1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic RegisterCoalescer interface which 10 // is used as the common interface used by all clients and 11 // implementations of register coalescing. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "RegisterCoalescer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetOpcodes.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/LaneBitmask.h" 45 #include "llvm/MC/MCInstrDesc.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <iterator> 56 #include <limits> 57 #include <tuple> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "regalloc" 64 65 STATISTIC(numJoins , "Number of interval joins performed"); 66 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 67 STATISTIC(numCommutes , "Number of instruction commuting performed"); 68 STATISTIC(numExtends , "Number of copies extended"); 69 STATISTIC(NumReMats , "Number of instructions re-materialized"); 70 STATISTIC(NumInflated , "Number of register classes inflated"); 71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 72 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 73 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called"); 74 75 static cl::opt<bool> EnableJoining("join-liveintervals", 76 cl::desc("Coalesce copies (default=true)"), 77 cl::init(true), cl::Hidden); 78 79 static cl::opt<bool> UseTerminalRule("terminal-rule", 80 cl::desc("Apply the terminal rule"), 81 cl::init(false), cl::Hidden); 82 83 /// Temporary flag to test critical edge unsplitting. 84 static cl::opt<bool> 85 EnableJoinSplits("join-splitedges", 86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 87 88 /// Temporary flag to test global copy optimization. 89 static cl::opt<cl::boolOrDefault> 90 EnableGlobalCopies("join-globalcopies", 91 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 92 cl::init(cl::BOU_UNSET), cl::Hidden); 93 94 static cl::opt<bool> 95 VerifyCoalescing("verify-coalescing", 96 cl::desc("Verify machine instrs before and after register coalescing"), 97 cl::Hidden); 98 99 static cl::opt<unsigned> LateRematUpdateThreshold( 100 "late-remat-update-threshold", cl::Hidden, 101 cl::desc("During rematerialization for a copy, if the def instruction has " 102 "many other copy uses to be rematerialized, delay the multiple " 103 "separate live interval update work and do them all at once after " 104 "all those rematerialization are done. It will save a lot of " 105 "repeated work. "), 106 cl::init(100)); 107 108 static cl::opt<unsigned> LargeIntervalSizeThreshold( 109 "large-interval-size-threshold", cl::Hidden, 110 cl::desc("If the valnos size of an interval is larger than the threshold, " 111 "it is regarded as a large interval. "), 112 cl::init(100)); 113 114 static cl::opt<unsigned> LargeIntervalFreqThreshold( 115 "large-interval-freq-threshold", cl::Hidden, 116 cl::desc("For a large interval, if it is coalesed with other live " 117 "intervals many times more than the threshold, stop its " 118 "coalescing to control the compile time. "), 119 cl::init(100)); 120 121 namespace { 122 123 class JoinVals; 124 125 class RegisterCoalescer : public MachineFunctionPass, 126 private LiveRangeEdit::Delegate { 127 MachineFunction* MF = nullptr; 128 MachineRegisterInfo* MRI = nullptr; 129 const TargetRegisterInfo* TRI = nullptr; 130 const TargetInstrInfo* TII = nullptr; 131 LiveIntervals *LIS = nullptr; 132 const MachineLoopInfo* Loops = nullptr; 133 AliasAnalysis *AA = nullptr; 134 RegisterClassInfo RegClassInfo; 135 136 /// Position and VReg of a PHI instruction during coalescing. 137 struct PHIValPos { 138 SlotIndex SI; ///< Slot where this PHI occurs. 139 Register Reg; ///< VReg the PHI occurs in. 140 unsigned SubReg; ///< Qualifying subregister for Reg. 141 }; 142 143 /// Map from debug instruction number to PHI position during coalescing. 144 DenseMap<unsigned, PHIValPos> PHIValToPos; 145 /// Index of, for each VReg, which debug instruction numbers and 146 /// corresponding PHIs are sensitive to coalescing. Each VReg may have 147 /// multiple PHI defs, at different positions. 148 DenseMap<Register, SmallVector<unsigned, 2>> RegToPHIIdx; 149 150 /// Debug variable location tracking -- for each VReg, maintain an 151 /// ordered-by-slot-index set of DBG_VALUEs, to help quick 152 /// identification of whether coalescing may change location validity. 153 using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>; 154 DenseMap<Register, std::vector<DbgValueLoc>> DbgVRegToValues; 155 156 /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached. 157 /// To avoid repeatedly merging sets of DbgValueLocs, instead record 158 /// which vregs have been coalesced, and where to. This map is from 159 /// vreg => {set of vregs merged in}. 160 DenseMap<Register, SmallVector<Register, 4>> DbgMergedVRegNums; 161 162 /// A LaneMask to remember on which subregister live ranges we need to call 163 /// shrinkToUses() later. 164 LaneBitmask ShrinkMask; 165 166 /// True if the main range of the currently coalesced intervals should be 167 /// checked for smaller live intervals. 168 bool ShrinkMainRange = false; 169 170 /// True if the coalescer should aggressively coalesce global copies 171 /// in favor of keeping local copies. 172 bool JoinGlobalCopies = false; 173 174 /// True if the coalescer should aggressively coalesce fall-thru 175 /// blocks exclusively containing copies. 176 bool JoinSplitEdges = false; 177 178 /// Copy instructions yet to be coalesced. 179 SmallVector<MachineInstr*, 8> WorkList; 180 SmallVector<MachineInstr*, 8> LocalWorkList; 181 182 /// Set of instruction pointers that have been erased, and 183 /// that may be present in WorkList. 184 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 185 186 /// Dead instructions that are about to be deleted. 187 SmallVector<MachineInstr*, 8> DeadDefs; 188 189 /// Virtual registers to be considered for register class inflation. 190 SmallVector<Register, 8> InflateRegs; 191 192 /// The collection of live intervals which should have been updated 193 /// immediately after rematerialiation but delayed until 194 /// lateLiveIntervalUpdate is called. 195 DenseSet<Register> ToBeUpdated; 196 197 /// Record how many times the large live interval with many valnos 198 /// has been tried to join with other live interval. 199 DenseMap<Register, unsigned long> LargeLIVisitCounter; 200 201 /// Recursively eliminate dead defs in DeadDefs. 202 void eliminateDeadDefs(); 203 204 /// LiveRangeEdit callback for eliminateDeadDefs(). 205 void LRE_WillEraseInstruction(MachineInstr *MI) override; 206 207 /// Coalesce the LocalWorkList. 208 void coalesceLocals(); 209 210 /// Join compatible live intervals 211 void joinAllIntervals(); 212 213 /// Coalesce copies in the specified MBB, putting 214 /// copies that cannot yet be coalesced into WorkList. 215 void copyCoalesceInMBB(MachineBasicBlock *MBB); 216 217 /// Tries to coalesce all copies in CurrList. Returns true if any progress 218 /// was made. 219 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 220 221 /// If one def has many copy like uses, and those copy uses are all 222 /// rematerialized, the live interval update needed for those 223 /// rematerializations will be delayed and done all at once instead 224 /// of being done multiple times. This is to save compile cost because 225 /// live interval update is costly. 226 void lateLiveIntervalUpdate(); 227 228 /// Check if the incoming value defined by a COPY at \p SLRQ in the subrange 229 /// has no value defined in the predecessors. If the incoming value is the 230 /// same as defined by the copy itself, the value is considered undefined. 231 bool copyValueUndefInPredecessors(LiveRange &S, 232 const MachineBasicBlock *MBB, 233 LiveQueryResult SLRQ); 234 235 /// Set necessary undef flags on subregister uses after pruning out undef 236 /// lane segments from the subrange. 237 void setUndefOnPrunedSubRegUses(LiveInterval &LI, Register Reg, 238 LaneBitmask PrunedLanes); 239 240 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 241 /// src/dst of the copy instruction CopyMI. This returns true if the copy 242 /// was successfully coalesced away. If it is not currently possible to 243 /// coalesce this interval, but it may be possible if other things get 244 /// coalesced, then it returns true by reference in 'Again'. 245 bool joinCopy(MachineInstr *CopyMI, bool &Again); 246 247 /// Attempt to join these two intervals. On failure, this 248 /// returns false. The output "SrcInt" will not have been modified, so we 249 /// can use this information below to update aliases. 250 bool joinIntervals(CoalescerPair &CP); 251 252 /// Attempt joining two virtual registers. Return true on success. 253 bool joinVirtRegs(CoalescerPair &CP); 254 255 /// If a live interval has many valnos and is coalesced with other 256 /// live intervals many times, we regard such live interval as having 257 /// high compile time cost. 258 bool isHighCostLiveInterval(LiveInterval &LI); 259 260 /// Attempt joining with a reserved physreg. 261 bool joinReservedPhysReg(CoalescerPair &CP); 262 263 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 264 /// Subranges in @p LI which only partially interfere with the desired 265 /// LaneMask are split as necessary. @p LaneMask are the lanes that 266 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 267 /// lanemasks already adjusted to the coalesced register. 268 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 269 LaneBitmask LaneMask, CoalescerPair &CP, 270 unsigned DstIdx); 271 272 /// Join the liveranges of two subregisters. Joins @p RRange into 273 /// @p LRange, @p RRange may be invalid afterwards. 274 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 275 LaneBitmask LaneMask, const CoalescerPair &CP); 276 277 /// We found a non-trivially-coalescable copy. If the source value number is 278 /// defined by a copy from the destination reg see if we can merge these two 279 /// destination reg valno# into a single value number, eliminating a copy. 280 /// This returns true if an interval was modified. 281 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 282 283 /// Return true if there are definitions of IntB 284 /// other than BValNo val# that can reach uses of AValno val# of IntA. 285 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 286 VNInfo *AValNo, VNInfo *BValNo); 287 288 /// We found a non-trivially-coalescable copy. 289 /// If the source value number is defined by a commutable instruction and 290 /// its other operand is coalesced to the copy dest register, see if we 291 /// can transform the copy into a noop by commuting the definition. 292 /// This returns a pair of two flags: 293 /// - the first element is true if an interval was modified, 294 /// - the second element is true if the destination interval needs 295 /// to be shrunk after deleting the copy. 296 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP, 297 MachineInstr *CopyMI); 298 299 /// We found a copy which can be moved to its less frequent predecessor. 300 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 301 302 /// If the source of a copy is defined by a 303 /// trivial computation, replace the copy by rematerialize the definition. 304 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 305 bool &IsDefCopy); 306 307 /// Return true if a copy involving a physreg should be joined. 308 bool canJoinPhys(const CoalescerPair &CP); 309 310 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 311 /// number if it is not zero. If DstReg is a physical register and the 312 /// existing subregister number of the def / use being updated is not zero, 313 /// make sure to set it to the correct physical subregister. 314 void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx); 315 316 /// If the given machine operand reads only undefined lanes add an undef 317 /// flag. 318 /// This can happen when undef uses were previously concealed by a copy 319 /// which we coalesced. Example: 320 /// %0:sub0<def,read-undef> = ... 321 /// %1 = COPY %0 <-- Coalescing COPY reveals undef 322 /// = use %1:sub1 <-- hidden undef use 323 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 324 MachineOperand &MO, unsigned SubRegIdx); 325 326 /// Handle copies of undef values. If the undef value is an incoming 327 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF. 328 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise, 329 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point). 330 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI); 331 332 /// Check whether or not we should apply the terminal rule on the 333 /// destination (Dst) of \p Copy. 334 /// When the terminal rule applies, Copy is not profitable to 335 /// coalesce. 336 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 337 /// at least one interference (Dst, Dst2). If Dst is terminal, the 338 /// terminal rule consists in checking that at least one of 339 /// interfering node, say Dst2, has an affinity of equal or greater 340 /// weight with Src. 341 /// In that case, Dst2 and Dst will not be able to be both coalesced 342 /// with Src. Since Dst2 exposes more coalescing opportunities than 343 /// Dst, we can drop \p Copy. 344 bool applyTerminalRule(const MachineInstr &Copy) const; 345 346 /// Wrapper method for \see LiveIntervals::shrinkToUses. 347 /// This method does the proper fixing of the live-ranges when the afore 348 /// mentioned method returns true. 349 void shrinkToUses(LiveInterval *LI, 350 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 351 NumShrinkToUses++; 352 if (LIS->shrinkToUses(LI, Dead)) { 353 /// Check whether or not \p LI is composed by multiple connected 354 /// components and if that is the case, fix that. 355 SmallVector<LiveInterval*, 8> SplitLIs; 356 LIS->splitSeparateComponents(*LI, SplitLIs); 357 } 358 } 359 360 /// Wrapper Method to do all the necessary work when an Instruction is 361 /// deleted. 362 /// Optimizations should use this to make sure that deleted instructions 363 /// are always accounted for. 364 void deleteInstr(MachineInstr* MI) { 365 ErasedInstrs.insert(MI); 366 LIS->RemoveMachineInstrFromMaps(*MI); 367 MI->eraseFromParent(); 368 } 369 370 /// Walk over function and initialize the DbgVRegToValues map. 371 void buildVRegToDbgValueMap(MachineFunction &MF); 372 373 /// Test whether, after merging, any DBG_VALUEs would refer to a 374 /// different value number than before merging, and whether this can 375 /// be resolved. If not, mark the DBG_VALUE as being undef. 376 void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS, 377 JoinVals &LHSVals, LiveRange &RHS, 378 JoinVals &RHSVals); 379 380 void checkMergingChangesDbgValuesImpl(Register Reg, LiveRange &OtherRange, 381 LiveRange &RegRange, JoinVals &Vals2); 382 383 public: 384 static char ID; ///< Class identification, replacement for typeinfo 385 386 RegisterCoalescer() : MachineFunctionPass(ID) { 387 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 388 } 389 390 void getAnalysisUsage(AnalysisUsage &AU) const override; 391 392 void releaseMemory() override; 393 394 /// This is the pass entry point. 395 bool runOnMachineFunction(MachineFunction&) override; 396 397 /// Implement the dump method. 398 void print(raw_ostream &O, const Module* = nullptr) const override; 399 }; 400 401 } // end anonymous namespace 402 403 char RegisterCoalescer::ID = 0; 404 405 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 406 407 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 408 "Simple Register Coalescing", false, false) 409 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 410 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 411 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 412 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 413 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 414 "Simple Register Coalescing", false, false) 415 416 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri, 417 const MachineInstr *MI, Register &Src, 418 Register &Dst, unsigned &SrcSub, 419 unsigned &DstSub) { 420 if (MI->isCopy()) { 421 Dst = MI->getOperand(0).getReg(); 422 DstSub = MI->getOperand(0).getSubReg(); 423 Src = MI->getOperand(1).getReg(); 424 SrcSub = MI->getOperand(1).getSubReg(); 425 } else if (MI->isSubregToReg()) { 426 Dst = MI->getOperand(0).getReg(); 427 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 428 MI->getOperand(3).getImm()); 429 Src = MI->getOperand(2).getReg(); 430 SrcSub = MI->getOperand(2).getSubReg(); 431 } else 432 return false; 433 return true; 434 } 435 436 /// Return true if this block should be vacated by the coalescer to eliminate 437 /// branches. The important cases to handle in the coalescer are critical edges 438 /// split during phi elimination which contain only copies. Simple blocks that 439 /// contain non-branches should also be vacated, but this can be handled by an 440 /// earlier pass similar to early if-conversion. 441 static bool isSplitEdge(const MachineBasicBlock *MBB) { 442 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 443 return false; 444 445 for (const auto &MI : *MBB) { 446 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 447 return false; 448 } 449 return true; 450 } 451 452 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 453 SrcReg = DstReg = Register(); 454 SrcIdx = DstIdx = 0; 455 NewRC = nullptr; 456 Flipped = CrossClass = false; 457 458 Register Src, Dst; 459 unsigned SrcSub = 0, DstSub = 0; 460 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 461 return false; 462 Partial = SrcSub || DstSub; 463 464 // If one register is a physreg, it must be Dst. 465 if (Register::isPhysicalRegister(Src)) { 466 if (Register::isPhysicalRegister(Dst)) 467 return false; 468 std::swap(Src, Dst); 469 std::swap(SrcSub, DstSub); 470 Flipped = true; 471 } 472 473 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 474 475 if (Register::isPhysicalRegister(Dst)) { 476 // Eliminate DstSub on a physreg. 477 if (DstSub) { 478 Dst = TRI.getSubReg(Dst, DstSub); 479 if (!Dst) return false; 480 DstSub = 0; 481 } 482 483 // Eliminate SrcSub by picking a corresponding Dst superregister. 484 if (SrcSub) { 485 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 486 if (!Dst) return false; 487 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 488 return false; 489 } 490 } else { 491 // Both registers are virtual. 492 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 493 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 494 495 // Both registers have subreg indices. 496 if (SrcSub && DstSub) { 497 // Copies between different sub-registers are never coalescable. 498 if (Src == Dst && SrcSub != DstSub) 499 return false; 500 501 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 502 SrcIdx, DstIdx); 503 if (!NewRC) 504 return false; 505 } else if (DstSub) { 506 // SrcReg will be merged with a sub-register of DstReg. 507 SrcIdx = DstSub; 508 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 509 } else if (SrcSub) { 510 // DstReg will be merged with a sub-register of SrcReg. 511 DstIdx = SrcSub; 512 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 513 } else { 514 // This is a straight copy without sub-registers. 515 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 516 } 517 518 // The combined constraint may be impossible to satisfy. 519 if (!NewRC) 520 return false; 521 522 // Prefer SrcReg to be a sub-register of DstReg. 523 // FIXME: Coalescer should support subregs symmetrically. 