1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic RegisterCoalescer interface which 11 // is used as the common interface used by all clients and 12 // implementations of register coalescing. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "regalloc" 17 #include "RegisterCoalescer.h" 18 #include "LiveDebugVariables.h" 19 #include "VirtRegMap.h" 20 21 #include "llvm/Pass.h" 22 #include "llvm/Value.h" 23 #include "llvm/ADT/OwningPtr.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 29 #include "llvm/CodeGen/LiveRangeEdit.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/CodeGen/RegisterClassInfo.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetInstrInfo.h" 41 #include "llvm/Target/TargetMachine.h" 42 #include "llvm/Target/TargetOptions.h" 43 #include "llvm/Target/TargetRegisterInfo.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 #include <algorithm> 46 #include <cmath> 47 using namespace llvm; 48 49 STATISTIC(numJoins , "Number of interval joins performed"); 50 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 51 STATISTIC(numCommutes , "Number of instruction commuting performed"); 52 STATISTIC(numExtends , "Number of copies extended"); 53 STATISTIC(NumReMats , "Number of instructions re-materialized"); 54 STATISTIC(NumInflated , "Number of register classes inflated"); 55 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 56 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 57 58 static cl::opt<bool> 59 EnableJoining("join-liveintervals", 60 cl::desc("Coalesce copies (default=true)"), 61 cl::init(true)); 62 63 // Temporary flag to test critical edge unsplitting. 64 static cl::opt<bool> 65 EnableJoinSplits("join-splitedges", 66 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 67 68 // Temporary flag to test global copy optimization. 69 static cl::opt<cl::boolOrDefault> 70 EnableGlobalCopies("join-globalcopies", 71 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 72 cl::init(cl::BOU_UNSET), cl::Hidden); 73 74 static cl::opt<bool> 75 VerifyCoalescing("verify-coalescing", 76 cl::desc("Verify machine instrs before and after register coalescing"), 77 cl::Hidden); 78 79 namespace { 80 class RegisterCoalescer : public MachineFunctionPass, 81 private LiveRangeEdit::Delegate { 82 MachineFunction* MF; 83 MachineRegisterInfo* MRI; 84 const TargetMachine* TM; 85 const TargetRegisterInfo* TRI; 86 const TargetInstrInfo* TII; 87 LiveIntervals *LIS; 88 LiveDebugVariables *LDV; 89 const MachineLoopInfo* Loops; 90 AliasAnalysis *AA; 91 RegisterClassInfo RegClassInfo; 92 93 /// \brief True if the coalescer should aggressively coalesce global copies 94 /// in favor of keeping local copies. 95 bool JoinGlobalCopies; 96 97 /// \brief True if the coalescer should aggressively coalesce fall-thru 98 /// blocks exclusively containing copies. 99 bool JoinSplitEdges; 100 101 /// WorkList - Copy instructions yet to be coalesced. 102 SmallVector<MachineInstr*, 8> WorkList; 103 SmallVector<MachineInstr*, 8> LocalWorkList; 104 105 /// ErasedInstrs - Set of instruction pointers that have been erased, and 106 /// that may be present in WorkList. 107 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 108 109 /// Dead instructions that are about to be deleted. 110 SmallVector<MachineInstr*, 8> DeadDefs; 111 112 /// Virtual registers to be considered for register class inflation. 113 SmallVector<unsigned, 8> InflateRegs; 114 115 /// Recursively eliminate dead defs in DeadDefs. 116 void eliminateDeadDefs(); 117 118 /// LiveRangeEdit callback. 119 void LRE_WillEraseInstruction(MachineInstr *MI); 120 121 /// coalesceLocals - coalesce the LocalWorkList. 122 void coalesceLocals(); 123 124 /// joinAllIntervals - join compatible live intervals 125 void joinAllIntervals(); 126 127 /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting 128 /// copies that cannot yet be coalesced into WorkList. 129 void copyCoalesceInMBB(MachineBasicBlock *MBB); 130 131 /// copyCoalesceWorkList - Try to coalesce all copies in CurrList. Return 132 /// true if any progress was made. 133 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 134 135 /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg, 136 /// which are the src/dst of the copy instruction CopyMI. This returns 137 /// true if the copy was successfully coalesced away. If it is not 138 /// currently possible to coalesce this interval, but it may be possible if 139 /// other things get coalesced, then it returns true by reference in 140 /// 'Again'. 141 bool joinCopy(MachineInstr *TheCopy, bool &Again); 142 143 /// joinIntervals - Attempt to join these two intervals. On failure, this 144 /// returns false. The output "SrcInt" will not have been modified, so we 145 /// can use this information below to update aliases. 146 bool joinIntervals(CoalescerPair &CP); 147 148 /// Attempt joining two virtual registers. Return true on success. 149 bool joinVirtRegs(CoalescerPair &CP); 150 151 /// Attempt joining with a reserved physreg. 152 bool joinReservedPhysReg(CoalescerPair &CP); 153 154 /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If 155 /// the source value number is defined by a copy from the destination reg 156 /// see if we can merge these two destination reg valno# into a single 157 /// value number, eliminating a copy. 158 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 159 160 /// hasOtherReachingDefs - Return true if there are definitions of IntB 161 /// other than BValNo val# that can reach uses of AValno val# of IntA. 162 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 163 VNInfo *AValNo, VNInfo *BValNo); 164 165 /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy. 166 /// If the source value number is defined by a commutable instruction and 167 /// its other operand is coalesced to the copy dest register, see if we 168 /// can transform the copy into a noop by commuting the definition. 169 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); 170 171 /// reMaterializeTrivialDef - If the source of a copy is defined by a 172 /// trivial computation, replace the copy by rematerialize the definition. 173 bool reMaterializeTrivialDef(LiveInterval &SrcInt, unsigned DstReg, 174 MachineInstr *CopyMI); 175 176 /// canJoinPhys - Return true if a physreg copy should be joined. 177 bool canJoinPhys(const CoalescerPair &CP); 178 179 /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and 180 /// update the subregister number if it is not zero. If DstReg is a 181 /// physical register and the existing subregister number of the def / use 182 /// being updated is not zero, make sure to set it to the correct physical 183 /// subregister. 184 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 185 186 /// eliminateUndefCopy - Handle copies of undef values. 187 bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP); 188 189 public: 190 static char ID; // Class identification, replacement for typeinfo 191 RegisterCoalescer() : MachineFunctionPass(ID) { 192 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 193 } 194 195 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 196 197 virtual void releaseMemory(); 198 199 /// runOnMachineFunction - pass entry point 200 virtual bool runOnMachineFunction(MachineFunction&); 201 202 /// print - Implement the dump method. 203 virtual void print(raw_ostream &O, const Module* = 0) const; 204 }; 205 } /// end anonymous namespace 206 207 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 208 209 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 210 "Simple Register Coalescing", false, false) 211 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 212 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 213 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 214 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 215 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 216 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 217 "Simple Register Coalescing", false, false) 218 219 char RegisterCoalescer::ID = 0; 220 221 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 222 unsigned &Src, unsigned &Dst, 223 unsigned &SrcSub, unsigned &DstSub) { 224 if (MI->isCopy()) { 225 Dst = MI->getOperand(0).getReg(); 226 DstSub = MI->getOperand(0).getSubReg(); 227 Src = MI->getOperand(1).getReg(); 228 SrcSub = MI->getOperand(1).getSubReg(); 229 } else if (MI->isSubregToReg()) { 230 Dst = MI->getOperand(0).getReg(); 231 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 232 MI->getOperand(3).getImm()); 233 Src = MI->getOperand(2).getReg(); 234 SrcSub = MI->getOperand(2).getSubReg(); 235 } else 236 return false; 237 return true; 238 } 239 240 // Return true if this block should be vacated by the coalescer to eliminate 241 // branches. The important cases to handle in the coalescer are critical edges 242 // split during phi elimination which contain only copies. Simple blocks that 243 // contain non-branches should also be vacated, but this can be handled by an 244 // earlier pass similar to early if-conversion. 245 static bool isSplitEdge(const MachineBasicBlock *MBB) { 246 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 247 return false; 248 249 for (MachineBasicBlock::const_iterator MII = MBB->begin(), E = MBB->end(); 250 MII != E; ++MII) { 251 if (!MII->isCopyLike() && !MII->isUnconditionalBranch()) 252 return false; 253 } 254 return true; 255 } 256 257 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 258 SrcReg = DstReg = 0; 259 SrcIdx = DstIdx = 0; 260 NewRC = 0; 261 Flipped = CrossClass = false; 262 263 unsigned Src, Dst, SrcSub, DstSub; 264 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 265 return false; 266 Partial = SrcSub || DstSub; 267 268 // If one register is a physreg, it must be Dst. 269 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 270 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 271 return false; 272 std::swap(Src, Dst); 273 std::swap(SrcSub, DstSub); 274 Flipped = true; 275 } 276 277 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 278 279 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 280 // Eliminate DstSub on a physreg. 