->getOperand(0); 2133 SDValue N1 = N->getOperand(1); 2134 if (ShouldCommuteOperands) 2135 std::swap(N0, N1); 2136 2137 // TODO: Should this apply to scalar select too? 2138 if (!N1.hasOneUse() || N1.getOpcode() != ISD::VSELECT) 2139 return SDValue(); 2140 2141 unsigned Opcode = N->getOpcode(); 2142 EVT VT = N->getValueType(0); 2143 SDValue Cond = N1.getOperand(0); 2144 SDValue TVal = N1.getOperand(1); 2145 SDValue FVal = N1.getOperand(2); 2146 2147 // TODO: The cases should match with IR's ConstantExpr::getBinOpIdentity(). 2148 // TODO: Target-specific opcodes could be added. Ex: "isCommutativeBinOp()". 2149 // TODO: With fast-math (NSZ), allow the opposite-sign form of zero? 2150 auto isIdentityConstantForOpcode = [](unsigned Opcode, SDValue V) { 2151 if (ConstantFPSDNode *C = isConstOrConstSplatFP(V)) { 2152 switch (Opcode) { 2153 case ISD::FADD: // X + -0.0 --> X 2154 return C->isZero() && C->isNegative(); 2155 case ISD::FSUB: // X - 0.0 --> X 2156 return C->isZero() && !C->isNegative(); 2157 case ISD::FMUL: // X * 1.0 --> X 2158 case ISD::FDIV: // X / 1.0 --> X 2159 return C->isExactlyValue(1.0); 2160 } 2161 } 2162 if (ConstantSDNode *C = isConstOrConstSplat(V)) { 2163 switch (Opcode) { 2164 case ISD::SUB: // X - 0 --> X 2165 return C->isZero(); 2166 } 2167 } 2168 return false; 2169 }; 2170 2171 // This transform increases uses of N0, so freeze it to be safe. 2172 // binop N0, (vselect Cond, IDC, FVal) --> vselect Cond, N0, (binop N0, FVal) 2173 if (isIdentityConstantForOpcode(Opcode, TVal)) { 2174 SDValue F0 = DAG.getFreeze(N0); 2175 SDValue NewBO = DAG.getNode(Opcode, SDLoc(N), VT, F0, FVal, N->getFlags()); 2176 return DAG.getSelect(SDLoc(N), VT, Cond, F0, NewBO); 2177 } 2178 // binop N0, (vselect Cond, TVal, IDC) --> vselect Cond, (binop N0, TVal), N0 2179 if (isIdentityConstantForOpcode(Opcode, FVal)) { 2180 SDValue F0 = DAG.getFreeze(N0); 2181 SDValue NewBO = DAG.getNode(Opcode, SDLoc(N), VT, F0, TVal, N->getFlags()); 2182 return DAG.getSelect(SDLoc(N), VT, Cond, NewBO, F0); 2183 } 2184 2185 return SDValue(); 2186 } 2187 2188 SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { 2189 assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 && 2190 "Unexpected binary operator"); 2191 2192 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2193 auto BinOpcode = BO->getOpcode(); 2194 EVT VT = BO->getValueType(0); 2195 if (TLI.shouldFoldSelectWithIdentityConstant(BinOpcode, VT)) { 2196 if (SDValue Sel = foldSelectWithIdentityConstant(BO, DAG, false)) 2197 return Sel; 2198 2199 if (TLI.isCommutativeBinOp(BO->getOpcode())) 2200 if (SDValue Sel = foldSelectWithIdentityConstant(BO, DAG, true)) 2201 return Sel; 2202 } 2203 2204 // Don't do this unless the old select is going away. We want to eliminate the 2205 // binary operator, not replace a binop with a select. 2206 // TODO: Handle ISD::SELECT_CC. 2207 unsigned SelOpNo = 0; 2208 SDValue Sel = BO->getOperand(0); 2209 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { 2210 SelOpNo = 1; 2211 Sel = BO->getOperand(1); 2212 } 2213 2214 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) 2215 return SDValue(); 2216 2217 SDValue CT = Sel.getOperand(1); 2218 if (!isConstantOrConstantVector(CT, true) && 2219 !DAG.isConstantFPBuildVectorOrConstantFP(CT)) 2220 return SDValue(); 2221 2222 SDValue CF = Sel.getOperand(2); 2223 if (!isConstantOrConstantVector(CF, true) && 2224 !DAG.isConstantFPBuildVectorOrConstantFP(CF)) 2225 return SDValue(); 2226 2227 // Bail out if any constants are opaque because we can't constant fold those. 2228 // The exception is "and" and "or" with either 0 or -1 in which case we can 2229 // propagate non constant operands into select. I.e.: 2230 // and (select Cond, 0, -1), X --> select Cond, 0, X 2231 // or X, (select Cond, -1, 0) --> select Cond, -1, X 2232 bool CanFoldNonConst = 2233 (BinOpcode == ISD::AND || BinOpcode == ISD::OR) && 2234 (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) && 2235 (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF)); 2236 2237 SDValue CBO = BO->getOperand(SelOpNo ^ 1); 2238 if (!CanFoldNonConst && 2239 !isConstantOrConstantVector(CBO, true) && 2240 !DAG.isConstantFPBuildVectorOrConstantFP(CBO)) 2241 return SDValue(); 2242 2243 // We have a select-of-constants followed by a binary operator with a 2244 // constant. Eliminate the binop by pulling the constant math into the select. 2245 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO 2246 SDLoc DL(Sel); 2247 SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT) 2248 : DAG.getNode(BinOpcode, DL, VT, CT, CBO); 2249 if (!CanFoldNonConst && !NewCT.isUndef() && 2250 !isConstantOrConstantVector(NewCT, true) && 2251 !DAG.isConstantFPBuildVectorOrConstantFP(NewCT)) 2252 return SDValue(); 2253 2254 SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF) 2255 : DAG.getNode(BinOpcode, DL, VT, CF, CBO); 2256 if (!CanFoldNonConst && !NewCF.isUndef() && 2257 !isConstantOrConstantVector(NewCF, true) && 2258 !DAG.isConstantFPBuildVectorOrConstantFP(NewCF)) 2259 return SDValue(); 2260 2261 SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); 2262 SelectOp->setFlags(BO->getFlags()); 2263 return SelectOp; 2264 } 2265 2266 static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) { 2267 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 2268 "Expecting add or sub"); 2269 2270 // Match a constant operand and a zext operand for the math instruction: 2271 // add Z, C 2272 // sub C, Z 2273 bool IsAdd = N->getOpcode() == ISD::ADD; 2274 SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0); 2275 SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1); 2276 auto *CN = dyn_cast<ConstantSDNode>(C); 2277 if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND) 2278 return SDValue(); 2279 2280 // Match the zext operand as a setcc of a boolean. 2281 if (Z.getOperand(0).getOpcode() != ISD::SETCC || 2282 Z.getOperand(0).getValueType() != MVT::i1) 2283 return SDValue(); 2284 2285 // Match the compare as: setcc (X & 1), 0, eq. 2286 SDValue SetCC = Z.getOperand(0); 2287 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); 2288 if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) || 2289 SetCC.getOperand(0).getOpcode() != ISD::AND || 2290 !isOneConstant(SetCC.getOperand(0).getOperand(1))) 2291 return SDValue(); 2292 2293 // We are adding/subtracting a constant and an inverted low bit. Turn that 2294 // into a subtract/add of the low bit with incremented/decremented constant: 2295 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1)) 2296 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1)) 2297 EVT VT = C.getValueType(); 2298 SDLoc DL(N); 2299 SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT); 2300 SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) : 2301 DAG.getConstant(CN->getAPIntValue() - 1, DL, VT); 2302 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit); 2303 } 2304 2305 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into 2306 /// a shift and add with a different constant. 2307 static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) { 2308 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 2309 "Expecting add or sub"); 2310 2311 // We need a constant operand for the add/sub, and the other operand is a 2312 // logical shift right: add (srl), C or sub C, (srl). 2313 bool IsAdd = N->getOpcode() == ISD::ADD; 2314 SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0); 2315 SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1); 2316 if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) || 2317 ShiftOp.getOpcode() != ISD::SRL) 2318 return SDValue(); 2319 2320 // The shift must be of a 'not' value. 2321 SDValue Not = ShiftOp.getOperand(0); 2322 if (!Not.hasOneUse() || !isBitwiseNot(Not)) 2323 return SDValue(); 2324 2325 // The shift must be moving the sign bit to the least-significant-bit. 2326 EVT VT = ShiftOp.getValueType(); 2327 SDValue ShAmt = ShiftOp.getOperand(1); 2328 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); 2329 if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1)) 2330 return SDValue(); 2331 2332 // Eliminate the 'not' by adjusting the shift and add/sub constant: 2333 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1) 2334 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1) 2335 SDLoc DL(N); 2336 auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL; 2337 SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt); 2338 if (SDValue NewC = 2339 DAG.FoldConstantArithmetic(IsAdd ? ISD::ADD : ISD::SUB, DL, VT, 2340 {ConstantOp, DAG.getConstant(1, DL, VT)})) 2341 return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC); 2342 return SDValue(); 2343 } 2344 2345 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily 2346 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there 2347 /// are no common bits set in the operands). 2348 SDValue DAGCombiner::visitADDLike(SDNode *N) { 2349 SDValue N0 = N->getOperand(0); 2350 SDValue N1 = N->getOperand(1); 2351 EVT VT = N0.getValueType(); 2352 SDLoc DL(N); 2353 2354 // fold (add x, undef) -> undef 2355 if (N0.isUndef()) 2356 return N0; 2357 if (N1.isUndef()) 2358 return N1; 2359 2360 // fold (add c1, c2) -> c1+c2 2361 if (SDValue C = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1})) 2362 return C; 2363 2364 // canonicalize constant to RHS 2365 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2366 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2367 return DAG.getNode(ISD::ADD, DL, VT, N1, N0); 2368 2369 // fold vector ops 2370 if (VT.isVector()) { 2371 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 2372 return FoldedVOp; 2373 2374 // fold (add x, 0) -> x, vector edition 2375 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 2376 return N0; 2377 } 2378 2379 // fold (add x, 0) -> x 2380 if (isNullConstant(N1)) 2381 return N0; 2382 2383 if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { 2384 // fold ((A-c1)+c2) -> (A+(c2-c1)) 2385 if (N0.getOpcode() == ISD::SUB && 2386 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) { 2387 SDValue Sub = 2388 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N0.getOperand(1)}); 2389 assert(Sub && "Constant folding failed"); 2390 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub); 2391 } 2392 2393 // fold ((c1-A)+c2) -> (c1+c2)-A 2394 if (N0.getOpcode() == ISD::SUB && 2395 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { 2396 SDValue Add = 2397 DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N0.getOperand(0)}); 2398 assert(Add && "Constant folding failed"); 2399 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); 2400 } 2401 2402 // add (sext i1 X), 1 -> zext (not i1 X) 2403 // We don't transform this pattern: 2404 // add (zext i1 X), -1 -> sext (not i1 X) 2405 // because most (?) targets generate better code for the zext form. 2406 if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && 2407 isOneOrOneSplat(N1)) { 2408 SDValue X = N0.getOperand(0); 2409 if ((!LegalOperations || 2410 (TLI.isOperationLegal(ISD::XOR, X.getValueType()) && 2411 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) && 2412 X.getScalarValueSizeInBits() == 1) { 2413 SDValue Not = DAG.getNOT(DL, X, X.getValueType()); 2414 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not); 2415 } 2416 } 2417 2418 // Fold (add (or x, c0), c1) -> (add x, (c0 + c1)) if (or x, c0) is 2419 // equivalent to (add x, c0). 2420 if (N0.getOpcode() == ISD::OR && 2421 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) && 2422 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { 2423 if (SDValue Add0 = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, 2424 {N1, N0.getOperand(1)})) 2425 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0); 2426 } 2427 } 2428 2429 if (SDValue NewSel = foldBinOpIntoSelect(N)) 2430 return NewSel; 2431 2432 // reassociate add 2433 if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) { 2434 if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags())) 2435 return RADD; 2436 2437 // Reassociate (add (or x, c), y) -> (add add(x, y), c)) if (or x, c) is 2438 // equivalent to (add x, c). 2439 auto ReassociateAddOr = [&](SDValue N0, SDValue N1) { 2440 if (N0.getOpcode() == ISD::OR && N0.hasOneUse() && 2441 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) && 2442 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { 2443 return DAG.getNode(ISD::ADD, DL, VT, 2444 DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)), 2445 N0.getOperand(1)); 2446 } 2447 return SDValue(); 2448 }; 2449 if (SDValue Add = ReassociateAddOr(N0, N1)) 2450 return Add; 2451 if (SDValue Add = ReassociateAddOr(N1, N0)) 2452 return Add; 2453 } 2454 // fold ((0-A) + B) -> B-A 2455 if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0))) 2456 return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 2457 2458 // fold (A + (0-B)) -> A-B 2459 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) 2460 return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); 2461 2462 // fold (A+(B-A)) -> B 2463 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) 2464 return N1.getOperand(0); 2465 2466 // fold ((B-A)+A) -> B 2467 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) 2468 return N0.getOperand(0); 2469 2470 // fold ((A-B)+(C-A)) -> (C-B) 2471 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && 2472 N0.getOperand(0) == N1.getOperand(1)) 2473 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2474 N0.getOperand(1)); 2475 2476 // fold ((A-B)+(B-C)) -> (A-C) 2477 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && 2478 N0.getOperand(1) == N1.getOperand(0)) 2479 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 2480 N1.getOperand(1)); 2481 2482 // fold (A+(B-(A+C))) to (B-C) 2483 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 2484 N0 == N1.getOperand(1).getOperand(0)) 2485 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2486 N1.getOperand(1).getOperand(1)); 2487 2488 // fold (A+(B-(C+A))) to (B-C) 2489 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 2490 N0 == N1.getOperand(1).getOperand(1)) 2491 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2492 N1.getOperand(1).getOperand(0)); 2493 2494 // fold (A+((B-A)+or-C)) to (B+or-C) 2495 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && 2496 N1.getOperand(0).getOpcode() == ISD::SUB && 2497 N0 == N1.getOperand(0).getOperand(1)) 2498 return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), 2499 N1.getOperand(1)); 2500 2501 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant 2502 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { 2503 SDValue N00 = N0.getOperand(0); 2504 SDValue N01 = N0.getOperand(1); 2505 SDValue N10 = N1.getOperand(0); 2506 SDValue N11 = N1.getOperand(1); 2507 2508 if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) 2509 return DAG.getNode(ISD::SUB, DL, VT, 2510 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), 2511 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); 2512 } 2513 2514 // fold (add (umax X, C), -C) --> (usubsat X, C) 2515 if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) { 2516 auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) { 2517 return (!Max && !Op) || 2518 (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue())); 2519 }; 2520 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT, 2521 /*AllowUndefs*/ true)) 2522 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), 2523 N0.getOperand(1)); 2524 } 2525 2526 if (SimplifyDemandedBits(SDValue(N, 0))) 2527 return SDValue(N, 0); 2528 2529 if (isOneOrOneSplat(N1)) { 2530 // fold (add (xor a, -1), 1) -> (sub 0, a) 2531 if (isBitwiseNot(N0)) 2532 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 2533 N0.getOperand(0)); 2534 2535 // fold (add (add (xor a, -1), b), 1) -> (sub b, a) 2536 if (N0.getOpcode() == ISD::ADD) { 2537 SDValue A, Xor; 2538 2539 if (isBitwiseNot(N0.getOperand(0))) { 2540 A = N0.getOperand(1); 2541 Xor = N0.getOperand(0); 2542 } else if (isBitwiseNot(N0.getOperand(1))) { 2543 A = N0.getOperand(0); 2544 Xor = N0.getOperand(1); 2545 } 2546 2547 if (Xor) 2548 return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0)); 2549 } 2550 2551 // Look for: 2552 // add (add x, y), 1 2553 // And if the target does not like this form then turn into: 2554 // sub y, (xor x, -1) 2555 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && 2556 N0.getOpcode() == ISD::ADD) { 2557 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 2558 DAG.getAllOnesConstant(DL, VT)); 2559 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not); 2560 } 2561 } 2562 2563 // (x - y) + -1 -> add (xor y, -1), x 2564 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2565 isAllOnesOrAllOnesSplat(N1)) { 2566 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1); 2567 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); 2568 } 2569 2570 if (SDValue Combined = visitADDLikeCommutative(N0, N1, N)) 2571 return Combined; 2572 2573 if (SDValue Combined = visitADDLikeCommutative(N1, N0, N)) 2574 return Combined; 2575 2576 return SDValue(); 2577 } 2578 2579 SDValue DAGCombiner::visitADD(SDNode *N) { 2580 SDValue N0 = N->getOperand(0); 2581 SDValue N1 = N->getOperand(1); 2582 EVT VT = N0.getValueType(); 2583 SDLoc DL(N); 2584 2585 if (SDValue Combined = visitADDLike(N)) 2586 return Combined; 2587 2588 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) 2589 return V; 2590 2591 if (SDValue V = foldAddSubOfSignBit(N, DAG)) 2592 return V; 2593 2594 // fold (a+b) -> (a|b) iff a and b share no bits. 2595 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && 2596 DAG.haveNoCommonBitsSet(N0, N1)) 2597 return DAG.getNode(ISD::OR, DL, VT, N0, N1); 2598 2599 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)). 2600 if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) { 2601 const APInt &C0 = N0->getConstantOperandAPInt(0); 2602 const APInt &C1 = N1->getConstantOperandAPInt(0); 2603 return DAG.getVScale(DL, VT, C0 + C1); 2604 } 2605 2606 // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2) 2607 if ((N0.getOpcode() == ISD::ADD) && 2608 (N0.getOperand(1).getOpcode() == ISD::VSCALE) && 2609 (N1.getOpcode() == ISD::VSCALE)) { 2610 const APInt &VS0 = N0.getOperand(1)->getConstantOperandAPInt(0); 2611 const APInt &VS1 = N1->getConstantOperandAPInt(0); 2612 SDValue VS = DAG.getVScale(DL, VT, VS0 + VS1); 2613 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS); 2614 } 2615 2616 // Fold (add step_vector(c1), step_vector(c2) to step_vector(c1+c2)) 2617 if (N0.getOpcode() == ISD::STEP_VECTOR && 2618 N1.getOpcode() == ISD::STEP_VECTOR) { 2619 const APInt &C0 = N0->getConstantOperandAPInt(0); 2620 const APInt &C1 = N1->getConstantOperandAPInt(0); 2621 APInt NewStep = C0 + C1; 2622 return DAG.getStepVector(DL, VT, NewStep); 2623 } 2624 2625 // Fold a + step_vector(c1) + step_vector(c2) to a + step_vector(c1+c2) 2626 if ((N0.getOpcode() == ISD::ADD) && 2627 (N0.getOperand(1).getOpcode() == ISD::STEP_VECTOR) && 2628 (N1.getOpcode() == ISD::STEP_VECTOR)) { 2629 const APInt &SV0 = N0.getOperand(1)->getConstantOperandAPInt(0); 2630 const APInt &SV1 = N1->getConstantOperandAPInt(0); 2631 APInt NewStep = SV0 + SV1; 2632 SDValue SV = DAG.getStepVector(DL, VT, NewStep); 2633 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), SV); 2634 } 2635 2636 return SDValue(); 2637 } 2638 2639 SDValue DAGCombiner::visitADDSAT(SDNode *N) { 2640 unsigned Opcode = N->getOpcode(); 2641 SDValue N0 = N->getOperand(0); 2642 SDValue N1 = N->getOperand(1); 2643 EVT VT = N0.getValueType(); 2644 SDLoc DL(N); 2645 2646 // fold (add_sat x, undef) -> -1 2647 if (N0.isUndef() || N1.isUndef()) 2648 return DAG.getAllOnesConstant(DL, VT); 2649 2650 // fold (add_sat c1, c2) -> c3 2651 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) 2652 return C; 2653 2654 // canonicalize constant to RHS 2655 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2656 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2657 return DAG.getNode(Opcode, DL, VT, N1, N0); 2658 2659 // fold vector ops 2660 if (VT.isVector()) { 2661 // TODO SimplifyVBinOp 2662 2663 // fold (add_sat x, 0) -> x, vector edition 2664 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 2665 return N0; 2666 } 2667 2668 // fold (add_sat x, 0) -> x 2669 if (isNullConstant(N1)) 2670 return N0; 2671 2672 // If it cannot overflow, transform into an add. 2673 if (Opcode == ISD::UADDSAT) 2674 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2675 return DAG.getNode(ISD::ADD, DL, VT, N0, N1); 2676 2677 return SDValue(); 2678 } 2679 2680 static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) { 2681 bool Masked = false; 2682 2683 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization. 2684 while (true) { 2685 if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) { 2686 V = V.getOperand(0); 2687 continue; 2688 } 2689 2690 if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) { 2691 Masked = true; 2692 V = V.getOperand(0); 2693 continue; 2694 } 2695 2696 break; 2697 } 2698 2699 // If this is not a carry, return. 2700 if (V.getResNo() != 1) 2701 return SDValue(); 2702 2703 if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY && 2704 V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO) 2705 return SDValue(); 2706 2707 EVT VT = V->getValueType(0); 2708 if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT)) 2709 return SDValue(); 2710 2711 // If the result is masked, then no matter what kind of bool it is we can 2712 // return. If it isn't, then we need to make sure the bool type is either 0 or 2713 // 1 and not other values. 2714 if (Masked || 2715 TLI.getBooleanContents(V.getValueType()) == 2716 TargetLoweringBase::ZeroOrOneBooleanContent) 2717 return V; 2718 2719 return SDValue(); 2720 } 2721 2722 /// Given the operands of an add/sub operation, see if the 2nd operand is a 2723 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert 2724 /// the opcode and bypass the mask operation. 2725 static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1, 2726 SelectionDAG &DAG, const SDLoc &DL) { 2727 if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1))) 2728 return SDValue(); 2729 2730 EVT VT = N0.getValueType(); 2731 if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits()) 2732 return SDValue(); 2733 2734 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X 2735 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X 2736 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0)); 2737 } 2738 2739 /// Helper for doing combines based on N0 and N1 being added to each other. 2740 SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1, 2741 SDNode *LocReference) { 2742 EVT VT = N0.getValueType(); 2743 SDLoc DL(LocReference); 2744 2745 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) 2746 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && 2747 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) 2748 return DAG.getNode(ISD::SUB, DL, VT, N0, 2749 DAG.getNode(ISD::SHL, DL, VT, 2750 N1.getOperand(0).getOperand(1), 2751 N1.getOperand(1))); 2752 2753 if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL)) 2754 return V; 2755 2756 // Look for: 2757 // add (add x, 1), y 2758 // And if the target does not like this form then turn into: 2759 // sub y, (xor x, -1) 2760 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && 2761 N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) { 2762 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 2763 DAG.getAllOnesConstant(DL, VT)); 2764 return DAG.getNode(ISD::SUB, DL, VT, N1, Not); 2765 } 2766 2767 // Hoist one-use subtraction by non-opaque constant: 2768 // (x - C) + y -> (x + y) - C 2769 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. 2770 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2771 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 2772 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1); 2773 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); 2774 } 2775 // Hoist one-use subtraction from non-opaque constant: 2776 // (C - x) + y -> (y - x) + C 2777 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2778 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { 2779 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 2780 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0)); 2781 } 2782 2783 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1' 2784 // rather than 'add 0/-1' (the zext should get folded). 2785 // add (sext i1 Y), X --> sub X, (zext i1 Y) 2786 if (N0.getOpcode() == ISD::SIGN_EXTEND && 2787 N0.getOperand(0).getScalarValueSizeInBits() == 1 && 2788 TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) { 2789 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 2790 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); 2791 } 2792 2793 // add X, (sextinreg Y i1) -> sub X, (and Y 1) 2794 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 2795 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 2796 if (TN->getVT() == MVT::i1) { 2797 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 2798 DAG.getConstant(1, DL, VT)); 2799 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); 2800 } 2801 } 2802 2803 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) 2804 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) && 2805 N1.getResNo() == 0) 2806 return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(), 2807 N0, N1.getOperand(0), N1.getOperand(2)); 2808 2809 // (add X, Carry) -> (addcarry X, 0, Carry) 2810 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) 2811 if (SDValue Carry = getAsCarry(TLI, N1)) 2812 return DAG.getNode(ISD::ADDCARRY, DL, 2813 DAG.getVTList(VT, Carry.getValueType()), N0, 2814 DAG.getConstant(0, DL, VT), Carry); 2815 2816 return SDValue(); 2817 } 2818 2819 SDValue DAGCombiner::visitADDC(SDNode *N) { 2820 SDValue N0 = N->getOperand(0); 2821 SDValue N1 = N->getOperand(1); 2822 EVT VT = N0.getValueType(); 2823 SDLoc DL(N); 2824 2825 // If the flag result is dead, turn this into an ADD. 2826 if (!N->hasAnyUseOfValue(1)) 2827 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2828 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2829 2830 // canonicalize constant to RHS. 2831 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2832 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2833 if (N0C && !N1C) 2834 return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); 2835 2836 // fold (addc x, 0) -> x + no carry out 2837 if (isNullConstant(N1)) 2838 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, 2839 DL, MVT::Glue)); 2840 2841 // If it cannot overflow, transform into an add. 2842 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2843 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2844 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2845 2846 return SDValue(); 2847 } 2848 2849 /** 2850 * Flips a boolean if it is cheaper to compute. If the Force parameters is set, 2851 * then the flip also occurs if computing the inverse is the same cost. 2852 * This function returns an empty SDValue in case it cannot flip the boolean 2853 * without increasing the cost of the computation. If you want to flip a boolean 2854 * no matter what, use DAG.getLogicalNOT. 2855 */ 2856 static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG, 2857 const TargetLowering &TLI, 2858 bool Force) { 2859 if (Force && isa<ConstantSDNode>(V)) 2860 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); 2861 2862 if (V.getOpcode() != ISD::XOR) 2863 return SDValue(); 2864 2865 ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false); 2866 if (!Const) 2867 return SDValue(); 2868 2869 EVT VT = V.getValueType(); 2870 2871 bool IsFlip = false; 2872 switch(TLI.getBooleanContents(VT)) { 2873 case TargetLowering::ZeroOrOneBooleanContent: 2874 IsFlip = Const->isOne(); 2875 break; 2876 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2877 IsFlip = Const->isAllOnes(); 2878 break; 2879 case TargetLowering::UndefinedBooleanContent: 2880 IsFlip = (Const->getAPIntValue() & 0x01) == 1; 2881 break; 2882 } 2883 2884 if (IsFlip) 2885 return V.getOperand(0); 2886 if (Force) 2887 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); 2888 return SDValue(); 2889 } 2890 2891 SDValue DAGCombiner::visitADDO(SDNode *N) { 2892 SDValue N0 = N->getOperand(0); 2893 SDValue N1 = N->getOperand(1); 2894 EVT VT = N0.getValueType(); 2895 bool IsSigned = (ISD::SADDO == N->getOpcode()); 2896 2897 EVT CarryVT = N->getValueType(1); 2898 SDLoc DL(N); 2899 2900 // If the flag result is dead, turn this into an ADD. 2901 if (!N->hasAnyUseOfValue(1)) 2902 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2903 DAG.getUNDEF(CarryVT)); 2904 2905 // canonicalize constant to RHS. 2906 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2907 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2908 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); 2909 2910 // fold (addo x, 0) -> x + no carry out 2911 if (isNullOrNullSplat(N1)) 2912 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); 2913 2914 if (!IsSigned) { 2915 // If it cannot overflow, transform into an add. 2916 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2917 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2918 DAG.getConstant(0, DL, CarryVT)); 2919 2920 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry. 2921 if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) { 2922 SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(), 2923 DAG.getConstant(0, DL, VT), N0.getOperand(0)); 2924 return CombineTo( 2925 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); 2926 } 2927 2928 if (SDValue Combined = visitUADDOLike(N0, N1, N)) 2929 return Combined; 2930 2931 if (SDValue Combined = visitUADDOLike(N1, N0, N)) 2932 return Combined; 2933 } 2934 2935 return SDValue(); 2936 } 2937 2938 SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) { 2939 EVT VT = N0.getValueType(); 2940 if (VT.isVector()) 2941 return SDValue(); 2942 2943 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) 2944 // If Y + 1 cannot overflow. 2945 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) { 2946 SDValue Y = N1.getOperand(0); 2947 SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType()); 2948 if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never) 2949 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y, 2950 N1.getOperand(2)); 2951 } 2952 2953 // (uaddo X, Carry) -> (addcarry X, 0, Carry) 2954 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) 2955 if (SDValue Carry = getAsCarry(TLI, N1)) 2956 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, 2957 DAG.getConstant(0, SDLoc(N), VT), Carry); 2958 2959 return SDValue(); 2960 } 2961 2962 SDValue DAGCombiner::visitADDE(SDNode *N) { 2963 SDValue N0 = N->getOperand(0); 2964 SDValue N1 = N->getOperand(1); 2965 SDValue CarryIn = N->getOperand(2); 2966 2967 // canonicalize constant to RHS 2968 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2969 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2970 if (N0C && !N1C) 2971 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), 2972 N1, N0, CarryIn); 2973 2974 // fold (adde x, y, false) -> (addc x, y) 2975 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 2976 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); 2977 2978 return SDValue(); 2979 } 2980 2981 SDValue DAGCombiner::visitADDCARRY(SDNode *N) { 2982 SDValue N0 = N->getOperand(0); 2983 SDValue N1 = N->getOperand(1); 2984 SDValue CarryIn = N->getOperand(2); 2985 SDLoc DL(N); 2986 2987 // canonicalize constant to RHS 2988 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2989 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2990 if (N0C && !N1C) 2991 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn); 2992 2993 // fold (addcarry x, y, false) -> (uaddo x, y) 2994 if (isNullConstant(CarryIn)) { 2995 if (!LegalOperations || 2996 TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0))) 2997 return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1); 2998 } 2999 3000 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry. 3001 if (isNullConstant(N0) && isNullConstant(N1)) { 3002 EVT VT = N0.getValueType(); 3003 EVT CarryVT = CarryIn.getValueType(); 3004 SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT); 3005 AddToWorklist(CarryExt.getNode()); 3006 return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt, 3007 DAG.getConstant(1, DL, VT)), 3008 DAG.getConstant(0, DL, CarryVT)); 3009 } 3010 3011 if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N)) 3012 return Combined; 3013 3014 if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N)) 3015 return Combined; 3016 3017 return SDValue(); 3018 } 3019 3020 SDValue DAGCombiner::visitSADDO_CARRY(SDNode *N) { 3021 SDValue N0 = N->getOperand(0); 3022 SDValue N1 = N->getOperand(1); 3023 SDValue CarryIn = N->getOperand(2); 3024 SDLoc DL(N); 3025 3026 // canonicalize constant to RHS 3027 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 3028 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3029 if (N0C && !N1C) 3030 return DAG.getNode(ISD::SADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn); 3031 3032 // fold (saddo_carry x, y, false) -> (saddo x, y) 3033 if (isNullConstant(CarryIn)) { 3034 if (!LegalOperations || 3035 TLI.isOperationLegalOrCustom(ISD::SADDO, N->getValueType(0))) 3036 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, N1); 3037 } 3038 3039 return SDValue(); 3040 } 3041 3042 /** 3043 * If we are facing some sort of diamond carry propapagtion pattern try to 3044 * break it up to generate something like: 3045 * (addcarry X, 0, (addcarry A, B, Z):Carry) 3046 * 3047 * The end result is usually an increase in operation required, but because the 3048 * carry is now linearized, other tranforms can kick in and optimize the DAG. 3049 * 3050 * Patterns typically look something like 3051 * (uaddo A, B) 3052 * / \ 3053 * Carry Sum 3054 * | \ 3055 * | (addcarry *, 0, Z) 3056 * | / 3057 * \ Carry 3058 * | / 3059 * (addcarry X, *, *) 3060 * 3061 * But numerous variation exist. Our goal is to identify A, B, X and Z and 3062 * produce a combine with a single path for carry propagation. 3063 */ 3064 static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, 3065 SDValue X, SDValue Carry0, SDValue Carry1, 3066 SDNode *N) { 3067 if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1) 3068 return SDValue(); 3069 if (Carry1.getOpcode() != ISD::UADDO) 3070 return SDValue(); 3071 3072 SDValue Z; 3073 3074 /** 3075 * First look for a suitable Z. It will present itself in the form of 3076 * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true 3077 */ 3078 if (Carry0.getOpcode() == ISD::ADDCARRY && 3079 isNullConstant(Carry0.getOperand(1))) { 3080 Z = Carry0.getOperand(2); 3081 } else if (Carry0.getOpcode() == ISD::UADDO && 3082 isOneConstant(Carry0.getOperand(1))) { 3083 EVT VT = Combiner.getSetCCResultType(Carry0.getValueType()); 3084 Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT); 3085 } else { 3086 // We couldn't find a suitable Z. 3087 return SDValue(); 3088 } 3089 3090 3091 auto cancelDiamond = [&](SDValue A,SDValue B) { 3092 SDLoc DL(N); 3093 SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z); 3094 Combiner.AddToWorklist(NewY.getNode()); 3095 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X, 3096 DAG.getConstant(0, DL, X.getValueType()), 3097 NewY.getValue(1)); 3098 }; 3099 3100 /** 3101 * (uaddo A, B) 3102 * | 3103 * Sum 3104 * | 3105 * (addcarry *, 0, Z) 3106 */ 3107 if (Carry0.getOperand(0) == Carry1.getValue(0)) { 3108 return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1)); 3109 } 3110 3111 /** 3112 * (addcarry A, 0, Z) 3113 * | 3114 * Sum 3115 * | 3116 * (uaddo *, B) 3117 */ 3118 if (Carry1.getOperand(0) == Carry0.getValue(0)) { 3119 return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1)); 3120 } 3121 3122 if (Carry1.getOperand(1) == Carry0.getValue(0)) { 3123 return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0)); 3124 } 3125 3126 return SDValue(); 3127 } 3128 3129 // If we are facing some sort of diamond carry/borrow in/out pattern try to 3130 // match patterns like: 3131 // 3132 // (uaddo A, B) CarryIn 3133 // | \ | 3134 // | \ | 3135 // PartialSum PartialCarryOutX / 3136 // | | / 3137 // | ____|____________/ 3138 // | / | 3139 // (uaddo *, *) \________ 3140 // | \ \ 3141 // | \ | 3142 // | PartialCarryOutY | 3143 // | \ | 3144 // | \ / 3145 // AddCarrySum | ______/ 3146 // | / 3147 // CarryOut = (or *, *) 3148 // 3149 // And generate ADDCARRY (or SUBCARRY) with two result values: 3150 // 3151 // {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn) 3152 // 3153 // Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with 3154 // a single path for carry/borrow out propagation: 3155 static SDValue combineCarryDiamond(SelectionDAG &DAG, const TargetLowering &TLI, 3156 SDValue N0, SDValue N1, SDNode *N) { 3157 SDValue Carry0 = getAsCarry(TLI, N0); 3158 if (!Carry0) 3159 return SDValue(); 3160 SDValue Carry1 = getAsCarry(TLI, N1); 3161 if (!Carry1) 3162 return SDValue(); 3163 3164 unsigned Opcode = Carry0.getOpcode(); 3165 if (Opcode != Carry1.getOpcode()) 3166 return SDValue(); 3167 if (Opcode != ISD::UADDO && Opcode != ISD::USUBO) 3168 return SDValue(); 3169 3170 // Canonicalize the add/sub of A and B (the top node in the above ASCII art) 3171 // as Carry0 and the add/sub of the carry in as Carry1 (the middle node). 3172 if (Carry1.getNode()->isOperandOf(Carry0.getNode())) 3173 std::swap(Carry0, Carry1); 3174 3175 // Check if nodes are connected in expected way. 3176 if (Carry1.getOperand(0) != Carry0.getValue(0) && 3177 Carry1.getOperand(1) != Carry0.getValue(0)) 3178 return SDValue(); 3179 3180 // The carry in value must be on the righthand side for subtraction. 3181 unsigned CarryInOperandNum = 3182 Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0; 3183 if (Opcode == ISD::USUBO && CarryInOperandNum != 1) 3184 return SDValue(); 3185 SDValue CarryIn = Carry1.getOperand(CarryInOperandNum); 3186 3187 unsigned NewOp = Opcode == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY; 3188 if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType())) 3189 return SDValue(); 3190 3191 // Verify that the carry/borrow in is plausibly a carry/borrow bit. 3192 // TODO: make getAsCarry() aware of how partial carries are merged. 3193 if (CarryIn.getOpcode() != ISD::ZERO_EXTEND) 3194 return SDValue(); 3195 CarryIn = CarryIn.getOperand(0); 3196 if (CarryIn.getValueType() != MVT::i1) 3197 return SDValue(); 3198 3199 SDLoc DL(N); 3200 SDValue Merged = 3201 DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0), 3202 Carry0.getOperand(1), CarryIn); 3203 3204 // Please note that because we have proven that the result of the UADDO/USUBO 3205 // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can 3206 // therefore prove that if the first UADDO/USUBO overflows, the second 3207 // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the 3208 // maximum value. 3209 // 3210 // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry 3211 // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow) 3212 // 3213 // This is important because it means that OR and XOR can be used to merge 3214 // carry flags; and that AND can return a constant zero. 3215 // 3216 // TODO: match other operations that can merge flags (ADD, etc) 3217 DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0)); 3218 if (N->getOpcode() == ISD::AND) 3219 return DAG.getConstant(0, DL, MVT::i1); 3220 return Merged.getValue(1); 3221 } 3222 3223 SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, 3224 SDNode *N) { 3225 // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry. 3226 if (isBitwiseNot(N0)) 3227 if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) { 3228 SDLoc DL(N); 3229 SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1, 3230 N0.getOperand(0), NotC); 3231 return CombineTo( 3232 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); 3233 } 3234 3235 // Iff the flag result is dead: 3236 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry) 3237 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo 3238 // or the dependency between the instructions. 3239 if ((N0.getOpcode() == ISD::ADD || 3240 (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 && 3241 N0.getValue(1) != CarryIn)) && 3242 isNullConstant(N1) && !N->hasAnyUseOfValue(1)) 3243 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), 3244 N0.getOperand(0), N0.getOperand(1), CarryIn); 3245 3246 /** 3247 * When one of the addcarry argument is itself a carry, we may be facing 3248 * a diamond carry propagation. In which case we try to transform the DAG 3249 * to ensure linear carry propagation if that is possible. 3250 */ 3251 if (auto Y = getAsCarry(TLI, N1)) { 3252 // Because both are carries, Y and Z can be swapped. 3253 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N)) 3254 return R; 3255 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N)) 3256 return R; 3257 } 3258 3259 return SDValue(); 3260 } 3261 3262 // Attempt to create a USUBSAT(LHS, RHS) node with DstVT, performing a 3263 // clamp/truncation if necessary. 3264 static SDValue getTruncatedUSUBSAT(EVT DstVT, EVT SrcVT, SDValue LHS, 3265 SDValue RHS, SelectionDAG &DAG, 3266 const SDLoc &DL) { 3267 assert(DstVT.getScalarSizeInBits() <= SrcVT.getScalarSizeInBits() && 3268 "Illegal truncation"); 3269 3270 if (DstVT == SrcVT) 3271 return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS); 3272 3273 // If the LHS is zero-extended then we can perform the USUBSAT as DstVT by 3274 // clamping RHS. 3275 APInt UpperBits = APInt::getBitsSetFrom(SrcVT.getScalarSizeInBits(), 3276 DstVT.getScalarSizeInBits()); 3277 if (!DAG.MaskedValueIsZero(LHS, UpperBits)) 3278 return SDValue(); 3279 3280 SDValue SatLimit = 3281 DAG.getConstant(APInt::getLowBitsSet(SrcVT.getScalarSizeInBits(), 3282 DstVT.getScalarSizeInBits()), 3283 DL, SrcVT); 3284 RHS = DAG.getNode(ISD::UMIN, DL, SrcVT, RHS, SatLimit); 3285 RHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, RHS); 3286 LHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, LHS); 3287 return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS); 3288 } 3289 3290 // Try to find umax(a,b) - b or a - umin(a,b) patterns that may be converted to 3291 // usubsat(a,b), optionally as a truncated type. 3292 SDValue DAGCombiner::foldSubToUSubSat(EVT DstVT, SDNode *N) { 3293 if (N->getOpcode() != ISD::SUB || 3294 !(!LegalOperations || hasOperation(ISD::USUBSAT, DstVT))) 3295 return SDValue(); 3296 3297 EVT SubVT = N->getValueType(0); 3298 SDValue Op0 = N->getOperand(0); 3299 SDValue Op1 = N->getOperand(1); 3300 3301 // Try to find umax(a,b) - b or a - umin(a,b) patterns 3302 // they may be converted to usubsat(a,b). 3303 if (Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 3304 SDValue MaxLHS = Op0.getOperand(0); 3305 SDValue MaxRHS = Op0.getOperand(1); 3306 if (MaxLHS == Op1) 3307 return getTruncatedUSUBSAT(DstVT, SubVT, MaxRHS, Op1, DAG, SDLoc(N)); 3308 if (MaxRHS == Op1) 3309 return getTruncatedUSUBSAT(DstVT, SubVT, MaxLHS, Op1, DAG, SDLoc(N)); 3310 } 3311 3312 if (Op1.getOpcode() == ISD::UMIN && Op1.hasOneUse()) { 3313 SDValue MinLHS = Op1.getOperand(0); 3314 SDValue MinRHS = Op1.getOperand(1); 3315 if (MinLHS == Op0) 3316 return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinRHS, DAG, SDLoc(N)); 3317 if (MinRHS == Op0) 3318 return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinLHS, DAG, SDLoc(N)); 3319 } 3320 3321 // sub(a,trunc(umin(zext(a),b))) -> usubsat(a,trunc(umin(b,SatLimit))) 3322 if (Op1.getOpcode() == ISD::TRUNCATE && 3323 Op1.getOperand(0).getOpcode() == ISD::UMIN && 3324 Op1.getOperand(0).hasOneUse()) { 3325 SDValue MinLHS = Op1.getOperand(0).getOperand(0); 3326 SDValue MinRHS = Op1.getOperand(0).getOperand(1); 3327 if (MinLHS.getOpcode() == ISD::ZERO_EXTEND && MinLHS.getOperand(0) == Op0) 3328 return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinLHS, MinRHS, 3329 DAG, SDLoc(N)); 3330 if (MinRHS.getOpcode() == ISD::ZERO_EXTEND && MinRHS.getOperand(0) == Op0) 3331 return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinRHS, MinLHS, 3332 DAG, SDLoc(N)); 3333 } 3334 3335 return SDValue(); 3336 } 3337 3338 // Since it may not be valid to emit a fold to zero for vector initializers 3339 // check if we can before folding. 3340 static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, 3341 SelectionDAG &DAG, bool LegalOperations) { 3342 if (!VT.isVector()) 3343 return DAG.getConstant(0, DL, VT); 3344 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 3345 return DAG.getConstant(0, DL, VT); 3346 return SDValue(); 3347 } 3348 3349 SDValue DAGCombiner::visitSUB(SDNode *N) { 3350 SDValue N0 = N->getOperand(0); 3351 SDValue N1 = N->getOperand(1); 3352 EVT VT = N0.getValueType(); 3353 SDLoc DL(N); 3354 3355 auto PeekThroughFreeze = [](SDValue N) { 3356 if (N->getOpcode() == ISD::FREEZE && N.hasOneUse()) 3357 return N->getOperand(0); 3358 return N; 3359 }; 3360 3361 // fold (sub x, x) -> 0 3362 // FIXME: Refactor this and xor and other similar operations together. 3363 if (PeekThroughFreeze(N0) == PeekThroughFreeze(N1)) 3364 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 3365 3366 // fold (sub c1, c2) -> c3 3367 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1})) 3368 return C; 3369 3370 // fold vector ops 3371 if (VT.isVector()) { 3372 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 3373 return FoldedVOp; 3374 3375 // fold (sub x, 0) -> x, vector edition 3376 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 3377 return N0; 3378 } 3379 3380 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3381 return NewSel; 3382 3383 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 3384 3385 // fold (sub x, c) -> (add x, -c) 3386 if (N1C) { 3387 return DAG.getNode(ISD::ADD, DL, VT, N0, 3388 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 3389 } 3390 3391 if (isNullOrNullSplat(N0)) { 3392 unsigned BitWidth = VT.getScalarSizeInBits(); 3393 // Right-shifting everything out but the sign bit followed by negation is 3394 // the same as flipping arithmetic/logical shift type without the negation: 3395 // -(X >>u 31) -> (X >>s 31) 3396 // -(X >>s 31) -> (X >>u 31) 3397 if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { 3398 ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); 3399 if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) { 3400 auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; 3401 if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) 3402 return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); 3403 } 3404 } 3405 3406 // 0 - X --> 0 if the sub is NUW. 3407 if (N->getFlags().hasNoUnsignedWrap()) 3408 return N0; 3409 3410 if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { 3411 // N1 is either 0 or the minimum signed value. If the sub is NSW, then 3412 // N1 must be 0 because negating the minimum signed value is undefined. 3413 if (N->getFlags().hasNoSignedWrap()) 3414 return N0; 3415 3416 // 0 - X --> X if X is 0 or the minimum signed value. 3417 return N1; 3418 } 3419 3420 // Convert 0 - abs(x). 3421 if (N1.getOpcode() == ISD::ABS && N1.hasOneUse() && 3422 !TLI.isOperationLegalOrCustom(ISD::ABS, VT)) 3423 if (SDValue Result = TLI.expandABS(N1.getNode(), DAG, true)) 3424 return Result; 3425 3426 // Fold neg(splat(neg(x)) -> splat(x) 3427 if (VT.isVector()) { 3428 SDValue N1S = DAG.getSplatValue(N1, true); 3429 if (N1S && N1S.getOpcode() == ISD::SUB && 3430 isNullConstant(N1S.getOperand(0))) { 3431 if (VT.isScalableVector()) 3432 return DAG.getSplatVector(VT, DL, N1S.getOperand(1)); 3433 return DAG.getSplatBuildVector(VT, DL, N1S.getOperand(1)); 3434 } 3435 } 3436 } 3437 3438 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) 3439 if (isAllOnesOrAllOnesSplat(N0)) 3440 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 3441 3442 // fold (A - (0-B)) -> A+B 3443 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) 3444 return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1)); 3445 3446 // fold A-(A-B) -> B 3447 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) 3448 return N1.getOperand(1); 3449 3450 // fold (A+B)-A -> B 3451 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) 3452 return N0.getOperand(1); 3453 3454 // fold (A+B)-B -> A 3455 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) 3456 return N0.getOperand(0); 3457 3458 // fold (A+C1)-C2 -> A+(C1-C2) 3459 if (N0.getOpcode() == ISD::ADD && 3460 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3461 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3462 SDValue NewC = 3463 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(1), N1}); 3464 assert(NewC && "Constant folding failed"); 3465 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC); 3466 } 3467 3468 // fold C2-(A+C1) -> (C2-C1)-A 3469 if (N1.getOpcode() == ISD::ADD) { 3470 SDValue N11 = N1.getOperand(1); 3471 if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && 3472 isConstantOrConstantVector(N11, /* NoOpaques */ true)) { 3473 SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11}); 3474 assert(NewC && "Constant folding failed"); 3475 return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); 3476 } 3477 } 3478 3479 // fold (A-C1)-C2 -> A-(C1+C2) 3480 if (N0.getOpcode() == ISD::SUB && 3481 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3482 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3483 SDValue NewC = 3484 DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0.getOperand(1), N1}); 3485 assert(NewC && "Constant folding failed"); 3486 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC); 3487 } 3488 3489 // fold (c1-A)-c2 -> (c1-c2)-A 3490 if (N0.getOpcode() == ISD::SUB && 3491 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3492 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) { 3493 SDValue NewC = 3494 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(0), N1}); 3495 assert(NewC && "Constant folding failed"); 3496 return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1)); 3497 } 3498 3499 // fold ((A+(B+or-C))-B) -> A+or-C 3500 if (N0.getOpcode() == ISD::ADD && 3501 (N0.getOperand(1).getOpcode() == ISD::SUB || 3502 N0.getOperand(1).getOpcode() == ISD::ADD) && 3503 N0.getOperand(1).getOperand(0) == N1) 3504 return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), 3505 N0.getOperand(1).getOperand(1)); 3506 3507 // fold ((A+(C+B))-B) -> A+C 3508 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && 3509 N0.getOperand(1).getOperand(1) == N1) 3510 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), 3511 N0.getOperand(1).getOperand(0)); 3512 3513 // fold ((A-(B-C))-C) -> A-B 3514 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && 3515 N0.getOperand(1).getOperand(1) == N1) 3516 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 3517 N0.getOperand(1).getOperand(0)); 3518 3519 // fold (A-(B-C)) -> A+(C-B) 3520 if (N1.getOpcode() == ISD::SUB && N1.hasOneUse()) 3521 return DAG.getNode(ISD::ADD, DL, VT, N0, 3522 DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1), 3523 N1.getOperand(0))); 3524 3525 // A - (A & B) -> A & (~B) 3526 if (N1.getOpcode() == ISD::AND) { 3527 SDValue A = N1.getOperand(0); 3528 SDValue B = N1.getOperand(1); 3529 if (A != N0) 3530 std::swap(A, B); 3531 if (A == N0 && 3532 (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true))) { 3533 SDValue InvB = 3534 DAG.getNode(ISD::XOR, DL, VT, B, DAG.getAllOnesConstant(DL, VT)); 3535 return DAG.getNode(ISD::AND, DL, VT, A, InvB); 3536 } 3537 } 3538 3539 // fold (X - (-Y * Z)) -> (X + (Y * Z)) 3540 if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) { 3541 if (N1.getOperand(0).getOpcode() == ISD::SUB && 3542 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) { 3543 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, 3544 N1.getOperand(0).getOperand(1), 3545 N1.getOperand(1)); 3546 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); 3547 } 3548 if (N1.getOperand(1).getOpcode() == ISD::SUB && 3549 isNullOrNullSplat(N1.getOperand(1).getOperand(0))) { 3550 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, 3551 N1.getOperand(0), 3552 N1.getOperand(1).getOperand(1)); 3553 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); 3554 } 3555 } 3556 3557 // If either operand of a sub is undef, the result is undef 3558 if (N0.isUndef()) 3559 return N0; 3560 if (N1.isUndef()) 3561 return N1; 3562 3563 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) 3564 return V; 3565 3566 if (SDValue V = foldAddSubOfSignBit(N, DAG)) 3567 return V; 3568 3569 if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N))) 3570 return V; 3571 3572 if (SDValue V = foldSubToUSubSat(VT, N)) 3573 return V; 3574 3575 // (x - y) - 1 -> add (xor y, -1), x 3576 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) { 3577 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), 3578 DAG.getAllOnesConstant(DL, VT)); 3579 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); 3580 } 3581 3582 // Look for: 3583 // sub y, (xor x, -1) 3584 // And if the target does not like this form then turn into: 3585 // add (add x, y), 1 3586 if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) { 3587 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0)); 3588 return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT)); 3589 } 3590 3591 // Hoist one-use addition by non-opaque constant: 3592 // (x + C) - y -> (x - y) + C 3593 if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD && 3594 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 3595 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); 3596 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1)); 3597 } 3598 // y - (x + C) -> (y - x) - C 3599 if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD && 3600 isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) { 3601 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0)); 3602 return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1)); 3603 } 3604 // (x - C) - y -> (x - y) - C 3605 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. 3606 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 3607 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 3608 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); 3609 return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1)); 3610 } 3611 // (C - x) - y -> C - (x + y) 3612 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 3613 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { 3614 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1); 3615 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add); 3616 } 3617 3618 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1' 3619 // rather than 'sub 0/1' (the sext should get folded). 3620 // sub X, (zext i1 Y) --> add X, (sext i1 Y) 3621 if (N1.getOpcode() == ISD::ZERO_EXTEND && 3622 N1.getOperand(0).getScalarValueSizeInBits() == 1 && 3623 TLI.getBooleanContents(VT) == 3624 TargetLowering::ZeroOrNegativeOneBooleanContent) { 3625 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0)); 3626 return DAG.getNode(ISD::ADD, DL, VT, N0, SExt); 3627 } 3628 3629 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X) 3630 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { 3631 if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) { 3632 SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1); 3633 SDValue S0 = N1.getOperand(0); 3634 if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) 3635 if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1))) 3636 if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) 3637 return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0); 3638 } 3639 } 3640 3641 // If the relocation model supports it, consider symbol offsets. 3642 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 3643 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { 3644 // fold (sub Sym, c) -> Sym-c 3645 if (N1C && GA->getOpcode() == ISD::GlobalAddress) 3646 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 3647 GA->getOffset() - 3648 (uint64_t)N1C->getSExtValue()); 3649 // fold (sub Sym+c1, Sym+c2) -> c1-c2 3650 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) 3651 if (GA->getGlobal() == GB->getGlobal()) 3652 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), 3653 DL, VT); 3654 } 3655 3656 // sub X, (sextinreg Y i1) -> add X, (and Y 1) 3657 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 3658 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 3659 if (TN->getVT() == MVT::i1) { 3660 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 3661 DAG.getConstant(1, DL, VT)); 3662 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); 3663 } 3664 } 3665 3666 // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C)) 3667 if (N1.getOpcode() == ISD::VSCALE) { 3668 const APInt &IntVal = N1.getConstantOperandAPInt(0); 3669 return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal)); 3670 } 3671 3672 // canonicalize (sub X, step_vector(C)) to (add X, step_vector(-C)) 3673 if (N1.getOpcode() == ISD::STEP_VECTOR && N1.hasOneUse()) { 3674 APInt NewStep = -N1.getConstantOperandAPInt(0); 3675 return DAG.getNode(ISD::ADD, DL, VT, N0, 3676 DAG.getStepVector(DL, VT, NewStep)); 3677 } 3678 3679 // Prefer an add for more folding potential and possibly better codegen: 3680 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1) 3681 if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) { 3682 SDValue ShAmt = N1.getOperand(1); 3683 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); 3684 if (ShAmtC && 3685 ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) { 3686 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt); 3687 return DAG.getNode(ISD::ADD, DL, VT, N0, SRA); 3688 } 3689 } 3690 3691 // As with the previous fold, prefer add for more folding potential. 3692 // Subtracting SMIN/0 is the same as adding SMIN/0: 3693 // N0 - (X << BW-1) --> N0 + (X << BW-1) 3694 if (N1.getOpcode() == ISD::SHL) { 3695 ConstantSDNode *ShlC = isConstOrConstSplat(N1.getOperand(1)); 3696 if (ShlC && ShlC->getAPIntValue() == VT.getScalarSizeInBits() - 1) 3697 return DAG.getNode(ISD::ADD, DL, VT, N1, N0); 3698 } 3699 3700 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) { 3701 // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry) 3702 if (SDValue Carry = getAsCarry(TLI, N0)) { 3703 SDValue X = N1; 3704 SDValue Zero = DAG.getConstant(0, DL, VT); 3705 SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X); 3706 return DAG.getNode(ISD::ADDCARRY, DL, 3707 DAG.getVTList(VT, Carry.getValueType()), NegX, Zero, 3708 Carry); 3709 } 3710 } 3711 3712 return SDValue(); 3713 } 3714 3715 SDValue DAGCombiner::visitSUBSAT(SDNode *N) { 3716 SDValue N0 = N->getOperand(0); 3717 SDValue N1 = N->getOperand(1); 3718 EVT VT = N0.getValueType(); 3719 SDLoc DL(N); 3720 3721 // fold (sub_sat x, undef) -> 0 3722 if (N0.isUndef() || N1.isUndef()) 3723 return DAG.getConstant(0, DL, VT); 3724 3725 // fold (sub_sat x, x) -> 0 3726 if (N0 == N1) 3727 return DAG.getConstant(0, DL, VT); 3728 3729 // fold (sub_sat c1, c2) -> c3 3730 if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1})) 3731 return C; 3732 3733 // fold vector ops 3734 if (VT.isVector()) { 3735 // TODO SimplifyVBinOp 3736 3737 // fold (sub_sat x, 0) -> x, vector edition 3738 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 3739 return N0; 3740 } 3741 3742 // fold (sub_sat x, 0) -> x 3743 if (isNullConstant(N1)) 3744 return N0; 3745 3746 return SDValue(); 3747 } 3748 3749 SDValue DAGCombiner::visitSUBC(SDNode *N) { 3750 SDValue N0 = N->getOperand(0); 3751 SDValue N1 = N->getOperand(1); 3752 EVT VT = N0.getValueType(); 3753 SDLoc DL(N); 3754 3755 // If the flag result is dead, turn this into an SUB. 3756 if (!N->hasAnyUseOfValue(1)) 3757 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 3758 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3759 3760 // fold (subc x, x) -> 0 + no borrow 3761 if (N0 == N1) 3762 return CombineTo(N, DAG.getConstant(0, DL, VT), 3763 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3764 3765 // fold (subc x, 0) -> x + no borrow 3766 if (isNullConstant(N1)) 3767 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3768 3769 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow 3770 if (isAllOnesConstant(N0)) 3771 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 3772 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3773 3774 return SDValue(); 3775 } 3776 3777 SDValue DAGCombiner::visitSUBO(SDNode *N) { 3778 SDValue N0 = N->getOperand(0); 3779 SDValue N1 = N->getOperand(1); 3780 EVT VT = N0.getValueType(); 3781 bool IsSigned = (ISD::SSUBO == N->getOpcode()); 3782 3783 EVT CarryVT = N->getValueType(1); 3784 SDLoc DL(N); 3785 3786 // If the flag result is dead, turn this into an SUB. 3787 if (!N->hasAnyUseOfValue(1)) 3788 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 3789 DAG.getUNDEF(CarryVT)); 3790 3791 // fold (subo x, x) -> 0 + no borrow 3792 if (N0 == N1) 3793 return CombineTo(N, DAG.getConstant(0, DL, VT), 3794 DAG.getConstant(0, DL, CarryVT)); 3795 3796 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 3797 3798 // fold (subox, c) -> (addo x, -c) 3799 if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) { 3800 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, 3801 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 3802 } 3803 3804 // fold (subo x, 0) -> x + no borrow 3805 if (isNullOrNullSplat(N1)) 3806 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); 3807 3808 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow 3809 if (!IsSigned && isAllOnesOrAllOnesSplat(N0)) 3810 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 3811 DAG.getConstant(0, DL, CarryVT)); 3812 3813 return SDValue(); 3814 } 3815 3816 SDValue DAGCombiner::visitSUBE(SDNode *N) { 3817 SDValue N0 = N->getOperand(0); 3818 SDValue N1 = N->getOperand(1); 3819 SDValue CarryIn = N->getOperand(2); 3820 3821 // fold (sube x, y, false) -> (subc x, y) 3822 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 3823 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); 3824 3825 return SDValue(); 3826 } 3827 3828 SDValue DAGCombiner::visitSUBCARRY(SDNode *N) { 3829 SDValue N0 = N->getOperand(0); 3830 SDValue N1 = N->getOperand(1); 3831 SDValue CarryIn = N->getOperand(2); 3832 3833 // fold (subcarry x, y, false) -> (usubo x, y) 3834 if (isNullConstant(CarryIn)) { 3835 if (!LegalOperations || 3836 TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0))) 3837 return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1); 3838 } 3839 3840 return SDValue(); 3841 } 3842 3843 SDValue DAGCombiner::visitSSUBO_CARRY(SDNode *N) { 3844 SDValue N0 = N->getOperand(0); 3845 SDValue N1 = N->getOperand(1); 3846 SDValue CarryIn = N->getOperand(2); 3847 3848 // fold (ssubo_carry x, y, false) -> (ssubo x, y) 3849 if (isNullConstant(CarryIn)) { 3850 if (!LegalOperations || 3851 TLI.isOperationLegalOrCustom(ISD::SSUBO, N->getValueType(0))) 3852 return DAG.getNode(ISD::SSUBO, SDLoc(N), N->getVTList(), N0, N1); 3853 } 3854 3855 return SDValue(); 3856 } 3857 3858 // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and 3859 // UMULFIXSAT here. 3860 SDValue DAGCombiner::visitMULFIX(SDNode *N) { 3861 SDValue N0 = N->getOperand(0); 3862 SDValue N1 = N->getOperand(1); 3863 SDValue Scale = N->getOperand(2); 3864 EVT VT = N0.getValueType(); 3865 3866 // fold (mulfix x, undef, scale) -> 0 3867 if (N0.isUndef() || N1.isUndef()) 3868 return DAG.getConstant(0, SDLoc(N), VT); 3869 3870 // Canonicalize constant to RHS (vector doesn't have to splat) 3871 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3872 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3873 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale); 3874 3875 // fold (mulfix x, 0, scale) -> 0 3876 if (isNullConstant(N1)) 3877 return DAG.getConstant(0, SDLoc(N), VT); 3878 3879 return SDValue(); 3880 } 3881 3882 SDValue DAGCombiner::visitMUL(SDNode *N) { 3883 SDValue N0 = N->getOperand(0); 3884 SDValue N1 = N->getOperand(1); 3885 EVT VT = N0.getValueType(); 3886 3887 // fold (mul x, undef) -> 0 3888 if (N0.isUndef() || N1.isUndef()) 3889 return DAG.getConstant(0, SDLoc(N), VT); 3890 3891 // fold (mul c1, c2) -> c1*c2 3892 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, {N0, N1})) 3893 return C; 3894 3895 // canonicalize constant to RHS (vector doesn't have to splat) 3896 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3897 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3898 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); 3899 3900 bool N1IsConst = false; 3901 bool N1IsOpaqueConst = false; 3902 APInt ConstValue1; 3903 3904 // fold vector ops 3905 if (VT.isVector()) { 3906 if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) 3907 return FoldedVOp; 3908 3909 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); 3910 assert((!N1IsConst || 3911 ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && 3912 "Splat APInt should be element width"); 3913 } else { 3914 N1IsConst = isa<ConstantSDNode>(N1); 3915 if (N1IsConst) { 3916 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); 3917 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); 3918 } 3919 } 3920 3921 // fold (mul x, 0) -> 0 3922 if (N1IsConst && ConstValue1.isZero()) 3923 return N1; 3924 3925 // fold (mul x, 1) -> x 3926 if (N1IsConst && ConstValue1.isOne()) 3927 return N0; 3928 3929 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3930 return NewSel; 3931 3932 // fold (mul x, -1) -> 0-x 3933 if (N1IsConst && ConstValue1.isAllOnes()) { 3934 SDLoc DL(N); 3935 return DAG.getNode(ISD::SUB, DL, VT, 3936 DAG.getConstant(0, DL, VT), N0); 3937 } 3938 3939 // fold (mul x, (1 << c)) -> x << c 3940 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 3941 DAG.isKnownToBeAPowerOfTwo(N1) && 3942 (!VT.isVector() || Level <= AfterLegalizeVectorOps)) { 3943 SDLoc DL(N); 3944 SDValue LogBase2 = BuildLogBase2(N1, DL); 3945 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 3946 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); 3947 return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc); 3948 } 3949 3950 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c 3951 if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isNegatedPowerOf2()) { 3952 unsigned Log2Val = (-ConstValue1).logBase2(); 3953 SDLoc DL(N); 3954 // FIXME: If the input is something that is easily negated (e.g. a 3955 // single-use add), we should put the negate there. 3956 return DAG.getNode(ISD::SUB, DL, VT, 3957 DAG.getConstant(0, DL, VT), 3958 DAG.getNode(ISD::SHL, DL, VT, N0, 3959 DAG.getConstant(Log2Val, DL, 3960 getShiftAmountTy(N0.getValueType())))); 3961 } 3962 3963 // Try to transform: 3964 // (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub. 3965 // mul x, (2^N + 1) --> add (shl x, N), x 3966 // mul x, (2^N - 1) --> sub (shl x, N), x 3967 // Examples: x * 33 --> (x << 5) + x 3968 // x * 15 --> (x << 4) - x 3969 // x * -33 --> -((x << 5) + x) 3970 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4) 3971 // (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub. 3972 // mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M)) 3973 // mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M)) 3974 // Examples: x * 0x8800 --> (x << 15) + (x << 11) 3975 // x * 0xf800 --> (x << 16) - (x << 11) 3976 // x * -0x8800 --> -((x << 15) + (x << 11)) 3977 // x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16) 3978 if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) { 3979 // TODO: We could handle more general decomposition of any constant by 3980 // having the target set a limit on number of ops and making a 3981 // callback to determine that sequence (similar to sqrt expansion). 3982 unsigned MathOp = ISD::DELETED_NODE; 3983 APInt MulC = ConstValue1.abs(); 3984 // The constant `2` should be treated as (2^0 + 1). 3985 unsigned TZeros = MulC == 2 ? 0 : MulC.countTrailingZeros(); 3986 MulC.lshrInPlace(TZeros); 3987 if ((MulC - 1).isPowerOf2()) 3988 MathOp = ISD::ADD; 3989 else if ((MulC + 1).isPowerOf2()) 3990 MathOp = ISD::SUB; 3991 3992 if (MathOp != ISD::DELETED_NODE) { 3993 unsigned ShAmt = 3994 MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2(); 3995 ShAmt += TZeros; 3996 assert(ShAmt < VT.getScalarSizeInBits() && 3997 "multiply-by-constant generated out of bounds shift"); 3998 SDLoc DL(N); 3999 SDValue Shl = 4000 DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT)); 4001 SDValue R = 4002 TZeros ? DAG.getNode(MathOp, DL, VT, Shl, 4003 DAG.getNode(ISD::SHL, DL, VT, N0, 4004 DAG.getConstant(TZeros, DL, VT))) 4005 : DAG.getNode(MathOp, DL, VT, Shl, N0); 4006 if (ConstValue1.isNegative()) 4007 R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R); 4008 return R; 4009 } 4010 } 4011 4012 // (mul (shl X, c1), c2) -> (mul X, c2 << c1) 4013 if (N0.getOpcode() == ISD::SHL && 4014 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 4015 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 4016 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); 4017 if (isConstantOrConstantVector(C3)) 4018 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); 4019 } 4020 4021 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one 4022 // use. 4023 { 4024 SDValue Sh, Y; 4025 4026 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). 4027 if (N0.getOpcode() == ISD::SHL && 4028 isConstantOrConstantVector(N0.getOperand(1)) && N0->hasOneUse()) { 4029 Sh = N0; Y = N1; 4030 } else if (N1.getOpcode() == ISD::SHL && 4031 isConstantOrConstantVector(N1.getOperand(1)) && 4032 N1->hasOneUse()) { 4033 Sh = N1; Y = N0; 4034 } 4035 4036 if (Sh.getNode()) { 4037 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); 4038 return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); 4039 } 4040 } 4041 4042 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) 4043 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 4044 N0.getOpcode() == ISD::ADD && 4045 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && 4046 isMulAddWithConstProfitable(N, N0, N1)) 4047 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 4048 DAG.getNode(ISD::MUL, SDLoc(N0), VT, 4049 N0.getOperand(0), N1), 4050 DAG.getNode(ISD::MUL, SDLoc(N1), VT, 4051 N0.getOperand(1), N1)); 4052 4053 // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)). 4054 if (N0.getOpcode() == ISD::VSCALE) 4055 if (ConstantSDNode *NC1 = isConstOrConstSplat(N1)) { 4056 const APInt &C0 = N0.getConstantOperandAPInt(0); 4057 const APInt &C1 = NC1->getAPIntValue(); 4058 return DAG.getVScale(SDLoc(N), VT, C0 * C1); 4059 } 4060 4061 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 4062 APInt MulVal; 4063 if (N0.getOpcode() == ISD::STEP_VECTOR) 4064 if (ISD::isConstantSplatVector(N1.getNode(), MulVal)) { 4065 const APInt &C0 = N0.getConstantOperandAPInt(0); 4066 APInt NewStep = C0 * MulVal; 4067 return DAG.getStepVector(SDLoc(N), VT, NewStep); 4068 } 4069 4070 // Fold ((mul x, 0/undef) -> 0, 4071 // (mul x, 1) -> x) -> x) 4072 // -> and(x, mask) 4073 // We can replace vectors with '0' and '1' factors with a clearing mask. 4074 if (VT.isFixedLengthVector()) { 4075 unsigned NumElts = VT.getVectorNumElements(); 4076 SmallBitVector ClearMask; 4077 ClearMask.reserve(NumElts); 4078 auto IsClearMask = [&ClearMask](ConstantSDNode *V) { 4079 if (!V || V->isZero()) { 4080 ClearMask.push_back(true); 4081 return true; 4082 } 4083 ClearMask.push_back(false); 4084 return V->isOne(); 4085 }; 4086 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::AND, VT)) && 4087 ISD::matchUnaryPredicate(N1, IsClearMask, /*AllowUndefs*/ true)) { 4088 assert(N1.getOpcode() == ISD::BUILD_VECTOR && "Unknown constant vector"); 4089 SDLoc DL(N); 4090 EVT LegalSVT = N1.getOperand(0).getValueType(); 4091 SDValue Zero = DAG.getConstant(0, DL, LegalSVT); 4092 SDValue AllOnes = DAG.getAllOnesConstant(DL, LegalSVT); 4093 SmallVector<SDValue, 16> Mask(NumElts, AllOnes); 4094 for (unsigned I = 0; I != NumElts; ++I) 4095 if (ClearMask[I]) 4096 Mask[I] = Zero; 4097 return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getBuildVector(VT, DL, Mask)); 4098 } 4099 } 4100 4101 // reassociate mul 4102 if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags())) 4103 return RMUL; 4104 4105 return SDValue(); 4106 } 4107 4108 /// Return true if divmod libcall is available. 4109 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 4110 const TargetLowering &TLI) { 4111 RTLIB::Libcall LC; 4112 EVT NodeType = Node->getValueType(0); 4113 if (!NodeType.isSimple()) 4114 return false; 4115 switch (NodeType.getSimpleVT().SimpleTy) { 4116 default: return false; // No libcall for vector types. 4117 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 4118 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 4119 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 4120 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 4121 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 4122 } 4123 4124 return TLI.getLibcallName(LC) != nullptr; 4125 } 4126 4127 /// Issue divrem if both quotient and remainder are needed. 4128 SDValue DAGCombiner::useDivRem(SDNode *Node) { 4129 if (Node->use_empty()) 4130 return SDValue(); // This is a dead node, leave it alone. 4131 4132 unsigned Opcode = Node->getOpcode(); 4133 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); 4134 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 4135 4136 // DivMod lib calls can still work on non-legal types if using lib-calls. 4137 EVT VT = Node->getValueType(0); 4138 if (VT.isVector() || !VT.isInteger()) 4139 return SDValue(); 4140 4141 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) 4142 return SDValue(); 4143 4144 // If DIVREM is going to get expanded into a libcall, 4145 // but there is no libcall available, then don't combine. 4146 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && 4147 !isDivRemLibcallAvailable(Node, isSigned, TLI)) 4148 return SDValue(); 4149 4150 // If div is legal, it's better to do the normal expansion 4151 unsigned OtherOpcode = 0; 4152 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { 4153 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; 4154 if (TLI.isOperationLegalOrCustom(Opcode, VT)) 4155 return SDValue(); 4156 } else { 4157 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 4158 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) 4159 return SDValue(); 4160 } 4161 4162 SDValue Op0 = Node->getOperand(0); 4163 SDValue Op1 = Node->getOperand(1); 4164 SDValue combined; 4165 for (SDNode *User : Op0->uses()) { 4166 if (User == Node || User->getOpcode() == ISD::DELETED_NODE || 4167 User->use_empty()) 4168 continue; 4169 // Convert the other matching node(s), too; 4170 // otherwise, the DIVREM may get target-legalized into something 4171 // target-specific that we won't be able to recognize. 4172 unsigned UserOpc = User->getOpcode(); 4173 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && 4174 User->getOperand(0) == Op0 && 4175 User->getOperand(1) == Op1) { 4176 if (!combined) { 4177 if (UserOpc == OtherOpcode) { 4178 SDVTList VTs = DAG.getVTList(VT, VT); 4179 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); 4180 } else if (UserOpc == DivRemOpc) { 4181 combined = SDValue(User, 0); 4182 } else { 4183 assert(UserOpc == Opcode); 4184 continue; 4185 } 4186 } 4187 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) 4188 CombineTo(User, combined); 4189 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) 4190 CombineTo(User, combined.getValue(1)); 4191 } 4192 } 4193 return combined; 4194 } 4195 4196 static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { 4197 SDValue N0 = N->getOperand(0); 4198 SDValue N1 = N->getOperand(1); 4199 EVT VT = N->getValueType(0); 4200 SDLoc DL(N); 4201 4202 unsigned Opc = N->getOpcode(); 4203 bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc); 4204 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4205 4206 // X / undef -> undef 4207 // X % undef -> undef 4208 // X / 0 -> undef 4209 // X % 0 -> undef 4210 // NOTE: This includes vectors where any divisor element is zero/undef. 4211 if (DAG.isUndef(Opc, {N0, N1})) 4212 return DAG.getUNDEF(VT); 4213 4214 // undef / X -> 0 4215 // undef % X -> 0 4216 if (N0.isUndef()) 4217 return DAG.getConstant(0, DL, VT); 4218 4219 // 0 / X -> 0 4220 // 0 % X -> 0 4221 ConstantSDNode *N0C = isConstOrConstSplat(N0); 4222 if (N0C && N0C->isZero()) 4223 return N0; 4224 4225 // X / X -> 1 4226 // X % X -> 0 4227 if (N0 == N1) 4228 return DAG.getConstant(IsDiv ? 1 : 0, DL, VT); 4229 4230 // X / 1 -> X 4231 // X % 1 -> 0 4232 // If this is a boolean op (single-bit element type), we can't have 4233 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 4234 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume 4235 // it's a 1. 4236 if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1)) 4237 return IsDiv ? N0 : DAG.getConstant(0, DL, VT); 4238 4239 return SDValue(); 4240 } 4241 4242 SDValue DAGCombiner::visitSDIV(SDNode *N) { 4243 SDValue N0 = N->getOperand(0); 4244 SDValue N1 = N->getOperand(1); 4245 EVT VT = N->getValueType(0); 4246 EVT CCVT = getSetCCResultType(VT); 4247 SDLoc DL(N); 4248 4249 // fold (sdiv c1, c2) -> c1/c2 4250 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1})) 4251 return C; 4252 4253 // fold vector ops 4254 if (VT.isVector()) 4255 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 4256 return FoldedVOp; 4257 4258 // fold (sdiv X, -1) -> 0-X 4259 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4260 if (N1C && N1C->isAllOnes()) 4261 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); 4262 4263 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0) 4264 if (N1C && N1C->getAPIntValue().isMinSignedValue()) 4265 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4266 DAG.getConstant(1, DL, VT), 4267 DAG.getConstant(0, DL, VT)); 4268 4269 if (SDValue V = simplifyDivRem(N, DAG)) 4270 return V; 4271 4272 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4273 return NewSel; 4274 4275 // If we know the sign bits of both operands are zero, strength reduce to a 4276 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 4277 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 4278 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); 4279 4280 if (SDValue V = visitSDIVLike(N0, N1, N)) { 4281 // If the corresponding remainder node exists, update its users with 4282 // (Dividend - (Quotient * Divisor). 4283 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(), 4284 { N0, N1 })) { 4285 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); 4286 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4287 AddToWorklist(Mul.getNode()); 4288 AddToWorklist(Sub.getNode()); 4289 CombineTo(RemNode, Sub); 4290 } 4291 return V; 4292 } 4293 4294 // sdiv, srem -> sdivrem 4295 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is 4296 // true. Otherwise, we break the simplification logic in visitREM(). 4297 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4298 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 4299 if (SDValue DivRem = useDivRem(N)) 4300 return DivRem; 4301 4302 return SDValue(); 4303 } 4304 4305 SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) { 4306 SDLoc DL(N); 4307 EVT VT = N->getValueType(0); 4308 EVT CCVT = getSetCCResultType(VT); 4309 unsigned BitWidth = VT.getScalarSizeInBits(); 4310 4311 // Helper for determining whether a value is a power-2 constant scalar or a 4312 // vector of such elements. 4313 auto IsPowerOfTwo = [](ConstantSDNode *C) { 4314 if (C->isZero() || C->isOpaque()) 4315 return false; 4316 if (C->getAPIntValue().isPowerOf2()) 4317 return true; 4318 if (C->getAPIntValue().isNegatedPowerOf2()) 4319 return true; 4320 return false; 4321 }; 4322 4323 // fold (sdiv X, pow2) -> simple ops after legalize 4324 // FIXME: We check for the exact bit here because the generic lowering gives 4325 // better results in that case. The target-specific lowering should learn how 4326 // to handle exact sdivs efficiently. 4327 if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) { 4328 // Target-specific implementation of sdiv x, pow2. 4329 if (SDValue Res = BuildSDIVPow2(N)) 4330 return Res; 4331 4332 // Create constants that are functions of the shift amount value. 4333 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); 4334 SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy); 4335 SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1); 4336 C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy); 4337 SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1); 4338 if (!isConstantOrConstantVector(Inexact)) 4339 return SDValue(); 4340 4341 // Splat the sign bit into the register 4342 SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0, 4343 DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy)); 4344 AddToWorklist(Sign.getNode()); 4345 4346 // Add (N0 < 0) ? abs2 - 1 : 0; 4347 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact); 4348 AddToWorklist(Srl.getNode()); 4349 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl); 4350 AddToWorklist(Add.getNode()); 4351 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1); 4352 AddToWorklist(Sra.getNode()); 4353 4354 // Special case: (sdiv X, 1) -> X 4355 // Special Case: (sdiv X, -1) -> 0-X 4356 SDValue One = DAG.getConstant(1, DL, VT); 4357 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); 4358 SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ); 4359 SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ); 4360 SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes); 4361 Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra); 4362 4363 // If dividing by a positive value, we're done. Otherwise, the result must 4364 // be negated. 4365 SDValue Zero = DAG.getConstant(0, DL, VT); 4366 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra); 4367 4368 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding. 4369 SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT); 4370 SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra); 4371 return Res; 4372 } 4373 4374 // If integer divide is expensive and we satisfy the requirements, emit an 4375 // alternate sequence. Targets may check function attributes for size/speed 4376 // trade-offs. 4377 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4378 if (isConstantOrConstantVector(N1) && 4379 !TLI.isIntDivCheap(N->getValueType(0), Attr)) 4380 if (SDValue Op = BuildSDIV(N)) 4381 return Op; 4382 4383 return SDValue(); 4384 } 4385 4386 SDValue DAGCombiner::visitUDIV(SDNode *N) { 4387 SDValue N0 = N->getOperand(0); 4388 SDValue N1 = N->getOperand(1); 4389 EVT VT = N->getValueType(0); 4390 EVT CCVT = getSetCCResultType(VT); 4391 SDLoc DL(N); 4392 4393 // fold (udiv c1, c2) -> c1/c2 4394 if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1})) 4395 return C; 4396 4397 // fold vector ops 4398 if (VT.isVector()) 4399 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 4400 return FoldedVOp; 4401 4402 // fold (udiv X, -1) -> select(X == -1, 1, 0) 4403 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4404 if (N1C && N1C->isAllOnes()) 4405 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4406 DAG.getConstant(1, DL, VT), 4407 DAG.getConstant(0, DL, VT)); 4408 4409 if (SDValue V = simplifyDivRem(N, DAG)) 4410 return V; 4411 4412 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4413 return NewSel; 4414 4415 if (SDValue V = visitUDIVLike(N0, N1, N)) { 4416 // If the corresponding remainder node exists, update its users with 4417 // (Dividend - (Quotient * Divisor). 4418 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(), 4419 { N0, N1 })) { 4420 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); 4421 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4422 AddToWorklist(Mul.getNode()); 4423 AddToWorklist(Sub.getNode()); 4424 CombineTo(RemNode, Sub); 4425 } 4426 return V; 4427 } 4428 4429 // sdiv, srem -> sdivrem 4430 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is 4431 // true. Otherwise, we break the simplification logic in visitREM(). 4432 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4433 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 4434 if (SDValue DivRem = useDivRem(N)) 4435 return DivRem; 4436 4437 return SDValue(); 4438 } 4439 4440 SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) { 4441 SDLoc DL(N); 4442 EVT VT = N->getValueType(0); 4443 4444 // fold (udiv x, (1 << c)) -> x >>u c 4445 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 4446 DAG.isKnownToBeAPowerOfTwo(N1)) { 4447 SDValue LogBase2 = BuildLogBase2(N1, DL); 4448 AddToWorklist(LogBase2.getNode()); 4449 4450 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 4451 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); 4452 AddToWorklist(Trunc.getNode()); 4453 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); 4454 } 4455 4456 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 4457 if (N1.getOpcode() == ISD::SHL) { 4458 SDValue N10 = N1.getOperand(0); 4459 if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) && 4460 DAG.isKnownToBeAPowerOfTwo(N10)) { 4461 SDValue LogBase2 = BuildLogBase2(N10, DL); 4462 AddToWorklist(LogBase2.getNode()); 4463 4464 EVT ADDVT = N1.getOperand(1).getValueType(); 4465 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); 4466 AddToWorklist(Trunc.getNode()); 4467 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); 4468 AddToWorklist(Add.getNode()); 4469 return DAG.getNode(ISD::SRL, DL, VT, N0, Add); 4470 } 4471 } 4472 4473 // fold (udiv x, c) -> alternate 4474 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4475 if (isConstantOrConstantVector(N1) && 4476 !TLI.isIntDivCheap(N->getValueType(0), Attr)) 4477 if (SDValue Op = BuildUDIV(N)) 4478 return Op; 4479 4480 return SDValue(); 4481 } 4482 4483 // handles ISD::SREM and ISD::UREM 4484 SDValue DAGCombiner::visitREM(SDNode *N) { 4485 unsigned Opcode = N->getOpcode(); 4486 SDValue N0 = N->getOperand(0); 4487 SDValue N1 = N->getOperand(1); 4488 EVT VT = N->getValueType(0); 4489 EVT CCVT = getSetCCResultType(VT); 4490 4491 bool isSigned = (Opcode == ISD::SREM); 4492 SDLoc DL(N); 4493 4494 // fold (rem c1, c2) -> c1%c2 4495 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4496 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) 4497 return C; 4498 4499 // fold (urem X, -1) -> select(X == -1, 0, x) 4500 if (!isSigned && N1C && N1C->isAllOnes()) 4501 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4502 DAG.getConstant(0, DL, VT), N0); 4503 4504 if (SDValue V = simplifyDivRem(N, DAG)) 4505 return V; 4506 4507 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4508 return NewSel; 4509 4510 if (isSigned) { 4511 // If we know the sign bits of both operands are zero, strength reduce to a 4512 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 4513 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 4514 return DAG.getNode(ISD::UREM, DL, VT, N0, N1); 4515 } else { 4516 if (DAG.isKnownToBeAPowerOfTwo(N1)) { 4517 // fold (urem x, pow2) -> (and x, pow2-1) 4518 SDValue NegOne = DAG.getAllOnesConstant(DL, VT); 4519 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); 4520 AddToWorklist(Add.getNode()); 4521 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 4522 } 4523 if (N1.getOpcode() == ISD::SHL && 4524 DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { 4525 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) 4526 SDValue NegOne = DAG.getAllOnesConstant(DL, VT); 4527 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); 4528 AddToWorklist(Add.getNode()); 4529 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 4530 } 4531 } 4532 4533 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4534 4535 // If X/C can be simplified by the division-by-constant logic, lower 4536 // X%C to the equivalent of X-X/C*C. 4537 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the 4538 // speculative DIV must not cause a DIVREM conversion. We guard against this 4539 // by skipping the simplification if isIntDivCheap(). When div is not cheap, 4540 // combine will not return a DIVREM. Regardless, checking cheapness here 4541 // makes sense since the simplification results in fatter code. 4542 if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) { 4543 SDValue OptimizedDiv = 4544 isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N); 4545 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != N) { 4546 // If the equivalent Div node also exists, update its users. 4547 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 4548 if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(), 4549 { N0, N1 })) 4550 CombineTo(DivNode, OptimizedDiv); 4551 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); 4552 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4553 AddToWorklist(OptimizedDiv.getNode()); 4554 AddToWorklist(Mul.getNode()); 4555 return Sub; 4556 } 4557 } 4558 4559 // sdiv, srem -> sdivrem 4560 if (SDValue DivRem = useDivRem(N)) 4561 return DivRem.getValue(1); 4562 4563 return SDValue(); 4564 } 4565 4566 SDValue DAGCombiner::visitMULHS(SDNode *N) { 4567 SDValue N0 = N->getOperand(0); 4568 SDValue N1 = N->getOperand(1); 4569 EVT VT = N->getValueType(0); 4570 SDLoc DL(N); 4571 4572 // fold (mulhs c1, c2) 4573 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHS, DL, VT, {N0, N1})) 4574 return C; 4575 4576 // canonicalize constant to RHS. 4577 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4578 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4579 return DAG.getNode(ISD::MULHS, DL, N->getVTList(), N1, N0); 4580 4581 if (VT.isVector()) { 4582 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 4583 return FoldedVOp; 4584 4585 // fold (mulhs x, 0) -> 0 4586 // do not return N1, because undef node may exist. 4587 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 4588 return DAG.getConstant(0, DL, VT); 4589 } 4590 4591 // fold (mulhs x, 0) -> 0 4592 if (isNullConstant(N1)) 4593 return N1; 4594 4595 // fold (mulhs x, 1) -> (sra x, size(x)-1) 4596 if (isOneConstant(N1)) 4597 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, 4598 DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL, 4599 getShiftAmountTy(N0.getValueType()))); 4600 4601 // fold (mulhs x, undef) -> 0 4602 if (N0.isUndef() || N1.isUndef()) 4603 return DAG.getConstant(0, DL, VT); 4604 4605 // If the type twice as wide is legal, transform the mulhs to a wider multiply 4606 // plus a shift. 4607 if (!TLI.isOperationLegalOrCustom(ISD::MULHS, VT) && VT.isSimple() && 4608 !VT.isVector()) { 4609 MVT Simple = VT.getSimpleVT(); 4610 unsigned SimpleSize = Simple.getSizeInBits(); 4611 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4612 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4613 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); 4614 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); 4615 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 4616 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 4617 DAG.getConstant(SimpleSize, DL, 4618 getShiftAmountTy(N1.getValueType()))); 4619 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 4620 } 4621 } 4622 4623 return SDValue(); 4624 } 4625 4626 SDValue DAGCombiner::visitMULHU(SDNode *N) { 4627 SDValue N0 = N->getOperand(0); 4628 SDValue N1 = N->getOperand(1); 4629 EVT VT = N->getValueType(0); 4630 SDLoc DL(N); 4631 4632 // fold (mulhu c1, c2) 4633 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHU, DL, VT, {N0, N1})) 4634 return C; 4635 4636 // canonicalize constant to RHS. 4637 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4638 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4639 return DAG.getNode(ISD::MULHU, DL, N->getVTList(), N1, N0); 4640 4641 if (VT.isVector()) { 4642 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 4643 return FoldedVOp; 4644 4645 // fold (mulhu x, 0) -> 0 4646 // do not return N1, because undef node may exist. 4647 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 4648 return DAG.getConstant(0, DL, VT); 4649 } 4650 4651 // fold (mulhu x, 0) -> 0 4652 if (isNullConstant(N1)) 4653 return N1; 4654 4655 // fold (mulhu x, 1) -> 0 4656 if (isOneConstant(N1)) 4657 return DAG.getConstant(0, DL, N0.getValueType()); 4658 4659 // fold (mulhu x, undef) -> 0 4660 if (N0.isUndef() || N1.isUndef()) 4661 return DAG.getConstant(0, DL, VT); 4662 4663 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c) 4664 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 4665 DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) { 4666 unsigned NumEltBits = VT.getScalarSizeInBits(); 4667 SDValue LogBase2 = BuildLogBase2(N1, DL); 4668 SDValue SRLAmt = DAG.getNode( 4669 ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2); 4670 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 4671 SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT); 4672 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); 4673 } 4674 4675 // If the type twice as wide is legal, transform the mulhu to a wider multiply 4676 // plus a shift. 4677 if (!TLI.isOperationLegalOrCustom(ISD::MULHU, VT) && VT.isSimple() && 4678 !VT.isVector()) { 4679 MVT Simple = VT.getSimpleVT(); 4680 unsigned SimpleSize = Simple.getSizeInBits(); 4681 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4682 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4683 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); 4684 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); 4685 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 4686 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 4687 DAG.getConstant(SimpleSize, DL, 4688 getShiftAmountTy(N1.getValueType()))); 4689 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 4690 } 4691 } 4692 4693 // Simplify the operands using demanded-bits information. 4694 // We don't have demanded bits support for MULHU so this just enables constant 4695 // folding based on known bits. 4696 if (SimplifyDemandedBits(SDValue(N, 0))) 4697 return SDValue(N, 0); 4698 4699 return SDValue(); 4700 } 4701 4702 SDValue DAGCombiner::visitAVG(SDNode *N) { 4703 unsigned Opcode = N->getOpcode(); 4704 SDValue N0 = N->getOperand(0); 4705 SDValue N1 = N->getOperand(1); 4706 EVT VT = N->getValueType(0); 4707 SDLoc DL(N); 4708 4709 // fold (avg c1, c2) 4710 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) 4711 return C; 4712 4713 // canonicalize constant to RHS. 4714 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4715 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4716 return DAG.getNode(Opcode, DL, N->getVTList(), N1, N0); 4717 4718 if (VT.isVector()) { 4719 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 4720 return FoldedVOp; 4721 4722 // fold (avgfloor x, 0) -> x >> 1 4723 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) { 4724 if (Opcode == ISD::AVGFLOORS) 4725 return DAG.getNode(ISD::SRA, DL, VT, N0, DAG.getConstant(1, DL, VT)); 4726 if (Opcode == ISD::AVGFLOORU) 4727 return DAG.getNode(ISD::SRL, DL, VT, N0, DAG.getConstant(1, DL, VT)); 4728 } 4729 } 4730 4731 // fold (avg x, undef) -> x 4732 if (N0.isUndef()) 4733 return N1; 4734 if (N1.isUndef()) 4735 return N0; 4736 4737 // TODO If we use avg for scalars anywhere, we can add (avgfl x, 0) -> x >> 1 4738 4739 return SDValue(); 4740 } 4741 4742 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp 4743 /// give the opcodes for the two computations that are being performed. Return 4744 /// true if a simplification was made. 4745 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 4746 unsigned HiOp) { 4747 // If the high half is not needed, just compute the low half. 4748 bool HiExists = N->hasAnyUseOfValue(1); 4749 if (!HiExists && (!LegalOperations || 4750 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { 4751 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 4752 return CombineTo(N, Res, Res); 4753 } 4754 4755 // If the low half is not needed, just compute the high half. 4756 bool LoExists = N->hasAnyUseOfValue(0); 4757 if (!LoExists && (!LegalOperations || 4758 TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) { 4759 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 4760 return CombineTo(N, Res, Res); 4761 } 4762 4763 // If both halves are used, return as it is. 4764 if (LoExists && HiExists) 4765 return SDValue(); 4766 4767 // If the two computed results can be simplified separately, separate them. 4768 if (LoExists) { 4769 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 4770 AddToWorklist(Lo.getNode()); 4771 SDValue LoOpt = combine(Lo.getNode()); 4772 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && 4773 (!LegalOperations || 4774 TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType()))) 4775 return CombineTo(N, LoOpt, LoOpt); 4776 } 4777 4778 if (HiExists) { 4779 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 4780 AddToWorklist(Hi.getNode()); 4781 SDValue HiOpt = combine(Hi.getNode()); 4782 if (HiOpt.getNode() && HiOpt != Hi && 4783 (!LegalOperations || 4784 TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType()))) 4785 return CombineTo(N, HiOpt, HiOpt); 4786 } 4787 4788 return SDValue(); 4789 } 4790 4791 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { 4792 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) 4793 return Res; 4794 4795 EVT VT = N->getValueType(0); 4796 SDLoc DL(N); 4797 4798 // If the type is twice as wide is legal, transform the mulhu to a wider 4799 // multiply plus a shift. 4800 if (VT.isSimple() && !VT.isVector()) { 4801 MVT Simple = VT.getSimpleVT(); 4802 unsigned SimpleSize = Simple.getSizeInBits(); 4803 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4804 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4805 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); 4806 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); 4807 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 4808 // Compute the high part as N1. 4809 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 4810 DAG.getConstant(SimpleSize, DL, 4811 getShiftAmountTy(Lo.getValueType()))); 4812 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 4813 // Compute the low part as N0. 4814 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 4815 return CombineTo(N, Lo, Hi); 4816 } 4817 } 4818 4819 return SDValue(); 4820 } 4821 4822 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { 4823 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) 4824 return Res; 4825 4826 EVT VT = N->getValueType(0); 4827 SDLoc DL(N); 4828 4829 // (umul_lohi N0, 0) -> (0, 0) 4830 if (isNullConstant(N->getOperand(1))) { 4831 SDValue Zero = DAG.getConstant(0, DL, VT); 4832 return CombineTo(N, Zero, Zero); 4833 } 4834 4835 // (umul_lohi N0, 1) -> (N0, 0) 4836 if (isOneConstant(N->getOperand(1))) { 4837 SDValue Zero = DAG.getConstant(0, DL, VT); 4838 return CombineTo(N, N->getOperand(0), Zero); 4839 } 4840 4841 // If the type is twice as wide is legal, transform the mulhu to a wider 4842 // multiply plus a shift. 4843 if (VT.isSimple() && !VT.isVector()) { 4844 MVT Simple = VT.getSimpleVT(); 4845 unsigned SimpleSize = Simple.getSizeInBits(); 4846 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4847 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4848 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); 4849 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); 4850 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 4851 // Compute the high part as N1. 4852 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 4853 DAG.getConstant(SimpleSize, DL, 4854 getShiftAmountTy(Lo.getValueType()))); 4855 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 4856 // Compute the low part as N0. 4857 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 4858 return CombineTo(N, Lo, Hi); 4859 } 4860 } 4861 4862 return SDValue(); 4863 } 4864 4865 SDValue DAGCombiner::visitMULO(SDNode *N) { 4866 SDValue N0 = N->getOperand(0); 4867 SDValue N1 = N->getOperand(1); 4868 EVT VT = N0.getValueType(); 4869 bool IsSigned = (ISD::SMULO == N->getOpcode()); 4870 4871 EVT CarryVT = N->getValueType(1); 4872 SDLoc DL(N); 4873 4874 ConstantSDNode *N0C = isConstOrConstSplat(N0); 4875 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4876 4877 // fold operation with constant operands. 4878 // TODO: Move this to FoldConstantArithmetic when it supports nodes with 4879 // multiple results. 4880 if (N0C && N1C) { 4881 bool Overflow; 4882 APInt Result = 4883 IsSigned ? N0C->getAPIntValue().smul_ov(N1C->getAPIntValue(), Overflow) 4884 : N0C->getAPIntValue().umul_ov(N1C->getAPIntValue(), Overflow); 4885 return CombineTo(N, DAG.getConstant(Result, DL, VT), 4886 DAG.getBoolConstant(Overflow, DL, CarryVT, CarryVT)); 4887 } 4888 4889 // canonicalize constant to RHS. 4890 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4891 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4892 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); 4893 4894 // fold (mulo x, 0) -> 0 + no carry out 4895 if (isNullOrNullSplat(N1)) 4896 return CombineTo(N, DAG.getConstant(0, DL, VT), 4897 DAG.getConstant(0, DL, CarryVT)); 4898 4899 // (mulo x, 2) -> (addo x, x) 4900 if (N1C && N1C->getAPIntValue() == 2) 4901 return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL, 4902 N->getVTList(), N0, N0); 4903 4904 if (IsSigned) { 4905 // A 1 bit SMULO overflows if both inputs are 1. 4906 if (VT.getScalarSizeInBits() == 1) { 4907 SDValue And = DAG.getNode(ISD::AND, DL, VT, N0, N1); 4908 return CombineTo(N, And, 4909 DAG.getSetCC(DL, CarryVT, And, 4910 DAG.getConstant(0, DL, VT), ISD::SETNE)); 4911 } 4912 4913 // Multiplying n * m significant bits yields a result of n + m significant 4914 // bits. If the total number of significant bits does not exceed the 4915 // result bit width (minus 1), there is no overflow. 4916 unsigned SignBits = DAG.ComputeNumSignBits(N0); 4917 if (SignBits > 1) 4918 SignBits += DAG.ComputeNumSignBits(N1); 4919 if (SignBits > VT.getScalarSizeInBits() + 1) 4920 return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1), 4921 DAG.getConstant(0, DL, CarryVT)); 4922 } else { 4923 KnownBits N1Known = DAG.computeKnownBits(N1); 4924 KnownBits N0Known = DAG.computeKnownBits(N0); 4925 bool Overflow; 4926 (void)N0Known.getMaxValue().umul_ov(N1Known.getMaxValue(), Overflow); 4927 if (!Overflow) 4928 return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1), 4929 DAG.getConstant(0, DL, CarryVT)); 4930 } 4931 4932 return SDValue(); 4933 } 4934 4935 // Function to calculate whether the Min/Max pair of SDNodes (potentially 4936 // swapped around) make a signed saturate pattern, clamping to between a signed 4937 // saturate of -2^(BW-1) and 2^(BW-1)-1, or an unsigned saturate of 0 and 2^BW. 4938 // Returns the node being clamped and the bitwidth of the clamp in BW. Should 4939 // work with both SMIN/SMAX nodes and setcc/select combo. The operands are the 4940 // same as SimplifySelectCC. N0<N1 ? N2 : N3. 4941 static SDValue isSaturatingMinMax(SDValue N0, SDValue N1, SDValue N2, 4942 SDValue N3, ISD::CondCode CC, unsigned &BW, 4943 bool &Unsigned) { 4944 auto isSignedMinMax = [&](SDValue N0, SDValue N1, SDValue N2, SDValue N3, 4945 ISD::CondCode CC) { 4946 // The compare and select operand should be the same or the select operands 4947 // should be truncated versions of the comparison. 4948 if (N0 != N2 && (N2.getOpcode() != ISD::TRUNCATE || N0 != N2.getOperand(0))) 4949 return 0; 4950 // The constants need to be the same or a truncated version of each other. 4951 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4952 ConstantSDNode *N3C = isConstOrConstSplat(N3); 4953 if (!N1C || !N3C) 4954 return 0; 4955 const APInt &C1 = N1C->getAPIntValue(); 4956 const APInt &C2 = N3C->getAPIntValue(); 4957 if (C1.getBitWidth() < C2.getBitWidth() || 4958 C1 != C2.sextOrSelf(C1.getBitWidth())) 4959 return 0; 4960 return CC == ISD::SETLT ? ISD::SMIN : (CC == ISD::SETGT ? ISD::SMAX : 0); 4961 }; 4962 4963 // Check the initial value is a SMIN/SMAX equivalent. 4964 unsigned Opcode0 = isSignedMinMax(N0, N1, N2, N3, CC); 4965 if (!Opcode0) 4966 return SDValue(); 4967 4968 SDValue N00, N01, N02, N03; 4969 ISD::CondCode N0CC; 4970 switch (N0.getOpcode()) { 4971 case ISD::SMIN: 4972 case ISD::SMAX: 4973 N00 = N02 = N0.getOperand(0); 4974 N01 = N03 = N0.getOperand(1); 4975 N0CC = N0.getOpcode() == ISD::SMIN ? ISD::SETLT : ISD::SETGT; 4976 break; 4977 case ISD::SELECT_CC: 4978 N00 = N0.getOperand(0); 4979 N01 = N0.getOperand(1); 4980 N02 = N0.getOperand(2); 4981 N03 = N0.getOperand(3); 4982 N0CC = cast<CondCodeSDNode>(N0.getOperand(4))->get(); 4983 break; 4984 case ISD::SELECT: 4985 case ISD::VSELECT: 4986 if (N0.getOperand(0).getOpcode() != ISD::SETCC) 4987 return SDValue(); 4988 N00 = N0.getOperand(0).getOperand(0); 4989 N01 = N0.getOperand(0).getOperand(1); 4990 N02 = N0.getOperand(1); 4991 N03 = N0.getOperand(2); 4992 N0CC = cast<CondCodeSDNode>(N0.getOperand(0).getOperand(2))->get(); 4993 break; 4994 default: 4995 return SDValue(); 4996 } 4997 4998 unsigned Opcode1 = isSignedMinMax(N00, N01, N02, N03, N0CC); 4999 if (!Opcode1 || Opcode0 == Opcode1) 5000 return SDValue(); 5001 5002 ConstantSDNode *MinCOp = isConstOrConstSplat(Opcode0 == ISD::SMIN ? N1 : N01); 5003 ConstantSDNode *MaxCOp = isConstOrConstSplat(Opcode0 == ISD::SMIN ? N01 : N1); 5004 if (!MinCOp || !MaxCOp || MinCOp->getValueType(0) != MaxCOp->getValueType(0)) 5005 return SDValue(); 5006 5007 const APInt &MinC = MinCOp->getAPIntValue(); 5008 const APInt &MaxC = MaxCOp->getAPIntValue(); 5009 APInt MinCPlus1 = MinC + 1; 5010 if (-MaxC == MinCPlus1 && MinCPlus1.isPowerOf2()) { 5011 BW = MinCPlus1.exactLogBase2() + 1; 5012 Unsigned = false; 5013 return N02; 5014 } 5015 5016 if (MaxC == 0 && MinCPlus1.isPowerOf2()) { 5017 BW = MinCPlus1.exactLogBase2(); 5018 Unsigned = true; 5019 return N02; 5020 } 5021 5022 return SDValue(); 5023 } 5024 5025 static SDValue PerformMinMaxFpToSatCombine(SDValue N0, SDValue N1, SDValue N2, 5026 SDValue N3, ISD::CondCode CC, 5027 SelectionDAG &DAG) { 5028 unsigned BW; 5029 bool Unsigned; 5030 SDValue Fp = isSaturatingMinMax(N0, N1, N2, N3, CC, BW, Unsigned); 5031 if (!Fp || Fp.getOpcode() != ISD::FP_TO_SINT) 5032 return SDValue(); 5033 EVT FPVT = Fp.getOperand(0).getValueType(); 5034 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), BW); 5035 if (FPVT.isVector()) 5036 NewVT = EVT::getVectorVT(*DAG.getContext(), NewVT, 5037 FPVT.getVectorElementCount()); 5038 unsigned NewOpc = Unsigned ? ISD::FP_TO_UINT_SAT : ISD::FP_TO_SINT_SAT; 5039 if (!DAG.getTargetLoweringInfo().shouldConvertFpToSat(NewOpc, FPVT, NewVT)) 5040 return SDValue(); 5041 SDLoc DL(Fp); 5042 SDValue Sat = DAG.getNode(NewOpc, DL, NewVT, Fp.getOperand(0), 5043 DAG.getValueType(NewVT.getScalarType())); 5044 return Unsigned ? DAG.getZExtOrTrunc(Sat, DL, N2->getValueType(0)) 5045 : DAG.getSExtOrTrunc(Sat, DL, N2->getValueType(0)); 5046 } 5047 5048 static SDValue PerformUMinFpToSatCombine(SDValue N0, SDValue N1, SDValue N2, 5049 SDValue N3, ISD::CondCode CC, 5050 SelectionDAG &DAG) { 5051 // We are looking for UMIN(FPTOUI(X), (2^n)-1), which may have come via a 5052 // select/vselect/select_cc. The two operands pairs for the select (N2/N3) may 5053 // be truncated versions of the the setcc (N0/N1). 5054 if ((N0 != N2 && 5055 (N2.getOpcode() != ISD::TRUNCATE || N0 != N2.getOperand(0))) || 5056 N0.getOpcode() != ISD::FP_TO_UINT || CC != ISD::SETULT) 5057 return SDValue(); 5058 ConstantSDNode *N1C = isConstOrConstSplat(N1); 5059 ConstantSDNode *N3C = isConstOrConstSplat(N3); 5060 if (!N1C || !N3C) 5061 return SDValue(); 5062 const APInt &C1 = N1C->getAPIntValue(); 5063 const APInt &C3 = N3C->getAPIntValue(); 5064 if (!(C1 + 1).isPowerOf2() || C1.getBitWidth() < C3.getBitWidth() || 5065 C1 != C3.zextOrSelf(C1.getBitWidth())) 5066 return SDValue(); 5067 5068 unsigned BW = (C1 + 1).exactLogBase2(); 5069 EVT FPVT = N0.getOperand(0).getValueType(); 5070 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), BW); 5071 if (FPVT.isVector()) 5072 NewVT = EVT::getVectorVT(*DAG.getContext(), NewVT, 5073 FPVT.getVectorElementCount()); 5074 if (!DAG.getTargetLoweringInfo().shouldConvertFpToSat(ISD::FP_TO_UINT_SAT, 5075 FPVT, NewVT)) 5076 return SDValue(); 5077 5078 SDValue Sat = 5079 DAG.getNode(ISD::FP_TO_UINT_SAT, SDLoc(N0), NewVT, N0.getOperand(0), 5080 DAG.getValueType(NewVT.getScalarType())); 5081 return DAG.getZExtOrTrunc(Sat, SDLoc(N0), N3.getValueType()); 5082 } 5083 5084 SDValue DAGCombiner::visitIMINMAX(SDNode *N) { 5085 SDValue N0 = N->getOperand(0); 5086 SDValue N1 = N->getOperand(1); 5087 EVT VT = N0.getValueType(); 5088 unsigned Opcode = N->getOpcode(); 5089 SDLoc DL(N); 5090 5091 // fold operation with constant operands. 5092 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) 5093 return C; 5094 5095 // canonicalize constant to RHS 5096 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 5097 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 5098 return DAG.getNode(Opcode, DL, VT, N1, N0); 5099 5100 // fold vector ops 5101 if (VT.isVector()) 5102 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 5103 return FoldedVOp; 5104 5105 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX. 5106 // Only do this if the current op isn't legal and the flipped is. 5107 if (!TLI.isOperationLegal(Opcode, VT) && 5108 (N0.isUndef() || DAG.SignBitIsZero(N0)) && 5109 (N1.isUndef() || DAG.SignBitIsZero(N1))) { 5110 unsigned AltOpcode; 5111 switch (Opcode) { 5112 case ISD::SMIN: AltOpcode = ISD::UMIN; break; 5113 case ISD::SMAX: AltOpcode = ISD::UMAX; break; 5114 case ISD::UMIN: AltOpcode = ISD::SMIN; break; 5115 case ISD::UMAX: AltOpcode = ISD::SMAX; break; 5116 default: llvm_unreachable("Unknown MINMAX opcode"); 5117 } 5118 if (TLI.isOperationLegal(AltOpcode, VT)) 5119 return DAG.getNode(AltOpcode, DL, VT, N0, N1); 5120 } 5121 5122 if (Opcode == ISD::SMIN || Opcode == ISD::SMAX) 5123 if (SDValue S = PerformMinMaxFpToSatCombine( 5124 N0, N1, N0, N1, Opcode == ISD::SMIN ? ISD::SETLT : ISD::SETGT, DAG)) 5125 return S; 5126 if (Opcode == ISD::UMIN) 5127 if (SDValue S = PerformUMinFpToSatCombine(N0, N1, N0, N1, ISD::SETULT, DAG)) 5128 return S; 5129 5130 // Simplify the operands using demanded-bits information. 