1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/MC/MCInstrDesc.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <iterator>
56 #include <limits>
57 #include <tuple>
58 #include <utility>
59 #include <vector>
60 
61 using namespace llvm;
62 
63 #define DEBUG_TYPE "regalloc"
64 
65 STATISTIC(numJoins    , "Number of interval joins performed");
66 STATISTIC(numCrossRCs , "Number of cross class joins performed");
67 STATISTIC(numCommutes , "Number of instruction commuting performed");
68 STATISTIC(numExtends  , "Number of copies extended");
69 STATISTIC(NumReMats   , "Number of instructions re-materialized");
70 STATISTIC(NumInflated , "Number of register classes inflated");
71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
72 STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
73 STATISTIC(NumShrinkToUses,  "Number of shrinkToUses called");
74 
75 static cl::opt<bool> EnableJoining("join-liveintervals",
76                                    cl::desc("Coalesce copies (default=true)"),
77                                    cl::init(true), cl::Hidden);
78 
79 static cl::opt<bool> UseTerminalRule("terminal-rule",
80                                      cl::desc("Apply the terminal rule"),
81                                      cl::init(false), cl::Hidden);
82 
83 /// Temporary flag to test critical edge unsplitting.
84 static cl::opt<bool>
85 EnableJoinSplits("join-splitedges",
86   cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87 
88 /// Temporary flag to test global copy optimization.
89 static cl::opt<cl::boolOrDefault>
90 EnableGlobalCopies("join-globalcopies",
91   cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92   cl::init(cl::BOU_UNSET), cl::Hidden);
93 
94 static cl::opt<bool>
95 VerifyCoalescing("verify-coalescing",
96          cl::desc("Verify machine instrs before and after register coalescing"),
97          cl::Hidden);
98 
99 static cl::opt<unsigned> LateRematUpdateThreshold(
100     "late-remat-update-threshold", cl::Hidden,
101     cl::desc("During rematerialization for a copy, if the def instruction has "
102              "many other copy uses to be rematerialized, delay the multiple "
103              "separate live interval update work and do them all at once after "
104              "all those rematerialization are done. It will save a lot of "
105              "repeated work. "),
106     cl::init(100));
107 
108 static cl::opt<unsigned> LargeIntervalSizeThreshold(
109     "large-interval-size-threshold", cl::Hidden,
110     cl::desc("If the valnos size of an interval is larger than the threshold, "
111              "it is regarded as a large interval. "),
112     cl::init(100));
113 
114 static cl::opt<unsigned> LargeIntervalFreqThreshold(
115     "large-interval-freq-threshold", cl::Hidden,
116     cl::desc("For a large interval, if it is coalesed with other live "
117              "intervals many times more than the threshold, stop its "
118              "coalescing to control the compile time. "),
119     cl::init(100));
120 
121 namespace {
122 
123   class JoinVals;
124 
125   class RegisterCoalescer : public MachineFunctionPass,
126                             private LiveRangeEdit::Delegate {
127     MachineFunction* MF = nullptr;
128     MachineRegisterInfo* MRI = nullptr;
129     const TargetRegisterInfo* TRI = nullptr;
130     const TargetInstrInfo* TII = nullptr;
131     LiveIntervals *LIS = nullptr;
132     const MachineLoopInfo* Loops = nullptr;
133     AliasAnalysis *AA = nullptr;
134     RegisterClassInfo RegClassInfo;
135 
136     /// Debug variable location tracking -- for each VReg, maintain an
137     /// ordered-by-slot-index set of DBG_VALUEs, to help quick
138     /// identification of whether coalescing may change location validity.
139     using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>;
140     DenseMap<Register, std::vector<DbgValueLoc>> DbgVRegToValues;
141 
142     /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached.
143     /// To avoid repeatedly merging sets of DbgValueLocs, instead record
144     /// which vregs have been coalesced, and where to. This map is from
145     /// vreg => {set of vregs merged in}.
146     DenseMap<Register, SmallVector<Register, 4>> DbgMergedVRegNums;
147 
148     /// A LaneMask to remember on which subregister live ranges we need to call
149     /// shrinkToUses() later.
150     LaneBitmask ShrinkMask;
151 
152     /// True if the main range of the currently coalesced intervals should be
153     /// checked for smaller live intervals.
154     bool ShrinkMainRange = false;
155 
156     /// True if the coalescer should aggressively coalesce global copies
157     /// in favor of keeping local copies.
158     bool JoinGlobalCopies = false;
159 
160     /// True if the coalescer should aggressively coalesce fall-thru
161     /// blocks exclusively containing copies.
162     bool JoinSplitEdges = false;
163 
164     /// Copy instructions yet to be coalesced.
165     SmallVector<MachineInstr*, 8> WorkList;
166     SmallVector<MachineInstr*, 8> LocalWorkList;
167 
168     /// Set of instruction pointers that have been erased, and
169     /// that may be present in WorkList.
170     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
171 
172     /// Dead instructions that are about to be deleted.
173     SmallVector<MachineInstr*, 8> DeadDefs;
174 
175     /// Virtual registers to be considered for register class inflation.
176     SmallVector<Register, 8> InflateRegs;
177 
178     /// The collection of live intervals which should have been updated
179     /// immediately after rematerialiation but delayed until
180     /// lateLiveIntervalUpdate is called.
181     DenseSet<Register> ToBeUpdated;
182 
183     /// Record how many times the large live interval with many valnos
184     /// has been tried to join with other live interval.
185     DenseMap<Register, unsigned long> LargeLIVisitCounter;
186 
187     /// Recursively eliminate dead defs in DeadDefs.
188     void eliminateDeadDefs();
189 
190     /// LiveRangeEdit callback for eliminateDeadDefs().
191     void LRE_WillEraseInstruction(MachineInstr *MI) override;
192 
193     /// Coalesce the LocalWorkList.
194     void coalesceLocals();
195 
196     /// Join compatible live intervals
197     void joinAllIntervals();
198 
199     /// Coalesce copies in the specified MBB, putting
200     /// copies that cannot yet be coalesced into WorkList.
201     void copyCoalesceInMBB(MachineBasicBlock *MBB);
202 
203     /// Tries to coalesce all copies in CurrList. Returns true if any progress
204     /// was made.
205     bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
206 
207     /// If one def has many copy like uses, and those copy uses are all
208     /// rematerialized, the live interval update needed for those
209     /// rematerializations will be delayed and done all at once instead
210     /// of being done multiple times. This is to save compile cost because
211     /// live interval update is costly.
212     void lateLiveIntervalUpdate();
213 
214     /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
215     /// src/dst of the copy instruction CopyMI.  This returns true if the copy
216     /// was successfully coalesced away. If it is not currently possible to
217     /// coalesce this interval, but it may be possible if other things get
218     /// coalesced, then it returns true by reference in 'Again'.
219     bool joinCopy(MachineInstr *CopyMI, bool &Again);
220 
221     /// Attempt to join these two intervals.  On failure, this
222     /// returns false.  The output "SrcInt" will not have been modified, so we
223     /// can use this information below to update aliases.
224     bool joinIntervals(CoalescerPair &CP);
225 
226     /// Attempt joining two virtual registers. Return true on success.
227     bool joinVirtRegs(CoalescerPair &CP);
228 
229     /// If a live interval has many valnos and is coalesced with other
230     /// live intervals many times, we regard such live interval as having
231     /// high compile time cost.
232     bool isHighCostLiveInterval(LiveInterval &LI);
233 
234     /// Attempt joining with a reserved physreg.
235     bool joinReservedPhysReg(CoalescerPair &CP);
236 
237     /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
238     /// Subranges in @p LI which only partially interfere with the desired
239     /// LaneMask are split as necessary. @p LaneMask are the lanes that
240     /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
241     /// lanemasks already adjusted to the coalesced register.
242     void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
243                            LaneBitmask LaneMask, CoalescerPair &CP,
244                            unsigned DstIdx);
245 
246     /// Join the liveranges of two subregisters. Joins @p RRange into
247     /// @p LRange, @p RRange may be invalid afterwards.
248     void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
249                           LaneBitmask LaneMask, const CoalescerPair &CP);
250 
251     /// We found a non-trivially-coalescable copy. If the source value number is
252     /// defined by a copy from the destination reg see if we can merge these two
253     /// destination reg valno# into a single value number, eliminating a copy.
254     /// This returns true if an interval was modified.
255     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
256 
257     /// Return true if there are definitions of IntB
258     /// other than BValNo val# that can reach uses of AValno val# of IntA.
259     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
260                               VNInfo *AValNo, VNInfo *BValNo);
261 
262     /// We found a non-trivially-coalescable copy.
263     /// If the source value number is defined by a commutable instruction and
264     /// its other operand is coalesced to the copy dest register, see if we
265     /// can transform the copy into a noop by commuting the definition.
266     /// This returns a pair of two flags:
267     /// - the first element is true if an interval was modified,
268     /// - the second element is true if the destination interval needs
269     ///   to be shrunk after deleting the copy.
270     std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
271                                                   MachineInstr *CopyMI);
272 
273     /// We found a copy which can be moved to its less frequent predecessor.
274     bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
275 
276     /// If the source of a copy is defined by a
277     /// trivial computation, replace the copy by rematerialize the definition.
278     bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
279                                  bool &IsDefCopy);
280 
281     /// Return true if a copy involving a physreg should be joined.
282     bool canJoinPhys(const CoalescerPair &CP);
283 
284     /// Replace all defs and uses of SrcReg to DstReg and update the subregister
285     /// number if it is not zero. If DstReg is a physical register and the
286     /// existing subregister number of the def / use being updated is not zero,
287     /// make sure to set it to the correct physical subregister.
288     void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx);
289 
290     /// If the given machine operand reads only undefined lanes add an undef
291     /// flag.
292     /// This can happen when undef uses were previously concealed by a copy
293     /// which we coalesced. Example:
294     ///    %0:sub0<def,read-undef> = ...
295     ///    %1 = COPY %0           <-- Coalescing COPY reveals undef
296     ///       = use %1:sub1       <-- hidden undef use
297     void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
298                       MachineOperand &MO, unsigned SubRegIdx);
299 
300     /// Handle copies of undef values. If the undef value is an incoming
301     /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
302     /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
303     /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
304     MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
305 
306     /// Check whether or not we should apply the terminal rule on the
307     /// destination (Dst) of \p Copy.
308     /// When the terminal rule applies, Copy is not profitable to
309     /// coalesce.
310     /// Dst is terminal if it has exactly one affinity (Dst, Src) and
311     /// at least one interference (Dst, Dst2). If Dst is terminal, the
312     /// terminal rule consists in checking that at least one of
313     /// interfering node, say Dst2, has an affinity of equal or greater
314     /// weight with Src.
315     /// In that case, Dst2 and Dst will not be able to be both coalesced
316     /// with Src. Since Dst2 exposes more coalescing opportunities than
317     /// Dst, we can drop \p Copy.
318     bool applyTerminalRule(const MachineInstr &Copy) const;
319 
320     /// Wrapper method for \see LiveIntervals::shrinkToUses.
321     /// This method does the proper fixing of the live-ranges when the afore
322     /// mentioned method returns true.
323     void shrinkToUses(LiveInterval *LI,
324                       SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
325       NumShrinkToUses++;
326       if (LIS->shrinkToUses(LI, Dead)) {
327         /// Check whether or not \p LI is composed by multiple connected
328         /// components and if that is the case, fix that.
329         SmallVector<LiveInterval*, 8> SplitLIs;
330         LIS->splitSeparateComponents(*LI, SplitLIs);
331       }
332     }
333 
334     /// Wrapper Method to do all the necessary work when an Instruction is
335     /// deleted.
336     /// Optimizations should use this to make sure that deleted instructions
337     /// are always accounted for.
338     void deleteInstr(MachineInstr* MI) {
339       ErasedInstrs.insert(MI);
340       LIS->RemoveMachineInstrFromMaps(*MI);
341       MI->eraseFromParent();
342     }
343 
344     /// Walk over function and initialize the DbgVRegToValues map.
345     void buildVRegToDbgValueMap(MachineFunction &MF);
346 
347     /// Test whether, after merging, any DBG_VALUEs would refer to a
348     /// different value number than before merging, and whether this can
349     /// be resolved. If not, mark the DBG_VALUE as being undef.
350     void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
351                                       JoinVals &LHSVals, LiveRange &RHS,
352                                       JoinVals &RHSVals);
353 
354     void checkMergingChangesDbgValuesImpl(Register Reg, LiveRange &OtherRange,
355                                           LiveRange &RegRange, JoinVals &Vals2);
356 
357   public:
358     static char ID; ///< Class identification, replacement for typeinfo
359 
360     RegisterCoalescer() : MachineFunctionPass(ID) {
361       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
362     }
363 
364     void getAnalysisUsage(AnalysisUsage &AU) const override;
365 
366     void releaseMemory() override;
367 
368     /// This is the pass entry point.
369     bool runOnMachineFunction(MachineFunction&) override;
370 
371     /// Implement the dump method.
372     void print(raw_ostream &O, const Module* = nullptr) const override;
373   };
374 
375 } // end anonymous namespace
376 
377 char RegisterCoalescer::ID = 0;
378 
379 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
380 
381 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
382                       "Simple Register Coalescing", false, false)
383 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
384 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
385 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
386 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
387 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
388                     "Simple Register Coalescing", false, false)
389 
390 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri,
391                                        const MachineInstr *MI, Register &Src,
392                                        Register &Dst, unsigned &SrcSub,
393                                        unsigned &DstSub) {
394   if (MI->isCopy()) {
395     Dst = MI->getOperand(0).getReg();
396     DstSub = MI->getOperand(0).getSubReg();
397     Src = MI->getOperand(1).getReg();
398     SrcSub = MI->getOperand(1).getSubReg();
399   } else if (MI->isSubregToReg()) {
400     Dst = MI->getOperand(0).getReg();
401     DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
402                                       MI->getOperand(3).getImm());
403     Src = MI->getOperand(2).getReg();
404     SrcSub = MI->getOperand(2).getSubReg();
405   } else
406     return false;
407   return true;
408 }
409 
410 /// Return true if this block should be vacated by the coalescer to eliminate
411 /// branches. The important cases to handle in the coalescer are critical edges
412 /// split during phi elimination which contain only copies. Simple blocks that
413 /// contain non-branches should also be vacated, but this can be handled by an
414 /// earlier pass similar to early if-conversion.
415 static bool isSplitEdge(const MachineBasicBlock *MBB) {
416   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
417     return false;
418 
419   for (const auto &MI : *MBB) {
420     if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
421       return false;
422   }
423   return true;
424 }
425 
426 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
427   SrcReg = DstReg = Register();
428   SrcIdx = DstIdx = 0;
429   NewRC = nullptr;
430   Flipped = CrossClass = false;
431 
432   Register Src, Dst;
433   unsigned SrcSub, DstSub;
434   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
435     return false;
436   Partial = SrcSub || DstSub;
437 
438   // If one register is a physreg, it must be Dst.
439   if (Register::isPhysicalRegister(Src)) {
440     if (Register::isPhysicalRegister(Dst))
441       return false;
442     std::swap(Src, Dst);
443     std::swap(SrcSub, DstSub);
444     Flipped = true;
445   }
446 
447   const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
448 
449   if (Register::isPhysicalRegister(Dst)) {
450     // Eliminate DstSub on a physreg.
451     if (DstSub) {
452       Dst = TRI.getSubReg(Dst, DstSub);
453       if (!Dst) return false;
454       DstSub = 0;
455     }
456 
457     // Eliminate SrcSub by picking a corresponding Dst superregister.
458     if (SrcSub) {
459       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
460       if (!Dst) return false;
461     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
462       return false;
463     }
464   } else {
465     // Both registers are virtual.
466     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
467     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
468 
469     // Both registers have subreg indices.
470     if (SrcSub && DstSub) {
471       // Copies between different sub-registers are never coalescable.
472       if (Src == Dst && SrcSub != DstSub)
473         return false;
474 
475       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
476                                          SrcIdx, DstIdx);
477       if (!NewRC)
478         return false;
479     } else if (DstSub) {
480       // SrcReg will be merged with a sub-register of DstReg.
481       SrcIdx = DstSub;
482       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
483     } else if (SrcSub) {
484       // DstReg will be merged with a sub-register of SrcReg.
485       DstIdx = SrcSub;
486       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
487     } else {
488       // This is a straight copy without sub-registers.
489       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
490     }
491 
492     // The combined constraint may be impossible to satisfy.
493     if (!NewRC)
494       return false;
495 
496     // Prefer SrcReg to be a sub-register of DstReg.
497     // FIXME: Coalescer should support subregs symmetrically.
