1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/MC/LaneBitmask.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <iterator>
55 #include <limits>
56 #include <tuple>
57 #include <utility>
58 #include <vector>
59 
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "regalloc"
63 
64 STATISTIC(numJoins    , "Number of interval joins performed");
65 STATISTIC(numCrossRCs , "Number of cross class joins performed");
66 STATISTIC(numCommutes , "Number of instruction commuting performed");
67 STATISTIC(numExtends  , "Number of copies extended");
68 STATISTIC(NumReMats   , "Number of instructions re-materialized");
69 STATISTIC(NumInflated , "Number of register classes inflated");
70 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
71 STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
72 STATISTIC(NumShrinkToUses,  "Number of shrinkToUses called");
73 
74 static cl::opt<bool> EnableJoining("join-liveintervals",
75                                    cl::desc("Coalesce copies (default=true)"),
76                                    cl::init(true), cl::Hidden);
77 
78 static cl::opt<bool> UseTerminalRule("terminal-rule",
79                                      cl::desc("Apply the terminal rule"),
80                                      cl::init(false), cl::Hidden);
81 
82 /// Temporary flag to test critical edge unsplitting.
83 static cl::opt<bool>
84 EnableJoinSplits("join-splitedges",
85   cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
86 
87 /// Temporary flag to test global copy optimization.
88 static cl::opt<cl::boolOrDefault>
89 EnableGlobalCopies("join-globalcopies",
90   cl::desc("Coalesce copies that span blocks (default=subtarget)"),
91   cl::init(cl::BOU_UNSET), cl::Hidden);
92 
93 static cl::opt<bool>
94 VerifyCoalescing("verify-coalescing",
95          cl::desc("Verify machine instrs before and after register coalescing"),
96          cl::Hidden);
97 
98 static cl::opt<unsigned> LateRematUpdateThreshold(
99     "late-remat-update-threshold", cl::Hidden,
100     cl::desc("During rematerialization for a copy, if the def instruction has "
101              "many other copy uses to be rematerialized, delay the multiple "
102              "separate live interval update work and do them all at once after "
103              "all those rematerialization are done. It will save a lot of "
104              "repeated work. "),
105     cl::init(100));
106 
107 static cl::opt<unsigned> LargeIntervalSizeThreshold(
108     "large-interval-size-threshold", cl::Hidden,
109     cl::desc("If the valnos size of an interval is larger than the threshold, "
110              "it is regarded as a large interval. "),
111     cl::init(100));
112 
113 static cl::opt<unsigned> LargeIntervalFreqThreshold(
114     "large-interval-freq-threshold", cl::Hidden,
115     cl::desc("For a large interval, if it is coalesed with other live "
116              "intervals many times more than the threshold, stop its "
117              "coalescing to control the compile time. "),
118     cl::init(100));
119 
120 namespace {
121 
122   class RegisterCoalescer : public MachineFunctionPass,
123                             private LiveRangeEdit::Delegate {
124     MachineFunction* MF;
125     MachineRegisterInfo* MRI;
126     const TargetRegisterInfo* TRI;
127     const TargetInstrInfo* TII;
128     LiveIntervals *LIS;
129     const MachineLoopInfo* Loops;
130     AliasAnalysis *AA;
131     RegisterClassInfo RegClassInfo;
132 
133     /// A LaneMask to remember on which subregister live ranges we need to call
134     /// shrinkToUses() later.
135     LaneBitmask ShrinkMask;
136 
137     /// True if the main range of the currently coalesced intervals should be
138     /// checked for smaller live intervals.
139     bool ShrinkMainRange;
140 
141     /// True if the coalescer should aggressively coalesce global copies
142     /// in favor of keeping local copies.
143     bool JoinGlobalCopies;
144 
145     /// True if the coalescer should aggressively coalesce fall-thru
146     /// blocks exclusively containing copies.
147     bool JoinSplitEdges;
148 
149     /// Copy instructions yet to be coalesced.
150     SmallVector<MachineInstr*, 8> WorkList;
151     SmallVector<MachineInstr*, 8> LocalWorkList;
152 
153     /// Set of instruction pointers that have been erased, and
154     /// that may be present in WorkList.
155     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
156 
157     /// Dead instructions that are about to be deleted.
158     SmallVector<MachineInstr*, 8> DeadDefs;
159 
160     /// Virtual registers to be considered for register class inflation.
161     SmallVector<unsigned, 8> InflateRegs;
162 
163     /// The collection of live intervals which should have been updated
164     /// immediately after rematerialiation but delayed until
165     /// lateLiveIntervalUpdate is called.
166     DenseSet<unsigned> ToBeUpdated;
167 
168     /// Record how many times the large live interval with many valnos
169     /// has been tried to join with other live interval.
170     DenseMap<unsigned, unsigned long> LargeLIVisitCounter;
171 
172     /// Recursively eliminate dead defs in DeadDefs.
173     void eliminateDeadDefs();
174 
175     /// LiveRangeEdit callback for eliminateDeadDefs().
176     void LRE_WillEraseInstruction(MachineInstr *MI) override;
177 
178     /// Coalesce the LocalWorkList.
179     void coalesceLocals();
180 
181     /// Join compatible live intervals
182     void joinAllIntervals();
183 
184     /// Coalesce copies in the specified MBB, putting
185     /// copies that cannot yet be coalesced into WorkList.
186     void copyCoalesceInMBB(MachineBasicBlock *MBB);
187 
188     /// Tries to coalesce all copies in CurrList. Returns true if any progress
189     /// was made.
190     bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
191 
192     /// If one def has many copy like uses, and those copy uses are all
193     /// rematerialized, the live interval update needed for those
194     /// rematerializations will be delayed and done all at once instead
195     /// of being done multiple times. This is to save compile cost because
196     /// live interval update is costly.
197     void lateLiveIntervalUpdate();
198 
199     /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
200     /// src/dst of the copy instruction CopyMI.  This returns true if the copy
201     /// was successfully coalesced away. If it is not currently possible to
202     /// coalesce this interval, but it may be possible if other things get
203     /// coalesced, then it returns true by reference in 'Again'.
204     bool joinCopy(MachineInstr *CopyMI, bool &Again);
205 
206     /// Attempt to join these two intervals.  On failure, this
207     /// returns false.  The output "SrcInt" will not have been modified, so we
208     /// can use this information below to update aliases.
209     bool joinIntervals(CoalescerPair &CP);
210 
211     /// Attempt joining two virtual registers. Return true on success.
212     bool joinVirtRegs(CoalescerPair &CP);
213 
214     /// If a live interval has many valnos and is coalesced with other
215     /// live intervals many times, we regard such live interval as having
216     /// high compile time cost.
217     bool isHighCostLiveInterval(LiveInterval &LI);
218 
219     /// Attempt joining with a reserved physreg.
220     bool joinReservedPhysReg(CoalescerPair &CP);
221 
222     /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
223     /// Subranges in @p LI which only partially interfere with the desired
224     /// LaneMask are split as necessary. @p LaneMask are the lanes that
225     /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
226     /// lanemasks already adjusted to the coalesced register.
227     void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
228                            LaneBitmask LaneMask, CoalescerPair &CP);
229 
230     /// Join the liveranges of two subregisters. Joins @p RRange into
231     /// @p LRange, @p RRange may be invalid afterwards.
232     void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
233                           LaneBitmask LaneMask, const CoalescerPair &CP);
234 
235     /// We found a non-trivially-coalescable copy. If the source value number is
236     /// defined by a copy from the destination reg see if we can merge these two
237     /// destination reg valno# into a single value number, eliminating a copy.
238     /// This returns true if an interval was modified.
239     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
240 
241     /// Return true if there are definitions of IntB
242     /// other than BValNo val# that can reach uses of AValno val# of IntA.
243     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
244                               VNInfo *AValNo, VNInfo *BValNo);
245 
246     /// We found a non-trivially-coalescable copy.
247     /// If the source value number is defined by a commutable instruction and
248     /// its other operand is coalesced to the copy dest register, see if we
249     /// can transform the copy into a noop by commuting the definition.
250     /// This returns a pair of two flags:
251     /// - the first element is true if an interval was modified,
252     /// - the second element is true if the destination interval needs
253     ///   to be shrunk after deleting the copy.
254     std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
255                                                   MachineInstr *CopyMI);
256 
257     /// We found a copy which can be moved to its less frequent predecessor.
258     bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
259 
260     /// If the source of a copy is defined by a
261     /// trivial computation, replace the copy by rematerialize the definition.
262     bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
263                                  bool &IsDefCopy);
264 
265     /// Return true if a copy involving a physreg should be joined.
266     bool canJoinPhys(const CoalescerPair &CP);
267 
268     /// Replace all defs and uses of SrcReg to DstReg and update the subregister
269     /// number if it is not zero. If DstReg is a physical register and the
270     /// existing subregister number of the def / use being updated is not zero,
271     /// make sure to set it to the correct physical subregister.
272     void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
273 
274     /// If the given machine operand reads only undefined lanes add an undef
275     /// flag.
276     /// This can happen when undef uses were previously concealed by a copy
277     /// which we coalesced. Example:
278     ///    %0:sub0<def,read-undef> = ...
279     ///    %1 = COPY %0           <-- Coalescing COPY reveals undef
280     ///       = use %1:sub1       <-- hidden undef use
281     void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
282                       MachineOperand &MO, unsigned SubRegIdx);
283 
284     /// Handle copies of undef values. If the undef value is an incoming
285     /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
286     /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
287     /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
288     MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
289 
290     /// Check whether or not we should apply the terminal rule on the
291     /// destination (Dst) of \p Copy.
292     /// When the terminal rule applies, Copy is not profitable to
293     /// coalesce.
294     /// Dst is terminal if it has exactly one affinity (Dst, Src) and
295     /// at least one interference (Dst, Dst2). If Dst is terminal, the
296     /// terminal rule consists in checking that at least one of
297     /// interfering node, say Dst2, has an affinity of equal or greater
298     /// weight with Src.
299     /// In that case, Dst2 and Dst will not be able to be both coalesced
300     /// with Src. Since Dst2 exposes more coalescing opportunities than
301     /// Dst, we can drop \p Copy.
302     bool applyTerminalRule(const MachineInstr &Copy) const;
303 
304     /// Wrapper method for \see LiveIntervals::shrinkToUses.
305     /// This method does the proper fixing of the live-ranges when the afore
306     /// mentioned method returns true.
307     void shrinkToUses(LiveInterval *LI,
308                       SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
309       NumShrinkToUses++;
310       if (LIS->shrinkToUses(LI, Dead)) {
311         /// Check whether or not \p LI is composed by multiple connected
312         /// components and if that is the case, fix that.
313         SmallVector<LiveInterval*, 8> SplitLIs;
314         LIS->splitSeparateComponents(*LI, SplitLIs);
315       }
316     }
317 
318     /// Wrapper Method to do all the necessary work when an Instruction is
319     /// deleted.
320     /// Optimizations should use this to make sure that deleted instructions
321     /// are always accounted for.
322     void deleteInstr(MachineInstr* MI) {
323       ErasedInstrs.insert(MI);
324       LIS->RemoveMachineInstrFromMaps(*MI);
325       MI->eraseFromParent();
326     }
327 
328   public:
329     static char ID; ///< Class identification, replacement for typeinfo
330 
331     RegisterCoalescer() : MachineFunctionPass(ID) {
332       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
333     }
334 
335     void getAnalysisUsage(AnalysisUsage &AU) const override;
336 
337     void releaseMemory() override;
338 
339     /// This is the pass entry point.
340     bool runOnMachineFunction(MachineFunction&) override;
341 
342     /// Implement the dump method.
343     void print(raw_ostream &O, const Module* = nullptr) const override;
344   };
345 
346 } // end anonymous namespace
347 
348 char RegisterCoalescer::ID = 0;
349 
350 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
351 
352 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
353                       "Simple Register Coalescing", false, false)
354 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
355 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
356 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
357 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
358 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
359                     "Simple Register Coalescing", false, false)
360 
361 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
362                         unsigned &Src, unsigned &Dst,
363                         unsigned &SrcSub, unsigned &DstSub) {
364   if (MI->isCopy()) {
365     Dst = MI->getOperand(0).getReg();
366     DstSub = MI->getOperand(0).getSubReg();
367     Src = MI->getOperand(1).getReg();
368     SrcSub = MI->getOperand(1).getSubReg();
369   } else if (MI->isSubregToReg()) {
370     Dst = MI->getOperand(0).getReg();
371     DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
372                                       MI->getOperand(3).getImm());
373     Src = MI->getOperand(2).getReg();
374     SrcSub = MI->getOperand(2).getSubReg();
375   } else
376     return false;
377   return true;
378 }
379 
380 /// Return true if this block should be vacated by the coalescer to eliminate
381 /// branches. The important cases to handle in the coalescer are critical edges
382 /// split during phi elimination which contain only copies. Simple blocks that
383 /// contain non-branches should also be vacated, but this can be handled by an
384 /// earlier pass similar to early if-conversion.
385 static bool isSplitEdge(const MachineBasicBlock *MBB) {
386   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
387     return false;
388 
389   for (const auto &MI : *MBB) {
390     if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
391       return false;
392   }
393   return true;
394 }
395 
396 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
397   SrcReg = DstReg = 0;
398   SrcIdx = DstIdx = 0;
399   NewRC = nullptr;
400   Flipped = CrossClass = false;
401 
402   unsigned Src, Dst, SrcSub, DstSub;
403   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
404     return false;
405   Partial = SrcSub || DstSub;
406 
407   // If one register is a physreg, it must be Dst.
408   if (TargetRegisterInfo::isPhysicalRegister(Src)) {
409     if (TargetRegisterInfo::isPhysicalRegister(Dst))
410       return false;
411     std::swap(Src, Dst);
412     std::swap(SrcSub, DstSub);
413     Flipped = true;
414   }
415 
416   const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
417 
418   if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
419     // Eliminate DstSub on a physreg.
420     if (DstSub) {
421       Dst = TRI.getSubReg(Dst, DstSub);
422       if (!Dst) return false;
423       DstSub = 0;
424     }
425 
426     // Eliminate SrcSub by picking a corresponding Dst superregister.
427     if (SrcSub) {
428       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
429       if (!Dst) return false;
430     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
431       return false;
432     }
433   } else {
434     // Both registers are virtual.
435     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
436     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
437 
438     // Both registers have subreg indices.
439     if (SrcSub && DstSub) {
440       // Copies between different sub-registers are never coalescable.
441       if (Src == Dst && SrcSub != DstSub)
442         return false;
443 
444       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
445                                          SrcIdx, DstIdx);
446       if (!NewRC)
447         return false;
448     } else if (DstSub) {
449       // SrcReg will be merged with a sub-register of DstReg.
450       SrcIdx = DstSub;
451       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
452     } else if (SrcSub) {
453       // DstReg will be merged with a sub-register of SrcReg.
454       DstIdx = SrcSub;
455       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
456     } else {
457       // This is a straight copy without sub-registers.
458       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
459     }
460 
461     // The combined constraint may be impossible to satisfy.
462     if (!NewRC)
463       return false;
464 
465     // Prefer SrcReg to be a sub-register of DstReg.
466     // FIXME: Coalescer should support subregs symmetrically.
467     if (DstIdx && !SrcIdx) {
468       std::swap(Src, Dst);
469       std::swap(SrcIdx, DstIdx);
470       Flipped = !Flipped;
471     }
472 
473     CrossClass = NewRC != DstRC || NewRC != SrcRC;
474   }
475   // Check our invariants
476   assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
477   assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
478          "Cannot have a physical SubIdx");
479   SrcReg = Src;
480   DstReg = Dst;
481   return true;
482 }
483 
484 bool CoalescerPair::flip() {
485   if (TargetRegisterInfo::isPhysicalRegister(DstReg))
486     return false;
487   std::swap(SrcReg, DstReg);
488   std::swap(SrcIdx, DstIdx);
489   Flipped = !Flipped;
490   return true;
491 }
492 
493 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
494   if (!MI)
495     return false;
496   unsigned Src, Dst, SrcSub, DstSub;
497   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
498     return false;
499 
500   // Find the virtual register that is SrcReg.