281 if (DstSub) { 282 Dst = TRI.getSubReg(Dst, DstSub); 283 if (!Dst) return false; 284 DstSub = 0; 285 } 286 287 // Eliminate SrcSub by picking a corresponding Dst superregister. 288 if (SrcSub) { 289 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 290 if (!Dst) return false; 291 SrcSub = 0; 292 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 293 return false; 294 } 295 } else { 296 // Both registers are virtual. 297 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 298 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 299 300 // Both registers have subreg indices. 301 if (SrcSub && DstSub) { 302 // Copies between different sub-registers are never coalescable. 303 if (Src == Dst && SrcSub != DstSub) 304 return false; 305 306 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 307 SrcIdx, DstIdx); 308 if (!NewRC) 309 return false; 310 } else if (DstSub) { 311 // SrcReg will be merged with a sub-register of DstReg. 312 SrcIdx = DstSub; 313 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 314 } else if (SrcSub) { 315 // DstReg will be merged with a sub-register of SrcReg. 316 DstIdx = SrcSub; 317 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 318 } else { 319 // This is a straight copy without sub-registers. 320 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 321 } 322 323 // The combined constraint may be impossible to satisfy. 324 if (!NewRC) 325 return false; 326 327 // Prefer SrcReg to be a sub-register of DstReg. 328 // FIXME: Coalescer should support subregs symmetrically. 329 if (DstIdx && !SrcIdx) { 330 std::swap(Src, Dst); 331 std::swap(SrcIdx, DstIdx); 332 Flipped = !Flipped; 333 } 334 335 CrossClass = NewRC != DstRC || NewRC != SrcRC; 336 } 337 // Check our invariants 338 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 339 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 340 "Cannot have a physical SubIdx"); 341 SrcReg = Src; 342 DstReg = Dst; 343 return true; 344 } 345 346 bool CoalescerPair::flip() { 347 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 348 return false; 349 std::swap(SrcReg, DstReg); 350 std::swap(SrcIdx, DstIdx); 351 Flipped = !Flipped; 352 return true; 353 } 354 355 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 356 if (!MI) 357 return false; 358 unsigned Src, Dst, SrcSub, DstSub; 359 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 360 return false; 361 362 // Find the virtual register that is SrcReg. 363 if (Dst == SrcReg) { 364 std::swap(Src, Dst); 365 std::swap(SrcSub, DstSub); 366 } else if (Src != SrcReg) { 367 return false; 368 } 369 370 // Now check that Dst matches DstReg. 371 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 372 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 373 return false; 374 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 375 // DstSub could be set for a physreg from INSERT_SUBREG. 376 if (DstSub) 377 Dst = TRI.getSubReg(Dst, DstSub); 378 // Full copy of Src. 379 if (!SrcSub) 380 return DstReg == Dst; 381 // This is a partial register copy. Check that the parts match. 382 return TRI.getSubReg(DstReg, SrcSub) == Dst; 383 } else { 384 // DstReg is virtual. 385 if (DstReg != Dst) 386 return false; 387 // Registers match, do the subregisters line up? 388 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 389 TRI.composeSubRegIndices(DstIdx, DstSub); 390 } 391 } 392 393 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 394 AU.setPreservesCFG(); 395 AU.addRequired<AliasAnalysis>(); 396 AU.addRequired<LiveIntervals>(); 397 AU.addPreserved<LiveIntervals>(); 398 AU.addRequired<LiveDebugVariables>(); 399 AU.addPreserved<LiveDebugVariables>(); 400 AU.addPreserved<SlotIndexes>(); 401 AU.addRequired<MachineLoopInfo>(); 402 AU.addPreserved<MachineLoopInfo>(); 403 AU.addPreservedID(MachineDominatorsID); 404 MachineFunctionPass::getAnalysisUsage(AU); 405 } 406 407 void RegisterCoalescer::eliminateDeadDefs() { 408 SmallVector<LiveInterval*, 8> NewRegs; 409 LiveRangeEdit(0, NewRegs, *MF, *LIS, 0, this).eliminateDeadDefs(DeadDefs); 410 } 411 412 // Callback from eliminateDeadDefs(). 413 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 414 // MI may be in WorkList. Make sure we don't visit it. 415 ErasedInstrs.insert(MI); 416 } 417 418 /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA 419 /// being the source and IntB being the dest, thus this defines a value number 420 /// in IntB. If the source value number (in IntA) is defined by a copy from B, 421 /// see if we can merge these two pieces of B into a single value number, 422 /// eliminating a copy. For example: 423 /// 424 /// A3 = B0 425 /// ... 426 /// B1 = A3 <- this copy 427 /// 428 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1 429 /// value number to be replaced with B0 (which simplifies the B liveinterval). 430 /// 431 /// This returns true if an interval was modified. 432 /// 433 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 434 MachineInstr *CopyMI) { 435 assert(!CP.isPartial() && "This doesn't work for partial copies."); 436 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 437 438 LiveInterval &IntA = 439 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 440 LiveInterval &IntB = 441 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 442 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 443 444 // BValNo is a value number in B that is defined by a copy from A. 'B3' in 445 // the example above. 446 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx); 447 if (BLR == IntB.end()) return false; 448 VNInfo *BValNo = BLR->valno; 449 450 // Get the location that B is defined at. Two options: either this value has 451 // an unknown definition point or it is defined at CopyIdx. If unknown, we 452 // can't process it. 453 if (BValNo->def != CopyIdx) return false; 454 455 // AValNo is the value number in A that defines the copy, A3 in the example. 456 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 457 LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx); 458 // The live range might not exist after fun with physreg coalescing. 459 if (ALR == IntA.end()) return false; 460 VNInfo *AValNo = ALR->valno; 461 462 // If AValNo is defined as a copy from IntB, we can potentially process this. 463 // Get the instruction that defines this value number. 464 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 465 // Don't allow any partial copies, even if isCoalescable() allows them. 466 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 467 return false; 468 469 // Get the LiveRange in IntB that this value number starts with. 470 LiveInterval::iterator ValLR = 471 IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot()); 472 if (ValLR == IntB.end()) 473 return false; 474 475 // Make sure that the end of the live range is inside the same block as 476 // CopyMI. 477 MachineInstr *ValLREndInst = 478 LIS->getInstructionFromIndex(ValLR->end.getPrevSlot()); 479 if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent()) 480 return false; 481 482 // Okay, we now know that ValLR ends in the same block that the CopyMI 483 // live-range starts. If there are no intervening live ranges between them in 484 // IntB, we can merge them. 485 if (ValLR+1 != BLR) return false; 486 487 DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI)); 488 489 SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start; 490 // We are about to delete CopyMI, so need to remove it as the 'instruction 491 // that defines this value #'. Update the valnum with the new defining 492 // instruction #. 493 BValNo->def = FillerStart; 494 495 // Okay, we can merge them. We need to insert a new liverange: 496 // [ValLR.end, BLR.begin) of either value number, then we merge the 497 // two value numbers. 498 IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo)); 499 500 // Okay, merge "B1" into the same value number as "B0". 501 if (BValNo != ValLR->valno) 502 IntB.MergeValueNumberInto(BValNo, ValLR->valno); 503 DEBUG(dbgs() << " result = " << IntB << '\n'); 504 505 // If the source instruction was killing the source register before the 506 // merge, unset the isKill marker given the live range has been extended. 507 int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true); 508 if (UIdx != -1) { 509 ValLREndInst->getOperand(UIdx).setIsKill(false); 510 } 511 512 // Rewrite the copy. If the copy instruction was killing the destination 513 // register before the merge, find the last use and trim the live range. That 514 // will also add the isKill marker. 515 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 516 if (ALR->end == CopyIdx) 517 LIS->shrinkToUses(&IntA); 518 519 ++numExtends; 520 return true; 521 } 522 523 /// hasOtherReachingDefs - Return true if there are definitions of IntB 524 /// other than BValNo val# that can reach uses of AValno val# of IntA. 525 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 526 LiveInterval &IntB, 527 VNInfo *AValNo, 528 VNInfo *BValNo) { 529 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 530 // the PHI values. 531 if (LIS->hasPHIKill(IntA, AValNo)) 532 return true; 533 534 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end(); 535 AI != AE; ++AI) { 536 if (AI->valno != AValNo) continue; 537 LiveInterval::Ranges::iterator BI = 538 std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start); 539 if (BI != IntB.ranges.begin()) 540 --BI; 541 for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) { 542 if (BI->valno == BValNo) 543 continue; 544 if (BI->start <= AI->start && BI->end > AI->start) 545 return true; 546 if (BI->start > AI->start && BI->start < AI->end) 547 return true; 548 } 549 } 550 return false; 551 } 552 553 /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with 554 /// IntA being the source and IntB being the dest, thus this defines a value 555 /// number in IntB. If the source value number (in IntA) is defined by a 556 /// commutable instruction and its other operand is coalesced to the copy dest 557 /// register, see if we can transform the copy into a noop by commuting the 558 /// definition. For example, 559 /// 560 /// A3 = op A2 B0<kill> 561 /// ... 