1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic RegisterCoalescer interface which 10 // is used as the common interface used by all clients and 11 // implementations of register coalescing. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "RegisterCoalescer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetOpcodes.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/LaneBitmask.h" 45 #include "llvm/MC/MCInstrDesc.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <iterator> 56 #include <limits> 57 #include <tuple> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "regalloc" 64 65 STATISTIC(numJoins , "Number of interval joins performed"); 66 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 67 STATISTIC(numCommutes , "Number of instruction commuting performed"); 68 STATISTIC(numExtends , "Number of copies extended"); 69 STATISTIC(NumReMats , "Number of instructions re-materialized"); 70 STATISTIC(NumInflated , "Number of register classes inflated"); 71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 72 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 73 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called"); 74 75 static cl::opt<bool> EnableJoining("join-liveintervals", 76 cl::desc("Coalesce copies (default=true)"), 77 cl::init(true), cl::Hidden); 78 79 static cl::opt<bool> UseTerminalRule("terminal-rule", 80 cl::desc("Apply the terminal rule"), 81 cl::init(false), cl::Hidden); 82 83 /// Temporary flag to test critical edge unsplitting. 84 static cl::opt<bool> 85 EnableJoinSplits("join-splitedges", 86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 87 88 /// Temporary flag to test global copy optimization. 89 static cl::opt<cl::boolOrDefault> 90 EnableGlobalCopies("join-globalcopies", 91 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 92 cl::init(cl::BOU_UNSET), cl::Hidden); 93 94 static cl::opt<bool> 95 VerifyCoalescing("verify-coalescing", 96 cl::desc("Verify machine instrs before and after register coalescing"), 97 cl::Hidden); 98 99 static cl::opt<unsigned> LateRematUpdateThreshold( 100 "late-remat-update-threshold", cl::Hidden, 101 cl::desc("During rematerialization for a copy, if the def instruction has " 102 "many other copy uses to be rematerialized, delay the multiple " 103 "separate live interval update work and do them all at once after " 104 "all those rematerialization are done. It will save a lot of " 105 "repeated work. "), 106 cl::init(100)); 107 108 static cl::opt<unsigned> LargeIntervalSizeThreshold( 109 "large-interval-size-threshold", cl::Hidden, 110 cl::desc("If the valnos size of an interval is larger than the threshold, " 111 "it is regarded as a large interval. "), 112 cl::init(100)); 113 114 static cl::opt<unsigned> LargeIntervalFreqThreshold( 115 "large-interval-freq-threshold", cl::Hidden, 116 cl::desc("For a large interval, if it is coalesed with other live " 117 "intervals many times more than the threshold, stop its " 118 "coalescing to control the compile time. "), 119 cl::init(100)); 120 121 namespace { 122 123 class RegisterCoalescer : public MachineFunctionPass, 124 private LiveRangeEdit::Delegate { 125 MachineFunction* MF = nullptr; 126 MachineRegisterInfo* MRI = nullptr; 127 const TargetRegisterInfo* TRI = nullptr; 128 const TargetInstrInfo* TII = nullptr; 129 LiveIntervals *LIS = nullptr; 130 const MachineLoopInfo* Loops = nullptr; 131 AliasAnalysis *AA = nullptr; 132 RegisterClassInfo RegClassInfo; 133 134 /// A LaneMask to remember on which subregister live ranges we need to call 135 /// shrinkToUses() later. 136 LaneBitmask ShrinkMask; 137 138 /// True if the main range of the currently coalesced intervals should be 139 /// checked for smaller live intervals. 140 bool ShrinkMainRange = false; 141 142 /// True if the coalescer should aggressively coalesce global copies 143 /// in favor of keeping local copies. 144 bool JoinGlobalCopies = false; 145 146 /// True if the coalescer should aggressively coalesce fall-thru 147 /// blocks exclusively containing copies. 148 bool JoinSplitEdges = false; 149 150 /// Copy instructions yet to be coalesced. 151 SmallVector<MachineInstr*, 8> WorkList; 152 SmallVector<MachineInstr*, 8> LocalWorkList; 153 154 /// Set of instruction pointers that have been erased, and 155 /// that may be present in WorkList. 156 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 157 158 /// Dead instructions that are about to be deleted. 159 SmallVector<MachineInstr*, 8> DeadDefs; 160 161 /// Virtual registers to be considered for register class inflation. 162 SmallVector<unsigned, 8> InflateRegs; 163 164 /// The collection of live intervals which should have been updated 165 /// immediately after rematerialiation but delayed until 166 /// lateLiveIntervalUpdate is called. 167 DenseSet<unsigned> ToBeUpdated; 168 169 /// Record how many times the large live interval with many valnos 170 /// has been tried to join with other live interval. 171 DenseMap<unsigned, unsigned long> LargeLIVisitCounter; 172 173 /// Recursively eliminate dead defs in DeadDefs. 174 void eliminateDeadDefs(); 175 176 /// LiveRangeEdit callback for eliminateDeadDefs(). 177 void LRE_WillEraseInstruction(MachineInstr *MI) override; 178 179 /// Coalesce the LocalWorkList. 180 void coalesceLocals(); 181 182 /// Join compatible live intervals 183 void joinAllIntervals(); 184 185 /// Coalesce copies in the specified MBB, putting 186 /// copies that cannot yet be coalesced into WorkList. 187 void copyCoalesceInMBB(MachineBasicBlock *MBB); 188 189 /// Tries to coalesce all copies in CurrList. Returns true if any progress 190 /// was made. 191 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 192 193 /// If one def has many copy like uses, and those copy uses are all 194 /// rematerialized, the live interval update needed for those 195 /// rematerializations will be delayed and done all at once instead 196 /// of being done multiple times. This is to save compile cost because 197 /// live interval update is costly. 198 void lateLiveIntervalUpdate(); 199 200 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 201 /// src/dst of the copy instruction CopyMI. This returns true if the copy 202 /// was successfully coalesced away. If it is not currently possible to 203 /// coalesce this interval, but it may be possible if other things get 204 /// coalesced, then it returns true by reference in 'Again'. 205 bool joinCopy(MachineInstr *CopyMI, bool &Again); 206 207 /// Attempt to join these two intervals. On failure, this 208 /// returns false. The output "SrcInt" will not have been modified, so we 209 /// can use this information below to update aliases. 210 bool joinIntervals(CoalescerPair &CP); 211 212 /// Attempt joining two virtual registers. Return true on success. 213 bool joinVirtRegs(CoalescerPair &CP); 214 215 /// If a live interval has many valnos and is coalesced with other 216 /// live intervals many times, we regard such live interval as having 217 /// high compile time cost. 218 bool isHighCostLiveInterval(LiveInterval &LI); 219 220 /// Attempt joining with a reserved physreg. 221 bool joinReservedPhysReg(CoalescerPair &CP); 222 223 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 224 /// Subranges in @p LI which only partially interfere with the desired 225 /// LaneMask are split as necessary. @p LaneMask are the lanes that 226 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 227 /// lanemasks already adjusted to the coalesced register. 228 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 229 LaneBitmask LaneMask, CoalescerPair &CP, 230 unsigned DstIdx); 231 232 /// Join the liveranges of two subregisters. Joins @p RRange into 233 /// @p LRange, @p RRange may be invalid afterwards. 234 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 235 LaneBitmask LaneMask, const CoalescerPair &CP); 236 237 /// We found a non-trivially-coalescable copy. If the source value number is 238 /// defined by a copy from the destination reg see if we can merge these two 239 /// destination reg valno# into a single value number, eliminating a copy. 240 /// This returns true if an interval was modified. 241 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 242 243 /// Return true if there are definitions of IntB 244 /// other than BValNo val# that can reach uses of AValno val# of IntA. 245 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 246 VNInfo *AValNo, VNInfo *BValNo); 247 248 /// We found a non-trivially-coalescable copy. 249 /// If the source value number is defined by a commutable instruction and 250 /// its other operand is coalesced to the copy dest register, see if we 251 /// can transform the copy into a noop by commuting the definition. 252 /// This returns a pair of two flags: 253 /// - the first element is true if an interval was modified, 254 /// - the second element is true if the destination interval needs 255 /// to be shrunk after deleting the copy. 256 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP, 257 MachineInstr *CopyMI); 258 259 /// We found a copy which can be moved to its less frequent predecessor. 260 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 261 262 /// If the source of a copy is defined by a 263 /// trivial computation, replace the copy by rematerialize the definition. 264 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 265 bool &IsDefCopy); 266 267 /// Return true if a copy involving a physreg should be joined. 268 bool canJoinPhys(const CoalescerPair &CP); 269 270 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 271 /// number if it is not zero. If DstReg is a physical register and the 272 /// existing subregister number of the def / use being updated is not zero, 273 /// make sure to set it to the correct physical subregister. 274 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 275 276 /// If the given machine operand reads only undefined lanes add an undef 277 /// flag. 278 /// This can happen when undef uses were previously concealed by a copy 279 /// which we coalesced. Example: 280 /// %0:sub0<def,read-undef> = ... 