1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic RegisterCoalescer interface which 10 // is used as the common interface used by all clients and 11 // implementations of register coalescing. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "RegisterCoalescer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetOpcodes.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/LaneBitmask.h" 45 #include "llvm/MC/MCInstrDesc.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <iterator> 56 #include <limits> 57 #include <tuple> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "regalloc" 64 65 STATISTIC(numJoins , "Number of interval joins performed"); 66 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 67 STATISTIC(numCommutes , "Number of instruction commuting performed"); 68 STATISTIC(numExtends , "Number of copies extended"); 69 STATISTIC(NumReMats , "Number of instructions re-materialized"); 70 STATISTIC(NumInflated , "Number of register classes inflated"); 71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 72 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 73 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called"); 74 75 static cl::opt<bool> EnableJoining("join-liveintervals", 76 cl::desc("Coalesce copies (default=true)"), 77 cl::init(true), cl::Hidden); 78 79 static cl::opt<bool> UseTerminalRule("terminal-rule", 80 cl::desc("Apply the terminal rule"), 81 cl::init(false), cl::Hidden); 82 83 /// Temporary flag to test critical edge unsplitting. 84 static cl::opt<bool> 85 EnableJoinSplits("join-splitedges", 86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 87 88 /// Temporary flag to test global copy optimization. 89 static cl::opt<cl::boolOrDefault> 90 EnableGlobalCopies("join-globalcopies", 91 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 92 cl::init(cl::BOU_UNSET), cl::Hidden); 93 94 static cl::opt<bool> 95 VerifyCoalescing("verify-coalescing", 96 cl::desc("Verify machine instrs before and after register coalescing"), 97 cl::Hidden); 98 99 static cl::opt<unsigned> LateRematUpdateThreshold( 100 "late-remat-update-threshold", cl::Hidden, 101 cl::desc("During rematerialization for a copy, if the def instruction has " 102 "many other copy uses to be rematerialized, delay the multiple " 103 "separate live interval update work and do them all at once after " 104 "all those rematerialization are done. It will save a lot of " 105 "repeated work. "), 106 cl::init(100)); 107 108 static cl::opt<unsigned> LargeIntervalSizeThreshold( 109 "large-interval-size-threshold", cl::Hidden, 110 cl::desc("If the valnos size of an interval is larger than the threshold, " 111 "it is regarded as a large interval. "), 112 cl::init(100)); 113 114 static cl::opt<unsigned> LargeIntervalFreqThreshold( 115 "large-interval-freq-threshold", cl::Hidden, 116 cl::desc("For a large interval, if it is coalesed with other live " 117 "intervals many times more than the threshold, stop its " 118 "coalescing to control the compile time. "), 119 cl::init(100)); 120 121 namespace { 122 123 class JoinVals; 124 125 class RegisterCoalescer : public MachineFunctionPass, 126 private LiveRangeEdit::Delegate { 127 MachineFunction* MF = nullptr; 128 MachineRegisterInfo* MRI = nullptr; 129 const TargetRegisterInfo* TRI = nullptr; 130 const TargetInstrInfo* TII = nullptr; 131 LiveIntervals *LIS = nullptr; 132 const MachineLoopInfo* Loops = nullptr; 133 AliasAnalysis *AA = nullptr; 134 RegisterClassInfo RegClassInfo; 135 136 /// Debug variable location tracking -- for each VReg, maintain an 137 /// ordered-by-slot-index set of DBG_VALUEs, to help quick 138 /// identification of whether coalescing may change location validity. 139 using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>; 140 DenseMap<Register, std::vector<DbgValueLoc>> DbgVRegToValues; 141 142 /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached. 143 /// To avoid repeatedly merging sets of DbgValueLocs, instead record 144 /// which vregs have been coalesced, and where to. This map is from 145 /// vreg => {set of vregs merged in}. 146 DenseMap<Register, SmallVector<Register, 4>> DbgMergedVRegNums; 147 148 /// A LaneMask to remember on which subregister live ranges we need to call 149 /// shrinkToUses() later. 150 LaneBitmask ShrinkMask; 151 152 /// True if the main range of the currently coalesced intervals should be 153 /// checked for smaller live intervals. 154 bool ShrinkMainRange = false; 155 156 /// True if the coalescer should aggressively coalesce global copies 157 /// in favor of keeping local copies. 158 bool JoinGlobalCopies = false; 159 160 /// True if the coalescer should aggressively coalesce fall-thru 161 /// blocks exclusively containing copies. 162 bool JoinSplitEdges = false; 163 164 /// Copy instructions yet to be coalesced. 165 SmallVector<MachineInstr*, 8> WorkList; 166 SmallVector<MachineInstr*, 8> LocalWorkList; 167 168 /// Set of instruction pointers that have been erased, and 169 /// that may be present in WorkList. 170 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 171 172 /// Dead instructions that are about to be deleted. 173 SmallVector<MachineInstr*, 8> DeadDefs; 174 175 /// Virtual registers to be considered for register class inflation. 176 SmallVector<Register, 8> InflateRegs; 177 178 /// The collection of live intervals which should have been updated 179 /// immediately after rematerialiation but delayed until 180 /// lateLiveIntervalUpdate is called. 181 DenseSet<Register> ToBeUpdated; 182 183 /// Record how many times the large live interval with many valnos 184 /// has been tried to join with other live interval. 185 DenseMap<Register, unsigned long> LargeLIVisitCounter; 186 187 /// Recursively eliminate dead defs in DeadDefs. 188 void eliminateDeadDefs(); 189 190 /// LiveRangeEdit callback for eliminateDeadDefs(). 191 void LRE_WillEraseInstruction(MachineInstr *MI) override; 192 193 /// Coalesce the LocalWorkList. 194 void coalesceLocals(); 195 196 /// Join compatible live intervals 197 void joinAllIntervals(); 198 199 /// Coalesce copies in the specified MBB, putting 200 /// copies that cannot yet be coalesced into WorkList. 201 void copyCoalesceInMBB(MachineBasicBlock *MBB); 202 203 /// Tries to coalesce all copies in CurrList. Returns true if any progress 204 /// was made. 205 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 206 207 /// If one def has many copy like uses, and those copy uses are all 208 /// rematerialized, the live interval update needed for those 209 /// rematerializations will be delayed and done all at once instead 210 /// of being done multiple times. This is to save compile cost because 211 /// live interval update is costly. 212 void lateLiveIntervalUpdate(); 213 214 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 215 /// src/dst of the copy instruction CopyMI. This returns true if the copy 216 /// was successfully coalesced away. If it is not currently possible to 217 /// coalesce this interval, but it may be possible if other things get 218 /// coalesced, then it returns true by reference in 'Again'. 219 bool joinCopy(MachineInstr *CopyMI, bool &Again); 220 221 /// Attempt to join these two intervals. On failure, this 222 /// returns false. The output "SrcInt" will not have been modified, so we 223 /// can use this information below to update aliases. 224 bool joinIntervals(CoalescerPair &CP); 225 226 /// Attempt joining two virtual registers. Return true on success. 227 bool joinVirtRegs(CoalescerPair &CP); 228 229 /// If a live interval has many valnos and is coalesced with other 230 /// live intervals many times, we regard such live interval as having 231 /// high compile time cost. 232 bool isHighCostLiveInterval(LiveInterval &LI); 233 234 /// Attempt joining with a reserved physreg. 235 bool joinReservedPhysReg(CoalescerPair &CP); 236 237 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 238 /// Subranges in @p LI which only partially interfere with the desired 239 /// LaneMask are split as necessary. @p LaneMask are the lanes that 240 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 241 /// lanemasks already adjusted to the coalesced register. 242 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 243 LaneBitmask LaneMask, CoalescerPair &CP, 244 unsigned DstIdx); 245 246 /// Join the liveranges of two subregisters. Joins @p RRange into 247 /// @p LRange, @p RRange may be invalid afterwards. 248 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 249 LaneBitmask LaneMask, const CoalescerPair &CP); 250 251 /// We found a non-trivially-coalescable copy. If the source value number is 252 /// defined by a copy from the destination reg see if we can merge these two 253 /// destination reg valno# into a single value number, eliminating a copy. 254 /// This returns true if an interval was modified. 255 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 256 257 /// Return true if there are definitions of IntB 258 /// other than BValNo val# that can reach uses of AValno val# of IntA. 259 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 260 VNInfo *AValNo, VNInfo *BValNo); 261 262 /// We found a non-trivially-coalescable copy. 263 /// If the source value number is defined by a commutable instruction and 264 /// its other operand is coalesced to the copy dest register, see if we 265 /// can transform the copy into a noop by commuting the definition. 266 /// This returns a pair of two flags: 267 /// - the first element is true if an interval was modified, 268 /// - the second element is true if the destination interval needs 269 /// to be shrunk after deleting the copy. 270 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP, 271 MachineInstr *CopyMI); 272 273 /// We found a copy which can be moved to its less frequent predecessor. 274 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 275 276 /// If the source of a copy is defined by a 277 /// trivial computation, replace the copy by rematerialize the definition. 278 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 279 bool &IsDefCopy); 280 281 /// Return true if a copy involving a physreg should be joined. 282 bool canJoinPhys(const CoalescerPair &CP); 283 284 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 285 /// number if it is not zero. If DstReg is a physical register and the 286 /// existing subregister number of the def / use being updated is not zero, 287 /// make sure to set it to the correct physical subregister. 288 void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx); 289 290 /// If the given machine operand reads only undefined lanes add an undef 291 /// flag. 292 /// This can happen when undef uses were previously concealed by a copy 293 /// which we coalesced. Example: 294 /// %0:sub0<def,read-undef> = ... 295 /// %1 = COPY %0 <-- Coalescing COPY reveals undef 296 /// = use %1:sub1 <-- hidden undef use 297 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 298 MachineOperand &MO, unsigned SubRegIdx); 299 300 /// Handle copies of undef values. If the undef value is an incoming 301 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF. 302 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise, 303 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point). 304 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI); 305 306 /// Check whether or not we should apply the terminal rule on the 307 /// destination (Dst) of \p Copy. 308 /// When the terminal rule applies, Copy is not profitable to 309 /// coalesce. 310 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 311 /// at least one interference (Dst, Dst2). If Dst is terminal, the 312 /// terminal rule consists in checking that at least one of 313 /// interfering node, say Dst2, has an affinity of equal or greater 314 /// weight with Src. 315 /// In that case, Dst2 and Dst will not be able to be both coalesced 316 /// with Src. Since Dst2 exposes more coalescing opportunities than 317 /// Dst, we can drop \p Copy. 318 bool applyTerminalRule(const MachineInstr &Copy) const; 319 320 /// Wrapper method for \see LiveIntervals::shrinkToUses. 321 /// This method does the proper fixing of the live-ranges when the afore 322 /// mentioned method returns true. 323 void shrinkToUses(LiveInterval *LI, 324 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 325 NumShrinkToUses++; 326 if (LIS->shrinkToUses(LI, Dead)) { 327 /// Check whether or not \p LI is composed by multiple connected 328 /// components and if that is the case, fix that. 329 SmallVector<LiveInterval*, 8> SplitLIs; 330 LIS->splitSeparateComponents(*LI, SplitLIs); 331 } 332 } 333 334 /// Wrapper Method to do all the necessary work when an Instruction is 335 /// deleted. 336 /// Optimizations should use this to make sure that deleted instructions 337 /// are always accounted for. 338 void deleteInstr(MachineInstr* MI) { 339 ErasedInstrs.insert(MI); 340 LIS->RemoveMachineInstrFromMaps(*MI); 341 MI->eraseFromParent(); 342 } 343 344 /// Walk over function and initialize the DbgVRegToValues map. 345 void buildVRegToDbgValueMap(MachineFunction &MF); 346 347 /// Test whether, after merging, any DBG_VALUEs would refer to a 348 /// different value number than before merging, and whether this can 349 /// be resolved. If not, mark the DBG_VALUE as being undef. 350 void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS, 351 JoinVals &LHSVals, LiveRange &RHS, 352 JoinVals &RHSVals); 353 354 void checkMergingChangesDbgValuesImpl(Register Reg, LiveRange &OtherRange, 355 LiveRange &RegRange, JoinVals &Vals2); 356 357 public: 358 static char ID; ///< Class identification, replacement for typeinfo 359 360 RegisterCoalescer() : MachineFunctionPass(ID) { 361 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 362 } 363 364 void getAnalysisUsage(AnalysisUsage &AU) const override; 365 366 void releaseMemory() override; 367 368 /// This is the pass entry point. 369 bool runOnMachineFunction(MachineFunction&) override; 370 371 /// Implement the dump method. 372 void print(raw_ostream &O, const Module* = nullptr) const override; 373 }; 374 375 } // end anonymous namespace 376 377 char RegisterCoalescer::ID = 0; 378 379 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 380 381 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 382 "Simple Register Coalescing", false, false) 383 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 384 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 385 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 386 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 387 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 388 "Simple Register Coalescing", false, false) 389 390 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri, 391 const MachineInstr *MI, Register &Src, 392 Register &Dst, unsigned &SrcSub, 393 unsigned &DstSub) { 394 if (MI->isCopy()) { 395 Dst = MI->getOperand(0).getReg(); 396 DstSub = MI->getOperand(0).getSubReg(); 397 Src = MI->getOperand(1).getReg(); 398 SrcSub = MI->getOperand(1).getSubReg(); 399 } else if (MI->isSubregToReg()) { 400 Dst = MI->getOperand(0).getReg(); 401 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 402 MI->getOperand(3).getImm()); 403 Src = MI->getOperand(2).getReg(); 404 SrcSub = MI->getOperand(2).getSubReg(); 405 } else 406 return false; 407 return true; 408 } 409 410 /// Return true if this block should be vacated by the coalescer to eliminate 411 /// branches. The important cases to handle in the coalescer are critical edges 412 /// split during phi elimination which contain only copies. Simple blocks that 413 /// contain non-branches should also be vacated, but this can be handled by an 414 /// earlier pass similar to early if-conversion. 415 static bool isSplitEdge(const MachineBasicBlock *MBB) { 416 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 417 return false; 418 419 for (const auto &MI : *MBB) { 420 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 421 return false; 422 } 423 return true; 424 } 425 426 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 427 SrcReg = DstReg = Register(); 428 SrcIdx = DstIdx = 0; 429 NewRC = nullptr; 430 Flipped = CrossClass = false; 431 432 Register Src, Dst; 433 unsigned SrcSub, DstSub; 434 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 435 return false; 436 Partial = SrcSub || DstSub; 437 438 // If one register is a physreg, it must be Dst. 439 if (Register::isPhysicalRegister(Src)) { 440 if (Register::isPhysicalRegister(Dst)) 441 return false; 442 std::swap(Src, Dst); 443 std::swap(SrcSub, DstSub); 444 Flipped = true; 445 } 446 447 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 448 449 if (Register::isPhysicalRegister(Dst)) { 450 // Eliminate DstSub on a physreg. 451 if (DstSub) { 452 Dst = TRI.getSubReg(Dst, DstSub); 453 if (!Dst) return false; 454 DstSub = 0; 455 } 456 457 // Eliminate SrcSub by picking a corresponding Dst superregister. 458 if (SrcSub) { 459 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 460 if (!Dst) return false; 461 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 462 return false; 463 } 464 } else { 465 // Both registers are virtual. 466 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 467 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 468 469 // Both registers have subreg indices. 470 if (SrcSub && DstSub) { 471 // Copies between different sub-registers are never coalescable. 472 if (Src == Dst && SrcSub != DstSub) 473 return false; 474 475 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 476 SrcIdx, DstIdx); 477 if (!NewRC) 478 return false; 479 } else if (DstSub) { 480 // SrcReg will be merged with a sub-register of DstReg. 481 SrcIdx = DstSub; 482 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 483 } else if (SrcSub) { 484 // DstReg will be merged with a sub-register of SrcReg. 485 DstIdx = SrcSub; 486 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 487 } else { 488 // This is a straight copy without sub-registers. 489 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 490 } 491 492 // The combined constraint may be impossible to satisfy. 493 if (!NewRC) 494 return false; 495 496 // Prefer SrcReg to be a sub-register of DstReg. 497 // FIXME: Coalescer should support subregs symmetrically. 498 if (DstIdx && !SrcIdx) { 499 std::swap(Src, Dst); 500 std::swap(SrcIdx, DstIdx); 501 Flipped = !Flipped; 502 } 503 504 CrossClass = NewRC != DstRC || NewRC != SrcRC; 505 } 506 // Check our invariants 507 assert(Register::isVirtualRegister(Src) && "Src must be virtual"); 508 assert(!