1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic RegisterCoalescer interface which 11 // is used as the common interface used by all clients and 12 // implementations of register coalescing. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "RegisterCoalescer.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/LiveInterval.h" 26 #include "llvm/CodeGen/LiveIntervals.h" 27 #include "llvm/CodeGen/LiveRangeEdit.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/RegisterClassInfo.h" 38 #include "llvm/CodeGen/SlotIndexes.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetOpcodes.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSubtargetInfo.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/MC/LaneBitmask.h" 45 #include "llvm/MC/MCInstrDesc.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <iterator> 56 #include <limits> 57 #include <tuple> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "regalloc" 64 65 STATISTIC(numJoins , "Number of interval joins performed"); 66 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 67 STATISTIC(numCommutes , "Number of instruction commuting performed"); 68 STATISTIC(numExtends , "Number of copies extended"); 69 STATISTIC(NumReMats , "Number of instructions re-materialized"); 70 STATISTIC(NumInflated , "Number of register classes inflated"); 71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 72 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 73 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called"); 74 75 static cl::opt<bool> EnableJoining("join-liveintervals", 76 cl::desc("Coalesce copies (default=true)"), 77 cl::init(true), cl::Hidden); 78 79 static cl::opt<bool> UseTerminalRule("terminal-rule", 80 cl::desc("Apply the terminal rule"), 81 cl::init(false), cl::Hidden); 82 83 /// Temporary flag to test critical edge unsplitting. 84 static cl::opt<bool> 85 EnableJoinSplits("join-splitedges", 86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 87 88 /// Temporary flag to test global copy optimization. 89 static cl::opt<cl::boolOrDefault> 90 EnableGlobalCopies("join-globalcopies", 91 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 92 cl::init(cl::BOU_UNSET), cl::Hidden); 93 94 static cl::opt<bool> 95 VerifyCoalescing("verify-coalescing", 96 cl::desc("Verify machine instrs before and after register coalescing"), 97 cl::Hidden); 98 99 static cl::opt<unsigned> LateRematUpdateThreshold( 100 "late-remat-update-threshold", cl::Hidden, 101 cl::desc("During rematerialization for a copy, if the def instruction has " 102 "many other copy uses to be rematerialized, delay the multiple " 103 "separate live interval update work and do them all at once after " 104 "all those rematerialization are done. It will save a lot of " 105 "repeated work. "), 106 cl::init(100)); 107 108 namespace { 109 110 class RegisterCoalescer : public MachineFunctionPass, 111 private LiveRangeEdit::Delegate { 112 MachineFunction* MF; 113 MachineRegisterInfo* MRI; 114 const TargetRegisterInfo* TRI; 115 const TargetInstrInfo* TII; 116 LiveIntervals *LIS; 117 const MachineLoopInfo* Loops; 118 AliasAnalysis *AA; 119 RegisterClassInfo RegClassInfo; 120 121 /// A LaneMask to remember on which subregister live ranges we need to call 122 /// shrinkToUses() later. 123 LaneBitmask ShrinkMask; 124 125 /// True if the main range of the currently coalesced intervals should be 126 /// checked for smaller live intervals. 127 bool ShrinkMainRange; 128 129 /// True if the coalescer should aggressively coalesce global copies 130 /// in favor of keeping local copies. 131 bool JoinGlobalCopies; 132 133 /// True if the coalescer should aggressively coalesce fall-thru 134 /// blocks exclusively containing copies. 135 bool JoinSplitEdges; 136 137 /// Copy instructions yet to be coalesced. 138 SmallVector<MachineInstr*, 8> WorkList; 139 SmallVector<MachineInstr*, 8> LocalWorkList; 140 141 /// Set of instruction pointers that have been erased, and 142 /// that may be present in WorkList. 143 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 144 145 /// Dead instructions that are about to be deleted. 146 SmallVector<MachineInstr*, 8> DeadDefs; 147 148 /// Virtual registers to be considered for register class inflation. 149 SmallVector<unsigned, 8> InflateRegs; 150 151 /// The collection of live intervals which should have been updated 152 /// immediately after rematerialiation but delayed until 153 /// lateLiveIntervalUpdate is called. 154 DenseSet<unsigned> ToBeUpdated; 155 156 /// Recursively eliminate dead defs in DeadDefs. 157 void eliminateDeadDefs(); 158 159 /// LiveRangeEdit callback for eliminateDeadDefs(). 160 void LRE_WillEraseInstruction(MachineInstr *MI) override; 161 162 /// Coalesce the LocalWorkList. 163 void coalesceLocals(); 164 165 /// Join compatible live intervals 166 void joinAllIntervals(); 167 168 /// Coalesce copies in the specified MBB, putting 169 /// copies that cannot yet be coalesced into WorkList. 170 void copyCoalesceInMBB(MachineBasicBlock *MBB); 171 172 /// Tries to coalesce all copies in CurrList. Returns true if any progress 173 /// was made. 174 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 175 176 /// If one def has many copy like uses, and those copy uses are all 177 /// rematerialized, the live interval update needed for those 178 /// rematerializations will be delayed and done all at once instead 179 /// of being done multiple times. This is to save compile cost becuase 180 /// live interval update is costly. 181 void lateLiveIntervalUpdate(); 182 183 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 184 /// src/dst of the copy instruction CopyMI. This returns true if the copy 185 /// was successfully coalesced away. If it is not currently possible to 186 /// coalesce this interval, but it may be possible if other things get 187 /// coalesced, then it returns true by reference in 'Again'. 188 bool joinCopy(MachineInstr *CopyMI, bool &Again); 189 190 /// Attempt to join these two intervals. On failure, this 191 /// returns false. The output "SrcInt" will not have been modified, so we 192 /// can use this information below to update aliases. 193 bool joinIntervals(CoalescerPair &CP); 194 195 /// Attempt joining two virtual registers. Return true on success. 196 bool joinVirtRegs(CoalescerPair &CP); 197 198 /// Attempt joining with a reserved physreg. 199 bool joinReservedPhysReg(CoalescerPair &CP); 200 201 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 202 /// Subranges in @p LI which only partially interfere with the desired 203 /// LaneMask are split as necessary. @p LaneMask are the lanes that 204 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 205 /// lanemasks already adjusted to the coalesced register. 206 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 207 LaneBitmask LaneMask, CoalescerPair &CP); 208 209 /// Join the liveranges of two subregisters. Joins @p RRange into 210 /// @p LRange, @p RRange may be invalid afterwards. 211 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 212 LaneBitmask LaneMask, const CoalescerPair &CP); 213 214 /// We found a non-trivially-coalescable copy. If the source value number is 215 /// defined by a copy from the destination reg see if we can merge these two 216 /// destination reg valno# into a single value number, eliminating a copy. 217 /// This returns true if an interval was modified. 218 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 219 220 /// Return true if there are definitions of IntB 221 /// other than BValNo val# that can reach uses of AValno val# of IntA. 222 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 223 VNInfo *AValNo, VNInfo *BValNo); 224 225 /// We found a non-trivially-coalescable copy. 226 /// If the source value number is defined by a commutable instruction and 227 /// its other operand is coalesced to the copy dest register, see if we 228 /// can transform the copy into a noop by commuting the definition. 229 /// This returns a pair of two flags: 230 /// - the first element is true if an interval was modified, 231 /// - the second element is true if the destination interval needs 232 /// to be shrunk after deleting the copy. 233 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP, 234 MachineInstr *CopyMI); 235 236 /// We found a copy which can be moved to its less frequent predecessor. 237 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 238 239 /// If the source of a copy is defined by a 240 /// trivial computation, replace the copy by rematerialize the definition. 241 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 242 bool &IsDefCopy); 243 244 /// Return true if a copy involving a physreg should be joined. 245 bool canJoinPhys(const CoalescerPair &CP); 246 247 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 248 /// number if it is not zero. If DstReg is a physical register and the 249 /// existing subregister number of the def / use being updated is not zero, 250 /// make sure to set it to the correct physical subregister. 251 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 252 253 /// If the given machine operand reads only undefined lanes add an undef 254 /// flag. 255 /// This can happen when undef uses were previously concealed by a copy 256 /// which we coalesced. Example: 257 /// %0:sub0<def,read-undef> = ... 258 /// %1 = COPY %0 <-- Coalescing COPY reveals undef 259 /// = use %1:sub1 <-- hidden undef use 260 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 261 MachineOperand &MO, unsigned SubRegIdx); 262 263 /// Handle copies of undef values. If the undef value is an incoming 264 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF. 265 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise, 266 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point). 267 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI); 268 269 /// Check whether or not we should apply the terminal rule on the 270 /// destination (Dst) of \p Copy. 271 /// When the terminal rule applies, Copy is not profitable to 272 /// coalesce. 273 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 274 /// at least one interference (Dst, Dst2). If Dst is terminal, the 275 /// terminal rule consists in checking that at least one of 276 /// interfering node, say Dst2, has an affinity of equal or greater 277 /// weight with Src. 278 /// In that case, Dst2 and Dst will not be able to be both coalesced 279 /// with Src. Since Dst2 exposes more coalescing opportunities than 280 /// Dst, we can drop \p Copy. 281 bool applyTerminalRule(const MachineInstr &Copy) const; 282 283 /// Wrapper method for \see LiveIntervals::shrinkToUses. 284 /// This method does the proper fixing of the live-ranges when the afore 285 /// mentioned method returns true. 286 void shrinkToUses(LiveInterval *LI, 287 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 288 NumShrinkToUses++; 289 if (LIS->shrinkToUses(LI, Dead)) { 290 /// Check whether or not \p LI is composed by multiple connected 291 /// components and if that is the case, fix that. 292 SmallVector<LiveInterval*, 8> SplitLIs; 293 LIS->splitSeparateComponents(*LI, SplitLIs); 294 } 295 } 296 297 /// Wrapper Method to do all the necessary work when an Instruction is 298 /// deleted. 299 /// Optimizations should use this to make sure that deleted instructions 300 /// are always accounted for. 301 void deleteInstr(MachineInstr* MI) { 302 ErasedInstrs.insert(MI); 303 LIS->RemoveMachineInstrFromMaps(*MI); 304 MI->eraseFromParent(); 305 } 306 307 public: 308 static char ID; ///< Class identification, replacement for typeinfo 309 310 RegisterCoalescer() : MachineFunctionPass(ID) { 311 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 312 } 313 314 void getAnalysisUsage(AnalysisUsage &AU) const override; 315 316 void releaseMemory() override; 317 318 /// This is the pass entry point. 319 bool runOnMachineFunction(MachineFunction&) override; 320 321 /// Implement the dump method. 322 void print(raw_ostream &O, const Module* = nullptr) const override; 323 }; 324 325 } // end anonymous namespace 326 327 char RegisterCoalescer::ID = 0; 328 329 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 330 331 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 332 "Simple Register Coalescing", false, false) 333 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 334 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 335 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 336 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 337 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 338 "Simple Register Coalescing", false, false) 339 340 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 341 unsigned &Src, unsigned &Dst, 342 unsigned &SrcSub, unsigned &DstSub) { 343 if (MI->isCopy()) { 344 Dst = MI->getOperand(0).getReg(); 345 DstSub = MI->getOperand(0).getSubReg(); 346 Src = MI->getOperand(1).getReg(); 347 SrcSub = MI->getOperand(1).getSubReg(); 348 } else if (MI->isSubregToReg()) { 349 Dst = MI->getOperand(0).getReg(); 350 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 351 MI->getOperand(3).getImm()); 352 Src = MI->getOperand(2).getReg(); 353 SrcSub = MI->getOperand(2).getSubReg(); 354 } else 355 return false; 356 return true; 357 } 358 359 /// Return true if this block should be vacated by the coalescer to eliminate 360 /// branches. The important cases to handle in the coalescer are critical edges 361 /// split during phi elimination which contain only copies. Simple blocks that 362 /// contain non-branches should also be vacated, but this can be handled by an 363 /// earlier pass similar to early if-conversion. 364 static bool isSplitEdge(const MachineBasicBlock *MBB) { 365 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 366 return false; 367 368 for (const auto &MI : *MBB) { 369 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 370 return false; 371 } 372 return true; 373 } 374 375 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 376 SrcReg = DstReg = 0; 377 SrcIdx = DstIdx = 0; 378 NewRC = nullptr; 379 Flipped = CrossClass = false; 380 381 unsigned Src, Dst, SrcSub, DstSub; 382 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 383 return false; 384 Partial = SrcSub || DstSub; 385 386 // If one register is a physreg, it must be Dst. 387 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 388 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 389 return false; 390 std::swap(Src, Dst); 391 std::swap(SrcSub, DstSub); 392 Flipped = true; 393 } 394 395 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 396 397 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 398 // Eliminate DstSub on a physreg. 399 if (DstSub) { 400 Dst = TRI.getSubReg(Dst, DstSub); 401 if (!Dst) return false; 402 DstSub = 0; 403 } 404 405 // Eliminate SrcSub by picking a corresponding Dst superregister. 406 if (SrcSub) { 407 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 408 if (!Dst) return false; 409 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 410 return false; 411 } 412 } else { 413 // Both registers are virtual. 414 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 415 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 416 417 // Both registers have subreg indices. 418 if (SrcSub && DstSub) { 419 // Copies between different sub-registers are never coalescable. 420 if (Src == Dst && SrcSub != DstSub) 421 return false; 422 423 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 424 SrcIdx, DstIdx); 425 if (!NewRC) 426 return false; 427 } else if (DstSub) { 428 // SrcReg will be merged with a sub-register of DstReg. 429 SrcIdx = DstSub; 430 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 431 } else if (SrcSub) { 432 // DstReg will be merged with a sub-register of SrcReg. 433 DstIdx = SrcSub; 434 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 435 } else { 436 // This is a straight copy without sub-registers. 437 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 438 } 439 440 // The combined constraint may be impossible to satisfy. 441 if (!NewRC) 442 return false; 443 444 // Prefer SrcReg to be a sub-register of DstReg. 445 // FIXME: Coalescer should support subregs symmetrically. 446 if (DstIdx && !SrcIdx) { 447 std::swap(Src, Dst); 448 std::swap(SrcIdx, DstIdx); 449 Flipped = !Flipped; 450 } 451 452 CrossClass = NewRC != DstRC || NewRC != SrcRC; 453 } 454 // Check our invariants 455 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 456 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 457 "Cannot have a physical SubIdx"); 458 SrcReg = Src; 459 DstReg = Dst; 460 return true; 461 } 462 463 bool CoalescerPair::flip() { 464 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 465 return false; 466 std::swap(SrcReg, DstReg); 467 std::swap(SrcIdx, DstIdx); 468 Flipped = !Flipped; 469 return true; 470 } 471 472 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 473 if (!MI) 474 return false; 475 unsigned Src, Dst, SrcSub, DstSub; 476 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 477 return false; 478 479 // Find the virtual register that is SrcReg. 