1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/MC/MCInstrDesc.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <iterator>
56 #include <limits>
57 #include <tuple>
58 #include <utility>
59 #include <vector>
60 
61 using namespace llvm;
62 
63 #define DEBUG_TYPE "regalloc"
64 
65 STATISTIC(numJoins    , "Number of interval joins performed");
66 STATISTIC(numCrossRCs , "Number of cross class joins performed");
67 STATISTIC(numCommutes , "Number of instruction commuting performed");
68 STATISTIC(numExtends  , "Number of copies extended");
69 STATISTIC(NumReMats   , "Number of instructions re-materialized");
70 STATISTIC(NumInflated , "Number of register classes inflated");
71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
72 STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
73 STATISTIC(NumShrinkToUses,  "Number of shrinkToUses called");
74 
75 static cl::opt<bool> EnableJoining("join-liveintervals",
76                                    cl::desc("Coalesce copies (default=true)"),
77                                    cl::init(true), cl::Hidden);
78 
79 static cl::opt<bool> UseTerminalRule("terminal-rule",
80                                      cl::desc("Apply the terminal rule"),
81                                      cl::init(false), cl::Hidden);
82 
83 /// Temporary flag to test critical edge unsplitting.
84 static cl::opt<bool>
85 EnableJoinSplits("join-splitedges",
86   cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87 
88 /// Temporary flag to test global copy optimization.
89 static cl::opt<cl::boolOrDefault>
90 EnableGlobalCopies("join-globalcopies",
91   cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92   cl::init(cl::BOU_UNSET), cl::Hidden);
93 
94 static cl::opt<bool>
95 VerifyCoalescing("verify-coalescing",
96          cl::desc("Verify machine instrs before and after register coalescing"),
97          cl::Hidden);
98 
99 static cl::opt<unsigned> LateRematUpdateThreshold(
100     "late-remat-update-threshold", cl::Hidden,
101     cl::desc("During rematerialization for a copy, if the def instruction has "
102              "many other copy uses to be rematerialized, delay the multiple "
103              "separate live interval update work and do them all at once after "
104              "all those rematerialization are done. It will save a lot of "
105              "repeated work. "),
106     cl::init(100));
107 
108 static cl::opt<unsigned> LargeIntervalSizeThreshold(
109     "large-interval-size-threshold", cl::Hidden,
110     cl::desc("If the valnos size of an interval is larger than the threshold, "
111              "it is regarded as a large interval. "),
112     cl::init(100));
113 
114 static cl::opt<unsigned> LargeIntervalFreqThreshold(
115     "large-interval-freq-threshold", cl::Hidden,
116     cl::desc("For a large interval, if it is coalesed with other live "
117              "intervals many times more than the threshold, stop its "
118              "coalescing to control the compile time. "),
119     cl::init(100));
120 
121 namespace {
122 
123   class JoinVals;
124 
125   class RegisterCoalescer : public MachineFunctionPass,
126                             private LiveRangeEdit::Delegate {
127     MachineFunction* MF = nullptr;
128     MachineRegisterInfo* MRI = nullptr;
129     const TargetRegisterInfo* TRI = nullptr;
130     const TargetInstrInfo* TII = nullptr;
131     LiveIntervals *LIS = nullptr;
132     const MachineLoopInfo* Loops = nullptr;
133     AliasAnalysis *AA = nullptr;
134     RegisterClassInfo RegClassInfo;
135 
136     /// Debug variable location tracking -- for each VReg, maintain an
137     /// ordered-by-slot-index set of DBG_VALUEs, to help quick
138     /// identification of whether coalescing may change location validity.
139     using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>;
140     DenseMap<unsigned, std::vector<DbgValueLoc>> DbgVRegToValues;
141 
142     /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached.
143     /// To avoid repeatedly merging sets of DbgValueLocs, instead record
144     /// which vregs have been coalesced, and where to. This map is from
145     /// vreg => {set of vregs merged in}.
146     DenseMap<unsigned, SmallVector<unsigned, 4>> DbgMergedVRegNums;
147 
148     /// A LaneMask to remember on which subregister live ranges we need to call
149     /// shrinkToUses() later.
150     LaneBitmask ShrinkMask;
151 
152     /// True if the main range of the currently coalesced intervals should be
153     /// checked for smaller live intervals.
154     bool ShrinkMainRange = false;
155 
156     /// True if the coalescer should aggressively coalesce global copies
157     /// in favor of keeping local copies.
158     bool JoinGlobalCopies = false;
159 
160     /// True if the coalescer should aggressively coalesce fall-thru
161     /// blocks exclusively containing copies.
162     bool JoinSplitEdges = false;
163 
164     /// Copy instructions yet to be coalesced.
165     SmallVector<MachineInstr*, 8> WorkList;
166     SmallVector<MachineInstr*, 8> LocalWorkList;
167 
168     /// Set of instruction pointers that have been erased, and
169     /// that may be present in WorkList.
170     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
171 
172     /// Dead instructions that are about to be deleted.
173     SmallVector<MachineInstr*, 8> DeadDefs;
174 
175     /// Virtual registers to be considered for register class inflation.
176     SmallVector<Register, 8> InflateRegs;
177 
178     /// The collection of live intervals which should have been updated
179     /// immediately after rematerialiation but delayed until
180     /// lateLiveIntervalUpdate is called.
181     DenseSet<unsigned> ToBeUpdated;
182 
183     /// Record how many times the large live interval with many valnos
184     /// has been tried to join with other live interval.
185     DenseMap<unsigned, unsigned long> LargeLIVisitCounter;
186 
187     /// Recursively eliminate dead defs in DeadDefs.
188     void eliminateDeadDefs();
189 
190     /// LiveRangeEdit callback for eliminateDeadDefs().
191     void LRE_WillEraseInstruction(MachineInstr *MI) override;
192 
193     /// Coalesce the LocalWorkList.
194     void coalesceLocals();
195 
196     /// Join compatible live intervals
197     void joinAllIntervals();
198 
199     /// Coalesce copies in the specified MBB, putting
200     /// copies that cannot yet be coalesced into WorkList.
201     void copyCoalesceInMBB(MachineBasicBlock *MBB);
202 
203     /// Tries to coalesce all copies in CurrList. Returns true if any progress
204     /// was made.
205     bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
206 
207     /// If one def has many copy like uses, and those copy uses are all
208     /// rematerialized, the live interval update needed for those
209     /// rematerializations will be delayed and done all at once instead
210     /// of being done multiple times. This is to save compile cost because
211     /// live interval update is costly.
212     void lateLiveIntervalUpdate();
213 
214     /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
215     /// src/dst of the copy instruction CopyMI.  This returns true if the copy
216     /// was successfully coalesced away. If it is not currently possible to
217     /// coalesce this interval, but it may be possible if other things get
218     /// coalesced, then it returns true by reference in 'Again'.
219     bool joinCopy(MachineInstr *CopyMI, bool &Again);
220 
221     /// Attempt to join these two intervals.  On failure, this
222     /// returns false.  The output "SrcInt" will not have been modified, so we
223     /// can use this information below to update aliases.
224     bool joinIntervals(CoalescerPair &CP);
225 
226     /// Attempt joining two virtual registers. Return true on success.
227     bool joinVirtRegs(CoalescerPair &CP);
228 
229     /// If a live interval has many valnos and is coalesced with other
230     /// live intervals many times, we regard such live interval as having
231     /// high compile time cost.
232     bool isHighCostLiveInterval(LiveInterval &LI);
233 
234     /// Attempt joining with a reserved physreg.
235     bool joinReservedPhysReg(CoalescerPair &CP);
236 
237     /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
238     /// Subranges in @p LI which only partially interfere with the desired
239     /// LaneMask are split as necessary. @p LaneMask are the lanes that
240     /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
241     /// lanemasks already adjusted to the coalesced register.
242     void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
243                            LaneBitmask LaneMask, CoalescerPair &CP,
244                            unsigned DstIdx);
245 
246     /// Join the liveranges of two subregisters. Joins @p RRange into
247     /// @p LRange, @p RRange may be invalid afterwards.
248     void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
249                           LaneBitmask LaneMask, const CoalescerPair &CP);
250 
251     /// We found a non-trivially-coalescable copy. If the source value number is
252     /// defined by a copy from the destination reg see if we can merge these two
253     /// destination reg valno# into a single value number, eliminating a copy.
254     /// This returns true if an interval was modified.
255     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
256 
257     /// Return true if there are definitions of IntB
258     /// other than BValNo val# that can reach uses of AValno val# of IntA.
259     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
260                               VNInfo *AValNo, VNInfo *BValNo);
261 
262     /// We found a non-trivially-coalescable copy.
263     /// If the source value number is defined by a commutable instruction and
264     /// its other operand is coalesced to the copy dest register, see if we
265     /// can transform the copy into a noop by commuting the definition.
266     /// This returns a pair of two flags:
267     /// - the first element is true if an interval was modified,
268     /// - the second element is true if the destination interval needs
269     ///   to be shrunk after deleting the copy.
270     std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
271                                                   MachineInstr *CopyMI);
272 
273     /// We found a copy which can be moved to its less frequent predecessor.
274     bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
275 
276     /// If the source of a copy is defined by a
277     /// trivial computation, replace the copy by rematerialize the definition.
278     bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
279                                  bool &IsDefCopy);
280 
281     /// Return true if a copy involving a physreg should be joined.
282     bool canJoinPhys(const CoalescerPair &CP);
283 
284     /// Replace all defs and uses of SrcReg to DstReg and update the subregister
285     /// number if it is not zero. If DstReg is a physical register and the
286     /// existing subregister number of the def / use being updated is not zero,
287     /// make sure to set it to the correct physical subregister.
288     void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx);
289 
290     /// If the given machine operand reads only undefined lanes add an undef
291     /// flag.
292     /// This can happen when undef uses were previously concealed by a copy
293     /// which we coalesced. Example:
294     ///    %0:sub0<def,read-undef> = ...
295     ///    %1 = COPY %0           <-- Coalescing COPY reveals undef
296     ///       = use %1:sub1       <-- hidden undef use
297     void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
298                       MachineOperand &MO, unsigned SubRegIdx);
299 
300     /// Handle copies of undef values. If the undef value is an incoming
301     /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
302     /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
303     /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
304     MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
305 
306     /// Check whether or not we should apply the terminal rule on the
307     /// destination (Dst) of \p Copy.
308     /// When the terminal rule applies, Copy is not profitable to
309     /// coalesce.
310     /// Dst is terminal if it has exactly one affinity (Dst, Src) and
311     /// at least one interference (Dst, Dst2). If Dst is terminal, the
312     /// terminal rule consists in checking that at least one of
313     /// interfering node, say Dst2, has an affinity of equal or greater
314     /// weight with Src.
315     /// In that case, Dst2 and Dst will not be able to be both coalesced
316     /// with Src. Since Dst2 exposes more coalescing opportunities than
317     /// Dst, we can drop \p Copy.
318     bool applyTerminalRule(const MachineInstr &Copy) const;
319 
320     /// Wrapper method for \see LiveIntervals::shrinkToUses.
321     /// This method does the proper fixing of the live-ranges when the afore
322     /// mentioned method returns true.
323     void shrinkToUses(LiveInterval *LI,
324                       SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
325       NumShrinkToUses++;
326       if (LIS->shrinkToUses(LI, Dead)) {
327         /// Check whether or not \p LI is composed by multiple connected
328         /// components and if that is the case, fix that.
329         SmallVector<LiveInterval*, 8> SplitLIs;
330         LIS->splitSeparateComponents(*LI, SplitLIs);
331       }
332     }
333 
334     /// Wrapper Method to do all the necessary work when an Instruction is
335     /// deleted.
336     /// Optimizations should use this to make sure that deleted instructions
337     /// are always accounted for.
338     void deleteInstr(MachineInstr* MI) {
339       ErasedInstrs.insert(MI);
340       LIS->RemoveMachineInstrFromMaps(*MI);
341       MI->eraseFromParent();
342     }
343 
344     /// Walk over function and initialize the DbgVRegToValues map.
345     void buildVRegToDbgValueMap(MachineFunction &MF);
346 
347     /// Test whether, after merging, any DBG_VALUEs would refer to a
348     /// different value number than before merging, and whether this can
349     /// be resolved. If not, mark the DBG_VALUE as being undef.
350     void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
351                                       JoinVals &LHSVals, LiveRange &RHS,
352                                       JoinVals &RHSVals);
353 
354     void checkMergingChangesDbgValuesImpl(unsigned Reg, LiveRange &OtherRange,
355                                           LiveRange &RegRange, JoinVals &Vals2);
356 
357   public:
358     static char ID; ///< Class identification, replacement for typeinfo
359 
360     RegisterCoalescer() : MachineFunctionPass(ID) {
361       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
362     }
363 
364     void getAnalysisUsage(AnalysisUsage &AU) const override;
365 
366     void releaseMemory() override;
367 
368     /// This is the pass entry point.
369     bool runOnMachineFunction(MachineFunction&) override;
370 
371     /// Implement the dump method.
372     void print(raw_ostream &O, const Module* = nullptr) const override;
373   };
374 
375 } // end anonymous namespace
376 
377 char RegisterCoalescer::ID = 0;
378 
379 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
380 
381 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
382                       "Simple Register Coalescing", false, false)
383 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
384 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
385 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
386 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
387 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
388                     "Simple Register Coalescing", false, false)
389 
390 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri,
391                                        const MachineInstr *MI, unsigned &Src,
392                                        unsigned &Dst, unsigned &SrcSub,
393                                        unsigned &DstSub) {
394   if (MI->isCopy()) {
395     Dst = MI->getOperand(0).getReg();
396     DstSub = MI->getOperand(0).getSubReg();
397     Src = MI->getOperand(1).getReg();
398     SrcSub = MI->getOperand(1).getSubReg();
399   } else if (MI->isSubregToReg()) {
400     Dst = MI->getOperand(0).getReg();
401     DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
402                                       MI->getOperand(3).getImm());
403     Src = MI->getOperand(2).getReg();
404     SrcSub = MI->getOperand(2).getSubReg();
405   } else
406     return false;
407   return true;
408 }
409 
410 /// Return true if this block should be vacated by the coalescer to eliminate
411 /// branches. The important cases to handle in the coalescer are critical edges
412 /// split during phi elimination which contain only copies. Simple blocks that
413 /// contain non-branches should also be vacated, but this can be handled by an
414 /// earlier pass similar to early if-conversion.
415 static bool isSplitEdge(const MachineBasicBlock *MBB) {
416   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
417     return false;
418 
419   for (const auto &MI : *MBB) {
420     if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
421       return false;
422   }
423   return true;
424 }
425 
426 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
427   SrcReg = DstReg = 0;
428   SrcIdx = DstIdx = 0;
429   NewRC = nullptr;
430   Flipped = CrossClass = false;
431 
432   unsigned Src, Dst, SrcSub, DstSub;
433   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
434     return false;
435   Partial = SrcSub || DstSub;
436 
437   // If one register is a physreg, it must be Dst.
438   if (Register::isPhysicalRegister(Src)) {
439     if (Register::isPhysicalRegister(Dst))
440       return false;
441     std::swap(Src, Dst);
442     std::swap(SrcSub, DstSub);
443     Flipped = true;
444   }
445 
446   const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
447 
448   if (Register::isPhysicalRegister(Dst)) {
449     // Eliminate DstSub on a physreg.
450     if (DstSub) {
451       Dst = TRI.getSubReg(Dst, DstSub);
452       if (!Dst) return false;
453       DstSub = 0;
454     }
455 
456     // Eliminate SrcSub by picking a corresponding Dst superregister.
457     if (SrcSub) {
458       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
459       if (!Dst) return false;
460     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
461       return false;
462     }
463   } else {
464     // Both registers are virtual.
465     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
466     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
467 
468     // Both registers have subreg indices.
469     if (SrcSub && DstSub) {
470       // Copies between different sub-registers are never coalescable.
471       if (Src == Dst && SrcSub != DstSub)
472         return false;
473 
474       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
475                                          SrcIdx, DstIdx);
476       if (!NewRC)
477         return false;
478     } else if (DstSub) {
479       // SrcReg will be merged with a sub-register of DstReg.
480       SrcIdx = DstSub;
481       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
482     } else if (SrcSub) {
483       // DstReg will be merged with a sub-register of SrcReg.
484       DstIdx = SrcSub;
485       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
486     } else {
487       // This is a straight copy without sub-registers.
488       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
489     }
490 
491     // The combined constraint may be impossible to satisfy.
492     if (!NewRC)
493       return false;
494 
495     // Prefer SrcReg to be a sub-register of DstReg.
496     // FIXME: Coalescer should support subregs symmetrically.