562 /// B1 = A3 <- this copy 563 /// ... 564 /// = op A3 <- more uses 565 /// 566 /// ==> 567 /// 568 /// B2 = op B0 A2<kill> 569 /// ... 570 /// B1 = B2 <- now an identify copy 571 /// ... 572 /// = op B2 <- more uses 573 /// 574 /// This returns true if an interval was modified. 575 /// 576 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 577 MachineInstr *CopyMI) { 578 assert (!CP.isPhys()); 579 580 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 581 582 LiveInterval &IntA = 583 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 584 LiveInterval &IntB = 585 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 586 587 // BValNo is a value number in B that is defined by a copy from A. 'B3' in 588 // the example above. 589 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 590 if (!BValNo || BValNo->def != CopyIdx) 591 return false; 592 593 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?"); 594 595 // AValNo is the value number in A that defines the copy, A3 in the example. 596 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 597 assert(AValNo && "COPY source not live"); 598 if (AValNo->isPHIDef() || AValNo->isUnused()) 599 return false; 600 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 601 if (!DefMI) 602 return false; 603 if (!DefMI->isCommutable()) 604 return false; 605 // If DefMI is a two-address instruction then commuting it will change the 606 // destination register. 607 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 608 assert(DefIdx != -1); 609 unsigned UseOpIdx; 610 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 611 return false; 612 unsigned Op1, Op2, NewDstIdx; 613 if (!TII->findCommutedOpIndices(DefMI, Op1, Op2)) 614 return false; 615 if (Op1 == UseOpIdx) 616 NewDstIdx = Op2; 617 else if (Op2 == UseOpIdx) 618 NewDstIdx = Op1; 619 else 620 return false; 621 622 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 623 unsigned NewReg = NewDstMO.getReg(); 624 if (NewReg != IntB.reg || !LiveRangeQuery(IntB, AValNo->def).isKill()) 625 return false; 626 627 // Make sure there are no other definitions of IntB that would reach the 628 // uses which the new definition can reach. 629 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 630 return false; 631 632 // If some of the uses of IntA.reg is already coalesced away, return false. 633 // It's not possible to determine whether it's safe to perform the coalescing. 634 for (MachineRegisterInfo::use_nodbg_iterator UI = 635 MRI->use_nodbg_begin(IntA.reg), 636 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 637 MachineInstr *UseMI = &*UI; 638 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI); 639 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx); 640 if (ULR == IntA.end() || ULR->valno != AValNo) 641 continue; 642 // If this use is tied to a def, we can't rewrite the register. 643 if (UseMI->isRegTiedToDefOperand(UI.getOperandNo())) 644 return false; 645 } 646 647 DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 648 << *DefMI); 649 650 // At this point we have decided that it is legal to do this 651 // transformation. Start by commuting the instruction. 652 MachineBasicBlock *MBB = DefMI->getParent(); 653 MachineInstr *NewMI = TII->commuteInstruction(DefMI); 654 if (!NewMI) 655 return false; 656 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 657 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 658 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 659 return false; 660 if (NewMI != DefMI) { 661 LIS->ReplaceMachineInstrInMaps(DefMI, NewMI); 662 MachineBasicBlock::iterator Pos = DefMI; 663 MBB->insert(Pos, NewMI); 664 MBB->erase(DefMI); 665 } 666 unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false); 667 NewMI->getOperand(OpIdx).setIsKill(); 668 669 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 670 // A = or A, B 671 // ... 672 // B = A 673 // ... 674 // C = A<kill> 675 // ... 676 // = B 677 678 // Update uses of IntA of the specific Val# with IntB. 679 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 680 UE = MRI->use_end(); UI != UE;) { 681 MachineOperand &UseMO = UI.getOperand(); 682 MachineInstr *UseMI = &*UI; 683 ++UI; 684 if (UseMI->isDebugValue()) { 685 // FIXME These don't have an instruction index. Not clear we have enough 686 // info to decide whether to do this replacement or not. For now do it. 687 UseMO.setReg(NewReg); 688 continue; 689 } 690 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true); 691 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx); 692 if (ULR == IntA.end() || ULR->valno != AValNo) 693 continue; 694 // Kill flags are no longer accurate. They are recomputed after RA. 695 UseMO.setIsKill(false); 696 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 697 UseMO.substPhysReg(NewReg, *TRI); 698 else 699 UseMO.setReg(NewReg); 700 if (UseMI == CopyMI) 701 continue; 702 if (!UseMI->isCopy()) 703 continue; 704 if (UseMI->getOperand(0).getReg() != IntB.reg || 705 UseMI->getOperand(0).getSubReg()) 706 continue; 707 708 // This copy will become a noop. If it's defining a new val#, merge it into 709 // BValNo. 710 SlotIndex DefIdx = UseIdx.getRegSlot(); 711 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 712 if (!DVNI) 713 continue; 714 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 715 assert(DVNI->def == DefIdx); 716 BValNo = IntB.MergeValueNumberInto(BValNo, DVNI); 717 ErasedInstrs.insert(UseMI); 718 LIS->RemoveMachineInstrFromMaps(UseMI); 719 UseMI->eraseFromParent(); 720 } 721 722 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition 723 // is updated. 724 VNInfo *ValNo = BValNo; 725 ValNo->def = AValNo->def; 726 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end(); 727 AI != AE; ++AI) { 728 if (AI->valno != AValNo) continue; 729 IntB.addRange(LiveRange(AI->start, AI->end, ValNo)); 730 } 731 DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 732 733 IntA.removeValNo(AValNo); 734 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 735 ++numCommutes; 736 return true; 737 } 738 739 /// reMaterializeTrivialDef - If the source of a copy is defined by a trivial 740 /// computation, replace the copy by rematerialize the definition. 741 bool RegisterCoalescer::reMaterializeTrivialDef(LiveInterval &SrcInt, 742 unsigned DstReg, 743 MachineInstr *CopyMI) { 744 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 745 LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx); 746 assert(SrcLR != SrcInt.end() && "Live range not found!"); 747 VNInfo *ValNo = SrcLR->valno; 748 if (ValNo->isPHIDef() || ValNo->isUnused()) 749 return false; 750 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 751 if (!DefMI) 752 return false; 753 assert(DefMI && "Defining instruction disappeared"); 754 if (!DefMI->isAsCheapAsAMove()) 755 return false; 756 if (!TII->isTriviallyReMaterializable(DefMI, AA)) 757 return false; 758 bool SawStore = false; 759 if (!DefMI->isSafeToMove(TII, AA, SawStore)) 760 return false; 761 const MCInstrDesc &MCID = DefMI->getDesc(); 762 if (MCID.getNumDefs() != 1) 763 return false; 764 if (!DefMI->isImplicitDef()) { 765 // Make sure the copy destination register class fits the instruction 766 // definition register class. The mismatch can happen as a result of earlier 767 // extract_subreg, insert_subreg, subreg_to_reg coalescing. 768 const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI, *MF); 769 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 770 if (MRI->getRegClass(DstReg) != RC) 771 return false; 772 } else if (!RC->contains(DstReg)) 773 return false; 774 } 775 776 MachineBasicBlock *MBB = CopyMI->getParent(); 777 MachineBasicBlock::iterator MII = 778 llvm::next(MachineBasicBlock::iterator(CopyMI)); 779 TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI); 780 MachineInstr *NewMI = prior(MII); 781 782 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 783 // We need to remember these so we can add intervals once we insert 784 // NewMI into SlotIndexes. 785 SmallVector<unsigned, 4> NewMIImplDefs; 786 for (unsigned i = NewMI->getDesc().getNumOperands(), 787 e = NewMI->getNumOperands(); i != e; ++i) { 788 MachineOperand &MO = NewMI->getOperand(i); 789 if (MO.isReg()) { 790 assert(MO.isDef() && MO.isImplicit() && MO.isDead() && 791 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 792 NewMIImplDefs.push_back(MO.getReg()); 793 } 794 } 795 796 // CopyMI may have implicit operands, transfer them over to the newly 797 // rematerialized instruction. And update implicit def interval valnos. 798 for (unsigned i = CopyMI->getDesc().getNumOperands(), 799 e = CopyMI->getNumOperands(); i != e; ++i) { 800 MachineOperand &MO = CopyMI->getOperand(i); 801 if (MO.isReg()) { 802 assert(MO.isImplicit() && "No explicit operands after implict operands."); 803 // Discard VReg implicit defs. 804 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 805 NewMI->addOperand(MO); 806 } 807 } 808 } 809 810 LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI); 811 812 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 813 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 814 unsigned Reg = NewMIImplDefs[i]; 815 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 816 if (LiveInterval *LI = LIS->getCachedRegUnit(*Units)) 817 LI->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 818 } 819 820 CopyMI->eraseFromParent(); 821 ErasedInstrs.insert(CopyMI); 822 DEBUG(dbgs() << "Remat: " << *NewMI); 823 ++NumReMats; 824 825 // The source interval can become smaller because we removed a use. 826 LIS->shrinkToUses(&SrcInt, &DeadDefs); 827 if (!DeadDefs.empty()) 828 eliminateDeadDefs(); 829 830 return true; 831 } 832 833 /// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef> 834 /// values, it only removes local variables. When we have a copy like: 835 /// 836 /// %vreg1 = COPY %vreg2<undef> 837 /// 838 /// We delete the copy and remove the corresponding value number from %vreg1. 839 /// Any uses of that value number are marked as <undef>. 