281 /// %1 = COPY %0 <-- Coalescing COPY reveals undef 282 /// = use %1:sub1 <-- hidden undef use 283 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 284 MachineOperand &MO, unsigned SubRegIdx); 285 286 /// Handle copies of undef values. If the undef value is an incoming 287 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF. 288 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise, 289 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point). 290 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI); 291 292 /// Check whether or not we should apply the terminal rule on the 293 /// destination (Dst) of \p Copy. 294 /// When the terminal rule applies, Copy is not profitable to 295 /// coalesce. 296 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 297 /// at least one interference (Dst, Dst2). If Dst is terminal, the 298 /// terminal rule consists in checking that at least one of 299 /// interfering node, say Dst2, has an affinity of equal or greater 300 /// weight with Src. 301 /// In that case, Dst2 and Dst will not be able to be both coalesced 302 /// with Src. Since Dst2 exposes more coalescing opportunities than 303 /// Dst, we can drop \p Copy. 304 bool applyTerminalRule(const MachineInstr &Copy) const; 305 306 /// Wrapper method for \see LiveIntervals::shrinkToUses. 307 /// This method does the proper fixing of the live-ranges when the afore 308 /// mentioned method returns true. 309 void shrinkToUses(LiveInterval *LI, 310 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 311 NumShrinkToUses++; 312 if (LIS->shrinkToUses(LI, Dead)) { 313 /// Check whether or not \p LI is composed by multiple connected 314 /// components and if that is the case, fix that. 315 SmallVector<LiveInterval*, 8> SplitLIs; 316 LIS->splitSeparateComponents(*LI, SplitLIs); 317 } 318 } 319 320 /// Wrapper Method to do all the necessary work when an Instruction is 321 /// deleted. 322 /// Optimizations should use this to make sure that deleted instructions 323 /// are always accounted for. 324 void deleteInstr(MachineInstr* MI) { 325 ErasedInstrs.insert(MI); 326 LIS->RemoveMachineInstrFromMaps(*MI); 327 MI->eraseFromParent(); 328 } 329 330 public: 331 static char ID; ///< Class identification, replacement for typeinfo 332 333 RegisterCoalescer() : MachineFunctionPass(ID) { 334 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 335 } 336 337 void getAnalysisUsage(AnalysisUsage &AU) const override; 338 339 void releaseMemory() override; 340 341 /// This is the pass entry point. 342 bool runOnMachineFunction(MachineFunction&) override; 343 344 /// Implement the dump method. 345 void print(raw_ostream &O, const Module* = nullptr) const override; 346 }; 347 348 } // end anonymous namespace 349 350 char RegisterCoalescer::ID = 0; 351 352 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 353 354 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 355 "Simple Register Coalescing", false, false) 356 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 357 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 358 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 359 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 360 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 361 "Simple Register Coalescing", false, false) 362 363 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri, 364 const MachineInstr *MI, unsigned &Src, 365 unsigned &Dst, unsigned &SrcSub, 366 unsigned &DstSub) { 367 if (MI->isCopy()) { 368 Dst = MI->getOperand(0).getReg(); 369 DstSub = MI->getOperand(0).getSubReg(); 370 Src = MI->getOperand(1).getReg(); 371 SrcSub = MI->getOperand(1).getSubReg(); 372 } else if (MI->isSubregToReg()) { 373 Dst = MI->getOperand(0).getReg(); 374 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 375 MI->getOperand(3).getImm()); 376 Src = MI->getOperand(2).getReg(); 377 SrcSub = MI->getOperand(2).getSubReg(); 378 } else 379 return false; 380 return true; 381 } 382 383 /// Return true if this block should be vacated by the coalescer to eliminate 384 /// branches. The important cases to handle in the coalescer are critical edges 385 /// split during phi elimination which contain only copies. Simple blocks that 386 /// contain non-branches should also be vacated, but this can be handled by an 387 /// earlier pass similar to early if-conversion. 388 static bool isSplitEdge(const MachineBasicBlock *MBB) { 389 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 390 return false; 391 392 for (const auto &MI : *MBB) { 393 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 394 return false; 395 } 396 return true; 397 } 398 399 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 400 SrcReg = DstReg = 0; 401 SrcIdx = DstIdx = 0; 402 NewRC = nullptr; 403 Flipped = CrossClass = false; 404 405 unsigned Src, Dst, SrcSub, DstSub; 406 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 407 return false; 408 Partial = SrcSub || DstSub; 409 410 // If one register is a physreg, it must be Dst. 411 if (Register::isPhysicalRegister(Src)) { 412 if (Register::isPhysicalRegister(Dst)) 413 return false; 414 std::swap(Src, Dst); 415 std::swap(SrcSub, DstSub); 416 Flipped = true; 417 } 418 419 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 420 421 if (Register::isPhysicalRegister(Dst)) { 422 // Eliminate DstSub on a physreg. 423 if (DstSub) { 424 Dst = TRI.getSubReg(Dst, DstSub); 425 if (!Dst) return false; 426 DstSub = 0; 427 } 428 429 // Eliminate SrcSub by picking a corresponding Dst superregister. 430 if (SrcSub) { 431 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 432 if (!Dst) return false; 433 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 434 return false; 435 } 436 } else { 437 // Both registers are virtual. 438 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 439 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 440 441 // Both registers have subreg indices. 442 if (SrcSub && DstSub) { 443 // Copies between different sub-registers are never coalescable. 444 if (Src == Dst && SrcSub != DstSub) 445 return false; 446 447 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 448 SrcIdx, DstIdx); 449 if (!NewRC) 450 return false; 451 } else if (DstSub) { 452 // SrcReg will be merged with a sub-register of DstReg. 453 SrcIdx = DstSub; 454 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 455 } else if (SrcSub) { 456 // DstReg will be merged with a sub-register of SrcReg. 457 DstIdx = SrcSub; 458 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 459 } else { 460 // This is a straight copy without sub-registers. 461 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 462 } 463 464 // The combined constraint may be impossible to satisfy. 465 if (!NewRC) 466 return false; 467 468 // Prefer SrcReg to be a sub-register of DstReg. 469 // FIXME: Coalescer should support subregs symmetrically. 470 if (DstIdx && !SrcIdx) { 471 std::swap(Src, Dst); 472 std::swap(SrcIdx, DstIdx); 473 Flipped = !Flipped; 474 } 475 476 CrossClass = NewRC != DstRC || NewRC != SrcRC; 477 } 478 // Check our invariants 479 assert(Register::isVirtualRegister(Src) && "Src must be virtual"); 480 assert(!(Register::isPhysicalRegister(Dst) && DstSub) && 481 "Cannot have a physical SubIdx"); 482 SrcReg = Src; 483 DstReg = Dst; 484 return true; 485 } 486 487 bool CoalescerPair::flip() { 488 if (Register::isPhysicalRegister(DstReg)) 489 return false; 490 std::swap(SrcReg, DstReg); 491 std::swap(SrcIdx, DstIdx); 492 Flipped = !Flipped; 493 return true; 494 } 495 496 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 497 if (!MI) 498 return false; 499 unsigned Src, Dst, SrcSub, DstSub; 500 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 501 return false; 502 503 // Find the virtual register that is SrcReg. 504 if (Dst == SrcReg) { 505 std::swap(Src, Dst); 506 std::swap(SrcSub, DstSub); 507 } else if (Src != SrcReg) { 508 return false; 509 } 510 511 // Now check that Dst matches DstReg. 512 if (Register::isPhysicalRegister(DstReg)) { 513 if (!Register::isPhysicalRegister(Dst)) 514 return false; 515 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 516 // DstSub could be set for a physreg from INSERT_SUBREG. 517 if (DstSub) 518 Dst = TRI.getSubReg(Dst, DstSub); 519 // Full copy of Src. 520 if (!SrcSub) 521 return DstReg == Dst; 522 // This is a partial register copy. Check that the parts match. 523 return TRI.getSubReg(DstReg, SrcSub) == Dst; 524 } else { 525 // DstReg is virtual. 526 if (DstReg != Dst) 527 return false; 528 // Registers match, do the subregisters line up? 529 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 530 TRI.composeSubRegIndices(DstIdx, DstSub); 531 } 532 } 533 534 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 535 AU.setPreservesCFG(); 536 AU.addRequired<AAResultsWrapperPass>(); 537 AU.addRequired<LiveIntervals>(); 538 AU.addPreserved<LiveIntervals>(); 539 AU.addPreserved<SlotIndexes>(); 540 AU.addRequired<MachineLoopInfo>(); 541 AU.addPreserved<MachineLoopInfo>(); 542 AU.addPreservedID(MachineDominatorsID); 543 MachineFunctionPass::getAnalysisUsage(AU); 544 } 545 546 void RegisterCoalescer::eliminateDeadDefs() { 547 SmallVector<unsigned, 8> NewRegs; 548 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 549 nullptr, this).eliminateDeadDefs(DeadDefs); 550 } 551 552 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 553 // MI may be in WorkList. Make sure we don't visit it. 554 ErasedInstrs.insert(MI); 555 } 556 557 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 558 MachineInstr *CopyMI) { 559 assert(!CP.isPartial() && "This doesn't work for partial copies."); 560 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 561 562 LiveInterval &IntA = 563 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 564 LiveInterval &IntB = 565 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 566 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 567 568 // We have a non-trivially-coalescable copy with IntA being the source and 569 // IntB being the dest, thus this defines a value number in IntB. If the 570 // source value number (in IntA) is defined by a copy from B, see if we can 571 // merge these two pieces of B into a single value number, eliminating a copy. 572 // For example: 573 // 574 // A3 = B0 575 // ... 