524 if (DstIdx && !SrcIdx) { 525 std::swap(Src, Dst); 526 std::swap(SrcIdx, DstIdx); 527 Flipped = !Flipped; 528 } 529 530 CrossClass = NewRC != DstRC || NewRC != SrcRC; 531 } 532 // Check our invariants 533 assert(Register::isVirtualRegister(Src) && "Src must be virtual"); 534 assert(!(Register::isPhysicalRegister(Dst) && DstSub) && 535 "Cannot have a physical SubIdx"); 536 SrcReg = Src; 537 DstReg = Dst; 538 return true; 539 } 540 541 bool CoalescerPair::flip() { 542 if (Register::isPhysicalRegister(DstReg)) 543 return false; 544 std::swap(SrcReg, DstReg); 545 std::swap(SrcIdx, DstIdx); 546 Flipped = !Flipped; 547 return true; 548 } 549 550 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 551 if (!MI) 552 return false; 553 Register Src, Dst; 554 unsigned SrcSub = 0, DstSub = 0; 555 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 556 return false; 557 558 // Find the virtual register that is SrcReg. 559 if (Dst == SrcReg) { 560 std::swap(Src, Dst); 561 std::swap(SrcSub, DstSub); 562 } else if (Src != SrcReg) { 563 return false; 564 } 565 566 // Now check that Dst matches DstReg. 567 if (DstReg.isPhysical()) { 568 if (!Dst.isPhysical()) 569 return false; 570 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 571 // DstSub could be set for a physreg from INSERT_SUBREG. 572 if (DstSub) 573 Dst = TRI.getSubReg(Dst, DstSub); 574 // Full copy of Src. 575 if (!SrcSub) 576 return DstReg == Dst; 577 // This is a partial register copy. Check that the parts match. 578 return Register(TRI.getSubReg(DstReg, SrcSub)) == Dst; 579 } else { 580 // DstReg is virtual. 581 if (DstReg != Dst) 582 return false; 583 // Registers match, do the subregisters line up? 584 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 585 TRI.composeSubRegIndices(DstIdx, DstSub); 586 } 587 } 588 589 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 590 AU.setPreservesCFG(); 591 AU.addRequired<AAResultsWrapperPass>(); 592 AU.addRequired<LiveIntervals>(); 593 AU.addPreserved<LiveIntervals>(); 594 AU.addPreserved<SlotIndexes>(); 595 AU.addRequired<MachineLoopInfo>(); 596 AU.addPreserved<MachineLoopInfo>(); 597 AU.addPreservedID(MachineDominatorsID); 598 MachineFunctionPass::getAnalysisUsage(AU); 599 } 600 601 void RegisterCoalescer::eliminateDeadDefs() { 602 SmallVector<Register, 8> NewRegs; 603 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 604 nullptr, this).eliminateDeadDefs(DeadDefs); 605 } 606 607 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 608 // MI may be in WorkList. Make sure we don't visit it. 609 ErasedInstrs.insert(MI); 610 } 611 612 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 613 MachineInstr *CopyMI) { 614 assert(!CP.isPartial() && "This doesn't work for partial copies."); 615 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 616 617 LiveInterval &IntA = 618 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 619 LiveInterval &IntB = 620 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 621 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 622 623 // We have a non-trivially-coalescable copy with IntA being the source and 624 // IntB being the dest, thus this defines a value number in IntB. If the 625 // source value number (in IntA) is defined by a copy from B, see if we can 626 // merge these two pieces of B into a single value number, eliminating a copy. 627 // For example: 628 // 629 // A3 = B0 630 // ... 631 // B1 = A3 <- this copy 632 // 633 // In this case, B0 can be extended to where the B1 copy lives, allowing the 634 // B1 value number to be replaced with B0 (which simplifies the B 635 // liveinterval). 636 637 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 638 // the example above. 639 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 640 if (BS == IntB.end()) return false; 641 VNInfo *BValNo = BS->valno; 642 643 // Get the location that B is defined at. Two options: either this value has 644 // an unknown definition point or it is defined at CopyIdx. If unknown, we 645 // can't process it. 646 if (BValNo->def != CopyIdx) return false; 647 648 // AValNo is the value number in A that defines the copy, A3 in the example. 649 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 650 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 651 // The live segment might not exist after fun with physreg coalescing. 652 if (AS == IntA.end()) return false; 653 VNInfo *AValNo = AS->valno; 654 655 // If AValNo is defined as a copy from IntB, we can potentially process this. 656 // Get the instruction that defines this value number. 657 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 658 // Don't allow any partial copies, even if isCoalescable() allows them. 659 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 660 return false; 661 662 // Get the Segment in IntB that this value number starts with. 663 LiveInterval::iterator ValS = 664 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 665 if (ValS == IntB.end()) 666 return false; 667 668 // Make sure that the end of the live segment is inside the same block as 669 // CopyMI. 670 MachineInstr *ValSEndInst = 671 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 672 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 673 return false; 674 675 // Okay, we now know that ValS ends in the same block that the CopyMI 676 // live-range starts. If there are no intervening live segments between them 677 // in IntB, we can merge them. 678 if (ValS+1 != BS) return false; 679 680 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI)); 681 682 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 683 // We are about to delete CopyMI, so need to remove it as the 'instruction 684 // that defines this value #'. Update the valnum with the new defining 685 // instruction #. 686 BValNo->def = FillerStart; 687 688 // Okay, we can merge them. We need to insert a new liverange: 689 // [ValS.end, BS.begin) of either value number, then we merge the 690 // two value numbers. 691 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 692 693 // Okay, merge "B1" into the same value number as "B0". 694 if (BValNo != ValS->valno) 695 IntB.MergeValueNumberInto(BValNo, ValS->valno); 696 697 // Do the same for the subregister segments. 698 for (LiveInterval::SubRange &S : IntB.subranges()) { 699 // Check for SubRange Segments of the form [1234r,1234d:0) which can be 700 // removed to prevent creating bogus SubRange Segments. 701 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx); 702 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) { 703 S.removeSegment(*SS, true); 704 continue; 705 } 706 // The subrange may have ended before FillerStart. If so, extend it. 707 if (!S.getVNInfoAt(FillerStart)) { 708 SlotIndex BBStart = 709 LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart)); 710 S.extendInBlock(BBStart, FillerStart); 711 } 712 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 713 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 714 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 715 if (SubBValNo != SubValSNo) 716 S.MergeValueNumberInto(SubBValNo, SubValSNo); 717 } 718 719 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n'); 720 721 // If the source instruction was killing the source register before the 722 // merge, unset the isKill marker given the live range has been extended. 723 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true); 724 if (UIdx != -1) { 725 ValSEndInst->getOperand(UIdx).setIsKill(false); 726 } 727 728 // Rewrite the copy. 729 CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI); 730 // If the copy instruction was killing the destination register or any 731 // subrange before the merge trim the live range. 732 bool RecomputeLiveRange = AS->end == CopyIdx; 733 if (!RecomputeLiveRange) { 734 for (LiveInterval::SubRange &S : IntA.subranges()) { 735 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx); 736 if (SS != S.end() && SS->end == CopyIdx) { 737 RecomputeLiveRange = true; 738 break; 739 } 740 } 741 } 742 if (RecomputeLiveRange) 743 shrinkToUses(&IntA); 744 745 ++numExtends; 746 return true; 747 } 748 749 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 750 LiveInterval &IntB, 751 VNInfo *AValNo, 752 VNInfo *BValNo) { 753 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 754 // the PHI values. 755 if (LIS->hasPHIKill(IntA, AValNo)) 756 return true; 757 758 for (LiveRange::Segment &ASeg : IntA.segments) { 759 if (ASeg.valno != AValNo) continue; 760 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start); 761 if (BI != IntB.begin()) 762 --BI; 763 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 764 if (BI->valno == BValNo) 765 continue; 766 if (BI->start <= ASeg.start && BI->end > ASeg.start) 767 return true; 768 if (BI->start > ASeg.start && BI->start < ASeg.end) 769 return true; 770 } 771 } 772 return false; 773 } 774 775 /// Copy segments with value number @p SrcValNo from liverange @p Src to live 776 /// range @Dst and use value number @p DstValNo there. 777 static std::pair<bool,bool> 778 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src, 779 const VNInfo *SrcValNo) { 780 bool Changed = false; 781 bool MergedWithDead = false; 782 for (const LiveRange::Segment &S : Src.segments) { 783 if (S.valno != SrcValNo) 784 continue; 785 // This is adding a segment from Src that ends in a copy that is about 786 // to be removed. This segment is going to be merged with a pre-existing 787 // segment in Dst. This works, except in cases when the corresponding 788 // segment in Dst is dead. For example: adding [192r,208r:1) from Src 789 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst. 790 // Recognized such cases, so that the segments can be shrunk. 791 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo); 792 LiveRange::Segment &Merged = *Dst.addSegment(Added); 793 if (Merged.end.isDead()) 794 MergedWithDead = true; 795 Changed = true; 796 } 797 return std::make_pair(Changed, MergedWithDead); 798 } 799 800 std::pair<bool,bool> 801 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 802 MachineInstr *CopyMI) { 803 assert(!CP.isPhys()); 804 805 LiveInterval &IntA = 806 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 807 LiveInterval &IntB = 808 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 809 810 // We found a non-trivially-coalescable copy with IntA being the source and 811 // IntB being the dest, thus this defines a value number in IntB. If the 812 // source value number (in IntA) is defined by a commutable instruction and 813 // its other operand is coalesced to the copy dest register, see if we can 814 // transform the copy into a noop by commuting the definition. For example, 815 // 816 // A3 = op A2 killed B0 817 // ... 818 // B1 = A3 <- this copy 819 // ... 820 // = op A3 <- more uses 821 // 822 // ==> 823 // 824 // B2 = op B0 killed A2 825 // ... 826 // B1 = B2 <- now an identity copy 827 // ... 828 // = op B2 <- more uses 829 830 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 831 // the example above. 832 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 833 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 834 assert(BValNo != nullptr && BValNo->def == CopyIdx); 835 836 // AValNo is the value number in A that defines the copy, A3 in the example. 837 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 838 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 839 if (AValNo->isPHIDef()) 840 return { false, false }; 841 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 842 if (!DefMI) 843 return { false, false }; 844 if (!DefMI->isCommutable()) 845 return { false, false }; 846 // If DefMI is a two-address instruction then commuting it will change the 847 // destination register. 848 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg()); 849 assert(DefIdx != -1); 850 unsigned UseOpIdx; 851 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 852 return { false, false }; 853 854 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 855 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 856 // passed to the method. That _other_ operand is chosen by 857 // the findCommutedOpIndices() method. 858 // 859 // That is obviously an area for improvement in case of instructions having 860 // more than 2 operands. For example, if some instruction has 3 commutable 861 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 862 // op#2<->op#3) of commute transformation should be considered/tried here. 863 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 864 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 865 return { false, false }; 866 867 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 868 Register NewReg = NewDstMO.getReg(); 869 if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill()) 870 return { false, false }; 871 872 // Make sure there are no other definitions of IntB that would reach the 873 // uses which the new definition can reach. 874 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 875 return { false, false }; 876 877 // If some of the uses of IntA.reg is already coalesced away, return false. 878 // It's not possible to determine whether it's safe to perform the coalescing. 879 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) { 880 MachineInstr *UseMI = MO.getParent(); 881 unsigned OpNo = &MO - &UseMI->getOperand(0); 882 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 883 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 884 if (US == IntA.end() || US->valno != AValNo) 885 continue; 886 // If this use is tied to a def, we can't rewrite the register. 887 if (UseMI->isRegTiedToDefOperand(OpNo)) 888 return { false, false }; 889 } 890 891 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 892 << *DefMI); 893 894 // At this point we have decided that it is legal to do this 895 // transformation. Start by commuting the instruction. 896 MachineBasicBlock *MBB = DefMI->getParent(); 897 MachineInstr *NewMI = 898 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 899 if (!NewMI) 900 return { false, false }; 901 if (Register::isVirtualRegister(IntA.reg()) && 902 Register::isVirtualRegister(IntB.reg()) && 903 !MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg()))) 904 return { false, false }; 905 if (NewMI != DefMI) { 906 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 907 MachineBasicBlock::iterator Pos = DefMI; 908 MBB->insert(Pos, NewMI); 909 MBB->erase(DefMI); 910 } 911 912 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 913 // A = or A, B 914 // ... 915 // B = A 916 // ... 917 // C = killed A 918 // ... 919 // = B 920 921 // Update uses of IntA of the specific Val# with IntB. 922 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg()), 923 UE = MRI->use_end(); 924 UI != UE; 925 /* ++UI is below because of possible MI removal */) { 926 MachineOperand &UseMO = *UI; 927 ++UI; 928 if (UseMO.isUndef()) 929 continue; 930 MachineInstr *UseMI = UseMO.getParent(); 931 if (UseMI->isDebugValue()) { 932 // FIXME These don't have an instruction index. Not clear we have enough 933 // info to decide whether to do this replacement or not. For now do it. 934 UseMO.setReg(NewReg); 935 continue; 936 } 937 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 938 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 939 assert(US != IntA.end() && "Use must be live"); 940 if (US->valno != AValNo) 941 continue; 942 // Kill flags are no longer accurate. They are recomputed after RA. 943 UseMO.setIsKill(false); 944 if (Register::isPhysicalRegister(NewReg)) 945 UseMO.substPhysReg(NewReg, *TRI); 946 else 947 UseMO.setReg(NewReg); 948 if (UseMI == CopyMI) 949 continue; 950 if (!UseMI->isCopy()) 951 continue; 952 if (UseMI->getOperand(0).getReg() != IntB.reg() || 953 UseMI->getOperand(0).getSubReg()) 954 continue; 955 956 // This copy will become a noop. If it's defining a new val#, merge it into 957 // BValNo. 958 SlotIndex DefIdx = UseIdx.getRegSlot(); 959 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 960 if (!DVNI) 961 continue; 962 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 963 assert(DVNI->def == DefIdx); 964 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 965 for (LiveInterval::SubRange &S : IntB.subranges()) { 966 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 967 if (!SubDVNI) 968 continue; 969 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 970 assert(SubBValNo->def == CopyIdx); 971 S.MergeValueNumberInto(SubDVNI, SubBValNo); 972 } 973 974 deleteInstr(UseMI); 975 } 976 977 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 978 // is updated. 979 bool ShrinkB = false; 980 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 981 if (IntA.hasSubRanges() || IntB.hasSubRanges()) { 982 if (!IntA.hasSubRanges()) { 983 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg()); 984 IntA.createSubRangeFrom(Allocator, Mask, IntA); 985 } else if (!IntB.hasSubRanges()) { 986 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg()); 987 IntB.createSubRangeFrom(Allocator, Mask, IntB); 988 } 989 SlotIndex AIdx = CopyIdx.getRegSlot(true); 990 LaneBitmask MaskA; 991 const SlotIndexes &Indexes = *LIS->getSlotIndexes(); 992 for (LiveInterval::SubRange &SA : IntA.subranges()) { 993 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 994 // Even if we are dealing with a full copy, some lanes can 995 // still be undefined. 996 // E.g., 997 // undef A.subLow = ... 998 // B = COPY A <== A.subHigh is undefined here and does 999 // not have a value number. 1000 if (!ASubValNo) 1001 continue; 1002 MaskA |= SA.LaneMask; 1003 1004 IntB.refineSubRanges( 1005 Allocator, SA.LaneMask, 1006 [&Allocator, &SA, CopyIdx, ASubValNo, 1007 &ShrinkB](LiveInterval::SubRange &SR) { 1008 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator) 1009 : SR.getVNInfoAt(CopyIdx); 1010 assert(BSubValNo != nullptr); 1011 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 1012 ShrinkB |= P.second; 1013 if (P.first) 1014 BSubValNo->def = ASubValNo->def; 1015 }, 1016 Indexes, *TRI); 1017 } 1018 // Go over all subranges of IntB that have not been covered by IntA, 1019 // and delete the segments starting at CopyIdx. This can happen if 1020 // IntA has undef lanes that are defined in IntB. 1021 for (LiveInterval::SubRange &SB : IntB.subranges()) { 1022 if ((SB.LaneMask & MaskA).any()) 1023 continue; 1024 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx)) 1025 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex()) 1026 SB.removeSegment(*S, true); 1027 } 1028 } 1029 1030 BValNo->def = AValNo->def; 1031 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 1032 ShrinkB |= P.second; 1033 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 1034 1035 LIS->removeVRegDefAt(IntA, AValNo->def); 1036 1037 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 1038 ++numCommutes; 1039 return { true, ShrinkB }; 1040 } 1041 1042 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 1043 /// predecessor of BB2, and if B is not redefined on the way from A = B 1044 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the 1045 /// execution goes through the path from BB0 to BB2. We may move B = A 1046 /// to the predecessor without such reversed copy. 1047 /// So we will transform the program from: 1048 /// BB0: 1049 /// A = B; BB1: 1050 /// ... ... 1051 /// / \ / 1052 /// BB2: 1053 /// ... 1054 /// B = A; 1055 /// 1056 /// to: 1057 /// 1058 /// BB0: BB1: 1059 /// A = B; ... 1060 /// ... B = A; 1061 /// / \ / 1062 /// BB2: 1063 /// ... 1064 /// 1065 /// A special case is when BB0 and BB2 are the same BB which is the only 1066 /// BB in a loop: 1067 /// BB1: 1068 /// ... 