1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the generic RegisterCoalescer interface which
11 // is used as the common interface used by all clients and
12 // implementations of register coalescing.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "RegisterCoalescer.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/LiveInterval.h"
26 #include "llvm/CodeGen/LiveIntervals.h"
27 #include "llvm/CodeGen/LiveRangeEdit.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/RegisterClassInfo.h"
38 #include "llvm/CodeGen/SlotIndexes.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetOpcodes.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSubtargetInfo.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/MC/MCInstrDesc.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <iterator>
56 #include <limits>
57 #include <tuple>
58 #include <utility>
59 #include <vector>
60 
61 using namespace llvm;
62 
63 #define DEBUG_TYPE "regalloc"
64 
65 STATISTIC(numJoins    , "Number of interval joins performed");
66 STATISTIC(numCrossRCs , "Number of cross class joins performed");
67 STATISTIC(numCommutes , "Number of instruction commuting performed");
68 STATISTIC(numExtends  , "Number of copies extended");
69 STATISTIC(NumReMats   , "Number of instructions re-materialized");
70 STATISTIC(NumInflated , "Number of register classes inflated");
71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
72 STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
73 STATISTIC(NumShrinkToUses,  "Number of shrinkToUses called");
74 
75 static cl::opt<bool> EnableJoining("join-liveintervals",
76                                    cl::desc("Coalesce copies (default=true)"),
77                                    cl::init(true), cl::Hidden);
78 
79 static cl::opt<bool> UseTerminalRule("terminal-rule",
80                                      cl::desc("Apply the terminal rule"),
81                                      cl::init(false), cl::Hidden);
82 
83 /// Temporary flag to test critical edge unsplitting.
84 static cl::opt<bool>
85 EnableJoinSplits("join-splitedges",
86   cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87 
88 /// Temporary flag to test global copy optimization.
89 static cl::opt<cl::boolOrDefault>
90 EnableGlobalCopies("join-globalcopies",
91   cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92   cl::init(cl::BOU_UNSET), cl::Hidden);
93 
94 static cl::opt<bool>
95 VerifyCoalescing("verify-coalescing",
96          cl::desc("Verify machine instrs before and after register coalescing"),
97          cl::Hidden);
98 
99 static cl::opt<unsigned> LateRematUpdateThreshold(
100     "late-remat-update-threshold", cl::Hidden,
101     cl::desc("During rematerialization for a copy, if the def instruction has "
102              "many other copy uses to be rematerialized, delay the multiple "
103              "separate live interval update work and do them all at once after "
104              "all those rematerialization are done. It will save a lot of "
105              "repeated work. "),
106     cl::init(100));
107 
108 namespace {
109 
110   class RegisterCoalescer : public MachineFunctionPass,
111                             private LiveRangeEdit::Delegate {
112     MachineFunction* MF;
113     MachineRegisterInfo* MRI;
114     const TargetRegisterInfo* TRI;
115     const TargetInstrInfo* TII;
116     LiveIntervals *LIS;
117     const MachineLoopInfo* Loops;
118     AliasAnalysis *AA;
119     RegisterClassInfo RegClassInfo;
120 
121     /// A LaneMask to remember on which subregister live ranges we need to call
122     /// shrinkToUses() later.
123     LaneBitmask ShrinkMask;
124 
125     /// True if the main range of the currently coalesced intervals should be
126     /// checked for smaller live intervals.
127     bool ShrinkMainRange;
128 
129     /// True if the coalescer should aggressively coalesce global copies
130     /// in favor of keeping local copies.
131     bool JoinGlobalCopies;
132 
133     /// True if the coalescer should aggressively coalesce fall-thru
134     /// blocks exclusively containing copies.
135     bool JoinSplitEdges;
136 
137     /// Copy instructions yet to be coalesced.
138     SmallVector<MachineInstr*, 8> WorkList;
139     SmallVector<MachineInstr*, 8> LocalWorkList;
140 
141     /// Set of instruction pointers that have been erased, and
142     /// that may be present in WorkList.
143     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
144 
145     /// Dead instructions that are about to be deleted.
146     SmallVector<MachineInstr*, 8> DeadDefs;
147 
148     /// Virtual registers to be considered for register class inflation.
149     SmallVector<unsigned, 8> InflateRegs;
150 
151     /// The collection of live intervals which should have been updated
152     /// immediately after rematerialiation but delayed until
153     /// lateLiveIntervalUpdate is called.
154     DenseSet<unsigned> ToBeUpdated;
155 
156     /// Recursively eliminate dead defs in DeadDefs.
157     void eliminateDeadDefs();
158 
159     /// LiveRangeEdit callback for eliminateDeadDefs().
160     void LRE_WillEraseInstruction(MachineInstr *MI) override;
161 
162     /// Coalesce the LocalWorkList.
163     void coalesceLocals();
164 
165     /// Join compatible live intervals
166     void joinAllIntervals();
167 
168     /// Coalesce copies in the specified MBB, putting
169     /// copies that cannot yet be coalesced into WorkList.
170     void copyCoalesceInMBB(MachineBasicBlock *MBB);
171 
172     /// Tries to coalesce all copies in CurrList. Returns true if any progress
173     /// was made.
174     bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
175 
176     /// If one def has many copy like uses, and those copy uses are all
177     /// rematerialized, the live interval update needed for those
178     /// rematerializations will be delayed and done all at once instead
179     /// of being done multiple times. This is to save compile cost becuase
180     /// live interval update is costly.
181     void lateLiveIntervalUpdate();
182 
183     /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
184     /// src/dst of the copy instruction CopyMI.  This returns true if the copy
185     /// was successfully coalesced away. If it is not currently possible to
186     /// coalesce this interval, but it may be possible if other things get
187     /// coalesced, then it returns true by reference in 'Again'.
188     bool joinCopy(MachineInstr *CopyMI, bool &Again);
189 
190     /// Attempt to join these two intervals.  On failure, this
191     /// returns false.  The output "SrcInt" will not have been modified, so we
192     /// can use this information below to update aliases.
193     bool joinIntervals(CoalescerPair &CP);
194 
195     /// Attempt joining two virtual registers. Return true on success.
196     bool joinVirtRegs(CoalescerPair &CP);
197 
198     /// Attempt joining with a reserved physreg.
199     bool joinReservedPhysReg(CoalescerPair &CP);
200 
201     /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
202     /// Subranges in @p LI which only partially interfere with the desired
203     /// LaneMask are split as necessary. @p LaneMask are the lanes that
204     /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
205     /// lanemasks already adjusted to the coalesced register.
206     void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
207                            LaneBitmask LaneMask, CoalescerPair &CP);
208 
209     /// Join the liveranges of two subregisters. Joins @p RRange into
210     /// @p LRange, @p RRange may be invalid afterwards.
211     void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
212                           LaneBitmask LaneMask, const CoalescerPair &CP);
213 
214     /// We found a non-trivially-coalescable copy. If the source value number is
215     /// defined by a copy from the destination reg see if we can merge these two
216     /// destination reg valno# into a single value number, eliminating a copy.
217     /// This returns true if an interval was modified.
218     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
219 
220     /// Return true if there are definitions of IntB
221     /// other than BValNo val# that can reach uses of AValno val# of IntA.
222     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
223                               VNInfo *AValNo, VNInfo *BValNo);
224 
225     /// We found a non-trivially-coalescable copy.
226     /// If the source value number is defined by a commutable instruction and
227     /// its other operand is coalesced to the copy dest register, see if we
228     /// can transform the copy into a noop by commuting the definition.
229     /// This returns a pair of two flags:
230     /// - the first element is true if an interval was modified,
231     /// - the second element is true if the destination interval needs
232     ///   to be shrunk after deleting the copy.
233     std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
234                                                   MachineInstr *CopyMI);
235 
236     /// We found a copy which can be moved to its less frequent predecessor.
237     bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
238 
239     /// If the source of a copy is defined by a
240     /// trivial computation, replace the copy by rematerialize the definition.
241     bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
242                                  bool &IsDefCopy);
243 
244     /// Return true if a copy involving a physreg should be joined.
245     bool canJoinPhys(const CoalescerPair &CP);
246 
247     /// Replace all defs and uses of SrcReg to DstReg and update the subregister
248     /// number if it is not zero. If DstReg is a physical register and the
249     /// existing subregister number of the def / use being updated is not zero,
250     /// make sure to set it to the correct physical subregister.
251     void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
252 
253     /// If the given machine operand reads only undefined lanes add an undef
254     /// flag.
255     /// This can happen when undef uses were previously concealed by a copy
256     /// which we coalesced. Example:
257     ///    %0:sub0<def,read-undef> = ...
258     ///    %1 = COPY %0           <-- Coalescing COPY reveals undef
259     ///       = use %1:sub1       <-- hidden undef use
260     void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
261                       MachineOperand &MO, unsigned SubRegIdx);
262 
263     /// Handle copies of undef values. If the undef value is an incoming
264     /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
265     /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
266     /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
267     MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
268 
269     /// Check whether or not we should apply the terminal rule on the
270     /// destination (Dst) of \p Copy.
271     /// When the terminal rule applies, Copy is not profitable to
272     /// coalesce.
273     /// Dst is terminal if it has exactly one affinity (Dst, Src) and
274     /// at least one interference (Dst, Dst2). If Dst is terminal, the
275     /// terminal rule consists in checking that at least one of
276     /// interfering node, say Dst2, has an affinity of equal or greater
277     /// weight with Src.
278     /// In that case, Dst2 and Dst will not be able to be both coalesced
279     /// with Src. Since Dst2 exposes more coalescing opportunities than
280     /// Dst, we can drop \p Copy.
281     bool applyTerminalRule(const MachineInstr &Copy) const;
282 
283     /// Wrapper method for \see LiveIntervals::shrinkToUses.
284     /// This method does the proper fixing of the live-ranges when the afore
285     /// mentioned method returns true.
286     void shrinkToUses(LiveInterval *LI,
287                       SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
288       NumShrinkToUses++;
289       if (LIS->shrinkToUses(LI, Dead)) {
290         /// Check whether or not \p LI is composed by multiple connected
291         /// components and if that is the case, fix that.
292         SmallVector<LiveInterval*, 8> SplitLIs;
293         LIS->splitSeparateComponents(*LI, SplitLIs);
294       }
295     }
296 
297     /// Wrapper Method to do all the necessary work when an Instruction is
298     /// deleted.
299     /// Optimizations should use this to make sure that deleted instructions
300     /// are always accounted for.
301     void deleteInstr(MachineInstr* MI) {
302       ErasedInstrs.insert(MI);
303       LIS->RemoveMachineInstrFromMaps(*MI);
304       MI->eraseFromParent();
305     }
306 
307   public:
308     static char ID; ///< Class identification, replacement for typeinfo
309 
310     RegisterCoalescer() : MachineFunctionPass(ID) {
311       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
312     }
313 
314     void getAnalysisUsage(AnalysisUsage &AU) const override;
315 
316     void releaseMemory() override;
317 
318     /// This is the pass entry point.
319     bool runOnMachineFunction(MachineFunction&) override;
320 
321     /// Implement the dump method.
322     void print(raw_ostream &O, const Module* = nullptr) const override;
323   };
324 
325 } // end anonymous namespace
326 
327 char RegisterCoalescer::ID = 0;
328 
329 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
330 
331 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
332                       "Simple Register Coalescing", false, false)
333 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
334 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
335 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
336 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
337 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
338                     "Simple Register Coalescing", false, false)
339 
340 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
341                         unsigned &Src, unsigned &Dst,
342                         unsigned &SrcSub, unsigned &DstSub) {
343   if (MI->isCopy()) {
344     Dst = MI->getOperand(0).getReg();
345     DstSub = MI->getOperand(0).getSubReg();
346     Src = MI->getOperand(1).getReg();
347     SrcSub = MI->getOperand(1).getSubReg();
348   } else if (MI->isSubregToReg()) {
349     Dst = MI->getOperand(0).getReg();
350     DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
351                                       MI->getOperand(3).getImm());
352     Src = MI->getOperand(2).getReg();
353     SrcSub = MI->getOperand(2).getSubReg();
354   } else
355     return false;
356   return true;
357 }
358 
359 /// Return true if this block should be vacated by the coalescer to eliminate
360 /// branches. The important cases to handle in the coalescer are critical edges
361 /// split during phi elimination which contain only copies. Simple blocks that
362 /// contain non-branches should also be vacated, but this can be handled by an
363 /// earlier pass similar to early if-conversion.
364 static bool isSplitEdge(const MachineBasicBlock *MBB) {
365   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
366     return false;
367 
368   for (const auto &MI : *MBB) {
369     if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
370       return false;
371   }
372   return true;
373 }
374 
375 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
376   SrcReg = DstReg = 0;
377   SrcIdx = DstIdx = 0;
378   NewRC = nullptr;
379   Flipped = CrossClass = false;
380 
381   unsigned Src, Dst, SrcSub, DstSub;
382   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
383     return false;
384   Partial = SrcSub || DstSub;
385 
386   // If one register is a physreg, it must be Dst.
387   if (TargetRegisterInfo::isPhysicalRegister(Src)) {
388     if (TargetRegisterInfo::isPhysicalRegister(Dst))
389       return false;
390     std::swap(Src, Dst);
391     std::swap(SrcSub, DstSub);
392     Flipped = true;
393   }
394 
395   const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
396 
397   if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
398     // Eliminate DstSub on a physreg.
399     if (DstSub) {
400       Dst = TRI.getSubReg(Dst, DstSub);
401       if (!Dst) return false;
402       DstSub = 0;
403     }
404 
405     // Eliminate SrcSub by picking a corresponding Dst superregister.
406     if (SrcSub) {
407       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
408       if (!Dst) return false;
409     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
410       return false;
411     }
412   } else {
413     // Both registers are virtual.
414     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
415     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
416 
417     // Both registers have subreg indices.
418     if (SrcSub && DstSub) {
419       // Copies between different sub-registers are never coalescable.
420       if (Src == Dst && SrcSub != DstSub)
421         return false;
422 
423       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
424                                          SrcIdx, DstIdx);
425       if (!NewRC)
426         return false;
427     } else if (DstSub) {
428       // SrcReg will be merged with a sub-register of DstReg.
429       SrcIdx = DstSub;
430       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
431     } else if (SrcSub) {
432       // DstReg will be merged with a sub-register of SrcReg.
433       DstIdx = SrcSub;
434       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
435     } else {
436       // This is a straight copy without sub-registers.
437       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
438     }
439 
440     // The combined constraint may be impossible to satisfy.
441     if (!NewRC)
442       return false;
443 
444     // Prefer SrcReg to be a sub-register of DstReg.
445     // FIXME: Coalescer should support subregs symmetrically.
446     if (DstIdx && !SrcIdx) {
447       std::swap(Src, Dst);
448       std::swap(SrcIdx, DstIdx);
449       Flipped = !Flipped;
450     }
451 
452     CrossClass = NewRC != DstRC || NewRC != SrcRC;
453   }
454   // Check our invariants
455   assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
456   assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
457          "Cannot have a physical SubIdx");
458   SrcReg = Src;
459   DstReg = Dst;
460   return true;
461 }
462 
463 bool CoalescerPair::flip() {
464   if (TargetRegisterInfo::isPhysicalRegister(DstReg))
465     return false;
466   std::swap(SrcReg, DstReg);
467   std::swap(SrcIdx, DstIdx);
468   Flipped = !Flipped;
469   return true;
470 }
471 
472 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
473   if (!MI)
474     return false;
475   unsigned Src, Dst, SrcSub, DstSub;
476   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
477     return false;
478 
479   // Find the virtual register that is SrcReg.