(Register::isPhysicalRegister(Dst) && DstSub) && 509 "Cannot have a physical SubIdx"); 510 SrcReg = Src; 511 DstReg = Dst; 512 return true; 513 } 514 515 bool CoalescerPair::flip() { 516 if (Register::isPhysicalRegister(DstReg)) 517 return false; 518 std::swap(SrcReg, DstReg); 519 std::swap(SrcIdx, DstIdx); 520 Flipped = !Flipped; 521 return true; 522 } 523 524 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 525 if (!MI) 526 return false; 527 Register Src, Dst; 528 unsigned SrcSub, DstSub; 529 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 530 return false; 531 532 // Find the virtual register that is SrcReg. 533 if (Dst == SrcReg) { 534 std::swap(Src, Dst); 535 std::swap(SrcSub, DstSub); 536 } else if (Src != SrcReg) { 537 return false; 538 } 539 540 // Now check that Dst matches DstReg. 541 if (DstReg.isPhysical()) { 542 if (!Dst.isPhysical()) 543 return false; 544 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 545 // DstSub could be set for a physreg from INSERT_SUBREG. 546 if (DstSub) 547 Dst = TRI.getSubReg(Dst, DstSub); 548 // Full copy of Src. 549 if (!SrcSub) 550 return DstReg == Dst; 551 // This is a partial register copy. Check that the parts match. 552 return Register(TRI.getSubReg(DstReg, SrcSub)) == Dst; 553 } else { 554 // DstReg is virtual. 555 if (DstReg != Dst) 556 return false; 557 // Registers match, do the subregisters line up? 558 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 559 TRI.composeSubRegIndices(DstIdx, DstSub); 560 } 561 } 562 563 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 564 AU.setPreservesCFG(); 565 AU.addRequired<AAResultsWrapperPass>(); 566 AU.addRequired<LiveIntervals>(); 567 AU.addPreserved<LiveIntervals>(); 568 AU.addPreserved<SlotIndexes>(); 569 AU.addRequired<MachineLoopInfo>(); 570 AU.addPreserved<MachineLoopInfo>(); 571 AU.addPreservedID(MachineDominatorsID); 572 MachineFunctionPass::getAnalysisUsage(AU); 573 } 574 575 void RegisterCoalescer::eliminateDeadDefs() { 576 SmallVector<Register, 8> NewRegs; 577 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 578 nullptr, this).eliminateDeadDefs(DeadDefs); 579 } 580 581 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 582 // MI may be in WorkList. Make sure we don't visit it. 583 ErasedInstrs.insert(MI); 584 } 585 586 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 587 MachineInstr *CopyMI) { 588 assert(!CP.isPartial() && "This doesn't work for partial copies."); 589 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 590 591 LiveInterval &IntA = 592 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 593 LiveInterval &IntB = 594 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 595 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 596 597 // We have a non-trivially-coalescable copy with IntA being the source and 598 // IntB being the dest, thus this defines a value number in IntB. If the 599 // source value number (in IntA) is defined by a copy from B, see if we can 600 // merge these two pieces of B into a single value number, eliminating a copy. 601 // For example: 602 // 603 // A3 = B0 604 // ... 605 // B1 = A3 <- this copy 606 // 607 // In this case, B0 can be extended to where the B1 copy lives, allowing the 608 // B1 value number to be replaced with B0 (which simplifies the B 609 // liveinterval). 610 611 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 612 // the example above. 613 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 614 if (BS == IntB.end()) return false; 615 VNInfo *BValNo = BS->valno; 616 617 // Get the location that B is defined at. Two options: either this value has 618 // an unknown definition point or it is defined at CopyIdx. If unknown, we 619 // can't process it. 620 if (BValNo->def != CopyIdx) return false; 621 622 // AValNo is the value number in A that defines the copy, A3 in the example. 623 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 624 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 625 // The live segment might not exist after fun with physreg coalescing. 626 if (AS == IntA.end()) return false; 627 VNInfo *AValNo = AS->valno; 628 629 // If AValNo is defined as a copy from IntB, we can potentially process this. 630 // Get the instruction that defines this value number. 631 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 632 // Don't allow any partial copies, even if isCoalescable() allows them. 633 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 634 return false; 635 636 // Get the Segment in IntB that this value number starts with. 637 LiveInterval::iterator ValS = 638 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 639 if (ValS == IntB.end()) 640 return false; 641 642 // Make sure that the end of the live segment is inside the same block as 643 // CopyMI. 644 MachineInstr *ValSEndInst = 645 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 646 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 647 return false; 648 649 // Okay, we now know that ValS ends in the same block that the CopyMI 650 // live-range starts. If there are no intervening live segments between them 651 // in IntB, we can merge them. 652 if (ValS+1 != BS) return false; 653 654 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI)); 655 656 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 657 // We are about to delete CopyMI, so need to remove it as the 'instruction 658 // that defines this value #'. Update the valnum with the new defining 659 // instruction #. 660 BValNo->def = FillerStart; 661 662 // Okay, we can merge them. We need to insert a new liverange: 663 // [ValS.end, BS.begin) of either value number, then we merge the 664 // two value numbers. 665 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 666 667 // Okay, merge "B1" into the same value number as "B0". 668 if (BValNo != ValS->valno) 669 IntB.MergeValueNumberInto(BValNo, ValS->valno); 670 671 // Do the same for the subregister segments. 672 for (LiveInterval::SubRange &S : IntB.subranges()) { 673 // Check for SubRange Segments of the form [1234r,1234d:0) which can be 674 // removed to prevent creating bogus SubRange Segments. 675 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx); 676 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) { 677 S.removeSegment(*SS, true); 678 continue; 679 } 680 // The subrange may have ended before FillerStart. If so, extend it. 681 if (!S.getVNInfoAt(FillerStart)) { 682 SlotIndex BBStart = 683 LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart)); 684 S.extendInBlock(BBStart, FillerStart); 685 } 686 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 687 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 688 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 689 if (SubBValNo != SubValSNo) 690 S.MergeValueNumberInto(SubBValNo, SubValSNo); 691 } 692 693 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n'); 694 695 // If the source instruction was killing the source register before the 696 // merge, unset the isKill marker given the live range has been extended. 697 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true); 698 if (UIdx != -1) { 699 ValSEndInst->getOperand(UIdx).setIsKill(false); 700 } 701 702 // Rewrite the copy. 703 CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI); 704 // If the copy instruction was killing the destination register or any 705 // subrange before the merge trim the live range. 706 bool RecomputeLiveRange = AS->end == CopyIdx; 707 if (!RecomputeLiveRange) { 708 for (LiveInterval::SubRange &S : IntA.subranges()) { 709 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx); 710 if (SS != S.end() && SS->end == CopyIdx) { 711 RecomputeLiveRange = true; 712 break; 713 } 714 } 715 } 716 if (RecomputeLiveRange) 717 shrinkToUses(&IntA); 718 719 ++numExtends; 720 return true; 721 } 722 723 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 724 LiveInterval &IntB, 725 VNInfo *AValNo, 726 VNInfo *BValNo) { 727 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 728 // the PHI values. 729 if (LIS->hasPHIKill(IntA, AValNo)) 730 return true; 731 732 for (LiveRange::Segment &ASeg : IntA.segments) { 733 if (ASeg.valno != AValNo) continue; 734 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start); 735 if (BI != IntB.begin()) 736 --BI; 737 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 738 if (BI->valno == BValNo) 739 continue; 740 if (BI->start <= ASeg.start && BI->end > ASeg.start) 741 return true; 742 if (BI->start > ASeg.start && BI->start < ASeg.end) 743 return true; 744 } 745 } 746 return false; 747 } 748 749 /// Copy segments with value number @p SrcValNo from liverange @p Src to live 750 /// range @Dst and use value number @p DstValNo there. 751 static std::pair<bool,bool> 752 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src, 753 const VNInfo *SrcValNo) { 754 bool Changed = false; 755 bool MergedWithDead = false; 756 for (const LiveRange::Segment &S : Src.segments) { 757 if (S.valno != SrcValNo) 758 continue; 759 // This is adding a segment from Src that ends in a copy that is about 760 // to be removed. This segment is going to be merged with a pre-existing 761 // segment in Dst. This works, except in cases when the corresponding 762 // segment in Dst is dead. For example: adding [192r,208r:1) from Src 763 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst. 764 // Recognized such cases, so that the segments can be shrunk. 765 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo); 766 LiveRange::Segment &Merged = *Dst.addSegment(Added); 767 if (Merged.end.isDead()) 768 MergedWithDead = true; 769 Changed = true; 770 } 771 return std::make_pair(Changed, MergedWithDead); 772 } 773 774 std::pair<bool,bool> 775 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 776 MachineInstr *CopyMI) { 777 assert(!CP.isPhys()); 778 779 LiveInterval &IntA = 780 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 781 LiveInterval &IntB = 782 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 783 784 // We found a non-trivially-coalescable copy with IntA being the source and 785 // IntB being the dest, thus this defines a value number in IntB. If the 786 // source value number (in IntA) is defined by a commutable instruction and 787 // its other operand is coalesced to the copy dest register, see if we can 788 // transform the copy into a noop by commuting the definition. For example, 789 // 790 // A3 = op A2 killed B0 791 // ... 792 // B1 = A3 <- this copy 793 // ... 794 // = op A3 <- more uses 795 // 796 // ==> 797 // 798 // B2 = op B0 killed A2 799 // ... 800 // B1 = B2 <- now an identity copy 801 // ... 802 // = op B2 <- more uses 803 804 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 805 // the example above. 806 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 807 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 808 assert(BValNo != nullptr && BValNo->def == CopyIdx); 809 810 // AValNo is the value number in A that defines the copy, A3 in the example. 811 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 812 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 813 if (AValNo->isPHIDef()) 814 return { false, false }; 815 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 816 if (!DefMI) 817 return { false, false }; 818 if (!DefMI->isCommutable()) 819 return { false, false }; 820 // If DefMI is a two-address instruction then commuting it will change the 821 // destination register. 822 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg()); 823 assert(DefIdx != -1); 824 unsigned UseOpIdx; 825 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 826 return { false, false }; 827 828 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 829 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 830 // passed to the method. That _other_ operand is chosen by 831 // the findCommutedOpIndices() method. 832 // 833 // That is obviously an area for improvement in case of instructions having 834 // more than 2 operands. For example, if some instruction has 3 commutable 835 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 836 // op#2<->op#3) of commute transformation should be considered/tried here. 837 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 838 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 839 return { false, false }; 840 841 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 842 Register NewReg = NewDstMO.getReg(); 843 if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill()) 844 return { false, false }; 845 846 // Make sure there are no other definitions of IntB that would reach the 847 // uses which the new definition can reach. 848 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 849 return { false, false }; 850 851 // If some of the uses of IntA.reg is already coalesced away, return false. 852 // It's not possible to determine whether it's safe to perform the coalescing. 853 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) { 854 MachineInstr *UseMI = MO.getParent(); 855 unsigned OpNo = &MO - &UseMI->getOperand(0); 856 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 857 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 858 if (US == IntA.end() || US->valno != AValNo) 859 continue; 860 // If this use is tied to a def, we can't rewrite the register. 861 if (UseMI->isRegTiedToDefOperand(OpNo)) 862 return { false, false }; 863 } 864 865 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 866 << *DefMI); 867 868 // At this point we have decided that it is legal to do this 869 // transformation. Start by commuting the instruction. 870 MachineBasicBlock *MBB = DefMI->getParent(); 871 MachineInstr *NewMI = 872 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 873 if (!NewMI) 874 return { false, false }; 875 if (Register::isVirtualRegister(IntA.reg()) && 876 Register::isVirtualRegister(IntB.reg()) && 877 !MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg()))) 878 return { false, false }; 879 if (NewMI != DefMI) { 880 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 881 MachineBasicBlock::iterator Pos = DefMI; 882 MBB->insert(Pos, NewMI); 883 MBB->erase(DefMI); 884 } 885 886 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 887 // A = or A, B 888 // ... 889 // B = A 890 // ... 891 // C = killed A 892 // ... 893 // = B 894 895 // Update uses of IntA of the specific Val# with IntB. 896 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg()), 897 UE = MRI->use_end(); 898 UI != UE; 899 /* ++UI is below because of possible MI removal */) { 900 MachineOperand &UseMO = *UI; 901 ++UI; 902 if (UseMO.isUndef()) 903 continue; 904 MachineInstr *UseMI = UseMO.getParent(); 905 if (UseMI->isDebugValue()) { 906 // FIXME These don't have an instruction index. Not clear we have enough 907 // info to decide whether to do this replacement or not. For now do it. 908 UseMO.setReg(NewReg); 909 continue; 910 } 911 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 912 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 913 assert(US != IntA.end() && "Use must be live"); 914 if (US->valno != AValNo) 915 continue; 916 // Kill flags are no longer accurate. They are recomputed after RA. 917 UseMO.setIsKill(false); 918 if (Register::isPhysicalRegister(NewReg)) 919 UseMO.substPhysReg(NewReg, *TRI); 920 else 921 UseMO.setReg(NewReg); 922 if (UseMI == CopyMI) 923 continue; 924 if (!UseMI->isCopy()) 925 continue; 926 if (UseMI->getOperand(0).getReg() != IntB.reg() || 927 UseMI->getOperand(0).getSubReg()) 928 continue; 929 930 // This copy will become a noop. If it's defining a new val#, merge it into 931 // BValNo. 932 SlotIndex DefIdx = UseIdx.getRegSlot(); 933 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 934 if (!DVNI) 935 continue; 936 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 937 assert(DVNI->def == DefIdx); 938 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 939 for (LiveInterval::SubRange &S : IntB.subranges()) { 940 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 941 if (!SubDVNI) 942 continue; 943 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 944 assert(SubBValNo->def == CopyIdx); 945 S.MergeValueNumberInto(SubDVNI, SubBValNo); 946 } 947 948 deleteInstr(UseMI); 949 } 950 951 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 952 // is updated. 953 bool ShrinkB = false; 954 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 955 if (IntA.hasSubRanges() || IntB.hasSubRanges()) { 956 if (!IntA.hasSubRanges()) { 957 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg()); 958 IntA.createSubRangeFrom(Allocator, Mask, IntA); 959 } else if (!IntB.hasSubRanges()) { 960 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg()); 961 IntB.createSubRangeFrom(Allocator, Mask, IntB); 962 } 963 SlotIndex AIdx = CopyIdx.getRegSlot(true); 964 LaneBitmask MaskA; 965 const SlotIndexes &Indexes = *LIS->getSlotIndexes(); 966 for (LiveInterval::SubRange &SA : IntA.subranges()) { 967 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 968 // Even if we are dealing with a full copy, some lanes can 969 // still be undefined. 970 // E.g., 971 // undef A.subLow = ... 972 // B = COPY A <== A.subHigh is undefined here and does 973 // not have a value number. 974 if (!ASubValNo) 975 continue; 976 MaskA |= SA.LaneMask; 977 978 IntB.refineSubRanges( 979 Allocator, SA.LaneMask, 980 [&Allocator, &SA, CopyIdx, ASubValNo, 981 &ShrinkB](LiveInterval::SubRange &SR) { 982 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator) 983 : SR.getVNInfoAt(CopyIdx); 984 assert(BSubValNo != nullptr); 985 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 986 ShrinkB |= P.second; 987 if (P.first) 988 BSubValNo->def = ASubValNo->def; 989 }, 990 Indexes, *TRI); 991 } 992 // Go over all subranges of IntB that have not been covered by IntA, 993 // and delete the segments starting at CopyIdx. This can happen if 994 // IntA has undef lanes that are defined in IntB. 995 for (LiveInterval::SubRange &SB : IntB.subranges()) { 996 if ((SB.LaneMask & MaskA).any()) 997 continue; 998 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx)) 999 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex()) 1000 SB.removeSegment(*S, true); 1001 } 1002 } 1003 1004 BValNo->def = AValNo->def; 1005 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 1006 ShrinkB |= P.second; 1007 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 1008 1009 LIS->removeVRegDefAt(IntA, AValNo->def); 1010 1011 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 1012 ++numCommutes; 1013 return { true, ShrinkB }; 1014 } 1015 1016 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 1017 /// predecessor of BB2, and if B is not redefined on the way from A = B 1018 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the 1019 /// execution goes through the path from BB0 to BB2. We may move B = A 1020 /// to the predecessor without such reversed copy. 1021 /// So we will transform the program from: 1022 /// BB0: 1023 /// A = B; BB1: 1024 /// ... ... 