501   if (Dst == SrcReg) {
502     std::swap(Src, Dst);
503     std::swap(SrcSub, DstSub);
504   } else if (Src != SrcReg) {
505     return false;
506   }
507 
508   // Now check that Dst matches DstReg.
509   if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
510     if (!TargetRegisterInfo::isPhysicalRegister(Dst))
511       return false;
512     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
513     // DstSub could be set for a physreg from INSERT_SUBREG.
514     if (DstSub)
515       Dst = TRI.getSubReg(Dst, DstSub);
516     // Full copy of Src.
517     if (!SrcSub)
518       return DstReg == Dst;
519     // This is a partial register copy. Check that the parts match.
520     return TRI.getSubReg(DstReg, SrcSub) == Dst;
521   } else {
522     // DstReg is virtual.
523     if (DstReg != Dst)
524       return false;
525     // Registers match, do the subregisters line up?
526     return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
527            TRI.composeSubRegIndices(DstIdx, DstSub);
528   }
529 }
530 
531 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
532   AU.setPreservesCFG();
533   AU.addRequired<AAResultsWrapperPass>();
534   AU.addRequired<LiveIntervals>();
535   AU.addPreserved<LiveIntervals>();
536   AU.addPreserved<SlotIndexes>();
537   AU.addRequired<MachineLoopInfo>();
538   AU.addPreserved<MachineLoopInfo>();
539   AU.addPreservedID(MachineDominatorsID);
540   MachineFunctionPass::getAnalysisUsage(AU);
541 }
542 
543 void RegisterCoalescer::eliminateDeadDefs() {
544   SmallVector<unsigned, 8> NewRegs;
545   LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
546                 nullptr, this).eliminateDeadDefs(DeadDefs);
547 }
548 
549 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
550   // MI may be in WorkList. Make sure we don't visit it.
551   ErasedInstrs.insert(MI);
552 }
553 
554 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
555                                              MachineInstr *CopyMI) {
556   assert(!CP.isPartial() && "This doesn't work for partial copies.");
557   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
558 
559   LiveInterval &IntA =
560     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
561   LiveInterval &IntB =
562     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
563   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
564 
565   // We have a non-trivially-coalescable copy with IntA being the source and
566   // IntB being the dest, thus this defines a value number in IntB.  If the
567   // source value number (in IntA) is defined by a copy from B, see if we can
568   // merge these two pieces of B into a single value number, eliminating a copy.
569   // For example:
570   //
571   //  A3 = B0
572   //    ...
573   //  B1 = A3      <- this copy
574   //
575   // In this case, B0 can be extended to where the B1 copy lives, allowing the
576   // B1 value number to be replaced with B0 (which simplifies the B
577   // liveinterval).
578 
579   // BValNo is a value number in B that is defined by a copy from A.  'B1' in
580   // the example above.
581   LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
582   if (BS == IntB.end()) return false;
583   VNInfo *BValNo = BS->valno;
584 
585   // Get the location that B is defined at.  Two options: either this value has
586   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
587   // can't process it.
588   if (BValNo->def != CopyIdx) return false;
589 
590   // AValNo is the value number in A that defines the copy, A3 in the example.
591   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
592   LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
593   // The live segment might not exist after fun with physreg coalescing.
594   if (AS == IntA.end()) return false;
595   VNInfo *AValNo = AS->valno;
596 
597   // If AValNo is defined as a copy from IntB, we can potentially process this.
598   // Get the instruction that defines this value number.
599   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
600   // Don't allow any partial copies, even if isCoalescable() allows them.
601   if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
602     return false;
603 
604   // Get the Segment in IntB that this value number starts with.
605   LiveInterval::iterator ValS =
606     IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
607   if (ValS == IntB.end())
608     return false;
609 
610   // Make sure that the end of the live segment is inside the same block as
611   // CopyMI.
612   MachineInstr *ValSEndInst =
613     LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
614   if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
615     return false;
616 
617   // Okay, we now know that ValS ends in the same block that the CopyMI
618   // live-range starts.  If there are no intervening live segments between them
619   // in IntB, we can merge them.
620   if (ValS+1 != BS) return false;
621 
622   LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI));
623 
624   SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
625   // We are about to delete CopyMI, so need to remove it as the 'instruction
626   // that defines this value #'. Update the valnum with the new defining
627   // instruction #.
628   BValNo->def = FillerStart;
629 
630   // Okay, we can merge them.  We need to insert a new liverange:
631   // [ValS.end, BS.begin) of either value number, then we merge the
632   // two value numbers.
633   IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
634 
635   // Okay, merge "B1" into the same value number as "B0".
636   if (BValNo != ValS->valno)
637     IntB.MergeValueNumberInto(BValNo, ValS->valno);
638 
639   // Do the same for the subregister segments.
640   for (LiveInterval::SubRange &S : IntB.subranges()) {
641     // Check for SubRange Segments of the form [1234r,1234d:0) which can be
642     // removed to prevent creating bogus SubRange Segments.
643     LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
644     if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
645       S.removeSegment(*SS, true);
646       continue;
647     }
648     VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
649     S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
650     VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
651     if (SubBValNo != SubValSNo)
652       S.MergeValueNumberInto(SubBValNo, SubValSNo);
653   }
654 
655   LLVM_DEBUG(dbgs() << "   result = " << IntB << '\n');
656 
657   // If the source instruction was killing the source register before the
658   // merge, unset the isKill marker given the live range has been extended.
659   int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
660   if (UIdx != -1) {
661     ValSEndInst->getOperand(UIdx).setIsKill(false);
662   }
663 
664   // Rewrite the copy.
665   CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
666   // If the copy instruction was killing the destination register or any
667   // subrange before the merge trim the live range.
668   bool RecomputeLiveRange = AS->end == CopyIdx;
669   if (!RecomputeLiveRange) {
670     for (LiveInterval::SubRange &S : IntA.subranges()) {
671       LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
672       if (SS != S.end() && SS->end == CopyIdx) {
673         RecomputeLiveRange = true;
674         break;
675       }
676     }
677   }
678   if (RecomputeLiveRange)
679     shrinkToUses(&IntA);
680 
681   ++numExtends;
682   return true;
683 }
684 
685 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
686                                              LiveInterval &IntB,
687                                              VNInfo *AValNo,
688                                              VNInfo *BValNo) {
689   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
690   // the PHI values.
691   if (LIS->hasPHIKill(IntA, AValNo))
692     return true;
693 
694   for (LiveRange::Segment &ASeg : IntA.segments) {
695     if (ASeg.valno != AValNo) continue;
696     LiveInterval::iterator BI =
697       std::upper_bound(IntB.begin(), IntB.end(), ASeg.start);
698     if (BI != IntB.begin())
699       --BI;
700     for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
701       if (BI->valno == BValNo)
702         continue;
703       if (BI->start <= ASeg.start && BI->end > ASeg.start)
704         return true;
705       if (BI->start > ASeg.start && BI->start < ASeg.end)
706         return true;
707     }
708   }
709   return false;
710 }
711 
712 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
713 /// range @Dst and use value number @p DstValNo there.
714 static std::pair<bool,bool>
715 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
716                      const VNInfo *SrcValNo) {
717   bool Changed = false;
718   bool MergedWithDead = false;
719   for (const LiveRange::Segment &S : Src.segments) {
720     if (S.valno != SrcValNo)
721       continue;
722     // This is adding a segment from Src that ends in a copy that is about
723     // to be removed. This segment is going to be merged with a pre-existing
724     // segment in Dst. This works, except in cases when the corresponding
725     // segment in Dst is dead. For example: adding [192r,208r:1) from Src
726     // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
727     // Recognized such cases, so that the segments can be shrunk.
728     LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
729     LiveRange::Segment &Merged = *Dst.addSegment(Added);
730     if (Merged.end.isDead())
731       MergedWithDead = true;
732     Changed = true;
733   }
734   return std::make_pair(Changed, MergedWithDead);
735 }
736 
737 std::pair<bool,bool>
738 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
739                                             MachineInstr *CopyMI) {
740   assert(!CP.isPhys());
741 
742   LiveInterval &IntA =
743       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
744   LiveInterval &IntB =
745       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
746 
747   // We found a non-trivially-coalescable copy with IntA being the source and
748   // IntB being the dest, thus this defines a value number in IntB.  If the
749   // source value number (in IntA) is defined by a commutable instruction and
750   // its other operand is coalesced to the copy dest register, see if we can
751   // transform the copy into a noop by commuting the definition. For example,
752   //
753   //  A3 = op A2 killed B0
754   //    ...
755   //  B1 = A3      <- this copy
756   //    ...
757   //     = op A3   <- more uses
758   //
759   // ==>
760   //
761   //  B2 = op B0 killed A2
762   //    ...
763   //  B1 = B2      <- now an identity copy
764   //    ...
765   //     = op B2   <- more uses
766 
767   // BValNo is a value number in B that is defined by a copy from A. 'B1' in
768   // the example above.
769   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
770   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
771   assert(BValNo != nullptr && BValNo->def == CopyIdx);
772 
773   // AValNo is the value number in A that defines the copy, A3 in the example.
774   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
775   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
776   if (AValNo->isPHIDef())
777     return { false, false };
778   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
779   if (!DefMI)
780     return { false, false };
781   if (!DefMI->isCommutable())
782     return { false, false };
783   // If DefMI is a two-address instruction then commuting it will change the
784   // destination register.
785   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
786   assert(DefIdx != -1);
787   unsigned UseOpIdx;
788   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
789     return { false, false };
790 
791   // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
792   // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
793   // passed to the method. That _other_ operand is chosen by
794   // the findCommutedOpIndices() method.
795   //
796   // That is obviously an area for improvement in case of instructions having
797   // more than 2 operands. For example, if some instruction has 3 commutable
798   // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
799   // op#2<->op#3) of commute transformation should be considered/tried here.
800   unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
801   if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
802     return { false, false };
803 
804   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
805   unsigned NewReg = NewDstMO.getReg();
806   if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
807     return { false, false };
808 
809   // Make sure there are no other definitions of IntB that would reach the
810   // uses which the new definition can reach.
811   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
812     return { false, false };
813 
814   // If some of the uses of IntA.reg is already coalesced away, return false.
815   // It's not possible to determine whether it's safe to perform the coalescing.
816   for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
817     MachineInstr *UseMI = MO.getParent();
818     unsigned OpNo = &MO - &UseMI->getOperand(0);
819     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
820     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
821     if (US == IntA.end() || US->valno != AValNo)
822       continue;
823     // If this use is tied to a def, we can't rewrite the register.
824     if (UseMI->isRegTiedToDefOperand(OpNo))
825       return { false, false };
826   }
827 
828   LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
829                     << *DefMI);
830 
831   // At this point we have decided that it is legal to do this
832   // transformation.  Start by commuting the instruction.
833   MachineBasicBlock *MBB = DefMI->getParent();
834   MachineInstr *NewMI =
835       TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
836   if (!NewMI)
837     return { false, false };
838   if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
839       TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
840       !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
841     return { false, false };
842   if (NewMI != DefMI) {
843     LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
844     MachineBasicBlock::iterator Pos = DefMI;
845     MBB->insert(Pos, NewMI);
846     MBB->erase(DefMI);
847   }
848 
849   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
850   // A = or A, B
851   // ...
852   // B = A
853   // ...
854   // C = killed A
855   // ...
856   //   = B
857 
858   // Update uses of IntA of the specific Val# with IntB.
859   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
860                                          UE = MRI->use_end();
861        UI != UE; /* ++UI is below because of possible MI removal */) {
862     MachineOperand &UseMO = *UI;
863     ++UI;
864     if (UseMO.isUndef())
865       continue;
866     MachineInstr *UseMI = UseMO.getParent();
867     if (UseMI->isDebugValue()) {
868       // FIXME These don't have an instruction index.  Not clear we have enough
869       // info to decide whether to do this replacement or not.  For now do it.
870       UseMO.setReg(NewReg);
871       continue;
872     }
873     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
874     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
875     assert(US != IntA.end() && "Use must be live");
876     if (US->valno != AValNo)
877       continue;
878     // Kill flags are no longer accurate. They are recomputed after RA.
879     UseMO.setIsKill(false);
880     if (TargetRegisterInfo::isPhysicalRegister(NewReg))
881       UseMO.substPhysReg(NewReg, *TRI);
882     else
883       UseMO.setReg(NewReg);
884     if (UseMI == CopyMI)
885       continue;
886     if (!UseMI->isCopy())
887       continue;
888     if (UseMI->getOperand(0).getReg() != IntB.reg ||
889         UseMI->getOperand(0).getSubReg())
890       continue;
891 
892     // This copy will become a noop. If it's defining a new val#, merge it into
893     // BValNo.
894     SlotIndex DefIdx = UseIdx.getRegSlot();
895     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
896     if (!DVNI)
897       continue;
898     LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
899     assert(DVNI->def == DefIdx);
900     BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
901     for (LiveInterval::SubRange &S : IntB.subranges()) {
902       VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
903       if (!SubDVNI)
904         continue;
905       VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
906       assert(SubBValNo->def == CopyIdx);
907       S.MergeValueNumberInto(SubDVNI, SubBValNo);
908     }
909 
910     deleteInstr(UseMI);
911   }
912 
913   // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
914   // is updated.
915   bool ShrinkB = false;
916   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
917   if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
918     if (!IntA.hasSubRanges()) {
919       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
920       IntA.createSubRangeFrom(Allocator, Mask, IntA);
921     } else if (!IntB.hasSubRanges()) {
922       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg);
923       IntB.createSubRangeFrom(Allocator, Mask, IntB);
924     }
925     SlotIndex AIdx = CopyIdx.getRegSlot(true);
926     LaneBitmask MaskA;
927     for (LiveInterval::SubRange &SA : IntA.subranges()) {
928       VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
929       assert(ASubValNo != nullptr);
930       MaskA |= SA.LaneMask;
931 
932       IntB.refineSubRanges(Allocator, SA.LaneMask,
933           [&Allocator,&SA,CopyIdx,ASubValNo,&ShrinkB]
934             (LiveInterval::SubRange &SR) {
935         VNInfo *BSubValNo = SR.empty()
936           ? SR.getNextValue(CopyIdx, Allocator)
937           : SR.getVNInfoAt(CopyIdx);
938         assert(BSubValNo != nullptr);
939         auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
940         ShrinkB |= P.second;
941         if (P.first)
942           BSubValNo->def = ASubValNo->def;
943       });
944     }
945     // Go over all subranges of IntB that have not been covered by IntA,
946     // and delete the segments starting at CopyIdx. This can happen if
947     // IntA has undef lanes that are defined in IntB.
948     for (LiveInterval::SubRange &SB : IntB.subranges()) {
949       if ((SB.LaneMask & MaskA).any())
950         continue;
951       if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
952         if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
953           SB.removeSegment(*S, true);
954     }
955   }
956 
957   BValNo->def = AValNo->def;
958   auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
959   ShrinkB |= P.second;
960   LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
961 
962   LIS->removeVRegDefAt(IntA, AValNo->def);
963 
964   LLVM_DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
965   ++numCommutes;
966   return { true, ShrinkB };
967 }
968 
969 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
970 /// predecessor of BB2, and if B is not redefined on the way from A = B
971 /// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the
972 /// execution goes through the path from BB0 to BB2. We may move B = A
973 /// to the predecessor without such reversed copy.
974 /// So we will transform the program from:
975 ///   BB0:
976 ///      A = B;    BB1:
977 ///       ...         ...