576 // B1 = A3 <- this copy 577 // 578 // In this case, B0 can be extended to where the B1 copy lives, allowing the 579 // B1 value number to be replaced with B0 (which simplifies the B 580 // liveinterval). 581 582 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 583 // the example above. 584 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 585 if (BS == IntB.end()) return false; 586 VNInfo *BValNo = BS->valno; 587 588 // Get the location that B is defined at. Two options: either this value has 589 // an unknown definition point or it is defined at CopyIdx. If unknown, we 590 // can't process it. 591 if (BValNo->def != CopyIdx) return false; 592 593 // AValNo is the value number in A that defines the copy, A3 in the example. 594 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 595 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 596 // The live segment might not exist after fun with physreg coalescing. 597 if (AS == IntA.end()) return false; 598 VNInfo *AValNo = AS->valno; 599 600 // If AValNo is defined as a copy from IntB, we can potentially process this. 601 // Get the instruction that defines this value number. 602 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 603 // Don't allow any partial copies, even if isCoalescable() allows them. 604 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 605 return false; 606 607 // Get the Segment in IntB that this value number starts with. 608 LiveInterval::iterator ValS = 609 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 610 if (ValS == IntB.end()) 611 return false; 612 613 // Make sure that the end of the live segment is inside the same block as 614 // CopyMI. 615 MachineInstr *ValSEndInst = 616 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 617 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 618 return false; 619 620 // Okay, we now know that ValS ends in the same block that the CopyMI 621 // live-range starts. If there are no intervening live segments between them 622 // in IntB, we can merge them. 623 if (ValS+1 != BS) return false; 624 625 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI)); 626 627 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 628 // We are about to delete CopyMI, so need to remove it as the 'instruction 629 // that defines this value #'. Update the valnum with the new defining 630 // instruction #. 631 BValNo->def = FillerStart; 632 633 // Okay, we can merge them. We need to insert a new liverange: 634 // [ValS.end, BS.begin) of either value number, then we merge the 635 // two value numbers. 636 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 637 638 // Okay, merge "B1" into the same value number as "B0". 639 if (BValNo != ValS->valno) 640 IntB.MergeValueNumberInto(BValNo, ValS->valno); 641 642 // Do the same for the subregister segments. 643 for (LiveInterval::SubRange &S : IntB.subranges()) { 644 // Check for SubRange Segments of the form [1234r,1234d:0) which can be 645 // removed to prevent creating bogus SubRange Segments. 646 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx); 647 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) { 648 S.removeSegment(*SS, true); 649 continue; 650 } 651 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 652 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 653 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 654 if (SubBValNo != SubValSNo) 655 S.MergeValueNumberInto(SubBValNo, SubValSNo); 656 } 657 658 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n'); 659 660 // If the source instruction was killing the source register before the 661 // merge, unset the isKill marker given the live range has been extended. 662 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 663 if (UIdx != -1) { 664 ValSEndInst->getOperand(UIdx).setIsKill(false); 665 } 666 667 // Rewrite the copy. 668 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 669 // If the copy instruction was killing the destination register or any 670 // subrange before the merge trim the live range. 671 bool RecomputeLiveRange = AS->end == CopyIdx; 672 if (!RecomputeLiveRange) { 673 for (LiveInterval::SubRange &S : IntA.subranges()) { 674 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx); 675 if (SS != S.end() && SS->end == CopyIdx) { 676 RecomputeLiveRange = true; 677 break; 678 } 679 } 680 } 681 if (RecomputeLiveRange) 682 shrinkToUses(&IntA); 683 684 ++numExtends; 685 return true; 686 } 687 688 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 689 LiveInterval &IntB, 690 VNInfo *AValNo, 691 VNInfo *BValNo) { 692 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 693 // the PHI values. 694 if (LIS->hasPHIKill(IntA, AValNo)) 695 return true; 696 697 for (LiveRange::Segment &ASeg : IntA.segments) { 698 if (ASeg.valno != AValNo) continue; 699 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start); 700 if (BI != IntB.begin()) 701 --BI; 702 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 703 if (BI->valno == BValNo) 704 continue; 705 if (BI->start <= ASeg.start && BI->end > ASeg.start) 706 return true; 707 if (BI->start > ASeg.start && BI->start < ASeg.end) 708 return true; 709 } 710 } 711 return false; 712 } 713 714 /// Copy segments with value number @p SrcValNo from liverange @p Src to live 715 /// range @Dst and use value number @p DstValNo there. 716 static std::pair<bool,bool> 717 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src, 718 const VNInfo *SrcValNo) { 719 bool Changed = false; 720 bool MergedWithDead = false; 721 for (const LiveRange::Segment &S : Src.segments) { 722 if (S.valno != SrcValNo) 723 continue; 724 // This is adding a segment from Src that ends in a copy that is about 725 // to be removed. This segment is going to be merged with a pre-existing 726 // segment in Dst. This works, except in cases when the corresponding 727 // segment in Dst is dead. For example: adding [192r,208r:1) from Src 728 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst. 729 // Recognized such cases, so that the segments can be shrunk. 730 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo); 731 LiveRange::Segment &Merged = *Dst.addSegment(Added); 732 if (Merged.end.isDead()) 733 MergedWithDead = true; 734 Changed = true; 735 } 736 return std::make_pair(Changed, MergedWithDead); 737 } 738 739 std::pair<bool,bool> 740 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 741 MachineInstr *CopyMI) { 742 assert(!CP.isPhys()); 743 744 LiveInterval &IntA = 745 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 746 LiveInterval &IntB = 747 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 748 749 // We found a non-trivially-coalescable copy with IntA being the source and 750 // IntB being the dest, thus this defines a value number in IntB. If the 751 // source value number (in IntA) is defined by a commutable instruction and 752 // its other operand is coalesced to the copy dest register, see if we can 753 // transform the copy into a noop by commuting the definition. For example, 754 // 755 // A3 = op A2 killed B0 756 // ... 757 // B1 = A3 <- this copy 758 // ... 759 // = op A3 <- more uses 760 // 761 // ==> 762 // 763 // B2 = op B0 killed A2 764 // ... 765 // B1 = B2 <- now an identity copy 766 // ... 767 // = op B2 <- more uses 768 769 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 770 // the example above. 771 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 772 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 773 assert(BValNo != nullptr && BValNo->def == CopyIdx); 774 775 // AValNo is the value number in A that defines the copy, A3 in the example. 776 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 777 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 778 if (AValNo->isPHIDef()) 779 return { false, false }; 780 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 781 if (!DefMI) 782 return { false, false }; 783 if (!DefMI->isCommutable()) 784 return { false, false }; 785 // If DefMI is a two-address instruction then commuting it will change the 786 // destination register. 787 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 788 assert(DefIdx != -1); 789 unsigned UseOpIdx; 790 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 791 return { false, false }; 792 793 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 794 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 795 // passed to the method. That _other_ operand is chosen by 796 // the findCommutedOpIndices() method. 797 // 798 // That is obviously an area for improvement in case of instructions having 799 // more than 2 operands. For example, if some instruction has 3 commutable 800 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 801 // op#2<->op#3) of commute transformation should be considered/tried here. 802 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 803 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 804 return { false, false }; 805 806 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 807 Register NewReg = NewDstMO.getReg(); 808 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 809 return { false, false }; 810 811 // Make sure there are no other definitions of IntB that would reach the 812 // uses which the new definition can reach. 813 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 814 return { false, false }; 815 816 // If some of the uses of IntA.reg is already coalesced away, return false. 817 // It's not possible to determine whether it's safe to perform the coalescing. 818 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 819 MachineInstr *UseMI = MO.getParent(); 820 unsigned OpNo = &MO - &UseMI->getOperand(0); 821 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 822 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 823 if (US == IntA.end() || US->valno != AValNo) 824 continue; 825 // If this use is tied to a def, we can't rewrite the register. 