497     if (DstIdx && !SrcIdx) {
498       std::swap(Src, Dst);
499       std::swap(SrcIdx, DstIdx);
500       Flipped = !Flipped;
501     }
502 
503     CrossClass = NewRC != DstRC || NewRC != SrcRC;
504   }
505   // Check our invariants
506   assert(Register::isVirtualRegister(Src) && "Src must be virtual");
507   assert(!(Register::isPhysicalRegister(Dst) && DstSub) &&
508          "Cannot have a physical SubIdx");
509   SrcReg = Src;
510   DstReg = Dst;
511   return true;
512 }
513 
514 bool CoalescerPair::flip() {
515   if (Register::isPhysicalRegister(DstReg))
516     return false;
517   std::swap(SrcReg, DstReg);
518   std::swap(SrcIdx, DstIdx);
519   Flipped = !Flipped;
520   return true;
521 }
522 
523 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
524   if (!MI)
525     return false;
526   unsigned Src, Dst, SrcSub, DstSub;
527   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
528     return false;
529 
530   // Find the virtual register that is SrcReg.
531   if (Dst == SrcReg) {
532     std::swap(Src, Dst);
533     std::swap(SrcSub, DstSub);
534   } else if (Src != SrcReg) {
535     return false;
536   }
537 
538   // Now check that Dst matches DstReg.
539   if (Register::isPhysicalRegister(DstReg)) {
540     if (!Register::isPhysicalRegister(Dst))
541       return false;
542     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
543     // DstSub could be set for a physreg from INSERT_SUBREG.
544     if (DstSub)
545       Dst = TRI.getSubReg(Dst, DstSub);
546     // Full copy of Src.
547     if (!SrcSub)
548       return DstReg == Dst;
549     // This is a partial register copy. Check that the parts match.
550     return TRI.getSubReg(DstReg, SrcSub) == Dst;
551   } else {
552     // DstReg is virtual.
553     if (DstReg != Dst)
554       return false;
555     // Registers match, do the subregisters line up?
556     return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
557            TRI.composeSubRegIndices(DstIdx, DstSub);
558   }
559 }
560 
561 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
562   AU.setPreservesCFG();
563   AU.addRequired<AAResultsWrapperPass>();
564   AU.addRequired<LiveIntervals>();
565   AU.addPreserved<LiveIntervals>();
566   AU.addPreserved<SlotIndexes>();
567   AU.addRequired<MachineLoopInfo>();
568   AU.addPreserved<MachineLoopInfo>();
569   AU.addPreservedID(MachineDominatorsID);
570   MachineFunctionPass::getAnalysisUsage(AU);
571 }
572 
573 void RegisterCoalescer::eliminateDeadDefs() {
574   SmallVector<Register, 8> NewRegs;
575   LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
576                 nullptr, this).eliminateDeadDefs(DeadDefs);
577 }
578 
579 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
580   // MI may be in WorkList. Make sure we don't visit it.
581   ErasedInstrs.insert(MI);
582 }
583 
584 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
585                                              MachineInstr *CopyMI) {
586   assert(!CP.isPartial() && "This doesn't work for partial copies.");
587   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
588 
589   LiveInterval &IntA =
590     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
591   LiveInterval &IntB =
592     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
593   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
594 
595   // We have a non-trivially-coalescable copy with IntA being the source and
596   // IntB being the dest, thus this defines a value number in IntB.  If the
597   // source value number (in IntA) is defined by a copy from B, see if we can
598   // merge these two pieces of B into a single value number, eliminating a copy.
599   // For example:
600   //
601   //  A3 = B0
602   //    ...
603   //  B1 = A3      <- this copy
604   //
605   // In this case, B0 can be extended to where the B1 copy lives, allowing the
606   // B1 value number to be replaced with B0 (which simplifies the B
607   // liveinterval).
608 
609   // BValNo is a value number in B that is defined by a copy from A.  'B1' in
610   // the example above.
611   LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
612   if (BS == IntB.end()) return false;
613   VNInfo *BValNo = BS->valno;
614 
615   // Get the location that B is defined at.  Two options: either this value has
616   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
617   // can't process it.
618   if (BValNo->def != CopyIdx) return false;
619 
620   // AValNo is the value number in A that defines the copy, A3 in the example.
621   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
622   LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
623   // The live segment might not exist after fun with physreg coalescing.
624   if (AS == IntA.end()) return false;
625   VNInfo *AValNo = AS->valno;
626 
627   // If AValNo is defined as a copy from IntB, we can potentially process this.
628   // Get the instruction that defines this value number.
629   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
630   // Don't allow any partial copies, even if isCoalescable() allows them.
631   if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
632     return false;
633 
634   // Get the Segment in IntB that this value number starts with.
635   LiveInterval::iterator ValS =
636     IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
637   if (ValS == IntB.end())
638     return false;
639 
640   // Make sure that the end of the live segment is inside the same block as
641   // CopyMI.
642   MachineInstr *ValSEndInst =
643     LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
644   if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
645     return false;
646 
647   // Okay, we now know that ValS ends in the same block that the CopyMI
648   // live-range starts.  If there are no intervening live segments between them
649   // in IntB, we can merge them.
650   if (ValS+1 != BS) return false;
651 
652   LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI));
653 
654   SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
655   // We are about to delete CopyMI, so need to remove it as the 'instruction
656   // that defines this value #'. Update the valnum with the new defining
657   // instruction #.
658   BValNo->def = FillerStart;
659 
660   // Okay, we can merge them.  We need to insert a new liverange:
661   // [ValS.end, BS.begin) of either value number, then we merge the
662   // two value numbers.
663   IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
664 
665   // Okay, merge "B1" into the same value number as "B0".
666   if (BValNo != ValS->valno)
667     IntB.MergeValueNumberInto(BValNo, ValS->valno);
668 
669   // Do the same for the subregister segments.
670   for (LiveInterval::SubRange &S : IntB.subranges()) {
671     // Check for SubRange Segments of the form [1234r,1234d:0) which can be
672     // removed to prevent creating bogus SubRange Segments.
673     LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
674     if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
675       S.removeSegment(*SS, true);
676       continue;
677     }
678     // The subrange may have ended before FillerStart. If so, extend it.
679     if (!S.getVNInfoAt(FillerStart)) {
680       SlotIndex BBStart =
681           LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart));
682       S.extendInBlock(BBStart, FillerStart);
683     }
684     VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
685     S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
686     VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
687     if (SubBValNo != SubValSNo)
688       S.MergeValueNumberInto(SubBValNo, SubValSNo);
689   }
690 
691   LLVM_DEBUG(dbgs() << "   result = " << IntB << '\n');
692 
693   // If the source instruction was killing the source register before the
694   // merge, unset the isKill marker given the live range has been extended.
695   int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true);
696   if (UIdx != -1) {
697     ValSEndInst->getOperand(UIdx).setIsKill(false);
698   }
699 
700   // Rewrite the copy.
701   CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI);
702   // If the copy instruction was killing the destination register or any
703   // subrange before the merge trim the live range.
704   bool RecomputeLiveRange = AS->end == CopyIdx;
705   if (!RecomputeLiveRange) {
706     for (LiveInterval::SubRange &S : IntA.subranges()) {
707       LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
708       if (SS != S.end() && SS->end == CopyIdx) {
709         RecomputeLiveRange = true;
710         break;
711       }
712     }
713   }
714   if (RecomputeLiveRange)
715     shrinkToUses(&IntA);
716 
717   ++numExtends;
718   return true;
719 }
720 
721 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
722                                              LiveInterval &IntB,
723                                              VNInfo *AValNo,
724                                              VNInfo *BValNo) {
725   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
726   // the PHI values.
727   if (LIS->hasPHIKill(IntA, AValNo))
728     return true;
729 
730   for (LiveRange::Segment &ASeg : IntA.segments) {
731     if (ASeg.valno != AValNo) continue;
732     LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
733     if (BI != IntB.begin())
734       --BI;
735     for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
736       if (BI->valno == BValNo)
737         continue;
738       if (BI->start <= ASeg.start && BI->end > ASeg.start)
739         return true;
740       if (BI->start > ASeg.start && BI->start < ASeg.end)
741         return true;
742     }
743   }
744   return false;
745 }
746 
747 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
748 /// range @Dst and use value number @p DstValNo there.
749 static std::pair<bool,bool>
750 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
751                      const VNInfo *SrcValNo) {
752   bool Changed = false;
753   bool MergedWithDead = false;
754   for (const LiveRange::Segment &S : Src.segments) {
755     if (S.valno != SrcValNo)
756       continue;
757     // This is adding a segment from Src that ends in a copy that is about
758     // to be removed. This segment is going to be merged with a pre-existing
759     // segment in Dst. This works, except in cases when the corresponding
760     // segment in Dst is dead. For example: adding [192r,208r:1) from Src
761     // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
762     // Recognized such cases, so that the segments can be shrunk.
763     LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
764     LiveRange::Segment &Merged = *Dst.addSegment(Added);
765     if (Merged.end.isDead())
766       MergedWithDead = true;
767     Changed = true;
768   }
769   return std::make_pair(Changed, MergedWithDead);
770 }
771 
772 std::pair<bool,bool>
773 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
774                                             MachineInstr *CopyMI) {
775   assert(!CP.isPhys());
776 
777   LiveInterval &IntA =
778       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
779   LiveInterval &IntB =
780       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
781 
782   // We found a non-trivially-coalescable copy with IntA being the source and
783   // IntB being the dest, thus this defines a value number in IntB.  If the
784   // source value number (in IntA) is defined by a commutable instruction and
785   // its other operand is coalesced to the copy dest register, see if we can
786   // transform the copy into a noop by commuting the definition. For example,
787   //
788   //  A3 = op A2 killed B0
789   //    ...
790   //  B1 = A3      <- this copy
791   //    ...
792   //     = op A3   <- more uses
793   //
794   // ==>
795   //
796   //  B2 = op B0 killed A2
797   //    ...
798   //  B1 = B2      <- now an identity copy
799   //    ...
800   //     = op B2   <- more uses
801 
802   // BValNo is a value number in B that is defined by a copy from A. 'B1' in
803   // the example above.
804   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
805   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
806   assert(BValNo != nullptr && BValNo->def == CopyIdx);
807 
808   // AValNo is the value number in A that defines the copy, A3 in the example.
809   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
810   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
811   if (AValNo->isPHIDef())
812     return { false, false };
813   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
814   if (!DefMI)
815     return { false, false };
816   if (!DefMI->isCommutable())
817     return { false, false };
818   // If DefMI is a two-address instruction then commuting it will change the
819   // destination register.
820   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg());
821   assert(DefIdx != -1);
822   unsigned UseOpIdx;
823   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
824     return { false, false };
825 
826   // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
827   // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
828   // passed to the method. That _other_ operand is chosen by
829   // the findCommutedOpIndices() method.
830   //
831   // That is obviously an area for improvement in case of instructions having
832   // more than 2 operands. For example, if some instruction has 3 commutable
833   // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
834   // op#2<->op#3) of commute transformation should be considered/tried here.
835   unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
836   if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
837     return { false, false };
838 
839   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
840   Register NewReg = NewDstMO.getReg();
841   if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill())
842     return { false, false };
843 
844   // Make sure there are no other definitions of IntB that would reach the
845   // uses which the new definition can reach.
846   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
847     return { false, false };
848 
849   // If some of the uses of IntA.reg is already coalesced away, return false.
850   // It's not possible to determine whether it's safe to perform the coalescing.
851   for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) {
852     MachineInstr *UseMI = MO.getParent();
853     unsigned OpNo = &MO - &UseMI->getOperand(0);
854     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
855     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
856     if (US == IntA.end() || US->valno != AValNo)
857       continue;
858     // If this use is tied to a def, we can't rewrite the register.
859     if (UseMI->isRegTiedToDefOperand(OpNo))
860       return { false, false };
861   }
862 
863   LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
864                     << *DefMI);
865 
866   // At this point we have decided that it is legal to do this
867   // transformation.  Start by commuting the instruction.
868   MachineBasicBlock *MBB = DefMI->getParent();
869   MachineInstr *NewMI =
870       TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
871   if (!NewMI)
872     return { false, false };
873   if (Register::isVirtualRegister(IntA.reg()) &&
874       Register::isVirtualRegister(IntB.reg()) &&
875       !MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg())))
876     return { false, false };
877   if (NewMI != DefMI) {
878     LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
879     MachineBasicBlock::iterator Pos = DefMI;
880     MBB->insert(Pos, NewMI);
881     MBB->erase(DefMI);
882   }
883 
884   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
885   // A = or A, B
886   // ...
887   // B = A
888   // ...
889   // C = killed A
890   // ...
891   //   = B
892 
893   // Update uses of IntA of the specific Val# with IntB.
894   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg()),
895                                          UE = MRI->use_end();
896        UI != UE;
897        /* ++UI is below because of possible MI removal */) {
898     MachineOperand &UseMO = *UI;
899     ++UI;
900     if (UseMO.isUndef())
901       continue;
902     MachineInstr *UseMI = UseMO.getParent();
903     if (UseMI->isDebugValue()) {
904       // FIXME These don't have an instruction index.  Not clear we have enough
905       // info to decide whether to do this replacement or not.  For now do it.
906       UseMO.setReg(NewReg);
907       continue;
908     }
909     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
910     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
911     assert(US != IntA.end() && "Use must be live");
912     if (US->valno != AValNo)
913       continue;
914     // Kill flags are no longer accurate. They are recomputed after RA.
915     UseMO.setIsKill(false);
916     if (Register::isPhysicalRegister(NewReg))
917       UseMO.substPhysReg(NewReg, *TRI);
918     else
919       UseMO.setReg(NewReg);
920     if (UseMI == CopyMI)
921       continue;
922     if (!UseMI->isCopy())
923       continue;
924     if (UseMI->getOperand(0).getReg() != IntB.reg() ||
925         UseMI->getOperand(0).getSubReg())
926       continue;
927 
928     // This copy will become a noop. If it's defining a new val#, merge it into
929     // BValNo.
930     SlotIndex DefIdx = UseIdx.getRegSlot();
931     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
932     if (!DVNI)
933       continue;
934     LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
935     assert(DVNI->def == DefIdx);
936     BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
937     for (LiveInterval::SubRange &S : IntB.subranges()) {
938       VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
939       if (!SubDVNI)
940         continue;
941       VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
942       assert(SubBValNo->def == CopyIdx);
943       S.MergeValueNumberInto(SubDVNI, SubBValNo);
944     }
945 
946     deleteInstr(UseMI);
947   }
948 
949   // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
950   // is updated.
951   bool ShrinkB = false;
952   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
953   if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
954     if (!IntA.hasSubRanges()) {
955       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg());
956       IntA.createSubRangeFrom(Allocator, Mask, IntA);
957     } else if (!IntB.hasSubRanges()) {
958       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg());
959       IntB.createSubRangeFrom(Allocator, Mask, IntB);
960     }
961     SlotIndex AIdx = CopyIdx.getRegSlot(true);
962     LaneBitmask MaskA;
963     const SlotIndexes &Indexes = *LIS->getSlotIndexes();
964     for (LiveInterval::SubRange &SA : IntA.subranges()) {
965       VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
966       // Even if we are dealing with a full copy, some lanes can
967       // still be undefined.
968       // E.g.,
969       // undef A.subLow = ...
970       // B = COPY A <== A.subHigh is undefined here and does
971       //                not have a value number.
972       if (!ASubValNo)
973         continue;
974       MaskA |= SA.LaneMask;
975 
976       IntB.refineSubRanges(
977           Allocator, SA.LaneMask,
978           [&Allocator, &SA, CopyIdx, ASubValNo,
979            &ShrinkB](LiveInterval::SubRange &SR) {
980             VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
981                                            : SR.getVNInfoAt(CopyIdx);
982             assert(BSubValNo != nullptr);
983             auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
984             ShrinkB |= P.second;
985             if (P.first)
986               BSubValNo->def = ASubValNo->def;
987           },
988           Indexes, *TRI);
989     }
990     // Go over all subranges of IntB that have not been covered by IntA,
991     // and delete the segments starting at CopyIdx. This can happen if
992     // IntA has undef lanes that are defined in IntB.
993     for (LiveInterval::SubRange &SB : IntB.subranges()) {
994       if ((SB.LaneMask & MaskA).any())
995         continue;
996       if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
997         if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
998           SB.removeSegment(*S, true);
999     }
1000   }
1001 
1002   BValNo->def = AValNo->def;
1003   auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
1004   ShrinkB |= P.second;
1005   LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
1006 
1007   LIS->removeVRegDefAt(IntA, AValNo->def);
1008 
1009   LLVM_DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
1010   ++numCommutes;
1011   return { true, ShrinkB };
1012 }
1013 
1014 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1015 /// predecessor of BB2, and if B is not redefined on the way from A = B
1016 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1017 /// execution goes through the path from BB0 to BB2. We may move B = A
1018 /// to the predecessor without such reversed copy.
1019 /// So we will transform the program from:
1020 ///   BB0:
1021 ///      A = B;    BB1:
1022 ///       ...         ...
1023 ///     /     \      /
1024 ///             BB2:
1025 ///               ...
1026 ///               B = A;
1027 ///
1028 /// to:
1029 ///
1030 ///   BB0:         BB1:
1031 ///      A = B;        ...
1032 ///       ...          B = A;
1033 ///     /     \       /
1034 ///             BB2:
1035 ///               ...