498     if (DstIdx && !SrcIdx) {
499       std::swap(Src, Dst);
500       std::swap(SrcIdx, DstIdx);
501       Flipped = !Flipped;
502     }
503 
504     CrossClass = NewRC != DstRC || NewRC != SrcRC;
505   }
506   // Check our invariants
507   assert(Register::isVirtualRegister(Src) && "Src must be virtual");
508   assert(!(Register::isPhysicalRegister(Dst) && DstSub) &&
509          "Cannot have a physical SubIdx");
510   SrcReg = Src;
511   DstReg = Dst;
512   return true;
513 }
514 
515 bool CoalescerPair::flip() {
516   if (Register::isPhysicalRegister(DstReg))
517     return false;
518   std::swap(SrcReg, DstReg);
519   std::swap(SrcIdx, DstIdx);
520   Flipped = !Flipped;
521   return true;
522 }
523 
524 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
525   if (!MI)
526     return false;
527   Register Src, Dst;
528   unsigned SrcSub, DstSub;
529   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
530     return false;
531 
532   // Find the virtual register that is SrcReg.
533   if (Dst == SrcReg) {
534     std::swap(Src, Dst);
535     std::swap(SrcSub, DstSub);
536   } else if (Src != SrcReg) {
537     return false;
538   }
539 
540   // Now check that Dst matches DstReg.
541   if (DstReg.isPhysical()) {
542     if (!Dst.isPhysical())
543       return false;
544     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
545     // DstSub could be set for a physreg from INSERT_SUBREG.
546     if (DstSub)
547       Dst = TRI.getSubReg(Dst, DstSub);
548     // Full copy of Src.
549     if (!SrcSub)
550       return DstReg == Dst;
551     // This is a partial register copy. Check that the parts match.
552     return Register(TRI.getSubReg(DstReg, SrcSub)) == Dst;
553   } else {
554     // DstReg is virtual.
555     if (DstReg != Dst)
556       return false;
557     // Registers match, do the subregisters line up?
558     return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
559            TRI.composeSubRegIndices(DstIdx, DstSub);
560   }
561 }
562 
563 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
564   AU.setPreservesCFG();
565   AU.addRequired<AAResultsWrapperPass>();
566   AU.addRequired<LiveIntervals>();
567   AU.addPreserved<LiveIntervals>();
568   AU.addPreserved<SlotIndexes>();
569   AU.addRequired<MachineLoopInfo>();
570   AU.addPreserved<MachineLoopInfo>();
571   AU.addPreservedID(MachineDominatorsID);
572   MachineFunctionPass::getAnalysisUsage(AU);
573 }
574 
575 void RegisterCoalescer::eliminateDeadDefs() {
576   SmallVector<Register, 8> NewRegs;
577   LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
578                 nullptr, this).eliminateDeadDefs(DeadDefs);
579 }
580 
581 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
582   // MI may be in WorkList. Make sure we don't visit it.
583   ErasedInstrs.insert(MI);
584 }
585 
586 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
587                                              MachineInstr *CopyMI) {
588   assert(!CP.isPartial() && "This doesn't work for partial copies.");
589   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
590 
591   LiveInterval &IntA =
592     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
593   LiveInterval &IntB =
594     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
595   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
596 
597   // We have a non-trivially-coalescable copy with IntA being the source and
598   // IntB being the dest, thus this defines a value number in IntB.  If the
599   // source value number (in IntA) is defined by a copy from B, see if we can
600   // merge these two pieces of B into a single value number, eliminating a copy.
601   // For example:
602   //
603   //  A3 = B0
604   //    ...
605   //  B1 = A3      <- this copy
606   //
607   // In this case, B0 can be extended to where the B1 copy lives, allowing the
608   // B1 value number to be replaced with B0 (which simplifies the B
609   // liveinterval).
610 
611   // BValNo is a value number in B that is defined by a copy from A.  'B1' in
612   // the example above.
613   LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
614   if (BS == IntB.end()) return false;
615   VNInfo *BValNo = BS->valno;
616 
617   // Get the location that B is defined at.  Two options: either this value has
618   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
619   // can't process it.
620   if (BValNo->def != CopyIdx) return false;
621 
622   // AValNo is the value number in A that defines the copy, A3 in the example.
623   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
624   LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
625   // The live segment might not exist after fun with physreg coalescing.
626   if (AS == IntA.end()) return false;
627   VNInfo *AValNo = AS->valno;
628 
629   // If AValNo is defined as a copy from IntB, we can potentially process this.
630   // Get the instruction that defines this value number.
631   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
632   // Don't allow any partial copies, even if isCoalescable() allows them.
633   if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
634     return false;
635 
636   // Get the Segment in IntB that this value number starts with.
637   LiveInterval::iterator ValS =
638     IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
639   if (ValS == IntB.end())
640     return false;
641 
642   // Make sure that the end of the live segment is inside the same block as
643   // CopyMI.
644   MachineInstr *ValSEndInst =
645     LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
646   if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
647     return false;
648 
649   // Okay, we now know that ValS ends in the same block that the CopyMI
650   // live-range starts.  If there are no intervening live segments between them
651   // in IntB, we can merge them.
652   if (ValS+1 != BS) return false;
653 
654   LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI));
655 
656   SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
657   // We are about to delete CopyMI, so need to remove it as the 'instruction
658   // that defines this value #'. Update the valnum with the new defining
659   // instruction #.
660   BValNo->def = FillerStart;
661 
662   // Okay, we can merge them.  We need to insert a new liverange:
663   // [ValS.end, BS.begin) of either value number, then we merge the
664   // two value numbers.
665   IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
666 
667   // Okay, merge "B1" into the same value number as "B0".
668   if (BValNo != ValS->valno)
669     IntB.MergeValueNumberInto(BValNo, ValS->valno);
670 
671   // Do the same for the subregister segments.
672   for (LiveInterval::SubRange &S : IntB.subranges()) {
673     // Check for SubRange Segments of the form [1234r,1234d:0) which can be
674     // removed to prevent creating bogus SubRange Segments.
675     LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
676     if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
677       S.removeSegment(*SS, true);
678       continue;
679     }
680     // The subrange may have ended before FillerStart. If so, extend it.
681     if (!S.getVNInfoAt(FillerStart)) {
682       SlotIndex BBStart =
683           LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart));
684       S.extendInBlock(BBStart, FillerStart);
685     }
686     VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
687     S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
688     VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
689     if (SubBValNo != SubValSNo)
690       S.MergeValueNumberInto(SubBValNo, SubValSNo);
691   }
692 
693   LLVM_DEBUG(dbgs() << "   result = " << IntB << '\n');
694 
695   // If the source instruction was killing the source register before the
696   // merge, unset the isKill marker given the live range has been extended.
697   int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true);
698   if (UIdx != -1) {
699     ValSEndInst->getOperand(UIdx).setIsKill(false);
700   }
701 
702   // Rewrite the copy.
703   CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI);
704   // If the copy instruction was killing the destination register or any
705   // subrange before the merge trim the live range.
706   bool RecomputeLiveRange = AS->end == CopyIdx;
707   if (!RecomputeLiveRange) {
708     for (LiveInterval::SubRange &S : IntA.subranges()) {
709       LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
710       if (SS != S.end() && SS->end == CopyIdx) {
711         RecomputeLiveRange = true;
712         break;
713       }
714     }
715   }
716   if (RecomputeLiveRange)
717     shrinkToUses(&IntA);
718 
719   ++numExtends;
720   return true;
721 }
722 
723 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
724                                              LiveInterval &IntB,
725                                              VNInfo *AValNo,
726                                              VNInfo *BValNo) {
727   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
728   // the PHI values.
729   if (LIS->hasPHIKill(IntA, AValNo))
730     return true;
731 
732   for (LiveRange::Segment &ASeg : IntA.segments) {
733     if (ASeg.valno != AValNo) continue;
734     LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
735     if (BI != IntB.begin())
736       --BI;
737     for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
738       if (BI->valno == BValNo)
739         continue;
740       if (BI->start <= ASeg.start && BI->end > ASeg.start)
741         return true;
742       if (BI->start > ASeg.start && BI->start < ASeg.end)
743         return true;
744     }
745   }
746   return false;
747 }
748 
749 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
750 /// range @Dst and use value number @p DstValNo there.
751 static std::pair<bool,bool>
752 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
753                      const VNInfo *SrcValNo) {
754   bool Changed = false;
755   bool MergedWithDead = false;
756   for (const LiveRange::Segment &S : Src.segments) {
757     if (S.valno != SrcValNo)
758       continue;
759     // This is adding a segment from Src that ends in a copy that is about
760     // to be removed. This segment is going to be merged with a pre-existing
761     // segment in Dst. This works, except in cases when the corresponding
762     // segment in Dst is dead. For example: adding [192r,208r:1) from Src
763     // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
764     // Recognized such cases, so that the segments can be shrunk.
765     LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
766     LiveRange::Segment &Merged = *Dst.addSegment(Added);
767     if (Merged.end.isDead())
768       MergedWithDead = true;
769     Changed = true;
770   }
771   return std::make_pair(Changed, MergedWithDead);
772 }
773 
774 std::pair<bool,bool>
775 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
776                                             MachineInstr *CopyMI) {
777   assert(!CP.isPhys());
778 
779   LiveInterval &IntA =
780       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
781   LiveInterval &IntB =
782       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
783 
784   // We found a non-trivially-coalescable copy with IntA being the source and
785   // IntB being the dest, thus this defines a value number in IntB.  If the
786   // source value number (in IntA) is defined by a commutable instruction and
787   // its other operand is coalesced to the copy dest register, see if we can
788   // transform the copy into a noop by commuting the definition. For example,
789   //
790   //  A3 = op A2 killed B0
791   //    ...
792   //  B1 = A3      <- this copy
793   //    ...
794   //     = op A3   <- more uses
795   //
796   // ==>
797   //
798   //  B2 = op B0 killed A2
799   //    ...
800   //  B1 = B2      <- now an identity copy
801   //    ...
802   //     = op B2   <- more uses
803 
804   // BValNo is a value number in B that is defined by a copy from A. 'B1' in
805   // the example above.
806   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
807   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
808   assert(BValNo != nullptr && BValNo->def == CopyIdx);
809 
810   // AValNo is the value number in A that defines the copy, A3 in the example.
811   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
812   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
813   if (AValNo->isPHIDef())
814     return { false, false };
815   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
816   if (!DefMI)
817     return { false, false };
818   if (!DefMI->isCommutable())
819     return { false, false };
820   // If DefMI is a two-address instruction then commuting it will change the
821   // destination register.
822   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg());
823   assert(DefIdx != -1);
824   unsigned UseOpIdx;
825   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
826     return { false, false };
827 
828   // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
829   // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
830   // passed to the method. That _other_ operand is chosen by
831   // the findCommutedOpIndices() method.
832   //
833   // That is obviously an area for improvement in case of instructions having
834   // more than 2 operands. For example, if some instruction has 3 commutable
835   // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
836   // op#2<->op#3) of commute transformation should be considered/tried here.
837   unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
838   if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
839     return { false, false };
840 
841   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
842   Register NewReg = NewDstMO.getReg();
843   if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill())
844     return { false, false };
845 
846   // Make sure there are no other definitions of IntB that would reach the
847   // uses which the new definition can reach.
848   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
849     return { false, false };
850 
851   // If some of the uses of IntA.reg is already coalesced away, return false.
852   // It's not possible to determine whether it's safe to perform the coalescing.
853   for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) {
854     MachineInstr *UseMI = MO.getParent();
855     unsigned OpNo = &MO - &UseMI->getOperand(0);
856     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
857     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
858     if (US == IntA.end() || US->valno != AValNo)
859       continue;
860     // If this use is tied to a def, we can't rewrite the register.
861     if (UseMI->isRegTiedToDefOperand(OpNo))
862       return { false, false };
863   }
864 
865   LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
866                     << *DefMI);
867 
868   // At this point we have decided that it is legal to do this
869   // transformation.  Start by commuting the instruction.
870   MachineBasicBlock *MBB = DefMI->getParent();
871   MachineInstr *NewMI =
872       TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
873   if (!NewMI)
874     return { false, false };
875   if (Register::isVirtualRegister(IntA.reg()) &&
876       Register::isVirtualRegister(IntB.reg()) &&
877       !MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg())))
878     return { false, false };
879   if (NewMI != DefMI) {
880     LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
881     MachineBasicBlock::iterator Pos = DefMI;
882     MBB->insert(Pos, NewMI);
883     MBB->erase(DefMI);
884   }
885 
886   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
887   // A = or A, B
888   // ...
889   // B = A
890   // ...
891   // C = killed A
892   // ...
893   //   = B
894 
895   // Update uses of IntA of the specific Val# with IntB.
896   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg()),
897                                          UE = MRI->use_end();
898        UI != UE;
899        /* ++UI is below because of possible MI removal */) {
900     MachineOperand &UseMO = *UI;
901     ++UI;
902     if (UseMO.isUndef())
903       continue;
904     MachineInstr *UseMI = UseMO.getParent();
905     if (UseMI->isDebugValue()) {
906       // FIXME These don't have an instruction index.  Not clear we have enough
907       // info to decide whether to do this replacement or not.  For now do it.
908       UseMO.setReg(NewReg);
909       continue;
910     }
911     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
912     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
913     assert(US != IntA.end() && "Use must be live");
914     if (US->valno != AValNo)
915       continue;
916     // Kill flags are no longer accurate. They are recomputed after RA.
917     UseMO.setIsKill(false);
918     if (Register::isPhysicalRegister(NewReg))
919       UseMO.substPhysReg(NewReg, *TRI);
920     else
921       UseMO.setReg(NewReg);
922     if (UseMI == CopyMI)
923       continue;
924     if (!UseMI->isCopy())
925       continue;
926     if (UseMI->getOperand(0).getReg() != IntB.reg() ||
927         UseMI->getOperand(0).getSubReg())
928       continue;
929 
930     // This copy will become a noop. If it's defining a new val#, merge it into
931     // BValNo.
932     SlotIndex DefIdx = UseIdx.getRegSlot();
933     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
934     if (!DVNI)
935       continue;
936     LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
937     assert(DVNI->def == DefIdx);
938     BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
939     for (LiveInterval::SubRange &S : IntB.subranges()) {
940       VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
941       if (!SubDVNI)
942         continue;
943       VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
944       assert(SubBValNo->def == CopyIdx);
945       S.MergeValueNumberInto(SubDVNI, SubBValNo);
946     }
947 
948     deleteInstr(UseMI);
949   }
950 
951   // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
952   // is updated.
953   bool ShrinkB = false;
954   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
955   if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
956     if (!IntA.hasSubRanges()) {
957       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg());
958       IntA.createSubRangeFrom(Allocator, Mask, IntA);
959     } else if (!IntB.hasSubRanges()) {
960       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg());
961       IntB.createSubRangeFrom(Allocator, Mask, IntB);
962     }
963     SlotIndex AIdx = CopyIdx.getRegSlot(true);
964     LaneBitmask MaskA;
965     const SlotIndexes &Indexes = *LIS->getSlotIndexes();
966     for (LiveInterval::SubRange &SA : IntA.subranges()) {
967       VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
968       // Even if we are dealing with a full copy, some lanes can
969       // still be undefined.
970       // E.g.,
971       // undef A.subLow = ...
972       // B = COPY A <== A.subHigh is undefined here and does
973       //                not have a value number.
974       if (!ASubValNo)
975         continue;
976       MaskA |= SA.LaneMask;
977 
978       IntB.refineSubRanges(
979           Allocator, SA.LaneMask,
980           [&Allocator, &SA, CopyIdx, ASubValNo,
981            &ShrinkB](LiveInterval::SubRange &SR) {
982             VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
983                                            : SR.getVNInfoAt(CopyIdx);
984             assert(BSubValNo != nullptr);
985             auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
986             ShrinkB |= P.second;
987             if (P.first)
988               BSubValNo->def = ASubValNo->def;
989           },
990           Indexes, *TRI);
991     }
992     // Go over all subranges of IntB that have not been covered by IntA,
993     // and delete the segments starting at CopyIdx. This can happen if
994     // IntA has undef lanes that are defined in IntB.
995     for (LiveInterval::SubRange &SB : IntB.subranges()) {
996       if ((SB.LaneMask & MaskA).any())
997         continue;
998       if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
999         if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
1000           SB.removeSegment(*S, true);
1001     }
1002   }
1003 
1004   BValNo->def = AValNo->def;
1005   auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
1006   ShrinkB |= P.second;
1007   LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
1008 
1009   LIS->removeVRegDefAt(IntA, AValNo->def);
1010 
1011   LLVM_DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
1012   ++numCommutes;
1013   return { true, ShrinkB };
1014 }
1015 
1016 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1017 /// predecessor of BB2, and if B is not redefined on the way from A = B
1018 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1019 /// execution goes through the path from BB0 to BB2. We may move B = A
1020 /// to the predecessor without such reversed copy.
1021 /// So we will transform the program from:
1022 ///   BB0:
1023 ///      A = B;    BB1:
1024 ///       ...         ...
1025 ///     /     \      /
1026 ///             BB2:
1027 ///               ...
1028 ///               B = A;
1029 ///
1030 /// to:
1031 ///
1032 ///   BB0:         BB1:
1033 ///      A = B;        ...
1034 ///       ...          B = A;
1035 ///     /     \       /
1036 ///             BB2:
1037 ///               ...
1038 ///
1039 /// A special case is when BB0 and BB2 are the same BB which is the only
1040 /// BB in a loop:
1041 ///   BB1:
1042 ///        ...