826 if (UseMI->isRegTiedToDefOperand(OpNo)) 827 return { false, false }; 828 } 829 830 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 831 << *DefMI); 832 833 // At this point we have decided that it is legal to do this 834 // transformation. Start by commuting the instruction. 835 MachineBasicBlock *MBB = DefMI->getParent(); 836 MachineInstr *NewMI = 837 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 838 if (!NewMI) 839 return { false, false }; 840 if (Register::isVirtualRegister(IntA.reg) && 841 Register::isVirtualRegister(IntB.reg) && 842 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 843 return { false, false }; 844 if (NewMI != DefMI) { 845 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 846 MachineBasicBlock::iterator Pos = DefMI; 847 MBB->insert(Pos, NewMI); 848 MBB->erase(DefMI); 849 } 850 851 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 852 // A = or A, B 853 // ... 854 // B = A 855 // ... 856 // C = killed A 857 // ... 858 // = B 859 860 // Update uses of IntA of the specific Val# with IntB. 861 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 862 UE = MRI->use_end(); 863 UI != UE; /* ++UI is below because of possible MI removal */) { 864 MachineOperand &UseMO = *UI; 865 ++UI; 866 if (UseMO.isUndef()) 867 continue; 868 MachineInstr *UseMI = UseMO.getParent(); 869 if (UseMI->isDebugValue()) { 870 // FIXME These don't have an instruction index. Not clear we have enough 871 // info to decide whether to do this replacement or not. For now do it. 872 UseMO.setReg(NewReg); 873 continue; 874 } 875 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 876 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 877 assert(US != IntA.end() && "Use must be live"); 878 if (US->valno != AValNo) 879 continue; 880 // Kill flags are no longer accurate. They are recomputed after RA. 881 UseMO.setIsKill(false); 882 if (Register::isPhysicalRegister(NewReg)) 883 UseMO.substPhysReg(NewReg, *TRI); 884 else 885 UseMO.setReg(NewReg); 886 if (UseMI == CopyMI) 887 continue; 888 if (!UseMI->isCopy()) 889 continue; 890 if (UseMI->getOperand(0).getReg() != IntB.reg || 891 UseMI->getOperand(0).getSubReg()) 892 continue; 893 894 // This copy will become a noop. If it's defining a new val#, merge it into 895 // BValNo. 896 SlotIndex DefIdx = UseIdx.getRegSlot(); 897 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 898 if (!DVNI) 899 continue; 900 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 901 assert(DVNI->def == DefIdx); 902 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 903 for (LiveInterval::SubRange &S : IntB.subranges()) { 904 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 905 if (!SubDVNI) 906 continue; 907 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 908 assert(SubBValNo->def == CopyIdx); 909 S.MergeValueNumberInto(SubDVNI, SubBValNo); 910 } 911 912 deleteInstr(UseMI); 913 } 914 915 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 916 // is updated. 917 bool ShrinkB = false; 918 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 919 if (IntA.hasSubRanges() || IntB.hasSubRanges()) { 920 if (!IntA.hasSubRanges()) { 921 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 922 IntA.createSubRangeFrom(Allocator, Mask, IntA); 923 } else if (!IntB.hasSubRanges()) { 924 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg); 925 IntB.createSubRangeFrom(Allocator, Mask, IntB); 926 } 927 SlotIndex AIdx = CopyIdx.getRegSlot(true); 928 LaneBitmask MaskA; 929 const SlotIndexes &Indexes = *LIS->getSlotIndexes(); 930 for (LiveInterval::SubRange &SA : IntA.subranges()) { 931 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 932 // Even if we are dealing with a full copy, some lanes can 933 // still be undefined. 934 // E.g., 935 // undef A.subLow = ... 936 // B = COPY A <== A.subHigh is undefined here and does 937 // not have a value number. 938 if (!ASubValNo) 939 continue; 940 MaskA |= SA.LaneMask; 941 942 IntB.refineSubRanges( 943 Allocator, SA.LaneMask, 944 [&Allocator, &SA, CopyIdx, ASubValNo, 945 &ShrinkB](LiveInterval::SubRange &SR) { 946 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator) 947 : SR.getVNInfoAt(CopyIdx); 948 assert(BSubValNo != nullptr); 949 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 950 ShrinkB |= P.second; 951 if (P.first) 952 BSubValNo->def = ASubValNo->def; 953 }, 954 Indexes, *TRI); 955 } 956 // Go over all subranges of IntB that have not been covered by IntA, 957 // and delete the segments starting at CopyIdx. This can happen if 958 // IntA has undef lanes that are defined in IntB. 959 for (LiveInterval::SubRange &SB : IntB.subranges()) { 960 if ((SB.LaneMask & MaskA).any()) 961 continue; 962 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx)) 963 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex()) 964 SB.removeSegment(*S, true); 965 } 966 } 967 968 BValNo->def = AValNo->def; 969 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 970 ShrinkB |= P.second; 971 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 972 973 LIS->removeVRegDefAt(IntA, AValNo->def); 974 975 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 976 ++numCommutes; 977 return { true, ShrinkB }; 978 } 979 980 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 981 /// predecessor of BB2, and if B is not redefined on the way from A = B 982 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the 983 /// execution goes through the path from BB0 to BB2. We may move B = A 984 /// to the predecessor without such reversed copy. 985 /// So we will transform the program from: 986 /// BB0: 987 /// A = B; BB1: 988 /// ... ... 989 /// / \ / 990 /// BB2: 991 /// ... 992 /// B = A; 993 /// 994 /// to: 995 /// 996 /// BB0: BB1: 997 /// A = B; ... 998 /// ... B = A; 999 /// / \ / 1000 /// BB2: 1001 /// ... 1002 /// 1003 /// A special case is when BB0 and BB2 are the same BB which is the only 1004 /// BB in a loop: 1005 /// BB1: 1006 /// ... 1007 /// BB0/BB2: ---- 1008 /// B = A; | 1009 /// ... | 1010 /// A = B; | 1011 /// |------- 1012 /// | 1013 /// We may hoist B = A from BB0/BB2 to BB1. 1014 /// 1015 /// The major preconditions for correctness to remove such partial 1016 /// redundancy include: 1017 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 1018 /// the PHI is defined by the reversed copy A = B in BB0. 1019 /// 2. No B is referenced from the start of BB2 to B = A. 1020 /// 3. No B is defined from A = B to the end of BB0. 1021 /// 4. BB1 has only one successor. 1022 /// 1023 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 1024 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 1025 /// colder place, which not only prevent endless loop, but also make sure 1026 /// the movement of copy is beneficial. 1027 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 1028 MachineInstr &CopyMI) { 1029 assert(!CP.isPhys()); 1030 if (!CopyMI.isFullCopy()) 1031 return false; 1032 1033 MachineBasicBlock &MBB = *CopyMI.getParent(); 1034 if (MBB.isEHPad()) 1035 return false; 1036 1037 if (MBB.pred_size() != 2) 1038 return false; 1039 1040 LiveInterval &IntA = 1041 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 1042 LiveInterval &IntB = 1043 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 1044 1045 // A is defined by PHI at the entry of MBB. 1046 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 1047 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 1048 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 1049 if (!AValNo->isPHIDef()) 1050 return false; 1051 1052 // No B is referenced before CopyMI in MBB. 1053 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 1054 return false; 1055 1056 // MBB has two predecessors: one contains A = B so no copy will be inserted 1057 // for it. The other one will have a copy moved from MBB. 1058 bool FoundReverseCopy = false; 1059 MachineBasicBlock *CopyLeftBB = nullptr; 1060 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1061 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 1062 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 1063 if (!DefMI || !DefMI->isFullCopy()) { 1064 CopyLeftBB = Pred; 1065 continue; 1066 } 1067 // Check DefMI is a reverse copy and it is in BB Pred. 1068 if (DefMI->getOperand(0).getReg() != IntA.reg || 1069 DefMI->getOperand(1).getReg() != IntB.reg || 1070 DefMI->getParent() != Pred) { 1071 CopyLeftBB = Pred; 1072 continue; 1073 } 1074 // If there is any other def of B after DefMI and before the end of Pred, 1075 // we need to keep the copy of B = A at the end of Pred if we remove 1076 // B = A from MBB. 1077 bool ValB_Changed = false; 1078 for (auto VNI : IntB.valnos) { 1079 if (VNI->isUnused()) 1080 continue; 1081 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 1082 ValB_Changed = true; 1083 break; 1084 } 1085 } 1086 if (ValB_Changed) { 1087 CopyLeftBB = Pred; 1088 continue; 1089 } 1090 FoundReverseCopy = true; 1091 } 1092 1093 // If no reverse copy is found in predecessors, nothing to do. 1094 if (!FoundReverseCopy) 1095 return false; 1096 1097 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 1098 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 1099 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 1100 // update IntA/IntB. 1101 // 1102 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 1103 // MBB is hotter than CopyLeftBB. 1104 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 1105 return false; 1106 1107 // Now (almost sure it's) ok to move copy. 1108 if (CopyLeftBB) { 1109 // Position in CopyLeftBB where we should insert new copy. 1110 auto InsPos = CopyLeftBB->getFirstTerminator(); 1111 1112 // Make sure that B isn't referenced in the terminators (if any) at the end 1113 // of the predecessor since we're about to insert a new definition of B 1114 // before them. 1115 if (InsPos != CopyLeftBB->end()) { 1116 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true); 1117 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB))) 1118 return false; 1119 } 1120 1121 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to " 1122 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI); 1123 1124 // Insert new copy to CopyLeftBB. 