1036 ///
1037 /// A special case is when BB0 and BB2 are the same BB which is the only
1038 /// BB in a loop:
1039 ///   BB1:
1040 ///        ...
1041 ///   BB0/BB2:  ----
1042 ///        B = A;   |
1043 ///        ...      |
1044 ///        A = B;   |
1045 ///          |-------
1046 ///          |
1047 /// We may hoist B = A from BB0/BB2 to BB1.
1048 ///
1049 /// The major preconditions for correctness to remove such partial
1050 /// redundancy include:
1051 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1052 ///    the PHI is defined by the reversed copy A = B in BB0.
1053 /// 2. No B is referenced from the start of BB2 to B = A.
1054 /// 3. No B is defined from A = B to the end of BB0.
1055 /// 4. BB1 has only one successor.
1056 ///
1057 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1058 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1059 /// colder place, which not only prevent endless loop, but also make sure
1060 /// the movement of copy is beneficial.
1061 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1062                                                 MachineInstr &CopyMI) {
1063   assert(!CP.isPhys());
1064   if (!CopyMI.isFullCopy())
1065     return false;
1066 
1067   MachineBasicBlock &MBB = *CopyMI.getParent();
1068   // If this block is the target of an invoke/inlineasm_br, moving the copy into
1069   // the predecessor is tricker, and we don't handle it.
1070   if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget())
1071     return false;
1072 
1073   if (MBB.pred_size() != 2)
1074     return false;
1075 
1076   LiveInterval &IntA =
1077       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1078   LiveInterval &IntB =
1079       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1080 
1081   // A is defined by PHI at the entry of MBB.
1082   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1083   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1084   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1085   if (!AValNo->isPHIDef())
1086     return false;
1087 
1088   // No B is referenced before CopyMI in MBB.
1089   if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1090     return false;
1091 
1092   // MBB has two predecessors: one contains A = B so no copy will be inserted
1093   // for it. The other one will have a copy moved from MBB.
1094   bool FoundReverseCopy = false;
1095   MachineBasicBlock *CopyLeftBB = nullptr;
1096   for (MachineBasicBlock *Pred : MBB.predecessors()) {
1097     VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1098     MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1099     if (!DefMI || !DefMI->isFullCopy()) {
1100       CopyLeftBB = Pred;
1101       continue;
1102     }
1103     // Check DefMI is a reverse copy and it is in BB Pred.
1104     if (DefMI->getOperand(0).getReg() != IntA.reg() ||
1105         DefMI->getOperand(1).getReg() != IntB.reg() ||
1106         DefMI->getParent() != Pred) {
1107       CopyLeftBB = Pred;
1108       continue;
1109     }
1110     // If there is any other def of B after DefMI and before the end of Pred,
1111     // we need to keep the copy of B = A at the end of Pred if we remove
1112     // B = A from MBB.
1113     bool ValB_Changed = false;
1114     for (auto VNI : IntB.valnos) {
1115       if (VNI->isUnused())
1116         continue;
1117       if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1118         ValB_Changed = true;
1119         break;
1120       }
1121     }
1122     if (ValB_Changed) {
1123       CopyLeftBB = Pred;
1124       continue;
1125     }
1126     FoundReverseCopy = true;
1127   }
1128 
1129   // If no reverse copy is found in predecessors, nothing to do.
1130   if (!FoundReverseCopy)
1131     return false;
1132 
1133   // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1134   // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1135   // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1136   // update IntA/IntB.
1137   //
1138   // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1139   // MBB is hotter than CopyLeftBB.
1140   if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1141     return false;
1142 
1143   // Now (almost sure it's) ok to move copy.
1144   if (CopyLeftBB) {
1145     // Position in CopyLeftBB where we should insert new copy.
1146     auto InsPos = CopyLeftBB->getFirstTerminator();
1147 
1148     // Make sure that B isn't referenced in the terminators (if any) at the end
1149     // of the predecessor since we're about to insert a new definition of B
1150     // before them.
1151     if (InsPos != CopyLeftBB->end()) {
1152       SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1153       if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1154         return false;
1155     }
1156 
1157     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1158                       << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1159 
1160     // Insert new copy to CopyLeftBB.
1161     MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1162                                       TII->get(TargetOpcode::COPY), IntB.reg())
1163                                   .addReg(IntA.reg());
1164     SlotIndex NewCopyIdx =
1165         LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1166     IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1167     for (LiveInterval::SubRange &SR : IntB.subranges())
1168       SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1169 
1170     // If the newly created Instruction has an address of an instruction that was
1171     // deleted before (object recycled by the allocator) it needs to be removed from
1172     // the deleted list.
1173     ErasedInstrs.erase(NewCopyMI);
1174   } else {
1175     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1176                       << printMBBReference(MBB) << '\t' << CopyMI);
1177   }
1178 
1179   // Remove CopyMI.
1180   // Note: This is fine to remove the copy before updating the live-ranges.
1181   // While updating the live-ranges, we only look at slot indices and
1182   // never go back to the instruction.
1183   // Mark instructions as deleted.
1184   deleteInstr(&CopyMI);
1185 
1186   // Update the liveness.
1187   SmallVector<SlotIndex, 8> EndPoints;
1188   VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1189   LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1190                   &EndPoints);
1191   BValNo->markUnused();
1192   // Extend IntB to the EndPoints of its original live interval.
1193   LIS->extendToIndices(IntB, EndPoints);
1194 
1195   // Now, do the same for its subranges.
1196   for (LiveInterval::SubRange &SR : IntB.subranges()) {
1197     EndPoints.clear();
1198     VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1199     assert(BValNo && "All sublanes should be live");
1200     LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1201     BValNo->markUnused();
1202     // We can have a situation where the result of the original copy is live,
1203     // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1204     // the copy appear as an endpoint from pruneValue(), but we don't want it
1205     // to because the copy has been removed.  We can go ahead and remove that
1206     // endpoint; there is no other situation here that there could be a use at
1207     // the same place as we know that the copy is a full copy.
1208     for (unsigned I = 0; I != EndPoints.size(); ) {
1209       if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1210         EndPoints[I] = EndPoints.back();
1211         EndPoints.pop_back();
1212         continue;
1213       }
1214       ++I;
1215     }
1216     SmallVector<SlotIndex, 8> Undefs;
1217     IntB.computeSubRangeUndefs(Undefs, SR.LaneMask, *MRI,
1218                                *LIS->getSlotIndexes());
1219     LIS->extendToIndices(SR, EndPoints, Undefs);
1220   }
1221   // If any dead defs were extended, truncate them.
1222   shrinkToUses(&IntB);
1223 
1224   // Finally, update the live-range of IntA.
1225   shrinkToUses(&IntA);
1226   return true;
1227 }
1228 
1229 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1230 /// defining a subregister.
1231 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
1232   assert(!Register::isPhysicalRegister(Reg) &&
1233          "This code cannot handle physreg aliasing");
1234   for (const MachineOperand &Op : MI.operands()) {
1235     if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1236       continue;
1237     // Return true if we define the full register or don't care about the value
1238     // inside other subregisters.
1239     if (Op.getSubReg() == 0 || Op.isUndef())
1240       return true;
1241   }
1242   return false;
1243 }
1244 
1245 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1246                                                 MachineInstr *CopyMI,
1247                                                 bool &IsDefCopy) {
1248   IsDefCopy = false;
1249   Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1250   unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1251   Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1252   unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1253   if (Register::isPhysicalRegister(SrcReg))
1254     return false;
1255 
1256   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1257   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1258   VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1259   if (!ValNo)
1260     return false;
1261   if (ValNo->isPHIDef() || ValNo->isUnused())
1262     return false;
1263   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1264   if (!DefMI)
1265     return false;
1266   if (DefMI->isCopyLike()) {
1267     IsDefCopy = true;
1268     return false;
1269   }
1270   if (!TII->isAsCheapAsAMove(*DefMI))
1271     return false;
1272   if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1273     return false;
1274   if (!definesFullReg(*DefMI, SrcReg))
1275     return false;
1276   bool SawStore = false;
1277   if (!DefMI->isSafeToMove(AA, SawStore))
1278     return false;
1279   const MCInstrDesc &MCID = DefMI->getDesc();
1280   if (MCID.getNumDefs() != 1)
1281     return false;
1282   // Only support subregister destinations when the def is read-undef.
1283   MachineOperand &DstOperand = CopyMI->getOperand(0);
1284   Register CopyDstReg = DstOperand.getReg();
1285   if (DstOperand.getSubReg() && !DstOperand.isUndef())
1286     return false;
1287 
1288   // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1289   // the register substantially (beyond both source and dest size). This is bad
1290   // for performance since it can cascade through a function, introducing many
1291   // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1292   // around after a few subreg copies).
1293   if (SrcIdx && DstIdx)
1294     return false;
1295 
1296   const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1297   if (!DefMI->isImplicitDef()) {
1298     if (Register::isPhysicalRegister(DstReg)) {
1299       unsigned NewDstReg = DstReg;
1300 
1301       unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1302                                               DefMI->getOperand(0).getSubReg());
1303       if (NewDstIdx)
1304         NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1305 
1306       // Finally, make sure that the physical subregister that will be
1307       // constructed later is permitted for the instruction.
1308       if (!DefRC->contains(NewDstReg))
1309         return false;
1310     } else {
1311       // Theoretically, some stack frame reference could exist. Just make sure
1312       // it hasn't actually happened.
1313       assert(Register::isVirtualRegister(DstReg) &&
1314              "Only expect to deal with virtual or physical registers");
1315     }
1316   }
1317 
1318   DebugLoc DL = CopyMI->getDebugLoc();
1319   MachineBasicBlock *MBB = CopyMI->getParent();
1320   MachineBasicBlock::iterator MII =
1321     std::next(MachineBasicBlock::iterator(CopyMI));
1322   TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1323   MachineInstr &NewMI = *std::prev(MII);
1324   NewMI.setDebugLoc(DL);
1325 
1326   // In a situation like the following:
1327   //     %0:subreg = instr              ; DefMI, subreg = DstIdx
1328   //     %1        = copy %0:subreg ; CopyMI, SrcIdx = 0
1329   // instead of widening %1 to the register class of %0 simply do:
1330   //     %1 = instr
1331   const TargetRegisterClass *NewRC = CP.getNewRC();
1332   if (DstIdx != 0) {
1333     MachineOperand &DefMO = NewMI.getOperand(0);
1334     if (DefMO.getSubReg() == DstIdx) {
1335       assert(SrcIdx == 0 && CP.isFlipped()
1336              && "Shouldn't have SrcIdx+DstIdx at this point");
1337       const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1338       const TargetRegisterClass *CommonRC =
1339         TRI->getCommonSubClass(DefRC, DstRC);
1340       if (CommonRC != nullptr) {
1341         NewRC = CommonRC;
1342         DstIdx = 0;
1343         DefMO.setSubReg(0);
1344         DefMO.setIsUndef(false); // Only subregs can have def+undef.
1345       }
1346     }
1347   }
1348 
1349   // CopyMI may have implicit operands, save them so that we can transfer them
1350   // over to the newly materialized instruction after CopyMI is removed.
1351   SmallVector<MachineOperand, 4> ImplicitOps;
1352   ImplicitOps.reserve(CopyMI->getNumOperands() -
1353                       CopyMI->getDesc().getNumOperands());
1354   for (unsigned I = CopyMI->getDesc().getNumOperands(),
1355                 E = CopyMI->getNumOperands();
1356        I != E; ++I) {
1357     MachineOperand &MO = CopyMI->getOperand(I);
1358     if (MO.isReg()) {
1359       assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1360       // Discard VReg implicit defs.
1361       if (Register::isPhysicalRegister(MO.getReg()))
1362         ImplicitOps.push_back(MO);
1363     }
1364   }
1365 
1366   LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1367   CopyMI->eraseFromParent();
1368   ErasedInstrs.insert(CopyMI);
1369 
1370   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1371   // We need to remember these so we can add intervals once we insert
1372   // NewMI into SlotIndexes.
1373   SmallVector<unsigned, 4> NewMIImplDefs;
1374   for (unsigned i = NewMI.getDesc().getNumOperands(),
1375                 e = NewMI.getNumOperands();
1376        i != e; ++i) {
1377     MachineOperand &MO = NewMI.getOperand(i);
1378     if (MO.isReg() && MO.isDef()) {
1379       assert(MO.isImplicit() && MO.isDead() &&
1380              Register::isPhysicalRegister(MO.getReg()));
1381       NewMIImplDefs.push_back(MO.getReg());
1382     }
1383   }
1384 
1385   if (Register::isVirtualRegister(DstReg)) {
1386     unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1387 
1388     if (DefRC != nullptr) {
1389       if (NewIdx)
1390         NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1391       else
1392         NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1393       assert(NewRC && "subreg chosen for remat incompatible with instruction");
1394     }
1395     // Remap subranges to new lanemask and change register class.
1396     LiveInterval &DstInt = LIS->getInterval(DstReg);
1397     for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1398       SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1399     }
1400     MRI->setRegClass(DstReg, NewRC);
1401 
1402     // Update machine operands and add flags.
1403     updateRegDefsUses(DstReg, DstReg, DstIdx);
1404     NewMI.getOperand(0).setSubReg(NewIdx);
1405     // updateRegDefUses can add an "undef" flag to the definition, since
1406     // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1407     // sure that "undef" is not set.
1408     if (NewIdx == 0)
1409       NewMI.getOperand(0).setIsUndef(false);
1410     // Add dead subregister definitions if we are defining the whole register
1411     // but only part of it is live.
1412     // This could happen if the rematerialization instruction is rematerializing
1413     // more than actually is used in the register.
1414     // An example would be:
1415     // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1416     // ; Copying only part of the register here, but the rest is undef.
1417     // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1418     // ==>
1419     // ; Materialize all the constants but only using one
1420     // %2 = LOAD_CONSTANTS 5, 8
1421     //
1422     // at this point for the part that wasn't defined before we could have
1423     // subranges missing the definition.
1424     if (NewIdx == 0 && DstInt.hasSubRanges()) {
1425       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1426       SlotIndex DefIndex =
1427           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1428       LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1429       VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1430       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1431         if (!SR.liveAt(DefIndex))
1432           SR.createDeadDef(DefIndex, Alloc);
1433         MaxMask &= ~SR.LaneMask;
1434       }
1435       if (MaxMask.any()) {
1436         LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1437         SR->createDeadDef(DefIndex, Alloc);
1438       }
1439     }
1440 
1441     // Make sure that the subrange for resultant undef is removed
1442     // For example:
1443     //   %1:sub1<def,read-undef> = LOAD CONSTANT 1
1444     //   %2 = COPY %1
1445     // ==>
1446     //   %2:sub1<def, read-undef> = LOAD CONSTANT 1
1447     //     ; Correct but need to remove the subrange for %2:sub0
1448     //     ; as it is now undef
1449     if (NewIdx != 0 && DstInt.hasSubRanges()) {
1450       // The affected subregister segments can be removed.
1451       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1452       LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1453       bool UpdatedSubRanges = false;
1454       SlotIndex DefIndex =
1455           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1456       VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator();
1457       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1458         if ((SR.LaneMask & DstMask).none()) {
1459           LLVM_DEBUG(dbgs()
1460                      << "Removing undefined SubRange "
1461                      << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1462           // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1463           if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1464             SR.removeValNo(RmValNo);
1465             UpdatedSubRanges = true;
1466           }
1467         } else {
1468           // We know that this lane is defined by this instruction,
1469           // but at this point it may be empty because it is not used by
1470           // anything. This happens when updateRegDefUses adds the missing
1471           // lanes. Assign that lane a dead def so that the interferences
1472           // are properly modeled.
1473           if (SR.empty())
1474             SR.createDeadDef(DefIndex, Alloc);
1475         }
1476       }
1477       if (UpdatedSubRanges)
1478         DstInt.removeEmptySubRanges();
1479     }
1480   } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1481     // The New instruction may be defining a sub-register of what's actually
1482     // been asked for. If so it must implicitly define the whole thing.
1483     assert(Register::isPhysicalRegister(DstReg) &&
1484            "Only expect virtual or physical registers in remat");
1485     NewMI.getOperand(0).setIsDead(true);
1486     NewMI.addOperand(MachineOperand::CreateReg(
1487         CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1488     // Record small dead def live-ranges for all the subregisters
1489     // of the destination register.
1490     // Otherwise, variables that live through may miss some
1491     // interferences, thus creating invalid allocation.
1492     // E.g., i386 code:
1493     // %1 = somedef ; %1 GR8
1494     // %2 = remat ; %2 GR32
1495     // CL = COPY %2.sub_8bit
1496     // = somedef %1 ; %1 GR8
1497     // =>
1498     // %1 = somedef ; %1 GR8
1499     // dead ECX = remat ; implicit-def CL
1500     // = somedef %1 ; %1 GR8
1501     // %1 will see the interferences with CL but not with CH since
1502     // no live-ranges would have been created for ECX.
1503     // Fix that!