5131 if (SimplifyDemandedBits(SDValue(N, 0))) 5132 return SDValue(N, 0); 5133 5134 return SDValue(); 5135 } 5136 5137 /// If this is a bitwise logic instruction and both operands have the same 5138 /// opcode, try to sink the other opcode after the logic instruction. 5139 SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) { 5140 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 5141 EVT VT = N0.getValueType(); 5142 unsigned LogicOpcode = N->getOpcode(); 5143 unsigned HandOpcode = N0.getOpcode(); 5144 assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || 5145 LogicOpcode == ISD::XOR) && "Expected logic opcode"); 5146 assert(HandOpcode == N1.getOpcode() && "Bad input!"); 5147 5148 // Bail early if none of these transforms apply. 5149 if (N0.getNumOperands() == 0) 5150 return SDValue(); 5151 5152 // FIXME: We should check number of uses of the operands to not increase 5153 // the instruction count for all transforms. 5154 5155 // Handle size-changing casts. 5156 SDValue X = N0.getOperand(0); 5157 SDValue Y = N1.getOperand(0); 5158 EVT XVT = X.getValueType(); 5159 SDLoc DL(N); 5160 if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND || 5161 HandOpcode == ISD::SIGN_EXTEND) { 5162 // If both operands have other uses, this transform would create extra 5163 // instructions without eliminating anything. 5164 if (!N0.hasOneUse() && !N1.hasOneUse()) 5165 return SDValue(); 5166 // We need matching integer source types. 5167 if (XVT != Y.getValueType()) 5168 return SDValue(); 5169 // Don't create an illegal op during or after legalization. Don't ever 5170 // create an unsupported vector op. 5171 if ((VT.isVector() || LegalOperations) && 5172 !TLI.isOperationLegalOrCustom(LogicOpcode, XVT)) 5173 return SDValue(); 5174 // Avoid infinite looping with PromoteIntBinOp. 5175 // TODO: Should we apply desirable/legal constraints to all opcodes? 5176 if (HandOpcode == ISD::ANY_EXTEND && LegalTypes && 5177 !TLI.isTypeDesirableForOp(LogicOpcode, XVT)) 5178 return SDValue(); 5179 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y) 5180 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 5181 return DAG.getNode(HandOpcode, DL, VT, Logic); 5182 } 5183 5184 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y) 5185 if (HandOpcode == ISD::TRUNCATE) { 5186 // If both operands have other uses, this transform would create extra 5187 // instructions without eliminating anything. 5188 if (!N0.hasOneUse() && !N1.hasOneUse()) 5189 return SDValue(); 5190 // We need matching source types. 5191 if (XVT != Y.getValueType()) 5192 return SDValue(); 5193 // Don't create an illegal op during or after legalization. 5194 if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT)) 5195 return SDValue(); 5196 // Be extra careful sinking truncate. If it's free, there's no benefit in 5197 // widening a binop. Also, don't create a logic op on an illegal type. 5198 if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT)) 5199 return SDValue(); 5200 if (!TLI.isTypeLegal(XVT)) 5201 return SDValue(); 5202 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 5203 return DAG.getNode(HandOpcode, DL, VT, Logic); 5204 } 5205 5206 // For binops SHL/SRL/SRA/AND: 5207 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z 5208 if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL || 5209 HandOpcode == ISD::SRA || HandOpcode == ISD::AND) && 5210 N0.getOperand(1) == N1.getOperand(1)) { 5211 // If either operand has other uses, this transform is not an improvement. 5212 if (!N0.hasOneUse() || !N1.hasOneUse()) 5213 return SDValue(); 5214 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 5215 return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1)); 5216 } 5217 5218 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y) 5219 if (HandOpcode == ISD::BSWAP) { 5220 // If either operand has other uses, this transform is not an improvement. 5221 if (!N0.hasOneUse() || !N1.hasOneUse()) 5222 return SDValue(); 5223 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 5224 return DAG.getNode(HandOpcode, DL, VT, Logic); 5225 } 5226 5227 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) 5228 // Only perform this optimization up until type legalization, before 5229 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by 5230 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and 5231 // we don't want to undo this promotion. 5232 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper 5233 // on scalars. 5234 if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) && 5235 Level <= AfterLegalizeTypes) { 5236 // Input types must be integer and the same. 5237 if (XVT.isInteger() && XVT == Y.getValueType() && 5238 !(VT.isVector() && TLI.isTypeLegal(VT) && 5239 !XVT.isVector() && !TLI.isTypeLegal(XVT))) { 5240 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 5241 return DAG.getNode(HandOpcode, DL, VT, Logic); 5242 } 5243 } 5244 5245 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). 5246 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) 5247 // If both shuffles use the same mask, and both shuffle within a single 5248 // vector, then it is worthwhile to move the swizzle after the operation. 5249 // The type-legalizer generates this pattern when loading illegal 5250 // vector types from memory. In many cases this allows additional shuffle 5251 // optimizations. 5252 // There are other cases where moving the shuffle after the xor/and/or 5253 // is profitable even if shuffles don't perform a swizzle. 5254 // If both shuffles use the same mask, and both shuffles have the same first 5255 // or second operand, then it might still be profitable to move the shuffle 5256 // after the xor/and/or operation. 5257 if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { 5258 auto *SVN0 = cast<ShuffleVectorSDNode>(N0); 5259 auto *SVN1 = cast<ShuffleVectorSDNode>(N1); 5260 assert(X.getValueType() == Y.getValueType() && 5261 "Inputs to shuffles are not the same type"); 5262 5263 // Check that both shuffles use the same mask. The masks are known to be of 5264 // the same length because the result vector type is the same. 5265 // Check also that shuffles have only one use to avoid introducing extra 5266 // instructions. 5267 if (!SVN0->hasOneUse() || !SVN1->hasOneUse() || 5268 !SVN0->getMask().equals(SVN1->getMask())) 5269 return SDValue(); 5270 5271 // Don't try to fold this node if it requires introducing a 5272 // build vector of all zeros that might be illegal at this stage. 5273 SDValue ShOp = N0.getOperand(1); 5274 if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) 5275 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 5276 5277 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C) 5278 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { 5279 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, 5280 N0.getOperand(0), N1.getOperand(0)); 5281 return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask()); 5282 } 5283 5284 // Don't try to fold this node if it requires introducing a 5285 // build vector of all zeros that might be illegal at this stage. 5286 ShOp = N0.getOperand(0); 5287 if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) 5288 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 5289 5290 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B)) 5291 if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) { 5292 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1), 5293 N1.getOperand(1)); 5294 return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask()); 5295 } 5296 } 5297 5298 return SDValue(); 5299 } 5300 5301 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. 5302 SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, 5303 const SDLoc &DL) { 5304 SDValue LL, LR, RL, RR, N0CC, N1CC; 5305 if (!isSetCCEquivalent(N0, LL, LR, N0CC) || 5306 !isSetCCEquivalent(N1, RL, RR, N1CC)) 5307 return SDValue(); 5308 5309 assert(N0.getValueType() == N1.getValueType() && 5310 "Unexpected operand types for bitwise logic op"); 5311 assert(LL.getValueType() == LR.getValueType() && 5312 RL.getValueType() == RR.getValueType() && 5313 "Unexpected operand types for setcc"); 5314 5315 // If we're here post-legalization or the logic op type is not i1, the logic 5316 // op type must match a setcc result type. Also, all folds require new 5317 // operations on the left and right operands, so those types must match. 5318 EVT VT = N0.getValueType(); 5319 EVT OpVT = LL.getValueType(); 5320 if (LegalOperations || VT.getScalarType() != MVT::i1) 5321 if (VT != getSetCCResultType(OpVT)) 5322 return SDValue(); 5323 if (OpVT != RL.getValueType()) 5324 return SDValue(); 5325 5326 ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); 5327 ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); 5328 bool IsInteger = OpVT.isInteger(); 5329 if (LR == RR && CC0 == CC1 && IsInteger) { 5330 bool IsZero = isNullOrNullSplat(LR); 5331 bool IsNeg1 = isAllOnesOrAllOnesSplat(LR); 5332 5333 // All bits clear? 5334 bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; 5335 // All sign bits clear? 5336 bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; 5337 // Any bits set? 5338 bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; 5339 // Any sign bits set? 5340 bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; 5341 5342 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0) 5343 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) 5344 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0) 5345 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0) 5346 if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { 5347 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); 5348 AddToWorklist(Or.getNode()); 5349 return DAG.getSetCC(DL, VT, Or, LR, CC1); 5350 } 5351 5352 // All bits set? 5353 bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; 5354 // All sign bits set? 5355 bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; 5356 // Any bits clear? 5357 bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; 5358 // Any sign bits clear? 5359 bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; 5360 5361 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) 5362 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0) 5363 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) 5364 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1) 5365 if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { 5366 SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); 5367 AddToWorklist(And.getNode()); 5368 return DAG.getSetCC(DL, VT, And, LR, CC1); 5369 } 5370 } 5371 5372 // TODO: What is the 'or' equivalent of this fold? 5373 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) 5374 if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 && 5375 IsInteger && CC0 == ISD::SETNE && 5376 ((isNullConstant(LR) && isAllOnesConstant(RR)) || 5377 (isAllOnesConstant(LR) && isNullConstant(RR)))) { 5378 SDValue One = DAG.getConstant(1, DL, OpVT); 5379 SDValue Two = DAG.getConstant(2, DL, OpVT); 5380 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); 5381 AddToWorklist(Add.getNode()); 5382 return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); 5383 } 5384 5385 // Try more general transforms if the predicates match and the only user of 5386 // the compares is the 'and' or 'or'. 5387 if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && 5388 N0.hasOneUse() && N1.hasOneUse()) { 5389 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 5390 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 5391 if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { 5392 SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); 5393 SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); 5394 SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); 5395 SDValue Zero = DAG.getConstant(0, DL, OpVT); 5396 return DAG.getSetCC(DL, VT, Or, Zero, CC1); 5397 } 5398 5399 // Turn compare of constants whose difference is 1 bit into add+and+setcc. 5400 // TODO - support non-uniform vector amounts. 5401 if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) { 5402 // Match a shared variable operand and 2 non-opaque constant operands. 5403 ConstantSDNode *C0 = isConstOrConstSplat(LR); 5404 ConstantSDNode *C1 = isConstOrConstSplat(RR); 5405 if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) { 5406 const APInt &CMax = 5407 APIntOps::umax(C0->getAPIntValue(), C1->getAPIntValue()); 5408 const APInt &CMin = 5409 APIntOps::umin(C0->getAPIntValue(), C1->getAPIntValue()); 5410 // The difference of the constants must be a single bit. 5411 if ((CMax - CMin).isPowerOf2()) { 5412 // and/or (setcc X, CMax, ne), (setcc X, CMin, ne/eq) --> 5413 // setcc ((sub X, CMin), ~(CMax - CMin)), 0, ne/eq 5414 SDValue Max = DAG.getNode(ISD::UMAX, DL, OpVT, LR, RR); 5415 SDValue Min = DAG.getNode(ISD::UMIN, DL, OpVT, LR, RR); 5416 SDValue Offset = DAG.getNode(ISD::SUB, DL, OpVT, LL, Min); 5417 SDValue Diff = DAG.getNode(ISD::SUB, DL, OpVT, Max, Min); 5418 SDValue Mask = DAG.getNOT(DL, Diff, OpVT); 5419 SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Offset, Mask); 5420 SDValue Zero = DAG.getConstant(0, DL, OpVT); 5421 return DAG.getSetCC(DL, VT, And, Zero, CC0); 5422 } 5423 } 5424 } 5425 } 5426 5427 // Canonicalize equivalent operands to LL == RL. 5428 if (LL == RR && LR == RL) { 5429 CC1 = ISD::getSetCCSwappedOperands(CC1); 5430 std::swap(RL, RR); 5431 } 5432 5433 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) 5434 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) 5435 if (LL == RL && LR == RR) { 5436 ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT) 5437 : ISD::getSetCCOrOperation(CC0, CC1, OpVT); 5438 if (NewCC != ISD::SETCC_INVALID && 5439 (!LegalOperations || 5440 (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && 5441 TLI.isOperationLegal(ISD::SETCC, OpVT)))) 5442 return DAG.getSetCC(DL, VT, LL, LR, NewCC); 5443 } 5444 5445 return SDValue(); 5446 } 5447 5448 /// This contains all DAGCombine rules which reduce two values combined by 5449 /// an And operation to a single value. This makes them reusable in the context 5450 /// of visitSELECT(). Rules involving constants are not included as 5451 /// visitSELECT() already handles those cases. 5452 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { 5453 EVT VT = N1.getValueType(); 5454 SDLoc DL(N); 5455 5456 // fold (and x, undef) -> 0 5457 if (N0.isUndef() || N1.isUndef()) 5458 return DAG.getConstant(0, DL, VT); 5459 5460 if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) 5461 return V; 5462 5463 // TODO: Rewrite this to return a new 'AND' instead of using CombineTo. 5464 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && 5465 VT.getSizeInBits() <= 64 && N0->hasOneUse()) { 5466 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5467 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { 5468 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal 5469 // immediate for an add, but it is legal if its top c2 bits are set, 5470 // transform the ADD so the immediate doesn't need to be materialized 5471 // in a register. 5472 APInt ADDC = ADDI->getAPIntValue(); 5473 APInt SRLC = SRLI->getAPIntValue(); 5474 if (ADDC.getMinSignedBits() <= 64 && 5475 SRLC.ult(VT.getSizeInBits()) && 5476 !TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 5477 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 5478 SRLC.getZExtValue()); 5479 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { 5480 ADDC |= Mask; 5481 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 5482 SDLoc DL0(N0); 5483 SDValue NewAdd = 5484 DAG.getNode(ISD::ADD, DL0, VT, 5485 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); 5486 CombineTo(N0.getNode(), NewAdd); 5487 // Return N so it doesn't get rechecked! 5488 return SDValue(N, 0); 5489 } 5490 } 5491 } 5492 } 5493 } 5494 } 5495 5496 // Reduce bit extract of low half of an integer to the narrower type. 5497 // (and (srl i64:x, K), KMask) -> 5498 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) 5499 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 5500 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { 5501 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5502 unsigned Size = VT.getSizeInBits(); 5503 const APInt &AndMask = CAnd->getAPIntValue(); 5504 unsigned ShiftBits = CShift->getZExtValue(); 5505 5506 // Bail out, this node will probably disappear anyway. 5507 if (ShiftBits == 0) 5508 return SDValue(); 5509 5510 unsigned MaskBits = AndMask.countTrailingOnes(); 5511 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); 5512 5513 if (AndMask.isMask() && 5514 // Required bits must not span the two halves of the integer and 5515 // must fit in the half size type. 5516 (ShiftBits + MaskBits <= Size / 2) && 5517 TLI.isNarrowingProfitable(VT, HalfVT) && 5518 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && 5519 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && 5520 TLI.isTruncateFree(VT, HalfVT) && 5521 TLI.isZExtFree(HalfVT, VT)) { 5522 // The isNarrowingProfitable is to avoid regressions on PPC and 5523 // AArch64 which match a few 64-bit bit insert / bit extract patterns 5524 // on downstream users of this. Those patterns could probably be 5525 // extended to handle extensions mixed in. 5526 5527 SDValue SL(N0); 5528 assert(MaskBits <= Size); 5529 5530 // Extracting the highest bit of the low half. 5531 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); 5532 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, 5533 N0.getOperand(0)); 5534 5535 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); 5536 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); 5537 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); 5538 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); 5539 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); 5540 } 5541 } 5542 } 5543 } 5544 5545 return SDValue(); 5546 } 5547 5548 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 5549 EVT LoadResultTy, EVT &ExtVT) { 5550 if (!AndC->getAPIntValue().isMask()) 5551 return false; 5552 5553 unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes(); 5554 5555 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 5556 EVT LoadedVT = LoadN->getMemoryVT(); 5557 5558 if (ExtVT == LoadedVT && 5559 (!LegalOperations || 5560 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { 5561 // ZEXTLOAD will match without needing to change the size of the value being 5562 // loaded. 5563 return true; 5564 } 5565 5566 // Do not change the width of a volatile or atomic loads. 5567 if (!LoadN->isSimple()) 5568 return false; 5569 5570 // Do not generate loads of non-round integer types since these can 5571 // be expensive (and would be wrong if the type is not byte sized). 5572 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) 5573 return false; 5574 5575 if (LegalOperations && 5576 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) 5577 return false; 5578 5579 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) 5580 return false; 5581 5582 return true; 5583 } 5584 5585 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, 5586 ISD::LoadExtType ExtType, EVT &MemVT, 5587 unsigned ShAmt) { 5588 if (!LDST) 5589 return false; 5590 // Only allow byte offsets. 5591 if (ShAmt % 8) 5592 return false; 5593 5594 // Do not generate loads of non-round integer types since these can 5595 // be expensive (and would be wrong if the type is not byte sized). 5596 if (!MemVT.isRound()) 5597 return false; 5598 5599 // Don't change the width of a volatile or atomic loads. 5600 if (!LDST->isSimple()) 5601 return false; 5602 5603 EVT LdStMemVT = LDST->getMemoryVT(); 5604 5605 // Bail out when changing the scalable property, since we can't be sure that 5606 // we're actually narrowing here. 5607 if (LdStMemVT.isScalableVector() != MemVT.isScalableVector()) 5608 return false; 5609 5610 // Verify that we are actually reducing a load width here. 5611 if (LdStMemVT.bitsLT(MemVT)) 5612 return false; 5613 5614 // Ensure that this isn't going to produce an unsupported memory access. 5615 if (ShAmt) { 5616 assert(ShAmt % 8 == 0 && "ShAmt is byte offset"); 5617 const unsigned ByteShAmt = ShAmt / 8; 5618 const Align LDSTAlign = LDST->getAlign(); 5619 const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt); 5620 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 5621 LDST->getAddressSpace(), NarrowAlign, 5622 LDST->getMemOperand()->getFlags())) 5623 return false; 5624 } 5625 5626 // It's not possible to generate a constant of extended or untyped type. 5627 EVT PtrType = LDST->getBasePtr().getValueType(); 5628 if (PtrType == MVT::Untyped || PtrType.isExtended()) 5629 return false; 5630 5631 if (isa<LoadSDNode>(LDST)) { 5632 LoadSDNode *Load = cast<LoadSDNode>(LDST); 5633 // Don't transform one with multiple uses, this would require adding a new 5634 // load. 5635 if (!SDValue(Load, 0).hasOneUse()) 5636 return false; 5637 5638 if (LegalOperations && 5639 !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT)) 5640 return false; 5641 5642 // For the transform to be legal, the load must produce only two values 5643 // (the value loaded and the chain). Don't transform a pre-increment 5644 // load, for example, which produces an extra value. Otherwise the 5645 // transformation is not equivalent, and the downstream logic to replace 5646 // uses gets things wrong. 5647 if (Load->getNumValues() > 2) 5648 return false; 5649 5650 // If the load that we're shrinking is an extload and we're not just 5651 // discarding the extension we can't simply shrink the load. Bail. 5652 // TODO: It would be possible to merge the extensions in some cases. 5653 if (Load->getExtensionType() != ISD::NON_EXTLOAD && 5654 Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) 5655 return false; 5656 5657 if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT)) 5658 return false; 5659 } else { 5660 assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"); 5661 StoreSDNode *Store = cast<StoreSDNode>(LDST); 5662 // Can't write outside the original store 5663 if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) 5664 return false; 5665 5666 if (LegalOperations && 5667 !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT)) 5668 return false; 5669 } 5670 return true; 5671 } 5672 5673 bool DAGCombiner::SearchForAndLoads(SDNode *N, 5674 SmallVectorImpl<LoadSDNode*> &Loads, 5675 SmallPtrSetImpl<SDNode*> &NodesWithConsts, 5676 ConstantSDNode *Mask, 5677 SDNode *&NodeToMask) { 5678 // Recursively search for the operands, looking for loads which can be 5679 // narrowed. 5680 for (SDValue Op : N->op_values()) { 5681 if (Op.getValueType().isVector()) 5682 return false; 5683 5684 // Some constants may need fixing up later if they are too large. 5685 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 5686 if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) && 5687 (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue()) 5688 NodesWithConsts.insert(N); 5689 continue; 5690 } 5691 5692 if (!Op.hasOneUse()) 5693 return false; 5694 5695 switch(Op.getOpcode()) { 5696 case ISD::LOAD: { 5697 auto *Load = cast<LoadSDNode>(Op); 5698 EVT ExtVT; 5699 if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) && 5700 isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) { 5701 5702 // ZEXTLOAD is already small enough. 5703 if (Load->getExtensionType() == ISD::ZEXTLOAD && 5704 ExtVT.bitsGE(Load->getMemoryVT())) 5705 continue; 5706 5707 // Use LE to convert equal sized loads to zext. 5708 if (ExtVT.bitsLE(Load->getMemoryVT())) 5709 Loads.push_back(Load); 5710 5711 continue; 5712 } 5713 return false; 5714 } 5715 case ISD::ZERO_EXTEND: 5716 case ISD::AssertZext: { 5717 unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes(); 5718 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 5719 EVT VT = Op.getOpcode() == ISD::AssertZext ? 5720 cast<VTSDNode>(Op.getOperand(1))->getVT() : 5721 Op.getOperand(0).getValueType(); 5722 5723 // We can accept extending nodes if the mask is wider or an equal 5724 // width to the original type. 5725 if (ExtVT.bitsGE(VT)) 5726 continue; 5727 break; 5728 } 5729 case ISD::OR: 5730 case ISD::XOR: 5731 case ISD::AND: 5732 if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask, 5733 NodeToMask)) 5734 return false; 5735 continue; 5736 } 5737 5738 // Allow one node which will masked along with any loads found. 5739 if (NodeToMask) 5740 return false; 5741 5742 // Also ensure that the node to be masked only produces one data result. 5743 NodeToMask = Op.getNode(); 5744 if (NodeToMask->getNumValues() > 1) { 5745 bool HasValue = false; 5746 for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) { 5747 MVT VT = SDValue(NodeToMask, i).getSimpleValueType(); 5748 if (VT != MVT::Glue && VT != MVT::Other) { 5749 if (HasValue) { 5750 NodeToMask = nullptr; 5751 return false; 5752 } 5753 HasValue = true; 5754 } 5755 } 5756 assert(HasValue && "Node to be masked has no data result?"); 5757 } 5758 } 5759 return true; 5760 } 5761 5762 bool DAGCombiner::BackwardsPropagateMask(SDNode *N) { 5763 auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5764 if (!Mask) 5765 return false; 5766 5767 if (!Mask->getAPIntValue().isMask()) 5768 return false; 5769 5770 // No need to do anything if the and directly uses a load. 5771 if (isa<LoadSDNode>(N->getOperand(0))) 5772 return false; 5773 5774 SmallVector<LoadSDNode*, 8> Loads; 5775 SmallPtrSet<SDNode*, 2> NodesWithConsts; 5776 SDNode *FixupNode = nullptr; 5777 if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) { 5778 if (Loads.size() == 0) 5779 return false; 5780 5781 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump()); 5782 SDValue MaskOp = N->getOperand(1); 5783 5784 // If it exists, fixup the single node we allow in the tree that needs 5785 // masking. 5786 if (FixupNode) { 5787 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump()); 5788 SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode), 5789 FixupNode->getValueType(0), 5790 SDValue(FixupNode, 0), MaskOp); 5791 DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And); 5792 if (And.getOpcode() == ISD ::AND) 5793 DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp); 5794 } 5795 5796 // Narrow any constants that need it. 5797 for (auto *LogicN : NodesWithConsts) { 5798 SDValue Op0 = LogicN->getOperand(0); 5799 SDValue Op1 = LogicN->getOperand(1); 5800 5801 if (isa<ConstantSDNode>(Op0)) 5802 std::swap(Op0, Op1); 5803 5804 SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), 5805 Op1, MaskOp); 5806 5807 DAG.UpdateNodeOperands(LogicN, Op0, And); 5808 } 5809 5810 // Create narrow loads. 5811 for (auto *Load : Loads) { 5812 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump()); 5813 SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0), 5814 SDValue(Load, 0), MaskOp); 5815 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And); 5816 if (And.getOpcode() == ISD ::AND) 5817 And = SDValue( 5818 DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0); 5819 SDValue NewLoad = reduceLoadWidth(And.getNode()); 5820 assert(NewLoad && 5821 "Shouldn't be masking the load if it can't be narrowed"); 5822 CombineTo(Load, NewLoad, NewLoad.getValue(1)); 5823 } 5824 DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode()); 5825 return true; 5826 } 5827 return false; 5828 } 5829 5830 // Unfold 5831 // x & (-1 'logical shift' y) 5832 // To 5833 // (x 'opposite logical shift' y) 'logical shift' y 5834 // if it is better for performance. 5835 SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) { 5836 assert(N->getOpcode() == ISD::AND); 5837 5838 SDValue N0 = N->getOperand(0); 5839 SDValue N1 = N->getOperand(1); 5840 5841 // Do we actually prefer shifts over mask? 5842 if (!TLI.shouldFoldMaskToVariableShiftPair(N0)) 5843 return SDValue(); 5844 5845 // Try to match (-1 '[outer] logical shift' y) 5846 unsigned OuterShift; 5847 unsigned InnerShift; // The opposite direction to the OuterShift. 5848 SDValue Y; // Shift amount. 5849 auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool { 5850 if (!M.hasOneUse()) 5851 return false; 5852 OuterShift = M->getOpcode(); 5853 if (OuterShift == ISD::SHL) 5854 InnerShift = ISD::SRL; 5855 else if (OuterShift == ISD::SRL) 5856 InnerShift = ISD::SHL; 5857 else 5858 return false; 5859 if (!isAllOnesConstant(M->getOperand(0))) 5860 return false; 5861 Y = M->getOperand(1); 5862 return true; 5863 }; 5864 5865 SDValue X; 5866 if (matchMask(N1)) 5867 X = N0; 5868 else if (matchMask(N0)) 5869 X = N1; 5870 else 5871 return SDValue(); 5872 5873 SDLoc DL(N); 5874 EVT VT = N->getValueType(0); 5875 5876 // tmp = x 'opposite logical shift' y 5877 SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y); 5878 // ret = tmp 'logical shift' y 5879 SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y); 5880 5881 return T1; 5882 } 5883 5884 /// Try to replace shift/logic that tests if a bit is clear with mask + setcc. 5885 /// For a target with a bit test, this is expected to become test + set and save 5886 /// at least 1 instruction. 5887 static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) { 5888 assert(And->getOpcode() == ISD::AND && "Expected an 'and' op"); 5889 5890 // This is probably not worthwhile without a supported type. 5891 EVT VT = And->getValueType(0); 5892 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5893 if (!TLI.isTypeLegal(VT)) 5894 return SDValue(); 5895 5896 // Look through an optional extension and find a 'not'. 5897 // TODO: Should we favor test+set even without the 'not' op? 5898 SDValue Not = And->getOperand(0), And1 = And->getOperand(1); 5899 if (Not.getOpcode() == ISD::ANY_EXTEND) 5900 Not = Not.getOperand(0); 5901 if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1)) 5902 return SDValue(); 5903 5904 // Look though an optional truncation. The source operand may not be the same 5905 // type as the original 'and', but that is ok because we are masking off 5906 // everything but the low bit. 5907 SDValue Srl = Not.getOperand(0); 5908 if (Srl.getOpcode() == ISD::TRUNCATE) 5909 Srl = Srl.getOperand(0); 5910 5911 // Match a shift-right by constant. 5912 if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() || 5913 !isa<ConstantSDNode>(Srl.getOperand(1))) 5914 return SDValue(); 5915 5916 // We might have looked through casts that make this transform invalid. 5917 // TODO: If the source type is wider than the result type, do the mask and 5918 // compare in the source type. 5919 const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1); 5920 unsigned VTBitWidth = VT.getSizeInBits(); 5921 if (ShiftAmt.uge(VTBitWidth)) 5922 return SDValue(); 5923 5924 // Turn this into a bit-test pattern using mask op + setcc: 5925 // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0 5926 SDLoc DL(And); 5927 SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT); 5928 EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5929 SDValue Mask = DAG.getConstant( 5930 APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT); 5931 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask); 5932 SDValue Zero = DAG.getConstant(0, DL, VT); 5933 SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ); 5934 return DAG.getZExtOrTrunc(Setcc, DL, VT); 5935 } 5936 5937 /// For targets that support usubsat, match a bit-hack form of that operation 5938 /// that ends in 'and' and convert it. 5939 static SDValue foldAndToUsubsat(SDNode *N, SelectionDAG &DAG) { 5940 SDValue N0 = N->getOperand(0); 5941 SDValue N1 = N->getOperand(1); 5942 EVT VT = N1.getValueType(); 5943 5944 // Canonicalize SRA as operand 1. 5945 if (N0.getOpcode() == ISD::SRA) 5946 std::swap(N0, N1); 5947 5948 // xor/add with SMIN (signmask) are logically equivalent. 5949 if (N0.getOpcode() != ISD::XOR && N0.getOpcode() != ISD::ADD) 5950 return SDValue(); 5951 5952 if (N1.getOpcode() != ISD::SRA || !N0.hasOneUse() || !N1.hasOneUse() || 5953 N0.getOperand(0) != N1.getOperand(0)) 5954 return SDValue(); 5955 5956 unsigned BitWidth = VT.getScalarSizeInBits(); 5957 ConstantSDNode *XorC = isConstOrConstSplat(N0.getOperand(1), true); 5958 ConstantSDNode *SraC = isConstOrConstSplat(N1.getOperand(1), true); 5959 if (!XorC || !XorC->getAPIntValue().isSignMask() || 5960 !SraC || SraC->getAPIntValue() != BitWidth - 1) 5961 return SDValue(); 5962 5963 // (i8 X ^ 128) & (i8 X s>> 7) --> usubsat X, 128 5964 // (i8 X + 128) & (i8 X s>> 7) --> usubsat X, 128 5965 SDLoc DL(N); 5966 SDValue SignMask = DAG.getConstant(XorC->getAPIntValue(), DL, VT); 5967 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), SignMask); 5968 } 5969 5970 /// Given a bitwise logic operation N with a matching bitwise logic operand, 5971 /// fold a pattern where 2 of the source operands are identically shifted 5972 /// values. For example: 5973 /// ((X0 << Y) | Z) | (X1 << Y) --> ((X0 | X1) << Y) | Z 5974 static SDValue foldLogicOfShifts(SDNode *N, SDValue LogicOp, SDValue ShiftOp, 5975 SelectionDAG &DAG) { 5976 unsigned LogicOpcode = N->getOpcode(); 5977 assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || 5978 LogicOpcode == ISD::XOR) 5979 && "Expected bitwise logic operation"); 5980 5981 if (!LogicOp.hasOneUse() || !ShiftOp.hasOneUse()) 5982 return SDValue(); 5983 5984 // Match another bitwise logic op and a shift. 5985 unsigned ShiftOpcode = ShiftOp.getOpcode(); 5986 if (LogicOp.getOpcode() != LogicOpcode || 5987 !(ShiftOpcode == ISD::SHL || ShiftOpcode == ISD::SRL || 5988 ShiftOpcode == ISD::SRA)) 5989 return SDValue(); 5990 5991 // Match another shift op inside the first logic operand. Handle both commuted 5992 // possibilities. 5993 // LOGIC (LOGIC (SH X0, Y), Z), (SH X1, Y) --> LOGIC (SH (LOGIC X0, X1), Y), Z 5994 // LOGIC (LOGIC Z, (SH X0, Y)), (SH X1, Y) --> LOGIC (SH (LOGIC X0, X1), Y), Z 5995 SDValue X1 = ShiftOp.getOperand(0); 5996 SDValue Y = ShiftOp.getOperand(1); 5997 SDValue X0, Z; 5998 if (LogicOp.getOperand(0).getOpcode() == ShiftOpcode && 5999 LogicOp.getOperand(0).getOperand(1) == Y) { 6000 X0 = LogicOp.getOperand(0).getOperand(0); 6001 Z = LogicOp.getOperand(1); 6002 } else if (LogicOp.getOperand(1).getOpcode() == ShiftOpcode && 6003 LogicOp.getOperand(1).getOperand(1) == Y) { 6004 X0 = LogicOp.getOperand(1).getOperand(0); 6005 Z = LogicOp.getOperand(0); 6006 } else { 6007 return SDValue(); 6008 } 6009 6010 EVT VT = N->getValueType(0); 6011 SDLoc DL(N); 6012 SDValue LogicX = DAG.getNode(LogicOpcode, DL, VT, X0, X1); 6013 SDValue NewShift = DAG.getNode(ShiftOpcode, DL, VT, LogicX, Y); 6014 return DAG.getNode(LogicOpcode, DL, VT, NewShift, Z); 6015 } 6016 6017 SDValue DAGCombiner::visitAND(SDNode *N) { 6018 SDValue N0 = N->getOperand(0); 6019 SDValue N1 = N->getOperand(1); 6020 EVT VT = N1.getValueType(); 6021 6022 // x & x --> x 6023 if (N0 == N1) 6024 return N0; 6025 6026 // fold (and c1, c2) -> c1&c2 6027 if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, {N0, N1})) 6028 return C; 6029 6030 // canonicalize constant to RHS 6031 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 6032 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 6033 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); 6034 6035 // fold vector ops 6036 if (VT.isVector()) { 6037 if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) 6038 return FoldedVOp; 6039 6040 // fold (and x, 0) -> 0, vector edition 6041 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 6042 // do not return N1, because undef node may exist in N1 6043 return DAG.getConstant(APInt::getZero(N1.getScalarValueSizeInBits()), 6044 SDLoc(N), N1.getValueType()); 6045 6046 // fold (and x, -1) -> x, vector edition 6047 if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) 6048 return N0; 6049 6050 // fold (and (masked_load) (build_vec (x, ...))) to zext_masked_load 6051 auto *MLoad = dyn_cast<MaskedLoadSDNode>(N0); 6052 auto *BVec = dyn_cast<BuildVectorSDNode>(N1); 6053 if (MLoad && BVec && MLoad->getExtensionType() == ISD::EXTLOAD && 6054 N0.hasOneUse() && N1.hasOneUse()) { 6055 EVT LoadVT = MLoad->getMemoryVT(); 6056 EVT ExtVT = VT; 6057 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT, LoadVT)) { 6058 // For this AND to be a zero extension of the masked load the elements 6059 // of the BuildVec must mask the bottom bits of the extended element 6060 // type 6061 if (ConstantSDNode *Splat = BVec->getConstantSplatNode()) { 6062 uint64_t ElementSize = 6063 LoadVT.getVectorElementType().getScalarSizeInBits(); 6064 if (Splat->getAPIntValue().isMask(ElementSize)) { 6065 return DAG.getMaskedLoad( 6066 ExtVT, SDLoc(N), MLoad->getChain(), MLoad->getBasePtr(), 6067 MLoad->getOffset(), MLoad->getMask(), MLoad->getPassThru(), 6068 LoadVT, MLoad->getMemOperand(), MLoad->getAddressingMode(), 6069 ISD::ZEXTLOAD, MLoad->isExpandingLoad()); 6070 } 6071 } 6072 } 6073 } 6074 } 6075 6076 // fold (and x, -1) -> x 6077 if (isAllOnesConstant(N1)) 6078 return N0; 6079 6080 // if (and x, c) is known to be zero, return 0 6081 unsigned BitWidth = VT.getScalarSizeInBits(); 6082 ConstantSDNode *N1C = isConstOrConstSplat(N1); 6083 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(BitWidth))) 6084 return DAG.getConstant(0, SDLoc(N), VT); 6085 6086 if (SDValue NewSel = foldBinOpIntoSelect(N)) 6087 return NewSel; 6088 6089 // reassociate and 6090 if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags())) 6091 return RAND; 6092 6093 // Try to convert a constant mask AND into a shuffle clear mask. 6094 if (VT.isVector()) 6095 if (SDValue Shuffle = XformToShuffleWithZero(N)) 6096 return Shuffle; 6097 6098 if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N)) 6099 return Combined; 6100 6101 // fold (and (or x, C), D) -> D if (C & D) == D 6102 auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { 6103 return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue()); 6104 }; 6105 if (N0.getOpcode() == ISD::OR && 6106 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset)) 6107 return N1; 6108 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. 6109 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 6110 SDValue N0Op0 = N0.getOperand(0); 6111 APInt Mask = ~N1C->getAPIntValue(); 6112 Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); 6113 if (DAG.MaskedValueIsZero(N0Op0, Mask)) { 6114 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 6115 N0.getValueType(), N0Op0); 6116 6117 // Replace uses of the AND with uses of the Zero extend node. 6118 CombineTo(N, Zext); 6119 6120 // We actually want to replace all uses of the any_extend with the 6121 // zero_extend, to avoid duplicating things. This will later cause this 6122 // AND to be folded. 6123 CombineTo(N0.getNode(), Zext); 6124 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6125 } 6126 } 6127 6128 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> 6129 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must 6130 // already be zero by virtue of the width of the base type of the load. 6131 // 6132 // the 'X' node here can either be nothing or an extract_vector_elt to catch 6133 // more cases. 6134 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6135 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && 6136 N0.getOperand(0).getOpcode() == ISD::LOAD && 6137 N0.getOperand(0).getResNo() == 0) || 6138 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { 6139 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? 6140 N0 : N0.getOperand(0) ); 6141 6142 // Get the constant (if applicable) the zero'th operand is being ANDed with. 6143 // This can be a pure constant or a vector splat, in which case we treat the 6144 // vector as a scalar and use the splat value. 6145 APInt Constant = APInt::getZero(1); 6146 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 6147 Constant = C->getAPIntValue(); 6148 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { 6149 APInt SplatValue, SplatUndef; 6150 unsigned SplatBitSize; 6151 bool HasAnyUndefs; 6152 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, 6153 SplatBitSize, HasAnyUndefs); 6154 if (IsSplat) { 6155 // Undef bits can contribute to a possible optimisation if set, so 6156 // set them. 6157 SplatValue |= SplatUndef; 6158 6159 // The splat value may be something like "0x00FFFFFF", which means 0 for 6160 // the first vector value and FF for the rest, repeating. We need a mask 6161 // that will apply equally to all members of the vector, so AND all the 6162 // lanes of the constant together. 6163 unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits(); 6164 6165 // If the splat value has been compressed to a bitlength lower 6166 // than the size of the vector lane, we need to re-expand it to 6167 // the lane size. 6168 if (EltBitWidth > SplatBitSize) 6169 for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth); 6170 SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2) 6171 SplatValue |= SplatValue.shl(SplatBitSize); 6172 6173 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a 6174 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. 6175 if ((SplatBitSize % EltBitWidth) == 0) { 6176 Constant = APInt::getAllOnes(EltBitWidth); 6177 for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i) 6178 Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth); 6179 } 6180 } 6181 } 6182 6183 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is 6184 // actually legal and isn't going to get expanded, else this is a false 6185 // optimisation. 6186 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, 6187 Load->getValueType(0), 6188 Load->getMemoryVT()); 6189 6190 // Resize the constant to the same size as the original memory access before 6191 // extension. If it is still the AllOnesValue then this AND is completely 6192 // unneeded. 6193 Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); 6194 6195 bool B; 6196 switch (Load->getExtensionType()) { 6197 default: B = false; break; 6198 case ISD::EXTLOAD: B = CanZextLoadProfitably; break; 6199 case ISD::ZEXTLOAD: 6200 case ISD::NON_EXTLOAD: B = true; break; 6201 } 6202 6203 if (B && Constant.isAllOnes()) { 6204 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to 6205 // preserve semantics once we get rid of the AND. 6206 SDValue NewLoad(Load, 0); 6207 6208 // Fold the AND away. NewLoad may get replaced immediately. 6209 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); 6210 6211 if (Load->getExtensionType() == ISD::EXTLOAD) { 6212 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, 6213 Load->getValueType(0), SDLoc(Load), 6214 Load->getChain(), Load->getBasePtr(), 6215 Load->getOffset(), Load->getMemoryVT(), 6216 Load->getMemOperand()); 6217 // Replace uses of the EXTLOAD with the new ZEXTLOAD. 6218 if (Load->getNumValues() == 3) { 6219 // PRE/POST_INC loads have 3 values. 6220 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), 6221 NewLoad.getValue(2) }; 6222 CombineTo(Load, To, 3, true); 6223 } else { 6224 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); 6225 } 6226 } 6227 6228 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6229 } 6230 } 6231 6232 // fold (and (masked_gather x)) -> (zext_masked_gather x) 6233 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { 6234 EVT MemVT = GN0->getMemoryVT(); 6235 EVT ScalarVT = MemVT.getScalarType(); 6236 6237 if (SDValue(GN0, 0).hasOneUse() && 6238 isConstantSplatVectorMaskForType(N1.getNode(), ScalarVT) && 6239 TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) { 6240 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(), 6241 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()}; 6242 6243 SDValue ZExtLoad = DAG.getMaskedGather( 6244 DAG.getVTList(VT, MVT::Other), MemVT, SDLoc(N), Ops, 6245 GN0->getMemOperand(), GN0->getIndexType(), ISD::ZEXTLOAD); 6246 6247 CombineTo(N, ZExtLoad); 6248 AddToWorklist(ZExtLoad.getNode()); 6249 // Avoid recheck of N. 6250 return SDValue(N, 0); 6251 } 6252 } 6253 6254 // fold (and (load x), 255) -> (zextload x, i8) 6255 // fold (and (extload x, i16), 255) -> (zextload x, i8) 6256 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) 6257 if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || 6258 (N0.getOpcode() == ISD::ANY_EXTEND && 6259 N0.getOperand(0).getOpcode() == ISD::LOAD))) { 6260 if (SDValue Res = reduceLoadWidth(N)) { 6261 LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND 6262 ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0); 6263 AddToWorklist(N); 6264 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res); 6265 return SDValue(N, 0); 6266 } 6267 } 6268 6269 if (LegalTypes) { 6270 // Attempt to propagate the AND back up to the leaves which, if they're 6271 // loads, can be combined to narrow loads and the AND node can be removed. 6272 // Perform after legalization so that extend nodes will already be 6273 // combined into the loads. 6274 if (BackwardsPropagateMask(N)) 6275 return SDValue(N, 0); 6276 } 6277 6278 if (SDValue Combined = visitANDLike(N0, N1, N)) 6279 return Combined; 6280 6281 // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) 6282 if (N0.getOpcode() == N1.getOpcode()) 6283 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 6284 return V; 6285 6286 if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG)) 6287 return R; 6288 if (SDValue R = foldLogicOfShifts(N, N1, N0, DAG)) 6289 return R; 6290 6291 // Masking the negated extension of a boolean is just the zero-extended 6292 // boolean: 6293 // and (sub 0, zext(bool X)), 1 --> zext(bool X) 6294 // and (sub 0, sext(bool X)), 1 --> zext(bool X) 6295 // 6296 // Note: the SimplifyDemandedBits fold below can make an information-losing 6297 // transform, and then we have no way to find this better fold. 6298 if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { 6299 if (isNullOrNullSplat(N0.getOperand(0))) { 6300 SDValue SubRHS = N0.getOperand(1); 6301 if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && 6302 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 6303 return SubRHS; 6304 if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && 6305 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 6306 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); 6307 } 6308 } 6309 6310 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) 6311 // fold (and (sra)) -> (and (srl)) when possible. 6312 if (SimplifyDemandedBits(SDValue(N, 0))) 6313 return SDValue(N, 0); 6314 6315 // fold (zext_inreg (extload x)) -> (zextload x) 6316 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use 6317 if (ISD::isUNINDEXEDLoad(N0.getNode()) && 6318 (ISD::isEXTLoad(N0.getNode()) || 6319 (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) { 6320 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6321 EVT MemVT = LN0->getMemoryVT(); 6322 // If we zero all the possible extended bits, then we can turn this into 6323 // a zextload if we are running before legalize or the operation is legal. 6324 unsigned ExtBitSize = N1.getScalarValueSizeInBits(); 6325 unsigned MemBitSize = MemVT.getScalarSizeInBits(); 6326 APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize); 6327 if (DAG.MaskedValueIsZero(N1, ExtBits) && 6328 ((!LegalOperations && LN0->isSimple()) || 6329 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 6330 SDValue ExtLoad = 6331 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(), 6332 LN0->getBasePtr(), MemVT, LN0->getMemOperand()); 6333 AddToWorklist(N); 6334 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 6335 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6336 } 6337 } 6338 6339 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) 6340 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { 6341 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 6342 N0.getOperand(1), false)) 6343 return BSwap; 6344 } 6345 6346 if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N)) 6347 return Shifts; 6348 6349 if (TLI.hasBitTest(N0, N1)) 6350 if (SDValue V = combineShiftAnd1ToBitTest(N, DAG)) 6351 return V; 6352 6353 // Recognize the following pattern: 6354 // 6355 // AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask) 6356 // 6357 // where bitmask is a mask that clears the upper bits of AndVT. The 6358 // number of bits in bitmask must be a power of two. 6359 auto IsAndZeroExtMask = [](SDValue LHS, SDValue RHS) { 6360 if (LHS->getOpcode() != ISD::SIGN_EXTEND) 6361 return false; 6362 6363 auto *C = dyn_cast<ConstantSDNode>(RHS); 6364 if (!C) 6365 return false; 6366 6367 if (!C->getAPIntValue().isMask( 6368 LHS.getOperand(0).getValueType().getFixedSizeInBits())) 6369 return false; 6370 6371 return true; 6372 }; 6373 6374 // Replace (and (sign_extend ...) #bitmask) with (zero_extend ...). 6375 if (IsAndZeroExtMask(N0, N1)) 6376 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0.getOperand(0)); 6377 6378 if (hasOperation(ISD::USUBSAT, VT)) 6379 if (SDValue V = foldAndToUsubsat(N, DAG)) 6380 return V; 6381 6382 return SDValue(); 6383 } 6384 6385 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. 6386 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 6387 bool DemandHighBits) { 6388 if (!LegalOperations) 6389 return SDValue(); 6390 6391 EVT VT = N->getValueType(0); 6392 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) 6393 return SDValue(); 6394 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) 6395 return SDValue(); 6396 6397 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff) 6398 bool LookPassAnd0 = false; 6399 bool LookPassAnd1 = false; 6400 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) 6401 std::swap(N0, N1); 6402 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) 6403 std::swap(N0, N1); 6404 if (N0.getOpcode() == ISD::AND) { 6405 if (!N0->hasOneUse()) 6406 return SDValue(); 6407 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6408 // Also handle 0xffff since the LHS is guaranteed to have zeros there. 6409 // This is needed for X86. 6410 if (!N01C || (N01C->getZExtValue() != 0xFF00 && 6411 N01C->getZExtValue() != 0xFFFF)) 6412 return SDValue(); 6413 N0 = N0.getOperand(0); 6414 LookPassAnd0 = true; 6415 } 6416 6417 if (N1.getOpcode() == ISD::AND) { 6418 if (!N1->hasOneUse()) 6419 return SDValue(); 6420 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 6421 if (!N11C || N11C->getZExtValue() != 0xFF) 6422 return SDValue(); 6423 N1 = N1.getOperand(0); 6424 LookPassAnd1 = true; 6425 } 6426 6427 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 6428 std::swap(N0, N1); 6429 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 6430 return SDValue(); 6431 if (!N0->hasOneUse() || !N1->hasOneUse()) 6432 return SDValue(); 6433 6434 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6435 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 6436 if (!N01C || !N11C) 6437 return SDValue(); 6438 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) 6439 return SDValue(); 6440 6441 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) 6442 SDValue N00 = N0->getOperand(0); 6443 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { 6444 if (!N00->hasOneUse()) 6445 return SDValue(); 6446 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); 6447 if (!N001C || N001C->getZExtValue() != 0xFF) 6448 return SDValue(); 6449 N00 = N00.getOperand(0); 6450 LookPassAnd0 = true; 6451 } 6452 6453 SDValue N10 = N1->getOperand(0); 6454 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { 6455 if (!N10->hasOneUse()) 6456 return SDValue(); 6457 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); 6458 // Also allow 0xFFFF since the bits will be shifted out. This is needed 6459 // for X86. 6460 if (!N101C || (N101C->getZExtValue() != 0xFF00 && 6461 N101C->getZExtValue() != 0xFFFF)) 6462 return SDValue(); 6463 N10 = N10.getOperand(0); 6464 LookPassAnd1 = true; 6465 } 6466 6467 if (N00 != N10) 6468 return SDValue(); 6469 6470 // Make sure everything beyond the low halfword gets set to zero since the SRL 6471 // 16 will clear the top bits. 6472 unsigned OpSizeInBits = VT.getSizeInBits(); 6473 if (DemandHighBits && OpSizeInBits > 16) { 6474 // If the left-shift isn't masked out then the only way this is a bswap is 6475 // if all bits beyond the low 8 are 0. In that case the entire pattern 6476 // reduces to a left shift anyway: leave it for other parts of the combiner. 6477 if (!LookPassAnd0) 6478 return SDValue(); 6479 6480 // However, if the right shift isn't masked out then it might be because 6481 // it's not needed. See if we can spot that too. 6482 if (!LookPassAnd1 && 6483 !DAG.MaskedValueIsZero( 6484 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) 6485 return SDValue(); 6486 } 6487 6488 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); 6489 if (OpSizeInBits > 16) { 6490 SDLoc DL(N); 6491 Res = DAG.getNode(ISD::SRL, DL, VT, Res, 6492 DAG.getConstant(OpSizeInBits - 16, DL, 6493 getShiftAmountTy(VT))); 6494 } 6495 return Res; 6496 } 6497 6498 /// Return true if the specified node is an element that makes up a 32-bit 6499 /// packed halfword byteswap. 6500 /// ((x & 0x000000ff) << 8) | 6501 /// ((x & 0x0000ff00) >> 8) | 6502 /// ((x & 0x00ff0000) << 8) | 6503 /// ((x & 0xff000000) >> 8) 6504 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { 6505 if (!N->hasOneUse()) 6506 return false; 6507 6508 unsigned Opc = N.getOpcode(); 6509 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) 6510 return false; 6511 6512 SDValue N0 = N.getOperand(0); 6513 unsigned Opc0 = N0.getOpcode(); 6514 if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL) 6515 return false; 6516 6517 ConstantSDNode *N1C = nullptr; 6518 // SHL or SRL: look upstream for AND mask operand 6519 if (Opc == ISD::AND) 6520 N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 6521 else if (Opc0 == ISD::AND) 6522 N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6523 if (!N1C) 6524 return false; 6525 6526 unsigned MaskByteOffset; 6527 switch (N1C->getZExtValue()) { 6528 default: 6529 return false; 6530 case 0xFF: MaskByteOffset = 0; break; 6531 case 0xFF00: MaskByteOffset = 1; break; 6532 case 0xFFFF: 6533 // In case demanded bits didn't clear the bits that will be shifted out. 6534 // This is needed for X86. 6535 if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) { 6536 MaskByteOffset = 1; 6537 break; 6538 } 6539 return false; 6540 case 0xFF0000: MaskByteOffset = 2; break; 6541 case 0xFF000000: MaskByteOffset = 3; break; 6542 } 6543 6544 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). 6545 if (Opc == ISD::AND) { 6546 if (MaskByteOffset == 0 || MaskByteOffset == 2) { 6547 // (x >> 8) & 0xff 6548 // (x >> 8) & 0xff0000 6549 if (Opc0 != ISD::SRL) 6550 return false; 6551 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6552 if (!C || C->getZExtValue() != 8) 6553 return false; 6554 } else { 6555 // (x << 8) & 0xff00 6556 // (x << 8) & 0xff000000 6557 if (Opc0 != ISD::SHL) 6558 return false; 6559 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6560 if (!C || C->getZExtValue() != 8) 6561 return false; 6562 } 6563 } else if (Opc == ISD::SHL) { 6564 // (x & 0xff) << 8 6565 // (x & 0xff0000) << 8 6566 if (MaskByteOffset != 0 && MaskByteOffset != 2) 6567 return false; 6568 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 6569 if (!C || C->getZExtValue() != 8) 6570 return false; 6571 } else { // Opc == ISD::SRL 6572 // (x & 0xff00) >> 8 6573 // (x & 0xff000000) >> 8 6574 if (MaskByteOffset != 1 && MaskByteOffset != 3) 6575 return false; 6576 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 6577 if (!C || C->getZExtValue() != 8) 6578 return false; 6579 } 6580 6581 if (Parts[MaskByteOffset]) 6582 return false; 6583 6584 Parts[MaskByteOffset] = N0.getOperand(0).getNode(); 6585 return true; 6586 } 6587 6588 // Match 2 elements of a packed halfword bswap. 6589 static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) { 6590 if (N.getOpcode() == ISD::OR) 6591 return isBSwapHWordElement(N.getOperand(0), Parts) && 6592 isBSwapHWordElement(N.getOperand(1), Parts); 6593 6594 if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) { 6595 ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1)); 6596 if (!C || C->getAPIntValue() != 16) 6597 return false; 6598 Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode(); 6599 return true; 6600 } 6601 6602 return false; 6603 } 6604 6605 // Match this pattern: 6606 // (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff)) 6607 // And rewrite this to: 6608 // (rotr (bswap A), 16) 6609 static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI, 6610 SelectionDAG &DAG, SDNode *N, SDValue N0, 6611 SDValue N1, EVT VT, EVT ShiftAmountTy) { 6612 assert(N->getOpcode() == ISD::OR && VT == MVT::i32 && 6613 "MatchBSwapHWordOrAndAnd: expecting i32"); 6614 if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 6615 return SDValue(); 6616 if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND) 6617 return SDValue(); 6618 // TODO: this is too restrictive; lifting this restriction requires more tests 6619 if (!N0->hasOneUse() || !N1->hasOneUse()) 6620 return SDValue(); 6621 ConstantSDNode *Mask0 = isConstOrConstSplat(N0.getOperand(1)); 6622 ConstantSDNode *Mask1 = isConstOrConstSplat(N1.getOperand(1)); 6623 if (!Mask0 || !Mask1) 6624 return SDValue(); 6625 if (Mask0->getAPIntValue() != 0xff00ff00 || 6626 Mask1->getAPIntValue() != 0x00ff00ff) 6627 return SDValue(); 6628 SDValue Shift0 = N0.getOperand(0); 6629 SDValue Shift1 = N1.getOperand(0); 6630 if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL) 6631 return SDValue(); 6632 ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1)); 6633 ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1)); 6634 if (!ShiftAmt0 || !ShiftAmt1) 6635 return SDValue(); 6636 if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8) 6637 return SDValue(); 6638 if (Shift0.getOperand(0) != Shift1.getOperand(0)) 6639 return SDValue(); 6640 6641 SDLoc DL(N); 6642 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0)); 6643 SDValue ShAmt = DAG.getConstant(16, DL, ShiftAmountTy); 6644 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 6645 } 6646 6647 /// Match a 32-bit packed halfword bswap. That is 6648 /// ((x & 0x000000ff) << 8) | 6649 /// ((x & 0x0000ff00) >> 8) | 6650 /// ((x & 0x00ff0000) << 8) | 6651 /// ((x & 0xff000000) >> 8) 6652 /// => (rotl (bswap x), 16) 6653 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { 6654 if (!LegalOperations) 6655 return SDValue(); 6656 6657 EVT VT = N->getValueType(0); 6658 if (VT != MVT::i32) 6659 return SDValue(); 6660 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) 6661 return SDValue(); 6662 6663 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT, 6664 getShiftAmountTy(VT))) 6665 return BSwap; 6666 6667 // Try again with commuted operands. 6668 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT, 6669 getShiftAmountTy(VT))) 6670 return BSwap; 6671 6672 6673 // Look for either 6674 // (or (bswaphpair), (bswaphpair)) 6675 // (or (or (bswaphpair), (and)), (and)) 6676 // (or (or (and), (bswaphpair)), (and)) 6677 SDNode *Parts[4] = {}; 6678 6679 if (isBSwapHWordPair(N0, Parts)) { 6680 // (or (or (and), (and)), (or (and), (and))) 6681 if (!isBSwapHWordPair(N1, Parts)) 6682 return SDValue(); 6683 } else if (N0.getOpcode() == ISD::OR) { 6684 // (or (or (or (and), (and)), (and)), (and)) 6685 if (!isBSwapHWordElement(N1, Parts)) 6686 return SDValue(); 6687 SDValue N00 = N0.getOperand(0); 6688 SDValue N01 = N0.getOperand(1); 6689 if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) && 6690 !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts))) 6691 return SDValue(); 6692 } else 6693 return SDValue(); 6694 6695 // Make sure the parts are all coming from the same node. 6696 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) 6697 return SDValue(); 6698 6699 SDLoc DL(N); 6700 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, 6701 SDValue(Parts[0], 0)); 6702 6703 // Result of the bswap should be rotated by 16. If it's not legal, then 6704 // do (x << 16) | (x >> 16). 6705 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); 6706 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) 6707 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); 6708 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 6709 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 6710 return DAG.getNode(ISD::OR, DL, VT, 6711 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), 6712 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); 6713 } 6714 6715 /// This contains all DAGCombine rules which reduce two values combined by 6716 /// an Or operation to a single value \see visitANDLike(). 6717 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) { 6718 EVT VT = N1.getValueType(); 6719 SDLoc DL(N); 6720 6721 // fold (or x, undef) -> -1 6722 if (!LegalOperations && (N0.isUndef() || N1.isUndef())) 6723 return DAG.getAllOnesConstant(DL, VT); 6724 6725 if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) 6726 return V; 6727 6728 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. 6729 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && 6730 // Don't increase # computations. 6731 (N0->hasOneUse() || N1->hasOneUse())) { 6732 // We can only do this xform if we know that bits from X that are set in C2 6733 // but not in C1 are already zero. Likewise for Y. 6734 if (const ConstantSDNode *N0O1C = 6735 getAsNonOpaqueConstant(N0.getOperand(1))) { 6736 if (const ConstantSDNode *N1O1C = 6737 getAsNonOpaqueConstant(N1.getOperand(1))) { 6738 // We can only do this xform if we know that bits from X that are set in 6739 // C2 but not in C1 are already zero. Likewise for Y. 6740 const APInt &LHSMask = N0O1C->getAPIntValue(); 6741 const APInt &RHSMask = N1O1C->getAPIntValue(); 6742 6743 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && 6744 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { 6745 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 6746 N0.getOperand(0), N1.getOperand(0)); 6747 return DAG.getNode(ISD::AND, DL, VT, X, 6748 DAG.getConstant(LHSMask | RHSMask, DL, VT)); 6749 } 6750 } 6751 } 6752 } 6753 6754 // (or (and X, M), (and X, N)) -> (and X, (or M, N)) 6755 if (N0.getOpcode() == ISD::AND && 6756 N1.getOpcode() == ISD::AND && 6757 N0.getOperand(0) == N1.getOperand(0) && 6758 // Don't increase # computations. 6759 (N0->hasOneUse() || N1->hasOneUse())) { 6760 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 6761 N0.getOperand(1), N1.getOperand(1)); 6762 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); 6763 } 6764 6765 return SDValue(); 6766 } 6767 6768 /// OR combines for which the commuted variant will be tried as well. 6769 static SDValue visitORCommutative( 6770 SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) { 6771 EVT VT = N0.getValueType(); 6772 if (N0.getOpcode() == ISD::AND) { 6773 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y) 6774 if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1) 6775 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1); 6776 6777 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y) 6778 if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1) 6779 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1); 6780 } 6781 6782 if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG)) 6783 return R; 6784 6785 auto peekThroughZext = [](SDValue V) { 6786 if (V->getOpcode() == ISD::ZERO_EXTEND) 6787 return V->getOperand(0); 6788 return V; 6789 }; 6790 6791 // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y 6792 if (N0.getOpcode() == ISD::FSHL && N1.getOpcode() == ISD::SHL && 6793 N0.getOperand(0) == N1.getOperand(0) && 6794 peekThroughZext(N0.getOperand(2)) == peekThroughZext(N1.getOperand(1))) 6795 return N0; 6796 6797 // (fshr ?, X, Y) | (srl X, Y) --> fshr ?, X, Y 6798 if (N0.getOpcode() == ISD::FSHR && N1.getOpcode() == ISD::SRL && 6799 N0.getOperand(1) == N1.getOperand(0) && 6800 peekThroughZext(N0.getOperand(2)) == peekThroughZext(N1.getOperand(1))) 6801 return N0; 6802 6803 return SDValue(); 6804 } 6805 6806 SDValue DAGCombiner::visitOR(SDNode *N) { 6807 SDValue N0 = N->getOperand(0); 6808 SDValue N1 = N->getOperand(1); 6809 EVT VT = N1.getValueType(); 6810 6811 // x | x --> x 6812 if (N0 == N1) 6813 return N0; 6814 6815 // fold (or c1, c2) -> c1|c2 6816 if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, {N0, N1})) 6817 return C; 6818 6819 // canonicalize constant to RHS 6820 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 6821 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 6822 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); 6823 6824 // fold vector ops 6825 if (VT.isVector()) { 6826 if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) 6827 return FoldedVOp; 6828 6829 // fold (or x, 0) -> x, vector edition 6830 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 6831 return N0; 6832 6833 // fold (or x, -1) -> -1, vector edition 6834 if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) 6835 // do not return N1, because undef node may exist in N1 6836 return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType()); 6837 6838 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) 6839 // Do this only if the resulting shuffle is legal. 6840 if (isa<ShuffleVectorSDNode>(N0) && 6841 isa<ShuffleVectorSDNode>(N1) && 6842 // Avoid folding a node with illegal type. 6843 TLI.isTypeLegal(VT)) { 6844 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); 6845 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); 6846 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 6847 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); 6848 // Ensure both shuffles have a zero input. 6849 if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { 6850 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); 6851 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); 6852 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); 6853 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); 6854 bool CanFold = true; 6855 int NumElts = VT.getVectorNumElements(); 6856 SmallVector<int, 4> Mask(NumElts); 6857 6858 for (int i = 0; i != NumElts; ++i) { 6859 int M0 = SV0->getMaskElt(i); 6860 int M1 = SV1->getMaskElt(i); 6861 6862 // Determine if either index is pointing to a zero vector. 6863 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); 6864 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); 6865 6866 // If one element is zero and the otherside is undef, keep undef. 6867 // This also handles the case that both are undef. 6868 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { 6869 Mask[i] = -1; 6870 continue; 6871 } 6872 6873 // Make sure only one of the elements is zero. 6874 if (M0Zero == M1Zero) { 6875 CanFold = false; 6876 break; 6877 } 6878 6879 assert((M0 >= 0 || M1 >= 0) && "Undef index!"); 6880 6881 // We have a zero and non-zero element. If the non-zero came from 6882 // SV0 make the index a LHS index. If it came from SV1, make it 6883 // a RHS index. We need to mod by NumElts because we don't care 6884 // which operand it came from in the original shuffles. 6885 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; 6886 } 6887 6888 if (CanFold) { 6889 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); 6890 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); 6891 6892 SDValue LegalShuffle = 6893 TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, 6894 Mask, DAG); 6895 if (LegalShuffle) 6896 return LegalShuffle; 6897 } 6898 } 6899 } 6900 } 6901 6902 // fold (or x, 0) -> x 6903 if (isNullConstant(N1)) 6904 return N0; 6905 6906 // fold (or x, -1) -> -1 6907 if (isAllOnesConstant(N1)) 6908 return N1; 6909 6910 if (SDValue NewSel = foldBinOpIntoSelect(N)) 6911 return NewSel; 6912 6913 // fold (or x, c) -> c iff (x & ~c) == 0 6914 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 6915 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) 6916 return N1; 6917 6918 if (SDValue Combined = visitORLike(N0, N1, N)) 6919 return Combined; 6920 6921 if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N)) 6922 return Combined; 6923 6924 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) 6925 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) 6926 return BSwap; 6927 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) 6928 return BSwap; 6929 6930 // reassociate or 6931 if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags())) 6932 return ROR; 6933 6934 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) 6935 // iff (c1 & c2) != 0 or c1/c2 are undef. 6936 auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) { 6937 return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue()); 6938 }; 6939 if (N0.getOpcode() == ISD::AND && N0->hasOneUse() && 6940 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) { 6941 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, 6942 {N1, N0.getOperand(1)})) { 6943 SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1); 6944 AddToWorklist(IOR.getNode()); 6945 return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR); 6946 } 6947 } 6948 6949 if (SDValue Combined = visitORCommutative(DAG, N0, N1, N)) 6950 return Combined; 6951 if (SDValue Combined = visitORCommutative(DAG, N1, N0, N)) 6952 return Combined; 6953 6954 // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) 6955 if (N0.getOpcode() == N1.getOpcode()) 6956 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 6957 return V; 6958 6959 // See if this is some rotate idiom. 6960 if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N))) 6961 return Rot; 6962 6963 if (SDValue Load = MatchLoadCombine(N)) 6964 return Load; 6965 6966 // Simplify the operands using demanded-bits information. 6967 if (SimplifyDemandedBits(SDValue(N, 0))) 6968 return SDValue(N, 0); 6969 6970 // If OR can be rewritten into ADD, try combines based on ADD. 6971 if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) && 6972 DAG.haveNoCommonBitsSet(N0, N1)) 6973 if (SDValue Combined = visitADDLike(N)) 6974 return Combined; 6975 6976 return SDValue(); 6977 } 6978 6979 static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) { 6980 if (Op.getOpcode() == ISD::AND && 6981 DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { 6982 Mask = Op.getOperand(1); 6983 return Op.getOperand(0); 6984 } 6985 return Op; 6986 } 6987 6988 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 6989 static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift, 6990 SDValue &Mask) { 6991 Op = stripConstantMask(DAG, Op, Mask); 6992 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { 6993 Shift = Op; 6994 return true; 6995 } 6996 return false; 6997 } 6998 6999 /// Helper function for visitOR to extract the needed side of a rotate idiom 7000 /// from a shl/srl/mul/udiv. This is meant to handle cases where 7001 /// InstCombine merged some outside op with one of the shifts from 7002 /// the rotate pattern. 7003 /// \returns An empty \c SDValue if the needed shift couldn't be extracted. 7004 /// Otherwise, returns an expansion of \p ExtractFrom based on the following 7005 /// patterns: 7006 /// 7007 /// (or (add v v) (shrl v bitwidth-1)): 7008 /// expands (add v v) -> (shl v 1) 7009 /// 7010 /// (or (mul v c0) (shrl (mul v c1) c2)): 7011 /// expands (mul v c0) -> (shl (mul v c1) c3) 7012 /// 7013 /// (or (udiv v c0) (shl (udiv v c1) c2)): 7014 /// expands (udiv v c0) -> (shrl (udiv v c1) c3) 7015 /// 7016 /// (or (shl v c0) (shrl (shl v c1) c2)): 7017 /// expands (shl v c0) -> (shl (shl v c1) c3) 7018 /// 7019 /// (or (shrl v c0) (shl (shrl v c1) c2)): 7020 /// expands (shrl v c0) -> (shrl (shrl v c1) c3) 7021 /// 7022 /// Such that in all cases, c3+c2==bitwidth(op v c1). 7023 static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, 7024 SDValue ExtractFrom, SDValue &Mask, 7025 const SDLoc &DL) { 7026 assert(OppShift && ExtractFrom && "Empty SDValue"); 7027 assert( 7028 (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && 7029 "Existing shift must be valid as a rotate half"); 7030 7031 ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask); 7032 7033 // Value and Type of the shift. 7034 SDValue OppShiftLHS = OppShift.getOperand(0); 7035 EVT ShiftedVT = OppShiftLHS.getValueType(); 7036 7037 // Amount of the existing shift. 7038 ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1)); 7039 7040 // (add v v) -> (shl v 1) 7041 // TODO: Should this be a general DAG canonicalization? 7042 if (OppShift.getOpcode() == ISD::SRL && OppShiftCst && 7043 ExtractFrom.getOpcode() == ISD::ADD && 7044 ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) && 7045 ExtractFrom.getOperand(0) == OppShiftLHS && 7046 OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1) 7047 return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS, 7048 DAG.getShiftAmountConstant(1, ShiftedVT, DL)); 7049 7050 // Preconditions: 7051 // (or (op0 v c0) (shiftl/r (op0 v c1) c2)) 7052 // 7053 // Find opcode of the needed shift to be extracted from (op0 v c0). 7054 unsigned Opcode = ISD::DELETED_NODE; 7055 bool IsMulOrDiv = false; 7056 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift 7057 // opcode or its arithmetic (mul or udiv) variant. 7058 auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) { 7059 IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant; 7060 if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift) 7061 return false; 7062 Opcode = NeededShift; 7063 return true; 7064 }; 7065 // op0 must be either the needed shift opcode or the mul/udiv equivalent 7066 // that the needed shift can be extracted from. 7067 if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) && 7068 (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV))) 7069 return SDValue(); 7070 7071 // op0 must be the same opcode on both sides, have the same LHS argument, 7072 // and produce the same value type. 7073 if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() || 7074 OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) || 7075 ShiftedVT != ExtractFrom.getValueType()) 7076 return SDValue(); 7077 7078 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op. 7079 ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1)); 7080 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op. 7081 ConstantSDNode *ExtractFromCst = 7082 isConstOrConstSplat(ExtractFrom.getOperand(1)); 7083 // TODO: We should be able to handle non-uniform constant vectors for these values 7084 // Check that we have constant values. 7085 if (!OppShiftCst || !OppShiftCst->getAPIntValue() || 7086 !OppLHSCst || !OppLHSCst->getAPIntValue() || 7087 !ExtractFromCst || !ExtractFromCst->getAPIntValue()) 7088 return SDValue(); 7089 7090 // Compute the shift amount we need to extract to complete the rotate. 7091 const unsigned VTWidth = ShiftedVT.getScalarSizeInBits(); 7092 if (OppShiftCst->getAPIntValue().ugt(VTWidth)) 7093 return SDValue(); 7094 APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue(); 7095 // Normalize the bitwidth of the two mul/udiv/shift constant operands. 7096 APInt ExtractFromAmt = ExtractFromCst->getAPIntValue(); 7097 APInt OppLHSAmt = OppLHSCst->getAPIntValue(); 7098 zeroExtendToMatch(ExtractFromAmt, OppLHSAmt); 7099 7100 // Now try extract the needed shift from the ExtractFrom op and see if the 7101 // result matches up with the existing shift's LHS op. 7102 if (IsMulOrDiv) { 7103 // Op to extract from is a mul or udiv by a constant. 7104 // Check: 7105 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0 7106 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0 7107 const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(), 7108 NeededShiftAmt.getZExtValue()); 7109 APInt ResultAmt; 7110 APInt Rem; 7111 APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem); 7112 if (Rem != 0 || ResultAmt != OppLHSAmt) 7113 return SDValue(); 7114 } else { 7115 // Op to extract from is a shift by a constant. 7116 // Check: 7117 // c2 - (bitwidth(op0 v c0) - c1) == c0 7118 if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc( 7119 ExtractFromAmt.getBitWidth())) 7120 return SDValue(); 7121 } 7122 7123 // Return the expanded shift op that should allow a rotate to be formed. 7124 EVT ShiftVT = OppShift.getOperand(1).getValueType(); 7125 EVT ResVT = ExtractFrom.getValueType(); 7126 SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT); 7127 return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode); 7128 } 7129 7130 // Return true if we can prove that, whenever Neg and Pos are both in the 7131 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that 7132 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: 7133 // 7134 // (or (shift1 X, Neg), (shift2 X, Pos)) 7135 // 7136 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate 7137 // in direction shift1 by Neg. The range [0, EltSize) means that we only need 7138 // to consider shift amounts with defined behavior. 7139 // 7140 // The IsRotate flag should be set when the LHS of both shifts is the same. 7141 // Otherwise if matching a general funnel shift, it should be clear. 7142 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, 7143 SelectionDAG &DAG, bool IsRotate) { 7144 // If EltSize is a power of 2 then: 7145 // 7146 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) 7147 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). 7148 // 7149 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check 7150 // for the stronger condition: 7151 // 7152 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] 7153 // 7154 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) 7155 // we can just replace Neg with Neg' for the rest of the function. 7156 // 7157 // In other cases we check for the even stronger condition: 7158 // 7159 // Neg == EltSize - Pos [B] 7160 // 7161 // for all Neg and Pos. Note that the (or ...) then invokes undefined 7162 // behavior if Pos == 0 (and consequently Neg == EltSize). 7163 // 7164 // We could actually use [A] whenever EltSize is a power of 2, but the 7165 // only extra cases that it would match are those uninteresting ones 7166 // where Neg and Pos are never in range at the same time. E.g. for 7167 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) 7168 // as well as (sub 32, Pos), but: 7169 // 7170 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) 7171 // 7172 // always invokes undefined behavior for 32-bit X. 7173 // 7174 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. 7175 // 7176 // NOTE: We can only do this when matching an AND and not a general 7177 // funnel shift. 7178 unsigned MaskLoBits = 0; 7179 if (IsRotate && Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { 7180 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { 7181 KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0)); 7182 unsigned Bits = Log2_64(EltSize); 7183 if (NegC->getAPIntValue().getActiveBits() <= Bits && 7184 ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) { 7185 Neg = Neg.getOperand(0); 7186 MaskLoBits = Bits; 7187 } 7188 } 7189 } 7190 7191 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. 7192 if (Neg.getOpcode() != ISD::SUB) 7193 return false; 7194 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); 7195 if (!NegC) 7196 return false; 7197 SDValue NegOp1 = Neg.getOperand(1); 7198 7199 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with 7200 // Pos'. The truncation is redundant for the purpose of the equality. 7201 if (MaskLoBits && Pos.getOpcode() == ISD::AND) { 7202 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) { 7203 KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0)); 7204 if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits && 7205 ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >= 7206 MaskLoBits)) 7207 Pos = Pos.getOperand(0); 7208 } 7209 } 7210 7211 // The condition we need is now: 7212 // 7213 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask 7214 // 7215 // If NegOp1 == Pos then we need: 7216 // 7217 // EltSize & Mask == NegC & Mask 7218 // 7219 // (because "x & Mask" is a truncation and distributes through subtraction). 7220 // 7221 // We also need to account for a potential truncation of NegOp1 if the amount 7222 // has already been legalized to a shift amount type. 7223 APInt Width; 7224 if ((Pos == NegOp1) || 7225 (NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0))) 7226 Width = NegC->getAPIntValue(); 7227 7228 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. 7229 // Then the condition we want to prove becomes: 7230 // 7231 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask 7232 // 7233 // which, again because "x & Mask" is a truncation, becomes: 7234 // 7235 // NegC & Mask == (EltSize - PosC) & Mask 7236 // EltSize & Mask == (NegC + PosC) & Mask 7237 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { 7238 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 7239 Width = PosC->getAPIntValue() + NegC->getAPIntValue(); 7240 else 7241 return false; 7242 } else 7243 return false; 7244 7245 // Now we just need to check that EltSize & Mask == Width & Mask. 7246 if (MaskLoBits) 7247 // EltSize & Mask is 0 since Mask is EltSize - 1. 7248 return Width.getLoBits(MaskLoBits) == 0; 7249 return Width == EltSize; 7250 } 7251 7252 // A subroutine of MatchRotate used once we have found an OR of two opposite 7253 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces 7254 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the 7255 // former being preferred if supported. InnerPos and InnerNeg are Pos and 7256 // Neg with outer conversions stripped away. 7257 SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, 7258 SDValue Neg, SDValue InnerPos, 7259 SDValue InnerNeg, bool HasPos, 7260 unsigned PosOpcode, unsigned NegOpcode, 7261 const SDLoc &DL) { 7262 // fold (or (shl x, (*ext y)), 7263 // (srl x, (*ext (sub 32, y)))) -> 7264 // (rotl x, y) or (rotr x, (sub 32, y)) 7265 // 7266 // fold (or (shl x, (*ext (sub 32, y))), 7267 // (srl x, (*ext y))) -> 7268 // (rotr x, y) or (rotl x, (sub 32, y)) 7269 EVT VT = Shifted.getValueType(); 7270 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG, 7271 /*IsRotate*/ true)) { 7272 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, 7273 HasPos ? Pos : Neg); 7274 } 7275 7276 return SDValue(); 7277 } 7278 7279 // A subroutine of MatchRotate used once we have found an OR of two opposite 7280 // shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces 7281 // to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the 7282 // former being preferred if supported. InnerPos and InnerNeg are Pos and 7283 // Neg with outer conversions stripped away. 7284 // TODO: Merge with MatchRotatePosNeg. 7285 SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, 7286 SDValue Neg, SDValue InnerPos, 7287 SDValue InnerNeg, bool HasPos, 7288 unsigned PosOpcode, unsigned NegOpcode, 7289 const SDLoc &DL) { 7290 EVT VT = N0.getValueType(); 7291 unsigned EltBits = VT.getScalarSizeInBits(); 7292 7293 // fold (or (shl x0, (*ext y)), 7294 // (srl x1, (*ext (sub 32, y)))) -> 7295 // (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y)) 7296 // 7297 // fold (or (shl x0, (*ext (sub 32, y))), 7298 // (srl x1, (*ext y))) -> 7299 // (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y)) 7300 if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG, /*IsRotate*/ N0 == N1)) { 7301 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1, 7302 HasPos ? Pos : Neg); 7303 } 7304 7305 // Matching the shift+xor cases, we can't easily use the xor'd shift amount 7306 // so for now just use the PosOpcode case if its legal. 7307 // TODO: When can we use the NegOpcode case? 7308 if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) { 7309 auto IsBinOpImm = [](SDValue Op, unsigned BinOpc, unsigned Imm) { 7310 if (Op.getOpcode() != BinOpc) 7311 return false; 7312 ConstantSDNode *Cst = isConstOrConstSplat(Op.getOperand(1)); 7313 return Cst && (Cst->getAPIntValue() == Imm); 7314 }; 7315 7316 // fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31))) 7317 // -> (fshl x0, x1, y) 7318 if (IsBinOpImm(N1, ISD::SRL, 1) && 7319 IsBinOpImm(InnerNeg, ISD::XOR, EltBits - 1) && 7320 InnerPos == InnerNeg.getOperand(0) && 7321 TLI.isOperationLegalOrCustom(ISD::FSHL, VT)) { 7322 return DAG.getNode(ISD::FSHL, DL, VT, N0, N1.getOperand(0), Pos); 7323 } 7324 7325 // fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y)) 7326 // -> (fshr x0, x1, y) 7327 if (IsBinOpImm(N0, ISD::SHL, 1) && 7328 IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && 7329 InnerNeg == InnerPos.getOperand(0) && 7330 TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { 7331 return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); 7332 } 7333 7334 // fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y)) 7335 // -> (fshr x0, x1, y) 7336 // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization? 7337 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N0.getOperand(1) && 7338 IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && 7339 InnerNeg == InnerPos.getOperand(0) && 7340 TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { 7341 return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); 7342 } 7343 } 7344 7345 return SDValue(); 7346 } 7347 7348 // MatchRotate - Handle an 'or' of two operands. If this is one of the many 7349 // idioms for rotate, and if the target supports rotation instructions, generate 7350 // a rot[lr]. This also matches funnel shift patterns, similar to rotation but 7351 // with different shifted sources. 7352 SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { 7353 EVT VT = LHS.getValueType(); 7354 7355 // The target must have at least one rotate/funnel flavor. 7356 // We still try to match rotate by constant pre-legalization. 7357 // TODO: Support pre-legalization funnel-shift by constant. 7358 bool HasROTL = hasOperation(ISD::ROTL, VT); 7359 bool HasROTR = hasOperation(ISD::ROTR, VT); 7360 bool HasFSHL = hasOperation(ISD::FSHL, VT); 7361 bool HasFSHR = hasOperation(ISD::FSHR, VT); 7362 7363 // If the type is going to be promoted and the target has enabled custom 7364 // lowering for rotate, allow matching rotate by non-constants. Only allow 7365 // this for scalar types. 7366 if (VT.isScalarInteger() && TLI.getTypeAction(*DAG.getContext(), VT) == 7367 TargetLowering::TypePromoteInteger) { 7368 HasROTL |= TLI.getOperationAction(ISD::ROTL, VT) == TargetLowering::Custom; 7369 HasROTR |= TLI.getOperationAction(ISD::ROTR, VT) == TargetLowering::Custom; 7370 } 7371 7372 if (LegalOperations && !HasROTL && !HasROTR && !HasFSHL && !HasFSHR) 7373 return SDValue(); 7374 7375 // Check for truncated rotate. 7376 if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE && 7377 LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) { 7378 assert(LHS.getValueType() == RHS.getValueType()); 7379 if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) { 7380 return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot); 7381 } 7382 } 7383 7384 // Match "(X shl/srl V1) & V2" where V2 may not be present. 7385 SDValue LHSShift; // The shift. 7386 SDValue LHSMask; // AND value if any. 7387 matchRotateHalf(DAG, LHS, LHSShift, LHSMask); 7388 7389 SDValue RHSShift; // The shift. 7390 SDValue RHSMask; // AND value if any. 7391 matchRotateHalf(DAG, RHS, RHSShift, RHSMask); 7392 7393 // If neither side matched a rotate half, bail 7394 if (!LHSShift && !RHSShift) 7395 return SDValue(); 7396 7397 // InstCombine may have combined a constant shl, srl, mul, or udiv with one 7398 // side of the rotate, so try to handle that here. In all cases we need to 7399 // pass the matched shift from the opposite side to compute the opcode and 7400 // needed shift amount to extract. We still want to do this if both sides 7401 // matched a rotate half because one half may be a potential overshift that 7402 // can be broken down (ie if InstCombine merged two shl or srl ops into a 7403 // single one). 7404 7405 // Have LHS side of the rotate, try to extract the needed shift from the RHS. 7406 if (LHSShift) 7407 if (SDValue NewRHSShift = 7408 extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL)) 7409 RHSShift = NewRHSShift; 7410 // Have RHS side of the rotate, try to extract the needed shift from the LHS. 7411 if (RHSShift) 7412 if (SDValue NewLHSShift = 7413 extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL)) 7414 LHSShift = NewLHSShift; 7415 7416 // If a side is still missing, nothing else we can do. 7417 if (!RHSShift || !LHSShift) 7418 return SDValue(); 7419 7420 // At this point we've matched or extracted a shift op on each side. 7421 7422 if (LHSShift.getOpcode() == RHSShift.getOpcode()) 7423 return SDValue(); // Shifts must disagree. 7424 7425 // Canonicalize shl to left side in a shl/srl pair. 7426 if (RHSShift.getOpcode() == ISD::SHL) { 7427 std::swap(LHS, RHS); 7428 std::swap(LHSShift, RHSShift); 7429 std::swap(LHSMask, RHSMask); 7430 } 7431 7432 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 7433 SDValue LHSShiftArg = LHSShift.getOperand(0); 7434 SDValue LHSShiftAmt = LHSShift.getOperand(1); 7435 SDValue RHSShiftArg = RHSShift.getOperand(0); 7436 SDValue RHSShiftAmt = RHSShift.getOperand(1); 7437 7438 auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS, 7439 ConstantSDNode *RHS) { 7440 return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits; 7441 }; 7442 7443 // TODO: Support pre-legalization funnel-shift by constant. 7444 bool IsRotate = LHSShift.getOperand(0) == RHSShift.getOperand(0); 7445 if (!IsRotate && !(HasFSHL || HasFSHR)) { 7446 if (TLI.isTypeLegal(VT) && LHS.hasOneUse() && RHS.hasOneUse() && 7447 ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { 7448 // Look for a disguised rotate by constant. 7449 // The common shifted operand X may be hidden inside another 'or'. 7450 SDValue X, Y; 7451 auto matchOr = [&X, &Y](SDValue Or, SDValue CommonOp) { 7452 if (!Or.hasOneUse() || Or.getOpcode() != ISD::OR) 7453 return false; 7454 if (CommonOp == Or.getOperand(0)) { 7455 X = CommonOp; 7456 Y = Or.getOperand(1); 7457 return true; 7458 } 7459 if (CommonOp == Or.getOperand(1)) { 7460 X = CommonOp; 7461 Y = Or.getOperand(0); 7462 return true; 7463 } 7464 return false; 7465 }; 7466 7467 // (shl (X | Y), C1) | (srl X, C2) --> (rotl X, C1) | (shl Y, C1) 7468 if (matchOr(LHSShiftArg, RHSShiftArg)) { 7469 SDValue RotX = DAG.getNode(ISD::ROTL, DL, VT, X, LHSShiftAmt); 7470 SDValue ShlY = DAG.getNode(ISD::SHL, DL, VT, Y, LHSShiftAmt); 7471 return DAG.getNode(ISD::OR, DL, VT, RotX, ShlY); 7472 } 7473 // (shl X, C1) | (srl (X | Y), C2) --> (rotl X, C1) | (srl Y, C2) 7474 if (matchOr(RHSShiftArg, LHSShiftArg)) { 7475 SDValue RotX = DAG.getNode(ISD::ROTL, DL, VT, X, LHSShiftAmt); 7476 SDValue SrlY = DAG.getNode(ISD::SRL, DL, VT, Y, RHSShiftAmt); 7477 return DAG.getNode(ISD::OR, DL, VT, RotX, SrlY); 7478 } 7479 } 7480 7481 return SDValue(); // Requires funnel shift support. 7482 } 7483 7484 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) 7485 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) 7486 // fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1) 7487 // fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2) 7488 // iff C1+C2 == EltSizeInBits 7489 if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { 7490 SDValue Res; 7491 if (IsRotate && (HasROTL || HasROTR || !(HasFSHL || HasFSHR))) { 7492 bool UseROTL = !LegalOperations || HasROTL; 7493 Res = DAG.getNode(UseROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg, 7494 UseROTL ? LHSShiftAmt : RHSShiftAmt); 7495 } else { 7496 bool UseFSHL = !LegalOperations || HasFSHL; 7497 Res = DAG.getNode(UseFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg, 7498 RHSShiftArg, UseFSHL ? LHSShiftAmt : RHSShiftAmt); 7499 } 7500 7501 // If there is an AND of either shifted operand, apply it to the result. 7502 if (LHSMask.getNode() || RHSMask.getNode()) { 7503 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); 7504 SDValue Mask = AllOnes; 7505 7506 if (LHSMask.getNode()) { 7507 SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt); 7508 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 7509 DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits)); 7510 } 7511 if (RHSMask.getNode()) { 7512 SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt); 7513 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 7514 DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits)); 7515 } 7516 7517 Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask); 7518 } 7519 7520 return Res; 7521 } 7522 7523 // Even pre-legalization, we can't easily rotate/funnel-shift by a variable 7524 // shift. 7525 if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR) 7526 return SDValue(); 7527 7528 // If there is a mask here, and we have a variable shift, we can't be sure 7529 // that we're masking out the right stuff. 7530 if (LHSMask.getNode() || RHSMask.getNode()) 7531 return SDValue(); 7532 7533 // If the shift amount is sign/zext/any-extended just peel it off. 7534 SDValue LExtOp0 = LHSShiftAmt; 7535 SDValue RExtOp0 = RHSShiftAmt; 7536 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 7537 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 7538 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 7539 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && 7540 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 7541 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 7542 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 7543 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { 7544 LExtOp0 = LHSShiftAmt.getOperand(0); 7545 RExtOp0 = RHSShiftAmt.getOperand(0); 7546 } 7547 7548 if (IsRotate && (HasROTL || HasROTR)) { 7549 SDValue TryL = 7550 MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, LExtOp0, 7551 RExtOp0, HasROTL, ISD::ROTL, ISD::ROTR, DL); 7552 if (TryL) 7553 return TryL; 7554 7555 SDValue TryR = 7556 MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, RExtOp0, 7557 LExtOp0, HasROTR, ISD::ROTR, ISD::ROTL, DL); 7558 if (TryR) 7559 return TryR; 7560 } 7561 7562 SDValue TryL = 7563 MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt, RHSShiftAmt, 7564 LExtOp0, RExtOp0, HasFSHL, ISD::FSHL, ISD::FSHR, DL); 7565 if (TryL) 7566 return TryL; 7567 7568 SDValue TryR = 7569 MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt, LHSShiftAmt, 7570 RExtOp0, LExtOp0, HasFSHR, ISD::FSHR, ISD::FSHL, DL); 7571 if (TryR) 7572 return TryR; 7573 7574 return SDValue(); 7575 } 7576 7577 namespace { 7578 7579 /// Represents known origin of an individual byte in load combine pattern. The 7580 /// value of the byte is either constant zero or comes from memory. 7581 struct ByteProvider { 7582 // For constant zero providers Load is set to nullptr. For memory providers 7583 // Load represents the node which loads the byte from memory. 7584 // ByteOffset is the offset of the byte in the value produced by the load. 7585 LoadSDNode *Load = nullptr; 7586 unsigned ByteOffset = 0; 7587 7588 ByteProvider() = default; 7589 7590 static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) { 7591 return ByteProvider(Load, ByteOffset); 7592 } 7593 7594 static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); } 7595 7596 bool isConstantZero() const { return !Load; } 7597 bool isMemory() const { return Load; } 7598 7599 bool operator==(const ByteProvider &Other) const { 7600 return Other.Load == Load && Other.ByteOffset == ByteOffset; 7601 } 7602 7603 private: 7604 ByteProvider(LoadSDNode *Load, unsigned ByteOffset) 7605 : Load(Load), ByteOffset(ByteOffset) {} 7606 }; 7607 7608 } // end anonymous namespace 7609 7610 /// Recursively traverses the expression calculating the origin of the requested 7611 /// byte of the given value. Returns None if the provider can't be calculated. 7612 /// 7613 /// For all the values except the root of the expression verifies that the value 7614 /// has exactly one use and if it's not true return None. This way if the origin 7615 /// of the byte is returned it's guaranteed that the values which contribute to 7616 /// the byte are not used outside of this expression. 7617 /// 7618 /// Because the parts of the expression are not allowed to have more than one 7619 /// use this function iterates over trees, not DAGs. So it never visits the same 7620 /// node more than once. 7621 static const Optional<ByteProvider> 7622 calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, 7623 bool Root = false) { 7624 // Typical i64 by i8 pattern requires recursion up to 8 calls depth 7625 if (Depth == 10) 7626 return None; 7627 7628 if (!Root && !Op.hasOneUse()) 7629 return None; 7630 7631 assert(Op.getValueType().isScalarInteger() && "can't handle other types"); 7632 unsigned BitWidth = Op.getValueSizeInBits(); 7633 if (BitWidth % 8 != 0) 7634 return None; 7635 unsigned ByteWidth = BitWidth / 8; 7636 assert(Index < ByteWidth && "invalid index requested"); 7637 (void) ByteWidth; 7638 7639 switch (Op.getOpcode()) { 7640 case ISD::OR: { 7641 auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1); 7642 if (!LHS) 7643 return None; 7644 auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1); 7645 if (!RHS) 7646 return None; 7647 7648 if (LHS->isConstantZero()) 7649 return RHS; 7650 if (RHS->isConstantZero()) 7651 return LHS; 7652 return None; 7653 } 7654 case ISD::SHL: { 7655 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 7656 if (!ShiftOp) 7657 return None; 7658 7659 uint64_t BitShift = ShiftOp->getZExtValue(); 7660 if (BitShift % 8 != 0) 7661 return None; 7662 uint64_t ByteShift = BitShift / 8; 7663 7664 return Index < ByteShift 7665 ? ByteProvider::getConstantZero() 7666 : calculateByteProvider(Op->getOperand(0), Index - ByteShift, 7667 Depth + 1); 7668 } 7669 case ISD::ANY_EXTEND: 7670 case ISD::SIGN_EXTEND: 7671 case ISD::ZERO_EXTEND: { 7672 SDValue NarrowOp = Op->getOperand(0); 7673 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); 7674 if (NarrowBitWidth % 8 != 0) 7675 return None; 7676 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 7677 7678 if (Index >= NarrowByteWidth) 7679 return Op.getOpcode() == ISD::ZERO_EXTEND 7680 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) 7681 : None; 7682 return calculateByteProvider(NarrowOp, Index, Depth + 1); 7683 } 7684 case ISD::BSWAP: 7685 return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, 7686 Depth + 1); 7687 case ISD::LOAD: { 7688 auto L = cast<LoadSDNode>(Op.getNode()); 7689 if (!L->isSimple() || L->isIndexed()) 7690 return None; 7691 7692 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); 7693 if (NarrowBitWidth % 8 != 0) 7694 return None; 7695 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 7696 7697 if (Index >= NarrowByteWidth) 7698 return L->getExtensionType() == ISD::ZEXTLOAD 7699 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) 7700 : None; 7701 return ByteProvider::getMemory(L, Index); 7702 } 7703 } 7704 7705 return None; 7706 } 7707 7708 static unsigned littleEndianByteAt(unsigned BW, unsigned i) { 7709 return i; 7710 } 7711 7712 static unsigned bigEndianByteAt(unsigned BW, unsigned i) { 7713 return BW - i - 1; 7714 } 7715 7716 // Check if the bytes offsets we are looking at match with either big or 7717 // little endian value loaded. Return true for big endian, false for little 7718 // endian, and None if match failed. 7719 static Optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets, 7720 int64_t FirstOffset) { 7721 // The endian can be decided only when it is 2 bytes at least. 7722 unsigned Width = ByteOffsets.size(); 7723 if (Width < 2) 7724 return None; 7725 7726 bool BigEndian = true, LittleEndian = true; 7727 for (unsigned i = 0; i < Width; i++) { 7728 int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; 7729 LittleEndian &= CurrentByteOffset == littleEndianByteAt(Width, i); 7730 BigEndian &= CurrentByteOffset == bigEndianByteAt(Width, i); 7731 if (!BigEndian && !LittleEndian) 7732 return None; 7733 } 7734 7735 assert((BigEndian != LittleEndian) && "It should be either big endian or" 7736 "little endian"); 7737 return BigEndian; 7738 } 7739 7740 static SDValue stripTruncAndExt(SDValue Value) { 7741 switch (Value.getOpcode()) { 7742 case ISD::TRUNCATE: 7743 case ISD::ZERO_EXTEND: 7744 case ISD::SIGN_EXTEND: 7745 case ISD::ANY_EXTEND: 7746 return stripTruncAndExt(Value.getOperand(0)); 7747 } 7748 return Value; 7749 } 7750 7751 /// Match a pattern where a wide type scalar value is stored by several narrow 7752 /// stores. Fold it into a single store or a BSWAP and a store if the targets 7753 /// supports it. 7754 /// 7755 /// Assuming little endian target: 7756 /// i8 *p = ... 7757 /// i32 val = ... 7758 /// p[0] = (val >> 0) & 0xFF; 7759 /// p[1] = (val >> 8) & 0xFF; 7760 /// p[2] = (val >> 16) & 0xFF; 7761 /// p[3] = (val >> 24) & 0xFF; 7762 /// => 7763 /// *((i32)p) = val; 7764 /// 7765 /// i8 *p = ... 7766 /// i32 val = ... 7767 /// p[0] = (val >> 24) & 0xFF; 7768 /// p[1] = (val >> 16) & 0xFF; 7769 /// p[2] = (val >> 8) & 0xFF; 7770 /// p[3] = (val >> 0) & 0xFF; 7771 /// => 7772 /// *((i32)p) = BSWAP(val); 7773 SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) { 7774 // The matching looks for "store (trunc x)" patterns that appear early but are 7775 // likely to be replaced by truncating store nodes during combining. 7776 // TODO: If there is evidence that running this later would help, this 7777 // limitation could be removed. Legality checks may need to be added 7778 // for the created store and optional bswap/rotate. 7779 if (LegalOperations || OptLevel == CodeGenOpt::None) 7780 return SDValue(); 7781 7782 // We only handle merging simple stores of 1-4 bytes. 7783 // TODO: Allow unordered atomics when wider type is legal (see D66309) 7784 EVT MemVT = N->getMemoryVT(); 7785 if (!(MemVT == MVT::i8 || MemVT == MVT::i16 || MemVT == MVT::i32) || 7786 !N->isSimple() || N->isIndexed()) 7787 return SDValue(); 7788 7789 // Collect all of the stores in the chain. 7790 SDValue Chain = N->getChain(); 7791 SmallVector<StoreSDNode *, 8> Stores = {N}; 7792 while (auto *Store = dyn_cast<StoreSDNode>(Chain)) { 7793 // All stores must be the same size to ensure that we are writing all of the 7794 // bytes in the wide value. 7795 // TODO: We could allow multiple sizes by tracking each stored byte. 7796 if (Store->getMemoryVT() != MemVT || !Store->isSimple() || 7797 Store->isIndexed()) 7798 return SDValue(); 7799 Stores.push_back(Store); 7800 Chain = Store->getChain(); 7801 } 7802 // There is no reason to continue if we do not have at least a pair of stores. 7803 if (Stores.size() < 2) 7804 return SDValue(); 7805 7806 // Handle simple types only. 7807 LLVMContext &Context = *DAG.getContext(); 7808 unsigned NumStores = Stores.size(); 7809 unsigned NarrowNumBits = N->getMemoryVT().getScalarSizeInBits(); 7810 unsigned WideNumBits = NumStores * NarrowNumBits; 7811 EVT WideVT = EVT::getIntegerVT(Context, WideNumBits); 7812 if (WideVT != MVT::i16 && WideVT != MVT::i32 && WideVT != MVT::i64) 7813 return SDValue(); 7814 7815 // Check if all bytes of the source value that we are looking at are stored 7816 // to the same base address. Collect offsets from Base address into OffsetMap. 7817 SDValue SourceValue; 7818 SmallVector<int64_t, 8> OffsetMap(NumStores, INT64_MAX); 7819 int64_t FirstOffset = INT64_MAX; 7820 StoreSDNode *FirstStore = nullptr; 7821 Optional<BaseIndexOffset> Base; 7822 for (auto Store : Stores) { 7823 // All the stores store different parts of the CombinedValue. A truncate is 7824 // required to get the partial value. 7825 SDValue Trunc = Store->getValue(); 7826 if (Trunc.getOpcode() != ISD::TRUNCATE) 7827 return SDValue(); 7828 // Other than the first/last part, a shift operation is required to get the 7829 // offset. 7830 int64_t Offset = 0; 7831 SDValue WideVal = Trunc.getOperand(0); 7832 if ((WideVal.getOpcode() == ISD::SRL || WideVal.getOpcode() == ISD::SRA) && 7833 isa<ConstantSDNode>(WideVal.getOperand(1))) { 7834 // The shift amount must be a constant multiple of the narrow type. 7835 // It is translated to the offset address in the wide source value "y". 7836 // 7837 // x = srl y, ShiftAmtC 7838 // i8 z = trunc x 7839 // store z, ... 7840 uint64_t ShiftAmtC = WideVal.getConstantOperandVal(1); 7841 if (ShiftAmtC % NarrowNumBits != 0) 7842 return SDValue(); 7843 7844 Offset = ShiftAmtC / NarrowNumBits; 7845 WideVal = WideVal.getOperand(0); 7846 } 7847 7848 // Stores must share the same source value with different offsets. 7849 // Truncate and extends should be stripped to get the single source value. 7850 if (!SourceValue) 7851 SourceValue = WideVal; 7852 else if (stripTruncAndExt(SourceValue) != stripTruncAndExt(WideVal)) 7853 return SDValue(); 7854 else if (SourceValue.getValueType() != WideVT) { 7855 if (WideVal.getValueType() == WideVT || 7856 WideVal.getScalarValueSizeInBits() > 7857 SourceValue.getScalarValueSizeInBits()) 7858 SourceValue = WideVal; 7859 // Give up if the source value type is smaller than the store size. 7860 if (SourceValue.getScalarValueSizeInBits() < WideVT.getScalarSizeInBits()) 7861 return SDValue(); 7862 } 7863 7864 // Stores must share the same base address. 7865 BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG); 7866 int64_t ByteOffsetFromBase = 0; 7867 if (!Base) 7868 Base = Ptr; 7869 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) 7870 return SDValue(); 7871 7872 // Remember the first store. 7873 if (ByteOffsetFromBase < FirstOffset) { 7874 FirstStore = Store; 7875 FirstOffset = ByteOffsetFromBase; 7876 } 7877 // Map the offset in the store and the offset in the combined value, and 7878 // early return if it has been set before. 7879 if (Offset < 0 || Offset >= NumStores || OffsetMap[Offset] != INT64_MAX) 7880 return SDValue(); 7881 OffsetMap[Offset] = ByteOffsetFromBase; 7882 } 7883 7884 assert(FirstOffset != INT64_MAX && "First byte offset must be set"); 7885 assert(FirstStore && "First store must be set"); 7886 7887 // Check that a store of the wide type is both allowed and fast on the target 7888 const DataLayout &Layout = DAG.getDataLayout(); 7889 bool Fast = false; 7890 bool Allowed = TLI.allowsMemoryAccess(Context, Layout, WideVT, 7891 *FirstStore->getMemOperand(), &Fast); 7892 if (!Allowed || !Fast) 7893 return SDValue(); 7894 7895 // Check if the pieces of the value are going to the expected places in memory 7896 // to merge the stores. 7897 auto checkOffsets = [&](bool MatchLittleEndian) { 7898 if (MatchLittleEndian) { 7899 for (unsigned i = 0; i != NumStores; ++i) 7900 if (OffsetMap[i] != i * (NarrowNumBits / 8) + FirstOffset) 7901 return false; 7902 } else { // MatchBigEndian by reversing loop counter. 7903 for (unsigned i = 0, j = NumStores - 1; i != NumStores; ++i, --j) 7904 if (OffsetMap[j] != i * (NarrowNumBits / 8) + FirstOffset) 7905 return false; 7906 } 7907 return true; 7908 }; 7909 7910 // Check if the offsets line up for the native data layout of this target. 7911 bool NeedBswap = false; 7912 bool NeedRotate = false; 7913 if (!checkOffsets(Layout.isLittleEndian())) { 7914 // Special-case: check if byte offsets line up for the opposite endian. 7915 if (NarrowNumBits == 8 && checkOffsets(Layout.isBigEndian())) 7916 NeedBswap = true; 7917 else if (NumStores == 2 && checkOffsets(Layout.isBigEndian())) 7918 NeedRotate = true; 7919 else 7920 return SDValue(); 7921 } 7922 7923 SDLoc DL(N); 7924 if (WideVT != SourceValue.getValueType()) { 7925 assert(SourceValue.getValueType().getScalarSizeInBits() > WideNumBits && 7926 "Unexpected store value to merge"); 7927 SourceValue = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SourceValue); 7928 } 7929 7930 // Before legalize we can introduce illegal bswaps/rotates which will be later 7931 // converted to an explicit bswap sequence. This way we end up with a single 7932 // store and byte shuffling instead of several stores and byte shuffling. 7933 if (NeedBswap) { 7934 SourceValue = DAG.getNode(ISD::BSWAP, DL, WideVT, SourceValue); 7935 } else if (NeedRotate) { 7936 assert(WideNumBits % 2 == 0 && "Unexpected type for rotate"); 7937 SDValue RotAmt = DAG.getConstant(WideNumBits / 2, DL, WideVT); 7938 SourceValue = DAG.getNode(ISD::ROTR, DL, WideVT, SourceValue, RotAmt); 7939 } 7940 7941 SDValue NewStore = 7942 DAG.getStore(Chain, DL, SourceValue, FirstStore->getBasePtr(), 7943 FirstStore->getPointerInfo(), FirstStore->getAlign()); 7944 7945 // Rely on other DAG combine rules to remove the other individual stores. 7946 DAG.ReplaceAllUsesWith(N, NewStore.getNode()); 7947 return NewStore; 7948 } 7949 7950 /// Match a pattern where a wide type scalar value is loaded by several narrow 7951 /// loads and combined by shifts and ors. Fold it into a single load or a load 7952 /// and a BSWAP if the targets supports it. 7953 /// 7954 /// Assuming little endian target: 7955 /// i8 *a = ... 7956 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 7957 /// => 7958 /// i32 val = *((i32)a) 7959 /// 7960 /// i8 *a = ... 7961 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 7962 /// => 7963 /// i32 val = BSWAP(*((i32)a)) 7964 /// 7965 /// TODO: This rule matches complex patterns with OR node roots and doesn't 7966 /// interact well with the worklist mechanism. When a part of the pattern is 7967 /// updated (e.g. one of the loads) its direct users are put into the worklist, 7968 /// but the root node of the pattern which triggers the load combine is not 7969 /// necessarily a direct user of the changed node. For example, once the address 7970 /// of t28 load is reassociated load combine won't be triggered: 7971 /// t25: i32 = add t4, Constant:i32<2> 7972 /// t26: i64 = sign_extend t25 7973 /// t27: i64 = add t2, t26 7974 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 7975 /// t29: i32 = zero_extend t28 7976 /// t32: i32 = shl t29, Constant:i8<8> 7977 /// t33: i32 = or t23, t32 7978 /// As a possible fix visitLoad can check if the load can be a part of a load 7979 /// combine pattern and add corresponding OR roots to the worklist. 