978 ///     /     \      /
979 ///             BB2:
980 ///               ...
981 ///               B = A;
982 ///
983 /// to:
984 ///
985 ///   BB0:         BB1:
986 ///      A = B;        ...
987 ///       ...          B = A;
988 ///     /     \       /
989 ///             BB2:
990 ///               ...
991 ///
992 /// A special case is when BB0 and BB2 are the same BB which is the only
993 /// BB in a loop:
994 ///   BB1:
995 ///        ...
996 ///   BB0/BB2:  ----
997 ///        B = A;   |
998 ///        ...      |
999 ///        A = B;   |
1000 ///          |-------
1001 ///          |
1002 /// We may hoist B = A from BB0/BB2 to BB1.
1003 ///
1004 /// The major preconditions for correctness to remove such partial
1005 /// redundancy include:
1006 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1007 ///    the PHI is defined by the reversed copy A = B in BB0.
1008 /// 2. No B is referenced from the start of BB2 to B = A.
1009 /// 3. No B is defined from A = B to the end of BB0.
1010 /// 4. BB1 has only one successor.
1011 ///
1012 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1013 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1014 /// colder place, which not only prevent endless loop, but also make sure
1015 /// the movement of copy is beneficial.
1016 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1017                                                 MachineInstr &CopyMI) {
1018   assert(!CP.isPhys());
1019   if (!CopyMI.isFullCopy())
1020     return false;
1021 
1022   MachineBasicBlock &MBB = *CopyMI.getParent();
1023   if (MBB.isEHPad())
1024     return false;
1025 
1026   if (MBB.pred_size() != 2)
1027     return false;
1028 
1029   LiveInterval &IntA =
1030       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1031   LiveInterval &IntB =
1032       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1033 
1034   // A is defined by PHI at the entry of MBB.
1035   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1036   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1037   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1038   if (!AValNo->isPHIDef())
1039     return false;
1040 
1041   // No B is referenced before CopyMI in MBB.
1042   if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1043     return false;
1044 
1045   // MBB has two predecessors: one contains A = B so no copy will be inserted
1046   // for it. The other one will have a copy moved from MBB.
1047   bool FoundReverseCopy = false;
1048   MachineBasicBlock *CopyLeftBB = nullptr;
1049   for (MachineBasicBlock *Pred : MBB.predecessors()) {
1050     VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1051     MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1052     if (!DefMI || !DefMI->isFullCopy()) {
1053       CopyLeftBB = Pred;
1054       continue;
1055     }
1056     // Check DefMI is a reverse copy and it is in BB Pred.
1057     if (DefMI->getOperand(0).getReg() != IntA.reg ||
1058         DefMI->getOperand(1).getReg() != IntB.reg ||
1059         DefMI->getParent() != Pred) {
1060       CopyLeftBB = Pred;
1061       continue;
1062     }
1063     // If there is any other def of B after DefMI and before the end of Pred,
1064     // we need to keep the copy of B = A at the end of Pred if we remove
1065     // B = A from MBB.
1066     bool ValB_Changed = false;
1067     for (auto VNI : IntB.valnos) {
1068       if (VNI->isUnused())
1069         continue;
1070       if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1071         ValB_Changed = true;
1072         break;
1073       }
1074     }
1075     if (ValB_Changed) {
1076       CopyLeftBB = Pred;
1077       continue;
1078     }
1079     FoundReverseCopy = true;
1080   }
1081 
1082   // If no reverse copy is found in predecessors, nothing to do.
1083   if (!FoundReverseCopy)
1084     return false;
1085 
1086   // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1087   // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1088   // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1089   // update IntA/IntB.
1090   //
1091   // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1092   // MBB is hotter than CopyLeftBB.
1093   if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1094     return false;
1095 
1096   // Now (almost sure it's) ok to move copy.
1097   if (CopyLeftBB) {
1098     // Position in CopyLeftBB where we should insert new copy.
1099     auto InsPos = CopyLeftBB->getFirstTerminator();
1100 
1101     // Make sure that B isn't referenced in the terminators (if any) at the end
1102     // of the predecessor since we're about to insert a new definition of B
1103     // before them.
1104     if (InsPos != CopyLeftBB->end()) {
1105       SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1106       if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1107         return false;
1108     }
1109 
1110     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1111                       << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1112 
1113     // Insert new copy to CopyLeftBB.
1114     MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1115                                       TII->get(TargetOpcode::COPY), IntB.reg)
1116                                   .addReg(IntA.reg);
1117     SlotIndex NewCopyIdx =
1118         LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1119     IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1120     for (LiveInterval::SubRange &SR : IntB.subranges())
1121       SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1122 
1123     // If the newly created Instruction has an address of an instruction that was
1124     // deleted before (object recycled by the allocator) it needs to be removed from
1125     // the deleted list.
1126     ErasedInstrs.erase(NewCopyMI);
1127   } else {
1128     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1129                       << printMBBReference(MBB) << '\t' << CopyMI);
1130   }
1131 
1132   // Remove CopyMI.
1133   // Note: This is fine to remove the copy before updating the live-ranges.
1134   // While updating the live-ranges, we only look at slot indices and
1135   // never go back to the instruction.
1136   // Mark instructions as deleted.
1137   deleteInstr(&CopyMI);
1138 
1139   // Update the liveness.
1140   SmallVector<SlotIndex, 8> EndPoints;
1141   VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1142   LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1143                   &EndPoints);
1144   BValNo->markUnused();
1145   // Extend IntB to the EndPoints of its original live interval.
1146   LIS->extendToIndices(IntB, EndPoints);
1147 
1148   // Now, do the same for its subranges.
1149   for (LiveInterval::SubRange &SR : IntB.subranges()) {
1150     EndPoints.clear();
1151     VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1152     assert(BValNo && "All sublanes should be live");
1153     LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1154     BValNo->markUnused();
1155     // We can have a situation where the result of the original copy is live,
1156     // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1157     // the copy appear as an endpoint from pruneValue(), but we don't want it
1158     // to because the copy has been removed.  We can go ahead and remove that
1159     // endpoint; there is no other situation here that there could be a use at
1160     // the same place as we know that the copy is a full copy.
1161     for (unsigned I = 0; I != EndPoints.size(); ) {
1162       if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1163         EndPoints[I] = EndPoints.back();
1164         EndPoints.pop_back();
1165         continue;
1166       }
1167       ++I;
1168     }
1169     LIS->extendToIndices(SR, EndPoints);
1170   }
1171   // If any dead defs were extended, truncate them.
1172   shrinkToUses(&IntB);
1173 
1174   // Finally, update the live-range of IntA.
1175   shrinkToUses(&IntA);
1176   return true;
1177 }
1178 
1179 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1180 /// defining a subregister.
1181 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
1182   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
1183          "This code cannot handle physreg aliasing");
1184   for (const MachineOperand &Op : MI.operands()) {
1185     if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1186       continue;
1187     // Return true if we define the full register or don't care about the value
1188     // inside other subregisters.
1189     if (Op.getSubReg() == 0 || Op.isUndef())
1190       return true;
1191   }
1192   return false;
1193 }
1194 
1195 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1196                                                 MachineInstr *CopyMI,
1197                                                 bool &IsDefCopy) {
1198   IsDefCopy = false;
1199   unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1200   unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1201   unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1202   unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1203   if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
1204     return false;
1205 
1206   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1207   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1208   VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1209   if (!ValNo)
1210     return false;
1211   if (ValNo->isPHIDef() || ValNo->isUnused())
1212     return false;
1213   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1214   if (!DefMI)
1215     return false;
1216   if (DefMI->isCopyLike()) {
1217     IsDefCopy = true;
1218     return false;
1219   }
1220   if (!TII->isAsCheapAsAMove(*DefMI))
1221     return false;
1222   if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1223     return false;
1224   if (!definesFullReg(*DefMI, SrcReg))
1225     return false;
1226   bool SawStore = false;
1227   if (!DefMI->isSafeToMove(AA, SawStore))
1228     return false;
1229   const MCInstrDesc &MCID = DefMI->getDesc();
1230   if (MCID.getNumDefs() != 1)
1231     return false;
1232   // Only support subregister destinations when the def is read-undef.
1233   MachineOperand &DstOperand = CopyMI->getOperand(0);
1234   unsigned CopyDstReg = DstOperand.getReg();
1235   if (DstOperand.getSubReg() && !DstOperand.isUndef())
1236     return false;
1237 
1238   // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1239   // the register substantially (beyond both source and dest size). This is bad
1240   // for performance since it can cascade through a function, introducing many
1241   // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1242   // around after a few subreg copies).
1243   if (SrcIdx && DstIdx)
1244     return false;
1245 
1246   const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1247   if (!DefMI->isImplicitDef()) {
1248     if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
1249       unsigned NewDstReg = DstReg;
1250 
1251       unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1252                                               DefMI->getOperand(0).getSubReg());
1253       if (NewDstIdx)
1254         NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1255 
1256       // Finally, make sure that the physical subregister that will be
1257       // constructed later is permitted for the instruction.
1258       if (!DefRC->contains(NewDstReg))
1259         return false;
1260     } else {
1261       // Theoretically, some stack frame reference could exist. Just make sure
1262       // it hasn't actually happened.
1263       assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
1264              "Only expect to deal with virtual or physical registers");
1265     }
1266   }
1267 
1268   DebugLoc DL = CopyMI->getDebugLoc();
1269   MachineBasicBlock *MBB = CopyMI->getParent();
1270   MachineBasicBlock::iterator MII =
1271     std::next(MachineBasicBlock::iterator(CopyMI));
1272   TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1273   MachineInstr &NewMI = *std::prev(MII);
1274   NewMI.setDebugLoc(DL);
1275 
1276   // In a situation like the following:
1277   //     %0:subreg = instr              ; DefMI, subreg = DstIdx
1278   //     %1        = copy %0:subreg ; CopyMI, SrcIdx = 0
1279   // instead of widening %1 to the register class of %0 simply do:
1280   //     %1 = instr
1281   const TargetRegisterClass *NewRC = CP.getNewRC();
1282   if (DstIdx != 0) {
1283     MachineOperand &DefMO = NewMI.getOperand(0);
1284     if (DefMO.getSubReg() == DstIdx) {
1285       assert(SrcIdx == 0 && CP.isFlipped()
1286              && "Shouldn't have SrcIdx+DstIdx at this point");
1287       const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1288       const TargetRegisterClass *CommonRC =
1289         TRI->getCommonSubClass(DefRC, DstRC);
1290       if (CommonRC != nullptr) {
1291         NewRC = CommonRC;
1292         DstIdx = 0;
1293         DefMO.setSubReg(0);
1294         DefMO.setIsUndef(false); // Only subregs can have def+undef.
1295       }
1296     }
1297   }
1298 
1299   // CopyMI may have implicit operands, save them so that we can transfer them
1300   // over to the newly materialized instruction after CopyMI is removed.
1301   SmallVector<MachineOperand, 4> ImplicitOps;
1302   ImplicitOps.reserve(CopyMI->getNumOperands() -
1303                       CopyMI->getDesc().getNumOperands());
1304   for (unsigned I = CopyMI->getDesc().getNumOperands(),
1305                 E = CopyMI->getNumOperands();
1306        I != E; ++I) {
1307     MachineOperand &MO = CopyMI->getOperand(I);
1308     if (MO.isReg()) {
1309       assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1310       // Discard VReg implicit defs.
1311       if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1312         ImplicitOps.push_back(MO);
1313     }
1314   }
1315 
1316   LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1317   CopyMI->eraseFromParent();
1318   ErasedInstrs.insert(CopyMI);
1319 
1320   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1321   // We need to remember these so we can add intervals once we insert
1322   // NewMI into SlotIndexes.
1323   SmallVector<unsigned, 4> NewMIImplDefs;
1324   for (unsigned i = NewMI.getDesc().getNumOperands(),
1325                 e = NewMI.getNumOperands();
1326        i != e; ++i) {
1327     MachineOperand &MO = NewMI.getOperand(i);
1328     if (MO.isReg() && MO.isDef()) {
1329       assert(MO.isImplicit() && MO.isDead() &&
1330              TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
1331       NewMIImplDefs.push_back(MO.getReg());
1332     }
1333   }
1334 
1335   if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
1336     unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1337 
1338     if (DefRC != nullptr) {
1339       if (NewIdx)
1340         NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1341       else
1342         NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1343       assert(NewRC && "subreg chosen for remat incompatible with instruction");
1344     }
1345     // Remap subranges to new lanemask and change register class.
1346     LiveInterval &DstInt = LIS->getInterval(DstReg);
1347     for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1348       SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1349     }
1350     MRI->setRegClass(DstReg, NewRC);
1351 
1352     // Update machine operands and add flags.
1353     updateRegDefsUses(DstReg, DstReg, DstIdx);
1354     NewMI.getOperand(0).setSubReg(NewIdx);
1355     // updateRegDefUses can add an "undef" flag to the definition, since
1356     // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1357     // sure that "undef" is not set.
1358     if (NewIdx == 0)
1359       NewMI.getOperand(0).setIsUndef(false);
1360     // Add dead subregister definitions if we are defining the whole register
1361     // but only part of it is live.
1362     // This could happen if the rematerialization instruction is rematerializing
1363     // more than actually is used in the register.
1364     // An example would be:
1365     // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1366     // ; Copying only part of the register here, but the rest is undef.
1367     // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1368     // ==>
1369     // ; Materialize all the constants but only using one
1370     // %2 = LOAD_CONSTANTS 5, 8
1371     //
1372     // at this point for the part that wasn't defined before we could have
1373     // subranges missing the definition.
1374     if (NewIdx == 0 && DstInt.hasSubRanges()) {
1375       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1376       SlotIndex DefIndex =
1377           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1378       LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1379       VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1380       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1381         if (!SR.liveAt(DefIndex))
1382           SR.createDeadDef(DefIndex, Alloc);
1383         MaxMask &= ~SR.LaneMask;
1384       }
1385       if (MaxMask.any()) {
1386         LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1387         SR->createDeadDef(DefIndex, Alloc);
1388       }
1389     }
1390 
1391     // Make sure that the subrange for resultant undef is removed
1392     // For example:
1393     //   %1:sub1<def,read-undef> = LOAD CONSTANT 1
1394     //   %2 = COPY %1
1395     // ==>
1396     //   %2:sub1<def, read-undef> = LOAD CONSTANT 1
1397     //     ; Correct but need to remove the subrange for %2:sub0
1398     //     ; as it is now undef
1399     if (NewIdx != 0 && DstInt.hasSubRanges()) {
1400       // The affected subregister segments can be removed.
1401       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1402       LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1403       bool UpdatedSubRanges = false;
1404       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1405         if ((SR.LaneMask & DstMask).none()) {
1406           LLVM_DEBUG(dbgs()
1407                      << "Removing undefined SubRange "
1408                      << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1409           // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1410           if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1411             SR.removeValNo(RmValNo);
1412             UpdatedSubRanges = true;
1413           }
1414         }
1415       }
1416       if (UpdatedSubRanges)
1417         DstInt.removeEmptySubRanges();
1418     }
1419   } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1420     // The New instruction may be defining a sub-register of what's actually
1421     // been asked for. If so it must implicitly define the whole thing.
1422     assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
1423            "Only expect virtual or physical registers in remat");
1424     NewMI.getOperand(0).setIsDead(true);
1425     NewMI.addOperand(MachineOperand::CreateReg(
1426         CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1427     // Record small dead def live-ranges for all the subregisters
1428     // of the destination register.
1429     // Otherwise, variables that live through may miss some
1430     // interferences, thus creating invalid allocation.