1504     SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1505     for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1506          Units.isValid(); ++Units)
1507       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1508         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1509   }
1510 
1511   if (NewMI.getOperand(0).getSubReg())
1512     NewMI.getOperand(0).setIsUndef();
1513 
1514   // Transfer over implicit operands to the rematerialized instruction.
1515   for (MachineOperand &MO : ImplicitOps)
1516     NewMI.addOperand(MO);
1517 
1518   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1519   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1520     unsigned Reg = NewMIImplDefs[i];
1521     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1522       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1523         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1524   }
1525 
1526   LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1527   ++NumReMats;
1528 
1529   // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1530   // to describe DstReg instead.
1531   if (MRI->use_nodbg_empty(SrcReg)) {
1532     for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1533       MachineInstr *UseMI = UseMO.getParent();
1534       if (UseMI->isDebugValue()) {
1535         if (Register::isPhysicalRegister(DstReg))
1536           UseMO.substPhysReg(DstReg, *TRI);
1537         else
1538           UseMO.setReg(DstReg);
1539         // Move the debug value directly after the def of the rematerialized
1540         // value in DstReg.
1541         MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1542         LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1543       }
1544     }
1545   }
1546 
1547   if (ToBeUpdated.count(SrcReg))
1548     return true;
1549 
1550   unsigned NumCopyUses = 0;
1551   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1552     if (UseMO.getParent()->isCopyLike())
1553       NumCopyUses++;
1554   }
1555   if (NumCopyUses < LateRematUpdateThreshold) {
1556     // The source interval can become smaller because we removed a use.
1557     shrinkToUses(&SrcInt, &DeadDefs);
1558     if (!DeadDefs.empty())
1559       eliminateDeadDefs();
1560   } else {
1561     ToBeUpdated.insert(SrcReg);
1562   }
1563   return true;
1564 }
1565 
1566 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1567   // ProcessImplicitDefs may leave some copies of <undef> values, it only
1568   // removes local variables. When we have a copy like:
1569   //
1570   //   %1 = COPY undef %2
1571   //
1572   // We delete the copy and remove the corresponding value number from %1.
1573   // Any uses of that value number are marked as <undef>.
1574 
1575   // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1576   // CoalescerPair may have a new register class with adjusted subreg indices
1577   // at this point.
1578   unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1579   if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
1580     return nullptr;
1581 
1582   SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1583   const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1584   // CopyMI is undef iff SrcReg is not live before the instruction.
1585   if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1586     LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1587     for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1588       if ((SR.LaneMask & SrcMask).none())
1589         continue;
1590       if (SR.liveAt(Idx))
1591         return nullptr;
1592     }
1593   } else if (SrcLI.liveAt(Idx))
1594     return nullptr;
1595 
1596   // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1597   // then replace it with an IMPLICIT_DEF.
1598   LiveInterval &DstLI = LIS->getInterval(DstReg);
1599   SlotIndex RegIndex = Idx.getRegSlot();
1600   LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1601   assert(Seg != nullptr && "No segment for defining instruction");
1602   if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1603     if (V->isPHIDef()) {
1604       CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1605       for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1606         MachineOperand &MO = CopyMI->getOperand(i-1);
1607         if (MO.isReg() && MO.isUse())
1608           CopyMI->RemoveOperand(i-1);
1609       }
1610       LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1611                            "implicit def\n");
1612       return CopyMI;
1613     }
1614   }
1615 
1616   // Remove any DstReg segments starting at the instruction.
1617   LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1618 
1619   // Remove value or merge with previous one in case of a subregister def.
1620   if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1621     VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1622     DstLI.MergeValueNumberInto(VNI, PrevVNI);
1623 
1624     // The affected subregister segments can be removed.
1625     LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1626     for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1627       if ((SR.LaneMask & DstMask).none())
1628         continue;
1629 
1630       VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1631       assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1632       SR.removeValNo(SVNI);
1633     }
1634     DstLI.removeEmptySubRanges();
1635   } else
1636     LIS->removeVRegDefAt(DstLI, RegIndex);
1637 
1638   // Mark uses as undef.
1639   for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1640     if (MO.isDef() /*|| MO.isUndef()*/)
1641       continue;
1642     const MachineInstr &MI = *MO.getParent();
1643     SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1644     LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1645     bool isLive;
1646     if (!UseMask.all() && DstLI.hasSubRanges()) {
1647       isLive = false;
1648       for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1649         if ((SR.LaneMask & UseMask).none())
1650           continue;
1651         if (SR.liveAt(UseIdx)) {
1652           isLive = true;
1653           break;
1654         }
1655       }
1656     } else
1657       isLive = DstLI.liveAt(UseIdx);
1658     if (isLive)
1659       continue;
1660     MO.setIsUndef(true);
1661     LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1662   }
1663 
1664   // A def of a subregister may be a use of the other subregisters, so
1665   // deleting a def of a subregister may also remove uses. Since CopyMI
1666   // is still part of the function (but about to be erased), mark all
1667   // defs of DstReg in it as <undef>, so that shrinkToUses would
1668   // ignore them.
1669   for (MachineOperand &MO : CopyMI->operands())
1670     if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1671       MO.setIsUndef(true);
1672   LIS->shrinkToUses(&DstLI);
1673 
1674   return CopyMI;
1675 }
1676 
1677 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1678                                      MachineOperand &MO, unsigned SubRegIdx) {
1679   LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1680   if (MO.isDef())
1681     Mask = ~Mask;
1682   bool IsUndef = true;
1683   for (const LiveInterval::SubRange &S : Int.subranges()) {
1684     if ((S.LaneMask & Mask).none())
1685       continue;
1686     if (S.liveAt(UseIdx)) {
1687       IsUndef = false;
1688       break;
1689     }
1690   }
1691   if (IsUndef) {
1692     MO.setIsUndef(true);
1693     // We found out some subregister use is actually reading an undefined
1694     // value. In some cases the whole vreg has become undefined at this
1695     // point so we have to potentially shrink the main range if the
1696     // use was ending a live segment there.
1697     LiveQueryResult Q = Int.Query(UseIdx);
1698     if (Q.valueOut() == nullptr)
1699       ShrinkMainRange = true;
1700   }
1701 }
1702 
1703 void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg,
1704                                           unsigned SubIdx) {
1705   bool DstIsPhys = Register::isPhysicalRegister(DstReg);
1706   LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1707 
1708   if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1709     for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1710       unsigned SubReg = MO.getSubReg();
1711       if (SubReg == 0 || MO.isUndef())
1712         continue;
1713       MachineInstr &MI = *MO.getParent();
1714       if (MI.isDebugValue())
1715         continue;
1716       SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1717       addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1718     }
1719   }
1720 
1721   SmallPtrSet<MachineInstr*, 8> Visited;
1722   for (MachineRegisterInfo::reg_instr_iterator
1723        I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1724        I != E; ) {
1725     MachineInstr *UseMI = &*(I++);
1726 
1727     // Each instruction can only be rewritten once because sub-register
1728     // composition is not always idempotent. When SrcReg != DstReg, rewriting
1729     // the UseMI operands removes them from the SrcReg use-def chain, but when
1730     // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1731     // operands mentioning the virtual register.
1732     if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1733       continue;
1734 
1735     SmallVector<unsigned,8> Ops;
1736     bool Reads, Writes;
1737     std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1738 
1739     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1740     // because SrcReg is a sub-register.
1741     if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
1742       Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1743 
1744     // Replace SrcReg with DstReg in all UseMI operands.
1745     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1746       MachineOperand &MO = UseMI->getOperand(Ops[i]);
1747 
1748       // Adjust <undef> flags in case of sub-register joins. We don't want to
1749       // turn a full def into a read-modify-write sub-register def and vice
1750       // versa.
1751       if (SubIdx && MO.isDef())
1752         MO.setIsUndef(!Reads);
1753 
1754       // A subreg use of a partially undef (super) register may be a complete
1755       // undef use now and then has to be marked that way.
1756       if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1757         if (!DstInt->hasSubRanges()) {
1758           BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1759           LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg());
1760           LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1761           LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
1762           DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt);
1763           // The unused lanes are just empty live-ranges at this point.
1764           // It is the caller responsibility to set the proper
1765           // dead segments if there is an actual dead def of the
1766           // unused lanes. This may happen with rematerialization.
1767           DstInt->createSubRange(Allocator, UnusedLanes);
1768         }
1769         SlotIndex MIIdx = UseMI->isDebugValue()
1770                               ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1771                               : LIS->getInstructionIndex(*UseMI);
1772         SlotIndex UseIdx = MIIdx.getRegSlot(true);
1773         addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
1774       }
1775 
1776       if (DstIsPhys)
1777         MO.substPhysReg(DstReg, *TRI);
1778       else
1779         MO.substVirtReg(DstReg, SubIdx, *TRI);
1780     }
1781 
1782     LLVM_DEBUG({
1783       dbgs() << "\t\tupdated: ";
1784       if (!UseMI->isDebugValue())
1785         dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1786       dbgs() << *UseMI;
1787     });
1788   }
1789 }
1790 
1791 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1792   // Always join simple intervals that are defined by a single copy from a
1793   // reserved register. This doesn't increase register pressure, so it is
1794   // always beneficial.
1795   if (!MRI->isReserved(CP.getDstReg())) {
1796     LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1797     return false;
1798   }
1799 
1800   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1801   if (JoinVInt.containsOneValue())
1802     return true;
1803 
1804   LLVM_DEBUG(
1805       dbgs() << "\tCannot join complex intervals into reserved register.\n");
1806   return false;
1807 }
1808 
1809 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1810   Again = false;
1811   LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1812 
1813   CoalescerPair CP(*TRI);
1814   if (!CP.setRegisters(CopyMI)) {
1815     LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1816     return false;
1817   }
1818 
1819   if (CP.getNewRC()) {
1820     auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1821     auto DstRC = MRI->getRegClass(CP.getDstReg());
1822     unsigned SrcIdx = CP.getSrcIdx();
1823     unsigned DstIdx = CP.getDstIdx();
1824     if (CP.isFlipped()) {
1825       std::swap(SrcIdx, DstIdx);
1826       std::swap(SrcRC, DstRC);
1827     }
1828     if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1829                              CP.getNewRC(), *LIS)) {
1830       LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1831       return false;
1832     }
1833   }
1834 
1835   // Dead code elimination. This really should be handled by MachineDCE, but
1836   // sometimes dead copies slip through, and we can't generate invalid live
1837   // ranges.
1838   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1839     LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1840     DeadDefs.push_back(CopyMI);
1841     eliminateDeadDefs();
1842     return true;
1843   }
1844 
1845   // Eliminate undefs.
1846   if (!CP.isPhys()) {
1847     // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1848     if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1849       if (UndefMI->isImplicitDef())
1850         return false;
1851       deleteInstr(CopyMI);
1852       return false;  // Not coalescable.
1853     }
1854   }
1855 
1856   // Coalesced copies are normally removed immediately, but transformations
1857   // like removeCopyByCommutingDef() can inadvertently create identity copies.
1858   // When that happens, just join the values and remove the copy.
1859   if (CP.getSrcReg() == CP.getDstReg()) {
1860     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1861     LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1862     const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1863     LiveQueryResult LRQ = LI.Query(CopyIdx);
1864     if (VNInfo *DefVNI = LRQ.valueDefined()) {
1865       VNInfo *ReadVNI = LRQ.valueIn();
1866       assert(ReadVNI && "No value before copy and no <undef> flag.");
1867       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1868       LI.MergeValueNumberInto(DefVNI, ReadVNI);
1869 
1870       // Process subregister liveranges.
1871       for (LiveInterval::SubRange &S : LI.subranges()) {
1872         LiveQueryResult SLRQ = S.Query(CopyIdx);
1873         if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1874           VNInfo *SReadVNI = SLRQ.valueIn();
1875           S.MergeValueNumberInto(SDefVNI, SReadVNI);
1876         }
1877       }
1878       LLVM_DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1879     }
1880     deleteInstr(CopyMI);
1881     return true;
1882   }
1883 
1884   // Enforce policies.
1885   if (CP.isPhys()) {
1886     LLVM_DEBUG(dbgs() << "\tConsidering merging "
1887                       << printReg(CP.getSrcReg(), TRI) << " with "
1888                       << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1889     if (!canJoinPhys(CP)) {
1890       // Before giving up coalescing, if definition of source is defined by
1891       // trivial computation, try rematerializing it.
1892       bool IsDefCopy;
1893       if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1894         return true;
1895       if (IsDefCopy)
1896         Again = true;  // May be possible to coalesce later.
1897       return false;
1898     }
1899   } else {
1900     // When possible, let DstReg be the larger interval.
1901     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1902                            LIS->getInterval(CP.getDstReg()).size())
1903       CP.flip();
1904 
1905     LLVM_DEBUG({
1906       dbgs() << "\tConsidering merging to "
1907              << TRI->getRegClassName(CP.getNewRC()) << " with ";
1908       if (CP.getDstIdx() && CP.getSrcIdx())
1909         dbgs() << printReg(CP.getDstReg()) << " in "
1910                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1911                << printReg(CP.getSrcReg()) << " in "
1912                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1913       else
1914         dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
1915                << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1916     });
1917   }
1918 
1919   ShrinkMask = LaneBitmask::getNone();
1920   ShrinkMainRange = false;
1921 
1922   // Okay, attempt to join these two intervals.  On failure, this returns false.
1923   // Otherwise, if one of the intervals being joined is a physreg, this method
1924   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1925   // been modified, so we can use this information below to update aliases.
1926   if (!joinIntervals(CP)) {
1927     // Coalescing failed.
1928 
1929     // If definition of source is defined by trivial computation, try
1930     // rematerializing it.
1931     bool IsDefCopy;
1932     if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1933       return true;
1934 
1935     // If we can eliminate the copy without merging the live segments, do so
1936     // now.
1937     if (!CP.isPartial() && !CP.isPhys()) {
1938       bool Changed = adjustCopiesBackFrom(CP, CopyMI);
1939       bool Shrink = false;
1940       if (!Changed)
1941         std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
1942       if (Changed) {
1943         deleteInstr(CopyMI);
1944         if (Shrink) {
1945           Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1946           LiveInterval &DstLI = LIS->getInterval(DstReg);
1947           shrinkToUses(&DstLI);
1948           LLVM_DEBUG(dbgs() << "\t\tshrunk:   " << DstLI << '\n');
1949         }
1950         LLVM_DEBUG(dbgs() << "\tTrivial!\n");
1951         return true;
1952       }
1953     }
1954 
1955     // Try and see if we can partially eliminate the copy by moving the copy to
1956     // its predecessor.
1957     if (!CP.isPartial() && !CP.isPhys())
1958       if (removePartialRedundancy(CP, *CopyMI))
1959         return true;
1960 
1961     // Otherwise, we are unable to join the intervals.
1962     LLVM_DEBUG(dbgs() << "\tInterference!\n");
1963     Again = true;  // May be possible to coalesce later.
1964     return false;
1965   }
1966 
1967   // Coalescing to a virtual register that is of a sub-register class of the
1968   // other. Make sure the resulting register is set to the right register class.
1969   if (CP.isCrossClass()) {
1970     ++numCrossRCs;
1971     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1972   }
1973 
1974   // Removing sub-register copies can ease the register class constraints.
1975   // Make sure we attempt to inflate the register class of DstReg.
1976   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1977     InflateRegs.push_back(CP.getDstReg());
1978 
1979   // CopyMI has been erased by joinIntervals at this point. Remove it from
1980   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1981   // to the work list. This keeps ErasedInstrs from growing needlessly.
1982   ErasedInstrs.erase(CopyMI);
1983 
1984   // Rewrite all SrcReg operands to DstReg.
1985   // Also update DstReg operands to include DstIdx if it is set.
1986   if (CP.getDstIdx())
1987     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1988   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1989 
1990   // Shrink subregister ranges if necessary.
1991   if (ShrinkMask.any()) {
1992     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1993     for (LiveInterval::SubRange &S : LI.subranges()) {
1994       if ((S.LaneMask & ShrinkMask).none())
1995         continue;
1996       LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
1997                         << ")\n");
1998       LIS->shrinkToUses(S, LI.reg());
1999     }
2000     LI.removeEmptySubRanges();
2001   }
2002 
2003   // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
2004   // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
2005   // is not up-to-date, need to update the merged live interval here.
2006   if (ToBeUpdated.count(CP.getSrcReg()))
2007     ShrinkMainRange = true;
2008 
2009   if (ShrinkMainRange) {
2010     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2011     shrinkToUses(&LI);
2012   }
2013 
2014   // SrcReg is guaranteed to be the register whose live interval that is
2015   // being merged.
2016   LIS->removeInterval(CP.getSrcReg());
2017 
2018   // Update regalloc hint.