7980 SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { 7981 assert(N->getOpcode() == ISD::OR && 7982 "Can only match load combining against OR nodes"); 7983 7984 // Handles simple types only 7985 EVT VT = N->getValueType(0); 7986 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) 7987 return SDValue(); 7988 unsigned ByteWidth = VT.getSizeInBits() / 8; 7989 7990 bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); 7991 auto MemoryByteOffset = [&] (ByteProvider P) { 7992 assert(P.isMemory() && "Must be a memory byte provider"); 7993 unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits(); 7994 assert(LoadBitWidth % 8 == 0 && 7995 "can only analyze providers for individual bytes not bit"); 7996 unsigned LoadByteWidth = LoadBitWidth / 8; 7997 return IsBigEndianTarget 7998 ? bigEndianByteAt(LoadByteWidth, P.ByteOffset) 7999 : littleEndianByteAt(LoadByteWidth, P.ByteOffset); 8000 }; 8001 8002 Optional<BaseIndexOffset> Base; 8003 SDValue Chain; 8004 8005 SmallPtrSet<LoadSDNode *, 8> Loads; 8006 Optional<ByteProvider> FirstByteProvider; 8007 int64_t FirstOffset = INT64_MAX; 8008 8009 // Check if all the bytes of the OR we are looking at are loaded from the same 8010 // base address. Collect bytes offsets from Base address in ByteOffsets. 8011 SmallVector<int64_t, 8> ByteOffsets(ByteWidth); 8012 unsigned ZeroExtendedBytes = 0; 8013 for (int i = ByteWidth - 1; i >= 0; --i) { 8014 auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true); 8015 if (!P) 8016 return SDValue(); 8017 8018 if (P->isConstantZero()) { 8019 // It's OK for the N most significant bytes to be 0, we can just 8020 // zero-extend the load. 8021 if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i))) 8022 return SDValue(); 8023 continue; 8024 } 8025 assert(P->isMemory() && "provenance should either be memory or zero"); 8026 8027 LoadSDNode *L = P->Load; 8028 assert(L->hasNUsesOfValue(1, 0) && L->isSimple() && 8029 !L->isIndexed() && 8030 "Must be enforced by calculateByteProvider"); 8031 assert(L->getOffset().isUndef() && "Unindexed load must have undef offset"); 8032 8033 // All loads must share the same chain 8034 SDValue LChain = L->getChain(); 8035 if (!Chain) 8036 Chain = LChain; 8037 else if (Chain != LChain) 8038 return SDValue(); 8039 8040 // Loads must share the same base address 8041 BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG); 8042 int64_t ByteOffsetFromBase = 0; 8043 if (!Base) 8044 Base = Ptr; 8045 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) 8046 return SDValue(); 8047 8048 // Calculate the offset of the current byte from the base address 8049 ByteOffsetFromBase += MemoryByteOffset(*P); 8050 ByteOffsets[i] = ByteOffsetFromBase; 8051 8052 // Remember the first byte load 8053 if (ByteOffsetFromBase < FirstOffset) { 8054 FirstByteProvider = P; 8055 FirstOffset = ByteOffsetFromBase; 8056 } 8057 8058 Loads.insert(L); 8059 } 8060 assert(!Loads.empty() && "All the bytes of the value must be loaded from " 8061 "memory, so there must be at least one load which produces the value"); 8062 assert(Base && "Base address of the accessed memory location must be set"); 8063 assert(FirstOffset != INT64_MAX && "First byte offset must be set"); 8064 8065 bool NeedsZext = ZeroExtendedBytes > 0; 8066 8067 EVT MemVT = 8068 EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8); 8069 8070 if (!MemVT.isSimple()) 8071 return SDValue(); 8072 8073 // Before legalize we can introduce too wide illegal loads which will be later 8074 // split into legal sized loads. This enables us to combine i64 load by i8 8075 // patterns to a couple of i32 loads on 32 bit targets. 8076 if (LegalOperations && 8077 !TLI.isOperationLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, 8078 MemVT)) 8079 return SDValue(); 8080 8081 // Check if the bytes of the OR we are looking at match with either big or 8082 // little endian value load 8083 Optional<bool> IsBigEndian = isBigEndian( 8084 makeArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset); 8085 if (!IsBigEndian.hasValue()) 8086 return SDValue(); 8087 8088 assert(FirstByteProvider && "must be set"); 8089 8090 // Ensure that the first byte is loaded from zero offset of the first load. 8091 // So the combined value can be loaded from the first load address. 8092 if (MemoryByteOffset(*FirstByteProvider) != 0) 8093 return SDValue(); 8094 LoadSDNode *FirstLoad = FirstByteProvider->Load; 8095 8096 // The node we are looking at matches with the pattern, check if we can 8097 // replace it with a single (possibly zero-extended) load and bswap + shift if 8098 // needed. 8099 8100 // If the load needs byte swap check if the target supports it 8101 bool NeedsBswap = IsBigEndianTarget != *IsBigEndian; 8102 8103 // Before legalize we can introduce illegal bswaps which will be later 8104 // converted to an explicit bswap sequence. This way we end up with a single 8105 // load and byte shuffling instead of several loads and byte shuffling. 8106 // We do not introduce illegal bswaps when zero-extending as this tends to 8107 // introduce too many arithmetic instructions. 8108 if (NeedsBswap && (LegalOperations || NeedsZext) && 8109 !TLI.isOperationLegal(ISD::BSWAP, VT)) 8110 return SDValue(); 8111 8112 // If we need to bswap and zero extend, we have to insert a shift. Check that 8113 // it is legal. 8114 if (NeedsBswap && NeedsZext && LegalOperations && 8115 !TLI.isOperationLegal(ISD::SHL, VT)) 8116 return SDValue(); 8117 8118 // Check that a load of the wide type is both allowed and fast on the target 8119 bool Fast = false; 8120 bool Allowed = 8121 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 8122 *FirstLoad->getMemOperand(), &Fast); 8123 if (!Allowed || !Fast) 8124 return SDValue(); 8125 8126 SDValue NewLoad = 8127 DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, SDLoc(N), VT, 8128 Chain, FirstLoad->getBasePtr(), 8129 FirstLoad->getPointerInfo(), MemVT, FirstLoad->getAlign()); 8130 8131 // Transfer chain users from old loads to the new load. 8132 for (LoadSDNode *L : Loads) 8133 DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1)); 8134 8135 if (!NeedsBswap) 8136 return NewLoad; 8137 8138 SDValue ShiftedLoad = 8139 NeedsZext 8140 ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad, 8141 DAG.getShiftAmountConstant(ZeroExtendedBytes * 8, VT, 8142 SDLoc(N), LegalOperations)) 8143 : NewLoad; 8144 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad); 8145 } 8146 8147 // If the target has andn, bsl, or a similar bit-select instruction, 8148 // we want to unfold masked merge, with canonical pattern of: 8149 // | A | |B| 8150 // ((x ^ y) & m) ^ y 8151 // | D | 8152 // Into: 8153 // (x & m) | (y & ~m) 8154 // If y is a constant, m is not a 'not', and the 'andn' does not work with 8155 // immediates, we unfold into a different pattern: 8156 // ~(~x & m) & (m | y) 8157 // If x is a constant, m is a 'not', and the 'andn' does not work with 8158 // immediates, we unfold into a different pattern: 8159 // (x | ~m) & ~(~m & ~y) 8160 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at 8161 // the very least that breaks andnpd / andnps patterns, and because those 8162 // patterns are simplified in IR and shouldn't be created in the DAG 8163 SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) { 8164 assert(N->getOpcode() == ISD::XOR); 8165 8166 // Don't touch 'not' (i.e. where y = -1). 8167 if (isAllOnesOrAllOnesSplat(N->getOperand(1))) 8168 return SDValue(); 8169 8170 EVT VT = N->getValueType(0); 8171 8172 // There are 3 commutable operators in the pattern, 8173 // so we have to deal with 8 possible variants of the basic pattern. 8174 SDValue X, Y, M; 8175 auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) { 8176 if (And.getOpcode() != ISD::AND || !And.hasOneUse()) 8177 return false; 8178 SDValue Xor = And.getOperand(XorIdx); 8179 if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) 8180 return false; 8181 SDValue Xor0 = Xor.getOperand(0); 8182 SDValue Xor1 = Xor.getOperand(1); 8183 // Don't touch 'not' (i.e. where y = -1). 8184 if (isAllOnesOrAllOnesSplat(Xor1)) 8185 return false; 8186 if (Other == Xor0) 8187 std::swap(Xor0, Xor1); 8188 if (Other != Xor1) 8189 return false; 8190 X = Xor0; 8191 Y = Xor1; 8192 M = And.getOperand(XorIdx ? 0 : 1); 8193 return true; 8194 }; 8195 8196 SDValue N0 = N->getOperand(0); 8197 SDValue N1 = N->getOperand(1); 8198 if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) && 8199 !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0)) 8200 return SDValue(); 8201 8202 // Don't do anything if the mask is constant. This should not be reachable. 8203 // InstCombine should have already unfolded this pattern, and DAGCombiner 8204 // probably shouldn't produce it, too. 8205 if (isa<ConstantSDNode>(M.getNode())) 8206 return SDValue(); 8207 8208 // We can transform if the target has AndNot 8209 if (!TLI.hasAndNot(M)) 8210 return SDValue(); 8211 8212 SDLoc DL(N); 8213 8214 // If Y is a constant, check that 'andn' works with immediates. Unless M is 8215 // a bitwise not that would already allow ANDN to be used. 8216 if (!TLI.hasAndNot(Y) && !isBitwiseNot(M)) { 8217 assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."); 8218 // If not, we need to do a bit more work to make sure andn is still used. 8219 SDValue NotX = DAG.getNOT(DL, X, VT); 8220 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M); 8221 SDValue NotLHS = DAG.getNOT(DL, LHS, VT); 8222 SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y); 8223 return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS); 8224 } 8225 8226 // If X is a constant and M is a bitwise not, check that 'andn' works with 8227 // immediates. 8228 if (!TLI.hasAndNot(X) && isBitwiseNot(M)) { 8229 assert(TLI.hasAndNot(Y) && "Only mask is a variable? Unreachable."); 8230 // If not, we need to do a bit more work to make sure andn is still used. 8231 SDValue NotM = M.getOperand(0); 8232 SDValue LHS = DAG.getNode(ISD::OR, DL, VT, X, NotM); 8233 SDValue NotY = DAG.getNOT(DL, Y, VT); 8234 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, NotM, NotY); 8235 SDValue NotRHS = DAG.getNOT(DL, RHS, VT); 8236 return DAG.getNode(ISD::AND, DL, VT, LHS, NotRHS); 8237 } 8238 8239 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M); 8240 SDValue NotM = DAG.getNOT(DL, M, VT); 8241 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM); 8242 8243 return DAG.getNode(ISD::OR, DL, VT, LHS, RHS); 8244 } 8245 8246 SDValue DAGCombiner::visitXOR(SDNode *N) { 8247 SDValue N0 = N->getOperand(0); 8248 SDValue N1 = N->getOperand(1); 8249 EVT VT = N0.getValueType(); 8250 SDLoc DL(N); 8251 8252 // fold (xor undef, undef) -> 0. This is a common idiom (misuse). 8253 if (N0.isUndef() && N1.isUndef()) 8254 return DAG.getConstant(0, DL, VT); 8255 8256 // fold (xor x, undef) -> undef 8257 if (N0.isUndef()) 8258 return N0; 8259 if (N1.isUndef()) 8260 return N1; 8261 8262 // fold (xor c1, c2) -> c1^c2 8263 if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1})) 8264 return C; 8265 8266 // canonicalize constant to RHS 8267 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 8268 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 8269 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 8270 8271 // fold vector ops 8272 if (VT.isVector()) { 8273 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 8274 return FoldedVOp; 8275 8276 // fold (xor x, 0) -> x, vector edition 8277 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 8278 return N0; 8279 } 8280 8281 // fold (xor x, 0) -> x 8282 if (isNullConstant(N1)) 8283 return N0; 8284 8285 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8286 return NewSel; 8287 8288 // reassociate xor 8289 if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags())) 8290 return RXOR; 8291 8292 // fold !(x cc y) -> (x !cc y) 8293 unsigned N0Opcode = N0.getOpcode(); 8294 SDValue LHS, RHS, CC; 8295 if (TLI.isConstTrueVal(N1) && 8296 isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/ true)) { 8297 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 8298 LHS.getValueType()); 8299 if (!LegalOperations || 8300 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { 8301 switch (N0Opcode) { 8302 default: 8303 llvm_unreachable("Unhandled SetCC Equivalent!"); 8304 case ISD::SETCC: 8305 return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); 8306 case ISD::SELECT_CC: 8307 return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), 8308 N0.getOperand(3), NotCC); 8309 case ISD::STRICT_FSETCC: 8310 case ISD::STRICT_FSETCCS: { 8311 if (N0.hasOneUse()) { 8312 // FIXME Can we handle multiple uses? Could we token factor the chain 8313 // results from the new/old setcc? 8314 SDValue SetCC = 8315 DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC, 8316 N0.getOperand(0), N0Opcode == ISD::STRICT_FSETCCS); 8317 CombineTo(N, SetCC); 8318 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1)); 8319 recursivelyDeleteUnusedNodes(N0.getNode()); 8320 return SDValue(N, 0); // Return N so it doesn't get rechecked! 8321 } 8322 break; 8323 } 8324 } 8325 } 8326 } 8327 8328 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) 8329 if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() && 8330 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ 8331 SDValue V = N0.getOperand(0); 8332 SDLoc DL0(N0); 8333 V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V, 8334 DAG.getConstant(1, DL0, V.getValueType())); 8335 AddToWorklist(V.getNode()); 8336 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V); 8337 } 8338 8339 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc 8340 if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() && 8341 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { 8342 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); 8343 if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) { 8344 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; 8345 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 8346 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 8347 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); 8348 return DAG.getNode(NewOpcode, DL, VT, N00, N01); 8349 } 8350 } 8351 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants 8352 if (isAllOnesConstant(N1) && N0.hasOneUse() && 8353 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { 8354 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); 8355 if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) { 8356 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; 8357 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 8358 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 8359 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); 8360 return DAG.getNode(NewOpcode, DL, VT, N00, N01); 8361 } 8362 } 8363 8364 // fold (not (neg x)) -> (add X, -1) 8365 // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if 8366 // Y is a constant or the subtract has a single use. 8367 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB && 8368 isNullConstant(N0.getOperand(0))) { 8369 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), 8370 DAG.getAllOnesConstant(DL, VT)); 8371 } 8372 8373 // fold (not (add X, -1)) -> (neg X) 8374 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::ADD && 8375 isAllOnesOrAllOnesSplat(N0.getOperand(1))) { 8376 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 8377 N0.getOperand(0)); 8378 } 8379 8380 // fold (xor (and x, y), y) -> (and (not x), y) 8381 if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) { 8382 SDValue X = N0.getOperand(0); 8383 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); 8384 AddToWorklist(NotX.getNode()); 8385 return DAG.getNode(ISD::AND, DL, VT, NotX, N1); 8386 } 8387 8388 if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) { 8389 ConstantSDNode *XorC = isConstOrConstSplat(N1); 8390 ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1)); 8391 unsigned BitWidth = VT.getScalarSizeInBits(); 8392 if (XorC && ShiftC) { 8393 // Don't crash on an oversized shift. We can not guarantee that a bogus 8394 // shift has been simplified to undef. 8395 uint64_t ShiftAmt = ShiftC->getLimitedValue(); 8396 if (ShiftAmt < BitWidth) { 8397 APInt Ones = APInt::getAllOnes(BitWidth); 8398 Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt); 8399 if (XorC->getAPIntValue() == Ones) { 8400 // If the xor constant is a shifted -1, do a 'not' before the shift: 8401 // xor (X << ShiftC), XorC --> (not X) << ShiftC 8402 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 8403 SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT); 8404 return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1)); 8405 } 8406 } 8407 } 8408 } 8409 8410 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) 8411 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { 8412 SDValue A = N0Opcode == ISD::ADD ? N0 : N1; 8413 SDValue S = N0Opcode == ISD::SRA ? N0 : N1; 8414 if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) { 8415 SDValue A0 = A.getOperand(0), A1 = A.getOperand(1); 8416 SDValue S0 = S.getOperand(0); 8417 if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) 8418 if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1))) 8419 if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) 8420 return DAG.getNode(ISD::ABS, DL, VT, S0); 8421 } 8422 } 8423 8424 // fold (xor x, x) -> 0 8425 if (N0 == N1) 8426 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 8427 8428 // fold (xor (shl 1, x), -1) -> (rotl ~1, x) 8429 // Here is a concrete example of this equivalence: 8430 // i16 x == 14 8431 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 8432 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 8433 // 8434 // => 8435 // 8436 // i16 ~1 == 0b1111111111111110 8437 // i16 rol(~1, 14) == 0b1011111111111111 8438 // 8439 // Some additional tips to help conceptualize this transform: 8440 // - Try to see the operation as placing a single zero in a value of all ones. 8441 // - There exists no value for x which would allow the result to contain zero. 8442 // - Values of x larger than the bitwidth are undefined and do not require a 8443 // consistent result. 8444 // - Pushing the zero left requires shifting one bits in from the right. 8445 // A rotate left of ~1 is a nice way of achieving the desired result. 8446 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL && 8447 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { 8448 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), 8449 N0.getOperand(1)); 8450 } 8451 8452 // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) 8453 if (N0Opcode == N1.getOpcode()) 8454 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 8455 return V; 8456 8457 if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG)) 8458 return R; 8459 if (SDValue R = foldLogicOfShifts(N, N1, N0, DAG)) 8460 return R; 8461 8462 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable 8463 if (SDValue MM = unfoldMaskedMerge(N)) 8464 return MM; 8465 8466 // Simplify the expression using non-local knowledge. 8467 if (SimplifyDemandedBits(SDValue(N, 0))) 8468 return SDValue(N, 0); 8469 8470 if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N)) 8471 return Combined; 8472 8473 return SDValue(); 8474 } 8475 8476 /// If we have a shift-by-constant of a bitwise logic op that itself has a 8477 /// shift-by-constant operand with identical opcode, we may be able to convert 8478 /// that into 2 independent shifts followed by the logic op. This is a 8479 /// throughput improvement. 8480 static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) { 8481 // Match a one-use bitwise logic op. 8482 SDValue LogicOp = Shift->getOperand(0); 8483 if (!LogicOp.hasOneUse()) 8484 return SDValue(); 8485 8486 unsigned LogicOpcode = LogicOp.getOpcode(); 8487 if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR && 8488 LogicOpcode != ISD::XOR) 8489 return SDValue(); 8490 8491 // Find a matching one-use shift by constant. 8492 unsigned ShiftOpcode = Shift->getOpcode(); 8493 SDValue C1 = Shift->getOperand(1); 8494 ConstantSDNode *C1Node = isConstOrConstSplat(C1); 8495 assert(C1Node && "Expected a shift with constant operand"); 8496 const APInt &C1Val = C1Node->getAPIntValue(); 8497 auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp, 8498 const APInt *&ShiftAmtVal) { 8499 if (V.getOpcode() != ShiftOpcode || !V.hasOneUse()) 8500 return false; 8501 8502 ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1)); 8503 if (!ShiftCNode) 8504 return false; 8505 8506 // Capture the shifted operand and shift amount value. 8507 ShiftOp = V.getOperand(0); 8508 ShiftAmtVal = &ShiftCNode->getAPIntValue(); 8509 8510 // Shift amount types do not have to match their operand type, so check that 8511 // the constants are the same width. 8512 if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth()) 8513 return false; 8514 8515 // The fold is not valid if the sum of the shift values exceeds bitwidth. 8516 if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits())) 8517 return false; 8518 8519 return true; 8520 }; 8521 8522 // Logic ops are commutative, so check each operand for a match. 8523 SDValue X, Y; 8524 const APInt *C0Val; 8525 if (matchFirstShift(LogicOp.getOperand(0), X, C0Val)) 8526 Y = LogicOp.getOperand(1); 8527 else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val)) 8528 Y = LogicOp.getOperand(0); 8529 else 8530 return SDValue(); 8531 8532 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1) 8533 SDLoc DL(Shift); 8534 EVT VT = Shift->getValueType(0); 8535 EVT ShiftAmtVT = Shift->getOperand(1).getValueType(); 8536 SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT); 8537 SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC); 8538 SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1); 8539 return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2); 8540 } 8541 8542 /// Handle transforms common to the three shifts, when the shift amount is a 8543 /// constant. 8544 /// We are looking for: (shift being one of shl/sra/srl) 8545 /// shift (binop X, C0), C1 8546 /// And want to transform into: 8547 /// binop (shift X, C1), (shift C0, C1) 8548 SDValue DAGCombiner::visitShiftByConstant(SDNode *N) { 8549 assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand"); 8550 8551 // Do not turn a 'not' into a regular xor. 8552 if (isBitwiseNot(N->getOperand(0))) 8553 return SDValue(); 8554 8555 // The inner binop must be one-use, since we want to replace it. 8556 SDValue LHS = N->getOperand(0); 8557 if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level)) 8558 return SDValue(); 8559 8560 // TODO: This is limited to early combining because it may reveal regressions 8561 // otherwise. But since we just checked a target hook to see if this is 8562 // desirable, that should have filtered out cases where this interferes 8563 // with some other pattern matching. 8564 if (!LegalTypes) 8565 if (SDValue R = combineShiftOfShiftedLogic(N, DAG)) 8566 return R; 8567 8568 // We want to pull some binops through shifts, so that we have (and (shift)) 8569 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of 8570 // thing happens with address calculations, so it's important to canonicalize 8571 // it. 8572 switch (LHS.getOpcode()) { 8573 default: 8574 return SDValue(); 8575 case ISD::OR: 8576 case ISD::XOR: 8577 case ISD::AND: 8578 break; 8579 case ISD::ADD: 8580 if (N->getOpcode() != ISD::SHL) 8581 return SDValue(); // only shl(add) not sr[al](add). 8582 break; 8583 } 8584 8585 // We require the RHS of the binop to be a constant and not opaque as well. 8586 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1)); 8587 if (!BinOpCst) 8588 return SDValue(); 8589 8590 // FIXME: disable this unless the input to the binop is a shift by a constant 8591 // or is copy/select. Enable this in other cases when figure out it's exactly 8592 // profitable. 8593 SDValue BinOpLHSVal = LHS.getOperand(0); 8594 bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL || 8595 BinOpLHSVal.getOpcode() == ISD::SRA || 8596 BinOpLHSVal.getOpcode() == ISD::SRL) && 8597 isa<ConstantSDNode>(BinOpLHSVal.getOperand(1)); 8598 bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg || 8599 BinOpLHSVal.getOpcode() == ISD::SELECT; 8600 8601 if (!IsShiftByConstant && !IsCopyOrSelect) 8602 return SDValue(); 8603 8604 if (IsCopyOrSelect && N->hasOneUse()) 8605 return SDValue(); 8606 8607 // Fold the constants, shifting the binop RHS by the shift amount. 8608 SDLoc DL(N); 8609 EVT VT = N->getValueType(0); 8610 SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1), 8611 N->getOperand(1)); 8612 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); 8613 8614 SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0), 8615 N->getOperand(1)); 8616 return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS); 8617 } 8618 8619 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { 8620 assert(N->getOpcode() == ISD::TRUNCATE); 8621 assert(N->getOperand(0).getOpcode() == ISD::AND); 8622 8623 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) 8624 EVT TruncVT = N->getValueType(0); 8625 if (N->hasOneUse() && N->getOperand(0).hasOneUse() && 8626 TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) { 8627 SDValue N01 = N->getOperand(0).getOperand(1); 8628 if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { 8629 SDLoc DL(N); 8630 SDValue N00 = N->getOperand(0).getOperand(0); 8631 SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); 8632 SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); 8633 AddToWorklist(Trunc00.getNode()); 8634 AddToWorklist(Trunc01.getNode()); 8635 return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); 8636 } 8637 } 8638 8639 return SDValue(); 8640 } 8641 8642 SDValue DAGCombiner::visitRotate(SDNode *N) { 8643 SDLoc dl(N); 8644 SDValue N0 = N->getOperand(0); 8645 SDValue N1 = N->getOperand(1); 8646 EVT VT = N->getValueType(0); 8647 unsigned Bitsize = VT.getScalarSizeInBits(); 8648 8649 // fold (rot x, 0) -> x 8650 if (isNullOrNullSplat(N1)) 8651 return N0; 8652 8653 // fold (rot x, c) -> x iff (c % BitSize) == 0 8654 if (isPowerOf2_32(Bitsize) && Bitsize > 1) { 8655 APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1); 8656 if (DAG.MaskedValueIsZero(N1, ModuloMask)) 8657 return N0; 8658 } 8659 8660 // fold (rot x, c) -> (rot x, c % BitSize) 8661 bool OutOfRange = false; 8662 auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) { 8663 OutOfRange |= C->getAPIntValue().uge(Bitsize); 8664 return true; 8665 }; 8666 if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) { 8667 EVT AmtVT = N1.getValueType(); 8668 SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT); 8669 if (SDValue Amt = 8670 DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits})) 8671 return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt); 8672 } 8673 8674 // rot i16 X, 8 --> bswap X 8675 auto *RotAmtC = isConstOrConstSplat(N1); 8676 if (RotAmtC && RotAmtC->getAPIntValue() == 8 && 8677 VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT)) 8678 return DAG.getNode(ISD::BSWAP, dl, VT, N0); 8679 8680 // Simplify the operands using demanded-bits information. 8681 if (SimplifyDemandedBits(SDValue(N, 0))) 8682 return SDValue(N, 0); 8683 8684 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). 8685 if (N1.getOpcode() == ISD::TRUNCATE && 8686 N1.getOperand(0).getOpcode() == ISD::AND) { 8687 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8688 return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1); 8689 } 8690 8691 unsigned NextOp = N0.getOpcode(); 8692 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize) 8693 if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) { 8694 SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1); 8695 SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)); 8696 if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) { 8697 EVT ShiftVT = C1->getValueType(0); 8698 bool SameSide = (N->getOpcode() == NextOp); 8699 unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB; 8700 if (SDValue CombinedShift = DAG.FoldConstantArithmetic( 8701 CombineOp, dl, ShiftVT, {N1, N0.getOperand(1)})) { 8702 SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT); 8703 SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic( 8704 ISD::SREM, dl, ShiftVT, {CombinedShift, BitsizeC}); 8705 return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0), 8706 CombinedShiftNorm); 8707 } 8708 } 8709 } 8710 return SDValue(); 8711 } 8712 8713 SDValue DAGCombiner::visitSHL(SDNode *N) { 8714 SDValue N0 = N->getOperand(0); 8715 SDValue N1 = N->getOperand(1); 8716 if (SDValue V = DAG.simplifyShift(N0, N1)) 8717 return V; 8718 8719 EVT VT = N0.getValueType(); 8720 EVT ShiftVT = N1.getValueType(); 8721 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8722 8723 // fold (shl c1, c2) -> c1<<c2 8724 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N0, N1})) 8725 return C; 8726 8727 // fold vector ops 8728 if (VT.isVector()) { 8729 if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) 8730 return FoldedVOp; 8731 8732 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); 8733 // If setcc produces all-one true value then: 8734 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) 8735 if (N1CV && N1CV->isConstant()) { 8736 if (N0.getOpcode() == ISD::AND) { 8737 SDValue N00 = N0->getOperand(0); 8738 SDValue N01 = N0->getOperand(1); 8739 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); 8740 8741 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && 8742 TLI.getBooleanContents(N00.getOperand(0).getValueType()) == 8743 TargetLowering::ZeroOrNegativeOneBooleanContent) { 8744 if (SDValue C = 8745 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N01, N1})) 8746 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); 8747 } 8748 } 8749 } 8750 } 8751 8752 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8753 return NewSel; 8754 8755 // if (shl x, c) is known to be zero, return 0 8756 if (DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits))) 8757 return DAG.getConstant(0, SDLoc(N), VT); 8758 8759 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). 8760 if (N1.getOpcode() == ISD::TRUNCATE && 8761 N1.getOperand(0).getOpcode() == ISD::AND) { 8762 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8763 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); 8764 } 8765 8766 if (SimplifyDemandedBits(SDValue(N, 0))) 8767 return SDValue(N, 0); 8768 8769 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) 8770 if (N0.getOpcode() == ISD::SHL) { 8771 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, 8772 ConstantSDNode *RHS) { 8773 APInt c1 = LHS->getAPIntValue(); 8774 APInt c2 = RHS->getAPIntValue(); 8775 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8776 return (c1 + c2).uge(OpSizeInBits); 8777 }; 8778 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) 8779 return DAG.getConstant(0, SDLoc(N), VT); 8780 8781 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, 8782 ConstantSDNode *RHS) { 8783 APInt c1 = LHS->getAPIntValue(); 8784 APInt c2 = RHS->getAPIntValue(); 8785 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8786 return (c1 + c2).ult(OpSizeInBits); 8787 }; 8788 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { 8789 SDLoc DL(N); 8790 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); 8791 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum); 8792 } 8793 } 8794 8795 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2)) 8796 // For this to be valid, the second form must not preserve any of the bits 8797 // that are shifted out by the inner shift in the first form. This means 8798 // the outer shift size must be >= the number of bits added by the ext. 8799 // As a corollary, we don't care what kind of ext it is. 8800 if ((N0.getOpcode() == ISD::ZERO_EXTEND || 8801 N0.getOpcode() == ISD::ANY_EXTEND || 8802 N0.getOpcode() == ISD::SIGN_EXTEND) && 8803 N0.getOperand(0).getOpcode() == ISD::SHL) { 8804 SDValue N0Op0 = N0.getOperand(0); 8805 SDValue InnerShiftAmt = N0Op0.getOperand(1); 8806 EVT InnerVT = N0Op0.getValueType(); 8807 uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits(); 8808 8809 auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, 8810 ConstantSDNode *RHS) { 8811 APInt c1 = LHS->getAPIntValue(); 8812 APInt c2 = RHS->getAPIntValue(); 8813 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8814 return c2.uge(OpSizeInBits - InnerBitwidth) && 8815 (c1 + c2).uge(OpSizeInBits); 8816 }; 8817 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange, 8818 /*AllowUndefs*/ false, 8819 /*AllowTypeMismatch*/ true)) 8820 return DAG.getConstant(0, SDLoc(N), VT); 8821 8822 auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, 8823 ConstantSDNode *RHS) { 8824 APInt c1 = LHS->getAPIntValue(); 8825 APInt c2 = RHS->getAPIntValue(); 8826 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8827 return c2.uge(OpSizeInBits - InnerBitwidth) && 8828 (c1 + c2).ult(OpSizeInBits); 8829 }; 8830 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange, 8831 /*AllowUndefs*/ false, 8832 /*AllowTypeMismatch*/ true)) { 8833 SDLoc DL(N); 8834 SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0)); 8835 SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT); 8836 Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1); 8837 return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum); 8838 } 8839 } 8840 8841 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) 8842 // Only fold this if the inner zext has no other uses to avoid increasing 8843 // the total number of instructions. 8844 if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && 8845 N0.getOperand(0).getOpcode() == ISD::SRL) { 8846 SDValue N0Op0 = N0.getOperand(0); 8847 SDValue InnerShiftAmt = N0Op0.getOperand(1); 8848 8849 auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) { 8850 APInt c1 = LHS->getAPIntValue(); 8851 APInt c2 = RHS->getAPIntValue(); 8852 zeroExtendToMatch(c1, c2); 8853 return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2); 8854 }; 8855 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual, 8856 /*AllowUndefs*/ false, 8857 /*AllowTypeMismatch*/ true)) { 8858 SDLoc DL(N); 8859 EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType(); 8860 SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT); 8861 NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL); 8862 AddToWorklist(NewSHL.getNode()); 8863 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); 8864 } 8865 } 8866 8867 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 8868 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 8869 // TODO - support non-uniform vector shift amounts. 8870 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8871 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && 8872 N0->getFlags().hasExact()) { 8873 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 8874 uint64_t C1 = N0C1->getZExtValue(); 8875 uint64_t C2 = N1C->getZExtValue(); 8876 SDLoc DL(N); 8877 if (C1 <= C2) 8878 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 8879 DAG.getConstant(C2 - C1, DL, ShiftVT)); 8880 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), 8881 DAG.getConstant(C1 - C2, DL, ShiftVT)); 8882 } 8883 } 8884 8885 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or 8886 // (and (srl x, (sub c1, c2), MASK) 8887 // Only fold this if the inner shift has no other uses -- if it does, folding 8888 // this will increase the total number of instructions. 8889 // TODO - drop hasOneUse requirement if c1 == c2? 8890 // TODO - support non-uniform vector shift amounts. 8891 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() && 8892 TLI.shouldFoldConstantShiftPairToMask(N, Level)) { 8893 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 8894 if (N0C1->getAPIntValue().ult(OpSizeInBits)) { 8895 uint64_t c1 = N0C1->getZExtValue(); 8896 uint64_t c2 = N1C->getZExtValue(); 8897 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); 8898 SDValue Shift; 8899 if (c2 > c1) { 8900 Mask <<= c2 - c1; 8901 SDLoc DL(N); 8902 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 8903 DAG.getConstant(c2 - c1, DL, ShiftVT)); 8904 } else { 8905 Mask.lshrInPlace(c1 - c2); 8906 SDLoc DL(N); 8907 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 8908 DAG.getConstant(c1 - c2, DL, ShiftVT)); 8909 } 8910 SDLoc DL(N0); 8911 return DAG.getNode(ISD::AND, DL, VT, Shift, 8912 DAG.getConstant(Mask, DL, VT)); 8913 } 8914 } 8915 } 8916 8917 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) 8918 if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && 8919 isConstantOrConstantVector(N1, /* No Opaques */ true)) { 8920 SDLoc DL(N); 8921 SDValue AllBits = DAG.getAllOnesConstant(DL, VT); 8922 SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); 8923 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); 8924 } 8925 8926 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8927 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8928 // Variant of version done on multiply, except mul by a power of 2 is turned 8929 // into a shift. 8930 if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) && 8931 N0->hasOneUse() && 8932 isConstantOrConstantVector(N1, /* No Opaques */ true) && 8933 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) && 8934 TLI.isDesirableToCommuteWithShift(N, Level)) { 8935 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); 8936 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 8937 AddToWorklist(Shl0.getNode()); 8938 AddToWorklist(Shl1.getNode()); 8939 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1); 8940 } 8941 8942 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) 8943 if (N0.getOpcode() == ISD::MUL && N0->hasOneUse() && 8944 isConstantOrConstantVector(N1, /* No Opaques */ true) && 8945 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { 8946 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 8947 if (isConstantOrConstantVector(Shl)) 8948 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); 8949 } 8950 8951 if (N1C && !N1C->isOpaque()) 8952 if (SDValue NewSHL = visitShiftByConstant(N)) 8953 return NewSHL; 8954 8955 // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)). 8956 if (N0.getOpcode() == ISD::VSCALE) 8957 if (ConstantSDNode *NC1 = isConstOrConstSplat(N->getOperand(1))) { 8958 const APInt &C0 = N0.getConstantOperandAPInt(0); 8959 const APInt &C1 = NC1->getAPIntValue(); 8960 return DAG.getVScale(SDLoc(N), VT, C0 << C1); 8961 } 8962 8963 // Fold (shl step_vector(C0), C1) to (step_vector(C0 << C1)). 8964 APInt ShlVal; 8965 if (N0.getOpcode() == ISD::STEP_VECTOR) 8966 if (ISD::isConstantSplatVector(N1.getNode(), ShlVal)) { 8967 const APInt &C0 = N0.getConstantOperandAPInt(0); 8968 if (ShlVal.ult(C0.getBitWidth())) { 8969 APInt NewStep = C0 << ShlVal; 8970 return DAG.getStepVector(SDLoc(N), VT, NewStep); 8971 } 8972 } 8973 8974 return SDValue(); 8975 } 8976 8977 // Transform a right shift of a multiply into a multiply-high. 8978 // Examples: 8979 // (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b) 8980 // (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b) 8981 static SDValue combineShiftToMULH(SDNode *N, SelectionDAG &DAG, 8982 const TargetLowering &TLI) { 8983 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && 8984 "SRL or SRA node is required here!"); 8985 8986 // Check the shift amount. Proceed with the transformation if the shift 8987 // amount is constant. 8988 ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1)); 8989 if (!ShiftAmtSrc) 8990 return SDValue(); 8991 8992 SDLoc DL(N); 8993 8994 // The operation feeding into the shift must be a multiply. 8995 SDValue ShiftOperand = N->getOperand(0); 8996 if (ShiftOperand.getOpcode() != ISD::MUL) 8997 return SDValue(); 8998 8999 // Both operands must be equivalent extend nodes. 9000 SDValue LeftOp = ShiftOperand.getOperand(0); 9001 SDValue RightOp = ShiftOperand.getOperand(1); 9002 9003 bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND; 9004 bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND; 9005 9006 if (!IsSignExt && !IsZeroExt) 9007 return SDValue(); 9008 9009 EVT NarrowVT = LeftOp.getOperand(0).getValueType(); 9010 unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits(); 9011 9012 SDValue MulhRightOp; 9013 if (ConstantSDNode *Constant = isConstOrConstSplat(RightOp)) { 9014 unsigned ActiveBits = IsSignExt 9015 ? Constant->getAPIntValue().getMinSignedBits() 9016 : Constant->getAPIntValue().getActiveBits(); 9017 if (ActiveBits > NarrowVTSize) 9018 return SDValue(); 9019 MulhRightOp = DAG.getConstant( 9020 Constant->getAPIntValue().trunc(NarrowVT.getScalarSizeInBits()), DL, 9021 NarrowVT); 9022 } else { 9023 if (LeftOp.getOpcode() != RightOp.getOpcode()) 9024 return SDValue(); 9025 // Check that the two extend nodes are the same type. 9026 if (NarrowVT != RightOp.getOperand(0).getValueType()) 9027 return SDValue(); 9028 MulhRightOp = RightOp.getOperand(0); 9029 } 9030 9031 EVT WideVT = LeftOp.getValueType(); 9032 // Proceed with the transformation if the wide types match. 9033 assert((WideVT == RightOp.getValueType()) && 9034 "Cannot have a multiply node with two different operand types."); 9035 9036 // Proceed with the transformation if the wide type is twice as large 9037 // as the narrow type. 9038 if (WideVT.getScalarSizeInBits() != 2 * NarrowVTSize) 9039 return SDValue(); 9040 9041 // Check the shift amount with the narrow type size. 9042 // Proceed with the transformation if the shift amount is the width 9043 // of the narrow type. 9044 unsigned ShiftAmt = ShiftAmtSrc->getZExtValue(); 9045 if (ShiftAmt != NarrowVTSize) 9046 return SDValue(); 9047 9048 // If the operation feeding into the MUL is a sign extend (sext), 9049 // we use mulhs. Othewise, zero extends (zext) use mulhu. 9050 unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU; 9051 9052 // Combine to mulh if mulh is legal/custom for the narrow type on the target. 9053 if (!TLI.isOperationLegalOrCustom(MulhOpcode, NarrowVT)) 9054 return SDValue(); 9055 9056 SDValue Result = 9057 DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0), MulhRightOp); 9058 return (N->getOpcode() == ISD::SRA ? DAG.getSExtOrTrunc(Result, DL, WideVT) 9059 : DAG.getZExtOrTrunc(Result, DL, WideVT)); 9060 } 9061 9062 SDValue DAGCombiner::visitSRA(SDNode *N) { 9063 SDValue N0 = N->getOperand(0); 9064 SDValue N1 = N->getOperand(1); 9065 if (SDValue V = DAG.simplifyShift(N0, N1)) 9066 return V; 9067 9068 EVT VT = N0.getValueType(); 9069 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 9070 9071 // fold (sra c1, c2) -> (sra c1, c2) 9072 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, {N0, N1})) 9073 return C; 9074 9075 // Arithmetic shifting an all-sign-bit value is a no-op. 9076 // fold (sra 0, x) -> 0 9077 // fold (sra -1, x) -> -1 9078 if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) 9079 return N0; 9080 9081 // fold vector ops 9082 if (VT.isVector()) 9083 if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) 9084 return FoldedVOp; 9085 9086 if (SDValue NewSel = foldBinOpIntoSelect(N)) 9087 return NewSel; 9088 9089 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports 9090 // sext_inreg. 9091 ConstantSDNode *N1C = isConstOrConstSplat(N1); 9092 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { 9093 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); 9094 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); 9095 if (VT.isVector()) 9096 ExtVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, 9097 VT.getVectorElementCount()); 9098 if (!LegalOperations || 9099 TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == 9100 TargetLowering::Legal) 9101 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 9102 N0.getOperand(0), DAG.getValueType(ExtVT)); 9103 // Even if we can't convert to sext_inreg, we might be able to remove 9104 // this shift pair if the input is already sign extended. 9105 if (DAG.ComputeNumSignBits(N0.getOperand(0)) > N1C->getZExtValue()) 9106 return N0.getOperand(0); 9107 } 9108 9109 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) 9110 // clamp (add c1, c2) to max shift. 9111 if (N0.getOpcode() == ISD::SRA) { 9112 SDLoc DL(N); 9113 EVT ShiftVT = N1.getValueType(); 9114 EVT ShiftSVT = ShiftVT.getScalarType(); 9115 SmallVector<SDValue, 16> ShiftValues; 9116 9117 auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) { 9118 APInt c1 = LHS->getAPIntValue(); 9119 APInt c2 = RHS->getAPIntValue(); 9120 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 9121 APInt Sum = c1 + c2; 9122 unsigned ShiftSum = 9123 Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue(); 9124 ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT)); 9125 return true; 9126 }; 9127 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) { 9128 SDValue ShiftValue; 9129 if (N1.getOpcode() == ISD::BUILD_VECTOR) 9130 ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues); 9131 else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 9132 assert(ShiftValues.size() == 1 && 9133 "Expected matchBinaryPredicate to return one element for " 9134 "SPLAT_VECTORs"); 9135 ShiftValue = DAG.getSplatVector(ShiftVT, DL, ShiftValues[0]); 9136 } else 9137 ShiftValue = ShiftValues[0]; 9138 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue); 9139 } 9140 } 9141 9142 // fold (sra (shl X, m), (sub result_size, n)) 9143 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for 9144 // result_size - n != m. 9145 // If truncate is free for the target sext(shl) is likely to result in better 9146 // code. 9147 if (N0.getOpcode() == ISD::SHL && N1C) { 9148 // Get the two constanst of the shifts, CN0 = m, CN = n. 9149 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); 9150 if (N01C) { 9151 LLVMContext &Ctx = *DAG.getContext(); 9152 // Determine what the truncate's result bitsize and type would be. 9153 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); 9154 9155 if (VT.isVector()) 9156 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount()); 9157 9158 // Determine the residual right-shift amount. 9159 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); 9160 9161 // If the shift is not a no-op (in which case this should be just a sign 9162 // extend already), the truncated to type is legal, sign_extend is legal 9163 // on that type, and the truncate to that type is both legal and free, 9164 // perform the transform. 9165 if ((ShiftAmt > 0) && 9166 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && 9167 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && 9168 TLI.isTruncateFree(VT, TruncVT)) { 9169 SDLoc DL(N); 9170 SDValue Amt = DAG.getConstant(ShiftAmt, DL, 9171 getShiftAmountTy(N0.getOperand(0).getValueType())); 9172 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, 9173 N0.getOperand(0), Amt); 9174 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, 9175 Shift); 9176 return DAG.getNode(ISD::SIGN_EXTEND, DL, 9177 N->getValueType(0), Trunc); 9178 } 9179 } 9180 } 9181 9182 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper. 9183 // sra (add (shl X, N1C), AddC), N1C --> 9184 // sext (add (trunc X to (width - N1C)), AddC') 9185 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C && 9186 N0.getOperand(0).getOpcode() == ISD::SHL && 9187 N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) { 9188 if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) { 9189 SDValue Shl = N0.getOperand(0); 9190 // Determine what the truncate's type would be and ask the target if that 9191 // is a free operation. 9192 LLVMContext &Ctx = *DAG.getContext(); 9193 unsigned ShiftAmt = N1C->getZExtValue(); 9194 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt); 9195 if (VT.isVector()) 9196 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount()); 9197 9198 // TODO: The simple type check probably belongs in the default hook 9199 // implementation and/or target-specific overrides (because 9200 // non-simple types likely require masking when legalized), but that 9201 // restriction may conflict with other transforms. 9202 if (TruncVT.isSimple() && isTypeLegal(TruncVT) && 9203 TLI.isTruncateFree(VT, TruncVT)) { 9204 SDLoc DL(N); 9205 SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT); 9206 SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt). 9207 trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT); 9208 SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC); 9209 return DAG.getSExtOrTrunc(Add, DL, VT); 9210 } 9211 } 9212 } 9213 9214 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). 9215 if (N1.getOpcode() == ISD::TRUNCATE && 9216 N1.getOperand(0).getOpcode() == ISD::AND) { 9217 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 9218 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); 9219 } 9220 9221 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2)) 9222 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) 9223 // if c1 is equal to the number of bits the trunc removes 9224 // TODO - support non-uniform vector shift amounts. 9225 if (N0.getOpcode() == ISD::TRUNCATE && 9226 (N0.getOperand(0).getOpcode() == ISD::SRL || 9227 N0.getOperand(0).getOpcode() == ISD::SRA) && 9228 N0.getOperand(0).hasOneUse() && 9229 N0.getOperand(0).getOperand(1).hasOneUse() && N1C) { 9230 SDValue N0Op0 = N0.getOperand(0); 9231 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { 9232 EVT LargeVT = N0Op0.getValueType(); 9233 unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits; 9234 if (LargeShift->getAPIntValue() == TruncBits) { 9235 SDLoc DL(N); 9236 SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL, 9237 getShiftAmountTy(LargeVT)); 9238 SDValue SRA = 9239 DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt); 9240 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); 9241 } 9242 } 9243 } 9244 9245 // Simplify, based on bits shifted out of the LHS. 9246 if (SimplifyDemandedBits(SDValue(N, 0))) 9247 return SDValue(N, 0); 9248 9249 // If the sign bit is known to be zero, switch this to a SRL. 9250 if (DAG.SignBitIsZero(N0)) 9251 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); 9252 9253 if (N1C && !N1C->isOpaque()) 9254 if (SDValue NewSRA = visitShiftByConstant(N)) 9255 return NewSRA; 9256 9257 // Try to transform this shift into a multiply-high if 9258 // it matches the appropriate pattern detected in combineShiftToMULH. 9259 if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) 9260 return MULH; 9261 9262 // Attempt to convert a sra of a load into a narrower sign-extending load. 9263 if (SDValue NarrowLoad = reduceLoadWidth(N)) 9264 return NarrowLoad; 9265 9266 return SDValue(); 9267 } 9268 9269 SDValue DAGCombiner::visitSRL(SDNode *N) { 9270 SDValue N0 = N->getOperand(0); 9271 SDValue N1 = N->getOperand(1); 9272 if (SDValue V = DAG.simplifyShift(N0, N1)) 9273 return V; 9274 9275 EVT VT = N0.getValueType(); 9276 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 9277 9278 // fold (srl c1, c2) -> c1 >>u c2 9279 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, {N0, N1})) 9280 return C; 9281 9282 // fold vector ops 9283 if (VT.isVector()) 9284 if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) 9285 return FoldedVOp; 9286 9287 if (SDValue NewSel = foldBinOpIntoSelect(N)) 9288 return NewSel; 9289 9290 // if (srl x, c) is known to be zero, return 0 9291 ConstantSDNode *N1C = isConstOrConstSplat(N1); 9292 if (N1C && 9293 DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits))) 9294 return DAG.getConstant(0, SDLoc(N), VT); 9295 9296 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) 9297 if (N0.getOpcode() == ISD::SRL) { 9298 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, 9299 ConstantSDNode *RHS) { 9300 APInt c1 = LHS->getAPIntValue(); 9301 APInt c2 = RHS->getAPIntValue(); 9302 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 9303 return (c1 + c2).uge(OpSizeInBits); 9304 }; 9305 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) 9306 return DAG.getConstant(0, SDLoc(N), VT); 9307 9308 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, 9309 ConstantSDNode *RHS) { 9310 APInt c1 = LHS->getAPIntValue(); 9311 APInt c2 = RHS->getAPIntValue(); 9312 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 9313 return (c1 + c2).ult(OpSizeInBits); 9314 }; 9315 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { 9316 SDLoc DL(N); 9317 EVT ShiftVT = N1.getValueType(); 9318 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); 9319 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum); 9320 } 9321 } 9322 9323 if (N1C && N0.getOpcode() == ISD::TRUNCATE && 9324 N0.getOperand(0).getOpcode() == ISD::SRL) { 9325 SDValue InnerShift = N0.getOperand(0); 9326 // TODO - support non-uniform vector shift amounts. 9327 if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) { 9328 uint64_t c1 = N001C->getZExtValue(); 9329 uint64_t c2 = N1C->getZExtValue(); 9330 EVT InnerShiftVT = InnerShift.getValueType(); 9331 EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType(); 9332 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 9333 // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2))) 9334 // This is only valid if the OpSizeInBits + c1 = size of inner shift. 9335 if (c1 + OpSizeInBits == InnerShiftSize) { 9336 SDLoc DL(N); 9337 if (c1 + c2 >= InnerShiftSize) 9338 return DAG.getConstant(0, DL, VT); 9339 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); 9340 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, 9341 InnerShift.getOperand(0), NewShiftAmt); 9342 return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift); 9343 } 9344 // In the more general case, we can clear the high bits after the shift: 9345 // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask) 9346 if (N0.hasOneUse() && InnerShift.hasOneUse() && 9347 c1 + c2 < InnerShiftSize) { 9348 SDLoc DL(N); 9349 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); 9350 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, 9351 InnerShift.getOperand(0), NewShiftAmt); 9352 SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize, 9353 OpSizeInBits - c2), 9354 DL, InnerShiftVT); 9355 SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask); 9356 return DAG.getNode(ISD::TRUNCATE, DL, VT, And); 9357 } 9358 } 9359 } 9360 9361 // fold (srl (shl x, c), c) -> (and x, cst2) 9362 // TODO - (srl (shl x, c1), c2). 9363 if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && 9364 isConstantOrConstantVector(N1, /* NoOpaques */ true)) { 9365 SDLoc DL(N); 9366 SDValue Mask = 9367 DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1); 9368 AddToWorklist(Mask.getNode()); 9369 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask); 9370 } 9371 9372 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) 9373 // TODO - support non-uniform vector shift amounts. 9374 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 9375 // Shifting in all undef bits? 9376 EVT SmallVT = N0.getOperand(0).getValueType(); 9377 unsigned BitSize = SmallVT.getScalarSizeInBits(); 9378 if (N1C->getAPIntValue().uge(BitSize)) 9379 return DAG.getUNDEF(VT); 9380 9381 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { 9382 uint64_t ShiftAmt = N1C->getZExtValue(); 9383 SDLoc DL0(N0); 9384 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, 9385 N0.getOperand(0), 9386 DAG.getConstant(ShiftAmt, DL0, 9387 getShiftAmountTy(SmallVT))); 9388 AddToWorklist(SmallShift.getNode()); 9389 APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); 9390 SDLoc DL(N); 9391 return DAG.getNode(ISD::AND, DL, VT, 9392 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), 9393 DAG.getConstant(Mask, DL, VT)); 9394 } 9395 } 9396 9397 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign 9398 // bit, which is unmodified by sra. 9399 if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) { 9400 if (N0.getOpcode() == ISD::SRA) 9401 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); 9402 } 9403 9404 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). 9405 if (N1C && N0.getOpcode() == ISD::CTLZ && 9406 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { 9407 KnownBits Known = DAG.computeKnownBits(N0.getOperand(0)); 9408 9409 // If any of the input bits are KnownOne, then the input couldn't be all 9410 // zeros, thus the result of the srl will always be zero. 9411 if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); 9412 9413 // If all of the bits input the to ctlz node are known to be zero, then 9414 // the result of the ctlz is "32" and the result of the shift is one. 9415 APInt UnknownBits = ~Known.Zero; 9416 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); 9417 9418 // Otherwise, check to see if there is exactly one bit input to the ctlz. 9419 if (UnknownBits.isPowerOf2()) { 9420 // Okay, we know that only that the single bit specified by UnknownBits 9421 // could be set on input to the CTLZ node. If this bit is set, the SRL 9422 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair 9423 // to an SRL/XOR pair, which is likely to simplify more. 9424 unsigned ShAmt = UnknownBits.countTrailingZeros(); 9425 SDValue Op = N0.getOperand(0); 9426 9427 if (ShAmt) { 9428 SDLoc DL(N0); 9429 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 9430 DAG.getConstant(ShAmt, DL, 9431 getShiftAmountTy(Op.getValueType()))); 9432 AddToWorklist(Op.getNode()); 9433 } 9434 9435 SDLoc DL(N); 9436 return DAG.getNode(ISD::XOR, DL, VT, 9437 Op, DAG.getConstant(1, DL, VT)); 9438 } 9439 } 9440 9441 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). 9442 if (N1.getOpcode() == ISD::TRUNCATE && 9443 N1.getOperand(0).getOpcode() == ISD::AND) { 9444 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 9445 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); 9446 } 9447 9448 // fold operands of srl based on knowledge that the low bits are not 9449 // demanded. 9450 if (SimplifyDemandedBits(SDValue(N, 0))) 9451 return SDValue(N, 0); 9452 9453 if (N1C && !N1C->isOpaque()) 9454 if (SDValue NewSRL = visitShiftByConstant(N)) 9455 return NewSRL; 9456 9457 // Attempt to convert a srl of a load into a narrower zero-extending load. 9458 if (SDValue NarrowLoad = reduceLoadWidth(N)) 9459 return NarrowLoad; 9460 9461 // Here is a common situation. We want to optimize: 9462 // 9463 // %a = ... 9464 // %b = and i32 %a, 2 9465 // %c = srl i32 %b, 1 9466 // brcond i32 %c ... 9467 // 9468 // into 9469 // 9470 // %a = ... 9471 // %b = and %a, 2 9472 // %c = setcc eq %b, 0 9473 // brcond %c ... 9474 // 9475 // However when after the source operand of SRL is optimized into AND, the SRL 9476 // itself may not be optimized further. Look for it and add the BRCOND into 9477 // the worklist. 9478 if (N->hasOneUse()) { 9479 SDNode *Use = *N->use_begin(); 9480 if (Use->getOpcode() == ISD::BRCOND) 9481 AddToWorklist(Use); 9482 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { 9483 // Also look pass the truncate. 9484 Use = *Use->use_begin(); 9485 if (Use->getOpcode() == ISD::BRCOND) 9486 AddToWorklist(Use); 9487 } 9488 } 9489 9490 // Try to transform this shift into a multiply-high if 9491 // it matches the appropriate pattern detected in combineShiftToMULH. 9492 if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) 9493 return MULH; 9494 9495 return SDValue(); 9496 } 9497 9498 SDValue DAGCombiner::visitFunnelShift(SDNode *N) { 9499 EVT VT = N->getValueType(0); 9500 SDValue N0 = N->getOperand(0); 9501 SDValue N1 = N->getOperand(1); 9502 SDValue N2 = N->getOperand(2); 9503 bool IsFSHL = N->getOpcode() == ISD::FSHL; 9504 unsigned BitWidth = VT.getScalarSizeInBits(); 9505 9506 // fold (fshl N0, N1, 0) -> N0 9507 // fold (fshr N0, N1, 0) -> N1 9508 if (isPowerOf2_32(BitWidth)) 9509 if (DAG.MaskedValueIsZero( 9510 N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1))) 9511 return IsFSHL ? N0 : N1; 9512 9513 auto IsUndefOrZero = [](SDValue V) { 9514 return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true); 9515 }; 9516 9517 // TODO - support non-uniform vector shift amounts. 9518 if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) { 9519 EVT ShAmtTy = N2.getValueType(); 9520 9521 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth) 9522 if (Cst->getAPIntValue().uge(BitWidth)) { 9523 uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth); 9524 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1, 9525 DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy)); 9526 } 9527 9528 unsigned ShAmt = Cst->getZExtValue(); 9529 if (ShAmt == 0) 9530 return IsFSHL ? N0 : N1; 9531 9532 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C) 9533 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C) 9534 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C) 9535 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C) 9536 if (IsUndefOrZero(N0)) 9537 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, 9538 DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, 9539 SDLoc(N), ShAmtTy)); 9540 if (IsUndefOrZero(N1)) 9541 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, 9542 DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, 9543 SDLoc(N), ShAmtTy)); 9544 9545 // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. 9546 // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. 9547 // TODO - bigendian support once we have test coverage. 9548 // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine? 9549 // TODO - permit LHS EXTLOAD if extensions are shifted out. 9550 if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() && 9551 !DAG.getDataLayout().isBigEndian()) { 9552 auto *LHS = dyn_cast<LoadSDNode>(N0); 9553 auto *RHS = dyn_cast<LoadSDNode>(N1); 9554 if (LHS && RHS && LHS->isSimple() && RHS->isSimple() && 9555 LHS->getAddressSpace() == RHS->getAddressSpace() && 9556 (LHS->hasOneUse() || RHS->hasOneUse()) && ISD::isNON_EXTLoad(RHS) && 9557 ISD::isNON_EXTLoad(LHS)) { 9558 if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) { 9559 SDLoc DL(RHS); 9560 uint64_t PtrOff = 9561 IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8); 9562 Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff); 9563 bool Fast = false; 9564 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 9565 RHS->getAddressSpace(), NewAlign, 9566 RHS->getMemOperand()->getFlags(), &Fast) && 9567 Fast) { 9568 SDValue NewPtr = DAG.getMemBasePlusOffset( 9569 RHS->getBasePtr(), TypeSize::Fixed(PtrOff), DL); 9570 AddToWorklist(NewPtr.getNode()); 9571 SDValue Load = DAG.getLoad( 9572 VT, DL, RHS->getChain(), NewPtr, 9573 RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign, 9574 RHS->getMemOperand()->getFlags(), RHS->getAAInfo()); 9575 // Replace the old load's chain with the new load's chain. 9576 WorklistRemover DeadNodes(*this); 9577 DAG.ReplaceAllUsesOfValueWith(N1.getValue(1), Load.getValue(1)); 9578 return Load; 9579 } 9580 } 9581 } 9582 } 9583 } 9584 9585 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2) 9586 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2) 9587 // iff We know the shift amount is in range. 9588 // TODO: when is it worth doing SUB(BW, N2) as well? 9589 if (isPowerOf2_32(BitWidth)) { 9590 APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1); 9591 if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) 9592 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2); 9593 if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) 9594 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2); 9595 } 9596 9597 // fold (fshl N0, N0, N2) -> (rotl N0, N2) 9598 // fold (fshr N0, N0, N2) -> (rotr N0, N2) 9599 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift 9600 // is legal as well we might be better off avoiding non-constant (BW - N2). 9601 unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR; 9602 if (N0 == N1 && hasOperation(RotOpc, VT)) 9603 return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2); 9604 9605 // Simplify, based on bits shifted out of N0/N1. 9606 if (SimplifyDemandedBits(SDValue(N, 0))) 9607 return SDValue(N, 0); 9608 9609 return SDValue(); 9610 } 9611 9612 SDValue DAGCombiner::visitSHLSAT(SDNode *N) { 9613 SDValue N0 = N->getOperand(0); 9614 SDValue N1 = N->getOperand(1); 9615 if (SDValue V = DAG.simplifyShift(N0, N1)) 9616 return V; 9617 9618 EVT VT = N0.getValueType(); 9619 9620 // fold (*shlsat c1, c2) -> c1<<c2 9621 if (SDValue C = 9622 DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, {N0, N1})) 9623 return C; 9624 9625 ConstantSDNode *N1C = isConstOrConstSplat(N1); 9626 9627 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) { 9628 // fold (sshlsat x, c) -> (shl x, c) 9629 if (N->getOpcode() == ISD::SSHLSAT && N1C && 9630 N1C->getAPIntValue().ult(DAG.ComputeNumSignBits(N0))) 9631 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N1); 9632 9633 // fold (ushlsat x, c) -> (shl x, c) 9634 if (N->getOpcode() == ISD::USHLSAT && N1C && 9635 N1C->getAPIntValue().ule( 9636 DAG.computeKnownBits(N0).countMinLeadingZeros())) 9637 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N1); 9638 } 9639 9640 return SDValue(); 9641 } 9642 9643 // Given a ABS node, detect the following pattern: 9644 // (ABS (SUB (EXTEND a), (EXTEND b))). 9645 // Generates UABD/SABD instruction. 9646 static SDValue combineABSToABD(SDNode *N, SelectionDAG &DAG, 9647 const TargetLowering &TLI) { 9648 SDValue AbsOp1 = N->getOperand(0); 9649 SDValue Op0, Op1; 9650 9651 if (AbsOp1.getOpcode() != ISD::SUB) 9652 return SDValue(); 9653 9654 Op0 = AbsOp1.getOperand(0); 9655 Op1 = AbsOp1.getOperand(1); 9656 9657 unsigned Opc0 = Op0.getOpcode(); 9658 // Check if the operands of the sub are (zero|sign)-extended. 9659 if (Opc0 != Op1.getOpcode() || 9660 (Opc0 != ISD::ZERO_EXTEND && Opc0 != ISD::SIGN_EXTEND)) 9661 return SDValue(); 9662 9663 EVT VT = N->getValueType(0); 9664 EVT VT1 = Op0.getOperand(0).getValueType(); 9665 EVT VT2 = Op1.getOperand(0).getValueType(); 9666 unsigned ABDOpcode = (Opc0 == ISD::SIGN_EXTEND) ? ISD::ABDS : ISD::ABDU; 9667 9668 // fold abs(sext(x) - sext(y)) -> zext(abds(x, y)) 9669 // fold abs(zext(x) - zext(y)) -> zext(abdu(x, y)) 9670 // NOTE: Extensions must be equivalent. 9671 if (VT1 == VT2 && TLI.isOperationLegalOrCustom(ABDOpcode, VT1)) { 9672 Op0 = Op0.getOperand(0); 9673 Op1 = Op1.getOperand(0); 9674 SDValue ABD = DAG.getNode(ABDOpcode, SDLoc(N), VT1, Op0, Op1); 9675 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, ABD); 9676 } 9677 9678 // fold abs(sext(x) - sext(y)) -> abds(sext(x), sext(y)) 9679 // fold abs(zext(x) - zext(y)) -> abdu(zext(x), zext(y)) 9680 if (TLI.isOperationLegalOrCustom(ABDOpcode, VT)) 9681 return DAG.getNode(ABDOpcode, SDLoc(N), VT, Op0, Op1); 9682 9683 return SDValue(); 9684 } 9685 9686 SDValue DAGCombiner::visitABS(SDNode *N) { 9687 SDValue N0 = N->getOperand(0); 9688 EVT VT = N->getValueType(0); 9689 9690 // fold (abs c1) -> c2 9691 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9692 return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0); 9693 // fold (abs (abs x)) -> (abs x) 9694 if (N0.getOpcode() == ISD::ABS) 9695 return N0; 9696 // fold (abs x) -> x iff not-negative 9697 if (DAG.SignBitIsZero(N0)) 9698 return N0; 9699 9700 if (SDValue ABD = combineABSToABD(N, DAG, TLI)) 9701 return ABD; 9702 9703 return SDValue(); 9704 } 9705 9706 SDValue DAGCombiner::visitBSWAP(SDNode *N) { 9707 SDValue N0 = N->getOperand(0); 9708 EVT VT = N->getValueType(0); 9709 SDLoc DL(N); 9710 9711 // fold (bswap c1) -> c2 9712 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9713 return DAG.getNode(ISD::BSWAP, DL, VT, N0); 9714 // fold (bswap (bswap x)) -> x 9715 if (N0.getOpcode() == ISD::BSWAP) 9716 return N0.getOperand(0); 9717 9718 // Canonicalize bswap(bitreverse(x)) -> bitreverse(bswap(x)). If bitreverse 9719 // isn't supported, it will be expanded to bswap followed by a manual reversal 9720 // of bits in each byte. By placing bswaps before bitreverse, we can remove 9721 // the two bswaps if the bitreverse gets expanded. 9722 if (N0.getOpcode() == ISD::BITREVERSE && N0.hasOneUse()) { 9723 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, N0.getOperand(0)); 9724 return DAG.getNode(ISD::BITREVERSE, DL, VT, BSwap); 9725 } 9726 9727 // fold (bswap shl(x,c)) -> (zext(bswap(trunc(shl(x,sub(c,bw/2)))))) 9728 // iff x >= bw/2 (i.e. lower half is known zero) 9729 unsigned BW = VT.getScalarSizeInBits(); 9730 if (BW >= 32 && N0.getOpcode() == ISD::SHL && N0.hasOneUse()) { 9731 auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 9732 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), BW / 2); 9733 if (ShAmt && ShAmt->getAPIntValue().ult(BW) && 9734 ShAmt->getZExtValue() >= (BW / 2) && 9735 (ShAmt->getZExtValue() % 16) == 0 && TLI.isTypeLegal(HalfVT) && 9736 TLI.isTruncateFree(VT, HalfVT) && 9737 (!LegalOperations || hasOperation(ISD::BSWAP, HalfVT))) { 9738 SDValue Res = N0.getOperand(0); 9739 if (uint64_t NewShAmt = (ShAmt->getZExtValue() - (BW / 2))) 9740 Res = DAG.getNode(ISD::SHL, DL, VT, Res, 9741 DAG.getConstant(NewShAmt, DL, getShiftAmountTy(VT))); 9742 Res = DAG.getZExtOrTrunc(Res, DL, HalfVT); 9743 Res = DAG.getNode(ISD::BSWAP, DL, HalfVT, Res); 9744 return DAG.getZExtOrTrunc(Res, DL, VT); 9745 } 9746 } 9747 9748 return SDValue(); 9749 } 9750 9751 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { 9752 SDValue N0 = N->getOperand(0); 9753 EVT VT = N->getValueType(0); 9754 9755 // fold (bitreverse c1) -> c2 9756 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9757 return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0); 9758 // fold (bitreverse (bitreverse x)) -> x 9759 if (N0.getOpcode() == ISD::BITREVERSE) 9760 return N0.getOperand(0); 9761 return SDValue(); 9762 } 9763 9764 SDValue DAGCombiner::visitCTLZ(SDNode *N) { 9765 SDValue N0 = N->getOperand(0); 9766 EVT VT = N->getValueType(0); 9767 9768 // fold (ctlz c1) -> c2 9769 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9770 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); 9771 9772 // If the value is known never to be zero, switch to the undef version. 9773 if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) { 9774 if (DAG.isKnownNeverZero(N0)) 9775 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9776 } 9777 9778 return SDValue(); 9779 } 9780 9781 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { 9782 SDValue N0 = N->getOperand(0); 9783 EVT VT = N->getValueType(0); 9784 9785 // fold (ctlz_zero_undef c1) -> c2 9786 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9787 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9788 return SDValue(); 9789 } 9790 9791 SDValue DAGCombiner::visitCTTZ(SDNode *N) { 9792 SDValue N0 = N->getOperand(0); 9793 EVT VT = N->getValueType(0); 9794 9795 // fold (cttz c1) -> c2 9796 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9797 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); 9798 9799 // If the value is known never to be zero, switch to the undef version. 9800 if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) { 9801 if (DAG.isKnownNeverZero(N0)) 9802 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9803 } 9804 9805 return SDValue(); 9806 } 9807 9808 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { 9809 SDValue N0 = N->getOperand(0); 9810 EVT VT = N->getValueType(0); 9811 9812 // fold (cttz_zero_undef c1) -> c2 9813 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9814 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9815 return SDValue(); 9816 } 9817 9818 SDValue DAGCombiner::visitCTPOP(SDNode *N) { 9819 SDValue N0 = N->getOperand(0); 9820 EVT VT = N->getValueType(0); 9821 9822 // fold (ctpop c1) -> c2 9823 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9824 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); 9825 return SDValue(); 9826 } 9827 9828 // FIXME: This should be checking for no signed zeros on individual operands, as 9829 // well as no nans. 9830 static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, 9831 SDValue RHS, 9832 const TargetLowering &TLI) { 9833 const TargetOptions &Options = DAG.getTarget().Options; 9834 EVT VT = LHS.getValueType(); 9835 9836 return Options.NoSignedZerosFPMath && VT.isFloatingPoint() && 9837 TLI.isProfitableToCombineMinNumMaxNum(VT) && 9838 DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS); 9839 } 9840 9841 /// Generate Min/Max node 9842 static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, 9843 SDValue RHS, SDValue True, SDValue False, 9844 ISD::CondCode CC, const TargetLowering &TLI, 9845 SelectionDAG &DAG) { 9846 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 9847 return SDValue(); 9848 9849 EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 9850 switch (CC) { 9851 case ISD::SETOLT: 9852 case ISD::SETOLE: 9853 case ISD::SETLT: 9854 case ISD::SETLE: 9855 case ISD::SETULT: 9856 case ISD::SETULE: { 9857 // Since it's known never nan to get here already, either fminnum or 9858 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is 9859 // expanded in terms of it. 9860 unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 9861 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) 9862 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); 9863 9864 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; 9865 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) 9866 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 9867 return SDValue(); 9868 } 9869 case ISD::SETOGT: 9870 case ISD::SETOGE: 9871 case ISD::SETGT: 9872 case ISD::SETGE: 9873 case ISD::SETUGT: 9874 case ISD::SETUGE: { 9875 unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; 9876 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) 9877 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); 9878 9879 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; 9880 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) 9881 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 9882 return SDValue(); 9883 } 9884 default: 9885 return SDValue(); 9886 } 9887 } 9888 9889 /// If a (v)select has a condition value that is a sign-bit test, try to smear 9890 /// the condition operand sign-bit across the value width and use it as a mask. 9891 static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) { 9892 SDValue Cond = N->getOperand(0); 9893 SDValue C1 = N->getOperand(1); 9894 SDValue C2 = N->getOperand(2); 9895 if (!isConstantOrConstantVector(C1) || !isConstantOrConstantVector(C2)) 9896 return SDValue(); 9897 9898 EVT VT = N->getValueType(0); 9899 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() || 9900 VT != Cond.getOperand(0).getValueType()) 9901 return SDValue(); 9902 9903 // The inverted-condition + commuted-select variants of these patterns are 9904 // canonicalized to these forms in IR. 9905 SDValue X = Cond.getOperand(0); 9906 SDValue CondC = Cond.getOperand(1); 9907 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 9908 if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) && 9909 isAllOnesOrAllOnesSplat(C2)) { 9910 // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1 9911 SDLoc DL(N); 9912 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); 9913 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); 9914 return DAG.getNode(ISD::OR, DL, VT, Sra, C1); 9915 } 9916 if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) { 9917 // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1 9918 SDLoc DL(N); 9919 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); 9920 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); 9921 return DAG.getNode(ISD::AND, DL, VT, Sra, C1); 9922 } 9923 return SDValue(); 9924 } 9925 9926 SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { 9927 SDValue Cond = N->getOperand(0); 9928 SDValue N1 = N->getOperand(1); 9929 SDValue N2 = N->getOperand(2); 9930 EVT VT = N->getValueType(0); 9931 EVT CondVT = Cond.getValueType(); 9932 SDLoc DL(N); 9933 9934 if (!VT.isInteger()) 9935 return SDValue(); 9936 9937 auto *C1 = dyn_cast<ConstantSDNode>(N1); 9938 auto *C2 = dyn_cast<ConstantSDNode>(N2); 9939 if (!C1 || !C2) 9940 return SDValue(); 9941 9942 // Only do this before legalization to avoid conflicting with target-specific 9943 // transforms in the other direction (create a select from a zext/sext). There 9944 // is also a target-independent combine here in DAGCombiner in the other 9945 // direction for (select Cond, -1, 0) when the condition is not i1. 9946 if (CondVT == MVT::i1 && !LegalOperations) { 9947 if (C1->isZero() && C2->isOne()) { 9948 // select Cond, 0, 1 --> zext (!Cond) 9949 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); 9950 if (VT != MVT::i1) 9951 NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond); 9952 return NotCond; 9953 } 9954 if (C1->isZero() && C2->isAllOnes()) { 9955 // select Cond, 0, -1 --> sext (!Cond) 9956 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); 9957 if (VT != MVT::i1) 9958 NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond); 9959 return NotCond; 9960 } 9961 if (C1->isOne() && C2->isZero()) { 9962 // select Cond, 1, 0 --> zext (Cond) 9963 if (VT != MVT::i1) 9964 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9965 return Cond; 9966 } 9967 if (C1->isAllOnes() && C2->isZero()) { 9968 // select Cond, -1, 0 --> sext (Cond) 9969 if (VT != MVT::i1) 9970 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); 9971 return Cond; 9972 } 9973 9974 // Use a target hook because some targets may prefer to transform in the 9975 // other direction. 9976 if (TLI.convertSelectOfConstantsToMath(VT)) { 9977 // For any constants that differ by 1, we can transform the select into an 9978 // extend and add. 9979 const APInt &C1Val = C1->getAPIntValue(); 9980 const APInt &C2Val = C2->getAPIntValue(); 9981 if (C1Val - 1 == C2Val) { 9982 // select Cond, C1, C1-1 --> add (zext Cond), C1-1 9983 if (VT != MVT::i1) 9984 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9985 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); 9986 } 9987 if (C1Val + 1 == C2Val) { 9988 // select Cond, C1, C1+1 --> add (sext Cond), C1+1 9989 if (VT != MVT::i1) 9990 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); 9991 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); 9992 } 9993 9994 // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2) 9995 if (C1Val.isPowerOf2() && C2Val.isZero()) { 9996 if (VT != MVT::i1) 9997 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9998 SDValue ShAmtC = 9999 DAG.getShiftAmountConstant(C1Val.exactLogBase2(), VT, DL); 10000 return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC); 10001 } 10002 10003 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) 10004 return V; 10005 } 10006 10007 return SDValue(); 10008 } 10009 10010 // fold (select Cond, 0, 1) -> (xor Cond, 1) 10011 // We can't do this reliably if integer based booleans have different contents 10012 // to floating point based booleans. This is because we can't tell whether we 10013 // have an integer-based boolean or a floating-point-based boolean unless we 10014 // can find the SETCC that produced it and inspect its operands. This is 10015 // fairly easy if C is the SETCC node, but it can potentially be 10016 // undiscoverable (or not reasonably discoverable). For example, it could be 10017 // in another basic block or it could require searching a complicated 10018 // expression. 10019 if (CondVT.isInteger() && 10020 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) == 10021 TargetLowering::ZeroOrOneBooleanContent && 10022 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) == 10023 TargetLowering::ZeroOrOneBooleanContent && 10024 C1->isZero() && C2->isOne()) { 10025 SDValue NotCond = 10026 DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); 10027 if (VT.bitsEq(CondVT)) 10028 return NotCond; 10029 return DAG.getZExtOrTrunc(NotCond, DL, VT); 10030 } 10031 10032 return SDValue(); 10033 } 10034 10035 static SDValue foldBoolSelectToLogic(SDNode *N, SelectionDAG &DAG) { 10036 assert((N->getOpcode() == ISD::SELECT || N->getOpcode() == ISD::VSELECT) && 10037 "Expected a (v)select"); 10038 SDValue Cond = N->getOperand(0); 10039 SDValue T = N->getOperand(1), F = N->getOperand(2); 10040 EVT VT = N->getValueType(0); 10041 if (VT != Cond.getValueType() || VT.getScalarSizeInBits() != 1) 10042 return SDValue(); 10043 10044 // select Cond, Cond, F --> or Cond, F 10045 // select Cond, 1, F --> or Cond, F 10046 if (Cond == T || isOneOrOneSplat(T, /* AllowUndefs */ true)) 10047 return DAG.getNode(ISD::OR, SDLoc(N), VT, Cond, F); 10048 10049 // select Cond, T, Cond --> and Cond, T 10050 // select Cond, T, 0 --> and Cond, T 10051 if (Cond == F || isNullOrNullSplat(F, /* AllowUndefs */ true)) 10052 return DAG.getNode(ISD::AND, SDLoc(N), VT, Cond, T); 10053 10054 // select Cond, T, 1 --> or (not Cond), T 10055 if (isOneOrOneSplat(F, /* AllowUndefs */ true)) { 10056 SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT); 10057 return DAG.getNode(ISD::OR, SDLoc(N), VT, NotCond, T); 10058 } 10059 10060 // select Cond, 0, F --> and (not Cond), F 10061 if (isNullOrNullSplat(T, /* AllowUndefs */ true)) { 10062 SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT); 10063 return DAG.getNode(ISD::AND, SDLoc(N), VT, NotCond, F); 10064 } 10065 10066 return SDValue(); 10067 } 10068 10069 static SDValue foldVSelectToSignBitSplatMask(SDNode *N, SelectionDAG &DAG) { 10070 SDValue N0 = N->getOperand(0); 10071 SDValue N1 = N->getOperand(1); 10072 SDValue N2 = N->getOperand(2); 10073 EVT VT = N->getValueType(0); 10074 if (N0.getOpcode() != ISD::SETCC || !N0.hasOneUse()) 10075 return SDValue(); 10076 10077 SDValue Cond0 = N0.getOperand(0); 10078 SDValue Cond1 = N0.getOperand(1); 10079 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 10080 if (VT != Cond0.getValueType()) 10081 return SDValue(); 10082 10083 // Match a signbit check of Cond0 as "Cond0 s<0". Swap select operands if the 10084 // compare is inverted from that pattern ("Cond0 s> -1"). 10085 if (CC == ISD::SETLT && isNullOrNullSplat(Cond1)) 10086 ; // This is the pattern we are looking for. 10087 else if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(Cond1)) 10088 std::swap(N1, N2); 10089 else 10090 return SDValue(); 10091 10092 // (Cond0 s< 0) ? N1 : 0 --> (Cond0 s>> BW-1) & N1 10093 if (isNullOrNullSplat(N2)) { 10094 SDLoc DL(N); 10095 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); 10096 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt); 10097 return DAG.getNode(ISD::AND, DL, VT, Sra, N1); 10098 } 10099 10100 // (Cond0 s< 0) ? -1 : N2 --> (Cond0 s>> BW-1) | N2 10101 if (isAllOnesOrAllOnesSplat(N1)) { 10102 SDLoc DL(N); 10103 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); 10104 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt); 10105 return DAG.getNode(ISD::OR, DL, VT, Sra, N2); 10106 } 10107 10108 // If we have to invert the sign bit mask, only do that transform if the 10109 // target has a bitwise 'and not' instruction (the invert is free). 10110 // (Cond0 s< -0) ? 0 : N2 --> ~(Cond0 s>> BW-1) & N2 10111 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10112 if (isNullOrNullSplat(N1) && TLI.hasAndNot(N1)) { 10113 SDLoc DL(N); 10114 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); 10115 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt); 10116 SDValue Not = DAG.getNOT(DL, Sra, VT); 10117 return DAG.getNode(ISD::AND, DL, VT, Not, N2); 10118 } 10119 10120 // TODO: There's another pattern in this family, but it may require 10121 // implementing hasOrNot() to check for profitability: 10122 // (Cond0 s> -1) ? -1 : N2 --> ~(Cond0 s>> BW-1) | N2 10123 10124 return SDValue(); 10125 } 10126 10127 SDValue DAGCombiner::visitSELECT(SDNode *N) { 10128 SDValue N0 = N->getOperand(0); 10129 SDValue N1 = N->getOperand(1); 10130 SDValue N2 = N->getOperand(2); 10131 EVT VT = N->getValueType(0); 10132 EVT VT0 = N0.getValueType(); 10133 SDLoc DL(N); 10134 SDNodeFlags Flags = N->getFlags(); 10135 10136 if (SDValue V = DAG.simplifySelect(N0, N1, N2)) 10137 return V; 10138 10139 if (SDValue V = foldSelectOfConstants(N)) 10140 return V; 10141 10142 if (SDValue V = foldBoolSelectToLogic(N, DAG)) 10143 return V; 10144 10145 // If we can fold this based on the true/false value, do so. 10146 if (SimplifySelectOps(N, N1, N2)) 10147 return SDValue(N, 0); // Don't revisit N. 10148 10149 if (VT0 == MVT::i1) { 10150 // The code in this block deals with the following 2 equivalences: 10151 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) 10152 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) 10153 // The target can specify its preferred form with the 10154 // shouldNormalizeToSelectSequence() callback. However we always transform 10155 // to the right anyway if we find the inner select exists in the DAG anyway 10156 // and we always transform to the left side if we know that we can further 10157 // optimize the combination of the conditions. 10158 bool normalizeToSequence = 10159 TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); 10160 // select (and Cond0, Cond1), X, Y 10161 // -> select Cond0, (select Cond1, X, Y), Y 10162 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { 10163 SDValue Cond0 = N0->getOperand(0); 10164 SDValue Cond1 = N0->getOperand(1); 10165 SDValue InnerSelect = 10166 DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags); 10167 if (normalizeToSequence || !InnerSelect.use_empty()) 10168 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, 10169 InnerSelect, N2, Flags); 10170 // Cleanup on failure. 10171 if (InnerSelect.use_empty()) 10172 recursivelyDeleteUnusedNodes(InnerSelect.getNode()); 10173 } 10174 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) 10175 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { 10176 SDValue Cond0 = N0->getOperand(0); 10177 SDValue Cond1 = N0->getOperand(1); 10178 SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(), 10179 Cond1, N1, N2, Flags); 10180 if (normalizeToSequence || !InnerSelect.use_empty()) 10181 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1, 10182 InnerSelect, Flags); 10183 // Cleanup on failure. 10184 if (InnerSelect.use_empty()) 10185 recursivelyDeleteUnusedNodes(InnerSelect.getNode()); 10186 } 10187 10188 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y 10189 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { 10190 SDValue N1_0 = N1->getOperand(0); 10191 SDValue N1_1 = N1->getOperand(1); 10192 SDValue N1_2 = N1->getOperand(2); 10193 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { 10194 // Create the actual and node if we can generate good code for it. 10195 if (!normalizeToSequence) { 10196 SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0); 10197 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, 10198 N2, Flags); 10199 } 10200 // Otherwise see if we can optimize the "and" to a better pattern. 10201 if (SDValue Combined = visitANDLike(N0, N1_0, N)) { 10202 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1, 10203 N2, Flags); 10204 } 10205 } 10206 } 10207 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y 10208 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { 10209 SDValue N2_0 = N2->getOperand(0); 10210 SDValue N2_1 = N2->getOperand(1); 10211 SDValue N2_2 = N2->getOperand(2); 10212 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { 10213 // Create the actual or node if we can generate good code for it. 10214 if (!normalizeToSequence) { 10215 SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0); 10216 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, 10217 N2_2, Flags); 10218 } 10219 // Otherwise see if we can optimize to a better pattern. 10220 if (SDValue Combined = visitORLike(N0, N2_0, N)) 10221 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1, 10222 N2_2, Flags); 10223 } 10224 } 10225 } 10226 10227 // select (not Cond), N1, N2 -> select Cond, N2, N1 10228 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) { 10229 SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1); 10230 SelectOp->setFlags(Flags); 10231 return SelectOp; 10232 } 10233 10234 // Fold selects based on a setcc into other things, such as min/max/abs. 10235 if (N0.getOpcode() == ISD::SETCC) { 10236 SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1); 10237 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 10238 10239 // select (fcmp lt x, y), x, y -> fminnum x, y 10240 // select (fcmp gt x, y), x, y -> fmaxnum x, y 10241 // 10242 // This is OK if we don't care what happens if either operand is a NaN. 10243 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI)) 10244 if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, 10245 CC, TLI, DAG)) 10246 return FMinMax; 10247 10248 // Use 'unsigned add with overflow' to optimize an unsigned saturating add. 10249 // This is conservatively limited to pre-legal-operations to give targets 10250 // a chance to reverse the transform if they want to do that. Also, it is 10251 // unlikely that the pattern would be formed late, so it's probably not 10252 // worth going through the other checks. 10253 if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) && 10254 CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) && 10255 N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) { 10256 auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1)); 10257 auto *NotC = dyn_cast<ConstantSDNode>(Cond1); 10258 if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) { 10259 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) --> 10260 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0 10261 // 10262 // The IR equivalent of this transform would have this form: 10263 // %a = add %x, C 10264 // %c = icmp ugt %x, ~C 10265 // %r = select %c, -1, %a 10266 // => 10267 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C) 10268 // %u0 = extractvalue %u, 0 10269 // %u1 = extractvalue %u, 1 10270 // %r = select %u1, -1, %u0 10271 SDVTList VTs = DAG.getVTList(VT, VT0); 10272 SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1)); 10273 return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0)); 10274 } 10275 } 10276 10277 if (TLI.isOperationLegal(ISD::SELECT_CC, VT) || 10278 (!LegalOperations && 10279 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) { 10280 // Any flags available in a select/setcc fold will be on the setcc as they 10281 // migrated from fcmp 10282 Flags = N0->getFlags(); 10283 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, 10284 N2, N0.getOperand(2)); 10285 SelectNode->setFlags(Flags); 10286 return SelectNode; 10287 } 10288 10289 if (SDValue NewSel = SimplifySelect(DL, N0, N1, N2)) 10290 return NewSel; 10291 } 10292 10293 if (!VT.isVector()) 10294 if (SDValue BinOp = foldSelectOfBinops(N)) 10295 return BinOp; 10296 10297 return SDValue(); 10298 } 10299 10300 // This function assumes all the vselect's arguments are CONCAT_VECTOR 10301 // nodes and that the condition is a BV of ConstantSDNodes (or undefs). 10302 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { 10303 SDLoc DL(N); 10304 SDValue Cond = N->getOperand(0); 10305 SDValue LHS = N->getOperand(1); 10306 SDValue RHS = N->getOperand(2); 10307 EVT VT = N->getValueType(0); 10308 int NumElems = VT.getVectorNumElements(); 10309 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && 10310 RHS.getOpcode() == ISD::CONCAT_VECTORS && 10311 Cond.getOpcode() == ISD::BUILD_VECTOR); 10312 10313 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about 10314 // binary ones here. 10315 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) 10316 return SDValue(); 10317 10318 // We're sure we have an even number of elements due to the 10319 // concat_vectors we have as arguments to vselect. 10320 // Skip BV elements until we find one that's not an UNDEF 10321 // After we find an UNDEF element, keep looping until we get to half the 10322 // length of the BV and see if all the non-undef nodes are the same. 10323 ConstantSDNode *BottomHalf = nullptr; 10324 for (int i = 0; i < NumElems / 2; ++i) { 10325 if (Cond->getOperand(i)->isUndef()) 10326 continue; 10327 10328 if (BottomHalf == nullptr) 10329 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 10330 else if (Cond->getOperand(i).getNode() != BottomHalf) 10331 return SDValue(); 10332 } 10333 10334 // Do the same for the second half of the BuildVector 10335 ConstantSDNode *TopHalf = nullptr; 10336 for (int i = NumElems / 2; i < NumElems; ++i) { 10337 if (Cond->getOperand(i)->isUndef()) 10338 continue; 10339 10340 if (TopHalf == nullptr) 10341 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 10342 else if (Cond->getOperand(i).getNode() != TopHalf) 10343 return SDValue(); 10344 } 10345 10346 assert(TopHalf && BottomHalf && 10347 "One half of the selector was all UNDEFs and the other was all the " 10348 "same value. This should have been addressed before this function."); 10349 return DAG.getNode( 10350 ISD::CONCAT_VECTORS, DL, VT, 10351 BottomHalf->isZero() ? RHS->getOperand(0) : LHS->getOperand(0), 10352 TopHalf->isZero() ? RHS->getOperand(1) : LHS->getOperand(1)); 10353 } 10354 10355 bool refineUniformBase(SDValue &BasePtr, SDValue &Index, SelectionDAG &DAG) { 10356 if (!isNullConstant(BasePtr) || Index.getOpcode() != ISD::ADD) 10357 return false; 10358 10359 // For now we check only the LHS of the add. 10360 SDValue LHS = Index.getOperand(0); 10361 SDValue SplatVal = DAG.getSplatValue(LHS); 10362 if (!SplatVal) 10363 return false; 10364 10365 BasePtr = SplatVal; 10366 Index = Index.getOperand(1); 10367 return true; 10368 } 10369 10370 // Fold sext/zext of index into index type. 10371 bool refineIndexType(MaskedGatherScatterSDNode *MGS, SDValue &Index, 10372 bool Scaled, SelectionDAG &DAG) { 10373 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10374 10375 if (Index.getOpcode() == ISD::ZERO_EXTEND) { 10376 SDValue Op = Index.getOperand(0); 10377 MGS->setIndexType(Scaled ? ISD::UNSIGNED_SCALED : ISD::UNSIGNED_UNSCALED); 10378 if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) { 10379 Index = Op; 10380 return true; 10381 } 10382 } 10383 10384 if (Index.getOpcode() == ISD::SIGN_EXTEND) { 10385 SDValue Op = Index.getOperand(0); 10386 MGS->setIndexType(Scaled ? ISD::SIGNED_SCALED : ISD::SIGNED_UNSCALED); 10387 if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) { 10388 Index = Op; 10389 return true; 10390 } 10391 } 10392 10393 return false; 10394 } 10395 10396 SDValue DAGCombiner::visitMSCATTER(SDNode *N) { 10397 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); 10398 SDValue Mask = MSC->getMask(); 10399 SDValue Chain = MSC->getChain(); 10400 SDValue Index = MSC->getIndex(); 10401 SDValue Scale = MSC->getScale(); 10402 SDValue StoreVal = MSC->getValue(); 10403 SDValue BasePtr = MSC->getBasePtr(); 10404 SDLoc DL(N); 10405 10406 // Zap scatters with a zero mask. 10407 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 10408 return Chain; 10409 10410 if (refineUniformBase(BasePtr, Index, DAG)) { 10411 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; 10412 return DAG.getMaskedScatter( 10413 DAG.getVTList(MVT::Other), MSC->getMemoryVT(), DL, Ops, 10414 MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore()); 10415 } 10416 10417 if (refineIndexType(MSC, Index, MSC->isIndexScaled(), DAG)) { 10418 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; 10419 return DAG.getMaskedScatter( 10420 DAG.getVTList(MVT::Other), MSC->getMemoryVT(), DL, Ops, 10421 MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore()); 10422 } 10423 10424 return SDValue(); 10425 } 10426 10427 SDValue DAGCombiner::visitMSTORE(SDNode *N) { 10428 MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 10429 SDValue Mask = MST->getMask(); 10430 SDValue Chain = MST->getChain(); 10431 SDValue Value = MST->getValue(); 10432 SDValue Ptr = MST->getBasePtr(); 10433 SDLoc DL(N); 10434 10435 // Zap masked stores with a zero mask. 10436 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 10437 return Chain; 10438 10439 // If this is a masked load with an all ones mask, we can use a unmasked load. 10440 // FIXME: Can we do this for indexed, compressing, or truncating stores? 10441 if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && MST->isUnindexed() && 10442 !MST->isCompressingStore() && !MST->isTruncatingStore()) 10443 return DAG.getStore(MST->getChain(), SDLoc(N), MST->getValue(), 10444 MST->getBasePtr(), MST->getPointerInfo(), 10445 MST->getOriginalAlign(), MachineMemOperand::MOStore, 10446 MST->getAAInfo()); 10447 10448 // Try transforming N to an indexed store. 10449 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 10450 return SDValue(N, 0); 10451 10452 if (MST->isTruncatingStore() && MST->isUnindexed() && 10453 Value.getValueType().isInteger() && 10454 (!isa<ConstantSDNode>(Value) || 10455 !cast<ConstantSDNode>(Value)->isOpaque())) { 10456 APInt TruncDemandedBits = 10457 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), 10458 MST->getMemoryVT().getScalarSizeInBits()); 10459 10460 // See if we can simplify the operation with 10461 // SimplifyDemandedBits, which only works if the value has a single use. 10462 if (SimplifyDemandedBits(Value, TruncDemandedBits)) { 10463 // Re-visit the store if anything changed and the store hasn't been merged 10464 // with another node (N is deleted) SimplifyDemandedBits will add Value's 10465 // node back to the worklist if necessary, but we also need to re-visit 10466 // the Store node itself. 10467 if (N->getOpcode() != ISD::DELETED_NODE) 10468 AddToWorklist(N); 10469 return SDValue(N, 0); 10470 } 10471 } 10472 10473 // If this is a TRUNC followed by a masked store, fold this into a masked 10474 // truncating store. We can do this even if this is already a masked 10475 // truncstore. 10476 if ((Value.getOpcode() == ISD::TRUNCATE) && Value->hasOneUse() && 10477 MST->isUnindexed() && 10478 TLI.canCombineTruncStore(Value.getOperand(0).getValueType(), 10479 MST->getMemoryVT(), LegalOperations)) { 10480 auto Mask = TLI.promoteTargetBoolean(DAG, MST->getMask(), 10481 Value.getOperand(0).getValueType()); 10482 return DAG.getMaskedStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, 10483 MST->getOffset(), Mask, MST->getMemoryVT(), 10484 MST->getMemOperand(), MST->getAddressingMode(), 10485 /*IsTruncating=*/true); 10486 } 10487 10488 return SDValue(); 10489 } 10490 10491 SDValue DAGCombiner::visitMGATHER(SDNode *N) { 10492 MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N); 10493 SDValue Mask = MGT->getMask(); 10494 SDValue Chain = MGT->getChain(); 10495 SDValue Index = MGT->getIndex(); 10496 SDValue Scale = MGT->getScale(); 10497 SDValue PassThru = MGT->getPassThru(); 10498 SDValue BasePtr = MGT->getBasePtr(); 10499 SDLoc DL(N); 10500 10501 // Zap gathers with a zero mask. 10502 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 10503 return CombineTo(N, PassThru, MGT->getChain()); 10504 10505 if (refineUniformBase(BasePtr, Index, DAG)) { 10506 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; 10507 return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other), 10508 MGT->getMemoryVT(), DL, Ops, 10509 MGT->getMemOperand(), MGT->getIndexType(), 10510 MGT->getExtensionType()); 10511 } 10512 10513 if (refineIndexType(MGT, Index, MGT->isIndexScaled(), DAG)) { 10514 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; 10515 return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other), 10516 MGT->getMemoryVT(), DL, Ops, 10517 MGT->getMemOperand(), MGT->getIndexType(), 10518 MGT->getExtensionType()); 10519 } 10520 10521 return SDValue(); 10522 } 10523 10524 SDValue DAGCombiner::visitMLOAD(SDNode *N) { 10525 MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 10526 SDValue Mask = MLD->getMask(); 10527 SDLoc DL(N); 10528 10529 // Zap masked loads with a zero mask. 10530 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 10531 return CombineTo(N, MLD->getPassThru(), MLD->getChain()); 10532 10533 // If this is a masked load with an all ones mask, we can use a unmasked load. 10534 // FIXME: Can we do this for indexed, expanding, or extending loads? 10535 if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && MLD->isUnindexed() && 10536 !MLD->isExpandingLoad() && MLD->getExtensionType() == ISD::NON_EXTLOAD) { 10537 SDValue NewLd = DAG.getLoad( 10538 N->getValueType(0), SDLoc(N), MLD->getChain(), MLD->getBasePtr(), 10539 MLD->getPointerInfo(), MLD->getOriginalAlign(), 10540 MachineMemOperand::MOLoad, MLD->getAAInfo(), MLD->getRanges()); 10541 return CombineTo(N, NewLd, NewLd.getValue(1)); 10542 } 10543 10544 // Try transforming N to an indexed load. 10545 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 10546 return SDValue(N, 0); 10547 10548 return SDValue(); 10549 } 10550 10551 /// A vector select of 2 constant vectors can be simplified to math/logic to 10552 /// avoid a variable select instruction and possibly avoid constant loads. 10553 SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) { 10554 SDValue Cond = N->getOperand(0); 10555 SDValue N1 = N->getOperand(1); 10556 SDValue N2 = N->getOperand(2); 10557 EVT VT = N->getValueType(0); 10558 if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 || 10559 !TLI.convertSelectOfConstantsToMath(VT) || 10560 !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) || 10561 !ISD::isBuildVectorOfConstantSDNodes(N2.getNode())) 10562 return SDValue(); 10563 10564 // Check if we can use the condition value to increment/decrement a single 10565 // constant value. This simplifies a select to an add and removes a constant 10566 // load/materialization from the general case. 10567 bool AllAddOne = true; 10568 bool AllSubOne = true; 10569 unsigned Elts = VT.getVectorNumElements(); 10570 for (unsigned i = 0; i != Elts; ++i) { 10571 SDValue N1Elt = N1.getOperand(i); 10572 SDValue N2Elt = N2.getOperand(i); 10573 if (N1Elt.isUndef() || N2Elt.isUndef()) 10574 continue; 10575 if (N1Elt.getValueType() != N2Elt.getValueType()) 10576 continue; 10577 10578 const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue(); 10579 const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue(); 10580 if (C1 != C2 + 1) 10581 AllAddOne = false; 10582 if (C1 != C2 - 1) 10583 AllSubOne = false; 10584 } 10585 10586 // Further simplifications for the extra-special cases where the constants are 10587 // all 0 or all -1 should be implemented as folds of these patterns. 10588 SDLoc DL(N); 10589 if (AllAddOne || AllSubOne) { 10590 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C 10591 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C 10592 auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; 10593 SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond); 10594 return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2); 10595 } 10596 10597 // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C) 10598 APInt Pow2C; 10599 if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() && 10600 isNullOrNullSplat(N2)) { 10601 SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT); 10602 SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT); 10603 return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC); 10604 } 10605 10606 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) 10607 return V; 10608 10609 // The general case for select-of-constants: 10610 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2 10611 // ...but that only makes sense if a vselect is slower than 2 logic ops, so 10612 // leave that to a machine-specific pass. 10613 return SDValue(); 10614 } 10615 10616 SDValue DAGCombiner::visitVSELECT(SDNode *N) { 10617 SDValue N0 = N->getOperand(0); 10618 SDValue N1 = N->getOperand(1); 10619 SDValue N2 = N->getOperand(2); 10620 EVT VT = N->getValueType(0); 10621 SDLoc DL(N); 10622 10623 if (SDValue V = DAG.simplifySelect(N0, N1, N2)) 10624 return V; 10625 10626 if (SDValue V = foldBoolSelectToLogic(N, DAG)) 10627 return V; 10628 10629 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1 10630 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) 10631 return DAG.getSelect(DL, VT, F, N2, N1); 10632 10633 // Canonicalize integer abs. 10634 // vselect (setg[te] X, 0), X, -X -> 10635 // vselect (setgt X, -1), X, -X -> 10636 // vselect (setl[te] X, 0), -X, X -> 10637 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 10638 if (N0.getOpcode() == ISD::SETCC) { 10639 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 10640 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 10641 bool isAbs = false; 10642 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); 10643 10644 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || 10645 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && 10646 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) 10647 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); 10648 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && 10649 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) 10650 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 10651 10652 if (isAbs) { 10653 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) 10654 return DAG.getNode(ISD::ABS, DL, VT, LHS); 10655 10656 SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS, 10657 DAG.getConstant(VT.getScalarSizeInBits() - 1, 10658 DL, getShiftAmountTy(VT))); 10659 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); 10660 AddToWorklist(Shift.getNode()); 10661 AddToWorklist(Add.getNode()); 10662 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); 10663 } 10664 10665 // vselect x, y (fcmp lt x, y) -> fminnum x, y 10666 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y 10667 // 10668 // This is OK if we don't care about what happens if either operand is a 10669 // NaN. 10670 // 10671 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) { 10672 if (SDValue FMinMax = 10673 combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG)) 10674 return FMinMax; 10675 } 10676 10677 if (SDValue S = PerformMinMaxFpToSatCombine(LHS, RHS, N1, N2, CC, DAG)) 10678 return S; 10679 if (SDValue S = PerformUMinFpToSatCombine(LHS, RHS, N1, N2, CC, DAG)) 10680 return S; 10681 10682 // If this select has a condition (setcc) with narrower operands than the 10683 // select, try to widen the compare to match the select width. 10684 // TODO: This should be extended to handle any constant. 10685 // TODO: This could be extended to handle non-loading patterns, but that 10686 // requires thorough testing to avoid regressions. 10687 if (isNullOrNullSplat(RHS)) { 10688 EVT NarrowVT = LHS.getValueType(); 10689 EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger(); 10690 EVT SetCCVT = getSetCCResultType(LHS.getValueType()); 10691 unsigned SetCCWidth = SetCCVT.getScalarSizeInBits(); 10692 unsigned WideWidth = WideVT.getScalarSizeInBits(); 10693 bool IsSigned = isSignedIntSetCC(CC); 10694 auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 10695 if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() && 10696 SetCCWidth != 1 && SetCCWidth < WideWidth && 10697 TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) && 10698 TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) { 10699 // Both compare operands can be widened for free. The LHS can use an 10700 // extended load, and the RHS is a constant: 10701 // vselect (ext (setcc load(X), C)), N1, N2 --> 10702 // vselect (setcc extload(X), C'), N1, N2 10703 auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 10704 SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS); 10705 SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS); 10706 EVT WideSetCCVT = getSetCCResultType(WideVT); 10707 SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC); 10708 return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2); 10709 } 10710 } 10711 10712 // Match VSELECTs into add with unsigned saturation. 10713 if (hasOperation(ISD::UADDSAT, VT)) { 10714 // Check if one of the arms of the VSELECT is vector with all bits set. 10715 // If it's on the left side invert the predicate to simplify logic below. 10716 SDValue Other; 10717 ISD::CondCode SatCC = CC; 10718 if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) { 10719 Other = N2; 10720 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType()); 10721 } else if (ISD::isConstantSplatVectorAllOnes(N2.getNode())) { 10722 Other = N1; 10723 } 10724 10725 if (Other && Other.getOpcode() == ISD::ADD) { 10726 SDValue CondLHS = LHS, CondRHS = RHS; 10727 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1); 10728 10729 // Canonicalize condition operands. 10730 if (SatCC == ISD::SETUGE) { 10731 std::swap(CondLHS, CondRHS); 10732 SatCC = ISD::SETULE; 10733 } 10734 10735 // We can test against either of the addition operands. 10736 // x <= x+y ? x+y : ~0 --> uaddsat x, y 10737 // x+y >= x ? x+y : ~0 --> uaddsat x, y 10738 if (SatCC == ISD::SETULE && Other == CondRHS && 10739 (OpLHS == CondLHS || OpRHS == CondLHS)) 10740 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS); 10741 10742 if (OpRHS.getOpcode() == CondRHS.getOpcode() && 10743 (OpRHS.getOpcode() == ISD::BUILD_VECTOR || 10744 OpRHS.getOpcode() == ISD::SPLAT_VECTOR) && 10745 CondLHS == OpLHS) { 10746 // If the RHS is a constant we have to reverse the const 10747 // canonicalization. 10748 // x >= ~C ? x+C : ~0 --> uaddsat x, C 10749 auto MatchUADDSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) { 10750 return Cond->getAPIntValue() == ~Op->getAPIntValue(); 10751 }; 10752 if (SatCC == ISD::SETULE && 10753 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUADDSAT)) 10754 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS); 10755 } 10756 } 10757 } 10758 10759 // Match VSELECTs into sub with unsigned saturation. 