1025 /// / \ / 1026 /// BB2: 1027 /// ... 1028 /// B = A; 1029 /// 1030 /// to: 1031 /// 1032 /// BB0: BB1: 1033 /// A = B; ... 1034 /// ... B = A; 1035 /// / \ / 1036 /// BB2: 1037 /// ... 1038 /// 1039 /// A special case is when BB0 and BB2 are the same BB which is the only 1040 /// BB in a loop: 1041 /// BB1: 1042 /// ... 1043 /// BB0/BB2: ---- 1044 /// B = A; | 1045 /// ... | 1046 /// A = B; | 1047 /// |------- 1048 /// | 1049 /// We may hoist B = A from BB0/BB2 to BB1. 1050 /// 1051 /// The major preconditions for correctness to remove such partial 1052 /// redundancy include: 1053 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 1054 /// the PHI is defined by the reversed copy A = B in BB0. 1055 /// 2. No B is referenced from the start of BB2 to B = A. 1056 /// 3. No B is defined from A = B to the end of BB0. 1057 /// 4. BB1 has only one successor. 1058 /// 1059 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 1060 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 1061 /// colder place, which not only prevent endless loop, but also make sure 1062 /// the movement of copy is beneficial. 1063 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 1064 MachineInstr &CopyMI) { 1065 assert(!CP.isPhys()); 1066 if (!CopyMI.isFullCopy()) 1067 return false; 1068 1069 MachineBasicBlock &MBB = *CopyMI.getParent(); 1070 // If this block is the target of an invoke/inlineasm_br, moving the copy into 1071 // the predecessor is tricker, and we don't handle it. 1072 if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget()) 1073 return false; 1074 1075 if (MBB.pred_size() != 2) 1076 return false; 1077 1078 LiveInterval &IntA = 1079 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 1080 LiveInterval &IntB = 1081 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 1082 1083 // A is defined by PHI at the entry of MBB. 1084 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 1085 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 1086 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 1087 if (!AValNo->isPHIDef()) 1088 return false; 1089 1090 // No B is referenced before CopyMI in MBB. 1091 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 1092 return false; 1093 1094 // MBB has two predecessors: one contains A = B so no copy will be inserted 1095 // for it. The other one will have a copy moved from MBB. 1096 bool FoundReverseCopy = false; 1097 MachineBasicBlock *CopyLeftBB = nullptr; 1098 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1099 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 1100 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 1101 if (!DefMI || !DefMI->isFullCopy()) { 1102 CopyLeftBB = Pred; 1103 continue; 1104 } 1105 // Check DefMI is a reverse copy and it is in BB Pred. 1106 if (DefMI->getOperand(0).getReg() != IntA.reg() || 1107 DefMI->getOperand(1).getReg() != IntB.reg() || 1108 DefMI->getParent() != Pred) { 1109 CopyLeftBB = Pred; 1110 continue; 1111 } 1112 // If there is any other def of B after DefMI and before the end of Pred, 1113 // we need to keep the copy of B = A at the end of Pred if we remove 1114 // B = A from MBB. 1115 bool ValB_Changed = false; 1116 for (auto VNI : IntB.valnos) { 1117 if (VNI->isUnused()) 1118 continue; 1119 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 1120 ValB_Changed = true; 1121 break; 1122 } 1123 } 1124 if (ValB_Changed) { 1125 CopyLeftBB = Pred; 1126 continue; 1127 } 1128 FoundReverseCopy = true; 1129 } 1130 1131 // If no reverse copy is found in predecessors, nothing to do. 1132 if (!FoundReverseCopy) 1133 return false; 1134 1135 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 1136 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 1137 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 1138 // update IntA/IntB. 1139 // 1140 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 1141 // MBB is hotter than CopyLeftBB. 1142 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 1143 return false; 1144 1145 // Now (almost sure it's) ok to move copy. 1146 if (CopyLeftBB) { 1147 // Position in CopyLeftBB where we should insert new copy. 1148 auto InsPos = CopyLeftBB->getFirstTerminator(); 1149 1150 // Make sure that B isn't referenced in the terminators (if any) at the end 1151 // of the predecessor since we're about to insert a new definition of B 1152 // before them. 1153 if (InsPos != CopyLeftBB->end()) { 1154 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true); 1155 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB))) 1156 return false; 1157 } 1158 1159 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to " 1160 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI); 1161 1162 // Insert new copy to CopyLeftBB. 1163 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1164 TII->get(TargetOpcode::COPY), IntB.reg()) 1165 .addReg(IntA.reg()); 1166 SlotIndex NewCopyIdx = 1167 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1168 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1169 for (LiveInterval::SubRange &SR : IntB.subranges()) 1170 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1171 1172 // If the newly created Instruction has an address of an instruction that was 1173 // deleted before (object recycled by the allocator) it needs to be removed from 1174 // the deleted list. 1175 ErasedInstrs.erase(NewCopyMI); 1176 } else { 1177 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from " 1178 << printMBBReference(MBB) << '\t' << CopyMI); 1179 } 1180 1181 // Remove CopyMI. 1182 // Note: This is fine to remove the copy before updating the live-ranges. 1183 // While updating the live-ranges, we only look at slot indices and 1184 // never go back to the instruction. 1185 // Mark instructions as deleted. 1186 deleteInstr(&CopyMI); 1187 1188 // Update the liveness. 1189 SmallVector<SlotIndex, 8> EndPoints; 1190 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1191 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1192 &EndPoints); 1193 BValNo->markUnused(); 1194 // Extend IntB to the EndPoints of its original live interval. 1195 LIS->extendToIndices(IntB, EndPoints); 1196 1197 // Now, do the same for its subranges. 1198 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1199 EndPoints.clear(); 1200 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1201 assert(BValNo && "All sublanes should be live"); 1202 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1203 BValNo->markUnused(); 1204 // We can have a situation where the result of the original copy is live, 1205 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes 1206 // the copy appear as an endpoint from pruneValue(), but we don't want it 1207 // to because the copy has been removed. We can go ahead and remove that 1208 // endpoint; there is no other situation here that there could be a use at 1209 // the same place as we know that the copy is a full copy. 1210 for (unsigned I = 0; I != EndPoints.size(); ) { 1211 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) { 1212 EndPoints[I] = EndPoints.back(); 1213 EndPoints.pop_back(); 1214 continue; 1215 } 1216 ++I; 1217 } 1218 SmallVector<SlotIndex, 8> Undefs; 1219 IntB.computeSubRangeUndefs(Undefs, SR.LaneMask, *MRI, 1220 *LIS->getSlotIndexes()); 1221 LIS->extendToIndices(SR, EndPoints, Undefs); 1222 } 1223 // If any dead defs were extended, truncate them. 1224 shrinkToUses(&IntB); 1225 1226 // Finally, update the live-range of IntA. 1227 shrinkToUses(&IntA); 1228 return true; 1229 } 1230 1231 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1232 /// defining a subregister. 1233 static bool definesFullReg(const MachineInstr &MI, Register Reg) { 1234 assert(!Reg.isPhysical() && "This code cannot handle physreg aliasing"); 1235 1236 for (const MachineOperand &Op : MI.operands()) { 1237 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1238 continue; 1239 // Return true if we define the full register or don't care about the value 1240 // inside other subregisters. 1241 if (Op.getSubReg() == 0 || Op.isUndef()) 1242 return true; 1243 } 1244 return false; 1245 } 1246 1247 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1248 MachineInstr *CopyMI, 1249 bool &IsDefCopy) { 1250 IsDefCopy = false; 1251 Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1252 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1253 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1254 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1255 if (Register::isPhysicalRegister(SrcReg)) 1256 return false; 1257 1258 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1259 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1260 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1261 if (!ValNo) 1262 return false; 1263 if (ValNo->isPHIDef() || ValNo->isUnused()) 1264 return false; 1265 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1266 if (!DefMI) 1267 return false; 1268 if (DefMI->isCopyLike()) { 1269 IsDefCopy = true; 1270 return false; 1271 } 1272 if (!TII->isAsCheapAsAMove(*DefMI)) 1273 return false; 1274 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1275 return false; 1276 if (!definesFullReg(*DefMI, SrcReg)) 1277 return false; 1278 bool SawStore = false; 1279 if (!DefMI->isSafeToMove(AA, SawStore)) 1280 return false; 1281 const MCInstrDesc &MCID = DefMI->getDesc(); 1282 if (MCID.getNumDefs() != 1) 1283 return false; 1284 // Only support subregister destinations when the def is read-undef. 1285 MachineOperand &DstOperand = CopyMI->getOperand(0); 1286 Register CopyDstReg = DstOperand.getReg(); 1287 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1288 return false; 1289 1290 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1291 // the register substantially (beyond both source and dest size). This is bad 1292 // for performance since it can cascade through a function, introducing many 1293 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1294 // around after a few subreg copies). 1295 if (SrcIdx && DstIdx) 1296 return false; 1297 1298 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1299 if (!DefMI->isImplicitDef()) { 1300 if (DstReg.isPhysical()) { 1301 Register NewDstReg = DstReg; 1302 1303 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1304 DefMI->getOperand(0).getSubReg()); 1305 if (NewDstIdx) 1306 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1307 1308 // Finally, make sure that the physical subregister that will be 1309 // constructed later is permitted for the instruction. 1310 if (!DefRC->contains(NewDstReg)) 1311 return false; 1312 } else { 1313 // Theoretically, some stack frame reference could exist. Just make sure 1314 // it hasn't actually happened. 1315 assert(Register::isVirtualRegister(DstReg) && 1316 "Only expect to deal with virtual or physical registers"); 1317 } 1318 } 1319 1320 DebugLoc DL = CopyMI->getDebugLoc(); 1321 MachineBasicBlock *MBB = CopyMI->getParent(); 1322 MachineBasicBlock::iterator MII = 1323 std::next(MachineBasicBlock::iterator(CopyMI)); 1324 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1325 MachineInstr &NewMI = *std::prev(MII); 1326 NewMI.setDebugLoc(DL); 1327 1328 // In a situation like the following: 1329 // %0:subreg = instr ; DefMI, subreg = DstIdx 1330 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0 1331 // instead of widening %1 to the register class of %0 simply do: 1332 // %1 = instr 1333 const TargetRegisterClass *NewRC = CP.getNewRC(); 1334 if (DstIdx != 0) { 1335 MachineOperand &DefMO = NewMI.getOperand(0); 1336 if (DefMO.getSubReg() == DstIdx) { 1337 assert(SrcIdx == 0 && CP.isFlipped() 1338 && "Shouldn't have SrcIdx+DstIdx at this point"); 1339 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1340 const TargetRegisterClass *CommonRC = 1341 TRI->getCommonSubClass(DefRC, DstRC); 1342 if (CommonRC != nullptr) { 1343 NewRC = CommonRC; 1344 DstIdx = 0; 1345 DefMO.setSubReg(0); 1346 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1347 } 1348 } 1349 } 1350 1351 // CopyMI may have implicit operands, save them so that we can transfer them 1352 // over to the newly materialized instruction after CopyMI is removed. 1353 SmallVector<MachineOperand, 4> ImplicitOps; 1354 ImplicitOps.reserve(CopyMI->getNumOperands() - 1355 CopyMI->getDesc().getNumOperands()); 1356 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1357 E = CopyMI->getNumOperands(); 1358 I != E; ++I) { 1359 MachineOperand &MO = CopyMI->getOperand(I); 1360 if (MO.isReg()) { 1361 assert(MO.isImplicit() && "No explicit operands after implicit operands."); 1362 // Discard VReg implicit defs. 1363 if (Register::isPhysicalRegister(MO.getReg())) 1364 ImplicitOps.push_back(MO); 1365 } 1366 } 1367 1368 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1369 CopyMI->eraseFromParent(); 1370 ErasedInstrs.insert(CopyMI); 1371 1372 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1373 // We need to remember these so we can add intervals once we insert 1374 // NewMI into SlotIndexes. 1375 SmallVector<MCRegister, 4> NewMIImplDefs; 1376 for (unsigned i = NewMI.getDesc().getNumOperands(), 1377 e = NewMI.getNumOperands(); 1378 i != e; ++i) { 1379 MachineOperand &MO = NewMI.getOperand(i); 1380 if (MO.isReg() && MO.isDef()) { 1381 assert(MO.isImplicit() && MO.isDead() && 1382 Register::isPhysicalRegister(MO.getReg())); 1383 NewMIImplDefs.push_back(MO.getReg().asMCReg()); 1384 } 1385 } 1386 1387 if (DstReg.isVirtual()) { 1388 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1389 1390 if (DefRC != nullptr) { 1391 if (NewIdx) 1392 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1393 else 1394 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1395 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1396 } 1397 // Remap subranges to new lanemask and change register class. 1398 LiveInterval &DstInt = LIS->getInterval(DstReg); 1399 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1400 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1401 } 1402 MRI->setRegClass(DstReg, NewRC); 1403 1404 // Update machine operands and add flags. 1405 updateRegDefsUses(DstReg, DstReg, DstIdx); 1406 NewMI.getOperand(0).setSubReg(NewIdx); 1407 // updateRegDefUses can add an "undef" flag to the definition, since 1408 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make 1409 // sure that "undef" is not set. 1410 if (NewIdx == 0) 1411 NewMI.getOperand(0).setIsUndef(false); 1412 // Add dead subregister definitions if we are defining the whole register 1413 // but only part of it is live. 1414 // This could happen if the rematerialization instruction is rematerializing 1415 // more than actually is used in the register. 1416 // An example would be: 1417 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1418 // ; Copying only part of the register here, but the rest is undef. 1419 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit 1420 // ==> 1421 // ; Materialize all the constants but only using one 1422 // %2 = LOAD_CONSTANTS 5, 8 1423 // 1424 // at this point for the part that wasn't defined before we could have 1425 // subranges missing the definition. 1426 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1427 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1428 SlotIndex DefIndex = 1429 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1430 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1431 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1432 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1433 if (!SR.liveAt(DefIndex)) 1434 SR.createDeadDef(DefIndex, Alloc); 1435 MaxMask &= ~SR.LaneMask; 1436 } 1437 if (MaxMask.any()) { 1438 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1439 SR->createDeadDef(DefIndex, Alloc); 1440 } 1441 } 1442 1443 // Make sure that the subrange for resultant undef is removed 1444 // For example: 1445 // %1:sub1<def,read-undef> = LOAD CONSTANT 1 1446 // %2 = COPY %1 1447 // ==> 1448 // %2:sub1<def, read-undef> = LOAD CONSTANT 1 1449 // ; Correct but need to remove the subrange for %2:sub0 1450 // ; as it is now undef 1451 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1452 // The affected subregister segments can be removed. 1453 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1454 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1455 bool UpdatedSubRanges = false; 1456 SlotIndex DefIndex = 1457 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1458 VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator(); 1459 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1460 if ((SR.LaneMask & DstMask).none()) { 1461 LLVM_DEBUG(dbgs() 1462 << "Removing undefined SubRange " 1463 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1464 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1465 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1466 SR.removeValNo(RmValNo); 1467 UpdatedSubRanges = true; 1468 } 1469 } else { 1470 // We know that this lane is defined by this instruction, 1471 // but at this point it may be empty because it is not used by 1472 // anything. This happens when updateRegDefUses adds the missing 1473 // lanes. Assign that lane a dead def so that the interferences 1474 // are properly modeled. 1475 if (SR.empty()) 1476 SR.createDeadDef(DefIndex, Alloc); 1477 } 1478 } 1479 if (UpdatedSubRanges) 1480 DstInt.removeEmptySubRanges(); 1481 } 1482 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1483 // The New instruction may be defining a sub-register of what's actually 1484 // been asked for. If so it must implicitly define the whole thing. 1485 assert(Register::isPhysicalRegister(DstReg) && 1486 "Only expect virtual or physical registers in remat"); 1487 NewMI.getOperand(0).setIsDead(true); 1488 NewMI.addOperand(MachineOperand::CreateReg( 1489 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1490 // Record small dead def live-ranges for all the subregisters 1491 // of the destination register. 1492 // Otherwise, variables that live through may miss some 1493 // interferences, thus creating invalid allocation. 