1069 /// BB0/BB2: ---- 1070 /// B = A; | 1071 /// ... | 1072 /// A = B; | 1073 /// |------- 1074 /// | 1075 /// We may hoist B = A from BB0/BB2 to BB1. 1076 /// 1077 /// The major preconditions for correctness to remove such partial 1078 /// redundancy include: 1079 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 1080 /// the PHI is defined by the reversed copy A = B in BB0. 1081 /// 2. No B is referenced from the start of BB2 to B = A. 1082 /// 3. No B is defined from A = B to the end of BB0. 1083 /// 4. BB1 has only one successor. 1084 /// 1085 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 1086 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 1087 /// colder place, which not only prevent endless loop, but also make sure 1088 /// the movement of copy is beneficial. 1089 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 1090 MachineInstr &CopyMI) { 1091 assert(!CP.isPhys()); 1092 if (!CopyMI.isFullCopy()) 1093 return false; 1094 1095 MachineBasicBlock &MBB = *CopyMI.getParent(); 1096 // If this block is the target of an invoke/inlineasm_br, moving the copy into 1097 // the predecessor is tricker, and we don't handle it. 1098 if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget()) 1099 return false; 1100 1101 if (MBB.pred_size() != 2) 1102 return false; 1103 1104 LiveInterval &IntA = 1105 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 1106 LiveInterval &IntB = 1107 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 1108 1109 // A is defined by PHI at the entry of MBB. 1110 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 1111 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 1112 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 1113 if (!AValNo->isPHIDef()) 1114 return false; 1115 1116 // No B is referenced before CopyMI in MBB. 1117 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 1118 return false; 1119 1120 // MBB has two predecessors: one contains A = B so no copy will be inserted 1121 // for it. The other one will have a copy moved from MBB. 1122 bool FoundReverseCopy = false; 1123 MachineBasicBlock *CopyLeftBB = nullptr; 1124 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1125 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 1126 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 1127 if (!DefMI || !DefMI->isFullCopy()) { 1128 CopyLeftBB = Pred; 1129 continue; 1130 } 1131 // Check DefMI is a reverse copy and it is in BB Pred. 1132 if (DefMI->getOperand(0).getReg() != IntA.reg() || 1133 DefMI->getOperand(1).getReg() != IntB.reg() || 1134 DefMI->getParent() != Pred) { 1135 CopyLeftBB = Pred; 1136 continue; 1137 } 1138 // If there is any other def of B after DefMI and before the end of Pred, 1139 // we need to keep the copy of B = A at the end of Pred if we remove 1140 // B = A from MBB. 1141 bool ValB_Changed = false; 1142 for (auto VNI : IntB.valnos) { 1143 if (VNI->isUnused()) 1144 continue; 1145 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 1146 ValB_Changed = true; 1147 break; 1148 } 1149 } 1150 if (ValB_Changed) { 1151 CopyLeftBB = Pred; 1152 continue; 1153 } 1154 FoundReverseCopy = true; 1155 } 1156 1157 // If no reverse copy is found in predecessors, nothing to do. 1158 if (!FoundReverseCopy) 1159 return false; 1160 1161 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 1162 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 1163 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 1164 // update IntA/IntB. 1165 // 1166 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 1167 // MBB is hotter than CopyLeftBB. 1168 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 1169 return false; 1170 1171 // Now (almost sure it's) ok to move copy. 1172 if (CopyLeftBB) { 1173 // Position in CopyLeftBB where we should insert new copy. 1174 auto InsPos = CopyLeftBB->getFirstTerminator(); 1175 1176 // Make sure that B isn't referenced in the terminators (if any) at the end 1177 // of the predecessor since we're about to insert a new definition of B 1178 // before them. 1179 if (InsPos != CopyLeftBB->end()) { 1180 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true); 1181 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB))) 1182 return false; 1183 } 1184 1185 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to " 1186 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI); 1187 1188 // Insert new copy to CopyLeftBB. 1189 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1190 TII->get(TargetOpcode::COPY), IntB.reg()) 1191 .addReg(IntA.reg()); 1192 SlotIndex NewCopyIdx = 1193 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1194 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1195 for (LiveInterval::SubRange &SR : IntB.subranges()) 1196 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1197 1198 // If the newly created Instruction has an address of an instruction that was 1199 // deleted before (object recycled by the allocator) it needs to be removed from 1200 // the deleted list. 1201 ErasedInstrs.erase(NewCopyMI); 1202 } else { 1203 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from " 1204 << printMBBReference(MBB) << '\t' << CopyMI); 1205 } 1206 1207 // Remove CopyMI. 1208 // Note: This is fine to remove the copy before updating the live-ranges. 1209 // While updating the live-ranges, we only look at slot indices and 1210 // never go back to the instruction. 1211 // Mark instructions as deleted. 1212 deleteInstr(&CopyMI); 1213 1214 // Update the liveness. 1215 SmallVector<SlotIndex, 8> EndPoints; 1216 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1217 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1218 &EndPoints); 1219 BValNo->markUnused(); 1220 // Extend IntB to the EndPoints of its original live interval. 1221 LIS->extendToIndices(IntB, EndPoints); 1222 1223 // Now, do the same for its subranges. 1224 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1225 EndPoints.clear(); 1226 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1227 assert(BValNo && "All sublanes should be live"); 1228 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1229 BValNo->markUnused(); 1230 // We can have a situation where the result of the original copy is live, 1231 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes 1232 // the copy appear as an endpoint from pruneValue(), but we don't want it 1233 // to because the copy has been removed. We can go ahead and remove that 1234 // endpoint; there is no other situation here that there could be a use at 1235 // the same place as we know that the copy is a full copy. 1236 for (unsigned I = 0; I != EndPoints.size(); ) { 1237 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) { 1238 EndPoints[I] = EndPoints.back(); 1239 EndPoints.pop_back(); 1240 continue; 1241 } 1242 ++I; 1243 } 1244 SmallVector<SlotIndex, 8> Undefs; 1245 IntB.computeSubRangeUndefs(Undefs, SR.LaneMask, *MRI, 1246 *LIS->getSlotIndexes()); 1247 LIS->extendToIndices(SR, EndPoints, Undefs); 1248 } 1249 // If any dead defs were extended, truncate them. 1250 shrinkToUses(&IntB); 1251 1252 // Finally, update the live-range of IntA. 1253 shrinkToUses(&IntA); 1254 return true; 1255 } 1256 1257 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1258 /// defining a subregister. 1259 static bool definesFullReg(const MachineInstr &MI, Register Reg) { 1260 assert(!Reg.isPhysical() && "This code cannot handle physreg aliasing"); 1261 1262 for (const MachineOperand &Op : MI.operands()) { 1263 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1264 continue; 1265 // Return true if we define the full register or don't care about the value 1266 // inside other subregisters. 1267 if (Op.getSubReg() == 0 || Op.isUndef()) 1268 return true; 1269 } 1270 return false; 1271 } 1272 1273 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1274 MachineInstr *CopyMI, 1275 bool &IsDefCopy) { 1276 IsDefCopy = false; 1277 Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1278 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1279 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1280 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1281 if (Register::isPhysicalRegister(SrcReg)) 1282 return false; 1283 1284 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1285 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1286 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1287 if (!ValNo) 1288 return false; 1289 if (ValNo->isPHIDef() || ValNo->isUnused()) 1290 return false; 1291 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1292 if (!DefMI) 1293 return false; 1294 if (DefMI->isCopyLike()) { 1295 IsDefCopy = true; 1296 return false; 1297 } 1298 if (!TII->isAsCheapAsAMove(*DefMI)) 1299 return false; 1300 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1301 return false; 1302 if (!definesFullReg(*DefMI, SrcReg)) 1303 return false; 1304 bool SawStore = false; 1305 if (!DefMI->isSafeToMove(AA, SawStore)) 1306 return false; 1307 const MCInstrDesc &MCID = DefMI->getDesc(); 1308 if (MCID.getNumDefs() != 1) 1309 return false; 1310 // Only support subregister destinations when the def is read-undef. 1311 MachineOperand &DstOperand = CopyMI->getOperand(0); 1312 Register CopyDstReg = DstOperand.getReg(); 1313 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1314 return false; 1315 1316 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1317 // the register substantially (beyond both source and dest size). This is bad 1318 // for performance since it can cascade through a function, introducing many 1319 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1320 // around after a few subreg copies). 1321 if (SrcIdx && DstIdx) 1322 return false; 1323 1324 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1325 if (!DefMI->isImplicitDef()) { 1326 if (DstReg.isPhysical()) { 1327 Register NewDstReg = DstReg; 1328 1329 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1330 DefMI->getOperand(0).getSubReg()); 1331 if (NewDstIdx) 1332 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1333 1334 // Finally, make sure that the physical subregister that will be 1335 // constructed later is permitted for the instruction. 1336 if (!DefRC->contains(NewDstReg)) 1337 return false; 1338 } else { 1339 // Theoretically, some stack frame reference could exist. Just make sure 1340 // it hasn't actually happened. 1341 assert(Register::isVirtualRegister(DstReg) && 1342 "Only expect to deal with virtual or physical registers"); 1343 } 1344 } 1345 1346 DebugLoc DL = CopyMI->getDebugLoc(); 1347 MachineBasicBlock *MBB = CopyMI->getParent(); 1348 MachineBasicBlock::iterator MII = 1349 std::next(MachineBasicBlock::iterator(CopyMI)); 1350 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1351 MachineInstr &NewMI = *std::prev(MII); 1352 NewMI.setDebugLoc(DL); 1353 1354 // In a situation like the following: 1355 // %0:subreg = instr ; DefMI, subreg = DstIdx 1356 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0 1357 // instead of widening %1 to the register class of %0 simply do: 1358 // %1 = instr 1359 const TargetRegisterClass *NewRC = CP.getNewRC(); 1360 if (DstIdx != 0) { 1361 MachineOperand &DefMO = NewMI.getOperand(0); 1362 if (DefMO.getSubReg() == DstIdx) { 1363 assert(SrcIdx == 0 && CP.isFlipped() 1364 && "Shouldn't have SrcIdx+DstIdx at this point"); 1365 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1366 const TargetRegisterClass *CommonRC = 1367 TRI->getCommonSubClass(DefRC, DstRC); 1368 if (CommonRC != nullptr) { 1369 NewRC = CommonRC; 1370 DstIdx = 0; 1371 DefMO.setSubReg(0); 1372 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1373 } 1374 } 1375 } 1376 1377 // CopyMI may have implicit operands, save them so that we can transfer them 1378 // over to the newly materialized instruction after CopyMI is removed. 1379 SmallVector<MachineOperand, 4> ImplicitOps; 1380 ImplicitOps.reserve(CopyMI->getNumOperands() - 1381 CopyMI->getDesc().getNumOperands()); 1382 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1383 E = CopyMI->getNumOperands(); 1384 I != E; ++I) { 1385 MachineOperand &MO = CopyMI->getOperand(I); 1386 if (MO.isReg()) { 1387 assert(MO.isImplicit() && "No explicit operands after implicit operands."); 1388 // Discard VReg implicit defs. 1389 if (Register::isPhysicalRegister(MO.getReg())) 1390 ImplicitOps.push_back(MO); 1391 } 1392 } 1393 1394 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1395 CopyMI->eraseFromParent(); 1396 ErasedInstrs.insert(CopyMI); 1397 1398 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1399 // We need to remember these so we can add intervals once we insert 1400 // NewMI into SlotIndexes. 1401 SmallVector<MCRegister, 4> NewMIImplDefs; 1402 for (unsigned i = NewMI.getDesc().getNumOperands(), 1403 e = NewMI.getNumOperands(); 1404 i != e; ++i) { 1405 MachineOperand &MO = NewMI.getOperand(i); 1406 if (MO.isReg() && MO.isDef()) { 1407 assert(MO.isImplicit() && MO.isDead() && 1408 Register::isPhysicalRegister(MO.getReg())); 1409 NewMIImplDefs.push_back(MO.getReg().asMCReg()); 1410 } 1411 } 1412 1413 if (DstReg.isVirtual()) { 1414 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1415 1416 if (DefRC != nullptr) { 1417 if (NewIdx) 1418 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1419 else 1420 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1421 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1422 } 1423 // Remap subranges to new lanemask and change register class. 1424 LiveInterval &DstInt = LIS->getInterval(DstReg); 1425 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1426 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1427 } 1428 MRI->setRegClass(DstReg, NewRC); 1429 1430 // Update machine operands and add flags. 1431 updateRegDefsUses(DstReg, DstReg, DstIdx); 1432 NewMI.getOperand(0).setSubReg(NewIdx); 1433 // updateRegDefUses can add an "undef" flag to the definition, since 1434 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make 1435 // sure that "undef" is not set. 1436 if (NewIdx == 0) 1437 NewMI.getOperand(0).setIsUndef(false); 1438 // Add dead subregister definitions if we are defining the whole register 1439 // but only part of it is live. 1440 // This could happen if the rematerialization instruction is rematerializing 1441 // more than actually is used in the register. 1442 // An example would be: 1443 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1444 // ; Copying only part of the register here, but the rest is undef. 1445 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit 1446 // ==> 1447 // ; Materialize all the constants but only using one 1448 // %2 = LOAD_CONSTANTS 5, 8 1449 // 1450 // at this point for the part that wasn't defined before we could have 1451 // subranges missing the definition. 1452 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1453 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1454 SlotIndex DefIndex = 1455 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1456 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1457 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1458 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1459 if (!SR.liveAt(DefIndex)) 1460 SR.createDeadDef(DefIndex, Alloc); 1461 MaxMask &= ~SR.LaneMask; 1462 } 1463 if (MaxMask.any()) { 1464 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1465 SR->createDeadDef(DefIndex, Alloc); 1466 } 1467 } 1468 1469 // Make sure that the subrange for resultant undef is removed 1470 // For example: 1471 // %1:sub1<def,read-undef> = LOAD CONSTANT 1 1472 // %2 = COPY %1 1473 // ==> 1474 // %2:sub1<def, read-undef> = LOAD CONSTANT 1 1475 // ; Correct but need to remove the subrange for %2:sub0 1476 // ; as it is now undef 1477 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1478 // The affected subregister segments can be removed. 1479 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1480 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1481 bool UpdatedSubRanges = false; 1482 SlotIndex DefIndex = 1483 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1484 VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator(); 1485 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1486 if ((SR.LaneMask & DstMask).none()) { 1487 LLVM_DEBUG(dbgs() 1488 << "Removing undefined SubRange " 1489 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1490 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1491 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1492 SR.removeValNo(RmValNo); 1493 UpdatedSubRanges = true; 1494 } 1495 } else { 1496 // We know that this lane is defined by this instruction, 1497 // but at this point it may be empty because it is not used by 1498 // anything. This happens when updateRegDefUses adds the missing 1499 // lanes. Assign that lane a dead def so that the interferences 1500 // are properly modeled. 1501 if (SR.empty()) 1502 SR.createDeadDef(DefIndex, Alloc); 1503 } 1504 } 1505 if (UpdatedSubRanges) 1506 DstInt.removeEmptySubRanges(); 1507 } 1508 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1509 // The New instruction may be defining a sub-register of what's actually 1510 // been asked for. If so it must implicitly define the whole thing. 1511 assert(Register::isPhysicalRegister(DstReg) && 1512 "Only expect virtual or physical registers in remat"); 1513 NewMI.getOperand(0).setIsDead(true); 1514 NewMI.addOperand(MachineOperand::CreateReg( 1515 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1516 // Record small dead def live-ranges for all the subregisters 1517 // of the destination register. 1518 // Otherwise, variables that live through may miss some 1519 // interferences, thus creating invalid allocation. 1520 // E.g., i386 code: 1521 // %1 = somedef ; %1 GR8 1522 // %2 = remat ; %2 GR32 1523 // CL = COPY %2.sub_8bit 1524 // = somedef %1 ; %1 GR8 1525 // => 1526 // %1 = somedef ; %1 GR8 1527 // dead ECX = remat ; implicit-def CL 1528 // = somedef %1 ; %1 GR8 1529 // %1 will see the interferences with CL but not with CH since 1530 // no live-ranges would have been created for ECX. 1531 // Fix that! 1532 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1533 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1534 Units.isValid(); ++Units) 1535 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1536 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1537 } 1538 1539 if (NewMI.getOperand(0).getSubReg()) 1540 NewMI.getOperand(0).setIsUndef(); 1541 1542 // Transfer over implicit operands to the rematerialized instruction. 1543 for (MachineOperand &MO : ImplicitOps) 1544 NewMI.addOperand(MO); 1545 1546 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1547 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1548 MCRegister Reg = NewMIImplDefs[i]; 1549 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1550 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1551 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1552 } 1553 1554 LLVM_DEBUG(dbgs() << "Remat: " << NewMI); 1555 ++NumReMats; 1556 1557 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1558 // to describe DstReg instead. 1559 if (MRI->use_nodbg_empty(SrcReg)) { 1560 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1561 MachineInstr *UseMI = UseMO.getParent(); 1562 if (UseMI->isDebugValue()) { 1563 if (Register::isPhysicalRegister(DstReg)) 1564 UseMO.substPhysReg(DstReg, *TRI); 1565 else 1566 UseMO.setReg(DstReg); 1567 // Move the debug value directly after the def of the rematerialized 1568 // value in DstReg. 