2019   TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
2020 
2021   LLVM_DEBUG({
2022     dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
2023            << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
2024     dbgs() << "\tResult = ";
2025     if (CP.isPhys())
2026       dbgs() << printReg(CP.getDstReg(), TRI);
2027     else
2028       dbgs() << LIS->getInterval(CP.getDstReg());
2029     dbgs() << '\n';
2030   });
2031 
2032   ++numJoins;
2033   return true;
2034 }
2035 
2036 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
2037   Register DstReg = CP.getDstReg();
2038   Register SrcReg = CP.getSrcReg();
2039   assert(CP.isPhys() && "Must be a physreg copy");
2040   assert(MRI->isReserved(DstReg) && "Not a reserved register");
2041   LiveInterval &RHS = LIS->getInterval(SrcReg);
2042   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
2043 
2044   assert(RHS.containsOneValue() && "Invalid join with reserved register");
2045 
2046   // Optimization for reserved registers like ESP. We can only merge with a
2047   // reserved physreg if RHS has a single value that is a copy of DstReg.
2048   // The live range of the reserved register will look like a set of dead defs
2049   // - we don't properly track the live range of reserved registers.
2050 
2051   // Deny any overlapping intervals.  This depends on all the reserved
2052   // register live ranges to look like dead defs.
2053   if (!MRI->isConstantPhysReg(DstReg)) {
2054     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2055       // Abort if not all the regunits are reserved.
2056       for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
2057         if (!MRI->isReserved(*RI))
2058           return false;
2059       }
2060       if (RHS.overlaps(LIS->getRegUnit(*UI))) {
2061         LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
2062                           << '\n');
2063         return false;
2064       }
2065     }
2066 
2067     // We must also check for overlaps with regmask clobbers.
2068     BitVector RegMaskUsable;
2069     if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2070         !RegMaskUsable.test(DstReg)) {
2071       LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2072       return false;
2073     }
2074   }
2075 
2076   // Skip any value computations, we are not adding new values to the
2077   // reserved register.  Also skip merging the live ranges, the reserved
2078   // register live range doesn't need to be accurate as long as all the
2079   // defs are there.
2080 
2081   // Delete the identity copy.
2082   MachineInstr *CopyMI;
2083   if (CP.isFlipped()) {
2084     // Physreg is copied into vreg
2085     //   %y = COPY %physreg_x
2086     //   ...  //< no other def of %physreg_x here
2087     //   use %y
2088     // =>
2089     //   ...
2090     //   use %physreg_x
2091     CopyMI = MRI->getVRegDef(SrcReg);
2092   } else {
2093     // VReg is copied into physreg:
2094     //   %y = def
2095     //   ... //< no other def or use of %physreg_x here
2096     //   %physreg_x = COPY %y
2097     // =>
2098     //   %physreg_x = def
2099     //   ...
2100     if (!MRI->hasOneNonDBGUse(SrcReg)) {
2101       LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2102       return false;
2103     }
2104 
2105     if (!LIS->intervalIsInOneMBB(RHS)) {
2106       LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2107       return false;
2108     }
2109 
2110     MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2111     CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2112     SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2113     SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2114 
2115     if (!MRI->isConstantPhysReg(DstReg)) {
2116       // We checked above that there are no interfering defs of the physical
2117       // register. However, for this case, where we intend to move up the def of
2118       // the physical register, we also need to check for interfering uses.
2119       SlotIndexes *Indexes = LIS->getSlotIndexes();
2120       for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2121            SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2122         MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2123         if (MI->readsRegister(DstReg, TRI)) {
2124           LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2125           return false;
2126         }
2127       }
2128     }
2129 
2130     // We're going to remove the copy which defines a physical reserved
2131     // register, so remove its valno, etc.
2132     LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2133                       << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2134 
2135     LIS->removePhysRegDefAt(DstReg.asMCReg(), CopyRegIdx);
2136     // Create a new dead def at the new def location.
2137     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2138       LiveRange &LR = LIS->getRegUnit(*UI);
2139       LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2140     }
2141   }
2142 
2143   deleteInstr(CopyMI);
2144 
2145   // We don't track kills for reserved registers.
2146   MRI->clearKillFlags(CP.getSrcReg());
2147 
2148   return true;
2149 }
2150 
2151 //===----------------------------------------------------------------------===//
2152 //                 Interference checking and interval joining
2153 //===----------------------------------------------------------------------===//
2154 //
2155 // In the easiest case, the two live ranges being joined are disjoint, and
2156 // there is no interference to consider. It is quite common, though, to have
2157 // overlapping live ranges, and we need to check if the interference can be
2158 // resolved.
2159 //
2160 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2161 // This means that two SSA values overlap if and only if the def of one value
2162 // is contained in the live range of the other value. As a special case, the
2163 // overlapping values can be defined at the same index.
2164 //
2165 // The interference from an overlapping def can be resolved in these cases:
2166 //
2167 // 1. Coalescable copies. The value is defined by a copy that would become an
2168 //    identity copy after joining SrcReg and DstReg. The copy instruction will
2169 //    be removed, and the value will be merged with the source value.
2170 //
2171 //    There can be several copies back and forth, causing many values to be
2172 //    merged into one. We compute a list of ultimate values in the joined live
2173 //    range as well as a mappings from the old value numbers.
2174 //
2175 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2176 //    predecessors have a live out value. It doesn't cause real interference,
2177 //    and can be merged into the value it overlaps. Like a coalescable copy, it
2178 //    can be erased after joining.
2179 //
2180 // 3. Copy of external value. The overlapping def may be a copy of a value that
2181 //    is already in the other register. This is like a coalescable copy, but
2182 //    the live range of the source register must be trimmed after erasing the
2183 //    copy instruction:
2184 //
2185 //      %src = COPY %ext
2186 //      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
2187 //
2188 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2189 //    defining one lane at a time:
2190 //
2191 //      %dst:ssub0<def,read-undef> = FOO
2192 //      %src = BAR
2193 //      %dst:ssub1 = COPY %src
2194 //
2195 //    The live range of %src overlaps the %dst value defined by FOO, but
2196 //    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2197 //    which was undef anyway.
2198 //
2199 //    The value mapping is more complicated in this case. The final live range
2200 //    will have different value numbers for both FOO and BAR, but there is no
2201 //    simple mapping from old to new values. It may even be necessary to add
2202 //    new PHI values.
2203 //
2204 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2205 //    is live, but never read. This can happen because we don't compute
2206 //    individual live ranges per lane.
2207 //
2208 //      %dst = FOO
2209 //      %src = BAR
2210 //      %dst:ssub1 = COPY %src
2211 //
2212 //    This kind of interference is only resolved locally. If the clobbered
2213 //    lane value escapes the block, the join is aborted.
2214 
2215 namespace {
2216 
2217 /// Track information about values in a single virtual register about to be
2218 /// joined. Objects of this class are always created in pairs - one for each
2219 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2220 /// pair)
2221 class JoinVals {
2222   /// Live range we work on.
2223   LiveRange &LR;
2224 
2225   /// (Main) register we work on.
2226   const unsigned Reg;
2227 
2228   /// Reg (and therefore the values in this liverange) will end up as
2229   /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2230   /// CP.SrcIdx.
2231   const unsigned SubIdx;
2232 
2233   /// The LaneMask that this liverange will occupy the coalesced register. May
2234   /// be smaller than the lanemask produced by SubIdx when merging subranges.
2235   const LaneBitmask LaneMask;
2236 
2237   /// This is true when joining sub register ranges, false when joining main
2238   /// ranges.
2239   const bool SubRangeJoin;
2240 
2241   /// Whether the current LiveInterval tracks subregister liveness.
2242   const bool TrackSubRegLiveness;
2243 
2244   /// Values that will be present in the final live range.
2245   SmallVectorImpl<VNInfo*> &NewVNInfo;
2246 
2247   const CoalescerPair &CP;
2248   LiveIntervals *LIS;
2249   SlotIndexes *Indexes;
2250   const TargetRegisterInfo *TRI;
2251 
2252   /// Value number assignments. Maps value numbers in LI to entries in
2253   /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2254   SmallVector<int, 8> Assignments;
2255 
2256   public:
2257   /// Conflict resolution for overlapping values.
2258   enum ConflictResolution {
2259     /// No overlap, simply keep this value.
2260     CR_Keep,
2261 
2262     /// Merge this value into OtherVNI and erase the defining instruction.
2263     /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2264     /// values.
2265     CR_Erase,
2266 
2267     /// Merge this value into OtherVNI but keep the defining instruction.
2268     /// This is for the special case where OtherVNI is defined by the same
2269     /// instruction.
2270     CR_Merge,
2271 
2272     /// Keep this value, and have it replace OtherVNI where possible. This
2273     /// complicates value mapping since OtherVNI maps to two different values
2274     /// before and after this def.
2275     /// Used when clobbering undefined or dead lanes.
2276     CR_Replace,
2277 
2278     /// Unresolved conflict. Visit later when all values have been mapped.
2279     CR_Unresolved,
2280 
2281     /// Unresolvable conflict. Abort the join.
2282     CR_Impossible
2283   };
2284 
2285   private:
2286   /// Per-value info for LI. The lane bit masks are all relative to the final
2287   /// joined register, so they can be compared directly between SrcReg and
2288   /// DstReg.
2289   struct Val {
2290     ConflictResolution Resolution = CR_Keep;
2291 
2292     /// Lanes written by this def, 0 for unanalyzed values.
2293     LaneBitmask WriteLanes;
2294 
2295     /// Lanes with defined values in this register. Other lanes are undef and
2296     /// safe to clobber.
2297     LaneBitmask ValidLanes;
2298 
2299     /// Value in LI being redefined by this def.
2300     VNInfo *RedefVNI = nullptr;
2301 
2302     /// Value in the other live range that overlaps this def, if any.
2303     VNInfo *OtherVNI = nullptr;
2304 
2305     /// Is this value an IMPLICIT_DEF that can be erased?
2306     ///
2307     /// IMPLICIT_DEF values should only exist at the end of a basic block that
2308     /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2309     /// safely erased if they are overlapping a live value in the other live
2310     /// interval.
2311     ///
2312     /// Weird control flow graphs and incomplete PHI handling in
2313     /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2314     /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2315     /// normal values.
2316     bool ErasableImplicitDef = false;
2317 
2318     /// True when the live range of this value will be pruned because of an
2319     /// overlapping CR_Replace value in the other live range.
2320     bool Pruned = false;
2321 
2322     /// True once Pruned above has been computed.
2323     bool PrunedComputed = false;
2324 
2325     /// True if this value is determined to be identical to OtherVNI
2326     /// (in valuesIdentical). This is used with CR_Erase where the erased
2327     /// copy is redundant, i.e. the source value is already the same as
2328     /// the destination. In such cases the subranges need to be updated
2329     /// properly. See comment at pruneSubRegValues for more info.
2330     bool Identical = false;
2331 
2332     Val() = default;
2333 
2334     bool isAnalyzed() const { return WriteLanes.any(); }
2335   };
2336 
2337   /// One entry per value number in LI.
2338   SmallVector<Val, 8> Vals;
2339 
2340   /// Compute the bitmask of lanes actually written by DefMI.
2341   /// Set Redef if there are any partial register definitions that depend on the
2342   /// previous value of the register.
2343   LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2344 
2345   /// Find the ultimate value that VNI was copied from.
2346   std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
2347 
2348   bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2349 
2350   /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2351   /// Return a conflict resolution when possible, but leave the hard cases as
2352   /// CR_Unresolved.
2353   /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2354   /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2355   /// The recursion always goes upwards in the dominator tree, making loops
2356   /// impossible.
2357   ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2358 
2359   /// Compute the value assignment for ValNo in RI.
2360   /// This may be called recursively by analyzeValue(), but never for a ValNo on
2361   /// the stack.
2362   void computeAssignment(unsigned ValNo, JoinVals &Other);
2363 
2364   /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2365   /// the extent of the tainted lanes in the block.
2366   ///
2367   /// Multiple values in Other.LR can be affected since partial redefinitions
2368   /// can preserve previously tainted lanes.
2369   ///
2370   ///   1 %dst = VLOAD           <-- Define all lanes in %dst
2371   ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
2372   ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
2373   ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2374   ///
2375   /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2376   /// entry to TaintedVals.
2377   ///
2378   /// Returns false if the tainted lanes extend beyond the basic block.
2379   bool
2380   taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2381               SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2382 
2383   /// Return true if MI uses any of the given Lanes from Reg.
2384   /// This does not include partial redefinitions of Reg.
2385   bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
2386 
2387   /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2388   /// be pruned:
2389   ///
2390   ///   %dst = COPY %src
2391   ///   %src = COPY %dst  <-- This value to be pruned.
2392   ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
2393   bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2394 
2395 public:
2396   JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask,
2397            SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp,
2398            LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2399            bool TrackSubRegLiveness)
2400       : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2401         SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2402         NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2403         TRI(TRI), Assignments(LR.getNumValNums(), -1),
2404         Vals(LR.getNumValNums()) {}
2405 
2406   /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2407   /// Returns false if any conflicts were impossible to resolve.
2408   bool mapValues(JoinVals &Other);
2409 
2410   /// Try to resolve conflicts that require all values to be mapped.
2411   /// Returns false if any conflicts were impossible to resolve.
2412   bool resolveConflicts(JoinVals &Other);
2413 
2414   /// Prune the live range of values in Other.LR where they would conflict with
2415   /// CR_Replace values in LR. Collect end points for restoring the live range
2416   /// after joining.
2417   void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2418                    bool changeInstrs);
2419 
2420   /// Removes subranges starting at copies that get removed. This sometimes
2421   /// happens when undefined subranges are copied around. These ranges contain
2422   /// no useful information and can be removed.
2423   void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2424 
2425   /// Pruning values in subranges can lead to removing segments in these
2426   /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2427   /// the main range also need to be removed. This function will mark
2428   /// the corresponding values in the main range as pruned, so that
2429   /// eraseInstrs can do the final cleanup.
2430   /// The parameter @p LI must be the interval whose main range is the
2431   /// live range LR.
2432   void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2433 
2434   /// Erase any machine instructions that have been coalesced away.
2435   /// Add erased instructions to ErasedInstrs.
2436   /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2437   /// the erased instrs.
2438   void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2439                    SmallVectorImpl<Register> &ShrinkRegs,
2440                    LiveInterval *LI = nullptr);
2441 
2442   /// Remove liverange defs at places where implicit defs will be removed.
2443   void removeImplicitDefs();
2444 
2445   /// Get the value assignments suitable for passing to LiveInterval::join.
2446   const int *getAssignments() const { return Assignments.data(); }
2447 
2448   /// Get the conflict resolution for a value number.
2449   ConflictResolution getResolution(unsigned Num) const {
2450     return Vals[Num].Resolution;
2451   }
2452 };
2453 
2454 } // end anonymous namespace
2455 
2456 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2457   const {
2458   LaneBitmask L;
2459   for (const MachineOperand &MO : DefMI->operands()) {
2460     if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2461       continue;
2462     L |= TRI->getSubRegIndexLaneMask(
2463            TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2464     if (MO.readsReg())
2465       Redef = true;
2466   }
2467   return L;
2468 }
2469 
2470 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
2471     const VNInfo *VNI) const {
2472   unsigned TrackReg = Reg;
2473 
2474   while (!VNI->isPHIDef()) {
2475     SlotIndex Def = VNI->def;
2476     MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2477     assert(MI && "No defining instruction");
2478     if (!MI->isFullCopy())
2479       return std::make_pair(VNI, TrackReg);
2480     Register SrcReg = MI->getOperand(1).getReg();
2481     if (!Register::isVirtualRegister(SrcReg))
2482       return std::make_pair(VNI, TrackReg);
2483 
2484     const LiveInterval &LI = LIS->getInterval(SrcReg);
2485     const VNInfo *ValueIn;
2486     // No subrange involved.
2487     if (!SubRangeJoin || !LI.hasSubRanges()) {
2488       LiveQueryResult LRQ = LI.Query(Def);
2489       ValueIn = LRQ.valueIn();
2490     } else {
2491       // Query subranges. Ensure that all matching ones take us to the same def
2492       // (allowing some of them to be undef).
2493       ValueIn = nullptr;
2494       for (const LiveInterval::SubRange &S : LI.subranges()) {
2495         // Transform lanemask to a mask in the joined live interval.
2496         LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2497         if ((SMask & LaneMask).none())
2498           continue;
2499         LiveQueryResult LRQ = S.Query(Def);
2500         if (!ValueIn) {
2501           ValueIn = LRQ.valueIn();
2502           continue;
2503         }
2504         if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2505           return std::make_pair(VNI, TrackReg);
2506       }
2507     }
2508     if (ValueIn == nullptr) {
2509       // Reaching an undefined value is legitimate, for example:
2510       //
2511       // 1   undef %0.sub1 = ...  ;; %0.sub0 == undef
2512       // 2   %1 = COPY %0         ;; %1 is defined here.
2513       // 3   %0 = COPY %1         ;; Now %0.sub0 has a definition,
2514       //                          ;; but it's equivalent to "undef".
2515       return std::make_pair(nullptr, SrcReg);
2516     }
2517     VNI = ValueIn;
2518     TrackReg = SrcReg;
2519   }
2520   return std::make_pair(VNI, TrackReg);
2521 }
2522 
2523 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2524                                const JoinVals &Other) const {
2525   const VNInfo *Orig0;
2526   unsigned Reg0;
2527   std::tie(Orig0, Reg0) = followCopyChain(Value0);
2528   if (Orig0 == Value1 && Reg0 == Other.Reg)
2529     return true;
2530 
2531   const VNInfo *Orig1;
2532   unsigned Reg1;
2533   std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2534   // If both values are undefined, and the source registers are the same
2535   // register, the values are identical. Filter out cases where only one
2536   // value is defined.