10760 if (hasOperation(ISD::USUBSAT, VT)) { 10761 // Check if one of the arms of the VSELECT is a zero vector. If it's on 10762 // the left side invert the predicate to simplify logic below. 10763 SDValue Other; 10764 ISD::CondCode SatCC = CC; 10765 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) { 10766 Other = N2; 10767 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType()); 10768 } else if (ISD::isConstantSplatVectorAllZeros(N2.getNode())) { 10769 Other = N1; 10770 } 10771 10772 if (Other && Other.getNumOperands() == 2) { 10773 SDValue CondRHS = RHS; 10774 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1); 10775 10776 if (Other.getOpcode() == ISD::SUB && 10777 LHS.getOpcode() == ISD::ZERO_EXTEND && LHS.getOperand(0) == OpLHS && 10778 OpRHS.getOpcode() == ISD::TRUNCATE && OpRHS.getOperand(0) == RHS) { 10779 // Look for a general sub with unsigned saturation first. 10780 // zext(x) >= y ? x - trunc(y) : 0 10781 // --> usubsat(x,trunc(umin(y,SatLimit))) 10782 // zext(x) > y ? x - trunc(y) : 0 10783 // --> usubsat(x,trunc(umin(y,SatLimit))) 10784 if (SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) 10785 return getTruncatedUSUBSAT(VT, LHS.getValueType(), LHS, RHS, DAG, 10786 DL); 10787 } 10788 10789 if (OpLHS == LHS) { 10790 // Look for a general sub with unsigned saturation first. 10791 // x >= y ? x-y : 0 --> usubsat x, y 10792 // x > y ? x-y : 0 --> usubsat x, y 10793 if ((SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) && 10794 Other.getOpcode() == ISD::SUB && OpRHS == CondRHS) 10795 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 10796 10797 if (OpRHS.getOpcode() == ISD::BUILD_VECTOR || 10798 OpRHS.getOpcode() == ISD::SPLAT_VECTOR) { 10799 if (CondRHS.getOpcode() == ISD::BUILD_VECTOR || 10800 CondRHS.getOpcode() == ISD::SPLAT_VECTOR) { 10801 // If the RHS is a constant we have to reverse the const 10802 // canonicalization. 10803 // x > C-1 ? x+-C : 0 --> usubsat x, C 10804 auto MatchUSUBSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) { 10805 return (!Op && !Cond) || 10806 (Op && Cond && 10807 Cond->getAPIntValue() == (-Op->getAPIntValue() - 1)); 10808 }; 10809 if (SatCC == ISD::SETUGT && Other.getOpcode() == ISD::ADD && 10810 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUSUBSAT, 10811 /*AllowUndefs*/ true)) { 10812 OpRHS = DAG.getNode(ISD::SUB, DL, VT, 10813 DAG.getConstant(0, DL, VT), OpRHS); 10814 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 10815 } 10816 10817 // Another special case: If C was a sign bit, the sub has been 10818 // canonicalized into a xor. 10819 // FIXME: Would it be better to use computeKnownBits to determine 10820 // whether it's safe to decanonicalize the xor? 10821 // x s< 0 ? x^C : 0 --> usubsat x, C 10822 APInt SplatValue; 10823 if (SatCC == ISD::SETLT && Other.getOpcode() == ISD::XOR && 10824 ISD::isConstantSplatVector(OpRHS.getNode(), SplatValue) && 10825 ISD::isConstantSplatVectorAllZeros(CondRHS.getNode()) && 10826 SplatValue.isSignMask()) { 10827 // Note that we have to rebuild the RHS constant here to 10828 // ensure we don't rely on particular values of undef lanes. 10829 OpRHS = DAG.getConstant(SplatValue, DL, VT); 10830 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 10831 } 10832 } 10833 } 10834 } 10835 } 10836 } 10837 } 10838 10839 if (SimplifySelectOps(N, N1, N2)) 10840 return SDValue(N, 0); // Don't revisit N. 10841 10842 // Fold (vselect all_ones, N1, N2) -> N1 10843 if (ISD::isConstantSplatVectorAllOnes(N0.getNode())) 10844 return N1; 10845 // Fold (vselect all_zeros, N1, N2) -> N2 10846 if (ISD::isConstantSplatVectorAllZeros(N0.getNode())) 10847 return N2; 10848 10849 // The ConvertSelectToConcatVector function is assuming both the above 10850 // checks for (vselect (build_vector all{ones,zeros) ...) have been made 10851 // and addressed. 10852 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 10853 N2.getOpcode() == ISD::CONCAT_VECTORS && 10854 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 10855 if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) 10856 return CV; 10857 } 10858 10859 if (SDValue V = foldVSelectOfConstants(N)) 10860 return V; 10861 10862 if (hasOperation(ISD::SRA, VT)) 10863 if (SDValue V = foldVSelectToSignBitSplatMask(N, DAG)) 10864 return V; 10865 10866 return SDValue(); 10867 } 10868 10869 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { 10870 SDValue N0 = N->getOperand(0); 10871 SDValue N1 = N->getOperand(1); 10872 SDValue N2 = N->getOperand(2); 10873 SDValue N3 = N->getOperand(3); 10874 SDValue N4 = N->getOperand(4); 10875 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); 10876 10877 // fold select_cc lhs, rhs, x, x, cc -> x 10878 if (N2 == N3) 10879 return N2; 10880 10881 // Determine if the condition we're dealing with is constant 10882 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, 10883 CC, SDLoc(N), false)) { 10884 AddToWorklist(SCC.getNode()); 10885 10886 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { 10887 if (!SCCC->isZero()) 10888 return N2; // cond always true -> true val 10889 else 10890 return N3; // cond always false -> false val 10891 } else if (SCC->isUndef()) { 10892 // When the condition is UNDEF, just return the first operand. This is 10893 // coherent the DAG creation, no setcc node is created in this case 10894 return N2; 10895 } else if (SCC.getOpcode() == ISD::SETCC) { 10896 // Fold to a simpler select_cc 10897 SDValue SelectOp = DAG.getNode( 10898 ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0), 10899 SCC.getOperand(1), N2, N3, SCC.getOperand(2)); 10900 SelectOp->setFlags(SCC->getFlags()); 10901 return SelectOp; 10902 } 10903 } 10904 10905 // If we can fold this based on the true/false value, do so. 10906 if (SimplifySelectOps(N, N2, N3)) 10907 return SDValue(N, 0); // Don't revisit N. 10908 10909 // fold select_cc into other things, such as min/max/abs 10910 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); 10911 } 10912 10913 SDValue DAGCombiner::visitSETCC(SDNode *N) { 10914 // setcc is very commonly used as an argument to brcond. This pattern 10915 // also lend itself to numerous combines and, as a result, it is desired 10916 // we keep the argument to a brcond as a setcc as much as possible. 10917 bool PreferSetCC = 10918 N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND; 10919 10920 ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get(); 10921 EVT VT = N->getValueType(0); 10922 10923 // SETCC(FREEZE(X), CONST, Cond) 10924 // => 10925 // FREEZE(SETCC(X, CONST, Cond)) 10926 // This is correct if FREEZE(X) has one use and SETCC(FREEZE(X), CONST, Cond) 10927 // isn't equivalent to true or false. 10928 // For example, SETCC(FREEZE(X), -128, SETULT) cannot be folded to 10929 // FREEZE(SETCC(X, -128, SETULT)) because X can be poison. 10930 // 10931 // This transformation is beneficial because visitBRCOND can fold 10932 // BRCOND(FREEZE(X)) to BRCOND(X). 10933 10934 // Conservatively optimize integer comparisons only. 10935 if (PreferSetCC) { 10936 // Do this only when SETCC is going to be used by BRCOND. 10937 10938 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 10939 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 10940 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 10941 bool Updated = false; 10942 10943 // Is 'X Cond C' always true or false? 10944 auto IsAlwaysTrueOrFalse = [](ISD::CondCode Cond, ConstantSDNode *C) { 10945 bool False = (Cond == ISD::SETULT && C->isZero()) || 10946 (Cond == ISD::SETLT && C->isMinSignedValue()) || 10947 (Cond == ISD::SETUGT && C->isAllOnes()) || 10948 (Cond == ISD::SETGT && C->isMaxSignedValue()); 10949 bool True = (Cond == ISD::SETULE && C->isAllOnes()) || 10950 (Cond == ISD::SETLE && C->isMaxSignedValue()) || 10951 (Cond == ISD::SETUGE && C->isZero()) || 10952 (Cond == ISD::SETGE && C->isMinSignedValue()); 10953 return True || False; 10954 }; 10955 10956 if (N0->getOpcode() == ISD::FREEZE && N0.hasOneUse() && N1C) { 10957 if (!IsAlwaysTrueOrFalse(Cond, N1C)) { 10958 N0 = N0->getOperand(0); 10959 Updated = true; 10960 } 10961 } 10962 if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse() && N0C) { 10963 if (!IsAlwaysTrueOrFalse(ISD::getSetCCSwappedOperands(Cond), 10964 N0C)) { 10965 N1 = N1->getOperand(0); 10966 Updated = true; 10967 } 10968 } 10969 10970 if (Updated) 10971 return DAG.getFreeze(DAG.getSetCC(SDLoc(N), VT, N0, N1, Cond)); 10972 } 10973 10974 SDValue Combined = SimplifySetCC(VT, N->getOperand(0), N->getOperand(1), Cond, 10975 SDLoc(N), !PreferSetCC); 10976 10977 if (!Combined) 10978 return SDValue(); 10979 10980 // If we prefer to have a setcc, and we don't, we'll try our best to 10981 // recreate one using rebuildSetCC. 10982 if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) { 10983 SDValue NewSetCC = rebuildSetCC(Combined); 10984 10985 // We don't have anything interesting to combine to. 10986 if (NewSetCC.getNode() == N) 10987 return SDValue(); 10988 10989 if (NewSetCC) 10990 return NewSetCC; 10991 } 10992 10993 return Combined; 10994 } 10995 10996 SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) { 10997 SDValue LHS = N->getOperand(0); 10998 SDValue RHS = N->getOperand(1); 10999 SDValue Carry = N->getOperand(2); 11000 SDValue Cond = N->getOperand(3); 11001 11002 // If Carry is false, fold to a regular SETCC. 11003 if (isNullConstant(Carry)) 11004 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); 11005 11006 return SDValue(); 11007 } 11008 11009 /// Check if N satisfies: 11010 /// N is used once. 11011 /// N is a Load. 11012 /// The load is compatible with ExtOpcode. It means 11013 /// If load has explicit zero/sign extension, ExpOpcode must have the same 11014 /// extension. 11015 /// Otherwise returns true. 11016 static bool isCompatibleLoad(SDValue N, unsigned ExtOpcode) { 11017 if (!N.hasOneUse()) 11018 return false; 11019 11020 if (!isa<LoadSDNode>(N)) 11021 return false; 11022 11023 LoadSDNode *Load = cast<LoadSDNode>(N); 11024 ISD::LoadExtType LoadExt = Load->getExtensionType(); 11025 if (LoadExt == ISD::NON_EXTLOAD || LoadExt == ISD::EXTLOAD) 11026 return true; 11027 11028 // Now LoadExt is either SEXTLOAD or ZEXTLOAD, ExtOpcode must have the same 11029 // extension. 11030 if ((LoadExt == ISD::SEXTLOAD && ExtOpcode != ISD::SIGN_EXTEND) || 11031 (LoadExt == ISD::ZEXTLOAD && ExtOpcode != ISD::ZERO_EXTEND)) 11032 return false; 11033 11034 return true; 11035 } 11036 11037 /// Fold 11038 /// (sext (select c, load x, load y)) -> (select c, sextload x, sextload y) 11039 /// (zext (select c, load x, load y)) -> (select c, zextload x, zextload y) 11040 /// (aext (select c, load x, load y)) -> (select c, extload x, extload y) 11041 /// This function is called by the DAGCombiner when visiting sext/zext/aext 11042 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 11043 static SDValue tryToFoldExtendSelectLoad(SDNode *N, const TargetLowering &TLI, 11044 SelectionDAG &DAG) { 11045 unsigned Opcode = N->getOpcode(); 11046 SDValue N0 = N->getOperand(0); 11047 EVT VT = N->getValueType(0); 11048 SDLoc DL(N); 11049 11050 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 11051 Opcode == ISD::ANY_EXTEND) && 11052 "Expected EXTEND dag node in input!"); 11053 11054 if (!(N0->getOpcode() == ISD::SELECT || N0->getOpcode() == ISD::VSELECT) || 11055 !N0.hasOneUse()) 11056 return SDValue(); 11057 11058 SDValue Op1 = N0->getOperand(1); 11059 SDValue Op2 = N0->getOperand(2); 11060 if (!isCompatibleLoad(Op1, Opcode) || !isCompatibleLoad(Op2, Opcode)) 11061 return SDValue(); 11062 11063 auto ExtLoadOpcode = ISD::EXTLOAD; 11064 if (Opcode == ISD::SIGN_EXTEND) 11065 ExtLoadOpcode = ISD::SEXTLOAD; 11066 else if (Opcode == ISD::ZERO_EXTEND) 11067 ExtLoadOpcode = ISD::ZEXTLOAD; 11068 11069 LoadSDNode *Load1 = cast<LoadSDNode>(Op1); 11070 LoadSDNode *Load2 = cast<LoadSDNode>(Op2); 11071 if (!TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load1->getMemoryVT()) || 11072 !TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load2->getMemoryVT())) 11073 return SDValue(); 11074 11075 SDValue Ext1 = DAG.getNode(Opcode, DL, VT, Op1); 11076 SDValue Ext2 = DAG.getNode(Opcode, DL, VT, Op2); 11077 return DAG.getSelect(DL, VT, N0->getOperand(0), Ext1, Ext2); 11078 } 11079 11080 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or 11081 /// a build_vector of constants. 11082 /// This function is called by the DAGCombiner when visiting sext/zext/aext 11083 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 11084 /// Vector extends are not folded if operations are legal; this is to 11085 /// avoid introducing illegal build_vector dag nodes. 11086 static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, 11087 SelectionDAG &DAG, bool LegalTypes) { 11088 unsigned Opcode = N->getOpcode(); 11089 SDValue N0 = N->getOperand(0); 11090 EVT VT = N->getValueType(0); 11091 SDLoc DL(N); 11092 11093 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 11094 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 11095 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) 11096 && "Expected EXTEND dag node in input!"); 11097 11098 // fold (sext c1) -> c1 11099 // fold (zext c1) -> c1 11100 // fold (aext c1) -> c1 11101 if (isa<ConstantSDNode>(N0)) 11102 return DAG.getNode(Opcode, DL, VT, N0); 11103 11104 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) 11105 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2) 11106 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) 11107 if (N0->getOpcode() == ISD::SELECT) { 11108 SDValue Op1 = N0->getOperand(1); 11109 SDValue Op2 = N0->getOperand(2); 11110 if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) && 11111 (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) { 11112 // For any_extend, choose sign extension of the constants to allow a 11113 // possible further transform to sign_extend_inreg.i.e. 11114 // 11115 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0> 11116 // t2: i64 = any_extend t1 11117 // --> 11118 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0> 11119 // --> 11120 // t4: i64 = sign_extend_inreg t3 11121 unsigned FoldOpc = Opcode; 11122 if (FoldOpc == ISD::ANY_EXTEND) 11123 FoldOpc = ISD::SIGN_EXTEND; 11124 return DAG.getSelect(DL, VT, N0->getOperand(0), 11125 DAG.getNode(FoldOpc, DL, VT, Op1), 11126 DAG.getNode(FoldOpc, DL, VT, Op2)); 11127 } 11128 } 11129 11130 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) 11131 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) 11132 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) 11133 EVT SVT = VT.getScalarType(); 11134 if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) && 11135 ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) 11136 return SDValue(); 11137 11138 // We can fold this node into a build_vector. 11139 unsigned VTBits = SVT.getSizeInBits(); 11140 unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); 11141 SmallVector<SDValue, 8> Elts; 11142 unsigned NumElts = VT.getVectorNumElements(); 11143 11144 // For zero-extensions, UNDEF elements still guarantee to have the upper 11145 // bits set to zero. 11146 bool IsZext = 11147 Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG; 11148 11149 for (unsigned i = 0; i != NumElts; ++i) { 11150 SDValue Op = N0.getOperand(i); 11151 if (Op.isUndef()) { 11152 Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT)); 11153 continue; 11154 } 11155 11156 SDLoc DL(Op); 11157 // Get the constant value and if needed trunc it to the size of the type. 11158 // Nodes like build_vector might have constants wider than the scalar type. 11159 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); 11160 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 11161 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); 11162 else 11163 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); 11164 } 11165 11166 return DAG.getBuildVector(VT, DL, Elts); 11167 } 11168 11169 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: 11170 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" 11171 // transformation. Returns true if extension are possible and the above 11172 // mentioned transformation is profitable. 11173 static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, 11174 unsigned ExtOpc, 11175 SmallVectorImpl<SDNode *> &ExtendNodes, 11176 const TargetLowering &TLI) { 11177 bool HasCopyToRegUses = false; 11178 bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType()); 11179 for (SDNode::use_iterator UI = N0->use_begin(), UE = N0->use_end(); UI != UE; 11180 ++UI) { 11181 SDNode *User = *UI; 11182 if (User == N) 11183 continue; 11184 if (UI.getUse().getResNo() != N0.getResNo()) 11185 continue; 11186 // FIXME: Only extend SETCC N, N and SETCC N, c for now. 11187 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { 11188 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); 11189 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) 11190 // Sign bits will be lost after a zext. 11191 return false; 11192 bool Add = false; 11193 for (unsigned i = 0; i != 2; ++i) { 11194 SDValue UseOp = User->getOperand(i); 11195 if (UseOp == N0) 11196 continue; 11197 if (!isa<ConstantSDNode>(UseOp)) 11198 return false; 11199 Add = true; 11200 } 11201 if (Add) 11202 ExtendNodes.push_back(User); 11203 continue; 11204 } 11205 // If truncates aren't free and there are users we can't 11206 // extend, it isn't worthwhile. 11207 if (!isTruncFree) 11208 return false; 11209 // Remember if this value is live-out. 11210 if (User->getOpcode() == ISD::CopyToReg) 11211 HasCopyToRegUses = true; 11212 } 11213 11214 if (HasCopyToRegUses) { 11215 bool BothLiveOut = false; 11216 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 11217 UI != UE; ++UI) { 11218 SDUse &Use = UI.getUse(); 11219 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { 11220 BothLiveOut = true; 11221 break; 11222 } 11223 } 11224 if (BothLiveOut) 11225 // Both unextended and extended values are live out. There had better be 11226 // a good reason for the transformation. 11227 return ExtendNodes.size(); 11228 } 11229 return true; 11230 } 11231 11232 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 11233 SDValue OrigLoad, SDValue ExtLoad, 11234 ISD::NodeType ExtType) { 11235 // Extend SetCC uses if necessary. 11236 SDLoc DL(ExtLoad); 11237 for (SDNode *SetCC : SetCCs) { 11238 SmallVector<SDValue, 4> Ops; 11239 11240 for (unsigned j = 0; j != 2; ++j) { 11241 SDValue SOp = SetCC->getOperand(j); 11242 if (SOp == OrigLoad) 11243 Ops.push_back(ExtLoad); 11244 else 11245 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); 11246 } 11247 11248 Ops.push_back(SetCC->getOperand(2)); 11249 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 11250 } 11251 } 11252 11253 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). 11254 SDValue DAGCombiner::CombineExtLoad(SDNode *N) { 11255 SDValue N0 = N->getOperand(0); 11256 EVT DstVT = N->getValueType(0); 11257 EVT SrcVT = N0.getValueType(); 11258 11259 assert((N->getOpcode() == ISD::SIGN_EXTEND || 11260 N->getOpcode() == ISD::ZERO_EXTEND) && 11261 "Unexpected node type (not an extend)!"); 11262 11263 // fold (sext (load x)) to multiple smaller sextloads; same for zext. 11264 // For example, on a target with legal v4i32, but illegal v8i32, turn: 11265 // (v8i32 (sext (v8i16 (load x)))) 11266 // into: 11267 // (v8i32 (concat_vectors (v4i32 (sextload x)), 11268 // (v4i32 (sextload (x + 16))))) 11269 // Where uses of the original load, i.e.: 11270 // (v8i16 (load x)) 11271 // are replaced with: 11272 // (v8i16 (truncate 11273 // (v8i32 (concat_vectors (v4i32 (sextload x)), 11274 // (v4i32 (sextload (x + 16))))))) 11275 // 11276 // This combine is only applicable to illegal, but splittable, vectors. 11277 // All legal types, and illegal non-vector types, are handled elsewhere. 11278 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. 11279 // 11280 if (N0->getOpcode() != ISD::LOAD) 11281 return SDValue(); 11282 11283 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11284 11285 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || 11286 !N0.hasOneUse() || !LN0->isSimple() || 11287 !DstVT.isVector() || !DstVT.isPow2VectorType() || 11288 !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 11289 return SDValue(); 11290 11291 SmallVector<SDNode *, 4> SetCCs; 11292 if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI)) 11293 return SDValue(); 11294 11295 ISD::LoadExtType ExtType = 11296 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 11297 11298 // Try to split the vector types to get down to legal types. 11299 EVT SplitSrcVT = SrcVT; 11300 EVT SplitDstVT = DstVT; 11301 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && 11302 SplitSrcVT.getVectorNumElements() > 1) { 11303 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; 11304 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; 11305 } 11306 11307 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) 11308 return SDValue(); 11309 11310 assert(!DstVT.isScalableVector() && "Unexpected scalable vector type"); 11311 11312 SDLoc DL(N); 11313 const unsigned NumSplits = 11314 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); 11315 const unsigned Stride = SplitSrcVT.getStoreSize(); 11316 SmallVector<SDValue, 4> Loads; 11317 SmallVector<SDValue, 4> Chains; 11318 11319 SDValue BasePtr = LN0->getBasePtr(); 11320 for (unsigned Idx = 0; Idx < NumSplits; Idx++) { 11321 const unsigned Offset = Idx * Stride; 11322 const Align Align = commonAlignment(LN0->getAlign(), Offset); 11323 11324 SDValue SplitLoad = DAG.getExtLoad( 11325 ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr, 11326 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, 11327 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 11328 11329 BasePtr = DAG.getMemBasePlusOffset(BasePtr, TypeSize::Fixed(Stride), DL); 11330 11331 Loads.push_back(SplitLoad.getValue(0)); 11332 Chains.push_back(SplitLoad.getValue(1)); 11333 } 11334 11335 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 11336 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); 11337 11338 // Simplify TF. 11339 AddToWorklist(NewChain.getNode()); 11340 11341 CombineTo(N, NewValue); 11342 11343 // Replace uses of the original load (before extension) 11344 // with a truncate of the concatenated sextloaded vectors. 11345 SDValue Trunc = 11346 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); 11347 ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode()); 11348 CombineTo(N0.getNode(), Trunc, NewChain); 11349 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11350 } 11351 11352 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> 11353 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) 11354 SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) { 11355 assert(N->getOpcode() == ISD::ZERO_EXTEND); 11356 EVT VT = N->getValueType(0); 11357 EVT OrigVT = N->getOperand(0).getValueType(); 11358 if (TLI.isZExtFree(OrigVT, VT)) 11359 return SDValue(); 11360 11361 // and/or/xor 11362 SDValue N0 = N->getOperand(0); 11363 if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 11364 N0.getOpcode() == ISD::XOR) || 11365 N0.getOperand(1).getOpcode() != ISD::Constant || 11366 (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT))) 11367 return SDValue(); 11368 11369 // shl/shr 11370 SDValue N1 = N0->getOperand(0); 11371 if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) || 11372 N1.getOperand(1).getOpcode() != ISD::Constant || 11373 (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT))) 11374 return SDValue(); 11375 11376 // load 11377 if (!isa<LoadSDNode>(N1.getOperand(0))) 11378 return SDValue(); 11379 LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0)); 11380 EVT MemVT = Load->getMemoryVT(); 11381 if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) || 11382 Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed()) 11383 return SDValue(); 11384 11385 11386 // If the shift op is SHL, the logic op must be AND, otherwise the result 11387 // will be wrong. 11388 if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND) 11389 return SDValue(); 11390 11391 if (!N0.hasOneUse() || !N1.hasOneUse()) 11392 return SDValue(); 11393 11394 SmallVector<SDNode*, 4> SetCCs; 11395 if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0), 11396 ISD::ZERO_EXTEND, SetCCs, TLI)) 11397 return SDValue(); 11398 11399 // Actually do the transformation. 11400 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT, 11401 Load->getChain(), Load->getBasePtr(), 11402 Load->getMemoryVT(), Load->getMemOperand()); 11403 11404 SDLoc DL1(N1); 11405 SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad, 11406 N1.getOperand(1)); 11407 11408 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 11409 SDLoc DL0(N0); 11410 SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift, 11411 DAG.getConstant(Mask, DL0, VT)); 11412 11413 ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); 11414 CombineTo(N, And); 11415 if (SDValue(Load, 0).hasOneUse()) { 11416 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1)); 11417 } else { 11418 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load), 11419 Load->getValueType(0), ExtLoad); 11420 CombineTo(Load, Trunc, ExtLoad.getValue(1)); 11421 } 11422 11423 // N0 is dead at this point. 11424 recursivelyDeleteUnusedNodes(N0.getNode()); 11425 11426 return SDValue(N,0); // Return N so it doesn't get rechecked! 11427 } 11428 11429 /// If we're narrowing or widening the result of a vector select and the final 11430 /// size is the same size as a setcc (compare) feeding the select, then try to 11431 /// apply the cast operation to the select's operands because matching vector 11432 /// sizes for a select condition and other operands should be more efficient. 11433 SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) { 11434 unsigned CastOpcode = Cast->getOpcode(); 11435 assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || 11436 CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || 11437 CastOpcode == ISD::FP_ROUND) && 11438 "Unexpected opcode for vector select narrowing/widening"); 11439 11440 // We only do this transform before legal ops because the pattern may be 11441 // obfuscated by target-specific operations after legalization. Do not create 11442 // an illegal select op, however, because that may be difficult to lower. 11443 EVT VT = Cast->getValueType(0); 11444 if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) 11445 return SDValue(); 11446 11447 SDValue VSel = Cast->getOperand(0); 11448 if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() || 11449 VSel.getOperand(0).getOpcode() != ISD::SETCC) 11450 return SDValue(); 11451 11452 // Does the setcc have the same vector size as the casted select? 11453 SDValue SetCC = VSel.getOperand(0); 11454 EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType()); 11455 if (SetCCVT.getSizeInBits() != VT.getSizeInBits()) 11456 return SDValue(); 11457 11458 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B) 11459 SDValue A = VSel.getOperand(1); 11460 SDValue B = VSel.getOperand(2); 11461 SDValue CastA, CastB; 11462 SDLoc DL(Cast); 11463 if (CastOpcode == ISD::FP_ROUND) { 11464 // FP_ROUND (fptrunc) has an extra flag operand to pass along. 11465 CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1)); 11466 CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1)); 11467 } else { 11468 CastA = DAG.getNode(CastOpcode, DL, VT, A); 11469 CastB = DAG.getNode(CastOpcode, DL, VT, B); 11470 } 11471 return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB); 11472 } 11473 11474 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) 11475 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) 11476 static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, 11477 const TargetLowering &TLI, EVT VT, 11478 bool LegalOperations, SDNode *N, 11479 SDValue N0, ISD::LoadExtType ExtLoadType) { 11480 SDNode *N0Node = N0.getNode(); 11481 bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node) 11482 : ISD::isZEXTLoad(N0Node); 11483 if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) || 11484 !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse()) 11485 return SDValue(); 11486 11487 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11488 EVT MemVT = LN0->getMemoryVT(); 11489 if ((LegalOperations || !LN0->isSimple() || 11490 VT.isVector()) && 11491 !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT)) 11492 return SDValue(); 11493 11494 SDValue ExtLoad = 11495 DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), 11496 LN0->getBasePtr(), MemVT, LN0->getMemOperand()); 11497 Combiner.CombineTo(N, ExtLoad); 11498 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 11499 if (LN0->use_empty()) 11500 Combiner.recursivelyDeleteUnusedNodes(LN0); 11501 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11502 } 11503 11504 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x))) 11505 // Only generate vector extloads when 1) they're legal, and 2) they are 11506 // deemed desirable by the target. 11507 static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, 11508 const TargetLowering &TLI, EVT VT, 11509 bool LegalOperations, SDNode *N, SDValue N0, 11510 ISD::LoadExtType ExtLoadType, 11511 ISD::NodeType ExtOpc) { 11512 if (!ISD::isNON_EXTLoad(N0.getNode()) || 11513 !ISD::isUNINDEXEDLoad(N0.getNode()) || 11514 ((LegalOperations || VT.isVector() || 11515 !cast<LoadSDNode>(N0)->isSimple()) && 11516 !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))) 11517 return {}; 11518 11519 bool DoXform = true; 11520 SmallVector<SDNode *, 4> SetCCs; 11521 if (!N0.hasOneUse()) 11522 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI); 11523 if (VT.isVector()) 11524 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 11525 if (!DoXform) 11526 return {}; 11527 11528 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11529 SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), 11530 LN0->getBasePtr(), N0.getValueType(), 11531 LN0->getMemOperand()); 11532 Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc); 11533 // If the load value is used only by N, replace it via CombineTo N. 11534 bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse(); 11535 Combiner.CombineTo(N, ExtLoad); 11536 if (NoReplaceTrunc) { 11537 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 11538 Combiner.recursivelyDeleteUnusedNodes(LN0); 11539 } else { 11540 SDValue Trunc = 11541 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); 11542 Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1)); 11543 } 11544 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11545 } 11546 11547 static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG, 11548 const TargetLowering &TLI, EVT VT, 11549 SDNode *N, SDValue N0, 11550 ISD::LoadExtType ExtLoadType, 11551 ISD::NodeType ExtOpc) { 11552 if (!N0.hasOneUse()) 11553 return SDValue(); 11554 11555 MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0); 11556 if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD) 11557 return SDValue(); 11558 11559 if (!TLI.isLoadExtLegalOrCustom(ExtLoadType, VT, Ld->getValueType(0))) 11560 return SDValue(); 11561 11562 if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 11563 return SDValue(); 11564 11565 SDLoc dl(Ld); 11566 SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru()); 11567 SDValue NewLoad = DAG.getMaskedLoad( 11568 VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(), 11569 PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(), 11570 ExtLoadType, Ld->isExpandingLoad()); 11571 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1)); 11572 return NewLoad; 11573 } 11574 11575 static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, 11576 bool LegalOperations) { 11577 assert((N->getOpcode() == ISD::SIGN_EXTEND || 11578 N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext"); 11579 11580 SDValue SetCC = N->getOperand(0); 11581 if (LegalOperations || SetCC.getOpcode() != ISD::SETCC || 11582 !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1) 11583 return SDValue(); 11584 11585 SDValue X = SetCC.getOperand(0); 11586 SDValue Ones = SetCC.getOperand(1); 11587 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); 11588 EVT VT = N->getValueType(0); 11589 EVT XVT = X.getValueType(); 11590 // setge X, C is canonicalized to setgt, so we do not need to match that 11591 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does 11592 // not require the 'not' op. 11593 if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) { 11594 // Invert and smear/shift the sign bit: 11595 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1) 11596 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1) 11597 SDLoc DL(N); 11598 unsigned ShCt = VT.getSizeInBits() - 1; 11599 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11600 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { 11601 SDValue NotX = DAG.getNOT(DL, X, VT); 11602 SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT); 11603 auto ShiftOpcode = 11604 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL; 11605 return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount); 11606 } 11607 } 11608 return SDValue(); 11609 } 11610 11611 SDValue DAGCombiner::foldSextSetcc(SDNode *N) { 11612 SDValue N0 = N->getOperand(0); 11613 if (N0.getOpcode() != ISD::SETCC) 11614 return SDValue(); 11615 11616 SDValue N00 = N0.getOperand(0); 11617 SDValue N01 = N0.getOperand(1); 11618 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 11619 EVT VT = N->getValueType(0); 11620 EVT N00VT = N00.getValueType(); 11621 SDLoc DL(N); 11622 11623 // On some architectures (such as SSE/NEON/etc) the SETCC result type is 11624 // the same size as the compared operands. Try to optimize sext(setcc()) 11625 // if this is the case. 11626 if (VT.isVector() && !LegalOperations && 11627 TLI.getBooleanContents(N00VT) == 11628 TargetLowering::ZeroOrNegativeOneBooleanContent) { 11629 EVT SVT = getSetCCResultType(N00VT); 11630 11631 // If we already have the desired type, don't change it. 11632 if (SVT != N0.getValueType()) { 11633 // We know that the # elements of the results is the same as the 11634 // # elements of the compare (and the # elements of the compare result 11635 // for that matter). Check to see that they are the same size. If so, 11636 // we know that the element size of the sext'd result matches the 11637 // element size of the compare operands. 11638 if (VT.getSizeInBits() == SVT.getSizeInBits()) 11639 return DAG.getSetCC(DL, VT, N00, N01, CC); 11640 11641 // If the desired elements are smaller or larger than the source 11642 // elements, we can use a matching integer vector type and then 11643 // truncate/sign extend. 11644 EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); 11645 if (SVT == MatchingVecType) { 11646 SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); 11647 return DAG.getSExtOrTrunc(VsetCC, DL, VT); 11648 } 11649 } 11650 11651 // Try to eliminate the sext of a setcc by zexting the compare operands. 11652 if (N0.hasOneUse() && TLI.isOperationLegalOrCustom(ISD::SETCC, VT) && 11653 !TLI.isOperationLegalOrCustom(ISD::SETCC, SVT)) { 11654 bool IsSignedCmp = ISD::isSignedIntSetCC(CC); 11655 unsigned LoadOpcode = IsSignedCmp ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 11656 unsigned ExtOpcode = IsSignedCmp ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 11657 11658 // We have an unsupported narrow vector compare op that would be legal 11659 // if extended to the destination type. See if the compare operands 11660 // can be freely extended to the destination type. 11661 auto IsFreeToExtend = [&](SDValue V) { 11662 if (isConstantOrConstantVector(V, /*NoOpaques*/ true)) 11663 return true; 11664 // Match a simple, non-extended load that can be converted to a 11665 // legal {z/s}ext-load. 11666 // TODO: Allow widening of an existing {z/s}ext-load? 11667 if (!(ISD::isNON_EXTLoad(V.getNode()) && 11668 ISD::isUNINDEXEDLoad(V.getNode()) && 11669 cast<LoadSDNode>(V)->isSimple() && 11670 TLI.isLoadExtLegal(LoadOpcode, VT, V.getValueType()))) 11671 return false; 11672 11673 // Non-chain users of this value must either be the setcc in this 11674 // sequence or extends that can be folded into the new {z/s}ext-load. 11675 for (SDNode::use_iterator UI = V->use_begin(), UE = V->use_end(); 11676 UI != UE; ++UI) { 11677 // Skip uses of the chain and the setcc. 11678 SDNode *User = *UI; 11679 if (UI.getUse().getResNo() != 0 || User == N0.getNode()) 11680 continue; 11681 // Extra users must have exactly the same cast we are about to create. 11682 // TODO: This restriction could be eased if ExtendUsesToFormExtLoad() 11683 // is enhanced similarly. 11684 if (User->getOpcode() != ExtOpcode || User->getValueType(0) != VT) 11685 return false; 11686 } 11687 return true; 11688 }; 11689 11690 if (IsFreeToExtend(N00) && IsFreeToExtend(N01)) { 11691 SDValue Ext0 = DAG.getNode(ExtOpcode, DL, VT, N00); 11692 SDValue Ext1 = DAG.getNode(ExtOpcode, DL, VT, N01); 11693 return DAG.getSetCC(DL, VT, Ext0, Ext1, CC); 11694 } 11695 } 11696 } 11697 11698 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) 11699 // Here, T can be 1 or -1, depending on the type of the setcc and 11700 // getBooleanContents(). 11701 unsigned SetCCWidth = N0.getScalarValueSizeInBits(); 11702 11703 // To determine the "true" side of the select, we need to know the high bit 11704 // of the value returned by the setcc if it evaluates to true. 11705 // If the type of the setcc is i1, then the true case of the select is just 11706 // sext(i1 1), that is, -1. 11707 // If the type of the setcc is larger (say, i8) then the value of the high 11708 // bit depends on getBooleanContents(), so ask TLI for a real "true" value 11709 // of the appropriate width. 11710 SDValue ExtTrueVal = (SetCCWidth == 1) 11711 ? DAG.getAllOnesConstant(DL, VT) 11712 : DAG.getBoolConstant(true, DL, VT, N00VT); 11713 SDValue Zero = DAG.getConstant(0, DL, VT); 11714 if (SDValue SCC = SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) 11715 return SCC; 11716 11717 if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) { 11718 EVT SetCCVT = getSetCCResultType(N00VT); 11719 // Don't do this transform for i1 because there's a select transform 11720 // that would reverse it. 11721 // TODO: We should not do this transform at all without a target hook 11722 // because a sext is likely cheaper than a select? 11723 if (SetCCVT.getScalarSizeInBits() != 1 && 11724 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { 11725 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); 11726 return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); 11727 } 11728 } 11729 11730 return SDValue(); 11731 } 11732 11733 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { 11734 SDValue N0 = N->getOperand(0); 11735 EVT VT = N->getValueType(0); 11736 SDLoc DL(N); 11737 11738 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11739 return Res; 11740 11741 // fold (sext (sext x)) -> (sext x) 11742 // fold (sext (aext x)) -> (sext x) 11743 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 11744 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); 11745 11746 if (N0.getOpcode() == ISD::TRUNCATE) { 11747 // fold (sext (truncate (load x))) -> (sext (smaller load x)) 11748 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) 11749 if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) { 11750 SDNode *oye = N0.getOperand(0).getNode(); 11751 if (NarrowLoad.getNode() != N0.getNode()) { 11752 CombineTo(N0.getNode(), NarrowLoad); 11753 // CombineTo deleted the truncate, if needed, but not what's under it. 11754 AddToWorklist(oye); 11755 } 11756 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11757 } 11758 11759 // See if the value being truncated is already sign extended. If so, just 11760 // eliminate the trunc/sext pair. 11761 SDValue Op = N0.getOperand(0); 11762 unsigned OpBits = Op.getScalarValueSizeInBits(); 11763 unsigned MidBits = N0.getScalarValueSizeInBits(); 11764 unsigned DestBits = VT.getScalarSizeInBits(); 11765 unsigned NumSignBits = DAG.ComputeNumSignBits(Op); 11766 11767 if (OpBits == DestBits) { 11768 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign 11769 // bits, it is already ready. 11770 if (NumSignBits > DestBits-MidBits) 11771 return Op; 11772 } else if (OpBits < DestBits) { 11773 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign 11774 // bits, just sext from i32. 11775 if (NumSignBits > OpBits-MidBits) 11776 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); 11777 } else { 11778 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign 11779 // bits, just truncate to i32. 11780 if (NumSignBits > OpBits-MidBits) 11781 return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 11782 } 11783 11784 // fold (sext (truncate x)) -> (sextinreg x). 11785 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, 11786 N0.getValueType())) { 11787 if (OpBits < DestBits) 11788 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); 11789 else if (OpBits > DestBits) 11790 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); 11791 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, 11792 DAG.getValueType(N0.getValueType())); 11793 } 11794 } 11795 11796 // Try to simplify (sext (load x)). 11797 if (SDValue foldedExt = 11798 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 11799 ISD::SEXTLOAD, ISD::SIGN_EXTEND)) 11800 return foldedExt; 11801 11802 if (SDValue foldedExt = 11803 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD, 11804 ISD::SIGN_EXTEND)) 11805 return foldedExt; 11806 11807 // fold (sext (load x)) to multiple smaller sextloads. 11808 // Only on illegal but splittable vectors. 11809 if (SDValue ExtLoad = CombineExtLoad(N)) 11810 return ExtLoad; 11811 11812 // Try to simplify (sext (sextload x)). 11813 if (SDValue foldedExt = tryToFoldExtOfExtload( 11814 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD)) 11815 return foldedExt; 11816 11817 // fold (sext (and/or/xor (load x), cst)) -> 11818 // (and/or/xor (sextload x), (sext cst)) 11819 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 11820 N0.getOpcode() == ISD::XOR) && 11821 isa<LoadSDNode>(N0.getOperand(0)) && 11822 N0.getOperand(1).getOpcode() == ISD::Constant && 11823 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 11824 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); 11825 EVT MemVT = LN00->getMemoryVT(); 11826 if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) && 11827 LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) { 11828 SmallVector<SDNode*, 4> SetCCs; 11829 bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), 11830 ISD::SIGN_EXTEND, SetCCs, TLI); 11831 if (DoXform) { 11832 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT, 11833 LN00->getChain(), LN00->getBasePtr(), 11834 LN00->getMemoryVT(), 11835 LN00->getMemOperand()); 11836 APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits()); 11837 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 11838 ExtLoad, DAG.getConstant(Mask, DL, VT)); 11839 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND); 11840 bool NoReplaceTruncAnd = !N0.hasOneUse(); 11841 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); 11842 CombineTo(N, And); 11843 // If N0 has multiple uses, change other uses as well. 11844 if (NoReplaceTruncAnd) { 11845 SDValue TruncAnd = 11846 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); 11847 CombineTo(N0.getNode(), TruncAnd); 11848 } 11849 if (NoReplaceTrunc) { 11850 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); 11851 } else { 11852 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), 11853 LN00->getValueType(0), ExtLoad); 11854 CombineTo(LN00, Trunc, ExtLoad.getValue(1)); 11855 } 11856 return SDValue(N,0); // Return N so it doesn't get rechecked! 11857 } 11858 } 11859 } 11860 11861 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) 11862 return V; 11863 11864 if (SDValue V = foldSextSetcc(N)) 11865 return V; 11866 11867 // fold (sext x) -> (zext x) if the sign bit is known zero. 11868 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && 11869 DAG.SignBitIsZero(N0)) 11870 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0); 11871 11872 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 11873 return NewVSel; 11874 11875 // Eliminate this sign extend by doing a negation in the destination type: 11876 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64) 11877 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && 11878 isNullOrNullSplat(N0.getOperand(0)) && 11879 N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND && 11880 TLI.isOperationLegalOrCustom(ISD::SUB, VT)) { 11881 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT); 11882 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext); 11883 } 11884 // Eliminate this sign extend by doing a decrement in the destination type: 11885 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1) 11886 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && 11887 isAllOnesOrAllOnesSplat(N0.getOperand(1)) && 11888 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 11889 TLI.isOperationLegalOrCustom(ISD::ADD, VT)) { 11890 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); 11891 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); 11892 } 11893 11894 // fold sext (not i1 X) -> add (zext i1 X), -1 11895 // TODO: This could be extended to handle bool vectors. 11896 if (N0.getValueType() == MVT::i1 && isBitwiseNot(N0) && N0.hasOneUse() && 11897 (!LegalOperations || (TLI.isOperationLegal(ISD::ZERO_EXTEND, VT) && 11898 TLI.isOperationLegal(ISD::ADD, VT)))) { 11899 // If we can eliminate the 'not', the sext form should be better 11900 if (SDValue NewXor = visitXOR(N0.getNode())) { 11901 // Returning N0 is a form of in-visit replacement that may have 11902 // invalidated N0. 11903 if (NewXor.getNode() == N0.getNode()) { 11904 // Return SDValue here as the xor should have already been replaced in 11905 // this sext. 11906 return SDValue(); 11907 } else { 11908 // Return a new sext with the new xor. 11909 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NewXor); 11910 } 11911 } 11912 11913 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 11914 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); 11915 } 11916 11917 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG)) 11918 return Res; 11919 11920 return SDValue(); 11921 } 11922 11923 // isTruncateOf - If N is a truncate of some other value, return true, record 11924 // the value being truncated in Op and which of Op's bits are zero/one in Known. 11925 // This function computes KnownBits to avoid a duplicated call to 11926 // computeKnownBits in the caller. 11927 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, 11928 KnownBits &Known) { 11929 if (N->getOpcode() == ISD::TRUNCATE) { 11930 Op = N->getOperand(0); 11931 Known = DAG.computeKnownBits(Op); 11932 return true; 11933 } 11934 11935 if (N.getOpcode() != ISD::SETCC || 11936 N.getValueType().getScalarType() != MVT::i1 || 11937 cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE) 11938 return false; 11939 11940 SDValue Op0 = N->getOperand(0); 11941 SDValue Op1 = N->getOperand(1); 11942 assert(Op0.getValueType() == Op1.getValueType()); 11943 11944 if (isNullOrNullSplat(Op0)) 11945 Op = Op1; 11946 else if (isNullOrNullSplat(Op1)) 11947 Op = Op0; 11948 else 11949 return false; 11950 11951 Known = DAG.computeKnownBits(Op); 11952 11953 return (Known.Zero | 1).isAllOnes(); 11954 } 11955 11956 /// Given an extending node with a pop-count operand, if the target does not 11957 /// support a pop-count in the narrow source type but does support it in the 11958 /// destination type, widen the pop-count to the destination type. 11959 static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG) { 11960 assert((Extend->getOpcode() == ISD::ZERO_EXTEND || 11961 Extend->getOpcode() == ISD::ANY_EXTEND) && "Expected extend op"); 11962 11963 SDValue CtPop = Extend->getOperand(0); 11964 if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse()) 11965 return SDValue(); 11966 11967 EVT VT = Extend->getValueType(0); 11968 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11969 if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) || 11970 !TLI.isOperationLegalOrCustom(ISD::CTPOP, VT)) 11971 return SDValue(); 11972 11973 // zext (ctpop X) --> ctpop (zext X) 11974 SDLoc DL(Extend); 11975 SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT); 11976 return DAG.getNode(ISD::CTPOP, DL, VT, NewZext); 11977 } 11978 11979 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { 11980 SDValue N0 = N->getOperand(0); 11981 EVT VT = N->getValueType(0); 11982 11983 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11984 return Res; 11985 11986 // fold (zext (zext x)) -> (zext x) 11987 // fold (zext (aext x)) -> (zext x) 11988 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 11989 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, 11990 N0.getOperand(0)); 11991 11992 // fold (zext (truncate x)) -> (zext x) or 11993 // (zext (truncate x)) -> (truncate x) 11994 // This is valid when the truncated bits of x are already zero. 11995 SDValue Op; 11996 KnownBits Known; 11997 if (isTruncateOf(DAG, N0, Op, Known)) { 11998 APInt TruncatedBits = 11999 (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ? 12000 APInt(Op.getScalarValueSizeInBits(), 0) : 12001 APInt::getBitsSet(Op.getScalarValueSizeInBits(), 12002 N0.getScalarValueSizeInBits(), 12003 std::min(Op.getScalarValueSizeInBits(), 12004 VT.getScalarSizeInBits())); 12005 if (TruncatedBits.isSubsetOf(Known.Zero)) 12006 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 12007 } 12008 12009 // fold (zext (truncate x)) -> (and x, mask) 12010 if (N0.getOpcode() == ISD::TRUNCATE) { 12011 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 12012 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) 12013 if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) { 12014 SDNode *oye = N0.getOperand(0).getNode(); 12015 if (NarrowLoad.getNode() != N0.getNode()) { 12016 CombineTo(N0.getNode(), NarrowLoad); 12017 // CombineTo deleted the truncate, if needed, but not what's under it. 12018 AddToWorklist(oye); 12019 } 12020 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12021 } 12022 12023 EVT SrcVT = N0.getOperand(0).getValueType(); 12024 EVT MinVT = N0.getValueType(); 12025 12026 // Try to mask before the extension to avoid having to generate a larger mask, 12027 // possibly over several sub-vectors. 12028 if (SrcVT.bitsLT(VT) && VT.isVector()) { 12029 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && 12030 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { 12031 SDValue Op = N0.getOperand(0); 12032 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); 12033 AddToWorklist(Op.getNode()); 12034 SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 12035 // Transfer the debug info; the new node is equivalent to N0. 12036 DAG.transferDbgValues(N0, ZExtOrTrunc); 12037 return ZExtOrTrunc; 12038 } 12039 } 12040 12041 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { 12042 SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); 12043 AddToWorklist(Op.getNode()); 12044 SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); 12045 // We may safely transfer the debug info describing the truncate node over 12046 // to the equivalent and operation. 12047 DAG.transferDbgValues(N0, And); 12048 return And; 12049 } 12050 } 12051 12052 // Fold (zext (and (trunc x), cst)) -> (and x, cst), 12053 // if either of the casts is not free. 12054 if (N0.getOpcode() == ISD::AND && 12055 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 12056 N0.getOperand(1).getOpcode() == ISD::Constant && 12057 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 12058 N0.getValueType()) || 12059 !TLI.isZExtFree(N0.getValueType(), VT))) { 12060 SDValue X = N0.getOperand(0).getOperand(0); 12061 X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT); 12062 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 12063 SDLoc DL(N); 12064 return DAG.getNode(ISD::AND, DL, VT, 12065 X, DAG.getConstant(Mask, DL, VT)); 12066 } 12067 12068 // Try to simplify (zext (load x)). 12069 if (SDValue foldedExt = 12070 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 12071 ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) 12072 return foldedExt; 12073 12074 if (SDValue foldedExt = 12075 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD, 12076 ISD::ZERO_EXTEND)) 12077 return foldedExt; 12078 12079 // fold (zext (load x)) to multiple smaller zextloads. 12080 // Only on illegal but splittable vectors. 12081 if (SDValue ExtLoad = CombineExtLoad(N)) 12082 return ExtLoad; 12083 12084 // fold (zext (and/or/xor (load x), cst)) -> 12085 // (and/or/xor (zextload x), (zext cst)) 12086 // Unless (and (load x) cst) will match as a zextload already and has 12087 // additional users. 12088 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 12089 N0.getOpcode() == ISD::XOR) && 12090 isa<LoadSDNode>(N0.getOperand(0)) && 12091 N0.getOperand(1).getOpcode() == ISD::Constant && 12092 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 12093 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); 12094 EVT MemVT = LN00->getMemoryVT(); 12095 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) && 12096 LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) { 12097 bool DoXform = true; 12098 SmallVector<SDNode*, 4> SetCCs; 12099 if (!N0.hasOneUse()) { 12100 if (N0.getOpcode() == ISD::AND) { 12101 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); 12102 EVT LoadResultTy = AndC->getValueType(0); 12103 EVT ExtVT; 12104 if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT)) 12105 DoXform = false; 12106 } 12107 } 12108 if (DoXform) 12109 DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), 12110 ISD::ZERO_EXTEND, SetCCs, TLI); 12111 if (DoXform) { 12112 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT, 12113 LN00->getChain(), LN00->getBasePtr(), 12114 LN00->getMemoryVT(), 12115 LN00->getMemOperand()); 12116 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 12117 SDLoc DL(N); 12118 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 12119 ExtLoad, DAG.getConstant(Mask, DL, VT)); 12120 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); 12121 bool NoReplaceTruncAnd = !N0.hasOneUse(); 12122 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); 12123 CombineTo(N, And); 12124 // If N0 has multiple uses, change other uses as well. 12125 if (NoReplaceTruncAnd) { 12126 SDValue TruncAnd = 12127 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); 12128 CombineTo(N0.getNode(), TruncAnd); 12129 } 12130 if (NoReplaceTrunc) { 12131 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); 12132 } else { 12133 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), 12134 LN00->getValueType(0), ExtLoad); 12135 CombineTo(LN00, Trunc, ExtLoad.getValue(1)); 12136 } 12137 return SDValue(N,0); // Return N so it doesn't get rechecked! 12138 } 12139 } 12140 } 12141 12142 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> 12143 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) 12144 if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N)) 12145 return ZExtLoad; 12146 12147 // Try to simplify (zext (zextload x)). 12148 if (SDValue foldedExt = tryToFoldExtOfExtload( 12149 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD)) 12150 return foldedExt; 12151 12152 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) 12153 return V; 12154 12155 if (N0.getOpcode() == ISD::SETCC) { 12156 // Only do this before legalize for now. 12157 if (!LegalOperations && VT.isVector() && 12158 N0.getValueType().getVectorElementType() == MVT::i1) { 12159 EVT N00VT = N0.getOperand(0).getValueType(); 12160 if (getSetCCResultType(N00VT) == N0.getValueType()) 12161 return SDValue(); 12162 12163 // We know that the # elements of the results is the same as the # 12164 // elements of the compare (and the # elements of the compare result for 12165 // that matter). Check to see that they are the same size. If so, we know 12166 // that the element size of the sext'd result matches the element size of 12167 // the compare operands. 12168 SDLoc DL(N); 12169 if (VT.getSizeInBits() == N00VT.getSizeInBits()) { 12170 // zext(setcc) -> zext_in_reg(vsetcc) for vectors. 12171 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), 12172 N0.getOperand(1), N0.getOperand(2)); 12173 return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType()); 12174 } 12175 12176 // If the desired elements are smaller or larger than the source 12177 // elements we can use a matching integer vector type and then 12178 // truncate/any extend followed by zext_in_reg. 12179 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); 12180 SDValue VsetCC = 12181 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), 12182 N0.getOperand(1), N0.getOperand(2)); 12183 return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL, 12184 N0.getValueType()); 12185 } 12186 12187 // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc) 12188 SDLoc DL(N); 12189 EVT N0VT = N0.getValueType(); 12190 EVT N00VT = N0.getOperand(0).getValueType(); 12191 if (SDValue SCC = SimplifySelectCC( 12192 DL, N0.getOperand(0), N0.getOperand(1), 12193 DAG.getBoolConstant(true, DL, N0VT, N00VT), 12194 DAG.getBoolConstant(false, DL, N0VT, N00VT), 12195 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 12196 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, SCC); 12197 } 12198 12199 // (zext (shl (zext x), cst)) -> (shl (zext x), cst) 12200 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && 12201 isa<ConstantSDNode>(N0.getOperand(1)) && 12202 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 12203 N0.hasOneUse()) { 12204 SDValue ShAmt = N0.getOperand(1); 12205 if (N0.getOpcode() == ISD::SHL) { 12206 SDValue InnerZExt = N0.getOperand(0); 12207 // If the original shl may be shifting out bits, do not perform this 12208 // transformation. 12209 unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - 12210 InnerZExt.getOperand(0).getValueSizeInBits(); 12211 if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits)) 12212 return SDValue(); 12213 } 12214 12215 SDLoc DL(N); 12216 12217 // Ensure that the shift amount is wide enough for the shifted value. 12218 if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits()) 12219 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); 12220 12221 return DAG.getNode(N0.getOpcode(), DL, VT, 12222 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), 12223 ShAmt); 12224 } 12225 12226 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 12227 return NewVSel; 12228 12229 if (SDValue NewCtPop = widenCtPop(N, DAG)) 12230 return NewCtPop; 12231 12232 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG)) 12233 return Res; 12234 12235 return SDValue(); 12236 } 12237 12238 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { 12239 SDValue N0 = N->getOperand(0); 12240 EVT VT = N->getValueType(0); 12241 12242 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 12243 return Res; 12244 12245 // fold (aext (aext x)) -> (aext x) 12246 // fold (aext (zext x)) -> (zext x) 12247 // fold (aext (sext x)) -> (sext x) 12248 if (N0.getOpcode() == ISD::ANY_EXTEND || 12249 N0.getOpcode() == ISD::ZERO_EXTEND || 12250 N0.getOpcode() == ISD::SIGN_EXTEND) 12251 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 12252 12253 // fold (aext (truncate (load x))) -> (aext (smaller load x)) 12254 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) 12255 if (N0.getOpcode() == ISD::TRUNCATE) { 12256 if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) { 12257 SDNode *oye = N0.getOperand(0).getNode(); 12258 if (NarrowLoad.getNode() != N0.getNode()) { 12259 CombineTo(N0.getNode(), NarrowLoad); 12260 // CombineTo deleted the truncate, if needed, but not what's under it. 12261 AddToWorklist(oye); 12262 } 12263 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12264 } 12265 } 12266 12267 // fold (aext (truncate x)) 12268 if (N0.getOpcode() == ISD::TRUNCATE) 12269 return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); 12270 12271 // Fold (aext (and (trunc x), cst)) -> (and x, cst) 12272 // if the trunc is not free. 12273 if (N0.getOpcode() == ISD::AND && 12274 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 12275 N0.getOperand(1).getOpcode() == ISD::Constant && 12276 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 12277 N0.getValueType())) { 12278 SDLoc DL(N); 12279 SDValue X = DAG.getAnyExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); 12280 SDValue Y = DAG.getNode(ISD::ANY_EXTEND, DL, VT, N0.getOperand(1)); 12281 assert(isa<ConstantSDNode>(Y) && "Expected constant to be folded!"); 12282 return DAG.getNode(ISD::AND, DL, VT, X, Y); 12283 } 12284 12285 // fold (aext (load x)) -> (aext (truncate (extload x))) 12286 // None of the supported targets knows how to perform load and any_ext 12287 // on vectors in one instruction, so attempt to fold to zext instead. 12288 if (VT.isVector()) { 12289 // Try to simplify (zext (load x)). 12290 if (SDValue foldedExt = 12291 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 12292 ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) 12293 return foldedExt; 12294 } else if (ISD::isNON_EXTLoad(N0.getNode()) && 12295 ISD::isUNINDEXEDLoad(N0.getNode()) && 12296 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 12297 bool DoXform = true; 12298 SmallVector<SDNode *, 4> SetCCs; 12299 if (!N0.hasOneUse()) 12300 DoXform = 12301 ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, TLI); 12302 if (DoXform) { 12303 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12304 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 12305 LN0->getChain(), LN0->getBasePtr(), 12306 N0.getValueType(), LN0->getMemOperand()); 12307 ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND); 12308 // If the load value is used only by N, replace it via CombineTo N. 12309 bool NoReplaceTrunc = N0.hasOneUse(); 12310 CombineTo(N, ExtLoad); 12311 if (NoReplaceTrunc) { 12312 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 12313 recursivelyDeleteUnusedNodes(LN0); 12314 } else { 12315 SDValue Trunc = 12316 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); 12317 CombineTo(LN0, Trunc, ExtLoad.getValue(1)); 12318 } 12319 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12320 } 12321 } 12322 12323 // fold (aext (zextload x)) -> (aext (truncate (zextload x))) 12324 // fold (aext (sextload x)) -> (aext (truncate (sextload x))) 12325 // fold (aext ( extload x)) -> (aext (truncate (extload x))) 12326 if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && 12327 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 12328 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12329 ISD::LoadExtType ExtType = LN0->getExtensionType(); 12330 EVT MemVT = LN0->getMemoryVT(); 12331 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { 12332 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), 12333 VT, LN0->getChain(), LN0->getBasePtr(), 12334 MemVT, LN0->getMemOperand()); 12335 CombineTo(N, ExtLoad); 12336 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 12337 recursivelyDeleteUnusedNodes(LN0); 12338 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12339 } 12340 } 12341 12342 if (N0.getOpcode() == ISD::SETCC) { 12343 // For vectors: 12344 // aext(setcc) -> vsetcc 12345 // aext(setcc) -> truncate(vsetcc) 12346 // aext(setcc) -> aext(vsetcc) 12347 // Only do this before legalize for now. 12348 if (VT.isVector() && !LegalOperations) { 12349 EVT N00VT = N0.getOperand(0).getValueType(); 12350 if (getSetCCResultType(N00VT) == N0.getValueType()) 12351 return SDValue(); 12352 12353 // We know that the # elements of the results is the same as the 12354 // # elements of the compare (and the # elements of the compare result 12355 // for that matter). Check to see that they are the same size. If so, 12356 // we know that the element size of the sext'd result matches the 12357 // element size of the compare operands. 12358 if (VT.getSizeInBits() == N00VT.getSizeInBits()) 12359 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 12360 N0.getOperand(1), 12361 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 12362 12363 // If the desired elements are smaller or larger than the source 12364 // elements we can use a matching integer vector type and then 12365 // truncate/any extend 12366 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); 12367 SDValue VsetCC = 12368 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 12369 N0.getOperand(1), 12370 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 12371 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); 12372 } 12373 12374 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 12375 SDLoc DL(N); 12376 if (SDValue SCC = SimplifySelectCC( 12377 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 12378 DAG.getConstant(0, DL, VT), 12379 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 12380 return SCC; 12381 } 12382 12383 if (SDValue NewCtPop = widenCtPop(N, DAG)) 12384 return NewCtPop; 12385 12386 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG)) 12387 return Res; 12388 12389 return SDValue(); 12390 } 12391 12392 SDValue DAGCombiner::visitAssertExt(SDNode *N) { 12393 unsigned Opcode = N->getOpcode(); 12394 SDValue N0 = N->getOperand(0); 12395 SDValue N1 = N->getOperand(1); 12396 EVT AssertVT = cast<VTSDNode>(N1)->getVT(); 12397 12398 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt) 12399 if (N0.getOpcode() == Opcode && 12400 AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) 12401 return N0; 12402 12403 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 12404 N0.getOperand(0).getOpcode() == Opcode) { 12405 // We have an assert, truncate, assert sandwich. Make one stronger assert 12406 // by asserting on the smallest asserted type to the larger source type. 12407 // This eliminates the later assert: 12408 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN 12409 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN 12410 SDValue BigA = N0.getOperand(0); 12411 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); 12412 assert(BigA_AssertVT.bitsLE(N0.getValueType()) && 12413 "Asserting zero/sign-extended bits to a type larger than the " 12414 "truncated destination does not provide information"); 12415 12416 SDLoc DL(N); 12417 EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT; 12418 SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT); 12419 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), 12420 BigA.getOperand(0), MinAssertVTVal); 12421 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); 12422 } 12423 12424 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller 12425 // than X. Just move the AssertZext in front of the truncate and drop the 12426 // AssertSExt. 12427 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 12428 N0.getOperand(0).getOpcode() == ISD::AssertSext && 12429 Opcode == ISD::AssertZext) { 12430 SDValue BigA = N0.getOperand(0); 12431 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); 12432 assert(BigA_AssertVT.bitsLE(N0.getValueType()) && 12433 "Asserting zero/sign-extended bits to a type larger than the " 12434 "truncated destination does not provide information"); 12435 12436 if (AssertVT.bitsLT(BigA_AssertVT)) { 12437 SDLoc DL(N); 12438 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), 12439 BigA.getOperand(0), N1); 12440 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); 12441 } 12442 } 12443 12444 return SDValue(); 12445 } 12446 12447 SDValue DAGCombiner::visitAssertAlign(SDNode *N) { 12448 SDLoc DL(N); 12449 12450 Align AL = cast<AssertAlignSDNode>(N)->getAlign(); 12451 SDValue N0 = N->getOperand(0); 12452 12453 // Fold (assertalign (assertalign x, AL0), AL1) -> 12454 // (assertalign x, max(AL0, AL1)) 12455 if (auto *AAN = dyn_cast<AssertAlignSDNode>(N0)) 12456 return DAG.getAssertAlign(DL, N0.getOperand(0), 12457 std::max(AL, AAN->getAlign())); 12458 12459 // In rare cases, there are trivial arithmetic ops in source operands. Sink 12460 // this assert down to source operands so that those arithmetic ops could be 12461 // exposed to the DAG combining. 12462 switch (N0.getOpcode()) { 12463 default: 12464 break; 12465 case ISD::ADD: 12466 case ISD::SUB: { 12467 unsigned AlignShift = Log2(AL); 12468 SDValue LHS = N0.getOperand(0); 12469 SDValue RHS = N0.getOperand(1); 12470 unsigned LHSAlignShift = DAG.computeKnownBits(LHS).countMinTrailingZeros(); 12471 unsigned RHSAlignShift = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 12472 if (LHSAlignShift >= AlignShift || RHSAlignShift >= AlignShift) { 12473 if (LHSAlignShift < AlignShift) 12474 LHS = DAG.getAssertAlign(DL, LHS, AL); 12475 if (RHSAlignShift < AlignShift) 12476 RHS = DAG.getAssertAlign(DL, RHS, AL); 12477 return DAG.getNode(N0.getOpcode(), DL, N0.getValueType(), LHS, RHS); 12478 } 12479 break; 12480 } 12481 } 12482 12483 return SDValue(); 12484 } 12485 12486 /// If the result of a load is shifted/masked/truncated to an effectively 12487 /// narrower type, try to transform the load to a narrower type and/or 12488 /// use an extending load. 12489 SDValue DAGCombiner::reduceLoadWidth(SDNode *N) { 12490 unsigned Opc = N->getOpcode(); 12491 12492 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 12493 SDValue N0 = N->getOperand(0); 12494 EVT VT = N->getValueType(0); 12495 EVT ExtVT = VT; 12496 12497 // This transformation isn't valid for vector loads. 12498 if (VT.isVector()) 12499 return SDValue(); 12500 12501 // The ShAmt variable is used to indicate that we've consumed a right 12502 // shift. I.e. we want to narrow the width of the load by skipping to load the 12503 // ShAmt least significant bits. 12504 unsigned ShAmt = 0; 12505 // A special case is when the least significant bits from the load are masked 12506 // away, but using an AND rather than a right shift. HasShiftedOffset is used 12507 // to indicate that the narrowed load should be left-shifted ShAmt bits to get 12508 // the result. 12509 bool HasShiftedOffset = false; 12510 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then 12511 // extended to VT. 12512 if (Opc == ISD::SIGN_EXTEND_INREG) { 12513 ExtType = ISD::SEXTLOAD; 12514 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 12515 } else if (Opc == ISD::SRL || Opc == ISD::SRA) { 12516 // Another special-case: SRL/SRA is basically zero/sign-extending a narrower 12517 // value, or it may be shifting a higher subword, half or byte into the 12518 // lowest bits. 12519 12520 // Only handle shift with constant shift amount, and the shiftee must be a 12521 // load. 12522 auto *LN = dyn_cast<LoadSDNode>(N0); 12523 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 12524 if (!N1C || !LN) 12525 return SDValue(); 12526 // If the shift amount is larger than the memory type then we're not 12527 // accessing any of the loaded bytes. 12528 ShAmt = N1C->getZExtValue(); 12529 uint64_t MemoryWidth = LN->getMemoryVT().getScalarSizeInBits(); 12530 if (MemoryWidth <= ShAmt) 12531 return SDValue(); 12532 // Attempt to fold away the SRL by using ZEXTLOAD and SRA by using SEXTLOAD. 12533 ExtType = Opc == ISD::SRL ? ISD::ZEXTLOAD : ISD::SEXTLOAD; 12534 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShAmt); 12535 // If original load is a SEXTLOAD then we can't simply replace it by a 12536 // ZEXTLOAD (we could potentially replace it by a more narrow SEXTLOAD 12537 // followed by a ZEXT, but that is not handled at the moment). Similarly if 12538 // the original load is a ZEXTLOAD and we want to use a SEXTLOAD. 12539 if ((LN->getExtensionType() == ISD::SEXTLOAD || 12540 LN->getExtensionType() == ISD::ZEXTLOAD) && 12541 LN->getExtensionType() != ExtType) 12542 return SDValue(); 12543 } else if (Opc == ISD::AND) { 12544 // An AND with a constant mask is the same as a truncate + zero-extend. 12545 auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1)); 12546 if (!AndC) 12547 return SDValue(); 12548 12549 const APInt &Mask = AndC->getAPIntValue(); 12550 unsigned ActiveBits = 0; 12551 if (Mask.isMask()) { 12552 ActiveBits = Mask.countTrailingOnes(); 12553 } else if (Mask.isShiftedMask(ShAmt, ActiveBits)) { 12554 HasShiftedOffset = true; 12555 } else 12556 return SDValue(); 12557 12558 ExtType = ISD::ZEXTLOAD; 12559 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 12560 } 12561 12562 // In case Opc==SRL we've already prepared ExtVT/ExtType/ShAmt based on doing 12563 // a right shift. Here we redo some of those checks, to possibly adjust the 12564 // ExtVT even further based on "a masking AND". We could also end up here for 12565 // other reasons (e.g. based on Opc==TRUNCATE) and that is why some checks 12566 // need to be done here as well. 12567 if (Opc == ISD::SRL || N0.getOpcode() == ISD::SRL) { 12568 SDValue SRL = Opc == ISD::SRL ? SDValue(N, 0) : N0; 12569 // Bail out when the SRL has more than one use. This is done for historical 12570 // (undocumented) reasons. Maybe intent was to guard the AND-masking below 12571 // check below? And maybe it could be non-profitable to do the transform in 12572 // case the SRL has multiple uses and we get here with Opc!=ISD::SRL? 12573 // FIXME: Can't we just skip this check for the Opc==ISD::SRL case. 12574 if (!SRL.hasOneUse()) 12575 return SDValue(); 12576 12577 // Only handle shift with constant shift amount, and the shiftee must be a 12578 // load. 12579 auto *LN = dyn_cast<LoadSDNode>(SRL.getOperand(0)); 12580 auto *SRL1C = dyn_cast<ConstantSDNode>(SRL.getOperand(1)); 12581 if (!SRL1C || !LN) 12582 return SDValue(); 12583 12584 // If the shift amount is larger than the input type then we're not 12585 // accessing any of the loaded bytes. If the load was a zextload/extload 12586 // then the result of the shift+trunc is zero/undef (handled elsewhere). 12587 ShAmt = SRL1C->getZExtValue(); 12588 uint64_t MemoryWidth = LN->getMemoryVT().getSizeInBits(); 12589 if (ShAmt >= MemoryWidth) 12590 return SDValue(); 12591 12592 // Because a SRL must be assumed to *need* to zero-extend the high bits 12593 // (as opposed to anyext the high bits), we can't combine the zextload 12594 // lowering of SRL and an sextload. 12595 if (LN->getExtensionType() == ISD::SEXTLOAD) 12596 return SDValue(); 12597 12598 // Avoid reading outside the memory accessed by the original load (could 12599 // happened if we only adjust the load base pointer by ShAmt). Instead we 12600 // try to narrow the load even further. The typical scenario here is: 12601 // (i64 (truncate (i96 (srl (load x), 64)))) -> 12602 // (i64 (truncate (i96 (zextload (load i32 + offset) from i32)))) 12603 if (ExtVT.getScalarSizeInBits() > MemoryWidth - ShAmt) { 12604 // Don't replace sextload by zextload. 12605 if (ExtType == ISD::SEXTLOAD) 12606 return SDValue(); 12607 // Narrow the load. 12608 ExtType = ISD::ZEXTLOAD; 12609 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShAmt); 12610 } 12611 12612 // If the SRL is only used by a masking AND, we may be able to adjust 12613 // the ExtVT to make the AND redundant. 12614 SDNode *Mask = *(SRL->use_begin()); 12615 if (SRL.hasOneUse() && Mask->getOpcode() == ISD::AND && 12616 isa<ConstantSDNode>(Mask->getOperand(1))) { 12617 const APInt& ShiftMask = Mask->getConstantOperandAPInt(1); 12618 if (ShiftMask.isMask()) { 12619 EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), 12620 ShiftMask.countTrailingOnes()); 12621 // If the mask is smaller, recompute the type. 12622 if ((ExtVT.getScalarSizeInBits() > MaskedVT.getScalarSizeInBits()) && 12623 TLI.isLoadExtLegal(ExtType, SRL.getValueType(), MaskedVT)) 12624 ExtVT = MaskedVT; 12625 } 12626 } 12627 12628 N0 = SRL.getOperand(0); 12629 } 12630 12631 // If the load is shifted left (and the result isn't shifted back right), we 12632 // can fold a truncate through the shift. The typical scenario is that N 12633 // points at a TRUNCATE here so the attempted fold is: 12634 // (truncate (shl (load x), c))) -> (shl (narrow load x), c) 12635 // ShLeftAmt will indicate how much a narrowed load should be shifted left. 12636 unsigned ShLeftAmt = 0; 12637 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 12638 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { 12639 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 12640 ShLeftAmt = N01->getZExtValue(); 12641 N0 = N0.getOperand(0); 12642 } 12643 } 12644 12645 // If we haven't found a load, we can't narrow it. 12646 if (!isa<LoadSDNode>(N0)) 12647 return SDValue(); 12648 12649 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12650 // Reducing the width of a volatile load is illegal. For atomics, we may be 12651 // able to reduce the width provided we never widen again. (see D66309) 12652 if (!LN0->isSimple() || 12653 !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt)) 12654 return SDValue(); 12655 12656 auto AdjustBigEndianShift = [&](unsigned ShAmt) { 12657 unsigned LVTStoreBits = 12658 LN0->getMemoryVT().getStoreSizeInBits().getFixedSize(); 12659 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits().getFixedSize(); 12660 return LVTStoreBits - EVTStoreBits - ShAmt; 12661 }; 12662 12663 // We need to adjust the pointer to the load by ShAmt bits in order to load 12664 // the correct bytes. 12665 unsigned PtrAdjustmentInBits = 12666 DAG.getDataLayout().isBigEndian() ? AdjustBigEndianShift(ShAmt) : ShAmt; 12667 12668 uint64_t PtrOff = PtrAdjustmentInBits / 8; 12669 Align NewAlign = commonAlignment(LN0->getAlign(), PtrOff); 12670 SDLoc DL(LN0); 12671 // The original load itself didn't wrap, so an offset within it doesn't. 12672 SDNodeFlags Flags; 12673 Flags.setNoUnsignedWrap(true); 12674 SDValue NewPtr = DAG.getMemBasePlusOffset(LN0->getBasePtr(), 12675 TypeSize::Fixed(PtrOff), DL, Flags); 12676 AddToWorklist(NewPtr.getNode()); 12677 12678 SDValue Load; 12679 if (ExtType == ISD::NON_EXTLOAD) 12680 Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr, 12681 LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, 12682 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 12683 else 12684 Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr, 12685 LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, 12686 NewAlign, LN0->getMemOperand()->getFlags(), 12687 LN0->getAAInfo()); 12688 12689 // Replace the old load's chain with the new load's chain. 12690 WorklistRemover DeadNodes(*this); 12691 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 12692 12693 // Shift the result left, if we've swallowed a left shift. 12694 SDValue Result = Load; 12695 if (ShLeftAmt != 0) { 12696 EVT ShImmTy = getShiftAmountTy(Result.getValueType()); 12697 if (!isUIntN(ShImmTy.getScalarSizeInBits(), ShLeftAmt)) 12698 ShImmTy = VT; 12699 // If the shift amount is as large as the result size (but, presumably, 12700 // no larger than the source) then the useful bits of the result are 12701 // zero; we can't simply return the shortened shift, because the result 12702 // of that operation is undefined. 12703 if (ShLeftAmt >= VT.getScalarSizeInBits()) 12704 Result = DAG.getConstant(0, DL, VT); 12705 else 12706 Result = DAG.getNode(ISD::SHL, DL, VT, 12707 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); 12708 } 12709 12710 if (HasShiftedOffset) { 12711 // We're using a shifted mask, so the load now has an offset. This means 12712 // that data has been loaded into the lower bytes than it would have been 12713 // before, so we need to shl the loaded data into the correct position in the 12714 // register. 12715 SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT); 12716 Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC); 12717 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 12718 } 12719 12720 // Return the new loaded value. 12721 return Result; 12722 } 12723 12724 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { 12725 SDValue N0 = N->getOperand(0); 12726 SDValue N1 = N->getOperand(1); 12727 EVT VT = N->getValueType(0); 12728 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 12729 unsigned VTBits = VT.getScalarSizeInBits(); 12730 unsigned ExtVTBits = ExtVT.getScalarSizeInBits(); 12731 12732 // sext_vector_inreg(undef) = 0 because the top bit will all be the same. 12733 if (N0.isUndef()) 12734 return DAG.getConstant(0, SDLoc(N), VT); 12735 12736 // fold (sext_in_reg c1) -> c1 12737 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 12738 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); 12739 12740 // If the input is already sign extended, just drop the extension. 12741 if (ExtVTBits >= DAG.ComputeMaxSignificantBits(N0)) 12742 return N0; 12743 12744 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 12745 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 12746 ExtVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) 12747 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0.getOperand(0), 12748 N1); 12749 12750 // fold (sext_in_reg (sext x)) -> (sext x) 12751 // fold (sext_in_reg (aext x)) -> (sext x) 12752 // if x is small enough or if we know that x has more than 1 sign bit and the 12753 // sign_extend_inreg is extending from one of them. 12754 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { 12755 SDValue N00 = N0.getOperand(0); 12756 unsigned N00Bits = N00.getScalarValueSizeInBits(); 12757 if ((N00Bits <= ExtVTBits || 12758 DAG.ComputeMaxSignificantBits(N00) <= ExtVTBits) && 12759 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 12760 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00); 12761 } 12762 12763 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x) 12764 // if x is small enough or if we know that x has more than 1 sign bit and the 12765 // sign_extend_inreg is extending from one of them. 12766 if (N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || 12767 N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || 12768 N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 12769 SDValue N00 = N0.getOperand(0); 12770 unsigned N00Bits = N00.getScalarValueSizeInBits(); 12771 unsigned DstElts = N0.getValueType().getVectorMinNumElements(); 12772 unsigned SrcElts = N00.getValueType().getVectorMinNumElements(); 12773 bool IsZext = N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 12774 APInt DemandedSrcElts = APInt::getLowBitsSet(SrcElts, DstElts); 12775 if ((N00Bits == ExtVTBits || 12776 (!IsZext && (N00Bits < ExtVTBits || 12777 DAG.ComputeMaxSignificantBits(N00) <= ExtVTBits))) && 12778 (!LegalOperations || 12779 TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT))) 12780 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, N00); 12781 } 12782 12783 // fold (sext_in_reg (zext x)) -> (sext x) 12784 // iff we are extending the source sign bit. 12785 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 12786 SDValue N00 = N0.getOperand(0); 12787 if (N00.getScalarValueSizeInBits() == ExtVTBits && 12788 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 12789 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); 12790 } 12791 12792 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. 12793 if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, ExtVTBits - 1))) 12794 return DAG.getZeroExtendInReg(N0, SDLoc(N), ExtVT); 12795 12796 // fold operands of sext_in_reg based on knowledge that the top bits are not 12797 // demanded. 12798 if (SimplifyDemandedBits(SDValue(N, 0))) 12799 return SDValue(N, 0); 12800 12801 // fold (sext_in_reg (load x)) -> (smaller sextload x) 12802 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) 12803 if (SDValue NarrowLoad = reduceLoadWidth(N)) 12804 return NarrowLoad; 12805 12806 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) 12807 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. 12808 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. 12809 if (N0.getOpcode() == ISD::SRL) { 12810 if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 12811 if (ShAmt->getAPIntValue().ule(VTBits - ExtVTBits)) { 12812 // We can turn this into an SRA iff the input to the SRL is already sign 12813 // extended enough. 12814 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); 12815 if (((VTBits - ExtVTBits) - ShAmt->getZExtValue()) < InSignBits) 12816 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0), 12817 N0.getOperand(1)); 12818 } 12819 } 12820 12821 // fold (sext_inreg (extload x)) -> (sextload x) 12822 // If sextload is not supported by target, we can only do the combine when 12823 // load has one use. Doing otherwise can block folding the extload with other 12824 // extends that the target does support. 12825 if (ISD::isEXTLoad(N0.getNode()) && 12826 ISD::isUNINDEXEDLoad(N0.getNode()) && 12827 ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && 12828 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() && 12829 N0.hasOneUse()) || 12830 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { 12831 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12832 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 12833 LN0->getChain(), 12834 LN0->getBasePtr(), ExtVT, 12835 LN0->getMemOperand()); 12836 CombineTo(N, ExtLoad); 12837 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 12838 AddToWorklist(ExtLoad.getNode()); 12839 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12840 } 12841 12842 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use 12843 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 12844 N0.hasOneUse() && 12845 ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && 12846 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) && 12847 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { 12848 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12849 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 12850 LN0->getChain(), 12851 LN0->getBasePtr(), ExtVT, 12852 LN0->getMemOperand()); 12853 CombineTo(N, ExtLoad); 12854 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 12855 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12856 } 12857 12858 // fold (sext_inreg (masked_load x)) -> (sext_masked_load x) 12859 // ignore it if the masked load is already sign extended 12860 if (MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0)) { 12861 if (ExtVT == Ld->getMemoryVT() && N0.hasOneUse() && 12862 Ld->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD && 12863 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT)) { 12864 SDValue ExtMaskedLoad = DAG.getMaskedLoad( 12865 VT, SDLoc(N), Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), 12866 Ld->getMask(), Ld->getPassThru(), ExtVT, Ld->getMemOperand(), 12867 Ld->getAddressingMode(), ISD::SEXTLOAD, Ld->isExpandingLoad()); 12868 CombineTo(N, ExtMaskedLoad); 12869 CombineTo(N0.getNode(), ExtMaskedLoad, ExtMaskedLoad.getValue(1)); 12870 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12871 } 12872 } 12873 12874 // fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x) 12875 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { 12876 if (SDValue(GN0, 0).hasOneUse() && 12877 ExtVT == GN0->getMemoryVT() && 12878 TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) { 12879 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(), 12880 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()}; 12881 12882 SDValue ExtLoad = DAG.getMaskedGather( 12883 DAG.getVTList(VT, MVT::Other), ExtVT, SDLoc(N), Ops, 12884 GN0->getMemOperand(), GN0->getIndexType(), ISD::SEXTLOAD); 12885 12886 CombineTo(N, ExtLoad); 12887 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 12888 AddToWorklist(ExtLoad.getNode()); 12889 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12890 } 12891 } 12892 12893 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) 12894 if (ExtVTBits <= 16 && N0.getOpcode() == ISD::OR) { 12895 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 12896 N0.getOperand(1), false)) 12897 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, BSwap, N1); 12898 } 12899 12900 return SDValue(); 12901 } 12902 12903 SDValue DAGCombiner::visitEXTEND_VECTOR_INREG(SDNode *N) { 12904 SDValue N0 = N->getOperand(0); 12905 EVT VT = N->getValueType(0); 12906 12907 // {s/z}ext_vector_inreg(undef) = 0 because the top bits must be the same. 12908 if (N0.isUndef()) 12909 return DAG.getConstant(0, SDLoc(N), VT); 12910 12911 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 12912 return Res; 12913 12914 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 12915 return SDValue(N, 0); 12916 12917 return SDValue(); 12918 } 12919 12920 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { 12921 SDValue N0 = N->getOperand(0); 12922 EVT VT = N->getValueType(0); 12923 EVT SrcVT = N0.getValueType(); 12924 bool isLE = DAG.getDataLayout().isLittleEndian(); 12925 12926 // noop truncate 12927 if (SrcVT == VT) 12928 return N0; 12929 12930 // fold (truncate (truncate x)) -> (truncate x) 12931 if (N0.getOpcode() == ISD::TRUNCATE) 12932 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 12933 12934 // fold (truncate c1) -> c1 12935 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 12936 SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); 12937 if (C.getNode() != N) 12938 return C; 12939 } 12940 12941 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x 12942 if (N0.getOpcode() == ISD::ZERO_EXTEND || 12943 N0.getOpcode() == ISD::SIGN_EXTEND || 12944 N0.getOpcode() == ISD::ANY_EXTEND) { 12945 // if the source is smaller than the dest, we still need an extend. 12946 if (N0.getOperand(0).getValueType().bitsLT(VT)) 12947 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 12948 // if the source is larger than the dest, than we just need the truncate. 12949 if (N0.getOperand(0).getValueType().bitsGT(VT)) 12950 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 12951 // if the source and dest are the same type, we can drop both the extend 12952 // and the truncate. 12953 return N0.getOperand(0); 12954 } 12955 12956 // If this is anyext(trunc), don't fold it, allow ourselves to be folded. 12957 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) 12958 return SDValue(); 12959 12960 // Fold extract-and-trunc into a narrow extract. For example: 12961 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) 12962 // i32 y = TRUNCATE(i64 x) 12963 // -- becomes -- 12964 // v16i8 b = BITCAST (v2i64 val) 12965 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) 12966 // 12967 // Note: We only run this optimization after type legalization (which often 12968 // creates this pattern) and before operation legalization after which 12969 // we need to be more careful about the vector instructions that we generate. 12970 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 12971 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { 12972 EVT VecTy = N0.getOperand(0).getValueType(); 12973 EVT ExTy = N0.getValueType(); 12974 EVT TrTy = N->getValueType(0); 12975 12976 auto EltCnt = VecTy.getVectorElementCount(); 12977 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); 12978 auto NewEltCnt = EltCnt * SizeRatio; 12979 12980 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, NewEltCnt); 12981 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); 12982 12983 SDValue EltNo = N0->getOperand(1); 12984 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { 12985 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 12986 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); 12987 12988 SDLoc DL(N); 12989 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, 12990 DAG.getBitcast(NVT, N0.getOperand(0)), 12991 DAG.getVectorIdxConstant(Index, DL)); 12992 } 12993 } 12994 12995 // trunc (select c, a, b) -> select c, (trunc a), (trunc b) 12996 if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) { 12997 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && 12998 TLI.isTruncateFree(SrcVT, VT)) { 12999 SDLoc SL(N0); 13000 SDValue Cond = N0.getOperand(0); 13001 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 13002 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); 13003 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); 13004 } 13005 } 13006 13007 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() 13008 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 13009 (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) && 13010 TLI.isTypeDesirableForOp(ISD::SHL, VT)) { 13011 SDValue Amt = N0.getOperand(1); 13012 KnownBits Known = DAG.computeKnownBits(Amt); 13013 unsigned Size = VT.getScalarSizeInBits(); 13014 if (Known.countMaxActiveBits() <= Log2_32(Size)) { 13015 SDLoc SL(N); 13016 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 13017 13018 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 13019 if (AmtVT != Amt.getValueType()) { 13020 Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT); 13021 AddToWorklist(Amt.getNode()); 13022 } 13023 return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt); 13024 } 13025 } 13026 13027 if (SDValue V = foldSubToUSubSat(VT, N0.getNode())) 13028 return V; 13029 13030 // Attempt to pre-truncate BUILD_VECTOR sources. 13031 if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations && 13032 TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) && 13033 // Avoid creating illegal types if running after type legalizer. 13034 (!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) { 13035 SDLoc DL(N); 13036 EVT SVT = VT.getScalarType(); 13037 SmallVector<SDValue, 8> TruncOps; 13038 for (const SDValue &Op : N0->op_values()) { 13039 SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op); 13040 TruncOps.push_back(TruncOp); 13041 } 13042 return DAG.getBuildVector(VT, DL, TruncOps); 13043 } 13044 13045 // Fold a series of buildvector, bitcast, and truncate if possible. 13046 // For example fold 13047 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to 13048 // (2xi32 (buildvector x, y)). 13049 if (Level == AfterLegalizeVectorOps && VT.isVector() && 13050 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 13051 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 13052 N0.getOperand(0).hasOneUse()) { 13053 SDValue BuildVect = N0.getOperand(0); 13054 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); 13055 EVT TruncVecEltTy = VT.getVectorElementType(); 13056 13057 // Check that the element types match. 13058 if (BuildVectEltTy == TruncVecEltTy) { 13059 // Now we only need to compute the offset of the truncated elements. 13060 unsigned BuildVecNumElts = BuildVect.getNumOperands(); 13061 unsigned TruncVecNumElts = VT.getVectorNumElements(); 13062 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; 13063 13064 assert((BuildVecNumElts % TruncVecNumElts) == 0 && 13065 "Invalid number of elements"); 13066 13067 SmallVector<SDValue, 8> Opnds; 13068 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) 13069 Opnds.push_back(BuildVect.getOperand(i)); 13070 13071 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 13072 } 13073 } 13074 13075 // See if we can simplify the input to this truncate through knowledge that 13076 // only the low bits are being used. 13077 // For example "trunc (or (shl x, 8), y)" // -> trunc y 13078 // Currently we only perform this optimization on scalars because vectors 13079 // may have different active low bits. 13080 if (!VT.isVector()) { 13081 APInt Mask = 13082 APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits()); 13083 if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask)) 13084 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); 13085 } 13086 13087 // fold (truncate (load x)) -> (smaller load x) 13088 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) 13089 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { 13090 if (SDValue Reduced = reduceLoadWidth(N)) 13091 return Reduced; 13092 13093 // Handle the case where the load remains an extending load even 13094 // after truncation. 13095 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { 13096 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 13097 if (LN0->isSimple() && LN0->getMemoryVT().bitsLT(VT)) { 13098 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), 13099 VT, LN0->getChain(), LN0->getBasePtr(), 13100 LN0->getMemoryVT(), 13101 LN0->getMemOperand()); 13102 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); 13103 return NewLoad; 13104 } 13105 } 13106 } 13107 13108 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), 13109 // where ... are all 'undef'. 13110 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { 13111 SmallVector<EVT, 8> VTs; 13112 SDValue V; 13113 unsigned Idx = 0; 13114 unsigned NumDefs = 0; 13115 13116 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 13117 SDValue X = N0.getOperand(i); 13118 if (!X.isUndef()) { 13119 V = X; 13120 Idx = i; 13121 NumDefs++; 13122 } 13123 // Stop if more than one members are non-undef. 13124 if (NumDefs > 1) 13125 break; 13126 13127 VTs.push_back(EVT::getVectorVT(*DAG.getContext(), 13128 VT.getVectorElementType(), 13129 X.getValueType().getVectorElementCount())); 13130 } 13131 13132 if (NumDefs == 0) 13133 return DAG.getUNDEF(VT); 13134 13135 if (NumDefs == 1) { 13136 assert(V.getNode() && "The single defined operand is empty!"); 13137 SmallVector<SDValue, 8> Opnds; 13138 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 13139 if (i != Idx) { 13140 Opnds.push_back(DAG.getUNDEF(VTs[i])); 13141 continue; 13142 } 13143 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); 13144 AddToWorklist(NV.getNode()); 13145 Opnds.push_back(NV); 13146 } 13147 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); 13148 } 13149 } 13150 13151 // Fold truncate of a bitcast of a vector to an extract of the low vector 13152 // element. 13153 // 13154 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx 13155 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { 13156 SDValue VecSrc = N0.getOperand(0); 13157 EVT VecSrcVT = VecSrc.getValueType(); 13158 if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT && 13159 (!LegalOperations || 13160 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) { 13161 SDLoc SL(N); 13162 13163 unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1; 13164 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, VecSrc, 13165 DAG.getVectorIdxConstant(Idx, SL)); 13166 } 13167 } 13168 13169 // Simplify the operands using demanded-bits information. 13170 if (SimplifyDemandedBits(SDValue(N, 0))) 13171 return SDValue(N, 0); 13172 13173 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) 13174 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry) 13175 // When the adde's carry is not used. 13176 if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) && 13177 N0.hasOneUse() && !N0->hasAnyUseOfValue(1) && 13178 // We only do for addcarry before legalize operation 13179 ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) || 13180 TLI.isOperationLegal(N0.getOpcode(), VT))) { 13181 SDLoc SL(N); 13182 auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 13183 auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 13184 auto VTs = DAG.getVTList(VT, N0->getValueType(1)); 13185 return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2)); 13186 } 13187 13188 // fold (truncate (extract_subvector(ext x))) -> 13189 // (extract_subvector x) 13190 // TODO: This can be generalized to cover cases where the truncate and extract 13191 // do not fully cancel each other out. 13192 if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) { 13193 SDValue N00 = N0.getOperand(0); 13194 if (N00.getOpcode() == ISD::SIGN_EXTEND || 13195 N00.getOpcode() == ISD::ZERO_EXTEND || 13196 N00.getOpcode() == ISD::ANY_EXTEND) { 13197 if (N00.getOperand(0)->getValueType(0).getVectorElementType() == 13198 VT.getVectorElementType()) 13199 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT, 13200 N00.getOperand(0), N0.getOperand(1)); 13201 } 13202 } 13203 13204 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 13205 return NewVSel; 13206 13207 // Narrow a suitable binary operation with a non-opaque constant operand by 13208 // moving it ahead of the truncate. This is limited to pre-legalization 13209 // because targets may prefer a wider type during later combines and invert 13210 // this transform. 13211 switch (N0.getOpcode()) { 13212 case ISD::ADD: 13213 case ISD::SUB: 13214 case ISD::MUL: 13215 case ISD::AND: 13216 case ISD::OR: 13217 case ISD::XOR: 13218 if (!LegalOperations && N0.hasOneUse() && 13219 (isConstantOrConstantVector(N0.getOperand(0), true) || 13220 isConstantOrConstantVector(N0.getOperand(1), true))) { 13221 // TODO: We already restricted this to pre-legalization, but for vectors 13222 // we are extra cautious to not create an unsupported operation. 13223 // Target-specific changes are likely needed to avoid regressions here. 13224 if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) { 13225 SDLoc DL(N); 13226 SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); 13227 SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); 13228 return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR); 13229 } 13230 } 13231 break; 13232 case ISD::USUBSAT: 13233 // Truncate the USUBSAT only if LHS is a known zero-extension, its not 13234 // enough to know that the upper bits are zero we must ensure that we don't 13235 // introduce an extra truncate. 13236 if (!LegalOperations && N0.hasOneUse() && 13237 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 13238 N0.getOperand(0).getOperand(0).getScalarValueSizeInBits() <= 13239 VT.getScalarSizeInBits() && 13240 hasOperation(N0.getOpcode(), VT)) { 13241 return getTruncatedUSUBSAT(VT, SrcVT, N0.getOperand(0), N0.getOperand(1), 13242 DAG, SDLoc(N)); 13243 } 13244 break; 13245 } 13246 13247 return SDValue(); 13248 } 13249 13250 static SDNode *getBuildPairElt(SDNode *N, unsigned i) { 13251 SDValue Elt = N->getOperand(i); 13252 if (Elt.getOpcode() != ISD::MERGE_VALUES) 13253 return Elt.getNode(); 13254 return Elt.getOperand(Elt.getResNo()).getNode(); 13255 } 13256 13257 /// build_pair (load, load) -> load 13258 /// if load locations are consecutive. 13259 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { 13260 assert(N->getOpcode() == ISD::BUILD_PAIR); 13261 13262 auto *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); 13263 auto *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); 13264 13265 // A BUILD_PAIR is always having the least significant part in elt 0 and the 13266 // most significant part in elt 1. So when combining into one large load, we 13267 // need to consider the endianness. 13268 if (DAG.getDataLayout().isBigEndian()) 13269 std::swap(LD1, LD2); 13270 13271 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !ISD::isNON_EXTLoad(LD2) || 13272 !LD1->hasOneUse() || !LD2->hasOneUse() || 13273 LD1->getAddressSpace() != LD2->getAddressSpace()) 13274 return SDValue(); 13275 13276 bool LD1Fast = false; 13277 EVT LD1VT = LD1->getValueType(0); 13278 unsigned LD1Bytes = LD1VT.getStoreSize(); 13279 if ((!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && 13280 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1) && 13281 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 13282 *LD1->getMemOperand(), &LD1Fast) && LD1Fast) 13283 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), 13284 LD1->getPointerInfo(), LD1->getAlign()); 13285 13286 return SDValue(); 13287 } 13288 13289 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { 13290 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi 13291 // and Lo parts; on big-endian machines it doesn't. 13292 return DAG.getDataLayout().isBigEndian() ? 1 : 0; 13293 } 13294 13295 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, 13296 const TargetLowering &TLI) { 13297 // If this is not a bitcast to an FP type or if the target doesn't have 13298 // IEEE754-compliant FP logic, we're done. 13299 EVT VT = N->getValueType(0); 13300 if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) 13301 return SDValue(); 13302 13303 // TODO: Handle cases where the integer constant is a different scalar 13304 // bitwidth to the FP. 13305 SDValue N0 = N->getOperand(0); 13306 EVT SourceVT = N0.getValueType(); 13307 if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits()) 13308 return SDValue(); 13309 13310 unsigned FPOpcode; 13311 APInt SignMask; 13312 switch (N0.getOpcode()) { 13313 case ISD::AND: 13314 FPOpcode = ISD::FABS; 13315 SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits()); 13316 break; 13317 case ISD::XOR: 13318 FPOpcode = ISD::FNEG; 13319 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); 13320 break; 13321 case ISD::OR: 13322 FPOpcode = ISD::FABS; 13323 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); 13324 break; 13325 default: 13326 return SDValue(); 13327 } 13328 13329 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X 13330 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X 13331 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) -> 13332 // fneg (fabs X) 13333 SDValue LogicOp0 = N0.getOperand(0); 13334 ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true); 13335 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && 13336 LogicOp0.getOpcode() == ISD::BITCAST && 13337 LogicOp0.getOperand(0).getValueType() == VT) { 13338 SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0)); 13339 NumFPLogicOpsConv++; 13340 if (N0.getOpcode() == ISD::OR) 13341 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp); 13342 return FPOp; 13343 } 13344 13345 return SDValue(); 13346 } 13347 13348 SDValue DAGCombiner::visitBITCAST(SDNode *N) { 13349 SDValue N0 = N->getOperand(0); 13350 EVT VT = N->getValueType(0); 13351 13352 if (N0.isUndef()) 13353 return DAG.getUNDEF(VT); 13354 13355 // If the input is a BUILD_VECTOR with all constant elements, fold this now. 13356 // Only do this before legalize types, unless both types are integer and the 13357 // scalar type is legal. Only do this before legalize ops, since the target 13358 // maybe depending on the bitcast. 13359 // First check to see if this is all constant. 13360 // TODO: Support FP bitcasts after legalize types. 13361 if (VT.isVector() && 13362 (!LegalTypes || 13363 (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() && 13364 TLI.isTypeLegal(VT.getVectorElementType()))) && 13365 N0.getOpcode() == ISD::BUILD_VECTOR && N0->hasOneUse() && 13366 cast<BuildVectorSDNode>(N0)->isConstant()) 13367 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), 13368 VT.getVectorElementType()); 13369 13370 // If the input is a constant, let getNode fold it. 13371 if (isIntOrFPConstant(N0)) { 13372 // If we can't allow illegal operations, we need to check that this is just 13373 // a fp -> int or int -> conversion and that the resulting operation will 13374 // be legal. 13375 if (!LegalOperations || 13376 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && 13377 TLI.isOperationLegal(ISD::ConstantFP, VT)) || 13378 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && 13379 TLI.isOperationLegal(ISD::Constant, VT))) { 13380 SDValue C = DAG.getBitcast(VT, N0); 13381 if (C.getNode() != N) 13382 return C; 13383 } 13384 } 13385 13386 // (conv (conv x, t1), t2) -> (conv x, t2) 13387 if (N0.getOpcode() == ISD::BITCAST) 13388 return DAG.getBitcast(VT, N0.getOperand(0)); 13389 13390 // fold (conv (load x)) -> (load (conv*)x) 13391 // If the resultant load doesn't need a higher alignment than the original! 13392 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 13393 // Do not remove the cast if the types differ in endian layout. 13394 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == 13395 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && 13396 // If the load is volatile, we only want to change the load type if the 13397 // resulting load is legal. Otherwise we might increase the number of 13398 // memory accesses. We don't care if the original type was legal or not 13399 // as we assume software couldn't rely on the number of accesses of an 13400 // illegal type. 13401 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) || 13402 TLI.isOperationLegal(ISD::LOAD, VT))) { 13403 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 13404 13405 if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG, 13406 *LN0->getMemOperand())) { 13407 SDValue Load = 13408 DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), 13409 LN0->getPointerInfo(), LN0->getAlign(), 13410 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 13411 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 13412 return Load; 13413 } 13414 } 13415 13416 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) 13417 return V; 13418 13419 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 13420 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 13421 // 13422 // For ppc_fp128: 13423 // fold (bitcast (fneg x)) -> 13424 // flipbit = signbit 13425 // (xor (bitcast x) (build_pair flipbit, flipbit)) 13426 // 13427 // fold (bitcast (fabs x)) -> 13428 // flipbit = (and (extract_element (bitcast x), 0), signbit) 13429 // (xor (bitcast x) (build_pair flipbit, flipbit)) 13430 // This often reduces constant pool loads. 