1431     // E.g., i386 code:
1432     // %1 = somedef ; %1 GR8
1433     // %2 = remat ; %2 GR32
1434     // CL = COPY %2.sub_8bit
1435     // = somedef %1 ; %1 GR8
1436     // =>
1437     // %1 = somedef ; %1 GR8
1438     // dead ECX = remat ; implicit-def CL
1439     // = somedef %1 ; %1 GR8
1440     // %1 will see the interferences with CL but not with CH since
1441     // no live-ranges would have been created for ECX.
1442     // Fix that!
1443     SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1444     for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1445          Units.isValid(); ++Units)
1446       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1447         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1448   }
1449 
1450   if (NewMI.getOperand(0).getSubReg())
1451     NewMI.getOperand(0).setIsUndef();
1452 
1453   // Transfer over implicit operands to the rematerialized instruction.
1454   for (MachineOperand &MO : ImplicitOps)
1455     NewMI.addOperand(MO);
1456 
1457   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1458   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1459     unsigned Reg = NewMIImplDefs[i];
1460     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1461       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1462         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1463   }
1464 
1465   LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1466   ++NumReMats;
1467 
1468   // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1469   // to describe DstReg instead.
1470   if (MRI->use_nodbg_empty(SrcReg)) {
1471     for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1472       MachineInstr *UseMI = UseMO.getParent();
1473       if (UseMI->isDebugValue()) {
1474         if (TargetRegisterInfo::isPhysicalRegister(DstReg))
1475           UseMO.substPhysReg(DstReg, *TRI);
1476         else
1477           UseMO.setReg(DstReg);
1478         // Move the debug value directly after the def of the rematerialized
1479         // value in DstReg.
1480         MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1481         LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1482       }
1483     }
1484   }
1485 
1486   if (ToBeUpdated.count(SrcReg))
1487     return true;
1488 
1489   unsigned NumCopyUses = 0;
1490   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1491     if (UseMO.getParent()->isCopyLike())
1492       NumCopyUses++;
1493   }
1494   if (NumCopyUses < LateRematUpdateThreshold) {
1495     // The source interval can become smaller because we removed a use.
1496     shrinkToUses(&SrcInt, &DeadDefs);
1497     if (!DeadDefs.empty())
1498       eliminateDeadDefs();
1499   } else {
1500     ToBeUpdated.insert(SrcReg);
1501   }
1502   return true;
1503 }
1504 
1505 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1506   // ProcessImplicitDefs may leave some copies of <undef> values, it only
1507   // removes local variables. When we have a copy like:
1508   //
1509   //   %1 = COPY undef %2
1510   //
1511   // We delete the copy and remove the corresponding value number from %1.
1512   // Any uses of that value number are marked as <undef>.
1513 
1514   // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1515   // CoalescerPair may have a new register class with adjusted subreg indices
1516   // at this point.
1517   unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1518   isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
1519 
1520   SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1521   const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1522   // CopyMI is undef iff SrcReg is not live before the instruction.
1523   if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1524     LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1525     for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1526       if ((SR.LaneMask & SrcMask).none())
1527         continue;
1528       if (SR.liveAt(Idx))
1529         return nullptr;
1530     }
1531   } else if (SrcLI.liveAt(Idx))
1532     return nullptr;
1533 
1534   // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1535   // then replace it with an IMPLICIT_DEF.
1536   LiveInterval &DstLI = LIS->getInterval(DstReg);
1537   SlotIndex RegIndex = Idx.getRegSlot();
1538   LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1539   assert(Seg != nullptr && "No segment for defining instruction");
1540   if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1541     if (V->isPHIDef()) {
1542       CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1543       for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1544         MachineOperand &MO = CopyMI->getOperand(i-1);
1545         if (MO.isReg() && MO.isUse())
1546           CopyMI->RemoveOperand(i-1);
1547       }
1548       LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1549                            "implicit def\n");
1550       return CopyMI;
1551     }
1552   }
1553 
1554   // Remove any DstReg segments starting at the instruction.
1555   LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1556 
1557   // Remove value or merge with previous one in case of a subregister def.
1558   if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1559     VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1560     DstLI.MergeValueNumberInto(VNI, PrevVNI);
1561 
1562     // The affected subregister segments can be removed.
1563     LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1564     for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1565       if ((SR.LaneMask & DstMask).none())
1566         continue;
1567 
1568       VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1569       assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1570       SR.removeValNo(SVNI);
1571     }
1572     DstLI.removeEmptySubRanges();
1573   } else
1574     LIS->removeVRegDefAt(DstLI, RegIndex);
1575 
1576   // Mark uses as undef.
1577   for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1578     if (MO.isDef() /*|| MO.isUndef()*/)
1579       continue;
1580     const MachineInstr &MI = *MO.getParent();
1581     SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1582     LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1583     bool isLive;
1584     if (!UseMask.all() && DstLI.hasSubRanges()) {
1585       isLive = false;
1586       for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1587         if ((SR.LaneMask & UseMask).none())
1588           continue;
1589         if (SR.liveAt(UseIdx)) {
1590           isLive = true;
1591           break;
1592         }
1593       }
1594     } else
1595       isLive = DstLI.liveAt(UseIdx);
1596     if (isLive)
1597       continue;
1598     MO.setIsUndef(true);
1599     LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1600   }
1601 
1602   // A def of a subregister may be a use of the other subregisters, so
1603   // deleting a def of a subregister may also remove uses. Since CopyMI
1604   // is still part of the function (but about to be erased), mark all
1605   // defs of DstReg in it as <undef>, so that shrinkToUses would
1606   // ignore them.
1607   for (MachineOperand &MO : CopyMI->operands())
1608     if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1609       MO.setIsUndef(true);
1610   LIS->shrinkToUses(&DstLI);
1611 
1612   return CopyMI;
1613 }
1614 
1615 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1616                                      MachineOperand &MO, unsigned SubRegIdx) {
1617   LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1618   if (MO.isDef())
1619     Mask = ~Mask;
1620   bool IsUndef = true;
1621   for (const LiveInterval::SubRange &S : Int.subranges()) {
1622     if ((S.LaneMask & Mask).none())
1623       continue;
1624     if (S.liveAt(UseIdx)) {
1625       IsUndef = false;
1626       break;
1627     }
1628   }
1629   if (IsUndef) {
1630     MO.setIsUndef(true);
1631     // We found out some subregister use is actually reading an undefined
1632     // value. In some cases the whole vreg has become undefined at this
1633     // point so we have to potentially shrink the main range if the
1634     // use was ending a live segment there.
1635     LiveQueryResult Q = Int.Query(UseIdx);
1636     if (Q.valueOut() == nullptr)
1637       ShrinkMainRange = true;
1638   }
1639 }
1640 
1641 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
1642                                           unsigned DstReg,
1643                                           unsigned SubIdx) {
1644   bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1645   LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1646 
1647   if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1648     for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1649       unsigned SubReg = MO.getSubReg();
1650       if (SubReg == 0 || MO.isUndef())
1651         continue;
1652       MachineInstr &MI = *MO.getParent();
1653       if (MI.isDebugValue())
1654         continue;
1655       SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1656       addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1657     }
1658   }
1659 
1660   SmallPtrSet<MachineInstr*, 8> Visited;
1661   for (MachineRegisterInfo::reg_instr_iterator
1662        I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1663        I != E; ) {
1664     MachineInstr *UseMI = &*(I++);
1665 
1666     // Each instruction can only be rewritten once because sub-register
1667     // composition is not always idempotent. When SrcReg != DstReg, rewriting
1668     // the UseMI operands removes them from the SrcReg use-def chain, but when
1669     // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1670     // operands mentioning the virtual register.
1671     if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1672       continue;
1673 
1674     SmallVector<unsigned,8> Ops;
1675     bool Reads, Writes;
1676     std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1677 
1678     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1679     // because SrcReg is a sub-register.
1680     if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
1681       Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1682 
1683     // Replace SrcReg with DstReg in all UseMI operands.
1684     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1685       MachineOperand &MO = UseMI->getOperand(Ops[i]);
1686 
1687       // Adjust <undef> flags in case of sub-register joins. We don't want to
1688       // turn a full def into a read-modify-write sub-register def and vice
1689       // versa.
1690       if (SubIdx && MO.isDef())
1691         MO.setIsUndef(!Reads);
1692 
1693       // A subreg use of a partially undef (super) register may be a complete
1694       // undef use now and then has to be marked that way.
1695       if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1696         if (!DstInt->hasSubRanges()) {
1697           BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1698           LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
1699           DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
1700         }
1701         SlotIndex MIIdx = UseMI->isDebugValue()
1702                               ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1703                               : LIS->getInstructionIndex(*UseMI);
1704         SlotIndex UseIdx = MIIdx.getRegSlot(true);
1705         addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
1706       }
1707 
1708       if (DstIsPhys)
1709         MO.substPhysReg(DstReg, *TRI);
1710       else
1711         MO.substVirtReg(DstReg, SubIdx, *TRI);
1712     }
1713 
1714     LLVM_DEBUG({
1715       dbgs() << "\t\tupdated: ";
1716       if (!UseMI->isDebugValue())
1717         dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1718       dbgs() << *UseMI;
1719     });
1720   }
1721 }
1722 
1723 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1724   // Always join simple intervals that are defined by a single copy from a
1725   // reserved register. This doesn't increase register pressure, so it is
1726   // always beneficial.
1727   if (!MRI->isReserved(CP.getDstReg())) {
1728     LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1729     return false;
1730   }
1731 
1732   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1733   if (JoinVInt.containsOneValue())
1734     return true;
1735 
1736   LLVM_DEBUG(
1737       dbgs() << "\tCannot join complex intervals into reserved register.\n");
1738   return false;
1739 }
1740 
1741 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1742   Again = false;
1743   LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1744 
1745   CoalescerPair CP(*TRI);
1746   if (!CP.setRegisters(CopyMI)) {
1747     LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1748     return false;
1749   }
1750 
1751   if (CP.getNewRC()) {
1752     auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1753     auto DstRC = MRI->getRegClass(CP.getDstReg());
1754     unsigned SrcIdx = CP.getSrcIdx();
1755     unsigned DstIdx = CP.getDstIdx();
1756     if (CP.isFlipped()) {
1757       std::swap(SrcIdx, DstIdx);
1758       std::swap(SrcRC, DstRC);
1759     }
1760     if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1761                              CP.getNewRC(), *LIS)) {
1762       LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1763       return false;
1764     }
1765   }
1766 
1767   // Dead code elimination. This really should be handled by MachineDCE, but
1768   // sometimes dead copies slip through, and we can't generate invalid live
1769   // ranges.
1770   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1771     LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1772     DeadDefs.push_back(CopyMI);
1773     eliminateDeadDefs();
1774     return true;
1775   }
1776 
1777   // Eliminate undefs.
1778   if (!CP.isPhys()) {
1779     // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1780     if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1781       if (UndefMI->isImplicitDef())
1782         return false;
1783       deleteInstr(CopyMI);
1784       return false;  // Not coalescable.
1785     }
1786   }
1787 
1788   // Coalesced copies are normally removed immediately, but transformations
1789   // like removeCopyByCommutingDef() can inadvertently create identity copies.
1790   // When that happens, just join the values and remove the copy.
1791   if (CP.getSrcReg() == CP.getDstReg()) {
1792     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1793     LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1794     const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1795     LiveQueryResult LRQ = LI.Query(CopyIdx);
1796     if (VNInfo *DefVNI = LRQ.valueDefined()) {
1797       VNInfo *ReadVNI = LRQ.valueIn();
1798       assert(ReadVNI && "No value before copy and no <undef> flag.");
1799       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1800       LI.MergeValueNumberInto(DefVNI, ReadVNI);
1801 
1802       // Process subregister liveranges.
1803       for (LiveInterval::SubRange &S : LI.subranges()) {
1804         LiveQueryResult SLRQ = S.Query(CopyIdx);
1805         if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1806           VNInfo *SReadVNI = SLRQ.valueIn();
1807           S.MergeValueNumberInto(SDefVNI, SReadVNI);
1808         }
1809       }
1810       LLVM_DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1811     }
1812     deleteInstr(CopyMI);
1813     return true;
1814   }
1815 
1816   // Enforce policies.
1817   if (CP.isPhys()) {
1818     LLVM_DEBUG(dbgs() << "\tConsidering merging "
1819                       << printReg(CP.getSrcReg(), TRI) << " with "
1820                       << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1821     if (!canJoinPhys(CP)) {
1822       // Before giving up coalescing, if definition of source is defined by
1823       // trivial computation, try rematerializing it.
1824       bool IsDefCopy;
1825       if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1826         return true;
1827       if (IsDefCopy)
1828         Again = true;  // May be possible to coalesce later.
1829       return false;
1830     }
1831   } else {
1832     // When possible, let DstReg be the larger interval.
1833     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1834                            LIS->getInterval(CP.getDstReg()).size())
1835       CP.flip();
1836 
1837     LLVM_DEBUG({
1838       dbgs() << "\tConsidering merging to "
1839              << TRI->getRegClassName(CP.getNewRC()) << " with ";
1840       if (CP.getDstIdx() && CP.getSrcIdx())
1841         dbgs() << printReg(CP.getDstReg()) << " in "
1842                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1843                << printReg(CP.getSrcReg()) << " in "
1844                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1845       else
1846         dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
1847                << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1848     });
1849   }
1850 
1851   ShrinkMask = LaneBitmask::getNone();
1852   ShrinkMainRange = false;
1853 
1854   // Okay, attempt to join these two intervals.  On failure, this returns false.
1855   // Otherwise, if one of the intervals being joined is a physreg, this method
1856   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1857   // been modified, so we can use this information below to update aliases.
1858   if (!joinIntervals(CP)) {
1859     // Coalescing failed.
1860 
1861     // If definition of source is defined by trivial computation, try
1862     // rematerializing it.
1863     bool IsDefCopy;
1864     if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1865       return true;
1866 
1867     // If we can eliminate the copy without merging the live segments, do so
1868     // now.
1869     if (!CP.isPartial() && !CP.isPhys()) {
1870       bool Changed = adjustCopiesBackFrom(CP, CopyMI);
1871       bool Shrink = false;
1872       if (!Changed)
1873         std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
1874       if (Changed) {
1875         deleteInstr(CopyMI);
1876         if (Shrink) {
1877           unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1878           LiveInterval &DstLI = LIS->getInterval(DstReg);
1879           shrinkToUses(&DstLI);
1880           LLVM_DEBUG(dbgs() << "\t\tshrunk:   " << DstLI << '\n');
1881         }
1882         LLVM_DEBUG(dbgs() << "\tTrivial!\n");
1883         return true;
1884       }
1885     }
1886 
1887     // Try and see if we can partially eliminate the copy by moving the copy to
1888     // its predecessor.
1889     if (!CP.isPartial() && !CP.isPhys())
1890       if (removePartialRedundancy(CP, *CopyMI))
1891         return true;
1892 
1893     // Otherwise, we are unable to join the intervals.
1894     LLVM_DEBUG(dbgs() << "\tInterference!\n");
1895     Again = true;  // May be possible to coalesce later.
1896     return false;
1897   }
1898 
1899   // Coalescing to a virtual register that is of a sub-register class of the
1900   // other. Make sure the resulting register is set to the right register class.
1901   if (CP.isCrossClass()) {
1902     ++numCrossRCs;
1903     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1904   }
1905 
1906   // Removing sub-register copies can ease the register class constraints.
1907   // Make sure we attempt to inflate the register class of DstReg.
1908   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1909     InflateRegs.push_back(CP.getDstReg());
1910 
1911   // CopyMI has been erased by joinIntervals at this point. Remove it from
1912   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1913   // to the work list. This keeps ErasedInstrs from growing needlessly.
1914   ErasedInstrs.erase(CopyMI);
1915 
1916   // Rewrite all SrcReg operands to DstReg.
1917   // Also update DstReg operands to include DstIdx if it is set.