1494 // E.g., i386 code: 1495 // %1 = somedef ; %1 GR8 1496 // %2 = remat ; %2 GR32 1497 // CL = COPY %2.sub_8bit 1498 // = somedef %1 ; %1 GR8 1499 // => 1500 // %1 = somedef ; %1 GR8 1501 // dead ECX = remat ; implicit-def CL 1502 // = somedef %1 ; %1 GR8 1503 // %1 will see the interferences with CL but not with CH since 1504 // no live-ranges would have been created for ECX. 1505 // Fix that! 1506 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1507 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1508 Units.isValid(); ++Units) 1509 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1510 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1511 } 1512 1513 if (NewMI.getOperand(0).getSubReg()) 1514 NewMI.getOperand(0).setIsUndef(); 1515 1516 // Transfer over implicit operands to the rematerialized instruction. 1517 for (MachineOperand &MO : ImplicitOps) 1518 NewMI.addOperand(MO); 1519 1520 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1521 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1522 MCRegister Reg = NewMIImplDefs[i]; 1523 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1524 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1525 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1526 } 1527 1528 LLVM_DEBUG(dbgs() << "Remat: " << NewMI); 1529 ++NumReMats; 1530 1531 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1532 // to describe DstReg instead. 1533 if (MRI->use_nodbg_empty(SrcReg)) { 1534 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1535 MachineInstr *UseMI = UseMO.getParent(); 1536 if (UseMI->isDebugValue()) { 1537 if (Register::isPhysicalRegister(DstReg)) 1538 UseMO.substPhysReg(DstReg, *TRI); 1539 else 1540 UseMO.setReg(DstReg); 1541 // Move the debug value directly after the def of the rematerialized 1542 // value in DstReg. 1543 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); 1544 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1545 } 1546 } 1547 } 1548 1549 if (ToBeUpdated.count(SrcReg)) 1550 return true; 1551 1552 unsigned NumCopyUses = 0; 1553 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 1554 if (UseMO.getParent()->isCopyLike()) 1555 NumCopyUses++; 1556 } 1557 if (NumCopyUses < LateRematUpdateThreshold) { 1558 // The source interval can become smaller because we removed a use. 1559 shrinkToUses(&SrcInt, &DeadDefs); 1560 if (!DeadDefs.empty()) 1561 eliminateDeadDefs(); 1562 } else { 1563 ToBeUpdated.insert(SrcReg); 1564 } 1565 return true; 1566 } 1567 1568 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1569 // ProcessImplicitDefs may leave some copies of <undef> values, it only 1570 // removes local variables. When we have a copy like: 1571 // 1572 // %1 = COPY undef %2 1573 // 1574 // We delete the copy and remove the corresponding value number from %1. 1575 // Any uses of that value number are marked as <undef>. 1576 1577 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1578 // CoalescerPair may have a new register class with adjusted subreg indices 1579 // at this point. 1580 Register SrcReg, DstReg; 1581 unsigned SrcSubIdx, DstSubIdx; 1582 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) 1583 return nullptr; 1584 1585 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1586 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1587 // CopyMI is undef iff SrcReg is not live before the instruction. 1588 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1589 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1590 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1591 if ((SR.LaneMask & SrcMask).none()) 1592 continue; 1593 if (SR.liveAt(Idx)) 1594 return nullptr; 1595 } 1596 } else if (SrcLI.liveAt(Idx)) 1597 return nullptr; 1598 1599 // If the undef copy defines a live-out value (i.e. an input to a PHI def), 1600 // then replace it with an IMPLICIT_DEF. 1601 LiveInterval &DstLI = LIS->getInterval(DstReg); 1602 SlotIndex RegIndex = Idx.getRegSlot(); 1603 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex); 1604 assert(Seg != nullptr && "No segment for defining instruction"); 1605 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) { 1606 if (V->isPHIDef()) { 1607 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1608 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) { 1609 MachineOperand &MO = CopyMI->getOperand(i-1); 1610 if (MO.isReg() && MO.isUse()) 1611 CopyMI->RemoveOperand(i-1); 1612 } 1613 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an " 1614 "implicit def\n"); 1615 return CopyMI; 1616 } 1617 } 1618 1619 // Remove any DstReg segments starting at the instruction. 1620 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1621 1622 // Remove value or merge with previous one in case of a subregister def. 1623 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1624 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1625 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1626 1627 // The affected subregister segments can be removed. 1628 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1629 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1630 if ((SR.LaneMask & DstMask).none()) 1631 continue; 1632 1633 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1634 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1635 SR.removeValNo(SVNI); 1636 } 1637 DstLI.removeEmptySubRanges(); 1638 } else 1639 LIS->removeVRegDefAt(DstLI, RegIndex); 1640 1641 // Mark uses as undef. 1642 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1643 if (MO.isDef() /*|| MO.isUndef()*/) 1644 continue; 1645 const MachineInstr &MI = *MO.getParent(); 1646 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1647 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1648 bool isLive; 1649 if (!UseMask.all() && DstLI.hasSubRanges()) { 1650 isLive = false; 1651 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1652 if ((SR.LaneMask & UseMask).none()) 1653 continue; 1654 if (SR.liveAt(UseIdx)) { 1655 isLive = true; 1656 break; 1657 } 1658 } 1659 } else 1660 isLive = DstLI.liveAt(UseIdx); 1661 if (isLive) 1662 continue; 1663 MO.setIsUndef(true); 1664 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1665 } 1666 1667 // A def of a subregister may be a use of the other subregisters, so 1668 // deleting a def of a subregister may also remove uses. Since CopyMI 1669 // is still part of the function (but about to be erased), mark all 1670 // defs of DstReg in it as <undef>, so that shrinkToUses would 1671 // ignore them. 1672 for (MachineOperand &MO : CopyMI->operands()) 1673 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1674 MO.setIsUndef(true); 1675 LIS->shrinkToUses(&DstLI); 1676 1677 return CopyMI; 1678 } 1679 1680 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1681 MachineOperand &MO, unsigned SubRegIdx) { 1682 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1683 if (MO.isDef()) 1684 Mask = ~Mask; 1685 bool IsUndef = true; 1686 for (const LiveInterval::SubRange &S : Int.subranges()) { 1687 if ((S.LaneMask & Mask).none()) 1688 continue; 1689 if (S.liveAt(UseIdx)) { 1690 IsUndef = false; 1691 break; 1692 } 1693 } 1694 if (IsUndef) { 1695 MO.setIsUndef(true); 1696 // We found out some subregister use is actually reading an undefined 1697 // value. In some cases the whole vreg has become undefined at this 1698 // point so we have to potentially shrink the main range if the 1699 // use was ending a live segment there. 1700 LiveQueryResult Q = Int.Query(UseIdx); 1701 if (Q.valueOut() == nullptr) 1702 ShrinkMainRange = true; 1703 } 1704 } 1705 1706 void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg, 1707 unsigned SubIdx) { 1708 bool DstIsPhys = Register::isPhysicalRegister(DstReg); 1709 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1710 1711 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1712 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1713 unsigned SubReg = MO.getSubReg(); 1714 if (SubReg == 0 || MO.isUndef()) 1715 continue; 1716 MachineInstr &MI = *MO.getParent(); 1717 if (MI.isDebugValue()) 1718 continue; 1719 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1720 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1721 } 1722 } 1723 1724 SmallPtrSet<MachineInstr*, 8> Visited; 1725 for (MachineRegisterInfo::reg_instr_iterator 1726 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1727 I != E; ) { 1728 MachineInstr *UseMI = &*(I++); 1729 1730 // Each instruction can only be rewritten once because sub-register 1731 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1732 // the UseMI operands removes them from the SrcReg use-def chain, but when 1733 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1734 // operands mentioning the virtual register. 1735 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1736 continue; 1737 1738 SmallVector<unsigned,8> Ops; 1739 bool Reads, Writes; 1740 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1741 1742 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1743 // because SrcReg is a sub-register. 1744 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) 1745 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1746 1747 // Replace SrcReg with DstReg in all UseMI operands. 1748 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1749 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1750 1751 // Adjust <undef> flags in case of sub-register joins. We don't want to 1752 // turn a full def into a read-modify-write sub-register def and vice 1753 // versa. 1754 if (SubIdx && MO.isDef()) 1755 MO.setIsUndef(!Reads); 1756 1757 // A subreg use of a partially undef (super) register may be a complete 1758 // undef use now and then has to be marked that way. 1759 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1760 if (!DstInt->hasSubRanges()) { 1761 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1762 LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg()); 1763 LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx); 1764 LaneBitmask UnusedLanes = FullMask & ~UsedLanes; 1765 DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt); 1766 // The unused lanes are just empty live-ranges at this point. 1767 // It is the caller responsibility to set the proper 1768 // dead segments if there is an actual dead def of the 1769 // unused lanes. This may happen with rematerialization. 1770 DstInt->createSubRange(Allocator, UnusedLanes); 1771 } 1772 SlotIndex MIIdx = UseMI->isDebugValue() 1773 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1774 : LIS->getInstructionIndex(*UseMI); 1775 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1776 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1777 } 1778 1779 if (DstIsPhys) 1780 MO.substPhysReg(DstReg, *TRI); 1781 else 1782 MO.substVirtReg(DstReg, SubIdx, *TRI); 1783 } 1784 1785 LLVM_DEBUG({ 1786 dbgs() << "\t\tupdated: "; 1787 if (!UseMI->isDebugValue()) 1788 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1789 dbgs() << *UseMI; 1790 }); 1791 } 1792 } 1793 1794 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1795 // Always join simple intervals that are defined by a single copy from a 1796 // reserved register. This doesn't increase register pressure, so it is 1797 // always beneficial. 1798 if (!MRI->isReserved(CP.getDstReg())) { 1799 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1800 return false; 1801 } 1802 1803 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1804 if (JoinVInt.containsOneValue()) 1805 return true; 1806 1807 LLVM_DEBUG( 1808 dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1809 return false; 1810 } 1811 1812 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1813 Again = false; 1814 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1815 1816 CoalescerPair CP(*TRI); 1817 if (!CP.setRegisters(CopyMI)) { 1818 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n"); 1819 return false; 1820 } 1821 1822 if (CP.getNewRC()) { 1823 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1824 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1825 unsigned SrcIdx = CP.getSrcIdx(); 1826 unsigned DstIdx = CP.getDstIdx(); 1827 if (CP.isFlipped()) { 1828 std::swap(SrcIdx, DstIdx); 1829 std::swap(SrcRC, DstRC); 1830 } 1831 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1832 CP.getNewRC(), *LIS)) { 1833 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1834 return false; 1835 } 1836 } 1837 1838 // Dead code elimination. This really should be handled by MachineDCE, but 1839 // sometimes dead copies slip through, and we can't generate invalid live 1840 // ranges. 1841 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1842 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n"); 1843 DeadDefs.push_back(CopyMI); 1844 eliminateDeadDefs(); 1845 return true; 1846 } 1847 1848 // Eliminate undefs. 1849 if (!CP.isPhys()) { 1850 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce. 1851 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) { 1852 if (UndefMI->isImplicitDef()) 1853 return false; 1854 deleteInstr(CopyMI); 1855 return false; // Not coalescable. 1856 } 1857 } 1858 1859 // Coalesced copies are normally removed immediately, but transformations 1860 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1861 // When that happens, just join the values and remove the copy. 1862 if (CP.getSrcReg() == CP.getDstReg()) { 1863 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1864 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1865 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1866 LiveQueryResult LRQ = LI.Query(CopyIdx); 1867 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1868 VNInfo *ReadVNI = LRQ.valueIn(); 1869 assert(ReadVNI && "No value before copy and no <undef> flag."); 1870 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1871 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1872 1873 // Process subregister liveranges. 1874 for (LiveInterval::SubRange &S : LI.subranges()) { 1875 LiveQueryResult SLRQ = S.Query(CopyIdx); 1876 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1877 VNInfo *SReadVNI = SLRQ.valueIn(); 1878 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1879 } 1880 } 1881 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1882 } 1883 deleteInstr(CopyMI); 1884 return true; 1885 } 1886 1887 // Enforce policies. 1888 if (CP.isPhys()) { 1889 LLVM_DEBUG(dbgs() << "\tConsidering merging " 1890 << printReg(CP.getSrcReg(), TRI) << " with " 1891 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'); 1892 if (!canJoinPhys(CP)) { 1893 // Before giving up coalescing, if definition of source is defined by 1894 // trivial computation, try rematerializing it. 1895 bool IsDefCopy; 1896 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1897 return true; 1898 if (IsDefCopy) 1899 Again = true; // May be possible to coalesce later. 1900 return false; 1901 } 1902 } else { 1903 // When possible, let DstReg be the larger interval. 1904 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1905 LIS->getInterval(CP.getDstReg()).size()) 1906 CP.flip(); 1907 1908 LLVM_DEBUG({ 1909 dbgs() << "\tConsidering merging to " 1910 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1911 if (CP.getDstIdx() && CP.getSrcIdx()) 1912 dbgs() << printReg(CP.getDstReg()) << " in " 1913 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1914 << printReg(CP.getSrcReg()) << " in " 1915 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1916 else 1917 dbgs() << printReg(CP.getSrcReg(), TRI) << " in " 1918 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1919 }); 1920 } 1921 1922 ShrinkMask = LaneBitmask::getNone(); 1923 ShrinkMainRange = false; 1924 1925 // Okay, attempt to join these two intervals. On failure, this returns false. 1926 // Otherwise, if one of the intervals being joined is a physreg, this method 1927 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1928 // been modified, so we can use this information below to update aliases. 1929 if (!joinIntervals(CP)) { 1930 // Coalescing failed. 1931 1932 // If definition of source is defined by trivial computation, try 1933 // rematerializing it. 1934 bool IsDefCopy; 1935 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1936 return true; 1937 1938 // If we can eliminate the copy without merging the live segments, do so 1939 // now. 1940 if (!CP.isPartial() && !CP.isPhys()) { 1941 bool Changed = adjustCopiesBackFrom(CP, CopyMI); 1942 bool Shrink = false; 1943 if (!Changed) 1944 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI); 1945 if (Changed) { 1946 deleteInstr(CopyMI); 1947 if (Shrink) { 1948 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1949 LiveInterval &DstLI = LIS->getInterval(DstReg); 1950 shrinkToUses(&DstLI); 1951 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n'); 1952 } 1953 LLVM_DEBUG(dbgs() << "\tTrivial!\n"); 1954 return true; 1955 } 1956 } 1957 1958 // Try and see if we can partially eliminate the copy by moving the copy to 1959 // its predecessor. 1960 if (!CP.isPartial() && !CP.isPhys()) 1961 if (removePartialRedundancy(CP, *CopyMI)) 1962 return true; 1963 1964 // Otherwise, we are unable to join the intervals. 1965 LLVM_DEBUG(dbgs() << "\tInterference!\n"); 1966 Again = true; // May be possible to coalesce later. 1967 return false; 1968 } 1969 1970 // Coalescing to a virtual register that is of a sub-register class of the 1971 // other. Make sure the resulting register is set to the right register class. 1972 if (CP.isCrossClass()) { 1973 ++numCrossRCs; 1974 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1975 } 1976 1977 // Removing sub-register copies can ease the register class constraints. 1978 // Make sure we attempt to inflate the register class of DstReg. 1979 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1980 InflateRegs.push_back(CP.getDstReg()); 1981 1982 // CopyMI has been erased by joinIntervals at this point. Remove it from 1983 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1984 // to the work list. This keeps ErasedInstrs from growing needlessly. 1985 ErasedInstrs.erase(CopyMI); 1986 1987 // Rewrite all SrcReg operands to DstReg. 1988 // Also update DstReg operands to include DstIdx if it is set. 1989 if (CP.getDstIdx()) 1990 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1991 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1992 1993 // Shrink subregister ranges if necessary. 1994 if (ShrinkMask.any()) { 1995 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1996 for (LiveInterval::SubRange &S : LI.subranges()) { 1997 if ((S.LaneMask & ShrinkMask).none()) 1998 continue; 1999 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 2000 << ")\n"); 2001 LIS->shrinkToUses(S, LI.reg()); 2002 } 2003 LI.removeEmptySubRanges(); 2004 } 2005 2006 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live 2007 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval 2008 // is not up-to-date, need to update the merged live interval here. 2009 if (ToBeUpdated.count(CP.getSrcReg())) 2010 ShrinkMainRange = true; 2011 2012 if (ShrinkMainRange) { 2013 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 2014 shrinkToUses(&LI); 2015 } 2016 2017 // SrcReg is guaranteed to be the register whose live interval that is 2018 // being merged. 