1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic RegisterCoalescer interface which 11 // is used as the common interface used by all clients and 12 // implementations of register coalescing. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "RegisterCoalescer.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/LiveRangeEdit.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineLoopInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/CodeGen/RegisterClassInfo.h" 29 #include "llvm/CodeGen/VirtRegMap.h" 30 #include "llvm/IR/Value.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/Format.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 #include <algorithm> 42 #include <cmath> 43 using namespace llvm; 44 45 #define DEBUG_TYPE "regalloc" 46 47 STATISTIC(numJoins , "Number of interval joins performed"); 48 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 49 STATISTIC(numCommutes , "Number of instruction commuting performed"); 50 STATISTIC(numExtends , "Number of copies extended"); 51 STATISTIC(NumReMats , "Number of instructions re-materialized"); 52 STATISTIC(NumInflated , "Number of register classes inflated"); 53 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 54 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 55 56 static cl::opt<bool> 57 EnableJoining("join-liveintervals", 58 cl::desc("Coalesce copies (default=true)"), 59 cl::init(true)); 60 61 /// Temporary flag to test critical edge unsplitting. 62 static cl::opt<bool> 63 EnableJoinSplits("join-splitedges", 64 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 65 66 /// Temporary flag to test global copy optimization. 67 static cl::opt<cl::boolOrDefault> 68 EnableGlobalCopies("join-globalcopies", 69 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 70 cl::init(cl::BOU_UNSET), cl::Hidden); 71 72 static cl::opt<bool> 73 VerifyCoalescing("verify-coalescing", 74 cl::desc("Verify machine instrs before and after register coalescing"), 75 cl::Hidden); 76 77 namespace { 78 class RegisterCoalescer : public MachineFunctionPass, 79 private LiveRangeEdit::Delegate { 80 MachineFunction* MF; 81 MachineRegisterInfo* MRI; 82 const TargetMachine* TM; 83 const TargetRegisterInfo* TRI; 84 const TargetInstrInfo* TII; 85 LiveIntervals *LIS; 86 const MachineLoopInfo* Loops; 87 AliasAnalysis *AA; 88 RegisterClassInfo RegClassInfo; 89 90 /// A LaneMask to remember on which subregister live ranges we need to call 91 /// shrinkToUses() later. 92 unsigned ShrinkMask; 93 94 /// True if the main range of the currently coalesced intervals should be 95 /// checked for smaller live intervals. 96 bool ShrinkMainRange; 97 98 /// \brief True if the coalescer should aggressively coalesce global copies 99 /// in favor of keeping local copies. 100 bool JoinGlobalCopies; 101 102 /// \brief True if the coalescer should aggressively coalesce fall-thru 103 /// blocks exclusively containing copies. 104 bool JoinSplitEdges; 105 106 /// Copy instructions yet to be coalesced. 107 SmallVector<MachineInstr*, 8> WorkList; 108 SmallVector<MachineInstr*, 8> LocalWorkList; 109 110 /// Set of instruction pointers that have been erased, and 111 /// that may be present in WorkList. 112 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 113 114 /// Dead instructions that are about to be deleted. 115 SmallVector<MachineInstr*, 8> DeadDefs; 116 117 /// Virtual registers to be considered for register class inflation. 118 SmallVector<unsigned, 8> InflateRegs; 119 120 /// Recursively eliminate dead defs in DeadDefs. 121 void eliminateDeadDefs(); 122 123 /// LiveRangeEdit callback for eliminateDeadDefs(). 124 void LRE_WillEraseInstruction(MachineInstr *MI) override; 125 126 /// Coalesce the LocalWorkList. 127 void coalesceLocals(); 128 129 /// Join compatible live intervals 130 void joinAllIntervals(); 131 132 /// Coalesce copies in the specified MBB, putting 133 /// copies that cannot yet be coalesced into WorkList. 134 void copyCoalesceInMBB(MachineBasicBlock *MBB); 135 136 /// Tries to coalesce all copies in CurrList. Returns true if any progress 137 /// was made. 138 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 139 140 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 141 /// src/dst of the copy instruction CopyMI. This returns true if the copy 142 /// was successfully coalesced away. If it is not currently possible to 143 /// coalesce this interval, but it may be possible if other things get 144 /// coalesced, then it returns true by reference in 'Again'. 145 bool joinCopy(MachineInstr *TheCopy, bool &Again); 146 147 /// Attempt to join these two intervals. On failure, this 148 /// returns false. The output "SrcInt" will not have been modified, so we 149 /// can use this information below to update aliases. 150 bool joinIntervals(CoalescerPair &CP); 151 152 /// Attempt joining two virtual registers. Return true on success. 153 bool joinVirtRegs(CoalescerPair &CP); 154 155 /// Attempt joining with a reserved physreg. 156 bool joinReservedPhysReg(CoalescerPair &CP); 157 158 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 159 /// Subranges in @p LI which only partially interfere with the desired 160 /// LaneMask are split as necessary. @p LaneMask are the lanes that 161 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 162 /// lanemasks already adjusted to the coalesced register. 163 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 164 unsigned LaneMask, CoalescerPair &CP); 165 166 /// Join the liveranges of two subregisters. Joins @p RRange into 167 /// @p LRange, @p RRange may be invalid afterwards. 168 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 169 unsigned LaneMask, const CoalescerPair &CP); 170 171 /// We found a non-trivially-coalescable copy. If the source value number is 172 /// defined by a copy from the destination reg see if we can merge these two 173 /// destination reg valno# into a single value number, eliminating a copy. 174 /// This returns true if an interval was modified. 175 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 176 177 /// Return true if there are definitions of IntB 178 /// other than BValNo val# that can reach uses of AValno val# of IntA. 179 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 180 VNInfo *AValNo, VNInfo *BValNo); 181 182 /// We found a non-trivially-coalescable copy. 183 /// If the source value number is defined by a commutable instruction and 184 /// its other operand is coalesced to the copy dest register, see if we 185 /// can transform the copy into a noop by commuting the definition. 186 /// This returns true if an interval was modified. 187 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); 188 189 /// If the source of a copy is defined by a 190 /// trivial computation, replace the copy by rematerialize the definition. 191 bool reMaterializeTrivialDef(CoalescerPair &CP, MachineInstr *CopyMI, 192 bool &IsDefCopy); 193 194 /// Return true if a copy involving a physreg should be joined. 195 bool canJoinPhys(const CoalescerPair &CP); 196 197 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 198 /// number if it is not zero. If DstReg is a physical register and the 199 /// existing subregister number of the def / use being updated is not zero, 200 /// make sure to set it to the correct physical subregister. 201 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 202 203 /// Handle copies of undef values. 204 /// Returns true if @p CopyMI was a copy of an undef value and eliminated. 205 bool eliminateUndefCopy(MachineInstr *CopyMI); 206 207 public: 208 static char ID; ///< Class identification, replacement for typeinfo 209 RegisterCoalescer() : MachineFunctionPass(ID) { 210 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 211 } 212 213 void getAnalysisUsage(AnalysisUsage &AU) const override; 214 215 void releaseMemory() override; 216 217 /// This is the pass entry point. 218 bool runOnMachineFunction(MachineFunction&) override; 219 220 /// Implement the dump method. 221 void print(raw_ostream &O, const Module* = nullptr) const override; 222 }; 223 } // end anonymous namespace 224 225 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 226 227 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 228 "Simple Register Coalescing", false, false) 229 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 230 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 231 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 232 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 233 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 234 "Simple Register Coalescing", false, false) 235 236 char RegisterCoalescer::ID = 0; 237 238 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 239 unsigned &Src, unsigned &Dst, 240 unsigned &SrcSub, unsigned &DstSub) { 241 if (MI->isCopy()) { 242 Dst = MI->getOperand(0).getReg(); 243 DstSub = MI->getOperand(0).getSubReg(); 244 Src = MI->getOperand(1).getReg(); 245 SrcSub = MI->getOperand(1).getSubReg(); 246 } else if (MI->isSubregToReg()) { 247 Dst = MI->getOperand(0).getReg(); 248 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 249 MI->getOperand(3).getImm()); 250 Src = MI->getOperand(2).getReg(); 251 SrcSub = MI->getOperand(2).getSubReg(); 252 } else 253 return false; 254 return true; 255 } 256 257 /// Return true if this block should be vacated by the coalescer to eliminate 258 /// branches. The important cases to handle in the coalescer are critical edges 259 /// split during phi elimination which contain only copies. Simple blocks that 260 /// contain non-branches should also be vacated, but this can be handled by an 261 /// earlier pass similar to early if-conversion. 262 static bool isSplitEdge(const MachineBasicBlock *MBB) { 263 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 264 return false; 265 266 for (const auto &MI : *MBB) { 267 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 268 return false; 269 } 270 return true; 271 } 272 273 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 274 SrcReg = DstReg = 0; 275 SrcIdx = DstIdx = 0; 276 NewRC = nullptr; 277 Flipped = CrossClass = false; 278 279 unsigned Src, Dst, SrcSub, DstSub; 280 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 281 return false; 282 Partial = SrcSub || DstSub; 283 284 // If one register is a physreg, it must be Dst. 285 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 286 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 287 return false; 288 std::swap(Src, Dst); 289 std::swap(SrcSub, DstSub); 290 Flipped = true; 291 } 292 293 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 294 295 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 296 // Eliminate DstSub on a physreg. 297 if (DstSub) { 298 Dst = TRI.getSubReg(Dst, DstSub); 299 if (!Dst) return false; 300 DstSub = 0; 301 } 302 303 // Eliminate SrcSub by picking a corresponding Dst superregister. 304 if (SrcSub) { 305 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 306 if (!Dst) return false; 307 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 308 return false; 309 } 310 } else { 311 // Both registers are virtual. 312 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 313 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 314 315 // Both registers have subreg indices. 316 if (SrcSub && DstSub) { 317 // Copies between different sub-registers are never coalescable. 318 if (Src == Dst && SrcSub != DstSub) 319 return false; 320 321 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 322 SrcIdx, DstIdx); 323 if (!NewRC) 324 return false; 325 } else if (DstSub) { 326 // SrcReg will be merged with a sub-register of DstReg. 327 SrcIdx = DstSub; 328 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 329 } else if (SrcSub) { 330 // DstReg will be merged with a sub-register of SrcReg. 331 DstIdx = SrcSub; 332 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 333 } else { 334 // This is a straight copy without sub-registers. 335 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 336 } 337 338 // The combined constraint may be impossible to satisfy. 339 if (!NewRC) 340 return false; 341 342 // Prefer SrcReg to be a sub-register of DstReg. 343 // FIXME: Coalescer should support subregs symmetrically. 344 if (DstIdx && !SrcIdx) { 345 std::swap(Src, Dst); 346 std::swap(SrcIdx, DstIdx); 347 Flipped = !Flipped; 348 } 349 350 CrossClass = NewRC != DstRC || NewRC != SrcRC; 351 } 352 // Check our invariants 353 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 354 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 355 "Cannot have a physical SubIdx"); 356 SrcReg = Src; 357 DstReg = Dst; 358 return true; 359 } 360 361 bool CoalescerPair::flip() { 362 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 363 return false; 364 std::swap(SrcReg, DstReg); 365 std::swap(SrcIdx, DstIdx); 366 Flipped = !Flipped; 367 return true; 368 } 369 370 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 371 if (!MI) 372 return false; 373 unsigned Src, Dst, SrcSub, DstSub; 374 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 375 return false; 376 377 // Find the virtual register that is SrcReg. 