1125 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1126 TII->get(TargetOpcode::COPY), IntB.reg) 1127 .addReg(IntA.reg); 1128 SlotIndex NewCopyIdx = 1129 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1130 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1131 for (LiveInterval::SubRange &SR : IntB.subranges()) 1132 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1133 1134 // If the newly created Instruction has an address of an instruction that was 1135 // deleted before (object recycled by the allocator) it needs to be removed from 1136 // the deleted list. 1137 ErasedInstrs.erase(NewCopyMI); 1138 } else { 1139 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from " 1140 << printMBBReference(MBB) << '\t' << CopyMI); 1141 } 1142 1143 // Remove CopyMI. 1144 // Note: This is fine to remove the copy before updating the live-ranges. 1145 // While updating the live-ranges, we only look at slot indices and 1146 // never go back to the instruction. 1147 // Mark instructions as deleted. 1148 deleteInstr(&CopyMI); 1149 1150 // Update the liveness. 1151 SmallVector<SlotIndex, 8> EndPoints; 1152 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1153 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1154 &EndPoints); 1155 BValNo->markUnused(); 1156 // Extend IntB to the EndPoints of its original live interval. 1157 LIS->extendToIndices(IntB, EndPoints); 1158 1159 // Now, do the same for its subranges. 1160 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1161 EndPoints.clear(); 1162 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1163 assert(BValNo && "All sublanes should be live"); 1164 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1165 BValNo->markUnused(); 1166 // We can have a situation where the result of the original copy is live, 1167 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes 1168 // the copy appear as an endpoint from pruneValue(), but we don't want it 1169 // to because the copy has been removed. We can go ahead and remove that 1170 // endpoint; there is no other situation here that there could be a use at 1171 // the same place as we know that the copy is a full copy. 1172 for (unsigned I = 0; I != EndPoints.size(); ) { 1173 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) { 1174 EndPoints[I] = EndPoints.back(); 1175 EndPoints.pop_back(); 1176 continue; 1177 } 1178 ++I; 1179 } 1180 LIS->extendToIndices(SR, EndPoints); 1181 } 1182 // If any dead defs were extended, truncate them. 1183 shrinkToUses(&IntB); 1184 1185 // Finally, update the live-range of IntA. 1186 shrinkToUses(&IntA); 1187 return true; 1188 } 1189 1190 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1191 /// defining a subregister. 1192 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 1193 assert(!Register::isPhysicalRegister(Reg) && 1194 "This code cannot handle physreg aliasing"); 1195 for (const MachineOperand &Op : MI.operands()) { 1196 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1197 continue; 1198 // Return true if we define the full register or don't care about the value 1199 // inside other subregisters. 1200 if (Op.getSubReg() == 0 || Op.isUndef()) 1201 return true; 1202 } 1203 return false; 1204 } 1205 1206 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1207 MachineInstr *CopyMI, 1208 bool &IsDefCopy) { 1209 IsDefCopy = false; 1210 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1211 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1212 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1213 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1214 if (Register::isPhysicalRegister(SrcReg)) 1215 return false; 1216 1217 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1218 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1219 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1220 if (!ValNo) 1221 return false; 1222 if (ValNo->isPHIDef() || ValNo->isUnused()) 1223 return false; 1224 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1225 if (!DefMI) 1226 return false; 1227 if (DefMI->isCopyLike()) { 1228 IsDefCopy = true; 1229 return false; 1230 } 1231 if (!TII->isAsCheapAsAMove(*DefMI)) 1232 return false; 1233 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1234 return false; 1235 if (!definesFullReg(*DefMI, SrcReg)) 1236 return false; 1237 bool SawStore = false; 1238 if (!DefMI->isSafeToMove(AA, SawStore)) 1239 return false; 1240 const MCInstrDesc &MCID = DefMI->getDesc(); 1241 if (MCID.getNumDefs() != 1) 1242 return false; 1243 // Only support subregister destinations when the def is read-undef. 1244 MachineOperand &DstOperand = CopyMI->getOperand(0); 1245 Register CopyDstReg = DstOperand.getReg(); 1246 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1247 return false; 1248 1249 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1250 // the register substantially (beyond both source and dest size). This is bad 1251 // for performance since it can cascade through a function, introducing many 1252 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1253 // around after a few subreg copies). 1254 if (SrcIdx && DstIdx) 1255 return false; 1256 1257 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1258 if (!DefMI->isImplicitDef()) { 1259 if (Register::isPhysicalRegister(DstReg)) { 1260 unsigned NewDstReg = DstReg; 1261 1262 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1263 DefMI->getOperand(0).getSubReg()); 1264 if (NewDstIdx) 1265 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1266 1267 // Finally, make sure that the physical subregister that will be 1268 // constructed later is permitted for the instruction. 1269 if (!DefRC->contains(NewDstReg)) 1270 return false; 1271 } else { 1272 // Theoretically, some stack frame reference could exist. Just make sure 1273 // it hasn't actually happened. 1274 assert(Register::isVirtualRegister(DstReg) && 1275 "Only expect to deal with virtual or physical registers"); 1276 } 1277 } 1278 1279 DebugLoc DL = CopyMI->getDebugLoc(); 1280 MachineBasicBlock *MBB = CopyMI->getParent(); 1281 MachineBasicBlock::iterator MII = 1282 std::next(MachineBasicBlock::iterator(CopyMI)); 1283 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1284 MachineInstr &NewMI = *std::prev(MII); 1285 NewMI.setDebugLoc(DL); 1286 1287 // In a situation like the following: 1288 // %0:subreg = instr ; DefMI, subreg = DstIdx 1289 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0 1290 // instead of widening %1 to the register class of %0 simply do: 1291 // %1 = instr 1292 const TargetRegisterClass *NewRC = CP.getNewRC(); 1293 if (DstIdx != 0) { 1294 MachineOperand &DefMO = NewMI.getOperand(0); 1295 if (DefMO.getSubReg() == DstIdx) { 1296 assert(SrcIdx == 0 && CP.isFlipped() 1297 && "Shouldn't have SrcIdx+DstIdx at this point"); 1298 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1299 const TargetRegisterClass *CommonRC = 1300 TRI->getCommonSubClass(DefRC, DstRC); 1301 if (CommonRC != nullptr) { 1302 NewRC = CommonRC; 1303 DstIdx = 0; 1304 DefMO.setSubReg(0); 1305 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1306 } 1307 } 1308 } 1309 1310 // CopyMI may have implicit operands, save them so that we can transfer them 1311 // over to the newly materialized instruction after CopyMI is removed. 1312 SmallVector<MachineOperand, 4> ImplicitOps; 1313 ImplicitOps.reserve(CopyMI->getNumOperands() - 1314 CopyMI->getDesc().getNumOperands()); 1315 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1316 E = CopyMI->getNumOperands(); 1317 I != E; ++I) { 1318 MachineOperand &MO = CopyMI->getOperand(I); 1319 if (MO.isReg()) { 1320 assert(MO.isImplicit() && "No explicit operands after implicit operands."); 1321 // Discard VReg implicit defs. 1322 if (Register::isPhysicalRegister(MO.getReg())) 1323 ImplicitOps.push_back(MO); 1324 } 1325 } 1326 1327 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1328 CopyMI->eraseFromParent(); 1329 ErasedInstrs.insert(CopyMI); 1330 1331 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1332 // We need to remember these so we can add intervals once we insert 1333 // NewMI into SlotIndexes. 1334 SmallVector<unsigned, 4> NewMIImplDefs; 1335 for (unsigned i = NewMI.getDesc().getNumOperands(), 1336 e = NewMI.getNumOperands(); 1337 i != e; ++i) { 1338 MachineOperand &MO = NewMI.getOperand(i); 1339 if (MO.isReg() && MO.isDef()) { 1340 assert(MO.isImplicit() && MO.isDead() && 1341 Register::isPhysicalRegister(MO.getReg())); 1342 NewMIImplDefs.push_back(MO.getReg()); 1343 } 1344 } 1345 1346 if (Register::isVirtualRegister(DstReg)) { 1347 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1348 1349 if (DefRC != nullptr) { 1350 if (NewIdx) 1351 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1352 else 1353 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1354 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1355 } 1356 // Remap subranges to new lanemask and change register class. 1357 LiveInterval &DstInt = LIS->getInterval(DstReg); 1358 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1359 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1360 } 1361 MRI->setRegClass(DstReg, NewRC); 1362 1363 // Update machine operands and add flags. 1364 updateRegDefsUses(DstReg, DstReg, DstIdx); 1365 NewMI.getOperand(0).setSubReg(NewIdx); 1366 // updateRegDefUses can add an "undef" flag to the definition, since 1367 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make 1368 // sure that "undef" is not set. 1369 if (NewIdx == 0) 1370 NewMI.getOperand(0).setIsUndef(false); 1371 // Add dead subregister definitions if we are defining the whole register 1372 // but only part of it is live. 1373 // This could happen if the rematerialization instruction is rematerializing 1374 // more than actually is used in the register. 1375 // An example would be: 1376 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1377 // ; Copying only part of the register here, but the rest is undef. 1378 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit 1379 // ==> 1380 // ; Materialize all the constants but only using one 1381 // %2 = LOAD_CONSTANTS 5, 8 1382 // 1383 // at this point for the part that wasn't defined before we could have 1384 // subranges missing the definition. 