480   if (Dst == SrcReg) {
481     std::swap(Src, Dst);
482     std::swap(SrcSub, DstSub);
483   } else if (Src != SrcReg) {
484     return false;
485   }
486 
487   // Now check that Dst matches DstReg.
488   if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
489     if (!TargetRegisterInfo::isPhysicalRegister(Dst))
490       return false;
491     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
492     // DstSub could be set for a physreg from INSERT_SUBREG.
493     if (DstSub)
494       Dst = TRI.getSubReg(Dst, DstSub);
495     // Full copy of Src.
496     if (!SrcSub)
497       return DstReg == Dst;
498     // This is a partial register copy. Check that the parts match.
499     return TRI.getSubReg(DstReg, SrcSub) == Dst;
500   } else {
501     // DstReg is virtual.
502     if (DstReg != Dst)
503       return false;
504     // Registers match, do the subregisters line up?
505     return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
506            TRI.composeSubRegIndices(DstIdx, DstSub);
507   }
508 }
509 
510 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
511   AU.setPreservesCFG();
512   AU.addRequired<AAResultsWrapperPass>();
513   AU.addRequired<LiveIntervals>();
514   AU.addPreserved<LiveIntervals>();
515   AU.addPreserved<SlotIndexes>();
516   AU.addRequired<MachineLoopInfo>();
517   AU.addPreserved<MachineLoopInfo>();
518   AU.addPreservedID(MachineDominatorsID);
519   MachineFunctionPass::getAnalysisUsage(AU);
520 }
521 
522 void RegisterCoalescer::eliminateDeadDefs() {
523   SmallVector<unsigned, 8> NewRegs;
524   LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
525                 nullptr, this).eliminateDeadDefs(DeadDefs);
526 }
527 
528 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
529   // MI may be in WorkList. Make sure we don't visit it.
530   ErasedInstrs.insert(MI);
531 }
532 
533 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
534                                              MachineInstr *CopyMI) {
535   assert(!CP.isPartial() && "This doesn't work for partial copies.");
536   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
537 
538   LiveInterval &IntA =
539     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
540   LiveInterval &IntB =
541     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
542   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
543 
544   // We have a non-trivially-coalescable copy with IntA being the source and
545   // IntB being the dest, thus this defines a value number in IntB.  If the
546   // source value number (in IntA) is defined by a copy from B, see if we can
547   // merge these two pieces of B into a single value number, eliminating a copy.
548   // For example:
549   //
550   //  A3 = B0
551   //    ...
552   //  B1 = A3      <- this copy
553   //
554   // In this case, B0 can be extended to where the B1 copy lives, allowing the
555   // B1 value number to be replaced with B0 (which simplifies the B
556   // liveinterval).
557 
558   // BValNo is a value number in B that is defined by a copy from A.  'B1' in
559   // the example above.
560   LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
561   if (BS == IntB.end()) return false;
562   VNInfo *BValNo = BS->valno;
563 
564   // Get the location that B is defined at.  Two options: either this value has
565   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
566   // can't process it.
567   if (BValNo->def != CopyIdx) return false;
568 
569   // AValNo is the value number in A that defines the copy, A3 in the example.
570   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
571   LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
572   // The live segment might not exist after fun with physreg coalescing.
573   if (AS == IntA.end()) return false;
574   VNInfo *AValNo = AS->valno;
575 
576   // If AValNo is defined as a copy from IntB, we can potentially process this.
577   // Get the instruction that defines this value number.
578   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
579   // Don't allow any partial copies, even if isCoalescable() allows them.
580   if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
581     return false;
582 
583   // Get the Segment in IntB that this value number starts with.
584   LiveInterval::iterator ValS =
585     IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
586   if (ValS == IntB.end())
587     return false;
588 
589   // Make sure that the end of the live segment is inside the same block as
590   // CopyMI.
591   MachineInstr *ValSEndInst =
592     LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
593   if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
594     return false;
595 
596   // Okay, we now know that ValS ends in the same block that the CopyMI
597   // live-range starts.  If there are no intervening live segments between them
598   // in IntB, we can merge them.
599   if (ValS+1 != BS) return false;
600 
601   LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI));
602 
603   SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
604   // We are about to delete CopyMI, so need to remove it as the 'instruction
605   // that defines this value #'. Update the valnum with the new defining
606   // instruction #.
607   BValNo->def = FillerStart;
608 
609   // Okay, we can merge them.  We need to insert a new liverange:
610   // [ValS.end, BS.begin) of either value number, then we merge the
611   // two value numbers.
612   IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
613 
614   // Okay, merge "B1" into the same value number as "B0".
615   if (BValNo != ValS->valno)
616     IntB.MergeValueNumberInto(BValNo, ValS->valno);
617 
618   // Do the same for the subregister segments.
619   for (LiveInterval::SubRange &S : IntB.subranges()) {
620     // Check for SubRange Segments of the form [1234r,1234d:0) which can be
621     // removed to prevent creating bogus SubRange Segments.
622     LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
623     if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
624       S.removeSegment(*SS, true);
625       continue;
626     }
627     VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
628     S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
629     VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
630     if (SubBValNo != SubValSNo)
631       S.MergeValueNumberInto(SubBValNo, SubValSNo);
632   }
633 
634   LLVM_DEBUG(dbgs() << "   result = " << IntB << '\n');
635 
636   // If the source instruction was killing the source register before the
637   // merge, unset the isKill marker given the live range has been extended.
638   int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
639   if (UIdx != -1) {
640     ValSEndInst->getOperand(UIdx).setIsKill(false);
641   }
642 
643   // Rewrite the copy.
644   CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
645   // If the copy instruction was killing the destination register or any
646   // subrange before the merge trim the live range.
647   bool RecomputeLiveRange = AS->end == CopyIdx;
648   if (!RecomputeLiveRange) {
649     for (LiveInterval::SubRange &S : IntA.subranges()) {
650       LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
651       if (SS != S.end() && SS->end == CopyIdx) {
652         RecomputeLiveRange = true;
653         break;
654       }
655     }
656   }
657   if (RecomputeLiveRange)
658     shrinkToUses(&IntA);
659 
660   ++numExtends;
661   return true;
662 }
663 
664 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
665                                              LiveInterval &IntB,
666                                              VNInfo *AValNo,
667                                              VNInfo *BValNo) {
668   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
669   // the PHI values.
670   if (LIS->hasPHIKill(IntA, AValNo))
671     return true;
672 
673   for (LiveRange::Segment &ASeg : IntA.segments) {
674     if (ASeg.valno != AValNo) continue;
675     LiveInterval::iterator BI =
676       std::upper_bound(IntB.begin(), IntB.end(), ASeg.start);
677     if (BI != IntB.begin())
678       --BI;
679     for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
680       if (BI->valno == BValNo)
681         continue;
682       if (BI->start <= ASeg.start && BI->end > ASeg.start)
683         return true;
684       if (BI->start > ASeg.start && BI->start < ASeg.end)
685         return true;
686     }
687   }
688   return false;
689 }
690 
691 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
692 /// range @Dst and use value number @p DstValNo there.
693 static std::pair<bool,bool>
694 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
695                      const VNInfo *SrcValNo) {
696   bool Changed = false;
697   bool MergedWithDead = false;
698   for (const LiveRange::Segment &S : Src.segments) {
699     if (S.valno != SrcValNo)
700       continue;
701     // This is adding a segment from Src that ends in a copy that is about
702     // to be removed. This segment is going to be merged with a pre-existing
703     // segment in Dst. This works, except in cases when the corresponding
704     // segment in Dst is dead. For example: adding [192r,208r:1) from Src
705     // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
706     // Recognized such cases, so that the segments can be shrunk.
707     LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
708     LiveRange::Segment &Merged = *Dst.addSegment(Added);
709     if (Merged.end.isDead())
710       MergedWithDead = true;
711     Changed = true;
712   }
713   return std::make_pair(Changed, MergedWithDead);
714 }
715 
716 std::pair<bool,bool>
717 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
718                                             MachineInstr *CopyMI) {
719   assert(!CP.isPhys());
720 
721   LiveInterval &IntA =
722       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
723   LiveInterval &IntB =
724       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
725 
726   // We found a non-trivially-coalescable copy with IntA being the source and
727   // IntB being the dest, thus this defines a value number in IntB.  If the
728   // source value number (in IntA) is defined by a commutable instruction and
729   // its other operand is coalesced to the copy dest register, see if we can
730   // transform the copy into a noop by commuting the definition. For example,
731   //
732   //  A3 = op A2 killed B0
733   //    ...
734   //  B1 = A3      <- this copy
735   //    ...
736   //     = op A3   <- more uses
737   //
738   // ==>
739   //
740   //  B2 = op B0 killed A2
741   //    ...
742   //  B1 = B2      <- now an identity copy
743   //    ...
744   //     = op B2   <- more uses
745 
746   // BValNo is a value number in B that is defined by a copy from A. 'B1' in
747   // the example above.
748   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
749   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
750   assert(BValNo != nullptr && BValNo->def == CopyIdx);
751 
752   // AValNo is the value number in A that defines the copy, A3 in the example.
753   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
754   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
755   if (AValNo->isPHIDef())
756     return { false, false };
757   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
758   if (!DefMI)
759     return { false, false };
760   if (!DefMI->isCommutable())
761     return { false, false };
762   // If DefMI is a two-address instruction then commuting it will change the
763   // destination register.
764   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
765   assert(DefIdx != -1);
766   unsigned UseOpIdx;
767   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
768     return { false, false };
769 
770   // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
771   // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
772   // passed to the method. That _other_ operand is chosen by
773   // the findCommutedOpIndices() method.
774   //
775   // That is obviously an area for improvement in case of instructions having
776   // more than 2 operands. For example, if some instruction has 3 commutable
777   // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
778   // op#2<->op#3) of commute transformation should be considered/tried here.
779   unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
780   if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
781     return { false, false };
782 
783   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
784   unsigned NewReg = NewDstMO.getReg();
785   if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
786     return { false, false };
787 
788   // Make sure there are no other definitions of IntB that would reach the
789   // uses which the new definition can reach.
790   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
791     return { false, false };
792 
793   // If some of the uses of IntA.reg is already coalesced away, return false.
794   // It's not possible to determine whether it's safe to perform the coalescing.
795   for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
796     MachineInstr *UseMI = MO.getParent();
797     unsigned OpNo = &MO - &UseMI->getOperand(0);
798     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
799     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
800     if (US == IntA.end() || US->valno != AValNo)
801       continue;
802     // If this use is tied to a def, we can't rewrite the register.
803     if (UseMI->isRegTiedToDefOperand(OpNo))
804       return { false, false };
805   }
806 
807   LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
808                     << *DefMI);
809 
810   // At this point we have decided that it is legal to do this
811   // transformation.  Start by commuting the instruction.
812   MachineBasicBlock *MBB = DefMI->getParent();
813   MachineInstr *NewMI =
814       TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
815   if (!NewMI)
816     return { false, false };
817   if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
818       TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
819       !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
820     return { false, false };
821   if (NewMI != DefMI) {
822     LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
823     MachineBasicBlock::iterator Pos = DefMI;
824     MBB->insert(Pos, NewMI);
825     MBB->erase(DefMI);
826   }
827 
828   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
829   // A = or A, B
830   // ...
831   // B = A
832   // ...
833   // C = killed A
834   // ...
835   //   = B
836 
837   // Update uses of IntA of the specific Val# with IntB.
838   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
839                                          UE = MRI->use_end();
840        UI != UE; /* ++UI is below because of possible MI removal */) {
841     MachineOperand &UseMO = *UI;
842     ++UI;
843     if (UseMO.isUndef())
844       continue;
845     MachineInstr *UseMI = UseMO.getParent();
846     if (UseMI->isDebugValue()) {
847       // FIXME These don't have an instruction index.  Not clear we have enough
848       // info to decide whether to do this replacement or not.  For now do it.
849       UseMO.setReg(NewReg);
850       continue;
851     }
852     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
853     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
854     assert(US != IntA.end() && "Use must be live");
855     if (US->valno != AValNo)
856       continue;
857     // Kill flags are no longer accurate. They are recomputed after RA.
858     UseMO.setIsKill(false);
859     if (TargetRegisterInfo::isPhysicalRegister(NewReg))
860       UseMO.substPhysReg(NewReg, *TRI);
861     else
862       UseMO.setReg(NewReg);
863     if (UseMI == CopyMI)
864       continue;
865     if (!UseMI->isCopy())
866       continue;
867     if (UseMI->getOperand(0).getReg() != IntB.reg ||
868         UseMI->getOperand(0).getSubReg())
869       continue;
870 
871     // This copy will become a noop. If it's defining a new val#, merge it into
872     // BValNo.
873     SlotIndex DefIdx = UseIdx.getRegSlot();
874     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
875     if (!DVNI)
876       continue;
877     LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
878     assert(DVNI->def == DefIdx);
879     BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
880     for (LiveInterval::SubRange &S : IntB.subranges()) {
881       VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
882       if (!SubDVNI)
883         continue;
884       VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
885       assert(SubBValNo->def == CopyIdx);
886       S.MergeValueNumberInto(SubDVNI, SubBValNo);
887     }
888 
889     deleteInstr(UseMI);
890   }
891 
892   // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
893   // is updated.
894   bool ShrinkB = false;
895   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
896   if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
897     if (!IntA.hasSubRanges()) {
898       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
899       IntA.createSubRangeFrom(Allocator, Mask, IntA);
900     } else if (!IntB.hasSubRanges()) {
901       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg);
902       IntB.createSubRangeFrom(Allocator, Mask, IntB);
903     }
904     SlotIndex AIdx = CopyIdx.getRegSlot(true);
905     LaneBitmask MaskA;
906     for (LiveInterval::SubRange &SA : IntA.subranges()) {
907       VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
908       assert(ASubValNo != nullptr);
909       MaskA |= SA.LaneMask;
910 
911       IntB.refineSubRanges(Allocator, SA.LaneMask,
912           [&Allocator,&SA,CopyIdx,ASubValNo,&ShrinkB]
913             (LiveInterval::SubRange &SR) {
914         VNInfo *BSubValNo = SR.empty()
915           ? SR.getNextValue(CopyIdx, Allocator)
916           : SR.getVNInfoAt(CopyIdx);
917         assert(BSubValNo != nullptr);
918         auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
919         ShrinkB |= P.second;
920         if (P.first)
921           BSubValNo->def = ASubValNo->def;
922       });
923     }
924     // Go over all subranges of IntB that have not been covered by IntA,
925     // and delete the segments starting at CopyIdx. This can happen if
926     // IntA has undef lanes that are defined in IntB.
927     for (LiveInterval::SubRange &SB : IntB.subranges()) {
928       if ((SB.LaneMask & MaskA).any())
929         continue;
930       if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
931         if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
932           SB.removeSegment(*S, true);
933     }
934   }
935 
936   BValNo->def = AValNo->def;
937   auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
938   ShrinkB |= P.second;
939   LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
940 
941   LIS->removeVRegDefAt(IntA, AValNo->def);
942 
943   LLVM_DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
944   ++numCommutes;
945   return { true, ShrinkB };
946 }
947 
948 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
949 /// predecessor of BB2, and if B is not redefined on the way from A = B
950 /// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the
951 /// execution goes through the path from BB0 to BB2. We may move B = A
952 /// to the predecessor without such reversed copy.
953 /// So we will transform the program from:
954 ///   BB0:
955 ///      A = B;    BB1:
956 ///       ...         ...