13431 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || 13432 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && 13433 N0->hasOneUse() && VT.isInteger() && !VT.isVector() && 13434 !N0.getValueType().isVector()) { 13435 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); 13436 AddToWorklist(NewConv.getNode()); 13437 13438 SDLoc DL(N); 13439 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 13440 assert(VT.getSizeInBits() == 128); 13441 SDValue SignBit = DAG.getConstant( 13442 APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); 13443 SDValue FlipBit; 13444 if (N0.getOpcode() == ISD::FNEG) { 13445 FlipBit = SignBit; 13446 AddToWorklist(FlipBit.getNode()); 13447 } else { 13448 assert(N0.getOpcode() == ISD::FABS); 13449 SDValue Hi = 13450 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, 13451 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 13452 SDLoc(NewConv))); 13453 AddToWorklist(Hi.getNode()); 13454 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); 13455 AddToWorklist(FlipBit.getNode()); 13456 } 13457 SDValue FlipBits = 13458 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 13459 AddToWorklist(FlipBits.getNode()); 13460 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); 13461 } 13462 APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); 13463 if (N0.getOpcode() == ISD::FNEG) 13464 return DAG.getNode(ISD::XOR, DL, VT, 13465 NewConv, DAG.getConstant(SignBit, DL, VT)); 13466 assert(N0.getOpcode() == ISD::FABS); 13467 return DAG.getNode(ISD::AND, DL, VT, 13468 NewConv, DAG.getConstant(~SignBit, DL, VT)); 13469 } 13470 13471 // fold (bitconvert (fcopysign cst, x)) -> 13472 // (or (and (bitconvert x), sign), (and cst, (not sign))) 13473 // Note that we don't handle (copysign x, cst) because this can always be 13474 // folded to an fneg or fabs. 13475 // 13476 // For ppc_fp128: 13477 // fold (bitcast (fcopysign cst, x)) -> 13478 // flipbit = (and (extract_element 13479 // (xor (bitcast cst), (bitcast x)), 0), 13480 // signbit) 13481 // (xor (bitcast cst) (build_pair flipbit, flipbit)) 13482 if (N0.getOpcode() == ISD::FCOPYSIGN && N0->hasOneUse() && 13483 isa<ConstantFPSDNode>(N0.getOperand(0)) && VT.isInteger() && 13484 !VT.isVector()) { 13485 unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); 13486 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); 13487 if (isTypeLegal(IntXVT)) { 13488 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); 13489 AddToWorklist(X.getNode()); 13490 13491 // If X has a different width than the result/lhs, sext it or truncate it. 13492 unsigned VTWidth = VT.getSizeInBits(); 13493 if (OrigXWidth < VTWidth) { 13494 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); 13495 AddToWorklist(X.getNode()); 13496 } else if (OrigXWidth > VTWidth) { 13497 // To get the sign bit in the right place, we have to shift it right 13498 // before truncating. 13499 SDLoc DL(X); 13500 X = DAG.getNode(ISD::SRL, DL, 13501 X.getValueType(), X, 13502 DAG.getConstant(OrigXWidth-VTWidth, DL, 13503 X.getValueType())); 13504 AddToWorklist(X.getNode()); 13505 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 13506 AddToWorklist(X.getNode()); 13507 } 13508 13509 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 13510 APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); 13511 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 13512 AddToWorklist(Cst.getNode()); 13513 SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); 13514 AddToWorklist(X.getNode()); 13515 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); 13516 AddToWorklist(XorResult.getNode()); 13517 SDValue XorResult64 = DAG.getNode( 13518 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, 13519 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 13520 SDLoc(XorResult))); 13521 AddToWorklist(XorResult64.getNode()); 13522 SDValue FlipBit = 13523 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, 13524 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); 13525 AddToWorklist(FlipBit.getNode()); 13526 SDValue FlipBits = 13527 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 13528 AddToWorklist(FlipBits.getNode()); 13529 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); 13530 } 13531 APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); 13532 X = DAG.getNode(ISD::AND, SDLoc(X), VT, 13533 X, DAG.getConstant(SignBit, SDLoc(X), VT)); 13534 AddToWorklist(X.getNode()); 13535 13536 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 13537 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, 13538 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); 13539 AddToWorklist(Cst.getNode()); 13540 13541 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); 13542 } 13543 } 13544 13545 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. 13546 if (N0.getOpcode() == ISD::BUILD_PAIR) 13547 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) 13548 return CombineLD; 13549 13550 // Remove double bitcasts from shuffles - this is often a legacy of 13551 // XformToShuffleWithZero being used to combine bitmaskings (of 13552 // float vectors bitcast to integer vectors) into shuffles. 13553 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) 13554 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && 13555 N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() && 13556 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && 13557 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { 13558 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); 13559 13560 // If operands are a bitcast, peek through if it casts the original VT. 13561 // If operands are a constant, just bitcast back to original VT. 13562 auto PeekThroughBitcast = [&](SDValue Op) { 13563 if (Op.getOpcode() == ISD::BITCAST && 13564 Op.getOperand(0).getValueType() == VT) 13565 return SDValue(Op.getOperand(0)); 13566 if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || 13567 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) 13568 return DAG.getBitcast(VT, Op); 13569 return SDValue(); 13570 }; 13571 13572 // FIXME: If either input vector is bitcast, try to convert the shuffle to 13573 // the result type of this bitcast. This would eliminate at least one 13574 // bitcast. See the transform in InstCombine. 13575 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); 13576 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); 13577 if (!(SV0 && SV1)) 13578 return SDValue(); 13579 13580 int MaskScale = 13581 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); 13582 SmallVector<int, 8> NewMask; 13583 for (int M : SVN->getMask()) 13584 for (int i = 0; i != MaskScale; ++i) 13585 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); 13586 13587 SDValue LegalShuffle = 13588 TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG); 13589 if (LegalShuffle) 13590 return LegalShuffle; 13591 } 13592 13593 return SDValue(); 13594 } 13595 13596 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { 13597 EVT VT = N->getValueType(0); 13598 return CombineConsecutiveLoads(N, VT); 13599 } 13600 13601 SDValue DAGCombiner::visitFREEZE(SDNode *N) { 13602 SDValue N0 = N->getOperand(0); 13603 13604 if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, /*PoisonOnly*/ false)) 13605 return N0; 13606 13607 return SDValue(); 13608 } 13609 13610 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef 13611 /// operands. DstEltVT indicates the destination element value type. 13612 SDValue DAGCombiner:: 13613 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { 13614 EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); 13615 13616 // If this is already the right type, we're done. 13617 if (SrcEltVT == DstEltVT) return SDValue(BV, 0); 13618 13619 unsigned SrcBitSize = SrcEltVT.getSizeInBits(); 13620 unsigned DstBitSize = DstEltVT.getSizeInBits(); 13621 13622 // If this is a conversion of N elements of one type to N elements of another 13623 // type, convert each element. This handles FP<->INT cases. 13624 if (SrcBitSize == DstBitSize) { 13625 SmallVector<SDValue, 8> Ops; 13626 for (SDValue Op : BV->op_values()) { 13627 // If the vector element type is not legal, the BUILD_VECTOR operands 13628 // are promoted and implicitly truncated. Make that explicit here. 13629 if (Op.getValueType() != SrcEltVT) 13630 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); 13631 Ops.push_back(DAG.getBitcast(DstEltVT, Op)); 13632 AddToWorklist(Ops.back().getNode()); 13633 } 13634 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 13635 BV->getValueType(0).getVectorNumElements()); 13636 return DAG.getBuildVector(VT, SDLoc(BV), Ops); 13637 } 13638 13639 // Otherwise, we're growing or shrinking the elements. To avoid having to 13640 // handle annoying details of growing/shrinking FP values, we convert them to 13641 // int first. 13642 if (SrcEltVT.isFloatingPoint()) { 13643 // Convert the input float vector to a int vector where the elements are the 13644 // same sizes. 13645 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); 13646 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); 13647 SrcEltVT = IntVT; 13648 } 13649 13650 // Now we know the input is an integer vector. If the output is a FP type, 13651 // convert to integer first, then to FP of the right size. 13652 if (DstEltVT.isFloatingPoint()) { 13653 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); 13654 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); 13655 13656 // Next, convert to FP elements of the same size. 13657 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); 13658 } 13659 13660 // Okay, we know the src/dst types are both integers of differing types. 13661 assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); 13662 13663 // TODO: Should ConstantFoldBITCASTofBUILD_VECTOR always take a 13664 // BuildVectorSDNode? 13665 auto *BVN = cast<BuildVectorSDNode>(BV); 13666 13667 // Extract the constant raw bit data. 13668 BitVector UndefElements; 13669 SmallVector<APInt> RawBits; 13670 bool IsLE = DAG.getDataLayout().isLittleEndian(); 13671 if (!BVN->getConstantRawBits(IsLE, DstBitSize, RawBits, UndefElements)) 13672 return SDValue(); 13673 13674 SDLoc DL(BV); 13675 SmallVector<SDValue, 8> Ops; 13676 for (unsigned I = 0, E = RawBits.size(); I != E; ++I) { 13677 if (UndefElements[I]) 13678 Ops.push_back(DAG.getUNDEF(DstEltVT)); 13679 else 13680 Ops.push_back(DAG.getConstant(RawBits[I], DL, DstEltVT)); 13681 } 13682 13683 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); 13684 return DAG.getBuildVector(VT, DL, Ops); 13685 } 13686 13687 // Returns true if floating point contraction is allowed on the FMUL-SDValue 13688 // `N` 13689 static bool isContractableFMUL(const TargetOptions &Options, SDValue N) { 13690 assert(N.getOpcode() == ISD::FMUL); 13691 13692 return Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 13693 N->getFlags().hasAllowContract(); 13694 } 13695 13696 // Returns true if `N` can assume no infinities involved in its computation. 13697 static bool hasNoInfs(const TargetOptions &Options, SDValue N) { 13698 return Options.NoInfsFPMath || N->getFlags().hasNoInfs(); 13699 } 13700 13701 /// Try to perform FMA combining on a given FADD node. 13702 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { 13703 SDValue N0 = N->getOperand(0); 13704 SDValue N1 = N->getOperand(1); 13705 EVT VT = N->getValueType(0); 13706 SDLoc SL(N); 13707 13708 const TargetOptions &Options = DAG.getTarget().Options; 13709 13710 // Floating-point multiply-add with intermediate rounding. 13711 bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); 13712 13713 // Floating-point multiply-add without intermediate rounding. 13714 bool HasFMA = 13715 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 13716 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 13717 13718 // No valid opcode, do not combine. 13719 if (!HasFMAD && !HasFMA) 13720 return SDValue(); 13721 13722 bool CanReassociate = 13723 Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 13724 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || 13725 Options.UnsafeFPMath || HasFMAD); 13726 // If the addition is not contractable, do not combine. 13727 if (!AllowFusionGlobally && !N->getFlags().hasAllowContract()) 13728 return SDValue(); 13729 13730 if (TLI.generateFMAsInMachineCombiner(VT, OptLevel)) 13731 return SDValue(); 13732 13733 // Always prefer FMAD to FMA for precision. 13734 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 13735 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 13736 13737 auto isFusedOp = [&](SDValue N) { 13738 unsigned Opcode = N.getOpcode(); 13739 return Opcode == ISD::FMA || Opcode == ISD::FMAD; 13740 }; 13741 13742 // Is the node an FMUL and contractable either due to global flags or 13743 // SDNodeFlags. 13744 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { 13745 if (N.getOpcode() != ISD::FMUL) 13746 return false; 13747 return AllowFusionGlobally || N->getFlags().hasAllowContract(); 13748 }; 13749 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 13750 // prefer to fold the multiply with fewer uses. 13751 if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { 13752 if (N0->use_size() > N1->use_size()) 13753 std::swap(N0, N1); 13754 } 13755 13756 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 13757 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { 13758 return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), 13759 N0.getOperand(1), N1); 13760 } 13761 13762 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 13763 // Note: Commutes FADD operands. 13764 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { 13765 return DAG.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0), 13766 N1.getOperand(1), N0); 13767 } 13768 13769 // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E) 13770 // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E) 13771 // This requires reassociation because it changes the order of operations. 13772 SDValue FMA, E; 13773 if (CanReassociate && isFusedOp(N0) && 13774 N0.getOperand(2).getOpcode() == ISD::FMUL && N0.hasOneUse() && 13775 N0.getOperand(2).hasOneUse()) { 13776 FMA = N0; 13777 E = N1; 13778 } else if (CanReassociate && isFusedOp(N1) && 13779 N1.getOperand(2).getOpcode() == ISD::FMUL && N1.hasOneUse() && 13780 N1.getOperand(2).hasOneUse()) { 13781 FMA = N1; 13782 E = N0; 13783 } 13784 if (FMA && E) { 13785 SDValue A = FMA.getOperand(0); 13786 SDValue B = FMA.getOperand(1); 13787 SDValue C = FMA.getOperand(2).getOperand(0); 13788 SDValue D = FMA.getOperand(2).getOperand(1); 13789 SDValue CDE = DAG.getNode(PreferredFusedOpcode, SL, VT, C, D, E); 13790 return DAG.getNode(PreferredFusedOpcode, SL, VT, A, B, CDE); 13791 } 13792 13793 // Look through FP_EXTEND nodes to do more combining. 13794 13795 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 13796 if (N0.getOpcode() == ISD::FP_EXTEND) { 13797 SDValue N00 = N0.getOperand(0); 13798 if (isContractableFMUL(N00) && 13799 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13800 N00.getValueType())) { 13801 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13802 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 13803 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 13804 N1); 13805 } 13806 } 13807 13808 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) 13809 // Note: Commutes FADD operands. 13810 if (N1.getOpcode() == ISD::FP_EXTEND) { 13811 SDValue N10 = N1.getOperand(0); 13812 if (isContractableFMUL(N10) && 13813 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13814 N10.getValueType())) { 13815 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13816 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0)), 13817 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), 13818 N0); 13819 } 13820 } 13821 13822 // More folding opportunities when target permits. 13823 if (Aggressive) { 13824 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 13825 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 13826 auto FoldFAddFMAFPExtFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, 13827 SDValue Z) { 13828 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, 13829 DAG.getNode(PreferredFusedOpcode, SL, VT, 13830 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 13831 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 13832 Z)); 13833 }; 13834 if (isFusedOp(N0)) { 13835 SDValue N02 = N0.getOperand(2); 13836 if (N02.getOpcode() == ISD::FP_EXTEND) { 13837 SDValue N020 = N02.getOperand(0); 13838 if (isContractableFMUL(N020) && 13839 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13840 N020.getValueType())) { 13841 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), 13842 N020.getOperand(0), N020.getOperand(1), 13843 N1); 13844 } 13845 } 13846 } 13847 13848 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 13849 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 13850 // FIXME: This turns two single-precision and one double-precision 13851 // operation into two double-precision operations, which might not be 13852 // interesting for all targets, especially GPUs. 13853 auto FoldFAddFPExtFMAFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, 13854 SDValue Z) { 13855 return DAG.getNode( 13856 PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, X), 13857 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), 13858 DAG.getNode(PreferredFusedOpcode, SL, VT, 13859 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 13860 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), Z)); 13861 }; 13862 if (N0.getOpcode() == ISD::FP_EXTEND) { 13863 SDValue N00 = N0.getOperand(0); 13864 if (isFusedOp(N00)) { 13865 SDValue N002 = N00.getOperand(2); 13866 if (isContractableFMUL(N002) && 13867 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13868 N00.getValueType())) { 13869 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), 13870 N002.getOperand(0), N002.getOperand(1), 13871 N1); 13872 } 13873 } 13874 } 13875 13876 // fold (fadd x, (fma y, z, (fpext (fmul u, v))) 13877 // -> (fma y, z, (fma (fpext u), (fpext v), x)) 13878 if (isFusedOp(N1)) { 13879 SDValue N12 = N1.getOperand(2); 13880 if (N12.getOpcode() == ISD::FP_EXTEND) { 13881 SDValue N120 = N12.getOperand(0); 13882 if (isContractableFMUL(N120) && 13883 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13884 N120.getValueType())) { 13885 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), 13886 N120.getOperand(0), N120.getOperand(1), 13887 N0); 13888 } 13889 } 13890 } 13891 13892 // fold (fadd x, (fpext (fma y, z, (fmul u, v))) 13893 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) 13894 // FIXME: This turns two single-precision and one double-precision 13895 // operation into two double-precision operations, which might not be 13896 // interesting for all targets, especially GPUs. 13897 if (N1.getOpcode() == ISD::FP_EXTEND) { 13898 SDValue N10 = N1.getOperand(0); 13899 if (isFusedOp(N10)) { 13900 SDValue N102 = N10.getOperand(2); 13901 if (isContractableFMUL(N102) && 13902 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13903 N10.getValueType())) { 13904 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), 13905 N102.getOperand(0), N102.getOperand(1), 13906 N0); 13907 } 13908 } 13909 } 13910 } 13911 13912 return SDValue(); 13913 } 13914 13915 /// Try to perform FMA combining on a given FSUB node. 13916 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { 13917 SDValue N0 = N->getOperand(0); 13918 SDValue N1 = N->getOperand(1); 13919 EVT VT = N->getValueType(0); 13920 SDLoc SL(N); 13921 13922 const TargetOptions &Options = DAG.getTarget().Options; 13923 // Floating-point multiply-add with intermediate rounding. 13924 bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); 13925 13926 // Floating-point multiply-add without intermediate rounding. 13927 bool HasFMA = 13928 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 13929 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 13930 13931 // No valid opcode, do not combine. 13932 if (!HasFMAD && !HasFMA) 13933 return SDValue(); 13934 13935 const SDNodeFlags Flags = N->getFlags(); 13936 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || 13937 Options.UnsafeFPMath || HasFMAD); 13938 13939 // If the subtraction is not contractable, do not combine. 13940 if (!AllowFusionGlobally && !N->getFlags().hasAllowContract()) 13941 return SDValue(); 13942 13943 if (TLI.generateFMAsInMachineCombiner(VT, OptLevel)) 13944 return SDValue(); 13945 13946 // Always prefer FMAD to FMA for precision. 13947 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 13948 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 13949 bool NoSignedZero = Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros(); 13950 13951 // Is the node an FMUL and contractable either due to global flags or 13952 // SDNodeFlags. 13953 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { 13954 if (N.getOpcode() != ISD::FMUL) 13955 return false; 13956 return AllowFusionGlobally || N->getFlags().hasAllowContract(); 13957 }; 13958 13959 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 13960 auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) { 13961 if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) { 13962 return DAG.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0), 13963 XY.getOperand(1), DAG.getNode(ISD::FNEG, SL, VT, Z)); 13964 } 13965 return SDValue(); 13966 }; 13967 13968 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 13969 // Note: Commutes FSUB operands. 13970 auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) { 13971 if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) { 13972 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13973 DAG.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)), 13974 YZ.getOperand(1), X); 13975 } 13976 return SDValue(); 13977 }; 13978 13979 // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)), 13980 // prefer to fold the multiply with fewer uses. 13981 if (isContractableFMUL(N0) && isContractableFMUL(N1) && 13982 (N0->use_size() > N1->use_size())) { 13983 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b)) 13984 if (SDValue V = tryToFoldXSubYZ(N0, N1)) 13985 return V; 13986 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d))) 13987 if (SDValue V = tryToFoldXYSubZ(N0, N1)) 13988 return V; 13989 } else { 13990 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 13991 if (SDValue V = tryToFoldXYSubZ(N0, N1)) 13992 return V; 13993 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 13994 if (SDValue V = tryToFoldXSubYZ(N0, N1)) 13995 return V; 13996 } 13997 13998 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) 13999 if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) && 14000 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { 14001 SDValue N00 = N0.getOperand(0).getOperand(0); 14002 SDValue N01 = N0.getOperand(0).getOperand(1); 14003 return DAG.getNode(PreferredFusedOpcode, SL, VT, 14004 DAG.getNode(ISD::FNEG, SL, VT, N00), N01, 14005 DAG.getNode(ISD::FNEG, SL, VT, N1)); 14006 } 14007 14008 // Look through FP_EXTEND nodes to do more combining. 14009 14010 // fold (fsub (fpext (fmul x, y)), z) 14011 // -> (fma (fpext x), (fpext y), (fneg z)) 14012 if (N0.getOpcode() == ISD::FP_EXTEND) { 14013 SDValue N00 = N0.getOperand(0); 14014 if (isContractableFMUL(N00) && 14015 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 14016 N00.getValueType())) { 14017 return DAG.getNode(PreferredFusedOpcode, SL, VT, 14018 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 14019 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 14020 DAG.getNode(ISD::FNEG, SL, VT, N1)); 14021 } 14022 } 14023 14024 // fold (fsub x, (fpext (fmul y, z))) 14025 // -> (fma (fneg (fpext y)), (fpext z), x) 14026 // Note: Commutes FSUB operands. 14027 if (N1.getOpcode() == ISD::FP_EXTEND) { 14028 SDValue N10 = N1.getOperand(0); 14029 if (isContractableFMUL(N10) && 14030 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 14031 N10.getValueType())) { 14032 return DAG.getNode( 14033 PreferredFusedOpcode, SL, VT, 14034 DAG.getNode(ISD::FNEG, SL, VT, 14035 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0))), 14036 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0); 14037 } 14038 } 14039 14040 // fold (fsub (fpext (fneg (fmul, x, y))), z) 14041 // -> (fneg (fma (fpext x), (fpext y), z)) 14042 // Note: This could be removed with appropriate canonicalization of the 14043 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 14044 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 14045 // from implementing the canonicalization in visitFSUB. 14046 if (N0.getOpcode() == ISD::FP_EXTEND) { 14047 SDValue N00 = N0.getOperand(0); 14048 if (N00.getOpcode() == ISD::FNEG) { 14049 SDValue N000 = N00.getOperand(0); 14050 if (isContractableFMUL(N000) && 14051 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 14052 N00.getValueType())) { 14053 return DAG.getNode( 14054 ISD::FNEG, SL, VT, 14055 DAG.getNode(PreferredFusedOpcode, SL, VT, 14056 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), 14057 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), 14058 N1)); 14059 } 14060 } 14061 } 14062 14063 // fold (fsub (fneg (fpext (fmul, x, y))), z) 14064 // -> (fneg (fma (fpext x)), (fpext y), z) 14065 // Note: This could be removed with appropriate canonicalization of the 14066 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 14067 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 14068 // from implementing the canonicalization in visitFSUB. 14069 if (N0.getOpcode() == ISD::FNEG) { 14070 SDValue N00 = N0.getOperand(0); 14071 if (N00.getOpcode() == ISD::FP_EXTEND) { 14072 SDValue N000 = N00.getOperand(0); 14073 if (isContractableFMUL(N000) && 14074 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 14075 N000.getValueType())) { 14076 return DAG.getNode( 14077 ISD::FNEG, SL, VT, 14078 DAG.getNode(PreferredFusedOpcode, SL, VT, 14079 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), 14080 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), 14081 N1)); 14082 } 14083 } 14084 } 14085 14086 auto isReassociable = [Options](SDNode *N) { 14087 return Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 14088 }; 14089 14090 auto isContractableAndReassociableFMUL = [isContractableFMUL, 14091 isReassociable](SDValue N) { 14092 return isContractableFMUL(N) && isReassociable(N.getNode()); 14093 }; 14094 14095 auto isFusedOp = [&](SDValue N) { 14096 unsigned Opcode = N.getOpcode(); 14097 return Opcode == ISD::FMA || Opcode == ISD::FMAD; 14098 }; 14099 14100 // More folding opportunities when target permits. 14101 if (Aggressive && isReassociable(N)) { 14102 bool CanFuse = Options.UnsafeFPMath || N->getFlags().hasAllowContract(); 14103 // fold (fsub (fma x, y, (fmul u, v)), z) 14104 // -> (fma x, y (fma u, v, (fneg z))) 14105 if (CanFuse && isFusedOp(N0) && 14106 isContractableAndReassociableFMUL(N0.getOperand(2)) && 14107 N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) { 14108 return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), 14109 N0.getOperand(1), 14110 DAG.getNode(PreferredFusedOpcode, SL, VT, 14111 N0.getOperand(2).getOperand(0), 14112 N0.getOperand(2).getOperand(1), 14113 DAG.getNode(ISD::FNEG, SL, VT, N1))); 14114 } 14115 14116 // fold (fsub x, (fma y, z, (fmul u, v))) 14117 // -> (fma (fneg y), z, (fma (fneg u), v, x)) 14118 if (CanFuse && isFusedOp(N1) && 14119 isContractableAndReassociableFMUL(N1.getOperand(2)) && 14120 N1->hasOneUse() && NoSignedZero) { 14121 SDValue N20 = N1.getOperand(2).getOperand(0); 14122 SDValue N21 = N1.getOperand(2).getOperand(1); 14123 return DAG.getNode( 14124 PreferredFusedOpcode, SL, VT, 14125 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), 14126 DAG.getNode(PreferredFusedOpcode, SL, VT, 14127 DAG.getNode(ISD::FNEG, SL, VT, N20), N21, N0)); 14128 } 14129 14130 // fold (fsub (fma x, y, (fpext (fmul u, v))), z) 14131 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) 14132 if (isFusedOp(N0) && N0->hasOneUse()) { 14133 SDValue N02 = N0.getOperand(2); 14134 if (N02.getOpcode() == ISD::FP_EXTEND) { 14135 SDValue N020 = N02.getOperand(0); 14136 if (isContractableAndReassociableFMUL(N020) && 14137 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 14138 N020.getValueType())) { 14139 return DAG.getNode( 14140 PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1), 14141 DAG.getNode( 14142 PreferredFusedOpcode, SL, VT, 14143 DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(0)), 14144 DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(1)), 14145 DAG.getNode(ISD::FNEG, SL, VT, N1))); 14146 } 14147 } 14148 } 14149 14150 // fold (fsub (fpext (fma x, y, (fmul u, v))), z) 14151 // -> (fma (fpext x), (fpext y), 14152 // (fma (fpext u), (fpext v), (fneg z))) 14153 // FIXME: This turns two single-precision and one double-precision 14154 // operation into two double-precision operations, which might not be 14155 // interesting for all targets, especially GPUs. 14156 if (N0.getOpcode() == ISD::FP_EXTEND) { 14157 SDValue N00 = N0.getOperand(0); 14158 if (isFusedOp(N00)) { 14159 SDValue N002 = N00.getOperand(2); 14160 if (isContractableAndReassociableFMUL(N002) && 14161 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 14162 N00.getValueType())) { 14163 return DAG.getNode( 14164 PreferredFusedOpcode, SL, VT, 14165 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 14166 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 14167 DAG.getNode( 14168 PreferredFusedOpcode, SL, VT, 14169 DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(0)), 14170 DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(1)), 14171 DAG.getNode(ISD::FNEG, SL, VT, N1))); 14172 } 14173 } 14174 } 14175 14176 // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) 14177 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) 14178 if (isFusedOp(N1) && N1.getOperand(2).getOpcode() == ISD::FP_EXTEND && 14179 N1->hasOneUse()) { 14180 SDValue N120 = N1.getOperand(2).getOperand(0); 14181 if (isContractableAndReassociableFMUL(N120) && 14182 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 14183 N120.getValueType())) { 14184 SDValue N1200 = N120.getOperand(0); 14185 SDValue N1201 = N120.getOperand(1); 14186 return DAG.getNode( 14187 PreferredFusedOpcode, SL, VT, 14188 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), 14189 DAG.getNode(PreferredFusedOpcode, SL, VT, 14190 DAG.getNode(ISD::FNEG, SL, VT, 14191 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1200)), 14192 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1201), N0)); 14193 } 14194 } 14195 14196 // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) 14197 // -> (fma (fneg (fpext y)), (fpext z), 14198 // (fma (fneg (fpext u)), (fpext v), x)) 14199 // FIXME: This turns two single-precision and one double-precision 14200 // operation into two double-precision operations, which might not be 14201 // interesting for all targets, especially GPUs. 14202 if (N1.getOpcode() == ISD::FP_EXTEND && isFusedOp(N1.getOperand(0))) { 14203 SDValue CvtSrc = N1.getOperand(0); 14204 SDValue N100 = CvtSrc.getOperand(0); 14205 SDValue N101 = CvtSrc.getOperand(1); 14206 SDValue N102 = CvtSrc.getOperand(2); 14207 if (isContractableAndReassociableFMUL(N102) && 14208 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 14209 CvtSrc.getValueType())) { 14210 SDValue N1020 = N102.getOperand(0); 14211 SDValue N1021 = N102.getOperand(1); 14212 return DAG.getNode( 14213 PreferredFusedOpcode, SL, VT, 14214 DAG.getNode(ISD::FNEG, SL, VT, 14215 DAG.getNode(ISD::FP_EXTEND, SL, VT, N100)), 14216 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), 14217 DAG.getNode(PreferredFusedOpcode, SL, VT, 14218 DAG.getNode(ISD::FNEG, SL, VT, 14219 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1020)), 14220 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1021), N0)); 14221 } 14222 } 14223 } 14224 14225 return SDValue(); 14226 } 14227 14228 /// Try to perform FMA combining on a given FMUL node based on the distributive 14229 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions, 14230 /// subtraction instead of addition). 14231 SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { 14232 SDValue N0 = N->getOperand(0); 14233 SDValue N1 = N->getOperand(1); 14234 EVT VT = N->getValueType(0); 14235 SDLoc SL(N); 14236 14237 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); 14238 14239 const TargetOptions &Options = DAG.getTarget().Options; 14240 14241 // The transforms below are incorrect when x == 0 and y == inf, because the 14242 // intermediate multiplication produces a nan. 14243 SDValue FAdd = N0.getOpcode() == ISD::FADD ? N0 : N1; 14244 if (!hasNoInfs(Options, FAdd)) 14245 return SDValue(); 14246 14247 // Floating-point multiply-add without intermediate rounding. 14248 bool HasFMA = 14249 isContractableFMUL(Options, SDValue(N, 0)) && 14250 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 14251 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 14252 14253 // Floating-point multiply-add with intermediate rounding. This can result 14254 // in a less precise result due to the changed rounding order. 14255 bool HasFMAD = Options.UnsafeFPMath && 14256 (LegalOperations && TLI.isFMADLegal(DAG, N)); 14257 14258 // No valid opcode, do not combine. 14259 if (!HasFMAD && !HasFMA) 14260 return SDValue(); 14261 14262 // Always prefer FMAD to FMA for precision. 14263 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 14264 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 14265 14266 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y) 14267 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y)) 14268 auto FuseFADD = [&](SDValue X, SDValue Y) { 14269 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { 14270 if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) { 14271 if (C->isExactlyValue(+1.0)) 14272 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 14273 Y); 14274 if (C->isExactlyValue(-1.0)) 14275 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 14276 DAG.getNode(ISD::FNEG, SL, VT, Y)); 14277 } 14278 } 14279 return SDValue(); 14280 }; 14281 14282 if (SDValue FMA = FuseFADD(N0, N1)) 14283 return FMA; 14284 if (SDValue FMA = FuseFADD(N1, N0)) 14285 return FMA; 14286 14287 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y) 14288 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y)) 14289 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y)) 14290 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y) 14291 auto FuseFSUB = [&](SDValue X, SDValue Y) { 14292 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { 14293 if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) { 14294 if (C0->isExactlyValue(+1.0)) 14295 return DAG.getNode(PreferredFusedOpcode, SL, VT, 14296 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 14297 Y); 14298 if (C0->isExactlyValue(-1.0)) 14299 return DAG.getNode(PreferredFusedOpcode, SL, VT, 14300 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 14301 DAG.getNode(ISD::FNEG, SL, VT, Y)); 14302 } 14303 if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) { 14304 if (C1->isExactlyValue(+1.0)) 14305 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 14306 DAG.getNode(ISD::FNEG, SL, VT, Y)); 14307 if (C1->isExactlyValue(-1.0)) 14308 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 14309 Y); 14310 } 14311 } 14312 return SDValue(); 14313 }; 14314 14315 if (SDValue FMA = FuseFSUB(N0, N1)) 14316 return FMA; 14317 if (SDValue FMA = FuseFSUB(N1, N0)) 14318 return FMA; 14319 14320 return SDValue(); 14321 } 14322 14323 SDValue DAGCombiner::visitFADD(SDNode *N) { 14324 SDValue N0 = N->getOperand(0); 14325 SDValue N1 = N->getOperand(1); 14326 bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0); 14327 bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1); 14328 EVT VT = N->getValueType(0); 14329 SDLoc DL(N); 14330 const TargetOptions &Options = DAG.getTarget().Options; 14331 SDNodeFlags Flags = N->getFlags(); 14332 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14333 14334 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 14335 return R; 14336 14337 // fold (fadd c1, c2) -> c1 + c2 14338 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FADD, DL, VT, {N0, N1})) 14339 return C; 14340 14341 // canonicalize constant to RHS 14342 if (N0CFP && !N1CFP) 14343 return DAG.getNode(ISD::FADD, DL, VT, N1, N0); 14344 14345 // fold vector ops 14346 if (VT.isVector()) 14347 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 14348 return FoldedVOp; 14349 14350 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math) 14351 ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true); 14352 if (N1C && N1C->isZero()) 14353 if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) 14354 return N0; 14355 14356 if (SDValue NewSel = foldBinOpIntoSelect(N)) 14357 return NewSel; 14358 14359 // fold (fadd A, (fneg B)) -> (fsub A, B) 14360 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) 14361 if (SDValue NegN1 = TLI.getCheaperNegatedExpression( 14362 N1, DAG, LegalOperations, ForCodeSize)) 14363 return DAG.getNode(ISD::FSUB, DL, VT, N0, NegN1); 14364 14365 // fold (fadd (fneg A), B) -> (fsub B, A) 14366 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) 14367 if (SDValue NegN0 = TLI.getCheaperNegatedExpression( 14368 N0, DAG, LegalOperations, ForCodeSize)) 14369 return DAG.getNode(ISD::FSUB, DL, VT, N1, NegN0); 14370 14371 auto isFMulNegTwo = [](SDValue FMul) { 14372 if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL) 14373 return false; 14374 auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true); 14375 return C && C->isExactlyValue(-2.0); 14376 }; 14377 14378 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B) 14379 if (isFMulNegTwo(N0)) { 14380 SDValue B = N0.getOperand(0); 14381 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); 14382 return DAG.getNode(ISD::FSUB, DL, VT, N1, Add); 14383 } 14384 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B) 14385 if (isFMulNegTwo(N1)) { 14386 SDValue B = N1.getOperand(0); 14387 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); 14388 return DAG.getNode(ISD::FSUB, DL, VT, N0, Add); 14389 } 14390 14391 // No FP constant should be created after legalization as Instruction 14392 // Selection pass has a hard time dealing with FP constants. 14393 bool AllowNewConst = (Level < AfterLegalizeDAG); 14394 14395 // If nnan is enabled, fold lots of things. 14396 if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) { 14397 // If allowed, fold (fadd (fneg x), x) -> 0.0 14398 if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) 14399 return DAG.getConstantFP(0.0, DL, VT); 14400 14401 // If allowed, fold (fadd x, (fneg x)) -> 0.0 14402 if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) 14403 return DAG.getConstantFP(0.0, DL, VT); 14404 } 14405 14406 // If 'unsafe math' or reassoc and nsz, fold lots of things. 14407 // TODO: break out portions of the transformations below for which Unsafe is 14408 // considered and which do not require both nsz and reassoc 14409 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || 14410 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && 14411 AllowNewConst) { 14412 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2 14413 if (N1CFP && N0.getOpcode() == ISD::FADD && 14414 DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 14415 SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1); 14416 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC); 14417 } 14418 14419 // We can fold chains of FADD's of the same value into multiplications. 14420 // This transform is not safe in general because we are reducing the number 14421 // of rounding steps. 14422 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { 14423 if (N0.getOpcode() == ISD::FMUL) { 14424 bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 14425 bool CFP01 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); 14426 14427 // (fadd (fmul x, c), x) -> (fmul x, c+1) 14428 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { 14429 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 14430 DAG.getConstantFP(1.0, DL, VT)); 14431 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP); 14432 } 14433 14434 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) 14435 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && 14436 N1.getOperand(0) == N1.getOperand(1) && 14437 N0.getOperand(0) == N1.getOperand(0)) { 14438 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 14439 DAG.getConstantFP(2.0, DL, VT)); 14440 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP); 14441 } 14442 } 14443 14444 if (N1.getOpcode() == ISD::FMUL) { 14445 bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 14446 bool CFP11 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); 14447 14448 // (fadd x, (fmul x, c)) -> (fmul x, c+1) 14449 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { 14450 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 14451 DAG.getConstantFP(1.0, DL, VT)); 14452 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP); 14453 } 14454 14455 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) 14456 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && 14457 N0.getOperand(0) == N0.getOperand(1) && 14458 N1.getOperand(0) == N0.getOperand(0)) { 14459 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 14460 DAG.getConstantFP(2.0, DL, VT)); 14461 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP); 14462 } 14463 } 14464 14465 if (N0.getOpcode() == ISD::FADD) { 14466 bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 14467 // (fadd (fadd x, x), x) -> (fmul x, 3.0) 14468 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && 14469 (N0.getOperand(0) == N1)) { 14470 return DAG.getNode(ISD::FMUL, DL, VT, N1, 14471 DAG.getConstantFP(3.0, DL, VT)); 14472 } 14473 } 14474 14475 if (N1.getOpcode() == ISD::FADD) { 14476 bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 14477 // (fadd x, (fadd x, x)) -> (fmul x, 3.0) 14478 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && 14479 N1.getOperand(0) == N0) { 14480 return DAG.getNode(ISD::FMUL, DL, VT, N0, 14481 DAG.getConstantFP(3.0, DL, VT)); 14482 } 14483 } 14484 14485 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) 14486 if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && 14487 N0.getOperand(0) == N0.getOperand(1) && 14488 N1.getOperand(0) == N1.getOperand(1) && 14489 N0.getOperand(0) == N1.getOperand(0)) { 14490 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), 14491 DAG.getConstantFP(4.0, DL, VT)); 14492 } 14493 } 14494 } // enable-unsafe-fp-math 14495 14496 // FADD -> FMA combines: 14497 if (SDValue Fused = visitFADDForFMACombine(N)) { 14498 AddToWorklist(Fused.getNode()); 14499 return Fused; 14500 } 14501 return SDValue(); 14502 } 14503 14504 SDValue DAGCombiner::visitSTRICT_FADD(SDNode *N) { 14505 SDValue Chain = N->getOperand(0); 14506 SDValue N0 = N->getOperand(1); 14507 SDValue N1 = N->getOperand(2); 14508 EVT VT = N->getValueType(0); 14509 EVT ChainVT = N->getValueType(1); 14510 SDLoc DL(N); 14511 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14512 14513 // fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B) 14514 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT)) 14515 if (SDValue NegN1 = TLI.getCheaperNegatedExpression( 14516 N1, DAG, LegalOperations, ForCodeSize)) { 14517 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT), 14518 {Chain, N0, NegN1}); 14519 } 14520 14521 // fold (strict_fadd (fneg A), B) -> (strict_fsub B, A) 14522 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT)) 14523 if (SDValue NegN0 = TLI.getCheaperNegatedExpression( 14524 N0, DAG, LegalOperations, ForCodeSize)) { 14525 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT), 14526 {Chain, N1, NegN0}); 14527 } 14528 return SDValue(); 14529 } 14530 14531 SDValue DAGCombiner::visitFSUB(SDNode *N) { 14532 SDValue N0 = N->getOperand(0); 14533 SDValue N1 = N->getOperand(1); 14534 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); 14535 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); 14536 EVT VT = N->getValueType(0); 14537 SDLoc DL(N); 14538 const TargetOptions &Options = DAG.getTarget().Options; 14539 const SDNodeFlags Flags = N->getFlags(); 14540 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14541 14542 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 14543 return R; 14544 14545 // fold (fsub c1, c2) -> c1-c2 14546 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FSUB, DL, VT, {N0, N1})) 14547 return C; 14548 14549 // fold vector ops 14550 if (VT.isVector()) 14551 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 14552 return FoldedVOp; 14553 14554 if (SDValue NewSel = foldBinOpIntoSelect(N)) 14555 return NewSel; 14556 14557 // (fsub A, 0) -> A 14558 if (N1CFP && N1CFP->isZero()) { 14559 if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath || 14560 Flags.hasNoSignedZeros()) { 14561 return N0; 14562 } 14563 } 14564 14565 if (N0 == N1) { 14566 // (fsub x, x) -> 0.0 14567 if (Options.NoNaNsFPMath || Flags.hasNoNaNs()) 14568 return DAG.getConstantFP(0.0f, DL, VT); 14569 } 14570 14571 // (fsub -0.0, N1) -> -N1 14572 if (N0CFP && N0CFP->isZero()) { 14573 if (N0CFP->isNegative() || 14574 (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) { 14575 // We cannot replace an FSUB(+-0.0,X) with FNEG(X) when denormals are 14576 // flushed to zero, unless all users treat denorms as zero (DAZ). 14577 // FIXME: This transform will change the sign of a NaN and the behavior 14578 // of a signaling NaN. It is only valid when a NoNaN flag is present. 14579 DenormalMode DenormMode = DAG.getDenormalMode(VT); 14580 if (DenormMode == DenormalMode::getIEEE()) { 14581 if (SDValue NegN1 = 14582 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) 14583 return NegN1; 14584 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 14585 return DAG.getNode(ISD::FNEG, DL, VT, N1); 14586 } 14587 } 14588 } 14589 14590 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || 14591 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && 14592 N1.getOpcode() == ISD::FADD) { 14593 // X - (X + Y) -> -Y 14594 if (N0 == N1->getOperand(0)) 14595 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1)); 14596 // X - (Y + X) -> -Y 14597 if (N0 == N1->getOperand(1)) 14598 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0)); 14599 } 14600 14601 // fold (fsub A, (fneg B)) -> (fadd A, B) 14602 if (SDValue NegN1 = 14603 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) 14604 return DAG.getNode(ISD::FADD, DL, VT, N0, NegN1); 14605 14606 // FSUB -> FMA combines: 14607 if (SDValue Fused = visitFSUBForFMACombine(N)) { 14608 AddToWorklist(Fused.getNode()); 14609 return Fused; 14610 } 14611 14612 return SDValue(); 14613 } 14614 14615 SDValue DAGCombiner::visitFMUL(SDNode *N) { 14616 SDValue N0 = N->getOperand(0); 14617 SDValue N1 = N->getOperand(1); 14618 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); 14619 EVT VT = N->getValueType(0); 14620 SDLoc DL(N); 14621 const TargetOptions &Options = DAG.getTarget().Options; 14622 const SDNodeFlags Flags = N->getFlags(); 14623 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14624 14625 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 14626 return R; 14627 14628 // fold (fmul c1, c2) -> c1*c2 14629 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FMUL, DL, VT, {N0, N1})) 14630 return C; 14631 14632 // canonicalize constant to RHS 14633 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && 14634 !DAG.isConstantFPBuildVectorOrConstantFP(N1)) 14635 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0); 14636 14637 // fold vector ops 14638 if (VT.isVector()) 14639 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 14640 return FoldedVOp; 14641 14642 if (SDValue NewSel = foldBinOpIntoSelect(N)) 14643 return NewSel; 14644 14645 if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) { 14646 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2 14647 if (DAG.isConstantFPBuildVectorOrConstantFP(N1) && 14648 N0.getOpcode() == ISD::FMUL) { 14649 SDValue N00 = N0.getOperand(0); 14650 SDValue N01 = N0.getOperand(1); 14651 // Avoid an infinite loop by making sure that N00 is not a constant 14652 // (the inner multiply has not been constant folded yet). 14653 if (DAG.isConstantFPBuildVectorOrConstantFP(N01) && 14654 !DAG.isConstantFPBuildVectorOrConstantFP(N00)) { 14655 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1); 14656 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts); 14657 } 14658 } 14659 14660 // Match a special-case: we convert X * 2.0 into fadd. 14661 // fmul (fadd X, X), C -> fmul X, 2.0 * C 14662 if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() && 14663 N0.getOperand(0) == N0.getOperand(1)) { 14664 const SDValue Two = DAG.getConstantFP(2.0, DL, VT); 14665 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1); 14666 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts); 14667 } 14668 } 14669 14670 // fold (fmul X, 2.0) -> (fadd X, X) 14671 if (N1CFP && N1CFP->isExactlyValue(+2.0)) 14672 return DAG.getNode(ISD::FADD, DL, VT, N0, N0); 14673 14674 // fold (fmul X, -1.0) -> (fsub -0.0, X) 14675 if (N1CFP && N1CFP->isExactlyValue(-1.0)) { 14676 if (!LegalOperations || TLI.isOperationLegal(ISD::FSUB, VT)) { 14677 return DAG.getNode(ISD::FSUB, DL, VT, 14678 DAG.getConstantFP(-0.0, DL, VT), N0, Flags); 14679 } 14680 } 14681 14682 // -N0 * -N1 --> N0 * N1 14683 TargetLowering::NegatibleCost CostN0 = 14684 TargetLowering::NegatibleCost::Expensive; 14685 TargetLowering::NegatibleCost CostN1 = 14686 TargetLowering::NegatibleCost::Expensive; 14687 SDValue NegN0 = 14688 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 14689 SDValue NegN1 = 14690 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 14691 if (NegN0 && NegN1 && 14692 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 14693 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 14694 return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1); 14695 14696 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X)) 14697 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X) 14698 if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() && 14699 (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) && 14700 TLI.isOperationLegal(ISD::FABS, VT)) { 14701 SDValue Select = N0, X = N1; 14702 if (Select.getOpcode() != ISD::SELECT) 14703 std::swap(Select, X); 14704 14705 SDValue Cond = Select.getOperand(0); 14706 auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1)); 14707 auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2)); 14708 14709 if (TrueOpnd && FalseOpnd && 14710 Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X && 14711 isa<ConstantFPSDNode>(Cond.getOperand(1)) && 14712 cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) { 14713 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 14714 switch (CC) { 14715 default: break; 14716 case ISD::SETOLT: 14717 case ISD::SETULT: 14718 case ISD::SETOLE: 14719 case ISD::SETULE: 14720 case ISD::SETLT: 14721 case ISD::SETLE: 14722 std::swap(TrueOpnd, FalseOpnd); 14723 LLVM_FALLTHROUGH; 14724 case ISD::SETOGT: 14725 case ISD::SETUGT: 14726 case ISD::SETOGE: 14727 case ISD::SETUGE: 14728 case ISD::SETGT: 14729 case ISD::SETGE: 14730 if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) && 14731 TLI.isOperationLegal(ISD::FNEG, VT)) 14732 return DAG.getNode(ISD::FNEG, DL, VT, 14733 DAG.getNode(ISD::FABS, DL, VT, X)); 14734 if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0)) 14735 return DAG.getNode(ISD::FABS, DL, VT, X); 14736 14737 break; 14738 } 14739 } 14740 } 14741 14742 // FMUL -> FMA combines: 14743 if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) { 14744 AddToWorklist(Fused.getNode()); 14745 return Fused; 14746 } 14747 14748 return SDValue(); 14749 } 14750 14751 SDValue DAGCombiner::visitFMA(SDNode *N) { 14752 SDValue N0 = N->getOperand(0); 14753 SDValue N1 = N->getOperand(1); 14754 SDValue N2 = N->getOperand(2); 14755 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 14756 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 14757 EVT VT = N->getValueType(0); 14758 SDLoc DL(N); 14759 const TargetOptions &Options = DAG.getTarget().Options; 14760 // FMA nodes have flags that propagate to the created nodes. 14761 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14762 14763 bool UnsafeFPMath = 14764 Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 14765 14766 // Constant fold FMA. 14767 if (isa<ConstantFPSDNode>(N0) && 14768 isa<ConstantFPSDNode>(N1) && 14769 isa<ConstantFPSDNode>(N2)) { 14770 return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); 14771 } 14772 14773 // (-N0 * -N1) + N2 --> (N0 * N1) + N2 14774 TargetLowering::NegatibleCost CostN0 = 14775 TargetLowering::NegatibleCost::Expensive; 14776 TargetLowering::NegatibleCost CostN1 = 14777 TargetLowering::NegatibleCost::Expensive; 14778 SDValue NegN0 = 14779 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 14780 SDValue NegN1 = 14781 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 14782 if (NegN0 && NegN1 && 14783 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 14784 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 14785 return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2); 14786 14787 if (UnsafeFPMath) { 14788 if (N0CFP && N0CFP->isZero()) 14789 return N2; 14790 if (N1CFP && N1CFP->isZero()) 14791 return N2; 14792 } 14793 14794 if (N0CFP && N0CFP->isExactlyValue(1.0)) 14795 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); 14796 if (N1CFP && N1CFP->isExactlyValue(1.0)) 14797 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); 14798 14799 // Canonicalize (fma c, x, y) -> (fma x, c, y) 14800 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && 14801 !DAG.isConstantFPBuildVectorOrConstantFP(N1)) 14802 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); 14803 14804 if (UnsafeFPMath) { 14805 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) 14806 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && 14807 DAG.isConstantFPBuildVectorOrConstantFP(N1) && 14808 DAG.isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { 14809 return DAG.getNode(ISD::FMUL, DL, VT, N0, 14810 DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1))); 14811 } 14812 14813 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) 14814 if (N0.getOpcode() == ISD::FMUL && 14815 DAG.isConstantFPBuildVectorOrConstantFP(N1) && 14816 DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 14817 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), 14818 DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1)), 14819 N2); 14820 } 14821 } 14822 14823 // (fma x, -1, y) -> (fadd (fneg x), y) 14824 if (N1CFP) { 14825 if (N1CFP->isExactlyValue(1.0)) 14826 return DAG.getNode(ISD::FADD, DL, VT, N0, N2); 14827 14828 if (N1CFP->isExactlyValue(-1.0) && 14829 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { 14830 SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); 14831 AddToWorklist(RHSNeg.getNode()); 14832 return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); 14833 } 14834 14835 // fma (fneg x), K, y -> fma x -K, y 14836 if (N0.getOpcode() == ISD::FNEG && 14837 (TLI.isOperationLegal(ISD::ConstantFP, VT) || 14838 (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT, 14839 ForCodeSize)))) { 14840 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), 14841 DAG.getNode(ISD::FNEG, DL, VT, N1), N2); 14842 } 14843 } 14844 14845 if (UnsafeFPMath) { 14846 // (fma x, c, x) -> (fmul x, (c+1)) 14847 if (N1CFP && N0 == N2) { 14848 return DAG.getNode( 14849 ISD::FMUL, DL, VT, N0, 14850 DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(1.0, DL, VT))); 14851 } 14852 14853 // (fma x, c, (fneg x)) -> (fmul x, (c-1)) 14854 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { 14855 return DAG.getNode( 14856 ISD::FMUL, DL, VT, N0, 14857 DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(-1.0, DL, VT))); 14858 } 14859 } 14860 14861 // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z)) 14862 // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z)) 14863 if (!TLI.isFNegFree(VT)) 14864 if (SDValue Neg = TLI.getCheaperNegatedExpression( 14865 SDValue(N, 0), DAG, LegalOperations, ForCodeSize)) 14866 return DAG.getNode(ISD::FNEG, DL, VT, Neg); 14867 return SDValue(); 14868 } 14869 14870 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 14871 // reciprocal. 14872 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) 14873 // Notice that this is not always beneficial. One reason is different targets 14874 // may have different costs for FDIV and FMUL, so sometimes the cost of two 14875 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason 14876 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". 14877 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { 14878 // TODO: Limit this transform based on optsize/minsize - it always creates at 14879 // least 1 extra instruction. But the perf win may be substantial enough 14880 // that only minsize should restrict this. 14881 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; 14882 const SDNodeFlags Flags = N->getFlags(); 14883 if (LegalDAG || (!UnsafeMath && !Flags.hasAllowReciprocal())) 14884 return SDValue(); 14885 14886 // Skip if current node is a reciprocal/fneg-reciprocal. 14887 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 14888 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true); 14889 if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0))) 14890 return SDValue(); 14891 14892 // Exit early if the target does not want this transform or if there can't 14893 // possibly be enough uses of the divisor to make the transform worthwhile. 14894 unsigned MinUses = TLI.combineRepeatedFPDivisors(); 14895 14896 // For splat vectors, scale the number of uses by the splat factor. If we can 14897 // convert the division into a scalar op, that will likely be much faster. 14898 unsigned NumElts = 1; 14899 EVT VT = N->getValueType(0); 14900 if (VT.isVector() && DAG.isSplatValue(N1)) 14901 NumElts = VT.getVectorMinNumElements(); 14902 14903 if (!MinUses || (N1->use_size() * NumElts) < MinUses) 14904 return SDValue(); 14905 14906 // Find all FDIV users of the same divisor. 14907 // Use a set because duplicates may be present in the user list. 14908 SetVector<SDNode *> Users; 14909 for (auto *U : N1->uses()) { 14910 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { 14911 // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet. 14912 if (U->getOperand(1).getOpcode() == ISD::FSQRT && 14913 U->getOperand(0) == U->getOperand(1).getOperand(0) && 14914 U->getFlags().hasAllowReassociation() && 14915 U->getFlags().hasNoSignedZeros()) 14916 continue; 14917 14918 // This division is eligible for optimization only if global unsafe math 14919 // is enabled or if this division allows reciprocal formation. 14920 if (UnsafeMath || U->getFlags().hasAllowReciprocal()) 14921 Users.insert(U); 14922 } 14923 } 14924 14925 // Now that we have the actual number of divisor uses, make sure it meets 14926 // the minimum threshold specified by the target. 14927 if ((Users.size() * NumElts) < MinUses) 14928 return SDValue(); 14929 14930 SDLoc DL(N); 14931 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 14932 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); 14933 14934 // Dividend / Divisor -> Dividend * Reciprocal 14935 for (auto *U : Users) { 14936 SDValue Dividend = U->getOperand(0); 14937 if (Dividend != FPOne) { 14938 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, 14939 Reciprocal, Flags); 14940 CombineTo(U, NewNode); 14941 } else if (U != Reciprocal.getNode()) { 14942 // In the absence of fast-math-flags, this user node is always the 14943 // same node as Reciprocal, but with FMF they may be different nodes. 14944 CombineTo(U, Reciprocal); 14945 } 14946 } 14947 return SDValue(N, 0); // N was replaced. 14948 } 14949 14950 SDValue DAGCombiner::visitFDIV(SDNode *N) { 14951 SDValue N0 = N->getOperand(0); 14952 SDValue N1 = N->getOperand(1); 14953 EVT VT = N->getValueType(0); 14954 SDLoc DL(N); 14955 const TargetOptions &Options = DAG.getTarget().Options; 14956 SDNodeFlags Flags = N->getFlags(); 14957 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14958 14959 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 14960 return R; 14961 14962 // fold (fdiv c1, c2) -> c1/c2 14963 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FDIV, DL, VT, {N0, N1})) 14964 return C; 14965 14966 // fold vector ops 14967 if (VT.isVector()) 14968 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 14969 return FoldedVOp; 14970 14971 if (SDValue NewSel = foldBinOpIntoSelect(N)) 14972 return NewSel; 14973 14974 if (SDValue V = combineRepeatedFPDivisors(N)) 14975 return V; 14976 14977 if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) { 14978 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. 14979 if (auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1)) { 14980 // Compute the reciprocal 1.0 / c2. 14981 const APFloat &N1APF = N1CFP->getValueAPF(); 14982 APFloat Recip(N1APF.getSemantics(), 1); // 1.0 14983 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); 14984 // Only do the transform if the reciprocal is a legal fp immediate that 14985 // isn't too nasty (eg NaN, denormal, ...). 14986 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty 14987 (!LegalOperations || 14988 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM 14989 // backend)... we should handle this gracefully after Legalize. 14990 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) || 14991 TLI.isOperationLegal(ISD::ConstantFP, VT) || 14992 TLI.isFPImmLegal(Recip, VT, ForCodeSize))) 14993 return DAG.getNode(ISD::FMUL, DL, VT, N0, 14994 DAG.getConstantFP(Recip, DL, VT)); 14995 } 14996 14997 // If this FDIV is part of a reciprocal square root, it may be folded 14998 // into a target-specific square root estimate instruction. 14999 if (N1.getOpcode() == ISD::FSQRT) { 15000 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) 15001 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 15002 } else if (N1.getOpcode() == ISD::FP_EXTEND && 15003 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 15004 if (SDValue RV = 15005 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { 15006 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); 15007 AddToWorklist(RV.getNode()); 15008 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 15009 } 15010 } else if (N1.getOpcode() == ISD::FP_ROUND && 15011 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 15012 if (SDValue RV = 15013 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { 15014 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); 15015 AddToWorklist(RV.getNode()); 15016 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 15017 } 15018 } else if (N1.getOpcode() == ISD::FMUL) { 15019 // Look through an FMUL. Even though this won't remove the FDIV directly, 15020 // it's still worthwhile to get rid of the FSQRT if possible. 15021 SDValue Sqrt, Y; 15022 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { 15023 Sqrt = N1.getOperand(0); 15024 Y = N1.getOperand(1); 15025 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { 15026 Sqrt = N1.getOperand(1); 15027 Y = N1.getOperand(0); 15028 } 15029 if (Sqrt.getNode()) { 15030 // If the other multiply operand is known positive, pull it into the 15031 // sqrt. That will eliminate the division if we convert to an estimate. 15032 if (Flags.hasAllowReassociation() && N1.hasOneUse() && 15033 N1->getFlags().hasAllowReassociation() && Sqrt.hasOneUse()) { 15034 SDValue A; 15035 if (Y.getOpcode() == ISD::FABS && Y.hasOneUse()) 15036 A = Y.getOperand(0); 15037 else if (Y == Sqrt.getOperand(0)) 15038 A = Y; 15039 if (A) { 15040 // X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z) 15041 // X / (A * sqrt(A)) --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A) 15042 SDValue AA = DAG.getNode(ISD::FMUL, DL, VT, A, A); 15043 SDValue AAZ = 15044 DAG.getNode(ISD::FMUL, DL, VT, AA, Sqrt.getOperand(0)); 15045 if (SDValue Rsqrt = buildRsqrtEstimate(AAZ, Flags)) 15046 return DAG.getNode(ISD::FMUL, DL, VT, N0, Rsqrt); 15047 15048 // Estimate creation failed. Clean up speculatively created nodes. 15049 recursivelyDeleteUnusedNodes(AAZ.getNode()); 15050 } 15051 } 15052 15053 // We found a FSQRT, so try to make this fold: 15054 // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y) 15055 if (SDValue Rsqrt = buildRsqrtEstimate(Sqrt.getOperand(0), Flags)) { 15056 SDValue Div = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, Rsqrt, Y); 15057 AddToWorklist(Div.getNode()); 15058 return DAG.getNode(ISD::FMUL, DL, VT, N0, Div); 15059 } 15060 } 15061 } 15062 15063 // Fold into a reciprocal estimate and multiply instead of a real divide. 15064 if (Options.NoInfsFPMath || Flags.hasNoInfs()) 15065 if (SDValue RV = BuildDivEstimate(N0, N1, Flags)) 15066 return RV; 15067 } 15068 15069 // Fold X/Sqrt(X) -> Sqrt(X) 15070 if ((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) && 15071 (Options.UnsafeFPMath || Flags.hasAllowReassociation())) 15072 if (N1.getOpcode() == ISD::FSQRT && N0 == N1.getOperand(0)) 15073 return N1; 15074 15075 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) 15076 TargetLowering::NegatibleCost CostN0 = 15077 TargetLowering::NegatibleCost::Expensive; 15078 TargetLowering::NegatibleCost CostN1 = 15079 TargetLowering::NegatibleCost::Expensive; 15080 SDValue NegN0 = 15081 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 15082 SDValue NegN1 = 15083 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 15084 if (NegN0 && NegN1 && 15085 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 15086 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 15087 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, NegN0, NegN1); 15088 15089 return SDValue(); 15090 } 15091 15092 SDValue DAGCombiner::visitFREM(SDNode *N) { 15093 SDValue N0 = N->getOperand(0); 15094 SDValue N1 = N->getOperand(1); 15095 EVT VT = N->getValueType(0); 15096 SDNodeFlags Flags = N->getFlags(); 15097 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 15098 15099 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 15100 return R; 15101 15102 // fold (frem c1, c2) -> fmod(c1,c2) 15103 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FREM, SDLoc(N), VT, {N0, N1})) 15104 return C; 15105 15106 if (SDValue NewSel = foldBinOpIntoSelect(N)) 15107 return NewSel; 15108 15109 return SDValue(); 15110 } 15111 15112 SDValue DAGCombiner::visitFSQRT(SDNode *N) { 15113 SDNodeFlags Flags = N->getFlags(); 15114 const TargetOptions &Options = DAG.getTarget().Options; 15115 15116 // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as: 15117 // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN 15118 if (!Flags.hasApproximateFuncs() || 15119 (!Options.NoInfsFPMath && !Flags.hasNoInfs())) 15120 return SDValue(); 15121 15122 SDValue N0 = N->getOperand(0); 15123 if (TLI.isFsqrtCheap(N0, DAG)) 15124 return SDValue(); 15125 15126 // FSQRT nodes have flags that propagate to the created nodes. 15127 // TODO: If this is N0/sqrt(N0), and we reach this node before trying to 15128 // transform the fdiv, we may produce a sub-optimal estimate sequence 15129 // because the reciprocal calculation may not have to filter out a 15130 // 0.0 input. 15131 return buildSqrtEstimate(N0, Flags); 15132 } 15133 15134 /// copysign(x, fp_extend(y)) -> copysign(x, y) 15135 /// copysign(x, fp_round(y)) -> copysign(x, y) 15136 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { 15137 SDValue N1 = N->getOperand(1); 15138 if ((N1.getOpcode() == ISD::FP_EXTEND || 15139 N1.getOpcode() == ISD::FP_ROUND)) { 15140 EVT N1VT = N1->getValueType(0); 15141 EVT N1Op0VT = N1->getOperand(0).getValueType(); 15142 15143 // Always fold no-op FP casts. 15144 if (N1VT == N1Op0VT) 15145 return true; 15146 15147 // Do not optimize out type conversion of f128 type yet. 15148 // For some targets like x86_64, configuration is changed to keep one f128 15149 // value in one SSE register, but instruction selection cannot handle 15150 // FCOPYSIGN on SSE registers yet. 15151 if (N1Op0VT == MVT::f128) 15152 return false; 15153 15154 // Avoid mismatched vector operand types, for better instruction selection. 15155 if (N1Op0VT.isVector()) 15156 return false; 15157 15158 return true; 15159 } 15160 return false; 15161 } 15162 15163 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { 15164 SDValue N0 = N->getOperand(0); 15165 SDValue N1 = N->getOperand(1); 15166 EVT VT = N->getValueType(0); 15167 15168 // fold (fcopysign c1, c2) -> fcopysign(c1,c2) 15169 if (SDValue C = 15170 DAG.FoldConstantArithmetic(ISD::FCOPYSIGN, SDLoc(N), VT, {N0, N1})) 15171 return C; 15172 15173 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) { 15174 const APFloat &V = N1C->getValueAPF(); 15175 // copysign(x, c1) -> fabs(x) iff ispos(c1) 15176 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) 15177 if (!V.isNegative()) { 15178 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) 15179 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 15180 } else { 15181 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 15182 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, 15183 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); 15184 } 15185 } 15186 15187 // copysign(fabs(x), y) -> copysign(x, y) 15188 // copysign(fneg(x), y) -> copysign(x, y) 15189 // copysign(copysign(x,z), y) -> copysign(x, y) 15190 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || 15191 N0.getOpcode() == ISD::FCOPYSIGN) 15192 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); 15193 15194 // copysign(x, abs(y)) -> abs(x) 15195 if (N1.getOpcode() == ISD::FABS) 15196 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 15197 15198 // copysign(x, copysign(y,z)) -> copysign(x, z) 15199 if (N1.getOpcode() == ISD::FCOPYSIGN) 15200 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); 15201 15202 // copysign(x, fp_extend(y)) -> copysign(x, y) 15203 // copysign(x, fp_round(y)) -> copysign(x, y) 15204 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) 15205 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); 15206 15207 return SDValue(); 15208 } 15209 15210 SDValue DAGCombiner::visitFPOW(SDNode *N) { 15211 ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1)); 15212 if (!ExponentC) 15213 return SDValue(); 15214 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 15215 15216 // Try to convert x ** (1/3) into cube root. 15217 // TODO: Handle the various flavors of long double. 15218 // TODO: Since we're approximating, we don't need an exact 1/3 exponent. 15219 // Some range near 1/3 should be fine. 15220 EVT VT = N->getValueType(0); 15221 if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) || 15222 (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) { 15223 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0. 15224 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf. 15225 // pow(-val, 1/3) = nan; cbrt(-val) = -num. 15226 // For regular numbers, rounding may cause the results to differ. 15227 // Therefore, we require { nsz ninf nnan afn } for this transform. 15228 // TODO: We could select out the special cases if we don't have nsz/ninf. 15229 SDNodeFlags Flags = N->getFlags(); 15230 if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() || 15231 !Flags.hasApproximateFuncs()) 15232 return SDValue(); 15233 15234 // Do not create a cbrt() libcall if the target does not have it, and do not 15235 // turn a pow that has lowering support into a cbrt() libcall. 15236 if (!DAG.getLibInfo().has(LibFunc_cbrt) || 15237 (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) && 15238 DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT))) 15239 return SDValue(); 15240 15241 return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0)); 15242 } 15243 15244 // Try to convert x ** (1/4) and x ** (3/4) into square roots. 15245 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case. 15246 // TODO: This could be extended (using a target hook) to handle smaller 15247 // power-of-2 fractional exponents. 15248 bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25); 15249 bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75); 15250 if (ExponentIs025 || ExponentIs075) { 15251 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0. 15252 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN. 15253 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0. 15254 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN. 15255 // For regular numbers, rounding may cause the results to differ. 15256 // Therefore, we require { nsz ninf afn } for this transform. 15257 // TODO: We could select out the special cases if we don't have nsz/ninf. 15258 SDNodeFlags Flags = N->getFlags(); 15259 15260 // We only need no signed zeros for the 0.25 case. 15261 if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() || 15262 !Flags.hasApproximateFuncs()) 15263 return SDValue(); 15264 15265 // Don't double the number of libcalls. We are trying to inline fast code. 15266 if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT)) 15267 return SDValue(); 15268 15269 // Assume that libcalls are the smallest code. 15270 // TODO: This restriction should probably be lifted for vectors. 15271 if (ForCodeSize) 15272 return SDValue(); 15273 15274 // pow(X, 0.25) --> sqrt(sqrt(X)) 15275 SDLoc DL(N); 15276 SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0)); 15277 SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt); 15278 if (ExponentIs025) 15279 return SqrtSqrt; 15280 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X)) 15281 return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt); 15282 } 15283 15284 return SDValue(); 15285 } 15286 15287 static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG, 15288 const TargetLowering &TLI) { 15289 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be 15290 // replacing casts with a libcall. We also must be allowed to ignore -0.0 15291 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer 15292 // conversions would return +0.0. 15293 // FIXME: We should be able to use node-level FMF here. 15294 // TODO: If strict math, should we use FABS (+ range check for signed cast)? 15295 EVT VT = N->getValueType(0); 15296 if (!TLI.isOperationLegal(ISD::FTRUNC, VT) || 15297 !DAG.getTarget().Options.NoSignedZerosFPMath) 15298 return SDValue(); 15299 15300 // fptosi/fptoui round towards zero, so converting from FP to integer and 15301 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X 15302 SDValue N0 = N->getOperand(0); 15303 if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT && 15304 N0.getOperand(0).getValueType() == VT) 15305 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); 15306 15307 if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT && 15308 N0.getOperand(0).getValueType() == VT) 15309 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); 15310 15311 return SDValue(); 15312 } 15313 15314 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { 15315 SDValue N0 = N->getOperand(0); 15316 EVT VT = N->getValueType(0); 15317 EVT OpVT = N0.getValueType(); 15318 15319 // [us]itofp(undef) = 0, because the result value is bounded. 15320 if (N0.isUndef()) 15321 return DAG.getConstantFP(0.0, SDLoc(N), VT); 15322 15323 // fold (sint_to_fp c1) -> c1fp 15324 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 15325 // ...but only if the target supports immediate floating-point values 15326 (!LegalOperations || 15327 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) 15328 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 15329 15330 // If the input is a legal type, and SINT_TO_FP is not legal on this target, 15331 // but UINT_TO_FP is legal on this target, try to convert. 15332 if (!hasOperation(ISD::SINT_TO_FP, OpVT) && 15333 hasOperation(ISD::UINT_TO_FP, OpVT)) { 15334 // If the sign bit is known to be zero, we can change this to UINT_TO_FP. 15335 if (DAG.SignBitIsZero(N0)) 15336 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 15337 } 15338 15339 // The next optimizations are desirable only if SELECT_CC can be lowered. 15340 // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0) 15341 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && 15342 !VT.isVector() && 15343 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 15344 SDLoc DL(N); 15345 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT), 15346 DAG.getConstantFP(0.0, DL, VT)); 15347 } 15348 15349 // fold (sint_to_fp (zext (setcc x, y, cc))) -> 15350 // (select (setcc x, y, cc), 1.0, 0.0) 15351 if (N0.getOpcode() == ISD::ZERO_EXTEND && 15352 N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() && 15353 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 15354 SDLoc DL(N); 15355 return DAG.getSelect(DL, VT, N0.getOperand(0), 15356 DAG.getConstantFP(1.0, DL, VT), 15357 DAG.getConstantFP(0.0, DL, VT)); 15358 } 15359 15360 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) 15361 return FTrunc; 15362 15363 return SDValue(); 15364 } 15365 15366 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { 15367 SDValue N0 = N->getOperand(0); 15368 EVT VT = N->getValueType(0); 15369 EVT OpVT = N0.getValueType(); 15370 15371 // [us]itofp(undef) = 0, because the result value is bounded. 15372 if (N0.isUndef()) 15373 return DAG.getConstantFP(0.0, SDLoc(N), VT); 15374 15375 // fold (uint_to_fp c1) -> c1fp 15376 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 15377 // ...but only if the target supports immediate floating-point values 15378 (!LegalOperations || 15379 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) 15380 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 15381 15382 // If the input is a legal type, and UINT_TO_FP is not legal on this target, 15383 // but SINT_TO_FP is legal on this target, try to convert. 15384 if (!hasOperation(ISD::UINT_TO_FP, OpVT) && 15385 hasOperation(ISD::SINT_TO_FP, OpVT)) { 15386 // If the sign bit is known to be zero, we can change this to SINT_TO_FP. 15387 if (DAG.SignBitIsZero(N0)) 15388 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 15389 } 15390 15391 // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0) 15392 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && 15393 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 15394 SDLoc DL(N); 15395 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT), 15396 DAG.getConstantFP(0.0, DL, VT)); 15397 } 15398 15399 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) 15400 return FTrunc; 15401 15402 return SDValue(); 15403 } 15404 15405 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x 15406 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { 15407 SDValue N0 = N->getOperand(0); 15408 EVT VT = N->getValueType(0); 15409 15410 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) 15411 return SDValue(); 15412 15413 SDValue Src = N0.getOperand(0); 15414 EVT SrcVT = Src.getValueType(); 15415 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; 15416 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; 15417 15418 // We can safely assume the conversion won't overflow the output range, 15419 // because (for example) (uint8_t)18293.f is undefined behavior. 15420 15421 // Since we can assume the conversion won't overflow, our decision as to 15422 // whether the input will fit in the float should depend on the minimum 15423 // of the input range and output range. 15424 15425 // This means this is also safe for a signed input and unsigned output, since 15426 // a negative input would lead to undefined behavior. 15427 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; 15428 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; 15429 unsigned ActualSize = std::min(InputSize, OutputSize); 15430 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); 15431 15432 // We can only fold away the float conversion if the input range can be 15433 // represented exactly in the float range. 15434 if (APFloat::semanticsPrecision(sem) >= ActualSize) { 15435 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { 15436 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND 15437 : ISD::ZERO_EXTEND; 15438 return DAG.getNode(ExtOp, SDLoc(N), VT, Src); 15439 } 15440 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) 15441 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); 15442 return DAG.getBitcast(VT, Src); 15443 } 15444 return SDValue(); 15445 } 15446 15447 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { 15448 SDValue N0 = N->getOperand(0); 15449 EVT VT = N->getValueType(0); 15450 15451 // fold (fp_to_sint undef) -> undef 15452 if (N0.isUndef()) 15453 return DAG.getUNDEF(VT); 15454 15455 // fold (fp_to_sint c1fp) -> c1 15456 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15457 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); 15458 15459 return FoldIntToFPToInt(N, DAG); 15460 } 15461 15462 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { 15463 SDValue N0 = N->getOperand(0); 15464 EVT VT = N->getValueType(0); 15465 15466 // fold (fp_to_uint undef) -> undef 15467 if (N0.isUndef()) 15468 return DAG.getUNDEF(VT); 15469 15470 // fold (fp_to_uint c1fp) -> c1 15471 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15472 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); 15473 15474 return FoldIntToFPToInt(N, DAG); 15475 } 15476 15477 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { 15478 SDValue N0 = N->getOperand(0); 15479 SDValue N1 = N->getOperand(1); 15480 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 15481 EVT VT = N->getValueType(0); 15482 15483 // fold (fp_round c1fp) -> c1fp 15484 if (N0CFP) 15485 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); 15486 15487 // fold (fp_round (fp_extend x)) -> x 15488 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) 15489 return N0.getOperand(0); 15490 15491 // fold (fp_round (fp_round x)) -> (fp_round x) 15492 if (N0.getOpcode() == ISD::FP_ROUND) { 15493 const bool NIsTrunc = N->getConstantOperandVal(1) == 1; 15494 const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1; 15495 15496 // Skip this folding if it results in an fp_round from f80 to f16. 15497 // 15498 // f80 to f16 always generates an expensive (and as yet, unimplemented) 15499 // libcall to __truncxfhf2 instead of selecting native f16 conversion 15500 // instructions from f32 or f64. Moreover, the first (value-preserving) 15501 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like 15502 // x86. 15503 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) 15504 return SDValue(); 15505 15506 // If the first fp_round isn't a value preserving truncation, it might 15507 // introduce a tie in the second fp_round, that wouldn't occur in the 15508 // single-step fp_round we want to fold to. 15509 // In other words, double rounding isn't the same as rounding. 15510 // Also, this is a value preserving truncation iff both fp_round's are. 15511 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { 15512 SDLoc DL(N); 15513 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), 15514 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); 15515 } 15516 } 15517 15518 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) 15519 if (N0.getOpcode() == ISD::FCOPYSIGN && N0->hasOneUse()) { 15520 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, 15521 N0.getOperand(0), N1); 15522 AddToWorklist(Tmp.getNode()); 15523 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 15524 Tmp, N0.getOperand(1)); 15525 } 15526 15527 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 15528 return NewVSel; 15529 15530 return SDValue(); 15531 } 15532 15533 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { 15534 SDValue N0 = N->getOperand(0); 15535 EVT VT = N->getValueType(0); 15536 15537 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. 15538 if (N->hasOneUse() && 15539 N->use_begin()->getOpcode() == ISD::FP_ROUND) 15540 return SDValue(); 15541 15542 // fold (fp_extend c1fp) -> c1fp 15543 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15544 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); 15545 15546 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) 15547 if (N0.getOpcode() == ISD::FP16_TO_FP && 15548 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) 15549 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); 15550 15551 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the 15552 // value of X. 15553 if (N0.getOpcode() == ISD::FP_ROUND 15554 && N0.getConstantOperandVal(1) == 1) { 15555 SDValue In = N0.getOperand(0); 15556 if (In.getValueType() == VT) return In; 15557 if (VT.bitsLT(In.getValueType())) 15558 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, 15559 In, N0.getOperand(1)); 15560 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); 15561 } 15562 15563 // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) 15564 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 15565 TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, VT, N0.getValueType())) { 15566 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 15567 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 15568 LN0->getChain(), 15569 LN0->getBasePtr(), N0.getValueType(), 15570 LN0->getMemOperand()); 15571 CombineTo(N, ExtLoad); 15572 CombineTo(N0.getNode(), 15573 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), 15574 N0.getValueType(), ExtLoad, 15575 DAG.getIntPtrConstant(1, SDLoc(N0))), 15576 ExtLoad.getValue(1)); 15577 return SDValue(N, 0); // Return N so it doesn't get rechecked! 15578 } 15579 15580 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 15581 return NewVSel; 15582 15583 return SDValue(); 15584 } 15585 15586 SDValue DAGCombiner::visitFCEIL(SDNode *N) { 15587 SDValue N0 = N->getOperand(0); 15588 EVT VT = N->getValueType(0); 15589 15590 // fold (fceil c1) -> fceil(c1) 15591 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15592 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); 15593 15594 return SDValue(); 15595 } 15596 15597 SDValue DAGCombiner::visitFTRUNC(SDNode *N) { 15598 SDValue N0 = N->getOperand(0); 15599 EVT VT = N->getValueType(0); 15600 15601 // fold (ftrunc c1) -> ftrunc(c1) 15602 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15603 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); 15604 15605 // fold ftrunc (known rounded int x) -> x 15606 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is 15607 // likely to be generated to extract integer from a rounded floating value. 15608 switch (N0.getOpcode()) { 15609 default: break; 15610 case ISD::FRINT: 15611 case ISD::FTRUNC: 15612 case ISD::FNEARBYINT: 15613 case ISD::FFLOOR: 15614 case ISD::FCEIL: 15615 return N0; 15616 } 15617 15618 return SDValue(); 15619 } 15620 15621 SDValue DAGCombiner::visitFFLOOR(SDNode *N) { 15622 SDValue N0 = N->getOperand(0); 15623 EVT VT = N->getValueType(0); 15624 15625 // fold (ffloor c1) -> ffloor(c1) 15626 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15627 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); 15628 15629 return SDValue(); 15630 } 15631 15632 SDValue DAGCombiner::visitFNEG(SDNode *N) { 15633 SDValue N0 = N->getOperand(0); 15634 EVT VT = N->getValueType(0); 15635 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 15636 15637 // Constant fold FNEG. 15638 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15639 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); 15640 15641 if (SDValue NegN0 = 15642 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize)) 15643 return NegN0; 15644 15645 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 15646 // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't 15647 // know it was called from a context with a nsz flag if the input fsub does 15648 // not. 15649 if (N0.getOpcode() == ISD::FSUB && 15650 (DAG.getTarget().Options.NoSignedZerosFPMath || 15651 N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) { 15652 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1), 15653 N0.getOperand(0)); 15654 } 15655 15656 if (SDValue Cast = foldSignChangeInBitcast(N)) 15657 return Cast; 15658 15659 return SDValue(); 15660 } 15661 15662 SDValue DAGCombiner::visitFMinMax(SDNode *N) { 15663 SDValue N0 = N->getOperand(0); 15664 SDValue N1 = N->getOperand(1); 15665 EVT VT = N->getValueType(0); 15666 const SDNodeFlags Flags = N->getFlags(); 15667 unsigned Opc = N->getOpcode(); 15668 bool PropagatesNaN = Opc == ISD::FMINIMUM || Opc == ISD::FMAXIMUM; 15669 bool IsMin = Opc == ISD::FMINNUM || Opc == ISD::FMINIMUM; 15670 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 15671 15672 // Constant fold. 15673 if (SDValue C = DAG.FoldConstantArithmetic(Opc, SDLoc(N), VT, {N0, N1})) 15674 return C; 15675 15676 // Canonicalize to constant on RHS. 15677 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && 15678 !DAG.isConstantFPBuildVectorOrConstantFP(N1)) 15679 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 15680 15681 if (const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1)) { 15682 const APFloat &AF = N1CFP->getValueAPF(); 15683 15684 // minnum(X, nan) -> X 15685 // maxnum(X, nan) -> X 15686 // minimum(X, nan) -> nan 15687 // maximum(X, nan) -> nan 15688 if (AF.isNaN()) 15689 return PropagatesNaN ? N->getOperand(1) : N->getOperand(0); 15690 15691 // In the following folds, inf can be replaced with the largest finite 15692 // float, if the ninf flag is set. 15693 if (AF.isInfinity() || (Flags.hasNoInfs() && AF.isLargest())) { 15694 // minnum(X, -inf) -> -inf 15695 // maxnum(X, +inf) -> +inf 15696 // minimum(X, -inf) -> -inf if nnan 15697 // maximum(X, +inf) -> +inf if nnan 15698 if (IsMin == AF.isNegative() && (!PropagatesNaN || Flags.hasNoNaNs())) 15699 return N->getOperand(1); 15700 15701 // minnum(X, +inf) -> X if nnan 15702 // maxnum(X, -inf) -> X if nnan 15703 // minimum(X, +inf) -> X 15704 // maximum(X, -inf) -> X 15705 if (IsMin != AF.isNegative() && (PropagatesNaN || Flags.hasNoNaNs())) 15706 return N->getOperand(0); 15707 } 15708 } 15709 15710 return SDValue(); 15711 } 15712 15713 SDValue DAGCombiner::visitFABS(SDNode *N) { 15714 SDValue N0 = N->getOperand(0); 15715 EVT VT = N->getValueType(0); 15716 15717 // fold (fabs c1) -> fabs(c1) 15718 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15719 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 15720 15721 // fold (fabs (fabs x)) -> (fabs x) 15722 if (N0.getOpcode() == ISD::FABS) 15723 return N->getOperand(0); 15724 15725 // fold (fabs (fneg x)) -> (fabs x) 15726 // fold (fabs (fcopysign x, y)) -> (fabs x) 15727 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) 15728 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); 15729 15730 if (SDValue Cast = foldSignChangeInBitcast(N)) 15731 return Cast; 15732 15733 return SDValue(); 15734 } 15735 15736 SDValue DAGCombiner::visitBRCOND(SDNode *N) { 15737 SDValue Chain = N->getOperand(0); 15738 SDValue N1 = N->getOperand(1); 15739 SDValue N2 = N->getOperand(2); 15740 15741 // BRCOND(FREEZE(cond)) is equivalent to BRCOND(cond) (both are 15742 // nondeterministic jumps). 15743 if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse()) { 15744 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, 15745 N1->getOperand(0), N2); 15746 } 15747 15748 // If N is a constant we could fold this into a fallthrough or unconditional 15749 // branch. However that doesn't happen very often in normal code, because 15750 // Instcombine/SimplifyCFG should have handled the available opportunities. 15751 // If we did this folding here, it would be necessary to update the 15752 // MachineBasicBlock CFG, which is awkward. 15753 15754 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal 15755 // on the target. 15756 if (N1.getOpcode() == ISD::SETCC && 15757 TLI.isOperationLegalOrCustom(ISD::BR_CC, 15758 N1.getOperand(0).getValueType())) { 15759 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 15760 Chain, N1.getOperand(2), 15761 N1.getOperand(0), N1.getOperand(1), N2); 15762 } 15763 15764 if (N1.hasOneUse()) { 15765 // rebuildSetCC calls visitXor which may change the Chain when there is a 15766 // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes. 15767 HandleSDNode ChainHandle(Chain); 15768 if (SDValue NewN1 = rebuildSetCC(N1)) 15769 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, 15770 ChainHandle.getValue(), NewN1, N2); 15771 } 15772 15773 return SDValue(); 15774 } 15775 15776 SDValue DAGCombiner::rebuildSetCC(SDValue N) { 15777 if (N.getOpcode() == ISD::SRL || 15778 (N.getOpcode() == ISD::TRUNCATE && 15779 (N.getOperand(0).hasOneUse() && 15780 N.getOperand(0).getOpcode() == ISD::SRL))) { 15781 // Look pass the truncate. 15782 if (N.getOpcode() == ISD::TRUNCATE) 15783 N = N.getOperand(0); 15784 15785 // Match this pattern so that we can generate simpler code: 15786 // 15787 // %a = ... 15788 // %b = and i32 %a, 2 15789 // %c = srl i32 %b, 1 15790 // brcond i32 %c ... 15791 // 15792 // into 15793 // 15794 // %a = ... 15795 // %b = and i32 %a, 2 15796 // %c = setcc eq %b, 0 15797 // brcond %c ... 15798 // 15799 // This applies only when the AND constant value has one bit set and the 15800 // SRL constant is equal to the log2 of the AND constant. The back-end is 15801 // smart enough to convert the result into a TEST/JMP sequence. 15802 SDValue Op0 = N.getOperand(0); 15803 SDValue Op1 = N.getOperand(1); 15804 15805 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) { 15806 SDValue AndOp1 = Op0.getOperand(1); 15807 15808 if (AndOp1.getOpcode() == ISD::Constant) { 15809 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); 15810 15811 if (AndConst.isPowerOf2() && 15812 cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) { 15813 SDLoc DL(N); 15814 return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()), 15815 Op0, DAG.getConstant(0, DL, Op0.getValueType()), 15816 ISD::SETNE); 15817 } 15818 } 15819 } 15820 } 15821 15822 // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne)) 15823 // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq)) 15824 if (N.getOpcode() == ISD::XOR) { 15825 // Because we may call this on a speculatively constructed 15826 // SimplifiedSetCC Node, we need to simplify this node first. 15827 // Ideally this should be folded into SimplifySetCC and not 15828 // here. For now, grab a handle to N so we don't lose it from 15829 // replacements interal to the visit. 15830 HandleSDNode XORHandle(N); 15831 while (N.getOpcode() == ISD::XOR) { 15832 SDValue Tmp = visitXOR(N.getNode()); 15833 // No simplification done. 15834 if (!Tmp.getNode()) 15835 break; 15836 // Returning N is form in-visit replacement that may invalidated 15837 // N. Grab value from Handle. 15838 if (Tmp.getNode() == N.getNode()) 15839 N = XORHandle.getValue(); 15840 else // Node simplified. Try simplifying again. 15841 N = Tmp; 15842 } 15843 15844 if (N.getOpcode() != ISD::XOR) 15845 return N; 15846 15847 SDValue Op0 = N->getOperand(0); 15848 SDValue Op1 = N->getOperand(1); 15849 15850 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { 15851 bool Equal = false; 15852 // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq)) 15853 if (isBitwiseNot(N) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR && 15854 Op0.getValueType() == MVT::i1) { 15855 N = Op0; 15856 Op0 = N->getOperand(0); 15857 Op1 = N->getOperand(1); 15858 Equal = true; 15859 } 15860 15861 EVT SetCCVT = N.getValueType(); 15862 if (LegalTypes) 15863 SetCCVT = getSetCCResultType(SetCCVT); 15864 // Replace the uses of XOR with SETCC 15865 return DAG.getSetCC(SDLoc(N), SetCCVT, Op0, Op1, 15866 Equal ? ISD::SETEQ : ISD::SETNE); 15867 } 15868 } 15869 15870 return SDValue(); 15871 } 15872 15873 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. 15874 // 15875 SDValue DAGCombiner::visitBR_CC(SDNode *N) { 15876 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); 15877 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); 15878 15879 // If N is a constant we could fold this into a fallthrough or unconditional 15880 // branch. However that doesn't happen very often in normal code, because 15881 // Instcombine/SimplifyCFG should have handled the available opportunities. 15882 // If we did this folding here, it would be necessary to update the 15883 // MachineBasicBlock CFG, which is awkward. 15884 15885 // Use SimplifySetCC to simplify SETCC's. 15886 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), 15887 CondLHS, CondRHS, CC->get(), SDLoc(N), 15888 false); 15889 if (Simp.getNode()) AddToWorklist(Simp.getNode()); 15890 15891 // fold to a simpler setcc 15892 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) 15893 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 15894 N->getOperand(0), Simp.getOperand(2), 15895 Simp.getOperand(0), Simp.getOperand(1), 15896 N->getOperand(4)); 15897 15898 return SDValue(); 15899 } 15900 15901 static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec, 15902 bool &IsLoad, bool &IsMasked, SDValue &Ptr, 15903 const TargetLowering &TLI) { 15904 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 15905 if (LD->isIndexed()) 15906 return false; 15907 EVT VT = LD->getMemoryVT(); 15908 if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT)) 15909 return false; 15910 Ptr = LD->getBasePtr(); 15911 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 15912 if (ST->isIndexed()) 15913 return false; 15914 EVT VT = ST->getMemoryVT(); 15915 if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT)) 15916 return false; 15917 Ptr = ST->getBasePtr(); 15918 IsLoad = false; 15919 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) { 15920 if (LD->isIndexed()) 15921 return false; 15922 EVT VT = LD->getMemoryVT(); 15923 if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) && 15924 !TLI.isIndexedMaskedLoadLegal(Dec, VT)) 15925 return false; 15926 Ptr = LD->getBasePtr(); 15927 IsMasked = true; 15928 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) { 15929 if (ST->isIndexed()) 15930 return false; 15931 EVT VT = ST->getMemoryVT(); 15932 if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) && 15933 !TLI.isIndexedMaskedStoreLegal(Dec, VT)) 15934 return false; 15935 Ptr = ST->getBasePtr(); 15936 IsLoad = false; 15937 IsMasked = true; 15938 } else { 15939 return false; 15940 } 15941 return true; 15942 } 15943 15944 /// Try turning a load/store into a pre-indexed load/store when the base 15945 /// pointer is an add or subtract and it has other uses besides the load/store. 15946 /// After the transformation, the new indexed load/store has effectively folded 15947 /// the add/subtract in and all of its other uses are redirected to the 15948 /// new load/store. 15949 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { 15950 if (Level < AfterLegalizeDAG) 15951 return false; 15952 15953 bool IsLoad = true; 15954 bool IsMasked = false; 15955 SDValue Ptr; 15956 if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked, 15957 Ptr, TLI)) 15958 return false; 15959 15960 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail 15961 // out. There is no reason to make this a preinc/predec. 15962 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || 15963 Ptr->hasOneUse()) 15964 return false; 15965 15966 // Ask the target to do addressing mode selection. 15967 SDValue BasePtr; 15968 SDValue Offset; 15969 ISD::MemIndexedMode AM = ISD::UNINDEXED; 15970 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) 15971 return false; 15972 15973 // Backends without true r+i pre-indexed forms may need to pass a 15974 // constant base with a variable offset so that constant coercion 15975 // will work with the patterns in canonical form. 15976 bool Swapped = false; 15977 if (isa<ConstantSDNode>(BasePtr)) { 15978 std::swap(BasePtr, Offset); 15979 Swapped = true; 15980 } 15981 15982 // Don't create a indexed load / store with zero offset. 15983 if (isNullConstant(Offset)) 15984 return false; 15985 15986 // Try turning it into a pre-indexed load / store except when: 15987 // 1) The new base ptr is a frame index. 15988 // 2) If N is a store and the new base ptr is either the same as or is a 15989 // predecessor of the value being stored. 15990 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded 15991 // that would create a cycle. 15992 // 4) All uses are load / store ops that use it as old base ptr. 15993 15994 // Check #1. Preinc'ing a frame index would require copying the stack pointer 15995 // (plus the implicit offset) to a register to preinc anyway. 15996 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 15997 return false; 15998 15999 // Check #2. 16000 if (!IsLoad) { 16001 SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue() 16002 : cast<StoreSDNode>(N)->getValue(); 16003 16004 // Would require a copy. 16005 if (Val == BasePtr) 16006 return false; 16007 16008 // Would create a cycle. 16009 if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode())) 16010 return false; 16011 } 16012 16013 // Caches for hasPredecessorHelper. 16014 SmallPtrSet<const SDNode *, 32> Visited; 16015 SmallVector<const SDNode *, 16> Worklist; 16016 Worklist.push_back(N); 16017 16018 // If the offset is a constant, there may be other adds of constants that 16019 // can be folded with this one. We should do this to avoid having to keep 16020 // a copy of the original base pointer. 16021 SmallVector<SDNode *, 16> OtherUses; 16022 if (isa<ConstantSDNode>(Offset)) 16023 for (SDNode::use_iterator UI = BasePtr->use_begin(), 16024 UE = BasePtr->use_end(); 16025 UI != UE; ++UI) { 16026 SDUse &Use = UI.getUse(); 16027 // Skip the use that is Ptr and uses of other results from BasePtr's 16028 // node (important for nodes that return multiple results). 16029 if (Use.getUser() == Ptr.getNode() || Use != BasePtr) 16030 continue; 16031 16032 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) 16033 continue; 16034 16035 if (Use.getUser()->getOpcode() != ISD::ADD && 16036 Use.getUser()->getOpcode() != ISD::SUB) { 16037 OtherUses.clear(); 16038 break; 16039 } 16040 16041 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); 16042 if (!isa<ConstantSDNode>(Op1)) { 16043 OtherUses.clear(); 16044 break; 16045 } 16046 16047 // FIXME: In some cases, we can be smarter about this. 16048 if (Op1.getValueType() != Offset.getValueType()) { 16049 OtherUses.clear(); 16050 break; 16051 } 16052 16053 OtherUses.push_back(Use.getUser()); 16054 } 16055 16056 if (Swapped) 16057 std::swap(BasePtr, Offset); 16058 16059 // Now check for #3 and #4. 16060 bool RealUse = false; 16061 16062 for (SDNode *Use : Ptr->uses()) { 16063 if (Use == N) 16064 continue; 16065 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) 16066 return false; 16067 16068 // If Ptr may be folded in addressing mode of other use, then it's 16069 // not profitable to do this transformation. 16070 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) 16071 RealUse = true; 16072 } 16073 16074 if (!RealUse) 16075 return false; 16076 16077 SDValue Result; 16078 if (!IsMasked) { 16079 if (IsLoad) 16080 Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); 16081 else 16082 Result = 16083 DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); 16084 } else { 16085 if (IsLoad) 16086 Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr, 16087 Offset, AM); 16088 else 16089 Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr, 16090 Offset, AM); 16091 } 16092 ++PreIndexedNodes; 16093 ++NodesCombined; 16094 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: "; 16095 Result.dump(&DAG); dbgs() << '\n'); 16096 WorklistRemover DeadNodes(*this); 16097 if (IsLoad) { 16098 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 16099 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 16100 } else { 16101 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 16102 } 16103 16104 // Finally, since the node is now dead, remove it from the graph. 16105 deleteAndRecombine(N); 16106 16107 if (Swapped) 16108 std::swap(BasePtr, Offset); 16109 16110 // Replace other uses of BasePtr that can be updated to use Ptr 16111 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { 16112 unsigned OffsetIdx = 1; 16113 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) 16114 OffsetIdx = 0; 16115 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == 16116 BasePtr.getNode() && "Expected BasePtr operand"); 16117 16118 // We need to replace ptr0 in the following expression: 16119 // x0 * offset0 + y0 * ptr0 = t0 16120 // knowing that 16121 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) 16122 // 16123 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the 16124 // indexed load/store and the expression that needs to be re-written. 16125 // 16126 // Therefore, we have: 16127 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 16128 16129 auto *CN = cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); 16130 const APInt &Offset0 = CN->getAPIntValue(); 16131 const APInt &Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); 16132 int X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; 16133 int Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; 16134 int X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; 16135 int Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; 16136 16137 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; 16138 16139 APInt CNV = Offset0; 16140 if (X0 < 0) CNV = -CNV; 16141 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; 16142 else CNV = CNV - Offset1; 16143 16144 SDLoc DL(OtherUses[i]); 16145 16146 // We can now generate the new expression. 16147 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); 16148 SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0); 16149 16150 SDValue NewUse = DAG.getNode(Opcode, 16151 DL, 16152 OtherUses[i]->getValueType(0), NewOp1, NewOp2); 16153 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); 16154 deleteAndRecombine(OtherUses[i]); 16155 } 16156 16157 // Replace the uses of Ptr with uses of the updated base value. 16158 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0)); 16159 deleteAndRecombine(Ptr.getNode()); 16160 AddToWorklist(Result.getNode()); 16161 16162 return true; 16163 } 16164 16165 static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse, 16166 SDValue &BasePtr, SDValue &Offset, 16167 ISD::MemIndexedMode &AM, 16168 SelectionDAG &DAG, 16169 const TargetLowering &TLI) { 16170 if (PtrUse == N || 16171 (PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB)) 16172 return false; 16173 16174 if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG)) 16175 return false; 16176 16177 // Don't create a indexed load / store with zero offset. 16178 if (isNullConstant(Offset)) 16179 return false; 16180 16181 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 16182 return false; 16183 16184 SmallPtrSet<const SDNode *, 32> Visited; 16185 for (SDNode *Use : BasePtr->uses()) { 16186 if (Use == Ptr.getNode()) 16187 continue; 16188 16189 // No if there's a later user which could perform the index instead. 16190 if (isa<MemSDNode>(Use)) { 16191 bool IsLoad = true; 16192 bool IsMasked = false; 16193 SDValue OtherPtr; 16194 if (getCombineLoadStoreParts(Use, ISD::POST_INC, ISD::POST_DEC, IsLoad, 16195 IsMasked, OtherPtr, TLI)) { 16196 SmallVector<const SDNode *, 2> Worklist; 16197 Worklist.push_back(Use); 16198 if (SDNode::hasPredecessorHelper(N, Visited, Worklist)) 16199 return false; 16200 } 16201 } 16202 16203 // If all the uses are load / store addresses, then don't do the 16204 // transformation. 16205 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB) { 16206 for (SDNode *UseUse : Use->uses()) 16207 if (canFoldInAddressingMode(Use, UseUse, DAG, TLI)) 16208 return false; 16209 } 16210 } 16211 return true; 16212 } 16213 16214 static SDNode *getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad, 16215 bool &IsMasked, SDValue &Ptr, 16216 SDValue &BasePtr, SDValue &Offset, 16217 ISD::MemIndexedMode &AM, 16218 SelectionDAG &DAG, 16219 const TargetLowering &TLI) { 16220 if (!getCombineLoadStoreParts(N, ISD::POST_INC, ISD::POST_DEC, IsLoad, 16221 IsMasked, Ptr, TLI) || 16222 Ptr->hasOneUse()) 16223 return nullptr; 16224 16225 // Try turning it into a post-indexed load / store except when 16226 // 1) All uses are load / store ops that use it as base ptr (and 16227 // it may be folded as addressing mmode). 16228 // 2) Op must be independent of N, i.e. Op is neither a predecessor 16229 // nor a successor of N. Otherwise, if Op is folded that would 16230 // create a cycle. 16231 for (SDNode *Op : Ptr->uses()) { 16232 // Check for #1. 16233 if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI)) 16234 continue; 16235 16236 // Check for #2. 16237 SmallPtrSet<const SDNode *, 32> Visited; 16238 SmallVector<const SDNode *, 8> Worklist; 16239 // Ptr is predecessor to both N and Op. 16240 Visited.insert(Ptr.getNode()); 16241 Worklist.push_back(N); 16242 Worklist.push_back(Op); 16243 if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) && 16244 !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) 16245 return Op; 16246 } 16247 return nullptr; 16248 } 16249 16250 /// Try to combine a load/store with a add/sub of the base pointer node into a 16251 /// post-indexed load/store. The transformation folded the add/subtract into the 16252 /// new indexed load/store effectively and all of its uses are redirected to the 16253 /// new load/store. 16254 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { 16255 if (Level < AfterLegalizeDAG) 16256 return false; 16257 16258 bool IsLoad = true; 16259 bool IsMasked = false; 16260 SDValue Ptr; 16261 SDValue BasePtr; 16262 SDValue Offset; 16263 ISD::MemIndexedMode AM = ISD::UNINDEXED; 16264 SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr, 16265 Offset, AM, DAG, TLI); 16266 if (!Op) 16267 return false; 16268 16269 SDValue Result; 16270 if (!IsMasked) 16271 Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, 16272 Offset, AM) 16273 : DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), 16274 BasePtr, Offset, AM); 16275 else 16276 Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), 16277 BasePtr, Offset, AM) 16278 : DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), 16279 BasePtr, Offset, AM); 16280 ++PostIndexedNodes; 16281 ++NodesCombined; 16282 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); dbgs() << "\nWith: "; 16283 Result.dump(&DAG); dbgs() << '\n'); 16284 WorklistRemover DeadNodes(*this); 16285 if (IsLoad) { 16286 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 16287 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 16288 } else { 16289 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 16290 } 16291 16292 // Finally, since the node is now dead, remove it from the graph. 