1385 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1386 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1387 SlotIndex DefIndex = 1388 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1389 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1390 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1391 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1392 if (!SR.liveAt(DefIndex)) 1393 SR.createDeadDef(DefIndex, Alloc); 1394 MaxMask &= ~SR.LaneMask; 1395 } 1396 if (MaxMask.any()) { 1397 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1398 SR->createDeadDef(DefIndex, Alloc); 1399 } 1400 } 1401 1402 // Make sure that the subrange for resultant undef is removed 1403 // For example: 1404 // %1:sub1<def,read-undef> = LOAD CONSTANT 1 1405 // %2 = COPY %1 1406 // ==> 1407 // %2:sub1<def, read-undef> = LOAD CONSTANT 1 1408 // ; Correct but need to remove the subrange for %2:sub0 1409 // ; as it is now undef 1410 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1411 // The affected subregister segments can be removed. 1412 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1413 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1414 bool UpdatedSubRanges = false; 1415 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1416 if ((SR.LaneMask & DstMask).none()) { 1417 LLVM_DEBUG(dbgs() 1418 << "Removing undefined SubRange " 1419 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1420 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1421 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1422 SR.removeValNo(RmValNo); 1423 UpdatedSubRanges = true; 1424 } 1425 } 1426 } 1427 if (UpdatedSubRanges) 1428 DstInt.removeEmptySubRanges(); 1429 } 1430 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1431 // The New instruction may be defining a sub-register of what's actually 1432 // been asked for. If so it must implicitly define the whole thing. 1433 assert(Register::isPhysicalRegister(DstReg) && 1434 "Only expect virtual or physical registers in remat"); 1435 NewMI.getOperand(0).setIsDead(true); 1436 NewMI.addOperand(MachineOperand::CreateReg( 1437 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1438 // Record small dead def live-ranges for all the subregisters 1439 // of the destination register. 1440 // Otherwise, variables that live through may miss some 1441 // interferences, thus creating invalid allocation. 1442 // E.g., i386 code: 1443 // %1 = somedef ; %1 GR8 1444 // %2 = remat ; %2 GR32 1445 // CL = COPY %2.sub_8bit 1446 // = somedef %1 ; %1 GR8 1447 // => 1448 // %1 = somedef ; %1 GR8 1449 // dead ECX = remat ; implicit-def CL 1450 // = somedef %1 ; %1 GR8 1451 // %1 will see the interferences with CL but not with CH since 1452 // no live-ranges would have been created for ECX. 1453 // Fix that! 1454 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1455 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1456 Units.isValid(); ++Units) 1457 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1458 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1459 } 1460 1461 if (NewMI.getOperand(0).getSubReg()) 1462 NewMI.getOperand(0).setIsUndef(); 1463 1464 // Transfer over implicit operands to the rematerialized instruction. 1465 for (MachineOperand &MO : ImplicitOps) 1466 NewMI.addOperand(MO); 1467 1468 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1469 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1470 unsigned Reg = NewMIImplDefs[i]; 1471 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1472 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1473 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1474 } 1475 1476 LLVM_DEBUG(dbgs() << "Remat: " << NewMI); 1477 ++NumReMats; 1478 1479 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1480 // to describe DstReg instead. 1481 if (MRI->use_nodbg_empty(SrcReg)) { 1482 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1483 MachineInstr *UseMI = UseMO.getParent(); 1484 if (UseMI->isDebugValue()) { 1485 if (Register::isPhysicalRegister(DstReg)) 1486 UseMO.substPhysReg(DstReg, *TRI); 1487 else 1488 UseMO.setReg(DstReg); 1489 // Move the debug value directly after the def of the rematerialized 1490 // value in DstReg. 1491 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); 1492 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1493 } 1494 } 1495 } 1496 1497 if (ToBeUpdated.count(SrcReg)) 1498 return true; 1499 1500 unsigned NumCopyUses = 0; 1501 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 1502 if (UseMO.getParent()->isCopyLike()) 1503 NumCopyUses++; 1504 } 1505 if (NumCopyUses < LateRematUpdateThreshold) { 1506 // The source interval can become smaller because we removed a use. 1507 shrinkToUses(&SrcInt, &DeadDefs); 1508 if (!DeadDefs.empty()) 1509 eliminateDeadDefs(); 1510 } else { 1511 ToBeUpdated.insert(SrcReg); 1512 } 1513 return true; 1514 } 1515 1516 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1517 // ProcessImplicitDefs may leave some copies of <undef> values, it only 1518 // removes local variables. When we have a copy like: 1519 // 1520 // %1 = COPY undef %2 1521 // 1522 // We delete the copy and remove the corresponding value number from %1. 1523 // Any uses of that value number are marked as <undef>. 1524 1525 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1526 // CoalescerPair may have a new register class with adjusted subreg indices 1527 // at this point. 1528 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1529 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) 1530 return nullptr; 1531 1532 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1533 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1534 // CopyMI is undef iff SrcReg is not live before the instruction. 1535 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1536 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1537 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1538 if ((SR.LaneMask & SrcMask).none()) 1539 continue; 1540 if (SR.liveAt(Idx)) 1541 return nullptr; 1542 } 1543 } else if (SrcLI.liveAt(Idx)) 1544 return nullptr; 1545 1546 // If the undef copy defines a live-out value (i.e. an input to a PHI def), 1547 // then replace it with an IMPLICIT_DEF. 1548 LiveInterval &DstLI = LIS->getInterval(DstReg); 1549 SlotIndex RegIndex = Idx.getRegSlot(); 1550 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex); 1551 assert(Seg != nullptr && "No segment for defining instruction"); 1552 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) { 1553 if (V->isPHIDef()) { 1554 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1555 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) { 1556 MachineOperand &MO = CopyMI->getOperand(i-1); 1557 if (MO.isReg() && MO.isUse()) 1558 CopyMI->RemoveOperand(i-1); 1559 } 1560 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an " 1561 "implicit def\n"); 1562 return CopyMI; 1563 } 1564 } 1565 1566 // Remove any DstReg segments starting at the instruction. 1567 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1568 1569 // Remove value or merge with previous one in case of a subregister def. 1570 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1571 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1572 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1573 1574 // The affected subregister segments can be removed. 1575 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1576 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1577 if ((SR.LaneMask & DstMask).none()) 1578 continue; 1579 1580 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1581 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1582 SR.removeValNo(SVNI); 1583 } 1584 DstLI.removeEmptySubRanges(); 1585 } else 1586 LIS->removeVRegDefAt(DstLI, RegIndex); 1587 1588 // Mark uses as undef. 1589 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1590 if (MO.isDef() /*|| MO.isUndef()*/) 1591 continue; 1592 const MachineInstr &MI = *MO.getParent(); 1593 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1594 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1595 bool isLive; 1596 if (!UseMask.all() && DstLI.hasSubRanges()) { 1597 isLive = false; 1598 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1599 if ((SR.LaneMask & UseMask).none()) 1600 continue; 1601 if (SR.liveAt(UseIdx)) { 1602 isLive = true; 1603 break; 1604 } 1605 } 1606 } else 1607 isLive = DstLI.liveAt(UseIdx); 1608 if (isLive) 1609 continue; 1610 MO.setIsUndef(true); 1611 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1612 } 1613 1614 // A def of a subregister may be a use of the other subregisters, so 1615 // deleting a def of a subregister may also remove uses. Since CopyMI 1616 // is still part of the function (but about to be erased), mark all 1617 // defs of DstReg in it as <undef>, so that shrinkToUses would 1618 // ignore them. 1619 for (MachineOperand &MO : CopyMI->operands()) 1620 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1621 MO.setIsUndef(true); 1622 LIS->shrinkToUses(&DstLI); 1623 1624 return CopyMI; 1625 } 1626 1627 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1628 MachineOperand &MO, unsigned SubRegIdx) { 1629 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1630 if (MO.isDef()) 1631 Mask = ~Mask; 1632 bool IsUndef = true; 1633 for (const LiveInterval::SubRange &S : Int.subranges()) { 1634 if ((S.LaneMask & Mask).none()) 1635 continue; 1636 if (S.liveAt(UseIdx)) { 1637 IsUndef = false; 1638 break; 1639 } 1640 } 1641 if (IsUndef) { 1642 MO.setIsUndef(true); 1643 // We found out some subregister use is actually reading an undefined 1644 // value. In some cases the whole vreg has become undefined at this 1645 // point so we have to potentially shrink the main range if the 1646 // use was ending a live segment there. 