1043 ///   BB0/BB2:  ----
1044 ///        B = A;   |
1045 ///        ...      |
1046 ///        A = B;   |
1047 ///          |-------
1048 ///          |
1049 /// We may hoist B = A from BB0/BB2 to BB1.
1050 ///
1051 /// The major preconditions for correctness to remove such partial
1052 /// redundancy include:
1053 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1054 ///    the PHI is defined by the reversed copy A = B in BB0.
1055 /// 2. No B is referenced from the start of BB2 to B = A.
1056 /// 3. No B is defined from A = B to the end of BB0.
1057 /// 4. BB1 has only one successor.
1058 ///
1059 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1060 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1061 /// colder place, which not only prevent endless loop, but also make sure
1062 /// the movement of copy is beneficial.
1063 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1064                                                 MachineInstr &CopyMI) {
1065   assert(!CP.isPhys());
1066   if (!CopyMI.isFullCopy())
1067     return false;
1068 
1069   MachineBasicBlock &MBB = *CopyMI.getParent();
1070   // If this block is the target of an invoke/inlineasm_br, moving the copy into
1071   // the predecessor is tricker, and we don't handle it.
1072   if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget())
1073     return false;
1074 
1075   if (MBB.pred_size() != 2)
1076     return false;
1077 
1078   LiveInterval &IntA =
1079       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1080   LiveInterval &IntB =
1081       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1082 
1083   // A is defined by PHI at the entry of MBB.
1084   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1085   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1086   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1087   if (!AValNo->isPHIDef())
1088     return false;
1089 
1090   // No B is referenced before CopyMI in MBB.
1091   if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1092     return false;
1093 
1094   // MBB has two predecessors: one contains A = B so no copy will be inserted
1095   // for it. The other one will have a copy moved from MBB.
1096   bool FoundReverseCopy = false;
1097   MachineBasicBlock *CopyLeftBB = nullptr;
1098   for (MachineBasicBlock *Pred : MBB.predecessors()) {
1099     VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1100     MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1101     if (!DefMI || !DefMI->isFullCopy()) {
1102       CopyLeftBB = Pred;
1103       continue;
1104     }
1105     // Check DefMI is a reverse copy and it is in BB Pred.
1106     if (DefMI->getOperand(0).getReg() != IntA.reg() ||
1107         DefMI->getOperand(1).getReg() != IntB.reg() ||
1108         DefMI->getParent() != Pred) {
1109       CopyLeftBB = Pred;
1110       continue;
1111     }
1112     // If there is any other def of B after DefMI and before the end of Pred,
1113     // we need to keep the copy of B = A at the end of Pred if we remove
1114     // B = A from MBB.
1115     bool ValB_Changed = false;
1116     for (auto VNI : IntB.valnos) {
1117       if (VNI->isUnused())
1118         continue;
1119       if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1120         ValB_Changed = true;
1121         break;
1122       }
1123     }
1124     if (ValB_Changed) {
1125       CopyLeftBB = Pred;
1126       continue;
1127     }
1128     FoundReverseCopy = true;
1129   }
1130 
1131   // If no reverse copy is found in predecessors, nothing to do.
1132   if (!FoundReverseCopy)
1133     return false;
1134 
1135   // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1136   // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1137   // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1138   // update IntA/IntB.
1139   //
1140   // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1141   // MBB is hotter than CopyLeftBB.
1142   if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1143     return false;
1144 
1145   // Now (almost sure it's) ok to move copy.
1146   if (CopyLeftBB) {
1147     // Position in CopyLeftBB where we should insert new copy.
1148     auto InsPos = CopyLeftBB->getFirstTerminator();
1149 
1150     // Make sure that B isn't referenced in the terminators (if any) at the end
1151     // of the predecessor since we're about to insert a new definition of B
1152     // before them.
1153     if (InsPos != CopyLeftBB->end()) {
1154       SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1155       if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1156         return false;
1157     }
1158 
1159     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1160                       << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1161 
1162     // Insert new copy to CopyLeftBB.
1163     MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1164                                       TII->get(TargetOpcode::COPY), IntB.reg())
1165                                   .addReg(IntA.reg());
1166     SlotIndex NewCopyIdx =
1167         LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1168     IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1169     for (LiveInterval::SubRange &SR : IntB.subranges())
1170       SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1171 
1172     // If the newly created Instruction has an address of an instruction that was
1173     // deleted before (object recycled by the allocator) it needs to be removed from
1174     // the deleted list.
1175     ErasedInstrs.erase(NewCopyMI);
1176   } else {
1177     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1178                       << printMBBReference(MBB) << '\t' << CopyMI);
1179   }
1180 
1181   // Remove CopyMI.
1182   // Note: This is fine to remove the copy before updating the live-ranges.
1183   // While updating the live-ranges, we only look at slot indices and
1184   // never go back to the instruction.
1185   // Mark instructions as deleted.
1186   deleteInstr(&CopyMI);
1187 
1188   // Update the liveness.
1189   SmallVector<SlotIndex, 8> EndPoints;
1190   VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1191   LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1192                   &EndPoints);
1193   BValNo->markUnused();
1194   // Extend IntB to the EndPoints of its original live interval.
1195   LIS->extendToIndices(IntB, EndPoints);
1196 
1197   // Now, do the same for its subranges.
1198   for (LiveInterval::SubRange &SR : IntB.subranges()) {
1199     EndPoints.clear();
1200     VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1201     assert(BValNo && "All sublanes should be live");
1202     LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1203     BValNo->markUnused();
1204     // We can have a situation where the result of the original copy is live,
1205     // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1206     // the copy appear as an endpoint from pruneValue(), but we don't want it
1207     // to because the copy has been removed.  We can go ahead and remove that
1208     // endpoint; there is no other situation here that there could be a use at
1209     // the same place as we know that the copy is a full copy.
1210     for (unsigned I = 0; I != EndPoints.size(); ) {
1211       if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1212         EndPoints[I] = EndPoints.back();
1213         EndPoints.pop_back();
1214         continue;
1215       }
1216       ++I;
1217     }
1218     SmallVector<SlotIndex, 8> Undefs;
1219     IntB.computeSubRangeUndefs(Undefs, SR.LaneMask, *MRI,
1220                                *LIS->getSlotIndexes());
1221     LIS->extendToIndices(SR, EndPoints, Undefs);
1222   }
1223   // If any dead defs were extended, truncate them.
1224   shrinkToUses(&IntB);
1225 
1226   // Finally, update the live-range of IntA.
1227   shrinkToUses(&IntA);
1228   return true;
1229 }
1230 
1231 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1232 /// defining a subregister.
1233 static bool definesFullReg(const MachineInstr &MI, Register Reg) {
1234   assert(!Reg.isPhysical() && "This code cannot handle physreg aliasing");
1235 
1236   for (const MachineOperand &Op : MI.operands()) {
1237     if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1238       continue;
1239     // Return true if we define the full register or don't care about the value
1240     // inside other subregisters.
1241     if (Op.getSubReg() == 0 || Op.isUndef())
1242       return true;
1243   }
1244   return false;
1245 }
1246 
1247 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1248                                                 MachineInstr *CopyMI,
1249                                                 bool &IsDefCopy) {
1250   IsDefCopy = false;
1251   Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1252   unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1253   Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1254   unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1255   if (Register::isPhysicalRegister(SrcReg))
1256     return false;
1257 
1258   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1259   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1260   VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1261   if (!ValNo)
1262     return false;
1263   if (ValNo->isPHIDef() || ValNo->isUnused())
1264     return false;
1265   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1266   if (!DefMI)
1267     return false;
1268   if (DefMI->isCopyLike()) {
1269     IsDefCopy = true;
1270     return false;
1271   }
1272   if (!TII->isAsCheapAsAMove(*DefMI))
1273     return false;
1274   if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1275     return false;
1276   if (!definesFullReg(*DefMI, SrcReg))
1277     return false;
1278   bool SawStore = false;
1279   if (!DefMI->isSafeToMove(AA, SawStore))
1280     return false;
1281   const MCInstrDesc &MCID = DefMI->getDesc();
1282   if (MCID.getNumDefs() != 1)
1283     return false;
1284   // Only support subregister destinations when the def is read-undef.
1285   MachineOperand &DstOperand = CopyMI->getOperand(0);
1286   Register CopyDstReg = DstOperand.getReg();
1287   if (DstOperand.getSubReg() && !DstOperand.isUndef())
1288     return false;
1289 
1290   // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1291   // the register substantially (beyond both source and dest size). This is bad
1292   // for performance since it can cascade through a function, introducing many
1293   // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1294   // around after a few subreg copies).
1295   if (SrcIdx && DstIdx)
1296     return false;
1297 
1298   const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1299   if (!DefMI->isImplicitDef()) {
1300     if (DstReg.isPhysical()) {
1301       Register NewDstReg = DstReg;
1302 
1303       unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1304                                               DefMI->getOperand(0).getSubReg());
1305       if (NewDstIdx)
1306         NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1307 
1308       // Finally, make sure that the physical subregister that will be
1309       // constructed later is permitted for the instruction.
1310       if (!DefRC->contains(NewDstReg))
1311         return false;
1312     } else {
1313       // Theoretically, some stack frame reference could exist. Just make sure
1314       // it hasn't actually happened.
1315       assert(Register::isVirtualRegister(DstReg) &&
1316              "Only expect to deal with virtual or physical registers");
1317     }
1318   }
1319 
1320   DebugLoc DL = CopyMI->getDebugLoc();
1321   MachineBasicBlock *MBB = CopyMI->getParent();
1322   MachineBasicBlock::iterator MII =
1323     std::next(MachineBasicBlock::iterator(CopyMI));
1324   TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1325   MachineInstr &NewMI = *std::prev(MII);
1326   NewMI.setDebugLoc(DL);
1327 
1328   // In a situation like the following:
1329   //     %0:subreg = instr              ; DefMI, subreg = DstIdx
1330   //     %1        = copy %0:subreg ; CopyMI, SrcIdx = 0
1331   // instead of widening %1 to the register class of %0 simply do:
1332   //     %1 = instr
1333   const TargetRegisterClass *NewRC = CP.getNewRC();
1334   if (DstIdx != 0) {
1335     MachineOperand &DefMO = NewMI.getOperand(0);
1336     if (DefMO.getSubReg() == DstIdx) {
1337       assert(SrcIdx == 0 && CP.isFlipped()
1338              && "Shouldn't have SrcIdx+DstIdx at this point");
1339       const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1340       const TargetRegisterClass *CommonRC =
1341         TRI->getCommonSubClass(DefRC, DstRC);
1342       if (CommonRC != nullptr) {
1343         NewRC = CommonRC;
1344         DstIdx = 0;
1345         DefMO.setSubReg(0);
1346         DefMO.setIsUndef(false); // Only subregs can have def+undef.
1347       }
1348     }
1349   }
1350 
1351   // CopyMI may have implicit operands, save them so that we can transfer them
1352   // over to the newly materialized instruction after CopyMI is removed.
1353   SmallVector<MachineOperand, 4> ImplicitOps;
1354   ImplicitOps.reserve(CopyMI->getNumOperands() -
1355                       CopyMI->getDesc().getNumOperands());
1356   for (unsigned I = CopyMI->getDesc().getNumOperands(),
1357                 E = CopyMI->getNumOperands();
1358        I != E; ++I) {
1359     MachineOperand &MO = CopyMI->getOperand(I);
1360     if (MO.isReg()) {
1361       assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1362       // Discard VReg implicit defs.
1363       if (Register::isPhysicalRegister(MO.getReg()))
1364         ImplicitOps.push_back(MO);
1365     }
1366   }
1367 
1368   LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1369   CopyMI->eraseFromParent();
1370   ErasedInstrs.insert(CopyMI);
1371 
1372   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1373   // We need to remember these so we can add intervals once we insert
1374   // NewMI into SlotIndexes.
1375   SmallVector<MCRegister, 4> NewMIImplDefs;
1376   for (unsigned i = NewMI.getDesc().getNumOperands(),
1377                 e = NewMI.getNumOperands();
1378        i != e; ++i) {
1379     MachineOperand &MO = NewMI.getOperand(i);
1380     if (MO.isReg() && MO.isDef()) {
1381       assert(MO.isImplicit() && MO.isDead() &&
1382              Register::isPhysicalRegister(MO.getReg()));
1383       NewMIImplDefs.push_back(MO.getReg().asMCReg());
1384     }
1385   }
1386 
1387   if (DstReg.isVirtual()) {
1388     unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1389 
1390     if (DefRC != nullptr) {
1391       if (NewIdx)
1392         NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1393       else
1394         NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1395       assert(NewRC && "subreg chosen for remat incompatible with instruction");
1396     }
1397     // Remap subranges to new lanemask and change register class.
1398     LiveInterval &DstInt = LIS->getInterval(DstReg);
1399     for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1400       SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1401     }
1402     MRI->setRegClass(DstReg, NewRC);
1403 
1404     // Update machine operands and add flags.
1405     updateRegDefsUses(DstReg, DstReg, DstIdx);
1406     NewMI.getOperand(0).setSubReg(NewIdx);
1407     // updateRegDefUses can add an "undef" flag to the definition, since
1408     // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1409     // sure that "undef" is not set.
1410     if (NewIdx == 0)
1411       NewMI.getOperand(0).setIsUndef(false);
1412     // Add dead subregister definitions if we are defining the whole register
1413     // but only part of it is live.
1414     // This could happen if the rematerialization instruction is rematerializing
1415     // more than actually is used in the register.
1416     // An example would be:
1417     // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1418     // ; Copying only part of the register here, but the rest is undef.
1419     // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1420     // ==>
1421     // ; Materialize all the constants but only using one
1422     // %2 = LOAD_CONSTANTS 5, 8
1423     //
1424     // at this point for the part that wasn't defined before we could have
1425     // subranges missing the definition.
1426     if (NewIdx == 0 && DstInt.hasSubRanges()) {
1427       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1428       SlotIndex DefIndex =
1429           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1430       LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1431       VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1432       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1433         if (!SR.liveAt(DefIndex))
1434           SR.createDeadDef(DefIndex, Alloc);
1435         MaxMask &= ~SR.LaneMask;
1436       }
1437       if (MaxMask.any()) {
1438         LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1439         SR->createDeadDef(DefIndex, Alloc);
1440       }
1441     }
1442 
1443     // Make sure that the subrange for resultant undef is removed
1444     // For example:
1445     //   %1:sub1<def,read-undef> = LOAD CONSTANT 1
1446     //   %2 = COPY %1
1447     // ==>
1448     //   %2:sub1<def, read-undef> = LOAD CONSTANT 1
1449     //     ; Correct but need to remove the subrange for %2:sub0
1450     //     ; as it is now undef
1451     if (NewIdx != 0 && DstInt.hasSubRanges()) {
1452       // The affected subregister segments can be removed.
1453       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1454       LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1455       bool UpdatedSubRanges = false;
1456       SlotIndex DefIndex =
1457           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1458       VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator();
1459       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1460         if ((SR.LaneMask & DstMask).none()) {
1461           LLVM_DEBUG(dbgs()
1462                      << "Removing undefined SubRange "
1463                      << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1464           // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1465           if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1466             SR.removeValNo(RmValNo);
1467             UpdatedSubRanges = true;
1468           }
1469         } else {
1470           // We know that this lane is defined by this instruction,
1471           // but at this point it may be empty because it is not used by
1472           // anything. This happens when updateRegDefUses adds the missing
1473           // lanes. Assign that lane a dead def so that the interferences
1474           // are properly modeled.
1475           if (SR.empty())
1476             SR.createDeadDef(DefIndex, Alloc);
1477         }
1478       }
1479       if (UpdatedSubRanges)
1480         DstInt.removeEmptySubRanges();
1481     }
1482   } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1483     // The New instruction may be defining a sub-register of what's actually
1484     // been asked for. If so it must implicitly define the whole thing.
1485     assert(Register::isPhysicalRegister(DstReg) &&
1486            "Only expect virtual or physical registers in remat");
1487     NewMI.getOperand(0).setIsDead(true);
1488     NewMI.addOperand(MachineOperand::CreateReg(
1489         CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1490     // Record small dead def live-ranges for all the subregisters
1491     // of the destination register.
1492     // Otherwise, variables that live through may miss some
1493     // interferences, thus creating invalid allocation.
1494     // E.g., i386 code:
1495     // %1 = somedef ; %1 GR8
1496     // %2 = remat ; %2 GR32
1497     // CL = COPY %2.sub_8bit
1498     // = somedef %1 ; %1 GR8
1499     // =>
1500     // %1 = somedef ; %1 GR8
1501     // dead ECX = remat ; implicit-def CL
1502     // = somedef %1 ; %1 GR8
1503     // %1 will see the interferences with CL but not with CH since
1504     // no live-ranges would have been created for ECX.
1505     // Fix that!
1506     SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1507     for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1508          Units.isValid(); ++Units)
1509       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1510         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1511   }
1512 
1513   if (NewMI.getOperand(0).getSubReg())
1514     NewMI.getOperand(0).setIsUndef();
1515 
1516   // Transfer over implicit operands to the rematerialized instruction.