16293 deleteAndRecombine(N); 16294 16295 // Replace the uses of Use with uses of the updated base value. 16296 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), 16297 Result.getValue(IsLoad ? 1 : 0)); 16298 deleteAndRecombine(Op); 16299 return true; 16300 } 16301 16302 /// Return the base-pointer arithmetic from an indexed \p LD. 16303 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { 16304 ISD::MemIndexedMode AM = LD->getAddressingMode(); 16305 assert(AM != ISD::UNINDEXED); 16306 SDValue BP = LD->getOperand(1); 16307 SDValue Inc = LD->getOperand(2); 16308 16309 // Some backends use TargetConstants for load offsets, but don't expect 16310 // TargetConstants in general ADD nodes. We can convert these constants into 16311 // regular Constants (if the constant is not opaque). 16312 assert((Inc.getOpcode() != ISD::TargetConstant || 16313 !cast<ConstantSDNode>(Inc)->isOpaque()) && 16314 "Cannot split out indexing using opaque target constants"); 16315 if (Inc.getOpcode() == ISD::TargetConstant) { 16316 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); 16317 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), 16318 ConstInc->getValueType(0)); 16319 } 16320 16321 unsigned Opc = 16322 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); 16323 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); 16324 } 16325 16326 static inline ElementCount numVectorEltsOrZero(EVT T) { 16327 return T.isVector() ? T.getVectorElementCount() : ElementCount::getFixed(0); 16328 } 16329 16330 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) { 16331 Val = ST->getValue(); 16332 EVT STType = Val.getValueType(); 16333 EVT STMemType = ST->getMemoryVT(); 16334 if (STType == STMemType) 16335 return true; 16336 if (isTypeLegal(STMemType)) 16337 return false; // fail. 16338 if (STType.isFloatingPoint() && STMemType.isFloatingPoint() && 16339 TLI.isOperationLegal(ISD::FTRUNC, STMemType)) { 16340 Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val); 16341 return true; 16342 } 16343 if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) && 16344 STType.isInteger() && STMemType.isInteger()) { 16345 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val); 16346 return true; 16347 } 16348 if (STType.getSizeInBits() == STMemType.getSizeInBits()) { 16349 Val = DAG.getBitcast(STMemType, Val); 16350 return true; 16351 } 16352 return false; // fail. 16353 } 16354 16355 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) { 16356 EVT LDMemType = LD->getMemoryVT(); 16357 EVT LDType = LD->getValueType(0); 16358 assert(Val.getValueType() == LDMemType && 16359 "Attempting to extend value of non-matching type"); 16360 if (LDType == LDMemType) 16361 return true; 16362 if (LDMemType.isInteger() && LDType.isInteger()) { 16363 switch (LD->getExtensionType()) { 16364 case ISD::NON_EXTLOAD: 16365 Val = DAG.getBitcast(LDType, Val); 16366 return true; 16367 case ISD::EXTLOAD: 16368 Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val); 16369 return true; 16370 case ISD::SEXTLOAD: 16371 Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val); 16372 return true; 16373 case ISD::ZEXTLOAD: 16374 Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val); 16375 return true; 16376 } 16377 } 16378 return false; 16379 } 16380 16381 SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) { 16382 if (OptLevel == CodeGenOpt::None || !LD->isSimple()) 16383 return SDValue(); 16384 SDValue Chain = LD->getOperand(0); 16385 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode()); 16386 // TODO: Relax this restriction for unordered atomics (see D66309) 16387 if (!ST || !ST->isSimple()) 16388 return SDValue(); 16389 16390 EVT LDType = LD->getValueType(0); 16391 EVT LDMemType = LD->getMemoryVT(); 16392 EVT STMemType = ST->getMemoryVT(); 16393 EVT STType = ST->getValue().getValueType(); 16394 16395 // There are two cases to consider here: 16396 // 1. The store is fixed width and the load is scalable. In this case we 16397 // don't know at compile time if the store completely envelops the load 16398 // so we abandon the optimisation. 16399 // 2. The store is scalable and the load is fixed width. We could 16400 // potentially support a limited number of cases here, but there has been 16401 // no cost-benefit analysis to prove it's worth it. 16402 bool LdStScalable = LDMemType.isScalableVector(); 16403 if (LdStScalable != STMemType.isScalableVector()) 16404 return SDValue(); 16405 16406 // If we are dealing with scalable vectors on a big endian platform the 16407 // calculation of offsets below becomes trickier, since we do not know at 16408 // compile time the absolute size of the vector. Until we've done more 16409 // analysis on big-endian platforms it seems better to bail out for now. 16410 if (LdStScalable && DAG.getDataLayout().isBigEndian()) 16411 return SDValue(); 16412 16413 BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG); 16414 BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG); 16415 int64_t Offset; 16416 if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset)) 16417 return SDValue(); 16418 16419 // Normalize for Endianness. After this Offset=0 will denote that the least 16420 // significant bit in the loaded value maps to the least significant bit in 16421 // the stored value). With Offset=n (for n > 0) the loaded value starts at the 16422 // n:th least significant byte of the stored value. 16423 if (DAG.getDataLayout().isBigEndian()) 16424 Offset = ((int64_t)STMemType.getStoreSizeInBits().getFixedSize() - 16425 (int64_t)LDMemType.getStoreSizeInBits().getFixedSize()) / 16426 8 - 16427 Offset; 16428 16429 // Check that the stored value cover all bits that are loaded. 16430 bool STCoversLD; 16431 16432 TypeSize LdMemSize = LDMemType.getSizeInBits(); 16433 TypeSize StMemSize = STMemType.getSizeInBits(); 16434 if (LdStScalable) 16435 STCoversLD = (Offset == 0) && LdMemSize == StMemSize; 16436 else 16437 STCoversLD = (Offset >= 0) && (Offset * 8 + LdMemSize.getFixedSize() <= 16438 StMemSize.getFixedSize()); 16439 16440 auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue { 16441 if (LD->isIndexed()) { 16442 // Cannot handle opaque target constants and we must respect the user's 16443 // request not to split indexes from loads. 16444 if (!canSplitIdx(LD)) 16445 return SDValue(); 16446 SDValue Idx = SplitIndexingFromLoad(LD); 16447 SDValue Ops[] = {Val, Idx, Chain}; 16448 return CombineTo(LD, Ops, 3); 16449 } 16450 return CombineTo(LD, Val, Chain); 16451 }; 16452 16453 if (!STCoversLD) 16454 return SDValue(); 16455 16456 // Memory as copy space (potentially masked). 16457 if (Offset == 0 && LDType == STType && STMemType == LDMemType) { 16458 // Simple case: Direct non-truncating forwarding 16459 if (LDType.getSizeInBits() == LdMemSize) 16460 return ReplaceLd(LD, ST->getValue(), Chain); 16461 // Can we model the truncate and extension with an and mask? 16462 if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() && 16463 !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) { 16464 // Mask to size of LDMemType 16465 auto Mask = 16466 DAG.getConstant(APInt::getLowBitsSet(STType.getFixedSizeInBits(), 16467 StMemSize.getFixedSize()), 16468 SDLoc(ST), STType); 16469 auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask); 16470 return ReplaceLd(LD, Val, Chain); 16471 } 16472 } 16473 16474 // TODO: Deal with nonzero offset. 16475 if (LD->getBasePtr().isUndef() || Offset != 0) 16476 return SDValue(); 16477 // Model necessary truncations / extenstions. 16478 SDValue Val; 16479 // Truncate Value To Stored Memory Size. 16480 do { 16481 if (!getTruncatedStoreValue(ST, Val)) 16482 continue; 16483 if (!isTypeLegal(LDMemType)) 16484 continue; 16485 if (STMemType != LDMemType) { 16486 // TODO: Support vectors? This requires extract_subvector/bitcast. 16487 if (!STMemType.isVector() && !LDMemType.isVector() && 16488 STMemType.isInteger() && LDMemType.isInteger()) 16489 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val); 16490 else 16491 continue; 16492 } 16493 if (!extendLoadedValueToExtension(LD, Val)) 16494 continue; 16495 return ReplaceLd(LD, Val, Chain); 16496 } while (false); 16497 16498 // On failure, cleanup dead nodes we may have created. 16499 if (Val->use_empty()) 16500 deleteAndRecombine(Val.getNode()); 16501 return SDValue(); 16502 } 16503 16504 SDValue DAGCombiner::visitLOAD(SDNode *N) { 16505 LoadSDNode *LD = cast<LoadSDNode>(N); 16506 SDValue Chain = LD->getChain(); 16507 SDValue Ptr = LD->getBasePtr(); 16508 16509 // If load is not volatile and there are no uses of the loaded value (and 16510 // the updated indexed value in case of indexed loads), change uses of the 16511 // chain value into uses of the chain input (i.e. delete the dead load). 16512 // TODO: Allow this for unordered atomics (see D66309) 16513 if (LD->isSimple()) { 16514 if (N->getValueType(1) == MVT::Other) { 16515 // Unindexed loads. 16516 if (!N->hasAnyUseOfValue(0)) { 16517 // It's not safe to use the two value CombineTo variant here. e.g. 16518 // v1, chain2 = load chain1, loc 16519 // v2, chain3 = load chain2, loc 16520 // v3 = add v2, c 16521 // Now we replace use of chain2 with chain1. This makes the second load 16522 // isomorphic to the one we are deleting, and thus makes this load live. 16523 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG); 16524 dbgs() << "\nWith chain: "; Chain.dump(&DAG); 16525 dbgs() << "\n"); 16526 WorklistRemover DeadNodes(*this); 16527 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 16528 AddUsersToWorklist(Chain.getNode()); 16529 if (N->use_empty()) 16530 deleteAndRecombine(N); 16531 16532 return SDValue(N, 0); // Return N so it doesn't get rechecked! 16533 } 16534 } else { 16535 // Indexed loads. 16536 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); 16537 16538 // If this load has an opaque TargetConstant offset, then we cannot split 16539 // the indexing into an add/sub directly (that TargetConstant may not be 16540 // valid for a different type of node, and we cannot convert an opaque 16541 // target constant into a regular constant). 16542 bool CanSplitIdx = canSplitIdx(LD); 16543 16544 if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) { 16545 SDValue Undef = DAG.getUNDEF(N->getValueType(0)); 16546 SDValue Index; 16547 if (N->hasAnyUseOfValue(1) && CanSplitIdx) { 16548 Index = SplitIndexingFromLoad(LD); 16549 // Try to fold the base pointer arithmetic into subsequent loads and 16550 // stores. 16551 AddUsersToWorklist(N); 16552 } else 16553 Index = DAG.getUNDEF(N->getValueType(1)); 16554 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG); 16555 dbgs() << "\nWith: "; Undef.dump(&DAG); 16556 dbgs() << " and 2 other values\n"); 16557 WorklistRemover DeadNodes(*this); 16558 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); 16559 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); 16560 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); 16561 deleteAndRecombine(N); 16562 return SDValue(N, 0); // Return N so it doesn't get rechecked! 16563 } 16564 } 16565 } 16566 16567 // If this load is directly stored, replace the load value with the stored 16568 // value. 16569 if (auto V = ForwardStoreValueToDirectLoad(LD)) 16570 return V; 16571 16572 // Try to infer better alignment information than the load already has. 16573 if (OptLevel != CodeGenOpt::None && LD->isUnindexed() && !LD->isAtomic()) { 16574 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { 16575 if (*Alignment > LD->getAlign() && 16576 isAligned(*Alignment, LD->getSrcValueOffset())) { 16577 SDValue NewLoad = DAG.getExtLoad( 16578 LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, 16579 LD->getPointerInfo(), LD->getMemoryVT(), *Alignment, 16580 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 16581 // NewLoad will always be N as we are only refining the alignment 16582 assert(NewLoad.getNode() == N); 16583 (void)NewLoad; 16584 } 16585 } 16586 } 16587 16588 if (LD->isUnindexed()) { 16589 // Walk up chain skipping non-aliasing memory nodes. 16590 SDValue BetterChain = FindBetterChain(LD, Chain); 16591 16592 // If there is a better chain. 16593 if (Chain != BetterChain) { 16594 SDValue ReplLoad; 16595 16596 // Replace the chain to void dependency. 16597 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 16598 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), 16599 BetterChain, Ptr, LD->getMemOperand()); 16600 } else { 16601 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), 16602 LD->getValueType(0), 16603 BetterChain, Ptr, LD->getMemoryVT(), 16604 LD->getMemOperand()); 16605 } 16606 16607 // Create token factor to keep old chain connected. 16608 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 16609 MVT::Other, Chain, ReplLoad.getValue(1)); 16610 16611 // Replace uses with load result and token factor 16612 return CombineTo(N, ReplLoad.getValue(0), Token); 16613 } 16614 } 16615 16616 // Try transforming N to an indexed load. 16617 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 16618 return SDValue(N, 0); 16619 16620 // Try to slice up N to more direct loads if the slices are mapped to 16621 // different register banks or pairing can take place. 16622 if (SliceUpLoad(N)) 16623 return SDValue(N, 0); 16624 16625 return SDValue(); 16626 } 16627 16628 namespace { 16629 16630 /// Helper structure used to slice a load in smaller loads. 16631 /// Basically a slice is obtained from the following sequence: 16632 /// Origin = load Ty1, Base 16633 /// Shift = srl Ty1 Origin, CstTy Amount 16634 /// Inst = trunc Shift to Ty2 16635 /// 16636 /// Then, it will be rewritten into: 16637 /// Slice = load SliceTy, Base + SliceOffset 16638 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 16639 /// 16640 /// SliceTy is deduced from the number of bits that are actually used to 16641 /// build Inst. 16642 struct LoadedSlice { 16643 /// Helper structure used to compute the cost of a slice. 16644 struct Cost { 16645 /// Are we optimizing for code size. 16646 bool ForCodeSize = false; 16647 16648 /// Various cost. 16649 unsigned Loads = 0; 16650 unsigned Truncates = 0; 16651 unsigned CrossRegisterBanksCopies = 0; 16652 unsigned ZExts = 0; 16653 unsigned Shift = 0; 16654 16655 explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {} 16656 16657 /// Get the cost of one isolated slice. 16658 Cost(const LoadedSlice &LS, bool ForCodeSize) 16659 : ForCodeSize(ForCodeSize), Loads(1) { 16660 EVT TruncType = LS.Inst->getValueType(0); 16661 EVT LoadedType = LS.getLoadedType(); 16662 if (TruncType != LoadedType && 16663 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) 16664 ZExts = 1; 16665 } 16666 16667 /// Account for slicing gain in the current cost. 16668 /// Slicing provide a few gains like removing a shift or a 16669 /// truncate. This method allows to grow the cost of the original 16670 /// load with the gain from this slice. 16671 void addSliceGain(const LoadedSlice &LS) { 16672 // Each slice saves a truncate. 16673 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); 16674 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), 16675 LS.Inst->getValueType(0))) 16676 ++Truncates; 16677 // If there is a shift amount, this slice gets rid of it. 16678 if (LS.Shift) 16679 ++Shift; 16680 // If this slice can merge a cross register bank copy, account for it. 16681 if (LS.canMergeExpensiveCrossRegisterBankCopy()) 16682 ++CrossRegisterBanksCopies; 16683 } 16684 16685 Cost &operator+=(const Cost &RHS) { 16686 Loads += RHS.Loads; 16687 Truncates += RHS.Truncates; 16688 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; 16689 ZExts += RHS.ZExts; 16690 Shift += RHS.Shift; 16691 return *this; 16692 } 16693 16694 bool operator==(const Cost &RHS) const { 16695 return Loads == RHS.Loads && Truncates == RHS.Truncates && 16696 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && 16697 ZExts == RHS.ZExts && Shift == RHS.Shift; 16698 } 16699 16700 bool operator!=(const Cost &RHS) const { return !(*this == RHS); } 16701 16702 bool operator<(const Cost &RHS) const { 16703 // Assume cross register banks copies are as expensive as loads. 16704 // FIXME: Do we want some more target hooks? 16705 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; 16706 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; 16707 // Unless we are optimizing for code size, consider the 16708 // expensive operation first. 16709 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) 16710 return ExpensiveOpsLHS < ExpensiveOpsRHS; 16711 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < 16712 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); 16713 } 16714 16715 bool operator>(const Cost &RHS) const { return RHS < *this; } 16716 16717 bool operator<=(const Cost &RHS) const { return !(RHS < *this); } 16718 16719 bool operator>=(const Cost &RHS) const { return !(*this < RHS); } 16720 }; 16721 16722 // The last instruction that represent the slice. This should be a 16723 // truncate instruction. 16724 SDNode *Inst; 16725 16726 // The original load instruction. 16727 LoadSDNode *Origin; 16728 16729 // The right shift amount in bits from the original load. 16730 unsigned Shift; 16731 16732 // The DAG from which Origin came from. 16733 // This is used to get some contextual information about legal types, etc. 16734 SelectionDAG *DAG; 16735 16736 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, 16737 unsigned Shift = 0, SelectionDAG *DAG = nullptr) 16738 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} 16739 16740 /// Get the bits used in a chunk of bits \p BitWidth large. 16741 /// \return Result is \p BitWidth and has used bits set to 1 and 16742 /// not used bits set to 0. 16743 APInt getUsedBits() const { 16744 // Reproduce the trunc(lshr) sequence: 16745 // - Start from the truncated value. 16746 // - Zero extend to the desired bit width. 16747 // - Shift left. 16748 assert(Origin && "No original load to compare against."); 16749 unsigned BitWidth = Origin->getValueSizeInBits(0); 16750 assert(Inst && "This slice is not bound to an instruction"); 16751 assert(Inst->getValueSizeInBits(0) <= BitWidth && 16752 "Extracted slice is bigger than the whole type!"); 16753 APInt UsedBits(Inst->getValueSizeInBits(0), 0); 16754 UsedBits.setAllBits(); 16755 UsedBits = UsedBits.zext(BitWidth); 16756 UsedBits <<= Shift; 16757 return UsedBits; 16758 } 16759 16760 /// Get the size of the slice to be loaded in bytes. 16761 unsigned getLoadedSize() const { 16762 unsigned SliceSize = getUsedBits().countPopulation(); 16763 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); 16764 return SliceSize / 8; 16765 } 16766 16767 /// Get the type that will be loaded for this slice. 16768 /// Note: This may not be the final type for the slice. 16769 EVT getLoadedType() const { 16770 assert(DAG && "Missing context"); 16771 LLVMContext &Ctxt = *DAG->getContext(); 16772 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); 16773 } 16774 16775 /// Get the alignment of the load used for this slice. 16776 Align getAlign() const { 16777 Align Alignment = Origin->getAlign(); 16778 uint64_t Offset = getOffsetFromBase(); 16779 if (Offset != 0) 16780 Alignment = commonAlignment(Alignment, Alignment.value() + Offset); 16781 return Alignment; 16782 } 16783 16784 /// Check if this slice can be rewritten with legal operations. 16785 bool isLegal() const { 16786 // An invalid slice is not legal. 16787 if (!Origin || !Inst || !DAG) 16788 return false; 16789 16790 // Offsets are for indexed load only, we do not handle that. 16791 if (!Origin->getOffset().isUndef()) 16792 return false; 16793 16794 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 16795 16796 // Check that the type is legal. 16797 EVT SliceType = getLoadedType(); 16798 if (!TLI.isTypeLegal(SliceType)) 16799 return false; 16800 16801 // Check that the load is legal for this type. 16802 if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) 16803 return false; 16804 16805 // Check that the offset can be computed. 16806 // 1. Check its type. 16807 EVT PtrType = Origin->getBasePtr().getValueType(); 16808 if (PtrType == MVT::Untyped || PtrType.isExtended()) 16809 return false; 16810 16811 // 2. Check that it fits in the immediate. 16812 if (!TLI.isLegalAddImmediate(getOffsetFromBase())) 16813 return false; 16814 16815 // 3. Check that the computation is legal. 16816 if (!TLI.isOperationLegal(ISD::ADD, PtrType)) 16817 return false; 16818 16819 // Check that the zext is legal if it needs one. 16820 EVT TruncateType = Inst->getValueType(0); 16821 if (TruncateType != SliceType && 16822 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) 16823 return false; 16824 16825 return true; 16826 } 16827 16828 /// Get the offset in bytes of this slice in the original chunk of 16829 /// bits. 16830 /// \pre DAG != nullptr. 16831 uint64_t getOffsetFromBase() const { 16832 assert(DAG && "Missing context."); 16833 bool IsBigEndian = DAG->getDataLayout().isBigEndian(); 16834 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); 16835 uint64_t Offset = Shift / 8; 16836 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; 16837 assert(!(Origin->getValueSizeInBits(0) & 0x7) && 16838 "The size of the original loaded type is not a multiple of a" 16839 " byte."); 16840 // If Offset is bigger than TySizeInBytes, it means we are loading all 16841 // zeros. This should have been optimized before in the process. 16842 assert(TySizeInBytes > Offset && 16843 "Invalid shift amount for given loaded size"); 16844 if (IsBigEndian) 16845 Offset = TySizeInBytes - Offset - getLoadedSize(); 16846 return Offset; 16847 } 16848 16849 /// Generate the sequence of instructions to load the slice 16850 /// represented by this object and redirect the uses of this slice to 16851 /// this new sequence of instructions. 16852 /// \pre this->Inst && this->Origin are valid Instructions and this 16853 /// object passed the legal check: LoadedSlice::isLegal returned true. 16854 /// \return The last instruction of the sequence used to load the slice. 16855 SDValue loadSlice() const { 16856 assert(Inst && Origin && "Unable to replace a non-existing slice."); 16857 const SDValue &OldBaseAddr = Origin->getBasePtr(); 16858 SDValue BaseAddr = OldBaseAddr; 16859 // Get the offset in that chunk of bytes w.r.t. the endianness. 16860 int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); 16861 assert(Offset >= 0 && "Offset too big to fit in int64_t!"); 16862 if (Offset) { 16863 // BaseAddr = BaseAddr + Offset. 16864 EVT ArithType = BaseAddr.getValueType(); 16865 SDLoc DL(Origin); 16866 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, 16867 DAG->getConstant(Offset, DL, ArithType)); 16868 } 16869 16870 // Create the type of the loaded slice according to its size. 16871 EVT SliceType = getLoadedType(); 16872 16873 // Create the load for the slice. 16874 SDValue LastInst = 16875 DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, 16876 Origin->getPointerInfo().getWithOffset(Offset), getAlign(), 16877 Origin->getMemOperand()->getFlags()); 16878 // If the final type is not the same as the loaded type, this means that 16879 // we have to pad with zero. Create a zero extend for that. 16880 EVT FinalType = Inst->getValueType(0); 16881 if (SliceType != FinalType) 16882 LastInst = 16883 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); 16884 return LastInst; 16885 } 16886 16887 /// Check if this slice can be merged with an expensive cross register 16888 /// bank copy. E.g., 16889 /// i = load i32 16890 /// f = bitcast i32 i to float 16891 bool canMergeExpensiveCrossRegisterBankCopy() const { 16892 if (!Inst || !Inst->hasOneUse()) 16893 return false; 16894 SDNode *Use = *Inst->use_begin(); 16895 if (Use->getOpcode() != ISD::BITCAST) 16896 return false; 16897 assert(DAG && "Missing context"); 16898 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 16899 EVT ResVT = Use->getValueType(0); 16900 const TargetRegisterClass *ResRC = 16901 TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent()); 16902 const TargetRegisterClass *ArgRC = 16903 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(), 16904 Use->getOperand(0)->isDivergent()); 16905 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) 16906 return false; 16907 16908 // At this point, we know that we perform a cross-register-bank copy. 16909 // Check if it is expensive. 16910 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); 16911 // Assume bitcasts are cheap, unless both register classes do not 16912 // explicitly share a common sub class. 16913 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) 16914 return false; 16915 16916 // Check if it will be merged with the load. 16917 // 1. Check the alignment / fast memory access constraint. 16918 bool IsFast = false; 16919 if (!TLI.allowsMemoryAccess(*DAG->getContext(), DAG->getDataLayout(), ResVT, 16920 Origin->getAddressSpace(), getAlign(), 16921 Origin->getMemOperand()->getFlags(), &IsFast) || 16922 !IsFast) 16923 return false; 16924 16925 // 2. Check that the load is a legal operation for that type. 16926 if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) 16927 return false; 16928 16929 // 3. Check that we do not have a zext in the way. 16930 if (Inst->getValueType(0) != getLoadedType()) 16931 return false; 16932 16933 return true; 16934 } 16935 }; 16936 16937 } // end anonymous namespace 16938 16939 /// Check that all bits set in \p UsedBits form a dense region, i.e., 16940 /// \p UsedBits looks like 0..0 1..1 0..0. 16941 static bool areUsedBitsDense(const APInt &UsedBits) { 16942 // If all the bits are one, this is dense! 16943 if (UsedBits.isAllOnes()) 16944 return true; 16945 16946 // Get rid of the unused bits on the right. 16947 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); 16948 // Get rid of the unused bits on the left. 16949 if (NarrowedUsedBits.countLeadingZeros()) 16950 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); 16951 // Check that the chunk of bits is completely used. 16952 return NarrowedUsedBits.isAllOnes(); 16953 } 16954 16955 /// Check whether or not \p First and \p Second are next to each other 16956 /// in memory. This means that there is no hole between the bits loaded 16957 /// by \p First and the bits loaded by \p Second. 16958 static bool areSlicesNextToEachOther(const LoadedSlice &First, 16959 const LoadedSlice &Second) { 16960 assert(First.Origin == Second.Origin && First.Origin && 16961 "Unable to match different memory origins."); 16962 APInt UsedBits = First.getUsedBits(); 16963 assert((UsedBits & Second.getUsedBits()) == 0 && 16964 "Slices are not supposed to overlap."); 16965 UsedBits |= Second.getUsedBits(); 16966 return areUsedBitsDense(UsedBits); 16967 } 16968 16969 /// Adjust the \p GlobalLSCost according to the target 16970 /// paring capabilities and the layout of the slices. 16971 /// \pre \p GlobalLSCost should account for at least as many loads as 16972 /// there is in the slices in \p LoadedSlices. 16973 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, 16974 LoadedSlice::Cost &GlobalLSCost) { 16975 unsigned NumberOfSlices = LoadedSlices.size(); 16976 // If there is less than 2 elements, no pairing is possible. 16977 if (NumberOfSlices < 2) 16978 return; 16979 16980 // Sort the slices so that elements that are likely to be next to each 16981 // other in memory are next to each other in the list. 16982 llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) { 16983 assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); 16984 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); 16985 }); 16986 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); 16987 // First (resp. Second) is the first (resp. Second) potentially candidate 16988 // to be placed in a paired load. 16989 const LoadedSlice *First = nullptr; 16990 const LoadedSlice *Second = nullptr; 16991 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, 16992 // Set the beginning of the pair. 16993 First = Second) { 16994 Second = &LoadedSlices[CurrSlice]; 16995 16996 // If First is NULL, it means we start a new pair. 16997 // Get to the next slice. 16998 if (!First) 16999 continue; 17000 17001 EVT LoadedType = First->getLoadedType(); 17002 17003 // If the types of the slices are different, we cannot pair them. 17004 if (LoadedType != Second->getLoadedType()) 17005 continue; 17006 17007 // Check if the target supplies paired loads for this type. 17008 Align RequiredAlignment; 17009 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { 17010 // move to the next pair, this type is hopeless. 17011 Second = nullptr; 17012 continue; 17013 } 17014 // Check if we meet the alignment requirement. 17015 if (First->getAlign() < RequiredAlignment) 17016 continue; 17017 17018 // Check that both loads are next to each other in memory. 17019 if (!areSlicesNextToEachOther(*First, *Second)) 17020 continue; 17021 17022 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); 17023 --GlobalLSCost.Loads; 17024 // Move to the next pair. 17025 Second = nullptr; 17026 } 17027 } 17028 17029 /// Check the profitability of all involved LoadedSlice. 17030 /// Currently, it is considered profitable if there is exactly two 17031 /// involved slices (1) which are (2) next to each other in memory, and 17032 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). 17033 /// 17034 /// Note: The order of the elements in \p LoadedSlices may be modified, but not 17035 /// the elements themselves. 17036 /// 17037 /// FIXME: When the cost model will be mature enough, we can relax 17038 /// constraints (1) and (2). 17039 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, 17040 const APInt &UsedBits, bool ForCodeSize) { 17041 unsigned NumberOfSlices = LoadedSlices.size(); 17042 if (StressLoadSlicing) 17043 return NumberOfSlices > 1; 17044 17045 // Check (1). 17046 if (NumberOfSlices != 2) 17047 return false; 17048 17049 // Check (2). 17050 if (!areUsedBitsDense(UsedBits)) 17051 return false; 17052 17053 // Check (3). 17054 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); 17055 // The original code has one big load. 17056 OrigCost.Loads = 1; 17057 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { 17058 const LoadedSlice &LS = LoadedSlices[CurrSlice]; 17059 // Accumulate the cost of all the slices. 17060 LoadedSlice::Cost SliceCost(LS, ForCodeSize); 17061 GlobalSlicingCost += SliceCost; 17062 17063 // Account as cost in the original configuration the gain obtained 17064 // with the current slices. 17065 OrigCost.addSliceGain(LS); 17066 } 17067 17068 // If the target supports paired load, adjust the cost accordingly. 17069 adjustCostForPairing(LoadedSlices, GlobalSlicingCost); 17070 return OrigCost > GlobalSlicingCost; 17071 } 17072 17073 /// If the given load, \p LI, is used only by trunc or trunc(lshr) 17074 /// operations, split it in the various pieces being extracted. 17075 /// 17076 /// This sort of thing is introduced by SROA. 17077 /// This slicing takes care not to insert overlapping loads. 17078 /// \pre LI is a simple load (i.e., not an atomic or volatile load). 17079 bool DAGCombiner::SliceUpLoad(SDNode *N) { 17080 if (Level < AfterLegalizeDAG) 17081 return false; 17082 17083 LoadSDNode *LD = cast<LoadSDNode>(N); 17084 if (!LD->isSimple() || !ISD::isNormalLoad(LD) || 17085 !LD->getValueType(0).isInteger()) 17086 return false; 17087 17088 // The algorithm to split up a load of a scalable vector into individual 17089 // elements currently requires knowing the length of the loaded type, 17090 // so will need adjusting to work on scalable vectors. 17091 if (LD->getValueType(0).isScalableVector()) 17092 return false; 17093 17094 // Keep track of already used bits to detect overlapping values. 17095 // In that case, we will just abort the transformation. 17096 APInt UsedBits(LD->getValueSizeInBits(0), 0); 17097 17098 SmallVector<LoadedSlice, 4> LoadedSlices; 17099 17100 // Check if this load is used as several smaller chunks of bits. 17101 // Basically, look for uses in trunc or trunc(lshr) and record a new chain 17102 // of computation for each trunc. 17103 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 17104 UI != UIEnd; ++UI) { 17105 // Skip the uses of the chain. 17106 if (UI.getUse().getResNo() != 0) 17107 continue; 17108 17109 SDNode *User = *UI; 17110 unsigned Shift = 0; 17111 17112 // Check if this is a trunc(lshr). 17113 if (User->getOpcode() == ISD::SRL && User->hasOneUse() && 17114 isa<ConstantSDNode>(User->getOperand(1))) { 17115 Shift = User->getConstantOperandVal(1); 17116 User = *User->use_begin(); 17117 } 17118 17119 // At this point, User is a Truncate, iff we encountered, trunc or 17120 // trunc(lshr). 17121 if (User->getOpcode() != ISD::TRUNCATE) 17122 return false; 17123 17124 // The width of the type must be a power of 2 and greater than 8-bits. 17125 // Otherwise the load cannot be represented in LLVM IR. 17126 // Moreover, if we shifted with a non-8-bits multiple, the slice 17127 // will be across several bytes. We do not support that. 17128 unsigned Width = User->getValueSizeInBits(0); 17129 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) 17130 return false; 17131 17132 // Build the slice for this chain of computations. 17133 LoadedSlice LS(User, LD, Shift, &DAG); 17134 APInt CurrentUsedBits = LS.getUsedBits(); 17135 17136 // Check if this slice overlaps with another. 17137 if ((CurrentUsedBits & UsedBits) != 0) 17138 return false; 17139 // Update the bits used globally. 17140 UsedBits |= CurrentUsedBits; 17141 17142 // Check if the new slice would be legal. 17143 if (!LS.isLegal()) 17144 return false; 17145 17146 // Record the slice. 17147 LoadedSlices.push_back(LS); 17148 } 17149 17150 // Abort slicing if it does not seem to be profitable. 17151 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) 17152 return false; 17153 17154 ++SlicedLoads; 17155 17156 // Rewrite each chain to use an independent load. 17157 // By construction, each chain can be represented by a unique load. 17158 17159 // Prepare the argument for the new token factor for all the slices. 17160 SmallVector<SDValue, 8> ArgChains; 17161 for (const LoadedSlice &LS : LoadedSlices) { 17162 SDValue SliceInst = LS.loadSlice(); 17163 CombineTo(LS.Inst, SliceInst, true); 17164 if (SliceInst.getOpcode() != ISD::LOAD) 17165 SliceInst = SliceInst.getOperand(0); 17166 assert(SliceInst->getOpcode() == ISD::LOAD && 17167 "It takes more than a zext to get to the loaded slice!!"); 17168 ArgChains.push_back(SliceInst.getValue(1)); 17169 } 17170 17171 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, 17172 ArgChains); 17173 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 17174 AddToWorklist(Chain.getNode()); 17175 return true; 17176 } 17177 17178 /// Check to see if V is (and load (ptr), imm), where the load is having 17179 /// specific bytes cleared out. If so, return the byte size being masked out 17180 /// and the shift amount. 17181 static std::pair<unsigned, unsigned> 17182 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { 17183 std::pair<unsigned, unsigned> Result(0, 0); 17184 17185 // Check for the structure we're looking for. 17186 if (V->getOpcode() != ISD::AND || 17187 !isa<ConstantSDNode>(V->getOperand(1)) || 17188 !ISD::isNormalLoad(V->getOperand(0).getNode())) 17189 return Result; 17190 17191 // Check the chain and pointer. 17192 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); 17193 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. 17194 17195 // This only handles simple types. 17196 if (V.getValueType() != MVT::i16 && 17197 V.getValueType() != MVT::i32 && 17198 V.getValueType() != MVT::i64) 17199 return Result; 17200 17201 // Check the constant mask. Invert it so that the bits being masked out are 17202 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits 17203 // follow the sign bit for uniformity. 17204 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); 17205 unsigned NotMaskLZ = countLeadingZeros(NotMask); 17206 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. 17207 unsigned NotMaskTZ = countTrailingZeros(NotMask); 17208 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. 17209 if (NotMaskLZ == 64) return Result; // All zero mask. 17210 17211 // See if we have a continuous run of bits. If so, we have 0*1+0* 17212 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) 17213 return Result; 17214 17215 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. 17216 if (V.getValueType() != MVT::i64 && NotMaskLZ) 17217 NotMaskLZ -= 64-V.getValueSizeInBits(); 17218 17219 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; 17220 switch (MaskedBytes) { 17221 case 1: 17222 case 2: 17223 case 4: break; 17224 default: return Result; // All one mask, or 5-byte mask. 17225 } 17226 17227 // Verify that the first bit starts at a multiple of mask so that the access 17228 // is aligned the same as the access width. 17229 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; 17230 17231 // For narrowing to be valid, it must be the case that the load the 17232 // immediately preceding memory operation before the store. 17233 if (LD == Chain.getNode()) 17234 ; // ok. 17235 else if (Chain->getOpcode() == ISD::TokenFactor && 17236 SDValue(LD, 1).hasOneUse()) { 17237 // LD has only 1 chain use so they are no indirect dependencies. 17238 if (!LD->isOperandOf(Chain.getNode())) 17239 return Result; 17240 } else 17241 return Result; // Fail. 17242 17243 Result.first = MaskedBytes; 17244 Result.second = NotMaskTZ/8; 17245 return Result; 17246 } 17247 17248 /// Check to see if IVal is something that provides a value as specified by 17249 /// MaskInfo. If so, replace the specified store with a narrower store of 17250 /// truncated IVal. 17251 static SDValue 17252 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, 17253 SDValue IVal, StoreSDNode *St, 17254 DAGCombiner *DC) { 17255 unsigned NumBytes = MaskInfo.first; 17256 unsigned ByteShift = MaskInfo.second; 17257 SelectionDAG &DAG = DC->getDAG(); 17258 17259 // Check to see if IVal is all zeros in the part being masked in by the 'or' 17260 // that uses this. If not, this is not a replacement. 17261 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), 17262 ByteShift*8, (ByteShift+NumBytes)*8); 17263 if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue(); 17264 17265 // Check that it is legal on the target to do this. It is legal if the new 17266 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type 17267 // legalization (and the target doesn't explicitly think this is a bad idea). 17268 MVT VT = MVT::getIntegerVT(NumBytes * 8); 17269 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 17270 if (!DC->isTypeLegal(VT)) 17271 return SDValue(); 17272 if (St->getMemOperand() && 17273 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 17274 *St->getMemOperand())) 17275 return SDValue(); 17276 17277 // Okay, we can do this! Replace the 'St' store with a store of IVal that is 17278 // shifted by ByteShift and truncated down to NumBytes. 17279 if (ByteShift) { 17280 SDLoc DL(IVal); 17281 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, 17282 DAG.getConstant(ByteShift*8, DL, 17283 DC->getShiftAmountTy(IVal.getValueType()))); 17284 } 17285 17286 // Figure out the offset for the store and the alignment of the access. 17287 unsigned StOffset; 17288 if (DAG.getDataLayout().isLittleEndian()) 17289 StOffset = ByteShift; 17290 else 17291 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; 17292 17293 SDValue Ptr = St->getBasePtr(); 17294 if (StOffset) { 17295 SDLoc DL(IVal); 17296 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(StOffset), DL); 17297 } 17298 17299 // Truncate down to the new size. 17300 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); 17301 17302 ++OpsNarrowed; 17303 return DAG 17304 .getStore(St->getChain(), SDLoc(St), IVal, Ptr, 17305 St->getPointerInfo().getWithOffset(StOffset), 17306 St->getOriginalAlign()); 17307 } 17308 17309 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and 17310 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try 17311 /// narrowing the load and store if it would end up being a win for performance 17312 /// or code size. 17313 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { 17314 StoreSDNode *ST = cast<StoreSDNode>(N); 17315 if (!ST->isSimple()) 17316 return SDValue(); 17317 17318 SDValue Chain = ST->getChain(); 17319 SDValue Value = ST->getValue(); 17320 SDValue Ptr = ST->getBasePtr(); 17321 EVT VT = Value.getValueType(); 17322 17323 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) 17324 return SDValue(); 17325 17326 unsigned Opc = Value.getOpcode(); 17327 17328 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst 17329 // is a byte mask indicating a consecutive number of bytes, check to see if 17330 // Y is known to provide just those bytes. If so, we try to replace the 17331 // load + replace + store sequence with a single (narrower) store, which makes 17332 // the load dead. 17333 if (Opc == ISD::OR && EnableShrinkLoadReplaceStoreWithStore) { 17334 std::pair<unsigned, unsigned> MaskedLoad; 17335 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); 17336 if (MaskedLoad.first) 17337 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 17338 Value.getOperand(1), ST,this)) 17339 return NewST; 17340 17341 // Or is commutative, so try swapping X and Y. 17342 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); 17343 if (MaskedLoad.first) 17344 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 17345 Value.getOperand(0), ST,this)) 17346 return NewST; 17347 } 17348 17349 if (!EnableReduceLoadOpStoreWidth) 17350 return SDValue(); 17351 17352 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || 17353 Value.getOperand(1).getOpcode() != ISD::Constant) 17354 return SDValue(); 17355 17356 SDValue N0 = Value.getOperand(0); 17357 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 17358 Chain == SDValue(N0.getNode(), 1)) { 17359 LoadSDNode *LD = cast<LoadSDNode>(N0); 17360 if (LD->getBasePtr() != Ptr || 17361 LD->getPointerInfo().getAddrSpace() != 17362 ST->getPointerInfo().getAddrSpace()) 17363 return SDValue(); 17364 17365 // Find the type to narrow it the load / op / store to. 17366 SDValue N1 = Value.getOperand(1); 17367 unsigned BitWidth = N1.getValueSizeInBits(); 17368 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); 17369 if (Opc == ISD::AND) 17370 Imm ^= APInt::getAllOnes(BitWidth); 17371 if (Imm == 0 || Imm.isAllOnes()) 17372 return SDValue(); 17373 unsigned ShAmt = Imm.countTrailingZeros(); 17374 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; 17375 unsigned NewBW = NextPowerOf2(MSB - ShAmt); 17376 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 17377 // The narrowing should be profitable, the load/store operation should be 17378 // legal (or custom) and the store size should be equal to the NewVT width. 17379 while (NewBW < BitWidth && 17380 (NewVT.getStoreSizeInBits() != NewBW || 17381 !TLI.isOperationLegalOrCustom(Opc, NewVT) || 17382 !TLI.isNarrowingProfitable(VT, NewVT))) { 17383 NewBW = NextPowerOf2(NewBW); 17384 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 17385 } 17386 if (NewBW >= BitWidth) 17387 return SDValue(); 17388 17389 // If the lsb changed does not start at the type bitwidth boundary, 17390 // start at the previous one. 17391 if (ShAmt % NewBW) 17392 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; 17393 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, 17394 std::min(BitWidth, ShAmt + NewBW)); 17395 if ((Imm & Mask) == Imm) { 17396 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); 17397 if (Opc == ISD::AND) 17398 NewImm ^= APInt::getAllOnes(NewBW); 17399 uint64_t PtrOff = ShAmt / 8; 17400 // For big endian targets, we need to adjust the offset to the pointer to 17401 // load the correct bytes. 17402 if (DAG.getDataLayout().isBigEndian()) 17403 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; 17404 17405 bool IsFast = false; 17406 Align NewAlign = commonAlignment(LD->getAlign(), PtrOff); 17407 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), NewVT, 17408 LD->getAddressSpace(), NewAlign, 17409 LD->getMemOperand()->getFlags(), &IsFast) || 17410 !IsFast) 17411 return SDValue(); 17412 17413 SDValue NewPtr = 17414 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(PtrOff), SDLoc(LD)); 17415 SDValue NewLD = 17416 DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, 17417 LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, 17418 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 17419 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, 17420 DAG.getConstant(NewImm, SDLoc(Value), 17421 NewVT)); 17422 SDValue NewST = 17423 DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, 17424 ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); 17425 17426 AddToWorklist(NewPtr.getNode()); 17427 AddToWorklist(NewLD.getNode()); 17428 AddToWorklist(NewVal.getNode()); 17429 WorklistRemover DeadNodes(*this); 17430 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); 17431 ++OpsNarrowed; 17432 return NewST; 17433 } 17434 } 17435 17436 return SDValue(); 17437 } 17438 17439 /// For a given floating point load / store pair, if the load value isn't used 17440 /// by any other operations, then consider transforming the pair to integer 17441 /// load / store operations if the target deems the transformation profitable. 17442 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { 17443 StoreSDNode *ST = cast<StoreSDNode>(N); 17444 SDValue Value = ST->getValue(); 17445 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && 17446 Value.hasOneUse()) { 17447 LoadSDNode *LD = cast<LoadSDNode>(Value); 17448 EVT VT = LD->getMemoryVT(); 17449 if (!VT.isFloatingPoint() || 17450 VT != ST->getMemoryVT() || 17451 LD->isNonTemporal() || 17452 ST->isNonTemporal() || 17453 LD->getPointerInfo().getAddrSpace() != 0 || 17454 ST->getPointerInfo().getAddrSpace() != 0) 17455 return SDValue(); 17456 17457 TypeSize VTSize = VT.getSizeInBits(); 17458 17459 // We don't know the size of scalable types at compile time so we cannot 17460 // create an integer of the equivalent size. 17461 if (VTSize.isScalable()) 17462 return SDValue(); 17463 17464 bool FastLD = false, FastST = false; 17465 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VTSize.getFixedSize()); 17466 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || 17467 !TLI.isOperationLegal(ISD::STORE, IntVT) || 17468 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || 17469 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT) || 17470 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT, 17471 *LD->getMemOperand(), &FastLD) || 17472 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT, 17473 *ST->getMemOperand(), &FastST) || 17474 !FastLD || !FastST) 17475 return SDValue(); 17476 17477 SDValue NewLD = 17478 DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), 17479 LD->getPointerInfo(), LD->getAlign()); 17480 17481 SDValue NewST = 17482 DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(), 17483 ST->getPointerInfo(), ST->getAlign()); 17484 17485 AddToWorklist(NewLD.getNode()); 17486 AddToWorklist(NewST.getNode()); 17487 WorklistRemover DeadNodes(*this); 17488 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); 17489 ++LdStFP2Int; 17490 return NewST; 17491 } 17492 17493 return SDValue(); 17494 } 17495 17496 // This is a helper function for visitMUL to check the profitability 17497 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 17498 // MulNode is the original multiply, AddNode is (add x, c1), 17499 // and ConstNode is c2. 17500 // 17501 // If the (add x, c1) has multiple uses, we could increase 17502 // the number of adds if we make this transformation. 17503 // It would only be worth doing this if we can remove a 17504 // multiply in the process. Check for that here. 17505 // To illustrate: 17506 // (A + c1) * c3 17507 // (A + c2) * c3 17508 // We're checking for cases where we have common "c3 * A" expressions. 17509 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, SDValue AddNode, 17510 SDValue ConstNode) { 17511 APInt Val; 17512 17513 // If the add only has one use, and the target thinks the folding is 17514 // profitable or does not lead to worse code, this would be OK to do. 17515 if (AddNode->hasOneUse() && 17516 TLI.isMulAddWithConstProfitable(AddNode, ConstNode)) 17517 return true; 17518 17519 // Walk all the users of the constant with which we're multiplying. 17520 for (SDNode *Use : ConstNode->uses()) { 17521 if (Use == MulNode) // This use is the one we're on right now. Skip it. 17522 continue; 17523 17524 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. 17525 SDNode *OtherOp; 17526 SDNode *MulVar = AddNode.getOperand(0).getNode(); 17527 17528 // OtherOp is what we're multiplying against the constant. 17529 if (Use->getOperand(0) == ConstNode) 17530 OtherOp = Use->getOperand(1).getNode(); 17531 else 17532 OtherOp = Use->getOperand(0).getNode(); 17533 17534 // Check to see if multiply is with the same operand of our "add". 17535 // 17536 // ConstNode = CONST 17537 // Use = ConstNode * A <-- visiting Use. OtherOp is A. 17538 // ... 17539 // AddNode = (A + c1) <-- MulVar is A. 17540 // = AddNode * ConstNode <-- current visiting instruction. 17541 // 17542 // If we make this transformation, we will have a common 17543 // multiply (ConstNode * A) that we can save. 17544 if (OtherOp == MulVar) 17545 return true; 17546 17547 // Now check to see if a future expansion will give us a common 17548 // multiply. 17549 // 17550 // ConstNode = CONST 17551 // AddNode = (A + c1) 17552 // ... = AddNode * ConstNode <-- current visiting instruction. 17553 // ... 17554 // OtherOp = (A + c2) 17555 // Use = OtherOp * ConstNode <-- visiting Use. 17556 // 17557 // If we make this transformation, we will have a common 17558 // multiply (CONST * A) after we also do the same transformation 17559 // to the "t2" instruction. 17560 if (OtherOp->getOpcode() == ISD::ADD && 17561 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && 17562 OtherOp->getOperand(0).getNode() == MulVar) 17563 return true; 17564 } 17565 } 17566 17567 // Didn't find a case where this would be profitable. 17568 return false; 17569 } 17570 17571 SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, 17572 unsigned NumStores) { 17573 SmallVector<SDValue, 8> Chains; 17574 SmallPtrSet<const SDNode *, 8> Visited; 17575 SDLoc StoreDL(StoreNodes[0].MemNode); 17576 17577 for (unsigned i = 0; i < NumStores; ++i) { 17578 Visited.insert(StoreNodes[i].MemNode); 17579 } 17580 17581 // don't include nodes that are children or repeated nodes. 17582 for (unsigned i = 0; i < NumStores; ++i) { 17583 if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second) 17584 Chains.push_back(StoreNodes[i].MemNode->getChain()); 17585 } 17586 17587 assert(Chains.size() > 0 && "Chain should have generated a chain"); 17588 return DAG.getTokenFactor(StoreDL, Chains); 17589 } 17590 17591 bool DAGCombiner::mergeStoresOfConstantsOrVecElts( 17592 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores, 17593 bool IsConstantSrc, bool UseVector, bool UseTrunc) { 17594 // Make sure we have something to merge. 17595 if (NumStores < 2) 17596 return false; 17597 17598 assert((!UseTrunc || !UseVector) && 17599 "This optimization cannot emit a vector truncating store"); 17600 17601 // The latest Node in the DAG. 17602 SDLoc DL(StoreNodes[0].MemNode); 17603 17604 TypeSize ElementSizeBits = MemVT.getStoreSizeInBits(); 17605 unsigned SizeInBits = NumStores * ElementSizeBits; 17606 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 17607 17608 Optional<MachineMemOperand::Flags> Flags; 17609 AAMDNodes AAInfo; 17610 for (unsigned I = 0; I != NumStores; ++I) { 17611 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); 17612 if (!Flags) { 17613 Flags = St->getMemOperand()->getFlags(); 17614 AAInfo = St->getAAInfo(); 17615 continue; 17616 } 17617 // Skip merging if there's an inconsistent flag. 17618 if (Flags != St->getMemOperand()->getFlags()) 17619 return false; 17620 // Concatenate AA metadata. 17621 AAInfo = AAInfo.concat(St->getAAInfo()); 17622 } 17623 17624 EVT StoreTy; 17625 if (UseVector) { 17626 unsigned Elts = NumStores * NumMemElts; 17627 // Get the type for the merged vector store. 17628 StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 17629 } else 17630 StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); 17631 17632 SDValue StoredVal; 17633 if (UseVector) { 17634 if (IsConstantSrc) { 17635 SmallVector<SDValue, 8> BuildVector; 17636 for (unsigned I = 0; I != NumStores; ++I) { 17637 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); 17638 SDValue Val = St->getValue(); 17639 // If constant is of the wrong type, convert it now. 17640 if (MemVT != Val.getValueType()) { 17641 Val = peekThroughBitcasts(Val); 17642 // Deal with constants of wrong size. 17643 if (ElementSizeBits != Val.getValueSizeInBits()) { 17644 EVT IntMemVT = 17645 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 17646 if (isa<ConstantFPSDNode>(Val)) { 17647 // Not clear how to truncate FP values. 17648 return false; 17649 } else if (auto *C = dyn_cast<ConstantSDNode>(Val)) 17650 Val = DAG.getConstant(C->getAPIntValue() 17651 .zextOrTrunc(Val.getValueSizeInBits()) 17652 .zextOrTrunc(ElementSizeBits), 17653 SDLoc(C), IntMemVT); 17654 } 17655 // Make sure correctly size type is the correct type. 17656 Val = DAG.getBitcast(MemVT, Val); 17657 } 17658 BuildVector.push_back(Val); 17659 } 17660 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS 17661 : ISD::BUILD_VECTOR, 17662 DL, StoreTy, BuildVector); 17663 } else { 17664 SmallVector<SDValue, 8> Ops; 17665 for (unsigned i = 0; i < NumStores; ++i) { 17666 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 17667 SDValue Val = peekThroughBitcasts(St->getValue()); 17668 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of 17669 // type MemVT. If the underlying value is not the correct 17670 // type, but it is an extraction of an appropriate vector we 17671 // can recast Val to be of the correct type. This may require 17672 // converting between EXTRACT_VECTOR_ELT and 17673 // EXTRACT_SUBVECTOR. 17674 if ((MemVT != Val.getValueType()) && 17675 (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 17676 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) { 17677 EVT MemVTScalarTy = MemVT.getScalarType(); 17678 // We may need to add a bitcast here to get types to line up. 17679 if (MemVTScalarTy != Val.getValueType().getScalarType()) { 17680 Val = DAG.getBitcast(MemVT, Val); 17681 } else { 17682 unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR 17683 : ISD::EXTRACT_VECTOR_ELT; 17684 SDValue Vec = Val.getOperand(0); 17685 SDValue Idx = Val.getOperand(1); 17686 Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx); 17687 } 17688 } 17689 Ops.push_back(Val); 17690 } 17691 17692 // Build the extracted vector elements back into a vector. 17693 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS 17694 : ISD::BUILD_VECTOR, 17695 DL, StoreTy, Ops); 17696 } 17697 } else { 17698 // We should always use a vector store when merging extracted vector 17699 // elements, so this path implies a store of constants. 17700 assert(IsConstantSrc && "Merged vector elements should use vector store"); 17701 17702 APInt StoreInt(SizeInBits, 0); 17703 17704 // Construct a single integer constant which is made of the smaller 17705 // constant inputs. 17706 bool IsLE = DAG.getDataLayout().isLittleEndian(); 17707 for (unsigned i = 0; i < NumStores; ++i) { 17708 unsigned Idx = IsLE ? (NumStores - 1 - i) : i; 17709 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); 17710 17711 SDValue Val = St->getValue(); 17712 Val = peekThroughBitcasts(Val); 17713 StoreInt <<= ElementSizeBits; 17714 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { 17715 StoreInt |= C->getAPIntValue() 17716 .zextOrTrunc(ElementSizeBits) 17717 .zextOrTrunc(SizeInBits); 17718 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { 17719 StoreInt |= C->getValueAPF() 17720 .bitcastToAPInt() 17721 .zextOrTrunc(ElementSizeBits) 17722 .zextOrTrunc(SizeInBits); 17723 // If fp truncation is necessary give up for now. 17724 if (MemVT.getSizeInBits() != ElementSizeBits) 17725 return false; 17726 } else { 17727 llvm_unreachable("Invalid constant element type"); 17728 } 17729 } 17730 17731 // Create the new Load and Store operations. 17732 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); 17733 } 17734 17735 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 17736 SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores); 17737 17738 // make sure we use trunc store if it's necessary to be legal. 17739 SDValue NewStore; 17740 if (!UseTrunc) { 17741 NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(), 17742 FirstInChain->getPointerInfo(), 17743 FirstInChain->getAlign(), Flags.getValue(), AAInfo); 17744 } else { // Must be realized as a trunc store 17745 EVT LegalizedStoredValTy = 17746 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType()); 17747 unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits(); 17748 ConstantSDNode *C = cast<ConstantSDNode>(StoredVal); 17749 SDValue ExtendedStoreVal = 17750 DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL, 17751 LegalizedStoredValTy); 17752 NewStore = DAG.getTruncStore( 17753 NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(), 17754 FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/, 17755 FirstInChain->getAlign(), Flags.getValue(), AAInfo); 17756 } 17757 17758 // Replace all merged stores with the new store. 17759 for (unsigned i = 0; i < NumStores; ++i) 17760 CombineTo(StoreNodes[i].MemNode, NewStore); 17761 17762 AddToWorklist(NewChain.getNode()); 17763 return true; 17764 } 17765 17766 void DAGCombiner::getStoreMergeCandidates( 17767 StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes, 17768 SDNode *&RootNode) { 17769 // This holds the base pointer, index, and the offset in bytes from the base 17770 // pointer. We must have a base and an offset. Do not handle stores to undef 17771 // base pointers. 17772 BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 17773 if (!BasePtr.getBase().getNode() || BasePtr.getBase().isUndef()) 17774 return; 17775 17776 SDValue Val = peekThroughBitcasts(St->getValue()); 17777 StoreSource StoreSrc = getStoreSource(Val); 17778 assert(StoreSrc != StoreSource::Unknown && "Expected known source for store"); 17779 17780 // Match on loadbaseptr if relevant. 17781 EVT MemVT = St->getMemoryVT(); 17782 BaseIndexOffset LBasePtr; 17783 EVT LoadVT; 17784 if (StoreSrc == StoreSource::Load) { 17785 auto *Ld = cast<LoadSDNode>(Val); 17786 LBasePtr = BaseIndexOffset::match(Ld, DAG); 17787 LoadVT = Ld->getMemoryVT(); 17788 // Load and store should be the same type. 17789 if (MemVT != LoadVT) 17790 return; 17791 // Loads must only have one use. 17792 if (!Ld->hasNUsesOfValue(1, 0)) 17793 return; 17794 // The memory operands must not be volatile/indexed/atomic. 17795 // TODO: May be able to relax for unordered atomics (see D66309) 17796 if (!Ld->isSimple() || Ld->isIndexed()) 17797 return; 17798 } 17799 auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr, 17800 int64_t &Offset) -> bool { 17801 // The memory operands must not be volatile/indexed/atomic. 17802 // TODO: May be able to relax for unordered atomics (see D66309) 17803 if (!Other->isSimple() || Other->isIndexed()) 17804 return false; 17805 // Don't mix temporal stores with non-temporal stores. 17806 if (St->isNonTemporal() != Other->isNonTemporal()) 17807 return false; 17808 SDValue OtherBC = peekThroughBitcasts(Other->getValue()); 17809 // Allow merging constants of different types as integers. 17810 bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT()) 17811 : Other->getMemoryVT() != MemVT; 17812 switch (StoreSrc) { 17813 case StoreSource::Load: { 17814 if (NoTypeMatch) 17815 return false; 17816 // The Load's Base Ptr must also match. 17817 auto *OtherLd = dyn_cast<LoadSDNode>(OtherBC); 17818 if (!OtherLd) 17819 return false; 17820 BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG); 17821 if (LoadVT != OtherLd->getMemoryVT()) 17822 return false; 17823 // Loads must only have one use. 17824 if (!OtherLd->hasNUsesOfValue(1, 0)) 17825 return false; 17826 // The memory operands must not be volatile/indexed/atomic. 17827 // TODO: May be able to relax for unordered atomics (see D66309) 17828 if (!OtherLd->isSimple() || OtherLd->isIndexed()) 17829 return false; 17830 // Don't mix temporal loads with non-temporal loads. 17831 if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal()) 17832 return false; 17833 if (!(LBasePtr.equalBaseIndex(LPtr, DAG))) 17834 return false; 17835 break; 17836 } 17837 case StoreSource::Constant: 17838 if (NoTypeMatch) 17839 return false; 17840 if (!isIntOrFPConstant(OtherBC)) 17841 return false; 17842 break; 17843 case StoreSource::Extract: 17844 // Do not merge truncated stores here. 17845 if (Other->isTruncatingStore()) 17846 return false; 17847 if (!MemVT.bitsEq(OtherBC.getValueType())) 17848 return false; 17849 if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT && 17850 OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR) 17851 return false; 17852 break; 17853 default: 17854 llvm_unreachable("Unhandled store source for merging"); 17855 } 17856 Ptr = BaseIndexOffset::match(Other, DAG); 17857 return (BasePtr.equalBaseIndex(Ptr, DAG, Offset)); 17858 }; 17859 17860 // Check if the pair of StoreNode and the RootNode already bail out many 17861 // times which is over the limit in dependence check. 17862 auto OverLimitInDependenceCheck = [&](SDNode *StoreNode, 17863 SDNode *RootNode) -> bool { 17864 auto RootCount = StoreRootCountMap.find(StoreNode); 17865 return RootCount != StoreRootCountMap.end() && 17866 RootCount->second.first == RootNode && 17867 RootCount->second.second > StoreMergeDependenceLimit; 17868 }; 17869 17870 auto TryToAddCandidate = [&](SDNode::use_iterator UseIter) { 17871 // This must be a chain use. 17872 if (UseIter.getOperandNo() != 0) 17873 return; 17874 if (auto *OtherStore = dyn_cast<StoreSDNode>(*UseIter)) { 17875 BaseIndexOffset Ptr; 17876 int64_t PtrDiff; 17877 if (CandidateMatch(OtherStore, Ptr, PtrDiff) && 17878 !OverLimitInDependenceCheck(OtherStore, RootNode)) 17879 StoreNodes.push_back(MemOpLink(OtherStore, PtrDiff)); 17880 } 17881 }; 17882 17883 // We looking for a root node which is an ancestor to all mergable 17884 // stores. We search up through a load, to our root and then down 17885 // through all children. For instance we will find Store{1,2,3} if 17886 // St is Store1, Store2. or Store3 where the root is not a load 17887 // which always true for nonvolatile ops. TODO: Expand 17888 // the search to find all valid candidates through multiple layers of loads. 17889 // 17890 // Root 17891 // |-------|-------| 17892 // Load Load Store3 17893 // | | 17894 // Store1 Store2 17895 // 17896 // FIXME: We should be able to climb and 17897 // descend TokenFactors to find candidates as well. 17898 17899 RootNode = St->getChain().getNode(); 17900 17901 unsigned NumNodesExplored = 0; 17902 const unsigned MaxSearchNodes = 1024; 17903 if (auto *Ldn = dyn_cast<LoadSDNode>(RootNode)) { 17904 RootNode = Ldn->getChain().getNode(); 17905 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); 17906 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) { 17907 if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) { // walk down chain 17908 for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2) 17909 TryToAddCandidate(I2); 17910 } 17911 // Check stores that depend on the root (e.g. Store 3 in the chart above). 17912 if (I.getOperandNo() == 0 && isa<StoreSDNode>(*I)) { 17913 TryToAddCandidate(I); 17914 } 17915 } 17916 } else { 17917 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); 17918 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) 17919 TryToAddCandidate(I); 17920 } 17921 } 17922 17923 // We need to check that merging these stores does not cause a loop in the 17924 // DAG. Any store candidate may depend on another candidate indirectly through 17925 // its operands. Check in parallel by searching up from operands of candidates. 17926 bool DAGCombiner::checkMergeStoreCandidatesForDependencies( 17927 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, 17928 SDNode *RootNode) { 17929 // FIXME: We should be able to truncate a full search of 17930 // predecessors by doing a BFS and keeping tabs the originating 17931 // stores from which worklist nodes come from in a similar way to 17932 // TokenFactor simplfication. 17933 17934 SmallPtrSet<const SDNode *, 32> Visited; 17935 SmallVector<const SDNode *, 8> Worklist; 17936 17937 // RootNode is a predecessor to all candidates so we need not search 17938 // past it. Add RootNode (peeking through TokenFactors). Do not count 17939 // these towards size check. 17940 17941 Worklist.push_back(RootNode); 17942 while (!Worklist.empty()) { 17943 auto N = Worklist.pop_back_val(); 17944 if (!Visited.insert(N).second) 17945 continue; // Already present in Visited. 17946 if (N->getOpcode() == ISD::TokenFactor) { 17947 for (SDValue Op : N->ops()) 17948 Worklist.push_back(Op.getNode()); 17949 } 17950 } 17951 17952 // Don't count pruning nodes towards max. 17953 unsigned int Max = 1024 + Visited.size(); 17954 // Search Ops of store candidates. 17955 for (unsigned i = 0; i < NumStores; ++i) { 17956 SDNode *N = StoreNodes[i].MemNode; 17957 // Of the 4 Store Operands: 17958 // * Chain (Op 0) -> We have already considered these 17959 // in candidate selection, but only by following the 17960 // chain dependencies. We could still have a chain 17961 // dependency to a load, that has a non-chain dep to 17962 // another load, that depends on a store, etc. So it is 17963 // possible to have dependencies that consist of a mix 17964 // of chain and non-chain deps, and we need to include 17965 // chain operands in the analysis here.. 17966 // * Value (Op 1) -> Cycles may happen (e.g. through load chains) 17967 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant, 17968 // but aren't necessarily fromt the same base node, so 17969 // cycles possible (e.g. via indexed store). 17970 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for 17971 // non-indexed stores). Not constant on all targets (e.g. ARM) 17972 // and so can participate in a cycle. 17973 for (unsigned j = 0; j < N->getNumOperands(); ++j) 17974 Worklist.push_back(N->getOperand(j).getNode()); 17975 } 17976 // Search through DAG. We can stop early if we find a store node. 17977 for (unsigned i = 0; i < NumStores; ++i) 17978 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist, 17979 Max)) { 17980 // If the searching bail out, record the StoreNode and RootNode in the 17981 // StoreRootCountMap. If we have seen the pair many times over a limit, 17982 // we won't add the StoreNode into StoreNodes set again. 17983 if (Visited.size() >= Max) { 17984 auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode]; 17985 if (RootCount.first == RootNode) 17986 RootCount.second++; 17987 else 17988 RootCount = {RootNode, 1}; 17989 } 17990 return false; 17991 } 17992 return true; 17993 } 17994 17995 unsigned 17996 DAGCombiner::getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, 17997 int64_t ElementSizeBytes) const { 17998 while (true) { 17999 // Find a store past the width of the first store. 18000 size_t StartIdx = 0; 18001 while ((StartIdx + 1 < StoreNodes.size()) && 18002 StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes != 18003 StoreNodes[StartIdx + 1].OffsetFromBase) 18004 ++StartIdx; 18005 18006 // Bail if we don't have enough candidates to merge. 18007 if (StartIdx + 1 >= StoreNodes.size()) 18008 return 0; 18009 18010 // Trim stores that overlapped with the first store. 18011 if (StartIdx) 18012 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx); 18013 18014 // Scan the memory operations on the chain and find the first 18015 // non-consecutive store memory address. 18016 unsigned NumConsecutiveStores = 1; 18017 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 18018 // Check that the addresses are consecutive starting from the second 18019 // element in the list of stores. 18020 for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) { 18021 int64_t CurrAddress = StoreNodes[i].OffsetFromBase; 18022 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 18023 break; 18024 NumConsecutiveStores = i + 1; 18025 } 18026 if (NumConsecutiveStores > 1) 18027 return NumConsecutiveStores; 18028 18029 // There are no consecutive stores at the start of the list. 18030 // Remove the first store and try again. 18031 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 1); 18032 } 18033 } 18034 18035 bool DAGCombiner::tryStoreMergeOfConstants( 18036 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, 18037 EVT MemVT, SDNode *RootNode, bool AllowVectors) { 18038 LLVMContext &Context = *DAG.getContext(); 18039 const DataLayout &DL = DAG.getDataLayout(); 18040 int64_t ElementSizeBytes = MemVT.getStoreSize(); 18041 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 18042 bool MadeChange = false; 18043 18044 // Store the constants into memory as one consecutive store. 18045 while (NumConsecutiveStores >= 2) { 18046 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 18047 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 18048 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 18049 unsigned LastLegalType = 1; 18050 unsigned LastLegalVectorType = 1; 18051 bool LastIntegerTrunc = false; 18052 bool NonZero = false; 18053 unsigned FirstZeroAfterNonZero = NumConsecutiveStores; 18054 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 18055 StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode); 18056 SDValue StoredVal = ST->getValue(); 18057 bool IsElementZero = false; 18058 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) 18059 IsElementZero = C->isZero(); 18060 else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) 18061 IsElementZero = C->getConstantFPValue()->isNullValue(); 18062 if (IsElementZero) { 18063 if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores) 18064 FirstZeroAfterNonZero = i; 18065 } 18066 NonZero |= !IsElementZero; 18067 18068 // Find a legal type for the constant store. 18069 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; 18070 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); 18071 bool IsFast = false; 18072 18073 // Break early when size is too large to be legal. 18074 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) 18075 break; 18076 18077 if (TLI.isTypeLegal(StoreTy) && 18078 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, 18079 DAG.getMachineFunction()) && 18080 TLI.allowsMemoryAccess(Context, DL, StoreTy, 18081 *FirstInChain->getMemOperand(), &IsFast) && 18082 IsFast) { 18083 LastIntegerTrunc = false; 18084 LastLegalType = i + 1; 18085 // Or check whether a truncstore is legal. 18086 } else if (TLI.getTypeAction(Context, StoreTy) == 18087 TargetLowering::TypePromoteInteger) { 18088 EVT LegalizedStoredValTy = 18089 TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); 18090 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && 18091 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, 18092 DAG.getMachineFunction()) && 18093 TLI.allowsMemoryAccess(Context, DL, StoreTy, 18094 *FirstInChain->getMemOperand(), &IsFast) && 18095 IsFast) { 18096 LastIntegerTrunc = true; 18097 LastLegalType = i + 1; 18098 } 18099 } 18100 18101 // We only use vectors if the constant is known to be zero or the 18102 // target allows it and the function is not marked with the 18103 // noimplicitfloat attribute. 18104 if ((!NonZero || 18105 TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) && 18106 AllowVectors) { 18107 // Find a legal type for the vector store. 18108 unsigned Elts = (i + 1) * NumMemElts; 18109 EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 18110 if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) && 18111 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) && 18112 TLI.allowsMemoryAccess(Context, DL, Ty, 18113 *FirstInChain->getMemOperand(), &IsFast) && 18114 IsFast) 18115 LastLegalVectorType = i + 1; 18116 } 18117 } 18118 18119 bool UseVector = (LastLegalVectorType > LastLegalType) && AllowVectors; 18120 unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType; 18121 bool UseTrunc = LastIntegerTrunc && !UseVector; 18122 18123 // Check if we found a legal integer type that creates a meaningful 18124 // merge. 18125 if (NumElem < 2) { 18126 // We know that candidate stores are in order and of correct 18127 // shape. While there is no mergeable sequence from the 18128 // beginning one may start later in the sequence. The only 18129 // reason a merge of size N could have failed where another of 18130 // the same size would not have, is if the alignment has 18131 // improved or we've dropped a non-zero value. Drop as many 18132 // candidates as we can here. 18133 unsigned NumSkip = 1; 18134 while ((NumSkip < NumConsecutiveStores) && 18135 (NumSkip < FirstZeroAfterNonZero) && 18136 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 18137 NumSkip++; 18138 18139 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 18140 NumConsecutiveStores -= NumSkip; 18141 continue; 18142 } 18143 18144 // Check that we can merge these candidates without causing a cycle. 18145 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, 18146 RootNode)) { 18147 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 18148 NumConsecutiveStores -= NumElem; 18149 continue; 18150 } 18151 18152 MadeChange |= mergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, 18153 /*IsConstantSrc*/ true, 18154 UseVector, UseTrunc); 18155 18156 // Remove merged stores for next iteration. 18157 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 18158 NumConsecutiveStores -= NumElem; 18159 } 18160 return MadeChange; 18161 } 18162 18163 bool DAGCombiner::tryStoreMergeOfExtracts( 18164 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, 18165 EVT MemVT, SDNode *RootNode) { 18166 LLVMContext &Context = *DAG.getContext(); 18167 const DataLayout &DL = DAG.getDataLayout(); 18168 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 18169 bool MadeChange = false; 18170 18171 // Loop on Consecutive Stores on success. 18172 while (NumConsecutiveStores >= 2) { 18173 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 18174 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 18175 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 18176 unsigned NumStoresToMerge = 1; 18177 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 18178 // Find a legal type for the vector store. 18179 unsigned Elts = (i + 1) * NumMemElts; 18180 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 18181 bool IsFast = false; 18182 18183 // Break early when size is too large to be legal. 18184 if (Ty.getSizeInBits() > MaximumLegalStoreInBits) 18185 break; 18186 18187 if (TLI.isTypeLegal(Ty) && 18188 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) && 18189 TLI.allowsMemoryAccess(Context, DL, Ty, 18190 *FirstInChain->getMemOperand(), &IsFast) && 18191 IsFast) 18192 NumStoresToMerge = i + 1; 18193 } 18194 18195 // Check if we found a legal integer type creating a meaningful 18196 // merge. 18197 if (NumStoresToMerge < 2) { 18198 // We know that candidate stores are in order and of correct 18199 // shape. While there is no mergeable sequence from the 18200 // beginning one may start later in the sequence. The only 18201 // reason a merge of size N could have failed where another of 18202 // the same size would not have, is if the alignment has 18203 // improved. Drop as many candidates as we can here. 18204 unsigned NumSkip = 1; 18205 while ((NumSkip < NumConsecutiveStores) && 18206 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 18207 NumSkip++; 18208 18209 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 18210 NumConsecutiveStores -= NumSkip; 18211 continue; 18212 } 18213 18214 // Check that we can merge these candidates without causing a cycle. 18215 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumStoresToMerge, 18216 RootNode)) { 18217 StoreNodes.erase(StoreNodes.begin(), 18218 StoreNodes.begin() + NumStoresToMerge); 18219 NumConsecutiveStores -= NumStoresToMerge; 18220 continue; 18221 } 18222 18223 MadeChange |= mergeStoresOfConstantsOrVecElts( 18224 StoreNodes, MemVT, NumStoresToMerge, /*IsConstantSrc*/ false, 18225 /*UseVector*/ true, /*UseTrunc*/ false); 18226 18227 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumStoresToMerge); 18228 NumConsecutiveStores -= NumStoresToMerge; 18229 } 18230 return MadeChange; 18231 } 18232 18233 bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, 18234 unsigned NumConsecutiveStores, EVT MemVT, 18235 SDNode *RootNode, bool AllowVectors, 18236 bool IsNonTemporalStore, 18237 bool IsNonTemporalLoad) { 18238 LLVMContext &Context = *DAG.getContext(); 18239 const DataLayout &DL = DAG.getDataLayout(); 18240 int64_t ElementSizeBytes = MemVT.getStoreSize(); 18241 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 18242 bool MadeChange = false; 18243 18244 // Look for load nodes which are used by the stored values. 18245 SmallVector<MemOpLink, 8> LoadNodes; 18246 18247 // Find acceptable loads. Loads need to have the same chain (token factor), 18248 // must not be zext, volatile, indexed, and they must be consecutive. 18249 BaseIndexOffset LdBasePtr; 18250 18251 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 18252 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 18253 SDValue Val = peekThroughBitcasts(St->getValue()); 18254 LoadSDNode *Ld = cast<LoadSDNode>(Val); 18255 18256 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG); 18257 // If this is not the first ptr that we check. 18258 int64_t LdOffset = 0; 18259 if (LdBasePtr.getBase().getNode()) { 18260 // The base ptr must be the same. 18261 if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset)) 18262 break; 18263 } else { 18264 // Check that all other base pointers are the same as this one. 18265 LdBasePtr = LdPtr; 18266 } 18267 18268 // We found a potential memory operand to merge. 18269 LoadNodes.push_back(MemOpLink(Ld, LdOffset)); 18270 } 18271 18272 while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) { 18273 Align RequiredAlignment; 18274 bool NeedRotate = false; 18275 if (LoadNodes.size() == 2) { 18276 // If we have load/store pair instructions and we only have two values, 18277 // don't bother merging. 18278 if (TLI.hasPairedLoad(MemVT, RequiredAlignment) && 18279 StoreNodes[0].MemNode->getAlign() >= RequiredAlignment) { 18280 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2); 18281 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2); 18282 break; 18283 } 18284 // If the loads are reversed, see if we can rotate the halves into place. 18285 int64_t Offset0 = LoadNodes[0].OffsetFromBase; 18286 int64_t Offset1 = LoadNodes[1].OffsetFromBase; 18287 EVT PairVT = EVT::getIntegerVT(Context, ElementSizeBytes * 8 * 2); 18288 if (Offset0 - Offset1 == ElementSizeBytes && 18289 (hasOperation(ISD::ROTL, PairVT) || 18290 hasOperation(ISD::ROTR, PairVT))) { 18291 std::swap(LoadNodes[0], LoadNodes[1]); 18292 NeedRotate = true; 18293 } 18294 } 18295 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 18296 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 18297 Align FirstStoreAlign = FirstInChain->getAlign(); 18298 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); 18299 18300 // Scan the memory operations on the chain and find the first 18301 // non-consecutive load memory address. These variables hold the index in 18302 // the store node array. 18303 18304 unsigned LastConsecutiveLoad = 1; 18305 18306 // This variable refers to the size and not index in the array. 18307 unsigned LastLegalVectorType = 1; 18308 unsigned LastLegalIntegerType = 1; 18309 bool isDereferenceable = true; 18310 bool DoIntegerTruncate = false; 18311 int64_t StartAddress = LoadNodes[0].OffsetFromBase; 18312 SDValue LoadChain = FirstLoad->getChain(); 18313 for (unsigned i = 1; i < LoadNodes.size(); ++i) { 18314 // All loads must share the same chain. 18315 if (LoadNodes[i].MemNode->getChain() != LoadChain) 18316 break; 18317 18318 int64_t CurrAddress = LoadNodes[i].OffsetFromBase; 18319 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 18320 break; 18321 LastConsecutiveLoad = i; 18322 18323 if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable()) 18324 isDereferenceable = false; 18325 18326 // Find a legal type for the vector store. 18327 unsigned Elts = (i + 1) * NumMemElts; 18328 EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 18329 18330 // Break early when size is too large to be legal. 18331 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) 18332 break; 18333 18334 bool IsFastSt = false; 18335 bool IsFastLd = false; 18336 // Don't try vector types if we need a rotate. We may still fail the 18337 // legality checks for the integer type, but we can't handle the rotate 18338 // case with vectors. 18339 // FIXME: We could use a shuffle in place of the rotate. 18340 if (!NeedRotate && TLI.isTypeLegal(StoreTy) && 18341 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, 18342 DAG.getMachineFunction()) && 18343 TLI.allowsMemoryAccess(Context, DL, StoreTy, 18344 *FirstInChain->getMemOperand(), &IsFastSt) && 18345 IsFastSt && 18346 TLI.allowsMemoryAccess(Context, DL, StoreTy, 18347 *FirstLoad->getMemOperand(), &IsFastLd) && 18348 IsFastLd) { 18349 LastLegalVectorType = i + 1; 18350 } 18351 18352 // Find a legal type for the integer store. 18353 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; 18354 StoreTy = EVT::getIntegerVT(Context, SizeInBits); 18355 if (TLI.isTypeLegal(StoreTy) && 18356 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, 18357 DAG.getMachineFunction()) && 18358 TLI.allowsMemoryAccess(Context, DL, StoreTy, 18359 *FirstInChain->getMemOperand(), &IsFastSt) && 18360 IsFastSt && 18361 TLI.allowsMemoryAccess(Context, DL, StoreTy, 18362 *FirstLoad->getMemOperand(), &IsFastLd) && 18363 IsFastLd) { 18364 LastLegalIntegerType = i + 1; 18365 DoIntegerTruncate = false; 18366 // Or check whether a truncstore and extload is legal. 18367 } else if (TLI.getTypeAction(Context, StoreTy) == 18368 TargetLowering::TypePromoteInteger) { 18369 EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy); 18370 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && 18371 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, 18372 DAG.getMachineFunction()) && 18373 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, StoreTy) && 18374 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, StoreTy) && 18375 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) && 18376 TLI.allowsMemoryAccess(Context, DL, StoreTy, 18377 *FirstInChain->getMemOperand(), &IsFastSt) && 18378 IsFastSt && 18379 TLI.allowsMemoryAccess(Context, DL, StoreTy, 18380 *FirstLoad->getMemOperand(), &IsFastLd) && 18381 IsFastLd) { 18382 LastLegalIntegerType = i + 1; 18383 DoIntegerTruncate = true; 18384 } 18385 } 18386 } 18387 18388 // Only use vector types if the vector type is larger than the integer 18389 // type. If they are the same, use integers. 18390 bool UseVectorTy = 18391 LastLegalVectorType > LastLegalIntegerType && AllowVectors; 18392 unsigned LastLegalType = 18393 std::max(LastLegalVectorType, LastLegalIntegerType); 18394 18395 // We add +1 here because the LastXXX variables refer to location while 18396 // the NumElem refers to array/index size. 18397 unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1); 18398 NumElem = std::min(LastLegalType, NumElem); 18399 Align FirstLoadAlign = FirstLoad->getAlign(); 18400 18401 if (NumElem < 2) { 18402 // We know that candidate stores are in order and of correct 18403 // shape. While there is no mergeable sequence from the 18404 // beginning one may start later in the sequence. The only 18405 // reason a merge of size N could have failed where another of 18406 // the same size would not have is if the alignment or either 18407 // the load or store has improved. Drop as many candidates as we 18408 // can here. 18409 unsigned NumSkip = 1; 18410 while ((NumSkip < LoadNodes.size()) && 18411 (LoadNodes[NumSkip].MemNode->getAlign() <= FirstLoadAlign) && 18412 (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign)) 18413 NumSkip++; 18414 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 18415 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip); 18416 NumConsecutiveStores -= NumSkip; 18417 continue; 18418 } 18419 18420 // Check that we can merge these candidates without causing a cycle. 18421 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, 18422 RootNode)) { 18423 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 18424 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); 18425 NumConsecutiveStores -= NumElem; 18426 continue; 18427 } 18428 18429 // Find if it is better to use vectors or integers to load and store 18430 // to memory. 18431 EVT JointMemOpVT; 18432 if (UseVectorTy) { 18433 // Find a legal type for the vector store. 18434 unsigned Elts = NumElem * NumMemElts; 18435 JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 18436 } else { 18437 unsigned SizeInBits = NumElem * ElementSizeBytes * 8; 18438 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); 18439 } 18440 18441 SDLoc LoadDL(LoadNodes[0].MemNode); 18442 SDLoc StoreDL(StoreNodes[0].MemNode); 18443 18444 // The merged loads are required to have the same incoming chain, so 18445 // using the first's chain is acceptable. 18446 18447 SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem); 18448 AddToWorklist(NewStoreChain.getNode()); 18449 18450 MachineMemOperand::Flags LdMMOFlags = 18451 isDereferenceable ? MachineMemOperand::MODereferenceable 18452 : MachineMemOperand::MONone; 18453 if (IsNonTemporalLoad) 18454 LdMMOFlags |= MachineMemOperand::MONonTemporal; 18455 18456 MachineMemOperand::Flags StMMOFlags = IsNonTemporalStore 18457 ? MachineMemOperand::MONonTemporal 18458 : MachineMemOperand::MONone; 18459 18460 SDValue NewLoad, NewStore; 18461 if (UseVectorTy || !DoIntegerTruncate) { 18462 NewLoad = DAG.getLoad( 18463 JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(), 18464 FirstLoad->getPointerInfo(), FirstLoadAlign, LdMMOFlags); 18465 SDValue StoreOp = NewLoad; 18466 if (NeedRotate) { 18467 unsigned LoadWidth = ElementSizeBytes * 8 * 2; 18468 assert(JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) && 18469 "Unexpected type for rotate-able load pair"); 18470 SDValue RotAmt = 18471 DAG.getShiftAmountConstant(LoadWidth / 2, JointMemOpVT, LoadDL); 18472 // Target can convert to the identical ROTR if it does not have ROTL. 18473 StoreOp = DAG.getNode(ISD::ROTL, LoadDL, JointMemOpVT, NewLoad, RotAmt); 18474 } 18475 NewStore = DAG.getStore( 18476 NewStoreChain, StoreDL, StoreOp, FirstInChain->getBasePtr(), 18477 FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags); 18478 } else { // This must be the truncstore/extload case 18479 EVT ExtendedTy = 18480 TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT); 18481 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy, 18482 FirstLoad->getChain(), FirstLoad->getBasePtr(), 18483 FirstLoad->getPointerInfo(), JointMemOpVT, 18484 FirstLoadAlign, LdMMOFlags); 18485 NewStore = DAG.getTruncStore( 18486 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), 18487 FirstInChain->getPointerInfo(), JointMemOpVT, 18488 FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags()); 18489 } 18490 18491 // Transfer chain users from old loads to the new load. 18492 for (unsigned i = 0; i < NumElem; ++i) { 18493 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); 18494 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), 18495 SDValue(NewLoad.getNode(), 1)); 18496 } 18497 18498 // Replace all stores with the new store. Recursively remove corresponding 18499 // values if they are no longer used. 18500 for (unsigned i = 0; i < NumElem; ++i) { 18501 SDValue Val = StoreNodes[i].MemNode->getOperand(1); 18502 CombineTo(StoreNodes[i].MemNode, NewStore); 18503 if (Val->use_empty()) 18504 recursivelyDeleteUnusedNodes(Val.getNode()); 18505 } 18506 18507 MadeChange = true; 18508 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 18509 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); 18510 NumConsecutiveStores -= NumElem; 18511 } 18512 return MadeChange; 18513 } 18514 18515 bool DAGCombiner::mergeConsecutiveStores(StoreSDNode *St) { 18516 if (OptLevel == CodeGenOpt::None || !EnableStoreMerging) 18517 return false; 18518 18519 // TODO: Extend this function to merge stores of scalable vectors. 18520 // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8> 18521 // store since we know <vscale x 16 x i8> is exactly twice as large as 18522 // <vscale x 8 x i8>). Until then, bail out for scalable vectors. 18523 EVT MemVT = St->getMemoryVT(); 18524 if (MemVT.isScalableVector()) 18525 return false; 18526 if (!MemVT.isSimple() || MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits) 18527 return false; 18528 18529 // This function cannot currently deal with non-byte-sized memory sizes. 18530 int64_t ElementSizeBytes = MemVT.getStoreSize(); 18531 if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits()) 18532 return false; 18533 18534 // Do not bother looking at stored values that are not constants, loads, or 18535 // extracted vector elements. 18536 SDValue StoredVal = peekThroughBitcasts(St->getValue()); 18537 const StoreSource StoreSrc = getStoreSource(StoredVal); 18538 if (StoreSrc == StoreSource::Unknown) 18539 return false; 18540 18541 SmallVector<MemOpLink, 8> StoreNodes; 18542 SDNode *RootNode; 18543 // Find potential store merge candidates by searching through chain sub-DAG 18544 getStoreMergeCandidates(St, StoreNodes, RootNode); 18545 18546 // Check if there is anything to merge. 18547 if (StoreNodes.size() < 2) 18548 return false; 18549 18550 // Sort the memory operands according to their distance from the 18551 // base pointer. 18552 llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) { 18553 return LHS.OffsetFromBase < RHS.OffsetFromBase; 18554 }); 18555 18556 bool AllowVectors = !DAG.getMachineFunction().getFunction().hasFnAttribute( 18557 Attribute::NoImplicitFloat); 18558 bool IsNonTemporalStore = St->isNonTemporal(); 18559 bool IsNonTemporalLoad = StoreSrc == StoreSource::Load && 18560 cast<LoadSDNode>(StoredVal)->isNonTemporal(); 18561 18562 // Store Merge attempts to merge the lowest stores. This generally 18563 // works out as if successful, as the remaining stores are checked 18564 // after the first collection of stores is merged. However, in the 18565 // case that a non-mergeable store is found first, e.g., {p[-2], 18566 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent 18567 // mergeable cases. To prevent this, we prune such stores from the 18568 // front of StoreNodes here. 18569 bool MadeChange = false; 18570 while (StoreNodes.size() > 1) { 18571 unsigned NumConsecutiveStores = 18572 getConsecutiveStores(StoreNodes, ElementSizeBytes); 18573 // There are no more stores in the list to examine. 18574 if (NumConsecutiveStores == 0) 18575 return MadeChange; 18576 18577 // We have at least 2 consecutive stores. Try to merge them. 18578 assert(NumConsecutiveStores >= 2 && "Expected at least 2 stores"); 18579 switch (StoreSrc) { 18580 case StoreSource::Constant: 18581 MadeChange |= tryStoreMergeOfConstants(StoreNodes, NumConsecutiveStores, 18582 MemVT, RootNode, AllowVectors); 18583 break; 18584 18585 case StoreSource::Extract: 18586 MadeChange |= tryStoreMergeOfExtracts(StoreNodes, NumConsecutiveStores, 18587 MemVT, RootNode); 18588 break; 18589 18590 case StoreSource::Load: 18591 MadeChange |= tryStoreMergeOfLoads(StoreNodes, NumConsecutiveStores, 18592 MemVT, RootNode, AllowVectors, 18593 IsNonTemporalStore, IsNonTemporalLoad); 18594 break; 18595 18596 default: 18597 llvm_unreachable("Unhandled store source type"); 18598 } 18599 } 18600 return MadeChange; 18601 } 18602 18603 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { 18604 SDLoc SL(ST); 18605 SDValue ReplStore; 18606 18607 // Replace the chain to avoid dependency. 18608 if (ST->isTruncatingStore()) { 18609 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), 18610 ST->getBasePtr(), ST->getMemoryVT(), 18611 ST->getMemOperand()); 18612 } else { 18613 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), 18614 ST->getMemOperand()); 18615 } 18616 18617 // Create token to keep both nodes around. 18618 SDValue Token = DAG.getNode(ISD::TokenFactor, SL, 18619 MVT::Other, ST->getChain(), ReplStore); 18620 18621 // Make sure the new and old chains are cleaned up. 18622 AddToWorklist(Token.getNode()); 18623 18624 // Don't add users to work list. 18625 return CombineTo(ST, Token, false); 18626 } 18627 18628 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { 18629 SDValue Value = ST->getValue(); 18630 if (Value.getOpcode() == ISD::TargetConstantFP) 18631 return SDValue(); 18632 18633 if (!ISD::isNormalStore(ST)) 18634 return SDValue(); 18635 18636 SDLoc DL(ST); 18637 18638 SDValue Chain = ST->getChain(); 18639 SDValue Ptr = ST->getBasePtr(); 18640 18641 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); 18642 18643 // NOTE: If the original store is volatile, this transform must not increase 18644 // the number of stores. For example, on x86-32 an f64 can be stored in one 18645 // processor operation but an i64 (which is not legal) requires two. So the 18646 // transform should not be done in this case. 18647 18648 SDValue Tmp; 18649 switch (CFP->getSimpleValueType(0).SimpleTy) { 18650 default: 18651 llvm_unreachable("Unknown FP type"); 18652 case MVT::f16: // We don't do this for these yet. 18653 case MVT::f80: 18654 case MVT::f128: 18655 case MVT::ppcf128: 18656 return SDValue(); 18657 case MVT::f32: 18658 if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) || 18659 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 18660 ; 18661 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). 18662 bitcastToAPInt().getZExtValue(), SDLoc(CFP), 18663 MVT::i32); 18664 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); 18665 } 18666 18667 return SDValue(); 18668 case MVT::f64: 18669 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && 18670 ST->isSimple()) || 18671 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { 18672 ; 18673 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 18674 getZExtValue(), SDLoc(CFP), MVT::i64); 18675 return DAG.getStore(Chain, DL, Tmp, 18676 Ptr, ST->getMemOperand()); 18677 } 18678 18679 if (ST->isSimple() && 18680 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 18681 // Many FP stores are not made apparent until after legalize, e.g. for 18682 // argument passing. Since this is so common, custom legalize the 18683 // 64-bit integer store into two 32-bit stores. 18684 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 18685 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); 18686 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); 18687 if (DAG.getDataLayout().isBigEndian()) 18688 std::swap(Lo, Hi); 18689 18690 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 18691 AAMDNodes AAInfo = ST->getAAInfo(); 18692 18693 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 18694 ST->getOriginalAlign(), MMOFlags, AAInfo); 18695 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), DL); 18696 SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, 18697 ST->getPointerInfo().getWithOffset(4), 18698 ST->getOriginalAlign(), MMOFlags, AAInfo); 18699 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 18700 St0, St1); 18701 } 18702 18703 return SDValue(); 18704 } 18705 } 18706 18707 SDValue DAGCombiner::visitSTORE(SDNode *N) { 18708 StoreSDNode *ST = cast<StoreSDNode>(N); 18709 SDValue Chain = ST->getChain(); 18710 SDValue Value = ST->getValue(); 18711 SDValue Ptr = ST->getBasePtr(); 18712 18713 // If this is a store of a bit convert, store the input value if the 18714 // resultant store does not need a higher alignment than the original. 18715 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && 18716 ST->isUnindexed()) { 18717 EVT SVT = Value.getOperand(0).getValueType(); 18718 // If the store is volatile, we only want to change the store type if the 18719 // resulting store is legal. Otherwise we might increase the number of 18720 // memory accesses. We don't care if the original type was legal or not 18721 // as we assume software couldn't rely on the number of accesses of an 18722 // illegal type. 18723 // TODO: May be able to relax for unordered atomics (see D66309) 18724 if (((!LegalOperations && ST->isSimple()) || 18725 TLI.isOperationLegal(ISD::STORE, SVT)) && 18726 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT, 18727 DAG, *ST->getMemOperand())) { 18728 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, 18729 ST->getMemOperand()); 18730 } 18731 } 18732 18733 // Turn 'store undef, Ptr' -> nothing. 18734 if (Value.isUndef() && ST->isUnindexed()) 18735 return Chain; 18736 18737 // Try to infer better alignment information than the store already has. 18738 if (OptLevel != CodeGenOpt::None && ST->isUnindexed() && !ST->isAtomic()) { 18739 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { 18740 if (*Alignment > ST->getAlign() && 18741 isAligned(*Alignment, ST->getSrcValueOffset())) { 18742 SDValue NewStore = 18743 DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), 18744 ST->getMemoryVT(), *Alignment, 18745 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 18746 // NewStore will always be N as we are only refining the alignment 18747 assert(NewStore.getNode() == N); 18748 (void)NewStore; 18749 } 18750 } 18751 } 18752 18753 // Try transforming a pair floating point load / store ops to integer 18754 // load / store ops. 18755 if (SDValue NewST = TransformFPLoadStorePair(N)) 18756 return NewST; 18757 18758 // Try transforming several stores into STORE (BSWAP). 18759 if (SDValue Store = mergeTruncStores(ST)) 18760 return Store; 18761 18762 if (ST->isUnindexed()) { 18763 // Walk up chain skipping non-aliasing memory nodes, on this store and any 18764 // adjacent stores. 18765 if (findBetterNeighborChains(ST)) { 18766 // replaceStoreChain uses CombineTo, which handled all of the worklist 18767 // manipulation. Return the original node to not do anything else. 18768 return SDValue(ST, 0); 18769 } 18770 Chain = ST->getChain(); 18771 } 18772 18773 // FIXME: is there such a thing as a truncating indexed store? 18774 if (ST->isTruncatingStore() && ST->isUnindexed() && 18775 Value.getValueType().isInteger() && 18776 (!isa<ConstantSDNode>(Value) || 18777 !cast<ConstantSDNode>(Value)->isOpaque())) { 18778 // Convert a truncating store of a extension into a standard store. 18779 if ((Value.getOpcode() == ISD::ZERO_EXTEND || 18780 Value.getOpcode() == ISD::SIGN_EXTEND || 18781 Value.getOpcode() == ISD::ANY_EXTEND) && 18782 Value.getOperand(0).getValueType() == ST->getMemoryVT() && 18783 TLI.isOperationLegalOrCustom(ISD::STORE, ST->getMemoryVT())) 18784 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, 18785 ST->getMemOperand()); 18786 18787 APInt TruncDemandedBits = 18788 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), 18789 ST->getMemoryVT().getScalarSizeInBits()); 18790 18791 // See if we can simplify the input to this truncstore with knowledge that 18792 // only the low bits are being used. For example: 18793 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" 18794 AddToWorklist(Value.getNode()); 18795 if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits)) 18796 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(), 18797 ST->getMemOperand()); 18798 18799 // Otherwise, see if we can simplify the operation with 18800 // SimplifyDemandedBits, which only works if the value has a single use. 18801 if (SimplifyDemandedBits(Value, TruncDemandedBits)) { 18802 // Re-visit the store if anything changed and the store hasn't been merged 18803 // with another node (N is deleted) SimplifyDemandedBits will add Value's 18804 // node back to the worklist if necessary, but we also need to re-visit 18805 // the Store node itself. 18806 if (N->getOpcode() != ISD::DELETED_NODE) 18807 AddToWorklist(N); 18808 return SDValue(N, 0); 18809 } 18810 } 18811 18812 // If this is a load followed by a store to the same location, then the store 18813 // is dead/noop. 18814 // TODO: Can relax for unordered atomics (see D66309) 18815 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { 18816 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && 18817 ST->isUnindexed() && ST->isSimple() && 18818 Ld->getAddressSpace() == ST->getAddressSpace() && 18819 // There can't be any side effects between the load and store, such as 18820 // a call or store. 18821 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { 18822 // The store is dead, remove it. 18823 return Chain; 18824 } 18825 } 18826 18827 // TODO: Can relax for unordered atomics (see D66309) 18828 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { 18829 if (ST->isUnindexed() && ST->isSimple() && 18830 ST1->isUnindexed() && ST1->isSimple()) { 18831 if (OptLevel != CodeGenOpt::None && ST1->getBasePtr() == Ptr && 18832 ST1->getValue() == Value && ST->getMemoryVT() == ST1->getMemoryVT() && 18833 ST->getAddressSpace() == ST1->getAddressSpace()) { 18834 // If this is a store followed by a store with the same value to the 18835 // same location, then the store is dead/noop. 18836 return Chain; 18837 } 18838 18839 if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() && 18840 !ST1->getBasePtr().isUndef() && 18841 // BaseIndexOffset and the code below requires knowing the size 18842 // of a vector, so bail out if MemoryVT is scalable. 18843 !ST->getMemoryVT().isScalableVector() && 18844 !ST1->getMemoryVT().isScalableVector() && 18845 ST->getAddressSpace() == ST1->getAddressSpace()) { 18846 const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG); 18847 const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG); 18848 unsigned STBitSize = ST->getMemoryVT().getFixedSizeInBits(); 18849 unsigned ChainBitSize = ST1->getMemoryVT().getFixedSizeInBits(); 18850 // If this is a store who's preceding store to a subset of the current 18851 // location and no one other node is chained to that store we can 18852 // effectively drop the store. Do not remove stores to undef as they may 18853 // be used as data sinks. 18854 if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) { 18855 CombineTo(ST1, ST1->getChain()); 18856 return SDValue(); 18857 } 18858 } 18859 } 18860 } 18861 18862 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a 18863 // truncating store. We can do this even if this is already a truncstore. 18864 if ((Value.getOpcode() == ISD::FP_ROUND || 18865 Value.getOpcode() == ISD::TRUNCATE) && 18866 Value->hasOneUse() && ST->isUnindexed() && 18867 TLI.canCombineTruncStore(Value.getOperand(0).getValueType(), 18868 ST->getMemoryVT(), LegalOperations)) { 18869 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), 18870 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 18871 } 18872 18873 // Always perform this optimization before types are legal. If the target 18874 // prefers, also try this after legalization to catch stores that were created 18875 // by intrinsics or other nodes. 18876 if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) { 18877 while (true) { 18878 // There can be multiple store sequences on the same chain. 18879 // Keep trying to merge store sequences until we are unable to do so 18880 // or until we merge the last store on the chain. 18881 bool Changed = mergeConsecutiveStores(ST); 18882 if (!Changed) break; 18883 // Return N as merge only uses CombineTo and no worklist clean 18884 // up is necessary. 18885 if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N)) 18886 return SDValue(N, 0); 18887 } 18888 } 18889 18890 // Try transforming N to an indexed store. 18891 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 18892 return SDValue(N, 0); 18893 18894 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 18895 // 18896 // Make sure to do this only after attempting to merge stores in order to 18897 // avoid changing the types of some subset of stores due to visit order, 18898 // preventing their merging. 18899 if (isa<ConstantFPSDNode>(ST->getValue())) { 18900 if (SDValue NewSt = replaceStoreOfFPConstant(ST)) 18901 return NewSt; 18902 } 18903 18904 if (SDValue NewSt = splitMergedValStore(ST)) 18905 return NewSt; 18906 18907 return ReduceLoadOpStoreWidth(N); 18908 } 18909 18910 SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) { 18911 const auto *LifetimeEnd = cast<LifetimeSDNode>(N); 18912 if (!LifetimeEnd->hasOffset()) 18913 return SDValue(); 18914 18915 const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(), 18916 LifetimeEnd->getOffset(), false); 18917 18918 // We walk up the chains to find stores. 18919 SmallVector<SDValue, 8> Chains = {N->getOperand(0)}; 18920 while (!Chains.empty()) { 18921 SDValue Chain = Chains.pop_back_val(); 18922 if (!Chain.hasOneUse()) 18923 continue; 18924 switch (Chain.getOpcode()) { 18925 case ISD::TokenFactor: 18926 for (unsigned Nops = Chain.getNumOperands(); Nops;) 18927 Chains.push_back(Chain.getOperand(--Nops)); 18928 break; 18929 case ISD::LIFETIME_START: 18930 case ISD::LIFETIME_END: 18931 // We can forward past any lifetime start/end that can be proven not to 18932 // alias the node. 18933 if (!mayAlias(Chain.getNode(), N)) 18934 Chains.push_back(Chain.getOperand(0)); 18935 break; 18936 case ISD::STORE: { 18937 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain); 18938 // TODO: Can relax for unordered atomics (see D66309) 18939 if (!ST->isSimple() || ST->isIndexed()) 18940 continue; 18941 const TypeSize StoreSize = ST->getMemoryVT().getStoreSize(); 18942 // The bounds of a scalable store are not known until runtime, so this 18943 // store cannot be elided. 18944 if (StoreSize.isScalable()) 18945 continue; 18946 const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG); 18947 // If we store purely within object bounds just before its lifetime ends, 18948 // we can remove the store. 18949 if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase, 18950 StoreSize.getFixedSize() * 8)) { 18951 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump(); 18952 dbgs() << "\nwithin LIFETIME_END of : "; 18953 LifetimeEndBase.dump(); dbgs() << "\n"); 18954 CombineTo(ST, ST->getChain()); 18955 return SDValue(N, 0); 18956 } 18957 } 18958 } 18959 } 18960 return SDValue(); 18961 } 18962 18963 /// For the instruction sequence of store below, F and I values 18964 /// are bundled together as an i64 value before being stored into memory. 18965 /// Sometimes it is more efficent to generate separate stores for F and I, 18966 /// which can remove the bitwise instructions or sink them to colder places. 18967 /// 18968 /// (store (or (zext (bitcast F to i32) to i64), 18969 /// (shl (zext I to i64), 32)), addr) --> 18970 /// (store F, addr) and (store I, addr+4) 18971 /// 18972 /// Similarly, splitting for other merged store can also be beneficial, like: 18973 /// For pair of {i32, i32}, i64 store --> two i32 stores. 18974 /// For pair of {i32, i16}, i64 store --> two i32 stores. 18975 /// For pair of {i16, i16}, i32 store --> two i16 stores. 18976 /// For pair of {i16, i8}, i32 store --> two i16 stores. 18977 /// For pair of {i8, i8}, i16 store --> two i8 stores. 18978 /// 18979 /// We allow each target to determine specifically which kind of splitting is 18980 /// supported. 18981 /// 18982 /// The store patterns are commonly seen from the simple code snippet below 18983 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 18984 /// void goo(const std::pair<int, float> &); 18985 /// hoo() { 18986 /// ... 18987 /// goo(std::make_pair(tmp, ftmp)); 18988 /// ... 18989 /// } 18990 /// 18991 SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { 18992 if (OptLevel == CodeGenOpt::None) 18993 return SDValue(); 18994 18995 // Can't change the number of memory accesses for a volatile store or break 18996 // atomicity for an atomic one. 18997 if (!ST->isSimple()) 18998 return SDValue(); 18999 19000 SDValue Val = ST->getValue(); 19001 SDLoc DL(ST); 19002 19003 // Match OR operand. 19004 if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) 19005 return SDValue(); 19006 19007 // Match SHL operand and get Lower and Higher parts of Val. 19008 SDValue Op1 = Val.getOperand(0); 19009 SDValue Op2 = Val.getOperand(1); 19010 SDValue Lo, Hi; 19011 if (Op1.getOpcode() != ISD::SHL) { 19012 std::swap(Op1, Op2); 19013 if (Op1.getOpcode() != ISD::SHL) 19014 return SDValue(); 19015 } 19016 Lo = Op2; 19017 Hi = Op1.getOperand(0); 19018 if (!Op1.hasOneUse()) 19019 return SDValue(); 19020 19021 // Match shift amount to HalfValBitSize. 19022 unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; 19023 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); 19024 if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) 19025 return SDValue(); 19026 19027 // Lo and Hi are zero-extended from int with size less equal than 32 19028 // to i64. 19029 if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || 19030 !Lo.getOperand(0).getValueType().isScalarInteger() || 19031 Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || 19032 Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || 19033 !Hi.getOperand(0).getValueType().isScalarInteger() || 19034 Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) 19035 return SDValue(); 19036 19037 // Use the EVT of low and high parts before bitcast as the input 19038 // of target query. 