480 if (Dst == SrcReg) { 481 std::swap(Src, Dst); 482 std::swap(SrcSub, DstSub); 483 } else if (Src != SrcReg) { 484 return false; 485 } 486 487 // Now check that Dst matches DstReg. 488 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 489 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 490 return false; 491 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 492 // DstSub could be set for a physreg from INSERT_SUBREG. 493 if (DstSub) 494 Dst = TRI.getSubReg(Dst, DstSub); 495 // Full copy of Src. 496 if (!SrcSub) 497 return DstReg == Dst; 498 // This is a partial register copy. Check that the parts match. 499 return TRI.getSubReg(DstReg, SrcSub) == Dst; 500 } else { 501 // DstReg is virtual. 502 if (DstReg != Dst) 503 return false; 504 // Registers match, do the subregisters line up? 505 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 506 TRI.composeSubRegIndices(DstIdx, DstSub); 507 } 508 } 509 510 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 511 AU.setPreservesCFG(); 512 AU.addRequired<AAResultsWrapperPass>(); 513 AU.addRequired<LiveIntervals>(); 514 AU.addPreserved<LiveIntervals>(); 515 AU.addPreserved<SlotIndexes>(); 516 AU.addRequired<MachineLoopInfo>(); 517 AU.addPreserved<MachineLoopInfo>(); 518 AU.addPreservedID(MachineDominatorsID); 519 MachineFunctionPass::getAnalysisUsage(AU); 520 } 521 522 void RegisterCoalescer::eliminateDeadDefs() { 523 SmallVector<unsigned, 8> NewRegs; 524 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 525 nullptr, this).eliminateDeadDefs(DeadDefs); 526 } 527 528 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 529 // MI may be in WorkList. Make sure we don't visit it. 530 ErasedInstrs.insert(MI); 531 } 532 533 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 534 MachineInstr *CopyMI) { 535 assert(!CP.isPartial() && "This doesn't work for partial copies."); 536 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 537 538 LiveInterval &IntA = 539 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 540 LiveInterval &IntB = 541 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 542 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 543 544 // We have a non-trivially-coalescable copy with IntA being the source and 545 // IntB being the dest, thus this defines a value number in IntB. If the 546 // source value number (in IntA) is defined by a copy from B, see if we can 547 // merge these two pieces of B into a single value number, eliminating a copy. 548 // For example: 549 // 550 // A3 = B0 551 // ... 552 // B1 = A3 <- this copy 553 // 554 // In this case, B0 can be extended to where the B1 copy lives, allowing the 555 // B1 value number to be replaced with B0 (which simplifies the B 556 // liveinterval). 557 558 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 559 // the example above. 560 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 561 if (BS == IntB.end()) return false; 562 VNInfo *BValNo = BS->valno; 563 564 // Get the location that B is defined at. Two options: either this value has 565 // an unknown definition point or it is defined at CopyIdx. If unknown, we 566 // can't process it. 567 if (BValNo->def != CopyIdx) return false; 568 569 // AValNo is the value number in A that defines the copy, A3 in the example. 570 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 571 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 572 // The live segment might not exist after fun with physreg coalescing. 573 if (AS == IntA.end()) return false; 574 VNInfo *AValNo = AS->valno; 575 576 // If AValNo is defined as a copy from IntB, we can potentially process this. 577 // Get the instruction that defines this value number. 578 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 579 // Don't allow any partial copies, even if isCoalescable() allows them. 580 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 581 return false; 582 583 // Get the Segment in IntB that this value number starts with. 584 LiveInterval::iterator ValS = 585 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 586 if (ValS == IntB.end()) 587 return false; 588 589 // Make sure that the end of the live segment is inside the same block as 590 // CopyMI. 591 MachineInstr *ValSEndInst = 592 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 593 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 594 return false; 595 596 // Okay, we now know that ValS ends in the same block that the CopyMI 597 // live-range starts. If there are no intervening live segments between them 598 // in IntB, we can merge them. 599 if (ValS+1 != BS) return false; 600 601 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI)); 602 603 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 604 // We are about to delete CopyMI, so need to remove it as the 'instruction 605 // that defines this value #'. Update the valnum with the new defining 606 // instruction #. 607 BValNo->def = FillerStart; 608 609 // Okay, we can merge them. We need to insert a new liverange: 610 // [ValS.end, BS.begin) of either value number, then we merge the 611 // two value numbers. 612 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 613 614 // Okay, merge "B1" into the same value number as "B0". 615 if (BValNo != ValS->valno) 616 IntB.MergeValueNumberInto(BValNo, ValS->valno); 617 618 // Do the same for the subregister segments. 619 for (LiveInterval::SubRange &S : IntB.subranges()) { 620 // Check for SubRange Segments of the form [1234r,1234d:0) which can be 621 // removed to prevent creating bogus SubRange Segments. 622 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx); 623 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) { 624 S.removeSegment(*SS, true); 625 continue; 626 } 627 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 628 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 629 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 630 if (SubBValNo != SubValSNo) 631 S.MergeValueNumberInto(SubBValNo, SubValSNo); 632 } 633 634 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n'); 635 636 // If the source instruction was killing the source register before the 637 // merge, unset the isKill marker given the live range has been extended. 638 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 639 if (UIdx != -1) { 640 ValSEndInst->getOperand(UIdx).setIsKill(false); 641 } 642 643 // Rewrite the copy. 644 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 645 // If the copy instruction was killing the destination register or any 646 // subrange before the merge trim the live range. 647 bool RecomputeLiveRange = AS->end == CopyIdx; 648 if (!RecomputeLiveRange) { 649 for (LiveInterval::SubRange &S : IntA.subranges()) { 650 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx); 651 if (SS != S.end() && SS->end == CopyIdx) { 652 RecomputeLiveRange = true; 653 break; 654 } 655 } 656 } 657 if (RecomputeLiveRange) 658 shrinkToUses(&IntA); 659 660 ++numExtends; 661 return true; 662 } 663 664 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 665 LiveInterval &IntB, 666 VNInfo *AValNo, 667 VNInfo *BValNo) { 668 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 669 // the PHI values. 670 if (LIS->hasPHIKill(IntA, AValNo)) 671 return true; 672 673 for (LiveRange::Segment &ASeg : IntA.segments) { 674 if (ASeg.valno != AValNo) continue; 675 LiveInterval::iterator BI = 676 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start); 677 if (BI != IntB.begin()) 678 --BI; 679 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 680 if (BI->valno == BValNo) 681 continue; 682 if (BI->start <= ASeg.start && BI->end > ASeg.start) 683 return true; 684 if (BI->start > ASeg.start && BI->start < ASeg.end) 685 return true; 686 } 687 } 688 return false; 689 } 690 691 /// Copy segments with value number @p SrcValNo from liverange @p Src to live 692 /// range @Dst and use value number @p DstValNo there. 693 static std::pair<bool,bool> 694 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src, 695 const VNInfo *SrcValNo) { 696 bool Changed = false; 697 bool MergedWithDead = false; 698 for (const LiveRange::Segment &S : Src.segments) { 699 if (S.valno != SrcValNo) 700 continue; 701 // This is adding a segment from Src that ends in a copy that is about 702 // to be removed. This segment is going to be merged with a pre-existing 703 // segment in Dst. This works, except in cases when the corresponding 704 // segment in Dst is dead. For example: adding [192r,208r:1) from Src 705 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst. 706 // Recognized such cases, so that the segments can be shrunk. 707 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo); 708 LiveRange::Segment &Merged = *Dst.addSegment(Added); 709 if (Merged.end.isDead()) 710 MergedWithDead = true; 711 Changed = true; 712 } 713 return std::make_pair(Changed, MergedWithDead); 714 } 715 716 std::pair<bool,bool> 717 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 718 MachineInstr *CopyMI) { 719 assert(!CP.isPhys()); 720 721 LiveInterval &IntA = 722 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 723 LiveInterval &IntB = 724 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 725 726 // We found a non-trivially-coalescable copy with IntA being the source and 727 // IntB being the dest, thus this defines a value number in IntB. If the 728 // source value number (in IntA) is defined by a commutable instruction and 729 // its other operand is coalesced to the copy dest register, see if we can 730 // transform the copy into a noop by commuting the definition. For example, 731 // 732 // A3 = op A2 killed B0 733 // ... 734 // B1 = A3 <- this copy 735 // ... 736 // = op A3 <- more uses 737 // 738 // ==> 739 // 740 // B2 = op B0 killed A2 741 // ... 742 // B1 = B2 <- now an identity copy 743 // ... 744 // = op B2 <- more uses 745 746 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 747 // the example above. 748 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 749 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 750 assert(BValNo != nullptr && BValNo->def == CopyIdx); 751 752 // AValNo is the value number in A that defines the copy, A3 in the example. 753 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 754 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 755 if (AValNo->isPHIDef()) 756 return { false, false }; 757 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 758 if (!DefMI) 759 return { false, false }; 760 if (!DefMI->isCommutable()) 761 return { false, false }; 762 // If DefMI is a two-address instruction then commuting it will change the 763 // destination register. 764 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 765 assert(DefIdx != -1); 766 unsigned UseOpIdx; 767 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 768 return { false, false }; 769 770 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 771 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 772 // passed to the method. That _other_ operand is chosen by 773 // the findCommutedOpIndices() method. 774 // 775 // That is obviously an area for improvement in case of instructions having 776 // more than 2 operands. For example, if some instruction has 3 commutable 777 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 778 // op#2<->op#3) of commute transformation should be considered/tried here. 779 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 780 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 781 return { false, false }; 782 783 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 784 unsigned NewReg = NewDstMO.getReg(); 785 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 786 return { false, false }; 787 788 // Make sure there are no other definitions of IntB that would reach the 789 // uses which the new definition can reach. 790 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 791 return { false, false }; 792 793 // If some of the uses of IntA.reg is already coalesced away, return false. 794 // It's not possible to determine whether it's safe to perform the coalescing. 795 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 796 MachineInstr *UseMI = MO.getParent(); 797 unsigned OpNo = &MO - &UseMI->getOperand(0); 798 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 799 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 800 if (US == IntA.end() || US->valno != AValNo) 801 continue; 802 // If this use is tied to a def, we can't rewrite the register. 803 if (UseMI->isRegTiedToDefOperand(OpNo)) 804 return { false, false }; 805 } 806 807 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 808 << *DefMI); 809 810 // At this point we have decided that it is legal to do this 811 // transformation. Start by commuting the instruction. 812 MachineBasicBlock *MBB = DefMI->getParent(); 813 MachineInstr *NewMI = 814 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 815 if (!NewMI) 816 return { false, false }; 817 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 818 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 819 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 820 return { false, false }; 821 if (NewMI != DefMI) { 822 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 823 MachineBasicBlock::iterator Pos = DefMI; 824 MBB->insert(Pos, NewMI); 825 MBB->erase(DefMI); 826 } 827 828 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 829 // A = or A, B 830 // ... 831 // B = A 832 // ... 833 // C = killed A 834 // ... 835 // = B 836 837 // Update uses of IntA of the specific Val# with IntB. 838 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 839 UE = MRI->use_end(); 840 UI != UE; /* ++UI is below because of possible MI removal */) { 841 MachineOperand &UseMO = *UI; 842 ++UI; 843 if (UseMO.isUndef()) 844 continue; 845 MachineInstr *UseMI = UseMO.getParent(); 846 if (UseMI->isDebugValue()) { 847 // FIXME These don't have an instruction index. Not clear we have enough 848 // info to decide whether to do this replacement or not. For now do it. 849 UseMO.setReg(NewReg); 850 continue; 851 } 852 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 853 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 854 assert(US != IntA.end() && "Use must be live"); 855 if (US->valno != AValNo) 856 continue; 857 // Kill flags are no longer accurate. They are recomputed after RA. 858 UseMO.setIsKill(false); 859 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 860 UseMO.substPhysReg(NewReg, *TRI); 861 else 862 UseMO.setReg(NewReg); 863 if (UseMI == CopyMI) 864 continue; 865 if (!UseMI->isCopy()) 866 continue; 867 if (UseMI->getOperand(0).getReg() != IntB.reg || 868 UseMI->getOperand(0).getSubReg()) 869 continue; 870 871 // This copy will become a noop. If it's defining a new val#, merge it into 872 // BValNo. 873 SlotIndex DefIdx = UseIdx.getRegSlot(); 874 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 875 if (!DVNI) 876 continue; 877 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 878 assert(DVNI->def == DefIdx); 879 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 880 for (LiveInterval::SubRange &S : IntB.subranges()) { 881 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 882 if (!SubDVNI) 883 continue; 884 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 885 assert(SubBValNo->def == CopyIdx); 886 S.MergeValueNumberInto(SubDVNI, SubBValNo); 887 } 888 889 deleteInstr(UseMI); 890 } 891 892 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 893 // is updated. 894 bool ShrinkB = false; 895 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 896 if (IntA.hasSubRanges() || IntB.hasSubRanges()) { 897 if (!IntA.hasSubRanges()) { 898 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 899 IntA.createSubRangeFrom(Allocator, Mask, IntA); 900 } else if (!IntB.hasSubRanges()) { 901 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg); 902 IntB.createSubRangeFrom(Allocator, Mask, IntB); 903 } 904 SlotIndex AIdx = CopyIdx.getRegSlot(true); 905 LaneBitmask MaskA; 906 for (LiveInterval::SubRange &SA : IntA.subranges()) { 907 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 908 assert(ASubValNo != nullptr); 909 MaskA |= SA.LaneMask; 910 911 IntB.refineSubRanges(Allocator, SA.LaneMask, 912 [&Allocator,&SA,CopyIdx,ASubValNo,&ShrinkB] 913 (LiveInterval::SubRange &SR) { 914 VNInfo *BSubValNo = SR.empty() 915 ? SR.getNextValue(CopyIdx, Allocator) 916 : SR.getVNInfoAt(CopyIdx); 917 assert(BSubValNo != nullptr); 918 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 919 ShrinkB |= P.second; 920 if (P.first) 921 BSubValNo->def = ASubValNo->def; 922 }); 923 } 924 // Go over all subranges of IntB that have not been covered by IntA, 925 // and delete the segments starting at CopyIdx. This can happen if 926 // IntA has undef lanes that are defined in IntB. 927 for (LiveInterval::SubRange &SB : IntB.subranges()) { 928 if ((SB.LaneMask & MaskA).any()) 929 continue; 930 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx)) 931 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex()) 932 SB.removeSegment(*S, true); 933 } 934 } 935 936 BValNo->def = AValNo->def; 937 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 938 ShrinkB |= P.second; 939 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 940 941 LIS->removeVRegDefAt(IntA, AValNo->def); 942 943 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 944 ++numCommutes; 945 return { true, ShrinkB }; 946 } 947 948 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 949 /// predecessor of BB2, and if B is not redefined on the way from A = B 950 /// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the 951 /// execution goes through the path from BB0 to BB2. We may move B = A 952 /// to the predecessor without such reversed copy. 953 /// So we will transform the program from: 954 /// BB0: 955 /// A = B; BB1: 956 /// ... ... 