1569 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); 1570 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1571 } 1572 } 1573 } 1574 1575 if (ToBeUpdated.count(SrcReg)) 1576 return true; 1577 1578 unsigned NumCopyUses = 0; 1579 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 1580 if (UseMO.getParent()->isCopyLike()) 1581 NumCopyUses++; 1582 } 1583 if (NumCopyUses < LateRematUpdateThreshold) { 1584 // The source interval can become smaller because we removed a use. 1585 shrinkToUses(&SrcInt, &DeadDefs); 1586 if (!DeadDefs.empty()) 1587 eliminateDeadDefs(); 1588 } else { 1589 ToBeUpdated.insert(SrcReg); 1590 } 1591 return true; 1592 } 1593 1594 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1595 // ProcessImplicitDefs may leave some copies of <undef> values, it only 1596 // removes local variables. When we have a copy like: 1597 // 1598 // %1 = COPY undef %2 1599 // 1600 // We delete the copy and remove the corresponding value number from %1. 1601 // Any uses of that value number are marked as <undef>. 1602 1603 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1604 // CoalescerPair may have a new register class with adjusted subreg indices 1605 // at this point. 1606 Register SrcReg, DstReg; 1607 unsigned SrcSubIdx = 0, DstSubIdx = 0; 1608 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) 1609 return nullptr; 1610 1611 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1612 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1613 // CopyMI is undef iff SrcReg is not live before the instruction. 1614 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1615 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1616 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1617 if ((SR.LaneMask & SrcMask).none()) 1618 continue; 1619 if (SR.liveAt(Idx)) 1620 return nullptr; 1621 } 1622 } else if (SrcLI.liveAt(Idx)) 1623 return nullptr; 1624 1625 // If the undef copy defines a live-out value (i.e. an input to a PHI def), 1626 // then replace it with an IMPLICIT_DEF. 1627 LiveInterval &DstLI = LIS->getInterval(DstReg); 1628 SlotIndex RegIndex = Idx.getRegSlot(); 1629 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex); 1630 assert(Seg != nullptr && "No segment for defining instruction"); 1631 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) { 1632 if (V->isPHIDef()) { 1633 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1634 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) { 1635 MachineOperand &MO = CopyMI->getOperand(i-1); 1636 if (MO.isReg() && MO.isUse()) 1637 CopyMI->RemoveOperand(i-1); 1638 } 1639 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an " 1640 "implicit def\n"); 1641 return CopyMI; 1642 } 1643 } 1644 1645 // Remove any DstReg segments starting at the instruction. 1646 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1647 1648 // Remove value or merge with previous one in case of a subregister def. 1649 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1650 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1651 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1652 1653 // The affected subregister segments can be removed. 1654 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1655 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1656 if ((SR.LaneMask & DstMask).none()) 1657 continue; 1658 1659 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1660 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1661 SR.removeValNo(SVNI); 1662 } 1663 DstLI.removeEmptySubRanges(); 1664 } else 1665 LIS->removeVRegDefAt(DstLI, RegIndex); 1666 1667 // Mark uses as undef. 1668 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1669 if (MO.isDef() /*|| MO.isUndef()*/) 1670 continue; 1671 const MachineInstr &MI = *MO.getParent(); 1672 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1673 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1674 bool isLive; 1675 if (!UseMask.all() && DstLI.hasSubRanges()) { 1676 isLive = false; 1677 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1678 if ((SR.LaneMask & UseMask).none()) 1679 continue; 1680 if (SR.liveAt(UseIdx)) { 1681 isLive = true; 1682 break; 1683 } 1684 } 1685 } else 1686 isLive = DstLI.liveAt(UseIdx); 1687 if (isLive) 1688 continue; 1689 MO.setIsUndef(true); 1690 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1691 } 1692 1693 // A def of a subregister may be a use of the other subregisters, so 1694 // deleting a def of a subregister may also remove uses. Since CopyMI 1695 // is still part of the function (but about to be erased), mark all 1696 // defs of DstReg in it as <undef>, so that shrinkToUses would 1697 // ignore them. 1698 for (MachineOperand &MO : CopyMI->operands()) 1699 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1700 MO.setIsUndef(true); 1701 LIS->shrinkToUses(&DstLI); 1702 1703 return CopyMI; 1704 } 1705 1706 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1707 MachineOperand &MO, unsigned SubRegIdx) { 1708 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1709 if (MO.isDef()) 1710 Mask = ~Mask; 1711 bool IsUndef = true; 1712 for (const LiveInterval::SubRange &S : Int.subranges()) { 1713 if ((S.LaneMask & Mask).none()) 1714 continue; 1715 if (S.liveAt(UseIdx)) { 1716 IsUndef = false; 1717 break; 1718 } 1719 } 1720 if (IsUndef) { 1721 MO.setIsUndef(true); 1722 // We found out some subregister use is actually reading an undefined 1723 // value. In some cases the whole vreg has become undefined at this 1724 // point so we have to potentially shrink the main range if the 1725 // use was ending a live segment there. 1726 LiveQueryResult Q = Int.Query(UseIdx); 1727 if (Q.valueOut() == nullptr) 1728 ShrinkMainRange = true; 1729 } 1730 } 1731 1732 void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg, 1733 unsigned SubIdx) { 1734 bool DstIsPhys = Register::isPhysicalRegister(DstReg); 1735 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1736 1737 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1738 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1739 unsigned SubReg = MO.getSubReg(); 1740 if (SubReg == 0 || MO.isUndef()) 1741 continue; 1742 MachineInstr &MI = *MO.getParent(); 1743 if (MI.isDebugValue()) 1744 continue; 1745 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1746 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1747 } 1748 } 1749 1750 SmallPtrSet<MachineInstr*, 8> Visited; 1751 for (MachineRegisterInfo::reg_instr_iterator 1752 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1753 I != E; ) { 1754 MachineInstr *UseMI = &*(I++); 1755 1756 // Each instruction can only be rewritten once because sub-register 1757 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1758 // the UseMI operands removes them from the SrcReg use-def chain, but when 1759 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1760 // operands mentioning the virtual register. 1761 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1762 continue; 1763 1764 SmallVector<unsigned,8> Ops; 1765 bool Reads, Writes; 1766 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1767 1768 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1769 // because SrcReg is a sub-register. 1770 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) 1771 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1772 1773 // Replace SrcReg with DstReg in all UseMI operands. 1774 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1775 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1776 1777 // Adjust <undef> flags in case of sub-register joins. We don't want to 1778 // turn a full def into a read-modify-write sub-register def and vice 1779 // versa. 1780 if (SubIdx && MO.isDef()) 1781 MO.setIsUndef(!Reads); 1782 1783 // A subreg use of a partially undef (super) register may be a complete 1784 // undef use now and then has to be marked that way. 1785 if (MO.isUse() && !DstIsPhys) { 1786 unsigned SubUseIdx = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 1787 if (SubUseIdx != 0 && MRI->shouldTrackSubRegLiveness(DstReg)) { 1788 if (!DstInt->hasSubRanges()) { 1789 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1790 LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg()); 1791 LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx); 1792 LaneBitmask UnusedLanes = FullMask & ~UsedLanes; 1793 DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt); 1794 // The unused lanes are just empty live-ranges at this point. 1795 // It is the caller responsibility to set the proper 1796 // dead segments if there is an actual dead def of the 1797 // unused lanes. This may happen with rematerialization. 1798 DstInt->createSubRange(Allocator, UnusedLanes); 1799 } 1800 SlotIndex MIIdx = UseMI->isDebugValue() 1801 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1802 : LIS->getInstructionIndex(*UseMI); 1803 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1804 addUndefFlag(*DstInt, UseIdx, MO, SubUseIdx); 1805 } 1806 } 1807 1808 if (DstIsPhys) 1809 MO.substPhysReg(DstReg, *TRI); 1810 else 1811 MO.substVirtReg(DstReg, SubIdx, *TRI); 1812 } 1813 1814 LLVM_DEBUG({ 1815 dbgs() << "\t\tupdated: "; 1816 if (!UseMI->isDebugValue()) 1817 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1818 dbgs() << *UseMI; 1819 }); 1820 } 1821 } 1822 1823 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1824 // Always join simple intervals that are defined by a single copy from a 1825 // reserved register. This doesn't increase register pressure, so it is 1826 // always beneficial. 1827 if (!MRI->isReserved(CP.getDstReg())) { 1828 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1829 return false; 1830 } 1831 1832 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1833 if (JoinVInt.containsOneValue()) 1834 return true; 1835 1836 LLVM_DEBUG( 1837 dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1838 return false; 1839 } 1840 1841 bool RegisterCoalescer::copyValueUndefInPredecessors( 1842 LiveRange &S, const MachineBasicBlock *MBB, LiveQueryResult SLRQ) { 1843 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 1844 SlotIndex PredEnd = LIS->getMBBEndIdx(Pred); 1845 if (VNInfo *V = S.getVNInfoAt(PredEnd.getPrevSlot())) { 1846 // If this is a self loop, we may be reading the same value. 1847 if (V->id != SLRQ.valueOutOrDead()->id) 1848 return false; 1849 } 1850 } 1851 1852 return true; 1853 } 1854 1855 void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval &LI, 1856 Register Reg, 1857 LaneBitmask PrunedLanes) { 1858 // If we had other instructions in the segment reading the undef sublane 1859 // value, we need to mark them with undef. 1860 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 1861 unsigned SubRegIdx = MO.getSubReg(); 1862 if (SubRegIdx == 0 || MO.isUndef()) 1863 continue; 1864 1865 LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1866 SlotIndex Pos = LIS->getInstructionIndex(*MO.getParent()); 1867 for (LiveInterval::SubRange &S : LI.subranges()) { 1868 if (!S.liveAt(Pos) && (PrunedLanes & SubRegMask).any()) { 1869 MO.setIsUndef(); 1870 break; 1871 } 1872 } 1873 } 1874 1875 LI.removeEmptySubRanges(); 1876 1877 // A def of a subregister may be a use of other register lanes. Replacing 1878 // such a def with a def of a different register will eliminate the use, 1879 // and may cause the recorded live range to be larger than the actual 1880 // liveness in the program IR. 1881 LIS->shrinkToUses(&LI); 1882 } 1883 1884 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1885 Again = false; 1886 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1887 1888 CoalescerPair CP(*TRI); 1889 if (!CP.setRegisters(CopyMI)) { 1890 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n"); 1891 return false; 1892 } 1893 1894 if (CP.getNewRC()) { 1895 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1896 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1897 unsigned SrcIdx = CP.getSrcIdx(); 1898 unsigned DstIdx = CP.getDstIdx(); 1899 if (CP.isFlipped()) { 1900 std::swap(SrcIdx, DstIdx); 1901 std::swap(SrcRC, DstRC); 1902 } 1903 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1904 CP.getNewRC(), *LIS)) { 1905 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1906 return false; 1907 } 1908 } 1909 1910 // Dead code elimination. This really should be handled by MachineDCE, but 1911 // sometimes dead copies slip through, and we can't generate invalid live 1912 // ranges. 1913 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1914 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n"); 1915 DeadDefs.push_back(CopyMI); 1916 eliminateDeadDefs(); 1917 return true; 1918 } 1919 1920 // Eliminate undefs. 1921 if (!CP.isPhys()) { 1922 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce. 1923 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) { 1924 if (UndefMI->isImplicitDef()) 1925 return false; 1926 deleteInstr(CopyMI); 1927 return false; // Not coalescable. 1928 } 1929 } 1930 1931 // Coalesced copies are normally removed immediately, but transformations 1932 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1933 // When that happens, just join the values and remove the copy. 1934 if (CP.getSrcReg() == CP.getDstReg()) { 1935 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1936 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1937 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1938 LiveQueryResult LRQ = LI.Query(CopyIdx); 1939 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1940 VNInfo *ReadVNI = LRQ.valueIn(); 1941 assert(ReadVNI && "No value before copy and no <undef> flag."); 1942 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1943 1944 // Track incoming undef lanes we need to eliminate from the subrange. 1945 LaneBitmask PrunedLanes; 1946 MachineBasicBlock *MBB = CopyMI->getParent(); 1947 1948 // Process subregister liveranges. 1949 for (LiveInterval::SubRange &S : LI.subranges()) { 1950 LiveQueryResult SLRQ = S.Query(CopyIdx); 1951 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1952 if (VNInfo *SReadVNI = SLRQ.valueIn()) 1953 SDefVNI = S.MergeValueNumberInto(SDefVNI, SReadVNI); 1954 1955 // If this copy introduced an undef subrange from an incoming value, 1956 // we need to eliminate the undef live in values from the subrange. 1957 if (copyValueUndefInPredecessors(S, MBB, SLRQ)) { 1958 LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n"); 1959 PrunedLanes |= S.LaneMask; 1960 S.removeValNo(SDefVNI); 1961 } 1962 } 1963 } 1964 1965 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1966 if (PrunedLanes.any()) { 1967 LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: " 1968 << PrunedLanes << '\n'); 1969 setUndefOnPrunedSubRegUses(LI, CP.getSrcReg(), PrunedLanes); 1970 } 1971 1972 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1973 } 1974 deleteInstr(CopyMI); 1975 return true; 1976 } 1977 1978 // Enforce policies. 1979 if (CP.isPhys()) { 1980 LLVM_DEBUG(dbgs() << "\tConsidering merging " 1981 << printReg(CP.getSrcReg(), TRI) << " with " 1982 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'); 1983 if (!canJoinPhys(CP)) { 1984 // Before giving up coalescing, if definition of source is defined by 1985 // trivial computation, try rematerializing it. 1986 bool IsDefCopy = false; 1987 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1988 return true; 1989 if (IsDefCopy) 1990 Again = true; // May be possible to coalesce later. 1991 return false; 1992 } 1993 } else { 1994 // When possible, let DstReg be the larger interval. 1995 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1996 LIS->getInterval(CP.getDstReg()).size()) 1997 CP.flip(); 1998 1999 LLVM_DEBUG({ 2000 dbgs() << "\tConsidering merging to " 2001 << TRI->getRegClassName(CP.getNewRC()) << " with "; 2002 if (CP.getDstIdx() && CP.getSrcIdx()) 2003 dbgs() << printReg(CP.getDstReg()) << " in " 2004 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 2005 << printReg(CP.getSrcReg()) << " in " 2006 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 2007 else 2008 dbgs() << printReg(CP.getSrcReg(), TRI) << " in " 2009 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 2010 }); 2011 } 2012 2013 ShrinkMask = LaneBitmask::getNone(); 2014 ShrinkMainRange = false; 2015 2016 // Okay, attempt to join these two intervals. On failure, this returns false. 2017 // Otherwise, if one of the intervals being joined is a physreg, this method 2018 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 2019 // been modified, so we can use this information below to update aliases. 2020 if (!joinIntervals(CP)) { 2021 // Coalescing failed. 2022 2023 // If definition of source is defined by trivial computation, try 2024 // rematerializing it. 2025 bool IsDefCopy = false; 2026 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 2027 return true; 2028 2029 // If we can eliminate the copy without merging the live segments, do so 2030 // now. 2031 if (!CP.isPartial() && !CP.isPhys()) { 2032 bool Changed = adjustCopiesBackFrom(CP, CopyMI); 2033 bool Shrink = false; 2034 if (!Changed) 2035 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI); 2036 if (Changed) { 2037 deleteInstr(CopyMI); 2038 if (Shrink) { 2039 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 2040 LiveInterval &DstLI = LIS->getInterval(DstReg); 2041 shrinkToUses(&DstLI); 2042 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n'); 2043 } 2044 LLVM_DEBUG(dbgs() << "\tTrivial!\n"); 2045 return true; 2046 } 2047 } 2048 2049 // Try and see if we can partially eliminate the copy by moving the copy to 2050 // its predecessor. 2051 if (!CP.isPartial() && !CP.isPhys()) 2052 if (removePartialRedundancy(CP, *CopyMI)) 2053 return true; 2054 2055 // Otherwise, we are unable to join the intervals. 2056 LLVM_DEBUG(dbgs() << "\tInterference!\n"); 2057 Again = true; // May be possible to coalesce later. 2058 return false; 2059 } 2060 2061 // Coalescing to a virtual register that is of a sub-register class of the 2062 // other. Make sure the resulting register is set to the right register class. 2063 if (CP.isCrossClass()) { 2064 ++numCrossRCs; 2065 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 2066 } 2067 2068 // Removing sub-register copies can ease the register class constraints. 2069 // Make sure we attempt to inflate the register class of DstReg. 2070 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 2071 InflateRegs.push_back(CP.getDstReg()); 2072 2073 // CopyMI has been erased by joinIntervals at this point. Remove it from 2074 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 2075 // to the work list. This keeps ErasedInstrs from growing needlessly. 2076 ErasedInstrs.erase(CopyMI); 2077 2078 // Rewrite all SrcReg operands to DstReg. 2079 // Also update DstReg operands to include DstIdx if it is set. 2080 if (CP.getDstIdx()) 2081 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 2082 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 2083 2084 // Shrink subregister ranges if necessary. 2085 if (ShrinkMask.any()) { 2086 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 2087 for (LiveInterval::SubRange &S : LI.subranges()) { 2088 if ((S.LaneMask & ShrinkMask).none()) 2089 continue; 2090 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 2091 << ")\n"); 2092 LIS->shrinkToUses(S, LI.reg()); 2093 } 2094 LI.removeEmptySubRanges(); 2095 } 2096 2097 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live 2098 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval 2099 // is not up-to-date, need to update the merged live interval here. 2100 if (ToBeUpdated.count(CP.getSrcReg())) 2101 ShrinkMainRange = true; 2102 2103 if (ShrinkMainRange) { 2104 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 2105 shrinkToUses(&LI); 2106 } 2107 2108 // SrcReg is guaranteed to be the register whose live interval that is 2109 // being merged. 