19039 EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST) 19040 ? Lo.getOperand(0).getValueType() 19041 : Lo.getValueType(); 19042 EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST) 19043 ? Hi.getOperand(0).getValueType() 19044 : Hi.getValueType(); 19045 if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 19046 return SDValue(); 19047 19048 // Start to split store. 19049 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 19050 AAMDNodes AAInfo = ST->getAAInfo(); 19051 19052 // Change the sizes of Lo and Hi's value types to HalfValBitSize. 19053 EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); 19054 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); 19055 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); 19056 19057 SDValue Chain = ST->getChain(); 19058 SDValue Ptr = ST->getBasePtr(); 19059 // Lower value store. 19060 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 19061 ST->getOriginalAlign(), MMOFlags, AAInfo); 19062 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(HalfValBitSize / 8), DL); 19063 // Higher value store. 19064 SDValue St1 = DAG.getStore( 19065 St0, DL, Hi, Ptr, ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), 19066 ST->getOriginalAlign(), MMOFlags, AAInfo); 19067 return St1; 19068 } 19069 19070 /// Convert a disguised subvector insertion into a shuffle: 19071 SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) { 19072 assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && 19073 "Expected extract_vector_elt"); 19074 SDValue InsertVal = N->getOperand(1); 19075 SDValue Vec = N->getOperand(0); 19076 19077 // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N), 19078 // InsIndex) 19079 // --> (vector_shuffle X, Y) and variations where shuffle operands may be 19080 // CONCAT_VECTORS. 19081 if (Vec.getOpcode() == ISD::VECTOR_SHUFFLE && Vec.hasOneUse() && 19082 InsertVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 19083 isa<ConstantSDNode>(InsertVal.getOperand(1))) { 19084 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Vec.getNode()); 19085 ArrayRef<int> Mask = SVN->getMask(); 19086 19087 SDValue X = Vec.getOperand(0); 19088 SDValue Y = Vec.getOperand(1); 19089 19090 // Vec's operand 0 is using indices from 0 to N-1 and 19091 // operand 1 from N to 2N - 1, where N is the number of 19092 // elements in the vectors. 19093 SDValue InsertVal0 = InsertVal.getOperand(0); 19094 int ElementOffset = -1; 19095 19096 // We explore the inputs of the shuffle in order to see if we find the 19097 // source of the extract_vector_elt. If so, we can use it to modify the 19098 // shuffle rather than perform an insert_vector_elt. 19099 SmallVector<std::pair<int, SDValue>, 8> ArgWorkList; 19100 ArgWorkList.emplace_back(Mask.size(), Y); 19101 ArgWorkList.emplace_back(0, X); 19102 19103 while (!ArgWorkList.empty()) { 19104 int ArgOffset; 19105 SDValue ArgVal; 19106 std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val(); 19107 19108 if (ArgVal == InsertVal0) { 19109 ElementOffset = ArgOffset; 19110 break; 19111 } 19112 19113 // Peek through concat_vector. 19114 if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) { 19115 int CurrentArgOffset = 19116 ArgOffset + ArgVal.getValueType().getVectorNumElements(); 19117 int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements(); 19118 for (SDValue Op : reverse(ArgVal->ops())) { 19119 CurrentArgOffset -= Step; 19120 ArgWorkList.emplace_back(CurrentArgOffset, Op); 19121 } 19122 19123 // Make sure we went through all the elements and did not screw up index 19124 // computation. 19125 assert(CurrentArgOffset == ArgOffset); 19126 } 19127 } 19128 19129 if (ElementOffset != -1) { 19130 SmallVector<int, 16> NewMask(Mask.begin(), Mask.end()); 19131 19132 auto *ExtrIndex = cast<ConstantSDNode>(InsertVal.getOperand(1)); 19133 NewMask[InsIndex] = ElementOffset + ExtrIndex->getZExtValue(); 19134 assert(NewMask[InsIndex] < 19135 (int)(2 * Vec.getValueType().getVectorNumElements()) && 19136 NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound"); 19137 19138 SDValue LegalShuffle = 19139 TLI.buildLegalVectorShuffle(Vec.getValueType(), SDLoc(N), X, 19140 Y, NewMask, DAG); 19141 if (LegalShuffle) 19142 return LegalShuffle; 19143 } 19144 } 19145 19146 // insert_vector_elt V, (bitcast X from vector type), IdxC --> 19147 // bitcast(shuffle (bitcast V), (extended X), Mask) 19148 // Note: We do not use an insert_subvector node because that requires a 19149 // legal subvector type. 19150 if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() || 19151 !InsertVal.getOperand(0).getValueType().isVector()) 19152 return SDValue(); 19153 19154 SDValue SubVec = InsertVal.getOperand(0); 19155 SDValue DestVec = N->getOperand(0); 19156 EVT SubVecVT = SubVec.getValueType(); 19157 EVT VT = DestVec.getValueType(); 19158 unsigned NumSrcElts = SubVecVT.getVectorNumElements(); 19159 // If the source only has a single vector element, the cost of creating adding 19160 // it to a vector is likely to exceed the cost of a insert_vector_elt. 19161 if (NumSrcElts == 1) 19162 return SDValue(); 19163 unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits(); 19164 unsigned NumMaskVals = ExtendRatio * NumSrcElts; 19165 19166 // Step 1: Create a shuffle mask that implements this insert operation. The 19167 // vector that we are inserting into will be operand 0 of the shuffle, so 19168 // those elements are just 'i'. The inserted subvector is in the first 19169 // positions of operand 1 of the shuffle. Example: 19170 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7} 19171 SmallVector<int, 16> Mask(NumMaskVals); 19172 for (unsigned i = 0; i != NumMaskVals; ++i) { 19173 if (i / NumSrcElts == InsIndex) 19174 Mask[i] = (i % NumSrcElts) + NumMaskVals; 19175 else 19176 Mask[i] = i; 19177 } 19178 19179 // Bail out if the target can not handle the shuffle we want to create. 19180 EVT SubVecEltVT = SubVecVT.getVectorElementType(); 19181 EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals); 19182 if (!TLI.isShuffleMaskLegal(Mask, ShufVT)) 19183 return SDValue(); 19184 19185 // Step 2: Create a wide vector from the inserted source vector by appending 19186 // undefined elements. This is the same size as our destination vector. 19187 SDLoc DL(N); 19188 SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT)); 19189 ConcatOps[0] = SubVec; 19190 SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps); 19191 19192 // Step 3: Shuffle in the padded subvector. 19193 SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec); 19194 SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask); 19195 AddToWorklist(PaddedSubV.getNode()); 19196 AddToWorklist(DestVecBC.getNode()); 19197 AddToWorklist(Shuf.getNode()); 19198 return DAG.getBitcast(VT, Shuf); 19199 } 19200 19201 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { 19202 SDValue InVec = N->getOperand(0); 19203 SDValue InVal = N->getOperand(1); 19204 SDValue EltNo = N->getOperand(2); 19205 SDLoc DL(N); 19206 19207 EVT VT = InVec.getValueType(); 19208 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo); 19209 19210 // Insert into out-of-bounds element is undefined. 19211 if (IndexC && VT.isFixedLengthVector() && 19212 IndexC->getZExtValue() >= VT.getVectorNumElements()) 19213 return DAG.getUNDEF(VT); 19214 19215 // Remove redundant insertions: 19216 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x 19217 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 19218 InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1)) 19219 return InVec; 19220 19221 if (!IndexC) { 19222 // If this is variable insert to undef vector, it might be better to splat: 19223 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... > 19224 if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) { 19225 if (VT.isScalableVector()) 19226 return DAG.getSplatVector(VT, DL, InVal); 19227 19228 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), InVal); 19229 return DAG.getBuildVector(VT, DL, Ops); 19230 } 19231 return SDValue(); 19232 } 19233 19234 if (VT.isScalableVector()) 19235 return SDValue(); 19236 19237 unsigned NumElts = VT.getVectorNumElements(); 19238 19239 // We must know which element is being inserted for folds below here. 19240 unsigned Elt = IndexC->getZExtValue(); 19241 if (SDValue Shuf = combineInsertEltToShuffle(N, Elt)) 19242 return Shuf; 19243 19244 // Canonicalize insert_vector_elt dag nodes. 19245 // Example: 19246 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) 19247 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) 19248 // 19249 // Do this only if the child insert_vector node has one use; also 19250 // do this only if indices are both constants and Idx1 < Idx0. 19251 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() 19252 && isa<ConstantSDNode>(InVec.getOperand(2))) { 19253 unsigned OtherElt = InVec.getConstantOperandVal(2); 19254 if (Elt < OtherElt) { 19255 // Swap nodes. 19256 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, 19257 InVec.getOperand(0), InVal, EltNo); 19258 AddToWorklist(NewOp.getNode()); 19259 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), 19260 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); 19261 } 19262 } 19263 19264 // If we can't generate a legal BUILD_VECTOR, exit 19265 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 19266 return SDValue(); 19267 19268 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 19269 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 19270 // vector elements. 19271 SmallVector<SDValue, 8> Ops; 19272 // Do not combine these two vectors if the output vector will not replace 19273 // the input vector. 19274 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { 19275 Ops.append(InVec->op_begin(), InVec->op_end()); 19276 } else if (InVec.isUndef()) { 19277 Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType())); 19278 } else { 19279 return SDValue(); 19280 } 19281 assert(Ops.size() == NumElts && "Unexpected vector size"); 19282 19283 // Insert the element 19284 if (Elt < Ops.size()) { 19285 // All the operands of BUILD_VECTOR must have the same type; 19286 // we enforce that here. 19287 EVT OpVT = Ops[0].getValueType(); 19288 Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal; 19289 } 19290 19291 // Return the new vector 19292 return DAG.getBuildVector(VT, DL, Ops); 19293 } 19294 19295 SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, 19296 SDValue EltNo, 19297 LoadSDNode *OriginalLoad) { 19298 assert(OriginalLoad->isSimple()); 19299 19300 EVT ResultVT = EVE->getValueType(0); 19301 EVT VecEltVT = InVecVT.getVectorElementType(); 19302 19303 // If the vector element type is not a multiple of a byte then we are unable 19304 // to correctly compute an address to load only the extracted element as a 19305 // scalar. 19306 if (!VecEltVT.isByteSized()) 19307 return SDValue(); 19308 19309 ISD::LoadExtType ExtTy = 19310 ResultVT.bitsGT(VecEltVT) ? ISD::NON_EXTLOAD : ISD::EXTLOAD; 19311 if (!TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT) || 19312 !TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT)) 19313 return SDValue(); 19314 19315 Align Alignment = OriginalLoad->getAlign(); 19316 MachinePointerInfo MPI; 19317 SDLoc DL(EVE); 19318 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { 19319 int Elt = ConstEltNo->getZExtValue(); 19320 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; 19321 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); 19322 Alignment = commonAlignment(Alignment, PtrOff); 19323 } else { 19324 // Discard the pointer info except the address space because the memory 19325 // operand can't represent this new access since the offset is variable. 19326 MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace()); 19327 Alignment = commonAlignment(Alignment, VecEltVT.getSizeInBits() / 8); 19328 } 19329 19330 bool IsFast = false; 19331 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VecEltVT, 19332 OriginalLoad->getAddressSpace(), Alignment, 19333 OriginalLoad->getMemOperand()->getFlags(), 19334 &IsFast) || 19335 !IsFast) 19336 return SDValue(); 19337 19338 SDValue NewPtr = TLI.getVectorElementPointer(DAG, OriginalLoad->getBasePtr(), 19339 InVecVT, EltNo); 19340 19341 // We are replacing a vector load with a scalar load. The new load must have 19342 // identical memory op ordering to the original. 19343 SDValue Load; 19344 if (ResultVT.bitsGT(VecEltVT)) { 19345 // If the result type of vextract is wider than the load, then issue an 19346 // extending load instead. 19347 ISD::LoadExtType ExtType = 19348 TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, VecEltVT) ? ISD::ZEXTLOAD 19349 : ISD::EXTLOAD; 19350 Load = DAG.getExtLoad(ExtType, DL, ResultVT, OriginalLoad->getChain(), 19351 NewPtr, MPI, VecEltVT, Alignment, 19352 OriginalLoad->getMemOperand()->getFlags(), 19353 OriginalLoad->getAAInfo()); 19354 DAG.makeEquivalentMemoryOrdering(OriginalLoad, Load); 19355 } else { 19356 // The result type is narrower or the same width as the vector element 19357 Load = DAG.getLoad(VecEltVT, DL, OriginalLoad->getChain(), NewPtr, MPI, 19358 Alignment, OriginalLoad->getMemOperand()->getFlags(), 19359 OriginalLoad->getAAInfo()); 19360 DAG.makeEquivalentMemoryOrdering(OriginalLoad, Load); 19361 if (ResultVT.bitsLT(VecEltVT)) 19362 Load = DAG.getNode(ISD::TRUNCATE, DL, ResultVT, Load); 19363 else 19364 Load = DAG.getBitcast(ResultVT, Load); 19365 } 19366 ++OpsNarrowed; 19367 return Load; 19368 } 19369 19370 /// Transform a vector binary operation into a scalar binary operation by moving 19371 /// the math/logic after an extract element of a vector. 19372 static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG, 19373 bool LegalOperations) { 19374 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19375 SDValue Vec = ExtElt->getOperand(0); 19376 SDValue Index = ExtElt->getOperand(1); 19377 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 19378 if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() || 19379 Vec->getNumValues() != 1) 19380 return SDValue(); 19381 19382 // Targets may want to avoid this to prevent an expensive register transfer. 19383 if (!TLI.shouldScalarizeBinop(Vec)) 19384 return SDValue(); 19385 19386 // Extracting an element of a vector constant is constant-folded, so this 19387 // transform is just replacing a vector op with a scalar op while moving the 19388 // extract. 19389 SDValue Op0 = Vec.getOperand(0); 19390 SDValue Op1 = Vec.getOperand(1); 19391 if (isAnyConstantBuildVector(Op0, true) || 19392 isAnyConstantBuildVector(Op1, true)) { 19393 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C' 19394 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC) 19395 SDLoc DL(ExtElt); 19396 EVT VT = ExtElt->getValueType(0); 19397 SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index); 19398 SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index); 19399 return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1); 19400 } 19401 19402 return SDValue(); 19403 } 19404 19405 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { 19406 SDValue VecOp = N->getOperand(0); 19407 SDValue Index = N->getOperand(1); 19408 EVT ScalarVT = N->getValueType(0); 19409 EVT VecVT = VecOp.getValueType(); 19410 if (VecOp.isUndef()) 19411 return DAG.getUNDEF(ScalarVT); 19412 19413 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val 19414 // 19415 // This only really matters if the index is non-constant since other combines 19416 // on the constant elements already work. 19417 SDLoc DL(N); 19418 if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT && 19419 Index == VecOp.getOperand(2)) { 19420 SDValue Elt = VecOp.getOperand(1); 19421 return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt; 19422 } 19423 19424 // (vextract (scalar_to_vector val, 0) -> val 19425 if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) { 19426 // Only 0'th element of SCALAR_TO_VECTOR is defined. 19427 if (DAG.isKnownNeverZero(Index)) 19428 return DAG.getUNDEF(ScalarVT); 19429 19430 // Check if the result type doesn't match the inserted element type. A 19431 // SCALAR_TO_VECTOR may truncate the inserted element and the 19432 // EXTRACT_VECTOR_ELT may widen the extracted vector. 19433 SDValue InOp = VecOp.getOperand(0); 19434 if (InOp.getValueType() != ScalarVT) { 19435 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); 19436 return DAG.getSExtOrTrunc(InOp, DL, ScalarVT); 19437 } 19438 return InOp; 19439 } 19440 19441 // extract_vector_elt of out-of-bounds element -> UNDEF 19442 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 19443 if (IndexC && VecVT.isFixedLengthVector() && 19444 IndexC->getAPIntValue().uge(VecVT.getVectorNumElements())) 19445 return DAG.getUNDEF(ScalarVT); 19446 19447 // extract_vector_elt (build_vector x, y), 1 -> y 19448 if (((IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR) || 19449 VecOp.getOpcode() == ISD::SPLAT_VECTOR) && 19450 TLI.isTypeLegal(VecVT) && 19451 (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) { 19452 assert((VecOp.getOpcode() != ISD::BUILD_VECTOR || 19453 VecVT.isFixedLengthVector()) && 19454 "BUILD_VECTOR used for scalable vectors"); 19455 unsigned IndexVal = 19456 VecOp.getOpcode() == ISD::BUILD_VECTOR ? IndexC->getZExtValue() : 0; 19457 SDValue Elt = VecOp.getOperand(IndexVal); 19458 EVT InEltVT = Elt.getValueType(); 19459 19460 // Sometimes build_vector's scalar input types do not match result type. 19461 if (ScalarVT == InEltVT) 19462 return Elt; 19463 19464 // TODO: It may be useful to truncate if free if the build_vector implicitly 19465 // converts. 19466 } 19467 19468 if (VecVT.isScalableVector()) 19469 return SDValue(); 19470 19471 // All the code from this point onwards assumes fixed width vectors, but it's 19472 // possible that some of the combinations could be made to work for scalable 19473 // vectors too. 19474 unsigned NumElts = VecVT.getVectorNumElements(); 19475 unsigned VecEltBitWidth = VecVT.getScalarSizeInBits(); 19476 19477 // TODO: These transforms should not require the 'hasOneUse' restriction, but 19478 // there are regressions on multiple targets without it. We can end up with a 19479 // mess of scalar and vector code if we reduce only part of the DAG to scalar. 19480 if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() && 19481 VecOp.hasOneUse()) { 19482 // The vector index of the LSBs of the source depend on the endian-ness. 19483 bool IsLE = DAG.getDataLayout().isLittleEndian(); 19484 unsigned ExtractIndex = IndexC->getZExtValue(); 19485 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x) 19486 unsigned BCTruncElt = IsLE ? 0 : NumElts - 1; 19487 SDValue BCSrc = VecOp.getOperand(0); 19488 if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger()) 19489 return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc); 19490 19491 if (LegalTypes && BCSrc.getValueType().isInteger() && 19492 BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) { 19493 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt --> 19494 // trunc i64 X to i32 19495 SDValue X = BCSrc.getOperand(0); 19496 assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() && 19497 "Extract element and scalar to vector can't change element type " 19498 "from FP to integer."); 19499 unsigned XBitWidth = X.getValueSizeInBits(); 19500 BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1; 19501 19502 // An extract element return value type can be wider than its vector 19503 // operand element type. In that case, the high bits are undefined, so 19504 // it's possible that we may need to extend rather than truncate. 19505 if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) { 19506 assert(XBitWidth % VecEltBitWidth == 0 && 19507 "Scalar bitwidth must be a multiple of vector element bitwidth"); 19508 return DAG.getAnyExtOrTrunc(X, DL, ScalarVT); 19509 } 19510 } 19511 } 19512 19513 if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations)) 19514 return BO; 19515 19516 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. 19517 // We only perform this optimization before the op legalization phase because 19518 // we may introduce new vector instructions which are not backed by TD 19519 // patterns. For example on AVX, extracting elements from a wide vector 19520 // without using extract_subvector. However, if we can find an underlying 19521 // scalar value, then we can always use that. 19522 if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) { 19523 auto *Shuf = cast<ShuffleVectorSDNode>(VecOp); 19524 // Find the new index to extract from. 19525 int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue()); 19526 19527 // Extracting an undef index is undef. 19528 if (OrigElt == -1) 19529 return DAG.getUNDEF(ScalarVT); 19530 19531 // Select the right vector half to extract from. 19532 SDValue SVInVec; 19533 if (OrigElt < (int)NumElts) { 19534 SVInVec = VecOp.getOperand(0); 19535 } else { 19536 SVInVec = VecOp.getOperand(1); 19537 OrigElt -= NumElts; 19538 } 19539 19540 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { 19541 SDValue InOp = SVInVec.getOperand(OrigElt); 19542 if (InOp.getValueType() != ScalarVT) { 19543 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); 19544 InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT); 19545 } 19546 19547 return InOp; 19548 } 19549 19550 // FIXME: We should handle recursing on other vector shuffles and 19551 // scalar_to_vector here as well. 19552 19553 if (!LegalOperations || 19554 // FIXME: Should really be just isOperationLegalOrCustom. 19555 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) || 19556 TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) { 19557 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec, 19558 DAG.getVectorIdxConstant(OrigElt, DL)); 19559 } 19560 } 19561 19562 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can 19563 // simplify it based on the (valid) extraction indices. 19564 if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) { 19565 return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 19566 Use->getOperand(0) == VecOp && 19567 isa<ConstantSDNode>(Use->getOperand(1)); 19568 })) { 19569 APInt DemandedElts = APInt::getZero(NumElts); 19570 for (SDNode *Use : VecOp->uses()) { 19571 auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1)); 19572 if (CstElt->getAPIntValue().ult(NumElts)) 19573 DemandedElts.setBit(CstElt->getZExtValue()); 19574 } 19575 if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) { 19576 // We simplified the vector operand of this extract element. If this 19577 // extract is not dead, visit it again so it is folded properly. 19578 if (N->getOpcode() != ISD::DELETED_NODE) 19579 AddToWorklist(N); 19580 return SDValue(N, 0); 19581 } 19582 APInt DemandedBits = APInt::getAllOnes(VecEltBitWidth); 19583 if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) { 19584 // We simplified the vector operand of this extract element. If this 19585 // extract is not dead, visit it again so it is folded properly. 19586 if (N->getOpcode() != ISD::DELETED_NODE) 19587 AddToWorklist(N); 19588 return SDValue(N, 0); 19589 } 19590 } 19591 19592 // Everything under here is trying to match an extract of a loaded value. 19593 // If the result of load has to be truncated, then it's not necessarily 19594 // profitable. 19595 bool BCNumEltsChanged = false; 19596 EVT ExtVT = VecVT.getVectorElementType(); 19597 EVT LVT = ExtVT; 19598 if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT)) 19599 return SDValue(); 19600 19601 if (VecOp.getOpcode() == ISD::BITCAST) { 19602 // Don't duplicate a load with other uses. 19603 if (!VecOp.hasOneUse()) 19604 return SDValue(); 19605 19606 EVT BCVT = VecOp.getOperand(0).getValueType(); 19607 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) 19608 return SDValue(); 19609 if (NumElts != BCVT.getVectorNumElements()) 19610 BCNumEltsChanged = true; 19611 VecOp = VecOp.getOperand(0); 19612 ExtVT = BCVT.getVectorElementType(); 19613 } 19614 19615 // extract (vector load $addr), i --> load $addr + i * size 19616 if (!LegalOperations && !IndexC && VecOp.hasOneUse() && 19617 ISD::isNormalLoad(VecOp.getNode()) && 19618 !Index->hasPredecessor(VecOp.getNode())) { 19619 auto *VecLoad = dyn_cast<LoadSDNode>(VecOp); 19620 if (VecLoad && VecLoad->isSimple()) 19621 return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad); 19622 } 19623 19624 // Perform only after legalization to ensure build_vector / vector_shuffle 19625 // optimizations have already been done. 19626 if (!LegalOperations || !IndexC) 19627 return SDValue(); 19628 19629 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) 19630 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) 19631 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) 19632 int Elt = IndexC->getZExtValue(); 19633 LoadSDNode *LN0 = nullptr; 19634 if (ISD::isNormalLoad(VecOp.getNode())) { 19635 LN0 = cast<LoadSDNode>(VecOp); 19636 } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR && 19637 VecOp.getOperand(0).getValueType() == ExtVT && 19638 ISD::isNormalLoad(VecOp.getOperand(0).getNode())) { 19639 // Don't duplicate a load with other uses. 19640 if (!VecOp.hasOneUse()) 19641 return SDValue(); 19642 19643 LN0 = cast<LoadSDNode>(VecOp.getOperand(0)); 19644 } 19645 if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) { 19646 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) 19647 // => 19648 // (load $addr+1*size) 19649 19650 // Don't duplicate a load with other uses. 19651 if (!VecOp.hasOneUse()) 19652 return SDValue(); 19653 19654 // If the bit convert changed the number of elements, it is unsafe 19655 // to examine the mask. 19656 if (BCNumEltsChanged) 19657 return SDValue(); 19658 19659 // Select the input vector, guarding against out of range extract vector. 19660 int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt); 19661 VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1); 19662 19663 if (VecOp.getOpcode() == ISD::BITCAST) { 19664 // Don't duplicate a load with other uses. 19665 if (!VecOp.hasOneUse()) 19666 return SDValue(); 19667 19668 VecOp = VecOp.getOperand(0); 19669 } 19670 if (ISD::isNormalLoad(VecOp.getNode())) { 19671 LN0 = cast<LoadSDNode>(VecOp); 19672 Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts; 19673 Index = DAG.getConstant(Elt, DL, Index.getValueType()); 19674 } 19675 } else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && !BCNumEltsChanged && 19676 VecVT.getVectorElementType() == ScalarVT && 19677 (!LegalTypes || 19678 TLI.isTypeLegal( 19679 VecOp.getOperand(0).getValueType().getVectorElementType()))) { 19680 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0 19681 // -> extract_vector_elt a, 0 19682 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1 19683 // -> extract_vector_elt a, 1 19684 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2 19685 // -> extract_vector_elt b, 0 19686 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3 19687 // -> extract_vector_elt b, 1 19688 SDLoc SL(N); 19689 EVT ConcatVT = VecOp.getOperand(0).getValueType(); 19690 unsigned ConcatNumElts = ConcatVT.getVectorNumElements(); 19691 SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, SL, 19692 Index.getValueType()); 19693 19694 SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts); 19695 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, 19696 ConcatVT.getVectorElementType(), 19697 ConcatOp, NewIdx); 19698 return DAG.getNode(ISD::BITCAST, SL, ScalarVT, Elt); 19699 } 19700 19701 // Make sure we found a non-volatile load and the extractelement is 19702 // the only use. 19703 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple()) 19704 return SDValue(); 19705 19706 // If Idx was -1 above, Elt is going to be -1, so just return undef. 19707 if (Elt == -1) 19708 return DAG.getUNDEF(LVT); 19709 19710 return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0); 19711 } 19712 19713 // Simplify (build_vec (ext )) to (bitcast (build_vec )) 19714 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { 19715 // We perform this optimization post type-legalization because 19716 // the type-legalizer often scalarizes integer-promoted vectors. 19717 // Performing this optimization before may create bit-casts which 19718 // will be type-legalized to complex code sequences. 19719 // We perform this optimization only before the operation legalizer because we 19720 // may introduce illegal operations. 19721 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) 19722 return SDValue(); 19723 19724 unsigned NumInScalars = N->getNumOperands(); 19725 SDLoc DL(N); 19726 EVT VT = N->getValueType(0); 19727 19728 // Check to see if this is a BUILD_VECTOR of a bunch of values 19729 // which come from any_extend or zero_extend nodes. If so, we can create 19730 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR 19731 // optimizations. We do not handle sign-extend because we can't fill the sign 19732 // using shuffles. 19733 EVT SourceType = MVT::Other; 19734 bool AllAnyExt = true; 19735 19736 for (unsigned i = 0; i != NumInScalars; ++i) { 19737 SDValue In = N->getOperand(i); 19738 // Ignore undef inputs. 19739 if (In.isUndef()) continue; 19740 19741 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; 19742 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; 19743 19744 // Abort if the element is not an extension. 19745 if (!ZeroExt && !AnyExt) { 19746 SourceType = MVT::Other; 19747 break; 19748 } 19749 19750 // The input is a ZeroExt or AnyExt. Check the original type. 19751 EVT InTy = In.getOperand(0).getValueType(); 19752 19753 // Check that all of the widened source types are the same. 19754 if (SourceType == MVT::Other) 19755 // First time. 19756 SourceType = InTy; 19757 else if (InTy != SourceType) { 19758 // Multiple income types. Abort. 19759 SourceType = MVT::Other; 19760 break; 19761 } 19762 19763 // Check if all of the extends are ANY_EXTENDs. 19764 AllAnyExt &= AnyExt; 19765 } 19766 19767 // In order to have valid types, all of the inputs must be extended from the 19768 // same source type and all of the inputs must be any or zero extend. 19769 // Scalar sizes must be a power of two. 19770 EVT OutScalarTy = VT.getScalarType(); 19771 bool ValidTypes = SourceType != MVT::Other && 19772 isPowerOf2_32(OutScalarTy.getSizeInBits()) && 19773 isPowerOf2_32(SourceType.getSizeInBits()); 19774 19775 // Create a new simpler BUILD_VECTOR sequence which other optimizations can 19776 // turn into a single shuffle instruction. 19777 if (!ValidTypes) 19778 return SDValue(); 19779 19780 // If we already have a splat buildvector, then don't fold it if it means 19781 // introducing zeros. 19782 if (!AllAnyExt && DAG.isSplatValue(SDValue(N, 0), /*AllowUndefs*/ true)) 19783 return SDValue(); 19784 19785 bool isLE = DAG.getDataLayout().isLittleEndian(); 19786 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); 19787 assert(ElemRatio > 1 && "Invalid element size ratio"); 19788 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): 19789 DAG.getConstant(0, DL, SourceType); 19790 19791 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); 19792 SmallVector<SDValue, 8> Ops(NewBVElems, Filler); 19793 19794 // Populate the new build_vector 19795 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 19796 SDValue Cast = N->getOperand(i); 19797 assert((Cast.getOpcode() == ISD::ANY_EXTEND || 19798 Cast.getOpcode() == ISD::ZERO_EXTEND || 19799 Cast.isUndef()) && "Invalid cast opcode"); 19800 SDValue In; 19801 if (Cast.isUndef()) 19802 In = DAG.getUNDEF(SourceType); 19803 else 19804 In = Cast->getOperand(0); 19805 unsigned Index = isLE ? (i * ElemRatio) : 19806 (i * ElemRatio + (ElemRatio - 1)); 19807 19808 assert(Index < Ops.size() && "Invalid index"); 19809 Ops[Index] = In; 19810 } 19811 19812 // The type of the new BUILD_VECTOR node. 19813 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); 19814 assert(VecVT.getSizeInBits() == VT.getSizeInBits() && 19815 "Invalid vector size"); 19816 // Check if the new vector type is legal. 19817 if (!isTypeLegal(VecVT) || 19818 (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) && 19819 TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))) 19820 return SDValue(); 19821 19822 // Make the new BUILD_VECTOR. 19823 SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); 19824 19825 // The new BUILD_VECTOR node has the potential to be further optimized. 19826 AddToWorklist(BV.getNode()); 19827 // Bitcast to the desired type. 19828 return DAG.getBitcast(VT, BV); 19829 } 19830 19831 // Simplify (build_vec (trunc $1) 19832 // (trunc (srl $1 half-width)) 19833 // (trunc (srl $1 (2 * half-width))) …) 19834 // to (bitcast $1) 19835 SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) { 19836 assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); 19837 19838 // Only for little endian 19839 if (!DAG.getDataLayout().isLittleEndian()) 19840 return SDValue(); 19841 19842 SDLoc DL(N); 19843 EVT VT = N->getValueType(0); 19844 EVT OutScalarTy = VT.getScalarType(); 19845 uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits(); 19846 19847 // Only for power of two types to be sure that bitcast works well 19848 if (!isPowerOf2_64(ScalarTypeBitsize)) 19849 return SDValue(); 19850 19851 unsigned NumInScalars = N->getNumOperands(); 19852 19853 // Look through bitcasts 19854 auto PeekThroughBitcast = [](SDValue Op) { 19855 if (Op.getOpcode() == ISD::BITCAST) 19856 return Op.getOperand(0); 19857 return Op; 19858 }; 19859 19860 // The source value where all the parts are extracted. 19861 SDValue Src; 19862 for (unsigned i = 0; i != NumInScalars; ++i) { 19863 SDValue In = PeekThroughBitcast(N->getOperand(i)); 19864 // Ignore undef inputs. 19865 if (In.isUndef()) continue; 19866 19867 if (In.getOpcode() != ISD::TRUNCATE) 19868 return SDValue(); 19869 19870 In = PeekThroughBitcast(In.getOperand(0)); 19871 19872 if (In.getOpcode() != ISD::SRL) { 19873 // For now only build_vec without shuffling, handle shifts here in the 19874 // future. 19875 if (i != 0) 19876 return SDValue(); 19877 19878 Src = In; 19879 } else { 19880 // In is SRL 19881 SDValue part = PeekThroughBitcast(In.getOperand(0)); 19882 19883 if (!Src) { 19884 Src = part; 19885 } else if (Src != part) { 19886 // Vector parts do not stem from the same variable 19887 return SDValue(); 19888 } 19889 19890 SDValue ShiftAmtVal = In.getOperand(1); 19891 if (!isa<ConstantSDNode>(ShiftAmtVal)) 19892 return SDValue(); 19893 19894 uint64_t ShiftAmt = In.getConstantOperandVal(1); 19895 19896 // The extracted value is not extracted at the right position 19897 if (ShiftAmt != i * ScalarTypeBitsize) 19898 return SDValue(); 19899 } 19900 } 19901 19902 // Only cast if the size is the same 19903 if (Src.getValueType().getSizeInBits() != VT.getSizeInBits()) 19904 return SDValue(); 19905 19906 return DAG.getBitcast(VT, Src); 19907 } 19908 19909 SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N, 19910 ArrayRef<int> VectorMask, 19911 SDValue VecIn1, SDValue VecIn2, 19912 unsigned LeftIdx, bool DidSplitVec) { 19913 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); 19914 19915 EVT VT = N->getValueType(0); 19916 EVT InVT1 = VecIn1.getValueType(); 19917 EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; 19918 19919 unsigned NumElems = VT.getVectorNumElements(); 19920 unsigned ShuffleNumElems = NumElems; 19921 19922 // If we artificially split a vector in two already, then the offsets in the 19923 // operands will all be based off of VecIn1, even those in VecIn2. 19924 unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements(); 19925 19926 uint64_t VTSize = VT.getFixedSizeInBits(); 19927 uint64_t InVT1Size = InVT1.getFixedSizeInBits(); 19928 uint64_t InVT2Size = InVT2.getFixedSizeInBits(); 19929 19930 assert(InVT2Size <= InVT1Size && 19931 "Inputs must be sorted to be in non-increasing vector size order."); 19932 19933 // We can't generate a shuffle node with mismatched input and output types. 19934 // Try to make the types match the type of the output. 19935 if (InVT1 != VT || InVT2 != VT) { 19936 if ((VTSize % InVT1Size == 0) && InVT1 == InVT2) { 19937 // If the output vector length is a multiple of both input lengths, 19938 // we can concatenate them and pad the rest with undefs. 19939 unsigned NumConcats = VTSize / InVT1Size; 19940 assert(NumConcats >= 2 && "Concat needs at least two inputs!"); 19941 SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); 19942 ConcatOps[0] = VecIn1; 19943 ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); 19944 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 19945 VecIn2 = SDValue(); 19946 } else if (InVT1Size == VTSize * 2) { 19947 if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems)) 19948 return SDValue(); 19949 19950 if (!VecIn2.getNode()) { 19951 // If we only have one input vector, and it's twice the size of the 19952 // output, split it in two. 19953 VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, 19954 DAG.getVectorIdxConstant(NumElems, DL)); 19955 VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); 19956 // Since we now have shorter input vectors, adjust the offset of the 19957 // second vector's start. 19958 Vec2Offset = NumElems; 19959 } else { 19960 assert(InVT2Size <= InVT1Size && 19961 "Second input is not going to be larger than the first one."); 19962 19963 // VecIn1 is wider than the output, and we have another, possibly 19964 // smaller input. Pad the smaller input with undefs, shuffle at the 19965 // input vector width, and extract the output. 19966 // The shuffle type is different than VT, so check legality again. 19967 if (LegalOperations && 19968 !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) 19969 return SDValue(); 19970 19971 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to 19972 // lower it back into a BUILD_VECTOR. So if the inserted type is 19973 // illegal, don't even try. 19974 if (InVT1 != InVT2) { 19975 if (!TLI.isTypeLegal(InVT2)) 19976 return SDValue(); 19977 VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, 19978 DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); 19979 } 19980 ShuffleNumElems = NumElems * 2; 19981 } 19982 } else if (InVT2Size * 2 == VTSize && InVT1Size == VTSize) { 19983 SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2)); 19984 ConcatOps[0] = VecIn2; 19985 VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 19986 } else { 19987 // TODO: Support cases where the length mismatch isn't exactly by a 19988 // factor of 2. 19989 // TODO: Move this check upwards, so that if we have bad type 19990 // mismatches, we don't create any DAG nodes. 19991 return SDValue(); 19992 } 19993 } 19994 19995 // Initialize mask to undef. 19996 SmallVector<int, 8> Mask(ShuffleNumElems, -1); 19997 19998 // Only need to run up to the number of elements actually used, not the 19999 // total number of elements in the shuffle - if we are shuffling a wider 20000 // vector, the high lanes should be set to undef. 20001 for (unsigned i = 0; i != NumElems; ++i) { 20002 if (VectorMask[i] <= 0) 20003 continue; 20004 20005 unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1); 20006 if (VectorMask[i] == (int)LeftIdx) { 20007 Mask[i] = ExtIndex; 20008 } else if (VectorMask[i] == (int)LeftIdx + 1) { 20009 Mask[i] = Vec2Offset + ExtIndex; 20010 } 20011 } 20012 20013 // The type the input vectors may have changed above. 20014 InVT1 = VecIn1.getValueType(); 20015 20016 // If we already have a VecIn2, it should have the same type as VecIn1. 20017 // If we don't, get an undef/zero vector of the appropriate type. 20018 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); 20019 assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); 20020 20021 SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); 20022 if (ShuffleNumElems > NumElems) 20023 Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); 20024 20025 return Shuffle; 20026 } 20027 20028 static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) { 20029 assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); 20030 20031 // First, determine where the build vector is not undef. 20032 // TODO: We could extend this to handle zero elements as well as undefs. 20033 int NumBVOps = BV->getNumOperands(); 20034 int ZextElt = -1; 20035 for (int i = 0; i != NumBVOps; ++i) { 20036 SDValue Op = BV->getOperand(i); 20037 if (Op.isUndef()) 20038 continue; 20039 if (ZextElt == -1) 20040 ZextElt = i; 20041 else 20042 return SDValue(); 20043 } 20044 // Bail out if there's no non-undef element. 20045 if (ZextElt == -1) 20046 return SDValue(); 20047 20048 // The build vector contains some number of undef elements and exactly 20049 // one other element. That other element must be a zero-extended scalar 20050 // extracted from a vector at a constant index to turn this into a shuffle. 20051 // Also, require that the build vector does not implicitly truncate/extend 20052 // its elements. 20053 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND. 20054 EVT VT = BV->getValueType(0); 20055 SDValue Zext = BV->getOperand(ZextElt); 20056 if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() || 20057 Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || 20058 !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) || 20059 Zext.getValueSizeInBits() != VT.getScalarSizeInBits()) 20060 return SDValue(); 20061 20062 // The zero-extend must be a multiple of the source size, and we must be 20063 // building a vector of the same size as the source of the extract element. 20064 SDValue Extract = Zext.getOperand(0); 20065 unsigned DestSize = Zext.getValueSizeInBits(); 20066 unsigned SrcSize = Extract.getValueSizeInBits(); 20067 if (DestSize % SrcSize != 0 || 20068 Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits()) 20069 return SDValue(); 20070 20071 // Create a shuffle mask that will combine the extracted element with zeros 20072 // and undefs. 20073 int ZextRatio = DestSize / SrcSize; 20074 int NumMaskElts = NumBVOps * ZextRatio; 20075 SmallVector<int, 32> ShufMask(NumMaskElts, -1); 20076 for (int i = 0; i != NumMaskElts; ++i) { 20077 if (i / ZextRatio == ZextElt) { 20078 // The low bits of the (potentially translated) extracted element map to 20079 // the source vector. The high bits map to zero. We will use a zero vector 20080 // as the 2nd source operand of the shuffle, so use the 1st element of 20081 // that vector (mask value is number-of-elements) for the high bits. 20082 if (i % ZextRatio == 0) 20083 ShufMask[i] = Extract.getConstantOperandVal(1); 20084 else 20085 ShufMask[i] = NumMaskElts; 20086 } 20087 20088 // Undef elements of the build vector remain undef because we initialize 20089 // the shuffle mask with -1. 20090 } 20091 20092 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... --> 20093 // bitcast (shuffle V, ZeroVec, VectorMask) 20094 SDLoc DL(BV); 20095 EVT VecVT = Extract.getOperand(0).getValueType(); 20096 SDValue ZeroVec = DAG.getConstant(0, DL, VecVT); 20097 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20098 SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0), 20099 ZeroVec, ShufMask, DAG); 20100 if (!Shuf) 20101 return SDValue(); 20102 return DAG.getBitcast(VT, Shuf); 20103 } 20104 20105 // FIXME: promote to STLExtras. 20106 template <typename R, typename T> 20107 static auto getFirstIndexOf(R &&Range, const T &Val) { 20108 auto I = find(Range, Val); 20109 if (I == Range.end()) 20110 return static_cast<decltype(std::distance(Range.begin(), I))>(-1); 20111 return std::distance(Range.begin(), I); 20112 } 20113 20114 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT 20115 // operations. If the types of the vectors we're extracting from allow it, 20116 // turn this into a vector_shuffle node. 20117 SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { 20118 SDLoc DL(N); 20119 EVT VT = N->getValueType(0); 20120 20121 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. 20122 if (!isTypeLegal(VT)) 20123 return SDValue(); 20124 20125 if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG)) 20126 return V; 20127 20128 // May only combine to shuffle after legalize if shuffle is legal. 20129 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) 20130 return SDValue(); 20131 20132 bool UsesZeroVector = false; 20133 unsigned NumElems = N->getNumOperands(); 20134 20135 // Record, for each element of the newly built vector, which input vector 20136 // that element comes from. -1 stands for undef, 0 for the zero vector, 20137 // and positive values for the input vectors. 20138 // VectorMask maps each element to its vector number, and VecIn maps vector 20139 // numbers to their initial SDValues. 20140 20141 SmallVector<int, 8> VectorMask(NumElems, -1); 20142 SmallVector<SDValue, 8> VecIn; 20143 VecIn.push_back(SDValue()); 20144 20145 for (unsigned i = 0; i != NumElems; ++i) { 20146 SDValue Op = N->getOperand(i); 20147 20148 if (Op.isUndef()) 20149 continue; 20150 20151 // See if we can use a blend with a zero vector. 20152 // TODO: Should we generalize this to a blend with an arbitrary constant 20153 // vector? 20154 if (isNullConstant(Op) || isNullFPConstant(Op)) { 20155 UsesZeroVector = true; 20156 VectorMask[i] = 0; 20157 continue; 20158 } 20159 20160 // Not an undef or zero. If the input is something other than an 20161 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out. 20162 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 20163 !isa<ConstantSDNode>(Op.getOperand(1))) 20164 return SDValue(); 20165 SDValue ExtractedFromVec = Op.getOperand(0); 20166 20167 if (ExtractedFromVec.getValueType().isScalableVector()) 20168 return SDValue(); 20169 20170 const APInt &ExtractIdx = Op.getConstantOperandAPInt(1); 20171 if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements())) 20172 return SDValue(); 20173 20174 // All inputs must have the same element type as the output. 20175 if (VT.getVectorElementType() != 20176 ExtractedFromVec.getValueType().getVectorElementType()) 20177 return SDValue(); 20178 20179 // Have we seen this input vector before? 20180 // The vectors are expected to be tiny (usually 1 or 2 elements), so using 20181 // a map back from SDValues to numbers isn't worth it. 20182 int Idx = getFirstIndexOf(VecIn, ExtractedFromVec); 20183 if (Idx == -1) { // A new source vector? 20184 Idx = VecIn.size(); 20185 VecIn.push_back(ExtractedFromVec); 20186 } 20187 20188 VectorMask[i] = Idx; 20189 } 20190 20191 // If we didn't find at least one input vector, bail out. 20192 if (VecIn.size() < 2) 20193 return SDValue(); 20194 20195 // If all the Operands of BUILD_VECTOR extract from same 20196 // vector, then split the vector efficiently based on the maximum 20197 // vector access index and adjust the VectorMask and 20198 // VecIn accordingly. 20199 bool DidSplitVec = false; 20200 if (VecIn.size() == 2) { 20201 unsigned MaxIndex = 0; 20202 unsigned NearestPow2 = 0; 20203 SDValue Vec = VecIn.back(); 20204 EVT InVT = Vec.getValueType(); 20205 SmallVector<unsigned, 8> IndexVec(NumElems, 0); 20206 20207 for (unsigned i = 0; i < NumElems; i++) { 20208 if (VectorMask[i] <= 0) 20209 continue; 20210 unsigned Index = N->getOperand(i).getConstantOperandVal(1); 20211 IndexVec[i] = Index; 20212 MaxIndex = std::max(MaxIndex, Index); 20213 } 20214 20215 NearestPow2 = PowerOf2Ceil(MaxIndex); 20216 if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 && 20217 NumElems * 2 < NearestPow2) { 20218 unsigned SplitSize = NearestPow2 / 2; 20219 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), 20220 InVT.getVectorElementType(), SplitSize); 20221 if (TLI.isTypeLegal(SplitVT) && 20222 SplitSize + SplitVT.getVectorNumElements() <= 20223 InVT.getVectorNumElements()) { 20224 SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, 20225 DAG.getVectorIdxConstant(SplitSize, DL)); 20226 SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, 20227 DAG.getVectorIdxConstant(0, DL)); 20228 VecIn.pop_back(); 20229 VecIn.push_back(VecIn1); 20230 VecIn.push_back(VecIn2); 20231 DidSplitVec = true; 20232 20233 for (unsigned i = 0; i < NumElems; i++) { 20234 if (VectorMask[i] <= 0) 20235 continue; 20236 VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2; 20237 } 20238 } 20239 } 20240 } 20241 20242 // Sort input vectors by decreasing vector element count, 20243 // while preserving the relative order of equally-sized vectors. 20244 // Note that we keep the first "implicit zero vector as-is. 20245 SmallVector<SDValue, 8> SortedVecIn(VecIn); 20246 llvm::stable_sort(MutableArrayRef<SDValue>(SortedVecIn).drop_front(), 20247 [](const SDValue &a, const SDValue &b) { 20248 return a.getValueType().getVectorNumElements() > 20249 b.getValueType().getVectorNumElements(); 20250 }); 20251 20252 // We now also need to rebuild the VectorMask, because it referenced element 20253 // order in VecIn, and we just sorted them. 20254 for (int &SourceVectorIndex : VectorMask) { 20255 if (SourceVectorIndex <= 0) 20256 continue; 20257 unsigned Idx = getFirstIndexOf(SortedVecIn, VecIn[SourceVectorIndex]); 20258 assert(Idx > 0 && Idx < SortedVecIn.size() && 20259 VecIn[SourceVectorIndex] == SortedVecIn[Idx] && "Remapping failure"); 20260 SourceVectorIndex = Idx; 20261 } 20262 20263 VecIn = std::move(SortedVecIn); 20264 20265 // TODO: Should this fire if some of the input vectors has illegal type (like 20266 // it does now), or should we let legalization run its course first? 20267 20268 // Shuffle phase: 20269 // Take pairs of vectors, and shuffle them so that the result has elements 20270 // from these vectors in the correct places. 20271 // For example, given: 20272 // t10: i32 = extract_vector_elt t1, Constant:i64<0> 20273 // t11: i32 = extract_vector_elt t2, Constant:i64<0> 20274 // t12: i32 = extract_vector_elt t3, Constant:i64<0> 20275 // t13: i32 = extract_vector_elt t1, Constant:i64<1> 20276 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 20277 // We will generate: 20278 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 20279 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef 20280 SmallVector<SDValue, 4> Shuffles; 20281 for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { 20282 unsigned LeftIdx = 2 * In + 1; 20283 SDValue VecLeft = VecIn[LeftIdx]; 20284 SDValue VecRight = 20285 (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); 20286 20287 if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, 20288 VecRight, LeftIdx, DidSplitVec)) 20289 Shuffles.push_back(Shuffle); 20290 else 20291 return SDValue(); 20292 } 20293 20294 // If we need the zero vector as an "ingredient" in the blend tree, add it 20295 // to the list of shuffles. 20296 if (UsesZeroVector) 20297 Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) 20298 : DAG.getConstantFP(0.0, DL, VT)); 20299 20300 // If we only have one shuffle, we're done. 20301 if (Shuffles.size() == 1) 20302 return Shuffles[0]; 20303 20304 // Update the vector mask to point to the post-shuffle vectors. 20305 for (int &Vec : VectorMask) 20306 if (Vec == 0) 20307 Vec = Shuffles.size() - 1; 20308 else 20309 Vec = (Vec - 1) / 2; 20310 20311 // More than one shuffle. Generate a binary tree of blends, e.g. if from 20312 // the previous step we got the set of shuffles t10, t11, t12, t13, we will 20313 // generate: 20314 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 20315 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 20316 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 20317 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 20318 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 20319 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 20320 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 20321 20322 // Make sure the initial size of the shuffle list is even. 20323 if (Shuffles.size() % 2) 20324 Shuffles.push_back(DAG.getUNDEF(VT)); 20325 20326 for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { 20327 if (CurSize % 2) { 20328 Shuffles[CurSize] = DAG.getUNDEF(VT); 20329 CurSize++; 20330 } 20331 for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { 20332 int Left = 2 * In; 20333 int Right = 2 * In + 1; 20334 SmallVector<int, 8> Mask(NumElems, -1); 20335 for (unsigned i = 0; i != NumElems; ++i) { 20336 if (VectorMask[i] == Left) { 20337 Mask[i] = i; 20338 VectorMask[i] = In; 20339 } else if (VectorMask[i] == Right) { 20340 Mask[i] = i + NumElems; 20341 VectorMask[i] = In; 20342 } 20343 } 20344 20345 Shuffles[In] = 20346 DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask); 20347 } 20348 } 20349 return Shuffles[0]; 20350 } 20351 20352 // Try to turn a build vector of zero extends of extract vector elts into a 20353 // a vector zero extend and possibly an extract subvector. 20354 // TODO: Support sign extend? 20355 // TODO: Allow undef elements? 20356 SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) { 20357 if (LegalOperations) 20358 return SDValue(); 20359 20360 EVT VT = N->getValueType(0); 20361 20362 bool FoundZeroExtend = false; 20363 SDValue Op0 = N->getOperand(0); 20364 auto checkElem = [&](SDValue Op) -> int64_t { 20365 unsigned Opc = Op.getOpcode(); 20366 FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND); 20367 if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) && 20368 Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && 20369 Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0)) 20370 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1))) 20371 return C->getZExtValue(); 20372 return -1; 20373 }; 20374 20375 // Make sure the first element matches 20376 // (zext (extract_vector_elt X, C)) 20377 // Offset must be a constant multiple of the 20378 // known-minimum vector length of the result type. 20379 int64_t Offset = checkElem(Op0); 20380 if (Offset < 0 || (Offset % VT.getVectorNumElements()) != 0) 20381 return SDValue(); 20382 20383 unsigned NumElems = N->getNumOperands(); 20384 SDValue In = Op0.getOperand(0).getOperand(0); 20385 EVT InSVT = In.getValueType().getScalarType(); 20386 EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems); 20387 20388 // Don't create an illegal input type after type legalization. 20389 if (LegalTypes && !TLI.isTypeLegal(InVT)) 20390 return SDValue(); 20391 20392 // Ensure all the elements come from the same vector and are adjacent. 20393 for (unsigned i = 1; i != NumElems; ++i) { 20394 if ((Offset + i) != checkElem(N->getOperand(i))) 20395 return SDValue(); 20396 } 20397 20398 SDLoc DL(N); 20399 In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In, 20400 Op0.getOperand(0).getOperand(1)); 20401 return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL, 20402 VT, In); 20403 } 20404 20405 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { 20406 EVT VT = N->getValueType(0); 20407 20408 // A vector built entirely of undefs is undef. 20409 if (ISD::allOperandsUndef(N)) 20410 return DAG.getUNDEF(VT); 20411 20412 // If this is a splat of a bitcast from another vector, change to a 20413 // concat_vector. 20414 // For example: 20415 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) -> 20416 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X)))) 20417 // 20418 // If X is a build_vector itself, the concat can become a larger build_vector. 20419 // TODO: Maybe this is useful for non-splat too? 20420 if (!LegalOperations) { 20421 if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) { 20422 Splat = peekThroughBitcasts(Splat); 20423 EVT SrcVT = Splat.getValueType(); 20424 if (SrcVT.isVector()) { 20425 unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements(); 20426 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), 20427 SrcVT.getVectorElementType(), NumElts); 20428 if (!LegalTypes || TLI.isTypeLegal(NewVT)) { 20429 SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat); 20430 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), 20431 NewVT, Ops); 20432 return DAG.getBitcast(VT, Concat); 20433 } 20434 } 20435 } 20436 } 20437 20438 // Check if we can express BUILD VECTOR via subvector extract. 20439 if (!LegalTypes && (N->getNumOperands() > 1)) { 20440 SDValue Op0 = N->getOperand(0); 20441 auto checkElem = [&](SDValue Op) -> uint64_t { 20442 if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) && 20443 (Op0.getOperand(0) == Op.getOperand(0))) 20444 if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 20445 return CNode->getZExtValue(); 20446 return -1; 20447 }; 20448 20449 int Offset = checkElem(Op0); 20450 for (unsigned i = 0; i < N->getNumOperands(); ++i) { 20451 if (Offset + i != checkElem(N->getOperand(i))) { 20452 Offset = -1; 20453 break; 20454 } 20455 } 20456 20457 if ((Offset == 0) && 20458 (Op0.getOperand(0).getValueType() == N->getValueType(0))) 20459 return Op0.getOperand(0); 20460 if ((Offset != -1) && 20461 ((Offset % N->getValueType(0).getVectorNumElements()) == 20462 0)) // IDX must be multiple of output size. 20463 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0), 20464 Op0.getOperand(0), Op0.getOperand(1)); 20465 } 20466 20467 if (SDValue V = convertBuildVecZextToZext(N)) 20468 return V; 20469 20470 if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) 20471 return V; 20472 20473 if (SDValue V = reduceBuildVecTruncToBitCast(N)) 20474 return V; 20475 20476 if (SDValue V = reduceBuildVecToShuffle(N)) 20477 return V; 20478 20479 // A splat of a single element is a SPLAT_VECTOR if supported on the target. 20480 // Do this late as some of the above may replace the splat. 20481 if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand) 20482 if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) { 20483 assert(!V.isUndef() && "Splat of undef should have been handled earlier"); 20484 return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V); 20485 } 20486 20487 return SDValue(); 20488 } 20489 20490 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { 20491 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20492 EVT OpVT = N->getOperand(0).getValueType(); 20493 20494 // If the operands are legal vectors, leave them alone. 20495 if (TLI.isTypeLegal(OpVT)) 20496 return SDValue(); 20497 20498 SDLoc DL(N); 20499 EVT VT = N->getValueType(0); 20500 SmallVector<SDValue, 8> Ops; 20501 20502 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); 20503 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 20504 20505 // Keep track of what we encounter. 20506 bool AnyInteger = false; 20507 bool AnyFP = false; 20508 for (const SDValue &Op : N->ops()) { 20509 if (ISD::BITCAST == Op.getOpcode() && 20510 !Op.getOperand(0).getValueType().isVector()) 20511 Ops.push_back(Op.getOperand(0)); 20512 else if (ISD::UNDEF == Op.getOpcode()) 20513 Ops.push_back(ScalarUndef); 20514 else 20515 return SDValue(); 20516 20517 // Note whether we encounter an integer or floating point scalar. 20518 // If it's neither, bail out, it could be something weird like x86mmx. 20519 EVT LastOpVT = Ops.back().getValueType(); 20520 if (LastOpVT.isFloatingPoint()) 20521 AnyFP = true; 20522 else if (LastOpVT.isInteger()) 20523 AnyInteger = true; 20524 else 20525 return SDValue(); 20526 } 20527 20528 // If any of the operands is a floating point scalar bitcast to a vector, 20529 // use floating point types throughout, and bitcast everything. 20530 // Replace UNDEFs by another scalar UNDEF node, of the final desired type. 20531 if (AnyFP) { 20532 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); 20533 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 20534 if (AnyInteger) { 20535 for (SDValue &Op : Ops) { 20536 if (Op.getValueType() == SVT) 20537 continue; 20538 if (Op.isUndef()) 20539 Op = ScalarUndef; 20540 else 20541 Op = DAG.getBitcast(SVT, Op); 20542 } 20543 } 20544 } 20545 20546 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, 20547 VT.getSizeInBits() / SVT.getSizeInBits()); 20548 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); 20549 } 20550 20551 // Attempt to merge nested concat_vectors/undefs. 20552 // Fold concat_vectors(concat_vectors(x,y,z,w),u,u,concat_vectors(a,b,c,d)) 20553 // --> concat_vectors(x,y,z,w,u,u,u,u,u,u,u,u,a,b,c,d) 20554 static SDValue combineConcatVectorOfConcatVectors(SDNode *N, 20555 SelectionDAG &DAG) { 20556 EVT VT = N->getValueType(0); 20557 20558 // Ensure we're concatenating UNDEF and CONCAT_VECTORS nodes of similar types. 20559 EVT SubVT; 20560 SDValue FirstConcat; 20561 for (const SDValue &Op : N->ops()) { 20562 if (Op.isUndef()) 20563 continue; 20564 if (Op.getOpcode() != ISD::CONCAT_VECTORS) 20565 return SDValue(); 20566 if (!FirstConcat) { 20567 SubVT = Op.getOperand(0).getValueType(); 20568 if (!DAG.getTargetLoweringInfo().isTypeLegal(SubVT)) 20569 return SDValue(); 20570 FirstConcat = Op; 20571 continue; 20572 } 20573 if (SubVT != Op.getOperand(0).getValueType()) 20574 return SDValue(); 20575 } 20576 assert(FirstConcat && "Concat of all-undefs found"); 20577 20578 SmallVector<SDValue> ConcatOps; 20579 for (const SDValue &Op : N->ops()) { 20580 if (Op.isUndef()) { 20581 ConcatOps.append(FirstConcat->getNumOperands(), DAG.getUNDEF(SubVT)); 20582 continue; 20583 } 20584 ConcatOps.append(Op->op_begin(), Op->op_end()); 20585 } 20586 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, ConcatOps); 20587 } 20588 20589 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR 20590 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at 20591 // most two distinct vectors the same size as the result, attempt to turn this 20592 // into a legal shuffle. 20593 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { 20594 EVT VT = N->getValueType(0); 20595 EVT OpVT = N->getOperand(0).getValueType(); 20596 20597 // We currently can't generate an appropriate shuffle for a scalable vector. 20598 if (VT.isScalableVector()) 20599 return SDValue(); 20600 20601 int NumElts = VT.getVectorNumElements(); 20602 int NumOpElts = OpVT.getVectorNumElements(); 20603 20604 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); 20605 SmallVector<int, 8> Mask; 20606 20607 for (SDValue Op : N->ops()) { 20608 Op = peekThroughBitcasts(Op); 20609 20610 // UNDEF nodes convert to UNDEF shuffle mask values. 20611 if (Op.isUndef()) { 20612 Mask.append((unsigned)NumOpElts, -1); 20613 continue; 20614 } 20615 20616 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 20617 return SDValue(); 20618 20619 // What vector are we extracting the subvector from and at what index? 20620 SDValue ExtVec = Op.getOperand(0); 20621 int ExtIdx = Op.getConstantOperandVal(1); 20622 20623 // We want the EVT of the original extraction to correctly scale the 20624 // extraction index. 20625 EVT ExtVT = ExtVec.getValueType(); 20626 ExtVec = peekThroughBitcasts(ExtVec); 20627 20628 // UNDEF nodes convert to UNDEF shuffle mask values. 20629 if (ExtVec.isUndef()) { 20630 Mask.append((unsigned)NumOpElts, -1); 20631 continue; 20632 } 20633 20634 // Ensure that we are extracting a subvector from a vector the same 20635 // size as the result. 20636 if (ExtVT.getSizeInBits() != VT.getSizeInBits()) 20637 return SDValue(); 20638 20639 // Scale the subvector index to account for any bitcast. 20640 int NumExtElts = ExtVT.getVectorNumElements(); 20641 if (0 == (NumExtElts % NumElts)) 20642 ExtIdx /= (NumExtElts / NumElts); 20643 else if (0 == (NumElts % NumExtElts)) 20644 ExtIdx *= (NumElts / NumExtElts); 20645 else 20646 return SDValue(); 20647 20648 // At most we can reference 2 inputs in the final shuffle. 20649 if (SV0.isUndef() || SV0 == ExtVec) { 20650 SV0 = ExtVec; 20651 for (int i = 0; i != NumOpElts; ++i) 20652 Mask.push_back(i + ExtIdx); 20653 } else if (SV1.isUndef() || SV1 == ExtVec) { 20654 SV1 = ExtVec; 20655 for (int i = 0; i != NumOpElts; ++i) 20656 Mask.push_back(i + ExtIdx + NumElts); 20657 } else { 20658 return SDValue(); 20659 } 20660 } 20661 20662 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20663 return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), 20664 DAG.getBitcast(VT, SV1), Mask, DAG); 20665 } 20666 20667 static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG) { 20668 unsigned CastOpcode = N->getOperand(0).getOpcode(); 20669 switch (CastOpcode) { 20670 case ISD::SINT_TO_FP: 20671 case ISD::UINT_TO_FP: 20672 case ISD::FP_TO_SINT: 20673 case ISD::FP_TO_UINT: 20674 // TODO: Allow more opcodes? 20675 // case ISD::BITCAST: 20676 // case ISD::TRUNCATE: 20677 // case ISD::ZERO_EXTEND: 20678 // case ISD::SIGN_EXTEND: 20679 // case ISD::FP_EXTEND: 20680 break; 20681 default: 20682 return SDValue(); 20683 } 20684 20685 EVT SrcVT = N->getOperand(0).getOperand(0).getValueType(); 20686 if (!SrcVT.isVector()) 20687 return SDValue(); 20688 20689 // All operands of the concat must be the same kind of cast from the same 20690 // source type. 20691 SmallVector<SDValue, 4> SrcOps; 20692 for (SDValue Op : N->ops()) { 20693 if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() || 20694 Op.getOperand(0).getValueType() != SrcVT) 20695 return SDValue(); 20696 SrcOps.push_back(Op.getOperand(0)); 20697 } 20698 20699 // The wider cast must be supported by the target. This is unusual because 20700 // the operation support type parameter depends on the opcode. In addition, 20701 // check the other type in the cast to make sure this is really legal. 20702 EVT VT = N->getValueType(0); 20703 EVT SrcEltVT = SrcVT.getVectorElementType(); 20704 ElementCount NumElts = SrcVT.getVectorElementCount() * N->getNumOperands(); 20705 EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts); 20706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20707 switch (CastOpcode) { 20708 case ISD::SINT_TO_FP: 20709 case ISD::UINT_TO_FP: 20710 if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) || 20711 !TLI.isTypeLegal(VT)) 20712 return SDValue(); 20713 break; 20714 case ISD::FP_TO_SINT: 20715 case ISD::FP_TO_UINT: 20716 if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) || 20717 !TLI.isTypeLegal(ConcatSrcVT)) 20718 return SDValue(); 20719 break; 20720 default: 20721 llvm_unreachable("Unexpected cast opcode"); 20722 } 20723 20724 // concat (cast X), (cast Y)... -> cast (concat X, Y...) 20725 SDLoc DL(N); 20726 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps); 20727 return DAG.getNode(CastOpcode, DL, VT, NewConcat); 20728 } 20729 20730 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { 20731 // If we only have one input vector, we don't need to do any concatenation. 20732 if (N->getNumOperands() == 1) 20733 return N->getOperand(0); 20734 20735 // Check if all of the operands are undefs. 20736 EVT VT = N->getValueType(0); 20737 if (ISD::allOperandsUndef(N)) 20738 return DAG.getUNDEF(VT); 20739 20740 // Optimize concat_vectors where all but the first of the vectors are undef. 20741 if (all_of(drop_begin(N->ops()), 20742 [](const SDValue &Op) { return Op.isUndef(); })) { 20743 SDValue In = N->getOperand(0); 20744 assert(In.getValueType().isVector() && "Must concat vectors"); 20745 20746 // If the input is a concat_vectors, just make a larger concat by padding 20747 // with smaller undefs. 20748 if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) { 20749 unsigned NumOps = N->getNumOperands() * In.getNumOperands(); 20750 SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end()); 20751 Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType())); 20752 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 20753 } 20754 20755 SDValue Scalar = peekThroughOneUseBitcasts(In); 20756 20757 // concat_vectors(scalar_to_vector(scalar), undef) -> 20758 // scalar_to_vector(scalar) 20759 if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR && 20760 Scalar.hasOneUse()) { 20761 EVT SVT = Scalar.getValueType().getVectorElementType(); 20762 if (SVT == Scalar.getOperand(0).getValueType()) 20763 Scalar = Scalar.getOperand(0); 20764 } 20765 20766 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar) 20767 if (!Scalar.getValueType().isVector()) { 20768 // If the bitcast type isn't legal, it might be a trunc of a legal type; 20769 // look through the trunc so we can still do the transform: 20770 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) 20771 if (Scalar->getOpcode() == ISD::TRUNCATE && 20772 !TLI.isTypeLegal(Scalar.getValueType()) && 20773 TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) 20774 Scalar = Scalar->getOperand(0); 20775 20776 EVT SclTy = Scalar.getValueType(); 20777 20778 if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) 20779 return SDValue(); 20780 20781 // Bail out if the vector size is not a multiple of the scalar size. 20782 if (VT.getSizeInBits() % SclTy.getSizeInBits()) 20783 return SDValue(); 20784 20785 unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits(); 20786 if (VNTNumElms < 2) 20787 return SDValue(); 20788 20789 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms); 20790 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) 20791 return SDValue(); 20792 20793 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); 20794 return DAG.getBitcast(VT, Res); 20795 } 20796 } 20797 20798 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. 20799 // We have already tested above for an UNDEF only concatenation. 20800 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) 20801 // -> (BUILD_VECTOR A, B, ..., C, D, ...) 20802 auto IsBuildVectorOrUndef = [](const SDValue &Op) { 20803 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); 20804 }; 20805 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { 20806 SmallVector<SDValue, 8> Opnds; 20807 EVT SVT = VT.getScalarType(); 20808 20809 EVT MinVT = SVT; 20810 if (!SVT.isFloatingPoint()) { 20811 // If BUILD_VECTOR are from built from integer, they may have different 20812 // operand types. Get the smallest type and truncate all operands to it. 20813 bool FoundMinVT = false; 20814 for (const SDValue &Op : N->ops()) 20815 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 20816 EVT OpSVT = Op.getOperand(0).getValueType(); 20817 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; 20818 FoundMinVT = true; 20819 } 20820 assert(FoundMinVT && "Concat vector type mismatch"); 20821 } 20822 20823 for (const SDValue &Op : N->ops()) { 20824 EVT OpVT = Op.getValueType(); 20825 unsigned NumElts = OpVT.getVectorNumElements(); 20826 20827 if (ISD::UNDEF == Op.getOpcode()) 20828 Opnds.append(NumElts, DAG.getUNDEF(MinVT)); 20829 20830 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 20831 if (SVT.isFloatingPoint()) { 20832 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); 20833 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); 20834 } else { 20835 for (unsigned i = 0; i != NumElts; ++i) 20836 Opnds.push_back( 20837 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); 20838 } 20839 } 20840 } 20841 20842 assert(VT.getVectorNumElements() == Opnds.size() && 20843 "Concat vector type mismatch"); 20844 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 20845 } 20846 20847 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. 20848 // FIXME: Add support for concat_vectors(bitcast(vec0),bitcast(vec1),...). 20849 if (SDValue V = combineConcatVectorOfScalars(N, DAG)) 20850 return V; 20851 20852 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) { 20853 // Fold CONCAT_VECTORS of CONCAT_VECTORS (or undef) to VECTOR_SHUFFLE. 20854 if (SDValue V = combineConcatVectorOfConcatVectors(N, DAG)) 20855 return V; 20856 20857 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. 20858 if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) 20859 return V; 20860 } 20861 20862 if (SDValue V = combineConcatVectorOfCasts(N, DAG)) 20863 return V; 20864 20865 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR 20866 // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR 20867 // operands and look for a CONCAT operations that place the incoming vectors 20868 // at the exact same location. 20869 // 20870 // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled. 20871 SDValue SingleSource = SDValue(); 20872 unsigned PartNumElem = 20873 N->getOperand(0).getValueType().getVectorMinNumElements(); 20874 20875 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 20876 SDValue Op = N->getOperand(i); 20877 20878 if (Op.isUndef()) 20879 continue; 20880 20881 // Check if this is the identity extract: 20882 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 20883 return SDValue(); 20884 20885 // Find the single incoming vector for the extract_subvector. 20886 if (SingleSource.getNode()) { 20887 if (Op.getOperand(0) != SingleSource) 20888 return SDValue(); 20889 } else { 20890 SingleSource = Op.getOperand(0); 20891 20892 // Check the source type is the same as the type of the result. 20893 // If not, this concat may extend the vector, so we can not 20894 // optimize it away. 20895 if (SingleSource.getValueType() != N->getValueType(0)) 20896 return SDValue(); 20897 } 20898 20899 // Check that we are reading from the identity index. 20900 unsigned IdentityIndex = i * PartNumElem; 20901 if (Op.getConstantOperandAPInt(1) != IdentityIndex) 20902 return SDValue(); 20903 } 20904 20905 if (SingleSource.getNode()) 20906 return SingleSource; 20907 20908 return SDValue(); 20909 } 20910 20911 // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find 20912 // if the subvector can be sourced for free. 20913 static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) { 20914 if (V.getOpcode() == ISD::INSERT_SUBVECTOR && 20915 V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) { 20916 return V.getOperand(1); 20917 } 20918 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 20919 if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS && 20920 V.getOperand(0).getValueType() == SubVT && 20921 (IndexC->getZExtValue() % SubVT.getVectorMinNumElements()) == 0) { 20922 uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorMinNumElements(); 20923 return V.getOperand(SubIdx); 20924 } 20925 return SDValue(); 20926 } 20927 20928 static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract, 20929 SelectionDAG &DAG, 20930 bool LegalOperations) { 20931 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20932 SDValue BinOp = Extract->getOperand(0); 20933 unsigned BinOpcode = BinOp.getOpcode(); 20934 if (!TLI.isBinOp(BinOpcode) || BinOp->getNumValues() != 1) 20935 return SDValue(); 20936 20937 EVT VecVT = BinOp.getValueType(); 20938 SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1); 20939 if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType()) 20940 return SDValue(); 20941 20942 SDValue Index = Extract->getOperand(1); 20943 EVT SubVT = Extract->getValueType(0); 20944 if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT, LegalOperations)) 20945 return SDValue(); 20946 20947 SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT); 20948 SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT); 20949 20950 // TODO: We could handle the case where only 1 operand is being inserted by 20951 // creating an extract of the other operand, but that requires checking 20952 // number of uses and/or costs. 20953 if (!Sub0 || !Sub1) 20954 return SDValue(); 20955 20956 // We are inserting both operands of the wide binop only to extract back 20957 // to the narrow vector size. Eliminate all of the insert/extract: 20958 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y 20959 return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1, 20960 BinOp->getFlags()); 20961 } 20962 20963 /// If we are extracting a subvector produced by a wide binary operator try 20964 /// to use a narrow binary operator and/or avoid concatenation and extraction. 20965 static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG, 20966 bool LegalOperations) { 20967 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share 20968 // some of these bailouts with other transforms. 20969 20970 if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG, LegalOperations)) 20971 return V; 20972 20973 // The extract index must be a constant, so we can map it to a concat operand. 20974 auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); 20975 if (!ExtractIndexC) 20976 return SDValue(); 20977 20978 // We are looking for an optionally bitcasted wide vector binary operator 20979 // feeding an extract subvector. 20980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20981 SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0)); 20982 unsigned BOpcode = BinOp.getOpcode(); 20983 if (!TLI.isBinOp(BOpcode) || BinOp->getNumValues() != 1) 20984 return SDValue(); 20985 20986 // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be 20987 // reduced to the unary fneg when it is visited, and we probably want to deal 20988 // with fneg in a target-specific way. 20989 if (BOpcode == ISD::FSUB) { 20990 auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true); 20991 if (C && C->getValueAPF().isNegZero()) 20992 return SDValue(); 20993 } 20994 20995 // The binop must be a vector type, so we can extract some fraction of it. 20996 EVT WideBVT = BinOp.getValueType(); 20997 // The optimisations below currently assume we are dealing with fixed length 20998 // vectors. It is possible to add support for scalable vectors, but at the 20999 // moment we've done no analysis to prove whether they are profitable or not. 21000 if (!WideBVT.isFixedLengthVector()) 21001 return SDValue(); 21002 21003 EVT VT = Extract->getValueType(0); 21004 unsigned ExtractIndex = ExtractIndexC->getZExtValue(); 21005 assert(ExtractIndex % VT.getVectorNumElements() == 0 && 21006 "Extract index is not a multiple of the vector length."); 21007 21008 // Bail out if this is not a proper multiple width extraction. 21009 unsigned WideWidth = WideBVT.getSizeInBits(); 21010 unsigned NarrowWidth = VT.getSizeInBits(); 21011 if (WideWidth % NarrowWidth != 0) 21012 return SDValue(); 21013 21014 // Bail out if we are extracting a fraction of a single operation. This can 21015 // occur because we potentially looked through a bitcast of the binop. 21016 unsigned NarrowingRatio = WideWidth / NarrowWidth; 21017 unsigned WideNumElts = WideBVT.getVectorNumElements(); 21018 if (WideNumElts % NarrowingRatio != 0) 21019 return SDValue(); 21020 21021 // Bail out if the target does not support a narrower version of the binop. 21022 EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(), 21023 WideNumElts / NarrowingRatio); 21024 if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT)) 21025 return SDValue(); 21026 21027 // If extraction is cheap, we don't need to look at the binop operands 21028 // for concat ops. The narrow binop alone makes this transform profitable. 21029 // We can't just reuse the original extract index operand because we may have 21030 // bitcasted. 21031 unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements(); 21032 unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements(); 21033 if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) && 21034 BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) { 21035 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N) 21036 SDLoc DL(Extract); 21037 SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL); 21038 SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 21039 BinOp.getOperand(0), NewExtIndex); 21040 SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 21041 BinOp.getOperand(1), NewExtIndex); 21042 SDValue NarrowBinOp = 21043 DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, BinOp->getFlags()); 21044 return DAG.getBitcast(VT, NarrowBinOp); 21045 } 21046 21047 // Only handle the case where we are doubling and then halving. A larger ratio 21048 // may require more than two narrow binops to replace the wide binop. 21049 if (NarrowingRatio != 2) 21050 return SDValue(); 21051 21052 // TODO: The motivating case for this transform is an x86 AVX1 target. That 21053 // target has temptingly almost legal versions of bitwise logic ops in 256-bit 21054 // flavors, but no other 256-bit integer support. This could be extended to 21055 // handle any binop, but that may require fixing/adding other folds to avoid 21056 // codegen regressions. 21057 if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR) 21058 return SDValue(); 21059 21060 // We need at least one concatenation operation of a binop operand to make 21061 // this transform worthwhile. The concat must double the input vector sizes. 21062 auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue { 21063 if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2) 21064 return V.getOperand(ConcatOpNum); 21065 return SDValue(); 21066 }; 21067 SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0))); 21068 SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1))); 21069 21070 if (SubVecL || SubVecR) { 21071 // If a binop operand was not the result of a concat, we must extract a 21072 // half-sized operand for our new narrow binop: 21073 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN 21074 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC) 21075 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN 21076 SDLoc DL(Extract); 21077 SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL); 21078 SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL) 21079 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 21080 BinOp.getOperand(0), IndexC); 21081 21082 SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR) 21083 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 21084 BinOp.getOperand(1), IndexC); 21085 21086 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y); 21087 return DAG.getBitcast(VT, NarrowBinOp); 21088 } 21089 21090 return SDValue(); 21091 } 21092 21093 /// If we are extracting a subvector from a wide vector load, convert to a 21094 /// narrow load to eliminate the extraction: 21095 /// (extract_subvector (load wide vector)) --> (load narrow vector) 21096 static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) { 21097 // TODO: Add support for big-endian. The offset calculation must be adjusted. 21098 if (DAG.getDataLayout().isBigEndian()) 21099 return SDValue(); 21100 21101 auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0)); 21102 if (!Ld || Ld->getExtensionType() || !Ld->isSimple()) 21103 return SDValue(); 21104 21105 // Allow targets to opt-out. 21106 EVT VT = Extract->getValueType(0); 21107 21108 // We can only create byte sized loads. 21109 if (!VT.isByteSized()) 21110 return SDValue(); 21111 21112 unsigned Index = Extract->getConstantOperandVal(1); 21113 unsigned NumElts = VT.getVectorMinNumElements(); 21114 21115 // The definition of EXTRACT_SUBVECTOR states that the index must be a 21116 // multiple of the minimum number of elements in the result type. 21117 assert(Index % NumElts == 0 && "The extract subvector index is not a " 21118 "multiple of the result's element count"); 21119 21120 // It's fine to use TypeSize here as we know the offset will not be negative. 21121 TypeSize Offset = VT.getStoreSize() * (Index / NumElts); 21122 21123 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 21124 if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT)) 21125 return SDValue(); 21126 21127 // The narrow load will be offset from the base address of the old load if 21128 // we are extracting from something besides index 0 (little-endian). 21129 SDLoc DL(Extract); 21130 21131 // TODO: Use "BaseIndexOffset" to make this more effective. 21132 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), Offset, DL); 21133 21134 uint64_t StoreSize = MemoryLocation::getSizeOrUnknown(VT.getStoreSize()); 21135 MachineFunction &MF = DAG.getMachineFunction(); 21136 MachineMemOperand *MMO; 21137 if (Offset.isScalable()) { 21138 MachinePointerInfo MPI = 21139 MachinePointerInfo(Ld->getPointerInfo().getAddrSpace()); 21140 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), MPI, StoreSize); 21141 } else 21142 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset.getFixedSize(), 21143 StoreSize); 21144 21145 SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO); 21146 DAG.makeEquivalentMemoryOrdering(Ld, NewLd); 21147 return NewLd; 21148 } 21149 21150 /// Given EXTRACT_SUBVECTOR(VECTOR_SHUFFLE(Op0, Op1, Mask)), 21151 /// try to produce VECTOR_SHUFFLE(EXTRACT_SUBVECTOR(Op?, ?), 21152 /// EXTRACT_SUBVECTOR(Op?, ?), 21153 /// Mask')) 21154 /// iff it is legal and profitable to do so. Notably, the trimmed mask 21155 /// (containing only the elements that are extracted) 21156 /// must reference at most two subvectors. 21157 static SDValue foldExtractSubvectorFromShuffleVector(SDNode *N, 21158 SelectionDAG &DAG, 21159 const TargetLowering &TLI, 21160 bool LegalOperations) { 21161 assert(N->getOpcode() == ISD::EXTRACT_SUBVECTOR && 21162 "Must only be called on EXTRACT_SUBVECTOR's"); 21163 21164 SDValue N0 = N->getOperand(0); 21165 21166 // Only deal with non-scalable vectors. 21167 EVT NarrowVT = N->getValueType(0); 21168 EVT WideVT = N0.getValueType(); 21169 if (!NarrowVT.isFixedLengthVector() || !WideVT.isFixedLengthVector()) 21170 return SDValue(); 21171 21172 // The operand must be a shufflevector. 21173 auto *WideShuffleVector = dyn_cast<ShuffleVectorSDNode>(N0); 21174 if (!WideShuffleVector) 21175 return SDValue(); 21176 21177 // The old shuffleneeds to go away. 21178 if (!WideShuffleVector->hasOneUse()) 21179 return SDValue(); 21180 21181 // And the narrow shufflevector that we'll form must be legal. 21182 if (LegalOperations && 21183 !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, NarrowVT)) 21184 return SDValue(); 21185 21186 uint64_t FirstExtractedEltIdx = N->getConstantOperandVal(1); 21187 int NumEltsExtracted = NarrowVT.getVectorNumElements(); 21188 assert((FirstExtractedEltIdx % NumEltsExtracted) == 0 && 21189 "Extract index is not a multiple of the output vector length."); 21190 21191 int WideNumElts = WideVT.getVectorNumElements(); 21192 21193 SmallVector<int, 16> NewMask; 21194 NewMask.reserve(NumEltsExtracted); 21195 SmallSetVector<std::pair<SDValue /*Op*/, int /*SubvectorIndex*/>, 2> 21196 DemandedSubvectors; 21197 21198 // Try to decode the wide mask into narrow mask from at most two subvectors. 21199 for (int M : WideShuffleVector->getMask().slice(FirstExtractedEltIdx, 21200 NumEltsExtracted)) { 21201 assert((M >= -1) && (M < (2 * WideNumElts)) && 21202 "Out-of-bounds shuffle mask?"); 21203 21204 if (M < 0) { 21205 // Does not depend on operands, does not require adjustment. 21206 NewMask.emplace_back(M); 21207 continue; 21208 } 21209 21210 // From which operand of the shuffle does this shuffle mask element pick? 21211 int WideShufOpIdx = M / WideNumElts; 21212 // Which element of that operand is picked? 21213 int OpEltIdx = M % WideNumElts; 21214 21215 assert((OpEltIdx + WideShufOpIdx * WideNumElts) == M && 21216 "Shuffle mask vector decomposition failure."); 21217 21218 // And which NumEltsExtracted-sized subvector of that operand is that? 21219 int OpSubvecIdx = OpEltIdx / NumEltsExtracted; 21220 // And which element within that subvector of that operand is that? 21221 int OpEltIdxInSubvec = OpEltIdx % NumEltsExtracted; 21222 21223 assert((OpEltIdxInSubvec + OpSubvecIdx * NumEltsExtracted) == OpEltIdx && 21224 "Shuffle mask subvector decomposition failure."); 21225 21226 assert((OpEltIdxInSubvec + OpSubvecIdx * NumEltsExtracted + 21227 WideShufOpIdx * WideNumElts) == M && 21228 "Shuffle mask full decomposition failure."); 21229 21230 SDValue Op = WideShuffleVector->getOperand(WideShufOpIdx); 21231 21232 if (Op.isUndef()) { 21233 // Picking from an undef operand. Let's adjust mask instead. 21234 NewMask.emplace_back(-1); 21235 continue; 21236 } 21237 21238 // Profitability check: only deal with extractions from the first subvector. 21239 if (OpSubvecIdx != 0) 21240 return SDValue(); 21241 21242 const std::pair<SDValue, int> DemandedSubvector = 21243 std::make_pair(Op, OpSubvecIdx); 21244 21245 if (DemandedSubvectors.insert(DemandedSubvector)) { 21246 if (DemandedSubvectors.size() > 2) 21247 return SDValue(); // We can't handle more than two subvectors. 21248 // How many elements into the WideVT does this subvector start? 21249 int Index = NumEltsExtracted * OpSubvecIdx; 21250 // Bail out if the extraction isn't going to be cheap. 21251 if (!TLI.isExtractSubvectorCheap(NarrowVT, WideVT, Index)) 21252 return SDValue(); 21253 } 21254 21255 // Ok, but from which operand of the new shuffle will this element pick? 21256 int NewOpIdx = 21257 getFirstIndexOf(DemandedSubvectors.getArrayRef(), DemandedSubvector); 21258 assert((NewOpIdx == 0 || NewOpIdx == 1) && "Unexpected operand index."); 21259 21260 int AdjM = OpEltIdxInSubvec + NewOpIdx * NumEltsExtracted; 21261 NewMask.emplace_back(AdjM); 21262 } 21263 assert(NewMask.size() == (unsigned)NumEltsExtracted && "Produced bad mask."); 21264 assert(DemandedSubvectors.size() <= 2 && 21265 "Should have ended up demanding at most two subvectors."); 21266 21267 // Did we discover that the shuffle does not actually depend on operands? 21268 if (DemandedSubvectors.empty()) 21269 return DAG.getUNDEF(NarrowVT); 21270 21271 // We still perform the exact same EXTRACT_SUBVECTOR, just on different 21272 // operand[s]/index[es], so there is no point in checking for it's legality. 21273 21274 // Do not turn a legal shuffle into an illegal one. 21275 if (TLI.isShuffleMaskLegal(WideShuffleVector->getMask(), WideVT) && 21276 !TLI.isShuffleMaskLegal(NewMask, NarrowVT)) 21277 return SDValue(); 21278 21279 SDLoc DL(N); 21280 21281 SmallVector<SDValue, 2> NewOps; 21282 for (const std::pair<SDValue /*Op*/, int /*SubvectorIndex*/> 21283 &DemandedSubvector : DemandedSubvectors) { 21284 // How many elements into the WideVT does this subvector start? 21285 int Index = NumEltsExtracted * DemandedSubvector.second; 21286 SDValue IndexC = DAG.getVectorIdxConstant(Index, DL); 21287 NewOps.emplace_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowVT, 21288 DemandedSubvector.first, IndexC)); 21289 } 21290 assert((NewOps.size() == 1 || NewOps.size() == 2) && 21291 "Should end up with either one or two ops"); 21292 21293 // If we ended up with only one operand, pad with an undef. 21294 if (NewOps.size() == 1) 21295 NewOps.emplace_back(DAG.getUNDEF(NarrowVT)); 21296 21297 return DAG.getVectorShuffle(NarrowVT, DL, NewOps[0], NewOps[1], NewMask); 21298 } 21299 21300 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) { 21301 EVT NVT = N->getValueType(0); 21302 SDValue V = N->getOperand(0); 21303 uint64_t ExtIdx = N->getConstantOperandVal(1); 21304 21305 // Extract from UNDEF is UNDEF. 21306 if (V.isUndef()) 21307 return DAG.getUNDEF(NVT); 21308 21309 if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT)) 21310 if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG)) 21311 return NarrowLoad; 21312 21313 // Combine an extract of an extract into a single extract_subvector. 21314 // ext (ext X, C), 0 --> ext X, C 21315 if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) { 21316 if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(), 21317 V.getConstantOperandVal(1)) && 21318 TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) { 21319 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0), 21320 V.getOperand(1)); 21321 } 21322 } 21323 21324 // ty1 extract_vector(ty2 splat(V))) -> ty1 splat(V) 21325 if (V.getOpcode() == ISD::SPLAT_VECTOR) 21326 if (DAG.isConstantValueOfAnyType(V.getOperand(0)) || V.hasOneUse()) 21327 if (!LegalOperations || TLI.isOperationLegal(ISD::SPLAT_VECTOR, NVT)) 21328 return DAG.getSplatVector(NVT, SDLoc(N), V.getOperand(0)); 21329 21330 // Try to move vector bitcast after extract_subv by scaling extraction index: 21331 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index') 21332 if (V.getOpcode() == ISD::BITCAST && 21333 V.getOperand(0).getValueType().isVector() && 21334 (!LegalOperations || TLI.isOperationLegal(ISD::BITCAST, NVT))) { 21335 SDValue SrcOp = V.getOperand(0); 21336 EVT SrcVT = SrcOp.getValueType(); 21337 unsigned SrcNumElts = SrcVT.getVectorMinNumElements(); 21338 unsigned DestNumElts = V.getValueType().getVectorMinNumElements(); 21339 if ((SrcNumElts % DestNumElts) == 0) { 21340 unsigned SrcDestRatio = SrcNumElts / DestNumElts; 21341 ElementCount NewExtEC = NVT.getVectorElementCount() * SrcDestRatio; 21342 EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 21343 NewExtEC); 21344 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { 21345 SDLoc DL(N); 21346 SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL); 21347 SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, 21348 V.getOperand(0), NewIndex); 21349 return DAG.getBitcast(NVT, NewExtract); 21350 } 21351 } 21352 if ((DestNumElts % SrcNumElts) == 0) { 21353 unsigned DestSrcRatio = DestNumElts / SrcNumElts; 21354 if (NVT.getVectorElementCount().isKnownMultipleOf(DestSrcRatio)) { 21355 ElementCount NewExtEC = 21356 NVT.getVectorElementCount().divideCoefficientBy(DestSrcRatio); 21357 EVT ScalarVT = SrcVT.getScalarType(); 21358 if ((ExtIdx % DestSrcRatio) == 0) { 21359 SDLoc DL(N); 21360 unsigned IndexValScaled = ExtIdx / DestSrcRatio; 21361 EVT NewExtVT = 21362 EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtEC); 21363 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { 21364 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); 21365 SDValue NewExtract = 21366 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, 21367 V.getOperand(0), NewIndex); 21368 return DAG.getBitcast(NVT, NewExtract); 21369 } 21370 if (NewExtEC.isScalar() && 21371 TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, ScalarVT)) { 21372 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); 21373 SDValue NewExtract = 21374 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, 21375 V.getOperand(0), NewIndex); 21376 return DAG.getBitcast(NVT, NewExtract); 21377 } 21378 } 21379 } 21380 } 21381 } 21382 21383 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 21384 unsigned ExtNumElts = NVT.getVectorMinNumElements(); 21385 EVT ConcatSrcVT = V.getOperand(0).getValueType(); 21386 assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() && 21387 "Concat and extract subvector do not change element type"); 21388 assert((ExtIdx % ExtNumElts) == 0 && 21389 "Extract index is not a multiple of the input vector length."); 21390 21391 unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorMinNumElements(); 21392 unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts; 21393 21394 // If the concatenated source types match this extract, it's a direct 21395 // simplification: 21396 // extract_subvec (concat V1, V2, ...), i --> Vi 21397 if (NVT.getVectorElementCount() == ConcatSrcVT.getVectorElementCount()) 21398 return V.getOperand(ConcatOpIdx); 21399 21400 // If the concatenated source vectors are a multiple length of this extract, 21401 // then extract a fraction of one of those source vectors directly from a 21402 // concat operand. Example: 21403 // v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 --> 21404 // v2i8 extract_subvec v8i8 Y, 6 21405 if (NVT.isFixedLengthVector() && ConcatSrcVT.isFixedLengthVector() && 21406 ConcatSrcNumElts % ExtNumElts == 0) { 21407 SDLoc DL(N); 21408 unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts; 21409 assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts && 21410 "Trying to extract from >1 concat operand?"); 21411 assert(NewExtIdx % ExtNumElts == 0 && 21412 "Extract index is not a multiple of the input vector length."); 21413 SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL); 21414 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT, 21415 V.getOperand(ConcatOpIdx), NewIndexC); 21416 } 21417 } 21418 21419 if (SDValue V = 21420 foldExtractSubvectorFromShuffleVector(N, DAG, TLI, LegalOperations)) 21421 return V; 21422 21423 V = peekThroughBitcasts(V); 21424 21425 // If the input is a build vector. Try to make a smaller build vector. 21426 if (V.getOpcode() == ISD::BUILD_VECTOR) { 21427 EVT InVT = V.getValueType(); 21428 unsigned ExtractSize = NVT.getSizeInBits(); 21429 unsigned EltSize = InVT.getScalarSizeInBits(); 21430 // Only do this if we won't split any elements. 21431 if (ExtractSize % EltSize == 0) { 21432 unsigned NumElems = ExtractSize / EltSize; 21433 EVT EltVT = InVT.getVectorElementType(); 21434 EVT ExtractVT = 21435 NumElems == 1 ? EltVT 21436 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems); 21437 if ((Level < AfterLegalizeDAG || 21438 (NumElems == 1 || 21439 TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) && 21440 (!LegalTypes || TLI.isTypeLegal(ExtractVT))) { 21441 unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize; 21442 21443 if (NumElems == 1) { 21444 SDValue Src = V->getOperand(IdxVal); 21445 if (EltVT != Src.getValueType()) 21446 Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src); 21447 return DAG.getBitcast(NVT, Src); 21448 } 21449 21450 // Extract the pieces from the original build_vector. 21451 SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N), 21452 V->ops().slice(IdxVal, NumElems)); 21453 return DAG.getBitcast(NVT, BuildVec); 21454 } 21455 } 21456 } 21457 21458 if (V.getOpcode() == ISD::INSERT_SUBVECTOR) { 21459 // Handle only simple case where vector being inserted and vector 21460 // being extracted are of same size. 21461 EVT SmallVT = V.getOperand(1).getValueType(); 21462 if (!NVT.bitsEq(SmallVT)) 21463 return SDValue(); 21464 21465 // Combine: 21466 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) 21467 // Into: 21468 // indices are equal or bit offsets are equal => V1 21469 // otherwise => (extract_subvec V1, ExtIdx) 21470 uint64_t InsIdx = V.getConstantOperandVal(2); 21471 if (InsIdx * SmallVT.getScalarSizeInBits() == 21472 ExtIdx * NVT.getScalarSizeInBits()) { 21473 if (LegalOperations && !TLI.isOperationLegal(ISD::BITCAST, NVT)) 21474 return SDValue(); 21475 21476 return DAG.getBitcast(NVT, V.getOperand(1)); 21477 } 21478 return DAG.getNode( 21479 ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, 21480 DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)), 21481 N->getOperand(1)); 21482 } 21483 21484 if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG, LegalOperations)) 21485 return NarrowBOp; 21486 21487 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 21488 return SDValue(N, 0); 21489 21490 return SDValue(); 21491 } 21492 21493 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles 21494 /// followed by concatenation. Narrow vector ops may have better performance 21495 /// than wide ops, and this can unlock further narrowing of other vector ops. 21496 /// Targets can invert this transform later if it is not profitable. 21497 static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf, 21498 SelectionDAG &DAG) { 21499 SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1); 21500 if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 || 21501 N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 || 21502 !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef()) 21503 return SDValue(); 21504 21505 // Split the wide shuffle mask into halves. Any mask element that is accessing 21506 // operand 1 is offset down to account for narrowing of the vectors. 21507 ArrayRef<int> Mask = Shuf->getMask(); 21508 EVT VT = Shuf->getValueType(0); 21509 unsigned NumElts = VT.getVectorNumElements(); 21510 unsigned HalfNumElts = NumElts / 2; 21511 SmallVector<int, 16> Mask0(HalfNumElts, -1); 21512 SmallVector<int, 16> Mask1(HalfNumElts, -1); 21513 for (unsigned i = 0; i != NumElts; ++i) { 21514 if (Mask[i] == -1) 21515 continue; 21516 // If we reference the upper (undef) subvector then the element is undef. 21517 if ((Mask[i] % NumElts) >= HalfNumElts) 21518 continue; 21519 int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts; 21520 if (i < HalfNumElts) 21521 Mask0[i] = M; 21522 else 21523 Mask1[i - HalfNumElts] = M; 21524 } 21525 21526 // Ask the target if this is a valid transform. 21527 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 21528 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 21529 HalfNumElts); 21530 if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) || 21531 !TLI.isShuffleMaskLegal(Mask1, HalfVT)) 21532 return SDValue(); 21533 21534 // shuffle (concat X, undef), (concat Y, undef), Mask --> 21535 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1) 21536 SDValue X = N0.getOperand(0), Y = N1.getOperand(0); 21537 SDLoc DL(Shuf); 21538 SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0); 21539 SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1); 21540 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1); 21541 } 21542 21543 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, 21544 // or turn a shuffle of a single concat into simpler shuffle then concat. 21545 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { 21546 EVT VT = N->getValueType(0); 21547 unsigned NumElts = VT.getVectorNumElements(); 21548 21549 SDValue N0 = N->getOperand(0); 21550 SDValue N1 = N->getOperand(1); 21551 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 21552 ArrayRef<int> Mask = SVN->getMask(); 21553 21554 SmallVector<SDValue, 4> Ops; 21555 EVT ConcatVT = N0.getOperand(0).getValueType(); 21556 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); 21557 unsigned NumConcats = NumElts / NumElemsPerConcat; 21558 21559 auto IsUndefMaskElt = [](int i) { return i == -1; }; 21560 21561 // Special case: shuffle(concat(A,B)) can be more efficiently represented 21562 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high 21563 // half vector elements. 21564 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && 21565 llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat), 21566 IsUndefMaskElt)) { 21567 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), 21568 N0.getOperand(1), 21569 Mask.slice(0, NumElemsPerConcat)); 21570 N1 = DAG.getUNDEF(ConcatVT); 21571 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); 21572 } 21573 21574 // Look at every vector that's inserted. We're looking for exact 21575 // subvector-sized copies from a concatenated vector 21576 for (unsigned I = 0; I != NumConcats; ++I) { 21577 unsigned Begin = I * NumElemsPerConcat; 21578 ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat); 21579 21580 // Make sure we're dealing with a copy. 21581 if (llvm::all_of(SubMask, IsUndefMaskElt)) { 21582 Ops.push_back(DAG.getUNDEF(ConcatVT)); 21583 continue; 21584 } 21585 21586 int OpIdx = -1; 21587 for (int i = 0; i != (int)NumElemsPerConcat; ++i) { 21588 if (IsUndefMaskElt(SubMask[i])) 21589 continue; 21590 if ((SubMask[i] % (int)NumElemsPerConcat) != i) 21591 return SDValue(); 21592 int EltOpIdx = SubMask[i] / NumElemsPerConcat; 21593 if (0 <= OpIdx && EltOpIdx != OpIdx) 21594 return SDValue(); 21595 OpIdx = EltOpIdx; 21596 } 21597 assert(0 <= OpIdx && "Unknown concat_vectors op"); 21598 21599 if (OpIdx < (int)N0.getNumOperands()) 21600 Ops.push_back(N0.getOperand(OpIdx)); 21601 else 21602 Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands())); 21603 } 21604 21605 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 21606 } 21607 21608 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 21609 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 21610 // 21611 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always 21612 // a simplification in some sense, but it isn't appropriate in general: some 21613 // BUILD_VECTORs are substantially cheaper than others. The general case 21614 // of a BUILD_VECTOR requires inserting each element individually (or 21615 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of 21616 // all constants is a single constant pool load. A BUILD_VECTOR where each 21617 // element is identical is a splat. A BUILD_VECTOR where most of the operands 21618 // are undef lowers to a small number of element insertions. 21619 // 21620 // To deal with this, we currently use a bunch of mostly arbitrary heuristics. 21621 // We don't fold shuffles where one side is a non-zero constant, and we don't 21622 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate 21623 // non-constant operands. This seems to work out reasonably well in practice. 21624 static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, 21625 SelectionDAG &DAG, 21626 const TargetLowering &TLI) { 21627 EVT VT = SVN->getValueType(0); 21628 unsigned NumElts = VT.getVectorNumElements(); 21629 SDValue N0 = SVN->getOperand(0); 21630 SDValue N1 = SVN->getOperand(1); 21631 21632 if (!N0->hasOneUse()) 21633 return SDValue(); 21634 21635 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as 21636 // discussed above. 21637 if (!N1.isUndef()) { 21638 if (!N1->hasOneUse()) 21639 return SDValue(); 21640 21641 bool N0AnyConst = isAnyConstantBuildVector(N0); 21642 bool N1AnyConst = isAnyConstantBuildVector(N1); 21643 if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode())) 21644 return SDValue(); 21645 if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode())) 21646 return SDValue(); 21647 } 21648 21649 // If both inputs are splats of the same value then we can safely merge this 21650 // to a single BUILD_VECTOR with undef elements based on the shuffle mask. 21651 bool IsSplat = false; 21652 auto *BV0 = dyn_cast<BuildVectorSDNode>(N0); 21653 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 21654 if (BV0 && BV1) 21655 if (SDValue Splat0 = BV0->getSplatValue()) 21656 IsSplat = (Splat0 == BV1->getSplatValue()); 21657 21658 SmallVector<SDValue, 8> Ops; 21659 SmallSet<SDValue, 16> DuplicateOps; 21660 for (int M : SVN->getMask()) { 21661 SDValue Op = DAG.getUNDEF(VT.getScalarType()); 21662 if (M >= 0) { 21663 int Idx = M < (int)NumElts ? M : M - NumElts; 21664 SDValue &S = (M < (int)NumElts ? N0 : N1); 21665 if (S.getOpcode() == ISD::BUILD_VECTOR) { 21666 Op = S.getOperand(Idx); 21667 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) { 21668 SDValue Op0 = S.getOperand(0); 21669 Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType()); 21670 } else { 21671 // Operand can't be combined - bail out. 21672 return SDValue(); 21673 } 21674 } 21675 21676 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're 21677 // generating a splat; semantically, this is fine, but it's likely to 21678 // generate low-quality code if the target can't reconstruct an appropriate 21679 // shuffle. 21680 if (!Op.isUndef() && !isIntOrFPConstant(Op)) 21681 if (!IsSplat && !DuplicateOps.insert(Op).second) 21682 return SDValue(); 21683 21684 Ops.push_back(Op); 21685 } 21686 21687 // BUILD_VECTOR requires all inputs to be of the same type, find the 21688 // maximum type and extend them all. 21689 EVT SVT = VT.getScalarType(); 21690 if (SVT.isInteger()) 21691 for (SDValue &Op : Ops) 21692 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 21693 if (SVT != VT.getScalarType()) 21694 for (SDValue &Op : Ops) 21695 Op = Op.isUndef() ? DAG.getUNDEF(SVT) 21696 : (TLI.isZExtFree(Op.getValueType(), SVT) 21697 ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT) 21698 : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT)); 21699 return DAG.getBuildVector(VT, SDLoc(SVN), Ops); 21700 } 21701 21702 // Match shuffles that can be converted to any_vector_extend_in_reg. 21703 // This is often generated during legalization. 21704 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)) 21705 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case. 21706 static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN, 21707 SelectionDAG &DAG, 21708 const TargetLowering &TLI, 21709 bool LegalOperations) { 21710 EVT VT = SVN->getValueType(0); 21711 bool IsBigEndian = DAG.getDataLayout().isBigEndian(); 21712 21713 // TODO Add support for big-endian when we have a test case. 21714 if (!VT.isInteger() || IsBigEndian) 21715 return SDValue(); 21716 21717 unsigned NumElts = VT.getVectorNumElements(); 21718 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 21719 ArrayRef<int> Mask = SVN->getMask(); 21720 SDValue N0 = SVN->getOperand(0); 21721 21722 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32)) 21723 auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) { 21724 for (unsigned i = 0; i != NumElts; ++i) { 21725 if (Mask[i] < 0) 21726 continue; 21727 if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale)) 21728 continue; 21729 return false; 21730 } 21731 return true; 21732 }; 21733 21734 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for 21735 // power-of-2 extensions as they are the most likely. 21736 for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) { 21737 // Check for non power of 2 vector sizes 21738 if (NumElts % Scale != 0) 21739 continue; 21740 if (!isAnyExtend(Scale)) 21741 continue; 21742 21743 EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale); 21744 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale); 21745 // Never create an illegal type. Only create unsupported operations if we 21746 // are pre-legalization. 21747 if (TLI.isTypeLegal(OutVT)) 21748 if (!LegalOperations || 21749 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT)) 21750 return DAG.getBitcast(VT, 21751 DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, 21752 SDLoc(SVN), OutVT, N0)); 21753 } 21754 21755 return SDValue(); 21756 } 21757 21758 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of 21759 // each source element of a large type into the lowest elements of a smaller 21760 // destination type. This is often generated during legalization. 