1517   for (MachineOperand &MO : ImplicitOps)
1518     NewMI.addOperand(MO);
1519 
1520   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1521   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1522     MCRegister Reg = NewMIImplDefs[i];
1523     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1524       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1525         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1526   }
1527 
1528   LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1529   ++NumReMats;
1530 
1531   // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1532   // to describe DstReg instead.
1533   if (MRI->use_nodbg_empty(SrcReg)) {
1534     for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1535       MachineInstr *UseMI = UseMO.getParent();
1536       if (UseMI->isDebugValue()) {
1537         if (Register::isPhysicalRegister(DstReg))
1538           UseMO.substPhysReg(DstReg, *TRI);
1539         else
1540           UseMO.setReg(DstReg);
1541         // Move the debug value directly after the def of the rematerialized
1542         // value in DstReg.
1543         MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1544         LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1545       }
1546     }
1547   }
1548 
1549   if (ToBeUpdated.count(SrcReg))
1550     return true;
1551 
1552   unsigned NumCopyUses = 0;
1553   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1554     if (UseMO.getParent()->isCopyLike())
1555       NumCopyUses++;
1556   }
1557   if (NumCopyUses < LateRematUpdateThreshold) {
1558     // The source interval can become smaller because we removed a use.
1559     shrinkToUses(&SrcInt, &DeadDefs);
1560     if (!DeadDefs.empty())
1561       eliminateDeadDefs();
1562   } else {
1563     ToBeUpdated.insert(SrcReg);
1564   }
1565   return true;
1566 }
1567 
1568 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1569   // ProcessImplicitDefs may leave some copies of <undef> values, it only
1570   // removes local variables. When we have a copy like:
1571   //
1572   //   %1 = COPY undef %2
1573   //
1574   // We delete the copy and remove the corresponding value number from %1.
1575   // Any uses of that value number are marked as <undef>.
1576 
1577   // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1578   // CoalescerPair may have a new register class with adjusted subreg indices
1579   // at this point.
1580   Register SrcReg, DstReg;
1581   unsigned SrcSubIdx, DstSubIdx;
1582   if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
1583     return nullptr;
1584 
1585   SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1586   const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1587   // CopyMI is undef iff SrcReg is not live before the instruction.
1588   if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1589     LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1590     for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1591       if ((SR.LaneMask & SrcMask).none())
1592         continue;
1593       if (SR.liveAt(Idx))
1594         return nullptr;
1595     }
1596   } else if (SrcLI.liveAt(Idx))
1597     return nullptr;
1598 
1599   // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1600   // then replace it with an IMPLICIT_DEF.
1601   LiveInterval &DstLI = LIS->getInterval(DstReg);
1602   SlotIndex RegIndex = Idx.getRegSlot();
1603   LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1604   assert(Seg != nullptr && "No segment for defining instruction");
1605   if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1606     if (V->isPHIDef()) {
1607       CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1608       for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1609         MachineOperand &MO = CopyMI->getOperand(i-1);
1610         if (MO.isReg() && MO.isUse())
1611           CopyMI->RemoveOperand(i-1);
1612       }
1613       LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1614                            "implicit def\n");
1615       return CopyMI;
1616     }
1617   }
1618 
1619   // Remove any DstReg segments starting at the instruction.
1620   LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1621 
1622   // Remove value or merge with previous one in case of a subregister def.
1623   if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1624     VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1625     DstLI.MergeValueNumberInto(VNI, PrevVNI);
1626 
1627     // The affected subregister segments can be removed.
1628     LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1629     for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1630       if ((SR.LaneMask & DstMask).none())
1631         continue;
1632 
1633       VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1634       assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1635       SR.removeValNo(SVNI);
1636     }
1637     DstLI.removeEmptySubRanges();
1638   } else
1639     LIS->removeVRegDefAt(DstLI, RegIndex);
1640 
1641   // Mark uses as undef.
1642   for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1643     if (MO.isDef() /*|| MO.isUndef()*/)
1644       continue;
1645     const MachineInstr &MI = *MO.getParent();
1646     SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1647     LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1648     bool isLive;
1649     if (!UseMask.all() && DstLI.hasSubRanges()) {
1650       isLive = false;
1651       for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1652         if ((SR.LaneMask & UseMask).none())
1653           continue;
1654         if (SR.liveAt(UseIdx)) {
1655           isLive = true;
1656           break;
1657         }
1658       }
1659     } else
1660       isLive = DstLI.liveAt(UseIdx);
1661     if (isLive)
1662       continue;
1663     MO.setIsUndef(true);
1664     LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1665   }
1666 
1667   // A def of a subregister may be a use of the other subregisters, so
1668   // deleting a def of a subregister may also remove uses. Since CopyMI
1669   // is still part of the function (but about to be erased), mark all
1670   // defs of DstReg in it as <undef>, so that shrinkToUses would
1671   // ignore them.
1672   for (MachineOperand &MO : CopyMI->operands())
1673     if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1674       MO.setIsUndef(true);
1675   LIS->shrinkToUses(&DstLI);
1676 
1677   return CopyMI;
1678 }
1679 
1680 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1681                                      MachineOperand &MO, unsigned SubRegIdx) {
1682   LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1683   if (MO.isDef())
1684     Mask = ~Mask;
1685   bool IsUndef = true;
1686   for (const LiveInterval::SubRange &S : Int.subranges()) {
1687     if ((S.LaneMask & Mask).none())
1688       continue;
1689     if (S.liveAt(UseIdx)) {
1690       IsUndef = false;
1691       break;
1692     }
1693   }
1694   if (IsUndef) {
1695     MO.setIsUndef(true);
1696     // We found out some subregister use is actually reading an undefined
1697     // value. In some cases the whole vreg has become undefined at this
1698     // point so we have to potentially shrink the main range if the
1699     // use was ending a live segment there.
1700     LiveQueryResult Q = Int.Query(UseIdx);
1701     if (Q.valueOut() == nullptr)
1702       ShrinkMainRange = true;
1703   }
1704 }
1705 
1706 void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg,
1707                                           unsigned SubIdx) {
1708   bool DstIsPhys = Register::isPhysicalRegister(DstReg);
1709   LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1710 
1711   if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1712     for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1713       unsigned SubReg = MO.getSubReg();
1714       if (SubReg == 0 || MO.isUndef())
1715         continue;
1716       MachineInstr &MI = *MO.getParent();
1717       if (MI.isDebugValue())
1718         continue;
1719       SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1720       addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1721     }
1722   }
1723 
1724   SmallPtrSet<MachineInstr*, 8> Visited;
1725   for (MachineRegisterInfo::reg_instr_iterator
1726        I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1727        I != E; ) {
1728     MachineInstr *UseMI = &*(I++);
1729 
1730     // Each instruction can only be rewritten once because sub-register
1731     // composition is not always idempotent. When SrcReg != DstReg, rewriting
1732     // the UseMI operands removes them from the SrcReg use-def chain, but when
1733     // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1734     // operands mentioning the virtual register.
1735     if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1736       continue;
1737 
1738     SmallVector<unsigned,8> Ops;
1739     bool Reads, Writes;
1740     std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1741 
1742     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1743     // because SrcReg is a sub-register.
1744     if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
1745       Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1746 
1747     // Replace SrcReg with DstReg in all UseMI operands.
1748     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1749       MachineOperand &MO = UseMI->getOperand(Ops[i]);
1750 
1751       // Adjust <undef> flags in case of sub-register joins. We don't want to
1752       // turn a full def into a read-modify-write sub-register def and vice
1753       // versa.
1754       if (SubIdx && MO.isDef())
1755         MO.setIsUndef(!Reads);
1756 
1757       // A subreg use of a partially undef (super) register may be a complete
1758       // undef use now and then has to be marked that way.
1759       if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1760         if (!DstInt->hasSubRanges()) {
1761           BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1762           LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg());
1763           LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1764           LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
1765           DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt);
1766           // The unused lanes are just empty live-ranges at this point.
1767           // It is the caller responsibility to set the proper
1768           // dead segments if there is an actual dead def of the
1769           // unused lanes. This may happen with rematerialization.
1770           DstInt->createSubRange(Allocator, UnusedLanes);
1771         }
1772         SlotIndex MIIdx = UseMI->isDebugValue()
1773                               ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1774                               : LIS->getInstructionIndex(*UseMI);
1775         SlotIndex UseIdx = MIIdx.getRegSlot(true);
1776         addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
1777       }
1778 
1779       if (DstIsPhys)
1780         MO.substPhysReg(DstReg, *TRI);
1781       else
1782         MO.substVirtReg(DstReg, SubIdx, *TRI);
1783     }
1784 
1785     LLVM_DEBUG({
1786       dbgs() << "\t\tupdated: ";
1787       if (!UseMI->isDebugValue())
1788         dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1789       dbgs() << *UseMI;
1790     });
1791   }
1792 }
1793 
1794 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1795   // Always join simple intervals that are defined by a single copy from a
1796   // reserved register. This doesn't increase register pressure, so it is
1797   // always beneficial.
1798   if (!MRI->isReserved(CP.getDstReg())) {
1799     LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1800     return false;
1801   }
1802 
1803   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1804   if (JoinVInt.containsOneValue())
1805     return true;
1806 
1807   LLVM_DEBUG(
1808       dbgs() << "\tCannot join complex intervals into reserved register.\n");
1809   return false;
1810 }
1811 
1812 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1813   Again = false;
1814   LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1815 
1816   CoalescerPair CP(*TRI);
1817   if (!CP.setRegisters(CopyMI)) {
1818     LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1819     return false;
1820   }
1821 
1822   if (CP.getNewRC()) {
1823     auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1824     auto DstRC = MRI->getRegClass(CP.getDstReg());
1825     unsigned SrcIdx = CP.getSrcIdx();
1826     unsigned DstIdx = CP.getDstIdx();
1827     if (CP.isFlipped()) {
1828       std::swap(SrcIdx, DstIdx);
1829       std::swap(SrcRC, DstRC);
1830     }
1831     if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1832                              CP.getNewRC(), *LIS)) {
1833       LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1834       return false;
1835     }
1836   }
1837 
1838   // Dead code elimination. This really should be handled by MachineDCE, but
1839   // sometimes dead copies slip through, and we can't generate invalid live
1840   // ranges.
1841   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1842     LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1843     DeadDefs.push_back(CopyMI);
1844     eliminateDeadDefs();
1845     return true;
1846   }
1847 
1848   // Eliminate undefs.
1849   if (!CP.isPhys()) {
1850     // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1851     if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1852       if (UndefMI->isImplicitDef())
1853         return false;
1854       deleteInstr(CopyMI);
1855       return false;  // Not coalescable.
1856     }
1857   }
1858 
1859   // Coalesced copies are normally removed immediately, but transformations
1860   // like removeCopyByCommutingDef() can inadvertently create identity copies.
1861   // When that happens, just join the values and remove the copy.
1862   if (CP.getSrcReg() == CP.getDstReg()) {
1863     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1864     LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1865     const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1866     LiveQueryResult LRQ = LI.Query(CopyIdx);
1867     if (VNInfo *DefVNI = LRQ.valueDefined()) {
1868       VNInfo *ReadVNI = LRQ.valueIn();
1869       assert(ReadVNI && "No value before copy and no <undef> flag.");
1870       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1871       LI.MergeValueNumberInto(DefVNI, ReadVNI);
1872 
1873       // Process subregister liveranges.
1874       for (LiveInterval::SubRange &S : LI.subranges()) {
1875         LiveQueryResult SLRQ = S.Query(CopyIdx);
1876         if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1877           VNInfo *SReadVNI = SLRQ.valueIn();
1878           S.MergeValueNumberInto(SDefVNI, SReadVNI);
1879         }
1880       }
1881       LLVM_DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1882     }
1883     deleteInstr(CopyMI);
1884     return true;
1885   }
1886 
1887   // Enforce policies.
1888   if (CP.isPhys()) {
1889     LLVM_DEBUG(dbgs() << "\tConsidering merging "
1890                       << printReg(CP.getSrcReg(), TRI) << " with "
1891                       << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1892     if (!canJoinPhys(CP)) {
1893       // Before giving up coalescing, if definition of source is defined by
1894       // trivial computation, try rematerializing it.
1895       bool IsDefCopy;
1896       if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1897         return true;
1898       if (IsDefCopy)
1899         Again = true;  // May be possible to coalesce later.
1900       return false;
1901     }
1902   } else {
1903     // When possible, let DstReg be the larger interval.
1904     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1905                            LIS->getInterval(CP.getDstReg()).size())
1906       CP.flip();
1907 
1908     LLVM_DEBUG({
1909       dbgs() << "\tConsidering merging to "
1910              << TRI->getRegClassName(CP.getNewRC()) << " with ";
1911       if (CP.getDstIdx() && CP.getSrcIdx())
1912         dbgs() << printReg(CP.getDstReg()) << " in "
1913                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1914                << printReg(CP.getSrcReg()) << " in "
1915                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1916       else
1917         dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
1918                << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1919     });
1920   }
1921 
1922   ShrinkMask = LaneBitmask::getNone();
1923   ShrinkMainRange = false;
1924 
1925   // Okay, attempt to join these two intervals.  On failure, this returns false.
1926   // Otherwise, if one of the intervals being joined is a physreg, this method
1927   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1928   // been modified, so we can use this information below to update aliases.
1929   if (!joinIntervals(CP)) {
1930     // Coalescing failed.
1931 
1932     // If definition of source is defined by trivial computation, try
1933     // rematerializing it.
1934     bool IsDefCopy;
1935     if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1936       return true;
1937 
1938     // If we can eliminate the copy without merging the live segments, do so
1939     // now.
1940     if (!CP.isPartial() && !CP.isPhys()) {
1941       bool Changed = adjustCopiesBackFrom(CP, CopyMI);
1942       bool Shrink = false;
1943       if (!Changed)
1944         std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
1945       if (Changed) {
1946         deleteInstr(CopyMI);
1947         if (Shrink) {
1948           Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1949           LiveInterval &DstLI = LIS->getInterval(DstReg);
1950           shrinkToUses(&DstLI);
1951           LLVM_DEBUG(dbgs() << "\t\tshrunk:   " << DstLI << '\n');
1952         }
1953         LLVM_DEBUG(dbgs() << "\tTrivial!\n");
1954         return true;
1955       }
1956     }
1957 
1958     // Try and see if we can partially eliminate the copy by moving the copy to
1959     // its predecessor.
1960     if (!CP.isPartial() && !CP.isPhys())
1961       if (removePartialRedundancy(CP, *CopyMI))
1962         return true;
1963 
1964     // Otherwise, we are unable to join the intervals.
1965     LLVM_DEBUG(dbgs() << "\tInterference!\n");
1966     Again = true;  // May be possible to coalesce later.
1967     return false;
1968   }
1969 
1970   // Coalescing to a virtual register that is of a sub-register class of the
1971   // other. Make sure the resulting register is set to the right register class.
1972   if (CP.isCrossClass()) {
1973     ++numCrossRCs;
1974     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1975   }
1976 
1977   // Removing sub-register copies can ease the register class constraints.
1978   // Make sure we attempt to inflate the register class of DstReg.
1979   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1980     InflateRegs.push_back(CP.getDstReg());
1981 
1982   // CopyMI has been erased by joinIntervals at this point. Remove it from
1983   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1984   // to the work list. This keeps ErasedInstrs from growing needlessly.
1985   ErasedInstrs.erase(CopyMI);
1986 
1987   // Rewrite all SrcReg operands to DstReg.
1988   // Also update DstReg operands to include DstIdx if it is set.
1989   if (CP.getDstIdx())
1990     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1991   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1992 
1993   // Shrink subregister ranges if necessary.
1994   if (ShrinkMask.any()) {
1995     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1996     for (LiveInterval::SubRange &S : LI.subranges()) {
1997       if ((S.LaneMask & ShrinkMask).none())
1998         continue;
1999       LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
2000                         << ")\n");
2001       LIS->shrinkToUses(S, LI.reg());
2002     }
2003     LI.removeEmptySubRanges();
2004   }
2005 
2006   // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
2007   // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
2008   // is not up-to-date, need to update the merged live interval here.
2009   if (ToBeUpdated.count(CP.getSrcReg()))
2010     ShrinkMainRange = true;
2011 
2012   if (ShrinkMainRange) {
2013     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2014     shrinkToUses(&LI);
2015   }
2016 
2017   // SrcReg is guaranteed to be the register whose live interval that is
2018   // being merged.
2019   LIS->removeInterval(CP.getSrcReg());
2020 
2021   // Update regalloc hint.
2022   TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
2023 
2024   LLVM_DEBUG({
2025     dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
2026            << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
2027     dbgs() << "\tResult = ";
2028     if (CP.isPhys())
2029       dbgs() << printReg(CP.getDstReg(), TRI);
2030     else
2031       dbgs() << LIS->getInterval(CP.getDstReg());
2032     dbgs() << '\n';
2033   });
2034 
2035   ++numJoins;
2036   return true;
2037 }
2038 
2039 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
2040   Register DstReg = CP.getDstReg();
2041   Register SrcReg = CP.getSrcReg();
2042   assert(CP.isPhys() && "Must be a physreg copy");
2043   assert(MRI->isReserved(DstReg) && "Not a reserved register");
2044   LiveInterval &RHS = LIS->getInterval(SrcReg);
2045   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
2046 
2047   assert(RHS.containsOneValue() && "Invalid join with reserved register");
2048 
2049   // Optimization for reserved registers like ESP. We can only merge with a
2050   // reserved physreg if RHS has a single value that is a copy of DstReg.