378 if (Dst == SrcReg) { 379 std::swap(Src, Dst); 380 std::swap(SrcSub, DstSub); 381 } else if (Src != SrcReg) { 382 return false; 383 } 384 385 // Now check that Dst matches DstReg. 386 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 387 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 388 return false; 389 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 390 // DstSub could be set for a physreg from INSERT_SUBREG. 391 if (DstSub) 392 Dst = TRI.getSubReg(Dst, DstSub); 393 // Full copy of Src. 394 if (!SrcSub) 395 return DstReg == Dst; 396 // This is a partial register copy. Check that the parts match. 397 return TRI.getSubReg(DstReg, SrcSub) == Dst; 398 } else { 399 // DstReg is virtual. 400 if (DstReg != Dst) 401 return false; 402 // Registers match, do the subregisters line up? 403 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 404 TRI.composeSubRegIndices(DstIdx, DstSub); 405 } 406 } 407 408 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 409 AU.setPreservesCFG(); 410 AU.addRequired<AliasAnalysis>(); 411 AU.addRequired<LiveIntervals>(); 412 AU.addPreserved<LiveIntervals>(); 413 AU.addPreserved<SlotIndexes>(); 414 AU.addRequired<MachineLoopInfo>(); 415 AU.addPreserved<MachineLoopInfo>(); 416 AU.addPreservedID(MachineDominatorsID); 417 MachineFunctionPass::getAnalysisUsage(AU); 418 } 419 420 void RegisterCoalescer::eliminateDeadDefs() { 421 SmallVector<unsigned, 8> NewRegs; 422 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 423 nullptr, this).eliminateDeadDefs(DeadDefs); 424 } 425 426 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 427 // MI may be in WorkList. Make sure we don't visit it. 428 ErasedInstrs.insert(MI); 429 } 430 431 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 432 MachineInstr *CopyMI) { 433 assert(!CP.isPartial() && "This doesn't work for partial copies."); 434 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 435 436 LiveInterval &IntA = 437 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 438 LiveInterval &IntB = 439 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 440 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 441 442 // We have a non-trivially-coalescable copy with IntA being the source and 443 // IntB being the dest, thus this defines a value number in IntB. If the 444 // source value number (in IntA) is defined by a copy from B, see if we can 445 // merge these two pieces of B into a single value number, eliminating a copy. 446 // For example: 447 // 448 // A3 = B0 449 // ... 450 // B1 = A3 <- this copy 451 // 452 // In this case, B0 can be extended to where the B1 copy lives, allowing the 453 // B1 value number to be replaced with B0 (which simplifies the B 454 // liveinterval). 455 456 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 457 // the example above. 458 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 459 if (BS == IntB.end()) return false; 460 VNInfo *BValNo = BS->valno; 461 462 // Get the location that B is defined at. Two options: either this value has 463 // an unknown definition point or it is defined at CopyIdx. If unknown, we 464 // can't process it. 465 if (BValNo->def != CopyIdx) return false; 466 467 // AValNo is the value number in A that defines the copy, A3 in the example. 468 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 469 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 470 // The live segment might not exist after fun with physreg coalescing. 471 if (AS == IntA.end()) return false; 472 VNInfo *AValNo = AS->valno; 473 474 // If AValNo is defined as a copy from IntB, we can potentially process this. 475 // Get the instruction that defines this value number. 476 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 477 // Don't allow any partial copies, even if isCoalescable() allows them. 478 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 479 return false; 480 481 // Get the Segment in IntB that this value number starts with. 482 LiveInterval::iterator ValS = 483 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 484 if (ValS == IntB.end()) 485 return false; 486 487 // Make sure that the end of the live segment is inside the same block as 488 // CopyMI. 489 MachineInstr *ValSEndInst = 490 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 491 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 492 return false; 493 494 // Okay, we now know that ValS ends in the same block that the CopyMI 495 // live-range starts. If there are no intervening live segments between them 496 // in IntB, we can merge them. 497 if (ValS+1 != BS) return false; 498 499 DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI)); 500 501 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 502 // We are about to delete CopyMI, so need to remove it as the 'instruction 503 // that defines this value #'. Update the valnum with the new defining 504 // instruction #. 505 BValNo->def = FillerStart; 506 507 // Okay, we can merge them. We need to insert a new liverange: 508 // [ValS.end, BS.begin) of either value number, then we merge the 509 // two value numbers. 510 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 511 512 // Okay, merge "B1" into the same value number as "B0". 513 if (BValNo != ValS->valno) 514 IntB.MergeValueNumberInto(BValNo, ValS->valno); 515 516 // Do the same for the subregister segments. 517 for (LiveInterval::SubRange &S : IntB.subranges()) { 518 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 519 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 520 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 521 if (SubBValNo != SubValSNo) 522 S.MergeValueNumberInto(SubBValNo, SubValSNo); 523 } 524 525 DEBUG(dbgs() << " result = " << IntB << '\n'); 526 527 // If the source instruction was killing the source register before the 528 // merge, unset the isKill marker given the live range has been extended. 529 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 530 if (UIdx != -1) { 531 ValSEndInst->getOperand(UIdx).setIsKill(false); 532 } 533 534 // Rewrite the copy. If the copy instruction was killing the destination 535 // register before the merge, find the last use and trim the live range. That 536 // will also add the isKill marker. 537 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 538 if (AS->end == CopyIdx) 539 LIS->shrinkToUses(&IntA); 540 541 ++numExtends; 542 return true; 543 } 544 545 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 546 LiveInterval &IntB, 547 VNInfo *AValNo, 548 VNInfo *BValNo) { 549 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 550 // the PHI values. 551 if (LIS->hasPHIKill(IntA, AValNo)) 552 return true; 553 554 for (LiveRange::Segment &ASeg : IntA.segments) { 555 if (ASeg.valno != AValNo) continue; 556 LiveInterval::iterator BI = 557 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start); 558 if (BI != IntB.begin()) 559 --BI; 560 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 561 if (BI->valno == BValNo) 562 continue; 563 if (BI->start <= ASeg.start && BI->end > ASeg.start) 564 return true; 565 if (BI->start > ASeg.start && BI->start < ASeg.end) 566 return true; 567 } 568 } 569 return false; 570 } 571 572 /// Copy segements with value number @p SrcValNo from liverange @p Src to live 573 /// range @Dst and use value number @p DstValNo there. 574 static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, 575 const LiveRange &Src, const VNInfo *SrcValNo) 576 { 577 for (const LiveRange::Segment &S : Src.segments) { 578 if (S.valno != SrcValNo) 579 continue; 580 Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo)); 581 } 582 } 583 584 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 585 MachineInstr *CopyMI) { 586 assert(!CP.isPhys()); 587 588 LiveInterval &IntA = 589 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 590 LiveInterval &IntB = 591 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 592 593 // We found a non-trivially-coalescable copy with IntA being the source and 594 // IntB being the dest, thus this defines a value number in IntB. If the 595 // source value number (in IntA) is defined by a commutable instruction and 596 // its other operand is coalesced to the copy dest register, see if we can 597 // transform the copy into a noop by commuting the definition. For example, 598 // 599 // A3 = op A2 B0<kill> 600 // ... 601 // B1 = A3 <- this copy 602 // ... 603 // = op A3 <- more uses 604 // 605 // ==> 606 // 607 // B2 = op B0 A2<kill> 608 // ... 609 // B1 = B2 <- now an identity copy 610 // ... 611 // = op B2 <- more uses 612 613 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 614 // the example above. 615 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 616 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 617 assert(BValNo != nullptr && BValNo->def == CopyIdx); 618 619 // AValNo is the value number in A that defines the copy, A3 in the example. 620 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 621 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 622 if (AValNo->isPHIDef()) 623 return false; 624 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 625 if (!DefMI) 626 return false; 627 if (!DefMI->isCommutable()) 628 return false; 629 // If DefMI is a two-address instruction then commuting it will change the 630 // destination register. 631 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 632 assert(DefIdx != -1); 633 unsigned UseOpIdx; 634 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 635 return false; 636 unsigned Op1, Op2, NewDstIdx; 637 if (!TII->findCommutedOpIndices(DefMI, Op1, Op2)) 638 return false; 639 if (Op1 == UseOpIdx) 640 NewDstIdx = Op2; 641 else if (Op2 == UseOpIdx) 642 NewDstIdx = Op1; 643 else 644 return false; 645 646 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 647 unsigned NewReg = NewDstMO.getReg(); 648 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 649 return false; 650 651 // Make sure there are no other definitions of IntB that would reach the 652 // uses which the new definition can reach. 653 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 654 return false; 655 656 // If some of the uses of IntA.reg is already coalesced away, return false. 657 // It's not possible to determine whether it's safe to perform the coalescing. 658 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 659 MachineInstr *UseMI = MO.getParent(); 660 unsigned OpNo = &MO - &UseMI->getOperand(0); 661 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI); 662 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 663 if (US == IntA.end() || US->valno != AValNo) 664 continue; 665 // If this use is tied to a def, we can't rewrite the register. 666 if (UseMI->isRegTiedToDefOperand(OpNo)) 667 return false; 668 } 669 670 DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 671 << *DefMI); 672 673 // At this point we have decided that it is legal to do this 674 // transformation. Start by commuting the instruction. 675 MachineBasicBlock *MBB = DefMI->getParent(); 676 MachineInstr *NewMI = TII->commuteInstruction(DefMI); 677 if (!NewMI) 678 return false; 679 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 680 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 681 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 682 return false; 683 if (NewMI != DefMI) { 684 LIS->ReplaceMachineInstrInMaps(DefMI, NewMI); 685 MachineBasicBlock::iterator Pos = DefMI; 686 MBB->insert(Pos, NewMI); 687 MBB->erase(DefMI); 688 } 689 690 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 691 // A = or A, B 692 // ... 693 // B = A 694 // ... 695 // C = A<kill> 696 // ... 697 // = B 698 699 // Update uses of IntA of the specific Val# with IntB. 700 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 701 UE = MRI->use_end(); 702 UI != UE; /* ++UI is below because of possible MI removal */) { 703 MachineOperand &UseMO = *UI; 704 ++UI; 705 if (UseMO.isUndef()) 706 continue; 707 MachineInstr *UseMI = UseMO.getParent(); 708 if (UseMI->isDebugValue()) { 709 // FIXME These don't have an instruction index. Not clear we have enough 710 // info to decide whether to do this replacement or not. For now do it. 711 UseMO.setReg(NewReg); 712 continue; 713 } 714 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true); 715 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 716 assert(US != IntA.end() && "Use must be live"); 717 if (US->valno != AValNo) 718 continue; 719 // Kill flags are no longer accurate. They are recomputed after RA. 720 UseMO.setIsKill(false); 721 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 722 UseMO.substPhysReg(NewReg, *TRI); 723 else 724 UseMO.setReg(NewReg); 725 if (UseMI == CopyMI) 726 continue; 727 if (!UseMI->isCopy()) 728 continue; 729 if (UseMI->getOperand(0).getReg() != IntB.reg || 730 UseMI->getOperand(0).getSubReg()) 731 continue; 732 733 // This copy will become a noop. If it's defining a new val#, merge it into 734 // BValNo. 