957 ///     /     \      /
958 ///             BB2:
959 ///               ...
960 ///               B = A;
961 ///
962 /// to:
963 ///
964 ///   BB0:         BB1:
965 ///      A = B;        ...
966 ///       ...          B = A;
967 ///     /     \       /
968 ///             BB2:
969 ///               ...
970 ///
971 /// A special case is when BB0 and BB2 are the same BB which is the only
972 /// BB in a loop:
973 ///   BB1:
974 ///        ...
975 ///   BB0/BB2:  ----
976 ///        B = A;   |
977 ///        ...      |
978 ///        A = B;   |
979 ///          |-------
980 ///          |
981 /// We may hoist B = A from BB0/BB2 to BB1.
982 ///
983 /// The major preconditions for correctness to remove such partial
984 /// redundancy include:
985 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
986 ///    the PHI is defined by the reversed copy A = B in BB0.
987 /// 2. No B is referenced from the start of BB2 to B = A.
988 /// 3. No B is defined from A = B to the end of BB0.
989 /// 4. BB1 has only one successor.
990 ///
991 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
992 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
993 /// colder place, which not only prevent endless loop, but also make sure
994 /// the movement of copy is beneficial.
995 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
996                                                 MachineInstr &CopyMI) {
997   assert(!CP.isPhys());
998   if (!CopyMI.isFullCopy())
999     return false;
1000 
1001   MachineBasicBlock &MBB = *CopyMI.getParent();
1002   if (MBB.isEHPad())
1003     return false;
1004 
1005   if (MBB.pred_size() != 2)
1006     return false;
1007 
1008   LiveInterval &IntA =
1009       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1010   LiveInterval &IntB =
1011       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1012 
1013   // A is defined by PHI at the entry of MBB.
1014   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1015   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1016   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1017   if (!AValNo->isPHIDef())
1018     return false;
1019 
1020   // No B is referenced before CopyMI in MBB.
1021   if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1022     return false;
1023 
1024   // MBB has two predecessors: one contains A = B so no copy will be inserted
1025   // for it. The other one will have a copy moved from MBB.
1026   bool FoundReverseCopy = false;
1027   MachineBasicBlock *CopyLeftBB = nullptr;
1028   for (MachineBasicBlock *Pred : MBB.predecessors()) {
1029     VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1030     MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1031     if (!DefMI || !DefMI->isFullCopy()) {
1032       CopyLeftBB = Pred;
1033       continue;
1034     }
1035     // Check DefMI is a reverse copy and it is in BB Pred.
1036     if (DefMI->getOperand(0).getReg() != IntA.reg ||
1037         DefMI->getOperand(1).getReg() != IntB.reg ||
1038         DefMI->getParent() != Pred) {
1039       CopyLeftBB = Pred;
1040       continue;
1041     }
1042     // If there is any other def of B after DefMI and before the end of Pred,
1043     // we need to keep the copy of B = A at the end of Pred if we remove
1044     // B = A from MBB.
1045     bool ValB_Changed = false;
1046     for (auto VNI : IntB.valnos) {
1047       if (VNI->isUnused())
1048         continue;
1049       if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1050         ValB_Changed = true;
1051         break;
1052       }
1053     }
1054     if (ValB_Changed) {
1055       CopyLeftBB = Pred;
1056       continue;
1057     }
1058     FoundReverseCopy = true;
1059   }
1060 
1061   // If no reverse copy is found in predecessors, nothing to do.
1062   if (!FoundReverseCopy)
1063     return false;
1064 
1065   // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1066   // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1067   // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1068   // update IntA/IntB.
1069   //
1070   // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1071   // MBB is hotter than CopyLeftBB.
1072   if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1073     return false;
1074 
1075   // Now (almost sure it's) ok to move copy.
1076   if (CopyLeftBB) {
1077     // Position in CopyLeftBB where we should insert new copy.
1078     auto InsPos = CopyLeftBB->getFirstTerminator();
1079 
1080     // Make sure that B isn't referenced in the terminators (if any) at the end
1081     // of the predecessor since we're about to insert a new definition of B
1082     // before them.
1083     if (InsPos != CopyLeftBB->end()) {
1084       SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1085       if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1086         return false;
1087     }
1088 
1089     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1090                       << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1091 
1092     // Insert new copy to CopyLeftBB.
1093     MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1094                                       TII->get(TargetOpcode::COPY), IntB.reg)
1095                                   .addReg(IntA.reg);
1096     SlotIndex NewCopyIdx =
1097         LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1098     IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1099     for (LiveInterval::SubRange &SR : IntB.subranges())
1100       SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1101 
1102     // If the newly created Instruction has an address of an instruction that was
1103     // deleted before (object recycled by the allocator) it needs to be removed from
1104     // the deleted list.
1105     ErasedInstrs.erase(NewCopyMI);
1106   } else {
1107     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1108                       << printMBBReference(MBB) << '\t' << CopyMI);
1109   }
1110 
1111   // Remove CopyMI.
1112   // Note: This is fine to remove the copy before updating the live-ranges.
1113   // While updating the live-ranges, we only look at slot indices and
1114   // never go back to the instruction.
1115   // Mark instructions as deleted.
1116   deleteInstr(&CopyMI);
1117 
1118   // Update the liveness.
1119   SmallVector<SlotIndex, 8> EndPoints;
1120   VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1121   LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1122                   &EndPoints);
1123   BValNo->markUnused();
1124   // Extend IntB to the EndPoints of its original live interval.
1125   LIS->extendToIndices(IntB, EndPoints);
1126 
1127   // Now, do the same for its subranges.
1128   for (LiveInterval::SubRange &SR : IntB.subranges()) {
1129     EndPoints.clear();
1130     VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1131     assert(BValNo && "All sublanes should be live");
1132     LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1133     BValNo->markUnused();
1134     // We can have a situation where the result of the original copy is live,
1135     // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1136     // the copy appear as an endpoint from pruneValue(), but we don't want it
1137     // to because the copy has been removed.  We can go ahead and remove that
1138     // endpoint; there is no other situation here that there could be a use at
1139     // the same place as we know that the copy is a full copy.
1140     for (unsigned I = 0; I != EndPoints.size(); ) {
1141       if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1142         EndPoints[I] = EndPoints.back();
1143         EndPoints.pop_back();
1144         continue;
1145       }
1146       ++I;
1147     }
1148     LIS->extendToIndices(SR, EndPoints);
1149   }
1150   // If any dead defs were extended, truncate them.
1151   shrinkToUses(&IntB);
1152 
1153   // Finally, update the live-range of IntA.
1154   shrinkToUses(&IntA);
1155   return true;
1156 }
1157 
1158 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1159 /// defining a subregister.
1160 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
1161   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
1162          "This code cannot handle physreg aliasing");
1163   for (const MachineOperand &Op : MI.operands()) {
1164     if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1165       continue;
1166     // Return true if we define the full register or don't care about the value
1167     // inside other subregisters.
1168     if (Op.getSubReg() == 0 || Op.isUndef())
1169       return true;
1170   }
1171   return false;
1172 }
1173 
1174 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1175                                                 MachineInstr *CopyMI,
1176                                                 bool &IsDefCopy) {
1177   IsDefCopy = false;
1178   unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1179   unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1180   unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1181   unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1182   if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
1183     return false;
1184 
1185   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1186   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1187   VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1188   if (!ValNo)
1189     return false;
1190   if (ValNo->isPHIDef() || ValNo->isUnused())
1191     return false;
1192   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1193   if (!DefMI)
1194     return false;
1195   if (DefMI->isCopyLike()) {
1196     IsDefCopy = true;
1197     return false;
1198   }
1199   if (!TII->isAsCheapAsAMove(*DefMI))
1200     return false;
1201   if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1202     return false;
1203   if (!definesFullReg(*DefMI, SrcReg))
1204     return false;
1205   bool SawStore = false;
1206   if (!DefMI->isSafeToMove(AA, SawStore))
1207     return false;
1208   const MCInstrDesc &MCID = DefMI->getDesc();
1209   if (MCID.getNumDefs() != 1)
1210     return false;
1211   // Only support subregister destinations when the def is read-undef.
1212   MachineOperand &DstOperand = CopyMI->getOperand(0);
1213   unsigned CopyDstReg = DstOperand.getReg();
1214   if (DstOperand.getSubReg() && !DstOperand.isUndef())
1215     return false;
1216 
1217   // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1218   // the register substantially (beyond both source and dest size). This is bad
1219   // for performance since it can cascade through a function, introducing many
1220   // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1221   // around after a few subreg copies).
1222   if (SrcIdx && DstIdx)
1223     return false;
1224 
1225   const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1226   if (!DefMI->isImplicitDef()) {
1227     if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
1228       unsigned NewDstReg = DstReg;
1229 
1230       unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1231                                               DefMI->getOperand(0).getSubReg());
1232       if (NewDstIdx)
1233         NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1234 
1235       // Finally, make sure that the physical subregister that will be
1236       // constructed later is permitted for the instruction.
1237       if (!DefRC->contains(NewDstReg))
1238         return false;
1239     } else {
1240       // Theoretically, some stack frame reference could exist. Just make sure
1241       // it hasn't actually happened.
1242       assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
1243              "Only expect to deal with virtual or physical registers");
1244     }
1245   }
1246 
1247   DebugLoc DL = CopyMI->getDebugLoc();
1248   MachineBasicBlock *MBB = CopyMI->getParent();
1249   MachineBasicBlock::iterator MII =
1250     std::next(MachineBasicBlock::iterator(CopyMI));
1251   TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1252   MachineInstr &NewMI = *std::prev(MII);
1253   NewMI.setDebugLoc(DL);
1254 
1255   // In a situation like the following:
1256   //     %0:subreg = instr              ; DefMI, subreg = DstIdx
1257   //     %1        = copy %0:subreg ; CopyMI, SrcIdx = 0
1258   // instead of widening %1 to the register class of %0 simply do:
1259   //     %1 = instr
1260   const TargetRegisterClass *NewRC = CP.getNewRC();
1261   if (DstIdx != 0) {
1262     MachineOperand &DefMO = NewMI.getOperand(0);
1263     if (DefMO.getSubReg() == DstIdx) {
1264       assert(SrcIdx == 0 && CP.isFlipped()
1265              && "Shouldn't have SrcIdx+DstIdx at this point");
1266       const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1267       const TargetRegisterClass *CommonRC =
1268         TRI->getCommonSubClass(DefRC, DstRC);
1269       if (CommonRC != nullptr) {
1270         NewRC = CommonRC;
1271         DstIdx = 0;
1272         DefMO.setSubReg(0);
1273         DefMO.setIsUndef(false); // Only subregs can have def+undef.
1274       }
1275     }
1276   }
1277 
1278   // CopyMI may have implicit operands, save them so that we can transfer them
1279   // over to the newly materialized instruction after CopyMI is removed.
1280   SmallVector<MachineOperand, 4> ImplicitOps;
1281   ImplicitOps.reserve(CopyMI->getNumOperands() -
1282                       CopyMI->getDesc().getNumOperands());
1283   for (unsigned I = CopyMI->getDesc().getNumOperands(),
1284                 E = CopyMI->getNumOperands();
1285        I != E; ++I) {
1286     MachineOperand &MO = CopyMI->getOperand(I);
1287     if (MO.isReg()) {
1288       assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1289       // Discard VReg implicit defs.
1290       if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1291         ImplicitOps.push_back(MO);
1292     }
1293   }
1294 
1295   LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1296   CopyMI->eraseFromParent();
1297   ErasedInstrs.insert(CopyMI);
1298 
1299   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1300   // We need to remember these so we can add intervals once we insert
1301   // NewMI into SlotIndexes.
1302   SmallVector<unsigned, 4> NewMIImplDefs;
1303   for (unsigned i = NewMI.getDesc().getNumOperands(),
1304                 e = NewMI.getNumOperands();
1305        i != e; ++i) {
1306     MachineOperand &MO = NewMI.getOperand(i);
1307     if (MO.isReg() && MO.isDef()) {
1308       assert(MO.isImplicit() && MO.isDead() &&
1309              TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
1310       NewMIImplDefs.push_back(MO.getReg());
1311     }
1312   }
1313 
1314   if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
1315     unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1316 
1317     if (DefRC != nullptr) {
1318       if (NewIdx)
1319         NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1320       else
1321         NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1322       assert(NewRC && "subreg chosen for remat incompatible with instruction");
1323     }
1324     // Remap subranges to new lanemask and change register class.
1325     LiveInterval &DstInt = LIS->getInterval(DstReg);
1326     for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1327       SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1328     }
1329     MRI->setRegClass(DstReg, NewRC);
1330 
1331     // Update machine operands and add flags.
1332     updateRegDefsUses(DstReg, DstReg, DstIdx);
1333     NewMI.getOperand(0).setSubReg(NewIdx);
1334     // updateRegDefUses can add an "undef" flag to the definition, since
1335     // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1336     // sure that "undef" is not set.
1337     if (NewIdx == 0)
1338       NewMI.getOperand(0).setIsUndef(false);
1339     // Add dead subregister definitions if we are defining the whole register
1340     // but only part of it is live.
1341     // This could happen if the rematerialization instruction is rematerializing
1342     // more than actually is used in the register.
1343     // An example would be:
1344     // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1345     // ; Copying only part of the register here, but the rest is undef.
1346     // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1347     // ==>
1348     // ; Materialize all the constants but only using one
1349     // %2 = LOAD_CONSTANTS 5, 8
1350     //
1351     // at this point for the part that wasn't defined before we could have
1352     // subranges missing the definition.
1353     if (NewIdx == 0 && DstInt.hasSubRanges()) {
1354       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1355       SlotIndex DefIndex =
1356           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1357       LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1358       VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1359       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1360         if (!SR.liveAt(DefIndex))
1361           SR.createDeadDef(DefIndex, Alloc);
1362         MaxMask &= ~SR.LaneMask;
1363       }
1364       if (MaxMask.any()) {
1365         LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1366         SR->createDeadDef(DefIndex, Alloc);
1367       }
1368     }
1369 
1370     // Make sure that the subrange for resultant undef is removed
1371     // For example:
1372     //   %1:sub1<def,read-undef> = LOAD CONSTANT 1
1373     //   %2 = COPY %1
1374     // ==>
1375     //   %2:sub1<def, read-undef> = LOAD CONSTANT 1
1376     //     ; Correct but need to remove the subrange for %2:sub0
1377     //     ; as it is now undef
1378     if (NewIdx != 0 && DstInt.hasSubRanges()) {
1379       // The affected subregister segments can be removed.
1380       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1381       LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1382       bool UpdatedSubRanges = false;
1383       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1384         if ((SR.LaneMask & DstMask).none()) {
1385           LLVM_DEBUG(dbgs()
1386                      << "Removing undefined SubRange "
1387                      << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1388           // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1389           if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1390             SR.removeValNo(RmValNo);
1391             UpdatedSubRanges = true;
1392           }
1393         }
1394       }
1395       if (UpdatedSubRanges)
1396         DstInt.removeEmptySubRanges();
1397     }
1398   } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1399     // The New instruction may be defining a sub-register of what's actually
1400     // been asked for. If so it must implicitly define the whole thing.
1401     assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
1402            "Only expect virtual or physical registers in remat");
1403     NewMI.getOperand(0).setIsDead(true);
1404     NewMI.addOperand(MachineOperand::CreateReg(
1405         CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1406     // Record small dead def live-ranges for all the subregisters
1407     // of the destination register.
1408     // Otherwise, variables that live through may miss some
1409     // interferences, thus creating invalid allocation.