840 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI, 841 const CoalescerPair &CP) { 842 SlotIndex Idx = LIS->getInstructionIndex(CopyMI); 843 LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg()); 844 if (SrcInt->liveAt(Idx)) 845 return false; 846 LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg()); 847 if (DstInt->liveAt(Idx)) 848 return false; 849 850 // No intervals are live-in to CopyMI - it is undef. 851 if (CP.isFlipped()) 852 DstInt = SrcInt; 853 SrcInt = 0; 854 855 VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot()); 856 assert(DeadVNI && "No value defined in DstInt"); 857 DstInt->removeValNo(DeadVNI); 858 859 // Find new undef uses. 860 for (MachineRegisterInfo::reg_nodbg_iterator 861 I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end(); 862 I != E; ++I) { 863 MachineOperand &MO = I.getOperand(); 864 if (MO.isDef() || MO.isUndef()) 865 continue; 866 MachineInstr *MI = MO.getParent(); 867 SlotIndex Idx = LIS->getInstructionIndex(MI); 868 if (DstInt->liveAt(Idx)) 869 continue; 870 MO.setIsUndef(true); 871 DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI); 872 } 873 return true; 874 } 875 876 /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and 877 /// update the subregister number if it is not zero. If DstReg is a 878 /// physical register and the existing subregister number of the def / use 879 /// being updated is not zero, make sure to set it to the correct physical 880 /// subregister. 881 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 882 unsigned DstReg, 883 unsigned SubIdx) { 884 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 885 LiveInterval *DstInt = DstIsPhys ? 0 : &LIS->getInterval(DstReg); 886 887 // Update LiveDebugVariables. 888 LDV->renameRegister(SrcReg, DstReg, SubIdx); 889 890 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg); 891 MachineInstr *UseMI = I.skipInstruction();) { 892 SmallVector<unsigned,8> Ops; 893 bool Reads, Writes; 894 tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 895 896 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 897 // because SrcReg is a sub-register. 898 if (DstInt && !Reads && SubIdx) 899 Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI)); 900 901 // Replace SrcReg with DstReg in all UseMI operands. 902 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 903 MachineOperand &MO = UseMI->getOperand(Ops[i]); 904 905 // Adjust <undef> flags in case of sub-register joins. We don't want to 906 // turn a full def into a read-modify-write sub-register def and vice 907 // versa. 908 if (SubIdx && MO.isDef()) 909 MO.setIsUndef(!Reads); 910 911 if (DstIsPhys) 912 MO.substPhysReg(DstReg, *TRI); 913 else 914 MO.substVirtReg(DstReg, SubIdx, *TRI); 915 } 916 917 DEBUG({ 918 dbgs() << "\t\tupdated: "; 919 if (!UseMI->isDebugValue()) 920 dbgs() << LIS->getInstructionIndex(UseMI) << "\t"; 921 dbgs() << *UseMI; 922 }); 923 } 924 } 925 926 /// canJoinPhys - Return true if a copy involving a physreg should be joined. 927 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 928 /// Always join simple intervals that are defined by a single copy from a 929 /// reserved register. This doesn't increase register pressure, so it is 930 /// always beneficial. 931 if (!MRI->isReserved(CP.getDstReg())) { 932 DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 933 return false; 934 } 935 936 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 937 if (CP.isFlipped() && JoinVInt.containsOneValue()) 938 return true; 939 940 DEBUG(dbgs() << "\tCannot join defs into reserved register.\n"); 941 return false; 942 } 943 944 /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg, 945 /// which are the src/dst of the copy instruction CopyMI. This returns true 946 /// if the copy was successfully coalesced away. If it is not currently 947 /// possible to coalesce this interval, but it may be possible if other 948 /// things get coalesced, then it returns true by reference in 'Again'. 949 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 950 951 Again = false; 952 DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI); 953 954 CoalescerPair CP(*TRI); 955 if (!CP.setRegisters(CopyMI)) { 956 DEBUG(dbgs() << "\tNot coalescable.\n"); 957 return false; 958 } 959 960 // Dead code elimination. This really should be handled by MachineDCE, but 961 // sometimes dead copies slip through, and we can't generate invalid live 962 // ranges. 963 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 964 DEBUG(dbgs() << "\tCopy is dead.\n"); 965 DeadDefs.push_back(CopyMI); 966 eliminateDeadDefs(); 967 return true; 968 } 969 970 // Eliminate undefs. 971 if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) { 972 DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n"); 973 LIS->RemoveMachineInstrFromMaps(CopyMI); 974 CopyMI->eraseFromParent(); 975 return false; // Not coalescable. 976 } 977 978 // Coalesced copies are normally removed immediately, but transformations 979 // like removeCopyByCommutingDef() can inadvertently create identity copies. 980 // When that happens, just join the values and remove the copy. 981 if (CP.getSrcReg() == CP.getDstReg()) { 982 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 983 DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 984 LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(CopyMI)); 985 if (VNInfo *DefVNI = LRQ.valueDefined()) { 986 VNInfo *ReadVNI = LRQ.valueIn(); 987 assert(ReadVNI && "No value before copy and no <undef> flag."); 988 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 989 LI.MergeValueNumberInto(DefVNI, ReadVNI); 990 DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 991 } 992 LIS->RemoveMachineInstrFromMaps(CopyMI); 993 CopyMI->eraseFromParent(); 994 return true; 995 } 996 997 // Enforce policies. 998 if (CP.isPhys()) { 999 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI) 1000 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) 1001 << '\n'); 1002 if (!canJoinPhys(CP)) { 1003 // Before giving up coalescing, if definition of source is defined by 1004 // trivial computation, try rematerializing it. 1005 if (!CP.isFlipped() && 1006 reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), 1007 CP.getDstReg(), CopyMI)) 1008 return true; 1009 return false; 1010 } 1011 } else { 1012 DEBUG({ 1013 dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName() 1014 << " with "; 1015 if (CP.getDstIdx() && CP.getSrcIdx()) 1016 dbgs() << PrintReg(CP.getDstReg()) << " in " 1017 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1018 << PrintReg(CP.getSrcReg()) << " in " 1019 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1020 else 1021 dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in " 1022 << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1023 }); 1024 1025 // When possible, let DstReg be the larger interval. 1026 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).ranges.size() > 1027 LIS->getInterval(CP.getDstReg()).ranges.size()) 1028 CP.flip(); 1029 } 1030 1031 // Okay, attempt to join these two intervals. On failure, this returns false. 1032 // Otherwise, if one of the intervals being joined is a physreg, this method 1033 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1034 // been modified, so we can use this information below to update aliases. 1035 if (!joinIntervals(CP)) { 1036 // Coalescing failed. 1037 1038 // If definition of source is defined by trivial computation, try 1039 // rematerializing it. 1040 if (!CP.isFlipped() && 1041 reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), 1042 CP.getDstReg(), CopyMI)) 1043 return true; 1044 1045 // If we can eliminate the copy without merging the live ranges, do so now. 1046 if (!CP.isPartial() && !CP.isPhys()) { 1047 if (adjustCopiesBackFrom(CP, CopyMI) || 1048 removeCopyByCommutingDef(CP, CopyMI)) { 1049 LIS->RemoveMachineInstrFromMaps(CopyMI); 1050 CopyMI->eraseFromParent(); 1051 DEBUG(dbgs() << "\tTrivial!\n"); 1052 return true; 1053 } 1054 } 1055 1056 // Otherwise, we are unable to join the intervals. 1057 DEBUG(dbgs() << "\tInterference!\n"); 1058 Again = true; // May be possible to coalesce later. 1059 return false; 1060 } 1061 1062 // Coalescing to a virtual register that is of a sub-register class of the 1063 // other. Make sure the resulting register is set to the right register class. 1064 if (CP.isCrossClass()) { 1065 ++numCrossRCs; 1066 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1067 } 1068 1069 // Removing sub-register copies can ease the register class constraints. 1070 // Make sure we attempt to inflate the register class of DstReg. 1071 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1072 InflateRegs.push_back(CP.getDstReg()); 1073 1074 // CopyMI has been erased by joinIntervals at this point. Remove it from 1075 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1076 // to the work list. This keeps ErasedInstrs from growing needlessly. 1077 ErasedInstrs.erase(CopyMI); 1078 1079 // Rewrite all SrcReg operands to DstReg. 1080 // Also update DstReg operands to include DstIdx if it is set. 1081 if (CP.getDstIdx()) 1082 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1083 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1084 1085 // SrcReg is guaranteed to be the register whose live interval that is 1086 // being merged. 1087 LIS->removeInterval(CP.getSrcReg()); 1088 1089 // Update regalloc hint. 1090 TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1091 1092 DEBUG({ 1093 dbgs() << "\tJoined. Result = " << PrintReg(CP.getDstReg(), TRI); 1094 if (!CP.isPhys()) 1095 dbgs() << LIS->getInterval(CP.getDstReg()); 1096 dbgs() << '\n'; 1097 }); 1098 1099 ++numJoins; 1100 return true; 1101 } 1102 1103 /// Attempt joining with a reserved physreg. 1104 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1105 assert(CP.isPhys() && "Must be a physreg copy"); 1106 assert(MRI->isReserved(CP.getDstReg()) && "Not a reserved register"); 1107 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 1108 DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS 1109 << '\n'); 1110 1111 assert(CP.isFlipped() && RHS.containsOneValue() && 1112 "Invalid join with reserved register"); 1113 1114 // Optimization for reserved registers like ESP. We can only merge with a 1115 // reserved physreg if RHS has a single value that is a copy of CP.DstReg(). 