735 SlotIndex DefIdx = UseIdx.getRegSlot(); 736 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 737 if (!DVNI) 738 continue; 739 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 740 assert(DVNI->def == DefIdx); 741 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 742 for (LiveInterval::SubRange &S : IntB.subranges()) { 743 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 744 if (!SubDVNI) 745 continue; 746 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 747 assert(SubBValNo->def == CopyIdx); 748 S.MergeValueNumberInto(SubDVNI, SubBValNo); 749 } 750 751 ErasedInstrs.insert(UseMI); 752 LIS->RemoveMachineInstrFromMaps(UseMI); 753 UseMI->eraseFromParent(); 754 } 755 756 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 757 // is updated. 758 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 759 if (IntB.hasSubRanges()) { 760 if (!IntA.hasSubRanges()) { 761 unsigned Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 762 IntA.createSubRangeFrom(Allocator, Mask, IntA); 763 } 764 SlotIndex AIdx = CopyIdx.getRegSlot(true); 765 for (LiveInterval::SubRange &SA : IntA.subranges()) { 766 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 767 assert(ASubValNo != nullptr); 768 769 unsigned AMask = SA.LaneMask; 770 for (LiveInterval::SubRange &SB : IntB.subranges()) { 771 unsigned BMask = SB.LaneMask; 772 unsigned Common = BMask & AMask; 773 if (Common == 0) 774 continue; 775 776 DEBUG( 777 dbgs() << format("\t\tCopy+Merge %04X into %04X\n", BMask, Common)); 778 unsigned BRest = BMask & ~AMask; 779 LiveInterval::SubRange *CommonRange; 780 if (BRest != 0) { 781 SB.LaneMask = BRest; 782 DEBUG(dbgs() << format("\t\tReduce Lane to %04X\n", BRest)); 783 // Duplicate SubRange for newly merged common stuff. 784 CommonRange = IntB.createSubRangeFrom(Allocator, Common, SB); 785 } else { 786 // We van reuse the L SubRange. 787 SB.LaneMask = Common; 788 CommonRange = &SB; 789 } 790 LiveRange RangeCopy(SB, Allocator); 791 792 VNInfo *BSubValNo = CommonRange->getVNInfoAt(CopyIdx); 793 assert(BSubValNo->def == CopyIdx); 794 BSubValNo->def = ASubValNo->def; 795 addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo); 796 AMask &= ~BMask; 797 } 798 if (AMask != 0) { 799 DEBUG(dbgs() << format("\t\tNew Lane %04X\n", AMask)); 800 LiveRange *NewRange = IntB.createSubRange(Allocator, AMask); 801 VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator); 802 addSegmentsWithValNo(*NewRange, BSubValNo, SA, ASubValNo); 803 } 804 } 805 } 806 807 BValNo->def = AValNo->def; 808 addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 809 DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 810 811 LIS->removeVRegDefAt(IntA, AValNo->def); 812 813 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 814 ++numCommutes; 815 return true; 816 } 817 818 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 819 /// defining a subregister. 820 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 821 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && 822 "This code cannot handle physreg aliasing"); 823 for (const MachineOperand &Op : MI.operands()) { 824 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 825 continue; 826 // Return true if we define the full register or don't care about the value 827 // inside other subregisters. 828 if (Op.getSubReg() == 0 || Op.isUndef()) 829 return true; 830 } 831 return false; 832 } 833 834 bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP, 835 MachineInstr *CopyMI, 836 bool &IsDefCopy) { 837 IsDefCopy = false; 838 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 839 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 840 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 841 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 842 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 843 return false; 844 845 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 846 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI); 847 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 848 assert(ValNo && "CopyMI input register not live"); 849 if (ValNo->isPHIDef() || ValNo->isUnused()) 850 return false; 851 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 852 if (!DefMI) 853 return false; 854 if (DefMI->isCopyLike()) { 855 IsDefCopy = true; 856 return false; 857 } 858 if (!TII->isAsCheapAsAMove(DefMI)) 859 return false; 860 if (!TII->isTriviallyReMaterializable(DefMI, AA)) 861 return false; 862 if (!definesFullReg(*DefMI, SrcReg)) 863 return false; 864 bool SawStore = false; 865 if (!DefMI->isSafeToMove(TII, AA, SawStore)) 866 return false; 867 const MCInstrDesc &MCID = DefMI->getDesc(); 868 if (MCID.getNumDefs() != 1) 869 return false; 870 // Only support subregister destinations when the def is read-undef. 871 MachineOperand &DstOperand = CopyMI->getOperand(0); 872 unsigned CopyDstReg = DstOperand.getReg(); 873 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 874 return false; 875 876 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 877 // the register substantially (beyond both source and dest size). This is bad 878 // for performance since it can cascade through a function, introducing many 879 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 880 // around after a few subreg copies). 881 if (SrcIdx && DstIdx) 882 return false; 883 884 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 885 if (!DefMI->isImplicitDef()) { 886 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 887 unsigned NewDstReg = DstReg; 888 889 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 890 DefMI->getOperand(0).getSubReg()); 891 if (NewDstIdx) 892 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 893 894 // Finally, make sure that the physical subregister that will be 895 // constructed later is permitted for the instruction. 896 if (!DefRC->contains(NewDstReg)) 897 return false; 898 } else { 899 // Theoretically, some stack frame reference could exist. Just make sure 900 // it hasn't actually happened. 901 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 902 "Only expect to deal with virtual or physical registers"); 903 } 904 } 905 906 MachineBasicBlock *MBB = CopyMI->getParent(); 907 MachineBasicBlock::iterator MII = 908 std::next(MachineBasicBlock::iterator(CopyMI)); 909 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI); 910 MachineInstr *NewMI = std::prev(MII); 911 912 LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI); 913 CopyMI->eraseFromParent(); 914 ErasedInstrs.insert(CopyMI); 915 916 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 917 // We need to remember these so we can add intervals once we insert 918 // NewMI into SlotIndexes. 919 SmallVector<unsigned, 4> NewMIImplDefs; 920 for (unsigned i = NewMI->getDesc().getNumOperands(), 921 e = NewMI->getNumOperands(); i != e; ++i) { 922 MachineOperand &MO = NewMI->getOperand(i); 923 if (MO.isReg()) { 924 assert(MO.isDef() && MO.isImplicit() && MO.isDead() && 925 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 926 NewMIImplDefs.push_back(MO.getReg()); 927 } 928 } 929 930 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 931 const TargetRegisterClass *NewRC = CP.getNewRC(); 932 unsigned NewIdx = NewMI->getOperand(0).getSubReg(); 933 934 if (DefRC != nullptr) { 935 if (NewIdx) 936 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 937 else 938 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 939 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 940 } 941 MRI->setRegClass(DstReg, NewRC); 942 943 updateRegDefsUses(DstReg, DstReg, DstIdx); 944 NewMI->getOperand(0).setSubReg(NewIdx); 945 } else if (NewMI->getOperand(0).getReg() != CopyDstReg) { 946 // The New instruction may be defining a sub-register of what's actually 947 // been asked for. If so it must implicitly define the whole thing. 948 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 949 "Only expect virtual or physical registers in remat"); 950 NewMI->getOperand(0).setIsDead(true); 951 NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg, 952 true /*IsDef*/, 953 true /*IsImp*/, 954 false /*IsKill*/)); 955 // Record small dead def live-ranges for all the subregisters 956 // of the destination register. 957 // Otherwise, variables that live through may miss some 958 // interferences, thus creating invalid allocation. 959 // E.g., i386 code: 960 // vreg1 = somedef ; vreg1 GR8 961 // vreg2 = remat ; vreg2 GR32 962 // CL = COPY vreg2.sub_8bit 963 // = somedef vreg1 ; vreg1 GR8 964 // => 965 // vreg1 = somedef ; vreg1 GR8 966 // ECX<def, dead> = remat ; CL<imp-def> 967 // = somedef vreg1 ; vreg1 GR8 968 // vreg1 will see the inteferences with CL but not with CH since 969 // no live-ranges would have been created for ECX. 970 // Fix that! 971 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 972 for (MCRegUnitIterator Units(NewMI->getOperand(0).getReg(), TRI); 973 Units.isValid(); ++Units) 974 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 975 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 976 } 977 978 if (NewMI->getOperand(0).getSubReg()) 979 NewMI->getOperand(0).setIsUndef(); 980 981 // CopyMI may have implicit operands, transfer them over to the newly 982 // rematerialized instruction. And update implicit def interval valnos. 983 for (unsigned i = CopyMI->getDesc().getNumOperands(), 984 e = CopyMI->getNumOperands(); i != e; ++i) { 985 MachineOperand &MO = CopyMI->getOperand(i); 986 if (MO.isReg()) { 987 assert(MO.isImplicit() && "No explicit operands after implict operands."); 988 // Discard VReg implicit defs. 989 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 990 NewMI->addOperand(MO); 991 } 992 } 993 } 994 995 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 996 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 997 unsigned Reg = NewMIImplDefs[i]; 998 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 999 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1000 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1001 } 1002 1003 DEBUG(dbgs() << "Remat: " << *NewMI); 1004 ++NumReMats; 1005 1006 // The source interval can become smaller because we removed a use. 1007 LIS->shrinkToUses(&SrcInt, &DeadDefs); 1008 if (!DeadDefs.empty()) { 1009 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1010 // to describe DstReg instead. 1011 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1012 MachineInstr *UseMI = UseMO.getParent(); 1013 if (UseMI->isDebugValue()) { 1014 UseMO.setReg(DstReg); 1015 DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1016 } 1017 } 1018 eliminateDeadDefs(); 1019 } 1020 1021 return true; 1022 } 1023 1024 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1025 // ProcessImpicitDefs may leave some copies of <undef> values, it only removes 1026 // local variables. When we have a copy like: 1027 // 1028 // %vreg1 = COPY %vreg2<undef> 1029 // 1030 // We delete the copy and remove the corresponding value number from %vreg1. 1031 // Any uses of that value number are marked as <undef>. 1032 1033 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1034 // CoalescerPair may have a new register class with adjusted subreg indices 1035 // at this point. 1036 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1037 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx); 1038 1039 SlotIndex Idx = LIS->getInstructionIndex(CopyMI); 1040 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1041 // CopyMI is undef iff SrcReg is not live before the instruction. 1042 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1043 unsigned SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1044 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1045 if ((SR.LaneMask & SrcMask) == 0) 1046 continue; 1047 if (SR.liveAt(Idx)) 1048 return false; 1049 } 1050 } else if (SrcLI.liveAt(Idx)) 1051 return false; 1052 1053 DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1054 1055 // Remove any DstReg segments starting at the instruction. 1056 LiveInterval &DstLI = LIS->getInterval(DstReg); 1057 SlotIndex RegIndex = Idx.getRegSlot(); 1058 // Remove value or merge with previous one in case of a subregister def. 1059 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1060 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1061 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1062 1063 // The affected subregister segments can be removed. 1064 unsigned DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1065 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1066 if ((SR.LaneMask & DstMask) == 0) 1067 continue; 1068 1069 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1070 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1071 SR.removeValNo(SVNI); 1072 } 1073 DstLI.removeEmptySubRanges(); 1074 } else 1075 LIS->removeVRegDefAt(DstLI, RegIndex); 1076 1077 // Mark uses as undef. 