1410     // E.g., i386 code:
1411     // %1 = somedef ; %1 GR8
1412     // %2 = remat ; %2 GR32
1413     // CL = COPY %2.sub_8bit
1414     // = somedef %1 ; %1 GR8
1415     // =>
1416     // %1 = somedef ; %1 GR8
1417     // dead ECX = remat ; implicit-def CL
1418     // = somedef %1 ; %1 GR8
1419     // %1 will see the interferences with CL but not with CH since
1420     // no live-ranges would have been created for ECX.
1421     // Fix that!
1422     SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1423     for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1424          Units.isValid(); ++Units)
1425       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1426         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1427   }
1428 
1429   if (NewMI.getOperand(0).getSubReg())
1430     NewMI.getOperand(0).setIsUndef();
1431 
1432   // Transfer over implicit operands to the rematerialized instruction.
1433   for (MachineOperand &MO : ImplicitOps)
1434     NewMI.addOperand(MO);
1435 
1436   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1437   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1438     unsigned Reg = NewMIImplDefs[i];
1439     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1440       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1441         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1442   }
1443 
1444   LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1445   ++NumReMats;
1446 
1447   // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1448   // to describe DstReg instead.
1449   if (MRI->use_nodbg_empty(SrcReg)) {
1450     for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1451       MachineInstr *UseMI = UseMO.getParent();
1452       if (UseMI->isDebugValue()) {
1453         if (TargetRegisterInfo::isPhysicalRegister(DstReg))
1454           UseMO.substPhysReg(DstReg, *TRI);
1455         else
1456           UseMO.setReg(DstReg);
1457         // Move the debug value directly after the def of the rematerialized
1458         // value in DstReg.
1459         MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1460         LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1461       }
1462     }
1463   }
1464 
1465   if (ToBeUpdated.count(SrcReg))
1466     return true;
1467 
1468   unsigned NumCopyUses = 0;
1469   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1470     if (UseMO.getParent()->isCopyLike())
1471       NumCopyUses++;
1472   }
1473   if (NumCopyUses < LateRematUpdateThreshold) {
1474     // The source interval can become smaller because we removed a use.
1475     shrinkToUses(&SrcInt, &DeadDefs);
1476     if (!DeadDefs.empty())
1477       eliminateDeadDefs();
1478   } else {
1479     ToBeUpdated.insert(SrcReg);
1480   }
1481   return true;
1482 }
1483 
1484 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1485   // ProcessImplicitDefs may leave some copies of <undef> values, it only
1486   // removes local variables. When we have a copy like:
1487   //
1488   //   %1 = COPY undef %2
1489   //
1490   // We delete the copy and remove the corresponding value number from %1.
1491   // Any uses of that value number are marked as <undef>.
1492 
1493   // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1494   // CoalescerPair may have a new register class with adjusted subreg indices
1495   // at this point.
1496   unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1497   isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
1498 
1499   SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1500   const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1501   // CopyMI is undef iff SrcReg is not live before the instruction.
1502   if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1503     LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1504     for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1505       if ((SR.LaneMask & SrcMask).none())
1506         continue;
1507       if (SR.liveAt(Idx))
1508         return nullptr;
1509     }
1510   } else if (SrcLI.liveAt(Idx))
1511     return nullptr;
1512 
1513   // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1514   // then replace it with an IMPLICIT_DEF.
1515   LiveInterval &DstLI = LIS->getInterval(DstReg);
1516   SlotIndex RegIndex = Idx.getRegSlot();
1517   LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1518   assert(Seg != nullptr && "No segment for defining instruction");
1519   if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1520     if (V->isPHIDef()) {
1521       CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1522       for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1523         MachineOperand &MO = CopyMI->getOperand(i-1);
1524         if (MO.isReg() && MO.isUse())
1525           CopyMI->RemoveOperand(i-1);
1526       }
1527       LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1528                            "implicit def\n");
1529       return CopyMI;
1530     }
1531   }
1532 
1533   // Remove any DstReg segments starting at the instruction.
1534   LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1535 
1536   // Remove value or merge with previous one in case of a subregister def.
1537   if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1538     VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1539     DstLI.MergeValueNumberInto(VNI, PrevVNI);
1540 
1541     // The affected subregister segments can be removed.
1542     LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1543     for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1544       if ((SR.LaneMask & DstMask).none())
1545         continue;
1546 
1547       VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1548       assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1549       SR.removeValNo(SVNI);
1550     }
1551     DstLI.removeEmptySubRanges();
1552   } else
1553     LIS->removeVRegDefAt(DstLI, RegIndex);
1554 
1555   // Mark uses as undef.
1556   for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1557     if (MO.isDef() /*|| MO.isUndef()*/)
1558       continue;
1559     const MachineInstr &MI = *MO.getParent();
1560     SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1561     LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1562     bool isLive;
1563     if (!UseMask.all() && DstLI.hasSubRanges()) {
1564       isLive = false;
1565       for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1566         if ((SR.LaneMask & UseMask).none())
1567           continue;
1568         if (SR.liveAt(UseIdx)) {
1569           isLive = true;
1570           break;
1571         }
1572       }
1573     } else
1574       isLive = DstLI.liveAt(UseIdx);
1575     if (isLive)
1576       continue;
1577     MO.setIsUndef(true);
1578     LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1579   }
1580 
1581   // A def of a subregister may be a use of the other subregisters, so
1582   // deleting a def of a subregister may also remove uses. Since CopyMI
1583   // is still part of the function (but about to be erased), mark all
1584   // defs of DstReg in it as <undef>, so that shrinkToUses would
1585   // ignore them.
1586   for (MachineOperand &MO : CopyMI->operands())
1587     if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1588       MO.setIsUndef(true);
1589   LIS->shrinkToUses(&DstLI);
1590 
1591   return CopyMI;
1592 }
1593 
1594 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1595                                      MachineOperand &MO, unsigned SubRegIdx) {
1596   LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1597   if (MO.isDef())
1598     Mask = ~Mask;
1599   bool IsUndef = true;
1600   for (const LiveInterval::SubRange &S : Int.subranges()) {
1601     if ((S.LaneMask & Mask).none())
1602       continue;
1603     if (S.liveAt(UseIdx)) {
1604       IsUndef = false;
1605       break;
1606     }
1607   }
1608   if (IsUndef) {
1609     MO.setIsUndef(true);
1610     // We found out some subregister use is actually reading an undefined
1611     // value. In some cases the whole vreg has become undefined at this
1612     // point so we have to potentially shrink the main range if the
1613     // use was ending a live segment there.
1614     LiveQueryResult Q = Int.Query(UseIdx);
1615     if (Q.valueOut() == nullptr)
1616       ShrinkMainRange = true;
1617   }
1618 }
1619 
1620 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
1621                                           unsigned DstReg,
1622                                           unsigned SubIdx) {
1623   bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1624   LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1625 
1626   if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1627     for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1628       unsigned SubReg = MO.getSubReg();
1629       if (SubReg == 0 || MO.isUndef())
1630         continue;
1631       MachineInstr &MI = *MO.getParent();
1632       if (MI.isDebugValue())
1633         continue;
1634       SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1635       addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1636     }
1637   }
1638 
1639   SmallPtrSet<MachineInstr*, 8> Visited;
1640   for (MachineRegisterInfo::reg_instr_iterator
1641        I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1642        I != E; ) {
1643     MachineInstr *UseMI = &*(I++);
1644 
1645     // Each instruction can only be rewritten once because sub-register
1646     // composition is not always idempotent. When SrcReg != DstReg, rewriting
1647     // the UseMI operands removes them from the SrcReg use-def chain, but when
1648     // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1649     // operands mentioning the virtual register.
1650     if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1651       continue;
1652 
1653     SmallVector<unsigned,8> Ops;
1654     bool Reads, Writes;
1655     std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1656 
1657     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1658     // because SrcReg is a sub-register.
1659     if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
1660       Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1661 
1662     // Replace SrcReg with DstReg in all UseMI operands.
1663     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1664       MachineOperand &MO = UseMI->getOperand(Ops[i]);
1665 
1666       // Adjust <undef> flags in case of sub-register joins. We don't want to
1667       // turn a full def into a read-modify-write sub-register def and vice
1668       // versa.
1669       if (SubIdx && MO.isDef())
1670         MO.setIsUndef(!Reads);
1671 
1672       // A subreg use of a partially undef (super) register may be a complete
1673       // undef use now and then has to be marked that way.
1674       if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1675         if (!DstInt->hasSubRanges()) {
1676           BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1677           LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
1678           DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
1679         }
1680         SlotIndex MIIdx = UseMI->isDebugValue()
1681                               ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1682                               : LIS->getInstructionIndex(*UseMI);
1683         SlotIndex UseIdx = MIIdx.getRegSlot(true);
1684         addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
1685       }
1686 
1687       if (DstIsPhys)
1688         MO.substPhysReg(DstReg, *TRI);
1689       else
1690         MO.substVirtReg(DstReg, SubIdx, *TRI);
1691     }
1692 
1693     LLVM_DEBUG({
1694       dbgs() << "\t\tupdated: ";
1695       if (!UseMI->isDebugValue())
1696         dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1697       dbgs() << *UseMI;
1698     });
1699   }
1700 }
1701 
1702 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1703   // Always join simple intervals that are defined by a single copy from a
1704   // reserved register. This doesn't increase register pressure, so it is
1705   // always beneficial.
1706   if (!MRI->isReserved(CP.getDstReg())) {
1707     LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1708     return false;
1709   }
1710 
1711   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1712   if (JoinVInt.containsOneValue())
1713     return true;
1714 
1715   LLVM_DEBUG(
1716       dbgs() << "\tCannot join complex intervals into reserved register.\n");
1717   return false;
1718 }
1719 
1720 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1721   Again = false;
1722   LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1723 
1724   CoalescerPair CP(*TRI);
1725   if (!CP.setRegisters(CopyMI)) {
1726     LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1727     return false;
1728   }
1729 
1730   if (CP.getNewRC()) {
1731     auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1732     auto DstRC = MRI->getRegClass(CP.getDstReg());
1733     unsigned SrcIdx = CP.getSrcIdx();
1734     unsigned DstIdx = CP.getDstIdx();
1735     if (CP.isFlipped()) {
1736       std::swap(SrcIdx, DstIdx);
1737       std::swap(SrcRC, DstRC);
1738     }
1739     if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1740                              CP.getNewRC(), *LIS)) {
1741       LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1742       return false;
1743     }
1744   }
1745 
1746   // Dead code elimination. This really should be handled by MachineDCE, but
1747   // sometimes dead copies slip through, and we can't generate invalid live
1748   // ranges.
1749   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1750     LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1751     DeadDefs.push_back(CopyMI);
1752     eliminateDeadDefs();
1753     return true;
1754   }
1755 
1756   // Eliminate undefs.
1757   if (!CP.isPhys()) {
1758     // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1759     if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1760       if (UndefMI->isImplicitDef())
1761         return false;
1762       deleteInstr(CopyMI);
1763       return false;  // Not coalescable.
1764     }
1765   }
1766 
1767   // Coalesced copies are normally removed immediately, but transformations
1768   // like removeCopyByCommutingDef() can inadvertently create identity copies.
1769   // When that happens, just join the values and remove the copy.
1770   if (CP.getSrcReg() == CP.getDstReg()) {
1771     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1772     LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1773     const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1774     LiveQueryResult LRQ = LI.Query(CopyIdx);
1775     if (VNInfo *DefVNI = LRQ.valueDefined()) {
1776       VNInfo *ReadVNI = LRQ.valueIn();
1777       assert(ReadVNI && "No value before copy and no <undef> flag.");
1778       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1779       LI.MergeValueNumberInto(DefVNI, ReadVNI);
1780 
1781       // Process subregister liveranges.
1782       for (LiveInterval::SubRange &S : LI.subranges()) {
1783         LiveQueryResult SLRQ = S.Query(CopyIdx);
1784         if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1785           VNInfo *SReadVNI = SLRQ.valueIn();
1786           S.MergeValueNumberInto(SDefVNI, SReadVNI);
1787         }
1788       }
1789       LLVM_DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1790     }
1791     deleteInstr(CopyMI);
1792     return true;
1793   }
1794 
1795   // Enforce policies.
1796   if (CP.isPhys()) {
1797     LLVM_DEBUG(dbgs() << "\tConsidering merging "
1798                       << printReg(CP.getSrcReg(), TRI) << " with "
1799                       << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1800     if (!canJoinPhys(CP)) {
1801       // Before giving up coalescing, if definition of source is defined by
1802       // trivial computation, try rematerializing it.
1803       bool IsDefCopy;
1804       if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1805         return true;
1806       if (IsDefCopy)
1807         Again = true;  // May be possible to coalesce later.
1808       return false;
1809     }
1810   } else {
1811     // When possible, let DstReg be the larger interval.
1812     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1813                            LIS->getInterval(CP.getDstReg()).size())
1814       CP.flip();
1815 
1816     LLVM_DEBUG({
1817       dbgs() << "\tConsidering merging to "
1818              << TRI->getRegClassName(CP.getNewRC()) << " with ";
1819       if (CP.getDstIdx() && CP.getSrcIdx())
1820         dbgs() << printReg(CP.getDstReg()) << " in "
1821                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1822                << printReg(CP.getSrcReg()) << " in "
1823                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1824       else
1825         dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
1826                << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1827     });
1828   }
1829 
1830   ShrinkMask = LaneBitmask::getNone();
1831   ShrinkMainRange = false;
1832 
1833   // Okay, attempt to join these two intervals.  On failure, this returns false.
1834   // Otherwise, if one of the intervals being joined is a physreg, this method
1835   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1836   // been modified, so we can use this information below to update aliases.
1837   if (!joinIntervals(CP)) {
1838     // Coalescing failed.
1839 
1840     // If definition of source is defined by trivial computation, try
1841     // rematerializing it.
1842     bool IsDefCopy;
1843     if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1844       return true;
1845 
1846     // If we can eliminate the copy without merging the live segments, do so
1847     // now.
1848     if (!CP.isPartial() && !CP.isPhys()) {
1849       bool Changed = adjustCopiesBackFrom(CP, CopyMI);
1850       bool Shrink = false;
1851       if (!Changed)
1852         std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
1853       if (Changed) {
1854         deleteInstr(CopyMI);
1855         if (Shrink) {
1856           unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1857           LiveInterval &DstLI = LIS->getInterval(DstReg);
1858           shrinkToUses(&DstLI);
1859           LLVM_DEBUG(dbgs() << "\t\tshrunk:   " << DstLI << '\n');
1860         }
1861         LLVM_DEBUG(dbgs() << "\tTrivial!\n");
1862         return true;
1863       }
1864     }
1865 
1866     // Try and see if we can partially eliminate the copy by moving the copy to
1867     // its predecessor.
1868     if (!CP.isPartial() && !CP.isPhys())
1869       if (removePartialRedundancy(CP, *CopyMI))
1870         return true;
1871 
1872     // Otherwise, we are unable to join the intervals.
1873     LLVM_DEBUG(dbgs() << "\tInterference!\n");
1874     Again = true;  // May be possible to coalesce later.
1875     return false;
1876   }
1877 
1878   // Coalescing to a virtual register that is of a sub-register class of the
1879   // other. Make sure the resulting register is set to the right register class.
1880   if (CP.isCrossClass()) {
1881     ++numCrossRCs;
1882     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1883   }
1884 
1885   // Removing sub-register copies can ease the register class constraints.
1886   // Make sure we attempt to inflate the register class of DstReg.