1116 // The live range of the reserved register will look like a set of dead defs 1117 // - we don't properly track the live range of reserved registers. 1118 1119 // Deny any overlapping intervals. This depends on all the reserved 1120 // register live ranges to look like dead defs. 1121 for (MCRegUnitIterator UI(CP.getDstReg(), TRI); UI.isValid(); ++UI) 1122 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1123 DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n'); 1124 return false; 1125 } 1126 1127 // Skip any value computations, we are not adding new values to the 1128 // reserved register. Also skip merging the live ranges, the reserved 1129 // register live range doesn't need to be accurate as long as all the 1130 // defs are there. 1131 1132 // Delete the identity copy. 1133 MachineInstr *CopyMI = MRI->getVRegDef(RHS.reg); 1134 LIS->RemoveMachineInstrFromMaps(CopyMI); 1135 CopyMI->eraseFromParent(); 1136 1137 // We don't track kills for reserved registers. 1138 MRI->clearKillFlags(CP.getSrcReg()); 1139 1140 return true; 1141 } 1142 1143 //===----------------------------------------------------------------------===// 1144 // Interference checking and interval joining 1145 //===----------------------------------------------------------------------===// 1146 // 1147 // In the easiest case, the two live ranges being joined are disjoint, and 1148 // there is no interference to consider. It is quite common, though, to have 1149 // overlapping live ranges, and we need to check if the interference can be 1150 // resolved. 1151 // 1152 // The live range of a single SSA value forms a sub-tree of the dominator tree. 1153 // This means that two SSA values overlap if and only if the def of one value 1154 // is contained in the live range of the other value. As a special case, the 1155 // overlapping values can be defined at the same index. 1156 // 1157 // The interference from an overlapping def can be resolved in these cases: 1158 // 1159 // 1. Coalescable copies. The value is defined by a copy that would become an 1160 // identity copy after joining SrcReg and DstReg. The copy instruction will 1161 // be removed, and the value will be merged with the source value. 1162 // 1163 // There can be several copies back and forth, causing many values to be 1164 // merged into one. We compute a list of ultimate values in the joined live 1165 // range as well as a mappings from the old value numbers. 1166 // 1167 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 1168 // predecessors have a live out value. It doesn't cause real interference, 1169 // and can be merged into the value it overlaps. Like a coalescable copy, it 1170 // can be erased after joining. 1171 // 1172 // 3. Copy of external value. The overlapping def may be a copy of a value that 1173 // is already in the other register. This is like a coalescable copy, but 1174 // the live range of the source register must be trimmed after erasing the 1175 // copy instruction: 1176 // 1177 // %src = COPY %ext 1178 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 1179 // 1180 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 1181 // defining one lane at a time: 1182 // 1183 // %dst:ssub0<def,read-undef> = FOO 1184 // %src = BAR 1185 // %dst:ssub1<def> = COPY %src 1186 // 1187 // The live range of %src overlaps the %dst value defined by FOO, but 1188 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 1189 // which was undef anyway. 1190 // 1191 // The value mapping is more complicated in this case. The final live range 1192 // will have different value numbers for both FOO and BAR, but there is no 1193 // simple mapping from old to new values. It may even be necessary to add 1194 // new PHI values. 1195 // 1196 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 1197 // is live, but never read. This can happen because we don't compute 1198 // individual live ranges per lane. 1199 // 1200 // %dst<def> = FOO 1201 // %src = BAR 1202 // %dst:ssub1<def> = COPY %src 1203 // 1204 // This kind of interference is only resolved locally. If the clobbered 1205 // lane value escapes the block, the join is aborted. 1206 1207 namespace { 1208 /// Track information about values in a single virtual register about to be 1209 /// joined. Objects of this class are always created in pairs - one for each 1210 /// side of the CoalescerPair. 1211 class JoinVals { 1212 LiveInterval &LI; 1213 1214 // Location of this register in the final joined register. 1215 // Either CP.DstIdx or CP.SrcIdx. 1216 unsigned SubIdx; 1217 1218 // Values that will be present in the final live range. 1219 SmallVectorImpl<VNInfo*> &NewVNInfo; 1220 1221 const CoalescerPair &CP; 1222 LiveIntervals *LIS; 1223 SlotIndexes *Indexes; 1224 const TargetRegisterInfo *TRI; 1225 1226 // Value number assignments. Maps value numbers in LI to entries in NewVNInfo. 1227 // This is suitable for passing to LiveInterval::join(). 1228 SmallVector<int, 8> Assignments; 1229 1230 // Conflict resolution for overlapping values. 1231 enum ConflictResolution { 1232 // No overlap, simply keep this value. 1233 CR_Keep, 1234 1235 // Merge this value into OtherVNI and erase the defining instruction. 1236 // Used for IMPLICIT_DEF, coalescable copies, and copies from external 1237 // values. 1238 CR_Erase, 1239 1240 // Merge this value into OtherVNI but keep the defining instruction. 1241 // This is for the special case where OtherVNI is defined by the same 1242 // instruction. 1243 CR_Merge, 1244 1245 // Keep this value, and have it replace OtherVNI where possible. This 1246 // complicates value mapping since OtherVNI maps to two different values 1247 // before and after this def. 1248 // Used when clobbering undefined or dead lanes. 1249 CR_Replace, 1250 1251 // Unresolved conflict. Visit later when all values have been mapped. 1252 CR_Unresolved, 1253 1254 // Unresolvable conflict. Abort the join. 1255 CR_Impossible 1256 }; 1257 1258 // Per-value info for LI. The lane bit masks are all relative to the final 1259 // joined register, so they can be compared directly between SrcReg and 1260 // DstReg. 1261 struct Val { 1262 ConflictResolution Resolution; 1263 1264 // Lanes written by this def, 0 for unanalyzed values. 1265 unsigned WriteLanes; 1266 1267 // Lanes with defined values in this register. Other lanes are undef and 1268 // safe to clobber. 1269 unsigned ValidLanes; 1270 1271 // Value in LI being redefined by this def. 1272 VNInfo *RedefVNI; 1273 1274 // Value in the other live range that overlaps this def, if any. 1275 VNInfo *OtherVNI; 1276 1277 // Is this value an IMPLICIT_DEF? 1278 bool IsImplicitDef; 1279 1280 // True when the live range of this value will be pruned because of an 1281 // overlapping CR_Replace value in the other live range. 1282 bool Pruned; 1283 1284 // True once Pruned above has been computed. 1285 bool PrunedComputed; 1286 1287 Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0), 1288 RedefVNI(0), OtherVNI(0), IsImplicitDef(false), Pruned(false), 1289 PrunedComputed(false) {} 1290 1291 bool isAnalyzed() const { return WriteLanes != 0; } 1292 }; 1293 1294 // One entry per value number in LI. 1295 SmallVector<Val, 8> Vals; 1296 1297 unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef); 1298 VNInfo *stripCopies(VNInfo *VNI); 1299 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 1300 void computeAssignment(unsigned ValNo, JoinVals &Other); 1301 bool taintExtent(unsigned, unsigned, JoinVals&, 1302 SmallVectorImpl<std::pair<SlotIndex, unsigned> >&); 1303 bool usesLanes(MachineInstr *MI, unsigned, unsigned, unsigned); 1304 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 1305 1306 public: 1307 JoinVals(LiveInterval &li, unsigned subIdx, 1308 SmallVectorImpl<VNInfo*> &newVNInfo, 1309 const CoalescerPair &cp, 1310 LiveIntervals *lis, 1311 const TargetRegisterInfo *tri) 1312 : LI(li), SubIdx(subIdx), NewVNInfo(newVNInfo), CP(cp), LIS(lis), 1313 Indexes(LIS->getSlotIndexes()), TRI(tri), 1314 Assignments(LI.getNumValNums(), -1), Vals(LI.getNumValNums()) 1315 {} 1316 1317 /// Analyze defs in LI and compute a value mapping in NewVNInfo. 1318 /// Returns false if any conflicts were impossible to resolve. 1319 bool mapValues(JoinVals &Other); 1320 1321 /// Try to resolve conflicts that require all values to be mapped. 1322 /// Returns false if any conflicts were impossible to resolve. 1323 bool resolveConflicts(JoinVals &Other); 1324 1325 /// Prune the live range of values in Other.LI where they would conflict with 1326 /// CR_Replace values in LI. Collect end points for restoring the live range 1327 /// after joining. 1328 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints); 1329 1330 /// Erase any machine instructions that have been coalesced away. 1331 /// Add erased instructions to ErasedInstrs. 1332 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 1333 /// the erased instrs. 1334 void eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs, 1335 SmallVectorImpl<unsigned> &ShrinkRegs); 1336 1337 /// Get the value assignments suitable for passing to LiveInterval::join. 1338 const int *getAssignments() const { return Assignments.data(); } 1339 }; 1340 } // end anonymous namespace 1341 1342 /// Compute the bitmask of lanes actually written by DefMI. 1343 /// Set Redef if there are any partial register definitions that depend on the 1344 /// previous value of the register. 1345 unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) { 1346 unsigned L = 0; 1347 for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) { 1348 if (!MO->isReg() || MO->getReg() != LI.reg || !MO->isDef()) 1349 continue; 1350 L |= TRI->getSubRegIndexLaneMask( 1351 TRI->composeSubRegIndices(SubIdx, MO->getSubReg())); 1352 if (MO->readsReg()) 1353 Redef = true; 1354 } 1355 return L; 1356 } 1357 1358 /// Find the ultimate value that VNI was copied from. 1359 VNInfo *JoinVals::stripCopies(VNInfo *VNI) { 1360 while (!VNI->isPHIDef()) { 1361 MachineInstr *MI = Indexes->getInstructionFromIndex(VNI->def); 1362 assert(MI && "No defining instruction"); 1363 if (!MI->isFullCopy()) 1364 break; 1365 unsigned Reg = MI->getOperand(1).getReg(); 1366 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1367 break; 1368 LiveRangeQuery LRQ(LIS->getInterval(Reg), VNI->def); 1369 if (!LRQ.valueIn()) 1370 break; 1371 VNI = LRQ.valueIn(); 1372 } 1373 return VNI; 1374 } 1375 1376 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 1377 /// Return a conflict resolution when possible, but leave the hard cases as 1378 /// CR_Unresolved. 