1078 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1079 if (MO.isDef() /*|| MO.isUndef()*/) 1080 continue; 1081 const MachineInstr &MI = *MO.getParent(); 1082 SlotIndex UseIdx = LIS->getInstructionIndex(&MI); 1083 unsigned UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1084 bool isLive; 1085 if (UseMask != ~0u && DstLI.hasSubRanges()) { 1086 isLive = false; 1087 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1088 if ((SR.LaneMask & UseMask) == 0) 1089 continue; 1090 if (SR.liveAt(UseIdx)) { 1091 isLive = true; 1092 break; 1093 } 1094 } 1095 } else 1096 isLive = DstLI.liveAt(UseIdx); 1097 if (isLive) 1098 continue; 1099 MO.setIsUndef(true); 1100 DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1101 } 1102 return true; 1103 } 1104 1105 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 1106 unsigned DstReg, 1107 unsigned SubIdx) { 1108 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 1109 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1110 1111 SmallPtrSet<MachineInstr*, 8> Visited; 1112 for (MachineRegisterInfo::reg_instr_iterator 1113 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1114 I != E; ) { 1115 MachineInstr *UseMI = &*(I++); 1116 1117 // Each instruction can only be rewritten once because sub-register 1118 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1119 // the UseMI operands removes them from the SrcReg use-def chain, but when 1120 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1121 // operands mentioning the virtual register. 1122 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1123 continue; 1124 1125 SmallVector<unsigned,8> Ops; 1126 bool Reads, Writes; 1127 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1128 1129 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1130 // because SrcReg is a sub-register. 1131 if (DstInt && !Reads && SubIdx) 1132 Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI)); 1133 1134 // Replace SrcReg with DstReg in all UseMI operands. 1135 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1136 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1137 1138 // Adjust <undef> flags in case of sub-register joins. We don't want to 1139 // turn a full def into a read-modify-write sub-register def and vice 1140 // versa. 1141 if (SubIdx && MO.isDef()) 1142 MO.setIsUndef(!Reads); 1143 1144 // A subreg use of a partially undef (super) register may be a complete 1145 // undef use now and then has to be marked that way. 1146 if (SubIdx != 0 && MO.isUse() && MRI->tracksSubRegLiveness()) { 1147 if (!DstInt->hasSubRanges()) { 1148 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1149 unsigned Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1150 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1151 } 1152 unsigned Mask = TRI->getSubRegIndexLaneMask(SubIdx); 1153 bool IsUndef = true; 1154 SlotIndex MIIdx = UseMI->isDebugValue() 1155 ? LIS->getSlotIndexes()->getIndexBefore(UseMI) 1156 : LIS->getInstructionIndex(UseMI); 1157 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1158 for (LiveInterval::SubRange &S : DstInt->subranges()) { 1159 if ((S.LaneMask & Mask) == 0) 1160 continue; 1161 if (S.liveAt(UseIdx)) { 1162 IsUndef = false; 1163 break; 1164 } 1165 } 1166 if (IsUndef) { 1167 MO.setIsUndef(true); 1168 // We found out some subregister use is actually reading an undefined 1169 // value. In some cases the whole vreg has become undefined at this 1170 // point so we have to potentially shrink the main range if the 1171 // use was ending a live segment there. 1172 LiveQueryResult Q = DstInt->Query(MIIdx); 1173 if (Q.valueOut() == nullptr) 1174 ShrinkMainRange = true; 1175 } 1176 } 1177 1178 if (DstIsPhys) 1179 MO.substPhysReg(DstReg, *TRI); 1180 else 1181 MO.substVirtReg(DstReg, SubIdx, *TRI); 1182 } 1183 1184 DEBUG({ 1185 dbgs() << "\t\tupdated: "; 1186 if (!UseMI->isDebugValue()) 1187 dbgs() << LIS->getInstructionIndex(UseMI) << "\t"; 1188 dbgs() << *UseMI; 1189 }); 1190 } 1191 } 1192 1193 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1194 // Always join simple intervals that are defined by a single copy from a 1195 // reserved register. This doesn't increase register pressure, so it is 1196 // always beneficial. 1197 if (!MRI->isReserved(CP.getDstReg())) { 1198 DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1199 return false; 1200 } 1201 1202 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1203 if (JoinVInt.containsOneValue()) 1204 return true; 1205 1206 DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1207 return false; 1208 } 1209 1210 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1211 1212 Again = false; 1213 DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI); 1214 1215 CoalescerPair CP(*TRI); 1216 if (!CP.setRegisters(CopyMI)) { 1217 DEBUG(dbgs() << "\tNot coalescable.\n"); 1218 return false; 1219 } 1220 1221 if (CP.getNewRC()) { 1222 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1223 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1224 unsigned SrcIdx = CP.getSrcIdx(); 1225 unsigned DstIdx = CP.getDstIdx(); 1226 if (CP.isFlipped()) { 1227 std::swap(SrcIdx, DstIdx); 1228 std::swap(SrcRC, DstRC); 1229 } 1230 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1231 CP.getNewRC())) { 1232 DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1233 return false; 1234 } 1235 } 1236 1237 // Dead code elimination. This really should be handled by MachineDCE, but 1238 // sometimes dead copies slip through, and we can't generate invalid live 1239 // ranges. 1240 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1241 DEBUG(dbgs() << "\tCopy is dead.\n"); 1242 DeadDefs.push_back(CopyMI); 1243 eliminateDeadDefs(); 1244 return true; 1245 } 1246 1247 // Eliminate undefs. 1248 if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) { 1249 LIS->RemoveMachineInstrFromMaps(CopyMI); 1250 CopyMI->eraseFromParent(); 1251 return false; // Not coalescable. 1252 } 1253 1254 // Coalesced copies are normally removed immediately, but transformations 1255 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1256 // When that happens, just join the values and remove the copy. 1257 if (CP.getSrcReg() == CP.getDstReg()) { 1258 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1259 DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1260 const SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI); 1261 LiveQueryResult LRQ = LI.Query(CopyIdx); 1262 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1263 VNInfo *ReadVNI = LRQ.valueIn(); 1264 assert(ReadVNI && "No value before copy and no <undef> flag."); 1265 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1266 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1267 1268 // Process subregister liveranges. 1269 for (LiveInterval::SubRange &S : LI.subranges()) { 1270 LiveQueryResult SLRQ = S.Query(CopyIdx); 1271 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1272 VNInfo *SReadVNI = SLRQ.valueIn(); 1273 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1274 } 1275 } 1276 DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1277 } 1278 LIS->RemoveMachineInstrFromMaps(CopyMI); 1279 CopyMI->eraseFromParent(); 1280 return true; 1281 } 1282 1283 // Enforce policies. 1284 if (CP.isPhys()) { 1285 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI) 1286 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) 1287 << '\n'); 1288 if (!canJoinPhys(CP)) { 1289 // Before giving up coalescing, if definition of source is defined by 1290 // trivial computation, try rematerializing it. 1291 bool IsDefCopy; 1292 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1293 return true; 1294 if (IsDefCopy) 1295 Again = true; // May be possible to coalesce later. 1296 return false; 1297 } 1298 } else { 1299 // When possible, let DstReg be the larger interval. 1300 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1301 LIS->getInterval(CP.getDstReg()).size()) 1302 CP.flip(); 1303 1304 DEBUG({ 1305 dbgs() << "\tConsidering merging to " 1306 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1307 if (CP.getDstIdx() && CP.getSrcIdx()) 1308 dbgs() << PrintReg(CP.getDstReg()) << " in " 1309 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1310 << PrintReg(CP.getSrcReg()) << " in " 1311 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1312 else 1313 dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in " 1314 << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1315 }); 1316 } 1317 1318 ShrinkMask = 0; 1319 ShrinkMainRange = false; 1320 1321 // Okay, attempt to join these two intervals. On failure, this returns false. 1322 // Otherwise, if one of the intervals being joined is a physreg, this method 1323 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1324 // been modified, so we can use this information below to update aliases. 1325 if (!joinIntervals(CP)) { 1326 // Coalescing failed. 1327 1328 // If definition of source is defined by trivial computation, try 1329 // rematerializing it. 1330 bool IsDefCopy; 1331 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1332 return true; 1333 1334 // If we can eliminate the copy without merging the live segments, do so 1335 // now. 1336 if (!CP.isPartial() && !CP.isPhys()) { 1337 if (adjustCopiesBackFrom(CP, CopyMI) || 1338 removeCopyByCommutingDef(CP, CopyMI)) { 1339 LIS->RemoveMachineInstrFromMaps(CopyMI); 1340 CopyMI->eraseFromParent(); 1341 DEBUG(dbgs() << "\tTrivial!\n"); 1342 return true; 1343 } 1344 } 1345 1346 // Otherwise, we are unable to join the intervals. 1347 DEBUG(dbgs() << "\tInterference!\n"); 1348 Again = true; // May be possible to coalesce later. 1349 return false; 1350 } 1351 1352 // Coalescing to a virtual register that is of a sub-register class of the 1353 // other. Make sure the resulting register is set to the right register class. 1354 if (CP.isCrossClass()) { 1355 ++numCrossRCs; 1356 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1357 } 1358 1359 // Removing sub-register copies can ease the register class constraints. 1360 // Make sure we attempt to inflate the register class of DstReg. 1361 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1362 InflateRegs.push_back(CP.getDstReg()); 1363 1364 // CopyMI has been erased by joinIntervals at this point. Remove it from 1365 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1366 // to the work list. This keeps ErasedInstrs from growing needlessly. 1367 ErasedInstrs.erase(CopyMI); 1368 1369 // Rewrite all SrcReg operands to DstReg. 1370 // Also update DstReg operands to include DstIdx if it is set. 1371 if (CP.getDstIdx()) 1372 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1373 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1374 1375 // Shrink subregister ranges if necessary. 1376 if (ShrinkMask != 0) { 1377 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1378 for (LiveInterval::SubRange &S : LI.subranges()) { 1379 if ((S.LaneMask & ShrinkMask) == 0) 1380 continue; 1381 DEBUG(dbgs() << "Shrink LaneUses (Lane " 1382 << format("%04X", S.LaneMask) << ")\n"); 1383 LIS->shrinkToUses(S, LI.reg); 1384 } 1385 } 1386 if (ShrinkMainRange) { 1387 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1388 LIS->shrinkToUses(&LI); 1389 } 1390 1391 // SrcReg is guaranteed to be the register whose live interval that is 1392 // being merged. 1393 LIS->removeInterval(CP.getSrcReg()); 1394 1395 // Update regalloc hint. 1396 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1397 1398 DEBUG({ 1399 dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 1400 << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 1401 dbgs() << "\tResult = "; 1402 if (CP.isPhys()) 1403 dbgs() << PrintReg(CP.getDstReg(), TRI); 1404 else 1405 dbgs() << LIS->getInterval(CP.getDstReg()); 1406 dbgs() << '\n'; 1407 }); 1408 1409 ++numJoins; 1410 return true; 1411 } 1412 1413 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1414 unsigned DstReg = CP.getDstReg(); 1415 assert(CP.isPhys() && "Must be a physreg copy"); 1416 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 1417 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 1418 DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1419 1420 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 1421 1422 // Optimization for reserved registers like ESP. We can only merge with a 1423 // reserved physreg if RHS has a single value that is a copy of DstReg. 1424 // The live range of the reserved register will look like a set of dead defs 1425 // - we don't properly track the live range of reserved registers. 1426 1427 // Deny any overlapping intervals. This depends on all the reserved 1428 // register live ranges to look like dead defs. 1429 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) 1430 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1431 DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n'); 1432 return false; 1433 } 1434 1435 // Skip any value computations, we are not adding new values to the 1436 // reserved register. Also skip merging the live ranges, the reserved 1437 // register live range doesn't need to be accurate as long as all the 1438 // defs are there. 