2051   // The live range of the reserved register will look like a set of dead defs
2052   // - we don't properly track the live range of reserved registers.
2053 
2054   // Deny any overlapping intervals.  This depends on all the reserved
2055   // register live ranges to look like dead defs.
2056   if (!MRI->isConstantPhysReg(DstReg)) {
2057     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2058       // Abort if not all the regunits are reserved.
2059       for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
2060         if (!MRI->isReserved(*RI))
2061           return false;
2062       }
2063       if (RHS.overlaps(LIS->getRegUnit(*UI))) {
2064         LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
2065                           << '\n');
2066         return false;
2067       }
2068     }
2069 
2070     // We must also check for overlaps with regmask clobbers.
2071     BitVector RegMaskUsable;
2072     if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2073         !RegMaskUsable.test(DstReg)) {
2074       LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2075       return false;
2076     }
2077   }
2078 
2079   // Skip any value computations, we are not adding new values to the
2080   // reserved register.  Also skip merging the live ranges, the reserved
2081   // register live range doesn't need to be accurate as long as all the
2082   // defs are there.
2083 
2084   // Delete the identity copy.
2085   MachineInstr *CopyMI;
2086   if (CP.isFlipped()) {
2087     // Physreg is copied into vreg
2088     //   %y = COPY %physreg_x
2089     //   ...  //< no other def of %physreg_x here
2090     //   use %y
2091     // =>
2092     //   ...
2093     //   use %physreg_x
2094     CopyMI = MRI->getVRegDef(SrcReg);
2095   } else {
2096     // VReg is copied into physreg:
2097     //   %y = def
2098     //   ... //< no other def or use of %physreg_x here
2099     //   %physreg_x = COPY %y
2100     // =>
2101     //   %physreg_x = def
2102     //   ...
2103     if (!MRI->hasOneNonDBGUse(SrcReg)) {
2104       LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2105       return false;
2106     }
2107 
2108     if (!LIS->intervalIsInOneMBB(RHS)) {
2109       LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2110       return false;
2111     }
2112 
2113     MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2114     CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2115     SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2116     SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2117 
2118     if (!MRI->isConstantPhysReg(DstReg)) {
2119       // We checked above that there are no interfering defs of the physical
2120       // register. However, for this case, where we intend to move up the def of
2121       // the physical register, we also need to check for interfering uses.
2122       SlotIndexes *Indexes = LIS->getSlotIndexes();
2123       for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2124            SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2125         MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2126         if (MI->readsRegister(DstReg, TRI)) {
2127           LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2128           return false;
2129         }
2130       }
2131     }
2132 
2133     // We're going to remove the copy which defines a physical reserved
2134     // register, so remove its valno, etc.
2135     LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2136                       << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2137 
2138     LIS->removePhysRegDefAt(DstReg.asMCReg(), CopyRegIdx);
2139     // Create a new dead def at the new def location.
2140     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2141       LiveRange &LR = LIS->getRegUnit(*UI);
2142       LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2143     }
2144   }
2145 
2146   deleteInstr(CopyMI);
2147 
2148   // We don't track kills for reserved registers.
2149   MRI->clearKillFlags(CP.getSrcReg());
2150 
2151   return true;
2152 }
2153 
2154 //===----------------------------------------------------------------------===//
2155 //                 Interference checking and interval joining
2156 //===----------------------------------------------------------------------===//
2157 //
2158 // In the easiest case, the two live ranges being joined are disjoint, and
2159 // there is no interference to consider. It is quite common, though, to have
2160 // overlapping live ranges, and we need to check if the interference can be
2161 // resolved.
2162 //
2163 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2164 // This means that two SSA values overlap if and only if the def of one value
2165 // is contained in the live range of the other value. As a special case, the
2166 // overlapping values can be defined at the same index.
2167 //
2168 // The interference from an overlapping def can be resolved in these cases:
2169 //
2170 // 1. Coalescable copies. The value is defined by a copy that would become an
2171 //    identity copy after joining SrcReg and DstReg. The copy instruction will
2172 //    be removed, and the value will be merged with the source value.
2173 //
2174 //    There can be several copies back and forth, causing many values to be
2175 //    merged into one. We compute a list of ultimate values in the joined live
2176 //    range as well as a mappings from the old value numbers.
2177 //
2178 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2179 //    predecessors have a live out value. It doesn't cause real interference,
2180 //    and can be merged into the value it overlaps. Like a coalescable copy, it
2181 //    can be erased after joining.
2182 //
2183 // 3. Copy of external value. The overlapping def may be a copy of a value that
2184 //    is already in the other register. This is like a coalescable copy, but
2185 //    the live range of the source register must be trimmed after erasing the
2186 //    copy instruction:
2187 //
2188 //      %src = COPY %ext
2189 //      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
2190 //
2191 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2192 //    defining one lane at a time:
2193 //
2194 //      %dst:ssub0<def,read-undef> = FOO
2195 //      %src = BAR
2196 //      %dst:ssub1 = COPY %src
2197 //
2198 //    The live range of %src overlaps the %dst value defined by FOO, but
2199 //    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2200 //    which was undef anyway.
2201 //
2202 //    The value mapping is more complicated in this case. The final live range
2203 //    will have different value numbers for both FOO and BAR, but there is no
2204 //    simple mapping from old to new values. It may even be necessary to add
2205 //    new PHI values.
2206 //
2207 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2208 //    is live, but never read. This can happen because we don't compute
2209 //    individual live ranges per lane.
2210 //
2211 //      %dst = FOO
2212 //      %src = BAR
2213 //      %dst:ssub1 = COPY %src
2214 //
2215 //    This kind of interference is only resolved locally. If the clobbered
2216 //    lane value escapes the block, the join is aborted.
2217 
2218 namespace {
2219 
2220 /// Track information about values in a single virtual register about to be
2221 /// joined. Objects of this class are always created in pairs - one for each
2222 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2223 /// pair)
2224 class JoinVals {
2225   /// Live range we work on.
2226   LiveRange &LR;
2227 
2228   /// (Main) register we work on.
2229   const Register Reg;
2230 
2231   /// Reg (and therefore the values in this liverange) will end up as
2232   /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2233   /// CP.SrcIdx.
2234   const unsigned SubIdx;
2235 
2236   /// The LaneMask that this liverange will occupy the coalesced register. May
2237   /// be smaller than the lanemask produced by SubIdx when merging subranges.
2238   const LaneBitmask LaneMask;
2239 
2240   /// This is true when joining sub register ranges, false when joining main
2241   /// ranges.
2242   const bool SubRangeJoin;
2243 
2244   /// Whether the current LiveInterval tracks subregister liveness.
2245   const bool TrackSubRegLiveness;
2246 
2247   /// Values that will be present in the final live range.
2248   SmallVectorImpl<VNInfo*> &NewVNInfo;
2249 
2250   const CoalescerPair &CP;
2251   LiveIntervals *LIS;
2252   SlotIndexes *Indexes;
2253   const TargetRegisterInfo *TRI;
2254 
2255   /// Value number assignments. Maps value numbers in LI to entries in
2256   /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2257   SmallVector<int, 8> Assignments;
2258 
2259   public:
2260   /// Conflict resolution for overlapping values.
2261   enum ConflictResolution {
2262     /// No overlap, simply keep this value.
2263     CR_Keep,
2264 
2265     /// Merge this value into OtherVNI and erase the defining instruction.
2266     /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2267     /// values.
2268     CR_Erase,
2269 
2270     /// Merge this value into OtherVNI but keep the defining instruction.
2271     /// This is for the special case where OtherVNI is defined by the same
2272     /// instruction.
2273     CR_Merge,
2274 
2275     /// Keep this value, and have it replace OtherVNI where possible. This
2276     /// complicates value mapping since OtherVNI maps to two different values
2277     /// before and after this def.
2278     /// Used when clobbering undefined or dead lanes.
2279     CR_Replace,
2280 
2281     /// Unresolved conflict. Visit later when all values have been mapped.
2282     CR_Unresolved,
2283 
2284     /// Unresolvable conflict. Abort the join.
2285     CR_Impossible
2286   };
2287 
2288   private:
2289   /// Per-value info for LI. The lane bit masks are all relative to the final
2290   /// joined register, so they can be compared directly between SrcReg and
2291   /// DstReg.
2292   struct Val {
2293     ConflictResolution Resolution = CR_Keep;
2294 
2295     /// Lanes written by this def, 0 for unanalyzed values.
2296     LaneBitmask WriteLanes;
2297 
2298     /// Lanes with defined values in this register. Other lanes are undef and
2299     /// safe to clobber.
2300     LaneBitmask ValidLanes;
2301 
2302     /// Value in LI being redefined by this def.
2303     VNInfo *RedefVNI = nullptr;
2304 
2305     /// Value in the other live range that overlaps this def, if any.
2306     VNInfo *OtherVNI = nullptr;
2307 
2308     /// Is this value an IMPLICIT_DEF that can be erased?
2309     ///
2310     /// IMPLICIT_DEF values should only exist at the end of a basic block that
2311     /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2312     /// safely erased if they are overlapping a live value in the other live
2313     /// interval.
2314     ///
2315     /// Weird control flow graphs and incomplete PHI handling in
2316     /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2317     /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2318     /// normal values.
2319     bool ErasableImplicitDef = false;
2320 
2321     /// True when the live range of this value will be pruned because of an
2322     /// overlapping CR_Replace value in the other live range.
2323     bool Pruned = false;
2324 
2325     /// True once Pruned above has been computed.
2326     bool PrunedComputed = false;
2327 
2328     /// True if this value is determined to be identical to OtherVNI
2329     /// (in valuesIdentical). This is used with CR_Erase where the erased
2330     /// copy is redundant, i.e. the source value is already the same as
2331     /// the destination. In such cases the subranges need to be updated
2332     /// properly. See comment at pruneSubRegValues for more info.
2333     bool Identical = false;
2334 
2335     Val() = default;
2336 
2337     bool isAnalyzed() const { return WriteLanes.any(); }
2338   };
2339 
2340   /// One entry per value number in LI.
2341   SmallVector<Val, 8> Vals;
2342 
2343   /// Compute the bitmask of lanes actually written by DefMI.
2344   /// Set Redef if there are any partial register definitions that depend on the
2345   /// previous value of the register.
2346   LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2347 
2348   /// Find the ultimate value that VNI was copied from.
2349   std::pair<const VNInfo *, Register> followCopyChain(const VNInfo *VNI) const;
2350 
2351   bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2352 
2353   /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2354   /// Return a conflict resolution when possible, but leave the hard cases as
2355   /// CR_Unresolved.
2356   /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2357   /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2358   /// The recursion always goes upwards in the dominator tree, making loops
2359   /// impossible.
2360   ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2361 
2362   /// Compute the value assignment for ValNo in RI.
2363   /// This may be called recursively by analyzeValue(), but never for a ValNo on
2364   /// the stack.
2365   void computeAssignment(unsigned ValNo, JoinVals &Other);
2366 
2367   /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2368   /// the extent of the tainted lanes in the block.
2369   ///
2370   /// Multiple values in Other.LR can be affected since partial redefinitions
2371   /// can preserve previously tainted lanes.
2372   ///
2373   ///   1 %dst = VLOAD           <-- Define all lanes in %dst
2374   ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
2375   ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
2376   ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2377   ///
2378   /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2379   /// entry to TaintedVals.
2380   ///
2381   /// Returns false if the tainted lanes extend beyond the basic block.
2382   bool
2383   taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2384               SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2385 
2386   /// Return true if MI uses any of the given Lanes from Reg.
2387   /// This does not include partial redefinitions of Reg.
2388   bool usesLanes(const MachineInstr &MI, Register, unsigned, LaneBitmask) const;
2389 
2390   /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2391   /// be pruned:
2392   ///
2393   ///   %dst = COPY %src
2394   ///   %src = COPY %dst  <-- This value to be pruned.
2395   ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
2396   bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2397 
2398 public:
2399   JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask,
2400            SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp,
2401            LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2402            bool TrackSubRegLiveness)
2403       : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2404         SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2405         NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2406         TRI(TRI), Assignments(LR.getNumValNums(), -1),
2407         Vals(LR.getNumValNums()) {}
2408 
2409   /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2410   /// Returns false if any conflicts were impossible to resolve.
2411   bool mapValues(JoinVals &Other);
2412 
2413   /// Try to resolve conflicts that require all values to be mapped.
2414   /// Returns false if any conflicts were impossible to resolve.
2415   bool resolveConflicts(JoinVals &Other);
2416 
2417   /// Prune the live range of values in Other.LR where they would conflict with
2418   /// CR_Replace values in LR. Collect end points for restoring the live range
2419   /// after joining.
2420   void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2421                    bool changeInstrs);
2422 
2423   /// Removes subranges starting at copies that get removed. This sometimes
2424   /// happens when undefined subranges are copied around. These ranges contain
2425   /// no useful information and can be removed.
2426   void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2427 
2428   /// Pruning values in subranges can lead to removing segments in these
2429   /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2430   /// the main range also need to be removed. This function will mark
2431   /// the corresponding values in the main range as pruned, so that
2432   /// eraseInstrs can do the final cleanup.
2433   /// The parameter @p LI must be the interval whose main range is the
2434   /// live range LR.
2435   void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2436 
2437   /// Erase any machine instructions that have been coalesced away.
2438   /// Add erased instructions to ErasedInstrs.
2439   /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2440   /// the erased instrs.
2441   void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2442                    SmallVectorImpl<Register> &ShrinkRegs,
2443                    LiveInterval *LI = nullptr);
2444 
2445   /// Remove liverange defs at places where implicit defs will be removed.
2446   void removeImplicitDefs();
2447 
2448   /// Get the value assignments suitable for passing to LiveInterval::join.
2449   const int *getAssignments() const { return Assignments.data(); }
2450 
2451   /// Get the conflict resolution for a value number.
2452   ConflictResolution getResolution(unsigned Num) const {
2453     return Vals[Num].Resolution;
2454   }
2455 };
2456 
2457 } // end anonymous namespace
2458 
2459 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2460   const {
2461   LaneBitmask L;
2462   for (const MachineOperand &MO : DefMI->operands()) {
2463     if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2464       continue;
2465     L |= TRI->getSubRegIndexLaneMask(
2466            TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2467     if (MO.readsReg())
2468       Redef = true;
2469   }
2470   return L;
2471 }
2472 
2473 std::pair<const VNInfo *, Register>
2474 JoinVals::followCopyChain(const VNInfo *VNI) const {
2475   Register TrackReg = Reg;
2476 
2477   while (!VNI->isPHIDef()) {
2478     SlotIndex Def = VNI->def;
2479     MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2480     assert(MI && "No defining instruction");
2481     if (!MI->isFullCopy())
2482       return std::make_pair(VNI, TrackReg);
2483     Register SrcReg = MI->getOperand(1).getReg();
2484     if (!SrcReg.isVirtual())
2485       return std::make_pair(VNI, TrackReg);
2486 
2487     const LiveInterval &LI = LIS->getInterval(SrcReg);
2488     const VNInfo *ValueIn;
2489     // No subrange involved.
2490     if (!SubRangeJoin || !LI.hasSubRanges()) {
2491       LiveQueryResult LRQ = LI.Query(Def);
2492       ValueIn = LRQ.valueIn();
2493     } else {
2494       // Query subranges. Ensure that all matching ones take us to the same def
2495       // (allowing some of them to be undef).
2496       ValueIn = nullptr;
2497       for (const LiveInterval::SubRange &S : LI.subranges()) {
2498         // Transform lanemask to a mask in the joined live interval.
2499         LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2500         if ((SMask & LaneMask).none())
2501           continue;
2502         LiveQueryResult LRQ = S.Query(Def);
2503         if (!ValueIn) {
2504           ValueIn = LRQ.valueIn();
2505           continue;
2506         }
2507         if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2508           return std::make_pair(VNI, TrackReg);
2509       }
2510     }
2511     if (ValueIn == nullptr) {
2512       // Reaching an undefined value is legitimate, for example:
2513       //
2514       // 1   undef %0.sub1 = ...  ;; %0.sub0 == undef
2515       // 2   %1 = COPY %0         ;; %1 is defined here.
2516       // 3   %0 = COPY %1         ;; Now %0.sub0 has a definition,
2517       //                          ;; but it's equivalent to "undef".
2518       return std::make_pair(nullptr, SrcReg);
2519     }
2520     VNI = ValueIn;
2521     TrackReg = SrcReg;
2522   }
2523   return std::make_pair(VNI, TrackReg);
2524 }
2525 
2526 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2527                                const JoinVals &Other) const {
2528   const VNInfo *Orig0;
2529   Register Reg0;
2530   std::tie(Orig0, Reg0) = followCopyChain(Value0);
2531   if (Orig0 == Value1 && Reg0 == Other.Reg)
2532     return true;
2533 
2534   const VNInfo *Orig1;
2535   Register Reg1;
2536   std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2537   // If both values are undefined, and the source registers are the same
2538   // register, the values are identical. Filter out cases where only one
2539   // value is defined.