2537   if (Orig0 == nullptr || Orig1 == nullptr)
2538     return Orig0 == Orig1 && Reg0 == Reg1;
2539 
2540   // The values are equal if they are defined at the same place and use the
2541   // same register. Note that we cannot compare VNInfos directly as some of
2542   // them might be from a copy created in mergeSubRangeInto()  while the other
2543   // is from the original LiveInterval.
2544   return Orig0->def == Orig1->def && Reg0 == Reg1;
2545 }
2546 
2547 JoinVals::ConflictResolution
2548 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2549   Val &V = Vals[ValNo];
2550   assert(!V.isAnalyzed() && "Value has already been analyzed!");
2551   VNInfo *VNI = LR.getValNumInfo(ValNo);
2552   if (VNI->isUnused()) {
2553     V.WriteLanes = LaneBitmask::getAll();
2554     return CR_Keep;
2555   }
2556 
2557   // Get the instruction defining this value, compute the lanes written.
2558   const MachineInstr *DefMI = nullptr;
2559   if (VNI->isPHIDef()) {
2560     // Conservatively assume that all lanes in a PHI are valid.
2561     LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2562                                      : TRI->getSubRegIndexLaneMask(SubIdx);
2563     V.ValidLanes = V.WriteLanes = Lanes;
2564   } else {
2565     DefMI = Indexes->getInstructionFromIndex(VNI->def);
2566     assert(DefMI != nullptr);
2567     if (SubRangeJoin) {
2568       // We don't care about the lanes when joining subregister ranges.
2569       V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2570       if (DefMI->isImplicitDef()) {
2571         V.ValidLanes = LaneBitmask::getNone();
2572         V.ErasableImplicitDef = true;
2573       }
2574     } else {
2575       bool Redef = false;
2576       V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2577 
2578       // If this is a read-modify-write instruction, there may be more valid
2579       // lanes than the ones written by this instruction.
2580       // This only covers partial redef operands. DefMI may have normal use
2581       // operands reading the register. They don't contribute valid lanes.
2582       //
2583       // This adds ssub1 to the set of valid lanes in %src:
2584       //
2585       //   %src:ssub1 = FOO
2586       //
2587       // This leaves only ssub1 valid, making any other lanes undef:
2588       //
2589       //   %src:ssub1<def,read-undef> = FOO %src:ssub2
2590       //
2591       // The <read-undef> flag on the def operand means that old lane values are
2592       // not important.
2593       if (Redef) {
2594         V.RedefVNI = LR.Query(VNI->def).valueIn();
2595         assert((TrackSubRegLiveness || V.RedefVNI) &&
2596                "Instruction is reading nonexistent value");
2597         if (V.RedefVNI != nullptr) {
2598           computeAssignment(V.RedefVNI->id, Other);
2599           V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2600         }
2601       }
2602 
2603       // An IMPLICIT_DEF writes undef values.
2604       if (DefMI->isImplicitDef()) {
2605         // We normally expect IMPLICIT_DEF values to be live only until the end
2606         // of their block. If the value is really live longer and gets pruned in
2607         // another block, this flag is cleared again.
2608         //
2609         // Clearing the valid lanes is deferred until it is sure this can be
2610         // erased.
2611         V.ErasableImplicitDef = true;
2612       }
2613     }
2614   }
2615 
2616   // Find the value in Other that overlaps VNI->def, if any.
2617   LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2618 
2619   // It is possible that both values are defined by the same instruction, or
2620   // the values are PHIs defined in the same block. When that happens, the two
2621   // values should be merged into one, but not into any preceding value.
2622   // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2623   if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2624     assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2625 
2626     // One value stays, the other is merged. Keep the earlier one, or the first
2627     // one we see.
2628     if (OtherVNI->def < VNI->def)
2629       Other.computeAssignment(OtherVNI->id, *this);
2630     else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2631       // This is an early-clobber def overlapping a live-in value in the other
2632       // register. Not mergeable.
2633       V.OtherVNI = OtherLRQ.valueIn();
2634       return CR_Impossible;
2635     }
2636     V.OtherVNI = OtherVNI;
2637     Val &OtherV = Other.Vals[OtherVNI->id];
2638     // Keep this value, check for conflicts when analyzing OtherVNI.
2639     if (!OtherV.isAnalyzed())
2640       return CR_Keep;
2641     // Both sides have been analyzed now.
2642     // Allow overlapping PHI values. Any real interference would show up in a
2643     // predecessor, the PHI itself can't introduce any conflicts.
2644     if (VNI->isPHIDef())
2645       return CR_Merge;
2646     if ((V.ValidLanes & OtherV.ValidLanes).any())
2647       // Overlapping lanes can't be resolved.
2648       return CR_Impossible;
2649     else
2650       return CR_Merge;
2651   }
2652 
2653   // No simultaneous def. Is Other live at the def?
2654   V.OtherVNI = OtherLRQ.valueIn();
2655   if (!V.OtherVNI)
2656     // No overlap, no conflict.
2657     return CR_Keep;
2658 
2659   assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2660 
2661   // We have overlapping values, or possibly a kill of Other.
2662   // Recursively compute assignments up the dominator tree.
2663   Other.computeAssignment(V.OtherVNI->id, *this);
2664   Val &OtherV = Other.Vals[V.OtherVNI->id];
2665 
2666   if (OtherV.ErasableImplicitDef) {
2667     // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2668     // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2669     // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2670     // technically.
2671     //
2672     // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2673     // to erase the IMPLICIT_DEF instruction.
2674     if (DefMI &&
2675         DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2676       LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2677                  << " extends into "
2678                  << printMBBReference(*DefMI->getParent())
2679                  << ", keeping it.\n");
2680       OtherV.ErasableImplicitDef = false;
2681     } else {
2682       // We deferred clearing these lanes in case we needed to save them
2683       OtherV.ValidLanes &= ~OtherV.WriteLanes;
2684     }
2685   }
2686 
2687   // Allow overlapping PHI values. Any real interference would show up in a
2688   // predecessor, the PHI itself can't introduce any conflicts.
2689   if (VNI->isPHIDef())
2690     return CR_Replace;
2691 
2692   // Check for simple erasable conflicts.
2693   if (DefMI->isImplicitDef())
2694     return CR_Erase;
2695 
2696   // Include the non-conflict where DefMI is a coalescable copy that kills
2697   // OtherVNI. We still want the copy erased and value numbers merged.
2698   if (CP.isCoalescable(DefMI)) {
2699     // Some of the lanes copied from OtherVNI may be undef, making them undef
2700     // here too.
2701     V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2702     return CR_Erase;
2703   }
2704 
2705   // This may not be a real conflict if DefMI simply kills Other and defines
2706   // VNI.
2707   if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2708     return CR_Keep;
2709 
2710   // Handle the case where VNI and OtherVNI can be proven to be identical:
2711   //
2712   //   %other = COPY %ext
2713   //   %this  = COPY %ext <-- Erase this copy
2714   //
2715   if (DefMI->isFullCopy() && !CP.isPartial() &&
2716       valuesIdentical(VNI, V.OtherVNI, Other)) {
2717     V.Identical = true;
2718     return CR_Erase;
2719   }
2720 
2721   // The remaining checks apply to the lanes, which aren't tracked here.  This
2722   // was already decided to be OK via the following CR_Replace condition.
2723   // CR_Replace.
2724   if (SubRangeJoin)
2725     return CR_Replace;
2726 
2727   // If the lanes written by this instruction were all undef in OtherVNI, it is
2728   // still safe to join the live ranges. This can't be done with a simple value
2729   // mapping, though - OtherVNI will map to multiple values:
2730   //
2731   //   1 %dst:ssub0 = FOO                <-- OtherVNI
2732   //   2 %src = BAR                      <-- VNI
2733   //   3 %dst:ssub1 = COPY killed %src    <-- Eliminate this copy.
2734   //   4 BAZ killed %dst
2735   //   5 QUUX killed %src
2736   //
2737   // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2738   // handles this complex value mapping.
2739   if ((V.WriteLanes & OtherV.ValidLanes).none())
2740     return CR_Replace;
2741 
2742   // If the other live range is killed by DefMI and the live ranges are still
2743   // overlapping, it must be because we're looking at an early clobber def:
2744   //
2745   //   %dst<def,early-clobber> = ASM killed %src
2746   //
2747   // In this case, it is illegal to merge the two live ranges since the early
2748   // clobber def would clobber %src before it was read.
2749   if (OtherLRQ.isKill()) {
2750     // This case where the def doesn't overlap the kill is handled above.
2751     assert(VNI->def.isEarlyClobber() &&
2752            "Only early clobber defs can overlap a kill");
2753     return CR_Impossible;
2754   }
2755 
2756   // VNI is clobbering live lanes in OtherVNI, but there is still the
2757   // possibility that no instructions actually read the clobbered lanes.
2758   // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2759   // Otherwise Other.RI wouldn't be live here.
2760   if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2761     return CR_Impossible;
2762 
2763   // We need to verify that no instructions are reading the clobbered lanes. To
2764   // save compile time, we'll only check that locally. Don't allow the tainted
2765   // value to escape the basic block.
2766   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2767   if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2768     return CR_Impossible;
2769 
2770   // There are still some things that could go wrong besides clobbered lanes
2771   // being read, for example OtherVNI may be only partially redefined in MBB,
2772   // and some clobbered lanes could escape the block. Save this analysis for
2773   // resolveConflicts() when all values have been mapped. We need to know
2774   // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2775   // that now - the recursive analyzeValue() calls must go upwards in the
2776   // dominator tree.
2777   return CR_Unresolved;
2778 }
2779 
2780 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2781   Val &V = Vals[ValNo];
2782   if (V.isAnalyzed()) {
2783     // Recursion should always move up the dominator tree, so ValNo is not
2784     // supposed to reappear before it has been assigned.
2785     assert(Assignments[ValNo] != -1 && "Bad recursion?");
2786     return;
2787   }
2788   switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2789   case CR_Erase:
2790   case CR_Merge:
2791     // Merge this ValNo into OtherVNI.
2792     assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2793     assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2794     Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2795     LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2796                       << LR.getValNumInfo(ValNo)->def << " into "
2797                       << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2798                       << V.OtherVNI->def << " --> @"
2799                       << NewVNInfo[Assignments[ValNo]]->def << '\n');
2800     break;
2801   case CR_Replace:
2802   case CR_Unresolved: {
2803     // The other value is going to be pruned if this join is successful.
2804     assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2805     Val &OtherV = Other.Vals[V.OtherVNI->id];
2806     // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2807     // its lanes.
2808     if (OtherV.ErasableImplicitDef &&
2809         TrackSubRegLiveness &&
2810         (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2811       LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2812 
2813       OtherV.ErasableImplicitDef = false;
2814       // The valid lanes written by the implicit_def were speculatively cleared
2815       // before, so make this more conservative. It may be better to track this,
2816       // I haven't found a testcase where it matters.
2817       OtherV.ValidLanes = LaneBitmask::getAll();
2818     }
2819 
2820     OtherV.Pruned = true;
2821     LLVM_FALLTHROUGH;
2822   }
2823   default:
2824     // This value number needs to go in the final joined live range.
2825     Assignments[ValNo] = NewVNInfo.size();
2826     NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2827     break;
2828   }
2829 }
2830 
2831 bool JoinVals::mapValues(JoinVals &Other) {
2832   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2833     computeAssignment(i, Other);
2834     if (Vals[i].Resolution == CR_Impossible) {
2835       LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2836                         << '@' << LR.getValNumInfo(i)->def << '\n');
2837       return false;
2838     }
2839   }
2840   return true;
2841 }
2842 
2843 bool JoinVals::
2844 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2845             SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2846   VNInfo *VNI = LR.getValNumInfo(ValNo);
2847   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2848   SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2849 
2850   // Scan Other.LR from VNI.def to MBBEnd.
2851   LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2852   assert(OtherI != Other.LR.end() && "No conflict?");
2853   do {
2854     // OtherI is pointing to a tainted value. Abort the join if the tainted
2855     // lanes escape the block.
2856     SlotIndex End = OtherI->end;
2857     if (End >= MBBEnd) {
2858       LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2859                         << OtherI->valno->id << '@' << OtherI->start << '\n');
2860       return false;
2861     }
2862     LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
2863                       << OtherI->valno->id << '@' << OtherI->start << " to "
2864                       << End << '\n');
2865     // A dead def is not a problem.
2866     if (End.isDead())
2867       break;
2868     TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2869 
2870     // Check for another def in the MBB.
2871     if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2872       break;
2873 
2874     // Lanes written by the new def are no longer tainted.
2875     const Val &OV = Other.Vals[OtherI->valno->id];
2876     TaintedLanes &= ~OV.WriteLanes;
2877     if (!OV.RedefVNI)
2878       break;
2879   } while (TaintedLanes.any());
2880   return true;
2881 }
2882 
2883 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
2884                          LaneBitmask Lanes) const {
2885   if (MI.isDebugInstr())
2886     return false;
2887   for (const MachineOperand &MO : MI.operands()) {
2888     if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2889       continue;
2890     if (!MO.readsReg())
2891       continue;
2892     unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
2893     if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
2894       return true;
2895   }
2896   return false;
2897 }
2898 
2899 bool JoinVals::resolveConflicts(JoinVals &Other) {
2900   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2901     Val &V = Vals[i];
2902     assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
2903     if (V.Resolution != CR_Unresolved)
2904       continue;
2905     LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
2906                       << LR.getValNumInfo(i)->def
2907                       << ' ' << PrintLaneMask(LaneMask) << '\n');
2908     if (SubRangeJoin)
2909       return false;
2910 
2911     ++NumLaneConflicts;
2912     assert(V.OtherVNI && "Inconsistent conflict resolution.");
2913     VNInfo *VNI = LR.getValNumInfo(i);
2914     const Val &OtherV = Other.Vals[V.OtherVNI->id];
2915 
2916     // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2917     // join, those lanes will be tainted with a wrong value. Get the extent of
2918     // the tainted lanes.
2919     LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2920     SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2921     if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2922       // Tainted lanes would extend beyond the basic block.
2923       return false;
2924 
2925     assert(!TaintExtent.empty() && "There should be at least one conflict.");
2926 
2927     // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2928     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2929     MachineBasicBlock::iterator MI = MBB->begin();
2930     if (!VNI->isPHIDef()) {
2931       MI = Indexes->getInstructionFromIndex(VNI->def);
2932       // No need to check the instruction defining VNI for reads.
2933       ++MI;
2934     }
2935     assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2936            "Interference ends on VNI->def. Should have been handled earlier");
2937     MachineInstr *LastMI =
2938       Indexes->getInstructionFromIndex(TaintExtent.front().first);
2939     assert(LastMI && "Range must end at a proper instruction");
2940     unsigned TaintNum = 0;
2941     while (true) {
2942       assert(MI != MBB->end() && "Bad LastMI");
2943       if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2944         LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2945         return false;
2946       }
2947       // LastMI is the last instruction to use the current value.
2948       if (&*MI == LastMI) {
2949         if (++TaintNum == TaintExtent.size())
2950           break;
2951         LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2952         assert(LastMI && "Range must end at a proper instruction");
2953         TaintedLanes = TaintExtent[TaintNum].second;
2954       }
2955       ++MI;
2956     }
2957 
2958     // The tainted lanes are unused.
2959     V.Resolution = CR_Replace;
2960     ++NumLaneResolves;
2961   }
2962   return true;
2963 }
2964 
2965 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2966   Val &V = Vals[ValNo];
2967   if (V.Pruned || V.PrunedComputed)
2968     return V.Pruned;
2969 
2970   if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2971     return V.Pruned;
2972 
2973   // Follow copies up the dominator tree and check if any intermediate value
2974   // has been pruned.
2975   V.PrunedComputed = true;
2976   V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2977   return V.Pruned;
2978 }
2979 
2980 void JoinVals::pruneValues(JoinVals &Other,
2981                            SmallVectorImpl<SlotIndex> &EndPoints,
2982                            bool changeInstrs) {
2983   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2984     SlotIndex Def = LR.getValNumInfo(i)->def;
2985     switch (Vals[i].Resolution) {
2986     case CR_Keep:
2987       break;
2988     case CR_Replace: {
2989       // This value takes precedence over the value in Other.LR.
2990       LIS->pruneValue(Other.LR, Def, &EndPoints);
2991       // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2992       // instructions are only inserted to provide a live-out value for PHI
2993       // predecessors, so the instruction should simply go away once its value
2994       // has been replaced.
2995       Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2996       bool EraseImpDef = OtherV.ErasableImplicitDef &&
2997                          OtherV.Resolution == CR_Keep;
2998       if (!Def.isBlock()) {
2999         if (changeInstrs) {
3000           // Remove <def,read-undef> flags. This def is now a partial redef.