1439 1440 // Delete the identity copy. 1441 MachineInstr *CopyMI; 1442 if (CP.isFlipped()) { 1443 CopyMI = MRI->getVRegDef(RHS.reg); 1444 } else { 1445 if (!MRI->hasOneNonDBGUse(RHS.reg)) { 1446 DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 1447 return false; 1448 } 1449 1450 MachineInstr *DestMI = MRI->getVRegDef(RHS.reg); 1451 CopyMI = &*MRI->use_instr_nodbg_begin(RHS.reg); 1452 const SlotIndex CopyRegIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 1453 const SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 1454 1455 // We checked above that there are no interfering defs of the physical 1456 // register. However, for this case, where we intent to move up the def of 1457 // the physical register, we also need to check for interfering uses. 1458 SlotIndexes *Indexes = LIS->getSlotIndexes(); 1459 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 1460 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 1461 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 1462 if (MI->readsRegister(DstReg, TRI)) { 1463 DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 1464 return false; 1465 } 1466 } 1467 1468 // We're going to remove the copy which defines a physical reserved 1469 // register, so remove its valno, etc. 1470 DEBUG(dbgs() << "\t\tRemoving phys reg def of " << DstReg << " at " 1471 << CopyRegIdx << "\n"); 1472 1473 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 1474 // Create a new dead def at the new def location. 1475 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1476 LiveRange &LR = LIS->getRegUnit(*UI); 1477 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 1478 } 1479 } 1480 1481 LIS->RemoveMachineInstrFromMaps(CopyMI); 1482 CopyMI->eraseFromParent(); 1483 1484 // We don't track kills for reserved registers. 1485 MRI->clearKillFlags(CP.getSrcReg()); 1486 1487 return true; 1488 } 1489 1490 //===----------------------------------------------------------------------===// 1491 // Interference checking and interval joining 1492 //===----------------------------------------------------------------------===// 1493 // 1494 // In the easiest case, the two live ranges being joined are disjoint, and 1495 // there is no interference to consider. It is quite common, though, to have 1496 // overlapping live ranges, and we need to check if the interference can be 1497 // resolved. 1498 // 1499 // The live range of a single SSA value forms a sub-tree of the dominator tree. 1500 // This means that two SSA values overlap if and only if the def of one value 1501 // is contained in the live range of the other value. As a special case, the 1502 // overlapping values can be defined at the same index. 1503 // 1504 // The interference from an overlapping def can be resolved in these cases: 1505 // 1506 // 1. Coalescable copies. The value is defined by a copy that would become an 1507 // identity copy after joining SrcReg and DstReg. The copy instruction will 1508 // be removed, and the value will be merged with the source value. 1509 // 1510 // There can be several copies back and forth, causing many values to be 1511 // merged into one. We compute a list of ultimate values in the joined live 1512 // range as well as a mappings from the old value numbers. 1513 // 1514 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 1515 // predecessors have a live out value. It doesn't cause real interference, 1516 // and can be merged into the value it overlaps. Like a coalescable copy, it 1517 // can be erased after joining. 1518 // 1519 // 3. Copy of external value. The overlapping def may be a copy of a value that 1520 // is already in the other register. This is like a coalescable copy, but 1521 // the live range of the source register must be trimmed after erasing the 1522 // copy instruction: 1523 // 1524 // %src = COPY %ext 1525 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 1526 // 1527 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 1528 // defining one lane at a time: 1529 // 1530 // %dst:ssub0<def,read-undef> = FOO 1531 // %src = BAR 1532 // %dst:ssub1<def> = COPY %src 1533 // 1534 // The live range of %src overlaps the %dst value defined by FOO, but 1535 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 1536 // which was undef anyway. 1537 // 1538 // The value mapping is more complicated in this case. The final live range 1539 // will have different value numbers for both FOO and BAR, but there is no 1540 // simple mapping from old to new values. It may even be necessary to add 1541 // new PHI values. 1542 // 1543 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 1544 // is live, but never read. This can happen because we don't compute 1545 // individual live ranges per lane. 1546 // 1547 // %dst<def> = FOO 1548 // %src = BAR 1549 // %dst:ssub1<def> = COPY %src 1550 // 1551 // This kind of interference is only resolved locally. If the clobbered 1552 // lane value escapes the block, the join is aborted. 1553 1554 namespace { 1555 /// Track information about values in a single virtual register about to be 1556 /// joined. Objects of this class are always created in pairs - one for each 1557 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 1558 /// pair) 1559 class JoinVals { 1560 /// Live range we work on. 1561 LiveRange &LR; 1562 /// (Main) register we work on. 1563 const unsigned Reg; 1564 1565 /// Reg (and therefore the values in this liverange) will end up as 1566 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 1567 /// CP.SrcIdx. 1568 const unsigned SubIdx; 1569 /// The LaneMask that this liverange will occupy the coalesced register. May 1570 /// be smaller than the lanemask produced by SubIdx when merging subranges. 1571 const unsigned LaneMask; 1572 1573 /// This is true when joining sub register ranges, false when joining main 1574 /// ranges. 1575 const bool SubRangeJoin; 1576 /// Whether the current LiveInterval tracks subregister liveness. 1577 const bool TrackSubRegLiveness; 1578 1579 /// Values that will be present in the final live range. 1580 SmallVectorImpl<VNInfo*> &NewVNInfo; 1581 1582 const CoalescerPair &CP; 1583 LiveIntervals *LIS; 1584 SlotIndexes *Indexes; 1585 const TargetRegisterInfo *TRI; 1586 1587 /// Value number assignments. Maps value numbers in LI to entries in 1588 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 1589 SmallVector<int, 8> Assignments; 1590 1591 /// Conflict resolution for overlapping values. 1592 enum ConflictResolution { 1593 /// No overlap, simply keep this value. 1594 CR_Keep, 1595 1596 /// Merge this value into OtherVNI and erase the defining instruction. 1597 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 1598 /// values. 1599 CR_Erase, 1600 1601 /// Merge this value into OtherVNI but keep the defining instruction. 1602 /// This is for the special case where OtherVNI is defined by the same 1603 /// instruction. 1604 CR_Merge, 1605 1606 /// Keep this value, and have it replace OtherVNI where possible. This 1607 /// complicates value mapping since OtherVNI maps to two different values 1608 /// before and after this def. 1609 /// Used when clobbering undefined or dead lanes. 1610 CR_Replace, 1611 1612 /// Unresolved conflict. Visit later when all values have been mapped. 1613 CR_Unresolved, 1614 1615 /// Unresolvable conflict. Abort the join. 1616 CR_Impossible 1617 }; 1618 1619 /// Per-value info for LI. The lane bit masks are all relative to the final 1620 /// joined register, so they can be compared directly between SrcReg and 1621 /// DstReg. 1622 struct Val { 1623 ConflictResolution Resolution; 1624 1625 /// Lanes written by this def, 0 for unanalyzed values. 1626 unsigned WriteLanes; 1627 1628 /// Lanes with defined values in this register. Other lanes are undef and 1629 /// safe to clobber. 1630 unsigned ValidLanes; 1631 1632 /// Value in LI being redefined by this def. 1633 VNInfo *RedefVNI; 1634 1635 /// Value in the other live range that overlaps this def, if any. 1636 VNInfo *OtherVNI; 1637 1638 /// Is this value an IMPLICIT_DEF that can be erased? 1639 /// 1640 /// IMPLICIT_DEF values should only exist at the end of a basic block that 1641 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 1642 /// safely erased if they are overlapping a live value in the other live 1643 /// interval. 1644 /// 1645 /// Weird control flow graphs and incomplete PHI handling in 1646 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 1647 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 1648 /// normal values. 1649 bool ErasableImplicitDef; 1650 1651 /// True when the live range of this value will be pruned because of an 1652 /// overlapping CR_Replace value in the other live range. 1653 bool Pruned; 1654 1655 /// True once Pruned above has been computed. 1656 bool PrunedComputed; 1657 1658 Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0), 1659 RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false), 1660 Pruned(false), PrunedComputed(false) {} 1661 1662 bool isAnalyzed() const { return WriteLanes != 0; } 1663 }; 1664 1665 /// One entry per value number in LI. 1666 SmallVector<Val, 8> Vals; 1667 1668 /// Compute the bitmask of lanes actually written by DefMI. 1669 /// Set Redef if there are any partial register definitions that depend on the 1670 /// previous value of the register. 1671 unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 1672 1673 /// Find the ultimate value that VNI was copied from. 1674 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 1675 1676 bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const; 1677 1678 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 1679 /// Return a conflict resolution when possible, but leave the hard cases as 1680 /// CR_Unresolved. 1681 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 1682 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 1683 /// The recursion always goes upwards in the dominator tree, making loops 1684 /// impossible. 1685 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 1686 1687 /// Compute the value assignment for ValNo in RI. 1688 /// This may be called recursively by analyzeValue(), but never for a ValNo on 1689 /// the stack. 1690 void computeAssignment(unsigned ValNo, JoinVals &Other); 1691 1692 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 1693 /// the extent of the tainted lanes in the block. 1694 /// 1695 /// Multiple values in Other.LR can be affected since partial redefinitions 1696 /// can preserve previously tainted lanes. 1697 /// 1698 /// 1 %dst = VLOAD <-- Define all lanes in %dst 1699 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 1700 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 1701 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 1702 /// 1703 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 1704 /// entry to TaintedVals. 1705 /// 1706 /// Returns false if the tainted lanes extend beyond the basic block. 1707 bool taintExtent(unsigned, unsigned, JoinVals&, 1708 SmallVectorImpl<std::pair<SlotIndex, unsigned> >&); 1709 1710 /// Return true if MI uses any of the given Lanes from Reg. 1711 /// This does not include partial redefinitions of Reg. 1712 bool usesLanes(const MachineInstr *MI, unsigned, unsigned, unsigned) const; 1713 1714 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 1715 /// be pruned: 1716 /// 1717 /// %dst = COPY %src 1718 /// %src = COPY %dst <-- This value to be pruned. 1719 /// %dst = COPY %src <-- This value is a copy of a pruned value. 1720 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 1721 1722 public: 1723 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, unsigned LaneMask, 1724 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 1725 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 1726 bool TrackSubRegLiveness) 1727 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 1728 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 1729 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 1730 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) 1731 {} 1732 1733 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 1734 /// Returns false if any conflicts were impossible to resolve. 1735 bool mapValues(JoinVals &Other); 1736 1737 /// Try to resolve conflicts that require all values to be mapped. 1738 /// Returns false if any conflicts were impossible to resolve. 1739 bool resolveConflicts(JoinVals &Other); 1740 1741 /// Prune the live range of values in Other.LR where they would conflict with 1742 /// CR_Replace values in LR. Collect end points for restoring the live range 1743 /// after joining. 1744 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 1745 bool changeInstrs); 1746 1747 /// Removes subranges starting at copies that get removed. This sometimes 1748 /// happens when undefined subranges are copied around. These ranges contain 1749 /// no usefull information and can be removed. 1750 void pruneSubRegValues(LiveInterval &LI, unsigned &ShrinkMask); 1751 1752 /// Erase any machine instructions that have been coalesced away. 1753 /// Add erased instructions to ErasedInstrs. 1754 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 1755 /// the erased instrs. 