1887   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1888     InflateRegs.push_back(CP.getDstReg());
1889 
1890   // CopyMI has been erased by joinIntervals at this point. Remove it from
1891   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1892   // to the work list. This keeps ErasedInstrs from growing needlessly.
1893   ErasedInstrs.erase(CopyMI);
1894 
1895   // Rewrite all SrcReg operands to DstReg.
1896   // Also update DstReg operands to include DstIdx if it is set.
1897   if (CP.getDstIdx())
1898     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1899   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1900 
1901   // Shrink subregister ranges if necessary.
1902   if (ShrinkMask.any()) {
1903     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1904     for (LiveInterval::SubRange &S : LI.subranges()) {
1905       if ((S.LaneMask & ShrinkMask).none())
1906         continue;
1907       LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
1908                         << ")\n");
1909       LIS->shrinkToUses(S, LI.reg);
1910     }
1911     LI.removeEmptySubRanges();
1912   }
1913   if (ShrinkMainRange) {
1914     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1915     shrinkToUses(&LI);
1916   }
1917 
1918   // SrcReg is guaranteed to be the register whose live interval that is
1919   // being merged.
1920   LIS->removeInterval(CP.getSrcReg());
1921 
1922   // Update regalloc hint.
1923   TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1924 
1925   LLVM_DEBUG({
1926     dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
1927            << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
1928     dbgs() << "\tResult = ";
1929     if (CP.isPhys())
1930       dbgs() << printReg(CP.getDstReg(), TRI);
1931     else
1932       dbgs() << LIS->getInterval(CP.getDstReg());
1933     dbgs() << '\n';
1934   });
1935 
1936   ++numJoins;
1937   return true;
1938 }
1939 
1940 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1941   unsigned DstReg = CP.getDstReg();
1942   unsigned SrcReg = CP.getSrcReg();
1943   assert(CP.isPhys() && "Must be a physreg copy");
1944   assert(MRI->isReserved(DstReg) && "Not a reserved register");
1945   LiveInterval &RHS = LIS->getInterval(SrcReg);
1946   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
1947 
1948   assert(RHS.containsOneValue() && "Invalid join with reserved register");
1949 
1950   // Optimization for reserved registers like ESP. We can only merge with a
1951   // reserved physreg if RHS has a single value that is a copy of DstReg.
1952   // The live range of the reserved register will look like a set of dead defs
1953   // - we don't properly track the live range of reserved registers.
1954 
1955   // Deny any overlapping intervals.  This depends on all the reserved
1956   // register live ranges to look like dead defs.
1957   if (!MRI->isConstantPhysReg(DstReg)) {
1958     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
1959       // Abort if not all the regunits are reserved.
1960       for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
1961         if (!MRI->isReserved(*RI))
1962           return false;
1963       }
1964       if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1965         LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
1966                           << '\n');
1967         return false;
1968       }
1969     }
1970 
1971     // We must also check for overlaps with regmask clobbers.
1972     BitVector RegMaskUsable;
1973     if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
1974         !RegMaskUsable.test(DstReg)) {
1975       LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
1976       return false;
1977     }
1978   }
1979 
1980   // Skip any value computations, we are not adding new values to the
1981   // reserved register.  Also skip merging the live ranges, the reserved
1982   // register live range doesn't need to be accurate as long as all the
1983   // defs are there.
1984 
1985   // Delete the identity copy.
1986   MachineInstr *CopyMI;
1987   if (CP.isFlipped()) {
1988     // Physreg is copied into vreg
1989     //   %y = COPY %physreg_x
1990     //   ...  //< no other def of %x here
1991     //   use %y
1992     // =>
1993     //   ...
1994     //   use %x
1995     CopyMI = MRI->getVRegDef(SrcReg);
1996   } else {
1997     // VReg is copied into physreg:
1998     //   %y = def
1999     //   ... //< no other def or use of %y here
2000     //   %y = COPY %physreg_x
2001     // =>
2002     //   %y = def
2003     //   ...
2004     if (!MRI->hasOneNonDBGUse(SrcReg)) {
2005       LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2006       return false;
2007     }
2008 
2009     if (!LIS->intervalIsInOneMBB(RHS)) {
2010       LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2011       return false;
2012     }
2013 
2014     MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2015     CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2016     SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2017     SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2018 
2019     if (!MRI->isConstantPhysReg(DstReg)) {
2020       // We checked above that there are no interfering defs of the physical
2021       // register. However, for this case, where we intend to move up the def of
2022       // the physical register, we also need to check for interfering uses.
2023       SlotIndexes *Indexes = LIS->getSlotIndexes();
2024       for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2025            SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2026         MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2027         if (MI->readsRegister(DstReg, TRI)) {
2028           LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2029           return false;
2030         }
2031       }
2032     }
2033 
2034     // We're going to remove the copy which defines a physical reserved
2035     // register, so remove its valno, etc.
2036     LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2037                       << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2038 
2039     LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
2040     // Create a new dead def at the new def location.
2041     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2042       LiveRange &LR = LIS->getRegUnit(*UI);
2043       LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2044     }
2045   }
2046 
2047   deleteInstr(CopyMI);
2048 
2049   // We don't track kills for reserved registers.
2050   MRI->clearKillFlags(CP.getSrcReg());
2051 
2052   return true;
2053 }
2054 
2055 //===----------------------------------------------------------------------===//
2056 //                 Interference checking and interval joining
2057 //===----------------------------------------------------------------------===//
2058 //
2059 // In the easiest case, the two live ranges being joined are disjoint, and
2060 // there is no interference to consider. It is quite common, though, to have
2061 // overlapping live ranges, and we need to check if the interference can be
2062 // resolved.
2063 //
2064 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2065 // This means that two SSA values overlap if and only if the def of one value
2066 // is contained in the live range of the other value. As a special case, the
2067 // overlapping values can be defined at the same index.
2068 //
2069 // The interference from an overlapping def can be resolved in these cases:
2070 //
2071 // 1. Coalescable copies. The value is defined by a copy that would become an
2072 //    identity copy after joining SrcReg and DstReg. The copy instruction will
2073 //    be removed, and the value will be merged with the source value.
2074 //
2075 //    There can be several copies back and forth, causing many values to be
2076 //    merged into one. We compute a list of ultimate values in the joined live
2077 //    range as well as a mappings from the old value numbers.
2078 //
2079 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2080 //    predecessors have a live out value. It doesn't cause real interference,
2081 //    and can be merged into the value it overlaps. Like a coalescable copy, it
2082 //    can be erased after joining.
2083 //
2084 // 3. Copy of external value. The overlapping def may be a copy of a value that
2085 //    is already in the other register. This is like a coalescable copy, but
2086 //    the live range of the source register must be trimmed after erasing the
2087 //    copy instruction:
2088 //
2089 //      %src = COPY %ext
2090 //      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
2091 //
2092 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2093 //    defining one lane at a time:
2094 //
2095 //      %dst:ssub0<def,read-undef> = FOO
2096 //      %src = BAR
2097 //      %dst:ssub1 = COPY %src
2098 //
2099 //    The live range of %src overlaps the %dst value defined by FOO, but
2100 //    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2101 //    which was undef anyway.
2102 //
2103 //    The value mapping is more complicated in this case. The final live range
2104 //    will have different value numbers for both FOO and BAR, but there is no
2105 //    simple mapping from old to new values. It may even be necessary to add
2106 //    new PHI values.
2107 //
2108 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2109 //    is live, but never read. This can happen because we don't compute
2110 //    individual live ranges per lane.
2111 //
2112 //      %dst = FOO
2113 //      %src = BAR
2114 //      %dst:ssub1 = COPY %src
2115 //
2116 //    This kind of interference is only resolved locally. If the clobbered
2117 //    lane value escapes the block, the join is aborted.
2118 
2119 namespace {
2120 
2121 /// Track information about values in a single virtual register about to be
2122 /// joined. Objects of this class are always created in pairs - one for each
2123 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2124 /// pair)
2125 class JoinVals {
2126   /// Live range we work on.
2127   LiveRange &LR;
2128 
2129   /// (Main) register we work on.
2130   const unsigned Reg;
2131 
2132   /// Reg (and therefore the values in this liverange) will end up as
2133   /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2134   /// CP.SrcIdx.
2135   const unsigned SubIdx;
2136 
2137   /// The LaneMask that this liverange will occupy the coalesced register. May
2138   /// be smaller than the lanemask produced by SubIdx when merging subranges.
2139   const LaneBitmask LaneMask;
2140 
2141   /// This is true when joining sub register ranges, false when joining main
2142   /// ranges.
2143   const bool SubRangeJoin;
2144 
2145   /// Whether the current LiveInterval tracks subregister liveness.
2146   const bool TrackSubRegLiveness;
2147 
2148   /// Values that will be present in the final live range.
2149   SmallVectorImpl<VNInfo*> &NewVNInfo;
2150 
2151   const CoalescerPair &CP;
2152   LiveIntervals *LIS;
2153   SlotIndexes *Indexes;
2154   const TargetRegisterInfo *TRI;
2155 
2156   /// Value number assignments. Maps value numbers in LI to entries in
2157   /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2158   SmallVector<int, 8> Assignments;
2159 
2160   /// Conflict resolution for overlapping values.
2161   enum ConflictResolution {
2162     /// No overlap, simply keep this value.
2163     CR_Keep,
2164 
2165     /// Merge this value into OtherVNI and erase the defining instruction.
2166     /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2167     /// values.
2168     CR_Erase,
2169 
2170     /// Merge this value into OtherVNI but keep the defining instruction.
2171     /// This is for the special case where OtherVNI is defined by the same
2172     /// instruction.
2173     CR_Merge,
2174 
2175     /// Keep this value, and have it replace OtherVNI where possible. This
2176     /// complicates value mapping since OtherVNI maps to two different values
2177     /// before and after this def.
2178     /// Used when clobbering undefined or dead lanes.
2179     CR_Replace,
2180 
2181     /// Unresolved conflict. Visit later when all values have been mapped.
2182     CR_Unresolved,
2183 
2184     /// Unresolvable conflict. Abort the join.
2185     CR_Impossible
2186   };
2187 
2188   /// Per-value info for LI. The lane bit masks are all relative to the final
2189   /// joined register, so they can be compared directly between SrcReg and
2190   /// DstReg.
2191   struct Val {
2192     ConflictResolution Resolution = CR_Keep;
2193 
2194     /// Lanes written by this def, 0 for unanalyzed values.
2195     LaneBitmask WriteLanes;
2196 
2197     /// Lanes with defined values in this register. Other lanes are undef and
2198     /// safe to clobber.
2199     LaneBitmask ValidLanes;
2200 
2201     /// Value in LI being redefined by this def.
2202     VNInfo *RedefVNI = nullptr;
2203 
2204     /// Value in the other live range that overlaps this def, if any.
2205     VNInfo *OtherVNI = nullptr;
2206 
2207     /// Is this value an IMPLICIT_DEF that can be erased?
2208     ///
2209     /// IMPLICIT_DEF values should only exist at the end of a basic block that
2210     /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2211     /// safely erased if they are overlapping a live value in the other live
2212     /// interval.
2213     ///
2214     /// Weird control flow graphs and incomplete PHI handling in
2215     /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2216     /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2217     /// normal values.
2218     bool ErasableImplicitDef = false;
2219 
2220     /// True when the live range of this value will be pruned because of an
2221     /// overlapping CR_Replace value in the other live range.
2222     bool Pruned = false;
2223 
2224     /// True once Pruned above has been computed.
2225     bool PrunedComputed = false;
2226 
2227     /// True if this value is determined to be identical to OtherVNI
2228     /// (in valuesIdentical). This is used with CR_Erase where the erased
2229     /// copy is redundant, i.e. the source value is already the same as
2230     /// the destination. In such cases the subranges need to be updated
2231     /// properly. See comment at pruneSubRegValues for more info.
2232     bool Identical = false;
2233 
2234     Val() = default;
2235 
2236     bool isAnalyzed() const { return WriteLanes.any(); }
2237   };
2238 
2239   /// One entry per value number in LI.
2240   SmallVector<Val, 8> Vals;
2241 
2242   /// Compute the bitmask of lanes actually written by DefMI.
2243   /// Set Redef if there are any partial register definitions that depend on the
2244   /// previous value of the register.
2245   LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2246 
2247   /// Find the ultimate value that VNI was copied from.
2248   std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
2249 
2250   bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2251 
2252   /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2253   /// Return a conflict resolution when possible, but leave the hard cases as
2254   /// CR_Unresolved.
2255   /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2256   /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2257   /// The recursion always goes upwards in the dominator tree, making loops
2258   /// impossible.
2259   ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2260 
2261   /// Compute the value assignment for ValNo in RI.
2262   /// This may be called recursively by analyzeValue(), but never for a ValNo on
2263   /// the stack.
2264   void computeAssignment(unsigned ValNo, JoinVals &Other);
2265 
2266   /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2267   /// the extent of the tainted lanes in the block.
2268   ///
2269   /// Multiple values in Other.LR can be affected since partial redefinitions
2270   /// can preserve previously tainted lanes.
2271   ///
2272   ///   1 %dst = VLOAD           <-- Define all lanes in %dst
2273   ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
2274   ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
2275   ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2276   ///
2277   /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2278   /// entry to TaintedVals.
2279   ///
2280   /// Returns false if the tainted lanes extend beyond the basic block.
2281   bool
2282   taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2283               SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2284 
2285   /// Return true if MI uses any of the given Lanes from Reg.
2286   /// This does not include partial redefinitions of Reg.
2287   bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
2288 
2289   /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2290   /// be pruned:
2291   ///
2292   ///   %dst = COPY %src
2293   ///   %src = COPY %dst  <-- This value to be pruned.
2294   ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
2295   bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2296 
2297 public:
2298   JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
2299            SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
2300            LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2301            bool TrackSubRegLiveness)
2302     : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2303       SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2304       NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2305       TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {}
2306 
2307   /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2308   /// Returns false if any conflicts were impossible to resolve.
2309   bool mapValues(JoinVals &Other);
2310 
2311   /// Try to resolve conflicts that require all values to be mapped.
2312   /// Returns false if any conflicts were impossible to resolve.
2313   bool resolveConflicts(JoinVals &Other);
2314 
2315   /// Prune the live range of values in Other.LR where they would conflict with
2316   /// CR_Replace values in LR. Collect end points for restoring the live range
2317   /// after joining.
2318   void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2319                    bool changeInstrs);
2320 
2321   /// Removes subranges starting at copies that get removed. This sometimes
2322   /// happens when undefined subranges are copied around. These ranges contain
2323   /// no useful information and can be removed.
2324   void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2325 
2326   /// Pruning values in subranges can lead to removing segments in these
2327   /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2328   /// the main range also need to be removed. This function will mark
2329   /// the corresponding values in the main range as pruned, so that
2330   /// eraseInstrs can do the final cleanup.
2331   /// The parameter @p LI must be the interval whose main range is the
2332   /// live range LR.
2333   void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2334 
2335   /// Erase any machine instructions that have been coalesced away.
2336   /// Add erased instructions to ErasedInstrs.
2337   /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2338   /// the erased instrs.
2339   void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2340                    SmallVectorImpl<unsigned> &ShrinkRegs,
2341                    LiveInterval *LI = nullptr);
2342 
2343   /// Remove liverange defs at places where implicit defs will be removed.
2344   void removeImplicitDefs();
2345 
2346   /// Get the value assignments suitable for passing to LiveInterval::join.