2019 LIS->removeInterval(CP.getSrcReg()); 2020 2021 // Update regalloc hint. 2022 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 2023 2024 LLVM_DEBUG({ 2025 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 2026 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 2027 dbgs() << "\tResult = "; 2028 if (CP.isPhys()) 2029 dbgs() << printReg(CP.getDstReg(), TRI); 2030 else 2031 dbgs() << LIS->getInterval(CP.getDstReg()); 2032 dbgs() << '\n'; 2033 }); 2034 2035 ++numJoins; 2036 return true; 2037 } 2038 2039 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 2040 Register DstReg = CP.getDstReg(); 2041 Register SrcReg = CP.getSrcReg(); 2042 assert(CP.isPhys() && "Must be a physreg copy"); 2043 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 2044 LiveInterval &RHS = LIS->getInterval(SrcReg); 2045 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 2046 2047 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 2048 2049 // Optimization for reserved registers like ESP. We can only merge with a 2050 // reserved physreg if RHS has a single value that is a copy of DstReg. 2051 // The live range of the reserved register will look like a set of dead defs 2052 // - we don't properly track the live range of reserved registers. 2053 2054 // Deny any overlapping intervals. This depends on all the reserved 2055 // register live ranges to look like dead defs. 2056 if (!MRI->isConstantPhysReg(DstReg)) { 2057 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2058 // Abort if not all the regunits are reserved. 2059 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 2060 if (!MRI->isReserved(*RI)) 2061 return false; 2062 } 2063 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 2064 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) 2065 << '\n'); 2066 return false; 2067 } 2068 } 2069 2070 // We must also check for overlaps with regmask clobbers. 2071 BitVector RegMaskUsable; 2072 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 2073 !RegMaskUsable.test(DstReg)) { 2074 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n"); 2075 return false; 2076 } 2077 } 2078 2079 // Skip any value computations, we are not adding new values to the 2080 // reserved register. Also skip merging the live ranges, the reserved 2081 // register live range doesn't need to be accurate as long as all the 2082 // defs are there. 2083 2084 // Delete the identity copy. 2085 MachineInstr *CopyMI; 2086 if (CP.isFlipped()) { 2087 // Physreg is copied into vreg 2088 // %y = COPY %physreg_x 2089 // ... //< no other def of %physreg_x here 2090 // use %y 2091 // => 2092 // ... 2093 // use %physreg_x 2094 CopyMI = MRI->getVRegDef(SrcReg); 2095 } else { 2096 // VReg is copied into physreg: 2097 // %y = def 2098 // ... //< no other def or use of %physreg_x here 2099 // %physreg_x = COPY %y 2100 // => 2101 // %physreg_x = def 2102 // ... 2103 if (!MRI->hasOneNonDBGUse(SrcReg)) { 2104 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 2105 return false; 2106 } 2107 2108 if (!LIS->intervalIsInOneMBB(RHS)) { 2109 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n"); 2110 return false; 2111 } 2112 2113 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 2114 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 2115 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 2116 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 2117 2118 if (!MRI->isConstantPhysReg(DstReg)) { 2119 // We checked above that there are no interfering defs of the physical 2120 // register. However, for this case, where we intend to move up the def of 2121 // the physical register, we also need to check for interfering uses. 2122 SlotIndexes *Indexes = LIS->getSlotIndexes(); 2123 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 2124 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 2125 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 2126 if (MI->readsRegister(DstReg, TRI)) { 2127 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 2128 return false; 2129 } 2130 } 2131 } 2132 2133 // We're going to remove the copy which defines a physical reserved 2134 // register, so remove its valno, etc. 2135 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of " 2136 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n"); 2137 2138 LIS->removePhysRegDefAt(DstReg.asMCReg(), CopyRegIdx); 2139 // Create a new dead def at the new def location. 2140 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2141 LiveRange &LR = LIS->getRegUnit(*UI); 2142 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 2143 } 2144 } 2145 2146 deleteInstr(CopyMI); 2147 2148 // We don't track kills for reserved registers. 2149 MRI->clearKillFlags(CP.getSrcReg()); 2150 2151 return true; 2152 } 2153 2154 //===----------------------------------------------------------------------===// 2155 // Interference checking and interval joining 2156 //===----------------------------------------------------------------------===// 2157 // 2158 // In the easiest case, the two live ranges being joined are disjoint, and 2159 // there is no interference to consider. It is quite common, though, to have 2160 // overlapping live ranges, and we need to check if the interference can be 2161 // resolved. 2162 // 2163 // The live range of a single SSA value forms a sub-tree of the dominator tree. 2164 // This means that two SSA values overlap if and only if the def of one value 2165 // is contained in the live range of the other value. As a special case, the 2166 // overlapping values can be defined at the same index. 2167 // 2168 // The interference from an overlapping def can be resolved in these cases: 2169 // 2170 // 1. Coalescable copies. The value is defined by a copy that would become an 2171 // identity copy after joining SrcReg and DstReg. The copy instruction will 2172 // be removed, and the value will be merged with the source value. 2173 // 2174 // There can be several copies back and forth, causing many values to be 2175 // merged into one. We compute a list of ultimate values in the joined live 2176 // range as well as a mappings from the old value numbers. 2177 // 2178 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 2179 // predecessors have a live out value. It doesn't cause real interference, 2180 // and can be merged into the value it overlaps. Like a coalescable copy, it 2181 // can be erased after joining. 2182 // 2183 // 3. Copy of external value. The overlapping def may be a copy of a value that 2184 // is already in the other register. This is like a coalescable copy, but 2185 // the live range of the source register must be trimmed after erasing the 2186 // copy instruction: 2187 // 2188 // %src = COPY %ext 2189 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 2190 // 2191 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 2192 // defining one lane at a time: 2193 // 2194 // %dst:ssub0<def,read-undef> = FOO 2195 // %src = BAR 2196 // %dst:ssub1 = COPY %src 2197 // 2198 // The live range of %src overlaps the %dst value defined by FOO, but 2199 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 2200 // which was undef anyway. 2201 // 2202 // The value mapping is more complicated in this case. The final live range 2203 // will have different value numbers for both FOO and BAR, but there is no 2204 // simple mapping from old to new values. It may even be necessary to add 2205 // new PHI values. 2206 // 2207 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 2208 // is live, but never read. This can happen because we don't compute 2209 // individual live ranges per lane. 2210 // 2211 // %dst = FOO 2212 // %src = BAR 2213 // %dst:ssub1 = COPY %src 2214 // 2215 // This kind of interference is only resolved locally. If the clobbered 2216 // lane value escapes the block, the join is aborted. 2217 2218 namespace { 2219 2220 /// Track information about values in a single virtual register about to be 2221 /// joined. Objects of this class are always created in pairs - one for each 2222 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 2223 /// pair) 2224 class JoinVals { 2225 /// Live range we work on. 2226 LiveRange &LR; 2227 2228 /// (Main) register we work on. 2229 const Register Reg; 2230 2231 /// Reg (and therefore the values in this liverange) will end up as 2232 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 2233 /// CP.SrcIdx. 2234 const unsigned SubIdx; 2235 2236 /// The LaneMask that this liverange will occupy the coalesced register. May 2237 /// be smaller than the lanemask produced by SubIdx when merging subranges. 2238 const LaneBitmask LaneMask; 2239 2240 /// This is true when joining sub register ranges, false when joining main 2241 /// ranges. 2242 const bool SubRangeJoin; 2243 2244 /// Whether the current LiveInterval tracks subregister liveness. 2245 const bool TrackSubRegLiveness; 2246 2247 /// Values that will be present in the final live range. 2248 SmallVectorImpl<VNInfo*> &NewVNInfo; 2249 2250 const CoalescerPair &CP; 2251 LiveIntervals *LIS; 2252 SlotIndexes *Indexes; 2253 const TargetRegisterInfo *TRI; 2254 2255 /// Value number assignments. Maps value numbers in LI to entries in 2256 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 2257 SmallVector<int, 8> Assignments; 2258 2259 public: 2260 /// Conflict resolution for overlapping values. 2261 enum ConflictResolution { 2262 /// No overlap, simply keep this value. 2263 CR_Keep, 2264 2265 /// Merge this value into OtherVNI and erase the defining instruction. 2266 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 2267 /// values. 2268 CR_Erase, 2269 2270 /// Merge this value into OtherVNI but keep the defining instruction. 2271 /// This is for the special case where OtherVNI is defined by the same 2272 /// instruction. 2273 CR_Merge, 2274 2275 /// Keep this value, and have it replace OtherVNI where possible. This 2276 /// complicates value mapping since OtherVNI maps to two different values 2277 /// before and after this def. 2278 /// Used when clobbering undefined or dead lanes. 2279 CR_Replace, 2280 2281 /// Unresolved conflict. Visit later when all values have been mapped. 2282 CR_Unresolved, 2283 2284 /// Unresolvable conflict. Abort the join. 2285 CR_Impossible 2286 }; 2287 2288 private: 2289 /// Per-value info for LI. The lane bit masks are all relative to the final 2290 /// joined register, so they can be compared directly between SrcReg and 2291 /// DstReg. 2292 struct Val { 2293 ConflictResolution Resolution = CR_Keep; 2294 2295 /// Lanes written by this def, 0 for unanalyzed values. 2296 LaneBitmask WriteLanes; 2297 2298 /// Lanes with defined values in this register. Other lanes are undef and 2299 /// safe to clobber. 2300 LaneBitmask ValidLanes; 2301 2302 /// Value in LI being redefined by this def. 2303 VNInfo *RedefVNI = nullptr; 2304 2305 /// Value in the other live range that overlaps this def, if any. 2306 VNInfo *OtherVNI = nullptr; 2307 2308 /// Is this value an IMPLICIT_DEF that can be erased? 2309 /// 2310 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2311 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2312 /// safely erased if they are overlapping a live value in the other live 2313 /// interval. 2314 /// 2315 /// Weird control flow graphs and incomplete PHI handling in 2316 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2317 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2318 /// normal values. 2319 bool ErasableImplicitDef = false; 2320 2321 /// True when the live range of this value will be pruned because of an 2322 /// overlapping CR_Replace value in the other live range. 2323 bool Pruned = false; 2324 2325 /// True once Pruned above has been computed. 2326 bool PrunedComputed = false; 2327 2328 /// True if this value is determined to be identical to OtherVNI 2329 /// (in valuesIdentical). This is used with CR_Erase where the erased 2330 /// copy is redundant, i.e. the source value is already the same as 2331 /// the destination. In such cases the subranges need to be updated 2332 /// properly. See comment at pruneSubRegValues for more info. 2333 bool Identical = false; 2334 2335 Val() = default; 2336 2337 bool isAnalyzed() const { return WriteLanes.any(); } 2338 }; 2339 2340 /// One entry per value number in LI. 2341 SmallVector<Val, 8> Vals; 2342 2343 /// Compute the bitmask of lanes actually written by DefMI. 2344 /// Set Redef if there are any partial register definitions that depend on the 2345 /// previous value of the register. 2346 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2347 2348 /// Find the ultimate value that VNI was copied from. 2349 std::pair<const VNInfo *, Register> followCopyChain(const VNInfo *VNI) const; 2350 2351 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const; 2352 2353 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2354 /// Return a conflict resolution when possible, but leave the hard cases as 2355 /// CR_Unresolved. 2356 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2357 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2358 /// The recursion always goes upwards in the dominator tree, making loops 2359 /// impossible. 2360 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2361 2362 /// Compute the value assignment for ValNo in RI. 2363 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2364 /// the stack. 2365 void computeAssignment(unsigned ValNo, JoinVals &Other); 2366 2367 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2368 /// the extent of the tainted lanes in the block. 2369 /// 2370 /// Multiple values in Other.LR can be affected since partial redefinitions 2371 /// can preserve previously tainted lanes. 2372 /// 2373 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2374 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2375 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2376 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2377 /// 2378 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2379 /// entry to TaintedVals. 2380 /// 2381 /// Returns false if the tainted lanes extend beyond the basic block. 2382 bool 2383 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2384 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); 2385 2386 /// Return true if MI uses any of the given Lanes from Reg. 2387 /// This does not include partial redefinitions of Reg. 2388 bool usesLanes(const MachineInstr &MI, Register, unsigned, LaneBitmask) const; 2389 2390 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2391 /// be pruned: 2392 /// 2393 /// %dst = COPY %src 2394 /// %src = COPY %dst <-- This value to be pruned. 2395 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2396 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2397 2398 public: 2399 JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask, 2400 SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp, 2401 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2402 bool TrackSubRegLiveness) 2403 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2404 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2405 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2406 TRI(TRI), Assignments(LR.getNumValNums(), -1), 2407 Vals(LR.getNumValNums()) {} 2408 2409 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2410 /// Returns false if any conflicts were impossible to resolve. 2411 bool mapValues(JoinVals &Other); 2412 2413 /// Try to resolve conflicts that require all values to be mapped. 2414 /// Returns false if any conflicts were impossible to resolve. 2415 bool resolveConflicts(JoinVals &Other); 2416 2417 /// Prune the live range of values in Other.LR where they would conflict with 2418 /// CR_Replace values in LR. Collect end points for restoring the live range 2419 /// after joining. 2420 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2421 bool changeInstrs); 2422 2423 /// Removes subranges starting at copies that get removed. This sometimes 2424 /// happens when undefined subranges are copied around. These ranges contain 2425 /// no useful information and can be removed. 2426 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2427 2428 /// Pruning values in subranges can lead to removing segments in these 2429 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2430 /// the main range also need to be removed. This function will mark 2431 /// the corresponding values in the main range as pruned, so that 2432 /// eraseInstrs can do the final cleanup. 2433 /// The parameter @p LI must be the interval whose main range is the 2434 /// live range LR. 2435 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2436 2437 /// Erase any machine instructions that have been coalesced away. 2438 /// Add erased instructions to ErasedInstrs. 2439 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2440 /// the erased instrs. 2441 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2442 SmallVectorImpl<Register> &ShrinkRegs, 2443 LiveInterval *LI = nullptr); 2444 2445 /// Remove liverange defs at places where implicit defs will be removed. 2446 void removeImplicitDefs(); 2447 2448 /// Get the value assignments suitable for passing to LiveInterval::join. 2449 const int *getAssignments() const { return Assignments.data(); } 2450 2451 /// Get the conflict resolution for a value number. 2452 ConflictResolution getResolution(unsigned Num) const { 2453 return Vals[Num].Resolution; 2454 } 2455 }; 2456 2457 } // end anonymous namespace 2458 2459 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2460 const { 2461 LaneBitmask L; 2462 for (const MachineOperand &MO : DefMI->operands()) { 2463 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2464 continue; 2465 L |= TRI->getSubRegIndexLaneMask( 2466 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2467 if (MO.readsReg()) 2468 Redef = true; 2469 } 2470 return L; 2471 } 2472 2473 std::pair<const VNInfo *, Register> 2474 JoinVals::followCopyChain(const VNInfo *VNI) const { 2475 Register TrackReg = Reg; 2476 2477 while (!VNI->isPHIDef()) { 2478 SlotIndex Def = VNI->def; 2479 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2480 assert(MI && "No defining instruction"); 2481 if (!MI->isFullCopy()) 2482 return std::make_pair(VNI, TrackReg); 2483 Register SrcReg = MI->getOperand(1).getReg(); 2484 if (!SrcReg.isVirtual()) 2485 return std::make_pair(VNI, TrackReg); 2486 2487 const LiveInterval &LI = LIS->getInterval(SrcReg); 2488 const VNInfo *ValueIn; 2489 // No subrange involved. 