2110 LIS->removeInterval(CP.getSrcReg()); 2111 2112 // Update regalloc hint. 2113 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 2114 2115 LLVM_DEBUG({ 2116 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 2117 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 2118 dbgs() << "\tResult = "; 2119 if (CP.isPhys()) 2120 dbgs() << printReg(CP.getDstReg(), TRI); 2121 else 2122 dbgs() << LIS->getInterval(CP.getDstReg()); 2123 dbgs() << '\n'; 2124 }); 2125 2126 ++numJoins; 2127 return true; 2128 } 2129 2130 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 2131 Register DstReg = CP.getDstReg(); 2132 Register SrcReg = CP.getSrcReg(); 2133 assert(CP.isPhys() && "Must be a physreg copy"); 2134 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 2135 LiveInterval &RHS = LIS->getInterval(SrcReg); 2136 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 2137 2138 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 2139 2140 // Optimization for reserved registers like ESP. We can only merge with a 2141 // reserved physreg if RHS has a single value that is a copy of DstReg. 2142 // The live range of the reserved register will look like a set of dead defs 2143 // - we don't properly track the live range of reserved registers. 2144 2145 // Deny any overlapping intervals. This depends on all the reserved 2146 // register live ranges to look like dead defs. 2147 if (!MRI->isConstantPhysReg(DstReg)) { 2148 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2149 // Abort if not all the regunits are reserved. 2150 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 2151 if (!MRI->isReserved(*RI)) 2152 return false; 2153 } 2154 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 2155 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) 2156 << '\n'); 2157 return false; 2158 } 2159 } 2160 2161 // We must also check for overlaps with regmask clobbers. 2162 BitVector RegMaskUsable; 2163 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 2164 !RegMaskUsable.test(DstReg)) { 2165 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n"); 2166 return false; 2167 } 2168 } 2169 2170 // Skip any value computations, we are not adding new values to the 2171 // reserved register. Also skip merging the live ranges, the reserved 2172 // register live range doesn't need to be accurate as long as all the 2173 // defs are there. 2174 2175 // Delete the identity copy. 2176 MachineInstr *CopyMI; 2177 if (CP.isFlipped()) { 2178 // Physreg is copied into vreg 2179 // %y = COPY %physreg_x 2180 // ... //< no other def of %physreg_x here 2181 // use %y 2182 // => 2183 // ... 2184 // use %physreg_x 2185 CopyMI = MRI->getVRegDef(SrcReg); 2186 } else { 2187 // VReg is copied into physreg: 2188 // %y = def 2189 // ... //< no other def or use of %physreg_x here 2190 // %physreg_x = COPY %y 2191 // => 2192 // %physreg_x = def 2193 // ... 2194 if (!MRI->hasOneNonDBGUse(SrcReg)) { 2195 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 2196 return false; 2197 } 2198 2199 if (!LIS->intervalIsInOneMBB(RHS)) { 2200 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n"); 2201 return false; 2202 } 2203 2204 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 2205 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 2206 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 2207 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 2208 2209 if (!MRI->isConstantPhysReg(DstReg)) { 2210 // We checked above that there are no interfering defs of the physical 2211 // register. However, for this case, where we intend to move up the def of 2212 // the physical register, we also need to check for interfering uses. 2213 SlotIndexes *Indexes = LIS->getSlotIndexes(); 2214 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 2215 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 2216 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 2217 if (MI->readsRegister(DstReg, TRI)) { 2218 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 2219 return false; 2220 } 2221 } 2222 } 2223 2224 // We're going to remove the copy which defines a physical reserved 2225 // register, so remove its valno, etc. 2226 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of " 2227 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n"); 2228 2229 LIS->removePhysRegDefAt(DstReg.asMCReg(), CopyRegIdx); 2230 // Create a new dead def at the new def location. 2231 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2232 LiveRange &LR = LIS->getRegUnit(*UI); 2233 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 2234 } 2235 } 2236 2237 deleteInstr(CopyMI); 2238 2239 // We don't track kills for reserved registers. 2240 MRI->clearKillFlags(CP.getSrcReg()); 2241 2242 return true; 2243 } 2244 2245 //===----------------------------------------------------------------------===// 2246 // Interference checking and interval joining 2247 //===----------------------------------------------------------------------===// 2248 // 2249 // In the easiest case, the two live ranges being joined are disjoint, and 2250 // there is no interference to consider. It is quite common, though, to have 2251 // overlapping live ranges, and we need to check if the interference can be 2252 // resolved. 2253 // 2254 // The live range of a single SSA value forms a sub-tree of the dominator tree. 2255 // This means that two SSA values overlap if and only if the def of one value 2256 // is contained in the live range of the other value. As a special case, the 2257 // overlapping values can be defined at the same index. 2258 // 2259 // The interference from an overlapping def can be resolved in these cases: 2260 // 2261 // 1. Coalescable copies. The value is defined by a copy that would become an 2262 // identity copy after joining SrcReg and DstReg. The copy instruction will 2263 // be removed, and the value will be merged with the source value. 2264 // 2265 // There can be several copies back and forth, causing many values to be 2266 // merged into one. We compute a list of ultimate values in the joined live 2267 // range as well as a mappings from the old value numbers. 2268 // 2269 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 2270 // predecessors have a live out value. It doesn't cause real interference, 2271 // and can be merged into the value it overlaps. Like a coalescable copy, it 2272 // can be erased after joining. 2273 // 2274 // 3. Copy of external value. The overlapping def may be a copy of a value that 2275 // is already in the other register. This is like a coalescable copy, but 2276 // the live range of the source register must be trimmed after erasing the 2277 // copy instruction: 2278 // 2279 // %src = COPY %ext 2280 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 2281 // 2282 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 2283 // defining one lane at a time: 2284 // 2285 // %dst:ssub0<def,read-undef> = FOO 2286 // %src = BAR 2287 // %dst:ssub1 = COPY %src 2288 // 2289 // The live range of %src overlaps the %dst value defined by FOO, but 2290 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 2291 // which was undef anyway. 2292 // 2293 // The value mapping is more complicated in this case. The final live range 2294 // will have different value numbers for both FOO and BAR, but there is no 2295 // simple mapping from old to new values. It may even be necessary to add 2296 // new PHI values. 2297 // 2298 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 2299 // is live, but never read. This can happen because we don't compute 2300 // individual live ranges per lane. 2301 // 2302 // %dst = FOO 2303 // %src = BAR 2304 // %dst:ssub1 = COPY %src 2305 // 2306 // This kind of interference is only resolved locally. If the clobbered 2307 // lane value escapes the block, the join is aborted. 2308 2309 namespace { 2310 2311 /// Track information about values in a single virtual register about to be 2312 /// joined. Objects of this class are always created in pairs - one for each 2313 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 2314 /// pair) 2315 class JoinVals { 2316 /// Live range we work on. 2317 LiveRange &LR; 2318 2319 /// (Main) register we work on. 2320 const Register Reg; 2321 2322 /// Reg (and therefore the values in this liverange) will end up as 2323 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 2324 /// CP.SrcIdx. 2325 const unsigned SubIdx; 2326 2327 /// The LaneMask that this liverange will occupy the coalesced register. May 2328 /// be smaller than the lanemask produced by SubIdx when merging subranges. 2329 const LaneBitmask LaneMask; 2330 2331 /// This is true when joining sub register ranges, false when joining main 2332 /// ranges. 2333 const bool SubRangeJoin; 2334 2335 /// Whether the current LiveInterval tracks subregister liveness. 2336 const bool TrackSubRegLiveness; 2337 2338 /// Values that will be present in the final live range. 2339 SmallVectorImpl<VNInfo*> &NewVNInfo; 2340 2341 const CoalescerPair &CP; 2342 LiveIntervals *LIS; 2343 SlotIndexes *Indexes; 2344 const TargetRegisterInfo *TRI; 2345 2346 /// Value number assignments. Maps value numbers in LI to entries in 2347 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 2348 SmallVector<int, 8> Assignments; 2349 2350 public: 2351 /// Conflict resolution for overlapping values. 2352 enum ConflictResolution { 2353 /// No overlap, simply keep this value. 2354 CR_Keep, 2355 2356 /// Merge this value into OtherVNI and erase the defining instruction. 2357 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 2358 /// values. 2359 CR_Erase, 2360 2361 /// Merge this value into OtherVNI but keep the defining instruction. 2362 /// This is for the special case where OtherVNI is defined by the same 2363 /// instruction. 2364 CR_Merge, 2365 2366 /// Keep this value, and have it replace OtherVNI where possible. This 2367 /// complicates value mapping since OtherVNI maps to two different values 2368 /// before and after this def. 2369 /// Used when clobbering undefined or dead lanes. 2370 CR_Replace, 2371 2372 /// Unresolved conflict. Visit later when all values have been mapped. 2373 CR_Unresolved, 2374 2375 /// Unresolvable conflict. Abort the join. 2376 CR_Impossible 2377 }; 2378 2379 private: 2380 /// Per-value info for LI. The lane bit masks are all relative to the final 2381 /// joined register, so they can be compared directly between SrcReg and 2382 /// DstReg. 2383 struct Val { 2384 ConflictResolution Resolution = CR_Keep; 2385 2386 /// Lanes written by this def, 0 for unanalyzed values. 2387 LaneBitmask WriteLanes; 2388 2389 /// Lanes with defined values in this register. Other lanes are undef and 2390 /// safe to clobber. 2391 LaneBitmask ValidLanes; 2392 2393 /// Value in LI being redefined by this def. 2394 VNInfo *RedefVNI = nullptr; 2395 2396 /// Value in the other live range that overlaps this def, if any. 2397 VNInfo *OtherVNI = nullptr; 2398 2399 /// Is this value an IMPLICIT_DEF that can be erased? 2400 /// 2401 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2402 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2403 /// safely erased if they are overlapping a live value in the other live 2404 /// interval. 2405 /// 2406 /// Weird control flow graphs and incomplete PHI handling in 2407 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2408 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2409 /// normal values. 2410 bool ErasableImplicitDef = false; 2411 2412 /// True when the live range of this value will be pruned because of an 2413 /// overlapping CR_Replace value in the other live range. 2414 bool Pruned = false; 2415 2416 /// True once Pruned above has been computed. 2417 bool PrunedComputed = false; 2418 2419 /// True if this value is determined to be identical to OtherVNI 2420 /// (in valuesIdentical). This is used with CR_Erase where the erased 2421 /// copy is redundant, i.e. the source value is already the same as 2422 /// the destination. In such cases the subranges need to be updated 2423 /// properly. See comment at pruneSubRegValues for more info. 2424 bool Identical = false; 2425 2426 Val() = default; 2427 2428 bool isAnalyzed() const { return WriteLanes.any(); } 2429 }; 2430 2431 /// One entry per value number in LI. 2432 SmallVector<Val, 8> Vals; 2433 2434 /// Compute the bitmask of lanes actually written by DefMI. 2435 /// Set Redef if there are any partial register definitions that depend on the 2436 /// previous value of the register. 2437 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2438 2439 /// Find the ultimate value that VNI was copied from. 2440 std::pair<const VNInfo *, Register> followCopyChain(const VNInfo *VNI) const; 2441 2442 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const; 2443 2444 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2445 /// Return a conflict resolution when possible, but leave the hard cases as 2446 /// CR_Unresolved. 2447 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2448 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2449 /// The recursion always goes upwards in the dominator tree, making loops 2450 /// impossible. 2451 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2452 2453 /// Compute the value assignment for ValNo in RI. 2454 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2455 /// the stack. 2456 void computeAssignment(unsigned ValNo, JoinVals &Other); 2457 2458 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2459 /// the extent of the tainted lanes in the block. 2460 /// 2461 /// Multiple values in Other.LR can be affected since partial redefinitions 2462 /// can preserve previously tainted lanes. 2463 /// 2464 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2465 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2466 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2467 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2468 /// 2469 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2470 /// entry to TaintedVals. 2471 /// 2472 /// Returns false if the tainted lanes extend beyond the basic block. 2473 bool 2474 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2475 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); 2476 2477 /// Return true if MI uses any of the given Lanes from Reg. 2478 /// This does not include partial redefinitions of Reg. 2479 bool usesLanes(const MachineInstr &MI, Register, unsigned, LaneBitmask) const; 2480 2481 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2482 /// be pruned: 2483 /// 2484 /// %dst = COPY %src 2485 /// %src = COPY %dst <-- This value to be pruned. 2486 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2487 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2488 2489 public: 2490 JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask, 2491 SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp, 2492 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2493 bool TrackSubRegLiveness) 2494 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2495 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2496 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2497 TRI(TRI), Assignments(LR.getNumValNums(), -1), 2498 Vals(LR.getNumValNums()) {} 2499 2500 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2501 /// Returns false if any conflicts were impossible to resolve. 2502 bool mapValues(JoinVals &Other); 2503 2504 /// Try to resolve conflicts that require all values to be mapped. 2505 /// Returns false if any conflicts were impossible to resolve. 2506 bool resolveConflicts(JoinVals &Other); 2507 2508 /// Prune the live range of values in Other.LR where they would conflict with 2509 /// CR_Replace values in LR. Collect end points for restoring the live range 2510 /// after joining. 2511 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2512 bool changeInstrs); 2513 2514 /// Removes subranges starting at copies that get removed. This sometimes 2515 /// happens when undefined subranges are copied around. These ranges contain 2516 /// no useful information and can be removed. 2517 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2518 2519 /// Pruning values in subranges can lead to removing segments in these 2520 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2521 /// the main range also need to be removed. This function will mark 2522 /// the corresponding values in the main range as pruned, so that 2523 /// eraseInstrs can do the final cleanup. 2524 /// The parameter @p LI must be the interval whose main range is the 2525 /// live range LR. 2526 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2527 2528 /// Erase any machine instructions that have been coalesced away. 2529 /// Add erased instructions to ErasedInstrs. 2530 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2531 /// the erased instrs. 2532 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2533 SmallVectorImpl<Register> &ShrinkRegs, 2534 LiveInterval *LI = nullptr); 2535 2536 /// Remove liverange defs at places where implicit defs will be removed. 2537 void removeImplicitDefs(); 2538 2539 /// Get the value assignments suitable for passing to LiveInterval::join. 2540 const int *getAssignments() const { return Assignments.data(); } 2541 2542 /// Get the conflict resolution for a value number. 2543 ConflictResolution getResolution(unsigned Num) const { 2544 return Vals[Num].Resolution; 2545 } 2546 }; 2547 2548 } // end anonymous namespace 2549 2550 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2551 const { 2552 LaneBitmask L; 2553 for (const MachineOperand &MO : DefMI->operands()) { 2554 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2555 continue; 2556 L |= TRI->getSubRegIndexLaneMask( 2557 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2558 if (MO.readsReg()) 2559 Redef = true; 2560 } 2561 return L; 2562 } 2563 2564 std::pair<const VNInfo *, Register> 2565 JoinVals::followCopyChain(const VNInfo *VNI) const { 2566 Register TrackReg = Reg; 2567 2568 while (!VNI->isPHIDef()) { 2569 SlotIndex Def = VNI->def; 2570 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2571 assert(MI && "No defining instruction"); 2572 if (!MI->isFullCopy()) 2573 return std::make_pair(VNI, TrackReg); 2574 Register SrcReg = MI->getOperand(1).getReg(); 2575 if (!SrcReg.isVirtual()) 2576 return std::make_pair(VNI, TrackReg); 2577 2578 const LiveInterval &LI = LIS->getInterval(SrcReg); 2579 const VNInfo *ValueIn; 2580 // No subrange involved. 2581 if (!SubRangeJoin || !LI.hasSubRanges()) { 2582 LiveQueryResult LRQ = LI.Query(Def); 2583 ValueIn = LRQ.valueIn(); 2584 } else { 2585 // Query subranges. Ensure that all matching ones take us to the same def 2586 // (allowing some of them to be undef). 2587 ValueIn = nullptr; 2588 for (const LiveInterval::SubRange &S : LI.subranges()) { 2589 // Transform lanemask to a mask in the joined live interval. 2590 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2591 if ((SMask & LaneMask).none()) 2592 continue; 2593 LiveQueryResult LRQ = S.Query(Def); 2594 if (!ValueIn) { 2595 ValueIn = LRQ.valueIn(); 2596 continue; 2597 } 2598 if (LRQ.valueIn() && ValueIn != LRQ.valueIn()) 2599 return std::make_pair(VNI, TrackReg); 2600 } 2601 } 2602 if (ValueIn == nullptr) { 2603 // Reaching an undefined value is legitimate, for example: 2604 // 2605 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef 2606 // 2 %1 = COPY %0 ;; %1 is defined here. 2607 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition, 2608 // ;; but it's equivalent to "undef". 