957 /// / \ / 958 /// BB2: 959 /// ... 960 /// B = A; 961 /// 962 /// to: 963 /// 964 /// BB0: BB1: 965 /// A = B; ... 966 /// ... B = A; 967 /// / \ / 968 /// BB2: 969 /// ... 970 /// 971 /// A special case is when BB0 and BB2 are the same BB which is the only 972 /// BB in a loop: 973 /// BB1: 974 /// ... 975 /// BB0/BB2: ---- 976 /// B = A; | 977 /// ... | 978 /// A = B; | 979 /// |------- 980 /// | 981 /// We may hoist B = A from BB0/BB2 to BB1. 982 /// 983 /// The major preconditions for correctness to remove such partial 984 /// redundancy include: 985 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 986 /// the PHI is defined by the reversed copy A = B in BB0. 987 /// 2. No B is referenced from the start of BB2 to B = A. 988 /// 3. No B is defined from A = B to the end of BB0. 989 /// 4. BB1 has only one successor. 990 /// 991 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 992 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 993 /// colder place, which not only prevent endless loop, but also make sure 994 /// the movement of copy is beneficial. 995 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 996 MachineInstr &CopyMI) { 997 assert(!CP.isPhys()); 998 if (!CopyMI.isFullCopy()) 999 return false; 1000 1001 MachineBasicBlock &MBB = *CopyMI.getParent(); 1002 if (MBB.isEHPad()) 1003 return false; 1004 1005 if (MBB.pred_size() != 2) 1006 return false; 1007 1008 LiveInterval &IntA = 1009 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 1010 LiveInterval &IntB = 1011 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 1012 1013 // A is defined by PHI at the entry of MBB. 1014 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 1015 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 1016 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 1017 if (!AValNo->isPHIDef()) 1018 return false; 1019 1020 // No B is referenced before CopyMI in MBB. 1021 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 1022 return false; 1023 1024 // MBB has two predecessors: one contains A = B so no copy will be inserted 1025 // for it. The other one will have a copy moved from MBB. 1026 bool FoundReverseCopy = false; 1027 MachineBasicBlock *CopyLeftBB = nullptr; 1028 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1029 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 1030 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 1031 if (!DefMI || !DefMI->isFullCopy()) { 1032 CopyLeftBB = Pred; 1033 continue; 1034 } 1035 // Check DefMI is a reverse copy and it is in BB Pred. 1036 if (DefMI->getOperand(0).getReg() != IntA.reg || 1037 DefMI->getOperand(1).getReg() != IntB.reg || 1038 DefMI->getParent() != Pred) { 1039 CopyLeftBB = Pred; 1040 continue; 1041 } 1042 // If there is any other def of B after DefMI and before the end of Pred, 1043 // we need to keep the copy of B = A at the end of Pred if we remove 1044 // B = A from MBB. 1045 bool ValB_Changed = false; 1046 for (auto VNI : IntB.valnos) { 1047 if (VNI->isUnused()) 1048 continue; 1049 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 1050 ValB_Changed = true; 1051 break; 1052 } 1053 } 1054 if (ValB_Changed) { 1055 CopyLeftBB = Pred; 1056 continue; 1057 } 1058 FoundReverseCopy = true; 1059 } 1060 1061 // If no reverse copy is found in predecessors, nothing to do. 1062 if (!FoundReverseCopy) 1063 return false; 1064 1065 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 1066 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 1067 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 1068 // update IntA/IntB. 1069 // 1070 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 1071 // MBB is hotter than CopyLeftBB. 1072 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 1073 return false; 1074 1075 // Now (almost sure it's) ok to move copy. 1076 if (CopyLeftBB) { 1077 // Position in CopyLeftBB where we should insert new copy. 1078 auto InsPos = CopyLeftBB->getFirstTerminator(); 1079 1080 // Make sure that B isn't referenced in the terminators (if any) at the end 1081 // of the predecessor since we're about to insert a new definition of B 1082 // before them. 1083 if (InsPos != CopyLeftBB->end()) { 1084 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true); 1085 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB))) 1086 return false; 1087 } 1088 1089 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to " 1090 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI); 1091 1092 // Insert new copy to CopyLeftBB. 1093 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1094 TII->get(TargetOpcode::COPY), IntB.reg) 1095 .addReg(IntA.reg); 1096 SlotIndex NewCopyIdx = 1097 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1098 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1099 for (LiveInterval::SubRange &SR : IntB.subranges()) 1100 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1101 1102 // If the newly created Instruction has an address of an instruction that was 1103 // deleted before (object recycled by the allocator) it needs to be removed from 1104 // the deleted list. 1105 ErasedInstrs.erase(NewCopyMI); 1106 } else { 1107 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from " 1108 << printMBBReference(MBB) << '\t' << CopyMI); 1109 } 1110 1111 // Remove CopyMI. 1112 // Note: This is fine to remove the copy before updating the live-ranges. 1113 // While updating the live-ranges, we only look at slot indices and 1114 // never go back to the instruction. 1115 // Mark instructions as deleted. 1116 deleteInstr(&CopyMI); 1117 1118 // Update the liveness. 1119 SmallVector<SlotIndex, 8> EndPoints; 1120 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1121 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1122 &EndPoints); 1123 BValNo->markUnused(); 1124 // Extend IntB to the EndPoints of its original live interval. 1125 LIS->extendToIndices(IntB, EndPoints); 1126 1127 // Now, do the same for its subranges. 1128 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1129 EndPoints.clear(); 1130 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1131 assert(BValNo && "All sublanes should be live"); 1132 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1133 BValNo->markUnused(); 1134 // We can have a situation where the result of the original copy is live, 1135 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes 1136 // the copy appear as an endpoint from pruneValue(), but we don't want it 1137 // to because the copy has been removed. We can go ahead and remove that 1138 // endpoint; there is no other situation here that there could be a use at 1139 // the same place as we know that the copy is a full copy. 1140 for (unsigned I = 0; I != EndPoints.size(); ) { 1141 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) { 1142 EndPoints[I] = EndPoints.back(); 1143 EndPoints.pop_back(); 1144 continue; 1145 } 1146 ++I; 1147 } 1148 LIS->extendToIndices(SR, EndPoints); 1149 } 1150 // If any dead defs were extended, truncate them. 1151 shrinkToUses(&IntB); 1152 1153 // Finally, update the live-range of IntA. 1154 shrinkToUses(&IntA); 1155 return true; 1156 } 1157 1158 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1159 /// defining a subregister. 1160 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 1161 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && 1162 "This code cannot handle physreg aliasing"); 1163 for (const MachineOperand &Op : MI.operands()) { 1164 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1165 continue; 1166 // Return true if we define the full register or don't care about the value 1167 // inside other subregisters. 1168 if (Op.getSubReg() == 0 || Op.isUndef()) 1169 return true; 1170 } 1171 return false; 1172 } 1173 1174 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1175 MachineInstr *CopyMI, 1176 bool &IsDefCopy) { 1177 IsDefCopy = false; 1178 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1179 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1180 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1181 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1182 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1183 return false; 1184 1185 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1186 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1187 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1188 if (!ValNo) 1189 return false; 1190 if (ValNo->isPHIDef() || ValNo->isUnused()) 1191 return false; 1192 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1193 if (!DefMI) 1194 return false; 1195 if (DefMI->isCopyLike()) { 1196 IsDefCopy = true; 1197 return false; 1198 } 1199 if (!TII->isAsCheapAsAMove(*DefMI)) 1200 return false; 1201 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1202 return false; 1203 if (!definesFullReg(*DefMI, SrcReg)) 1204 return false; 1205 bool SawStore = false; 1206 if (!DefMI->isSafeToMove(AA, SawStore)) 1207 return false; 1208 const MCInstrDesc &MCID = DefMI->getDesc(); 1209 if (MCID.getNumDefs() != 1) 1210 return false; 1211 // Only support subregister destinations when the def is read-undef. 1212 MachineOperand &DstOperand = CopyMI->getOperand(0); 1213 unsigned CopyDstReg = DstOperand.getReg(); 1214 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1215 return false; 1216 1217 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1218 // the register substantially (beyond both source and dest size). This is bad 1219 // for performance since it can cascade through a function, introducing many 1220 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1221 // around after a few subreg copies). 1222 if (SrcIdx && DstIdx) 1223 return false; 1224 1225 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1226 if (!DefMI->isImplicitDef()) { 1227 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 1228 unsigned NewDstReg = DstReg; 1229 1230 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1231 DefMI->getOperand(0).getSubReg()); 1232 if (NewDstIdx) 1233 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1234 1235 // Finally, make sure that the physical subregister that will be 1236 // constructed later is permitted for the instruction. 1237 if (!DefRC->contains(NewDstReg)) 1238 return false; 1239 } else { 1240 // Theoretically, some stack frame reference could exist. Just make sure 1241 // it hasn't actually happened. 1242 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 1243 "Only expect to deal with virtual or physical registers"); 1244 } 1245 } 1246 1247 DebugLoc DL = CopyMI->getDebugLoc(); 1248 MachineBasicBlock *MBB = CopyMI->getParent(); 1249 MachineBasicBlock::iterator MII = 1250 std::next(MachineBasicBlock::iterator(CopyMI)); 1251 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1252 MachineInstr &NewMI = *std::prev(MII); 1253 NewMI.setDebugLoc(DL); 1254 1255 // In a situation like the following: 1256 // %0:subreg = instr ; DefMI, subreg = DstIdx 1257 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0 1258 // instead of widening %1 to the register class of %0 simply do: 1259 // %1 = instr 1260 const TargetRegisterClass *NewRC = CP.getNewRC(); 1261 if (DstIdx != 0) { 1262 MachineOperand &DefMO = NewMI.getOperand(0); 1263 if (DefMO.getSubReg() == DstIdx) { 1264 assert(SrcIdx == 0 && CP.isFlipped() 1265 && "Shouldn't have SrcIdx+DstIdx at this point"); 1266 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1267 const TargetRegisterClass *CommonRC = 1268 TRI->getCommonSubClass(DefRC, DstRC); 1269 if (CommonRC != nullptr) { 1270 NewRC = CommonRC; 1271 DstIdx = 0; 1272 DefMO.setSubReg(0); 1273 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1274 } 1275 } 1276 } 1277 1278 // CopyMI may have implicit operands, save them so that we can transfer them 1279 // over to the newly materialized instruction after CopyMI is removed. 1280 SmallVector<MachineOperand, 4> ImplicitOps; 1281 ImplicitOps.reserve(CopyMI->getNumOperands() - 1282 CopyMI->getDesc().getNumOperands()); 1283 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1284 E = CopyMI->getNumOperands(); 1285 I != E; ++I) { 1286 MachineOperand &MO = CopyMI->getOperand(I); 1287 if (MO.isReg()) { 1288 assert(MO.isImplicit() && "No explicit operands after implicit operands."); 1289 // Discard VReg implicit defs. 1290 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1291 ImplicitOps.push_back(MO); 1292 } 1293 } 1294 1295 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1296 CopyMI->eraseFromParent(); 1297 ErasedInstrs.insert(CopyMI); 1298 1299 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1300 // We need to remember these so we can add intervals once we insert 1301 // NewMI into SlotIndexes. 1302 SmallVector<unsigned, 4> NewMIImplDefs; 1303 for (unsigned i = NewMI.getDesc().getNumOperands(), 1304 e = NewMI.getNumOperands(); 1305 i != e; ++i) { 1306 MachineOperand &MO = NewMI.getOperand(i); 1307 if (MO.isReg() && MO.isDef()) { 1308 assert(MO.isImplicit() && MO.isDead() && 1309 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 1310 NewMIImplDefs.push_back(MO.getReg()); 1311 } 1312 } 1313 1314 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 1315 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1316 1317 if (DefRC != nullptr) { 1318 if (NewIdx) 1319 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1320 else 1321 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1322 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1323 } 1324 // Remap subranges to new lanemask and change register class. 1325 LiveInterval &DstInt = LIS->getInterval(DstReg); 1326 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1327 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1328 } 1329 MRI->setRegClass(DstReg, NewRC); 1330 1331 // Update machine operands and add flags. 1332 updateRegDefsUses(DstReg, DstReg, DstIdx); 1333 NewMI.getOperand(0).setSubReg(NewIdx); 1334 // updateRegDefUses can add an "undef" flag to the definition, since 1335 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make 1336 // sure that "undef" is not set. 1337 if (NewIdx == 0) 1338 NewMI.getOperand(0).setIsUndef(false); 1339 // Add dead subregister definitions if we are defining the whole register 1340 // but only part of it is live. 1341 // This could happen if the rematerialization instruction is rematerializing 1342 // more than actually is used in the register. 1343 // An example would be: 1344 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1345 // ; Copying only part of the register here, but the rest is undef. 1346 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit 1347 // ==> 1348 // ; Materialize all the constants but only using one 1349 // %2 = LOAD_CONSTANTS 5, 8 1350 // 1351 // at this point for the part that wasn't defined before we could have 1352 // subranges missing the definition. 1353 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1354 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1355 SlotIndex DefIndex = 1356 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1357 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1358 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1359 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1360 if (!SR.liveAt(DefIndex)) 1361 SR.createDeadDef(DefIndex, Alloc); 1362 MaxMask &= ~SR.LaneMask; 1363 } 1364 if (MaxMask.any()) { 1365 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1366 SR->createDeadDef(DefIndex, Alloc); 1367 } 1368 } 1369 1370 // Make sure that the subrange for resultant undef is removed 1371 // For example: 1372 // %1:sub1<def,read-undef> = LOAD CONSTANT 1 1373 // %2 = COPY %1 1374 // ==> 1375 // %2:sub1<def, read-undef> = LOAD CONSTANT 1 1376 // ; Correct but need to remove the subrange for %2:sub0 1377 // ; as it is now undef 1378 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1379 // The affected subregister segments can be removed. 1380 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1381 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1382 bool UpdatedSubRanges = false; 1383 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1384 if ((SR.LaneMask & DstMask).none()) { 1385 LLVM_DEBUG(dbgs() 1386 << "Removing undefined SubRange " 1387 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1388 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1389 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1390 SR.removeValNo(RmValNo); 1391 UpdatedSubRanges = true; 1392 } 1393 } 1394 } 1395 if (UpdatedSubRanges) 1396 DstInt.removeEmptySubRanges(); 1397 } 1398 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1399 // The New instruction may be defining a sub-register of what's actually 1400 // been asked for. If so it must implicitly define the whole thing. 