2490 if (!SubRangeJoin || !LI.hasSubRanges()) { 2491 LiveQueryResult LRQ = LI.Query(Def); 2492 ValueIn = LRQ.valueIn(); 2493 } else { 2494 // Query subranges. Ensure that all matching ones take us to the same def 2495 // (allowing some of them to be undef). 2496 ValueIn = nullptr; 2497 for (const LiveInterval::SubRange &S : LI.subranges()) { 2498 // Transform lanemask to a mask in the joined live interval. 2499 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2500 if ((SMask & LaneMask).none()) 2501 continue; 2502 LiveQueryResult LRQ = S.Query(Def); 2503 if (!ValueIn) { 2504 ValueIn = LRQ.valueIn(); 2505 continue; 2506 } 2507 if (LRQ.valueIn() && ValueIn != LRQ.valueIn()) 2508 return std::make_pair(VNI, TrackReg); 2509 } 2510 } 2511 if (ValueIn == nullptr) { 2512 // Reaching an undefined value is legitimate, for example: 2513 // 2514 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef 2515 // 2 %1 = COPY %0 ;; %1 is defined here. 2516 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition, 2517 // ;; but it's equivalent to "undef". 2518 return std::make_pair(nullptr, SrcReg); 2519 } 2520 VNI = ValueIn; 2521 TrackReg = SrcReg; 2522 } 2523 return std::make_pair(VNI, TrackReg); 2524 } 2525 2526 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2527 const JoinVals &Other) const { 2528 const VNInfo *Orig0; 2529 Register Reg0; 2530 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2531 if (Orig0 == Value1 && Reg0 == Other.Reg) 2532 return true; 2533 2534 const VNInfo *Orig1; 2535 Register Reg1; 2536 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2537 // If both values are undefined, and the source registers are the same 2538 // register, the values are identical. Filter out cases where only one 2539 // value is defined. 2540 if (Orig0 == nullptr || Orig1 == nullptr) 2541 return Orig0 == Orig1 && Reg0 == Reg1; 2542 2543 // The values are equal if they are defined at the same place and use the 2544 // same register. Note that we cannot compare VNInfos directly as some of 2545 // them might be from a copy created in mergeSubRangeInto() while the other 2546 // is from the original LiveInterval. 2547 return Orig0->def == Orig1->def && Reg0 == Reg1; 2548 } 2549 2550 JoinVals::ConflictResolution 2551 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2552 Val &V = Vals[ValNo]; 2553 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2554 VNInfo *VNI = LR.getValNumInfo(ValNo); 2555 if (VNI->isUnused()) { 2556 V.WriteLanes = LaneBitmask::getAll(); 2557 return CR_Keep; 2558 } 2559 2560 // Get the instruction defining this value, compute the lanes written. 2561 const MachineInstr *DefMI = nullptr; 2562 if (VNI->isPHIDef()) { 2563 // Conservatively assume that all lanes in a PHI are valid. 2564 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2565 : TRI->getSubRegIndexLaneMask(SubIdx); 2566 V.ValidLanes = V.WriteLanes = Lanes; 2567 } else { 2568 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2569 assert(DefMI != nullptr); 2570 if (SubRangeJoin) { 2571 // We don't care about the lanes when joining subregister ranges. 2572 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2573 if (DefMI->isImplicitDef()) { 2574 V.ValidLanes = LaneBitmask::getNone(); 2575 V.ErasableImplicitDef = true; 2576 } 2577 } else { 2578 bool Redef = false; 2579 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2580 2581 // If this is a read-modify-write instruction, there may be more valid 2582 // lanes than the ones written by this instruction. 2583 // This only covers partial redef operands. DefMI may have normal use 2584 // operands reading the register. They don't contribute valid lanes. 2585 // 2586 // This adds ssub1 to the set of valid lanes in %src: 2587 // 2588 // %src:ssub1 = FOO 2589 // 2590 // This leaves only ssub1 valid, making any other lanes undef: 2591 // 2592 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2593 // 2594 // The <read-undef> flag on the def operand means that old lane values are 2595 // not important. 2596 if (Redef) { 2597 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2598 assert((TrackSubRegLiveness || V.RedefVNI) && 2599 "Instruction is reading nonexistent value"); 2600 if (V.RedefVNI != nullptr) { 2601 computeAssignment(V.RedefVNI->id, Other); 2602 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2603 } 2604 } 2605 2606 // An IMPLICIT_DEF writes undef values. 2607 if (DefMI->isImplicitDef()) { 2608 // We normally expect IMPLICIT_DEF values to be live only until the end 2609 // of their block. If the value is really live longer and gets pruned in 2610 // another block, this flag is cleared again. 2611 // 2612 // Clearing the valid lanes is deferred until it is sure this can be 2613 // erased. 2614 V.ErasableImplicitDef = true; 2615 } 2616 } 2617 } 2618 2619 // Find the value in Other that overlaps VNI->def, if any. 2620 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2621 2622 // It is possible that both values are defined by the same instruction, or 2623 // the values are PHIs defined in the same block. When that happens, the two 2624 // values should be merged into one, but not into any preceding value. 2625 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2626 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2627 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2628 2629 // One value stays, the other is merged. Keep the earlier one, or the first 2630 // one we see. 2631 if (OtherVNI->def < VNI->def) 2632 Other.computeAssignment(OtherVNI->id, *this); 2633 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2634 // This is an early-clobber def overlapping a live-in value in the other 2635 // register. Not mergeable. 2636 V.OtherVNI = OtherLRQ.valueIn(); 2637 return CR_Impossible; 2638 } 2639 V.OtherVNI = OtherVNI; 2640 Val &OtherV = Other.Vals[OtherVNI->id]; 2641 // Keep this value, check for conflicts when analyzing OtherVNI. 2642 if (!OtherV.isAnalyzed()) 2643 return CR_Keep; 2644 // Both sides have been analyzed now. 2645 // Allow overlapping PHI values. Any real interference would show up in a 2646 // predecessor, the PHI itself can't introduce any conflicts. 2647 if (VNI->isPHIDef()) 2648 return CR_Merge; 2649 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2650 // Overlapping lanes can't be resolved. 2651 return CR_Impossible; 2652 else 2653 return CR_Merge; 2654 } 2655 2656 // No simultaneous def. Is Other live at the def? 2657 V.OtherVNI = OtherLRQ.valueIn(); 2658 if (!V.OtherVNI) 2659 // No overlap, no conflict. 2660 return CR_Keep; 2661 2662 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2663 2664 // We have overlapping values, or possibly a kill of Other. 2665 // Recursively compute assignments up the dominator tree. 2666 Other.computeAssignment(V.OtherVNI->id, *this); 2667 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2668 2669 if (OtherV.ErasableImplicitDef) { 2670 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2671 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2672 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2673 // technically. 2674 // 2675 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2676 // to erase the IMPLICIT_DEF instruction. 2677 if (DefMI && 2678 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2679 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2680 << " extends into " 2681 << printMBBReference(*DefMI->getParent()) 2682 << ", keeping it.\n"); 2683 OtherV.ErasableImplicitDef = false; 2684 } else { 2685 // We deferred clearing these lanes in case we needed to save them 2686 OtherV.ValidLanes &= ~OtherV.WriteLanes; 2687 } 2688 } 2689 2690 // Allow overlapping PHI values. Any real interference would show up in a 2691 // predecessor, the PHI itself can't introduce any conflicts. 2692 if (VNI->isPHIDef()) 2693 return CR_Replace; 2694 2695 // Check for simple erasable conflicts. 2696 if (DefMI->isImplicitDef()) 2697 return CR_Erase; 2698 2699 // Include the non-conflict where DefMI is a coalescable copy that kills 2700 // OtherVNI. We still want the copy erased and value numbers merged. 2701 if (CP.isCoalescable(DefMI)) { 2702 // Some of the lanes copied from OtherVNI may be undef, making them undef 2703 // here too. 2704 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2705 return CR_Erase; 2706 } 2707 2708 // This may not be a real conflict if DefMI simply kills Other and defines 2709 // VNI. 2710 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2711 return CR_Keep; 2712 2713 // Handle the case where VNI and OtherVNI can be proven to be identical: 2714 // 2715 // %other = COPY %ext 2716 // %this = COPY %ext <-- Erase this copy 2717 // 2718 if (DefMI->isFullCopy() && !CP.isPartial() && 2719 valuesIdentical(VNI, V.OtherVNI, Other)) { 2720 V.Identical = true; 2721 return CR_Erase; 2722 } 2723 2724 // The remaining checks apply to the lanes, which aren't tracked here. This 2725 // was already decided to be OK via the following CR_Replace condition. 2726 // CR_Replace. 2727 if (SubRangeJoin) 2728 return CR_Replace; 2729 2730 // If the lanes written by this instruction were all undef in OtherVNI, it is 2731 // still safe to join the live ranges. This can't be done with a simple value 2732 // mapping, though - OtherVNI will map to multiple values: 2733 // 2734 // 1 %dst:ssub0 = FOO <-- OtherVNI 2735 // 2 %src = BAR <-- VNI 2736 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy. 2737 // 4 BAZ killed %dst 2738 // 5 QUUX killed %src 2739 // 2740 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2741 // handles this complex value mapping. 2742 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2743 return CR_Replace; 2744 2745 // If the other live range is killed by DefMI and the live ranges are still 2746 // overlapping, it must be because we're looking at an early clobber def: 2747 // 2748 // %dst<def,early-clobber> = ASM killed %src 2749 // 2750 // In this case, it is illegal to merge the two live ranges since the early 2751 // clobber def would clobber %src before it was read. 2752 if (OtherLRQ.isKill()) { 2753 // This case where the def doesn't overlap the kill is handled above. 2754 assert(VNI->def.isEarlyClobber() && 2755 "Only early clobber defs can overlap a kill"); 2756 return CR_Impossible; 2757 } 2758 2759 // VNI is clobbering live lanes in OtherVNI, but there is still the 2760 // possibility that no instructions actually read the clobbered lanes. 2761 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2762 // Otherwise Other.RI wouldn't be live here. 2763 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2764 return CR_Impossible; 2765 2766 // We need to verify that no instructions are reading the clobbered lanes. To 2767 // save compile time, we'll only check that locally. Don't allow the tainted 2768 // value to escape the basic block. 2769 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2770 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2771 return CR_Impossible; 2772 2773 // There are still some things that could go wrong besides clobbered lanes 2774 // being read, for example OtherVNI may be only partially redefined in MBB, 2775 // and some clobbered lanes could escape the block. Save this analysis for 2776 // resolveConflicts() when all values have been mapped. We need to know 2777 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2778 // that now - the recursive analyzeValue() calls must go upwards in the 2779 // dominator tree. 2780 return CR_Unresolved; 2781 } 2782 2783 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2784 Val &V = Vals[ValNo]; 2785 if (V.isAnalyzed()) { 2786 // Recursion should always move up the dominator tree, so ValNo is not 2787 // supposed to reappear before it has been assigned. 2788 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2789 return; 2790 } 2791 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2792 case CR_Erase: 2793 case CR_Merge: 2794 // Merge this ValNo into OtherVNI. 2795 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2796 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2797 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2798 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@' 2799 << LR.getValNumInfo(ValNo)->def << " into " 2800 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2801 << V.OtherVNI->def << " --> @" 2802 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2803 break; 2804 case CR_Replace: 2805 case CR_Unresolved: { 2806 // The other value is going to be pruned if this join is successful. 2807 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2808 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2809 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2810 // its lanes. 2811 if (OtherV.ErasableImplicitDef && 2812 TrackSubRegLiveness && 2813 (OtherV.WriteLanes & ~V.ValidLanes).any()) { 2814 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n"); 2815 2816 OtherV.ErasableImplicitDef = false; 2817 // The valid lanes written by the implicit_def were speculatively cleared 2818 // before, so make this more conservative. It may be better to track this, 2819 // I haven't found a testcase where it matters. 2820 OtherV.ValidLanes = LaneBitmask::getAll(); 2821 } 2822 2823 OtherV.Pruned = true; 2824 LLVM_FALLTHROUGH; 2825 } 2826 default: 2827 // This value number needs to go in the final joined live range. 2828 Assignments[ValNo] = NewVNInfo.size(); 2829 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2830 break; 2831 } 2832 } 2833 2834 bool JoinVals::mapValues(JoinVals &Other) { 2835 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2836 computeAssignment(i, Other); 2837 if (Vals[i].Resolution == CR_Impossible) { 2838 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i 2839 << '@' << LR.getValNumInfo(i)->def << '\n'); 2840 return false; 2841 } 2842 } 2843 return true; 2844 } 2845 2846 bool JoinVals:: 2847 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2848 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { 2849 VNInfo *VNI = LR.getValNumInfo(ValNo); 2850 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2851 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2852 2853 // Scan Other.LR from VNI.def to MBBEnd. 2854 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2855 assert(OtherI != Other.LR.end() && "No conflict?"); 2856 do { 2857 // OtherI is pointing to a tainted value. Abort the join if the tainted 2858 // lanes escape the block. 2859 SlotIndex End = OtherI->end; 2860 if (End >= MBBEnd) { 2861 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':' 2862 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2863 return false; 2864 } 2865 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':' 2866 << OtherI->valno->id << '@' << OtherI->start << " to " 2867 << End << '\n'); 2868 // A dead def is not a problem. 2869 if (End.isDead()) 2870 break; 2871 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2872 2873 // Check for another def in the MBB. 2874 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2875 break; 2876 2877 // Lanes written by the new def are no longer tainted. 2878 const Val &OV = Other.Vals[OtherI->valno->id]; 2879 TaintedLanes &= ~OV.WriteLanes; 2880 if (!OV.RedefVNI) 2881 break; 2882 } while (TaintedLanes.any()); 2883 return true; 2884 } 2885 2886 bool JoinVals::usesLanes(const MachineInstr &MI, Register Reg, unsigned SubIdx, 2887 LaneBitmask Lanes) const { 2888 if (MI.isDebugInstr()) 2889 return false; 2890 for (const MachineOperand &MO : MI.operands()) { 2891 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2892 continue; 2893 if (!MO.readsReg()) 2894 continue; 2895 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2896 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2897 return true; 2898 } 2899 return false; 2900 } 2901 2902 bool JoinVals::resolveConflicts(JoinVals &Other) { 2903 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2904 Val &V = Vals[i]; 2905 assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); 2906 if (V.Resolution != CR_Unresolved) 2907 continue; 2908 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@' 2909 << LR.getValNumInfo(i)->def 2910 << ' ' << PrintLaneMask(LaneMask) << '\n'); 2911 if (SubRangeJoin) 2912 return false; 2913 2914 ++NumLaneConflicts; 2915 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2916 VNInfo *VNI = LR.getValNumInfo(i); 2917 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2918 2919 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2920 // join, those lanes will be tainted with a wrong value. Get the extent of 2921 // the tainted lanes. 2922 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2923 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2924 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2925 // Tainted lanes would extend beyond the basic block. 2926 return false; 2927 2928 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2929 2930 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2931 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2932 MachineBasicBlock::iterator MI = MBB->begin(); 2933 if (!VNI->isPHIDef()) { 2934 MI = Indexes->getInstructionFromIndex(VNI->def); 2935 // No need to check the instruction defining VNI for reads. 2936 ++MI; 2937 } 2938 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2939 "Interference ends on VNI->def. Should have been handled earlier"); 2940 MachineInstr *LastMI = 2941 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2942 assert(LastMI && "Range must end at a proper instruction"); 2943 unsigned TaintNum = 0; 2944 while (true) { 2945 assert(MI != MBB->end() && "Bad LastMI"); 2946 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2947 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2948 return false; 2949 } 2950 // LastMI is the last instruction to use the current value. 2951 if (&*MI == LastMI) { 2952 if (++TaintNum == TaintExtent.size()) 2953 break; 2954 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2955 assert(LastMI && "Range must end at a proper instruction"); 2956 TaintedLanes = TaintExtent[TaintNum].second; 2957 } 2958 ++MI; 2959 } 2960 2961 // The tainted lanes are unused. 