3001           // Also remove dead flags since the joined live range will
3002           // continue past this instruction.
3003           for (MachineOperand &MO :
3004                Indexes->getInstructionFromIndex(Def)->operands()) {
3005             if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
3006               if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
3007                 MO.setIsUndef(false);
3008               MO.setIsDead(false);
3009             }
3010           }
3011         }
3012         // This value will reach instructions below, but we need to make sure
3013         // the live range also reaches the instruction at Def.
3014         if (!EraseImpDef)
3015           EndPoints.push_back(Def);
3016       }
3017       LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
3018                         << ": " << Other.LR << '\n');
3019       break;
3020     }
3021     case CR_Erase:
3022     case CR_Merge:
3023       if (isPrunedValue(i, Other)) {
3024         // This value is ultimately a copy of a pruned value in LR or Other.LR.
3025         // We can no longer trust the value mapping computed by
3026         // computeAssignment(), the value that was originally copied could have
3027         // been replaced.
3028         LIS->pruneValue(LR, Def, &EndPoints);
3029         LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
3030                           << Def << ": " << LR << '\n');
3031       }
3032       break;
3033     case CR_Unresolved:
3034     case CR_Impossible:
3035       llvm_unreachable("Unresolved conflicts");
3036     }
3037   }
3038 }
3039 
3040 /// Consider the following situation when coalescing the copy between
3041 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
3042 ///
3043 ///                              Main range         Subrange 0004 (sub2)
3044 ///                              %31    %45           %31    %45
3045 ///  544    %45 = COPY %28               +                    +
3046 ///                                      | v1                 | v1
3047 ///  560B bb.1:                          +                    +
3048 ///  624        = %45.sub2               | v2                 | v2
3049 ///  800    %31 = COPY %45        +      +             +      +
3050 ///                               | v0                 | v0
3051 ///  816    %31.sub1 = ...        +                    |
3052 ///  880    %30 = COPY %31        | v1                 +
3053 ///  928    %45 = COPY %30        |      +                    +
3054 ///                               |      | v0                 | v0  <--+
3055 ///  992B   ; backedge -> bb.1    |      +                    +        |
3056 /// 1040        = %31.sub0        +                                    |
3057 ///                                                 This value must remain
3058 ///                                                 live-out!
3059 ///
3060 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3061 /// redundant, since it copies the value from %45 back into it. The
3062 /// conflict resolution for the main range determines that %45.v0 is
3063 /// to be erased, which is ok since %31.v1 is identical to it.
3064 /// The problem happens with the subrange for sub2: it has to be live
3065 /// on exit from the block, but since 928 was actually a point of
3066 /// definition of %45.sub2, %45.sub2 was not live immediately prior
3067 /// to that definition. As a result, when 928 was erased, the value v0
3068 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3069 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3070 /// providing an incorrect value to the use at 624.
3071 ///
3072 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3073 /// identical, the corresponding values in subranges must also be the
3074 /// same. A redundant copy is removed because it's not needed, and not
3075 /// because it copied an undefined value, so any liveness that originated
3076 /// from that copy cannot disappear. When pruning a value that started
3077 /// at the removed copy, the corresponding identical value must be
3078 /// extended to replace it.
3079 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3080   // Look for values being erased.
3081   bool DidPrune = false;
3082   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3083     Val &V = Vals[i];
3084     // We should trigger in all cases in which eraseInstrs() does something.
3085     // match what eraseInstrs() is doing, print a message so
3086     if (V.Resolution != CR_Erase &&
3087         (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3088       continue;
3089 
3090     // Check subranges at the point where the copy will be removed.
3091     SlotIndex Def = LR.getValNumInfo(i)->def;
3092     SlotIndex OtherDef;
3093     if (V.Identical)
3094       OtherDef = V.OtherVNI->def;
3095 
3096     // Print message so mismatches with eraseInstrs() can be diagnosed.
3097     LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3098                       << '\n');
3099     for (LiveInterval::SubRange &S : LI.subranges()) {
3100       LiveQueryResult Q = S.Query(Def);
3101 
3102       // If a subrange starts at the copy then an undefined value has been
3103       // copied and we must remove that subrange value as well.
3104       VNInfo *ValueOut = Q.valueOutOrDead();
3105       if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
3106                                   (V.Identical && V.Resolution == CR_Erase &&
3107                                    ValueOut->def == Def))) {
3108         LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3109                           << " at " << Def << "\n");
3110         SmallVector<SlotIndex,8> EndPoints;
3111         LIS->pruneValue(S, Def, &EndPoints);
3112         DidPrune = true;
3113         // Mark value number as unused.
3114         ValueOut->markUnused();
3115 
3116         if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
3117           // If V is identical to V.OtherVNI (and S was live at OtherDef),
3118           // then we can't simply prune V from S. V needs to be replaced
3119           // with V.OtherVNI.
3120           LIS->extendToIndices(S, EndPoints);
3121         }
3122         continue;
3123       }
3124       // If a subrange ends at the copy, then a value was copied but only
3125       // partially used later. Shrink the subregister range appropriately.
3126       if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
3127         LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3128                           << PrintLaneMask(S.LaneMask) << " at " << Def
3129                           << "\n");
3130         ShrinkMask |= S.LaneMask;
3131       }
3132     }
3133   }
3134   if (DidPrune)
3135     LI.removeEmptySubRanges();
3136 }
3137 
3138 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3139 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3140   for (LiveInterval::SubRange &SR : LI.subranges()) {
3141     if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3142       if (VNI->def == Def)
3143         return true;
3144   }
3145   return false;
3146 }
3147 
3148 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3149   assert(&static_cast<LiveRange&>(LI) == &LR);
3150 
3151   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3152     if (Vals[i].Resolution != CR_Keep)
3153       continue;
3154     VNInfo *VNI = LR.getValNumInfo(i);
3155     if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3156       continue;
3157     Vals[i].Pruned = true;
3158     ShrinkMainRange = true;
3159   }
3160 }
3161 
3162 void JoinVals::removeImplicitDefs() {
3163   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3164     Val &V = Vals[i];
3165     if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3166       continue;
3167 
3168     VNInfo *VNI = LR.getValNumInfo(i);
3169     VNI->markUnused();
3170     LR.removeValNo(VNI);
3171   }
3172 }
3173 
3174 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3175                            SmallVectorImpl<Register> &ShrinkRegs,
3176                            LiveInterval *LI) {
3177   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3178     // Get the def location before markUnused() below invalidates it.
3179     VNInfo *VNI = LR.getValNumInfo(i);
3180     SlotIndex Def = VNI->def;
3181     switch (Vals[i].Resolution) {
3182     case CR_Keep: {
3183       // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3184       // longer. The IMPLICIT_DEF instructions are only inserted by
3185       // PHIElimination to guarantee that all PHI predecessors have a value.
3186       if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3187         break;
3188       // Remove value number i from LR.
3189       // For intervals with subranges, removing a segment from the main range
3190       // may require extending the previous segment: for each definition of
3191       // a subregister, there will be a corresponding def in the main range.
3192       // That def may fall in the middle of a segment from another subrange.
3193       // In such cases, removing this def from the main range must be
3194       // complemented by extending the main range to account for the liveness
3195       // of the other subrange.
3196       // The new end point of the main range segment to be extended.
3197       SlotIndex NewEnd;
3198       if (LI != nullptr) {
3199         LiveRange::iterator I = LR.FindSegmentContaining(Def);
3200         assert(I != LR.end());
3201         // Do not extend beyond the end of the segment being removed.
3202         // The segment may have been pruned in preparation for joining
3203         // live ranges.
3204         NewEnd = I->end;
3205       }
3206 
3207       LR.removeValNo(VNI);
3208       // Note that this VNInfo is reused and still referenced in NewVNInfo,
3209       // make it appear like an unused value number.
3210       VNI->markUnused();
3211 
3212       if (LI != nullptr && LI->hasSubRanges()) {
3213         assert(static_cast<LiveRange*>(LI) == &LR);
3214         // Determine the end point based on the subrange information:
3215         // minimum of (earliest def of next segment,
3216         //             latest end point of containing segment)
3217         SlotIndex ED, LE;
3218         for (LiveInterval::SubRange &SR : LI->subranges()) {
3219           LiveRange::iterator I = SR.find(Def);
3220           if (I == SR.end())
3221             continue;
3222           if (I->start > Def)
3223             ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3224           else
3225             LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3226         }
3227         if (LE.isValid())
3228           NewEnd = std::min(NewEnd, LE);
3229         if (ED.isValid())
3230           NewEnd = std::min(NewEnd, ED);
3231 
3232         // We only want to do the extension if there was a subrange that
3233         // was live across Def.
3234         if (LE.isValid()) {
3235           LiveRange::iterator S = LR.find(Def);
3236           if (S != LR.begin())
3237             std::prev(S)->end = NewEnd;
3238         }
3239       }
3240       LLVM_DEBUG({
3241         dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3242         if (LI != nullptr)
3243           dbgs() << "\t\t  LHS = " << *LI << '\n';
3244       });
3245       LLVM_FALLTHROUGH;
3246     }
3247 
3248     case CR_Erase: {
3249       MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3250       assert(MI && "No instruction to erase");
3251       if (MI->isCopy()) {
3252         Register Reg = MI->getOperand(1).getReg();
3253         if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() &&
3254             Reg != CP.getDstReg())
3255           ShrinkRegs.push_back(Reg);
3256       }
3257       ErasedInstrs.insert(MI);
3258       LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3259       LIS->RemoveMachineInstrFromMaps(*MI);
3260       MI->eraseFromParent();
3261       break;
3262     }
3263     default:
3264       break;
3265     }
3266   }
3267 }
3268 
3269 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3270                                          LaneBitmask LaneMask,
3271                                          const CoalescerPair &CP) {
3272   SmallVector<VNInfo*, 16> NewVNInfo;
3273   JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3274                    NewVNInfo, CP, LIS, TRI, true, true);
3275   JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3276                    NewVNInfo, CP, LIS, TRI, true, true);
3277 
3278   // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3279   // We should be able to resolve all conflicts here as we could successfully do
3280   // it on the mainrange already. There is however a problem when multiple
3281   // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3282   // interferences.
3283   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3284     // We already determined that it is legal to merge the intervals, so this
3285     // should never fail.
3286     llvm_unreachable("*** Couldn't join subrange!\n");
3287   }
3288   if (!LHSVals.resolveConflicts(RHSVals) ||
3289       !RHSVals.resolveConflicts(LHSVals)) {
3290     // We already determined that it is legal to merge the intervals, so this
3291     // should never fail.
3292     llvm_unreachable("*** Couldn't join subrange!\n");
3293   }
3294 
3295   // The merging algorithm in LiveInterval::join() can't handle conflicting
3296   // value mappings, so we need to remove any live ranges that overlap a
3297   // CR_Replace resolution. Collect a set of end points that can be used to
3298   // restore the live range after joining.
3299   SmallVector<SlotIndex, 8> EndPoints;
3300   LHSVals.pruneValues(RHSVals, EndPoints, false);
3301   RHSVals.pruneValues(LHSVals, EndPoints, false);
3302 
3303   LHSVals.removeImplicitDefs();
3304   RHSVals.removeImplicitDefs();
3305 
3306   LRange.verify();
3307   RRange.verify();
3308 
3309   // Join RRange into LHS.
3310   LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3311               NewVNInfo);
3312 
3313   LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3314                     << ' ' << LRange << "\n");
3315   if (EndPoints.empty())
3316     return;
3317 
3318   // Recompute the parts of the live range we had to remove because of
3319   // CR_Replace conflicts.
3320   LLVM_DEBUG({
3321     dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3322     for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3323       dbgs() << EndPoints[i];
3324       if (i != n-1)
3325         dbgs() << ',';
3326     }
3327     dbgs() << ":  " << LRange << '\n';
3328   });
3329   LIS->extendToIndices(LRange, EndPoints);
3330 }
3331 
3332 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3333                                           const LiveRange &ToMerge,
3334                                           LaneBitmask LaneMask,
3335                                           CoalescerPair &CP,
3336                                           unsigned ComposeSubRegIdx) {
3337   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3338   LI.refineSubRanges(
3339       Allocator, LaneMask,
3340       [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3341         if (SR.empty()) {
3342           SR.assign(ToMerge, Allocator);
3343         } else {
3344           // joinSubRegRange() destroys the merged range, so we need a copy.
3345           LiveRange RangeCopy(ToMerge, Allocator);
3346           joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3347         }
3348       },
3349       *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx);
3350 }
3351 
3352 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3353   if (LI.valnos.size() < LargeIntervalSizeThreshold)
3354     return false;
3355   auto &Counter = LargeLIVisitCounter[LI.reg()];
3356   if (Counter < LargeIntervalFreqThreshold) {
3357     Counter++;
3358     return false;
3359   }
3360   return true;
3361 }
3362 
3363 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3364   SmallVector<VNInfo*, 16> NewVNInfo;
3365   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3366   LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3367   bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3368   JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3369                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3370   JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3371                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3372 
3373   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3374 
3375   if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3376     return false;
3377 
3378   // First compute NewVNInfo and the simple value mappings.
3379   // Detect impossible conflicts early.
3380   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3381     return false;
3382 
3383   // Some conflicts can only be resolved after all values have been mapped.
3384   if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3385     return false;
3386 
3387   // All clear, the live ranges can be merged.
3388   if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3389     BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3390 
3391     // Transform lanemasks from the LHS to masks in the coalesced register and
3392     // create initial subranges if necessary.
3393     unsigned DstIdx = CP.getDstIdx();
3394     if (!LHS.hasSubRanges()) {
3395       LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3396                                      : TRI->getSubRegIndexLaneMask(DstIdx);
3397       // LHS must support subregs or we wouldn't be in this codepath.
3398       assert(Mask.any());
3399       LHS.createSubRangeFrom(Allocator, Mask, LHS);
3400     } else if (DstIdx != 0) {
3401       // Transform LHS lanemasks to new register class if necessary.
3402       for (LiveInterval::SubRange &R : LHS.subranges()) {
3403         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3404         R.LaneMask = Mask;
3405       }
3406     }
3407     LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3408                       << '\n');
3409 
3410     // Determine lanemasks of RHS in the coalesced register and merge subranges.
3411     unsigned SrcIdx = CP.getSrcIdx();
3412     if (!RHS.hasSubRanges()) {
3413       LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3414                                      : TRI->getSubRegIndexLaneMask(SrcIdx);
3415       mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx);
3416     } else {
3417       // Pair up subranges and merge.
3418       for (LiveInterval::SubRange &R : RHS.subranges()) {
3419         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3420         mergeSubRangeInto(LHS, R, Mask, CP, DstIdx);
3421       }
3422     }
3423     LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3424 
3425     // Pruning implicit defs from subranges may result in the main range
3426     // having stale segments.
3427     LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3428 
3429     LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3430     RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3431   }
3432 
3433   // The merging algorithm in LiveInterval::join() can't handle conflicting
3434   // value mappings, so we need to remove any live ranges that overlap a
3435   // CR_Replace resolution. Collect a set of end points that can be used to
3436   // restore the live range after joining.
3437   SmallVector<SlotIndex, 8> EndPoints;
3438   LHSVals.pruneValues(RHSVals, EndPoints, true);
3439   RHSVals.pruneValues(LHSVals, EndPoints, true);
3440 
3441   // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3442   // registers to require trimming.
3443   SmallVector<Register, 8> ShrinkRegs;
3444   LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3445   RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3446   while (!ShrinkRegs.empty())
3447     shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3448 
3449   // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3450   checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
3451 
3452   // Join RHS into LHS.
3453   LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3454 
3455   // Kill flags are going to be wrong if the live ranges were overlapping.
3456   // Eventually, we should simply clear all kill flags when computing live
3457   // ranges. They are reinserted after register allocation.
3458   MRI->clearKillFlags(LHS.reg());
3459   MRI->clearKillFlags(RHS.reg());
3460 
3461   if (!EndPoints.empty()) {
3462     // Recompute the parts of the live range we had to remove because of
3463     // CR_Replace conflicts.
3464     LLVM_DEBUG({
3465       dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3466       for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3467         dbgs() << EndPoints[i];
3468         if (i != n-1)
3469           dbgs() << ',';
3470       }
3471       dbgs() << ":  " << LHS << '\n';
3472     });
3473     LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3474   }
3475 
3476   return true;
3477 }
3478 
3479 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3480   return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3481 }
3482 
3483 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF)
3484 {
3485   const SlotIndexes &Slots = *LIS->getSlotIndexes();
3486   SmallVector<MachineInstr *, 8> ToInsert;
3487 
3488   // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3489   // vreg => DbgValueLoc map.
3490   auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
3491     for (auto *X : ToInsert)
3492       DbgVRegToValues[X->getDebugOperand(0).getReg()].push_back({Slot, X});
3493 
3494     ToInsert.clear();
3495   };
3496 
3497   // Iterate over all instructions, collecting them into the ToInsert vector.
3498   // Once a non-debug instruction is found, record the slot index of the
3499   // collected DBG_VALUEs.