1647 LiveQueryResult Q = Int.Query(UseIdx); 1648 if (Q.valueOut() == nullptr) 1649 ShrinkMainRange = true; 1650 } 1651 } 1652 1653 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 1654 unsigned DstReg, 1655 unsigned SubIdx) { 1656 bool DstIsPhys = Register::isPhysicalRegister(DstReg); 1657 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1658 1659 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1660 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1661 unsigned SubReg = MO.getSubReg(); 1662 if (SubReg == 0 || MO.isUndef()) 1663 continue; 1664 MachineInstr &MI = *MO.getParent(); 1665 if (MI.isDebugValue()) 1666 continue; 1667 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1668 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1669 } 1670 } 1671 1672 SmallPtrSet<MachineInstr*, 8> Visited; 1673 for (MachineRegisterInfo::reg_instr_iterator 1674 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1675 I != E; ) { 1676 MachineInstr *UseMI = &*(I++); 1677 1678 // Each instruction can only be rewritten once because sub-register 1679 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1680 // the UseMI operands removes them from the SrcReg use-def chain, but when 1681 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1682 // operands mentioning the virtual register. 1683 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1684 continue; 1685 1686 SmallVector<unsigned,8> Ops; 1687 bool Reads, Writes; 1688 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1689 1690 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1691 // because SrcReg is a sub-register. 1692 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) 1693 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1694 1695 // Replace SrcReg with DstReg in all UseMI operands. 1696 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1697 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1698 1699 // Adjust <undef> flags in case of sub-register joins. We don't want to 1700 // turn a full def into a read-modify-write sub-register def and vice 1701 // versa. 1702 if (SubIdx && MO.isDef()) 1703 MO.setIsUndef(!Reads); 1704 1705 // A subreg use of a partially undef (super) register may be a complete 1706 // undef use now and then has to be marked that way. 1707 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1708 if (!DstInt->hasSubRanges()) { 1709 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1710 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1711 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1712 } 1713 SlotIndex MIIdx = UseMI->isDebugValue() 1714 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1715 : LIS->getInstructionIndex(*UseMI); 1716 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1717 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1718 } 1719 1720 if (DstIsPhys) 1721 MO.substPhysReg(DstReg, *TRI); 1722 else 1723 MO.substVirtReg(DstReg, SubIdx, *TRI); 1724 } 1725 1726 LLVM_DEBUG({ 1727 dbgs() << "\t\tupdated: "; 1728 if (!UseMI->isDebugValue()) 1729 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1730 dbgs() << *UseMI; 1731 }); 1732 } 1733 } 1734 1735 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1736 // Always join simple intervals that are defined by a single copy from a 1737 // reserved register. This doesn't increase register pressure, so it is 1738 // always beneficial. 1739 if (!MRI->isReserved(CP.getDstReg())) { 1740 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1741 return false; 1742 } 1743 1744 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1745 if (JoinVInt.containsOneValue()) 1746 return true; 1747 1748 LLVM_DEBUG( 1749 dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1750 return false; 1751 } 1752 1753 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1754 Again = false; 1755 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1756 1757 CoalescerPair CP(*TRI); 1758 if (!CP.setRegisters(CopyMI)) { 1759 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n"); 1760 return false; 1761 } 1762 1763 if (CP.getNewRC()) { 1764 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1765 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1766 unsigned SrcIdx = CP.getSrcIdx(); 1767 unsigned DstIdx = CP.getDstIdx(); 1768 if (CP.isFlipped()) { 1769 std::swap(SrcIdx, DstIdx); 1770 std::swap(SrcRC, DstRC); 1771 } 1772 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1773 CP.getNewRC(), *LIS)) { 1774 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1775 return false; 1776 } 1777 } 1778 1779 // Dead code elimination. This really should be handled by MachineDCE, but 1780 // sometimes dead copies slip through, and we can't generate invalid live 1781 // ranges. 1782 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1783 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n"); 1784 DeadDefs.push_back(CopyMI); 1785 eliminateDeadDefs(); 1786 return true; 1787 } 1788 1789 // Eliminate undefs. 1790 if (!CP.isPhys()) { 1791 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce. 1792 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) { 1793 if (UndefMI->isImplicitDef()) 1794 return false; 1795 deleteInstr(CopyMI); 1796 return false; // Not coalescable. 1797 } 1798 } 1799 1800 // Coalesced copies are normally removed immediately, but transformations 1801 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1802 // When that happens, just join the values and remove the copy. 1803 if (CP.getSrcReg() == CP.getDstReg()) { 1804 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1805 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1806 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1807 LiveQueryResult LRQ = LI.Query(CopyIdx); 1808 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1809 VNInfo *ReadVNI = LRQ.valueIn(); 1810 assert(ReadVNI && "No value before copy and no <undef> flag."); 1811 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1812 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1813 1814 // Process subregister liveranges. 1815 for (LiveInterval::SubRange &S : LI.subranges()) { 1816 LiveQueryResult SLRQ = S.Query(CopyIdx); 1817 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1818 VNInfo *SReadVNI = SLRQ.valueIn(); 1819 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1820 } 1821 } 1822 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1823 } 1824 deleteInstr(CopyMI); 1825 return true; 1826 } 1827 1828 // Enforce policies. 1829 if (CP.isPhys()) { 1830 LLVM_DEBUG(dbgs() << "\tConsidering merging " 1831 << printReg(CP.getSrcReg(), TRI) << " with " 1832 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'); 1833 if (!canJoinPhys(CP)) { 1834 // Before giving up coalescing, if definition of source is defined by 1835 // trivial computation, try rematerializing it. 1836 bool IsDefCopy; 1837 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1838 return true; 1839 if (IsDefCopy) 1840 Again = true; // May be possible to coalesce later. 1841 return false; 1842 } 1843 } else { 1844 // When possible, let DstReg be the larger interval. 1845 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1846 LIS->getInterval(CP.getDstReg()).size()) 1847 CP.flip(); 1848 1849 LLVM_DEBUG({ 1850 dbgs() << "\tConsidering merging to " 1851 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1852 if (CP.getDstIdx() && CP.getSrcIdx()) 1853 dbgs() << printReg(CP.getDstReg()) << " in " 1854 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1855 << printReg(CP.getSrcReg()) << " in " 1856 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1857 else 1858 dbgs() << printReg(CP.getSrcReg(), TRI) << " in " 1859 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1860 }); 1861 } 1862 1863 ShrinkMask = LaneBitmask::getNone(); 1864 ShrinkMainRange = false; 1865 1866 // Okay, attempt to join these two intervals. On failure, this returns false. 1867 // Otherwise, if one of the intervals being joined is a physreg, this method 1868 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1869 // been modified, so we can use this information below to update aliases. 1870 if (!joinIntervals(CP)) { 1871 // Coalescing failed. 1872 1873 // If definition of source is defined by trivial computation, try 1874 // rematerializing it. 1875 bool IsDefCopy; 1876 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1877 return true; 1878 1879 // If we can eliminate the copy without merging the live segments, do so 1880 // now. 1881 if (!CP.isPartial() && !CP.isPhys()) { 1882 bool Changed = adjustCopiesBackFrom(CP, CopyMI); 1883 bool Shrink = false; 1884 if (!Changed) 1885 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI); 1886 if (Changed) { 1887 deleteInstr(CopyMI); 1888 if (Shrink) { 1889 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1890 LiveInterval &DstLI = LIS->getInterval(DstReg); 1891 shrinkToUses(&DstLI); 1892 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n'); 1893 } 1894 LLVM_DEBUG(dbgs() << "\tTrivial!\n"); 1895 return true; 1896 } 1897 } 1898 1899 // Try and see if we can partially eliminate the copy by moving the copy to 1900 // its predecessor. 1901 if (!CP.isPartial() && !CP.isPhys()) 1902 if (removePartialRedundancy(CP, *CopyMI)) 1903 return true; 1904 1905 // Otherwise, we are unable to join the intervals. 1906 LLVM_DEBUG(dbgs() << "\tInterference!\n"); 1907 Again = true; // May be possible to coalesce later. 1908 return false; 1909 } 1910 1911 // Coalescing to a virtual register that is of a sub-register class of the 1912 // other. Make sure the resulting register is set to the right register class. 1913 if (CP.isCrossClass()) { 1914 ++numCrossRCs; 1915 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1916 } 1917 1918 // Removing sub-register copies can ease the register class constraints. 1919 // Make sure we attempt to inflate the register class of DstReg. 1920 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1921 InflateRegs.push_back(CP.getDstReg()); 1922 1923 // CopyMI has been erased by joinIntervals at this point. Remove it from 1924 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1925 // to the work list. This keeps ErasedInstrs from growing needlessly. 1926 ErasedInstrs.erase(CopyMI); 1927 1928 // Rewrite all SrcReg operands to DstReg. 1929 // Also update DstReg operands to include DstIdx if it is set. 1930 if (CP.getDstIdx()) 1931 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1932 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1933 1934 // Shrink subregister ranges if necessary. 