1401 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 1402 "Only expect virtual or physical registers in remat"); 1403 NewMI.getOperand(0).setIsDead(true); 1404 NewMI.addOperand(MachineOperand::CreateReg( 1405 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1406 // Record small dead def live-ranges for all the subregisters 1407 // of the destination register. 1408 // Otherwise, variables that live through may miss some 1409 // interferences, thus creating invalid allocation. 1410 // E.g., i386 code: 1411 // %1 = somedef ; %1 GR8 1412 // %2 = remat ; %2 GR32 1413 // CL = COPY %2.sub_8bit 1414 // = somedef %1 ; %1 GR8 1415 // => 1416 // %1 = somedef ; %1 GR8 1417 // dead ECX = remat ; implicit-def CL 1418 // = somedef %1 ; %1 GR8 1419 // %1 will see the interferences with CL but not with CH since 1420 // no live-ranges would have been created for ECX. 1421 // Fix that! 1422 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1423 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1424 Units.isValid(); ++Units) 1425 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1426 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1427 } 1428 1429 if (NewMI.getOperand(0).getSubReg()) 1430 NewMI.getOperand(0).setIsUndef(); 1431 1432 // Transfer over implicit operands to the rematerialized instruction. 1433 for (MachineOperand &MO : ImplicitOps) 1434 NewMI.addOperand(MO); 1435 1436 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1437 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1438 unsigned Reg = NewMIImplDefs[i]; 1439 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1440 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1441 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1442 } 1443 1444 LLVM_DEBUG(dbgs() << "Remat: " << NewMI); 1445 ++NumReMats; 1446 1447 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1448 // to describe DstReg instead. 1449 if (MRI->use_nodbg_empty(SrcReg)) { 1450 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1451 MachineInstr *UseMI = UseMO.getParent(); 1452 if (UseMI->isDebugValue()) { 1453 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 1454 UseMO.substPhysReg(DstReg, *TRI); 1455 else 1456 UseMO.setReg(DstReg); 1457 // Move the debug value directly after the def of the rematerialized 1458 // value in DstReg. 1459 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); 1460 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1461 } 1462 } 1463 } 1464 1465 if (ToBeUpdated.count(SrcReg)) 1466 return true; 1467 1468 unsigned NumCopyUses = 0; 1469 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 1470 if (UseMO.getParent()->isCopyLike()) 1471 NumCopyUses++; 1472 } 1473 if (NumCopyUses < LateRematUpdateThreshold) { 1474 // The source interval can become smaller because we removed a use. 1475 shrinkToUses(&SrcInt, &DeadDefs); 1476 if (!DeadDefs.empty()) 1477 eliminateDeadDefs(); 1478 } else { 1479 ToBeUpdated.insert(SrcReg); 1480 } 1481 return true; 1482 } 1483 1484 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1485 // ProcessImplicitDefs may leave some copies of <undef> values, it only 1486 // removes local variables. When we have a copy like: 1487 // 1488 // %1 = COPY undef %2 1489 // 1490 // We delete the copy and remove the corresponding value number from %1. 1491 // Any uses of that value number are marked as <undef>. 1492 1493 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1494 // CoalescerPair may have a new register class with adjusted subreg indices 1495 // at this point. 1496 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1497 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx); 1498 1499 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1500 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1501 // CopyMI is undef iff SrcReg is not live before the instruction. 1502 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1503 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1504 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1505 if ((SR.LaneMask & SrcMask).none()) 1506 continue; 1507 if (SR.liveAt(Idx)) 1508 return nullptr; 1509 } 1510 } else if (SrcLI.liveAt(Idx)) 1511 return nullptr; 1512 1513 // If the undef copy defines a live-out value (i.e. an input to a PHI def), 1514 // then replace it with an IMPLICIT_DEF. 1515 LiveInterval &DstLI = LIS->getInterval(DstReg); 1516 SlotIndex RegIndex = Idx.getRegSlot(); 1517 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex); 1518 assert(Seg != nullptr && "No segment for defining instruction"); 1519 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) { 1520 if (V->isPHIDef()) { 1521 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1522 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) { 1523 MachineOperand &MO = CopyMI->getOperand(i-1); 1524 if (MO.isReg() && MO.isUse()) 1525 CopyMI->RemoveOperand(i-1); 1526 } 1527 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an " 1528 "implicit def\n"); 1529 return CopyMI; 1530 } 1531 } 1532 1533 // Remove any DstReg segments starting at the instruction. 1534 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1535 1536 // Remove value or merge with previous one in case of a subregister def. 1537 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1538 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1539 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1540 1541 // The affected subregister segments can be removed. 1542 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1543 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1544 if ((SR.LaneMask & DstMask).none()) 1545 continue; 1546 1547 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1548 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1549 SR.removeValNo(SVNI); 1550 } 1551 DstLI.removeEmptySubRanges(); 1552 } else 1553 LIS->removeVRegDefAt(DstLI, RegIndex); 1554 1555 // Mark uses as undef. 1556 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1557 if (MO.isDef() /*|| MO.isUndef()*/) 1558 continue; 1559 const MachineInstr &MI = *MO.getParent(); 1560 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1561 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1562 bool isLive; 1563 if (!UseMask.all() && DstLI.hasSubRanges()) { 1564 isLive = false; 1565 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1566 if ((SR.LaneMask & UseMask).none()) 1567 continue; 1568 if (SR.liveAt(UseIdx)) { 1569 isLive = true; 1570 break; 1571 } 1572 } 1573 } else 1574 isLive = DstLI.liveAt(UseIdx); 1575 if (isLive) 1576 continue; 1577 MO.setIsUndef(true); 1578 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1579 } 1580 1581 // A def of a subregister may be a use of the other subregisters, so 1582 // deleting a def of a subregister may also remove uses. Since CopyMI 1583 // is still part of the function (but about to be erased), mark all 1584 // defs of DstReg in it as <undef>, so that shrinkToUses would 1585 // ignore them. 1586 for (MachineOperand &MO : CopyMI->operands()) 1587 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1588 MO.setIsUndef(true); 1589 LIS->shrinkToUses(&DstLI); 1590 1591 return CopyMI; 1592 } 1593 1594 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1595 MachineOperand &MO, unsigned SubRegIdx) { 1596 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1597 if (MO.isDef()) 1598 Mask = ~Mask; 1599 bool IsUndef = true; 1600 for (const LiveInterval::SubRange &S : Int.subranges()) { 1601 if ((S.LaneMask & Mask).none()) 1602 continue; 1603 if (S.liveAt(UseIdx)) { 1604 IsUndef = false; 1605 break; 1606 } 1607 } 1608 if (IsUndef) { 1609 MO.setIsUndef(true); 1610 // We found out some subregister use is actually reading an undefined 1611 // value. In some cases the whole vreg has become undefined at this 1612 // point so we have to potentially shrink the main range if the 1613 // use was ending a live segment there. 1614 LiveQueryResult Q = Int.Query(UseIdx); 1615 if (Q.valueOut() == nullptr) 1616 ShrinkMainRange = true; 1617 } 1618 } 1619 1620 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 1621 unsigned DstReg, 1622 unsigned SubIdx) { 1623 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 1624 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1625 1626 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1627 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1628 unsigned SubReg = MO.getSubReg(); 1629 if (SubReg == 0 || MO.isUndef()) 1630 continue; 1631 MachineInstr &MI = *MO.getParent(); 1632 if (MI.isDebugValue()) 1633 continue; 1634 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1635 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1636 } 1637 } 1638 1639 SmallPtrSet<MachineInstr*, 8> Visited; 1640 for (MachineRegisterInfo::reg_instr_iterator 1641 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1642 I != E; ) { 1643 MachineInstr *UseMI = &*(I++); 1644 1645 // Each instruction can only be rewritten once because sub-register 1646 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1647 // the UseMI operands removes them from the SrcReg use-def chain, but when 1648 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1649 // operands mentioning the virtual register. 1650 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1651 continue; 1652 1653 SmallVector<unsigned,8> Ops; 1654 bool Reads, Writes; 1655 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1656 1657 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1658 // because SrcReg is a sub-register. 1659 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) 1660 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1661 1662 // Replace SrcReg with DstReg in all UseMI operands. 1663 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1664 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1665 1666 // Adjust <undef> flags in case of sub-register joins. We don't want to 1667 // turn a full def into a read-modify-write sub-register def and vice 1668 // versa. 1669 if (SubIdx && MO.isDef()) 1670 MO.setIsUndef(!Reads); 1671 1672 // A subreg use of a partially undef (super) register may be a complete 1673 // undef use now and then has to be marked that way. 1674 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1675 if (!DstInt->hasSubRanges()) { 1676 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1677 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1678 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1679 } 1680 SlotIndex MIIdx = UseMI->isDebugValue() 1681 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1682 : LIS->getInstructionIndex(*UseMI); 1683 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1684 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1685 } 1686 1687 if (DstIsPhys) 1688 MO.substPhysReg(DstReg, *TRI); 1689 else 1690 MO.substVirtReg(DstReg, SubIdx, *TRI); 1691 } 1692 1693 LLVM_DEBUG({ 1694 dbgs() << "\t\tupdated: "; 1695 if (!UseMI->isDebugValue()) 1696 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1697 dbgs() << *UseMI; 1698 }); 1699 } 1700 } 1701 1702 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1703 // Always join simple intervals that are defined by a single copy from a 1704 // reserved register. This doesn't increase register pressure, so it is 1705 // always beneficial. 1706 if (!MRI->isReserved(CP.getDstReg())) { 1707 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1708 return false; 1709 } 1710 1711 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1712 if (JoinVInt.containsOneValue()) 1713 return true; 1714 1715 LLVM_DEBUG( 1716 dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1717 return false; 1718 } 1719 1720 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1721 Again = false; 1722 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1723 1724 CoalescerPair CP(*TRI); 1725 if (!CP.setRegisters(CopyMI)) { 1726 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n"); 1727 return false; 1728 } 1729 1730 if (CP.getNewRC()) { 1731 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1732 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1733 unsigned SrcIdx = CP.getSrcIdx(); 1734 unsigned DstIdx = CP.getDstIdx(); 1735 if (CP.isFlipped()) { 1736 std::swap(SrcIdx, DstIdx); 1737 std::swap(SrcRC, DstRC); 1738 } 1739 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1740 CP.getNewRC(), *LIS)) { 1741 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1742 return false; 1743 } 1744 } 1745 1746 // Dead code elimination. This really should be handled by MachineDCE, but 1747 // sometimes dead copies slip through, and we can't generate invalid live 1748 // ranges. 1749 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1750 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n"); 1751 DeadDefs.push_back(CopyMI); 1752 eliminateDeadDefs(); 1753 return true; 1754 } 1755 1756 // Eliminate undefs. 1757 if (!CP.isPhys()) { 1758 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce. 1759 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) { 1760 if (UndefMI->isImplicitDef()) 1761 return false; 1762 deleteInstr(CopyMI); 1763 return false; // Not coalescable. 1764 } 1765 } 1766 1767 // Coalesced copies are normally removed immediately, but transformations 1768 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1769 // When that happens, just join the values and remove the copy. 1770 if (CP.getSrcReg() == CP.getDstReg()) { 1771 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1772 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1773 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1774 LiveQueryResult LRQ = LI.Query(CopyIdx); 1775 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1776 VNInfo *ReadVNI = LRQ.valueIn(); 1777 assert(ReadVNI && "No value before copy and no <undef> flag."); 1778 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1779 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1780 1781 // Process subregister liveranges. 1782 for (LiveInterval::SubRange &S : LI.subranges()) { 1783 LiveQueryResult SLRQ = S.Query(CopyIdx); 1784 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1785 VNInfo *SReadVNI = SLRQ.valueIn(); 1786 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1787 } 1788 } 1789 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1790 } 1791 deleteInstr(CopyMI); 1792 return true; 1793 } 1794 1795 // Enforce policies. 1796 if (CP.isPhys()) { 1797 LLVM_DEBUG(dbgs() << "\tConsidering merging " 1798 << printReg(CP.getSrcReg(), TRI) << " with " 1799 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'); 1800 if (!canJoinPhys(CP)) { 1801 // Before giving up coalescing, if definition of source is defined by 1802 // trivial computation, try rematerializing it. 1803 bool IsDefCopy; 1804 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1805 return true; 1806 if (IsDefCopy) 1807 Again = true; // May be possible to coalesce later. 1808 return false; 1809 } 1810 } else { 1811 // When possible, let DstReg be the larger interval. 1812 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1813 LIS->getInterval(CP.getDstReg()).size()) 1814 CP.flip(); 1815 1816 LLVM_DEBUG({ 1817 dbgs() << "\tConsidering merging to " 1818 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1819 if (CP.getDstIdx() && CP.getSrcIdx()) 1820 dbgs() << printReg(CP.getDstReg()) << " in " 1821 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1822 << printReg(CP.getSrcReg()) << " in " 1823 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1824 else 1825 dbgs() << printReg(CP.getSrcReg(), TRI) << " in " 1826 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1827 }); 1828 } 1829 1830 ShrinkMask = LaneBitmask::getNone(); 1831 ShrinkMainRange = false; 1832 1833 // Okay, attempt to join these two intervals. On failure, this returns false. 1834 // Otherwise, if one of the intervals being joined is a physreg, this method 1835 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1836 // been modified, so we can use this information below to update aliases. 1837 if (!joinIntervals(CP)) { 1838 // Coalescing failed. 1839 1840 // If definition of source is defined by trivial computation, try 1841 // rematerializing it. 1842 bool IsDefCopy; 1843 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1844 return true; 1845 1846 // If we can eliminate the copy without merging the live segments, do so 1847 // now. 1848 if (!CP.isPartial() && !CP.isPhys()) { 1849 bool Changed = adjustCopiesBackFrom(CP, CopyMI); 1850 bool Shrink = false; 1851 if (!Changed) 1852 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI); 1853 if (Changed) { 1854 deleteInstr(CopyMI); 1855 if (Shrink) { 1856 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1857 LiveInterval &DstLI = LIS->getInterval(DstReg); 1858 shrinkToUses(&DstLI); 1859 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n'); 1860 } 1861 LLVM_DEBUG(dbgs() << "\tTrivial!\n"); 1862 return true; 1863 } 1864 } 1865 1866 // Try and see if we can partially eliminate the copy by moving the copy to 1867 // its predecessor. 