2609 return std::make_pair(nullptr, SrcReg); 2610 } 2611 VNI = ValueIn; 2612 TrackReg = SrcReg; 2613 } 2614 return std::make_pair(VNI, TrackReg); 2615 } 2616 2617 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2618 const JoinVals &Other) const { 2619 const VNInfo *Orig0; 2620 Register Reg0; 2621 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2622 if (Orig0 == Value1 && Reg0 == Other.Reg) 2623 return true; 2624 2625 const VNInfo *Orig1; 2626 Register Reg1; 2627 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2628 // If both values are undefined, and the source registers are the same 2629 // register, the values are identical. Filter out cases where only one 2630 // value is defined. 2631 if (Orig0 == nullptr || Orig1 == nullptr) 2632 return Orig0 == Orig1 && Reg0 == Reg1; 2633 2634 // The values are equal if they are defined at the same place and use the 2635 // same register. Note that we cannot compare VNInfos directly as some of 2636 // them might be from a copy created in mergeSubRangeInto() while the other 2637 // is from the original LiveInterval. 2638 return Orig0->def == Orig1->def && Reg0 == Reg1; 2639 } 2640 2641 JoinVals::ConflictResolution 2642 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2643 Val &V = Vals[ValNo]; 2644 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2645 VNInfo *VNI = LR.getValNumInfo(ValNo); 2646 if (VNI->isUnused()) { 2647 V.WriteLanes = LaneBitmask::getAll(); 2648 return CR_Keep; 2649 } 2650 2651 // Get the instruction defining this value, compute the lanes written. 2652 const MachineInstr *DefMI = nullptr; 2653 if (VNI->isPHIDef()) { 2654 // Conservatively assume that all lanes in a PHI are valid. 2655 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2656 : TRI->getSubRegIndexLaneMask(SubIdx); 2657 V.ValidLanes = V.WriteLanes = Lanes; 2658 } else { 2659 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2660 assert(DefMI != nullptr); 2661 if (SubRangeJoin) { 2662 // We don't care about the lanes when joining subregister ranges. 2663 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2664 if (DefMI->isImplicitDef()) { 2665 V.ValidLanes = LaneBitmask::getNone(); 2666 V.ErasableImplicitDef = true; 2667 } 2668 } else { 2669 bool Redef = false; 2670 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2671 2672 // If this is a read-modify-write instruction, there may be more valid 2673 // lanes than the ones written by this instruction. 2674 // This only covers partial redef operands. DefMI may have normal use 2675 // operands reading the register. They don't contribute valid lanes. 2676 // 2677 // This adds ssub1 to the set of valid lanes in %src: 2678 // 2679 // %src:ssub1 = FOO 2680 // 2681 // This leaves only ssub1 valid, making any other lanes undef: 2682 // 2683 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2684 // 2685 // The <read-undef> flag on the def operand means that old lane values are 2686 // not important. 2687 if (Redef) { 2688 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2689 assert((TrackSubRegLiveness || V.RedefVNI) && 2690 "Instruction is reading nonexistent value"); 2691 if (V.RedefVNI != nullptr) { 2692 computeAssignment(V.RedefVNI->id, Other); 2693 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2694 } 2695 } 2696 2697 // An IMPLICIT_DEF writes undef values. 2698 if (DefMI->isImplicitDef()) { 2699 // We normally expect IMPLICIT_DEF values to be live only until the end 2700 // of their block. If the value is really live longer and gets pruned in 2701 // another block, this flag is cleared again. 2702 // 2703 // Clearing the valid lanes is deferred until it is sure this can be 2704 // erased. 2705 V.ErasableImplicitDef = true; 2706 } 2707 } 2708 } 2709 2710 // Find the value in Other that overlaps VNI->def, if any. 2711 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2712 2713 // It is possible that both values are defined by the same instruction, or 2714 // the values are PHIs defined in the same block. When that happens, the two 2715 // values should be merged into one, but not into any preceding value. 2716 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2717 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2718 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2719 2720 // One value stays, the other is merged. Keep the earlier one, or the first 2721 // one we see. 2722 if (OtherVNI->def < VNI->def) 2723 Other.computeAssignment(OtherVNI->id, *this); 2724 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2725 // This is an early-clobber def overlapping a live-in value in the other 2726 // register. Not mergeable. 2727 V.OtherVNI = OtherLRQ.valueIn(); 2728 return CR_Impossible; 2729 } 2730 V.OtherVNI = OtherVNI; 2731 Val &OtherV = Other.Vals[OtherVNI->id]; 2732 // Keep this value, check for conflicts when analyzing OtherVNI. 2733 if (!OtherV.isAnalyzed()) 2734 return CR_Keep; 2735 // Both sides have been analyzed now. 2736 // Allow overlapping PHI values. Any real interference would show up in a 2737 // predecessor, the PHI itself can't introduce any conflicts. 2738 if (VNI->isPHIDef()) 2739 return CR_Merge; 2740 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2741 // Overlapping lanes can't be resolved. 2742 return CR_Impossible; 2743 else 2744 return CR_Merge; 2745 } 2746 2747 // No simultaneous def. Is Other live at the def? 2748 V.OtherVNI = OtherLRQ.valueIn(); 2749 if (!V.OtherVNI) 2750 // No overlap, no conflict. 2751 return CR_Keep; 2752 2753 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2754 2755 // We have overlapping values, or possibly a kill of Other. 2756 // Recursively compute assignments up the dominator tree. 2757 Other.computeAssignment(V.OtherVNI->id, *this); 2758 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2759 2760 if (OtherV.ErasableImplicitDef) { 2761 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2762 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2763 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2764 // technically. 2765 // 2766 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2767 // to erase the IMPLICIT_DEF instruction. 2768 if (DefMI && 2769 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2770 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2771 << " extends into " 2772 << printMBBReference(*DefMI->getParent()) 2773 << ", keeping it.\n"); 2774 OtherV.ErasableImplicitDef = false; 2775 } else { 2776 // We deferred clearing these lanes in case we needed to save them 2777 OtherV.ValidLanes &= ~OtherV.WriteLanes; 2778 } 2779 } 2780 2781 // Allow overlapping PHI values. Any real interference would show up in a 2782 // predecessor, the PHI itself can't introduce any conflicts. 2783 if (VNI->isPHIDef()) 2784 return CR_Replace; 2785 2786 // Check for simple erasable conflicts. 2787 if (DefMI->isImplicitDef()) 2788 return CR_Erase; 2789 2790 // Include the non-conflict where DefMI is a coalescable copy that kills 2791 // OtherVNI. We still want the copy erased and value numbers merged. 2792 if (CP.isCoalescable(DefMI)) { 2793 // Some of the lanes copied from OtherVNI may be undef, making them undef 2794 // here too. 2795 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2796 return CR_Erase; 2797 } 2798 2799 // This may not be a real conflict if DefMI simply kills Other and defines 2800 // VNI. 2801 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2802 return CR_Keep; 2803 2804 // Handle the case where VNI and OtherVNI can be proven to be identical: 2805 // 2806 // %other = COPY %ext 2807 // %this = COPY %ext <-- Erase this copy 2808 // 2809 if (DefMI->isFullCopy() && !CP.isPartial() && 2810 valuesIdentical(VNI, V.OtherVNI, Other)) { 2811 V.Identical = true; 2812 return CR_Erase; 2813 } 2814 2815 // The remaining checks apply to the lanes, which aren't tracked here. This 2816 // was already decided to be OK via the following CR_Replace condition. 2817 // CR_Replace. 2818 if (SubRangeJoin) 2819 return CR_Replace; 2820 2821 // If the lanes written by this instruction were all undef in OtherVNI, it is 2822 // still safe to join the live ranges. This can't be done with a simple value 2823 // mapping, though - OtherVNI will map to multiple values: 2824 // 2825 // 1 %dst:ssub0 = FOO <-- OtherVNI 2826 // 2 %src = BAR <-- VNI 2827 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy. 2828 // 4 BAZ killed %dst 2829 // 5 QUUX killed %src 2830 // 2831 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2832 // handles this complex value mapping. 2833 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2834 return CR_Replace; 2835 2836 // If the other live range is killed by DefMI and the live ranges are still 2837 // overlapping, it must be because we're looking at an early clobber def: 2838 // 2839 // %dst<def,early-clobber> = ASM killed %src 2840 // 2841 // In this case, it is illegal to merge the two live ranges since the early 2842 // clobber def would clobber %src before it was read. 2843 if (OtherLRQ.isKill()) { 2844 // This case where the def doesn't overlap the kill is handled above. 2845 assert(VNI->def.isEarlyClobber() && 2846 "Only early clobber defs can overlap a kill"); 2847 return CR_Impossible; 2848 } 2849 2850 // VNI is clobbering live lanes in OtherVNI, but there is still the 2851 // possibility that no instructions actually read the clobbered lanes. 2852 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2853 // Otherwise Other.RI wouldn't be live here. 2854 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2855 return CR_Impossible; 2856 2857 // We need to verify that no instructions are reading the clobbered lanes. To 2858 // save compile time, we'll only check that locally. Don't allow the tainted 2859 // value to escape the basic block. 2860 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2861 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2862 return CR_Impossible; 2863 2864 // There are still some things that could go wrong besides clobbered lanes 2865 // being read, for example OtherVNI may be only partially redefined in MBB, 2866 // and some clobbered lanes could escape the block. Save this analysis for 2867 // resolveConflicts() when all values have been mapped. We need to know 2868 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2869 // that now - the recursive analyzeValue() calls must go upwards in the 2870 // dominator tree. 2871 return CR_Unresolved; 2872 } 2873 2874 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2875 Val &V = Vals[ValNo]; 2876 if (V.isAnalyzed()) { 2877 // Recursion should always move up the dominator tree, so ValNo is not 2878 // supposed to reappear before it has been assigned. 2879 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2880 return; 2881 } 2882 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2883 case CR_Erase: 2884 case CR_Merge: 2885 // Merge this ValNo into OtherVNI. 2886 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2887 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2888 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2889 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@' 2890 << LR.getValNumInfo(ValNo)->def << " into " 2891 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2892 << V.OtherVNI->def << " --> @" 2893 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2894 break; 2895 case CR_Replace: 2896 case CR_Unresolved: { 2897 // The other value is going to be pruned if this join is successful. 2898 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2899 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2900 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2901 // its lanes. 2902 if (OtherV.ErasableImplicitDef && 2903 TrackSubRegLiveness && 2904 (OtherV.WriteLanes & ~V.ValidLanes).any()) { 2905 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n"); 2906 2907 OtherV.ErasableImplicitDef = false; 2908 // The valid lanes written by the implicit_def were speculatively cleared 2909 // before, so make this more conservative. It may be better to track this, 2910 // I haven't found a testcase where it matters. 2911 OtherV.ValidLanes = LaneBitmask::getAll(); 2912 } 2913 2914 OtherV.Pruned = true; 2915 LLVM_FALLTHROUGH; 2916 } 2917 default: 2918 // This value number needs to go in the final joined live range. 2919 Assignments[ValNo] = NewVNInfo.size(); 2920 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2921 break; 2922 } 2923 } 2924 2925 bool JoinVals::mapValues(JoinVals &Other) { 2926 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2927 computeAssignment(i, Other); 2928 if (Vals[i].Resolution == CR_Impossible) { 2929 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i 2930 << '@' << LR.getValNumInfo(i)->def << '\n'); 2931 return false; 2932 } 2933 } 2934 return true; 2935 } 2936 2937 bool JoinVals:: 2938 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2939 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { 2940 VNInfo *VNI = LR.getValNumInfo(ValNo); 2941 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2942 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2943 2944 // Scan Other.LR from VNI.def to MBBEnd. 2945 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2946 assert(OtherI != Other.LR.end() && "No conflict?"); 2947 do { 2948 // OtherI is pointing to a tainted value. Abort the join if the tainted 2949 // lanes escape the block. 2950 SlotIndex End = OtherI->end; 2951 if (End >= MBBEnd) { 2952 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':' 2953 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2954 return false; 2955 } 2956 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':' 2957 << OtherI->valno->id << '@' << OtherI->start << " to " 2958 << End << '\n'); 2959 // A dead def is not a problem. 2960 if (End.isDead()) 2961 break; 2962 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2963 2964 // Check for another def in the MBB. 2965 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2966 break; 2967 2968 // Lanes written by the new def are no longer tainted. 2969 const Val &OV = Other.Vals[OtherI->valno->id]; 2970 TaintedLanes &= ~OV.WriteLanes; 2971 if (!OV.RedefVNI) 2972 break; 2973 } while (TaintedLanes.any()); 2974 return true; 2975 } 2976 2977 bool JoinVals::usesLanes(const MachineInstr &MI, Register Reg, unsigned SubIdx, 2978 LaneBitmask Lanes) const { 2979 if (MI.isDebugOrPseudoInstr()) 2980 return false; 2981 for (const MachineOperand &MO : MI.operands()) { 2982 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2983 continue; 2984 if (!MO.readsReg()) 2985 continue; 2986 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2987 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2988 return true; 2989 } 2990 return false; 2991 } 2992 2993 bool JoinVals::resolveConflicts(JoinVals &Other) { 2994 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2995 Val &V = Vals[i]; 2996 assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); 2997 if (V.Resolution != CR_Unresolved) 2998 continue; 2999 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@' 3000 << LR.getValNumInfo(i)->def 3001 << ' ' << PrintLaneMask(LaneMask) << '\n'); 3002 if (SubRangeJoin) 3003 return false; 3004 3005 ++NumLaneConflicts; 3006 assert(V.OtherVNI && "Inconsistent conflict resolution."); 3007 VNInfo *VNI = LR.getValNumInfo(i); 3008 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 3009 3010 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 3011 // join, those lanes will be tainted with a wrong value. Get the extent of 3012 // the tainted lanes. 3013 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 3014 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 3015 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 3016 // Tainted lanes would extend beyond the basic block. 3017 return false; 3018 3019 assert(!TaintExtent.empty() && "There should be at least one conflict."); 3020 3021 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 3022 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 3023 MachineBasicBlock::iterator MI = MBB->begin(); 3024 if (!VNI->isPHIDef()) { 3025 MI = Indexes->getInstructionFromIndex(VNI->def); 3026 // No need to check the instruction defining VNI for reads. 3027 ++MI; 3028 } 3029 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 3030 "Interference ends on VNI->def. Should have been handled earlier"); 3031 MachineInstr *LastMI = 3032 Indexes->getInstructionFromIndex(TaintExtent.front().first); 3033 assert(LastMI && "Range must end at a proper instruction"); 3034 unsigned TaintNum = 0; 3035 while (true) { 3036 assert(MI != MBB->end() && "Bad LastMI"); 3037 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 3038 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 3039 return false; 3040 } 3041 // LastMI is the last instruction to use the current value. 3042 if (&*MI == LastMI) { 3043 if (++TaintNum == TaintExtent.size()) 3044 break; 3045 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 3046 assert(LastMI && "Range must end at a proper instruction"); 3047 TaintedLanes = TaintExtent[TaintNum].second; 3048 } 3049 ++MI; 3050 } 3051 3052 // The tainted lanes are unused. 3053 V.Resolution = CR_Replace; 3054 ++NumLaneResolves; 3055 } 3056 return true; 3057 } 3058 3059 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 3060 Val &V = Vals[ValNo]; 3061 if (V.Pruned || V.PrunedComputed) 3062 return V.Pruned; 3063 3064 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 3065 return V.Pruned; 3066 3067 // Follow copies up the dominator tree and check if any intermediate value 3068 // has been pruned. 3069 V.PrunedComputed = true; 3070 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 3071 return V.Pruned; 3072 } 3073 3074 void JoinVals::pruneValues(JoinVals &Other, 3075 SmallVectorImpl<SlotIndex> &EndPoints, 3076 bool changeInstrs) { 3077 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3078 SlotIndex Def = LR.getValNumInfo(i)->def; 3079 switch (Vals[i].Resolution) { 3080 case CR_Keep: 3081 break; 3082 case CR_Replace: { 3083 // This value takes precedence over the value in Other.LR. 3084 LIS->pruneValue(Other.LR, Def, &EndPoints); 3085 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 3086 // instructions are only inserted to provide a live-out value for PHI 3087 // predecessors, so the instruction should simply go away once its value 3088 // has been replaced. 3089 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 3090 bool EraseImpDef = OtherV.ErasableImplicitDef && 3091 OtherV.Resolution == CR_Keep; 3092 if (!Def.isBlock()) { 3093 if (changeInstrs) { 3094 // Remove <def,read-undef> flags. This def is now a partial redef. 3095 // Also remove dead flags since the joined live range will 3096 // continue past this instruction. 3097 for (MachineOperand &MO : 3098 Indexes->getInstructionFromIndex(Def)->operands()) { 3099 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 3100 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) 3101 MO.setIsUndef(false); 3102 MO.setIsDead(false); 3103 } 3104 } 3105 } 3106 // This value will reach instructions below, but we need to make sure 3107 // the live range also reaches the instruction at Def. 3108 if (!EraseImpDef) 3109 EndPoints.push_back(Def); 3110 } 3111 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def 3112 << ": " << Other.LR << '\n'); 3113 break; 3114 } 3115 case CR_Erase: 3116 case CR_Merge: 3117 if (isPrunedValue(i, Other)) { 3118 // This value is ultimately a copy of a pruned value in LR or Other.LR. 3119 // We can no longer trust the value mapping computed by 3120 // computeAssignment(), the value that was originally copied could have 3121 // been replaced. 