2347   const int *getAssignments() const { return Assignments.data(); }
2348 };
2349 
2350 } // end anonymous namespace
2351 
2352 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2353   const {
2354   LaneBitmask L;
2355   for (const MachineOperand &MO : DefMI->operands()) {
2356     if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2357       continue;
2358     L |= TRI->getSubRegIndexLaneMask(
2359            TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2360     if (MO.readsReg())
2361       Redef = true;
2362   }
2363   return L;
2364 }
2365 
2366 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
2367     const VNInfo *VNI) const {
2368   unsigned TrackReg = Reg;
2369 
2370   while (!VNI->isPHIDef()) {
2371     SlotIndex Def = VNI->def;
2372     MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2373     assert(MI && "No defining instruction");
2374     if (!MI->isFullCopy())
2375       return std::make_pair(VNI, TrackReg);
2376     unsigned SrcReg = MI->getOperand(1).getReg();
2377     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
2378       return std::make_pair(VNI, TrackReg);
2379 
2380     const LiveInterval &LI = LIS->getInterval(SrcReg);
2381     const VNInfo *ValueIn;
2382     // No subrange involved.
2383     if (!SubRangeJoin || !LI.hasSubRanges()) {
2384       LiveQueryResult LRQ = LI.Query(Def);
2385       ValueIn = LRQ.valueIn();
2386     } else {
2387       // Query subranges. Ensure that all matching ones take us to the same def
2388       // (allowing some of them to be undef).
2389       ValueIn = nullptr;
2390       for (const LiveInterval::SubRange &S : LI.subranges()) {
2391         // Transform lanemask to a mask in the joined live interval.
2392         LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2393         if ((SMask & LaneMask).none())
2394           continue;
2395         LiveQueryResult LRQ = S.Query(Def);
2396         if (!ValueIn) {
2397           ValueIn = LRQ.valueIn();
2398           continue;
2399         }
2400         if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2401           return std::make_pair(VNI, TrackReg);
2402       }
2403     }
2404     if (ValueIn == nullptr) {
2405       // Reaching an undefined value is legitimate, for example:
2406       //
2407       // 1   undef %0.sub1 = ...  ;; %0.sub0 == undef
2408       // 2   %1 = COPY %0         ;; %1 is defined here.
2409       // 3   %0 = COPY %1         ;; Now %0.sub0 has a definition,
2410       //                          ;; but it's equivalent to "undef".
2411       return std::make_pair(nullptr, SrcReg);
2412     }
2413     VNI = ValueIn;
2414     TrackReg = SrcReg;
2415   }
2416   return std::make_pair(VNI, TrackReg);
2417 }
2418 
2419 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2420                                const JoinVals &Other) const {
2421   const VNInfo *Orig0;
2422   unsigned Reg0;
2423   std::tie(Orig0, Reg0) = followCopyChain(Value0);
2424   if (Orig0 == Value1 && Reg0 == Other.Reg)
2425     return true;
2426 
2427   const VNInfo *Orig1;
2428   unsigned Reg1;
2429   std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2430   // If both values are undefined, and the source registers are the same
2431   // register, the values are identical. Filter out cases where only one
2432   // value is defined.
2433   if (Orig0 == nullptr || Orig1 == nullptr)
2434     return Orig0 == Orig1 && Reg0 == Reg1;
2435 
2436   // The values are equal if they are defined at the same place and use the
2437   // same register. Note that we cannot compare VNInfos directly as some of
2438   // them might be from a copy created in mergeSubRangeInto()  while the other
2439   // is from the original LiveInterval.
2440   return Orig0->def == Orig1->def && Reg0 == Reg1;
2441 }
2442 
2443 JoinVals::ConflictResolution
2444 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2445   Val &V = Vals[ValNo];
2446   assert(!V.isAnalyzed() && "Value has already been analyzed!");
2447   VNInfo *VNI = LR.getValNumInfo(ValNo);
2448   if (VNI->isUnused()) {
2449     V.WriteLanes = LaneBitmask::getAll();
2450     return CR_Keep;
2451   }
2452 
2453   // Get the instruction defining this value, compute the lanes written.
2454   const MachineInstr *DefMI = nullptr;
2455   if (VNI->isPHIDef()) {
2456     // Conservatively assume that all lanes in a PHI are valid.
2457     LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2458                                      : TRI->getSubRegIndexLaneMask(SubIdx);
2459     V.ValidLanes = V.WriteLanes = Lanes;
2460   } else {
2461     DefMI = Indexes->getInstructionFromIndex(VNI->def);
2462     assert(DefMI != nullptr);
2463     if (SubRangeJoin) {
2464       // We don't care about the lanes when joining subregister ranges.
2465       V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2466       if (DefMI->isImplicitDef()) {
2467         V.ValidLanes = LaneBitmask::getNone();
2468         V.ErasableImplicitDef = true;
2469       }
2470     } else {
2471       bool Redef = false;
2472       V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2473 
2474       // If this is a read-modify-write instruction, there may be more valid
2475       // lanes than the ones written by this instruction.
2476       // This only covers partial redef operands. DefMI may have normal use
2477       // operands reading the register. They don't contribute valid lanes.
2478       //
2479       // This adds ssub1 to the set of valid lanes in %src:
2480       //
2481       //   %src:ssub1 = FOO
2482       //
2483       // This leaves only ssub1 valid, making any other lanes undef:
2484       //
2485       //   %src:ssub1<def,read-undef> = FOO %src:ssub2
2486       //
2487       // The <read-undef> flag on the def operand means that old lane values are
2488       // not important.
2489       if (Redef) {
2490         V.RedefVNI = LR.Query(VNI->def).valueIn();
2491         assert((TrackSubRegLiveness || V.RedefVNI) &&
2492                "Instruction is reading nonexistent value");
2493         if (V.RedefVNI != nullptr) {
2494           computeAssignment(V.RedefVNI->id, Other);
2495           V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2496         }
2497       }
2498 
2499       // An IMPLICIT_DEF writes undef values.
2500       if (DefMI->isImplicitDef()) {
2501         // We normally expect IMPLICIT_DEF values to be live only until the end
2502         // of their block. If the value is really live longer and gets pruned in
2503         // another block, this flag is cleared again.
2504         V.ErasableImplicitDef = true;
2505         V.ValidLanes &= ~V.WriteLanes;
2506       }
2507     }
2508   }
2509 
2510   // Find the value in Other that overlaps VNI->def, if any.
2511   LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2512 
2513   // It is possible that both values are defined by the same instruction, or
2514   // the values are PHIs defined in the same block. When that happens, the two
2515   // values should be merged into one, but not into any preceding value.
2516   // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2517   if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2518     assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2519 
2520     // One value stays, the other is merged. Keep the earlier one, or the first
2521     // one we see.
2522     if (OtherVNI->def < VNI->def)
2523       Other.computeAssignment(OtherVNI->id, *this);
2524     else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2525       // This is an early-clobber def overlapping a live-in value in the other
2526       // register. Not mergeable.
2527       V.OtherVNI = OtherLRQ.valueIn();
2528       return CR_Impossible;
2529     }
2530     V.OtherVNI = OtherVNI;
2531     Val &OtherV = Other.Vals[OtherVNI->id];
2532     // Keep this value, check for conflicts when analyzing OtherVNI.
2533     if (!OtherV.isAnalyzed())
2534       return CR_Keep;
2535     // Both sides have been analyzed now.
2536     // Allow overlapping PHI values. Any real interference would show up in a
2537     // predecessor, the PHI itself can't introduce any conflicts.
2538     if (VNI->isPHIDef())
2539       return CR_Merge;
2540     if ((V.ValidLanes & OtherV.ValidLanes).any())
2541       // Overlapping lanes can't be resolved.
2542       return CR_Impossible;
2543     else
2544       return CR_Merge;
2545   }
2546 
2547   // No simultaneous def. Is Other live at the def?
2548   V.OtherVNI = OtherLRQ.valueIn();
2549   if (!V.OtherVNI)
2550     // No overlap, no conflict.
2551     return CR_Keep;
2552 
2553   assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2554 
2555   // We have overlapping values, or possibly a kill of Other.
2556   // Recursively compute assignments up the dominator tree.
2557   Other.computeAssignment(V.OtherVNI->id, *this);
2558   Val &OtherV = Other.Vals[V.OtherVNI->id];
2559 
2560   // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2561   // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2562   // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2563   // technically.
2564   //
2565   // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2566   // to erase the IMPLICIT_DEF instruction.
2567   if (OtherV.ErasableImplicitDef && DefMI &&
2568       DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2569     LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2570                       << " extends into "
2571                       << printMBBReference(*DefMI->getParent())
2572                       << ", keeping it.\n");
2573     OtherV.ErasableImplicitDef = false;
2574   }
2575 
2576   // Allow overlapping PHI values. Any real interference would show up in a
2577   // predecessor, the PHI itself can't introduce any conflicts.
2578   if (VNI->isPHIDef())
2579     return CR_Replace;
2580 
2581   // Check for simple erasable conflicts.
2582   if (DefMI->isImplicitDef()) {
2583     // We need the def for the subregister if there is nothing else live at the
2584     // subrange at this point.
2585     if (TrackSubRegLiveness
2586         && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none())
2587       return CR_Replace;
2588     return CR_Erase;
2589   }
2590 
2591   // Include the non-conflict where DefMI is a coalescable copy that kills
2592   // OtherVNI. We still want the copy erased and value numbers merged.
2593   if (CP.isCoalescable(DefMI)) {
2594     // Some of the lanes copied from OtherVNI may be undef, making them undef
2595     // here too.
2596     V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2597     return CR_Erase;
2598   }
2599 
2600   // This may not be a real conflict if DefMI simply kills Other and defines
2601   // VNI.
2602   if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2603     return CR_Keep;
2604 
2605   // Handle the case where VNI and OtherVNI can be proven to be identical:
2606   //
2607   //   %other = COPY %ext
2608   //   %this  = COPY %ext <-- Erase this copy
2609   //
2610   if (DefMI->isFullCopy() && !CP.isPartial() &&
2611       valuesIdentical(VNI, V.OtherVNI, Other)) {
2612     V.Identical = true;
2613     return CR_Erase;
2614   }
2615 
2616   // If the lanes written by this instruction were all undef in OtherVNI, it is
2617   // still safe to join the live ranges. This can't be done with a simple value
2618   // mapping, though - OtherVNI will map to multiple values:
2619   //
2620   //   1 %dst:ssub0 = FOO                <-- OtherVNI
2621   //   2 %src = BAR                      <-- VNI
2622   //   3 %dst:ssub1 = COPY killed %src    <-- Eliminate this copy.
2623   //   4 BAZ killed %dst
2624   //   5 QUUX killed %src
2625   //
2626   // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2627   // handles this complex value mapping.
2628   if ((V.WriteLanes & OtherV.ValidLanes).none())
2629     return CR_Replace;
2630 
2631   // If the other live range is killed by DefMI and the live ranges are still
2632   // overlapping, it must be because we're looking at an early clobber def:
2633   //
2634   //   %dst<def,early-clobber> = ASM killed %src
2635   //
2636   // In this case, it is illegal to merge the two live ranges since the early
2637   // clobber def would clobber %src before it was read.
2638   if (OtherLRQ.isKill()) {
2639     // This case where the def doesn't overlap the kill is handled above.
2640     assert(VNI->def.isEarlyClobber() &&
2641            "Only early clobber defs can overlap a kill");
2642     return CR_Impossible;
2643   }
2644 
2645   // VNI is clobbering live lanes in OtherVNI, but there is still the
2646   // possibility that no instructions actually read the clobbered lanes.
2647   // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2648   // Otherwise Other.RI wouldn't be live here.
2649   if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2650     return CR_Impossible;
2651 
2652   // We need to verify that no instructions are reading the clobbered lanes. To
2653   // save compile time, we'll only check that locally. Don't allow the tainted
2654   // value to escape the basic block.
2655   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2656   if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2657     return CR_Impossible;
2658 
2659   // There are still some things that could go wrong besides clobbered lanes
2660   // being read, for example OtherVNI may be only partially redefined in MBB,
2661   // and some clobbered lanes could escape the block. Save this analysis for
2662   // resolveConflicts() when all values have been mapped. We need to know
2663   // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2664   // that now - the recursive analyzeValue() calls must go upwards in the
2665   // dominator tree.
2666   return CR_Unresolved;
2667 }
2668 
2669 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2670   Val &V = Vals[ValNo];
2671   if (V.isAnalyzed()) {
2672     // Recursion should always move up the dominator tree, so ValNo is not
2673     // supposed to reappear before it has been assigned.
2674     assert(Assignments[ValNo] != -1 && "Bad recursion?");
2675     return;
2676   }
2677   switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2678   case CR_Erase:
2679   case CR_Merge:
2680     // Merge this ValNo into OtherVNI.
2681     assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2682     assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2683     Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2684     LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2685                       << LR.getValNumInfo(ValNo)->def << " into "
2686                       << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2687                       << V.OtherVNI->def << " --> @"
2688                       << NewVNInfo[Assignments[ValNo]]->def << '\n');
2689     break;
2690   case CR_Replace:
2691   case CR_Unresolved: {
2692     // The other value is going to be pruned if this join is successful.
2693     assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2694     Val &OtherV = Other.Vals[V.OtherVNI->id];
2695     // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2696     // its lanes.
2697     if ((OtherV.WriteLanes & ~V.ValidLanes).any() && TrackSubRegLiveness)
2698       OtherV.ErasableImplicitDef = false;
2699     OtherV.Pruned = true;
2700     LLVM_FALLTHROUGH;
2701   }
2702   default:
2703     // This value number needs to go in the final joined live range.
2704     Assignments[ValNo] = NewVNInfo.size();
2705     NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2706     break;
2707   }
2708 }
2709 
2710 bool JoinVals::mapValues(JoinVals &Other) {
2711   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2712     computeAssignment(i, Other);
2713     if (Vals[i].Resolution == CR_Impossible) {
2714       LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2715                         << '@' << LR.getValNumInfo(i)->def << '\n');
2716       return false;
2717     }
2718   }
2719   return true;
2720 }
2721 
2722 bool JoinVals::
2723 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2724             SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2725   VNInfo *VNI = LR.getValNumInfo(ValNo);
2726   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2727   SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2728 
2729   // Scan Other.LR from VNI.def to MBBEnd.
2730   LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2731   assert(OtherI != Other.LR.end() && "No conflict?");
2732   do {
2733     // OtherI is pointing to a tainted value. Abort the join if the tainted
2734     // lanes escape the block.
2735     SlotIndex End = OtherI->end;
2736     if (End >= MBBEnd) {
2737       LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2738                         << OtherI->valno->id << '@' << OtherI->start << '\n');
2739       return false;
2740     }
2741     LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
2742                       << OtherI->valno->id << '@' << OtherI->start << " to "
2743                       << End << '\n');
2744     // A dead def is not a problem.
2745     if (End.isDead())
2746       break;
2747     TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2748 
2749     // Check for another def in the MBB.
2750     if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2751       break;
2752 
2753     // Lanes written by the new def are no longer tainted.