1918   if (CP.getDstIdx())
1919     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1920   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1921 
1922   // Shrink subregister ranges if necessary.
1923   if (ShrinkMask.any()) {
1924     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1925     for (LiveInterval::SubRange &S : LI.subranges()) {
1926       if ((S.LaneMask & ShrinkMask).none())
1927         continue;
1928       LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
1929                         << ")\n");
1930       LIS->shrinkToUses(S, LI.reg);
1931     }
1932     LI.removeEmptySubRanges();
1933   }
1934 
1935   // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
1936   // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
1937   // is not up-to-date, need to update the merged live interval here.
1938   if (ToBeUpdated.count(CP.getSrcReg()))
1939     ShrinkMainRange = true;
1940 
1941   if (ShrinkMainRange) {
1942     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1943     shrinkToUses(&LI);
1944   }
1945 
1946   // SrcReg is guaranteed to be the register whose live interval that is
1947   // being merged.
1948   LIS->removeInterval(CP.getSrcReg());
1949 
1950   // Update regalloc hint.
1951   TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1952 
1953   LLVM_DEBUG({
1954     dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
1955            << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
1956     dbgs() << "\tResult = ";
1957     if (CP.isPhys())
1958       dbgs() << printReg(CP.getDstReg(), TRI);
1959     else
1960       dbgs() << LIS->getInterval(CP.getDstReg());
1961     dbgs() << '\n';
1962   });
1963 
1964   ++numJoins;
1965   return true;
1966 }
1967 
1968 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1969   unsigned DstReg = CP.getDstReg();
1970   unsigned SrcReg = CP.getSrcReg();
1971   assert(CP.isPhys() && "Must be a physreg copy");
1972   assert(MRI->isReserved(DstReg) && "Not a reserved register");
1973   LiveInterval &RHS = LIS->getInterval(SrcReg);
1974   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
1975 
1976   assert(RHS.containsOneValue() && "Invalid join with reserved register");
1977 
1978   // Optimization for reserved registers like ESP. We can only merge with a
1979   // reserved physreg if RHS has a single value that is a copy of DstReg.
1980   // The live range of the reserved register will look like a set of dead defs
1981   // - we don't properly track the live range of reserved registers.
1982 
1983   // Deny any overlapping intervals.  This depends on all the reserved
1984   // register live ranges to look like dead defs.
1985   if (!MRI->isConstantPhysReg(DstReg)) {
1986     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
1987       // Abort if not all the regunits are reserved.
1988       for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
1989         if (!MRI->isReserved(*RI))
1990           return false;
1991       }
1992       if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1993         LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
1994                           << '\n');
1995         return false;
1996       }
1997     }
1998 
1999     // We must also check for overlaps with regmask clobbers.
2000     BitVector RegMaskUsable;
2001     if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2002         !RegMaskUsable.test(DstReg)) {
2003       LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2004       return false;
2005     }
2006   }
2007 
2008   // Skip any value computations, we are not adding new values to the
2009   // reserved register.  Also skip merging the live ranges, the reserved
2010   // register live range doesn't need to be accurate as long as all the
2011   // defs are there.
2012 
2013   // Delete the identity copy.
2014   MachineInstr *CopyMI;
2015   if (CP.isFlipped()) {
2016     // Physreg is copied into vreg
2017     //   %y = COPY %physreg_x
2018     //   ...  //< no other def of %x here
2019     //   use %y
2020     // =>
2021     //   ...
2022     //   use %x
2023     CopyMI = MRI->getVRegDef(SrcReg);
2024   } else {
2025     // VReg is copied into physreg:
2026     //   %y = def
2027     //   ... //< no other def or use of %y here
2028     //   %y = COPY %physreg_x
2029     // =>
2030     //   %y = def
2031     //   ...
2032     if (!MRI->hasOneNonDBGUse(SrcReg)) {
2033       LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2034       return false;
2035     }
2036 
2037     if (!LIS->intervalIsInOneMBB(RHS)) {
2038       LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2039       return false;
2040     }
2041 
2042     MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2043     CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2044     SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2045     SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2046 
2047     if (!MRI->isConstantPhysReg(DstReg)) {
2048       // We checked above that there are no interfering defs of the physical
2049       // register. However, for this case, where we intend to move up the def of
2050       // the physical register, we also need to check for interfering uses.
2051       SlotIndexes *Indexes = LIS->getSlotIndexes();
2052       for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2053            SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2054         MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2055         if (MI->readsRegister(DstReg, TRI)) {
2056           LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2057           return false;
2058         }
2059       }
2060     }
2061 
2062     // We're going to remove the copy which defines a physical reserved
2063     // register, so remove its valno, etc.
2064     LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2065                       << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2066 
2067     LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
2068     // Create a new dead def at the new def location.
2069     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2070       LiveRange &LR = LIS->getRegUnit(*UI);
2071       LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2072     }
2073   }
2074 
2075   deleteInstr(CopyMI);
2076 
2077   // We don't track kills for reserved registers.
2078   MRI->clearKillFlags(CP.getSrcReg());
2079 
2080   return true;
2081 }
2082 
2083 //===----------------------------------------------------------------------===//
2084 //                 Interference checking and interval joining
2085 //===----------------------------------------------------------------------===//
2086 //
2087 // In the easiest case, the two live ranges being joined are disjoint, and
2088 // there is no interference to consider. It is quite common, though, to have
2089 // overlapping live ranges, and we need to check if the interference can be
2090 // resolved.
2091 //
2092 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2093 // This means that two SSA values overlap if and only if the def of one value
2094 // is contained in the live range of the other value. As a special case, the
2095 // overlapping values can be defined at the same index.
2096 //
2097 // The interference from an overlapping def can be resolved in these cases:
2098 //
2099 // 1. Coalescable copies. The value is defined by a copy that would become an
2100 //    identity copy after joining SrcReg and DstReg. The copy instruction will
2101 //    be removed, and the value will be merged with the source value.
2102 //
2103 //    There can be several copies back and forth, causing many values to be
2104 //    merged into one. We compute a list of ultimate values in the joined live
2105 //    range as well as a mappings from the old value numbers.
2106 //
2107 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2108 //    predecessors have a live out value. It doesn't cause real interference,
2109 //    and can be merged into the value it overlaps. Like a coalescable copy, it
2110 //    can be erased after joining.
2111 //
2112 // 3. Copy of external value. The overlapping def may be a copy of a value that
2113 //    is already in the other register. This is like a coalescable copy, but
2114 //    the live range of the source register must be trimmed after erasing the
2115 //    copy instruction:
2116 //
2117 //      %src = COPY %ext
2118 //      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
2119 //
2120 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2121 //    defining one lane at a time:
2122 //
2123 //      %dst:ssub0<def,read-undef> = FOO
2124 //      %src = BAR
2125 //      %dst:ssub1 = COPY %src
2126 //
2127 //    The live range of %src overlaps the %dst value defined by FOO, but
2128 //    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2129 //    which was undef anyway.
2130 //
2131 //    The value mapping is more complicated in this case. The final live range
2132 //    will have different value numbers for both FOO and BAR, but there is no
2133 //    simple mapping from old to new values. It may even be necessary to add
2134 //    new PHI values.
2135 //
2136 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2137 //    is live, but never read. This can happen because we don't compute
2138 //    individual live ranges per lane.
2139 //
2140 //      %dst = FOO
2141 //      %src = BAR
2142 //      %dst:ssub1 = COPY %src
2143 //
2144 //    This kind of interference is only resolved locally. If the clobbered
2145 //    lane value escapes the block, the join is aborted.
2146 
2147 namespace {
2148 
2149 /// Track information about values in a single virtual register about to be
2150 /// joined. Objects of this class are always created in pairs - one for each
2151 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2152 /// pair)
2153 class JoinVals {
2154   /// Live range we work on.
2155   LiveRange &LR;
2156 
2157   /// (Main) register we work on.
2158   const unsigned Reg;
2159 
2160   /// Reg (and therefore the values in this liverange) will end up as
2161   /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2162   /// CP.SrcIdx.
2163   const unsigned SubIdx;
2164 
2165   /// The LaneMask that this liverange will occupy the coalesced register. May
2166   /// be smaller than the lanemask produced by SubIdx when merging subranges.
2167   const LaneBitmask LaneMask;
2168 
2169   /// This is true when joining sub register ranges, false when joining main
2170   /// ranges.
2171   const bool SubRangeJoin;
2172 
2173   /// Whether the current LiveInterval tracks subregister liveness.
2174   const bool TrackSubRegLiveness;
2175 
2176   /// Values that will be present in the final live range.
2177   SmallVectorImpl<VNInfo*> &NewVNInfo;
2178 
2179   const CoalescerPair &CP;
2180   LiveIntervals *LIS;
2181   SlotIndexes *Indexes;
2182   const TargetRegisterInfo *TRI;
2183 
2184   /// Value number assignments. Maps value numbers in LI to entries in
2185   /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2186   SmallVector<int, 8> Assignments;
2187 
2188   /// Conflict resolution for overlapping values.
2189   enum ConflictResolution {
2190     /// No overlap, simply keep this value.
2191     CR_Keep,
2192 
2193     /// Merge this value into OtherVNI and erase the defining instruction.
2194     /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2195     /// values.
2196     CR_Erase,
2197 
2198     /// Merge this value into OtherVNI but keep the defining instruction.
2199     /// This is for the special case where OtherVNI is defined by the same
2200     /// instruction.
2201     CR_Merge,
2202 
2203     /// Keep this value, and have it replace OtherVNI where possible. This
2204     /// complicates value mapping since OtherVNI maps to two different values
2205     /// before and after this def.
2206     /// Used when clobbering undefined or dead lanes.
2207     CR_Replace,
2208 
2209     /// Unresolved conflict. Visit later when all values have been mapped.
2210     CR_Unresolved,
2211 
2212     /// Unresolvable conflict. Abort the join.
2213     CR_Impossible
2214   };
2215 
2216   /// Per-value info for LI. The lane bit masks are all relative to the final
2217   /// joined register, so they can be compared directly between SrcReg and
2218   /// DstReg.
2219   struct Val {
2220     ConflictResolution Resolution = CR_Keep;
2221 
2222     /// Lanes written by this def, 0 for unanalyzed values.
2223     LaneBitmask WriteLanes;
2224 
2225     /// Lanes with defined values in this register. Other lanes are undef and
2226     /// safe to clobber.
2227     LaneBitmask ValidLanes;
2228 
2229     /// Value in LI being redefined by this def.
2230     VNInfo *RedefVNI = nullptr;
2231 
2232     /// Value in the other live range that overlaps this def, if any.
2233     VNInfo *OtherVNI = nullptr;
2234 
2235     /// Is this value an IMPLICIT_DEF that can be erased?
2236     ///
2237     /// IMPLICIT_DEF values should only exist at the end of a basic block that
2238     /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2239     /// safely erased if they are overlapping a live value in the other live
2240     /// interval.
2241     ///
2242     /// Weird control flow graphs and incomplete PHI handling in
2243     /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2244     /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2245     /// normal values.
2246     bool ErasableImplicitDef = false;
2247 
2248     /// True when the live range of this value will be pruned because of an
2249     /// overlapping CR_Replace value in the other live range.
2250     bool Pruned = false;
2251 
2252     /// True once Pruned above has been computed.
2253     bool PrunedComputed = false;
2254 
2255     /// True if this value is determined to be identical to OtherVNI
2256     /// (in valuesIdentical). This is used with CR_Erase where the erased
2257     /// copy is redundant, i.e. the source value is already the same as
2258     /// the destination. In such cases the subranges need to be updated
2259     /// properly. See comment at pruneSubRegValues for more info.
2260     bool Identical = false;
2261 
2262     Val() = default;
2263 
2264     bool isAnalyzed() const { return WriteLanes.any(); }
2265   };
2266 
2267   /// One entry per value number in LI.
2268   SmallVector<Val, 8> Vals;
2269 
2270   /// Compute the bitmask of lanes actually written by DefMI.
2271   /// Set Redef if there are any partial register definitions that depend on the
2272   /// previous value of the register.
2273   LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2274 
2275   /// Find the ultimate value that VNI was copied from.
2276   std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
2277 
2278   bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2279 
2280   /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2281   /// Return a conflict resolution when possible, but leave the hard cases as
2282   /// CR_Unresolved.
2283   /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2284   /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2285   /// The recursion always goes upwards in the dominator tree, making loops
2286   /// impossible.
2287   ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2288 
2289   /// Compute the value assignment for ValNo in RI.
2290   /// This may be called recursively by analyzeValue(), but never for a ValNo on
2291   /// the stack.
2292   void computeAssignment(unsigned ValNo, JoinVals &Other);
2293 
2294   /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2295   /// the extent of the tainted lanes in the block.
2296   ///
2297   /// Multiple values in Other.LR can be affected since partial redefinitions
2298   /// can preserve previously tainted lanes.
2299   ///
2300   ///   1 %dst = VLOAD           <-- Define all lanes in %dst
2301   ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
2302   ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
2303   ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2304   ///
2305   /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2306   /// entry to TaintedVals.
2307   ///
2308   /// Returns false if the tainted lanes extend beyond the basic block.
2309   bool
2310   taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2311               SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2312 
2313   /// Return true if MI uses any of the given Lanes from Reg.
2314   /// This does not include partial redefinitions of Reg.
2315   bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
2316 
2317   /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2318   /// be pruned:
2319   ///
2320   ///   %dst = COPY %src
2321   ///   %src = COPY %dst  <-- This value to be pruned.
2322   ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
2323   bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2324 
2325 public:
2326   JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
2327            SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
2328            LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2329            bool TrackSubRegLiveness)
2330     : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2331       SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2332       NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2333       TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {}
2334 
2335   /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2336   /// Returns false if any conflicts were impossible to resolve.
2337   bool mapValues(JoinVals &Other);
2338 
2339   /// Try to resolve conflicts that require all values to be mapped.
2340   /// Returns false if any conflicts were impossible to resolve.
2341   bool resolveConflicts(JoinVals &Other);
2342 
2343   /// Prune the live range of values in Other.LR where they would conflict with
2344   /// CR_Replace values in LR. Collect end points for restoring the live range
2345   /// after joining.
2346   void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2347                    bool changeInstrs);
2348 
2349   /// Removes subranges starting at copies that get removed. This sometimes
2350   /// happens when undefined subranges are copied around. These ranges contain
2351   /// no useful information and can be removed.
2352   void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2353 
2354   /// Pruning values in subranges can lead to removing segments in these
2355   /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2356   /// the main range also need to be removed. This function will mark
2357   /// the corresponding values in the main range as pruned, so that
2358   /// eraseInstrs can do the final cleanup.
2359   /// The parameter @p LI must be the interval whose main range is the
2360   /// live range LR.
2361   void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2362 
2363   /// Erase any machine instructions that have been coalesced away.
2364   /// Add erased instructions to ErasedInstrs.
2365   /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2366   /// the erased instrs.
2367   void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2368                    SmallVectorImpl<unsigned> &ShrinkRegs,
2369                    LiveInterval *LI = nullptr);
2370 
2371   /// Remove liverange defs at places where implicit defs will be removed.
2372   void removeImplicitDefs();
2373 
2374   /// Get the value assignments suitable for passing to LiveInterval::join.
2375   const int *getAssignments() const { return Assignments.data(); }
2376 };
2377 
2378 } // end anonymous namespace
2379 
2380 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2381   const {
2382   LaneBitmask L;
2383   for (const MachineOperand &MO : DefMI->operands()) {
2384     if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2385       continue;
2386     L |= TRI->getSubRegIndexLaneMask(
2387            TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2388     if (MO.readsReg())
2389       Redef = true;
2390   }
2391   return L;
2392 }
2393 
2394 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
2395     const VNInfo *VNI) const {
2396   unsigned TrackReg = Reg;
2397 
2398   while (!VNI->isPHIDef()) {
2399     SlotIndex Def = VNI->def;
2400     MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2401     assert(MI && "No defining instruction");
2402     if (!MI->isFullCopy())
2403       return std::make_pair(VNI, TrackReg);
2404     unsigned SrcReg = MI->getOperand(1).getReg();
2405     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
2406       return std::make_pair(VNI, TrackReg);
2407 
2408     const LiveInterval &LI = LIS->getInterval(SrcReg);
2409     const VNInfo *ValueIn;
2410     // No subrange involved.