1379 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 1380 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 1381 /// The recursion always goes upwards in the dominator tree, making loops 1382 /// impossible. 1383 JoinVals::ConflictResolution 1384 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 1385 Val &V = Vals[ValNo]; 1386 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 1387 VNInfo *VNI = LI.getValNumInfo(ValNo); 1388 if (VNI->isUnused()) { 1389 V.WriteLanes = ~0u; 1390 return CR_Keep; 1391 } 1392 1393 // Get the instruction defining this value, compute the lanes written. 1394 const MachineInstr *DefMI = 0; 1395 if (VNI->isPHIDef()) { 1396 // Conservatively assume that all lanes in a PHI are valid. 1397 V.ValidLanes = V.WriteLanes = TRI->getSubRegIndexLaneMask(SubIdx); 1398 } else { 1399 DefMI = Indexes->getInstructionFromIndex(VNI->def); 1400 bool Redef = false; 1401 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 1402 1403 // If this is a read-modify-write instruction, there may be more valid 1404 // lanes than the ones written by this instruction. 1405 // This only covers partial redef operands. DefMI may have normal use 1406 // operands reading the register. They don't contribute valid lanes. 1407 // 1408 // This adds ssub1 to the set of valid lanes in %src: 1409 // 1410 // %src:ssub1<def> = FOO 1411 // 1412 // This leaves only ssub1 valid, making any other lanes undef: 1413 // 1414 // %src:ssub1<def,read-undef> = FOO %src:ssub2 1415 // 1416 // The <read-undef> flag on the def operand means that old lane values are 1417 // not important. 1418 if (Redef) { 1419 V.RedefVNI = LiveRangeQuery(LI, VNI->def).valueIn(); 1420 assert(V.RedefVNI && "Instruction is reading nonexistent value"); 1421 computeAssignment(V.RedefVNI->id, Other); 1422 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 1423 } 1424 1425 // An IMPLICIT_DEF writes undef values. 1426 if (DefMI->isImplicitDef()) { 1427 V.IsImplicitDef = true; 1428 V.ValidLanes &= ~V.WriteLanes; 1429 } 1430 } 1431 1432 // Find the value in Other that overlaps VNI->def, if any. 1433 LiveRangeQuery OtherLRQ(Other.LI, VNI->def); 1434 1435 // It is possible that both values are defined by the same instruction, or 1436 // the values are PHIs defined in the same block. When that happens, the two 1437 // values should be merged into one, but not into any preceding value. 1438 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 1439 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 1440 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 1441 1442 // One value stays, the other is merged. Keep the earlier one, or the first 1443 // one we see. 1444 if (OtherVNI->def < VNI->def) 1445 Other.computeAssignment(OtherVNI->id, *this); 1446 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 1447 // This is an early-clobber def overlapping a live-in value in the other 1448 // register. Not mergeable. 1449 V.OtherVNI = OtherLRQ.valueIn(); 1450 return CR_Impossible; 1451 } 1452 V.OtherVNI = OtherVNI; 1453 Val &OtherV = Other.Vals[OtherVNI->id]; 1454 // Keep this value, check for conflicts when analyzing OtherVNI. 1455 if (!OtherV.isAnalyzed()) 1456 return CR_Keep; 1457 // Both sides have been analyzed now. 1458 // Allow overlapping PHI values. Any real interference would show up in a 1459 // predecessor, the PHI itself can't introduce any conflicts. 1460 if (VNI->isPHIDef()) 1461 return CR_Merge; 1462 if (V.ValidLanes & OtherV.ValidLanes) 1463 // Overlapping lanes can't be resolved. 1464 return CR_Impossible; 1465 else 1466 return CR_Merge; 1467 } 1468 1469 // No simultaneous def. Is Other live at the def? 1470 V.OtherVNI = OtherLRQ.valueIn(); 1471 if (!V.OtherVNI) 1472 // No overlap, no conflict. 1473 return CR_Keep; 1474 1475 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 1476 1477 // We have overlapping values, or possibly a kill of Other. 1478 // Recursively compute assignments up the dominator tree. 1479 Other.computeAssignment(V.OtherVNI->id, *this); 1480 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 1481 1482 // Allow overlapping PHI values. Any real interference would show up in a 1483 // predecessor, the PHI itself can't introduce any conflicts. 1484 if (VNI->isPHIDef()) 1485 return CR_Replace; 1486 1487 // Check for simple erasable conflicts. 1488 if (DefMI->isImplicitDef()) 1489 return CR_Erase; 1490 1491 // Include the non-conflict where DefMI is a coalescable copy that kills 1492 // OtherVNI. We still want the copy erased and value numbers merged. 1493 if (CP.isCoalescable(DefMI)) { 1494 // Some of the lanes copied from OtherVNI may be undef, making them undef 1495 // here too. 1496 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 1497 return CR_Erase; 1498 } 1499 1500 // This may not be a real conflict if DefMI simply kills Other and defines 1501 // VNI. 1502 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 1503 return CR_Keep; 1504 1505 // Handle the case where VNI and OtherVNI can be proven to be identical: 1506 // 1507 // %other = COPY %ext 1508 // %this = COPY %ext <-- Erase this copy 1509 // 1510 if (DefMI->isFullCopy() && !CP.isPartial() && 1511 stripCopies(VNI) == stripCopies(V.OtherVNI)) 1512 return CR_Erase; 1513 1514 // If the lanes written by this instruction were all undef in OtherVNI, it is 1515 // still safe to join the live ranges. This can't be done with a simple value 1516 // mapping, though - OtherVNI will map to multiple values: 1517 // 1518 // 1 %dst:ssub0 = FOO <-- OtherVNI 1519 // 2 %src = BAR <-- VNI 1520 // 3 %dst:ssub1 = COPY %src<kill> <-- Eliminate this copy. 1521 // 4 BAZ %dst<kill> 1522 // 5 QUUX %src<kill> 1523 // 1524 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 1525 // handles this complex value mapping. 1526 if ((V.WriteLanes & OtherV.ValidLanes) == 0) 1527 return CR_Replace; 1528 1529 // If the other live range is killed by DefMI and the live ranges are still 1530 // overlapping, it must be because we're looking at an early clobber def: 1531 // 1532 // %dst<def,early-clobber> = ASM %src<kill> 1533 // 1534 // In this case, it is illegal to merge the two live ranges since the early 1535 // clobber def would clobber %src before it was read. 1536 if (OtherLRQ.isKill()) { 1537 // This case where the def doesn't overlap the kill is handled above. 1538 assert(VNI->def.isEarlyClobber() && 1539 "Only early clobber defs can overlap a kill"); 1540 return CR_Impossible; 1541 } 1542 1543 // VNI is clobbering live lanes in OtherVNI, but there is still the 1544 // possibility that no instructions actually read the clobbered lanes. 1545 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 1546 // Otherwise Other.LI wouldn't be live here. 1547 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0) 1548 return CR_Impossible; 1549 1550 // We need to verify that no instructions are reading the clobbered lanes. To 1551 // save compile time, we'll only check that locally. Don't allow the tainted 1552 // value to escape the basic block. 1553 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 1554 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 1555 return CR_Impossible; 1556 1557 // There are still some things that could go wrong besides clobbered lanes 1558 // being read, for example OtherVNI may be only partially redefined in MBB, 1559 // and some clobbered lanes could escape the block. Save this analysis for 1560 // resolveConflicts() when all values have been mapped. We need to know 1561 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 1562 // that now - the recursive analyzeValue() calls must go upwards in the 1563 // dominator tree. 1564 return CR_Unresolved; 1565 } 1566 1567 /// Compute the value assignment for ValNo in LI. 1568 /// This may be called recursively by analyzeValue(), but never for a ValNo on 1569 /// the stack. 1570 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 1571 Val &V = Vals[ValNo]; 1572 if (V.isAnalyzed()) { 1573 // Recursion should always move up the dominator tree, so ValNo is not 1574 // supposed to reappear before it has been assigned. 1575 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 1576 return; 1577 } 1578 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 1579 case CR_Erase: 1580 case CR_Merge: 1581 // Merge this ValNo into OtherVNI. 1582 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 1583 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 1584 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 1585 DEBUG(dbgs() << "\t\tmerge " << PrintReg(LI.reg) << ':' << ValNo << '@' 1586 << LI.getValNumInfo(ValNo)->def << " into " 1587 << PrintReg(Other.LI.reg) << ':' << V.OtherVNI->id << '@' 1588 << V.OtherVNI->def << " --> @" 1589 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 1590 break; 1591 case CR_Replace: 1592 case CR_Unresolved: 1593 // The other value is going to be pruned if this join is successful. 1594 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 1595 Other.Vals[V.OtherVNI->id].Pruned = true; 1596 // Fall through. 1597 default: 1598 // This value number needs to go in the final joined live range. 1599 Assignments[ValNo] = NewVNInfo.size(); 1600 NewVNInfo.push_back(LI.getValNumInfo(ValNo)); 1601 break; 1602 } 1603 } 1604 1605 bool JoinVals::mapValues(JoinVals &Other) { 1606 for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) { 1607 computeAssignment(i, Other); 1608 if (Vals[i].Resolution == CR_Impossible) { 1609 DEBUG(dbgs() << "\t\tinterference at " << PrintReg(LI.reg) << ':' << i 1610 << '@' << LI.getValNumInfo(i)->def << '\n'); 1611 return false; 1612 } 1613 } 1614 return true; 1615 } 1616 1617 /// Assuming ValNo is going to clobber some valid lanes in Other.LI, compute 1618 /// the extent of the tainted lanes in the block. 