1756 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 1757 SmallVectorImpl<unsigned> &ShrinkRegs); 1758 1759 /// Get the value assignments suitable for passing to LiveInterval::join. 1760 const int *getAssignments() const { return Assignments.data(); } 1761 }; 1762 } // end anonymous namespace 1763 1764 unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 1765 const { 1766 unsigned L = 0; 1767 for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) { 1768 if (!MO->isReg() || MO->getReg() != Reg || !MO->isDef()) 1769 continue; 1770 L |= TRI->getSubRegIndexLaneMask( 1771 TRI->composeSubRegIndices(SubIdx, MO->getSubReg())); 1772 if (MO->readsReg()) 1773 Redef = true; 1774 } 1775 return L; 1776 } 1777 1778 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 1779 const VNInfo *VNI) const { 1780 unsigned Reg = this->Reg; 1781 1782 while (!VNI->isPHIDef()) { 1783 SlotIndex Def = VNI->def; 1784 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 1785 assert(MI && "No defining instruction"); 1786 if (!MI->isFullCopy()) 1787 return std::make_pair(VNI, Reg); 1788 unsigned SrcReg = MI->getOperand(1).getReg(); 1789 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1790 return std::make_pair(VNI, Reg); 1791 1792 const LiveInterval &LI = LIS->getInterval(SrcReg); 1793 const VNInfo *ValueIn; 1794 // No subrange involved. 1795 if (!SubRangeJoin || !LI.hasSubRanges()) { 1796 LiveQueryResult LRQ = LI.Query(Def); 1797 ValueIn = LRQ.valueIn(); 1798 } else { 1799 // Query subranges. Pick the first matching one. 1800 ValueIn = nullptr; 1801 for (const LiveInterval::SubRange &S : LI.subranges()) { 1802 // Transform lanemask to a mask in the joined live interval. 1803 unsigned SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 1804 if ((SMask & LaneMask) == 0) 1805 continue; 1806 LiveQueryResult LRQ = S.Query(Def); 1807 ValueIn = LRQ.valueIn(); 1808 break; 1809 } 1810 } 1811 if (ValueIn == nullptr) 1812 break; 1813 VNI = ValueIn; 1814 Reg = SrcReg; 1815 } 1816 return std::make_pair(VNI, Reg); 1817 } 1818 1819 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 1820 const JoinVals &Other) const { 1821 const VNInfo *Orig0; 1822 unsigned Reg0; 1823 std::tie(Orig0, Reg0) = followCopyChain(Value0); 1824 if (Orig0 == Value1) 1825 return true; 1826 1827 const VNInfo *Orig1; 1828 unsigned Reg1; 1829 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 1830 1831 // The values are equal if they are defined at the same place and use the 1832 // same register. Note that we cannot compare VNInfos directly as some of 1833 // them might be from a copy created in mergeSubRangeInto() while the other 1834 // is from the original LiveInterval. 1835 return Orig0->def == Orig1->def && Reg0 == Reg1; 1836 } 1837 1838 JoinVals::ConflictResolution 1839 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 1840 Val &V = Vals[ValNo]; 1841 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 1842 VNInfo *VNI = LR.getValNumInfo(ValNo); 1843 if (VNI->isUnused()) { 1844 V.WriteLanes = ~0u; 1845 return CR_Keep; 1846 } 1847 1848 // Get the instruction defining this value, compute the lanes written. 1849 const MachineInstr *DefMI = nullptr; 1850 if (VNI->isPHIDef()) { 1851 // Conservatively assume that all lanes in a PHI are valid. 1852 unsigned Lanes = SubRangeJoin ? 1 : TRI->getSubRegIndexLaneMask(SubIdx); 1853 V.ValidLanes = V.WriteLanes = Lanes; 1854 } else { 1855 DefMI = Indexes->getInstructionFromIndex(VNI->def); 1856 assert(DefMI != nullptr); 1857 if (SubRangeJoin) { 1858 // We don't care about the lanes when joining subregister ranges. 1859 V.ValidLanes = V.WriteLanes = 1; 1860 } else { 1861 bool Redef = false; 1862 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 1863 1864 // If this is a read-modify-write instruction, there may be more valid 1865 // lanes than the ones written by this instruction. 1866 // This only covers partial redef operands. DefMI may have normal use 1867 // operands reading the register. They don't contribute valid lanes. 1868 // 1869 // This adds ssub1 to the set of valid lanes in %src: 1870 // 1871 // %src:ssub1<def> = FOO 1872 // 1873 // This leaves only ssub1 valid, making any other lanes undef: 1874 // 1875 // %src:ssub1<def,read-undef> = FOO %src:ssub2 1876 // 1877 // The <read-undef> flag on the def operand means that old lane values are 1878 // not important. 1879 if (Redef) { 1880 V.RedefVNI = LR.Query(VNI->def).valueIn(); 1881 assert((TrackSubRegLiveness || V.RedefVNI) && 1882 "Instruction is reading nonexistent value"); 1883 if (V.RedefVNI != nullptr) { 1884 computeAssignment(V.RedefVNI->id, Other); 1885 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 1886 } 1887 } 1888 1889 // An IMPLICIT_DEF writes undef values. 1890 if (DefMI->isImplicitDef()) { 1891 // We normally expect IMPLICIT_DEF values to be live only until the end 1892 // of their block. If the value is really live longer and gets pruned in 1893 // another block, this flag is cleared again. 1894 V.ErasableImplicitDef = true; 1895 V.ValidLanes &= ~V.WriteLanes; 1896 } 1897 } 1898 } 1899 1900 // Find the value in Other that overlaps VNI->def, if any. 1901 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 1902 1903 // It is possible that both values are defined by the same instruction, or 1904 // the values are PHIs defined in the same block. When that happens, the two 1905 // values should be merged into one, but not into any preceding value. 1906 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 1907 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 1908 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 1909 1910 // One value stays, the other is merged. Keep the earlier one, or the first 1911 // one we see. 1912 if (OtherVNI->def < VNI->def) 1913 Other.computeAssignment(OtherVNI->id, *this); 1914 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 1915 // This is an early-clobber def overlapping a live-in value in the other 1916 // register. Not mergeable. 1917 V.OtherVNI = OtherLRQ.valueIn(); 1918 return CR_Impossible; 1919 } 1920 V.OtherVNI = OtherVNI; 1921 Val &OtherV = Other.Vals[OtherVNI->id]; 1922 // Keep this value, check for conflicts when analyzing OtherVNI. 1923 if (!OtherV.isAnalyzed()) 1924 return CR_Keep; 1925 // Both sides have been analyzed now. 1926 // Allow overlapping PHI values. Any real interference would show up in a 1927 // predecessor, the PHI itself can't introduce any conflicts. 1928 if (VNI->isPHIDef()) 1929 return CR_Merge; 1930 if (V.ValidLanes & OtherV.ValidLanes) 1931 // Overlapping lanes can't be resolved. 1932 return CR_Impossible; 1933 else 1934 return CR_Merge; 1935 } 1936 1937 // No simultaneous def. Is Other live at the def? 1938 V.OtherVNI = OtherLRQ.valueIn(); 1939 if (!V.OtherVNI) 1940 // No overlap, no conflict. 1941 return CR_Keep; 1942 1943 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 1944 1945 // We have overlapping values, or possibly a kill of Other. 1946 // Recursively compute assignments up the dominator tree. 1947 Other.computeAssignment(V.OtherVNI->id, *this); 1948 Val &OtherV = Other.Vals[V.OtherVNI->id]; 1949 1950 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 1951 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 1952 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 1953 // technically. 1954 // 1955 // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try 1956 // to erase the IMPLICIT_DEF instruction. 1957 if (OtherV.ErasableImplicitDef && DefMI && 1958 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 1959 DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 1960 << " extends into BB#" << DefMI->getParent()->getNumber() 1961 << ", keeping it.\n"); 1962 OtherV.ErasableImplicitDef = false; 1963 } 1964 1965 // Allow overlapping PHI values. Any real interference would show up in a 1966 // predecessor, the PHI itself can't introduce any conflicts. 1967 if (VNI->isPHIDef()) 1968 return CR_Replace; 1969 1970 // Check for simple erasable conflicts. 1971 if (DefMI->isImplicitDef()) { 1972 // We need the def for the subregister if there is nothing else live at the 1973 // subrange at this point. 1974 if (TrackSubRegLiveness 1975 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)) == 0) 1976 return CR_Replace; 1977 return CR_Erase; 1978 } 1979 1980 // Include the non-conflict where DefMI is a coalescable copy that kills 1981 // OtherVNI. We still want the copy erased and value numbers merged. 1982 if (CP.isCoalescable(DefMI)) { 1983 // Some of the lanes copied from OtherVNI may be undef, making them undef 1984 // here too. 1985 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 1986 return CR_Erase; 1987 } 1988 1989 // This may not be a real conflict if DefMI simply kills Other and defines 1990 // VNI. 1991 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 1992 return CR_Keep; 1993 1994 // Handle the case where VNI and OtherVNI can be proven to be identical: 1995 // 1996 // %other = COPY %ext 1997 // %this = COPY %ext <-- Erase this copy 1998 // 1999 if (DefMI->isFullCopy() && !CP.isPartial() 2000 && valuesIdentical(VNI, V.OtherVNI, Other)) 2001 return CR_Erase; 2002 2003 // If the lanes written by this instruction were all undef in OtherVNI, it is 2004 // still safe to join the live ranges. This can't be done with a simple value 2005 // mapping, though - OtherVNI will map to multiple values: 2006 // 2007 // 1 %dst:ssub0 = FOO <-- OtherVNI 2008 // 2 %src = BAR <-- VNI 2009 // 3 %dst:ssub1 = COPY %src<kill> <-- Eliminate this copy. 2010 // 4 BAZ %dst<kill> 2011 // 5 QUUX %src<kill> 2012 // 2013 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2014 // handles this complex value mapping. 2015 if ((V.WriteLanes & OtherV.ValidLanes) == 0) 2016 return CR_Replace; 2017 2018 // If the other live range is killed by DefMI and the live ranges are still 2019 // overlapping, it must be because we're looking at an early clobber def: 2020 // 2021 // %dst<def,early-clobber> = ASM %src<kill> 2022 // 2023 // In this case, it is illegal to merge the two live ranges since the early 2024 // clobber def would clobber %src before it was read. 2025 if (OtherLRQ.isKill()) { 2026 // This case where the def doesn't overlap the kill is handled above. 2027 assert(VNI->def.isEarlyClobber() && 2028 "Only early clobber defs can overlap a kill"); 2029 return CR_Impossible; 2030 } 2031 2032 // VNI is clobbering live lanes in OtherVNI, but there is still the 2033 // possibility that no instructions actually read the clobbered lanes. 2034 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2035 // Otherwise Other.RI wouldn't be live here. 2036 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0) 2037 return CR_Impossible; 2038 2039 // We need to verify that no instructions are reading the clobbered lanes. To 2040 // save compile time, we'll only check that locally. Don't allow the tainted 2041 // value to escape the basic block. 2042 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2043 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2044 return CR_Impossible; 2045 2046 // There are still some things that could go wrong besides clobbered lanes 2047 // being read, for example OtherVNI may be only partially redefined in MBB, 2048 // and some clobbered lanes could escape the block. Save this analysis for 2049 // resolveConflicts() when all values have been mapped. We need to know 2050 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2051 // that now - the recursive analyzeValue() calls must go upwards in the 2052 // dominator tree. 2053 return CR_Unresolved; 2054 } 2055 2056 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2057 Val &V = Vals[ValNo]; 2058 if (V.isAnalyzed()) { 2059 // Recursion should always move up the dominator tree, so ValNo is not 2060 // supposed to reappear before it has been assigned. 2061 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2062 return; 2063 } 2064 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2065 case CR_Erase: 2066 case CR_Merge: 2067 // Merge this ValNo into OtherVNI. 2068 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2069 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2070 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2071 DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@' 2072 << LR.getValNumInfo(ValNo)->def << " into " 2073 << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2074 << V.OtherVNI->def << " --> @" 2075 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2076 break; 2077 case CR_Replace: 2078 case CR_Unresolved: { 2079 // The other value is going to be pruned if this join is successful. 2080 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2081 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2082 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2083 // its lanes. 2084 if ((OtherV.WriteLanes & ~V.ValidLanes) != 0 && TrackSubRegLiveness) 2085 OtherV.ErasableImplicitDef = false; 2086 OtherV.Pruned = true; 2087 } 2088 // Fall through. 2089 default: 2090 // This value number needs to go in the final joined live range. 