2411     if (!SubRangeJoin || !LI.hasSubRanges()) {
2412       LiveQueryResult LRQ = LI.Query(Def);
2413       ValueIn = LRQ.valueIn();
2414     } else {
2415       // Query subranges. Ensure that all matching ones take us to the same def
2416       // (allowing some of them to be undef).
2417       ValueIn = nullptr;
2418       for (const LiveInterval::SubRange &S : LI.subranges()) {
2419         // Transform lanemask to a mask in the joined live interval.
2420         LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2421         if ((SMask & LaneMask).none())
2422           continue;
2423         LiveQueryResult LRQ = S.Query(Def);
2424         if (!ValueIn) {
2425           ValueIn = LRQ.valueIn();
2426           continue;
2427         }
2428         if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2429           return std::make_pair(VNI, TrackReg);
2430       }
2431     }
2432     if (ValueIn == nullptr) {
2433       // Reaching an undefined value is legitimate, for example:
2434       //
2435       // 1   undef %0.sub1 = ...  ;; %0.sub0 == undef
2436       // 2   %1 = COPY %0         ;; %1 is defined here.
2437       // 3   %0 = COPY %1         ;; Now %0.sub0 has a definition,
2438       //                          ;; but it's equivalent to "undef".
2439       return std::make_pair(nullptr, SrcReg);
2440     }
2441     VNI = ValueIn;
2442     TrackReg = SrcReg;
2443   }
2444   return std::make_pair(VNI, TrackReg);
2445 }
2446 
2447 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2448                                const JoinVals &Other) const {
2449   const VNInfo *Orig0;
2450   unsigned Reg0;
2451   std::tie(Orig0, Reg0) = followCopyChain(Value0);
2452   if (Orig0 == Value1 && Reg0 == Other.Reg)
2453     return true;
2454 
2455   const VNInfo *Orig1;
2456   unsigned Reg1;
2457   std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2458   // If both values are undefined, and the source registers are the same
2459   // register, the values are identical. Filter out cases where only one
2460   // value is defined.
2461   if (Orig0 == nullptr || Orig1 == nullptr)
2462     return Orig0 == Orig1 && Reg0 == Reg1;
2463 
2464   // The values are equal if they are defined at the same place and use the
2465   // same register. Note that we cannot compare VNInfos directly as some of
2466   // them might be from a copy created in mergeSubRangeInto()  while the other
2467   // is from the original LiveInterval.
2468   return Orig0->def == Orig1->def && Reg0 == Reg1;
2469 }
2470 
2471 JoinVals::ConflictResolution
2472 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2473   Val &V = Vals[ValNo];
2474   assert(!V.isAnalyzed() && "Value has already been analyzed!");
2475   VNInfo *VNI = LR.getValNumInfo(ValNo);
2476   if (VNI->isUnused()) {
2477     V.WriteLanes = LaneBitmask::getAll();
2478     return CR_Keep;
2479   }
2480 
2481   // Get the instruction defining this value, compute the lanes written.
2482   const MachineInstr *DefMI = nullptr;
2483   if (VNI->isPHIDef()) {
2484     // Conservatively assume that all lanes in a PHI are valid.
2485     LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2486                                      : TRI->getSubRegIndexLaneMask(SubIdx);
2487     V.ValidLanes = V.WriteLanes = Lanes;
2488   } else {
2489     DefMI = Indexes->getInstructionFromIndex(VNI->def);
2490     assert(DefMI != nullptr);
2491     if (SubRangeJoin) {
2492       // We don't care about the lanes when joining subregister ranges.
2493       V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2494       if (DefMI->isImplicitDef()) {
2495         V.ValidLanes = LaneBitmask::getNone();
2496         V.ErasableImplicitDef = true;
2497       }
2498     } else {
2499       bool Redef = false;
2500       V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2501 
2502       // If this is a read-modify-write instruction, there may be more valid
2503       // lanes than the ones written by this instruction.
2504       // This only covers partial redef operands. DefMI may have normal use
2505       // operands reading the register. They don't contribute valid lanes.
2506       //
2507       // This adds ssub1 to the set of valid lanes in %src:
2508       //
2509       //   %src:ssub1 = FOO
2510       //
2511       // This leaves only ssub1 valid, making any other lanes undef:
2512       //
2513       //   %src:ssub1<def,read-undef> = FOO %src:ssub2
2514       //
2515       // The <read-undef> flag on the def operand means that old lane values are
2516       // not important.
2517       if (Redef) {
2518         V.RedefVNI = LR.Query(VNI->def).valueIn();
2519         assert((TrackSubRegLiveness || V.RedefVNI) &&
2520                "Instruction is reading nonexistent value");
2521         if (V.RedefVNI != nullptr) {
2522           computeAssignment(V.RedefVNI->id, Other);
2523           V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2524         }
2525       }
2526 
2527       // An IMPLICIT_DEF writes undef values.
2528       if (DefMI->isImplicitDef()) {
2529         // We normally expect IMPLICIT_DEF values to be live only until the end
2530         // of their block. If the value is really live longer and gets pruned in
2531         // another block, this flag is cleared again.
2532         //
2533         // Clearing the valid lanes is deferred until it is sure this can be
2534         // erased.
2535         V.ErasableImplicitDef = true;
2536       }
2537     }
2538   }
2539 
2540   // Find the value in Other that overlaps VNI->def, if any.
2541   LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2542 
2543   // It is possible that both values are defined by the same instruction, or
2544   // the values are PHIs defined in the same block. When that happens, the two
2545   // values should be merged into one, but not into any preceding value.
2546   // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2547   if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2548     assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2549 
2550     // One value stays, the other is merged. Keep the earlier one, or the first
2551     // one we see.
2552     if (OtherVNI->def < VNI->def)
2553       Other.computeAssignment(OtherVNI->id, *this);
2554     else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2555       // This is an early-clobber def overlapping a live-in value in the other
2556       // register. Not mergeable.
2557       V.OtherVNI = OtherLRQ.valueIn();
2558       return CR_Impossible;
2559     }
2560     V.OtherVNI = OtherVNI;
2561     Val &OtherV = Other.Vals[OtherVNI->id];
2562     // Keep this value, check for conflicts when analyzing OtherVNI.
2563     if (!OtherV.isAnalyzed())
2564       return CR_Keep;
2565     // Both sides have been analyzed now.
2566     // Allow overlapping PHI values. Any real interference would show up in a
2567     // predecessor, the PHI itself can't introduce any conflicts.
2568     if (VNI->isPHIDef())
2569       return CR_Merge;
2570     if ((V.ValidLanes & OtherV.ValidLanes).any())
2571       // Overlapping lanes can't be resolved.
2572       return CR_Impossible;
2573     else
2574       return CR_Merge;
2575   }
2576 
2577   // No simultaneous def. Is Other live at the def?
2578   V.OtherVNI = OtherLRQ.valueIn();
2579   if (!V.OtherVNI)
2580     // No overlap, no conflict.
2581     return CR_Keep;
2582 
2583   assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2584 
2585   // We have overlapping values, or possibly a kill of Other.
2586   // Recursively compute assignments up the dominator tree.
2587   Other.computeAssignment(V.OtherVNI->id, *this);
2588   Val &OtherV = Other.Vals[V.OtherVNI->id];
2589 
2590   if (OtherV.ErasableImplicitDef) {
2591     // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2592     // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2593     // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2594     // technically.
2595     //
2596     // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2597     // to erase the IMPLICIT_DEF instruction.
2598     if (DefMI &&
2599         DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2600       LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2601                  << " extends into "
2602                  << printMBBReference(*DefMI->getParent())
2603                  << ", keeping it.\n");
2604       OtherV.ErasableImplicitDef = false;
2605     } else {
2606       // We deferred clearing these lanes in case we needed to save them
2607       OtherV.ValidLanes &= ~OtherV.WriteLanes;
2608     }
2609   }
2610 
2611   // Allow overlapping PHI values. Any real interference would show up in a
2612   // predecessor, the PHI itself can't introduce any conflicts.
2613   if (VNI->isPHIDef())
2614     return CR_Replace;
2615 
2616   // Check for simple erasable conflicts.
2617   if (DefMI->isImplicitDef()) {
2618     // We need the def for the subregister if there is nothing else live at the
2619     // subrange at this point.
2620     if (TrackSubRegLiveness
2621         && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none())
2622       return CR_Replace;
2623     return CR_Erase;
2624   }
2625 
2626   // Include the non-conflict where DefMI is a coalescable copy that kills
2627   // OtherVNI. We still want the copy erased and value numbers merged.
2628   if (CP.isCoalescable(DefMI)) {
2629     // Some of the lanes copied from OtherVNI may be undef, making them undef
2630     // here too.
2631     V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2632     return CR_Erase;
2633   }
2634 
2635   // This may not be a real conflict if DefMI simply kills Other and defines
2636   // VNI.
2637   if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2638     return CR_Keep;
2639 
2640   // Handle the case where VNI and OtherVNI can be proven to be identical:
2641   //
2642   //   %other = COPY %ext
2643   //   %this  = COPY %ext <-- Erase this copy
2644   //
2645   if (DefMI->isFullCopy() && !CP.isPartial() &&
2646       valuesIdentical(VNI, V.OtherVNI, Other)) {
2647     V.Identical = true;
2648     return CR_Erase;
2649   }
2650 
2651   // The remaining checks apply to the lanes, which aren't tracked here.  This
2652   // was already decided to be OK via the following CR_Replace condition.
2653   // CR_Replace.
2654   if (SubRangeJoin)
2655     return CR_Replace;
2656 
2657   // If the lanes written by this instruction were all undef in OtherVNI, it is
2658   // still safe to join the live ranges. This can't be done with a simple value
2659   // mapping, though - OtherVNI will map to multiple values:
2660   //
2661   //   1 %dst:ssub0 = FOO                <-- OtherVNI
2662   //   2 %src = BAR                      <-- VNI
2663   //   3 %dst:ssub1 = COPY killed %src    <-- Eliminate this copy.
2664   //   4 BAZ killed %dst
2665   //   5 QUUX killed %src
2666   //
2667   // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2668   // handles this complex value mapping.
2669   if ((V.WriteLanes & OtherV.ValidLanes).none())
2670     return CR_Replace;
2671 
2672   // If the other live range is killed by DefMI and the live ranges are still
2673   // overlapping, it must be because we're looking at an early clobber def:
2674   //
2675   //   %dst<def,early-clobber> = ASM killed %src
2676   //
2677   // In this case, it is illegal to merge the two live ranges since the early
2678   // clobber def would clobber %src before it was read.
2679   if (OtherLRQ.isKill()) {
2680     // This case where the def doesn't overlap the kill is handled above.
2681     assert(VNI->def.isEarlyClobber() &&
2682            "Only early clobber defs can overlap a kill");
2683     return CR_Impossible;
2684   }
2685 
2686   // VNI is clobbering live lanes in OtherVNI, but there is still the
2687   // possibility that no instructions actually read the clobbered lanes.
2688   // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2689   // Otherwise Other.RI wouldn't be live here.
2690   if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2691     return CR_Impossible;
2692 
2693   // We need to verify that no instructions are reading the clobbered lanes. To
2694   // save compile time, we'll only check that locally. Don't allow the tainted
2695   // value to escape the basic block.
2696   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2697   if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2698     return CR_Impossible;
2699 
2700   // There are still some things that could go wrong besides clobbered lanes
2701   // being read, for example OtherVNI may be only partially redefined in MBB,
2702   // and some clobbered lanes could escape the block. Save this analysis for
2703   // resolveConflicts() when all values have been mapped. We need to know
2704   // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2705   // that now - the recursive analyzeValue() calls must go upwards in the
2706   // dominator tree.
2707   return CR_Unresolved;
2708 }
2709 
2710 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2711   Val &V = Vals[ValNo];
2712   if (V.isAnalyzed()) {
2713     // Recursion should always move up the dominator tree, so ValNo is not
2714     // supposed to reappear before it has been assigned.
2715     assert(Assignments[ValNo] != -1 && "Bad recursion?");
2716     return;
2717   }
2718   switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2719   case CR_Erase:
2720   case CR_Merge:
2721     // Merge this ValNo into OtherVNI.
2722     assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2723     assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2724     Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2725     LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2726                       << LR.getValNumInfo(ValNo)->def << " into "
2727                       << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2728                       << V.OtherVNI->def << " --> @"
2729                       << NewVNInfo[Assignments[ValNo]]->def << '\n');
2730     break;
2731   case CR_Replace:
2732   case CR_Unresolved: {
2733     // The other value is going to be pruned if this join is successful.
2734     assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2735     Val &OtherV = Other.Vals[V.OtherVNI->id];
2736     // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2737     // its lanes.
2738     if (OtherV.ErasableImplicitDef &&
2739         TrackSubRegLiveness &&
2740         (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2741       LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2742 
2743       OtherV.ErasableImplicitDef = false;
2744       // The valid lanes written by the implicit_def were speculatively cleared
2745       // before, so make this more conservative. It may be better to track this,
2746       // I haven't found a testcase where it matters.
2747       OtherV.ValidLanes = LaneBitmask::getAll();
2748     }
2749 
2750     OtherV.Pruned = true;
2751     LLVM_FALLTHROUGH;
2752   }
2753   default:
2754     // This value number needs to go in the final joined live range.
2755     Assignments[ValNo] = NewVNInfo.size();
2756     NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2757     break;
2758   }
2759 }
2760 
2761 bool JoinVals::mapValues(JoinVals &Other) {
2762   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2763     computeAssignment(i, Other);
2764     if (Vals[i].Resolution == CR_Impossible) {
2765       LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2766                         << '@' << LR.getValNumInfo(i)->def << '\n');
2767       return false;
2768     }
2769   }
2770   return true;
2771 }
2772 
2773 bool JoinVals::
2774 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2775             SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2776   VNInfo *VNI = LR.getValNumInfo(ValNo);
2777   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2778   SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2779 
2780   // Scan Other.LR from VNI.def to MBBEnd.
2781   LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2782   assert(OtherI != Other.LR.end() && "No conflict?");
2783   do {
2784     // OtherI is pointing to a tainted value. Abort the join if the tainted
2785     // lanes escape the block.
2786     SlotIndex End = OtherI->end;
2787     if (End >= MBBEnd) {
2788       LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2789                         << OtherI->valno->id << '@' << OtherI->start << '\n');
2790       return false;
2791     }
2792     LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
2793                       << OtherI->valno->id << '@' << OtherI->start << " to "
2794                       << End << '\n');
2795     // A dead def is not a problem.
2796     if (End.isDead())
2797       break;
2798     TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2799 
2800     // Check for another def in the MBB.
2801     if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2802       break;
2803 
2804     // Lanes written by the new def are no longer tainted.