1619 /// 1620 /// Multiple values in Other.LI can be affected since partial redefinitions can 1621 /// preserve previously tainted lanes. 1622 /// 1623 /// 1 %dst = VLOAD <-- Define all lanes in %dst 1624 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 1625 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 1626 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 1627 /// 1628 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 1629 /// entry to TaintedVals. 1630 /// 1631 /// Returns false if the tainted lanes extend beyond the basic block. 1632 bool JoinVals:: 1633 taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other, 1634 SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) { 1635 VNInfo *VNI = LI.getValNumInfo(ValNo); 1636 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 1637 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 1638 1639 // Scan Other.LI from VNI.def to MBBEnd. 1640 LiveInterval::iterator OtherI = Other.LI.find(VNI->def); 1641 assert(OtherI != Other.LI.end() && "No conflict?"); 1642 do { 1643 // OtherI is pointing to a tainted value. Abort the join if the tainted 1644 // lanes escape the block. 1645 SlotIndex End = OtherI->end; 1646 if (End >= MBBEnd) { 1647 DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.LI.reg) << ':' 1648 << OtherI->valno->id << '@' << OtherI->start << '\n'); 1649 return false; 1650 } 1651 DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.LI.reg) << ':' 1652 << OtherI->valno->id << '@' << OtherI->start 1653 << " to " << End << '\n'); 1654 // A dead def is not a problem. 1655 if (End.isDead()) 1656 break; 1657 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 1658 1659 // Check for another def in the MBB. 1660 if (++OtherI == Other.LI.end() || OtherI->start >= MBBEnd) 1661 break; 1662 1663 // Lanes written by the new def are no longer tainted. 1664 const Val &OV = Other.Vals[OtherI->valno->id]; 1665 TaintedLanes &= ~OV.WriteLanes; 1666 if (!OV.RedefVNI) 1667 break; 1668 } while (TaintedLanes); 1669 return true; 1670 } 1671 1672 /// Return true if MI uses any of the given Lanes from Reg. 1673 /// This does not include partial redefinitions of Reg. 1674 bool JoinVals::usesLanes(MachineInstr *MI, unsigned Reg, unsigned SubIdx, 1675 unsigned Lanes) { 1676 if (MI->isDebugValue()) 1677 return false; 1678 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { 1679 if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg) 1680 continue; 1681 if (!MO->readsReg()) 1682 continue; 1683 if (Lanes & TRI->getSubRegIndexLaneMask( 1684 TRI->composeSubRegIndices(SubIdx, MO->getSubReg()))) 1685 return true; 1686 } 1687 return false; 1688 } 1689 1690 bool JoinVals::resolveConflicts(JoinVals &Other) { 1691 for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) { 1692 Val &V = Vals[i]; 1693 assert (V.Resolution != CR_Impossible && "Unresolvable conflict"); 1694 if (V.Resolution != CR_Unresolved) 1695 continue; 1696 DEBUG(dbgs() << "\t\tconflict at " << PrintReg(LI.reg) << ':' << i 1697 << '@' << LI.getValNumInfo(i)->def << '\n'); 1698 ++NumLaneConflicts; 1699 assert(V.OtherVNI && "Inconsistent conflict resolution."); 1700 VNInfo *VNI = LI.getValNumInfo(i); 1701 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 1702 1703 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 1704 // join, those lanes will be tainted with a wrong value. Get the extent of 1705 // the tainted lanes. 1706 unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 1707 SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent; 1708 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 1709 // Tainted lanes would extend beyond the basic block. 1710 return false; 1711 1712 assert(!TaintExtent.empty() && "There should be at least one conflict."); 1713 1714 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 1715 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 1716 MachineBasicBlock::iterator MI = MBB->begin(); 1717 if (!VNI->isPHIDef()) { 1718 MI = Indexes->getInstructionFromIndex(VNI->def); 1719 // No need to check the instruction defining VNI for reads. 1720 ++MI; 1721 } 1722 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 1723 "Interference ends on VNI->def. Should have been handled earlier"); 1724 MachineInstr *LastMI = 1725 Indexes->getInstructionFromIndex(TaintExtent.front().first); 1726 assert(LastMI && "Range must end at a proper instruction"); 1727 unsigned TaintNum = 0; 1728 for(;;) { 1729 assert(MI != MBB->end() && "Bad LastMI"); 1730 if (usesLanes(MI, Other.LI.reg, Other.SubIdx, TaintedLanes)) { 1731 DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 1732 return false; 1733 } 1734 // LastMI is the last instruction to use the current value. 1735 if (&*MI == LastMI) { 1736 if (++TaintNum == TaintExtent.size()) 1737 break; 1738 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 1739 assert(LastMI && "Range must end at a proper instruction"); 1740 TaintedLanes = TaintExtent[TaintNum].second; 1741 } 1742 ++MI; 1743 } 1744 1745 // The tainted lanes are unused. 1746 V.Resolution = CR_Replace; 1747 ++NumLaneResolves; 1748 } 1749 return true; 1750 } 1751 1752 // Determine if ValNo is a copy of a value number in LI or Other.LI that will 1753 // be pruned: 1754 // 1755 // %dst = COPY %src 1756 // %src = COPY %dst <-- This value to be pruned. 1757 // %dst = COPY %src <-- This value is a copy of a pruned value. 1758 // 1759 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 1760 Val &V = Vals[ValNo]; 1761 if (V.Pruned || V.PrunedComputed) 1762 return V.Pruned; 1763 1764 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 1765 return V.Pruned; 1766 1767 // Follow copies up the dominator tree and check if any intermediate value 1768 // has been pruned. 1769 V.PrunedComputed = true; 1770 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 1771 return V.Pruned; 1772 } 1773 1774 void JoinVals::pruneValues(JoinVals &Other, 1775 SmallVectorImpl<SlotIndex> &EndPoints) { 1776 for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) { 1777 SlotIndex Def = LI.getValNumInfo(i)->def; 1778 switch (Vals[i].Resolution) { 1779 case CR_Keep: 1780 break; 1781 case CR_Replace: { 1782 // This value takes precedence over the value in Other.LI. 1783 LIS->pruneValue(&Other.LI, Def, &EndPoints); 1784 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 1785 // instructions are only inserted to provide a live-out value for PHI 1786 // predecessors, so the instruction should simply go away once its value 1787 // has been replaced. 1788 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 1789 bool EraseImpDef = OtherV.IsImplicitDef && OtherV.Resolution == CR_Keep; 1790 if (!Def.isBlock()) { 1791 // Remove <def,read-undef> flags. This def is now a partial redef. 1792 // Also remove <def,dead> flags since the joined live range will 1793 // continue past this instruction. 1794 for (MIOperands MO(Indexes->getInstructionFromIndex(Def)); 1795 MO.isValid(); ++MO) 1796 if (MO->isReg() && MO->isDef() && MO->getReg() == LI.reg) { 1797 MO->setIsUndef(EraseImpDef); 1798 MO->setIsDead(false); 1799 } 1800 // This value will reach instructions below, but we need to make sure 1801 // the live range also reaches the instruction at Def. 1802 if (!EraseImpDef) 1803 EndPoints.push_back(Def); 1804 } 1805 DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.LI.reg) << " at " << Def 1806 << ": " << Other.LI << '\n'); 1807 break; 1808 } 1809 case CR_Erase: 1810 case CR_Merge: 1811 if (isPrunedValue(i, Other)) { 1812 // This value is ultimately a copy of a pruned value in LI or Other.LI. 1813 // We can no longer trust the value mapping computed by 1814 // computeAssignment(), the value that was originally copied could have 1815 // been replaced. 1816 LIS->pruneValue(&LI, Def, &EndPoints); 1817 DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(LI.reg) << " at " 1818 << Def << ": " << LI << '\n'); 1819 } 1820 break; 1821 case CR_Unresolved: 1822 case CR_Impossible: 1823 llvm_unreachable("Unresolved conflicts"); 1824 } 1825 } 1826 } 1827 1828 void JoinVals::eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs, 1829 SmallVectorImpl<unsigned> &ShrinkRegs) { 1830 for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) { 1831 // Get the def location before markUnused() below invalidates it. 1832 SlotIndex Def = LI.getValNumInfo(i)->def; 1833 switch (Vals[i].Resolution) { 1834 case CR_Keep: 1835 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 1836 // longer. The IMPLICIT_DEF instructions are only inserted by 1837 // PHIElimination to guarantee that all PHI predecessors have a value. 1838 if (!Vals[i].IsImplicitDef || !Vals[i].Pruned) 1839 break; 1840 // Remove value number i from LI. Note that this VNInfo is still present 1841 // in NewVNInfo, so it will appear as an unused value number in the final 1842 // joined interval. 1843 LI.getValNumInfo(i)->markUnused(); 1844 LI.removeValNo(LI.getValNumInfo(i)); 1845 DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LI << '\n'); 1846 // FALL THROUGH. 1847 1848 case CR_Erase: { 1849 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 1850 assert(MI && "No instruction to erase"); 1851 if (MI->isCopy()) { 1852 unsigned Reg = MI->getOperand(1).getReg(); 1853 if (TargetRegisterInfo::isVirtualRegister(Reg) && 1854 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 1855 ShrinkRegs.push_back(Reg); 1856 } 1857 ErasedInstrs.insert(MI); 1858 DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 1859 LIS->RemoveMachineInstrFromMaps(MI); 1860 MI->eraseFromParent(); 1861 break; 1862 } 1863 default: 1864 break; 1865 } 1866 } 1867 } 1868 1869 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 1870 SmallVector<VNInfo*, 16> NewVNInfo; 1871 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 1872 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 1873 JoinVals RHSVals(RHS, CP.getSrcIdx(), NewVNInfo, CP, LIS, TRI); 1874 JoinVals LHSVals(LHS, CP.getDstIdx(), NewVNInfo, CP, LIS, TRI); 1875 1876 DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS 1877 << "\n\t\tLHS = " << PrintReg(CP.getDstReg()) << ' ' << LHS 1878 << '\n'); 1879 1880 // First compute NewVNInfo and the simple value mappings. 