1868 if (!CP.isPartial() && !CP.isPhys()) 1869 if (removePartialRedundancy(CP, *CopyMI)) 1870 return true; 1871 1872 // Otherwise, we are unable to join the intervals. 1873 LLVM_DEBUG(dbgs() << "\tInterference!\n"); 1874 Again = true; // May be possible to coalesce later. 1875 return false; 1876 } 1877 1878 // Coalescing to a virtual register that is of a sub-register class of the 1879 // other. Make sure the resulting register is set to the right register class. 1880 if (CP.isCrossClass()) { 1881 ++numCrossRCs; 1882 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1883 } 1884 1885 // Removing sub-register copies can ease the register class constraints. 1886 // Make sure we attempt to inflate the register class of DstReg. 1887 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1888 InflateRegs.push_back(CP.getDstReg()); 1889 1890 // CopyMI has been erased by joinIntervals at this point. Remove it from 1891 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1892 // to the work list. This keeps ErasedInstrs from growing needlessly. 1893 ErasedInstrs.erase(CopyMI); 1894 1895 // Rewrite all SrcReg operands to DstReg. 1896 // Also update DstReg operands to include DstIdx if it is set. 1897 if (CP.getDstIdx()) 1898 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1899 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1900 1901 // Shrink subregister ranges if necessary. 1902 if (ShrinkMask.any()) { 1903 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1904 for (LiveInterval::SubRange &S : LI.subranges()) { 1905 if ((S.LaneMask & ShrinkMask).none()) 1906 continue; 1907 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1908 << ")\n"); 1909 LIS->shrinkToUses(S, LI.reg); 1910 } 1911 LI.removeEmptySubRanges(); 1912 } 1913 if (ShrinkMainRange) { 1914 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1915 shrinkToUses(&LI); 1916 } 1917 1918 // SrcReg is guaranteed to be the register whose live interval that is 1919 // being merged. 1920 LIS->removeInterval(CP.getSrcReg()); 1921 1922 // Update regalloc hint. 1923 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1924 1925 LLVM_DEBUG({ 1926 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 1927 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 1928 dbgs() << "\tResult = "; 1929 if (CP.isPhys()) 1930 dbgs() << printReg(CP.getDstReg(), TRI); 1931 else 1932 dbgs() << LIS->getInterval(CP.getDstReg()); 1933 dbgs() << '\n'; 1934 }); 1935 1936 ++numJoins; 1937 return true; 1938 } 1939 1940 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1941 unsigned DstReg = CP.getDstReg(); 1942 unsigned SrcReg = CP.getSrcReg(); 1943 assert(CP.isPhys() && "Must be a physreg copy"); 1944 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 1945 LiveInterval &RHS = LIS->getInterval(SrcReg); 1946 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1947 1948 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 1949 1950 // Optimization for reserved registers like ESP. We can only merge with a 1951 // reserved physreg if RHS has a single value that is a copy of DstReg. 1952 // The live range of the reserved register will look like a set of dead defs 1953 // - we don't properly track the live range of reserved registers. 1954 1955 // Deny any overlapping intervals. This depends on all the reserved 1956 // register live ranges to look like dead defs. 1957 if (!MRI->isConstantPhysReg(DstReg)) { 1958 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1959 // Abort if not all the regunits are reserved. 1960 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 1961 if (!MRI->isReserved(*RI)) 1962 return false; 1963 } 1964 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1965 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) 1966 << '\n'); 1967 return false; 1968 } 1969 } 1970 1971 // We must also check for overlaps with regmask clobbers. 1972 BitVector RegMaskUsable; 1973 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 1974 !RegMaskUsable.test(DstReg)) { 1975 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n"); 1976 return false; 1977 } 1978 } 1979 1980 // Skip any value computations, we are not adding new values to the 1981 // reserved register. Also skip merging the live ranges, the reserved 1982 // register live range doesn't need to be accurate as long as all the 1983 // defs are there. 1984 1985 // Delete the identity copy. 1986 MachineInstr *CopyMI; 1987 if (CP.isFlipped()) { 1988 // Physreg is copied into vreg 1989 // %y = COPY %physreg_x 1990 // ... //< no other def of %x here 1991 // use %y 1992 // => 1993 // ... 1994 // use %x 1995 CopyMI = MRI->getVRegDef(SrcReg); 1996 } else { 1997 // VReg is copied into physreg: 1998 // %y = def 1999 // ... //< no other def or use of %y here 2000 // %y = COPY %physreg_x 2001 // => 2002 // %y = def 2003 // ... 2004 if (!MRI->hasOneNonDBGUse(SrcReg)) { 2005 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 2006 return false; 2007 } 2008 2009 if (!LIS->intervalIsInOneMBB(RHS)) { 2010 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n"); 2011 return false; 2012 } 2013 2014 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 2015 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 2016 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 2017 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 2018 2019 if (!MRI->isConstantPhysReg(DstReg)) { 2020 // We checked above that there are no interfering defs of the physical 2021 // register. However, for this case, where we intend to move up the def of 2022 // the physical register, we also need to check for interfering uses. 2023 SlotIndexes *Indexes = LIS->getSlotIndexes(); 2024 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 2025 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 2026 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 2027 if (MI->readsRegister(DstReg, TRI)) { 2028 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 2029 return false; 2030 } 2031 } 2032 } 2033 2034 // We're going to remove the copy which defines a physical reserved 2035 // register, so remove its valno, etc. 2036 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of " 2037 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n"); 2038 2039 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 2040 // Create a new dead def at the new def location. 2041 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2042 LiveRange &LR = LIS->getRegUnit(*UI); 2043 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 2044 } 2045 } 2046 2047 deleteInstr(CopyMI); 2048 2049 // We don't track kills for reserved registers. 2050 MRI->clearKillFlags(CP.getSrcReg()); 2051 2052 return true; 2053 } 2054 2055 //===----------------------------------------------------------------------===// 2056 // Interference checking and interval joining 2057 //===----------------------------------------------------------------------===// 2058 // 2059 // In the easiest case, the two live ranges being joined are disjoint, and 2060 // there is no interference to consider. It is quite common, though, to have 2061 // overlapping live ranges, and we need to check if the interference can be 2062 // resolved. 2063 // 2064 // The live range of a single SSA value forms a sub-tree of the dominator tree. 2065 // This means that two SSA values overlap if and only if the def of one value 2066 // is contained in the live range of the other value. As a special case, the 2067 // overlapping values can be defined at the same index. 2068 // 2069 // The interference from an overlapping def can be resolved in these cases: 2070 // 2071 // 1. Coalescable copies. The value is defined by a copy that would become an 2072 // identity copy after joining SrcReg and DstReg. The copy instruction will 2073 // be removed, and the value will be merged with the source value. 2074 // 2075 // There can be several copies back and forth, causing many values to be 2076 // merged into one. We compute a list of ultimate values in the joined live 2077 // range as well as a mappings from the old value numbers. 2078 // 2079 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 2080 // predecessors have a live out value. It doesn't cause real interference, 2081 // and can be merged into the value it overlaps. Like a coalescable copy, it 2082 // can be erased after joining. 2083 // 2084 // 3. Copy of external value. The overlapping def may be a copy of a value that 2085 // is already in the other register. This is like a coalescable copy, but 2086 // the live range of the source register must be trimmed after erasing the 2087 // copy instruction: 2088 // 2089 // %src = COPY %ext 2090 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 2091 // 2092 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 2093 // defining one lane at a time: 2094 // 2095 // %dst:ssub0<def,read-undef> = FOO 2096 // %src = BAR 2097 // %dst:ssub1 = COPY %src 2098 // 2099 // The live range of %src overlaps the %dst value defined by FOO, but 2100 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 2101 // which was undef anyway. 2102 // 2103 // The value mapping is more complicated in this case. The final live range 2104 // will have different value numbers for both FOO and BAR, but there is no 2105 // simple mapping from old to new values. It may even be necessary to add 2106 // new PHI values. 2107 // 2108 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 2109 // is live, but never read. This can happen because we don't compute 2110 // individual live ranges per lane. 2111 // 2112 // %dst = FOO 2113 // %src = BAR 2114 // %dst:ssub1 = COPY %src 2115 // 2116 // This kind of interference is only resolved locally. If the clobbered 2117 // lane value escapes the block, the join is aborted. 2118 2119 namespace { 2120 2121 /// Track information about values in a single virtual register about to be 2122 /// joined. Objects of this class are always created in pairs - one for each 2123 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 2124 /// pair) 2125 class JoinVals { 2126 /// Live range we work on. 2127 LiveRange &LR; 2128 2129 /// (Main) register we work on. 2130 const unsigned Reg; 2131 2132 /// Reg (and therefore the values in this liverange) will end up as 2133 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 2134 /// CP.SrcIdx. 2135 const unsigned SubIdx; 2136 2137 /// The LaneMask that this liverange will occupy the coalesced register. May 2138 /// be smaller than the lanemask produced by SubIdx when merging subranges. 2139 const LaneBitmask LaneMask; 2140 2141 /// This is true when joining sub register ranges, false when joining main 2142 /// ranges. 2143 const bool SubRangeJoin; 2144 2145 /// Whether the current LiveInterval tracks subregister liveness. 2146 const bool TrackSubRegLiveness; 2147 2148 /// Values that will be present in the final live range. 2149 SmallVectorImpl<VNInfo*> &NewVNInfo; 2150 2151 const CoalescerPair &CP; 2152 LiveIntervals *LIS; 2153 SlotIndexes *Indexes; 2154 const TargetRegisterInfo *TRI; 2155 2156 /// Value number assignments. Maps value numbers in LI to entries in 2157 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 2158 SmallVector<int, 8> Assignments; 2159 2160 /// Conflict resolution for overlapping values. 2161 enum ConflictResolution { 2162 /// No overlap, simply keep this value. 2163 CR_Keep, 2164 2165 /// Merge this value into OtherVNI and erase the defining instruction. 2166 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 2167 /// values. 2168 CR_Erase, 2169 2170 /// Merge this value into OtherVNI but keep the defining instruction. 2171 /// This is for the special case where OtherVNI is defined by the same 2172 /// instruction. 2173 CR_Merge, 2174 2175 /// Keep this value, and have it replace OtherVNI where possible. This 2176 /// complicates value mapping since OtherVNI maps to two different values 2177 /// before and after this def. 2178 /// Used when clobbering undefined or dead lanes. 2179 CR_Replace, 2180 2181 /// Unresolved conflict. Visit later when all values have been mapped. 2182 CR_Unresolved, 2183 2184 /// Unresolvable conflict. Abort the join. 2185 CR_Impossible 2186 }; 2187 2188 /// Per-value info for LI. The lane bit masks are all relative to the final 2189 /// joined register, so they can be compared directly between SrcReg and 2190 /// DstReg. 2191 struct Val { 2192 ConflictResolution Resolution = CR_Keep; 2193 2194 /// Lanes written by this def, 0 for unanalyzed values. 2195 LaneBitmask WriteLanes; 2196 2197 /// Lanes with defined values in this register. Other lanes are undef and 2198 /// safe to clobber. 2199 LaneBitmask ValidLanes; 2200 2201 /// Value in LI being redefined by this def. 2202 VNInfo *RedefVNI = nullptr; 2203 2204 /// Value in the other live range that overlaps this def, if any. 2205 VNInfo *OtherVNI = nullptr; 2206 2207 /// Is this value an IMPLICIT_DEF that can be erased? 2208 /// 2209 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2210 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2211 /// safely erased if they are overlapping a live value in the other live 2212 /// interval. 2213 /// 2214 /// Weird control flow graphs and incomplete PHI handling in 2215 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2216 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2217 /// normal values. 2218 bool ErasableImplicitDef = false; 2219 2220 /// True when the live range of this value will be pruned because of an 2221 /// overlapping CR_Replace value in the other live range. 2222 bool Pruned = false; 2223 2224 /// True once Pruned above has been computed. 2225 bool PrunedComputed = false; 2226 2227 /// True if this value is determined to be identical to OtherVNI 2228 /// (in valuesIdentical). This is used with CR_Erase where the erased 2229 /// copy is redundant, i.e. the source value is already the same as 2230 /// the destination. In such cases the subranges need to be updated 2231 /// properly. See comment at pruneSubRegValues for more info. 2232 bool Identical = false; 2233 2234 Val() = default; 2235 2236 bool isAnalyzed() const { return WriteLanes.any(); } 2237 }; 2238 2239 /// One entry per value number in LI. 2240 SmallVector<Val, 8> Vals; 2241 2242 /// Compute the bitmask of lanes actually written by DefMI. 2243 /// Set Redef if there are any partial register definitions that depend on the 2244 /// previous value of the register. 2245 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2246 2247 /// Find the ultimate value that VNI was copied from. 2248 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 2249 2250 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const; 2251 2252 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2253 /// Return a conflict resolution when possible, but leave the hard cases as 2254 /// CR_Unresolved. 2255 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2256 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2257 /// The recursion always goes upwards in the dominator tree, making loops 2258 /// impossible. 2259 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2260 2261 /// Compute the value assignment for ValNo in RI. 2262 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2263 /// the stack. 2264 void computeAssignment(unsigned ValNo, JoinVals &Other); 2265 2266 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2267 /// the extent of the tainted lanes in the block. 2268 /// 2269 /// Multiple values in Other.LR can be affected since partial redefinitions 2270 /// can preserve previously tainted lanes. 2271 /// 2272 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2273 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2274 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2275 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2276 /// 2277 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2278 /// entry to TaintedVals. 2279 /// 2280 /// Returns false if the tainted lanes extend beyond the basic block. 2281 bool 2282 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2283 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); 2284 2285 /// Return true if MI uses any of the given Lanes from Reg. 2286 /// This does not include partial redefinitions of Reg. 2287 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; 2288 2289 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2290 /// be pruned: 2291 /// 2292 /// %dst = COPY %src 2293 /// %src = COPY %dst <-- This value to be pruned. 2294 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2295 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2296 2297 public: 2298 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 2299 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 2300 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2301 bool TrackSubRegLiveness) 2302 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2303 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2304 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2305 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {} 2306 2307 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2308 /// Returns false if any conflicts were impossible to resolve. 