3122 LIS->pruneValue(LR, Def, &EndPoints); 3123 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at " 3124 << Def << ": " << LR << '\n'); 3125 } 3126 break; 3127 case CR_Unresolved: 3128 case CR_Impossible: 3129 llvm_unreachable("Unresolved conflicts"); 3130 } 3131 } 3132 } 3133 3134 // Check if the segment consists of a copied live-through value (i.e. the copy 3135 // in the block only extended the liveness, of an undef value which we may need 3136 // to handle). 3137 static bool isLiveThrough(const LiveQueryResult Q) { 3138 return Q.valueIn() && Q.valueIn()->isPHIDef() && Q.valueIn() == Q.valueOut(); 3139 } 3140 3141 /// Consider the following situation when coalescing the copy between 3142 /// %31 and %45 at 800. (The vertical lines represent live range segments.) 3143 /// 3144 /// Main range Subrange 0004 (sub2) 3145 /// %31 %45 %31 %45 3146 /// 544 %45 = COPY %28 + + 3147 /// | v1 | v1 3148 /// 560B bb.1: + + 3149 /// 624 = %45.sub2 | v2 | v2 3150 /// 800 %31 = COPY %45 + + + + 3151 /// | v0 | v0 3152 /// 816 %31.sub1 = ... + | 3153 /// 880 %30 = COPY %31 | v1 + 3154 /// 928 %45 = COPY %30 | + + 3155 /// | | v0 | v0 <--+ 3156 /// 992B ; backedge -> bb.1 | + + | 3157 /// 1040 = %31.sub0 + | 3158 /// This value must remain 3159 /// live-out! 3160 /// 3161 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes 3162 /// redundant, since it copies the value from %45 back into it. The 3163 /// conflict resolution for the main range determines that %45.v0 is 3164 /// to be erased, which is ok since %31.v1 is identical to it. 3165 /// The problem happens with the subrange for sub2: it has to be live 3166 /// on exit from the block, but since 928 was actually a point of 3167 /// definition of %45.sub2, %45.sub2 was not live immediately prior 3168 /// to that definition. As a result, when 928 was erased, the value v0 3169 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an 3170 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2, 3171 /// providing an incorrect value to the use at 624. 3172 /// 3173 /// Since the main-range values %31.v1 and %45.v0 were proved to be 3174 /// identical, the corresponding values in subranges must also be the 3175 /// same. A redundant copy is removed because it's not needed, and not 3176 /// because it copied an undefined value, so any liveness that originated 3177 /// from that copy cannot disappear. When pruning a value that started 3178 /// at the removed copy, the corresponding identical value must be 3179 /// extended to replace it. 3180 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 3181 // Look for values being erased. 3182 bool DidPrune = false; 3183 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3184 Val &V = Vals[i]; 3185 // We should trigger in all cases in which eraseInstrs() does something. 3186 // match what eraseInstrs() is doing, print a message so 3187 if (V.Resolution != CR_Erase && 3188 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)) 3189 continue; 3190 3191 // Check subranges at the point where the copy will be removed. 3192 SlotIndex Def = LR.getValNumInfo(i)->def; 3193 SlotIndex OtherDef; 3194 if (V.Identical) 3195 OtherDef = V.OtherVNI->def; 3196 3197 // Print message so mismatches with eraseInstrs() can be diagnosed. 3198 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def 3199 << '\n'); 3200 for (LiveInterval::SubRange &S : LI.subranges()) { 3201 LiveQueryResult Q = S.Query(Def); 3202 3203 // If a subrange starts at the copy then an undefined value has been 3204 // copied and we must remove that subrange value as well. 3205 VNInfo *ValueOut = Q.valueOutOrDead(); 3206 if (ValueOut != nullptr && (Q.valueIn() == nullptr || 3207 (V.Identical && V.Resolution == CR_Erase && 3208 ValueOut->def == Def))) { 3209 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 3210 << " at " << Def << "\n"); 3211 SmallVector<SlotIndex,8> EndPoints; 3212 LIS->pruneValue(S, Def, &EndPoints); 3213 DidPrune = true; 3214 // Mark value number as unused. 3215 ValueOut->markUnused(); 3216 3217 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) { 3218 // If V is identical to V.OtherVNI (and S was live at OtherDef), 3219 // then we can't simply prune V from S. V needs to be replaced 3220 // with V.OtherVNI. 3221 LIS->extendToIndices(S, EndPoints); 3222 } 3223 3224 // We may need to eliminate the subrange if the copy introduced a live 3225 // out undef value. 3226 if (ValueOut->isPHIDef()) 3227 ShrinkMask |= S.LaneMask; 3228 continue; 3229 } 3230 3231 // If a subrange ends at the copy, then a value was copied but only 3232 // partially used later. Shrink the subregister range appropriately. 3233 // 3234 // Ultimately this calls shrinkToUses, so assuming ShrinkMask is 3235 // conservatively correct. 3236 if ((Q.valueIn() != nullptr && Q.valueOut() == nullptr) || 3237 (V.Resolution == CR_Erase && isLiveThrough(Q))) { 3238 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane " 3239 << PrintLaneMask(S.LaneMask) << " at " << Def 3240 << "\n"); 3241 ShrinkMask |= S.LaneMask; 3242 } 3243 } 3244 } 3245 if (DidPrune) 3246 LI.removeEmptySubRanges(); 3247 } 3248 3249 /// Check if any of the subranges of @p LI contain a definition at @p Def. 3250 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 3251 for (LiveInterval::SubRange &SR : LI.subranges()) { 3252 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 3253 if (VNI->def == Def) 3254 return true; 3255 } 3256 return false; 3257 } 3258 3259 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 3260 assert(&static_cast<LiveRange&>(LI) == &LR); 3261 3262 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3263 if (Vals[i].Resolution != CR_Keep) 3264 continue; 3265 VNInfo *VNI = LR.getValNumInfo(i); 3266 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 3267 continue; 3268 Vals[i].Pruned = true; 3269 ShrinkMainRange = true; 3270 } 3271 } 3272 3273 void JoinVals::removeImplicitDefs() { 3274 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3275 Val &V = Vals[i]; 3276 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 3277 continue; 3278 3279 VNInfo *VNI = LR.getValNumInfo(i); 3280 VNI->markUnused(); 3281 LR.removeValNo(VNI); 3282 } 3283 } 3284 3285 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 3286 SmallVectorImpl<Register> &ShrinkRegs, 3287 LiveInterval *LI) { 3288 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3289 // Get the def location before markUnused() below invalidates it. 3290 VNInfo *VNI = LR.getValNumInfo(i); 3291 SlotIndex Def = VNI->def; 3292 switch (Vals[i].Resolution) { 3293 case CR_Keep: { 3294 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 3295 // longer. The IMPLICIT_DEF instructions are only inserted by 3296 // PHIElimination to guarantee that all PHI predecessors have a value. 3297 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 3298 break; 3299 // Remove value number i from LR. 3300 // For intervals with subranges, removing a segment from the main range 3301 // may require extending the previous segment: for each definition of 3302 // a subregister, there will be a corresponding def in the main range. 3303 // That def may fall in the middle of a segment from another subrange. 3304 // In such cases, removing this def from the main range must be 3305 // complemented by extending the main range to account for the liveness 3306 // of the other subrange. 3307 // The new end point of the main range segment to be extended. 3308 SlotIndex NewEnd; 3309 if (LI != nullptr) { 3310 LiveRange::iterator I = LR.FindSegmentContaining(Def); 3311 assert(I != LR.end()); 3312 // Do not extend beyond the end of the segment being removed. 3313 // The segment may have been pruned in preparation for joining 3314 // live ranges. 3315 NewEnd = I->end; 3316 } 3317 3318 LR.removeValNo(VNI); 3319 // Note that this VNInfo is reused and still referenced in NewVNInfo, 3320 // make it appear like an unused value number. 3321 VNI->markUnused(); 3322 3323 if (LI != nullptr && LI->hasSubRanges()) { 3324 assert(static_cast<LiveRange*>(LI) == &LR); 3325 // Determine the end point based on the subrange information: 3326 // minimum of (earliest def of next segment, 3327 // latest end point of containing segment) 3328 SlotIndex ED, LE; 3329 for (LiveInterval::SubRange &SR : LI->subranges()) { 3330 LiveRange::iterator I = SR.find(Def); 3331 if (I == SR.end()) 3332 continue; 3333 if (I->start > Def) 3334 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 3335 else 3336 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 3337 } 3338 if (LE.isValid()) 3339 NewEnd = std::min(NewEnd, LE); 3340 if (ED.isValid()) 3341 NewEnd = std::min(NewEnd, ED); 3342 3343 // We only want to do the extension if there was a subrange that 3344 // was live across Def. 3345 if (LE.isValid()) { 3346 LiveRange::iterator S = LR.find(Def); 3347 if (S != LR.begin()) 3348 std::prev(S)->end = NewEnd; 3349 } 3350 } 3351 LLVM_DEBUG({ 3352 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 3353 if (LI != nullptr) 3354 dbgs() << "\t\t LHS = " << *LI << '\n'; 3355 }); 3356 LLVM_FALLTHROUGH; 3357 } 3358 3359 case CR_Erase: { 3360 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 3361 assert(MI && "No instruction to erase"); 3362 if (MI->isCopy()) { 3363 Register Reg = MI->getOperand(1).getReg(); 3364 if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() && 3365 Reg != CP.getDstReg()) 3366 ShrinkRegs.push_back(Reg); 3367 } 3368 ErasedInstrs.insert(MI); 3369 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 3370 LIS->RemoveMachineInstrFromMaps(*MI); 3371 MI->eraseFromParent(); 3372 break; 3373 } 3374 default: 3375 break; 3376 } 3377 } 3378 } 3379 3380 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 3381 LaneBitmask LaneMask, 3382 const CoalescerPair &CP) { 3383 SmallVector<VNInfo*, 16> NewVNInfo; 3384 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 3385 NewVNInfo, CP, LIS, TRI, true, true); 3386 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 3387 NewVNInfo, CP, LIS, TRI, true, true); 3388 3389 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 3390 // We should be able to resolve all conflicts here as we could successfully do 3391 // it on the mainrange already. There is however a problem when multiple 3392 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 3393 // interferences. 3394 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 3395 // We already determined that it is legal to merge the intervals, so this 3396 // should never fail. 3397 llvm_unreachable("*** Couldn't join subrange!\n"); 3398 } 3399 if (!LHSVals.resolveConflicts(RHSVals) || 3400 !RHSVals.resolveConflicts(LHSVals)) { 3401 // We already determined that it is legal to merge the intervals, so this 3402 // should never fail. 3403 llvm_unreachable("*** Couldn't join subrange!\n"); 3404 } 3405 3406 // The merging algorithm in LiveInterval::join() can't handle conflicting 3407 // value mappings, so we need to remove any live ranges that overlap a 3408 // CR_Replace resolution. Collect a set of end points that can be used to 3409 // restore the live range after joining. 3410 SmallVector<SlotIndex, 8> EndPoints; 3411 LHSVals.pruneValues(RHSVals, EndPoints, false); 3412 RHSVals.pruneValues(LHSVals, EndPoints, false); 3413 3414 LHSVals.removeImplicitDefs(); 3415 RHSVals.removeImplicitDefs(); 3416 3417 LRange.verify(); 3418 RRange.verify(); 3419 3420 // Join RRange into LHS. 3421 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 3422 NewVNInfo); 3423 3424 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask) 3425 << ' ' << LRange << "\n"); 3426 if (EndPoints.empty()) 3427 return; 3428 3429 // Recompute the parts of the live range we had to remove because of 3430 // CR_Replace conflicts. 3431 LLVM_DEBUG({ 3432 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3433 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3434 dbgs() << EndPoints[i]; 3435 if (i != n-1) 3436 dbgs() << ','; 3437 } 3438 dbgs() << ": " << LRange << '\n'; 3439 }); 3440 LIS->extendToIndices(LRange, EndPoints); 3441 } 3442 3443 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 3444 const LiveRange &ToMerge, 3445 LaneBitmask LaneMask, 3446 CoalescerPair &CP, 3447 unsigned ComposeSubRegIdx) { 3448 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3449 LI.refineSubRanges( 3450 Allocator, LaneMask, 3451 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) { 3452 if (SR.empty()) { 3453 SR.assign(ToMerge, Allocator); 3454 } else { 3455 // joinSubRegRange() destroys the merged range, so we need a copy. 3456 LiveRange RangeCopy(ToMerge, Allocator); 3457 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 3458 } 3459 }, 3460 *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx); 3461 } 3462 3463 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) { 3464 if (LI.valnos.size() < LargeIntervalSizeThreshold) 3465 return false; 3466 auto &Counter = LargeLIVisitCounter[LI.reg()]; 3467 if (Counter < LargeIntervalFreqThreshold) { 3468 Counter++; 3469 return false; 3470 } 3471 return true; 3472 } 3473 3474 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 3475 SmallVector<VNInfo*, 16> NewVNInfo; 3476 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 3477 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 3478 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 3479 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 3480 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3481 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 3482 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3483 3484 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n'); 3485 3486 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS)) 3487 return false; 3488 3489 // First compute NewVNInfo and the simple value mappings. 3490 // Detect impossible conflicts early. 3491 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 3492 return false; 3493 3494 // Some conflicts can only be resolved after all values have been mapped. 3495 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 3496 return false; 3497 3498 // All clear, the live ranges can be merged. 3499 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 3500 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3501 3502 // Transform lanemasks from the LHS to masks in the coalesced register and 3503 // create initial subranges if necessary. 3504 unsigned DstIdx = CP.getDstIdx(); 3505 if (!LHS.hasSubRanges()) { 3506 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 3507 : TRI->getSubRegIndexLaneMask(DstIdx); 3508 // LHS must support subregs or we wouldn't be in this codepath. 3509 assert(Mask.any()); 3510 LHS.createSubRangeFrom(Allocator, Mask, LHS); 3511 } else if (DstIdx != 0) { 3512 // Transform LHS lanemasks to new register class if necessary. 3513 for (LiveInterval::SubRange &R : LHS.subranges()) { 3514 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 3515 R.LaneMask = Mask; 3516 } 3517 } 3518 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS 3519 << '\n'); 3520 3521 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3522 unsigned SrcIdx = CP.getSrcIdx(); 3523 if (!RHS.hasSubRanges()) { 3524 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3525 : TRI->getSubRegIndexLaneMask(SrcIdx); 3526 mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx); 3527 } else { 3528 // Pair up subranges and merge. 3529 for (LiveInterval::SubRange &R : RHS.subranges()) { 3530 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3531 mergeSubRangeInto(LHS, R, Mask, CP, DstIdx); 3532 } 3533 } 3534 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3535 3536 // Pruning implicit defs from subranges may result in the main range 3537 // having stale segments. 3538 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3539 3540 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3541 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3542 } 3543 3544 // The merging algorithm in LiveInterval::join() can't handle conflicting 3545 // value mappings, so we need to remove any live ranges that overlap a 3546 // CR_Replace resolution. Collect a set of end points that can be used to 3547 // restore the live range after joining. 3548 SmallVector<SlotIndex, 8> EndPoints; 3549 LHSVals.pruneValues(RHSVals, EndPoints, true); 3550 RHSVals.pruneValues(LHSVals, EndPoints, true); 3551 3552 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3553 // registers to require trimming. 3554 SmallVector<Register, 8> ShrinkRegs; 3555 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3556 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3557 while (!ShrinkRegs.empty()) 3558 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3559 3560 // Scan and mark undef any DBG_VALUEs that would refer to a different value. 3561 checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals); 3562 3563 // If the RHS covers any PHI locations that were tracked for debug-info, we 3564 // must update tracking information to reflect the join. 3565 auto RegIt = RegToPHIIdx.find(CP.getSrcReg()); 3566 if (RegIt != RegToPHIIdx.end()) { 3567 // Iterate over all the debug instruction numbers assigned this register. 3568 for (unsigned InstID : RegIt->second) { 3569 auto PHIIt = PHIValToPos.find(InstID); 3570 assert(PHIIt != PHIValToPos.end()); 3571 const SlotIndex &SI = PHIIt->second.SI; 3572 3573 // Does the RHS cover the position of this PHI? 3574 auto LII = RHS.find(SI); 3575 if (LII == RHS.end() || LII->start > SI) 3576 continue; 3577 3578 // Accept two kinds of subregister movement: 3579 // * When we merge from one register class into a larger register: 3580 // %1:gr16 = some-inst 3581 // -> 3582 // %2:gr32.sub_16bit = some-inst 3583 // * When the PHI is already in a subregister, and the larger class 3584 // is coalesced: 3585 // %2:gr32.sub_16bit = some-inst 3586 // %3:gr32 = COPY %2 3587 // -> 3588 // %3:gr32.sub_16bit = some-inst 3589 // Test for subregister move: 3590 if (CP.getSrcIdx() != 0 || CP.getDstIdx() != 0) 3591 // If we're moving between different subregisters, ignore this join. 3592 // The PHI will not get a location, dropping variable locations. 3593 if (PHIIt->second.SubReg && PHIIt->second.SubReg != CP.getSrcIdx()) 3594 continue; 3595 3596 // Update our tracking of where the PHI is. 3597 PHIIt->second.Reg = CP.getDstReg(); 3598 3599 // If we merge into a sub-register of a larger class (test above), 3600 // update SubReg. 3601 if (CP.getSrcIdx() != 0) 3602 PHIIt->second.SubReg = CP.getSrcIdx(); 3603 } 3604 3605 // Rebuild the register index in RegToPHIIdx to account for PHIs tracking 3606 // different VRegs now. Copy old collection of debug instruction numbers and 3607 // erase the old one: 3608 auto InstrNums = RegIt->second; 3609 RegToPHIIdx.erase(RegIt); 3610 3611 // There might already be PHIs being tracked in the destination VReg. Insert 3612 // into an existing tracking collection, or insert a new one. 3613 RegIt = RegToPHIIdx.find(CP.getDstReg()); 3614 if (RegIt != RegToPHIIdx.end()) 3615 RegIt->second.insert(RegIt->second.end(), InstrNums.begin(), 3616 InstrNums.end()); 3617 else 3618 RegToPHIIdx.insert({CP.getDstReg(), InstrNums}); 3619 } 3620 3621 // Join RHS into LHS. 3622 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3623 3624 // Kill flags are going to be wrong if the live ranges were overlapping. 3625 // Eventually, we should simply clear all kill flags when computing live 3626 // ranges. They are reinserted after register allocation. 