1881 // Detect impossible conflicts early. 1882 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 1883 return false; 1884 1885 // Some conflicts can only be resolved after all values have been mapped. 1886 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 1887 return false; 1888 1889 // All clear, the live ranges can be merged. 1890 1891 // The merging algorithm in LiveInterval::join() can't handle conflicting 1892 // value mappings, so we need to remove any live ranges that overlap a 1893 // CR_Replace resolution. Collect a set of end points that can be used to 1894 // restore the live range after joining. 1895 SmallVector<SlotIndex, 8> EndPoints; 1896 LHSVals.pruneValues(RHSVals, EndPoints); 1897 RHSVals.pruneValues(LHSVals, EndPoints); 1898 1899 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 1900 // registers to require trimming. 1901 SmallVector<unsigned, 8> ShrinkRegs; 1902 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 1903 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 1904 while (!ShrinkRegs.empty()) 1905 LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 1906 1907 // Join RHS into LHS. 1908 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo, 1909 MRI); 1910 1911 // Kill flags are going to be wrong if the live ranges were overlapping. 1912 // Eventually, we should simply clear all kill flags when computing live 1913 // ranges. They are reinserted after register allocation. 1914 MRI->clearKillFlags(LHS.reg); 1915 MRI->clearKillFlags(RHS.reg); 1916 1917 if (EndPoints.empty()) 1918 return true; 1919 1920 // Recompute the parts of the live range we had to remove because of 1921 // CR_Replace conflicts. 1922 DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size() 1923 << " points: " << LHS << '\n'); 1924 LIS->extendToIndices(&LHS, EndPoints); 1925 return true; 1926 } 1927 1928 /// joinIntervals - Attempt to join these two intervals. On failure, this 1929 /// returns false. 1930 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 1931 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 1932 } 1933 1934 namespace { 1935 // Information concerning MBB coalescing priority. 1936 struct MBBPriorityInfo { 1937 MachineBasicBlock *MBB; 1938 unsigned Depth; 1939 bool IsSplit; 1940 1941 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 1942 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 1943 }; 1944 } 1945 1946 // C-style comparator that sorts first based on the loop depth of the basic 1947 // block (the unsigned), and then on the MBB number. 1948 // 1949 // EnableGlobalCopies assumes that the primary sort key is loop depth. 1950 static int compareMBBPriority(const void *L, const void *R) { 1951 const MBBPriorityInfo *LHS = static_cast<const MBBPriorityInfo*>(L); 1952 const MBBPriorityInfo *RHS = static_cast<const MBBPriorityInfo*>(R); 1953 // Deeper loops first 1954 if (LHS->Depth != RHS->Depth) 1955 return LHS->Depth > RHS->Depth ? -1 : 1; 1956 1957 // Try to unsplit critical edges next. 1958 if (LHS->IsSplit != RHS->IsSplit) 1959 return LHS->IsSplit ? -1 : 1; 1960 1961 // Prefer blocks that are more connected in the CFG. This takes care of 1962 // the most difficult copies first while intervals are short. 1963 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 1964 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 1965 if (cl != cr) 1966 return cl > cr ? -1 : 1; 1967 1968 // As a last resort, sort by block number. 1969 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 1970 } 1971 1972 /// \returns true if the given copy uses or defines a local live range. 1973 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 1974 if (!Copy->isCopy()) 1975 return false; 1976 1977 unsigned SrcReg = Copy->getOperand(1).getReg(); 1978 unsigned DstReg = Copy->getOperand(0).getReg(); 1979 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 1980 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 1981 return false; 1982 1983 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 1984 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 1985 } 1986 1987 // Try joining WorkList copies starting from index From. 1988 // Null out any successful joins. 1989 bool RegisterCoalescer:: 1990 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 1991 bool Progress = false; 1992 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 1993 if (!CurrList[i]) 1994 continue; 1995 // Skip instruction pointers that have already been erased, for example by 1996 // dead code elimination. 1997 if (ErasedInstrs.erase(CurrList[i])) { 1998 CurrList[i] = 0; 1999 continue; 2000 } 2001 bool Again = false; 2002 bool Success = joinCopy(CurrList[i], Again); 2003 Progress |= Success; 2004 if (Success || !Again) 2005 CurrList[i] = 0; 2006 } 2007 return Progress; 2008 } 2009 2010 void 2011 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 2012 DEBUG(dbgs() << MBB->getName() << ":\n"); 2013 2014 // Collect all copy-like instructions in MBB. Don't start coalescing anything 2015 // yet, it might invalidate the iterator. 2016 const unsigned PrevSize = WorkList.size(); 2017 if (JoinGlobalCopies) { 2018 // Coalesce copies bottom-up to coalesce local defs before local uses. They 2019 // are not inherently easier to resolve, but slightly preferable until we 2020 // have local live range splitting. In particular this is required by 2021 // cmp+jmp macro fusion. 2022 for (MachineBasicBlock::reverse_iterator 2023 MII = MBB->rbegin(), E = MBB->rend(); MII != E; ++MII) { 2024 if (!MII->isCopyLike()) 2025 continue; 2026 if (isLocalCopy(&(*MII), LIS)) 2027 LocalWorkList.push_back(&(*MII)); 2028 else 2029 WorkList.push_back(&(*MII)); 2030 } 2031 } 2032 else { 2033 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 2034 MII != E; ++MII) 2035 if (MII->isCopyLike()) 2036 WorkList.push_back(MII); 2037 } 2038 // Try coalescing the collected copies immediately, and remove the nulls. 2039 // This prevents the WorkList from getting too large since most copies are 2040 // joinable on the first attempt. 2041 MutableArrayRef<MachineInstr*> 2042 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 2043 if (copyCoalesceWorkList(CurrList)) 2044 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 2045 (MachineInstr*)0), WorkList.end()); 2046 } 2047 2048 void RegisterCoalescer::coalesceLocals() { 2049 copyCoalesceWorkList(LocalWorkList); 2050 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 2051 if (LocalWorkList[j]) 2052 WorkList.push_back(LocalWorkList[j]); 2053 } 2054 LocalWorkList.clear(); 2055 } 2056 2057 void RegisterCoalescer::joinAllIntervals() { 2058 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 2059 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 2060 2061 std::vector<MBBPriorityInfo> MBBs; 2062 MBBs.reserve(MF->size()); 2063 for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){ 2064 MachineBasicBlock *MBB = I; 2065 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 2066 JoinSplitEdges && isSplitEdge(MBB))); 2067 } 2068 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 2069 2070 // Coalesce intervals in MBB priority order. 2071 unsigned CurrDepth = UINT_MAX; 2072 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 2073 // Try coalescing the collected local copies for deeper loops. 2074 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 2075 coalesceLocals(); 2076 CurrDepth = MBBs[i].Depth; 2077 } 2078 copyCoalesceInMBB(MBBs[i].MBB); 2079 } 2080 coalesceLocals(); 2081 2082 // Joining intervals can allow other intervals to be joined. Iteratively join 2083 // until we make no progress. 2084 while (copyCoalesceWorkList(WorkList)) 2085 /* empty */ ; 2086 } 2087 2088 void RegisterCoalescer::releaseMemory() { 2089 ErasedInstrs.clear(); 2090 WorkList.clear(); 2091 DeadDefs.clear(); 2092 InflateRegs.clear(); 2093 } 2094 2095 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 2096 MF = &fn; 2097 MRI = &fn.getRegInfo(); 2098 TM = &fn.getTarget(); 2099 TRI = TM->getRegisterInfo(); 2100 TII = TM->getInstrInfo(); 2101 LIS = &getAnalysis<LiveIntervals>(); 2102 LDV = &getAnalysis<LiveDebugVariables>(); 2103 AA = &getAnalysis<AliasAnalysis>(); 2104 Loops = &getAnalysis<MachineLoopInfo>(); 2105 2106 const TargetSubtargetInfo &ST = TM->getSubtarget<TargetSubtargetInfo>(); 2107 if (EnableGlobalCopies == cl::BOU_UNSET) 2108 JoinGlobalCopies = ST.enableMachineScheduler(); 2109 else 2110 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 2111 2112 // The MachineScheduler does not currently require JoinSplitEdges. This will 2113 // either be enabled unconditionally or replaced by a more general live range 2114 // splitting optimization. 2115 JoinSplitEdges = EnableJoinSplits; 2116 2117 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 2118 << "********** Function: " << MF->getName() << '\n'); 2119 2120 if (VerifyCoalescing) 2121 MF->verify(this, "Before register coalescing"); 2122 2123 RegClassInfo.runOnMachineFunction(fn); 2124 2125 // Join (coalesce) intervals if requested. 2126 if (EnableJoining) 2127 joinAllIntervals(); 2128 2129 // After deleting a lot of copies, register classes may be less constrained. 2130 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 2131 // DPR inflation. 2132 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 2133 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 2134 InflateRegs.end()); 2135 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n"); 2136 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 2137 unsigned Reg = InflateRegs[i]; 2138 if (MRI->reg_nodbg_empty(Reg)) 2139 continue; 2140 if (MRI->recomputeRegClass(Reg, *TM)) { 2141 DEBUG(dbgs() << PrintReg(Reg) << " inflated to " 2142 << MRI->getRegClass(Reg)->getName() << '\n'); 2143 ++NumInflated; 2144 } 2145 } 2146 2147 DEBUG(dump()); 2148 DEBUG(LDV->dump()); 2149 if (VerifyCoalescing) 2150 MF->verify(this, "After register coalescing"); 2151 return true; 2152 } 2153 2154 /// print - Implement the dump method. 2155 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 2156 LIS->print(O, m); 2157 } 2158