2540   if (Orig0 == nullptr || Orig1 == nullptr)
2541     return Orig0 == Orig1 && Reg0 == Reg1;
2542 
2543   // The values are equal if they are defined at the same place and use the
2544   // same register. Note that we cannot compare VNInfos directly as some of
2545   // them might be from a copy created in mergeSubRangeInto()  while the other
2546   // is from the original LiveInterval.
2547   return Orig0->def == Orig1->def && Reg0 == Reg1;
2548 }
2549 
2550 JoinVals::ConflictResolution
2551 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2552   Val &V = Vals[ValNo];
2553   assert(!V.isAnalyzed() && "Value has already been analyzed!");
2554   VNInfo *VNI = LR.getValNumInfo(ValNo);
2555   if (VNI->isUnused()) {
2556     V.WriteLanes = LaneBitmask::getAll();
2557     return CR_Keep;
2558   }
2559 
2560   // Get the instruction defining this value, compute the lanes written.
2561   const MachineInstr *DefMI = nullptr;
2562   if (VNI->isPHIDef()) {
2563     // Conservatively assume that all lanes in a PHI are valid.
2564     LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2565                                      : TRI->getSubRegIndexLaneMask(SubIdx);
2566     V.ValidLanes = V.WriteLanes = Lanes;
2567   } else {
2568     DefMI = Indexes->getInstructionFromIndex(VNI->def);
2569     assert(DefMI != nullptr);
2570     if (SubRangeJoin) {
2571       // We don't care about the lanes when joining subregister ranges.
2572       V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2573       if (DefMI->isImplicitDef()) {
2574         V.ValidLanes = LaneBitmask::getNone();
2575         V.ErasableImplicitDef = true;
2576       }
2577     } else {
2578       bool Redef = false;
2579       V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2580 
2581       // If this is a read-modify-write instruction, there may be more valid
2582       // lanes than the ones written by this instruction.
2583       // This only covers partial redef operands. DefMI may have normal use
2584       // operands reading the register. They don't contribute valid lanes.
2585       //
2586       // This adds ssub1 to the set of valid lanes in %src:
2587       //
2588       //   %src:ssub1 = FOO
2589       //
2590       // This leaves only ssub1 valid, making any other lanes undef:
2591       //
2592       //   %src:ssub1<def,read-undef> = FOO %src:ssub2
2593       //
2594       // The <read-undef> flag on the def operand means that old lane values are
2595       // not important.
2596       if (Redef) {
2597         V.RedefVNI = LR.Query(VNI->def).valueIn();
2598         assert((TrackSubRegLiveness || V.RedefVNI) &&
2599                "Instruction is reading nonexistent value");
2600         if (V.RedefVNI != nullptr) {
2601           computeAssignment(V.RedefVNI->id, Other);
2602           V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2603         }
2604       }
2605 
2606       // An IMPLICIT_DEF writes undef values.
2607       if (DefMI->isImplicitDef()) {
2608         // We normally expect IMPLICIT_DEF values to be live only until the end
2609         // of their block. If the value is really live longer and gets pruned in
2610         // another block, this flag is cleared again.
2611         //
2612         // Clearing the valid lanes is deferred until it is sure this can be
2613         // erased.
2614         V.ErasableImplicitDef = true;
2615       }
2616     }
2617   }
2618 
2619   // Find the value in Other that overlaps VNI->def, if any.
2620   LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2621 
2622   // It is possible that both values are defined by the same instruction, or
2623   // the values are PHIs defined in the same block. When that happens, the two
2624   // values should be merged into one, but not into any preceding value.
2625   // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2626   if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2627     assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2628 
2629     // One value stays, the other is merged. Keep the earlier one, or the first
2630     // one we see.
2631     if (OtherVNI->def < VNI->def)
2632       Other.computeAssignment(OtherVNI->id, *this);
2633     else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2634       // This is an early-clobber def overlapping a live-in value in the other
2635       // register. Not mergeable.
2636       V.OtherVNI = OtherLRQ.valueIn();
2637       return CR_Impossible;
2638     }
2639     V.OtherVNI = OtherVNI;
2640     Val &OtherV = Other.Vals[OtherVNI->id];
2641     // Keep this value, check for conflicts when analyzing OtherVNI.
2642     if (!OtherV.isAnalyzed())
2643       return CR_Keep;
2644     // Both sides have been analyzed now.
2645     // Allow overlapping PHI values. Any real interference would show up in a
2646     // predecessor, the PHI itself can't introduce any conflicts.
2647     if (VNI->isPHIDef())
2648       return CR_Merge;
2649     if ((V.ValidLanes & OtherV.ValidLanes).any())
2650       // Overlapping lanes can't be resolved.
2651       return CR_Impossible;
2652     else
2653       return CR_Merge;
2654   }
2655 
2656   // No simultaneous def. Is Other live at the def?
2657   V.OtherVNI = OtherLRQ.valueIn();
2658   if (!V.OtherVNI)
2659     // No overlap, no conflict.
2660     return CR_Keep;
2661 
2662   assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2663 
2664   // We have overlapping values, or possibly a kill of Other.
2665   // Recursively compute assignments up the dominator tree.
2666   Other.computeAssignment(V.OtherVNI->id, *this);
2667   Val &OtherV = Other.Vals[V.OtherVNI->id];
2668 
2669   if (OtherV.ErasableImplicitDef) {
2670     // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2671     // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2672     // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2673     // technically.
2674     //
2675     // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2676     // to erase the IMPLICIT_DEF instruction.
2677     if (DefMI &&
2678         DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2679       LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2680                  << " extends into "
2681                  << printMBBReference(*DefMI->getParent())
2682                  << ", keeping it.\n");
2683       OtherV.ErasableImplicitDef = false;
2684     } else {
2685       // We deferred clearing these lanes in case we needed to save them
2686       OtherV.ValidLanes &= ~OtherV.WriteLanes;
2687     }
2688   }
2689 
2690   // Allow overlapping PHI values. Any real interference would show up in a
2691   // predecessor, the PHI itself can't introduce any conflicts.
2692   if (VNI->isPHIDef())
2693     return CR_Replace;
2694 
2695   // Check for simple erasable conflicts.
2696   if (DefMI->isImplicitDef())
2697     return CR_Erase;
2698 
2699   // Include the non-conflict where DefMI is a coalescable copy that kills
2700   // OtherVNI. We still want the copy erased and value numbers merged.
2701   if (CP.isCoalescable(DefMI)) {
2702     // Some of the lanes copied from OtherVNI may be undef, making them undef
2703     // here too.
2704     V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2705     return CR_Erase;
2706   }
2707 
2708   // This may not be a real conflict if DefMI simply kills Other and defines
2709   // VNI.
2710   if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2711     return CR_Keep;
2712 
2713   // Handle the case where VNI and OtherVNI can be proven to be identical:
2714   //
2715   //   %other = COPY %ext
2716   //   %this  = COPY %ext <-- Erase this copy
2717   //
2718   if (DefMI->isFullCopy() && !CP.isPartial() &&
2719       valuesIdentical(VNI, V.OtherVNI, Other)) {
2720     V.Identical = true;
2721     return CR_Erase;
2722   }
2723 
2724   // The remaining checks apply to the lanes, which aren't tracked here.  This
2725   // was already decided to be OK via the following CR_Replace condition.
2726   // CR_Replace.
2727   if (SubRangeJoin)
2728     return CR_Replace;
2729 
2730   // If the lanes written by this instruction were all undef in OtherVNI, it is
2731   // still safe to join the live ranges. This can't be done with a simple value
2732   // mapping, though - OtherVNI will map to multiple values:
2733   //
2734   //   1 %dst:ssub0 = FOO                <-- OtherVNI
2735   //   2 %src = BAR                      <-- VNI
2736   //   3 %dst:ssub1 = COPY killed %src    <-- Eliminate this copy.
2737   //   4 BAZ killed %dst
2738   //   5 QUUX killed %src
2739   //
2740   // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2741   // handles this complex value mapping.
2742   if ((V.WriteLanes & OtherV.ValidLanes).none())
2743     return CR_Replace;
2744 
2745   // If the other live range is killed by DefMI and the live ranges are still
2746   // overlapping, it must be because we're looking at an early clobber def:
2747   //
2748   //   %dst<def,early-clobber> = ASM killed %src
2749   //
2750   // In this case, it is illegal to merge the two live ranges since the early
2751   // clobber def would clobber %src before it was read.
2752   if (OtherLRQ.isKill()) {
2753     // This case where the def doesn't overlap the kill is handled above.
2754     assert(VNI->def.isEarlyClobber() &&
2755            "Only early clobber defs can overlap a kill");
2756     return CR_Impossible;
2757   }
2758 
2759   // VNI is clobbering live lanes in OtherVNI, but there is still the
2760   // possibility that no instructions actually read the clobbered lanes.
2761   // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2762   // Otherwise Other.RI wouldn't be live here.
2763   if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2764     return CR_Impossible;
2765 
2766   // We need to verify that no instructions are reading the clobbered lanes. To
2767   // save compile time, we'll only check that locally. Don't allow the tainted
2768   // value to escape the basic block.
2769   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2770   if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2771     return CR_Impossible;
2772 
2773   // There are still some things that could go wrong besides clobbered lanes
2774   // being read, for example OtherVNI may be only partially redefined in MBB,
2775   // and some clobbered lanes could escape the block. Save this analysis for
2776   // resolveConflicts() when all values have been mapped. We need to know
2777   // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2778   // that now - the recursive analyzeValue() calls must go upwards in the
2779   // dominator tree.
2780   return CR_Unresolved;
2781 }
2782 
2783 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2784   Val &V = Vals[ValNo];
2785   if (V.isAnalyzed()) {
2786     // Recursion should always move up the dominator tree, so ValNo is not
2787     // supposed to reappear before it has been assigned.
2788     assert(Assignments[ValNo] != -1 && "Bad recursion?");
2789     return;
2790   }
2791   switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2792   case CR_Erase:
2793   case CR_Merge:
2794     // Merge this ValNo into OtherVNI.
2795     assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2796     assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2797     Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2798     LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2799                       << LR.getValNumInfo(ValNo)->def << " into "
2800                       << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2801                       << V.OtherVNI->def << " --> @"
2802                       << NewVNInfo[Assignments[ValNo]]->def << '\n');
2803     break;
2804   case CR_Replace:
2805   case CR_Unresolved: {
2806     // The other value is going to be pruned if this join is successful.
2807     assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2808     Val &OtherV = Other.Vals[V.OtherVNI->id];
2809     // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2810     // its lanes.
2811     if (OtherV.ErasableImplicitDef &&
2812         TrackSubRegLiveness &&
2813         (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2814       LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2815 
2816       OtherV.ErasableImplicitDef = false;
2817       // The valid lanes written by the implicit_def were speculatively cleared
2818       // before, so make this more conservative. It may be better to track this,
2819       // I haven't found a testcase where it matters.
2820       OtherV.ValidLanes = LaneBitmask::getAll();
2821     }
2822 
2823     OtherV.Pruned = true;
2824     LLVM_FALLTHROUGH;
2825   }
2826   default:
2827     // This value number needs to go in the final joined live range.
2828     Assignments[ValNo] = NewVNInfo.size();
2829     NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2830     break;
2831   }
2832 }
2833 
2834 bool JoinVals::mapValues(JoinVals &Other) {
2835   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2836     computeAssignment(i, Other);
2837     if (Vals[i].Resolution == CR_Impossible) {
2838       LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2839                         << '@' << LR.getValNumInfo(i)->def << '\n');
2840       return false;
2841     }
2842   }
2843   return true;
2844 }
2845 
2846 bool JoinVals::
2847 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2848             SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2849   VNInfo *VNI = LR.getValNumInfo(ValNo);
2850   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2851   SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2852 
2853   // Scan Other.LR from VNI.def to MBBEnd.
2854   LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2855   assert(OtherI != Other.LR.end() && "No conflict?");
2856   do {
2857     // OtherI is pointing to a tainted value. Abort the join if the tainted
2858     // lanes escape the block.
2859     SlotIndex End = OtherI->end;
2860     if (End >= MBBEnd) {
2861       LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2862                         << OtherI->valno->id << '@' << OtherI->start << '\n');
2863       return false;
2864     }
2865     LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
2866                       << OtherI->valno->id << '@' << OtherI->start << " to "
2867                       << End << '\n');
2868     // A dead def is not a problem.
2869     if (End.isDead())
2870       break;
2871     TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2872 
2873     // Check for another def in the MBB.
2874     if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2875       break;
2876 
2877     // Lanes written by the new def are no longer tainted.
2878     const Val &OV = Other.Vals[OtherI->valno->id];
2879     TaintedLanes &= ~OV.WriteLanes;
2880     if (!OV.RedefVNI)
2881       break;
2882   } while (TaintedLanes.any());
2883   return true;
2884 }
2885 
2886 bool JoinVals::usesLanes(const MachineInstr &MI, Register Reg, unsigned SubIdx,
2887                          LaneBitmask Lanes) const {
2888   if (MI.isDebugInstr())
2889     return false;
2890   for (const MachineOperand &MO : MI.operands()) {
2891     if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2892       continue;
2893     if (!MO.readsReg())
2894       continue;
2895     unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
2896     if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
2897       return true;
2898   }
2899   return false;
2900 }
2901 
2902 bool JoinVals::resolveConflicts(JoinVals &Other) {
2903   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2904     Val &V = Vals[i];
2905     assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
2906     if (V.Resolution != CR_Unresolved)
2907       continue;
2908     LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
2909                       << LR.getValNumInfo(i)->def
2910                       << ' ' << PrintLaneMask(LaneMask) << '\n');
2911     if (SubRangeJoin)
2912       return false;
2913 
2914     ++NumLaneConflicts;
2915     assert(V.OtherVNI && "Inconsistent conflict resolution.");
2916     VNInfo *VNI = LR.getValNumInfo(i);
2917     const Val &OtherV = Other.Vals[V.OtherVNI->id];
2918 
2919     // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2920     // join, those lanes will be tainted with a wrong value. Get the extent of
2921     // the tainted lanes.
2922     LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2923     SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2924     if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2925       // Tainted lanes would extend beyond the basic block.
2926       return false;
2927 
2928     assert(!TaintExtent.empty() && "There should be at least one conflict.");
2929 
2930     // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2931     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2932     MachineBasicBlock::iterator MI = MBB->begin();
2933     if (!VNI->isPHIDef()) {
2934       MI = Indexes->getInstructionFromIndex(VNI->def);
2935       // No need to check the instruction defining VNI for reads.
2936       ++MI;
2937     }
2938     assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2939            "Interference ends on VNI->def. Should have been handled earlier");
2940     MachineInstr *LastMI =
2941       Indexes->getInstructionFromIndex(TaintExtent.front().first);
2942     assert(LastMI && "Range must end at a proper instruction");
2943     unsigned TaintNum = 0;
2944     while (true) {
2945       assert(MI != MBB->end() && "Bad LastMI");
2946       if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2947         LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2948         return false;
2949       }
2950       // LastMI is the last instruction to use the current value.
2951       if (&*MI == LastMI) {
2952         if (++TaintNum == TaintExtent.size())
2953           break;
2954         LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2955         assert(LastMI && "Range must end at a proper instruction");
2956         TaintedLanes = TaintExtent[TaintNum].second;
2957       }
2958       ++MI;
2959     }
2960 
2961     // The tainted lanes are unused.
2962     V.Resolution = CR_Replace;
2963     ++NumLaneResolves;
2964   }
2965   return true;
2966 }
2967 
2968 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2969   Val &V = Vals[ValNo];
2970   if (V.Pruned || V.PrunedComputed)
2971     return V.Pruned;
2972 
2973   if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2974     return V.Pruned;
2975 
2976   // Follow copies up the dominator tree and check if any intermediate value
2977   // has been pruned.
2978   V.PrunedComputed = true;
2979   V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2980   return V.Pruned;
2981 }
2982 
2983 void JoinVals::pruneValues(JoinVals &Other,
2984                            SmallVectorImpl<SlotIndex> &EndPoints,
2985                            bool changeInstrs) {
2986   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2987     SlotIndex Def = LR.getValNumInfo(i)->def;
2988     switch (Vals[i].Resolution) {
2989     case CR_Keep:
2990       break;
2991     case CR_Replace: {
2992       // This value takes precedence over the value in Other.LR.
2993       LIS->pruneValue(Other.LR, Def, &EndPoints);
2994       // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2995       // instructions are only inserted to provide a live-out value for PHI
2996       // predecessors, so the instruction should simply go away once its value
2997       // has been replaced.
2998       Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2999       bool EraseImpDef = OtherV.ErasableImplicitDef &&
3000                          OtherV.Resolution == CR_Keep;
3001       if (!Def.isBlock()) {
3002         if (changeInstrs) {
3003           // Remove <def,read-undef> flags. This def is now a partial redef.