2309 bool mapValues(JoinVals &Other); 2310 2311 /// Try to resolve conflicts that require all values to be mapped. 2312 /// Returns false if any conflicts were impossible to resolve. 2313 bool resolveConflicts(JoinVals &Other); 2314 2315 /// Prune the live range of values in Other.LR where they would conflict with 2316 /// CR_Replace values in LR. Collect end points for restoring the live range 2317 /// after joining. 2318 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2319 bool changeInstrs); 2320 2321 /// Removes subranges starting at copies that get removed. This sometimes 2322 /// happens when undefined subranges are copied around. These ranges contain 2323 /// no useful information and can be removed. 2324 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2325 2326 /// Pruning values in subranges can lead to removing segments in these 2327 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2328 /// the main range also need to be removed. This function will mark 2329 /// the corresponding values in the main range as pruned, so that 2330 /// eraseInstrs can do the final cleanup. 2331 /// The parameter @p LI must be the interval whose main range is the 2332 /// live range LR. 2333 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2334 2335 /// Erase any machine instructions that have been coalesced away. 2336 /// Add erased instructions to ErasedInstrs. 2337 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2338 /// the erased instrs. 2339 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2340 SmallVectorImpl<unsigned> &ShrinkRegs, 2341 LiveInterval *LI = nullptr); 2342 2343 /// Remove liverange defs at places where implicit defs will be removed. 2344 void removeImplicitDefs(); 2345 2346 /// Get the value assignments suitable for passing to LiveInterval::join. 2347 const int *getAssignments() const { return Assignments.data(); } 2348 }; 2349 2350 } // end anonymous namespace 2351 2352 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2353 const { 2354 LaneBitmask L; 2355 for (const MachineOperand &MO : DefMI->operands()) { 2356 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2357 continue; 2358 L |= TRI->getSubRegIndexLaneMask( 2359 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2360 if (MO.readsReg()) 2361 Redef = true; 2362 } 2363 return L; 2364 } 2365 2366 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 2367 const VNInfo *VNI) const { 2368 unsigned TrackReg = Reg; 2369 2370 while (!VNI->isPHIDef()) { 2371 SlotIndex Def = VNI->def; 2372 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2373 assert(MI && "No defining instruction"); 2374 if (!MI->isFullCopy()) 2375 return std::make_pair(VNI, TrackReg); 2376 unsigned SrcReg = MI->getOperand(1).getReg(); 2377 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 2378 return std::make_pair(VNI, TrackReg); 2379 2380 const LiveInterval &LI = LIS->getInterval(SrcReg); 2381 const VNInfo *ValueIn; 2382 // No subrange involved. 2383 if (!SubRangeJoin || !LI.hasSubRanges()) { 2384 LiveQueryResult LRQ = LI.Query(Def); 2385 ValueIn = LRQ.valueIn(); 2386 } else { 2387 // Query subranges. Ensure that all matching ones take us to the same def 2388 // (allowing some of them to be undef). 2389 ValueIn = nullptr; 2390 for (const LiveInterval::SubRange &S : LI.subranges()) { 2391 // Transform lanemask to a mask in the joined live interval. 2392 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2393 if ((SMask & LaneMask).none()) 2394 continue; 2395 LiveQueryResult LRQ = S.Query(Def); 2396 if (!ValueIn) { 2397 ValueIn = LRQ.valueIn(); 2398 continue; 2399 } 2400 if (LRQ.valueIn() && ValueIn != LRQ.valueIn()) 2401 return std::make_pair(VNI, TrackReg); 2402 } 2403 } 2404 if (ValueIn == nullptr) { 2405 // Reaching an undefined value is legitimate, for example: 2406 // 2407 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef 2408 // 2 %1 = COPY %0 ;; %1 is defined here. 2409 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition, 2410 // ;; but it's equivalent to "undef". 2411 return std::make_pair(nullptr, SrcReg); 2412 } 2413 VNI = ValueIn; 2414 TrackReg = SrcReg; 2415 } 2416 return std::make_pair(VNI, TrackReg); 2417 } 2418 2419 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2420 const JoinVals &Other) const { 2421 const VNInfo *Orig0; 2422 unsigned Reg0; 2423 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2424 if (Orig0 == Value1 && Reg0 == Other.Reg) 2425 return true; 2426 2427 const VNInfo *Orig1; 2428 unsigned Reg1; 2429 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2430 // If both values are undefined, and the source registers are the same 2431 // register, the values are identical. Filter out cases where only one 2432 // value is defined. 2433 if (Orig0 == nullptr || Orig1 == nullptr) 2434 return Orig0 == Orig1 && Reg0 == Reg1; 2435 2436 // The values are equal if they are defined at the same place and use the 2437 // same register. Note that we cannot compare VNInfos directly as some of 2438 // them might be from a copy created in mergeSubRangeInto() while the other 2439 // is from the original LiveInterval. 2440 return Orig0->def == Orig1->def && Reg0 == Reg1; 2441 } 2442 2443 JoinVals::ConflictResolution 2444 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2445 Val &V = Vals[ValNo]; 2446 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2447 VNInfo *VNI = LR.getValNumInfo(ValNo); 2448 if (VNI->isUnused()) { 2449 V.WriteLanes = LaneBitmask::getAll(); 2450 return CR_Keep; 2451 } 2452 2453 // Get the instruction defining this value, compute the lanes written. 2454 const MachineInstr *DefMI = nullptr; 2455 if (VNI->isPHIDef()) { 2456 // Conservatively assume that all lanes in a PHI are valid. 2457 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2458 : TRI->getSubRegIndexLaneMask(SubIdx); 2459 V.ValidLanes = V.WriteLanes = Lanes; 2460 } else { 2461 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2462 assert(DefMI != nullptr); 2463 if (SubRangeJoin) { 2464 // We don't care about the lanes when joining subregister ranges. 2465 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2466 if (DefMI->isImplicitDef()) { 2467 V.ValidLanes = LaneBitmask::getNone(); 2468 V.ErasableImplicitDef = true; 2469 } 2470 } else { 2471 bool Redef = false; 2472 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2473 2474 // If this is a read-modify-write instruction, there may be more valid 2475 // lanes than the ones written by this instruction. 2476 // This only covers partial redef operands. DefMI may have normal use 2477 // operands reading the register. They don't contribute valid lanes. 2478 // 2479 // This adds ssub1 to the set of valid lanes in %src: 2480 // 2481 // %src:ssub1 = FOO 2482 // 2483 // This leaves only ssub1 valid, making any other lanes undef: 2484 // 2485 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2486 // 2487 // The <read-undef> flag on the def operand means that old lane values are 2488 // not important. 2489 if (Redef) { 2490 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2491 assert((TrackSubRegLiveness || V.RedefVNI) && 2492 "Instruction is reading nonexistent value"); 2493 if (V.RedefVNI != nullptr) { 2494 computeAssignment(V.RedefVNI->id, Other); 2495 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2496 } 2497 } 2498 2499 // An IMPLICIT_DEF writes undef values. 2500 if (DefMI->isImplicitDef()) { 2501 // We normally expect IMPLICIT_DEF values to be live only until the end 2502 // of their block. If the value is really live longer and gets pruned in 2503 // another block, this flag is cleared again. 2504 V.ErasableImplicitDef = true; 2505 V.ValidLanes &= ~V.WriteLanes; 2506 } 2507 } 2508 } 2509 2510 // Find the value in Other that overlaps VNI->def, if any. 2511 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2512 2513 // It is possible that both values are defined by the same instruction, or 2514 // the values are PHIs defined in the same block. When that happens, the two 2515 // values should be merged into one, but not into any preceding value. 2516 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2517 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2518 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2519 2520 // One value stays, the other is merged. Keep the earlier one, or the first 2521 // one we see. 2522 if (OtherVNI->def < VNI->def) 2523 Other.computeAssignment(OtherVNI->id, *this); 2524 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2525 // This is an early-clobber def overlapping a live-in value in the other 2526 // register. Not mergeable. 2527 V.OtherVNI = OtherLRQ.valueIn(); 2528 return CR_Impossible; 2529 } 2530 V.OtherVNI = OtherVNI; 2531 Val &OtherV = Other.Vals[OtherVNI->id]; 2532 // Keep this value, check for conflicts when analyzing OtherVNI. 2533 if (!OtherV.isAnalyzed()) 2534 return CR_Keep; 2535 // Both sides have been analyzed now. 2536 // Allow overlapping PHI values. Any real interference would show up in a 2537 // predecessor, the PHI itself can't introduce any conflicts. 2538 if (VNI->isPHIDef()) 2539 return CR_Merge; 2540 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2541 // Overlapping lanes can't be resolved. 2542 return CR_Impossible; 2543 else 2544 return CR_Merge; 2545 } 2546 2547 // No simultaneous def. Is Other live at the def? 2548 V.OtherVNI = OtherLRQ.valueIn(); 2549 if (!V.OtherVNI) 2550 // No overlap, no conflict. 2551 return CR_Keep; 2552 2553 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2554 2555 // We have overlapping values, or possibly a kill of Other. 2556 // Recursively compute assignments up the dominator tree. 2557 Other.computeAssignment(V.OtherVNI->id, *this); 2558 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2559 2560 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2561 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2562 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2563 // technically. 2564 // 2565 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2566 // to erase the IMPLICIT_DEF instruction. 2567 if (OtherV.ErasableImplicitDef && DefMI && 2568 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2569 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2570 << " extends into " 2571 << printMBBReference(*DefMI->getParent()) 2572 << ", keeping it.\n"); 2573 OtherV.ErasableImplicitDef = false; 2574 } 2575 2576 // Allow overlapping PHI values. Any real interference would show up in a 2577 // predecessor, the PHI itself can't introduce any conflicts. 2578 if (VNI->isPHIDef()) 2579 return CR_Replace; 2580 2581 // Check for simple erasable conflicts. 2582 if (DefMI->isImplicitDef()) { 2583 // We need the def for the subregister if there is nothing else live at the 2584 // subrange at this point. 2585 if (TrackSubRegLiveness 2586 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none()) 2587 return CR_Replace; 2588 return CR_Erase; 2589 } 2590 2591 // Include the non-conflict where DefMI is a coalescable copy that kills 2592 // OtherVNI. We still want the copy erased and value numbers merged. 2593 if (CP.isCoalescable(DefMI)) { 2594 // Some of the lanes copied from OtherVNI may be undef, making them undef 2595 // here too. 2596 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2597 return CR_Erase; 2598 } 2599 2600 // This may not be a real conflict if DefMI simply kills Other and defines 2601 // VNI. 2602 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2603 return CR_Keep; 2604 2605 // Handle the case where VNI and OtherVNI can be proven to be identical: 2606 // 2607 // %other = COPY %ext 2608 // %this = COPY %ext <-- Erase this copy 2609 // 2610 if (DefMI->isFullCopy() && !CP.isPartial() && 2611 valuesIdentical(VNI, V.OtherVNI, Other)) { 2612 V.Identical = true; 2613 return CR_Erase; 2614 } 2615 2616 // If the lanes written by this instruction were all undef in OtherVNI, it is 2617 // still safe to join the live ranges. This can't be done with a simple value 2618 // mapping, though - OtherVNI will map to multiple values: 2619 // 2620 // 1 %dst:ssub0 = FOO <-- OtherVNI 2621 // 2 %src = BAR <-- VNI 2622 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy. 2623 // 4 BAZ killed %dst 2624 // 5 QUUX killed %src 2625 // 2626 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2627 // handles this complex value mapping. 2628 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2629 return CR_Replace; 2630 2631 // If the other live range is killed by DefMI and the live ranges are still 2632 // overlapping, it must be because we're looking at an early clobber def: 2633 // 2634 // %dst<def,early-clobber> = ASM killed %src 2635 // 2636 // In this case, it is illegal to merge the two live ranges since the early 2637 // clobber def would clobber %src before it was read. 2638 if (OtherLRQ.isKill()) { 2639 // This case where the def doesn't overlap the kill is handled above. 2640 assert(VNI->def.isEarlyClobber() && 2641 "Only early clobber defs can overlap a kill"); 2642 return CR_Impossible; 2643 } 2644 2645 // VNI is clobbering live lanes in OtherVNI, but there is still the 2646 // possibility that no instructions actually read the clobbered lanes. 2647 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2648 // Otherwise Other.RI wouldn't be live here. 2649 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2650 return CR_Impossible; 2651 2652 // We need to verify that no instructions are reading the clobbered lanes. To 2653 // save compile time, we'll only check that locally. Don't allow the tainted 2654 // value to escape the basic block. 2655 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2656 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2657 return CR_Impossible; 2658 2659 // There are still some things that could go wrong besides clobbered lanes 2660 // being read, for example OtherVNI may be only partially redefined in MBB, 2661 // and some clobbered lanes could escape the block. Save this analysis for 2662 // resolveConflicts() when all values have been mapped. We need to know 2663 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2664 // that now - the recursive analyzeValue() calls must go upwards in the 2665 // dominator tree. 2666 return CR_Unresolved; 2667 } 2668 2669 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2670 Val &V = Vals[ValNo]; 2671 if (V.isAnalyzed()) { 2672 // Recursion should always move up the dominator tree, so ValNo is not 2673 // supposed to reappear before it has been assigned. 2674 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2675 return; 2676 } 2677 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2678 case CR_Erase: 2679 case CR_Merge: 2680 // Merge this ValNo into OtherVNI. 2681 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2682 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2683 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2684 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@' 2685 << LR.getValNumInfo(ValNo)->def << " into " 2686 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2687 << V.OtherVNI->def << " --> @" 2688 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2689 break; 2690 case CR_Replace: 2691 case CR_Unresolved: { 2692 // The other value is going to be pruned if this join is successful. 2693 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2694 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2695 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2696 // its lanes. 2697 if ((OtherV.WriteLanes & ~V.ValidLanes).any() && TrackSubRegLiveness) 2698 OtherV.ErasableImplicitDef = false; 2699 OtherV.Pruned = true; 2700 LLVM_FALLTHROUGH; 2701 } 2702 default: 2703 // This value number needs to go in the final joined live range. 2704 Assignments[ValNo] = NewVNInfo.size(); 2705 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2706 break; 2707 } 2708 } 2709 2710 bool JoinVals::mapValues(JoinVals &Other) { 2711 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2712 computeAssignment(i, Other); 2713 if (Vals[i].Resolution == CR_Impossible) { 2714 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i 2715 << '@' << LR.getValNumInfo(i)->def << '\n'); 2716 return false; 2717 } 2718 } 2719 return true; 2720 } 2721 2722 bool JoinVals:: 2723 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2724 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { 2725 VNInfo *VNI = LR.getValNumInfo(ValNo); 2726 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2727 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2728 2729 // Scan Other.LR from VNI.def to MBBEnd. 2730 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2731 assert(OtherI != Other.LR.end() && "No conflict?"); 2732 do { 2733 // OtherI is pointing to a tainted value. Abort the join if the tainted 2734 // lanes escape the block. 2735 SlotIndex End = OtherI->end; 2736 if (End >= MBBEnd) { 2737 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':' 2738 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2739 return false; 2740 } 2741 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':' 2742 << OtherI->valno->id << '@' << OtherI->start << " to " 2743 << End << '\n'); 2744 // A dead def is not a problem. 