3627 MRI->clearKillFlags(LHS.reg()); 3628 MRI->clearKillFlags(RHS.reg()); 3629 3630 if (!EndPoints.empty()) { 3631 // Recompute the parts of the live range we had to remove because of 3632 // CR_Replace conflicts. 3633 LLVM_DEBUG({ 3634 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3635 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3636 dbgs() << EndPoints[i]; 3637 if (i != n-1) 3638 dbgs() << ','; 3639 } 3640 dbgs() << ": " << LHS << '\n'; 3641 }); 3642 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3643 } 3644 3645 return true; 3646 } 3647 3648 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3649 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3650 } 3651 3652 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF) 3653 { 3654 const SlotIndexes &Slots = *LIS->getSlotIndexes(); 3655 SmallVector<MachineInstr *, 8> ToInsert; 3656 3657 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the 3658 // vreg => DbgValueLoc map. 3659 auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) { 3660 for (auto *X : ToInsert) { 3661 for (auto Op : X->debug_operands()) { 3662 if (Op.isReg() && Op.getReg().isVirtual()) 3663 DbgVRegToValues[Op.getReg()].push_back({Slot, X}); 3664 } 3665 } 3666 3667 ToInsert.clear(); 3668 }; 3669 3670 // Iterate over all instructions, collecting them into the ToInsert vector. 3671 // Once a non-debug instruction is found, record the slot index of the 3672 // collected DBG_VALUEs. 3673 for (auto &MBB : MF) { 3674 SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB); 3675 3676 for (auto &MI : MBB) { 3677 if (MI.isDebugValue()) { 3678 if (any_of(MI.debug_operands(), [](const MachineOperand &MO) { 3679 return MO.isReg() && MO.getReg().isVirtual(); 3680 })) 3681 ToInsert.push_back(&MI); 3682 } else if (!MI.isDebugOrPseudoInstr()) { 3683 CurrentSlot = Slots.getInstructionIndex(MI); 3684 CloseNewDVRange(CurrentSlot); 3685 } 3686 } 3687 3688 // Close range of DBG_VALUEs at the end of blocks. 3689 CloseNewDVRange(Slots.getMBBEndIdx(&MBB)); 3690 } 3691 3692 // Sort all DBG_VALUEs we've seen by slot number. 3693 for (auto &Pair : DbgVRegToValues) 3694 llvm::sort(Pair.second); 3695 } 3696 3697 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP, 3698 LiveRange &LHS, 3699 JoinVals &LHSVals, 3700 LiveRange &RHS, 3701 JoinVals &RHSVals) { 3702 auto ScanForDstReg = [&](Register Reg) { 3703 checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals); 3704 }; 3705 3706 auto ScanForSrcReg = [&](Register Reg) { 3707 checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals); 3708 }; 3709 3710 // Scan for potentially unsound DBG_VALUEs: examine first the register number 3711 // Reg, and then any other vregs that may have been merged into it. 3712 auto PerformScan = [this](Register Reg, std::function<void(Register)> Func) { 3713 Func(Reg); 3714 if (DbgMergedVRegNums.count(Reg)) 3715 for (Register X : DbgMergedVRegNums[Reg]) 3716 Func(X); 3717 }; 3718 3719 // Scan for unsound updates of both the source and destination register. 3720 PerformScan(CP.getSrcReg(), ScanForSrcReg); 3721 PerformScan(CP.getDstReg(), ScanForDstReg); 3722 } 3723 3724 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg, 3725 LiveRange &OtherLR, 3726 LiveRange &RegLR, 3727 JoinVals &RegVals) { 3728 // Are there any DBG_VALUEs to examine? 3729 auto VRegMapIt = DbgVRegToValues.find(Reg); 3730 if (VRegMapIt == DbgVRegToValues.end()) 3731 return; 3732 3733 auto &DbgValueSet = VRegMapIt->second; 3734 auto DbgValueSetIt = DbgValueSet.begin(); 3735 auto SegmentIt = OtherLR.begin(); 3736 3737 bool LastUndefResult = false; 3738 SlotIndex LastUndefIdx; 3739 3740 // If the "Other" register is live at a slot Idx, test whether Reg can 3741 // safely be merged with it, or should be marked undef. 3742 auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult, 3743 &LastUndefIdx](SlotIndex Idx) -> bool { 3744 // Our worst-case performance typically happens with asan, causing very 3745 // many DBG_VALUEs of the same location. Cache a copy of the most recent 3746 // result for this edge-case. 3747 if (LastUndefIdx == Idx) 3748 return LastUndefResult; 3749 3750 // If the other range was live, and Reg's was not, the register coalescer 3751 // will not have tried to resolve any conflicts. We don't know whether 3752 // the DBG_VALUE will refer to the same value number, so it must be made 3753 // undef. 3754 auto OtherIt = RegLR.find(Idx); 3755 if (OtherIt == RegLR.end()) 3756 return true; 3757 3758 // Both the registers were live: examine the conflict resolution record for 3759 // the value number Reg refers to. CR_Keep meant that this value number 3760 // "won" and the merged register definitely refers to that value. CR_Erase 3761 // means the value number was a redundant copy of the other value, which 3762 // was coalesced and Reg deleted. It's safe to refer to the other register 3763 // (which will be the source of the copy). 3764 auto Resolution = RegVals.getResolution(OtherIt->valno->id); 3765 LastUndefResult = Resolution != JoinVals::CR_Keep && 3766 Resolution != JoinVals::CR_Erase; 3767 LastUndefIdx = Idx; 3768 return LastUndefResult; 3769 }; 3770 3771 // Iterate over both the live-range of the "Other" register, and the set of 3772 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest 3773 // slot index. This relies on the DbgValueSet being ordered. 3774 while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) { 3775 if (DbgValueSetIt->first < SegmentIt->end) { 3776 // "Other" is live and there is a DBG_VALUE of Reg: test if we should 3777 // set it undef. 3778 if (DbgValueSetIt->first >= SegmentIt->start) { 3779 bool HasReg = DbgValueSetIt->second->hasDebugOperandForReg(Reg); 3780 bool ShouldUndefReg = ShouldUndef(DbgValueSetIt->first); 3781 if (HasReg && ShouldUndefReg) { 3782 // Mark undef, erase record of this DBG_VALUE to avoid revisiting. 3783 DbgValueSetIt->second->setDebugValueUndef(); 3784 continue; 3785 } 3786 } 3787 ++DbgValueSetIt; 3788 } else { 3789 ++SegmentIt; 3790 } 3791 } 3792 } 3793 3794 namespace { 3795 3796 /// Information concerning MBB coalescing priority. 3797 struct MBBPriorityInfo { 3798 MachineBasicBlock *MBB; 3799 unsigned Depth; 3800 bool IsSplit; 3801 3802 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3803 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3804 }; 3805 3806 } // end anonymous namespace 3807 3808 /// C-style comparator that sorts first based on the loop depth of the basic 3809 /// block (the unsigned), and then on the MBB number. 3810 /// 3811 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3812 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3813 const MBBPriorityInfo *RHS) { 3814 // Deeper loops first 3815 if (LHS->Depth != RHS->Depth) 3816 return LHS->Depth > RHS->Depth ? -1 : 1; 3817 3818 // Try to unsplit critical edges next. 3819 if (LHS->IsSplit != RHS->IsSplit) 3820 return LHS->IsSplit ? -1 : 1; 3821 3822 // Prefer blocks that are more connected in the CFG. This takes care of 3823 // the most difficult copies first while intervals are short. 3824 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3825 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3826 if (cl != cr) 3827 return cl > cr ? -1 : 1; 3828 3829 // As a last resort, sort by block number. 3830 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3831 } 3832 3833 /// \returns true if the given copy uses or defines a local live range. 3834 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3835 if (!Copy->isCopy()) 3836 return false; 3837 3838 if (Copy->getOperand(1).isUndef()) 3839 return false; 3840 3841 Register SrcReg = Copy->getOperand(1).getReg(); 3842 Register DstReg = Copy->getOperand(0).getReg(); 3843 if (Register::isPhysicalRegister(SrcReg) || 3844 Register::isPhysicalRegister(DstReg)) 3845 return false; 3846 3847 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3848 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3849 } 3850 3851 void RegisterCoalescer::lateLiveIntervalUpdate() { 3852 for (Register reg : ToBeUpdated) { 3853 if (!LIS->hasInterval(reg)) 3854 continue; 3855 LiveInterval &LI = LIS->getInterval(reg); 3856 shrinkToUses(&LI, &DeadDefs); 3857 if (!DeadDefs.empty()) 3858 eliminateDeadDefs(); 3859 } 3860 ToBeUpdated.clear(); 3861 } 3862 3863 bool RegisterCoalescer:: 3864 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3865 bool Progress = false; 3866 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3867 if (!CurrList[i]) 3868 continue; 3869 // Skip instruction pointers that have already been erased, for example by 3870 // dead code elimination. 3871 if (ErasedInstrs.count(CurrList[i])) { 3872 CurrList[i] = nullptr; 3873 continue; 3874 } 3875 bool Again = false; 3876 bool Success = joinCopy(CurrList[i], Again); 3877 Progress |= Success; 3878 if (Success || !Again) 3879 CurrList[i] = nullptr; 3880 } 3881 return Progress; 3882 } 3883 3884 /// Check if DstReg is a terminal node. 3885 /// I.e., it does not have any affinity other than \p Copy. 3886 static bool isTerminalReg(Register DstReg, const MachineInstr &Copy, 3887 const MachineRegisterInfo *MRI) { 3888 assert(Copy.isCopyLike()); 3889 // Check if the destination of this copy as any other affinity. 3890 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3891 if (&MI != &Copy && MI.isCopyLike()) 3892 return false; 3893 return true; 3894 } 3895 3896 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3897 assert(Copy.isCopyLike()); 3898 if (!UseTerminalRule) 3899 return false; 3900 Register SrcReg, DstReg; 3901 unsigned SrcSubReg = 0, DstSubReg = 0; 3902 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg)) 3903 return false; 3904 // Check if the destination of this copy has any other affinity. 3905 if (DstReg.isPhysical() || 3906 // If SrcReg is a physical register, the copy won't be coalesced. 3907 // Ignoring it may have other side effect (like missing 3908 // rematerialization). So keep it. 3909 SrcReg.isPhysical() || !isTerminalReg(DstReg, Copy, MRI)) 3910 return false; 3911 3912 // DstReg is a terminal node. Check if it interferes with any other 3913 // copy involving SrcReg. 3914 const MachineBasicBlock *OrigBB = Copy.getParent(); 3915 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3916 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3917 // Technically we should check if the weight of the new copy is 3918 // interesting compared to the other one and update the weight 3919 // of the copies accordingly. However, this would only work if 3920 // we would gather all the copies first then coalesce, whereas 3921 // right now we interleave both actions. 3922 // For now, just consider the copies that are in the same block. 3923 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3924 continue; 3925 Register OtherSrcReg, OtherReg; 3926 unsigned OtherSrcSubReg = 0, OtherSubReg = 0; 3927 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3928 OtherSubReg)) 3929 return false; 3930 if (OtherReg == SrcReg) 3931 OtherReg = OtherSrcReg; 3932 // Check if OtherReg is a non-terminal. 3933 if (Register::isPhysicalRegister(OtherReg) || 3934 isTerminalReg(OtherReg, MI, MRI)) 3935 continue; 3936 // Check that OtherReg interfere with DstReg. 3937 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3938 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) 3939 << '\n'); 3940 return true; 3941 } 3942 } 3943 return false; 3944 } 3945 3946 void 3947 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3948 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n"); 3949 3950 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3951 // yet, it might invalidate the iterator. 3952 const unsigned PrevSize = WorkList.size(); 3953 if (JoinGlobalCopies) { 3954 SmallVector<MachineInstr*, 2> LocalTerminals; 3955 SmallVector<MachineInstr*, 2> GlobalTerminals; 3956 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3957 // are not inherently easier to resolve, but slightly preferable until we 3958 // have local live range splitting. In particular this is required by 3959 // cmp+jmp macro fusion. 3960 for (MachineInstr &MI : *MBB) { 3961 if (!MI.isCopyLike()) 3962 continue; 3963 bool ApplyTerminalRule = applyTerminalRule(MI); 3964 if (isLocalCopy(&MI, LIS)) { 3965 if (ApplyTerminalRule) 3966 LocalTerminals.push_back(&MI); 3967 else 3968 LocalWorkList.push_back(&MI); 3969 } else { 3970 if (ApplyTerminalRule) 3971 GlobalTerminals.push_back(&MI); 3972 else 3973 WorkList.push_back(&MI); 3974 } 3975 } 3976 // Append the copies evicted by the terminal rule at the end of the list. 3977 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3978 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3979 } 3980 else { 3981 SmallVector<MachineInstr*, 2> Terminals; 3982 for (MachineInstr &MII : *MBB) 3983 if (MII.isCopyLike()) { 3984 if (applyTerminalRule(MII)) 3985 Terminals.push_back(&MII); 3986 else 3987 WorkList.push_back(&MII); 3988 } 3989 // Append the copies evicted by the terminal rule at the end of the list. 3990 WorkList.append(Terminals.begin(), Terminals.end()); 3991 } 3992 // Try coalescing the collected copies immediately, and remove the nulls. 3993 // This prevents the WorkList from getting too large since most copies are 3994 // joinable on the first attempt. 3995 MutableArrayRef<MachineInstr*> 3996 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3997 if (copyCoalesceWorkList(CurrList)) 3998 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3999 nullptr), WorkList.end()); 4000 } 4001 4002 void RegisterCoalescer::coalesceLocals() { 4003 copyCoalesceWorkList(LocalWorkList); 4004 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 4005 if (LocalWorkList[j]) 4006 WorkList.push_back(LocalWorkList[j]); 4007 } 4008 LocalWorkList.clear(); 4009 } 4010 4011 void RegisterCoalescer::joinAllIntervals() { 4012 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 4013 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 4014 4015 std::vector<MBBPriorityInfo> MBBs; 4016 MBBs.reserve(MF->size()); 4017 for (MachineBasicBlock &MBB : *MF) { 4018 MBBs.push_back(MBBPriorityInfo(&MBB, Loops->getLoopDepth(&MBB), 4019 JoinSplitEdges && isSplitEdge(&MBB))); 4020 } 4021 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 4022 4023 // Coalesce intervals in MBB priority order. 4024 unsigned CurrDepth = std::numeric_limits<unsigned>::max(); 4025 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 4026 // Try coalescing the collected local copies for deeper loops. 4027 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 4028 coalesceLocals(); 4029 CurrDepth = MBBs[i].Depth; 4030 } 4031 copyCoalesceInMBB(MBBs[i].MBB); 4032 } 4033 lateLiveIntervalUpdate(); 4034 coalesceLocals(); 4035 4036 // Joining intervals can allow other intervals to be joined. Iteratively join 4037 // until we make no progress. 4038 while (copyCoalesceWorkList(WorkList)) 4039 /* empty */ ; 4040 lateLiveIntervalUpdate(); 4041 } 4042 4043 void RegisterCoalescer::releaseMemory() { 4044 ErasedInstrs.clear(); 4045 WorkList.clear(); 4046 DeadDefs.clear(); 4047 InflateRegs.clear(); 4048 LargeLIVisitCounter.clear(); 4049 } 4050 4051 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 4052 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 4053 << "********** Function: " << fn.getName() << '\n'); 4054 4055 // Variables changed between a setjmp and a longjump can have undefined value 4056 // after the longjmp. This behaviour can be observed if such a variable is 4057 // spilled, so longjmp won't restore the value in the spill slot. 4058 // RegisterCoalescer should not run in functions with a setjmp to avoid 4059 // merging such undefined variables with predictable ones. 4060 // 4061 // TODO: Could specifically disable coalescing registers live across setjmp 4062 // calls 4063 if (fn.exposesReturnsTwice()) { 4064 LLVM_DEBUG( 4065 dbgs() << "* Skipped as it exposes funcions that returns twice.\n"); 4066 return false; 4067 } 4068 4069 MF = &fn; 4070 MRI = &fn.getRegInfo(); 4071 const TargetSubtargetInfo &STI = fn.getSubtarget(); 4072 TRI = STI.getRegisterInfo(); 4073 TII = STI.getInstrInfo(); 4074 LIS = &getAnalysis<LiveIntervals>(); 4075 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4076 Loops = &getAnalysis<MachineLoopInfo>(); 4077 if (EnableGlobalCopies == cl::BOU_UNSET) 4078 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 4079 else 4080 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 4081 4082 // If there are PHIs tracked by debug-info, they will need updating during 4083 // coalescing. Build an index of those PHIs to ease updating. 4084 SlotIndexes *Slots = LIS->getSlotIndexes(); 4085 for (const auto &DebugPHI : MF->DebugPHIPositions) { 4086 MachineBasicBlock *MBB = DebugPHI.second.MBB; 4087 Register Reg = DebugPHI.second.Reg; 4088 unsigned SubReg = DebugPHI.second.SubReg; 4089 SlotIndex SI = Slots->getMBBStartIdx(MBB); 4090 PHIValPos P = {SI, Reg, SubReg}; 4091 PHIValToPos.insert(std::make_pair(DebugPHI.first, P)); 4092 RegToPHIIdx[Reg].push_back(DebugPHI.first); 4093 } 4094 4095 // The MachineScheduler does not currently require JoinSplitEdges. This will 4096 // either be enabled unconditionally or replaced by a more general live range 4097 // splitting optimization. 4098 JoinSplitEdges = EnableJoinSplits; 4099 4100 if (VerifyCoalescing) 4101 MF->verify(this, "Before register coalescing"); 4102 4103 DbgVRegToValues.clear(); 4104 DbgMergedVRegNums.clear(); 4105 buildVRegToDbgValueMap(fn); 4106 4107 RegClassInfo.runOnMachineFunction(fn); 4108 4109 // Join (coalesce) intervals if requested. 4110 if (EnableJoining) 4111 joinAllIntervals(); 4112 4113 // After deleting a lot of copies, register classes may be less constrained. 4114 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 4115 // DPR inflation. 4116 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 4117 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 4118 InflateRegs.end()); 4119 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() 4120 << " regs.\n"); 4121 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 4122 Register Reg = InflateRegs[i]; 4123 if (MRI->reg_nodbg_empty(Reg)) 4124 continue; 4125 if (MRI->recomputeRegClass(Reg)) { 4126 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to " 4127 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 4128 ++NumInflated; 4129 4130 LiveInterval &LI = LIS->getInterval(Reg); 4131 if (LI.hasSubRanges()) { 4132 // If the inflated register class does not support subregisters anymore 4133 // remove the subranges. 4134 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 4135 LI.clearSubRanges(); 4136 } else { 4137 #ifndef NDEBUG 4138 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 4139 // If subranges are still supported, then the same subregs 4140 // should still be supported. 4141 for (LiveInterval::SubRange &S : LI.subranges()) { 4142 assert((S.LaneMask & ~MaxMask).none()); 4143 } 4144 #endif 4145 } 4146 } 4147 } 4148 } 4149 4150 // After coalescing, update any PHIs that are being tracked by debug-info 4151 // with their new VReg locations. 4152 for (auto &p : MF->DebugPHIPositions) { 4153 auto it = PHIValToPos.find(p.first); 4154 assert(it != PHIValToPos.end()); 4155 p.second.Reg = it->second.Reg; 4156 p.second.SubReg = it->second.SubReg; 4157 } 4158 4159 PHIValToPos.clear(); 4160 RegToPHIIdx.clear(); 4161 4162 LLVM_DEBUG(dump()); 4163 if (VerifyCoalescing) 4164 MF->verify(this, "After register coalescing"); 4165 return true; 4166 } 4167 4168 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 4169 LIS->print(O, m); 4170 } 4171