2754     const Val &OV = Other.Vals[OtherI->valno->id];
2755     TaintedLanes &= ~OV.WriteLanes;
2756     if (!OV.RedefVNI)
2757       break;
2758   } while (TaintedLanes.any());
2759   return true;
2760 }
2761 
2762 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
2763                          LaneBitmask Lanes) const {
2764   if (MI.isDebugInstr())
2765     return false;
2766   for (const MachineOperand &MO : MI.operands()) {
2767     if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2768       continue;
2769     if (!MO.readsReg())
2770       continue;
2771     unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
2772     if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
2773       return true;
2774   }
2775   return false;
2776 }
2777 
2778 bool JoinVals::resolveConflicts(JoinVals &Other) {
2779   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2780     Val &V = Vals[i];
2781     assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
2782     if (V.Resolution != CR_Unresolved)
2783       continue;
2784     LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
2785                       << LR.getValNumInfo(i)->def << '\n');
2786     if (SubRangeJoin)
2787       return false;
2788 
2789     ++NumLaneConflicts;
2790     assert(V.OtherVNI && "Inconsistent conflict resolution.");
2791     VNInfo *VNI = LR.getValNumInfo(i);
2792     const Val &OtherV = Other.Vals[V.OtherVNI->id];
2793 
2794     // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2795     // join, those lanes will be tainted with a wrong value. Get the extent of
2796     // the tainted lanes.
2797     LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2798     SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2799     if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2800       // Tainted lanes would extend beyond the basic block.
2801       return false;
2802 
2803     assert(!TaintExtent.empty() && "There should be at least one conflict.");
2804 
2805     // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2806     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2807     MachineBasicBlock::iterator MI = MBB->begin();
2808     if (!VNI->isPHIDef()) {
2809       MI = Indexes->getInstructionFromIndex(VNI->def);
2810       // No need to check the instruction defining VNI for reads.
2811       ++MI;
2812     }
2813     assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2814            "Interference ends on VNI->def. Should have been handled earlier");
2815     MachineInstr *LastMI =
2816       Indexes->getInstructionFromIndex(TaintExtent.front().first);
2817     assert(LastMI && "Range must end at a proper instruction");
2818     unsigned TaintNum = 0;
2819     while (true) {
2820       assert(MI != MBB->end() && "Bad LastMI");
2821       if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2822         LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2823         return false;
2824       }
2825       // LastMI is the last instruction to use the current value.
2826       if (&*MI == LastMI) {
2827         if (++TaintNum == TaintExtent.size())
2828           break;
2829         LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2830         assert(LastMI && "Range must end at a proper instruction");
2831         TaintedLanes = TaintExtent[TaintNum].second;
2832       }
2833       ++MI;
2834     }
2835 
2836     // The tainted lanes are unused.
2837     V.Resolution = CR_Replace;
2838     ++NumLaneResolves;
2839   }
2840   return true;
2841 }
2842 
2843 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2844   Val &V = Vals[ValNo];
2845   if (V.Pruned || V.PrunedComputed)
2846     return V.Pruned;
2847 
2848   if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2849     return V.Pruned;
2850 
2851   // Follow copies up the dominator tree and check if any intermediate value
2852   // has been pruned.
2853   V.PrunedComputed = true;
2854   V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2855   return V.Pruned;
2856 }
2857 
2858 void JoinVals::pruneValues(JoinVals &Other,
2859                            SmallVectorImpl<SlotIndex> &EndPoints,
2860                            bool changeInstrs) {
2861   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2862     SlotIndex Def = LR.getValNumInfo(i)->def;
2863     switch (Vals[i].Resolution) {
2864     case CR_Keep:
2865       break;
2866     case CR_Replace: {
2867       // This value takes precedence over the value in Other.LR.
2868       LIS->pruneValue(Other.LR, Def, &EndPoints);
2869       // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2870       // instructions are only inserted to provide a live-out value for PHI
2871       // predecessors, so the instruction should simply go away once its value
2872       // has been replaced.
2873       Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2874       bool EraseImpDef = OtherV.ErasableImplicitDef &&
2875                          OtherV.Resolution == CR_Keep;
2876       if (!Def.isBlock()) {
2877         if (changeInstrs) {
2878           // Remove <def,read-undef> flags. This def is now a partial redef.
2879           // Also remove dead flags since the joined live range will
2880           // continue past this instruction.
2881           for (MachineOperand &MO :
2882                Indexes->getInstructionFromIndex(Def)->operands()) {
2883             if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
2884               if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
2885                 MO.setIsUndef(false);
2886               MO.setIsDead(false);
2887             }
2888           }
2889         }
2890         // This value will reach instructions below, but we need to make sure
2891         // the live range also reaches the instruction at Def.
2892         if (!EraseImpDef)
2893           EndPoints.push_back(Def);
2894       }
2895       LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
2896                         << ": " << Other.LR << '\n');
2897       break;
2898     }
2899     case CR_Erase:
2900     case CR_Merge:
2901       if (isPrunedValue(i, Other)) {
2902         // This value is ultimately a copy of a pruned value in LR or Other.LR.
2903         // We can no longer trust the value mapping computed by
2904         // computeAssignment(), the value that was originally copied could have
2905         // been replaced.
2906         LIS->pruneValue(LR, Def, &EndPoints);
2907         LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
2908                           << Def << ": " << LR << '\n');
2909       }
2910       break;
2911     case CR_Unresolved:
2912     case CR_Impossible:
2913       llvm_unreachable("Unresolved conflicts");
2914     }
2915   }
2916 }
2917 
2918 /// Consider the following situation when coalescing the copy between
2919 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
2920 ///
2921 ///                              Main range         Subrange 0004 (sub2)
2922 ///                              %31    %45           %31    %45
2923 ///  544    %45 = COPY %28               +                    +
2924 ///                                      | v1                 | v1
2925 ///  560B bb.1:                          +                    +
2926 ///  624        = %45.sub2               | v2                 | v2
2927 ///  800    %31 = COPY %45        +      +             +      +
2928 ///                               | v0                 | v0
2929 ///  816    %31.sub1 = ...        +                    |
2930 ///  880    %30 = COPY %31        | v1                 +
2931 ///  928    %45 = COPY %30        |      +                    +
2932 ///                               |      | v0                 | v0  <--+
2933 ///  992B   ; backedge -> bb.1    |      +                    +        |
2934 /// 1040        = %31.sub0        +                                    |
2935 ///                                                 This value must remain
2936 ///                                                 live-out!
2937 ///
2938 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
2939 /// redundant, since it copies the value from %45 back into it. The
2940 /// conflict resolution for the main range determines that %45.v0 is
2941 /// to be erased, which is ok since %31.v1 is identical to it.
2942 /// The problem happens with the subrange for sub2: it has to be live
2943 /// on exit from the block, but since 928 was actually a point of
2944 /// definition of %45.sub2, %45.sub2 was not live immediately prior
2945 /// to that definition. As a result, when 928 was erased, the value v0
2946 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
2947 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
2948 /// providing an incorrect value to the use at 624.
2949 ///
2950 /// Since the main-range values %31.v1 and %45.v0 were proved to be
2951 /// identical, the corresponding values in subranges must also be the
2952 /// same. A redundant copy is removed because it's not needed, and not
2953 /// because it copied an undefined value, so any liveness that originated
2954 /// from that copy cannot disappear. When pruning a value that started
2955 /// at the removed copy, the corresponding identical value must be
2956 /// extended to replace it.
2957 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
2958   // Look for values being erased.
2959   bool DidPrune = false;
2960   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2961     Val &V = Vals[i];
2962     // We should trigger in all cases in which eraseInstrs() does something.
2963     // match what eraseInstrs() is doing, print a message so
2964     if (V.Resolution != CR_Erase &&
2965         (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
2966       continue;
2967 
2968     // Check subranges at the point where the copy will be removed.
2969     SlotIndex Def = LR.getValNumInfo(i)->def;
2970     SlotIndex OtherDef;
2971     if (V.Identical)
2972       OtherDef = V.OtherVNI->def;
2973 
2974     // Print message so mismatches with eraseInstrs() can be diagnosed.
2975     LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
2976                       << '\n');
2977     for (LiveInterval::SubRange &S : LI.subranges()) {
2978       LiveQueryResult Q = S.Query(Def);
2979 
2980       // If a subrange starts at the copy then an undefined value has been
2981       // copied and we must remove that subrange value as well.
2982       VNInfo *ValueOut = Q.valueOutOrDead();
2983       if (ValueOut != nullptr && Q.valueIn() == nullptr) {
2984         LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
2985                           << " at " << Def << "\n");
2986         SmallVector<SlotIndex,8> EndPoints;
2987         LIS->pruneValue(S, Def, &EndPoints);
2988         DidPrune = true;
2989         // Mark value number as unused.
2990         ValueOut->markUnused();
2991 
2992         if (V.Identical && S.Query(OtherDef).valueOut()) {
2993           // If V is identical to V.OtherVNI (and S was live at OtherDef),
2994           // then we can't simply prune V from S. V needs to be replaced
2995           // with V.OtherVNI.
2996           LIS->extendToIndices(S, EndPoints);
2997         }
2998         continue;
2999       }
3000       // If a subrange ends at the copy, then a value was copied but only
3001       // partially used later. Shrink the subregister range appropriately.
3002       if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
3003         LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3004                           << PrintLaneMask(S.LaneMask) << " at " << Def
3005                           << "\n");
3006         ShrinkMask |= S.LaneMask;
3007       }
3008     }
3009   }
3010   if (DidPrune)
3011     LI.removeEmptySubRanges();
3012 }
3013 
3014 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3015 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3016   for (LiveInterval::SubRange &SR : LI.subranges()) {
3017     if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3018       if (VNI->def == Def)
3019         return true;
3020   }
3021   return false;
3022 }
3023 
3024 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3025   assert(&static_cast<LiveRange&>(LI) == &LR);
3026 
3027   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3028     if (Vals[i].Resolution != CR_Keep)
3029       continue;
3030     VNInfo *VNI = LR.getValNumInfo(i);
3031     if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3032       continue;
3033     Vals[i].Pruned = true;
3034     ShrinkMainRange = true;
3035   }
3036 }
3037 
3038 void JoinVals::removeImplicitDefs() {
3039   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3040     Val &V = Vals[i];
3041     if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3042       continue;
3043 
3044     VNInfo *VNI = LR.getValNumInfo(i);
3045     VNI->markUnused();
3046     LR.removeValNo(VNI);
3047   }
3048 }
3049 
3050 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3051                            SmallVectorImpl<unsigned> &ShrinkRegs,
3052                            LiveInterval *LI) {
3053   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3054     // Get the def location before markUnused() below invalidates it.
3055     SlotIndex Def = LR.getValNumInfo(i)->def;
3056     switch (Vals[i].Resolution) {
3057     case CR_Keep: {
3058       // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3059       // longer. The IMPLICIT_DEF instructions are only inserted by
3060       // PHIElimination to guarantee that all PHI predecessors have a value.
3061       if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3062         break;
3063       // Remove value number i from LR.
3064       // For intervals with subranges, removing a segment from the main range
3065       // may require extending the previous segment: for each definition of
3066       // a subregister, there will be a corresponding def in the main range.
3067       // That def may fall in the middle of a segment from another subrange.
3068       // In such cases, removing this def from the main range must be
3069       // complemented by extending the main range to account for the liveness
3070       // of the other subrange.
3071       VNInfo *VNI = LR.getValNumInfo(i);
3072       SlotIndex Def = VNI->def;
3073       // The new end point of the main range segment to be extended.
3074       SlotIndex NewEnd;
3075       if (LI != nullptr) {
3076         LiveRange::iterator I = LR.FindSegmentContaining(Def);
3077         assert(I != LR.end());
3078         // Do not extend beyond the end of the segment being removed.
3079         // The segment may have been pruned in preparation for joining
3080         // live ranges.
3081         NewEnd = I->end;
3082       }
3083 
3084       LR.removeValNo(VNI);
3085       // Note that this VNInfo is reused and still referenced in NewVNInfo,
3086       // make it appear like an unused value number.
3087       VNI->markUnused();
3088 
3089       if (LI != nullptr && LI->hasSubRanges()) {
3090         assert(static_cast<LiveRange*>(LI) == &LR);
3091         // Determine the end point based on the subrange information:
3092         // minimum of (earliest def of next segment,
3093         //             latest end point of containing segment)
3094         SlotIndex ED, LE;
3095         for (LiveInterval::SubRange &SR : LI->subranges()) {
3096           LiveRange::iterator I = SR.find(Def);
3097           if (I == SR.end())
3098             continue;
3099           if (I->start > Def)
3100             ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3101           else
3102             LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3103         }
3104         if (LE.isValid())
3105           NewEnd = std::min(NewEnd, LE);
3106         if (ED.isValid())
3107           NewEnd = std::min(NewEnd, ED);
3108 
3109         // We only want to do the extension if there was a subrange that
3110         // was live across Def.
3111         if (LE.isValid()) {
3112           LiveRange::iterator S = LR.find(Def);
3113           if (S != LR.begin())
3114             std::prev(S)->end = NewEnd;
3115         }
3116       }
3117       LLVM_DEBUG({
3118         dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3119         if (LI != nullptr)
3120           dbgs() << "\t\t  LHS = " << *LI << '\n';
3121       });
3122       LLVM_FALLTHROUGH;
3123     }
3124 
3125     case CR_Erase: {
3126       MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3127       assert(MI && "No instruction to erase");
3128       if (MI->isCopy()) {
3129         unsigned Reg = MI->getOperand(1).getReg();
3130         if (TargetRegisterInfo::isVirtualRegister(Reg) &&
3131             Reg != CP.getSrcReg() && Reg != CP.getDstReg())
3132           ShrinkRegs.push_back(Reg);
3133       }
3134       ErasedInstrs.insert(MI);
3135       LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3136       LIS->RemoveMachineInstrFromMaps(*MI);
3137       MI->eraseFromParent();
3138       break;
3139     }
3140     default:
3141       break;
3142     }
3143   }
3144 }
3145 
3146 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3147                                          LaneBitmask LaneMask,
3148                                          const CoalescerPair &CP) {
3149   SmallVector<VNInfo*, 16> NewVNInfo;
3150   JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3151                    NewVNInfo, CP, LIS, TRI, true, true);
3152   JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3153                    NewVNInfo, CP, LIS, TRI, true, true);
3154 
3155   // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3156   // We should be able to resolve all conflicts here as we could successfully do
3157   // it on the mainrange already. There is however a problem when multiple
3158   // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3159   // interferences.
3160   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3161     // We already determined that it is legal to merge the intervals, so this
3162     // should never fail.
3163     llvm_unreachable("*** Couldn't join subrange!\n");
3164   }
3165   if (!LHSVals.resolveConflicts(RHSVals) ||
3166       !RHSVals.resolveConflicts(LHSVals)) {
3167     // We already determined that it is legal to merge the intervals, so this
3168     // should never fail.
3169     llvm_unreachable("*** Couldn't join subrange!\n");
3170   }
3171 
3172   // The merging algorithm in LiveInterval::join() can't handle conflicting
3173   // value mappings, so we need to remove any live ranges that overlap a
3174   // CR_Replace resolution. Collect a set of end points that can be used to
3175   // restore the live range after joining.
3176   SmallVector<SlotIndex, 8> EndPoints;
3177   LHSVals.pruneValues(RHSVals, EndPoints, false);
3178   RHSVals.pruneValues(LHSVals, EndPoints, false);
3179 
3180   LHSVals.removeImplicitDefs();
3181   RHSVals.removeImplicitDefs();
3182 
3183   LRange.verify();
3184   RRange.verify();
3185 
3186   // Join RRange into LHS.
3187   LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3188               NewVNInfo);
3189 
3190   LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3191                     << ' ' << LRange << "\n");
3192   if (EndPoints.empty())
3193     return;
3194 
3195   // Recompute the parts of the live range we had to remove because of
3196   // CR_Replace conflicts.