2745 if (End.isDead()) 2746 break; 2747 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2748 2749 // Check for another def in the MBB. 2750 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2751 break; 2752 2753 // Lanes written by the new def are no longer tainted. 2754 const Val &OV = Other.Vals[OtherI->valno->id]; 2755 TaintedLanes &= ~OV.WriteLanes; 2756 if (!OV.RedefVNI) 2757 break; 2758 } while (TaintedLanes.any()); 2759 return true; 2760 } 2761 2762 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, 2763 LaneBitmask Lanes) const { 2764 if (MI.isDebugInstr()) 2765 return false; 2766 for (const MachineOperand &MO : MI.operands()) { 2767 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2768 continue; 2769 if (!MO.readsReg()) 2770 continue; 2771 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2772 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2773 return true; 2774 } 2775 return false; 2776 } 2777 2778 bool JoinVals::resolveConflicts(JoinVals &Other) { 2779 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2780 Val &V = Vals[i]; 2781 assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); 2782 if (V.Resolution != CR_Unresolved) 2783 continue; 2784 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@' 2785 << LR.getValNumInfo(i)->def << '\n'); 2786 if (SubRangeJoin) 2787 return false; 2788 2789 ++NumLaneConflicts; 2790 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2791 VNInfo *VNI = LR.getValNumInfo(i); 2792 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2793 2794 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2795 // join, those lanes will be tainted with a wrong value. Get the extent of 2796 // the tainted lanes. 2797 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2798 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2799 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2800 // Tainted lanes would extend beyond the basic block. 2801 return false; 2802 2803 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2804 2805 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2806 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2807 MachineBasicBlock::iterator MI = MBB->begin(); 2808 if (!VNI->isPHIDef()) { 2809 MI = Indexes->getInstructionFromIndex(VNI->def); 2810 // No need to check the instruction defining VNI for reads. 2811 ++MI; 2812 } 2813 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2814 "Interference ends on VNI->def. Should have been handled earlier"); 2815 MachineInstr *LastMI = 2816 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2817 assert(LastMI && "Range must end at a proper instruction"); 2818 unsigned TaintNum = 0; 2819 while (true) { 2820 assert(MI != MBB->end() && "Bad LastMI"); 2821 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2822 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2823 return false; 2824 } 2825 // LastMI is the last instruction to use the current value. 2826 if (&*MI == LastMI) { 2827 if (++TaintNum == TaintExtent.size()) 2828 break; 2829 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2830 assert(LastMI && "Range must end at a proper instruction"); 2831 TaintedLanes = TaintExtent[TaintNum].second; 2832 } 2833 ++MI; 2834 } 2835 2836 // The tainted lanes are unused. 2837 V.Resolution = CR_Replace; 2838 ++NumLaneResolves; 2839 } 2840 return true; 2841 } 2842 2843 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2844 Val &V = Vals[ValNo]; 2845 if (V.Pruned || V.PrunedComputed) 2846 return V.Pruned; 2847 2848 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2849 return V.Pruned; 2850 2851 // Follow copies up the dominator tree and check if any intermediate value 2852 // has been pruned. 2853 V.PrunedComputed = true; 2854 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2855 return V.Pruned; 2856 } 2857 2858 void JoinVals::pruneValues(JoinVals &Other, 2859 SmallVectorImpl<SlotIndex> &EndPoints, 2860 bool changeInstrs) { 2861 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2862 SlotIndex Def = LR.getValNumInfo(i)->def; 2863 switch (Vals[i].Resolution) { 2864 case CR_Keep: 2865 break; 2866 case CR_Replace: { 2867 // This value takes precedence over the value in Other.LR. 2868 LIS->pruneValue(Other.LR, Def, &EndPoints); 2869 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2870 // instructions are only inserted to provide a live-out value for PHI 2871 // predecessors, so the instruction should simply go away once its value 2872 // has been replaced. 2873 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2874 bool EraseImpDef = OtherV.ErasableImplicitDef && 2875 OtherV.Resolution == CR_Keep; 2876 if (!Def.isBlock()) { 2877 if (changeInstrs) { 2878 // Remove <def,read-undef> flags. This def is now a partial redef. 2879 // Also remove dead flags since the joined live range will 2880 // continue past this instruction. 2881 for (MachineOperand &MO : 2882 Indexes->getInstructionFromIndex(Def)->operands()) { 2883 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 2884 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) 2885 MO.setIsUndef(false); 2886 MO.setIsDead(false); 2887 } 2888 } 2889 } 2890 // This value will reach instructions below, but we need to make sure 2891 // the live range also reaches the instruction at Def. 2892 if (!EraseImpDef) 2893 EndPoints.push_back(Def); 2894 } 2895 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def 2896 << ": " << Other.LR << '\n'); 2897 break; 2898 } 2899 case CR_Erase: 2900 case CR_Merge: 2901 if (isPrunedValue(i, Other)) { 2902 // This value is ultimately a copy of a pruned value in LR or Other.LR. 2903 // We can no longer trust the value mapping computed by 2904 // computeAssignment(), the value that was originally copied could have 2905 // been replaced. 2906 LIS->pruneValue(LR, Def, &EndPoints); 2907 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at " 2908 << Def << ": " << LR << '\n'); 2909 } 2910 break; 2911 case CR_Unresolved: 2912 case CR_Impossible: 2913 llvm_unreachable("Unresolved conflicts"); 2914 } 2915 } 2916 } 2917 2918 /// Consider the following situation when coalescing the copy between 2919 /// %31 and %45 at 800. (The vertical lines represent live range segments.) 2920 /// 2921 /// Main range Subrange 0004 (sub2) 2922 /// %31 %45 %31 %45 2923 /// 544 %45 = COPY %28 + + 2924 /// | v1 | v1 2925 /// 560B bb.1: + + 2926 /// 624 = %45.sub2 | v2 | v2 2927 /// 800 %31 = COPY %45 + + + + 2928 /// | v0 | v0 2929 /// 816 %31.sub1 = ... + | 2930 /// 880 %30 = COPY %31 | v1 + 2931 /// 928 %45 = COPY %30 | + + 2932 /// | | v0 | v0 <--+ 2933 /// 992B ; backedge -> bb.1 | + + | 2934 /// 1040 = %31.sub0 + | 2935 /// This value must remain 2936 /// live-out! 2937 /// 2938 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes 2939 /// redundant, since it copies the value from %45 back into it. The 2940 /// conflict resolution for the main range determines that %45.v0 is 2941 /// to be erased, which is ok since %31.v1 is identical to it. 2942 /// The problem happens with the subrange for sub2: it has to be live 2943 /// on exit from the block, but since 928 was actually a point of 2944 /// definition of %45.sub2, %45.sub2 was not live immediately prior 2945 /// to that definition. As a result, when 928 was erased, the value v0 2946 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an 2947 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2, 2948 /// providing an incorrect value to the use at 624. 2949 /// 2950 /// Since the main-range values %31.v1 and %45.v0 were proved to be 2951 /// identical, the corresponding values in subranges must also be the 2952 /// same. A redundant copy is removed because it's not needed, and not 2953 /// because it copied an undefined value, so any liveness that originated 2954 /// from that copy cannot disappear. When pruning a value that started 2955 /// at the removed copy, the corresponding identical value must be 2956 /// extended to replace it. 2957 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 2958 // Look for values being erased. 2959 bool DidPrune = false; 2960 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2961 Val &V = Vals[i]; 2962 // We should trigger in all cases in which eraseInstrs() does something. 2963 // match what eraseInstrs() is doing, print a message so 2964 if (V.Resolution != CR_Erase && 2965 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)) 2966 continue; 2967 2968 // Check subranges at the point where the copy will be removed. 2969 SlotIndex Def = LR.getValNumInfo(i)->def; 2970 SlotIndex OtherDef; 2971 if (V.Identical) 2972 OtherDef = V.OtherVNI->def; 2973 2974 // Print message so mismatches with eraseInstrs() can be diagnosed. 2975 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def 2976 << '\n'); 2977 for (LiveInterval::SubRange &S : LI.subranges()) { 2978 LiveQueryResult Q = S.Query(Def); 2979 2980 // If a subrange starts at the copy then an undefined value has been 2981 // copied and we must remove that subrange value as well. 2982 VNInfo *ValueOut = Q.valueOutOrDead(); 2983 if (ValueOut != nullptr && Q.valueIn() == nullptr) { 2984 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 2985 << " at " << Def << "\n"); 2986 SmallVector<SlotIndex,8> EndPoints; 2987 LIS->pruneValue(S, Def, &EndPoints); 2988 DidPrune = true; 2989 // Mark value number as unused. 2990 ValueOut->markUnused(); 2991 2992 if (V.Identical && S.Query(OtherDef).valueOut()) { 2993 // If V is identical to V.OtherVNI (and S was live at OtherDef), 2994 // then we can't simply prune V from S. V needs to be replaced 2995 // with V.OtherVNI. 2996 LIS->extendToIndices(S, EndPoints); 2997 } 2998 continue; 2999 } 3000 // If a subrange ends at the copy, then a value was copied but only 3001 // partially used later. Shrink the subregister range appropriately. 3002 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 3003 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane " 3004 << PrintLaneMask(S.LaneMask) << " at " << Def 3005 << "\n"); 3006 ShrinkMask |= S.LaneMask; 3007 } 3008 } 3009 } 3010 if (DidPrune) 3011 LI.removeEmptySubRanges(); 3012 } 3013 3014 /// Check if any of the subranges of @p LI contain a definition at @p Def. 3015 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 3016 for (LiveInterval::SubRange &SR : LI.subranges()) { 3017 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 3018 if (VNI->def == Def) 3019 return true; 3020 } 3021 return false; 3022 } 3023 3024 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 3025 assert(&static_cast<LiveRange&>(LI) == &LR); 3026 3027 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3028 if (Vals[i].Resolution != CR_Keep) 3029 continue; 3030 VNInfo *VNI = LR.getValNumInfo(i); 3031 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 3032 continue; 3033 Vals[i].Pruned = true; 3034 ShrinkMainRange = true; 3035 } 3036 } 3037 3038 void JoinVals::removeImplicitDefs() { 3039 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3040 Val &V = Vals[i]; 3041 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 3042 continue; 3043 3044 VNInfo *VNI = LR.getValNumInfo(i); 3045 VNI->markUnused(); 3046 LR.removeValNo(VNI); 3047 } 3048 } 3049 3050 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 3051 SmallVectorImpl<unsigned> &ShrinkRegs, 3052 LiveInterval *LI) { 3053 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3054 // Get the def location before markUnused() below invalidates it. 3055 SlotIndex Def = LR.getValNumInfo(i)->def; 3056 switch (Vals[i].Resolution) { 3057 case CR_Keep: { 3058 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 3059 // longer. The IMPLICIT_DEF instructions are only inserted by 3060 // PHIElimination to guarantee that all PHI predecessors have a value. 3061 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 3062 break; 3063 // Remove value number i from LR. 3064 // For intervals with subranges, removing a segment from the main range 3065 // may require extending the previous segment: for each definition of 3066 // a subregister, there will be a corresponding def in the main range. 3067 // That def may fall in the middle of a segment from another subrange. 3068 // In such cases, removing this def from the main range must be 3069 // complemented by extending the main range to account for the liveness 3070 // of the other subrange. 3071 VNInfo *VNI = LR.getValNumInfo(i); 3072 SlotIndex Def = VNI->def; 3073 // The new end point of the main range segment to be extended. 3074 SlotIndex NewEnd; 3075 if (LI != nullptr) { 3076 LiveRange::iterator I = LR.FindSegmentContaining(Def); 3077 assert(I != LR.end()); 3078 // Do not extend beyond the end of the segment being removed. 3079 // The segment may have been pruned in preparation for joining 3080 // live ranges. 3081 NewEnd = I->end; 3082 } 3083 3084 LR.removeValNo(VNI); 3085 // Note that this VNInfo is reused and still referenced in NewVNInfo, 3086 // make it appear like an unused value number. 3087 VNI->markUnused(); 3088 3089 if (LI != nullptr && LI->hasSubRanges()) { 3090 assert(static_cast<LiveRange*>(LI) == &LR); 3091 // Determine the end point based on the subrange information: 3092 // minimum of (earliest def of next segment, 3093 // latest end point of containing segment) 3094 SlotIndex ED, LE; 3095 for (LiveInterval::SubRange &SR : LI->subranges()) { 3096 LiveRange::iterator I = SR.find(Def); 3097 if (I == SR.end()) 3098 continue; 3099 if (I->start > Def) 3100 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 3101 else 3102 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 3103 } 3104 if (LE.isValid()) 3105 NewEnd = std::min(NewEnd, LE); 3106 if (ED.isValid()) 3107 NewEnd = std::min(NewEnd, ED); 3108 3109 // We only want to do the extension if there was a subrange that 3110 // was live across Def. 3111 if (LE.isValid()) { 3112 LiveRange::iterator S = LR.find(Def); 3113 if (S != LR.begin()) 3114 std::prev(S)->end = NewEnd; 3115 } 3116 } 3117 LLVM_DEBUG({ 3118 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 3119 if (LI != nullptr) 3120 dbgs() << "\t\t LHS = " << *LI << '\n'; 3121 }); 3122 LLVM_FALLTHROUGH; 3123 } 3124 3125 case CR_Erase: { 3126 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 3127 assert(MI && "No instruction to erase"); 3128 if (MI->isCopy()) { 3129 unsigned Reg = MI->getOperand(1).getReg(); 3130 if (TargetRegisterInfo::isVirtualRegister(Reg) && 3131 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 3132 ShrinkRegs.push_back(Reg); 3133 } 3134 ErasedInstrs.insert(MI); 3135 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 3136 LIS->RemoveMachineInstrFromMaps(*MI); 3137 MI->eraseFromParent(); 3138 break; 3139 } 3140 default: 3141 break; 3142 } 3143 } 3144 } 3145 3146 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 3147 LaneBitmask LaneMask, 3148 const CoalescerPair &CP) { 3149 SmallVector<VNInfo*, 16> NewVNInfo; 3150 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 3151 NewVNInfo, CP, LIS, TRI, true, true); 3152 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 3153 NewVNInfo, CP, LIS, TRI, true, true); 3154 3155 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 3156 // We should be able to resolve all conflicts here as we could successfully do 3157 // it on the mainrange already. There is however a problem when multiple 3158 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 3159 // interferences. 3160 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 3161 // We already determined that it is legal to merge the intervals, so this 3162 // should never fail. 3163 llvm_unreachable("*** Couldn't join subrange!\n"); 3164 } 3165 if (!LHSVals.resolveConflicts(RHSVals) || 3166 !RHSVals.resolveConflicts(LHSVals)) { 3167 // We already determined that it is legal to merge the intervals, so this 3168 // should never fail. 3169 llvm_unreachable("*** Couldn't join subrange!\n"); 3170 } 3171 3172 // The merging algorithm in LiveInterval::join() can't handle conflicting 3173 // value mappings, so we need to remove any live ranges that overlap a 3174 // CR_Replace resolution. Collect a set of end points that can be used to 3175 // restore the live range after joining. 3176 SmallVector<SlotIndex, 8> EndPoints; 3177 LHSVals.pruneValues(RHSVals, EndPoints, false); 3178 RHSVals.pruneValues(LHSVals, EndPoints, false); 3179 3180 LHSVals.removeImplicitDefs(); 3181 RHSVals.removeImplicitDefs(); 3182 3183 LRange.verify(); 3184 RRange.verify(); 3185 3186 // Join RRange into LHS. 3187 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 3188 NewVNInfo); 3189 3190 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask) 3191 << ' ' << LRange << "\n"); 3192 if (EndPoints.empty()) 3193 return; 3194 3195 // Recompute the parts of the live range we had to remove because of 3196 // CR_Replace conflicts. 