3500   for (auto &MBB : MF) {
3501     SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB);
3502 
3503     for (auto &MI : MBB) {
3504       if (MI.isDebugValue() && MI.getDebugOperand(0).isReg() &&
3505           MI.getDebugOperand(0).getReg().isVirtual()) {
3506         ToInsert.push_back(&MI);
3507       } else if (!MI.isDebugInstr()) {
3508         CurrentSlot = Slots.getInstructionIndex(MI);
3509         CloseNewDVRange(CurrentSlot);
3510       }
3511     }
3512 
3513     // Close range of DBG_VALUEs at the end of blocks.
3514     CloseNewDVRange(Slots.getMBBEndIdx(&MBB));
3515   }
3516 
3517   // Sort all DBG_VALUEs we've seen by slot number.
3518   for (auto &Pair : DbgVRegToValues)
3519     llvm::sort(Pair.second);
3520 }
3521 
3522 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
3523                                                      LiveRange &LHS,
3524                                                      JoinVals &LHSVals,
3525                                                      LiveRange &RHS,
3526                                                      JoinVals &RHSVals) {
3527   auto ScanForDstReg = [&](unsigned Reg) {
3528     checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals);
3529   };
3530 
3531   auto ScanForSrcReg = [&](unsigned Reg) {
3532     checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals);
3533   };
3534 
3535   // Scan for potentially unsound DBG_VALUEs: examine first the register number
3536   // Reg, and then any other vregs that may have been merged into  it.
3537   auto PerformScan = [this](unsigned Reg, std::function<void(unsigned)> Func) {
3538     Func(Reg);
3539     if (DbgMergedVRegNums.count(Reg))
3540       for (unsigned X : DbgMergedVRegNums[Reg])
3541         Func(X);
3542   };
3543 
3544   // Scan for unsound updates of both the source and destination register.
3545   PerformScan(CP.getSrcReg(), ScanForSrcReg);
3546   PerformScan(CP.getDstReg(), ScanForDstReg);
3547 }
3548 
3549 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(unsigned Reg,
3550                                                          LiveRange &OtherLR,
3551                                                          LiveRange &RegLR,
3552                                                          JoinVals &RegVals) {
3553   // Are there any DBG_VALUEs to examine?
3554   auto VRegMapIt = DbgVRegToValues.find(Reg);
3555   if (VRegMapIt == DbgVRegToValues.end())
3556     return;
3557 
3558   auto &DbgValueSet = VRegMapIt->second;
3559   auto DbgValueSetIt = DbgValueSet.begin();
3560   auto SegmentIt = OtherLR.begin();
3561 
3562   bool LastUndefResult = false;
3563   SlotIndex LastUndefIdx;
3564 
3565   // If the "Other" register is live at a slot Idx, test whether Reg can
3566   // safely be merged with it, or should be marked undef.
3567   auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
3568                       &LastUndefIdx](SlotIndex Idx) -> bool {
3569     // Our worst-case performance typically happens with asan, causing very
3570     // many DBG_VALUEs of the same location. Cache a copy of the most recent
3571     // result for this edge-case.
3572     if (LastUndefIdx == Idx)
3573       return LastUndefResult;
3574 
3575     // If the other range was live, and Reg's was not, the register coalescer
3576     // will not have tried to resolve any conflicts. We don't know whether
3577     // the DBG_VALUE will refer to the same value number, so it must be made
3578     // undef.
3579     auto OtherIt = RegLR.find(Idx);
3580     if (OtherIt == RegLR.end())
3581       return true;
3582 
3583     // Both the registers were live: examine the conflict resolution record for
3584     // the value number Reg refers to. CR_Keep meant that this value number
3585     // "won" and the merged register definitely refers to that value. CR_Erase
3586     // means the value number was a redundant copy of the other value, which
3587     // was coalesced and Reg deleted. It's safe to refer to the other register
3588     // (which will be the source of the copy).
3589     auto Resolution = RegVals.getResolution(OtherIt->valno->id);
3590     LastUndefResult = Resolution != JoinVals::CR_Keep &&
3591                       Resolution != JoinVals::CR_Erase;
3592     LastUndefIdx = Idx;
3593     return LastUndefResult;
3594   };
3595 
3596   // Iterate over both the live-range of the "Other" register, and the set of
3597   // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3598   // slot index. This relies on the DbgValueSet being ordered.
3599   while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
3600     if (DbgValueSetIt->first < SegmentIt->end) {
3601       // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3602       // set it undef.
3603       if (DbgValueSetIt->first >= SegmentIt->start &&
3604           DbgValueSetIt->second->getDebugOperand(0).getReg() != 0 &&
3605           ShouldUndef(DbgValueSetIt->first)) {
3606         // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3607         DbgValueSetIt->second->setDebugValueUndef();
3608         continue;
3609       }
3610       ++DbgValueSetIt;
3611     } else {
3612       ++SegmentIt;
3613     }
3614   }
3615 }
3616 
3617 namespace {
3618 
3619 /// Information concerning MBB coalescing priority.
3620 struct MBBPriorityInfo {
3621   MachineBasicBlock *MBB;
3622   unsigned Depth;
3623   bool IsSplit;
3624 
3625   MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3626     : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3627 };
3628 
3629 } // end anonymous namespace
3630 
3631 /// C-style comparator that sorts first based on the loop depth of the basic
3632 /// block (the unsigned), and then on the MBB number.
3633 ///
3634 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3635 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3636                               const MBBPriorityInfo *RHS) {
3637   // Deeper loops first
3638   if (LHS->Depth != RHS->Depth)
3639     return LHS->Depth > RHS->Depth ? -1 : 1;
3640 
3641   // Try to unsplit critical edges next.
3642   if (LHS->IsSplit != RHS->IsSplit)
3643     return LHS->IsSplit ? -1 : 1;
3644 
3645   // Prefer blocks that are more connected in the CFG. This takes care of
3646   // the most difficult copies first while intervals are short.
3647   unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3648   unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3649   if (cl != cr)
3650     return cl > cr ? -1 : 1;
3651 
3652   // As a last resort, sort by block number.
3653   return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3654 }
3655 
3656 /// \returns true if the given copy uses or defines a local live range.
3657 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3658   if (!Copy->isCopy())
3659     return false;
3660 
3661   if (Copy->getOperand(1).isUndef())
3662     return false;
3663 
3664   Register SrcReg = Copy->getOperand(1).getReg();
3665   Register DstReg = Copy->getOperand(0).getReg();
3666   if (Register::isPhysicalRegister(SrcReg) ||
3667       Register::isPhysicalRegister(DstReg))
3668     return false;
3669 
3670   return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3671     || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3672 }
3673 
3674 void RegisterCoalescer::lateLiveIntervalUpdate() {
3675   for (unsigned reg : ToBeUpdated) {
3676     if (!LIS->hasInterval(reg))
3677       continue;
3678     LiveInterval &LI = LIS->getInterval(reg);
3679     shrinkToUses(&LI, &DeadDefs);
3680     if (!DeadDefs.empty())
3681       eliminateDeadDefs();
3682   }
3683   ToBeUpdated.clear();
3684 }
3685 
3686 bool RegisterCoalescer::
3687 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3688   bool Progress = false;
3689   for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3690     if (!CurrList[i])
3691       continue;
3692     // Skip instruction pointers that have already been erased, for example by
3693     // dead code elimination.
3694     if (ErasedInstrs.count(CurrList[i])) {
3695       CurrList[i] = nullptr;
3696       continue;
3697     }
3698     bool Again = false;
3699     bool Success = joinCopy(CurrList[i], Again);
3700     Progress |= Success;
3701     if (Success || !Again)
3702       CurrList[i] = nullptr;
3703   }
3704   return Progress;
3705 }
3706 
3707 /// Check if DstReg is a terminal node.
3708 /// I.e., it does not have any affinity other than \p Copy.
3709 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
3710                           const MachineRegisterInfo *MRI) {
3711   assert(Copy.isCopyLike());
3712   // Check if the destination of this copy as any other affinity.
3713   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3714     if (&MI != &Copy && MI.isCopyLike())
3715       return false;
3716   return true;
3717 }
3718 
3719 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3720   assert(Copy.isCopyLike());
3721   if (!UseTerminalRule)
3722     return false;
3723   unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
3724   if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
3725     return false;
3726   // Check if the destination of this copy has any other affinity.
3727   if (Register::isPhysicalRegister(DstReg) ||
3728       // If SrcReg is a physical register, the copy won't be coalesced.
3729       // Ignoring it may have other side effect (like missing
3730       // rematerialization). So keep it.
3731       Register::isPhysicalRegister(SrcReg) || !isTerminalReg(DstReg, Copy, MRI))
3732     return false;
3733 
3734   // DstReg is a terminal node. Check if it interferes with any other
3735   // copy involving SrcReg.
3736   const MachineBasicBlock *OrigBB = Copy.getParent();
3737   const LiveInterval &DstLI = LIS->getInterval(DstReg);
3738   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3739     // Technically we should check if the weight of the new copy is
3740     // interesting compared to the other one and update the weight
3741     // of the copies accordingly. However, this would only work if
3742     // we would gather all the copies first then coalesce, whereas
3743     // right now we interleave both actions.
3744     // For now, just consider the copies that are in the same block.
3745     if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3746       continue;
3747     unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
3748     if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3749                 OtherSubReg))
3750       return false;
3751     if (OtherReg == SrcReg)
3752       OtherReg = OtherSrcReg;
3753     // Check if OtherReg is a non-terminal.
3754     if (Register::isPhysicalRegister(OtherReg) ||
3755         isTerminalReg(OtherReg, MI, MRI))
3756       continue;
3757     // Check that OtherReg interfere with DstReg.
3758     if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3759       LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3760                         << '\n');
3761       return true;
3762     }
3763   }
3764   return false;
3765 }
3766 
3767 void
3768 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3769   LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3770 
3771   // Collect all copy-like instructions in MBB. Don't start coalescing anything
3772   // yet, it might invalidate the iterator.
3773   const unsigned PrevSize = WorkList.size();
3774   if (JoinGlobalCopies) {
3775     SmallVector<MachineInstr*, 2> LocalTerminals;
3776     SmallVector<MachineInstr*, 2> GlobalTerminals;
3777     // Coalesce copies bottom-up to coalesce local defs before local uses. They
3778     // are not inherently easier to resolve, but slightly preferable until we
3779     // have local live range splitting. In particular this is required by
3780     // cmp+jmp macro fusion.
3781     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
3782          MII != E; ++MII) {
3783       if (!MII->isCopyLike())
3784         continue;
3785       bool ApplyTerminalRule = applyTerminalRule(*MII);
3786       if (isLocalCopy(&(*MII), LIS)) {
3787         if (ApplyTerminalRule)
3788           LocalTerminals.push_back(&(*MII));
3789         else
3790           LocalWorkList.push_back(&(*MII));
3791       } else {
3792         if (ApplyTerminalRule)
3793           GlobalTerminals.push_back(&(*MII));
3794         else
3795           WorkList.push_back(&(*MII));
3796       }
3797     }
3798     // Append the copies evicted by the terminal rule at the end of the list.
3799     LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
3800     WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
3801   }
3802   else {
3803     SmallVector<MachineInstr*, 2> Terminals;
3804     for (MachineInstr &MII : *MBB)
3805       if (MII.isCopyLike()) {
3806         if (applyTerminalRule(MII))
3807           Terminals.push_back(&MII);
3808         else
3809           WorkList.push_back(&MII);
3810       }
3811     // Append the copies evicted by the terminal rule at the end of the list.
3812     WorkList.append(Terminals.begin(), Terminals.end());
3813   }
3814   // Try coalescing the collected copies immediately, and remove the nulls.
3815   // This prevents the WorkList from getting too large since most copies are
3816   // joinable on the first attempt.
3817   MutableArrayRef<MachineInstr*>
3818     CurrList(WorkList.begin() + PrevSize, WorkList.end());
3819   if (copyCoalesceWorkList(CurrList))
3820     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
3821                                nullptr), WorkList.end());
3822 }
3823 
3824 void RegisterCoalescer::coalesceLocals() {
3825   copyCoalesceWorkList(LocalWorkList);
3826   for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
3827     if (LocalWorkList[j])
3828       WorkList.push_back(LocalWorkList[j]);
3829   }
3830   LocalWorkList.clear();
3831 }
3832 
3833 void RegisterCoalescer::joinAllIntervals() {
3834   LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
3835   assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
3836 
3837   std::vector<MBBPriorityInfo> MBBs;
3838   MBBs.reserve(MF->size());
3839   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
3840     MachineBasicBlock *MBB = &*I;
3841     MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
3842                                    JoinSplitEdges && isSplitEdge(MBB)));
3843   }
3844   array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
3845 
3846   // Coalesce intervals in MBB priority order.
3847   unsigned CurrDepth = std::numeric_limits<unsigned>::max();
3848   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
3849     // Try coalescing the collected local copies for deeper loops.
3850     if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
3851       coalesceLocals();
3852       CurrDepth = MBBs[i].Depth;
3853     }
3854     copyCoalesceInMBB(MBBs[i].MBB);
3855   }
3856   lateLiveIntervalUpdate();
3857   coalesceLocals();
3858 
3859   // Joining intervals can allow other intervals to be joined.  Iteratively join
3860   // until we make no progress.
3861   while (copyCoalesceWorkList(WorkList))
3862     /* empty */ ;
3863   lateLiveIntervalUpdate();
3864 }
3865 
3866 void RegisterCoalescer::releaseMemory() {
3867   ErasedInstrs.clear();
3868   WorkList.clear();
3869   DeadDefs.clear();
3870   InflateRegs.clear();
3871   LargeLIVisitCounter.clear();
3872 }
3873 
3874 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
3875   LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3876                     << "********** Function: " << fn.getName() << '\n');
3877 
3878   // Variables changed between a setjmp and a longjump can have undefined value
3879   // after the longjmp. This behaviour can be observed if such a variable is
3880   // spilled, so longjmp won't restore the value in the spill slot.
3881   // RegisterCoalescer should not run in functions with a setjmp to avoid
3882   // merging such undefined variables with predictable ones.
3883   //
3884   // TODO: Could specifically disable coalescing registers live across setjmp
3885   // calls
3886   if (fn.exposesReturnsTwice()) {
3887     LLVM_DEBUG(
3888         dbgs() << "* Skipped as it exposes funcions that returns twice.\n");
3889     return false;
3890   }
3891 
3892   MF = &fn;
3893   MRI = &fn.getRegInfo();
3894   const TargetSubtargetInfo &STI = fn.getSubtarget();
3895   TRI = STI.getRegisterInfo();
3896   TII = STI.getInstrInfo();
3897   LIS = &getAnalysis<LiveIntervals>();
3898   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3899   Loops = &getAnalysis<MachineLoopInfo>();
3900   if (EnableGlobalCopies == cl::BOU_UNSET)
3901     JoinGlobalCopies = STI.enableJoinGlobalCopies();
3902   else
3903     JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
3904 
3905   // The MachineScheduler does not currently require JoinSplitEdges. This will
3906   // either be enabled unconditionally or replaced by a more general live range
3907   // splitting optimization.
3908   JoinSplitEdges = EnableJoinSplits;
3909 
3910   if (VerifyCoalescing)
3911     MF->verify(this, "Before register coalescing");
3912 
3913   DbgVRegToValues.clear();
3914   DbgMergedVRegNums.clear();
3915   buildVRegToDbgValueMap(fn);
3916 
3917   RegClassInfo.runOnMachineFunction(fn);
3918 
3919   // Join (coalesce) intervals if requested.
3920   if (EnableJoining)
3921     joinAllIntervals();
3922 
3923   // After deleting a lot of copies, register classes may be less constrained.
3924   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3925   // DPR inflation.
3926   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
3927   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
3928                     InflateRegs.end());
3929   LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
3930                     << " regs.\n");
3931   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
3932     unsigned Reg = InflateRegs[i];
3933     if (MRI->reg_nodbg_empty(Reg))
3934       continue;
3935     if (MRI->recomputeRegClass(Reg)) {
3936       LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
3937                         << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
3938       ++NumInflated;
3939 
3940       LiveInterval &LI = LIS->getInterval(Reg);
3941       if (LI.hasSubRanges()) {
3942         // If the inflated register class does not support subregisters anymore
3943         // remove the subranges.
3944         if (!MRI->shouldTrackSubRegLiveness(Reg)) {
3945           LI.clearSubRanges();
3946         } else {
3947 #ifndef NDEBUG
3948           LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3949           // If subranges are still supported, then the same subregs
3950           // should still be supported.
3951           for (LiveInterval::SubRange &S : LI.subranges()) {
3952             assert((S.LaneMask & ~MaxMask).none());
3953           }
3954 #endif
3955         }
3956       }
3957     }
3958   }
3959 
3960   LLVM_DEBUG(dump());
3961   if (VerifyCoalescing)
3962     MF->verify(this, "After register coalescing");
3963   return true;
3964 }
3965 
3966 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3967    LIS->print(O, m);
3968 }
3969