3004           // Also remove dead flags since the joined live range will
3005           // continue past this instruction.
3006           for (MachineOperand &MO :
3007                Indexes->getInstructionFromIndex(Def)->operands()) {
3008             if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
3009               if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
3010                 MO.setIsUndef(false);
3011               MO.setIsDead(false);
3012             }
3013           }
3014         }
3015         // This value will reach instructions below, but we need to make sure
3016         // the live range also reaches the instruction at Def.
3017         if (!EraseImpDef)
3018           EndPoints.push_back(Def);
3019       }
3020       LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
3021                         << ": " << Other.LR << '\n');
3022       break;
3023     }
3024     case CR_Erase:
3025     case CR_Merge:
3026       if (isPrunedValue(i, Other)) {
3027         // This value is ultimately a copy of a pruned value in LR or Other.LR.
3028         // We can no longer trust the value mapping computed by
3029         // computeAssignment(), the value that was originally copied could have
3030         // been replaced.
3031         LIS->pruneValue(LR, Def, &EndPoints);
3032         LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
3033                           << Def << ": " << LR << '\n');
3034       }
3035       break;
3036     case CR_Unresolved:
3037     case CR_Impossible:
3038       llvm_unreachable("Unresolved conflicts");
3039     }
3040   }
3041 }
3042 
3043 /// Consider the following situation when coalescing the copy between
3044 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
3045 ///
3046 ///                              Main range         Subrange 0004 (sub2)
3047 ///                              %31    %45           %31    %45
3048 ///  544    %45 = COPY %28               +                    +
3049 ///                                      | v1                 | v1
3050 ///  560B bb.1:                          +                    +
3051 ///  624        = %45.sub2               | v2                 | v2
3052 ///  800    %31 = COPY %45        +      +             +      +
3053 ///                               | v0                 | v0
3054 ///  816    %31.sub1 = ...        +                    |
3055 ///  880    %30 = COPY %31        | v1                 +
3056 ///  928    %45 = COPY %30        |      +                    +
3057 ///                               |      | v0                 | v0  <--+
3058 ///  992B   ; backedge -> bb.1    |      +                    +        |
3059 /// 1040        = %31.sub0        +                                    |
3060 ///                                                 This value must remain
3061 ///                                                 live-out!
3062 ///
3063 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3064 /// redundant, since it copies the value from %45 back into it. The
3065 /// conflict resolution for the main range determines that %45.v0 is
3066 /// to be erased, which is ok since %31.v1 is identical to it.
3067 /// The problem happens with the subrange for sub2: it has to be live
3068 /// on exit from the block, but since 928 was actually a point of
3069 /// definition of %45.sub2, %45.sub2 was not live immediately prior
3070 /// to that definition. As a result, when 928 was erased, the value v0
3071 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3072 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3073 /// providing an incorrect value to the use at 624.
3074 ///
3075 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3076 /// identical, the corresponding values in subranges must also be the
3077 /// same. A redundant copy is removed because it's not needed, and not
3078 /// because it copied an undefined value, so any liveness that originated
3079 /// from that copy cannot disappear. When pruning a value that started
3080 /// at the removed copy, the corresponding identical value must be
3081 /// extended to replace it.
3082 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3083   // Look for values being erased.
3084   bool DidPrune = false;
3085   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3086     Val &V = Vals[i];
3087     // We should trigger in all cases in which eraseInstrs() does something.
3088     // match what eraseInstrs() is doing, print a message so
3089     if (V.Resolution != CR_Erase &&
3090         (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3091       continue;
3092 
3093     // Check subranges at the point where the copy will be removed.
3094     SlotIndex Def = LR.getValNumInfo(i)->def;
3095     SlotIndex OtherDef;
3096     if (V.Identical)
3097       OtherDef = V.OtherVNI->def;
3098 
3099     // Print message so mismatches with eraseInstrs() can be diagnosed.
3100     LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3101                       << '\n');
3102     for (LiveInterval::SubRange &S : LI.subranges()) {
3103       LiveQueryResult Q = S.Query(Def);
3104 
3105       // If a subrange starts at the copy then an undefined value has been
3106       // copied and we must remove that subrange value as well.
3107       VNInfo *ValueOut = Q.valueOutOrDead();
3108       if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
3109                                   (V.Identical && V.Resolution == CR_Erase &&
3110                                    ValueOut->def == Def))) {
3111         LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3112                           << " at " << Def << "\n");
3113         SmallVector<SlotIndex,8> EndPoints;
3114         LIS->pruneValue(S, Def, &EndPoints);
3115         DidPrune = true;
3116         // Mark value number as unused.
3117         ValueOut->markUnused();
3118 
3119         if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
3120           // If V is identical to V.OtherVNI (and S was live at OtherDef),
3121           // then we can't simply prune V from S. V needs to be replaced
3122           // with V.OtherVNI.
3123           LIS->extendToIndices(S, EndPoints);
3124         }
3125         continue;
3126       }
3127       // If a subrange ends at the copy, then a value was copied but only
3128       // partially used later. Shrink the subregister range appropriately.
3129       if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
3130         LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3131                           << PrintLaneMask(S.LaneMask) << " at " << Def
3132                           << "\n");
3133         ShrinkMask |= S.LaneMask;
3134       }
3135     }
3136   }
3137   if (DidPrune)
3138     LI.removeEmptySubRanges();
3139 }
3140 
3141 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3142 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3143   for (LiveInterval::SubRange &SR : LI.subranges()) {
3144     if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3145       if (VNI->def == Def)
3146         return true;
3147   }
3148   return false;
3149 }
3150 
3151 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3152   assert(&static_cast<LiveRange&>(LI) == &LR);
3153 
3154   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3155     if (Vals[i].Resolution != CR_Keep)
3156       continue;
3157     VNInfo *VNI = LR.getValNumInfo(i);
3158     if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3159       continue;
3160     Vals[i].Pruned = true;
3161     ShrinkMainRange = true;
3162   }
3163 }
3164 
3165 void JoinVals::removeImplicitDefs() {
3166   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3167     Val &V = Vals[i];
3168     if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3169       continue;
3170 
3171     VNInfo *VNI = LR.getValNumInfo(i);
3172     VNI->markUnused();
3173     LR.removeValNo(VNI);
3174   }
3175 }
3176 
3177 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3178                            SmallVectorImpl<Register> &ShrinkRegs,
3179                            LiveInterval *LI) {
3180   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3181     // Get the def location before markUnused() below invalidates it.
3182     VNInfo *VNI = LR.getValNumInfo(i);
3183     SlotIndex Def = VNI->def;
3184     switch (Vals[i].Resolution) {
3185     case CR_Keep: {
3186       // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3187       // longer. The IMPLICIT_DEF instructions are only inserted by
3188       // PHIElimination to guarantee that all PHI predecessors have a value.
3189       if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3190         break;
3191       // Remove value number i from LR.
3192       // For intervals with subranges, removing a segment from the main range
3193       // may require extending the previous segment: for each definition of
3194       // a subregister, there will be a corresponding def in the main range.
3195       // That def may fall in the middle of a segment from another subrange.
3196       // In such cases, removing this def from the main range must be
3197       // complemented by extending the main range to account for the liveness
3198       // of the other subrange.
3199       // The new end point of the main range segment to be extended.
3200       SlotIndex NewEnd;
3201       if (LI != nullptr) {
3202         LiveRange::iterator I = LR.FindSegmentContaining(Def);
3203         assert(I != LR.end());
3204         // Do not extend beyond the end of the segment being removed.
3205         // The segment may have been pruned in preparation for joining
3206         // live ranges.
3207         NewEnd = I->end;
3208       }
3209 
3210       LR.removeValNo(VNI);
3211       // Note that this VNInfo is reused and still referenced in NewVNInfo,
3212       // make it appear like an unused value number.
3213       VNI->markUnused();
3214 
3215       if (LI != nullptr && LI->hasSubRanges()) {
3216         assert(static_cast<LiveRange*>(LI) == &LR);
3217         // Determine the end point based on the subrange information:
3218         // minimum of (earliest def of next segment,
3219         //             latest end point of containing segment)
3220         SlotIndex ED, LE;
3221         for (LiveInterval::SubRange &SR : LI->subranges()) {
3222           LiveRange::iterator I = SR.find(Def);
3223           if (I == SR.end())
3224             continue;
3225           if (I->start > Def)
3226             ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3227           else
3228             LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3229         }
3230         if (LE.isValid())
3231           NewEnd = std::min(NewEnd, LE);
3232         if (ED.isValid())
3233           NewEnd = std::min(NewEnd, ED);
3234 
3235         // We only want to do the extension if there was a subrange that
3236         // was live across Def.
3237         if (LE.isValid()) {
3238           LiveRange::iterator S = LR.find(Def);
3239           if (S != LR.begin())
3240             std::prev(S)->end = NewEnd;
3241         }
3242       }
3243       LLVM_DEBUG({
3244         dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3245         if (LI != nullptr)
3246           dbgs() << "\t\t  LHS = " << *LI << '\n';
3247       });
3248       LLVM_FALLTHROUGH;
3249     }
3250 
3251     case CR_Erase: {
3252       MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3253       assert(MI && "No instruction to erase");
3254       if (MI->isCopy()) {
3255         Register Reg = MI->getOperand(1).getReg();
3256         if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() &&
3257             Reg != CP.getDstReg())
3258           ShrinkRegs.push_back(Reg);
3259       }
3260       ErasedInstrs.insert(MI);
3261       LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3262       LIS->RemoveMachineInstrFromMaps(*MI);
3263       MI->eraseFromParent();
3264       break;
3265     }
3266     default:
3267       break;
3268     }
3269   }
3270 }
3271 
3272 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3273                                          LaneBitmask LaneMask,
3274                                          const CoalescerPair &CP) {
3275   SmallVector<VNInfo*, 16> NewVNInfo;
3276   JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3277                    NewVNInfo, CP, LIS, TRI, true, true);
3278   JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3279                    NewVNInfo, CP, LIS, TRI, true, true);
3280 
3281   // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3282   // We should be able to resolve all conflicts here as we could successfully do
3283   // it on the mainrange already. There is however a problem when multiple
3284   // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3285   // interferences.
3286   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3287     // We already determined that it is legal to merge the intervals, so this
3288     // should never fail.
3289     llvm_unreachable("*** Couldn't join subrange!\n");
3290   }
3291   if (!LHSVals.resolveConflicts(RHSVals) ||
3292       !RHSVals.resolveConflicts(LHSVals)) {
3293     // We already determined that it is legal to merge the intervals, so this
3294     // should never fail.
3295     llvm_unreachable("*** Couldn't join subrange!\n");
3296   }
3297 
3298   // The merging algorithm in LiveInterval::join() can't handle conflicting
3299   // value mappings, so we need to remove any live ranges that overlap a
3300   // CR_Replace resolution. Collect a set of end points that can be used to
3301   // restore the live range after joining.
3302   SmallVector<SlotIndex, 8> EndPoints;
3303   LHSVals.pruneValues(RHSVals, EndPoints, false);
3304   RHSVals.pruneValues(LHSVals, EndPoints, false);
3305 
3306   LHSVals.removeImplicitDefs();
3307   RHSVals.removeImplicitDefs();
3308 
3309   LRange.verify();
3310   RRange.verify();
3311 
3312   // Join RRange into LHS.
3313   LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3314               NewVNInfo);
3315 
3316   LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3317                     << ' ' << LRange << "\n");
3318   if (EndPoints.empty())
3319     return;
3320 
3321   // Recompute the parts of the live range we had to remove because of
3322   // CR_Replace conflicts.
3323   LLVM_DEBUG({
3324     dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3325     for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3326       dbgs() << EndPoints[i];
3327       if (i != n-1)
3328         dbgs() << ',';
3329     }
3330     dbgs() << ":  " << LRange << '\n';
3331   });
3332   LIS->extendToIndices(LRange, EndPoints);
3333 }
3334 
3335 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3336                                           const LiveRange &ToMerge,
3337                                           LaneBitmask LaneMask,
3338                                           CoalescerPair &CP,
3339                                           unsigned ComposeSubRegIdx) {
3340   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3341   LI.refineSubRanges(
3342       Allocator, LaneMask,
3343       [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3344         if (SR.empty()) {
3345           SR.assign(ToMerge, Allocator);
3346         } else {
3347           // joinSubRegRange() destroys the merged range, so we need a copy.
3348           LiveRange RangeCopy(ToMerge, Allocator);
3349           joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3350         }
3351       },
3352       *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx);
3353 }
3354 
3355 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3356   if (LI.valnos.size() < LargeIntervalSizeThreshold)
3357     return false;
3358   auto &Counter = LargeLIVisitCounter[LI.reg()];
3359   if (Counter < LargeIntervalFreqThreshold) {
3360     Counter++;
3361     return false;
3362   }
3363   return true;
3364 }
3365 
3366 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3367   SmallVector<VNInfo*, 16> NewVNInfo;
3368   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3369   LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3370   bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3371   JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3372                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3373   JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3374                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3375 
3376   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3377 
3378   if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3379     return false;
3380 
3381   // First compute NewVNInfo and the simple value mappings.
3382   // Detect impossible conflicts early.
3383   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3384     return false;
3385 
3386   // Some conflicts can only be resolved after all values have been mapped.
3387   if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3388     return false;
3389 
3390   // All clear, the live ranges can be merged.
3391   if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3392     BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3393 
3394     // Transform lanemasks from the LHS to masks in the coalesced register and
3395     // create initial subranges if necessary.
3396     unsigned DstIdx = CP.getDstIdx();
3397     if (!LHS.hasSubRanges()) {
3398       LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3399                                      : TRI->getSubRegIndexLaneMask(DstIdx);
3400       // LHS must support subregs or we wouldn't be in this codepath.
3401       assert(Mask.any());
3402       LHS.createSubRangeFrom(Allocator, Mask, LHS);
3403     } else if (DstIdx != 0) {
3404       // Transform LHS lanemasks to new register class if necessary.
3405       for (LiveInterval::SubRange &R : LHS.subranges()) {
3406         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3407         R.LaneMask = Mask;
3408       }
3409     }
3410     LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3411                       << '\n');
3412 
3413     // Determine lanemasks of RHS in the coalesced register and merge subranges.
3414     unsigned SrcIdx = CP.getSrcIdx();
3415     if (!RHS.hasSubRanges()) {
3416       LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3417                                      : TRI->getSubRegIndexLaneMask(SrcIdx);
3418       mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx);
3419     } else {
3420       // Pair up subranges and merge.
3421       for (LiveInterval::SubRange &R : RHS.subranges()) {
3422         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3423         mergeSubRangeInto(LHS, R, Mask, CP, DstIdx);
3424       }
3425     }
3426     LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3427 
3428     // Pruning implicit defs from subranges may result in the main range
3429     // having stale segments.
3430     LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3431 
3432     LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3433     RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3434   }
3435 
3436   // The merging algorithm in LiveInterval::join() can't handle conflicting
3437   // value mappings, so we need to remove any live ranges that overlap a
3438   // CR_Replace resolution. Collect a set of end points that can be used to
3439   // restore the live range after joining.
3440   SmallVector<SlotIndex, 8> EndPoints;
3441   LHSVals.pruneValues(RHSVals, EndPoints, true);
3442   RHSVals.pruneValues(LHSVals, EndPoints, true);
3443 
3444   // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3445   // registers to require trimming.
3446   SmallVector<Register, 8> ShrinkRegs;
3447   LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3448   RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3449   while (!ShrinkRegs.empty())
3450     shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3451 
3452   // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3453   checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
3454 
3455   // Join RHS into LHS.
3456   LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3457 
3458   // Kill flags are going to be wrong if the live ranges were overlapping.
3459   // Eventually, we should simply clear all kill flags when computing live
3460   // ranges. They are reinserted after register allocation.
3461   MRI->clearKillFlags(LHS.reg());
3462   MRI->clearKillFlags(RHS.reg());
3463 
3464   if (!EndPoints.empty()) {
3465     // Recompute the parts of the live range we had to remove because of
3466     // CR_Replace conflicts.
3467     LLVM_DEBUG({
3468       dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3469       for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3470         dbgs() << EndPoints[i];
3471         if (i != n-1)
3472           dbgs() << ',';
3473       }
3474       dbgs() << ":  " << LHS << '\n';
3475     });
3476     LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3477   }
3478 
3479   return true;
3480 }
3481 
3482 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3483   return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3484 }
3485 
3486 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF)
3487 {
3488   const SlotIndexes &Slots = *LIS->getSlotIndexes();
3489   SmallVector<MachineInstr *, 8> ToInsert;
3490 
3491   // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3492   // vreg => DbgValueLoc map.
3493   auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
3494     for (auto *X : ToInsert)
3495       DbgVRegToValues[X->getDebugOperand(0).getReg()].push_back({Slot, X});
3496 
3497     ToInsert.clear();
3498   };
3499 
3500   // Iterate over all instructions, collecting them into the ToInsert vector.
3501   // Once a non-debug instruction is found, record the slot index of the
3502   // collected DBG_VALUEs.