3197 LLVM_DEBUG({ 3198 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3199 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3200 dbgs() << EndPoints[i]; 3201 if (i != n-1) 3202 dbgs() << ','; 3203 } 3204 dbgs() << ": " << LRange << '\n'; 3205 }); 3206 LIS->extendToIndices(LRange, EndPoints); 3207 } 3208 3209 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 3210 const LiveRange &ToMerge, 3211 LaneBitmask LaneMask, 3212 CoalescerPair &CP) { 3213 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3214 LI.refineSubRanges(Allocator, LaneMask, 3215 [this,&Allocator,&ToMerge,&CP](LiveInterval::SubRange &SR) { 3216 if (SR.empty()) { 3217 SR.assign(ToMerge, Allocator); 3218 } else { 3219 // joinSubRegRange() destroys the merged range, so we need a copy. 3220 LiveRange RangeCopy(ToMerge, Allocator); 3221 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 3222 } 3223 }); 3224 } 3225 3226 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 3227 SmallVector<VNInfo*, 16> NewVNInfo; 3228 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 3229 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 3230 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 3231 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 3232 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3233 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 3234 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3235 3236 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n'); 3237 3238 // First compute NewVNInfo and the simple value mappings. 3239 // Detect impossible conflicts early. 3240 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 3241 return false; 3242 3243 // Some conflicts can only be resolved after all values have been mapped. 3244 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 3245 return false; 3246 3247 // All clear, the live ranges can be merged. 3248 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 3249 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3250 3251 // Transform lanemasks from the LHS to masks in the coalesced register and 3252 // create initial subranges if necessary. 3253 unsigned DstIdx = CP.getDstIdx(); 3254 if (!LHS.hasSubRanges()) { 3255 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 3256 : TRI->getSubRegIndexLaneMask(DstIdx); 3257 // LHS must support subregs or we wouldn't be in this codepath. 3258 assert(Mask.any()); 3259 LHS.createSubRangeFrom(Allocator, Mask, LHS); 3260 } else if (DstIdx != 0) { 3261 // Transform LHS lanemasks to new register class if necessary. 3262 for (LiveInterval::SubRange &R : LHS.subranges()) { 3263 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 3264 R.LaneMask = Mask; 3265 } 3266 } 3267 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS 3268 << '\n'); 3269 3270 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3271 unsigned SrcIdx = CP.getSrcIdx(); 3272 if (!RHS.hasSubRanges()) { 3273 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3274 : TRI->getSubRegIndexLaneMask(SrcIdx); 3275 mergeSubRangeInto(LHS, RHS, Mask, CP); 3276 } else { 3277 // Pair up subranges and merge. 3278 for (LiveInterval::SubRange &R : RHS.subranges()) { 3279 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3280 mergeSubRangeInto(LHS, R, Mask, CP); 3281 } 3282 } 3283 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3284 3285 // Pruning implicit defs from subranges may result in the main range 3286 // having stale segments. 3287 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3288 3289 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3290 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3291 } 3292 3293 // The merging algorithm in LiveInterval::join() can't handle conflicting 3294 // value mappings, so we need to remove any live ranges that overlap a 3295 // CR_Replace resolution. Collect a set of end points that can be used to 3296 // restore the live range after joining. 3297 SmallVector<SlotIndex, 8> EndPoints; 3298 LHSVals.pruneValues(RHSVals, EndPoints, true); 3299 RHSVals.pruneValues(LHSVals, EndPoints, true); 3300 3301 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3302 // registers to require trimming. 3303 SmallVector<unsigned, 8> ShrinkRegs; 3304 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3305 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3306 while (!ShrinkRegs.empty()) 3307 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3308 3309 // Join RHS into LHS. 3310 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3311 3312 // Kill flags are going to be wrong if the live ranges were overlapping. 3313 // Eventually, we should simply clear all kill flags when computing live 3314 // ranges. They are reinserted after register allocation. 3315 MRI->clearKillFlags(LHS.reg); 3316 MRI->clearKillFlags(RHS.reg); 3317 3318 if (!EndPoints.empty()) { 3319 // Recompute the parts of the live range we had to remove because of 3320 // CR_Replace conflicts. 3321 LLVM_DEBUG({ 3322 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3323 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3324 dbgs() << EndPoints[i]; 3325 if (i != n-1) 3326 dbgs() << ','; 3327 } 3328 dbgs() << ": " << LHS << '\n'; 3329 }); 3330 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3331 } 3332 3333 return true; 3334 } 3335 3336 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3337 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3338 } 3339 3340 namespace { 3341 3342 /// Information concerning MBB coalescing priority. 3343 struct MBBPriorityInfo { 3344 MachineBasicBlock *MBB; 3345 unsigned Depth; 3346 bool IsSplit; 3347 3348 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3349 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3350 }; 3351 3352 } // end anonymous namespace 3353 3354 /// C-style comparator that sorts first based on the loop depth of the basic 3355 /// block (the unsigned), and then on the MBB number. 3356 /// 3357 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3358 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3359 const MBBPriorityInfo *RHS) { 3360 // Deeper loops first 3361 if (LHS->Depth != RHS->Depth) 3362 return LHS->Depth > RHS->Depth ? -1 : 1; 3363 3364 // Try to unsplit critical edges next. 3365 if (LHS->IsSplit != RHS->IsSplit) 3366 return LHS->IsSplit ? -1 : 1; 3367 3368 // Prefer blocks that are more connected in the CFG. This takes care of 3369 // the most difficult copies first while intervals are short. 3370 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3371 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3372 if (cl != cr) 3373 return cl > cr ? -1 : 1; 3374 3375 // As a last resort, sort by block number. 3376 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3377 } 3378 3379 /// \returns true if the given copy uses or defines a local live range. 3380 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3381 if (!Copy->isCopy()) 3382 return false; 3383 3384 if (Copy->getOperand(1).isUndef()) 3385 return false; 3386 3387 unsigned SrcReg = Copy->getOperand(1).getReg(); 3388 unsigned DstReg = Copy->getOperand(0).getReg(); 3389 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 3390 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 3391 return false; 3392 3393 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3394 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3395 } 3396 3397 void RegisterCoalescer::lateLiveIntervalUpdate() { 3398 for (unsigned reg : ToBeUpdated) { 3399 if (!LIS->hasInterval(reg)) 3400 continue; 3401 LiveInterval &LI = LIS->getInterval(reg); 3402 shrinkToUses(&LI, &DeadDefs); 3403 if (!DeadDefs.empty()) 3404 eliminateDeadDefs(); 3405 } 3406 ToBeUpdated.clear(); 3407 } 3408 3409 bool RegisterCoalescer:: 3410 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3411 bool Progress = false; 3412 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3413 if (!CurrList[i]) 3414 continue; 3415 // Skip instruction pointers that have already been erased, for example by 3416 // dead code elimination. 3417 if (ErasedInstrs.count(CurrList[i])) { 3418 CurrList[i] = nullptr; 3419 continue; 3420 } 3421 bool Again = false; 3422 bool Success = joinCopy(CurrList[i], Again); 3423 Progress |= Success; 3424 if (Success || !Again) 3425 CurrList[i] = nullptr; 3426 } 3427 return Progress; 3428 } 3429 3430 /// Check if DstReg is a terminal node. 3431 /// I.e., it does not have any affinity other than \p Copy. 3432 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 3433 const MachineRegisterInfo *MRI) { 3434 assert(Copy.isCopyLike()); 3435 // Check if the destination of this copy as any other affinity. 3436 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3437 if (&MI != &Copy && MI.isCopyLike()) 3438 return false; 3439 return true; 3440 } 3441 3442 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3443 assert(Copy.isCopyLike()); 3444 if (!UseTerminalRule) 3445 return false; 3446 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 3447 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg); 3448 // Check if the destination of this copy has any other affinity. 3449 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 3450 // If SrcReg is a physical register, the copy won't be coalesced. 3451 // Ignoring it may have other side effect (like missing 3452 // rematerialization). So keep it. 3453 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 3454 !isTerminalReg(DstReg, Copy, MRI)) 3455 return false; 3456 3457 // DstReg is a terminal node. Check if it interferes with any other 3458 // copy involving SrcReg. 3459 const MachineBasicBlock *OrigBB = Copy.getParent(); 3460 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3461 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3462 // Technically we should check if the weight of the new copy is 3463 // interesting compared to the other one and update the weight 3464 // of the copies accordingly. However, this would only work if 3465 // we would gather all the copies first then coalesce, whereas 3466 // right now we interleave both actions. 3467 // For now, just consider the copies that are in the same block. 3468 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3469 continue; 3470 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 3471 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3472 OtherSubReg); 3473 if (OtherReg == SrcReg) 3474 OtherReg = OtherSrcReg; 3475 // Check if OtherReg is a non-terminal. 3476 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) || 3477 isTerminalReg(OtherReg, MI, MRI)) 3478 continue; 3479 // Check that OtherReg interfere with DstReg. 3480 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3481 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) 3482 << '\n'); 3483 return true; 3484 } 3485 } 3486 return false; 3487 } 3488 3489 void 3490 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3491 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n"); 3492 3493 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3494 // yet, it might invalidate the iterator. 3495 const unsigned PrevSize = WorkList.size(); 3496 if (JoinGlobalCopies) { 3497 SmallVector<MachineInstr*, 2> LocalTerminals; 3498 SmallVector<MachineInstr*, 2> GlobalTerminals; 3499 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3500 // are not inherently easier to resolve, but slightly preferable until we 3501 // have local live range splitting. In particular this is required by 3502 // cmp+jmp macro fusion. 3503 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3504 MII != E; ++MII) { 3505 if (!MII->isCopyLike()) 3506 continue; 3507 bool ApplyTerminalRule = applyTerminalRule(*MII); 3508 if (isLocalCopy(&(*MII), LIS)) { 3509 if (ApplyTerminalRule) 3510 LocalTerminals.push_back(&(*MII)); 3511 else 3512 LocalWorkList.push_back(&(*MII)); 3513 } else { 3514 if (ApplyTerminalRule) 3515 GlobalTerminals.push_back(&(*MII)); 3516 else 3517 WorkList.push_back(&(*MII)); 3518 } 3519 } 3520 // Append the copies evicted by the terminal rule at the end of the list. 3521 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3522 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3523 } 3524 else { 3525 SmallVector<MachineInstr*, 2> Terminals; 3526 for (MachineInstr &MII : *MBB) 3527 if (MII.isCopyLike()) { 3528 if (applyTerminalRule(MII)) 3529 Terminals.push_back(&MII); 3530 else 3531 WorkList.push_back(&MII); 3532 } 3533 // Append the copies evicted by the terminal rule at the end of the list. 3534 WorkList.append(Terminals.begin(), Terminals.end()); 3535 } 3536 // Try coalescing the collected copies immediately, and remove the nulls. 3537 // This prevents the WorkList from getting too large since most copies are 3538 // joinable on the first attempt. 3539 MutableArrayRef<MachineInstr*> 3540 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3541 if (copyCoalesceWorkList(CurrList)) 3542 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3543 nullptr), WorkList.end()); 3544 } 3545 3546 void RegisterCoalescer::coalesceLocals() { 3547 copyCoalesceWorkList(LocalWorkList); 3548 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3549 if (LocalWorkList[j]) 3550 WorkList.push_back(LocalWorkList[j]); 3551 } 3552 LocalWorkList.clear(); 3553 } 3554 3555 void RegisterCoalescer::joinAllIntervals() { 3556 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3557 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3558 3559 std::vector<MBBPriorityInfo> MBBs; 3560 MBBs.reserve(MF->size()); 3561 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3562 MachineBasicBlock *MBB = &*I; 3563 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3564 JoinSplitEdges && isSplitEdge(MBB))); 3565 } 3566 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3567 3568 // Coalesce intervals in MBB priority order. 3569 unsigned CurrDepth = std::numeric_limits<unsigned>::max(); 3570 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3571 // Try coalescing the collected local copies for deeper loops. 3572 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3573 coalesceLocals(); 3574 CurrDepth = MBBs[i].Depth; 3575 } 3576 copyCoalesceInMBB(MBBs[i].MBB); 3577 } 3578 lateLiveIntervalUpdate(); 3579 coalesceLocals(); 3580 3581 // Joining intervals can allow other intervals to be joined. Iteratively join 3582 // until we make no progress. 3583 while (copyCoalesceWorkList(WorkList)) 3584 /* empty */ ; 3585 lateLiveIntervalUpdate(); 3586 } 3587 3588 void RegisterCoalescer::releaseMemory() { 3589 ErasedInstrs.clear(); 3590 WorkList.clear(); 3591 DeadDefs.clear(); 3592 InflateRegs.clear(); 3593 } 3594 3595 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3596 MF = &fn; 3597 MRI = &fn.getRegInfo(); 3598 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3599 TRI = STI.getRegisterInfo(); 3600 TII = STI.getInstrInfo(); 3601 LIS = &getAnalysis<LiveIntervals>(); 3602 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3603 Loops = &getAnalysis<MachineLoopInfo>(); 3604 if (EnableGlobalCopies == cl::BOU_UNSET) 3605 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3606 else 3607 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3608 3609 // The MachineScheduler does not currently require JoinSplitEdges. This will 3610 // either be enabled unconditionally or replaced by a more general live range 3611 // splitting optimization. 3612 JoinSplitEdges = EnableJoinSplits; 3613 3614 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3615 << "********** Function: " << MF->getName() << '\n'); 3616 3617 if (VerifyCoalescing) 3618 MF->verify(this, "Before register coalescing"); 3619 3620 RegClassInfo.runOnMachineFunction(fn); 3621 3622 // Join (coalesce) intervals if requested. 3623 if (EnableJoining) 3624 joinAllIntervals(); 3625 3626 // After deleting a lot of copies, register classes may be less constrained. 3627 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3628 // DPR inflation. 3629 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3630 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3631 InflateRegs.end()); 3632 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() 3633 << " regs.\n"); 3634 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3635 unsigned Reg = InflateRegs[i]; 3636 if (MRI->reg_nodbg_empty(Reg)) 3637 continue; 3638 if (MRI->recomputeRegClass(Reg)) { 3639 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to " 3640 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3641 ++NumInflated; 3642 3643 LiveInterval &LI = LIS->getInterval(Reg); 3644 if (LI.hasSubRanges()) { 3645 // If the inflated register class does not support subregisters anymore 3646 // remove the subranges. 3647 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3648 LI.clearSubRanges(); 3649 } else { 3650 #ifndef NDEBUG 3651 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3652 // If subranges are still supported, then the same subregs 3653 // should still be supported. 3654 for (LiveInterval::SubRange &S : LI.subranges()) { 3655 assert((S.LaneMask & ~MaxMask).none()); 3656 } 3657 #endif 3658 } 3659 } 3660 } 3661 } 3662 3663 LLVM_DEBUG(dump()); 3664 if (VerifyCoalescing) 3665 MF->verify(this, "After register coalescing"); 3666 return true; 3667 } 3668 3669 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3670 LIS->print(O, m); 3671 } 3672