2091 Assignments[ValNo] = NewVNInfo.size(); 2092 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2093 break; 2094 } 2095 } 2096 2097 bool JoinVals::mapValues(JoinVals &Other) { 2098 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2099 computeAssignment(i, Other); 2100 if (Vals[i].Resolution == CR_Impossible) { 2101 DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i 2102 << '@' << LR.getValNumInfo(i)->def << '\n'); 2103 return false; 2104 } 2105 } 2106 return true; 2107 } 2108 2109 bool JoinVals:: 2110 taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other, 2111 SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) { 2112 VNInfo *VNI = LR.getValNumInfo(ValNo); 2113 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2114 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2115 2116 // Scan Other.LR from VNI.def to MBBEnd. 2117 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2118 assert(OtherI != Other.LR.end() && "No conflict?"); 2119 do { 2120 // OtherI is pointing to a tainted value. Abort the join if the tainted 2121 // lanes escape the block. 2122 SlotIndex End = OtherI->end; 2123 if (End >= MBBEnd) { 2124 DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':' 2125 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2126 return false; 2127 } 2128 DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':' 2129 << OtherI->valno->id << '@' << OtherI->start 2130 << " to " << End << '\n'); 2131 // A dead def is not a problem. 2132 if (End.isDead()) 2133 break; 2134 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2135 2136 // Check for another def in the MBB. 2137 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2138 break; 2139 2140 // Lanes written by the new def are no longer tainted. 2141 const Val &OV = Other.Vals[OtherI->valno->id]; 2142 TaintedLanes &= ~OV.WriteLanes; 2143 if (!OV.RedefVNI) 2144 break; 2145 } while (TaintedLanes); 2146 return true; 2147 } 2148 2149 bool JoinVals::usesLanes(const MachineInstr *MI, unsigned Reg, unsigned SubIdx, 2150 unsigned Lanes) const { 2151 if (MI->isDebugValue()) 2152 return false; 2153 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { 2154 if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg) 2155 continue; 2156 if (!MO->readsReg()) 2157 continue; 2158 if (Lanes & TRI->getSubRegIndexLaneMask( 2159 TRI->composeSubRegIndices(SubIdx, MO->getSubReg()))) 2160 return true; 2161 } 2162 return false; 2163 } 2164 2165 bool JoinVals::resolveConflicts(JoinVals &Other) { 2166 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2167 Val &V = Vals[i]; 2168 assert (V.Resolution != CR_Impossible && "Unresolvable conflict"); 2169 if (V.Resolution != CR_Unresolved) 2170 continue; 2171 DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i 2172 << '@' << LR.getValNumInfo(i)->def << '\n'); 2173 if (SubRangeJoin) 2174 return false; 2175 2176 ++NumLaneConflicts; 2177 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2178 VNInfo *VNI = LR.getValNumInfo(i); 2179 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2180 2181 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2182 // join, those lanes will be tainted with a wrong value. Get the extent of 2183 // the tainted lanes. 2184 unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2185 SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent; 2186 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2187 // Tainted lanes would extend beyond the basic block. 2188 return false; 2189 2190 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2191 2192 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2193 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2194 MachineBasicBlock::iterator MI = MBB->begin(); 2195 if (!VNI->isPHIDef()) { 2196 MI = Indexes->getInstructionFromIndex(VNI->def); 2197 // No need to check the instruction defining VNI for reads. 2198 ++MI; 2199 } 2200 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2201 "Interference ends on VNI->def. Should have been handled earlier"); 2202 MachineInstr *LastMI = 2203 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2204 assert(LastMI && "Range must end at a proper instruction"); 2205 unsigned TaintNum = 0; 2206 for(;;) { 2207 assert(MI != MBB->end() && "Bad LastMI"); 2208 if (usesLanes(MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2209 DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2210 return false; 2211 } 2212 // LastMI is the last instruction to use the current value. 2213 if (&*MI == LastMI) { 2214 if (++TaintNum == TaintExtent.size()) 2215 break; 2216 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2217 assert(LastMI && "Range must end at a proper instruction"); 2218 TaintedLanes = TaintExtent[TaintNum].second; 2219 } 2220 ++MI; 2221 } 2222 2223 // The tainted lanes are unused. 2224 V.Resolution = CR_Replace; 2225 ++NumLaneResolves; 2226 } 2227 return true; 2228 } 2229 2230 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2231 Val &V = Vals[ValNo]; 2232 if (V.Pruned || V.PrunedComputed) 2233 return V.Pruned; 2234 2235 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2236 return V.Pruned; 2237 2238 // Follow copies up the dominator tree and check if any intermediate value 2239 // has been pruned. 2240 V.PrunedComputed = true; 2241 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2242 return V.Pruned; 2243 } 2244 2245 void JoinVals::pruneValues(JoinVals &Other, 2246 SmallVectorImpl<SlotIndex> &EndPoints, 2247 bool changeInstrs) { 2248 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2249 SlotIndex Def = LR.getValNumInfo(i)->def; 2250 switch (Vals[i].Resolution) { 2251 case CR_Keep: 2252 break; 2253 case CR_Replace: { 2254 // This value takes precedence over the value in Other.LR. 2255 LIS->pruneValue(Other.LR, Def, &EndPoints); 2256 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2257 // instructions are only inserted to provide a live-out value for PHI 2258 // predecessors, so the instruction should simply go away once its value 2259 // has been replaced. 2260 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2261 bool EraseImpDef = OtherV.ErasableImplicitDef && 2262 OtherV.Resolution == CR_Keep; 2263 if (!Def.isBlock()) { 2264 if (changeInstrs) { 2265 // Remove <def,read-undef> flags. This def is now a partial redef. 2266 // Also remove <def,dead> flags since the joined live range will 2267 // continue past this instruction. 2268 for (MIOperands MO(Indexes->getInstructionFromIndex(Def)); 2269 MO.isValid(); ++MO) { 2270 if (MO->isReg() && MO->isDef() && MO->getReg() == Reg) { 2271 MO->setIsUndef(EraseImpDef); 2272 MO->setIsDead(false); 2273 } 2274 } 2275 } 2276 // This value will reach instructions below, but we need to make sure 2277 // the live range also reaches the instruction at Def. 2278 if (!EraseImpDef) 2279 EndPoints.push_back(Def); 2280 } 2281 DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def 2282 << ": " << Other.LR << '\n'); 2283 break; 2284 } 2285 case CR_Erase: 2286 case CR_Merge: 2287 if (isPrunedValue(i, Other)) { 2288 // This value is ultimately a copy of a pruned value in LR or Other.LR. 2289 // We can no longer trust the value mapping computed by 2290 // computeAssignment(), the value that was originally copied could have 2291 // been replaced. 2292 LIS->pruneValue(LR, Def, &EndPoints); 2293 DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at " 2294 << Def << ": " << LR << '\n'); 2295 } 2296 break; 2297 case CR_Unresolved: 2298 case CR_Impossible: 2299 llvm_unreachable("Unresolved conflicts"); 2300 } 2301 } 2302 } 2303 2304 void JoinVals::pruneSubRegValues(LiveInterval &LI, unsigned &ShrinkMask) 2305 { 2306 // Look for values being erased. 2307 bool DidPrune = false; 2308 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2309 if (Vals[i].Resolution != CR_Erase) 2310 continue; 2311 2312 // Check subranges at the point where the copy will be removed. 2313 SlotIndex Def = LR.getValNumInfo(i)->def; 2314 for (LiveInterval::SubRange &S : LI.subranges()) { 2315 LiveQueryResult Q = S.Query(Def); 2316 2317 // If a subrange starts at the copy then an undefined value has been 2318 // copied and we must remove that subrange value as well. 2319 VNInfo *ValueOut = Q.valueOutOrDead(); 2320 if (ValueOut != nullptr && Q.valueIn() == nullptr) { 2321 DEBUG(dbgs() << "\t\tPrune sublane " << format("%04X", S.LaneMask) 2322 << " at " << Def << "\n"); 2323 LIS->pruneValue(S, Def, nullptr); 2324 DidPrune = true; 2325 // Mark value number as unused. 2326 ValueOut->markUnused(); 2327 continue; 2328 } 2329 // If a subrange ends at the copy, then a value was copied but only 2330 // partially used later. Shrink the subregister range apropriately. 2331 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 2332 DEBUG(dbgs() << "\t\tDead uses at sublane " 2333 << format("%04X", S.LaneMask) << " at " << Def << "\n"); 2334 ShrinkMask |= S.LaneMask; 2335 } 2336 } 2337 } 2338 if (DidPrune) 2339 LI.removeEmptySubRanges(); 2340 } 2341 2342 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2343 SmallVectorImpl<unsigned> &ShrinkRegs) { 2344 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2345 // Get the def location before markUnused() below invalidates it. 2346 SlotIndex Def = LR.getValNumInfo(i)->def; 2347 switch (Vals[i].Resolution) { 2348 case CR_Keep: { 2349 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 2350 // longer. The IMPLICIT_DEF instructions are only inserted by 2351 // PHIElimination to guarantee that all PHI predecessors have a value. 2352 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 2353 break; 2354 // Remove value number i from LR. 2355 VNInfo *VNI = LR.getValNumInfo(i); 2356 LR.removeValNo(VNI); 2357 // Note that this VNInfo is reused and still referenced in NewVNInfo, 2358 // make it appear like an unused value number. 2359 VNI->markUnused(); 2360 DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'); 2361 // FALL THROUGH. 2362 } 2363 2364 case CR_Erase: { 2365 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2366 assert(MI && "No instruction to erase"); 2367 if (MI->isCopy()) { 2368 unsigned Reg = MI->getOperand(1).getReg(); 2369 if (TargetRegisterInfo::isVirtualRegister(Reg) && 2370 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 2371 ShrinkRegs.push_back(Reg); 2372 } 2373 ErasedInstrs.insert(MI); 2374 DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 2375 LIS->RemoveMachineInstrFromMaps(MI); 2376 MI->eraseFromParent(); 2377 break; 2378 } 2379 default: 2380 break; 2381 } 2382 } 2383 } 2384 2385 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 2386 unsigned LaneMask, 2387 const CoalescerPair &CP) { 2388 SmallVector<VNInfo*, 16> NewVNInfo; 2389 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 2390 NewVNInfo, CP, LIS, TRI, true, true); 2391 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 2392 NewVNInfo, CP, LIS, TRI, true, true); 2393 2394 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 2395 // Conflicts should already be resolved so the mapping/resolution should 2396 // always succeed. 2397 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 2398 llvm_unreachable("Can't join subrange although main ranges are compatible"); 2399 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 2400 llvm_unreachable("Can't join subrange although main ranges are compatible"); 2401 2402 // The merging algorithm in LiveInterval::join() can't handle conflicting 2403 // value mappings, so we need to remove any live ranges that overlap a 2404 // CR_Replace resolution. Collect a set of end points that can be used to 2405 // restore the live range after joining. 2406 SmallVector<SlotIndex, 8> EndPoints; 2407 LHSVals.pruneValues(RHSVals, EndPoints, false); 2408 RHSVals.pruneValues(LHSVals, EndPoints, false); 2409 2410 LRange.verify(); 2411 RRange.verify(); 2412 2413 // Join RRange into LHS. 2414 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 2415 NewVNInfo); 2416 2417 DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n"); 2418 if (EndPoints.empty()) 2419 return; 2420 2421 // Recompute the parts of the live range we had to remove because of 2422 // CR_Replace conflicts. 2423 DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size() 2424 << " points: " << LRange << '\n'); 2425 LIS->extendToIndices(LRange, EndPoints); 2426 } 2427 2428 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 2429 const LiveRange &ToMerge, 2430 unsigned LaneMask, CoalescerPair &CP) { 2431 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2432 for (LiveInterval::SubRange &R : LI.subranges()) { 2433 unsigned RMask = R.LaneMask; 2434 // LaneMask of subregisters common to subrange R and ToMerge. 2435 unsigned Common = RMask & LaneMask; 2436 // There is nothing to do without common subregs. 2437 if (Common == 0) 2438 continue; 2439 2440 DEBUG(dbgs() << format("\t\tCopy+Merge %04X into %04X\n", RMask, Common)); 2441 // LaneMask of subregisters contained in the R range but not in ToMerge, 2442 // they have to split into their own subrange. 2443 unsigned LRest = RMask & ~LaneMask; 2444 LiveInterval::SubRange *CommonRange; 2445 if (LRest != 0) { 2446 R.LaneMask = LRest; 2447 DEBUG(dbgs() << format("\t\tReduce Lane to %04X\n", LRest)); 2448 // Duplicate SubRange for newly merged common stuff. 