2805     const Val &OV = Other.Vals[OtherI->valno->id];
2806     TaintedLanes &= ~OV.WriteLanes;
2807     if (!OV.RedefVNI)
2808       break;
2809   } while (TaintedLanes.any());
2810   return true;
2811 }
2812 
2813 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
2814                          LaneBitmask Lanes) const {
2815   if (MI.isDebugInstr())
2816     return false;
2817   for (const MachineOperand &MO : MI.operands()) {
2818     if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2819       continue;
2820     if (!MO.readsReg())
2821       continue;
2822     unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
2823     if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
2824       return true;
2825   }
2826   return false;
2827 }
2828 
2829 bool JoinVals::resolveConflicts(JoinVals &Other) {
2830   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2831     Val &V = Vals[i];
2832     assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
2833     if (V.Resolution != CR_Unresolved)
2834       continue;
2835     LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
2836                       << LR.getValNumInfo(i)->def << '\n');
2837     if (SubRangeJoin)
2838       return false;
2839 
2840     ++NumLaneConflicts;
2841     assert(V.OtherVNI && "Inconsistent conflict resolution.");
2842     VNInfo *VNI = LR.getValNumInfo(i);
2843     const Val &OtherV = Other.Vals[V.OtherVNI->id];
2844 
2845     // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2846     // join, those lanes will be tainted with a wrong value. Get the extent of
2847     // the tainted lanes.
2848     LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2849     SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2850     if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2851       // Tainted lanes would extend beyond the basic block.
2852       return false;
2853 
2854     assert(!TaintExtent.empty() && "There should be at least one conflict.");
2855 
2856     // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2857     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2858     MachineBasicBlock::iterator MI = MBB->begin();
2859     if (!VNI->isPHIDef()) {
2860       MI = Indexes->getInstructionFromIndex(VNI->def);
2861       // No need to check the instruction defining VNI for reads.
2862       ++MI;
2863     }
2864     assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2865            "Interference ends on VNI->def. Should have been handled earlier");
2866     MachineInstr *LastMI =
2867       Indexes->getInstructionFromIndex(TaintExtent.front().first);
2868     assert(LastMI && "Range must end at a proper instruction");
2869     unsigned TaintNum = 0;
2870     while (true) {
2871       assert(MI != MBB->end() && "Bad LastMI");
2872       if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2873         LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2874         return false;
2875       }
2876       // LastMI is the last instruction to use the current value.
2877       if (&*MI == LastMI) {
2878         if (++TaintNum == TaintExtent.size())
2879           break;
2880         LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2881         assert(LastMI && "Range must end at a proper instruction");
2882         TaintedLanes = TaintExtent[TaintNum].second;
2883       }
2884       ++MI;
2885     }
2886 
2887     // The tainted lanes are unused.
2888     V.Resolution = CR_Replace;
2889     ++NumLaneResolves;
2890   }
2891   return true;
2892 }
2893 
2894 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2895   Val &V = Vals[ValNo];
2896   if (V.Pruned || V.PrunedComputed)
2897     return V.Pruned;
2898 
2899   if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2900     return V.Pruned;
2901 
2902   // Follow copies up the dominator tree and check if any intermediate value
2903   // has been pruned.
2904   V.PrunedComputed = true;
2905   V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2906   return V.Pruned;
2907 }
2908 
2909 void JoinVals::pruneValues(JoinVals &Other,
2910                            SmallVectorImpl<SlotIndex> &EndPoints,
2911                            bool changeInstrs) {
2912   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2913     SlotIndex Def = LR.getValNumInfo(i)->def;
2914     switch (Vals[i].Resolution) {
2915     case CR_Keep:
2916       break;
2917     case CR_Replace: {
2918       // This value takes precedence over the value in Other.LR.
2919       LIS->pruneValue(Other.LR, Def, &EndPoints);
2920       // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2921       // instructions are only inserted to provide a live-out value for PHI
2922       // predecessors, so the instruction should simply go away once its value
2923       // has been replaced.
2924       Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2925       bool EraseImpDef = OtherV.ErasableImplicitDef &&
2926                          OtherV.Resolution == CR_Keep;
2927       if (!Def.isBlock()) {
2928         if (changeInstrs) {
2929           // Remove <def,read-undef> flags. This def is now a partial redef.
2930           // Also remove dead flags since the joined live range will
2931           // continue past this instruction.
2932           for (MachineOperand &MO :
2933                Indexes->getInstructionFromIndex(Def)->operands()) {
2934             if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
2935               if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
2936                 MO.setIsUndef(false);
2937               MO.setIsDead(false);
2938             }
2939           }
2940         }
2941         // This value will reach instructions below, but we need to make sure
2942         // the live range also reaches the instruction at Def.
2943         if (!EraseImpDef)
2944           EndPoints.push_back(Def);
2945       }
2946       LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
2947                         << ": " << Other.LR << '\n');
2948       break;
2949     }
2950     case CR_Erase:
2951     case CR_Merge:
2952       if (isPrunedValue(i, Other)) {
2953         // This value is ultimately a copy of a pruned value in LR or Other.LR.
2954         // We can no longer trust the value mapping computed by
2955         // computeAssignment(), the value that was originally copied could have
2956         // been replaced.
2957         LIS->pruneValue(LR, Def, &EndPoints);
2958         LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
2959                           << Def << ": " << LR << '\n');
2960       }
2961       break;
2962     case CR_Unresolved:
2963     case CR_Impossible:
2964       llvm_unreachable("Unresolved conflicts");
2965     }
2966   }
2967 }
2968 
2969 /// Consider the following situation when coalescing the copy between
2970 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
2971 ///
2972 ///                              Main range         Subrange 0004 (sub2)
2973 ///                              %31    %45           %31    %45
2974 ///  544    %45 = COPY %28               +                    +
2975 ///                                      | v1                 | v1
2976 ///  560B bb.1:                          +                    +
2977 ///  624        = %45.sub2               | v2                 | v2
2978 ///  800    %31 = COPY %45        +      +             +      +
2979 ///                               | v0                 | v0
2980 ///  816    %31.sub1 = ...        +                    |
2981 ///  880    %30 = COPY %31        | v1                 +
2982 ///  928    %45 = COPY %30        |      +                    +
2983 ///                               |      | v0                 | v0  <--+
2984 ///  992B   ; backedge -> bb.1    |      +                    +        |
2985 /// 1040        = %31.sub0        +                                    |
2986 ///                                                 This value must remain
2987 ///                                                 live-out!
2988 ///
2989 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
2990 /// redundant, since it copies the value from %45 back into it. The
2991 /// conflict resolution for the main range determines that %45.v0 is
2992 /// to be erased, which is ok since %31.v1 is identical to it.
2993 /// The problem happens with the subrange for sub2: it has to be live
2994 /// on exit from the block, but since 928 was actually a point of
2995 /// definition of %45.sub2, %45.sub2 was not live immediately prior
2996 /// to that definition. As a result, when 928 was erased, the value v0
2997 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
2998 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
2999 /// providing an incorrect value to the use at 624.
3000 ///
3001 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3002 /// identical, the corresponding values in subranges must also be the
3003 /// same. A redundant copy is removed because it's not needed, and not
3004 /// because it copied an undefined value, so any liveness that originated
3005 /// from that copy cannot disappear. When pruning a value that started
3006 /// at the removed copy, the corresponding identical value must be
3007 /// extended to replace it.
3008 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3009   // Look for values being erased.
3010   bool DidPrune = false;
3011   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3012     Val &V = Vals[i];
3013     // We should trigger in all cases in which eraseInstrs() does something.
3014     // match what eraseInstrs() is doing, print a message so
3015     if (V.Resolution != CR_Erase &&
3016         (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3017       continue;
3018 
3019     // Check subranges at the point where the copy will be removed.
3020     SlotIndex Def = LR.getValNumInfo(i)->def;
3021     SlotIndex OtherDef;
3022     if (V.Identical)
3023       OtherDef = V.OtherVNI->def;
3024 
3025     // Print message so mismatches with eraseInstrs() can be diagnosed.
3026     LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3027                       << '\n');
3028     for (LiveInterval::SubRange &S : LI.subranges()) {
3029       LiveQueryResult Q = S.Query(Def);
3030 
3031       // If a subrange starts at the copy then an undefined value has been
3032       // copied and we must remove that subrange value as well.
3033       VNInfo *ValueOut = Q.valueOutOrDead();
3034       if (ValueOut != nullptr && Q.valueIn() == nullptr) {
3035         LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3036                           << " at " << Def << "\n");
3037         SmallVector<SlotIndex,8> EndPoints;
3038         LIS->pruneValue(S, Def, &EndPoints);
3039         DidPrune = true;
3040         // Mark value number as unused.
3041         ValueOut->markUnused();
3042 
3043         if (V.Identical && S.Query(OtherDef).valueOut()) {
3044           // If V is identical to V.OtherVNI (and S was live at OtherDef),
3045           // then we can't simply prune V from S. V needs to be replaced
3046           // with V.OtherVNI.
3047           LIS->extendToIndices(S, EndPoints);
3048         }
3049         continue;
3050       }
3051       // If a subrange ends at the copy, then a value was copied but only
3052       // partially used later. Shrink the subregister range appropriately.
3053       if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
3054         LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3055                           << PrintLaneMask(S.LaneMask) << " at " << Def
3056                           << "\n");
3057         ShrinkMask |= S.LaneMask;
3058       }
3059     }
3060   }
3061   if (DidPrune)
3062     LI.removeEmptySubRanges();
3063 }
3064 
3065 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3066 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3067   for (LiveInterval::SubRange &SR : LI.subranges()) {
3068     if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3069       if (VNI->def == Def)
3070         return true;
3071   }
3072   return false;
3073 }
3074 
3075 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3076   assert(&static_cast<LiveRange&>(LI) == &LR);
3077 
3078   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3079     if (Vals[i].Resolution != CR_Keep)
3080       continue;
3081     VNInfo *VNI = LR.getValNumInfo(i);
3082     if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3083       continue;
3084     Vals[i].Pruned = true;
3085     ShrinkMainRange = true;
3086   }
3087 }
3088 
3089 void JoinVals::removeImplicitDefs() {
3090   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3091     Val &V = Vals[i];
3092     if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3093       continue;
3094 
3095     VNInfo *VNI = LR.getValNumInfo(i);
3096     VNI->markUnused();
3097     LR.removeValNo(VNI);
3098   }
3099 }
3100 
3101 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3102                            SmallVectorImpl<unsigned> &ShrinkRegs,
3103                            LiveInterval *LI) {
3104   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3105     // Get the def location before markUnused() below invalidates it.
3106     SlotIndex Def = LR.getValNumInfo(i)->def;
3107     switch (Vals[i].Resolution) {
3108     case CR_Keep: {
3109       // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3110       // longer. The IMPLICIT_DEF instructions are only inserted by
3111       // PHIElimination to guarantee that all PHI predecessors have a value.
3112       if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3113         break;
3114       // Remove value number i from LR.
3115       // For intervals with subranges, removing a segment from the main range
3116       // may require extending the previous segment: for each definition of
3117       // a subregister, there will be a corresponding def in the main range.
3118       // That def may fall in the middle of a segment from another subrange.
3119       // In such cases, removing this def from the main range must be
3120       // complemented by extending the main range to account for the liveness
3121       // of the other subrange.
3122       VNInfo *VNI = LR.getValNumInfo(i);
3123       SlotIndex Def = VNI->def;
3124       // The new end point of the main range segment to be extended.
3125       SlotIndex NewEnd;
3126       if (LI != nullptr) {
3127         LiveRange::iterator I = LR.FindSegmentContaining(Def);
3128         assert(I != LR.end());
3129         // Do not extend beyond the end of the segment being removed.
3130         // The segment may have been pruned in preparation for joining
3131         // live ranges.
3132         NewEnd = I->end;
3133       }
3134 
3135       LR.removeValNo(VNI);
3136       // Note that this VNInfo is reused and still referenced in NewVNInfo,
3137       // make it appear like an unused value number.
3138       VNI->markUnused();
3139 
3140       if (LI != nullptr && LI->hasSubRanges()) {
3141         assert(static_cast<LiveRange*>(LI) == &LR);
3142         // Determine the end point based on the subrange information:
3143         // minimum of (earliest def of next segment,
3144         //             latest end point of containing segment)
3145         SlotIndex ED, LE;
3146         for (LiveInterval::SubRange &SR : LI->subranges()) {
3147           LiveRange::iterator I = SR.find(Def);
3148           if (I == SR.end())
3149             continue;
3150           if (I->start > Def)
3151             ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3152           else
3153             LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3154         }
3155         if (LE.isValid())
3156           NewEnd = std::min(NewEnd, LE);
3157         if (ED.isValid())
3158           NewEnd = std::min(NewEnd, ED);
3159 
3160         // We only want to do the extension if there was a subrange that
3161         // was live across Def.
3162         if (LE.isValid()) {
3163           LiveRange::iterator S = LR.find(Def);
3164           if (S != LR.begin())
3165             std::prev(S)->end = NewEnd;
3166         }
3167       }
3168       LLVM_DEBUG({
3169         dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3170         if (LI != nullptr)
3171           dbgs() << "\t\t  LHS = " << *LI << '\n';
3172       });
3173       LLVM_FALLTHROUGH;
3174     }
3175 
3176     case CR_Erase: {
3177       MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3178       assert(MI && "No instruction to erase");
3179       if (MI->isCopy()) {
3180         unsigned Reg = MI->getOperand(1).getReg();
3181         if (TargetRegisterInfo::isVirtualRegister(Reg) &&
3182             Reg != CP.getSrcReg() && Reg != CP.getDstReg())
3183           ShrinkRegs.push_back(Reg);
3184       }
3185       ErasedInstrs.insert(MI);
3186       LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3187       LIS->RemoveMachineInstrFromMaps(*MI);
3188       MI->eraseFromParent();
3189       break;
3190     }
3191     default:
3192       break;
3193     }
3194   }
3195 }
3196 
3197 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3198                                          LaneBitmask LaneMask,
3199                                          const CoalescerPair &CP) {
3200   SmallVector<VNInfo*, 16> NewVNInfo;
3201   JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3202                    NewVNInfo, CP, LIS, TRI, true, true);
3203   JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3204                    NewVNInfo, CP, LIS, TRI, true, true);
3205 
3206   // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3207   // We should be able to resolve all conflicts here as we could successfully do
3208   // it on the mainrange already. There is however a problem when multiple
3209   // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3210   // interferences.
3211   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3212     // We already determined that it is legal to merge the intervals, so this
3213     // should never fail.
3214     llvm_unreachable("*** Couldn't join subrange!\n");
3215   }
3216   if (!LHSVals.resolveConflicts(RHSVals) ||
3217       !RHSVals.resolveConflicts(LHSVals)) {
3218     // We already determined that it is legal to merge the intervals, so this
3219     // should never fail.
3220     llvm_unreachable("*** Couldn't join subrange!\n");
3221   }
3222 
3223   // The merging algorithm in LiveInterval::join() can't handle conflicting
3224   // value mappings, so we need to remove any live ranges that overlap a
3225   // CR_Replace resolution. Collect a set of end points that can be used to
3226   // restore the live range after joining.
3227   SmallVector<SlotIndex, 8> EndPoints;
3228   LHSVals.pruneValues(RHSVals, EndPoints, false);
3229   RHSVals.pruneValues(LHSVals, EndPoints, false);
3230 
3231   LHSVals.removeImplicitDefs();
3232   RHSVals.removeImplicitDefs();
3233 
3234   LRange.verify();
3235   RRange.verify();
3236 
3237   // Join RRange into LHS.
3238   LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3239               NewVNInfo);
3240 
3241   LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3242                     << ' ' << LRange << "\n");
3243   if (EndPoints.empty())
3244     return;
3245 
3246   // Recompute the parts of the live range we had to remove because of
3247   // CR_Replace conflicts.
3248   LLVM_DEBUG({
3249     dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3250     for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3251       dbgs() << EndPoints[i];
3252       if (i != n-1)
3253         dbgs() << ',';
3254     }
3255     dbgs() << ":  " << LRange << '\n';
3256   });
3257   LIS->extendToIndices(LRange, EndPoints);
3258 }
3259 
3260 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3261                                           const LiveRange &ToMerge,
3262                                           LaneBitmask LaneMask,
3263                                           CoalescerPair &CP) {
3264   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3265   LI.refineSubRanges(Allocator, LaneMask,
3266       [this,&Allocator,&ToMerge,&CP](LiveInterval::SubRange &SR) {
3267     if (SR.empty()) {
3268       SR.assign(ToMerge, Allocator);
3269     } else {
3270       // joinSubRegRange() destroys the merged range, so we need a copy.