21761 // If the source node itself was a '*_extend_vector_inreg' node then we should 21762 // then be able to remove it. 21763 static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, 21764 SelectionDAG &DAG) { 21765 EVT VT = SVN->getValueType(0); 21766 bool IsBigEndian = DAG.getDataLayout().isBigEndian(); 21767 21768 // TODO Add support for big-endian when we have a test case. 21769 if (!VT.isInteger() || IsBigEndian) 21770 return SDValue(); 21771 21772 SDValue N0 = peekThroughBitcasts(SVN->getOperand(0)); 21773 21774 unsigned Opcode = N0.getOpcode(); 21775 if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG && 21776 Opcode != ISD::SIGN_EXTEND_VECTOR_INREG && 21777 Opcode != ISD::ZERO_EXTEND_VECTOR_INREG) 21778 return SDValue(); 21779 21780 SDValue N00 = N0.getOperand(0); 21781 ArrayRef<int> Mask = SVN->getMask(); 21782 unsigned NumElts = VT.getVectorNumElements(); 21783 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 21784 unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits(); 21785 unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits(); 21786 21787 if (ExtDstSizeInBits % ExtSrcSizeInBits != 0) 21788 return SDValue(); 21789 unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits; 21790 21791 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1> 21792 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1> 21793 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1> 21794 auto isTruncate = [&Mask, &NumElts](unsigned Scale) { 21795 for (unsigned i = 0; i != NumElts; ++i) { 21796 if (Mask[i] < 0) 21797 continue; 21798 if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale)) 21799 continue; 21800 return false; 21801 } 21802 return true; 21803 }; 21804 21805 // At the moment we just handle the case where we've truncated back to the 21806 // same size as before the extension. 21807 // TODO: handle more extension/truncation cases as cases arise. 21808 if (EltSizeInBits != ExtSrcSizeInBits) 21809 return SDValue(); 21810 21811 // We can remove *extend_vector_inreg only if the truncation happens at 21812 // the same scale as the extension. 21813 if (isTruncate(ExtScale)) 21814 return DAG.getBitcast(VT, N00); 21815 21816 return SDValue(); 21817 } 21818 21819 // Combine shuffles of splat-shuffles of the form: 21820 // shuffle (shuffle V, undef, splat-mask), undef, M 21821 // If splat-mask contains undef elements, we need to be careful about 21822 // introducing undef's in the folded mask which are not the result of composing 21823 // the masks of the shuffles. 21824 static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf, 21825 SelectionDAG &DAG) { 21826 if (!Shuf->getOperand(1).isUndef()) 21827 return SDValue(); 21828 auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); 21829 if (!Splat || !Splat->isSplat()) 21830 return SDValue(); 21831 21832 ArrayRef<int> ShufMask = Shuf->getMask(); 21833 ArrayRef<int> SplatMask = Splat->getMask(); 21834 assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch"); 21835 21836 // Prefer simplifying to the splat-shuffle, if possible. This is legal if 21837 // every undef mask element in the splat-shuffle has a corresponding undef 21838 // element in the user-shuffle's mask or if the composition of mask elements 21839 // would result in undef. 21840 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask): 21841 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u] 21842 // In this case it is not legal to simplify to the splat-shuffle because we 21843 // may be exposing the users of the shuffle an undef element at index 1 21844 // which was not there before the combine. 21845 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u] 21846 // In this case the composition of masks yields SplatMask, so it's ok to 21847 // simplify to the splat-shuffle. 21848 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u] 21849 // In this case the composed mask includes all undef elements of SplatMask 21850 // and in addition sets element zero to undef. It is safe to simplify to 21851 // the splat-shuffle. 21852 auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask, 21853 ArrayRef<int> SplatMask) { 21854 for (unsigned i = 0, e = UserMask.size(); i != e; ++i) 21855 if (UserMask[i] != -1 && SplatMask[i] == -1 && 21856 SplatMask[UserMask[i]] != -1) 21857 return false; 21858 return true; 21859 }; 21860 if (CanSimplifyToExistingSplat(ShufMask, SplatMask)) 21861 return Shuf->getOperand(0); 21862 21863 // Create a new shuffle with a mask that is composed of the two shuffles' 21864 // masks. 21865 SmallVector<int, 32> NewMask; 21866 for (int Idx : ShufMask) 21867 NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]); 21868 21869 return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat), 21870 Splat->getOperand(0), Splat->getOperand(1), 21871 NewMask); 21872 } 21873 21874 /// Combine shuffle of shuffle of the form: 21875 /// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X 21876 static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf, 21877 SelectionDAG &DAG) { 21878 if (!OuterShuf->getOperand(1).isUndef()) 21879 return SDValue(); 21880 auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0)); 21881 if (!InnerShuf || !InnerShuf->getOperand(1).isUndef()) 21882 return SDValue(); 21883 21884 ArrayRef<int> OuterMask = OuterShuf->getMask(); 21885 ArrayRef<int> InnerMask = InnerShuf->getMask(); 21886 unsigned NumElts = OuterMask.size(); 21887 assert(NumElts == InnerMask.size() && "Mask length mismatch"); 21888 SmallVector<int, 32> CombinedMask(NumElts, -1); 21889 int SplatIndex = -1; 21890 for (unsigned i = 0; i != NumElts; ++i) { 21891 // Undef lanes remain undef. 21892 int OuterMaskElt = OuterMask[i]; 21893 if (OuterMaskElt == -1) 21894 continue; 21895 21896 // Peek through the shuffle masks to get the underlying source element. 21897 int InnerMaskElt = InnerMask[OuterMaskElt]; 21898 if (InnerMaskElt == -1) 21899 continue; 21900 21901 // Initialize the splatted element. 21902 if (SplatIndex == -1) 21903 SplatIndex = InnerMaskElt; 21904 21905 // Non-matching index - this is not a splat. 21906 if (SplatIndex != InnerMaskElt) 21907 return SDValue(); 21908 21909 CombinedMask[i] = InnerMaskElt; 21910 } 21911 assert((all_of(CombinedMask, [](int M) { return M == -1; }) || 21912 getSplatIndex(CombinedMask) != -1) && 21913 "Expected a splat mask"); 21914 21915 // TODO: The transform may be a win even if the mask is not legal. 21916 EVT VT = OuterShuf->getValueType(0); 21917 assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types"); 21918 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT)) 21919 return SDValue(); 21920 21921 return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0), 21922 InnerShuf->getOperand(1), CombinedMask); 21923 } 21924 21925 /// If the shuffle mask is taking exactly one element from the first vector 21926 /// operand and passing through all other elements from the second vector 21927 /// operand, return the index of the mask element that is choosing an element 21928 /// from the first operand. Otherwise, return -1. 21929 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) { 21930 int MaskSize = Mask.size(); 21931 int EltFromOp0 = -1; 21932 // TODO: This does not match if there are undef elements in the shuffle mask. 21933 // Should we ignore undefs in the shuffle mask instead? The trade-off is 21934 // removing an instruction (a shuffle), but losing the knowledge that some 21935 // vector lanes are not needed. 21936 for (int i = 0; i != MaskSize; ++i) { 21937 if (Mask[i] >= 0 && Mask[i] < MaskSize) { 21938 // We're looking for a shuffle of exactly one element from operand 0. 21939 if (EltFromOp0 != -1) 21940 return -1; 21941 EltFromOp0 = i; 21942 } else if (Mask[i] != i + MaskSize) { 21943 // Nothing from operand 1 can change lanes. 21944 return -1; 21945 } 21946 } 21947 return EltFromOp0; 21948 } 21949 21950 /// If a shuffle inserts exactly one element from a source vector operand into 21951 /// another vector operand and we can access the specified element as a scalar, 21952 /// then we can eliminate the shuffle. 21953 static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf, 21954 SelectionDAG &DAG) { 21955 // First, check if we are taking one element of a vector and shuffling that 21956 // element into another vector. 21957 ArrayRef<int> Mask = Shuf->getMask(); 21958 SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end()); 21959 SDValue Op0 = Shuf->getOperand(0); 21960 SDValue Op1 = Shuf->getOperand(1); 21961 int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask); 21962 if (ShufOp0Index == -1) { 21963 // Commute mask and check again. 21964 ShuffleVectorSDNode::commuteMask(CommutedMask); 21965 ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask); 21966 if (ShufOp0Index == -1) 21967 return SDValue(); 21968 // Commute operands to match the commuted shuffle mask. 21969 std::swap(Op0, Op1); 21970 Mask = CommutedMask; 21971 } 21972 21973 // The shuffle inserts exactly one element from operand 0 into operand 1. 21974 // Now see if we can access that element as a scalar via a real insert element 21975 // instruction. 21976 // TODO: We can try harder to locate the element as a scalar. Examples: it 21977 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant. 21978 assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && 21979 "Shuffle mask value must be from operand 0"); 21980 if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT) 21981 return SDValue(); 21982 21983 auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2)); 21984 if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index]) 21985 return SDValue(); 21986 21987 // There's an existing insertelement with constant insertion index, so we 21988 // don't need to check the legality/profitability of a replacement operation 21989 // that differs at most in the constant value. The target should be able to 21990 // lower any of those in a similar way. If not, legalization will expand this 21991 // to a scalar-to-vector plus shuffle. 21992 // 21993 // Note that the shuffle may move the scalar from the position that the insert 21994 // element used. Therefore, our new insert element occurs at the shuffle's 21995 // mask index value, not the insert's index value. 21996 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C' 21997 SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf)); 21998 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(), 21999 Op1, Op0.getOperand(1), NewInsIndex); 22000 } 22001 22002 /// If we have a unary shuffle of a shuffle, see if it can be folded away 22003 /// completely. This has the potential to lose undef knowledge because the first 22004 /// shuffle may not have an undef mask element where the second one does. So 22005 /// only call this after doing simplifications based on demanded elements. 22006 static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) { 22007 // shuf (shuf0 X, Y, Mask0), undef, Mask 22008 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); 22009 if (!Shuf0 || !Shuf->getOperand(1).isUndef()) 22010 return SDValue(); 22011 22012 ArrayRef<int> Mask = Shuf->getMask(); 22013 ArrayRef<int> Mask0 = Shuf0->getMask(); 22014 for (int i = 0, e = (int)Mask.size(); i != e; ++i) { 22015 // Ignore undef elements. 22016 if (Mask[i] == -1) 22017 continue; 22018 assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value"); 22019 22020 // Is the element of the shuffle operand chosen by this shuffle the same as 22021 // the element chosen by the shuffle operand itself? 22022 if (Mask0[Mask[i]] != Mask0[i]) 22023 return SDValue(); 22024 } 22025 // Every element of this shuffle is identical to the result of the previous 22026 // shuffle, so we can replace this value. 22027 return Shuf->getOperand(0); 22028 } 22029 22030 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { 22031 EVT VT = N->getValueType(0); 22032 unsigned NumElts = VT.getVectorNumElements(); 22033 22034 SDValue N0 = N->getOperand(0); 22035 SDValue N1 = N->getOperand(1); 22036 22037 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); 22038 22039 // Canonicalize shuffle undef, undef -> undef 22040 if (N0.isUndef() && N1.isUndef()) 22041 return DAG.getUNDEF(VT); 22042 22043 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 22044 22045 // Canonicalize shuffle v, v -> v, undef 22046 if (N0 == N1) 22047 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), 22048 createUnaryMask(SVN->getMask(), NumElts)); 22049 22050 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 22051 if (N0.isUndef()) 22052 return DAG.getCommutedVectorShuffle(*SVN); 22053 22054 // Remove references to rhs if it is undef 22055 if (N1.isUndef()) { 22056 bool Changed = false; 22057 SmallVector<int, 8> NewMask; 22058 for (unsigned i = 0; i != NumElts; ++i) { 22059 int Idx = SVN->getMaskElt(i); 22060 if (Idx >= (int)NumElts) { 22061 Idx = -1; 22062 Changed = true; 22063 } 22064 NewMask.push_back(Idx); 22065 } 22066 if (Changed) 22067 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); 22068 } 22069 22070 if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG)) 22071 return InsElt; 22072 22073 // A shuffle of a single vector that is a splatted value can always be folded. 22074 if (SDValue V = combineShuffleOfSplatVal(SVN, DAG)) 22075 return V; 22076 22077 if (SDValue V = formSplatFromShuffles(SVN, DAG)) 22078 return V; 22079 22080 // If it is a splat, check if the argument vector is another splat or a 22081 // build_vector. 22082 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { 22083 int SplatIndex = SVN->getSplatIndex(); 22084 if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) && 22085 TLI.isBinOp(N0.getOpcode()) && N0->getNumValues() == 1) { 22086 // splat (vector_bo L, R), Index --> 22087 // splat (scalar_bo (extelt L, Index), (extelt R, Index)) 22088 SDValue L = N0.getOperand(0), R = N0.getOperand(1); 22089 SDLoc DL(N); 22090 EVT EltVT = VT.getScalarType(); 22091 SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL); 22092 SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index); 22093 SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index); 22094 SDValue NewBO = 22095 DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR, N0->getFlags()); 22096 SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO); 22097 SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0); 22098 return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask); 22099 } 22100 22101 // If this is a bit convert that changes the element type of the vector but 22102 // not the number of vector elements, look through it. Be careful not to 22103 // look though conversions that change things like v4f32 to v2f64. 22104 SDNode *V = N0.getNode(); 22105 if (V->getOpcode() == ISD::BITCAST) { 22106 SDValue ConvInput = V->getOperand(0); 22107 if (ConvInput.getValueType().isVector() && 22108 ConvInput.getValueType().getVectorNumElements() == NumElts) 22109 V = ConvInput.getNode(); 22110 } 22111 22112 if (V->getOpcode() == ISD::BUILD_VECTOR) { 22113 assert(V->getNumOperands() == NumElts && 22114 "BUILD_VECTOR has wrong number of operands"); 22115 SDValue Base; 22116 bool AllSame = true; 22117 for (unsigned i = 0; i != NumElts; ++i) { 22118 if (!V->getOperand(i).isUndef()) { 22119 Base = V->getOperand(i); 22120 break; 22121 } 22122 } 22123 // Splat of <u, u, u, u>, return <u, u, u, u> 22124 if (!Base.getNode()) 22125 return N0; 22126 for (unsigned i = 0; i != NumElts; ++i) { 22127 if (V->getOperand(i) != Base) { 22128 AllSame = false; 22129 break; 22130 } 22131 } 22132 // Splat of <x, x, x, x>, return <x, x, x, x> 22133 if (AllSame) 22134 return N0; 22135 22136 // Canonicalize any other splat as a build_vector. 22137 SDValue Splatted = V->getOperand(SplatIndex); 22138 SmallVector<SDValue, 8> Ops(NumElts, Splatted); 22139 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); 22140 22141 // We may have jumped through bitcasts, so the type of the 22142 // BUILD_VECTOR may not match the type of the shuffle. 22143 if (V->getValueType(0) != VT) 22144 NewBV = DAG.getBitcast(VT, NewBV); 22145 return NewBV; 22146 } 22147 } 22148 22149 // Simplify source operands based on shuffle mask. 22150 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 22151 return SDValue(N, 0); 22152 22153 // This is intentionally placed after demanded elements simplification because 22154 // it could eliminate knowledge of undef elements created by this shuffle. 22155 if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN)) 22156 return ShufOp; 22157 22158 // Match shuffles that can be converted to any_vector_extend_in_reg. 22159 if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations)) 22160 return V; 22161 22162 // Combine "truncate_vector_in_reg" style shuffles. 22163 if (SDValue V = combineTruncationShuffle(SVN, DAG)) 22164 return V; 22165 22166 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 22167 Level < AfterLegalizeVectorOps && 22168 (N1.isUndef() || 22169 (N1.getOpcode() == ISD::CONCAT_VECTORS && 22170 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { 22171 if (SDValue V = partitionShuffleOfConcats(N, DAG)) 22172 return V; 22173 } 22174 22175 // A shuffle of a concat of the same narrow vector can be reduced to use 22176 // only low-half elements of a concat with undef: 22177 // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask' 22178 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() && 22179 N0.getNumOperands() == 2 && 22180 N0.getOperand(0) == N0.getOperand(1)) { 22181 int HalfNumElts = (int)NumElts / 2; 22182 SmallVector<int, 8> NewMask; 22183 for (unsigned i = 0; i != NumElts; ++i) { 22184 int Idx = SVN->getMaskElt(i); 22185 if (Idx >= HalfNumElts) { 22186 assert(Idx < (int)NumElts && "Shuffle mask chooses undef op"); 22187 Idx -= HalfNumElts; 22188 } 22189 NewMask.push_back(Idx); 22190 } 22191 if (TLI.isShuffleMaskLegal(NewMask, VT)) { 22192 SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType()); 22193 SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 22194 N0.getOperand(0), UndefVec); 22195 return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask); 22196 } 22197 } 22198 22199 // See if we can replace a shuffle with an insert_subvector. 22200 // e.g. v2i32 into v8i32: 22201 // shuffle(lhs,concat(rhs0,rhs1,rhs2,rhs3),0,1,2,3,10,11,6,7). 22202 // --> insert_subvector(lhs,rhs1,4). 22203 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT) && 22204 TLI.isOperationLegalOrCustom(ISD::INSERT_SUBVECTOR, VT)) { 22205 auto ShuffleToInsert = [&](SDValue LHS, SDValue RHS, ArrayRef<int> Mask) { 22206 // Ensure RHS subvectors are legal. 22207 assert(RHS.getOpcode() == ISD::CONCAT_VECTORS && "Can't find subvectors"); 22208 EVT SubVT = RHS.getOperand(0).getValueType(); 22209 int NumSubVecs = RHS.getNumOperands(); 22210 int NumSubElts = SubVT.getVectorNumElements(); 22211 assert((NumElts % NumSubElts) == 0 && "Subvector mismatch"); 22212 if (!TLI.isTypeLegal(SubVT)) 22213 return SDValue(); 22214 22215 // Don't bother if we have an unary shuffle (matches undef + LHS elts). 22216 if (all_of(Mask, [NumElts](int M) { return M < (int)NumElts; })) 22217 return SDValue(); 22218 22219 // Search [NumSubElts] spans for RHS sequence. 22220 // TODO: Can we avoid nested loops to increase performance? 22221 SmallVector<int> InsertionMask(NumElts); 22222 for (int SubVec = 0; SubVec != NumSubVecs; ++SubVec) { 22223 for (int SubIdx = 0; SubIdx != (int)NumElts; SubIdx += NumSubElts) { 22224 // Reset mask to identity. 22225 std::iota(InsertionMask.begin(), InsertionMask.end(), 0); 22226 22227 // Add subvector insertion. 22228 std::iota(InsertionMask.begin() + SubIdx, 22229 InsertionMask.begin() + SubIdx + NumSubElts, 22230 NumElts + (SubVec * NumSubElts)); 22231 22232 // See if the shuffle mask matches the reference insertion mask. 22233 bool MatchingShuffle = true; 22234 for (int i = 0; i != (int)NumElts; ++i) { 22235 int ExpectIdx = InsertionMask[i]; 22236 int ActualIdx = Mask[i]; 22237 if (0 <= ActualIdx && ExpectIdx != ActualIdx) { 22238 MatchingShuffle = false; 22239 break; 22240 } 22241 } 22242 22243 if (MatchingShuffle) 22244 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, LHS, 22245 RHS.getOperand(SubVec), 22246 DAG.getVectorIdxConstant(SubIdx, SDLoc(N))); 22247 } 22248 } 22249 return SDValue(); 22250 }; 22251 ArrayRef<int> Mask = SVN->getMask(); 22252 if (N1.getOpcode() == ISD::CONCAT_VECTORS) 22253 if (SDValue InsertN1 = ShuffleToInsert(N0, N1, Mask)) 22254 return InsertN1; 22255 if (N0.getOpcode() == ISD::CONCAT_VECTORS) { 22256 SmallVector<int> CommuteMask(Mask.begin(), Mask.end()); 22257 ShuffleVectorSDNode::commuteMask(CommuteMask); 22258 if (SDValue InsertN0 = ShuffleToInsert(N1, N0, CommuteMask)) 22259 return InsertN0; 22260 } 22261 } 22262 22263 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 22264 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 22265 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) 22266 if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI)) 22267 return Res; 22268 22269 // If this shuffle only has a single input that is a bitcasted shuffle, 22270 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output 22271 // back to their original types. 22272 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 22273 N1.isUndef() && Level < AfterLegalizeVectorOps && 22274 TLI.isTypeLegal(VT)) { 22275 22276 SDValue BC0 = peekThroughOneUseBitcasts(N0); 22277 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { 22278 EVT SVT = VT.getScalarType(); 22279 EVT InnerVT = BC0->getValueType(0); 22280 EVT InnerSVT = InnerVT.getScalarType(); 22281 22282 // Determine which shuffle works with the smaller scalar type. 22283 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; 22284 EVT ScaleSVT = ScaleVT.getScalarType(); 22285 22286 if (TLI.isTypeLegal(ScaleVT) && 22287 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && 22288 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { 22289 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 22290 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 22291 22292 // Scale the shuffle masks to the smaller scalar type. 22293 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); 22294 SmallVector<int, 8> InnerMask; 22295 SmallVector<int, 8> OuterMask; 22296 narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask); 22297 narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask); 22298 22299 // Merge the shuffle masks. 22300 SmallVector<int, 8> NewMask; 22301 for (int M : OuterMask) 22302 NewMask.push_back(M < 0 ? -1 : InnerMask[M]); 22303 22304 // Test for shuffle mask legality over both commutations. 22305 SDValue SV0 = BC0->getOperand(0); 22306 SDValue SV1 = BC0->getOperand(1); 22307 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 22308 if (!LegalMask) { 22309 std::swap(SV0, SV1); 22310 ShuffleVectorSDNode::commuteMask(NewMask); 22311 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 22312 } 22313 22314 if (LegalMask) { 22315 SV0 = DAG.getBitcast(ScaleVT, SV0); 22316 SV1 = DAG.getBitcast(ScaleVT, SV1); 22317 return DAG.getBitcast( 22318 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); 22319 } 22320 } 22321 } 22322 } 22323 22324 // Compute the combined shuffle mask for a shuffle with SV0 as the first 22325 // operand, and SV1 as the second operand. 22326 // i.e. Merge SVN(OtherSVN, N1) -> shuffle(SV0, SV1, Mask) iff Commute = false 22327 // Merge SVN(N1, OtherSVN) -> shuffle(SV0, SV1, Mask') iff Commute = true 22328 auto MergeInnerShuffle = 22329 [NumElts, &VT](bool Commute, ShuffleVectorSDNode *SVN, 22330 ShuffleVectorSDNode *OtherSVN, SDValue N1, 22331 const TargetLowering &TLI, SDValue &SV0, SDValue &SV1, 22332 SmallVectorImpl<int> &Mask) -> bool { 22333 // Don't try to fold splats; they're likely to simplify somehow, or they 22334 // might be free. 22335 if (OtherSVN->isSplat()) 22336 return false; 22337 22338 SV0 = SV1 = SDValue(); 22339 Mask.clear(); 22340 22341 for (unsigned i = 0; i != NumElts; ++i) { 22342 int Idx = SVN->getMaskElt(i); 22343 if (Idx < 0) { 22344 // Propagate Undef. 22345 Mask.push_back(Idx); 22346 continue; 22347 } 22348 22349 if (Commute) 22350 Idx = (Idx < (int)NumElts) ? (Idx + NumElts) : (Idx - NumElts); 22351 22352 SDValue CurrentVec; 22353 if (Idx < (int)NumElts) { 22354 // This shuffle index refers to the inner shuffle N0. Lookup the inner 22355 // shuffle mask to identify which vector is actually referenced. 22356 Idx = OtherSVN->getMaskElt(Idx); 22357 if (Idx < 0) { 22358 // Propagate Undef. 22359 Mask.push_back(Idx); 22360 continue; 22361 } 22362 CurrentVec = (Idx < (int)NumElts) ? OtherSVN->getOperand(0) 22363 : OtherSVN->getOperand(1); 22364 } else { 22365 // This shuffle index references an element within N1. 22366 CurrentVec = N1; 22367 } 22368 22369 // Simple case where 'CurrentVec' is UNDEF. 22370 if (CurrentVec.isUndef()) { 22371 Mask.push_back(-1); 22372 continue; 22373 } 22374 22375 // Canonicalize the shuffle index. We don't know yet if CurrentVec 22376 // will be the first or second operand of the combined shuffle. 22377 Idx = Idx % NumElts; 22378 if (!SV0.getNode() || SV0 == CurrentVec) { 22379 // Ok. CurrentVec is the left hand side. 22380 // Update the mask accordingly. 22381 SV0 = CurrentVec; 22382 Mask.push_back(Idx); 22383 continue; 22384 } 22385 if (!SV1.getNode() || SV1 == CurrentVec) { 22386 // Ok. CurrentVec is the right hand side. 22387 // Update the mask accordingly. 22388 SV1 = CurrentVec; 22389 Mask.push_back(Idx + NumElts); 22390 continue; 22391 } 22392 22393 // Last chance - see if the vector is another shuffle and if it 22394 // uses one of the existing candidate shuffle ops. 22395 if (auto *CurrentSVN = dyn_cast<ShuffleVectorSDNode>(CurrentVec)) { 22396 int InnerIdx = CurrentSVN->getMaskElt(Idx); 22397 if (InnerIdx < 0) { 22398 Mask.push_back(-1); 22399 continue; 22400 } 22401 SDValue InnerVec = (InnerIdx < (int)NumElts) 22402 ? CurrentSVN->getOperand(0) 22403 : CurrentSVN->getOperand(1); 22404 if (InnerVec.isUndef()) { 22405 Mask.push_back(-1); 22406 continue; 22407 } 22408 InnerIdx %= NumElts; 22409 if (InnerVec == SV0) { 22410 Mask.push_back(InnerIdx); 22411 continue; 22412 } 22413 if (InnerVec == SV1) { 22414 Mask.push_back(InnerIdx + NumElts); 22415 continue; 22416 } 22417 } 22418 22419 // Bail out if we cannot convert the shuffle pair into a single shuffle. 22420 return false; 22421 } 22422 22423 if (llvm::all_of(Mask, [](int M) { return M < 0; })) 22424 return true; 22425 22426 // Avoid introducing shuffles with illegal mask. 22427 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 22428 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 22429 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 22430 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) 22431 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) 22432 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) 22433 if (TLI.isShuffleMaskLegal(Mask, VT)) 22434 return true; 22435 22436 std::swap(SV0, SV1); 22437 ShuffleVectorSDNode::commuteMask(Mask); 22438 return TLI.isShuffleMaskLegal(Mask, VT); 22439 }; 22440 22441 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { 22442 // Canonicalize shuffles according to rules: 22443 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) 22444 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) 22445 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) 22446 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && 22447 N0.getOpcode() != ISD::VECTOR_SHUFFLE) { 22448 // The incoming shuffle must be of the same type as the result of the 22449 // current shuffle. 22450 assert(N1->getOperand(0).getValueType() == VT && 22451 "Shuffle types don't match"); 22452 22453 SDValue SV0 = N1->getOperand(0); 22454 SDValue SV1 = N1->getOperand(1); 22455 bool HasSameOp0 = N0 == SV0; 22456 bool IsSV1Undef = SV1.isUndef(); 22457 if (HasSameOp0 || IsSV1Undef || N0 == SV1) 22458 // Commute the operands of this shuffle so merging below will trigger. 22459 return DAG.getCommutedVectorShuffle(*SVN); 22460 } 22461 22462 // Canonicalize splat shuffles to the RHS to improve merging below. 22463 // shuffle(splat(A,u), shuffle(C,D)) -> shuffle'(shuffle(C,D), splat(A,u)) 22464 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && 22465 N1.getOpcode() == ISD::VECTOR_SHUFFLE && 22466 cast<ShuffleVectorSDNode>(N0)->isSplat() && 22467 !cast<ShuffleVectorSDNode>(N1)->isSplat()) { 22468 return DAG.getCommutedVectorShuffle(*SVN); 22469 } 22470 22471 // Try to fold according to rules: 22472 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 22473 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 22474 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 22475 // Don't try to fold shuffles with illegal type. 22476 // Only fold if this shuffle is the only user of the other shuffle. 22477 // Try matching shuffle(C,shuffle(A,B)) commutted patterns as well. 22478 for (int i = 0; i != 2; ++i) { 22479 if (N->getOperand(i).getOpcode() == ISD::VECTOR_SHUFFLE && 22480 N->isOnlyUserOf(N->getOperand(i).getNode())) { 22481 // The incoming shuffle must be of the same type as the result of the 22482 // current shuffle. 22483 auto *OtherSV = cast<ShuffleVectorSDNode>(N->getOperand(i)); 22484 assert(OtherSV->getOperand(0).getValueType() == VT && 22485 "Shuffle types don't match"); 22486 22487 SDValue SV0, SV1; 22488 SmallVector<int, 4> Mask; 22489 if (MergeInnerShuffle(i != 0, SVN, OtherSV, N->getOperand(1 - i), TLI, 22490 SV0, SV1, Mask)) { 22491 // Check if all indices in Mask are Undef. In case, propagate Undef. 22492 if (llvm::all_of(Mask, [](int M) { return M < 0; })) 22493 return DAG.getUNDEF(VT); 22494 22495 return DAG.getVectorShuffle(VT, SDLoc(N), 22496 SV0 ? SV0 : DAG.getUNDEF(VT), 22497 SV1 ? SV1 : DAG.getUNDEF(VT), Mask); 22498 } 22499 } 22500 } 22501 22502 // Merge shuffles through binops if we are able to merge it with at least 22503 // one other shuffles. 22504 // shuffle(bop(shuffle(x,y),shuffle(z,w)),undef) 22505 // shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))) 22506 unsigned SrcOpcode = N0.getOpcode(); 22507 if (TLI.isBinOp(SrcOpcode) && N->isOnlyUserOf(N0.getNode()) && 22508 (N1.isUndef() || 22509 (SrcOpcode == N1.getOpcode() && N->isOnlyUserOf(N1.getNode())))) { 22510 // Get binop source ops, or just pass on the undef. 22511 SDValue Op00 = N0.getOperand(0); 22512 SDValue Op01 = N0.getOperand(1); 22513 SDValue Op10 = N1.isUndef() ? N1 : N1.getOperand(0); 22514 SDValue Op11 = N1.isUndef() ? N1 : N1.getOperand(1); 22515 // TODO: We might be able to relax the VT check but we don't currently 22516 // have any isBinOp() that has different result/ops VTs so play safe until 22517 // we have test coverage. 22518 if (Op00.getValueType() == VT && Op10.getValueType() == VT && 22519 Op01.getValueType() == VT && Op11.getValueType() == VT && 22520 (Op00.getOpcode() == ISD::VECTOR_SHUFFLE || 22521 Op10.getOpcode() == ISD::VECTOR_SHUFFLE || 22522 Op01.getOpcode() == ISD::VECTOR_SHUFFLE || 22523 Op11.getOpcode() == ISD::VECTOR_SHUFFLE)) { 22524 auto CanMergeInnerShuffle = [&](SDValue &SV0, SDValue &SV1, 22525 SmallVectorImpl<int> &Mask, bool LeftOp, 22526 bool Commute) { 22527 SDValue InnerN = Commute ? N1 : N0; 22528 SDValue Op0 = LeftOp ? Op00 : Op01; 22529 SDValue Op1 = LeftOp ? Op10 : Op11; 22530 if (Commute) 22531 std::swap(Op0, Op1); 22532 // Only accept the merged shuffle if we don't introduce undef elements, 22533 // or the inner shuffle already contained undef elements. 22534 auto *SVN0 = dyn_cast<ShuffleVectorSDNode>(Op0); 22535 return SVN0 && InnerN->isOnlyUserOf(SVN0) && 22536 MergeInnerShuffle(Commute, SVN, SVN0, Op1, TLI, SV0, SV1, 22537 Mask) && 22538 (llvm::any_of(SVN0->getMask(), [](int M) { return M < 0; }) || 22539 llvm::none_of(Mask, [](int M) { return M < 0; })); 22540 }; 22541 22542 // Ensure we don't increase the number of shuffles - we must merge a 22543 // shuffle from at least one of the LHS and RHS ops. 22544 bool MergedLeft = false; 22545 SDValue LeftSV0, LeftSV1; 22546 SmallVector<int, 4> LeftMask; 22547 if (CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, false) || 22548 CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, true)) { 22549 MergedLeft = true; 22550 } else { 22551 LeftMask.assign(SVN->getMask().begin(), SVN->getMask().end()); 22552 LeftSV0 = Op00, LeftSV1 = Op10; 22553 } 22554 22555 bool MergedRight = false; 22556 SDValue RightSV0, RightSV1; 22557 SmallVector<int, 4> RightMask; 22558 if (CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, false) || 22559 CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, true)) { 22560 MergedRight = true; 22561 } else { 22562 RightMask.assign(SVN->getMask().begin(), SVN->getMask().end()); 22563 RightSV0 = Op01, RightSV1 = Op11; 22564 } 22565 22566 if (MergedLeft || MergedRight) { 22567 SDLoc DL(N); 22568 SDValue LHS = DAG.getVectorShuffle( 22569 VT, DL, LeftSV0 ? LeftSV0 : DAG.getUNDEF(VT), 22570 LeftSV1 ? LeftSV1 : DAG.getUNDEF(VT), LeftMask); 22571 SDValue RHS = DAG.getVectorShuffle( 22572 VT, DL, RightSV0 ? RightSV0 : DAG.getUNDEF(VT), 22573 RightSV1 ? RightSV1 : DAG.getUNDEF(VT), RightMask); 22574 return DAG.getNode(SrcOpcode, DL, VT, LHS, RHS); 22575 } 22576 } 22577 } 22578 } 22579 22580 if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG)) 22581 return V; 22582 22583 return SDValue(); 22584 } 22585 22586 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { 22587 SDValue InVal = N->getOperand(0); 22588 EVT VT = N->getValueType(0); 22589 22590 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern 22591 // with a VECTOR_SHUFFLE and possible truncate. 22592 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 22593 VT.isFixedLengthVector() && 22594 InVal->getOperand(0).getValueType().isFixedLengthVector()) { 22595 SDValue InVec = InVal->getOperand(0); 22596 SDValue EltNo = InVal->getOperand(1); 22597 auto InVecT = InVec.getValueType(); 22598 if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) { 22599 SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1); 22600 int Elt = C0->getZExtValue(); 22601 NewMask[0] = Elt; 22602 // If we have an implict truncate do truncate here as long as it's legal. 22603 // if it's not legal, this should 22604 if (VT.getScalarType() != InVal.getValueType() && 22605 InVal.getValueType().isScalarInteger() && 22606 isTypeLegal(VT.getScalarType())) { 22607 SDValue Val = 22608 DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal); 22609 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val); 22610 } 22611 if (VT.getScalarType() == InVecT.getScalarType() && 22612 VT.getVectorNumElements() <= InVecT.getVectorNumElements()) { 22613 SDValue LegalShuffle = 22614 TLI.buildLegalVectorShuffle(InVecT, SDLoc(N), InVec, 22615 DAG.getUNDEF(InVecT), NewMask, DAG); 22616 if (LegalShuffle) { 22617 // If the initial vector is the correct size this shuffle is a 22618 // valid result. 22619 if (VT == InVecT) 22620 return LegalShuffle; 22621 // If not we must truncate the vector. 22622 if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) { 22623 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N)); 22624 EVT SubVT = EVT::getVectorVT(*DAG.getContext(), 22625 InVecT.getVectorElementType(), 22626 VT.getVectorNumElements()); 22627 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, 22628 LegalShuffle, ZeroIdx); 22629 } 22630 } 22631 } 22632 } 22633 } 22634 22635 return SDValue(); 22636 } 22637 22638 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { 22639 EVT VT = N->getValueType(0); 22640 SDValue N0 = N->getOperand(0); 22641 SDValue N1 = N->getOperand(1); 22642 SDValue N2 = N->getOperand(2); 22643 uint64_t InsIdx = N->getConstantOperandVal(2); 22644 22645 // If inserting an UNDEF, just return the original vector. 22646 if (N1.isUndef()) 22647 return N0; 22648 22649 // If this is an insert of an extracted vector into an undef vector, we can 22650 // just use the input to the extract. 22651 if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 22652 N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT) 22653 return N1.getOperand(0); 22654 22655 // If we are inserting a bitcast value into an undef, with the same 22656 // number of elements, just use the bitcast input of the extract. 22657 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 -> 22658 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2) 22659 if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST && 22660 N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR && 22661 N1.getOperand(0).getOperand(1) == N2 && 22662 N1.getOperand(0).getOperand(0).getValueType().getVectorElementCount() == 22663 VT.getVectorElementCount() && 22664 N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() == 22665 VT.getSizeInBits()) { 22666 return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0)); 22667 } 22668 22669 // If both N1 and N2 are bitcast values on which insert_subvector 22670 // would makes sense, pull the bitcast through. 22671 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 -> 22672 // BITCAST (INSERT_SUBVECTOR N0 N1 N2) 22673 if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) { 22674 SDValue CN0 = N0.getOperand(0); 22675 SDValue CN1 = N1.getOperand(0); 22676 EVT CN0VT = CN0.getValueType(); 22677 EVT CN1VT = CN1.getValueType(); 22678 if (CN0VT.isVector() && CN1VT.isVector() && 22679 CN0VT.getVectorElementType() == CN1VT.getVectorElementType() && 22680 CN0VT.getVectorElementCount() == VT.getVectorElementCount()) { 22681 SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), 22682 CN0.getValueType(), CN0, CN1, N2); 22683 return DAG.getBitcast(VT, NewINSERT); 22684 } 22685 } 22686 22687 // Combine INSERT_SUBVECTORs where we are inserting to the same index. 22688 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) 22689 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) 22690 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && 22691 N0.getOperand(1).getValueType() == N1.getValueType() && 22692 N0.getOperand(2) == N2) 22693 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), 22694 N1, N2); 22695 22696 // Eliminate an intermediate insert into an undef vector: 22697 // insert_subvector undef, (insert_subvector undef, X, 0), N2 --> 22698 // insert_subvector undef, X, N2 22699 if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR && 22700 N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2))) 22701 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0, 22702 N1.getOperand(1), N2); 22703 22704 // Push subvector bitcasts to the output, adjusting the index as we go. 22705 // insert_subvector(bitcast(v), bitcast(s), c1) 22706 // -> bitcast(insert_subvector(v, s, c2)) 22707 if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) && 22708 N1.getOpcode() == ISD::BITCAST) { 22709 SDValue N0Src = peekThroughBitcasts(N0); 22710 SDValue N1Src = peekThroughBitcasts(N1); 22711 EVT N0SrcSVT = N0Src.getValueType().getScalarType(); 22712 EVT N1SrcSVT = N1Src.getValueType().getScalarType(); 22713 if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) && 22714 N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) { 22715 EVT NewVT; 22716 SDLoc DL(N); 22717 SDValue NewIdx; 22718 LLVMContext &Ctx = *DAG.getContext(); 22719 ElementCount NumElts = VT.getVectorElementCount(); 22720 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 22721 if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) { 22722 unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits(); 22723 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale); 22724 NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL); 22725 } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) { 22726 unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits; 22727 if (NumElts.isKnownMultipleOf(Scale) && (InsIdx % Scale) == 0) { 22728 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, 22729 NumElts.divideCoefficientBy(Scale)); 22730 NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL); 22731 } 22732 } 22733 if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) { 22734 SDValue Res = DAG.getBitcast(NewVT, N0Src); 22735 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx); 22736 return DAG.getBitcast(VT, Res); 22737 } 22738 } 22739 } 22740 22741 // Canonicalize insert_subvector dag nodes. 22742 // Example: 22743 // (insert_subvector (insert_subvector A, Idx0), Idx1) 22744 // -> (insert_subvector (insert_subvector A, Idx1), Idx0) 22745 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() && 22746 N1.getValueType() == N0.getOperand(1).getValueType()) { 22747 unsigned OtherIdx = N0.getConstantOperandVal(2); 22748 if (InsIdx < OtherIdx) { 22749 // Swap nodes. 22750 SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, 22751 N0.getOperand(0), N1, N2); 22752 AddToWorklist(NewOp.getNode()); 22753 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()), 22754 VT, NewOp, N0.getOperand(1), N0.getOperand(2)); 22755 } 22756 } 22757 22758 // If the input vector is a concatenation, and the insert replaces 22759 // one of the pieces, we can optimize into a single concat_vectors. 22760 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() && 22761 N0.getOperand(0).getValueType() == N1.getValueType() && 22762 N0.getOperand(0).getValueType().isScalableVector() == 22763 N1.getValueType().isScalableVector()) { 22764 unsigned Factor = N1.getValueType().getVectorMinNumElements(); 22765 SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end()); 22766 Ops[InsIdx / Factor] = N1; 22767 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 22768 } 22769 22770 // Simplify source operands based on insertion. 22771 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 22772 return SDValue(N, 0); 22773 22774 return SDValue(); 22775 } 22776 22777 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { 22778 SDValue N0 = N->getOperand(0); 22779 22780 // fold (fp_to_fp16 (fp16_to_fp op)) -> op 22781 if (N0->getOpcode() == ISD::FP16_TO_FP) 22782 return N0->getOperand(0); 22783 22784 return SDValue(); 22785 } 22786 22787 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { 22788 SDValue N0 = N->getOperand(0); 22789 22790 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) 22791 if (!TLI.shouldKeepZExtForFP16Conv() && N0->getOpcode() == ISD::AND) { 22792 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); 22793 if (AndConst && AndConst->getAPIntValue() == 0xffff) { 22794 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), 22795 N0.getOperand(0)); 22796 } 22797 } 22798 22799 return SDValue(); 22800 } 22801 22802 SDValue DAGCombiner::visitVECREDUCE(SDNode *N) { 22803 SDValue N0 = N->getOperand(0); 22804 EVT VT = N0.getValueType(); 22805 unsigned Opcode = N->getOpcode(); 22806 22807 // VECREDUCE over 1-element vector is just an extract. 22808 if (VT.getVectorElementCount().isScalar()) { 22809 SDLoc dl(N); 22810 SDValue Res = 22811 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0, 22812 DAG.getVectorIdxConstant(0, dl)); 22813 if (Res.getValueType() != N->getValueType(0)) 22814 Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res); 22815 return Res; 22816 } 22817 22818 // On an boolean vector an and/or reduction is the same as a umin/umax 22819 // reduction. Convert them if the latter is legal while the former isn't. 22820 if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) { 22821 unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND 22822 ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX; 22823 if (!TLI.isOperationLegalOrCustom(Opcode, VT) && 22824 TLI.isOperationLegalOrCustom(NewOpcode, VT) && 22825 DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits()) 22826 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0); 22827 } 22828 22829 // vecreduce_or(insert_subvector(zero or undef, val)) -> vecreduce_or(val) 22830 // vecreduce_and(insert_subvector(ones or undef, val)) -> vecreduce_and(val) 22831 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && 22832 TLI.isTypeLegal(N0.getOperand(1).getValueType())) { 22833 SDValue Vec = N0.getOperand(0); 22834 SDValue Subvec = N0.getOperand(1); 22835 if ((Opcode == ISD::VECREDUCE_OR && 22836 (N0.getOperand(0).isUndef() || isNullOrNullSplat(Vec))) || 22837 (Opcode == ISD::VECREDUCE_AND && 22838 (N0.getOperand(0).isUndef() || isAllOnesOrAllOnesSplat(Vec)))) 22839 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), Subvec); 22840 } 22841 22842 return SDValue(); 22843 } 22844 22845 SDValue DAGCombiner::visitVPOp(SDNode *N) { 22846 // VP operations in which all vector elements are disabled - either by 22847 // determining that the mask is all false or that the EVL is 0 - can be 22848 // eliminated. 22849 bool AreAllEltsDisabled = false; 22850 if (auto EVLIdx = ISD::getVPExplicitVectorLengthIdx(N->getOpcode())) 22851 AreAllEltsDisabled |= isNullConstant(N->getOperand(*EVLIdx)); 22852 if (auto MaskIdx = ISD::getVPMaskIdx(N->getOpcode())) 22853 AreAllEltsDisabled |= 22854 ISD::isConstantSplatVectorAllZeros(N->getOperand(*MaskIdx).getNode()); 22855 22856 // This is the only generic VP combine we support for now. 22857 if (!AreAllEltsDisabled) 22858 return SDValue(); 22859 22860 // Binary operations can be replaced by UNDEF. 22861 if (ISD::isVPBinaryOp(N->getOpcode())) 22862 return DAG.getUNDEF(N->getValueType(0)); 22863 22864 // VP Memory operations can be replaced by either the chain (stores) or the 22865 // chain + undef (loads). 22866 if (const auto *MemSD = dyn_cast<MemSDNode>(N)) { 22867 if (MemSD->writeMem()) 22868 return MemSD->getChain(); 22869 return CombineTo(N, DAG.getUNDEF(N->getValueType(0)), MemSD->getChain()); 22870 } 22871 22872 // Reduction operations return the start operand when no elements are active. 22873 if (ISD::isVPReduction(N->getOpcode())) 22874 return N->getOperand(0); 22875 22876 return SDValue(); 22877 } 22878 22879 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle 22880 /// with the destination vector and a zero vector. 22881 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> 22882 /// vector_shuffle V, Zero, <0, 4, 2, 4> 22883 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { 22884 assert(N->getOpcode() == ISD::AND && "Unexpected opcode!"); 22885 22886 EVT VT = N->getValueType(0); 22887 SDValue LHS = N->getOperand(0); 22888 SDValue RHS = peekThroughBitcasts(N->getOperand(1)); 22889 SDLoc DL(N); 22890 22891 // Make sure we're not running after operation legalization where it 22892 // may have custom lowered the vector shuffles. 22893 if (LegalOperations) 22894 return SDValue(); 22895 22896 if (RHS.getOpcode() != ISD::BUILD_VECTOR) 22897 return SDValue(); 22898 22899 EVT RVT = RHS.getValueType(); 22900 unsigned NumElts = RHS.getNumOperands(); 22901 22902 // Attempt to create a valid clear mask, splitting the mask into 22903 // sub elements and checking to see if each is 22904 // all zeros or all ones - suitable for shuffle masking. 22905 auto BuildClearMask = [&](int Split) { 22906 int NumSubElts = NumElts * Split; 22907 int NumSubBits = RVT.getScalarSizeInBits() / Split; 22908 22909 SmallVector<int, 8> Indices; 22910 for (int i = 0; i != NumSubElts; ++i) { 22911 int EltIdx = i / Split; 22912 int SubIdx = i % Split; 22913 SDValue Elt = RHS.getOperand(EltIdx); 22914 // X & undef --> 0 (not undef). So this lane must be converted to choose 22915 // from the zero constant vector (same as if the element had all 0-bits). 22916 if (Elt.isUndef()) { 22917 Indices.push_back(i + NumSubElts); 22918 continue; 22919 } 22920 22921 APInt Bits; 22922 if (isa<ConstantSDNode>(Elt)) 22923 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); 22924 else if (isa<ConstantFPSDNode>(Elt)) 22925 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); 22926 else 22927 return SDValue(); 22928 22929 // Extract the sub element from the constant bit mask. 22930 if (DAG.getDataLayout().isBigEndian()) 22931 Bits = Bits.extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits); 22932 else 22933 Bits = Bits.extractBits(NumSubBits, SubIdx * NumSubBits); 22934 22935 if (Bits.isAllOnes()) 22936 Indices.push_back(i); 22937 else if (Bits == 0) 22938 Indices.push_back(i + NumSubElts); 22939 else 22940 return SDValue(); 22941 } 22942 22943 // Let's see if the target supports this vector_shuffle. 22944 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); 22945 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); 22946 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) 22947 return SDValue(); 22948 22949 SDValue Zero = DAG.getConstant(0, DL, ClearVT); 22950 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, 22951 DAG.getBitcast(ClearVT, LHS), 22952 Zero, Indices)); 22953 }; 22954 22955 // Determine maximum split level (byte level masking). 22956 int MaxSplit = 1; 22957 if (RVT.getScalarSizeInBits() % 8 == 0) 22958 MaxSplit = RVT.getScalarSizeInBits() / 8; 22959 22960 for (int Split = 1; Split <= MaxSplit; ++Split) 22961 if (RVT.getScalarSizeInBits() % Split == 0) 22962 if (SDValue S = BuildClearMask(Split)) 22963 return S; 22964 22965 return SDValue(); 22966 } 22967 22968 /// If a vector binop is performed on splat values, it may be profitable to 22969 /// extract, scalarize, and insert/splat. 22970 static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG, 22971 const SDLoc &DL) { 22972 SDValue N0 = N->getOperand(0); 22973 SDValue N1 = N->getOperand(1); 22974 unsigned Opcode = N->getOpcode(); 22975 EVT VT = N->getValueType(0); 22976 EVT EltVT = VT.getVectorElementType(); 22977 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 22978 22979 // TODO: Remove/replace the extract cost check? If the elements are available 22980 // as scalars, then there may be no extract cost. Should we ask if 22981 // inserting a scalar back into a vector is cheap instead? 22982 int Index0, Index1; 22983 SDValue Src0 = DAG.getSplatSourceVector(N0, Index0); 22984 SDValue Src1 = DAG.getSplatSourceVector(N1, Index1); 22985 if (!Src0 || !Src1 || Index0 != Index1 || 22986 Src0.getValueType().getVectorElementType() != EltVT || 22987 Src1.getValueType().getVectorElementType() != EltVT || 22988 !TLI.isExtractVecEltCheap(VT, Index0) || 22989 !TLI.isOperationLegalOrCustom(Opcode, EltVT)) 22990 return SDValue(); 22991 22992 SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL); 22993 SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src0, IndexC); 22994 SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src1, IndexC); 22995 SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags()); 22996 22997 // If all lanes but 1 are undefined, no need to splat the scalar result. 22998 // TODO: Keep track of undefs and use that info in the general case. 22999 if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() && 23000 count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 && 23001 count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) { 23002 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) --> 23003 // build_vec ..undef, (bo X, Y), undef... 23004 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT)); 23005 Ops[Index0] = ScalarBO; 23006 return DAG.getBuildVector(VT, DL, Ops); 23007 } 23008 23009 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index 23010 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO); 23011 return DAG.getBuildVector(VT, DL, Ops); 23012 } 23013 23014 /// Visit a binary vector operation, like ADD. 23015 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N, const SDLoc &DL) { 23016 EVT VT = N->getValueType(0); 23017 assert(VT.isVector() && "SimplifyVBinOp only works on vectors!"); 23018 23019 SDValue LHS = N->getOperand(0); 23020 SDValue RHS = N->getOperand(1); 23021 unsigned Opcode = N->getOpcode(); 23022 SDNodeFlags Flags = N->getFlags(); 23023 23024 // Move unary shuffles with identical masks after a vector binop: 23025 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask)) 23026 // --> shuffle (VBinOp A, B), Undef, Mask 23027 // This does not require type legality checks because we are creating the 23028 // same types of operations that are in the original sequence. We do have to 23029 // restrict ops like integer div that have immediate UB (eg, div-by-zero) 23030 // though. This code is adapted from the identical transform in instcombine. 23031 if (Opcode != ISD::UDIV && Opcode != ISD::SDIV && 23032 Opcode != ISD::UREM && Opcode != ISD::SREM && 23033 Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) { 23034 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS); 23035 auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS); 23036 if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) && 23037 LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() && 23038 (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) { 23039 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0), 23040 RHS.getOperand(0), Flags); 23041 SDValue UndefV = LHS.getOperand(1); 23042 return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask()); 23043 } 23044 23045 // Try to sink a splat shuffle after a binop with a uniform constant. 23046 // This is limited to cases where neither the shuffle nor the constant have 23047 // undefined elements because that could be poison-unsafe or inhibit 23048 // demanded elements analysis. It is further limited to not change a splat 23049 // of an inserted scalar because that may be optimized better by 23050 // load-folding or other target-specific behaviors. 23051 if (isConstOrConstSplat(RHS) && Shuf0 && is_splat(Shuf0->getMask()) && 23052 Shuf0->hasOneUse() && Shuf0->getOperand(1).isUndef() && 23053 Shuf0->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { 23054 // binop (splat X), (splat C) --> splat (binop X, C) 23055 SDValue X = Shuf0->getOperand(0); 23056 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, X, RHS, Flags); 23057 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), 23058 Shuf0->getMask()); 23059 } 23060 if (isConstOrConstSplat(LHS) && Shuf1 && is_splat(Shuf1->getMask()) && 23061 Shuf1->hasOneUse() && Shuf1->getOperand(1).isUndef() && 23062 Shuf1->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { 23063 // binop (splat C), (splat X) --> splat (binop C, X) 23064 SDValue X = Shuf1->getOperand(0); 23065 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS, X, Flags); 23066 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), 23067 Shuf1->getMask()); 23068 } 23069 } 23070 23071 // The following pattern is likely to emerge with vector reduction ops. Moving 23072 // the binary operation ahead of insertion may allow using a narrower vector 23073 // instruction that has better performance than the wide version of the op: 23074 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z 23075 if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() && 23076 RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() && 23077 LHS.getOperand(2) == RHS.getOperand(2) && 23078 (LHS.hasOneUse() || RHS.hasOneUse())) { 23079 SDValue X = LHS.getOperand(1); 23080 SDValue Y = RHS.getOperand(1); 23081 SDValue Z = LHS.getOperand(2); 23082 EVT NarrowVT = X.getValueType(); 23083 if (NarrowVT == Y.getValueType() && 23084 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT, 23085 LegalOperations)) { 23086 // (binop undef, undef) may not return undef, so compute that result. 23087 SDValue VecC = 23088 DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT)); 23089 SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y); 23090 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z); 23091 } 23092 } 23093 23094 // Make sure all but the first op are undef or constant. 23095 auto ConcatWithConstantOrUndef = [](SDValue Concat) { 23096 return Concat.getOpcode() == ISD::CONCAT_VECTORS && 23097 all_of(drop_begin(Concat->ops()), [](const SDValue &Op) { 23098 return Op.isUndef() || 23099 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()); 23100 }); 23101 }; 23102 23103 // The following pattern is likely to emerge with vector reduction ops. Moving 23104 // the binary operation ahead of the concat may allow using a narrower vector 23105 // instruction that has better performance than the wide version of the op: 23106 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) --> 23107 // concat (VBinOp X, Y), VecC 23108 if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) && 23109 (LHS.hasOneUse() || RHS.hasOneUse())) { 23110 EVT NarrowVT = LHS.getOperand(0).getValueType(); 23111 if (NarrowVT == RHS.getOperand(0).getValueType() && 23112 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) { 23113 unsigned NumOperands = LHS.getNumOperands(); 23114 SmallVector<SDValue, 4> ConcatOps; 23115 for (unsigned i = 0; i != NumOperands; ++i) { 23116 // This constant fold for operands 1 and up. 23117 ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i), 23118 RHS.getOperand(i))); 23119 } 23120 23121 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 23122 } 23123 } 23124 23125 if (SDValue V = scalarizeBinOpOfSplats(N, DAG, DL)) 23126 return V; 23127 23128 return SDValue(); 23129 } 23130 23131 SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, 23132 SDValue N2) { 23133 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); 23134 23135 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, 23136 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 23137 23138 // If we got a simplified select_cc node back from SimplifySelectCC, then 23139 // break it down into a new SETCC node, and a new SELECT node, and then return 23140 // the SELECT node, since we were called with a SELECT node. 23141 if (SCC.getNode()) { 23142 // Check to see if we got a select_cc back (to turn into setcc/select). 23143 // Otherwise, just return whatever node we got back, like fabs. 23144 if (SCC.getOpcode() == ISD::SELECT_CC) { 23145 const SDNodeFlags Flags = N0->getFlags(); 23146 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), 23147 N0.getValueType(), 23148 SCC.getOperand(0), SCC.getOperand(1), 23149 SCC.getOperand(4), Flags); 23150 AddToWorklist(SETCC.getNode()); 23151 SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, 23152 SCC.getOperand(2), SCC.getOperand(3)); 23153 SelectNode->setFlags(Flags); 23154 return SelectNode; 23155 } 23156 23157 return SCC; 23158 } 23159 return SDValue(); 23160 } 23161 23162 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values 23163 /// being selected between, see if we can simplify the select. Callers of this 23164 /// should assume that TheSelect is deleted if this returns true. As such, they 23165 /// should return the appropriate thing (e.g. the node) back to the top-level of 23166 /// the DAG combiner loop to avoid it being looked at. 23167 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, 23168 SDValue RHS) { 23169 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 23170 // The select + setcc is redundant, because fsqrt returns NaN for X < 0. 23171 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { 23172 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { 23173 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) 23174 SDValue Sqrt = RHS; 23175 ISD::CondCode CC; 23176 SDValue CmpLHS; 23177 const ConstantFPSDNode *Zero = nullptr; 23178 23179 if (TheSelect->getOpcode() == ISD::SELECT_CC) { 23180 CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); 23181 CmpLHS = TheSelect->getOperand(0); 23182 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); 23183 } else { 23184 // SELECT or VSELECT 23185 SDValue Cmp = TheSelect->getOperand(0); 23186 if (Cmp.getOpcode() == ISD::SETCC) { 23187 CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); 23188 CmpLHS = Cmp.getOperand(0); 23189 Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); 23190 } 23191 } 23192 if (Zero && Zero->isZero() && 23193 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || 23194 CC == ISD::SETULT || CC == ISD::SETLT)) { 23195 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 23196 CombineTo(TheSelect, Sqrt); 23197 return true; 23198 } 23199 } 23200 } 23201 // Cannot simplify select with vector condition 23202 if (TheSelect->getOperand(0).getValueType().isVector()) return false; 23203 23204 // If this is a select from two identical things, try to pull the operation 23205 // through the select. 23206 if (LHS.getOpcode() != RHS.getOpcode() || 23207 !LHS.hasOneUse() || !RHS.hasOneUse()) 23208 return false; 23209 23210 // If this is a load and the token chain is identical, replace the select 23211 // of two loads with a load through a select of the address to load from. 23212 // This triggers in things like "select bool X, 10.0, 123.0" after the FP 23213 // constants have been dropped into the constant pool. 23214 if (LHS.getOpcode() == ISD::LOAD) { 23215 LoadSDNode *LLD = cast<LoadSDNode>(LHS); 23216 LoadSDNode *RLD = cast<LoadSDNode>(RHS); 23217 23218 // Token chains must be identical. 23219 if (LHS.getOperand(0) != RHS.getOperand(0) || 23220 // Do not let this transformation reduce the number of volatile loads. 23221 // Be conservative for atomics for the moment 23222 // TODO: This does appear to be legal for unordered atomics (see D66309) 23223 !LLD->isSimple() || !RLD->isSimple() || 23224 // FIXME: If either is a pre/post inc/dec load, 23225 // we'd need to split out the address adjustment. 23226 LLD->isIndexed() || RLD->isIndexed() || 23227 // If this is an EXTLOAD, the VT's must match. 23228 LLD->getMemoryVT() != RLD->getMemoryVT() || 23229 // If this is an EXTLOAD, the kind of extension must match. 23230 (LLD->getExtensionType() != RLD->getExtensionType() && 23231 // The only exception is if one of the extensions is anyext. 23232 LLD->getExtensionType() != ISD::EXTLOAD && 23233 RLD->getExtensionType() != ISD::EXTLOAD) || 23234 // FIXME: this discards src value information. This is 23235 // over-conservative. It would be beneficial to be able to remember 23236 // both potential memory locations. Since we are discarding 23237 // src value info, don't do the transformation if the memory 23238 // locations are not in the default address space. 23239 LLD->getPointerInfo().getAddrSpace() != 0 || 23240 RLD->getPointerInfo().getAddrSpace() != 0 || 23241 // We can't produce a CMOV of a TargetFrameIndex since we won't 23242 // generate the address generation required. 23243 LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || 23244 RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || 23245 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), 23246 LLD->getBasePtr().getValueType())) 23247 return false; 23248 23249 // The loads must not depend on one another. 23250 if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD)) 23251 return false; 23252 23253 // Check that the select condition doesn't reach either load. If so, 23254 // folding this will induce a cycle into the DAG. If not, this is safe to 23255 // xform, so create a select of the addresses. 23256 23257 SmallPtrSet<const SDNode *, 32> Visited; 23258 SmallVector<const SDNode *, 16> Worklist; 23259 23260 // Always fail if LLD and RLD are not independent. TheSelect is a 23261 // predecessor to all Nodes in question so we need not search past it. 23262 23263 Visited.insert(TheSelect); 23264 Worklist.push_back(LLD); 23265 Worklist.push_back(RLD); 23266 23267 if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) || 23268 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)) 23269 return false; 23270 23271 SDValue Addr; 23272 if (TheSelect->getOpcode() == ISD::SELECT) { 23273 // We cannot do this optimization if any pair of {RLD, LLD} is a 23274 // predecessor to {RLD, LLD, CondNode}. As we've already compared the 23275 // Loads, we only need to check if CondNode is a successor to one of the 23276 // loads. We can further avoid this if there's no use of their chain 23277 // value. 23278 SDNode *CondNode = TheSelect->getOperand(0).getNode(); 23279 Worklist.push_back(CondNode); 23280 23281 if ((LLD->hasAnyUseOfValue(1) && 23282 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || 23283 (RLD->hasAnyUseOfValue(1) && 23284 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) 23285 return false; 23286 23287 Addr = DAG.getSelect(SDLoc(TheSelect), 23288 LLD->getBasePtr().getValueType(), 23289 TheSelect->getOperand(0), LLD->getBasePtr(), 23290 RLD->getBasePtr()); 23291 } else { // Otherwise SELECT_CC 23292 // We cannot do this optimization if any pair of {RLD, LLD} is a 23293 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared 23294 // the Loads, we only need to check if CondLHS/CondRHS is a successor to 23295 // one of the loads. We can further avoid this if there's no use of their 23296 // chain value. 23297 23298 SDNode *CondLHS = TheSelect->getOperand(0).getNode(); 23299 SDNode *CondRHS = TheSelect->getOperand(1).getNode(); 23300 Worklist.push_back(CondLHS); 23301 Worklist.push_back(CondRHS); 23302 23303 if ((LLD->hasAnyUseOfValue(1) && 23304 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || 23305 (RLD->hasAnyUseOfValue(1) && 23306 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) 23307 return false; 23308 23309 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), 23310 LLD->getBasePtr().getValueType(), 23311 TheSelect->getOperand(0), 23312 TheSelect->getOperand(1), 23313 LLD->getBasePtr(), RLD->getBasePtr(), 23314 TheSelect->getOperand(4)); 23315 } 23316 23317 SDValue Load; 23318 // It is safe to replace the two loads if they have different alignments, 23319 // but the new load must be the minimum (most restrictive) alignment of the 23320 // inputs. 23321 Align Alignment = std::min(LLD->getAlign(), RLD->getAlign()); 23322 MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); 23323 if (!RLD->isInvariant()) 23324 MMOFlags &= ~MachineMemOperand::MOInvariant; 23325 if (!RLD->isDereferenceable()) 23326 MMOFlags &= ~MachineMemOperand::MODereferenceable; 23327 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { 23328 // FIXME: Discards pointer and AA info. 23329 Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), 23330 LLD->getChain(), Addr, MachinePointerInfo(), Alignment, 23331 MMOFlags); 23332 } else { 23333 // FIXME: Discards pointer and AA info. 23334 Load = DAG.getExtLoad( 23335 LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() 23336 : LLD->getExtensionType(), 23337 SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, 23338 MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); 23339 } 23340 23341 // Users of the select now use the result of the load. 23342 CombineTo(TheSelect, Load); 23343 23344 // Users of the old loads now use the new load's chain. We know the 23345 // old-load value is dead now. 23346 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); 23347 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); 23348 return true; 23349 } 23350 23351 return false; 23352 } 23353 23354 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and 23355 /// bitwise 'and'. 23356 SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, 23357 SDValue N1, SDValue N2, SDValue N3, 23358 ISD::CondCode CC) { 23359 // If this is a select where the false operand is zero and the compare is a 23360 // check of the sign bit, see if we can perform the "gzip trick": 23361 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A 23362 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A 23363 EVT XType = N0.getValueType(); 23364 EVT AType = N2.getValueType(); 23365 if (!isNullConstant(N3) || !XType.bitsGE(AType)) 23366 return SDValue(); 23367 23368 // If the comparison is testing for a positive value, we have to invert 23369 // the sign bit mask, so only do that transform if the target has a bitwise 23370 // 'and not' instruction (the invert is free). 23371 if (CC == ISD::SETGT && TLI.hasAndNot(N2)) { 23372 // (X > -1) ? A : 0 23373 // (X > 0) ? X : 0 <-- This is canonical signed max. 23374 if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2))) 23375 return SDValue(); 23376 } else if (CC == ISD::SETLT) { 23377 // (X < 0) ? A : 0 23378 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min. 23379 if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2))) 23380 return SDValue(); 23381 } else { 23382 return SDValue(); 23383 } 23384 23385 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit 23386 // constant. 23387 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); 23388 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 23389 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { 23390 unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1; 23391 if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) { 23392 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); 23393 SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt); 23394 AddToWorklist(Shift.getNode()); 23395 23396 if (XType.bitsGT(AType)) { 23397 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 23398 AddToWorklist(Shift.getNode()); 23399 } 23400 23401 if (CC == ISD::SETGT) 23402 Shift = DAG.getNOT(DL, Shift, AType); 23403 23404 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 23405 } 23406 } 23407 23408 unsigned ShCt = XType.getSizeInBits() - 1; 23409 if (TLI.shouldAvoidTransformToShift(XType, ShCt)) 23410 return SDValue(); 23411 23412 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); 23413 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt); 23414 AddToWorklist(Shift.getNode()); 23415 23416 if (XType.bitsGT(AType)) { 23417 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 23418 AddToWorklist(Shift.getNode()); 23419 } 23420 23421 if (CC == ISD::SETGT) 23422 Shift = DAG.getNOT(DL, Shift, AType); 23423 23424 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 23425 } 23426 23427 // Fold select(cc, binop(), binop()) -> binop(select(), select()) etc. 23428 SDValue DAGCombiner::foldSelectOfBinops(SDNode *N) { 23429 SDValue N0 = N->getOperand(0); 23430 SDValue N1 = N->getOperand(1); 23431 SDValue N2 = N->getOperand(2); 23432 EVT VT = N->getValueType(0); 23433 SDLoc DL(N); 23434 23435 unsigned BinOpc = N1.getOpcode(); 23436 if (!TLI.isBinOp(BinOpc) || (N2.getOpcode() != BinOpc)) 23437 return SDValue(); 23438 23439 // The use checks are intentionally on SDNode because we may be dealing 23440 // with opcodes that produce more than one SDValue. 23441 // TODO: Do we really need to check N0 (the condition operand of the select)? 23442 // But removing that clause could cause an infinite loop... 23443 if (!N0->hasOneUse() || !N1->hasOneUse() || !N2->hasOneUse()) 23444 return SDValue(); 23445 23446 // Binops may include opcodes that return multiple values, so all values 23447 // must be created/propagated from the newly created binops below. 23448 SDVTList OpVTs = N1->getVTList(); 23449 23450 // Fold select(cond, binop(x, y), binop(z, y)) 23451 // --> binop(select(cond, x, z), y) 23452 if (N1.getOperand(1) == N2.getOperand(1)) { 23453 SDValue NewSel = 23454 DAG.getSelect(DL, VT, N0, N1.getOperand(0), N2.getOperand(0)); 23455 SDValue NewBinOp = DAG.getNode(BinOpc, DL, OpVTs, NewSel, N1.getOperand(1)); 23456 NewBinOp->setFlags(N1->getFlags()); 23457 NewBinOp->intersectFlagsWith(N2->getFlags()); 23458 return NewBinOp; 23459 } 23460 23461 // Fold select(cond, binop(x, y), binop(x, z)) 23462 // --> binop(x, select(cond, y, z)) 23463 // Second op VT might be different (e.g. shift amount type) 23464 if (N1.getOperand(0) == N2.getOperand(0) && 23465 VT == N1.getOperand(1).getValueType() && 23466 VT == N2.getOperand(1).getValueType()) { 23467 SDValue NewSel = 23468 DAG.getSelect(DL, VT, N0, N1.getOperand(1), N2.getOperand(1)); 23469 SDValue NewBinOp = DAG.getNode(BinOpc, DL, OpVTs, N1.getOperand(0), NewSel); 23470 NewBinOp->setFlags(N1->getFlags()); 23471 NewBinOp->intersectFlagsWith(N2->getFlags()); 23472 return NewBinOp; 23473 } 23474 23475 // TODO: Handle isCommutativeBinOp patterns as well? 23476 return SDValue(); 23477 } 23478 23479 // Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values. 23480 SDValue DAGCombiner::foldSignChangeInBitcast(SDNode *N) { 23481 SDValue N0 = N->getOperand(0); 23482 EVT VT = N->getValueType(0); 23483 bool IsFabs = N->getOpcode() == ISD::FABS; 23484 bool IsFree = IsFabs ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT); 23485 23486 if (IsFree || N0.getOpcode() != ISD::BITCAST || !N0.hasOneUse()) 23487 return SDValue(); 23488 23489 SDValue Int = N0.getOperand(0); 23490 EVT IntVT = Int.getValueType(); 23491 23492 // The operand to cast should be integer. 23493 if (!IntVT.isInteger() || IntVT.isVector()) 23494 return SDValue(); 23495 23496 // (fneg (bitconvert x)) -> (bitconvert (xor x sign)) 23497 // (fabs (bitconvert x)) -> (bitconvert (and x ~sign)) 23498 APInt SignMask; 23499 if (N0.getValueType().isVector()) { 23500 // For vector, create a sign mask (0x80...) or its inverse (for fabs, 23501 // 0x7f...) per element and splat it. 23502 SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits()); 23503 if (IsFabs) 23504 SignMask = ~SignMask; 23505 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 23506 } else { 23507 // For scalar, just use the sign mask (0x80... or the inverse, 0x7f...) 23508 SignMask = APInt::getSignMask(IntVT.getSizeInBits()); 23509 if (IsFabs) 23510 SignMask = ~SignMask; 23511 } 23512 SDLoc DL(N0); 23513 Int = DAG.getNode(IsFabs ? ISD::AND : ISD::XOR, DL, IntVT, Int, 23514 DAG.getConstant(SignMask, DL, IntVT)); 23515 AddToWorklist(Int.getNode()); 23516 return DAG.getBitcast(VT, Int); 23517 } 23518 23519 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" 23520 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 23521 /// in it. This may be a win when the constant is not otherwise available 23522 /// because it replaces two constant pool loads with one. 23523 SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset( 23524 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, 23525 ISD::CondCode CC) { 23526 if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType())) 23527 return SDValue(); 23528 23529 // If we are before legalize types, we want the other legalization to happen 23530 // first (for example, to avoid messing with soft float). 23531 auto *TV = dyn_cast<ConstantFPSDNode>(N2); 23532 auto *FV = dyn_cast<ConstantFPSDNode>(N3); 23533 EVT VT = N2.getValueType(); 23534 if (!TV || !FV || !TLI.isTypeLegal(VT)) 23535 return SDValue(); 23536 23537 // If a constant can be materialized without loads, this does not make sense. 23538 if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal || 23539 TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) || 23540 TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize)) 23541 return SDValue(); 23542 23543 // If both constants have multiple uses, then we won't need to do an extra 23544 // load. The values are likely around in registers for other users. 23545 if (!TV->hasOneUse() && !FV->hasOneUse()) 23546 return SDValue(); 23547 23548 Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()), 23549 const_cast<ConstantFP*>(TV->getConstantFPValue()) }; 23550 Type *FPTy = Elts[0]->getType(); 23551 const DataLayout &TD = DAG.getDataLayout(); 23552 23553 // Create a ConstantArray of the two constants. 23554 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); 23555 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), 23556 TD.getPrefTypeAlign(FPTy)); 23557 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 23558 23559 // Get offsets to the 0 and 1 elements of the array, so we can select between 23560 // them. 23561 SDValue Zero = DAG.getIntPtrConstant(0, DL); 23562 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); 23563 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); 23564 SDValue Cond = 23565 DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC); 23566 AddToWorklist(Cond.getNode()); 23567 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero); 23568 AddToWorklist(CstOffset.getNode()); 23569 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset); 23570 AddToWorklist(CPIdx.getNode()); 23571 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, 23572 MachinePointerInfo::getConstantPool( 23573 DAG.getMachineFunction()), Alignment); 23574 } 23575 23576 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 23577 /// where 'cond' is the comparison specified by CC. 23578 SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 23579 SDValue N2, SDValue N3, ISD::CondCode CC, 23580 bool NotExtCompare) { 23581 // (x ? y : y) -> y. 23582 if (N2 == N3) return N2; 23583 23584 EVT CmpOpVT = N0.getValueType(); 23585 EVT CmpResVT = getSetCCResultType(CmpOpVT); 23586 EVT VT = N2.getValueType(); 23587 auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 23588 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 23589 auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); 23590 23591 // Determine if the condition we're dealing with is constant. 23592 if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) { 23593 AddToWorklist(SCC.getNode()); 23594 if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) { 23595 // fold select_cc true, x, y -> x 23596 // fold select_cc false, x, y -> y 23597 return !(SCCC->isZero()) ? N2 : N3; 23598 } 23599 } 23600 23601 if (SDValue V = 23602 convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC)) 23603 return V; 23604 23605 if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC)) 23606 return V; 23607 23608 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) 23609 // where y is has a single bit set. 23610 // A plaintext description would be, we can turn the SELECT_CC into an AND 23611 // when the condition can be materialized as an all-ones register. Any 23612 // single bit-test can be materialized as an all-ones register with 23613 // shift-left and shift-right-arith. 23614 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && 23615 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { 23616 SDValue AndLHS = N0->getOperand(0); 23617 auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 23618 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { 23619 // Shift the tested bit over the sign bit. 23620 const APInt &AndMask = ConstAndRHS->getAPIntValue(); 23621 unsigned ShCt = AndMask.getBitWidth() - 1; 23622 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { 23623 SDValue ShlAmt = 23624 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), 23625 getShiftAmountTy(AndLHS.getValueType())); 23626 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); 23627 23628 // Now arithmetic right shift it all the way over, so the result is 23629 // either all-ones, or zero. 23630 SDValue ShrAmt = 23631 DAG.getConstant(ShCt, SDLoc(Shl), 23632 getShiftAmountTy(Shl.getValueType())); 23633 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); 23634 23635 return DAG.getNode(ISD::AND, DL, VT, Shr, N3); 23636 } 23637 } 23638 } 23639 23640 // fold select C, 16, 0 -> shl C, 4 23641 bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2(); 23642 bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2(); 23643 23644 if ((Fold || Swap) && 23645 TLI.getBooleanContents(CmpOpVT) == 23646 TargetLowering::ZeroOrOneBooleanContent && 23647 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) { 23648 23649 if (Swap) { 23650 CC = ISD::getSetCCInverse(CC, CmpOpVT); 23651 std::swap(N2C, N3C); 23652 } 23653 23654 // If the caller doesn't want us to simplify this into a zext of a compare, 23655 // don't do it. 23656 if (NotExtCompare && N2C->isOne()) 23657 return SDValue(); 23658 23659 SDValue Temp, SCC; 23660 // zext (setcc n0, n1) 23661 if (LegalTypes) { 23662 SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC); 23663 if (VT.bitsLT(SCC.getValueType())) 23664 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT); 23665 else 23666 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); 23667 } else { 23668 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); 23669 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); 23670 } 23671 23672 AddToWorklist(SCC.getNode()); 23673 AddToWorklist(Temp.getNode()); 23674 23675 if (N2C->isOne()) 23676 return Temp; 23677 23678 unsigned ShCt = N2C->getAPIntValue().logBase2(); 23679 if (TLI.shouldAvoidTransformToShift(VT, ShCt)) 23680 return SDValue(); 23681 23682 // shl setcc result by log2 n2c 23683 return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp, 23684 DAG.getConstant(ShCt, SDLoc(Temp), 23685 getShiftAmountTy(Temp.getValueType()))); 23686 } 23687 23688 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) 23689 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) 23690 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) 23691 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) 23692 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) 23693 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) 23694 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) 23695 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) 23696 if (N1C && N1C->isZero() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 23697 SDValue ValueOnZero = N2; 23698 SDValue Count = N3; 23699 // If the condition is NE instead of E, swap the operands. 23700 if (CC == ISD::SETNE) 23701 std::swap(ValueOnZero, Count); 23702 // Check if the value on zero is a constant equal to the bits in the type. 23703 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { 23704 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { 23705 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is 23706 // legal, combine to just cttz. 23707 if ((Count.getOpcode() == ISD::CTTZ || 23708 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && 23709 N0 == Count.getOperand(0) && 23710 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) 23711 return DAG.getNode(ISD::CTTZ, DL, VT, N0); 23712 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is 23713 // legal, combine to just ctlz. 23714 if ((Count.getOpcode() == ISD::CTLZ || 23715 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && 23716 N0 == Count.getOperand(0) && 23717 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) 23718 return DAG.getNode(ISD::CTLZ, DL, VT, N0); 23719 } 23720 } 23721 } 23722 23723 // Fold select_cc setgt X, -1, C, ~C -> xor (ashr X, BW-1), C 23724 // Fold select_cc setlt X, 0, C, ~C -> xor (ashr X, BW-1), ~C 23725 if (!NotExtCompare && N1C && N2C && N3C && 23726 N2C->getAPIntValue() == ~N3C->getAPIntValue() && 23727 ((N1C->isAllOnes() && CC == ISD::SETGT) || 23728 (N1C->isZero() && CC == ISD::SETLT)) && 23729 !TLI.shouldAvoidTransformToShift(VT, CmpOpVT.getScalarSizeInBits() - 1)) { 23730 SDValue ASR = DAG.getNode( 23731 ISD::SRA, DL, CmpOpVT, N0, 23732 DAG.getConstant(CmpOpVT.getScalarSizeInBits() - 1, DL, CmpOpVT)); 23733 return DAG.getNode(ISD::XOR, DL, VT, DAG.getSExtOrTrunc(ASR, DL, VT), 23734 DAG.getSExtOrTrunc(CC == ISD::SETLT ? N3 : N2, DL, VT)); 23735 } 23736 23737 if (SDValue S = PerformMinMaxFpToSatCombine(N0, N1, N2, N3, CC, DAG)) 23738 return S; 23739 if (SDValue S = PerformUMinFpToSatCombine(N0, N1, N2, N3, CC, DAG)) 23740 return S; 23741 23742 return SDValue(); 23743 } 23744 23745 /// This is a stub for TargetLowering::SimplifySetCC. 23746 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 23747 ISD::CondCode Cond, const SDLoc &DL, 23748 bool foldBooleans) { 23749 TargetLowering::DAGCombinerInfo 23750 DagCombineInfo(DAG, Level, false, this); 23751 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); 23752 } 23753 23754 /// Given an ISD::SDIV node expressing a divide by constant, return 23755 /// a DAG expression to select that will generate the same value by multiplying 23756 /// by a magic number. 23757 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 23758 SDValue DAGCombiner::BuildSDIV(SDNode *N) { 23759 // when optimising for minimum size, we don't want to expand a div to a mul 23760 // and a shift. 23761 if (DAG.getMachineFunction().getFunction().hasMinSize()) 23762 return SDValue(); 23763 23764 SmallVector<SDNode *, 8> Built; 23765 if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) { 23766 for (SDNode *N : Built) 23767 AddToWorklist(N); 23768 return S; 23769 } 23770 23771 return SDValue(); 23772 } 23773 23774 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a 23775 /// DAG expression that will generate the same value by right shifting. 23776 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { 23777 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 23778 if (!C) 23779 return SDValue(); 23780 23781 // Avoid division by zero. 23782 if (C->isZero()) 23783 return SDValue(); 23784 23785 SmallVector<SDNode *, 8> Built; 23786 if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) { 23787 for (SDNode *N : Built) 23788 AddToWorklist(N); 23789 return S; 23790 } 23791 23792 return SDValue(); 23793 } 23794 23795 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG 23796 /// expression that will generate the same value by multiplying by a magic 23797 /// number. 23798 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 23799 SDValue DAGCombiner::BuildUDIV(SDNode *N) { 23800 // when optimising for minimum size, we don't want to expand a div to a mul 23801 // and a shift. 23802 if (DAG.getMachineFunction().getFunction().hasMinSize()) 23803 return SDValue(); 23804 23805 SmallVector<SDNode *, 8> Built; 23806 if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) { 23807 for (SDNode *N : Built) 23808 AddToWorklist(N); 23809 return S; 23810 } 23811 23812 return SDValue(); 23813 } 23814 23815 /// Determines the LogBase2 value for a non-null input value using the 23816 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 23817 SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) { 23818 EVT VT = V.getValueType(); 23819 SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V); 23820 SDValue Base = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); 23821 SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz); 23822 return LogBase2; 23823 } 23824 23825 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 23826 /// For the reciprocal, we need to find the zero of the function: 23827 /// F(X) = 1/X - A [which has a zero at X = 1/A] 23828 /// => 23829 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form 23830 /// does not require additional intermediate precision] 23831 /// For the last iteration, put numerator N into it to gain more precision: 23832 /// Result = N X_i + X_i (N - N A X_i) 23833 SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op, 23834 SDNodeFlags Flags) { 23835 if (LegalDAG) 23836 return SDValue(); 23837 23838 // TODO: Handle extended types? 23839 EVT VT = Op.getValueType(); 23840 if (VT.getScalarType() != MVT::f16 && VT.getScalarType() != MVT::f32 && 23841 VT.getScalarType() != MVT::f64) 23842 return SDValue(); 23843 23844 // If estimates are explicitly disabled for this function, we're done. 23845 MachineFunction &MF = DAG.getMachineFunction(); 23846 int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); 23847 if (Enabled == TLI.ReciprocalEstimate::Disabled) 23848 return SDValue(); 23849 23850 // Estimates may be explicitly enabled for this type with a custom number of 23851 // refinement steps. 23852 int Iterations = TLI.getDivRefinementSteps(VT, MF); 23853 if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { 23854 AddToWorklist(Est.getNode()); 23855 23856 SDLoc DL(Op); 23857 if (Iterations) { 23858 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 23859 23860 // Newton iterations: Est = Est + Est (N - Arg * Est) 23861 // If this is the last iteration, also multiply by the numerator. 23862 for (int i = 0; i < Iterations; ++i) { 23863 SDValue MulEst = Est; 23864 23865 if (i == Iterations - 1) { 23866 MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags); 23867 AddToWorklist(MulEst.getNode()); 23868 } 23869 23870 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags); 23871 AddToWorklist(NewEst.getNode()); 23872 23873 NewEst = DAG.getNode(ISD::FSUB, DL, VT, 23874 (i == Iterations - 1 ? N : FPOne), NewEst, Flags); 23875 AddToWorklist(NewEst.getNode()); 23876 23877 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 23878 AddToWorklist(NewEst.getNode()); 23879 23880 Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags); 23881 AddToWorklist(Est.getNode()); 23882 } 23883 } else { 23884 // If no iterations are available, multiply with N. 23885 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags); 23886 AddToWorklist(Est.getNode()); 23887 } 23888 23889 return Est; 23890 } 23891 23892 return SDValue(); 23893 } 23894 23895 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 23896 /// For the reciprocal sqrt, we need to find the zero of the function: 23897 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 23898 /// => 23899 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) 23900 /// As a result, we precompute A/2 prior to the iteration loop. 23901 SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, 23902 unsigned Iterations, 23903 SDNodeFlags Flags, bool Reciprocal) { 23904 EVT VT = Arg.getValueType(); 23905 SDLoc DL(Arg); 23906 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); 23907 23908 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that 23909 // this entire sequence requires only one FP constant. 23910 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); 23911 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); 23912 23913 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) 23914 for (unsigned i = 0; i < Iterations; ++i) { 23915 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 23916 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); 23917 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); 23918 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 23919 } 23920 23921 // If non-reciprocal square root is requested, multiply the result by Arg. 23922 if (!Reciprocal) 23923 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); 23924 23925 return Est; 23926 } 23927 23928 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 23929 /// For the reciprocal sqrt, we need to find the zero of the function: 23930 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 23931 /// => 23932 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) 23933 SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, 23934 unsigned Iterations, 23935 SDNodeFlags Flags, bool Reciprocal) { 23936 EVT VT = Arg.getValueType(); 23937 SDLoc DL(Arg); 23938 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); 23939 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); 23940 23941 // This routine must enter the loop below to work correctly 23942 // when (Reciprocal == false). 23943 assert(Iterations > 0); 23944 23945 // Newton iterations for reciprocal square root: 23946 // E = (E * -0.5) * ((A * E) * E + -3.0) 23947 for (unsigned i = 0; i < Iterations; ++i) { 23948 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); 23949 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); 23950 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); 23951 23952 // When calculating a square root at the last iteration build: 23953 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) 23954 // (notice a common subexpression) 23955 SDValue LHS; 23956 if (Reciprocal || (i + 1) < Iterations) { 23957 // RSQRT: LHS = (E * -0.5) 23958 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); 23959 } else { 23960 // SQRT: LHS = (A * E) * -0.5 23961 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); 23962 } 23963 23964 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); 23965 } 23966 23967 return Est; 23968 } 23969 23970 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case 23971 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if 23972 /// Op can be zero. 23973 SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, 23974 bool Reciprocal) { 23975 if (LegalDAG) 23976 return SDValue(); 23977 23978 // TODO: Handle extended types? 23979 EVT VT = Op.getValueType(); 23980 if (VT.getScalarType() != MVT::f16 && VT.getScalarType() != MVT::f32 && 23981 VT.getScalarType() != MVT::f64) 23982 return SDValue(); 23983 23984 // If estimates are explicitly disabled for this function, we're done. 23985 MachineFunction &MF = DAG.getMachineFunction(); 23986 int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); 23987 if (Enabled == TLI.ReciprocalEstimate::Disabled) 23988 return SDValue(); 23989 23990 // Estimates may be explicitly enabled for this type with a custom number of 23991 // refinement steps. 23992 int Iterations = TLI.getSqrtRefinementSteps(VT, MF); 23993 23994 bool UseOneConstNR = false; 23995 if (SDValue Est = 23996 TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR, 23997 Reciprocal)) { 23998 AddToWorklist(Est.getNode()); 23999 24000 if (Iterations) 24001 Est = UseOneConstNR 24002 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) 24003 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); 24004 if (!Reciprocal) { 24005 SDLoc DL(Op); 24006 // Try the target specific test first. 24007 SDValue Test = TLI.getSqrtInputTest(Op, DAG, DAG.getDenormalMode(VT)); 24008 24009 // The estimate is now completely wrong if the input was exactly 0.0 or 24010 // possibly a denormal. Force the answer to 0.0 or value provided by 24011 // target for those cases. 24012 Est = DAG.getNode( 24013 Test.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, 24014 Test, TLI.getSqrtResultForDenormInput(Op, DAG), Est); 24015 } 24016 return Est; 24017 } 24018 24019 return SDValue(); 24020 } 24021 24022 SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) { 24023 return buildSqrtEstimateImpl(Op, Flags, true); 24024 } 24025 24026 SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) { 24027 return buildSqrtEstimateImpl(Op, Flags, false); 24028 } 24029 24030 /// Return true if there is any possibility that the two addresses overlap. 24031 bool DAGCombiner::mayAlias(SDNode *Op0, SDNode *Op1) const { 24032 24033 struct MemUseCharacteristics { 24034 bool IsVolatile; 24035 bool IsAtomic; 24036 SDValue BasePtr; 24037 int64_t Offset; 24038 Optional<int64_t> NumBytes; 24039 MachineMemOperand *MMO; 24040 }; 24041 24042 auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics { 24043 if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) { 24044 int64_t Offset = 0; 24045 if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset())) 24046 Offset = (LSN->getAddressingMode() == ISD::PRE_INC) 24047 ? C->getSExtValue() 24048 : (LSN->getAddressingMode() == ISD::PRE_DEC) 24049 ? -1 * C->getSExtValue() 24050 : 0; 24051 uint64_t Size = 24052 MemoryLocation::getSizeOrUnknown(LSN->getMemoryVT().getStoreSize()); 24053 return {LSN->isVolatile(), LSN->isAtomic(), LSN->getBasePtr(), 24054 Offset /*base offset*/, 24055 Optional<int64_t>(Size), 24056 LSN->getMemOperand()}; 24057 } 24058 if (const auto *LN = cast<LifetimeSDNode>(N)) 24059 return {false /*isVolatile*/, /*isAtomic*/ false, LN->getOperand(1), 24060 (LN->hasOffset()) ? LN->getOffset() : 0, 24061 (LN->hasOffset()) ? Optional<int64_t>(LN->getSize()) 24062 : Optional<int64_t>(), 24063 (MachineMemOperand *)nullptr}; 24064 // Default. 24065 return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(), 24066 (int64_t)0 /*offset*/, 24067 Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr}; 24068 }; 24069 24070 MemUseCharacteristics MUC0 = getCharacteristics(Op0), 24071 MUC1 = getCharacteristics(Op1); 24072 24073 // If they are to the same address, then they must be aliases. 24074 if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr && 24075 MUC0.Offset == MUC1.Offset) 24076 return true; 24077 24078 // If they are both volatile then they cannot be reordered. 24079 if (MUC0.IsVolatile && MUC1.IsVolatile) 24080 return true; 24081 24082 // Be conservative about atomics for the moment 24083 // TODO: This is way overconservative for unordered atomics (see D66309) 24084 if (MUC0.IsAtomic && MUC1.IsAtomic) 24085 return true; 24086 24087 if (MUC0.MMO && MUC1.MMO) { 24088 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 24089 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 24090 return false; 24091 } 24092 24093 // Try to prove that there is aliasing, or that there is no aliasing. Either 24094 // way, we can return now. If nothing can be proved, proceed with more tests. 24095 bool IsAlias; 24096 if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes, 24097 DAG, IsAlias)) 24098 return IsAlias; 24099 24100 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if 24101 // either are not known. 24102 if (!MUC0.MMO || !MUC1.MMO) 24103 return true; 24104 24105 // If one operation reads from invariant memory, and the other may store, they 24106 // cannot alias. These should really be checking the equivalent of mayWrite, 24107 // but it only matters for memory nodes other than load /store. 24108 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 24109 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 24110 return false; 24111 24112 // If we know required SrcValue1 and SrcValue2 have relatively large 24113 // alignment compared to the size and offset of the access, we may be able 24114 // to prove they do not alias. This check is conservative for now to catch 24115 // cases created by splitting vector types, it only works when the offsets are 24116 // multiples of the size of the data. 24117 int64_t SrcValOffset0 = MUC0.MMO->getOffset(); 24118 int64_t SrcValOffset1 = MUC1.MMO->getOffset(); 24119 Align OrigAlignment0 = MUC0.MMO->getBaseAlign(); 24120 Align OrigAlignment1 = MUC1.MMO->getBaseAlign(); 24121 auto &Size0 = MUC0.NumBytes; 24122 auto &Size1 = MUC1.NumBytes; 24123 if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 && 24124 Size0.hasValue() && Size1.hasValue() && *Size0 == *Size1 && 24125 OrigAlignment0 > *Size0 && SrcValOffset0 % *Size0 == 0 && 24126 SrcValOffset1 % *Size1 == 0) { 24127 int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value(); 24128 int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value(); 24129 24130 // There is no overlap between these relatively aligned accesses of 24131 // similar size. Return no alias. 24132 if ((OffAlign0 + *Size0) <= OffAlign1 || (OffAlign1 + *Size1) <= OffAlign0) 24133 return false; 24134 } 24135 24136 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 24137 ? CombinerGlobalAA 24138 : DAG.getSubtarget().useAA(); 24139 #ifndef NDEBUG 24140 if (CombinerAAOnlyFunc.getNumOccurrences() && 24141 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 24142 UseAA = false; 24143 #endif 24144 24145 if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && 24146 Size0.hasValue() && Size1.hasValue()) { 24147 // Use alias analysis information. 24148 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); 24149 int64_t Overlap0 = *Size0 + SrcValOffset0 - MinOffset; 24150 int64_t Overlap1 = *Size1 + SrcValOffset1 - MinOffset; 24151 if (AA->isNoAlias( 24152 MemoryLocation(MUC0.MMO->getValue(), Overlap0, 24153 UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()), 24154 MemoryLocation(MUC1.MMO->getValue(), Overlap1, 24155 UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes()))) 24156 return false; 24157 } 24158 24159 // Otherwise we have to assume they alias. 24160 return true; 24161 } 24162 24163 /// Walk up chain skipping non-aliasing memory nodes, 24164 /// looking for aliasing nodes and adding them to the Aliases vector. 24165 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, 24166 SmallVectorImpl<SDValue> &Aliases) { 24167 SmallVector<SDValue, 8> Chains; // List of chains to visit. 24168 SmallPtrSet<SDNode *, 16> Visited; // Visited node set. 24169 24170 // Get alias information for node. 24171 // TODO: relax aliasing for unordered atomics (see D66309) 24172 const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple(); 24173 24174 // Starting off. 24175 Chains.push_back(OriginalChain); 24176 unsigned Depth = 0; 24177 24178 // Attempt to improve chain by a single step 24179 auto ImproveChain = [&](SDValue &C) -> bool { 24180 switch (C.getOpcode()) { 24181 case ISD::EntryToken: 24182 // No need to mark EntryToken. 24183 C = SDValue(); 24184 return true; 24185 case ISD::LOAD: 24186 case ISD::STORE: { 24187 // Get alias information for C. 24188 // TODO: Relax aliasing for unordered atomics (see D66309) 24189 bool IsOpLoad = isa<LoadSDNode>(C.getNode()) && 24190 cast<LSBaseSDNode>(C.getNode())->isSimple(); 24191 if ((IsLoad && IsOpLoad) || !mayAlias(N, C.getNode())) { 24192 // Look further up the chain. 24193 C = C.getOperand(0); 24194 return true; 24195 } 24196 // Alias, so stop here. 24197 return false; 24198 } 24199 24200 case ISD::CopyFromReg: 24201 // Always forward past past CopyFromReg. 24202 C = C.getOperand(0); 24203 return true; 24204 24205 case ISD::LIFETIME_START: 24206 case ISD::LIFETIME_END: { 24207 // We can forward past any lifetime start/end that can be proven not to 24208 // alias the memory access. 24209 if (!mayAlias(N, C.getNode())) { 24210 // Look further up the chain. 24211 C = C.getOperand(0); 24212 return true; 24213 } 24214 return false; 24215 } 24216 default: 24217 return false; 24218 } 24219 }; 24220 24221 // Look at each chain and determine if it is an alias. If so, add it to the 24222 // aliases list. If not, then continue up the chain looking for the next 24223 // candidate. 24224 while (!Chains.empty()) { 24225 SDValue Chain = Chains.pop_back_val(); 24226 24227 // Don't bother if we've seen Chain before. 24228 if (!Visited.insert(Chain.getNode()).second) 24229 continue; 24230 24231 // For TokenFactor nodes, look at each operand and only continue up the 24232 // chain until we reach the depth limit. 24233 // 24234 // FIXME: The depth check could be made to return the last non-aliasing 24235 // chain we found before we hit a tokenfactor rather than the original 24236 // chain. 24237 if (Depth > TLI.getGatherAllAliasesMaxDepth()) { 24238 Aliases.clear(); 24239 Aliases.push_back(OriginalChain); 24240 return; 24241 } 24242 24243 if (Chain.getOpcode() == ISD::TokenFactor) { 24244 // We have to check each of the operands of the token factor for "small" 24245 // token factors, so we queue them up. Adding the operands to the queue 24246 // (stack) in reverse order maintains the original order and increases the 24247 // likelihood that getNode will find a matching token factor (CSE.) 24248 if (Chain.getNumOperands() > 16) { 24249 Aliases.push_back(Chain); 24250 continue; 24251 } 24252 for (unsigned n = Chain.getNumOperands(); n;) 24253 Chains.push_back(Chain.getOperand(--n)); 24254 ++Depth; 24255 continue; 24256 } 24257 // Everything else 24258 if (ImproveChain(Chain)) { 24259 // Updated Chain Found, Consider new chain if one exists. 24260 if (Chain.getNode()) 24261 Chains.push_back(Chain); 24262 ++Depth; 24263 continue; 24264 } 24265 // No Improved Chain Possible, treat as Alias. 24266 Aliases.push_back(Chain); 24267 } 24268 } 24269 24270 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain 24271 /// (aliasing node.) 24272 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { 24273 if (OptLevel == CodeGenOpt::None) 24274 return OldChain; 24275 24276 // Ops for replacing token factor. 24277 SmallVector<SDValue, 8> Aliases; 24278 24279 // Accumulate all the aliases to this node. 24280 GatherAllAliases(N, OldChain, Aliases); 24281 24282 // If no operands then chain to entry token. 24283 if (Aliases.size() == 0) 24284 return DAG.getEntryNode(); 24285 24286 // If a single operand then chain to it. We don't need to revisit it. 24287 if (Aliases.size() == 1) 24288 return Aliases[0]; 24289 24290 // Construct a custom tailored token factor. 24291 return DAG.getTokenFactor(SDLoc(N), Aliases); 24292 } 24293 24294 namespace { 24295 // TODO: Replace with with std::monostate when we move to C++17. 24296 struct UnitT { } Unit; 24297 bool operator==(const UnitT &, const UnitT &) { return true; } 24298 bool operator!=(const UnitT &, const UnitT &) { return false; } 24299 } // namespace 24300 24301 // This function tries to collect a bunch of potentially interesting 24302 // nodes to improve the chains of, all at once. This might seem 24303 // redundant, as this function gets called when visiting every store 24304 // node, so why not let the work be done on each store as it's visited? 24305 // 24306 // I believe this is mainly important because mergeConsecutiveStores 24307 // is unable to deal with merging stores of different sizes, so unless 24308 // we improve the chains of all the potential candidates up-front 24309 // before running mergeConsecutiveStores, it might only see some of 24310 // the nodes that will eventually be candidates, and then not be able 24311 // to go from a partially-merged state to the desired final 24312 // fully-merged state. 24313 24314 bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) { 24315 SmallVector<StoreSDNode *, 8> ChainedStores; 24316 StoreSDNode *STChain = St; 24317 // Intervals records which offsets from BaseIndex have been covered. In 24318 // the common case, every store writes to the immediately previous address 24319 // space and thus merged with the previous interval at insertion time. 24320 24321 using IMap = 24322 llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>; 24323 IMap::Allocator A; 24324 IMap Intervals(A); 24325 24326 // This holds the base pointer, index, and the offset in bytes from the base 24327 // pointer. 24328 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 24329 24330 // We must have a base and an offset. 24331 if (!BasePtr.getBase().getNode()) 24332 return false; 24333 24334 // Do not handle stores to undef base pointers. 24335 if (BasePtr.getBase().isUndef()) 24336 return false; 24337 24338 // Do not handle stores to opaque types 24339 if (St->getMemoryVT().isZeroSized()) 24340 return false; 24341 24342 // BaseIndexOffset assumes that offsets are fixed-size, which 24343 // is not valid for scalable vectors where the offsets are 24344 // scaled by `vscale`, so bail out early. 24345 if (St->getMemoryVT().isScalableVector()) 24346 return false; 24347 24348 // Add ST's interval. 24349 Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit); 24350 24351 while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) { 24352 if (Chain->getMemoryVT().isScalableVector()) 24353 return false; 24354 24355 // If the chain has more than one use, then we can't reorder the mem ops. 24356 if (!SDValue(Chain, 0)->hasOneUse()) 24357 break; 24358 // TODO: Relax for unordered atomics (see D66309) 24359 if (!Chain->isSimple() || Chain->isIndexed()) 24360 break; 24361 24362 // Find the base pointer and offset for this memory node. 24363 const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG); 24364 // Check that the base pointer is the same as the original one. 24365 int64_t Offset; 24366 if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset)) 24367 break; 24368 int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8; 24369 // Make sure we don't overlap with other intervals by checking the ones to 24370 // the left or right before inserting. 24371 auto I = Intervals.find(Offset); 24372 // If there's a next interval, we should end before it. 24373 if (I != Intervals.end() && I.start() < (Offset + Length)) 24374 break; 24375 // If there's a previous interval, we should start after it. 24376 if (I != Intervals.begin() && (--I).stop() <= Offset) 24377 break; 24378 Intervals.insert(Offset, Offset + Length, Unit); 24379 24380 ChainedStores.push_back(Chain); 24381 STChain = Chain; 24382 } 24383 24384 // If we didn't find a chained store, exit. 24385 if (ChainedStores.size() == 0) 24386 return false; 24387 24388 // Improve all chained stores (St and ChainedStores members) starting from 24389 // where the store chain ended and return single TokenFactor. 24390 SDValue NewChain = STChain->getChain(); 24391 SmallVector<SDValue, 8> TFOps; 24392 for (unsigned I = ChainedStores.size(); I;) { 24393 StoreSDNode *S = ChainedStores[--I]; 24394 SDValue BetterChain = FindBetterChain(S, NewChain); 24395 S = cast<StoreSDNode>(DAG.UpdateNodeOperands( 24396 S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3))); 24397 TFOps.push_back(SDValue(S, 0)); 24398 ChainedStores[I] = S; 24399 } 24400 24401 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo. 24402 SDValue BetterChain = FindBetterChain(St, NewChain); 24403 SDValue NewST; 24404 if (St->isTruncatingStore()) 24405 NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(), 24406 St->getBasePtr(), St->getMemoryVT(), 24407 St->getMemOperand()); 24408 else 24409 NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(), 24410 St->getBasePtr(), St->getMemOperand()); 24411 24412 TFOps.push_back(NewST); 24413 24414 // If we improved every element of TFOps, then we've lost the dependence on 24415 // NewChain to successors of St and we need to add it back to TFOps. Do so at 24416 // the beginning to keep relative order consistent with FindBetterChains. 24417 auto hasImprovedChain = [&](SDValue ST) -> bool { 24418 return ST->getOperand(0) != NewChain; 24419 }; 24420 bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain); 24421 if (AddNewChain) 24422 TFOps.insert(TFOps.begin(), NewChain); 24423 24424 SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps); 24425 CombineTo(St, TF); 24426 24427 // Add TF and its operands to the worklist. 24428 AddToWorklist(TF.getNode()); 24429 for (const SDValue &Op : TF->ops()) 24430 AddToWorklist(Op.getNode()); 24431 AddToWorklist(STChain); 24432 return true; 24433 } 24434 24435 bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { 24436 if (OptLevel == CodeGenOpt::None) 24437 return false; 24438 24439 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 24440 24441 // We must have a base and an offset. 24442 if (!BasePtr.getBase().getNode()) 24443 return false; 24444 24445 // Do not handle stores to undef base pointers. 24446 if (BasePtr.getBase().isUndef()) 24447 return false; 24448 24449 // Directly improve a chain of disjoint stores starting at St. 24450 if (parallelizeChainedStores(St)) 24451 return true; 24452 24453 // Improve St's Chain.. 24454 SDValue BetterChain = FindBetterChain(St, St->getChain()); 24455 if (St->getChain() != BetterChain) { 24456 replaceStoreChain(St, BetterChain); 24457 return true; 24458 } 24459 return false; 24460 } 24461 24462 /// This is the entry point for the file. 24463 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA, 24464 CodeGenOpt::Level OptLevel) { 24465 /// This is the main entry point to this class. 24466 DAGCombiner(*this, AA, OptLevel).Run(Level); 24467 } 24468