2449 CommonRange = LI.createSubRangeFrom(Allocator, Common, R); 2450 } else { 2451 // Reuse the existing range. 2452 R.LaneMask = Common; 2453 CommonRange = &R; 2454 } 2455 LiveRange RangeCopy(ToMerge, Allocator); 2456 joinSubRegRanges(*CommonRange, RangeCopy, Common, CP); 2457 LaneMask &= ~RMask; 2458 } 2459 2460 if (LaneMask != 0) { 2461 DEBUG(dbgs() << format("\t\tNew Lane %04X\n", LaneMask)); 2462 LI.createSubRangeFrom(Allocator, LaneMask, ToMerge); 2463 } 2464 } 2465 2466 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 2467 SmallVector<VNInfo*, 16> NewVNInfo; 2468 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 2469 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 2470 bool TrackSubRegLiveness = MRI->tracksSubRegLiveness(); 2471 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), 0, NewVNInfo, CP, LIS, 2472 TRI, false, TrackSubRegLiveness); 2473 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), 0, NewVNInfo, CP, LIS, 2474 TRI, false, TrackSubRegLiveness); 2475 2476 DEBUG(dbgs() << "\t\tRHS = " << RHS 2477 << "\n\t\tLHS = " << LHS 2478 << '\n'); 2479 2480 // First compute NewVNInfo and the simple value mappings. 2481 // Detect impossible conflicts early. 2482 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 2483 return false; 2484 2485 // Some conflicts can only be resolved after all values have been mapped. 2486 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 2487 return false; 2488 2489 // All clear, the live ranges can be merged. 2490 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 2491 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2492 2493 // Transform lanemasks from the LHS to masks in the coalesced register and 2494 // create initial subranges if necessary. 2495 unsigned DstIdx = CP.getDstIdx(); 2496 if (!LHS.hasSubRanges()) { 2497 unsigned Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 2498 : TRI->getSubRegIndexLaneMask(DstIdx); 2499 // LHS must support subregs or we wouldn't be in this codepath. 2500 assert(Mask != 0); 2501 LHS.createSubRangeFrom(Allocator, Mask, LHS); 2502 } else if (DstIdx != 0) { 2503 // Transform LHS lanemasks to new register class if necessary. 2504 for (LiveInterval::SubRange &R : LHS.subranges()) { 2505 unsigned Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 2506 R.LaneMask = Mask; 2507 } 2508 } 2509 DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg()) 2510 << ' ' << LHS << '\n'); 2511 2512 // Determine lanemasks of RHS in the coalesced register and merge subranges. 2513 unsigned SrcIdx = CP.getSrcIdx(); 2514 if (!RHS.hasSubRanges()) { 2515 unsigned Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 2516 : TRI->getSubRegIndexLaneMask(SrcIdx); 2517 mergeSubRangeInto(LHS, RHS, Mask, CP); 2518 } else { 2519 // Pair up subranges and merge. 2520 for (LiveInterval::SubRange &R : RHS.subranges()) { 2521 unsigned Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 2522 mergeSubRangeInto(LHS, R, Mask, CP); 2523 } 2524 } 2525 2526 DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 2527 2528 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 2529 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 2530 } 2531 2532 // The merging algorithm in LiveInterval::join() can't handle conflicting 2533 // value mappings, so we need to remove any live ranges that overlap a 2534 // CR_Replace resolution. Collect a set of end points that can be used to 2535 // restore the live range after joining. 2536 SmallVector<SlotIndex, 8> EndPoints; 2537 LHSVals.pruneValues(RHSVals, EndPoints, true); 2538 RHSVals.pruneValues(LHSVals, EndPoints, true); 2539 2540 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 2541 // registers to require trimming. 2542 SmallVector<unsigned, 8> ShrinkRegs; 2543 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 2544 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 2545 while (!ShrinkRegs.empty()) 2546 LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 2547 2548 // Join RHS into LHS. 2549 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 2550 2551 // Kill flags are going to be wrong if the live ranges were overlapping. 2552 // Eventually, we should simply clear all kill flags when computing live 2553 // ranges. They are reinserted after register allocation. 2554 MRI->clearKillFlags(LHS.reg); 2555 MRI->clearKillFlags(RHS.reg); 2556 2557 if (!EndPoints.empty()) { 2558 // Recompute the parts of the live range we had to remove because of 2559 // CR_Replace conflicts. 2560 DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size() 2561 << " points: " << LHS << '\n'); 2562 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 2563 } 2564 2565 return true; 2566 } 2567 2568 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 2569 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 2570 } 2571 2572 namespace { 2573 /// Information concerning MBB coalescing priority. 2574 struct MBBPriorityInfo { 2575 MachineBasicBlock *MBB; 2576 unsigned Depth; 2577 bool IsSplit; 2578 2579 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 2580 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 2581 }; 2582 } 2583 2584 /// C-style comparator that sorts first based on the loop depth of the basic 2585 /// block (the unsigned), and then on the MBB number. 2586 /// 2587 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 2588 static int compareMBBPriority(const MBBPriorityInfo *LHS, 2589 const MBBPriorityInfo *RHS) { 2590 // Deeper loops first 2591 if (LHS->Depth != RHS->Depth) 2592 return LHS->Depth > RHS->Depth ? -1 : 1; 2593 2594 // Try to unsplit critical edges next. 2595 if (LHS->IsSplit != RHS->IsSplit) 2596 return LHS->IsSplit ? -1 : 1; 2597 2598 // Prefer blocks that are more connected in the CFG. This takes care of 2599 // the most difficult copies first while intervals are short. 2600 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 2601 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 2602 if (cl != cr) 2603 return cl > cr ? -1 : 1; 2604 2605 // As a last resort, sort by block number. 2606 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 2607 } 2608 2609 /// \returns true if the given copy uses or defines a local live range. 2610 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 2611 if (!Copy->isCopy()) 2612 return false; 2613 2614 if (Copy->getOperand(1).isUndef()) 2615 return false; 2616 2617 unsigned SrcReg = Copy->getOperand(1).getReg(); 2618 unsigned DstReg = Copy->getOperand(0).getReg(); 2619 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 2620 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 2621 return false; 2622 2623 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 2624 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 2625 } 2626 2627 bool RegisterCoalescer:: 2628 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 2629 bool Progress = false; 2630 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 2631 if (!CurrList[i]) 2632 continue; 2633 // Skip instruction pointers that have already been erased, for example by 2634 // dead code elimination. 2635 if (ErasedInstrs.erase(CurrList[i])) { 2636 CurrList[i] = nullptr; 2637 continue; 2638 } 2639 bool Again = false; 2640 bool Success = joinCopy(CurrList[i], Again); 2641 Progress |= Success; 2642 if (Success || !Again) 2643 CurrList[i] = nullptr; 2644 } 2645 return Progress; 2646 } 2647 2648 void 2649 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 2650 DEBUG(dbgs() << MBB->getName() << ":\n"); 2651 2652 // Collect all copy-like instructions in MBB. Don't start coalescing anything 2653 // yet, it might invalidate the iterator. 2654 const unsigned PrevSize = WorkList.size(); 2655 if (JoinGlobalCopies) { 2656 // Coalesce copies bottom-up to coalesce local defs before local uses. They 2657 // are not inherently easier to resolve, but slightly preferable until we 2658 // have local live range splitting. In particular this is required by 2659 // cmp+jmp macro fusion. 2660 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 2661 MII != E; ++MII) { 2662 if (!MII->isCopyLike()) 2663 continue; 2664 if (isLocalCopy(&(*MII), LIS)) 2665 LocalWorkList.push_back(&(*MII)); 2666 else 2667 WorkList.push_back(&(*MII)); 2668 } 2669 } 2670 else { 2671 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 2672 MII != E; ++MII) 2673 if (MII->isCopyLike()) 2674 WorkList.push_back(MII); 2675 } 2676 // Try coalescing the collected copies immediately, and remove the nulls. 2677 // This prevents the WorkList from getting too large since most copies are 2678 // joinable on the first attempt. 2679 MutableArrayRef<MachineInstr*> 2680 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 2681 if (copyCoalesceWorkList(CurrList)) 2682 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 2683 (MachineInstr*)nullptr), WorkList.end()); 2684 } 2685 2686 void RegisterCoalescer::coalesceLocals() { 2687 copyCoalesceWorkList(LocalWorkList); 2688 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 2689 if (LocalWorkList[j]) 2690 WorkList.push_back(LocalWorkList[j]); 2691 } 2692 LocalWorkList.clear(); 2693 } 2694 2695 void RegisterCoalescer::joinAllIntervals() { 2696 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 2697 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 2698 2699 std::vector<MBBPriorityInfo> MBBs; 2700 MBBs.reserve(MF->size()); 2701 for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){ 2702 MachineBasicBlock *MBB = I; 2703 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 2704 JoinSplitEdges && isSplitEdge(MBB))); 2705 } 2706 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 2707 2708 // Coalesce intervals in MBB priority order. 2709 unsigned CurrDepth = UINT_MAX; 2710 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 2711 // Try coalescing the collected local copies for deeper loops. 2712 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 2713 coalesceLocals(); 2714 CurrDepth = MBBs[i].Depth; 2715 } 2716 copyCoalesceInMBB(MBBs[i].MBB); 2717 } 2718 coalesceLocals(); 2719 2720 // Joining intervals can allow other intervals to be joined. Iteratively join 2721 // until we make no progress. 2722 while (copyCoalesceWorkList(WorkList)) 2723 /* empty */ ; 2724 } 2725 2726 void RegisterCoalescer::releaseMemory() { 2727 ErasedInstrs.clear(); 2728 WorkList.clear(); 2729 DeadDefs.clear(); 2730 InflateRegs.clear(); 2731 } 2732 2733 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 2734 MF = &fn; 2735 MRI = &fn.getRegInfo(); 2736 TM = &fn.getTarget(); 2737 const TargetSubtargetInfo &STI = fn.getSubtarget(); 2738 TRI = STI.getRegisterInfo(); 2739 TII = STI.getInstrInfo(); 2740 LIS = &getAnalysis<LiveIntervals>(); 2741 AA = &getAnalysis<AliasAnalysis>(); 2742 Loops = &getAnalysis<MachineLoopInfo>(); 2743 if (EnableGlobalCopies == cl::BOU_UNSET) 2744 JoinGlobalCopies = STI.useMachineScheduler(); 2745 else 2746 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 2747 2748 // The MachineScheduler does not currently require JoinSplitEdges. This will 2749 // either be enabled unconditionally or replaced by a more general live range 2750 // splitting optimization. 2751 JoinSplitEdges = EnableJoinSplits; 2752 2753 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 2754 << "********** Function: " << MF->getName() << '\n'); 2755 2756 if (VerifyCoalescing) 2757 MF->verify(this, "Before register coalescing"); 2758 2759 RegClassInfo.runOnMachineFunction(fn); 2760 2761 // Join (coalesce) intervals if requested. 2762 if (EnableJoining) 2763 joinAllIntervals(); 2764 2765 // After deleting a lot of copies, register classes may be less constrained. 2766 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 2767 // DPR inflation. 2768 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 2769 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 2770 InflateRegs.end()); 2771 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n"); 2772 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 2773 unsigned Reg = InflateRegs[i]; 2774 if (MRI->reg_nodbg_empty(Reg)) 2775 continue; 2776 if (MRI->recomputeRegClass(Reg)) { 2777 DEBUG(dbgs() << PrintReg(Reg) << " inflated to " 2778 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 2779 LiveInterval &LI = LIS->getInterval(Reg); 2780 unsigned MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2781 if (MaxMask == 0) { 2782 // If the inflated register class does not support subregisters anymore 2783 // remove the subranges. 2784 LI.clearSubRanges(); 2785 } else { 2786 #ifndef NDEBUG 2787 // If subranges are still supported, then the same subregs should still 2788 // be supported. 2789 for (LiveInterval::SubRange &S : LI.subranges()) { 2790 assert ((S.LaneMask & ~MaxMask) == 0); 2791 } 2792 #endif 2793 } 2794 ++NumInflated; 2795 } 2796 } 2797 2798 DEBUG(dump()); 2799 if (VerifyCoalescing) 2800 MF->verify(this, "After register coalescing"); 2801 return true; 2802 } 2803 2804 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 2805 LIS->print(O, m); 2806 } 2807