3503   for (auto &MBB : MF) {
3504     SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB);
3505 
3506     for (auto &MI : MBB) {
3507       if (MI.isDebugValue() && MI.getDebugOperand(0).isReg() &&
3508           MI.getDebugOperand(0).getReg().isVirtual()) {
3509         ToInsert.push_back(&MI);
3510       } else if (!MI.isDebugInstr()) {
3511         CurrentSlot = Slots.getInstructionIndex(MI);
3512         CloseNewDVRange(CurrentSlot);
3513       }
3514     }
3515 
3516     // Close range of DBG_VALUEs at the end of blocks.
3517     CloseNewDVRange(Slots.getMBBEndIdx(&MBB));
3518   }
3519 
3520   // Sort all DBG_VALUEs we've seen by slot number.
3521   for (auto &Pair : DbgVRegToValues)
3522     llvm::sort(Pair.second);
3523 }
3524 
3525 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
3526                                                      LiveRange &LHS,
3527                                                      JoinVals &LHSVals,
3528                                                      LiveRange &RHS,
3529                                                      JoinVals &RHSVals) {
3530   auto ScanForDstReg = [&](Register Reg) {
3531     checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals);
3532   };
3533 
3534   auto ScanForSrcReg = [&](Register Reg) {
3535     checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals);
3536   };
3537 
3538   // Scan for potentially unsound DBG_VALUEs: examine first the register number
3539   // Reg, and then any other vregs that may have been merged into  it.
3540   auto PerformScan = [this](Register Reg, std::function<void(Register)> Func) {
3541     Func(Reg);
3542     if (DbgMergedVRegNums.count(Reg))
3543       for (Register X : DbgMergedVRegNums[Reg])
3544         Func(X);
3545   };
3546 
3547   // Scan for unsound updates of both the source and destination register.
3548   PerformScan(CP.getSrcReg(), ScanForSrcReg);
3549   PerformScan(CP.getDstReg(), ScanForDstReg);
3550 }
3551 
3552 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg,
3553                                                          LiveRange &OtherLR,
3554                                                          LiveRange &RegLR,
3555                                                          JoinVals &RegVals) {
3556   // Are there any DBG_VALUEs to examine?
3557   auto VRegMapIt = DbgVRegToValues.find(Reg);
3558   if (VRegMapIt == DbgVRegToValues.end())
3559     return;
3560 
3561   auto &DbgValueSet = VRegMapIt->second;
3562   auto DbgValueSetIt = DbgValueSet.begin();
3563   auto SegmentIt = OtherLR.begin();
3564 
3565   bool LastUndefResult = false;
3566   SlotIndex LastUndefIdx;
3567 
3568   // If the "Other" register is live at a slot Idx, test whether Reg can
3569   // safely be merged with it, or should be marked undef.
3570   auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
3571                       &LastUndefIdx](SlotIndex Idx) -> bool {
3572     // Our worst-case performance typically happens with asan, causing very
3573     // many DBG_VALUEs of the same location. Cache a copy of the most recent
3574     // result for this edge-case.
3575     if (LastUndefIdx == Idx)
3576       return LastUndefResult;
3577 
3578     // If the other range was live, and Reg's was not, the register coalescer
3579     // will not have tried to resolve any conflicts. We don't know whether
3580     // the DBG_VALUE will refer to the same value number, so it must be made
3581     // undef.
3582     auto OtherIt = RegLR.find(Idx);
3583     if (OtherIt == RegLR.end())
3584       return true;
3585 
3586     // Both the registers were live: examine the conflict resolution record for
3587     // the value number Reg refers to. CR_Keep meant that this value number
3588     // "won" and the merged register definitely refers to that value. CR_Erase
3589     // means the value number was a redundant copy of the other value, which
3590     // was coalesced and Reg deleted. It's safe to refer to the other register
3591     // (which will be the source of the copy).
3592     auto Resolution = RegVals.getResolution(OtherIt->valno->id);
3593     LastUndefResult = Resolution != JoinVals::CR_Keep &&
3594                       Resolution != JoinVals::CR_Erase;
3595     LastUndefIdx = Idx;
3596     return LastUndefResult;
3597   };
3598 
3599   // Iterate over both the live-range of the "Other" register, and the set of
3600   // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3601   // slot index. This relies on the DbgValueSet being ordered.
3602   while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
3603     if (DbgValueSetIt->first < SegmentIt->end) {
3604       // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3605       // set it undef.
3606       if (DbgValueSetIt->first >= SegmentIt->start &&
3607           DbgValueSetIt->second->getDebugOperand(0).getReg() != 0 &&
3608           ShouldUndef(DbgValueSetIt->first)) {
3609         // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3610         DbgValueSetIt->second->setDebugValueUndef();
3611         continue;
3612       }
3613       ++DbgValueSetIt;
3614     } else {
3615       ++SegmentIt;
3616     }
3617   }
3618 }
3619 
3620 namespace {
3621 
3622 /// Information concerning MBB coalescing priority.
3623 struct MBBPriorityInfo {
3624   MachineBasicBlock *MBB;
3625   unsigned Depth;
3626   bool IsSplit;
3627 
3628   MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3629     : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3630 };
3631 
3632 } // end anonymous namespace
3633 
3634 /// C-style comparator that sorts first based on the loop depth of the basic
3635 /// block (the unsigned), and then on the MBB number.
3636 ///
3637 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3638 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3639                               const MBBPriorityInfo *RHS) {
3640   // Deeper loops first
3641   if (LHS->Depth != RHS->Depth)
3642     return LHS->Depth > RHS->Depth ? -1 : 1;
3643 
3644   // Try to unsplit critical edges next.
3645   if (LHS->IsSplit != RHS->IsSplit)
3646     return LHS->IsSplit ? -1 : 1;
3647 
3648   // Prefer blocks that are more connected in the CFG. This takes care of
3649   // the most difficult copies first while intervals are short.
3650   unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3651   unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3652   if (cl != cr)
3653     return cl > cr ? -1 : 1;
3654 
3655   // As a last resort, sort by block number.
3656   return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3657 }
3658 
3659 /// \returns true if the given copy uses or defines a local live range.
3660 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3661   if (!Copy->isCopy())
3662     return false;
3663 
3664   if (Copy->getOperand(1).isUndef())
3665     return false;
3666 
3667   Register SrcReg = Copy->getOperand(1).getReg();
3668   Register DstReg = Copy->getOperand(0).getReg();
3669   if (Register::isPhysicalRegister(SrcReg) ||
3670       Register::isPhysicalRegister(DstReg))
3671     return false;
3672 
3673   return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3674     || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3675 }
3676 
3677 void RegisterCoalescer::lateLiveIntervalUpdate() {
3678   for (Register reg : ToBeUpdated) {
3679     if (!LIS->hasInterval(reg))
3680       continue;
3681     LiveInterval &LI = LIS->getInterval(reg);
3682     shrinkToUses(&LI, &DeadDefs);
3683     if (!DeadDefs.empty())
3684       eliminateDeadDefs();
3685   }
3686   ToBeUpdated.clear();
3687 }
3688 
3689 bool RegisterCoalescer::
3690 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3691   bool Progress = false;
3692   for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3693     if (!CurrList[i])
3694       continue;
3695     // Skip instruction pointers that have already been erased, for example by
3696     // dead code elimination.
3697     if (ErasedInstrs.count(CurrList[i])) {
3698       CurrList[i] = nullptr;
3699       continue;
3700     }
3701     bool Again = false;
3702     bool Success = joinCopy(CurrList[i], Again);
3703     Progress |= Success;
3704     if (Success || !Again)
3705       CurrList[i] = nullptr;
3706   }
3707   return Progress;
3708 }
3709 
3710 /// Check if DstReg is a terminal node.
3711 /// I.e., it does not have any affinity other than \p Copy.
3712 static bool isTerminalReg(Register DstReg, const MachineInstr &Copy,
3713                           const MachineRegisterInfo *MRI) {
3714   assert(Copy.isCopyLike());
3715   // Check if the destination of this copy as any other affinity.
3716   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3717     if (&MI != &Copy && MI.isCopyLike())
3718       return false;
3719   return true;
3720 }
3721 
3722 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3723   assert(Copy.isCopyLike());
3724   if (!UseTerminalRule)
3725     return false;
3726   Register SrcReg, DstReg;
3727   unsigned SrcSubReg, DstSubReg;
3728   if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
3729     return false;
3730   // Check if the destination of this copy has any other affinity.
3731   if (DstReg.isPhysical() ||
3732       // If SrcReg is a physical register, the copy won't be coalesced.
3733       // Ignoring it may have other side effect (like missing
3734       // rematerialization). So keep it.
3735       SrcReg.isPhysical() || !isTerminalReg(DstReg, Copy, MRI))
3736     return false;
3737 
3738   // DstReg is a terminal node. Check if it interferes with any other
3739   // copy involving SrcReg.
3740   const MachineBasicBlock *OrigBB = Copy.getParent();
3741   const LiveInterval &DstLI = LIS->getInterval(DstReg);
3742   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3743     // Technically we should check if the weight of the new copy is
3744     // interesting compared to the other one and update the weight
3745     // of the copies accordingly. However, this would only work if
3746     // we would gather all the copies first then coalesce, whereas
3747     // right now we interleave both actions.
3748     // For now, just consider the copies that are in the same block.
3749     if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3750       continue;
3751     Register OtherSrcReg, OtherReg;
3752     unsigned OtherSrcSubReg, OtherSubReg;
3753     if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3754                 OtherSubReg))
3755       return false;
3756     if (OtherReg == SrcReg)
3757       OtherReg = OtherSrcReg;
3758     // Check if OtherReg is a non-terminal.
3759     if (Register::isPhysicalRegister(OtherReg) ||
3760         isTerminalReg(OtherReg, MI, MRI))
3761       continue;
3762     // Check that OtherReg interfere with DstReg.
3763     if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3764       LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3765                         << '\n');
3766       return true;
3767     }
3768   }
3769   return false;
3770 }
3771 
3772 void
3773 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3774   LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3775 
3776   // Collect all copy-like instructions in MBB. Don't start coalescing anything
3777   // yet, it might invalidate the iterator.
3778   const unsigned PrevSize = WorkList.size();
3779   if (JoinGlobalCopies) {
3780     SmallVector<MachineInstr*, 2> LocalTerminals;
3781     SmallVector<MachineInstr*, 2> GlobalTerminals;
3782     // Coalesce copies bottom-up to coalesce local defs before local uses. They
3783     // are not inherently easier to resolve, but slightly preferable until we
3784     // have local live range splitting. In particular this is required by
3785     // cmp+jmp macro fusion.
3786     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
3787          MII != E; ++MII) {
3788       if (!MII->isCopyLike())
3789         continue;
3790       bool ApplyTerminalRule = applyTerminalRule(*MII);
3791       if (isLocalCopy(&(*MII), LIS)) {
3792         if (ApplyTerminalRule)
3793           LocalTerminals.push_back(&(*MII));
3794         else
3795           LocalWorkList.push_back(&(*MII));
3796       } else {
3797         if (ApplyTerminalRule)
3798           GlobalTerminals.push_back(&(*MII));
3799         else
3800           WorkList.push_back(&(*MII));
3801       }
3802     }
3803     // Append the copies evicted by the terminal rule at the end of the list.
3804     LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
3805     WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
3806   }
3807   else {
3808     SmallVector<MachineInstr*, 2> Terminals;
3809     for (MachineInstr &MII : *MBB)
3810       if (MII.isCopyLike()) {
3811         if (applyTerminalRule(MII))
3812           Terminals.push_back(&MII);
3813         else
3814           WorkList.push_back(&MII);
3815       }
3816     // Append the copies evicted by the terminal rule at the end of the list.
3817     WorkList.append(Terminals.begin(), Terminals.end());
3818   }
3819   // Try coalescing the collected copies immediately, and remove the nulls.
3820   // This prevents the WorkList from getting too large since most copies are
3821   // joinable on the first attempt.
3822   MutableArrayRef<MachineInstr*>
3823     CurrList(WorkList.begin() + PrevSize, WorkList.end());
3824   if (copyCoalesceWorkList(CurrList))
3825     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
3826                                nullptr), WorkList.end());
3827 }
3828 
3829 void RegisterCoalescer::coalesceLocals() {
3830   copyCoalesceWorkList(LocalWorkList);
3831   for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
3832     if (LocalWorkList[j])
3833       WorkList.push_back(LocalWorkList[j]);
3834   }
3835   LocalWorkList.clear();
3836 }
3837 
3838 void RegisterCoalescer::joinAllIntervals() {
3839   LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
3840   assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
3841 
3842   std::vector<MBBPriorityInfo> MBBs;
3843   MBBs.reserve(MF->size());
3844   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
3845     MachineBasicBlock *MBB = &*I;
3846     MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
3847                                    JoinSplitEdges && isSplitEdge(MBB)));
3848   }
3849   array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
3850 
3851   // Coalesce intervals in MBB priority order.
3852   unsigned CurrDepth = std::numeric_limits<unsigned>::max();
3853   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
3854     // Try coalescing the collected local copies for deeper loops.
3855     if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
3856       coalesceLocals();
3857       CurrDepth = MBBs[i].Depth;
3858     }
3859     copyCoalesceInMBB(MBBs[i].MBB);
3860   }
3861   lateLiveIntervalUpdate();
3862   coalesceLocals();
3863 
3864   // Joining intervals can allow other intervals to be joined.  Iteratively join
3865   // until we make no progress.
3866   while (copyCoalesceWorkList(WorkList))
3867     /* empty */ ;
3868   lateLiveIntervalUpdate();
3869 }
3870 
3871 void RegisterCoalescer::releaseMemory() {
3872   ErasedInstrs.clear();
3873   WorkList.clear();
3874   DeadDefs.clear();
3875   InflateRegs.clear();
3876   LargeLIVisitCounter.clear();
3877 }
3878 
3879 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
3880   LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3881                     << "********** Function: " << fn.getName() << '\n');
3882 
3883   // Variables changed between a setjmp and a longjump can have undefined value
3884   // after the longjmp. This behaviour can be observed if such a variable is
3885   // spilled, so longjmp won't restore the value in the spill slot.
3886   // RegisterCoalescer should not run in functions with a setjmp to avoid
3887   // merging such undefined variables with predictable ones.
3888   //
3889   // TODO: Could specifically disable coalescing registers live across setjmp
3890   // calls
3891   if (fn.exposesReturnsTwice()) {
3892     LLVM_DEBUG(
3893         dbgs() << "* Skipped as it exposes funcions that returns twice.\n");
3894     return false;
3895   }
3896 
3897   MF = &fn;
3898   MRI = &fn.getRegInfo();
3899   const TargetSubtargetInfo &STI = fn.getSubtarget();
3900   TRI = STI.getRegisterInfo();
3901   TII = STI.getInstrInfo();
3902   LIS = &getAnalysis<LiveIntervals>();
3903   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3904   Loops = &getAnalysis<MachineLoopInfo>();
3905   if (EnableGlobalCopies == cl::BOU_UNSET)
3906     JoinGlobalCopies = STI.enableJoinGlobalCopies();
3907   else
3908     JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
3909 
3910   // The MachineScheduler does not currently require JoinSplitEdges. This will
3911   // either be enabled unconditionally or replaced by a more general live range
3912   // splitting optimization.
3913   JoinSplitEdges = EnableJoinSplits;
3914 
3915   if (VerifyCoalescing)
3916     MF->verify(this, "Before register coalescing");
3917 
3918   DbgVRegToValues.clear();
3919   DbgMergedVRegNums.clear();
3920   buildVRegToDbgValueMap(fn);
3921 
3922   RegClassInfo.runOnMachineFunction(fn);
3923 
3924   // Join (coalesce) intervals if requested.
3925   if (EnableJoining)
3926     joinAllIntervals();
3927 
3928   // After deleting a lot of copies, register classes may be less constrained.
3929   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3930   // DPR inflation.
3931   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
3932   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
3933                     InflateRegs.end());
3934   LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
3935                     << " regs.\n");
3936   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
3937     Register Reg = InflateRegs[i];
3938     if (MRI->reg_nodbg_empty(Reg))
3939       continue;
3940     if (MRI->recomputeRegClass(Reg)) {
3941       LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
3942                         << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
3943       ++NumInflated;
3944 
3945       LiveInterval &LI = LIS->getInterval(Reg);
3946       if (LI.hasSubRanges()) {
3947         // If the inflated register class does not support subregisters anymore
3948         // remove the subranges.
3949         if (!MRI->shouldTrackSubRegLiveness(Reg)) {
3950           LI.clearSubRanges();
3951         } else {
3952 #ifndef NDEBUG
3953           LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3954           // If subranges are still supported, then the same subregs
3955           // should still be supported.
3956           for (LiveInterval::SubRange &S : LI.subranges()) {
3957             assert((S.LaneMask & ~MaxMask).none());
3958           }
3959 #endif
3960         }
3961       }
3962     }
3963   }
3964 
3965   LLVM_DEBUG(dump());
3966   if (VerifyCoalescing)
3967     MF->verify(this, "After register coalescing");
3968   return true;
3969 }
3970 
3971 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3972    LIS->print(O, m);
3973 }
3974