3271       LiveRange RangeCopy(ToMerge, Allocator);
3272       joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3273     }
3274   });
3275 }
3276 
3277 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3278   if (LI.valnos.size() < LargeIntervalSizeThreshold)
3279     return false;
3280   auto &Counter = LargeLIVisitCounter[LI.reg];
3281   if (Counter < LargeIntervalFreqThreshold) {
3282     Counter++;
3283     return false;
3284   }
3285   return true;
3286 }
3287 
3288 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3289   SmallVector<VNInfo*, 16> NewVNInfo;
3290   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3291   LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3292   bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3293   JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3294                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3295   JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3296                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3297 
3298   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3299 
3300   if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3301     return false;
3302 
3303   // First compute NewVNInfo and the simple value mappings.
3304   // Detect impossible conflicts early.
3305   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3306     return false;
3307 
3308   // Some conflicts can only be resolved after all values have been mapped.
3309   if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3310     return false;
3311 
3312   // All clear, the live ranges can be merged.
3313   if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3314     BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3315 
3316     // Transform lanemasks from the LHS to masks in the coalesced register and
3317     // create initial subranges if necessary.
3318     unsigned DstIdx = CP.getDstIdx();
3319     if (!LHS.hasSubRanges()) {
3320       LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3321                                      : TRI->getSubRegIndexLaneMask(DstIdx);
3322       // LHS must support subregs or we wouldn't be in this codepath.
3323       assert(Mask.any());
3324       LHS.createSubRangeFrom(Allocator, Mask, LHS);
3325     } else if (DstIdx != 0) {
3326       // Transform LHS lanemasks to new register class if necessary.
3327       for (LiveInterval::SubRange &R : LHS.subranges()) {
3328         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3329         R.LaneMask = Mask;
3330       }
3331     }
3332     LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3333                       << '\n');
3334 
3335     // Determine lanemasks of RHS in the coalesced register and merge subranges.
3336     unsigned SrcIdx = CP.getSrcIdx();
3337     if (!RHS.hasSubRanges()) {
3338       LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3339                                      : TRI->getSubRegIndexLaneMask(SrcIdx);
3340       mergeSubRangeInto(LHS, RHS, Mask, CP);
3341     } else {
3342       // Pair up subranges and merge.
3343       for (LiveInterval::SubRange &R : RHS.subranges()) {
3344         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3345         mergeSubRangeInto(LHS, R, Mask, CP);
3346       }
3347     }
3348     LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3349 
3350     // Pruning implicit defs from subranges may result in the main range
3351     // having stale segments.
3352     LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3353 
3354     LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3355     RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3356   }
3357 
3358   // The merging algorithm in LiveInterval::join() can't handle conflicting
3359   // value mappings, so we need to remove any live ranges that overlap a
3360   // CR_Replace resolution. Collect a set of end points that can be used to
3361   // restore the live range after joining.
3362   SmallVector<SlotIndex, 8> EndPoints;
3363   LHSVals.pruneValues(RHSVals, EndPoints, true);
3364   RHSVals.pruneValues(LHSVals, EndPoints, true);
3365 
3366   // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3367   // registers to require trimming.
3368   SmallVector<unsigned, 8> ShrinkRegs;
3369   LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3370   RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3371   while (!ShrinkRegs.empty())
3372     shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3373 
3374   // Join RHS into LHS.
3375   LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3376 
3377   // Kill flags are going to be wrong if the live ranges were overlapping.
3378   // Eventually, we should simply clear all kill flags when computing live
3379   // ranges. They are reinserted after register allocation.
3380   MRI->clearKillFlags(LHS.reg);
3381   MRI->clearKillFlags(RHS.reg);
3382 
3383   if (!EndPoints.empty()) {
3384     // Recompute the parts of the live range we had to remove because of
3385     // CR_Replace conflicts.
3386     LLVM_DEBUG({
3387       dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3388       for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3389         dbgs() << EndPoints[i];
3390         if (i != n-1)
3391           dbgs() << ',';
3392       }
3393       dbgs() << ":  " << LHS << '\n';
3394     });
3395     LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3396   }
3397 
3398   return true;
3399 }
3400 
3401 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3402   return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3403 }
3404 
3405 namespace {
3406 
3407 /// Information concerning MBB coalescing priority.
3408 struct MBBPriorityInfo {
3409   MachineBasicBlock *MBB;
3410   unsigned Depth;
3411   bool IsSplit;
3412 
3413   MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3414     : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3415 };
3416 
3417 } // end anonymous namespace
3418 
3419 /// C-style comparator that sorts first based on the loop depth of the basic
3420 /// block (the unsigned), and then on the MBB number.
3421 ///
3422 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3423 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3424                               const MBBPriorityInfo *RHS) {
3425   // Deeper loops first
3426   if (LHS->Depth != RHS->Depth)
3427     return LHS->Depth > RHS->Depth ? -1 : 1;
3428 
3429   // Try to unsplit critical edges next.
3430   if (LHS->IsSplit != RHS->IsSplit)
3431     return LHS->IsSplit ? -1 : 1;
3432 
3433   // Prefer blocks that are more connected in the CFG. This takes care of
3434   // the most difficult copies first while intervals are short.
3435   unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3436   unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3437   if (cl != cr)
3438     return cl > cr ? -1 : 1;
3439 
3440   // As a last resort, sort by block number.
3441   return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3442 }
3443 
3444 /// \returns true if the given copy uses or defines a local live range.
3445 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3446   if (!Copy->isCopy())
3447     return false;
3448 
3449   if (Copy->getOperand(1).isUndef())
3450     return false;
3451 
3452   unsigned SrcReg = Copy->getOperand(1).getReg();
3453   unsigned DstReg = Copy->getOperand(0).getReg();
3454   if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
3455       || TargetRegisterInfo::isPhysicalRegister(DstReg))
3456     return false;
3457 
3458   return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3459     || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3460 }
3461 
3462 void RegisterCoalescer::lateLiveIntervalUpdate() {
3463   for (unsigned reg : ToBeUpdated) {
3464     if (!LIS->hasInterval(reg))
3465       continue;
3466     LiveInterval &LI = LIS->getInterval(reg);
3467     shrinkToUses(&LI, &DeadDefs);
3468     if (!DeadDefs.empty())
3469       eliminateDeadDefs();
3470   }
3471   ToBeUpdated.clear();
3472 }
3473 
3474 bool RegisterCoalescer::
3475 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3476   bool Progress = false;
3477   for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3478     if (!CurrList[i])
3479       continue;
3480     // Skip instruction pointers that have already been erased, for example by
3481     // dead code elimination.
3482     if (ErasedInstrs.count(CurrList[i])) {
3483       CurrList[i] = nullptr;
3484       continue;
3485     }
3486     bool Again = false;
3487     bool Success = joinCopy(CurrList[i], Again);
3488     Progress |= Success;
3489     if (Success || !Again)
3490       CurrList[i] = nullptr;
3491   }
3492   return Progress;
3493 }
3494 
3495 /// Check if DstReg is a terminal node.
3496 /// I.e., it does not have any affinity other than \p Copy.
3497 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
3498                           const MachineRegisterInfo *MRI) {
3499   assert(Copy.isCopyLike());
3500   // Check if the destination of this copy as any other affinity.
3501   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3502     if (&MI != &Copy && MI.isCopyLike())
3503       return false;
3504   return true;
3505 }
3506 
3507 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3508   assert(Copy.isCopyLike());
3509   if (!UseTerminalRule)
3510     return false;
3511   unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
3512   isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg);
3513   // Check if the destination of this copy has any other affinity.
3514   if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
3515       // If SrcReg is a physical register, the copy won't be coalesced.
3516       // Ignoring it may have other side effect (like missing
3517       // rematerialization). So keep it.
3518       TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
3519       !isTerminalReg(DstReg, Copy, MRI))
3520     return false;
3521 
3522   // DstReg is a terminal node. Check if it interferes with any other
3523   // copy involving SrcReg.
3524   const MachineBasicBlock *OrigBB = Copy.getParent();
3525   const LiveInterval &DstLI = LIS->getInterval(DstReg);
3526   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3527     // Technically we should check if the weight of the new copy is
3528     // interesting compared to the other one and update the weight
3529     // of the copies accordingly. However, this would only work if
3530     // we would gather all the copies first then coalesce, whereas
3531     // right now we interleave both actions.
3532     // For now, just consider the copies that are in the same block.
3533     if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3534       continue;
3535     unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
3536     isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3537                 OtherSubReg);
3538     if (OtherReg == SrcReg)
3539       OtherReg = OtherSrcReg;
3540     // Check if OtherReg is a non-terminal.
3541     if (TargetRegisterInfo::isPhysicalRegister(OtherReg) ||
3542         isTerminalReg(OtherReg, MI, MRI))
3543       continue;
3544     // Check that OtherReg interfere with DstReg.
3545     if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3546       LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3547                         << '\n');
3548       return true;
3549     }
3550   }
3551   return false;
3552 }
3553 
3554 void
3555 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3556   LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3557 
3558   // Collect all copy-like instructions in MBB. Don't start coalescing anything
3559   // yet, it might invalidate the iterator.
3560   const unsigned PrevSize = WorkList.size();
3561   if (JoinGlobalCopies) {
3562     SmallVector<MachineInstr*, 2> LocalTerminals;
3563     SmallVector<MachineInstr*, 2> GlobalTerminals;
3564     // Coalesce copies bottom-up to coalesce local defs before local uses. They
3565     // are not inherently easier to resolve, but slightly preferable until we
3566     // have local live range splitting. In particular this is required by
3567     // cmp+jmp macro fusion.
3568     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
3569          MII != E; ++MII) {
3570       if (!MII->isCopyLike())
3571         continue;
3572       bool ApplyTerminalRule = applyTerminalRule(*MII);
3573       if (isLocalCopy(&(*MII), LIS)) {
3574         if (ApplyTerminalRule)
3575           LocalTerminals.push_back(&(*MII));
3576         else
3577           LocalWorkList.push_back(&(*MII));
3578       } else {
3579         if (ApplyTerminalRule)
3580           GlobalTerminals.push_back(&(*MII));
3581         else
3582           WorkList.push_back(&(*MII));
3583       }
3584     }
3585     // Append the copies evicted by the terminal rule at the end of the list.
3586     LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
3587     WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
3588   }
3589   else {
3590     SmallVector<MachineInstr*, 2> Terminals;
3591     for (MachineInstr &MII : *MBB)
3592       if (MII.isCopyLike()) {
3593         if (applyTerminalRule(MII))
3594           Terminals.push_back(&MII);
3595         else
3596           WorkList.push_back(&MII);
3597       }
3598     // Append the copies evicted by the terminal rule at the end of the list.
3599     WorkList.append(Terminals.begin(), Terminals.end());
3600   }
3601   // Try coalescing the collected copies immediately, and remove the nulls.
3602   // This prevents the WorkList from getting too large since most copies are
3603   // joinable on the first attempt.
3604   MutableArrayRef<MachineInstr*>
3605     CurrList(WorkList.begin() + PrevSize, WorkList.end());
3606   if (copyCoalesceWorkList(CurrList))
3607     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
3608                                nullptr), WorkList.end());
3609 }
3610 
3611 void RegisterCoalescer::coalesceLocals() {
3612   copyCoalesceWorkList(LocalWorkList);
3613   for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
3614     if (LocalWorkList[j])
3615       WorkList.push_back(LocalWorkList[j]);
3616   }
3617   LocalWorkList.clear();
3618 }
3619 
3620 void RegisterCoalescer::joinAllIntervals() {
3621   LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
3622   assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
3623 
3624   std::vector<MBBPriorityInfo> MBBs;
3625   MBBs.reserve(MF->size());
3626   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
3627     MachineBasicBlock *MBB = &*I;
3628     MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
3629                                    JoinSplitEdges && isSplitEdge(MBB)));
3630   }
3631   array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
3632 
3633   // Coalesce intervals in MBB priority order.
3634   unsigned CurrDepth = std::numeric_limits<unsigned>::max();
3635   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
3636     // Try coalescing the collected local copies for deeper loops.
3637     if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
3638       coalesceLocals();
3639       CurrDepth = MBBs[i].Depth;
3640     }
3641     copyCoalesceInMBB(MBBs[i].MBB);
3642   }
3643   lateLiveIntervalUpdate();
3644   coalesceLocals();
3645 
3646   // Joining intervals can allow other intervals to be joined.  Iteratively join
3647   // until we make no progress.
3648   while (copyCoalesceWorkList(WorkList))
3649     /* empty */ ;
3650   lateLiveIntervalUpdate();
3651 }
3652 
3653 void RegisterCoalescer::releaseMemory() {
3654   ErasedInstrs.clear();
3655   WorkList.clear();
3656   DeadDefs.clear();
3657   InflateRegs.clear();
3658   LargeLIVisitCounter.clear();
3659 }
3660 
3661 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
3662   MF = &fn;
3663   MRI = &fn.getRegInfo();
3664   const TargetSubtargetInfo &STI = fn.getSubtarget();
3665   TRI = STI.getRegisterInfo();
3666   TII = STI.getInstrInfo();
3667   LIS = &getAnalysis<LiveIntervals>();
3668   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3669   Loops = &getAnalysis<MachineLoopInfo>();
3670   if (EnableGlobalCopies == cl::BOU_UNSET)
3671     JoinGlobalCopies = STI.enableJoinGlobalCopies();
3672   else
3673     JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
3674 
3675   // The MachineScheduler does not currently require JoinSplitEdges. This will
3676   // either be enabled unconditionally or replaced by a more general live range
3677   // splitting optimization.
3678   JoinSplitEdges = EnableJoinSplits;
3679 
3680   LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3681                     << "********** Function: " << MF->getName() << '\n');
3682 
3683   if (VerifyCoalescing)
3684     MF->verify(this, "Before register coalescing");
3685 
3686   RegClassInfo.runOnMachineFunction(fn);
3687 
3688   // Join (coalesce) intervals if requested.
3689   if (EnableJoining)
3690     joinAllIntervals();
3691 
3692   // After deleting a lot of copies, register classes may be less constrained.
3693   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3694   // DPR inflation.
3695   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
3696   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
3697                     InflateRegs.end());
3698   LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
3699                     << " regs.\n");
3700   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
3701     unsigned Reg = InflateRegs[i];
3702     if (MRI->reg_nodbg_empty(Reg))
3703       continue;
3704     if (MRI->recomputeRegClass(Reg)) {
3705       LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
3706                         << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
3707       ++NumInflated;
3708 
3709       LiveInterval &LI = LIS->getInterval(Reg);
3710       if (LI.hasSubRanges()) {
3711         // If the inflated register class does not support subregisters anymore
3712         // remove the subranges.
3713         if (!MRI->shouldTrackSubRegLiveness(Reg)) {
3714           LI.clearSubRanges();
3715         } else {
3716 #ifndef NDEBUG
3717           LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3718           // If subranges are still supported, then the same subregs
3719           // should still be supported.
3720           for (LiveInterval::SubRange &S : LI.subranges()) {
3721             assert((S.LaneMask & ~MaxMask).none());
3722           }
3723 #endif
3724         }
3725       }
3726     }
3727   }
3728 
3729   LLVM_DEBUG(dump());
3730   if (VerifyCoalescing)
3731     MF->verify(this, "After register coalescing");
3732   return true;
3733 }
3734 
3735 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3736    LIS->print(O, m);
3737 }
3738