3197   LLVM_DEBUG({
3198     dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3199     for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3200       dbgs() << EndPoints[i];
3201       if (i != n-1)
3202         dbgs() << ',';
3203     }
3204     dbgs() << ":  " << LRange << '\n';
3205   });
3206   LIS->extendToIndices(LRange, EndPoints);
3207 }
3208 
3209 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3210                                           const LiveRange &ToMerge,
3211                                           LaneBitmask LaneMask,
3212                                           CoalescerPair &CP) {
3213   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3214   LI.refineSubRanges(Allocator, LaneMask,
3215       [this,&Allocator,&ToMerge,&CP](LiveInterval::SubRange &SR) {
3216     if (SR.empty()) {
3217       SR.assign(ToMerge, Allocator);
3218     } else {
3219       // joinSubRegRange() destroys the merged range, so we need a copy.
3220       LiveRange RangeCopy(ToMerge, Allocator);
3221       joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3222     }
3223   });
3224 }
3225 
3226 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3227   SmallVector<VNInfo*, 16> NewVNInfo;
3228   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3229   LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3230   bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3231   JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3232                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3233   JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3234                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3235 
3236   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3237 
3238   // First compute NewVNInfo and the simple value mappings.
3239   // Detect impossible conflicts early.
3240   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3241     return false;
3242 
3243   // Some conflicts can only be resolved after all values have been mapped.
3244   if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3245     return false;
3246 
3247   // All clear, the live ranges can be merged.
3248   if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3249     BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3250 
3251     // Transform lanemasks from the LHS to masks in the coalesced register and
3252     // create initial subranges if necessary.
3253     unsigned DstIdx = CP.getDstIdx();
3254     if (!LHS.hasSubRanges()) {
3255       LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3256                                      : TRI->getSubRegIndexLaneMask(DstIdx);
3257       // LHS must support subregs or we wouldn't be in this codepath.
3258       assert(Mask.any());
3259       LHS.createSubRangeFrom(Allocator, Mask, LHS);
3260     } else if (DstIdx != 0) {
3261       // Transform LHS lanemasks to new register class if necessary.
3262       for (LiveInterval::SubRange &R : LHS.subranges()) {
3263         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3264         R.LaneMask = Mask;
3265       }
3266     }
3267     LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3268                       << '\n');
3269 
3270     // Determine lanemasks of RHS in the coalesced register and merge subranges.
3271     unsigned SrcIdx = CP.getSrcIdx();
3272     if (!RHS.hasSubRanges()) {
3273       LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3274                                      : TRI->getSubRegIndexLaneMask(SrcIdx);
3275       mergeSubRangeInto(LHS, RHS, Mask, CP);
3276     } else {
3277       // Pair up subranges and merge.
3278       for (LiveInterval::SubRange &R : RHS.subranges()) {
3279         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3280         mergeSubRangeInto(LHS, R, Mask, CP);
3281       }
3282     }
3283     LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3284 
3285     // Pruning implicit defs from subranges may result in the main range
3286     // having stale segments.
3287     LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3288 
3289     LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3290     RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3291   }
3292 
3293   // The merging algorithm in LiveInterval::join() can't handle conflicting
3294   // value mappings, so we need to remove any live ranges that overlap a
3295   // CR_Replace resolution. Collect a set of end points that can be used to
3296   // restore the live range after joining.
3297   SmallVector<SlotIndex, 8> EndPoints;
3298   LHSVals.pruneValues(RHSVals, EndPoints, true);
3299   RHSVals.pruneValues(LHSVals, EndPoints, true);
3300 
3301   // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3302   // registers to require trimming.
3303   SmallVector<unsigned, 8> ShrinkRegs;
3304   LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3305   RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3306   while (!ShrinkRegs.empty())
3307     shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3308 
3309   // Join RHS into LHS.
3310   LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3311 
3312   // Kill flags are going to be wrong if the live ranges were overlapping.
3313   // Eventually, we should simply clear all kill flags when computing live
3314   // ranges. They are reinserted after register allocation.
3315   MRI->clearKillFlags(LHS.reg);
3316   MRI->clearKillFlags(RHS.reg);
3317 
3318   if (!EndPoints.empty()) {
3319     // Recompute the parts of the live range we had to remove because of
3320     // CR_Replace conflicts.
3321     LLVM_DEBUG({
3322       dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3323       for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3324         dbgs() << EndPoints[i];
3325         if (i != n-1)
3326           dbgs() << ',';
3327       }
3328       dbgs() << ":  " << LHS << '\n';
3329     });
3330     LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3331   }
3332 
3333   return true;
3334 }
3335 
3336 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3337   return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3338 }
3339 
3340 namespace {
3341 
3342 /// Information concerning MBB coalescing priority.
3343 struct MBBPriorityInfo {
3344   MachineBasicBlock *MBB;
3345   unsigned Depth;
3346   bool IsSplit;
3347 
3348   MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3349     : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3350 };
3351 
3352 } // end anonymous namespace
3353 
3354 /// C-style comparator that sorts first based on the loop depth of the basic
3355 /// block (the unsigned), and then on the MBB number.
3356 ///
3357 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3358 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3359                               const MBBPriorityInfo *RHS) {
3360   // Deeper loops first
3361   if (LHS->Depth != RHS->Depth)
3362     return LHS->Depth > RHS->Depth ? -1 : 1;
3363 
3364   // Try to unsplit critical edges next.
3365   if (LHS->IsSplit != RHS->IsSplit)
3366     return LHS->IsSplit ? -1 : 1;
3367 
3368   // Prefer blocks that are more connected in the CFG. This takes care of
3369   // the most difficult copies first while intervals are short.
3370   unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3371   unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3372   if (cl != cr)
3373     return cl > cr ? -1 : 1;
3374 
3375   // As a last resort, sort by block number.
3376   return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3377 }
3378 
3379 /// \returns true if the given copy uses or defines a local live range.
3380 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3381   if (!Copy->isCopy())
3382     return false;
3383 
3384   if (Copy->getOperand(1).isUndef())
3385     return false;
3386 
3387   unsigned SrcReg = Copy->getOperand(1).getReg();
3388   unsigned DstReg = Copy->getOperand(0).getReg();
3389   if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
3390       || TargetRegisterInfo::isPhysicalRegister(DstReg))
3391     return false;
3392 
3393   return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3394     || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3395 }
3396 
3397 void RegisterCoalescer::lateLiveIntervalUpdate() {
3398   for (unsigned reg : ToBeUpdated) {
3399     if (!LIS->hasInterval(reg))
3400       continue;
3401     LiveInterval &LI = LIS->getInterval(reg);
3402     shrinkToUses(&LI, &DeadDefs);
3403     if (!DeadDefs.empty())
3404       eliminateDeadDefs();
3405   }
3406   ToBeUpdated.clear();
3407 }
3408 
3409 bool RegisterCoalescer::
3410 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3411   bool Progress = false;
3412   for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3413     if (!CurrList[i])
3414       continue;
3415     // Skip instruction pointers that have already been erased, for example by
3416     // dead code elimination.
3417     if (ErasedInstrs.count(CurrList[i])) {
3418       CurrList[i] = nullptr;
3419       continue;
3420     }
3421     bool Again = false;
3422     bool Success = joinCopy(CurrList[i], Again);
3423     Progress |= Success;
3424     if (Success || !Again)
3425       CurrList[i] = nullptr;
3426   }
3427   return Progress;
3428 }
3429 
3430 /// Check if DstReg is a terminal node.
3431 /// I.e., it does not have any affinity other than \p Copy.
3432 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
3433                           const MachineRegisterInfo *MRI) {
3434   assert(Copy.isCopyLike());
3435   // Check if the destination of this copy as any other affinity.
3436   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3437     if (&MI != &Copy && MI.isCopyLike())
3438       return false;
3439   return true;
3440 }
3441 
3442 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3443   assert(Copy.isCopyLike());
3444   if (!UseTerminalRule)
3445     return false;
3446   unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
3447   isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg);
3448   // Check if the destination of this copy has any other affinity.
3449   if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
3450       // If SrcReg is a physical register, the copy won't be coalesced.
3451       // Ignoring it may have other side effect (like missing
3452       // rematerialization). So keep it.
3453       TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
3454       !isTerminalReg(DstReg, Copy, MRI))
3455     return false;
3456 
3457   // DstReg is a terminal node. Check if it interferes with any other
3458   // copy involving SrcReg.
3459   const MachineBasicBlock *OrigBB = Copy.getParent();
3460   const LiveInterval &DstLI = LIS->getInterval(DstReg);
3461   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3462     // Technically we should check if the weight of the new copy is
3463     // interesting compared to the other one and update the weight
3464     // of the copies accordingly. However, this would only work if
3465     // we would gather all the copies first then coalesce, whereas
3466     // right now we interleave both actions.
3467     // For now, just consider the copies that are in the same block.
3468     if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3469       continue;
3470     unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
3471     isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3472                 OtherSubReg);
3473     if (OtherReg == SrcReg)
3474       OtherReg = OtherSrcReg;
3475     // Check if OtherReg is a non-terminal.
3476     if (TargetRegisterInfo::isPhysicalRegister(OtherReg) ||
3477         isTerminalReg(OtherReg, MI, MRI))
3478       continue;
3479     // Check that OtherReg interfere with DstReg.
3480     if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3481       LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3482                         << '\n');
3483       return true;
3484     }
3485   }
3486   return false;
3487 }
3488 
3489 void
3490 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3491   LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3492 
3493   // Collect all copy-like instructions in MBB. Don't start coalescing anything
3494   // yet, it might invalidate the iterator.
3495   const unsigned PrevSize = WorkList.size();
3496   if (JoinGlobalCopies) {
3497     SmallVector<MachineInstr*, 2> LocalTerminals;
3498     SmallVector<MachineInstr*, 2> GlobalTerminals;
3499     // Coalesce copies bottom-up to coalesce local defs before local uses. They
3500     // are not inherently easier to resolve, but slightly preferable until we
3501     // have local live range splitting. In particular this is required by
3502     // cmp+jmp macro fusion.
3503     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
3504          MII != E; ++MII) {
3505       if (!MII->isCopyLike())
3506         continue;
3507       bool ApplyTerminalRule = applyTerminalRule(*MII);
3508       if (isLocalCopy(&(*MII), LIS)) {
3509         if (ApplyTerminalRule)
3510           LocalTerminals.push_back(&(*MII));
3511         else
3512           LocalWorkList.push_back(&(*MII));
3513       } else {
3514         if (ApplyTerminalRule)
3515           GlobalTerminals.push_back(&(*MII));
3516         else
3517           WorkList.push_back(&(*MII));
3518       }
3519     }
3520     // Append the copies evicted by the terminal rule at the end of the list.
3521     LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
3522     WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
3523   }
3524   else {
3525     SmallVector<MachineInstr*, 2> Terminals;
3526     for (MachineInstr &MII : *MBB)
3527       if (MII.isCopyLike()) {
3528         if (applyTerminalRule(MII))
3529           Terminals.push_back(&MII);
3530         else
3531           WorkList.push_back(&MII);
3532       }
3533     // Append the copies evicted by the terminal rule at the end of the list.
3534     WorkList.append(Terminals.begin(), Terminals.end());
3535   }
3536   // Try coalescing the collected copies immediately, and remove the nulls.
3537   // This prevents the WorkList from getting too large since most copies are
3538   // joinable on the first attempt.
3539   MutableArrayRef<MachineInstr*>
3540     CurrList(WorkList.begin() + PrevSize, WorkList.end());
3541   if (copyCoalesceWorkList(CurrList))
3542     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
3543                                nullptr), WorkList.end());
3544 }
3545 
3546 void RegisterCoalescer::coalesceLocals() {
3547   copyCoalesceWorkList(LocalWorkList);
3548   for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
3549     if (LocalWorkList[j])
3550       WorkList.push_back(LocalWorkList[j]);
3551   }
3552   LocalWorkList.clear();
3553 }
3554 
3555 void RegisterCoalescer::joinAllIntervals() {
3556   LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
3557   assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
3558 
3559   std::vector<MBBPriorityInfo> MBBs;
3560   MBBs.reserve(MF->size());
3561   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
3562     MachineBasicBlock *MBB = &*I;
3563     MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
3564                                    JoinSplitEdges && isSplitEdge(MBB)));
3565   }
3566   array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
3567 
3568   // Coalesce intervals in MBB priority order.
3569   unsigned CurrDepth = std::numeric_limits<unsigned>::max();
3570   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
3571     // Try coalescing the collected local copies for deeper loops.
3572     if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
3573       coalesceLocals();
3574       CurrDepth = MBBs[i].Depth;
3575     }
3576     copyCoalesceInMBB(MBBs[i].MBB);
3577   }
3578   lateLiveIntervalUpdate();
3579   coalesceLocals();
3580 
3581   // Joining intervals can allow other intervals to be joined.  Iteratively join
3582   // until we make no progress.
3583   while (copyCoalesceWorkList(WorkList))
3584     /* empty */ ;
3585   lateLiveIntervalUpdate();
3586 }
3587 
3588 void RegisterCoalescer::releaseMemory() {
3589   ErasedInstrs.clear();
3590   WorkList.clear();
3591   DeadDefs.clear();
3592   InflateRegs.clear();
3593 }
3594 
3595 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
3596   MF = &fn;
3597   MRI = &fn.getRegInfo();
3598   const TargetSubtargetInfo &STI = fn.getSubtarget();
3599   TRI = STI.getRegisterInfo();
3600   TII = STI.getInstrInfo();
3601   LIS = &getAnalysis<LiveIntervals>();
3602   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3603   Loops = &getAnalysis<MachineLoopInfo>();
3604   if (EnableGlobalCopies == cl::BOU_UNSET)
3605     JoinGlobalCopies = STI.enableJoinGlobalCopies();
3606   else
3607     JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
3608 
3609   // The MachineScheduler does not currently require JoinSplitEdges. This will
3610   // either be enabled unconditionally or replaced by a more general live range
3611   // splitting optimization.
3612   JoinSplitEdges = EnableJoinSplits;
3613 
3614   LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3615                     << "********** Function: " << MF->getName() << '\n');
3616 
3617   if (VerifyCoalescing)
3618     MF->verify(this, "Before register coalescing");
3619 
3620   RegClassInfo.runOnMachineFunction(fn);
3621 
3622   // Join (coalesce) intervals if requested.
3623   if (EnableJoining)
3624     joinAllIntervals();
3625 
3626   // After deleting a lot of copies, register classes may be less constrained.
3627   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3628   // DPR inflation.
3629   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
3630   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
3631                     InflateRegs.end());
3632   LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
3633                     << " regs.\n");
3634   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
3635     unsigned Reg = InflateRegs[i];
3636     if (MRI->reg_nodbg_empty(Reg))
3637       continue;
3638     if (MRI->recomputeRegClass(Reg)) {
3639       LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
3640                         << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
3641       ++NumInflated;
3642 
3643       LiveInterval &LI = LIS->getInterval(Reg);
3644       if (LI.hasSubRanges()) {
3645         // If the inflated register class does not support subregisters anymore
3646         // remove the subranges.
3647         if (!MRI->shouldTrackSubRegLiveness(Reg)) {
3648           LI.clearSubRanges();
3649         } else {
3650 #ifndef NDEBUG
3651           LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3652           // If subranges are still supported, then the same subregs
3653           // should still be supported.
3654           for (LiveInterval::SubRange &S : LI.subranges()) {
3655             assert((S.LaneMask & ~MaxMask).none());
3656           }
3657 #endif
3658         }
3659       }
3660     }
3661   }
3662 
3663   LLVM_DEBUG(dump());
3664   if (VerifyCoalescing)
3665     MF->verify(this, "After register coalescing");
3666   return true;
3667 }
3668 
3669 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3670    LIS->print(O, m);
3671 }
3672