2962 V.Resolution = CR_Replace; 2963 ++NumLaneResolves; 2964 } 2965 return true; 2966 } 2967 2968 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2969 Val &V = Vals[ValNo]; 2970 if (V.Pruned || V.PrunedComputed) 2971 return V.Pruned; 2972 2973 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2974 return V.Pruned; 2975 2976 // Follow copies up the dominator tree and check if any intermediate value 2977 // has been pruned. 2978 V.PrunedComputed = true; 2979 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2980 return V.Pruned; 2981 } 2982 2983 void JoinVals::pruneValues(JoinVals &Other, 2984 SmallVectorImpl<SlotIndex> &EndPoints, 2985 bool changeInstrs) { 2986 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2987 SlotIndex Def = LR.getValNumInfo(i)->def; 2988 switch (Vals[i].Resolution) { 2989 case CR_Keep: 2990 break; 2991 case CR_Replace: { 2992 // This value takes precedence over the value in Other.LR. 2993 LIS->pruneValue(Other.LR, Def, &EndPoints); 2994 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2995 // instructions are only inserted to provide a live-out value for PHI 2996 // predecessors, so the instruction should simply go away once its value 2997 // has been replaced. 2998 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2999 bool EraseImpDef = OtherV.ErasableImplicitDef && 3000 OtherV.Resolution == CR_Keep; 3001 if (!Def.isBlock()) { 3002 if (changeInstrs) { 3003 // Remove <def,read-undef> flags. This def is now a partial redef. 3004 // Also remove dead flags since the joined live range will 3005 // continue past this instruction. 3006 for (MachineOperand &MO : 3007 Indexes->getInstructionFromIndex(Def)->operands()) { 3008 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 3009 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) 3010 MO.setIsUndef(false); 3011 MO.setIsDead(false); 3012 } 3013 } 3014 } 3015 // This value will reach instructions below, but we need to make sure 3016 // the live range also reaches the instruction at Def. 3017 if (!EraseImpDef) 3018 EndPoints.push_back(Def); 3019 } 3020 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def 3021 << ": " << Other.LR << '\n'); 3022 break; 3023 } 3024 case CR_Erase: 3025 case CR_Merge: 3026 if (isPrunedValue(i, Other)) { 3027 // This value is ultimately a copy of a pruned value in LR or Other.LR. 3028 // We can no longer trust the value mapping computed by 3029 // computeAssignment(), the value that was originally copied could have 3030 // been replaced. 3031 LIS->pruneValue(LR, Def, &EndPoints); 3032 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at " 3033 << Def << ": " << LR << '\n'); 3034 } 3035 break; 3036 case CR_Unresolved: 3037 case CR_Impossible: 3038 llvm_unreachable("Unresolved conflicts"); 3039 } 3040 } 3041 } 3042 3043 /// Consider the following situation when coalescing the copy between 3044 /// %31 and %45 at 800. (The vertical lines represent live range segments.) 3045 /// 3046 /// Main range Subrange 0004 (sub2) 3047 /// %31 %45 %31 %45 3048 /// 544 %45 = COPY %28 + + 3049 /// | v1 | v1 3050 /// 560B bb.1: + + 3051 /// 624 = %45.sub2 | v2 | v2 3052 /// 800 %31 = COPY %45 + + + + 3053 /// | v0 | v0 3054 /// 816 %31.sub1 = ... + | 3055 /// 880 %30 = COPY %31 | v1 + 3056 /// 928 %45 = COPY %30 | + + 3057 /// | | v0 | v0 <--+ 3058 /// 992B ; backedge -> bb.1 | + + | 3059 /// 1040 = %31.sub0 + | 3060 /// This value must remain 3061 /// live-out! 3062 /// 3063 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes 3064 /// redundant, since it copies the value from %45 back into it. The 3065 /// conflict resolution for the main range determines that %45.v0 is 3066 /// to be erased, which is ok since %31.v1 is identical to it. 3067 /// The problem happens with the subrange for sub2: it has to be live 3068 /// on exit from the block, but since 928 was actually a point of 3069 /// definition of %45.sub2, %45.sub2 was not live immediately prior 3070 /// to that definition. As a result, when 928 was erased, the value v0 3071 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an 3072 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2, 3073 /// providing an incorrect value to the use at 624. 3074 /// 3075 /// Since the main-range values %31.v1 and %45.v0 were proved to be 3076 /// identical, the corresponding values in subranges must also be the 3077 /// same. A redundant copy is removed because it's not needed, and not 3078 /// because it copied an undefined value, so any liveness that originated 3079 /// from that copy cannot disappear. When pruning a value that started 3080 /// at the removed copy, the corresponding identical value must be 3081 /// extended to replace it. 3082 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 3083 // Look for values being erased. 3084 bool DidPrune = false; 3085 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3086 Val &V = Vals[i]; 3087 // We should trigger in all cases in which eraseInstrs() does something. 3088 // match what eraseInstrs() is doing, print a message so 3089 if (V.Resolution != CR_Erase && 3090 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)) 3091 continue; 3092 3093 // Check subranges at the point where the copy will be removed. 3094 SlotIndex Def = LR.getValNumInfo(i)->def; 3095 SlotIndex OtherDef; 3096 if (V.Identical) 3097 OtherDef = V.OtherVNI->def; 3098 3099 // Print message so mismatches with eraseInstrs() can be diagnosed. 3100 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def 3101 << '\n'); 3102 for (LiveInterval::SubRange &S : LI.subranges()) { 3103 LiveQueryResult Q = S.Query(Def); 3104 3105 // If a subrange starts at the copy then an undefined value has been 3106 // copied and we must remove that subrange value as well. 3107 VNInfo *ValueOut = Q.valueOutOrDead(); 3108 if (ValueOut != nullptr && (Q.valueIn() == nullptr || 3109 (V.Identical && V.Resolution == CR_Erase && 3110 ValueOut->def == Def))) { 3111 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 3112 << " at " << Def << "\n"); 3113 SmallVector<SlotIndex,8> EndPoints; 3114 LIS->pruneValue(S, Def, &EndPoints); 3115 DidPrune = true; 3116 // Mark value number as unused. 3117 ValueOut->markUnused(); 3118 3119 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) { 3120 // If V is identical to V.OtherVNI (and S was live at OtherDef), 3121 // then we can't simply prune V from S. V needs to be replaced 3122 // with V.OtherVNI. 3123 LIS->extendToIndices(S, EndPoints); 3124 } 3125 continue; 3126 } 3127 // If a subrange ends at the copy, then a value was copied but only 3128 // partially used later. Shrink the subregister range appropriately. 3129 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 3130 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane " 3131 << PrintLaneMask(S.LaneMask) << " at " << Def 3132 << "\n"); 3133 ShrinkMask |= S.LaneMask; 3134 } 3135 } 3136 } 3137 if (DidPrune) 3138 LI.removeEmptySubRanges(); 3139 } 3140 3141 /// Check if any of the subranges of @p LI contain a definition at @p Def. 3142 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 3143 for (LiveInterval::SubRange &SR : LI.subranges()) { 3144 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 3145 if (VNI->def == Def) 3146 return true; 3147 } 3148 return false; 3149 } 3150 3151 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 3152 assert(&static_cast<LiveRange&>(LI) == &LR); 3153 3154 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3155 if (Vals[i].Resolution != CR_Keep) 3156 continue; 3157 VNInfo *VNI = LR.getValNumInfo(i); 3158 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 3159 continue; 3160 Vals[i].Pruned = true; 3161 ShrinkMainRange = true; 3162 } 3163 } 3164 3165 void JoinVals::removeImplicitDefs() { 3166 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3167 Val &V = Vals[i]; 3168 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 3169 continue; 3170 3171 VNInfo *VNI = LR.getValNumInfo(i); 3172 VNI->markUnused(); 3173 LR.removeValNo(VNI); 3174 } 3175 } 3176 3177 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 3178 SmallVectorImpl<Register> &ShrinkRegs, 3179 LiveInterval *LI) { 3180 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3181 // Get the def location before markUnused() below invalidates it. 3182 VNInfo *VNI = LR.getValNumInfo(i); 3183 SlotIndex Def = VNI->def; 3184 switch (Vals[i].Resolution) { 3185 case CR_Keep: { 3186 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 3187 // longer. The IMPLICIT_DEF instructions are only inserted by 3188 // PHIElimination to guarantee that all PHI predecessors have a value. 3189 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 3190 break; 3191 // Remove value number i from LR. 3192 // For intervals with subranges, removing a segment from the main range 3193 // may require extending the previous segment: for each definition of 3194 // a subregister, there will be a corresponding def in the main range. 3195 // That def may fall in the middle of a segment from another subrange. 3196 // In such cases, removing this def from the main range must be 3197 // complemented by extending the main range to account for the liveness 3198 // of the other subrange. 3199 // The new end point of the main range segment to be extended. 3200 SlotIndex NewEnd; 3201 if (LI != nullptr) { 3202 LiveRange::iterator I = LR.FindSegmentContaining(Def); 3203 assert(I != LR.end()); 3204 // Do not extend beyond the end of the segment being removed. 3205 // The segment may have been pruned in preparation for joining 3206 // live ranges. 3207 NewEnd = I->end; 3208 } 3209 3210 LR.removeValNo(VNI); 3211 // Note that this VNInfo is reused and still referenced in NewVNInfo, 3212 // make it appear like an unused value number. 3213 VNI->markUnused(); 3214 3215 if (LI != nullptr && LI->hasSubRanges()) { 3216 assert(static_cast<LiveRange*>(LI) == &LR); 3217 // Determine the end point based on the subrange information: 3218 // minimum of (earliest def of next segment, 3219 // latest end point of containing segment) 3220 SlotIndex ED, LE; 3221 for (LiveInterval::SubRange &SR : LI->subranges()) { 3222 LiveRange::iterator I = SR.find(Def); 3223 if (I == SR.end()) 3224 continue; 3225 if (I->start > Def) 3226 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 3227 else 3228 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 3229 } 3230 if (LE.isValid()) 3231 NewEnd = std::min(NewEnd, LE); 3232 if (ED.isValid()) 3233 NewEnd = std::min(NewEnd, ED); 3234 3235 // We only want to do the extension if there was a subrange that 3236 // was live across Def. 3237 if (LE.isValid()) { 3238 LiveRange::iterator S = LR.find(Def); 3239 if (S != LR.begin()) 3240 std::prev(S)->end = NewEnd; 3241 } 3242 } 3243 LLVM_DEBUG({ 3244 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 3245 if (LI != nullptr) 3246 dbgs() << "\t\t LHS = " << *LI << '\n'; 3247 }); 3248 LLVM_FALLTHROUGH; 3249 } 3250 3251 case CR_Erase: { 3252 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 3253 assert(MI && "No instruction to erase"); 3254 if (MI->isCopy()) { 3255 Register Reg = MI->getOperand(1).getReg(); 3256 if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() && 3257 Reg != CP.getDstReg()) 3258 ShrinkRegs.push_back(Reg); 3259 } 3260 ErasedInstrs.insert(MI); 3261 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 3262 LIS->RemoveMachineInstrFromMaps(*MI); 3263 MI->eraseFromParent(); 3264 break; 3265 } 3266 default: 3267 break; 3268 } 3269 } 3270 } 3271 3272 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 3273 LaneBitmask LaneMask, 3274 const CoalescerPair &CP) { 3275 SmallVector<VNInfo*, 16> NewVNInfo; 3276 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 3277 NewVNInfo, CP, LIS, TRI, true, true); 3278 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 3279 NewVNInfo, CP, LIS, TRI, true, true); 3280 3281 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 3282 // We should be able to resolve all conflicts here as we could successfully do 3283 // it on the mainrange already. There is however a problem when multiple 3284 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 3285 // interferences. 3286 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 3287 // We already determined that it is legal to merge the intervals, so this 3288 // should never fail. 3289 llvm_unreachable("*** Couldn't join subrange!\n"); 3290 } 3291 if (!LHSVals.resolveConflicts(RHSVals) || 3292 !RHSVals.resolveConflicts(LHSVals)) { 3293 // We already determined that it is legal to merge the intervals, so this 3294 // should never fail. 3295 llvm_unreachable("*** Couldn't join subrange!\n"); 3296 } 3297 3298 // The merging algorithm in LiveInterval::join() can't handle conflicting 3299 // value mappings, so we need to remove any live ranges that overlap a 3300 // CR_Replace resolution. Collect a set of end points that can be used to 3301 // restore the live range after joining. 3302 SmallVector<SlotIndex, 8> EndPoints; 3303 LHSVals.pruneValues(RHSVals, EndPoints, false); 3304 RHSVals.pruneValues(LHSVals, EndPoints, false); 3305 3306 LHSVals.removeImplicitDefs(); 3307 RHSVals.removeImplicitDefs(); 3308 3309 LRange.verify(); 3310 RRange.verify(); 3311 3312 // Join RRange into LHS. 3313 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 3314 NewVNInfo); 3315 3316 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask) 3317 << ' ' << LRange << "\n"); 3318 if (EndPoints.empty()) 3319 return; 3320 3321 // Recompute the parts of the live range we had to remove because of 3322 // CR_Replace conflicts. 3323 LLVM_DEBUG({ 3324 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3325 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3326 dbgs() << EndPoints[i]; 3327 if (i != n-1) 3328 dbgs() << ','; 3329 } 3330 dbgs() << ": " << LRange << '\n'; 3331 }); 3332 LIS->extendToIndices(LRange, EndPoints); 3333 } 3334 3335 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 3336 const LiveRange &ToMerge, 3337 LaneBitmask LaneMask, 3338 CoalescerPair &CP, 3339 unsigned ComposeSubRegIdx) { 3340 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3341 LI.refineSubRanges( 3342 Allocator, LaneMask, 3343 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) { 3344 if (SR.empty()) { 3345 SR.assign(ToMerge, Allocator); 3346 } else { 3347 // joinSubRegRange() destroys the merged range, so we need a copy. 3348 LiveRange RangeCopy(ToMerge, Allocator); 3349 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 3350 } 3351 }, 3352 *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx); 3353 } 3354 3355 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) { 3356 if (LI.valnos.size() < LargeIntervalSizeThreshold) 3357 return false; 3358 auto &Counter = LargeLIVisitCounter[LI.reg()]; 3359 if (Counter < LargeIntervalFreqThreshold) { 3360 Counter++; 3361 return false; 3362 } 3363 return true; 3364 } 3365 3366 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 3367 SmallVector<VNInfo*, 16> NewVNInfo; 3368 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 3369 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 3370 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 3371 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 3372 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3373 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 3374 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3375 3376 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n'); 3377 3378 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS)) 3379 return false; 3380 3381 // First compute NewVNInfo and the simple value mappings. 3382 // Detect impossible conflicts early. 3383 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 3384 return false; 3385 3386 // Some conflicts can only be resolved after all values have been mapped. 3387 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 3388 return false; 3389 3390 // All clear, the live ranges can be merged. 3391 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 3392 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3393 3394 // Transform lanemasks from the LHS to masks in the coalesced register and 3395 // create initial subranges if necessary. 3396 unsigned DstIdx = CP.getDstIdx(); 3397 if (!LHS.hasSubRanges()) { 3398 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 3399 : TRI->getSubRegIndexLaneMask(DstIdx); 3400 // LHS must support subregs or we wouldn't be in this codepath. 3401 assert(Mask.any()); 3402 LHS.createSubRangeFrom(Allocator, Mask, LHS); 3403 } else if (DstIdx != 0) { 3404 // Transform LHS lanemasks to new register class if necessary. 3405 for (LiveInterval::SubRange &R : LHS.subranges()) { 3406 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 3407 R.LaneMask = Mask; 3408 } 3409 } 3410 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS 3411 << '\n'); 3412 3413 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3414 unsigned SrcIdx = CP.getSrcIdx(); 3415 if (!RHS.hasSubRanges()) { 3416 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3417 : TRI->getSubRegIndexLaneMask(SrcIdx); 3418 mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx); 3419 } else { 3420 // Pair up subranges and merge. 3421 for (LiveInterval::SubRange &R : RHS.subranges()) { 3422 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3423 mergeSubRangeInto(LHS, R, Mask, CP, DstIdx); 3424 } 3425 } 3426 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3427 3428 // Pruning implicit defs from subranges may result in the main range 3429 // having stale segments. 3430 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3431 3432 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3433 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3434 } 3435 3436 // The merging algorithm in LiveInterval::join() can't handle conflicting 3437 // value mappings, so we need to remove any live ranges that overlap a 3438 // CR_Replace resolution. Collect a set of end points that can be used to 3439 // restore the live range after joining. 3440 SmallVector<SlotIndex, 8> EndPoints; 3441 LHSVals.pruneValues(RHSVals, EndPoints, true); 3442 RHSVals.pruneValues(LHSVals, EndPoints, true); 3443 3444 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3445 // registers to require trimming. 3446 SmallVector<Register, 8> ShrinkRegs; 3447 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3448 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3449 while (!ShrinkRegs.empty()) 3450 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3451 3452 // Scan and mark undef any DBG_VALUEs that would refer to a different value. 3453 checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals); 3454 3455 // Join RHS into LHS. 3456 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3457 3458 // Kill flags are going to be wrong if the live ranges were overlapping. 3459 // Eventually, we should simply clear all kill flags when computing live 3460 // ranges. They are reinserted after register allocation. 3461 MRI->clearKillFlags(LHS.reg()); 3462 MRI->clearKillFlags(RHS.reg()); 3463 3464 if (!EndPoints.empty()) { 3465 // Recompute the parts of the live range we had to remove because of 3466 // CR_Replace conflicts. 3467 LLVM_DEBUG({ 3468 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3469 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3470 dbgs() << EndPoints[i]; 3471 if (i != n-1) 3472 dbgs() << ','; 3473 } 3474 dbgs() << ": " << LHS << '\n'; 3475 }); 3476 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3477 } 3478 3479 return true; 3480 } 3481 3482 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3483 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3484 } 3485 3486 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF) 3487 { 3488 const SlotIndexes &Slots = *LIS->getSlotIndexes(); 3489 SmallVector<MachineInstr *, 8> ToInsert; 3490 3491 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the 3492 // vreg => DbgValueLoc map. 3493 auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) { 3494 for (auto *X : ToInsert) 3495 DbgVRegToValues[X->getDebugOperand(0).getReg()].push_back({Slot, X}); 3496 3497 ToInsert.clear(); 3498 }; 3499 3500 // Iterate over all instructions, collecting them into the ToInsert vector. 3501 // Once a non-debug instruction is found, record the slot index of the 3502 // collected DBG_VALUEs. 3503 for (auto &MBB : MF) { 3504 SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB); 3505 3506 for (auto &MI : MBB) { 3507 if (MI.isDebugValue() && MI.getDebugOperand(0).isReg() && 3508 MI.getDebugOperand(0).getReg().isVirtual()) { 3509 ToInsert.push_back(&MI); 3510 } else if (!MI.isDebugInstr()) { 3511 CurrentSlot = Slots.getInstructionIndex(MI); 3512 CloseNewDVRange(CurrentSlot); 3513 } 3514 } 3515 3516 // Close range of DBG_VALUEs at the end of blocks. 3517 CloseNewDVRange(Slots.getMBBEndIdx(&MBB)); 3518 } 3519 3520 // Sort all DBG_VALUEs we've seen by slot number. 3521 for (auto &Pair : DbgVRegToValues) 3522 llvm::sort(Pair.second); 3523 } 3524 3525 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP, 3526 LiveRange &LHS, 3527 JoinVals &LHSVals, 3528 LiveRange &RHS, 3529 JoinVals &RHSVals) { 3530 auto ScanForDstReg = [&](Register Reg) { 3531 checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals); 3532 }; 3533 3534 auto ScanForSrcReg = [&](Register Reg) { 3535 checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals); 3536 }; 3537 3538 // Scan for potentially unsound DBG_VALUEs: examine first the register number 3539 // Reg, and then any other vregs that may have been merged into it. 3540 auto PerformScan = [this](Register Reg, std::function<void(Register)> Func) { 3541 Func(Reg); 3542 if (DbgMergedVRegNums.count(Reg)) 3543 for (Register X : DbgMergedVRegNums[Reg]) 3544 Func(X); 3545 }; 3546 3547 // Scan for unsound updates of both the source and destination register. 3548 PerformScan(CP.getSrcReg(), ScanForSrcReg); 3549 PerformScan(CP.getDstReg(), ScanForDstReg); 3550 } 3551 3552 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg, 3553 LiveRange &OtherLR, 3554 LiveRange &RegLR, 3555 JoinVals &RegVals) { 3556 // Are there any DBG_VALUEs to examine? 3557 auto VRegMapIt = DbgVRegToValues.find(Reg); 3558 if (VRegMapIt == DbgVRegToValues.end()) 3559 return; 3560 3561 auto &DbgValueSet = VRegMapIt->second; 3562 auto DbgValueSetIt = DbgValueSet.begin(); 3563 auto SegmentIt = OtherLR.begin(); 3564 3565 bool LastUndefResult = false; 3566 SlotIndex LastUndefIdx; 3567 3568 // If the "Other" register is live at a slot Idx, test whether Reg can 3569 // safely be merged with it, or should be marked undef. 3570 auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult, 3571 &LastUndefIdx](SlotIndex Idx) -> bool { 3572 // Our worst-case performance typically happens with asan, causing very 3573 // many DBG_VALUEs of the same location. Cache a copy of the most recent 3574 // result for this edge-case. 3575 if (LastUndefIdx == Idx) 3576 return LastUndefResult; 3577 3578 // If the other range was live, and Reg's was not, the register coalescer 3579 // will not have tried to resolve any conflicts. We don't know whether 3580 // the DBG_VALUE will refer to the same value number, so it must be made 3581 // undef. 3582 auto OtherIt = RegLR.find(Idx); 3583 if (OtherIt == RegLR.end()) 3584 return true; 3585 3586 // Both the registers were live: examine the conflict resolution record for 3587 // the value number Reg refers to. CR_Keep meant that this value number 3588 // "won" and the merged register definitely refers to that value. CR_Erase 3589 // means the value number was a redundant copy of the other value, which 3590 // was coalesced and Reg deleted. It's safe to refer to the other register 3591 // (which will be the source of the copy). 3592 auto Resolution = RegVals.getResolution(OtherIt->valno->id); 3593 LastUndefResult = Resolution != JoinVals::CR_Keep && 3594 Resolution != JoinVals::CR_Erase; 3595 LastUndefIdx = Idx; 3596 return LastUndefResult; 3597 }; 3598 3599 // Iterate over both the live-range of the "Other" register, and the set of 3600 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest 3601 // slot index. This relies on the DbgValueSet being ordered. 3602 while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) { 3603 if (DbgValueSetIt->first < SegmentIt->end) { 3604 // "Other" is live and there is a DBG_VALUE of Reg: test if we should 3605 // set it undef. 3606 if (DbgValueSetIt->first >= SegmentIt->start && 3607 DbgValueSetIt->second->getDebugOperand(0).getReg() != 0 && 3608 ShouldUndef(DbgValueSetIt->first)) { 3609 // Mark undef, erase record of this DBG_VALUE to avoid revisiting. 3610 DbgValueSetIt->second->setDebugValueUndef(); 3611 continue; 3612 } 3613 ++DbgValueSetIt; 3614 } else { 3615 ++SegmentIt; 3616 } 3617 } 3618 } 3619 3620 namespace { 3621 3622 /// Information concerning MBB coalescing priority. 3623 struct MBBPriorityInfo { 3624 MachineBasicBlock *MBB; 3625 unsigned Depth; 3626 bool IsSplit; 3627 3628 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3629 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3630 }; 3631 3632 } // end anonymous namespace 3633 3634 /// C-style comparator that sorts first based on the loop depth of the basic 3635 /// block (the unsigned), and then on the MBB number. 3636 /// 3637 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3638 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3639 const MBBPriorityInfo *RHS) { 3640 // Deeper loops first 3641 if (LHS->Depth != RHS->Depth) 3642 return LHS->Depth > RHS->Depth ? -1 : 1; 3643 3644 // Try to unsplit critical edges next. 3645 if (LHS->IsSplit != RHS->IsSplit) 3646 return LHS->IsSplit ? -1 : 1; 3647 3648 // Prefer blocks that are more connected in the CFG. This takes care of 3649 // the most difficult copies first while intervals are short. 3650 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3651 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3652 if (cl != cr) 3653 return cl > cr ? -1 : 1; 3654 3655 // As a last resort, sort by block number. 3656 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3657 } 3658 3659 /// \returns true if the given copy uses or defines a local live range. 3660 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3661 if (!Copy->isCopy()) 3662 return false; 3663 3664 if (Copy->getOperand(1).isUndef()) 3665 return false; 3666 3667 Register SrcReg = Copy->getOperand(1).getReg(); 3668 Register DstReg = Copy->getOperand(0).getReg(); 3669 if (Register::isPhysicalRegister(SrcReg) || 3670 Register::isPhysicalRegister(DstReg)) 3671 return false; 3672 3673 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3674 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3675 } 3676 3677 void RegisterCoalescer::lateLiveIntervalUpdate() { 3678 for (Register reg : ToBeUpdated) { 3679 if (!LIS->hasInterval(reg)) 3680 continue; 3681 LiveInterval &LI = LIS->getInterval(reg); 3682 shrinkToUses(&LI, &DeadDefs); 3683 if (!DeadDefs.empty()) 3684 eliminateDeadDefs(); 3685 } 3686 ToBeUpdated.clear(); 3687 } 3688 3689 bool RegisterCoalescer:: 3690 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3691 bool Progress = false; 3692 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3693 if (!CurrList[i]) 3694 continue; 3695 // Skip instruction pointers that have already been erased, for example by 3696 // dead code elimination. 3697 if (ErasedInstrs.count(CurrList[i])) { 3698 CurrList[i] = nullptr; 3699 continue; 3700 } 3701 bool Again = false; 3702 bool Success = joinCopy(CurrList[i], Again); 3703 Progress |= Success; 3704 if (Success || !Again) 3705 CurrList[i] = nullptr; 3706 } 3707 return Progress; 3708 } 3709 3710 /// Check if DstReg is a terminal node. 3711 /// I.e., it does not have any affinity other than \p Copy. 3712 static bool isTerminalReg(Register DstReg, const MachineInstr &Copy, 3713 const MachineRegisterInfo *MRI) { 3714 assert(Copy.isCopyLike()); 3715 // Check if the destination of this copy as any other affinity. 3716 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3717 if (&MI != &Copy && MI.isCopyLike()) 3718 return false; 3719 return true; 3720 } 3721 3722 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3723 assert(Copy.isCopyLike()); 3724 if (!UseTerminalRule) 3725 return false; 3726 Register SrcReg, DstReg; 3727 unsigned SrcSubReg, DstSubReg; 3728 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg)) 3729 return false; 3730 // Check if the destination of this copy has any other affinity. 3731 if (DstReg.isPhysical() || 3732 // If SrcReg is a physical register, the copy won't be coalesced. 3733 // Ignoring it may have other side effect (like missing 3734 // rematerialization). So keep it. 3735 SrcReg.isPhysical() || !isTerminalReg(DstReg, Copy, MRI)) 3736 return false; 3737 3738 // DstReg is a terminal node. Check if it interferes with any other 3739 // copy involving SrcReg. 3740 const MachineBasicBlock *OrigBB = Copy.getParent(); 3741 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3742 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3743 // Technically we should check if the weight of the new copy is 3744 // interesting compared to the other one and update the weight 3745 // of the copies accordingly. However, this would only work if 3746 // we would gather all the copies first then coalesce, whereas 3747 // right now we interleave both actions. 3748 // For now, just consider the copies that are in the same block. 3749 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3750 continue; 3751 Register OtherSrcReg, OtherReg; 3752 unsigned OtherSrcSubReg, OtherSubReg; 3753 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3754 OtherSubReg)) 3755 return false; 3756 if (OtherReg == SrcReg) 3757 OtherReg = OtherSrcReg; 3758 // Check if OtherReg is a non-terminal. 3759 if (Register::isPhysicalRegister(OtherReg) || 3760 isTerminalReg(OtherReg, MI, MRI)) 3761 continue; 3762 // Check that OtherReg interfere with DstReg. 3763 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3764 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) 3765 << '\n'); 3766 return true; 3767 } 3768 } 3769 return false; 3770 } 3771 3772 void 3773 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3774 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n"); 3775 3776 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3777 // yet, it might invalidate the iterator. 3778 const unsigned PrevSize = WorkList.size(); 3779 if (JoinGlobalCopies) { 3780 SmallVector<MachineInstr*, 2> LocalTerminals; 3781 SmallVector<MachineInstr*, 2> GlobalTerminals; 3782 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3783 // are not inherently easier to resolve, but slightly preferable until we 3784 // have local live range splitting. In particular this is required by 3785 // cmp+jmp macro fusion. 3786 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3787 MII != E; ++MII) { 3788 if (!MII->isCopyLike()) 3789 continue; 3790 bool ApplyTerminalRule = applyTerminalRule(*MII); 3791 if (isLocalCopy(&(*MII), LIS)) { 3792 if (ApplyTerminalRule) 3793 LocalTerminals.push_back(&(*MII)); 3794 else 3795 LocalWorkList.push_back(&(*MII)); 3796 } else { 3797 if (ApplyTerminalRule) 3798 GlobalTerminals.push_back(&(*MII)); 3799 else 3800 WorkList.push_back(&(*MII)); 3801 } 3802 } 3803 // Append the copies evicted by the terminal rule at the end of the list. 3804 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3805 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3806 } 3807 else { 3808 SmallVector<MachineInstr*, 2> Terminals; 3809 for (MachineInstr &MII : *MBB) 3810 if (MII.isCopyLike()) { 3811 if (applyTerminalRule(MII)) 3812 Terminals.push_back(&MII); 3813 else 3814 WorkList.push_back(&MII); 3815 } 3816 // Append the copies evicted by the terminal rule at the end of the list. 3817 WorkList.append(Terminals.begin(), Terminals.end()); 3818 } 3819 // Try coalescing the collected copies immediately, and remove the nulls. 3820 // This prevents the WorkList from getting too large since most copies are 3821 // joinable on the first attempt. 3822 MutableArrayRef<MachineInstr*> 3823 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3824 if (copyCoalesceWorkList(CurrList)) 3825 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3826 nullptr), WorkList.end()); 3827 } 3828 3829 void RegisterCoalescer::coalesceLocals() { 3830 copyCoalesceWorkList(LocalWorkList); 3831 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3832 if (LocalWorkList[j]) 3833 WorkList.push_back(LocalWorkList[j]); 3834 } 3835 LocalWorkList.clear(); 3836 } 3837 3838 void RegisterCoalescer::joinAllIntervals() { 3839 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3840 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3841 3842 std::vector<MBBPriorityInfo> MBBs; 3843 MBBs.reserve(MF->size()); 3844 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3845 MachineBasicBlock *MBB = &*I; 3846 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3847 JoinSplitEdges && isSplitEdge(MBB))); 3848 } 3849 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3850 3851 // Coalesce intervals in MBB priority order. 3852 unsigned CurrDepth = std::numeric_limits<unsigned>::max(); 3853 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3854 // Try coalescing the collected local copies for deeper loops. 3855 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3856 coalesceLocals(); 3857 CurrDepth = MBBs[i].Depth; 3858 } 3859 copyCoalesceInMBB(MBBs[i].MBB); 3860 } 3861 lateLiveIntervalUpdate(); 3862 coalesceLocals(); 3863 3864 // Joining intervals can allow other intervals to be joined. Iteratively join 3865 // until we make no progress. 3866 while (copyCoalesceWorkList(WorkList)) 3867 /* empty */ ; 3868 lateLiveIntervalUpdate(); 3869 } 3870 3871 void RegisterCoalescer::releaseMemory() { 3872 ErasedInstrs.clear(); 3873 WorkList.clear(); 3874 DeadDefs.clear(); 3875 InflateRegs.clear(); 3876 LargeLIVisitCounter.clear(); 3877 } 3878 3879 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3880 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3881 << "********** Function: " << fn.getName() << '\n'); 3882 3883 // Variables changed between a setjmp and a longjump can have undefined value 3884 // after the longjmp. This behaviour can be observed if such a variable is 3885 // spilled, so longjmp won't restore the value in the spill slot. 3886 // RegisterCoalescer should not run in functions with a setjmp to avoid 3887 // merging such undefined variables with predictable ones. 3888 // 3889 // TODO: Could specifically disable coalescing registers live across setjmp 3890 // calls 3891 if (fn.exposesReturnsTwice()) { 3892 LLVM_DEBUG( 3893 dbgs() << "* Skipped as it exposes funcions that returns twice.\n"); 3894 return false; 3895 } 3896 3897 MF = &fn; 3898 MRI = &fn.getRegInfo(); 3899 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3900 TRI = STI.getRegisterInfo(); 3901 TII = STI.getInstrInfo(); 3902 LIS = &getAnalysis<LiveIntervals>(); 3903 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3904 Loops = &getAnalysis<MachineLoopInfo>(); 3905 if (EnableGlobalCopies == cl::BOU_UNSET) 3906 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3907 else 3908 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3909 3910 // The MachineScheduler does not currently require JoinSplitEdges. This will 3911 // either be enabled unconditionally or replaced by a more general live range 3912 // splitting optimization. 3913 JoinSplitEdges = EnableJoinSplits; 3914 3915 if (VerifyCoalescing) 3916 MF->verify(this, "Before register coalescing"); 3917 3918 DbgVRegToValues.clear(); 3919 DbgMergedVRegNums.clear(); 3920 buildVRegToDbgValueMap(fn); 3921 3922 RegClassInfo.runOnMachineFunction(fn); 3923 3924 // Join (coalesce) intervals if requested. 3925 if (EnableJoining) 3926 joinAllIntervals(); 3927 3928 // After deleting a lot of copies, register classes may be less constrained. 3929 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3930 // DPR inflation. 3931 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3932 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3933 InflateRegs.end()); 3934 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() 3935 << " regs.\n"); 3936 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3937 Register Reg = InflateRegs[i]; 3938 if (MRI->reg_nodbg_empty(Reg)) 3939 continue; 3940 if (MRI->recomputeRegClass(Reg)) { 3941 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to " 3942 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3943 ++NumInflated; 3944 3945 LiveInterval &LI = LIS->getInterval(Reg); 3946 if (LI.hasSubRanges()) { 3947 // If the inflated register class does not support subregisters anymore 3948 // remove the subranges. 3949 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3950 LI.clearSubRanges(); 3951 } else { 3952 #ifndef NDEBUG 3953 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3954 // If subranges are still supported, then the same subregs 3955 // should still be supported. 3956 for (LiveInterval::SubRange &S : LI.subranges()) { 3957 assert((S.LaneMask & ~MaxMask).none()); 3958 } 3959 #endif 3960 } 3961 } 3962 } 3963 } 3964 3965 LLVM_DEBUG(dump()); 3966 if (VerifyCoalescing) 3967 MF->verify(this, "After register coalescing"); 3968 return true; 3969 } 3970 3971 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3972 LIS->print(O, m); 3973 } 3974