1935 if (ShrinkMask.any()) { 1936 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1937 for (LiveInterval::SubRange &S : LI.subranges()) { 1938 if ((S.LaneMask & ShrinkMask).none()) 1939 continue; 1940 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1941 << ")\n"); 1942 LIS->shrinkToUses(S, LI.reg); 1943 } 1944 LI.removeEmptySubRanges(); 1945 } 1946 1947 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live 1948 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval 1949 // is not up-to-date, need to update the merged live interval here. 1950 if (ToBeUpdated.count(CP.getSrcReg())) 1951 ShrinkMainRange = true; 1952 1953 if (ShrinkMainRange) { 1954 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1955 shrinkToUses(&LI); 1956 } 1957 1958 // SrcReg is guaranteed to be the register whose live interval that is 1959 // being merged. 1960 LIS->removeInterval(CP.getSrcReg()); 1961 1962 // Update regalloc hint. 1963 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1964 1965 LLVM_DEBUG({ 1966 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 1967 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 1968 dbgs() << "\tResult = "; 1969 if (CP.isPhys()) 1970 dbgs() << printReg(CP.getDstReg(), TRI); 1971 else 1972 dbgs() << LIS->getInterval(CP.getDstReg()); 1973 dbgs() << '\n'; 1974 }); 1975 1976 ++numJoins; 1977 return true; 1978 } 1979 1980 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1981 unsigned DstReg = CP.getDstReg(); 1982 unsigned SrcReg = CP.getSrcReg(); 1983 assert(CP.isPhys() && "Must be a physreg copy"); 1984 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 1985 LiveInterval &RHS = LIS->getInterval(SrcReg); 1986 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1987 1988 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 1989 1990 // Optimization for reserved registers like ESP. We can only merge with a 1991 // reserved physreg if RHS has a single value that is a copy of DstReg. 1992 // The live range of the reserved register will look like a set of dead defs 1993 // - we don't properly track the live range of reserved registers. 1994 1995 // Deny any overlapping intervals. This depends on all the reserved 1996 // register live ranges to look like dead defs. 1997 if (!MRI->isConstantPhysReg(DstReg)) { 1998 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1999 // Abort if not all the regunits are reserved. 2000 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 2001 if (!MRI->isReserved(*RI)) 2002 return false; 2003 } 2004 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 2005 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) 2006 << '\n'); 2007 return false; 2008 } 2009 } 2010 2011 // We must also check for overlaps with regmask clobbers. 2012 BitVector RegMaskUsable; 2013 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 2014 !RegMaskUsable.test(DstReg)) { 2015 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n"); 2016 return false; 2017 } 2018 } 2019 2020 // Skip any value computations, we are not adding new values to the 2021 // reserved register. Also skip merging the live ranges, the reserved 2022 // register live range doesn't need to be accurate as long as all the 2023 // defs are there. 2024 2025 // Delete the identity copy. 2026 MachineInstr *CopyMI; 2027 if (CP.isFlipped()) { 2028 // Physreg is copied into vreg 2029 // %y = COPY %physreg_x 2030 // ... //< no other def of %physreg_x here 2031 // use %y 2032 // => 2033 // ... 2034 // use %physreg_x 2035 CopyMI = MRI->getVRegDef(SrcReg); 2036 } else { 2037 // VReg is copied into physreg: 2038 // %y = def 2039 // ... //< no other def or use of %physreg_x here 2040 // %physreg_x = COPY %y 2041 // => 2042 // %physreg_x = def 2043 // ... 2044 if (!MRI->hasOneNonDBGUse(SrcReg)) { 2045 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 2046 return false; 2047 } 2048 2049 if (!LIS->intervalIsInOneMBB(RHS)) { 2050 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n"); 2051 return false; 2052 } 2053 2054 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 2055 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 2056 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 2057 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 2058 2059 if (!MRI->isConstantPhysReg(DstReg)) { 2060 // We checked above that there are no interfering defs of the physical 2061 // register. However, for this case, where we intend to move up the def of 2062 // the physical register, we also need to check for interfering uses. 2063 SlotIndexes *Indexes = LIS->getSlotIndexes(); 2064 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 2065 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 2066 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 2067 if (MI->readsRegister(DstReg, TRI)) { 2068 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 2069 return false; 2070 } 2071 } 2072 } 2073 2074 // We're going to remove the copy which defines a physical reserved 2075 // register, so remove its valno, etc. 2076 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of " 2077 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n"); 2078 2079 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 2080 // Create a new dead def at the new def location. 2081 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2082 LiveRange &LR = LIS->getRegUnit(*UI); 2083 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 2084 } 2085 } 2086 2087 deleteInstr(CopyMI); 2088 2089 // We don't track kills for reserved registers. 2090 MRI->clearKillFlags(CP.getSrcReg()); 2091 2092 return true; 2093 } 2094 2095 //===----------------------------------------------------------------------===// 2096 // Interference checking and interval joining 2097 //===----------------------------------------------------------------------===// 2098 // 2099 // In the easiest case, the two live ranges being joined are disjoint, and 2100 // there is no interference to consider. It is quite common, though, to have 2101 // overlapping live ranges, and we need to check if the interference can be 2102 // resolved. 2103 // 2104 // The live range of a single SSA value forms a sub-tree of the dominator tree. 2105 // This means that two SSA values overlap if and only if the def of one value 2106 // is contained in the live range of the other value. As a special case, the 2107 // overlapping values can be defined at the same index. 2108 // 2109 // The interference from an overlapping def can be resolved in these cases: 2110 // 2111 // 1. Coalescable copies. The value is defined by a copy that would become an 2112 // identity copy after joining SrcReg and DstReg. The copy instruction will 2113 // be removed, and the value will be merged with the source value. 2114 // 2115 // There can be several copies back and forth, causing many values to be 2116 // merged into one. We compute a list of ultimate values in the joined live 2117 // range as well as a mappings from the old value numbers. 2118 // 2119 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 2120 // predecessors have a live out value. It doesn't cause real interference, 2121 // and can be merged into the value it overlaps. Like a coalescable copy, it 2122 // can be erased after joining. 2123 // 2124 // 3. Copy of external value. The overlapping def may be a copy of a value that 2125 // is already in the other register. This is like a coalescable copy, but 2126 // the live range of the source register must be trimmed after erasing the 2127 // copy instruction: 2128 // 2129 // %src = COPY %ext 2130 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 2131 // 2132 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 2133 // defining one lane at a time: 2134 // 2135 // %dst:ssub0<def,read-undef> = FOO 2136 // %src = BAR 2137 // %dst:ssub1 = COPY %src 2138 // 2139 // The live range of %src overlaps the %dst value defined by FOO, but 2140 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 2141 // which was undef anyway. 2142 // 2143 // The value mapping is more complicated in this case. The final live range 2144 // will have different value numbers for both FOO and BAR, but there is no 2145 // simple mapping from old to new values. It may even be necessary to add 2146 // new PHI values. 2147 // 2148 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 2149 // is live, but never read. This can happen because we don't compute 2150 // individual live ranges per lane. 2151 // 2152 // %dst = FOO 2153 // %src = BAR 2154 // %dst:ssub1 = COPY %src 2155 // 2156 // This kind of interference is only resolved locally. If the clobbered 2157 // lane value escapes the block, the join is aborted. 2158 2159 namespace { 2160 2161 /// Track information about values in a single virtual register about to be 2162 /// joined. Objects of this class are always created in pairs - one for each 2163 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 2164 /// pair) 2165 class JoinVals { 2166 /// Live range we work on. 2167 LiveRange &LR; 2168 2169 /// (Main) register we work on. 2170 const unsigned Reg; 2171 2172 /// Reg (and therefore the values in this liverange) will end up as 2173 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 2174 /// CP.SrcIdx. 2175 const unsigned SubIdx; 2176 2177 /// The LaneMask that this liverange will occupy the coalesced register. May 2178 /// be smaller than the lanemask produced by SubIdx when merging subranges. 2179 const LaneBitmask LaneMask; 2180 2181 /// This is true when joining sub register ranges, false when joining main 2182 /// ranges. 2183 const bool SubRangeJoin; 2184 2185 /// Whether the current LiveInterval tracks subregister liveness. 2186 const bool TrackSubRegLiveness; 2187 2188 /// Values that will be present in the final live range. 2189 SmallVectorImpl<VNInfo*> &NewVNInfo; 2190 2191 const CoalescerPair &CP; 2192 LiveIntervals *LIS; 2193 SlotIndexes *Indexes; 2194 const TargetRegisterInfo *TRI; 2195 2196 /// Value number assignments. Maps value numbers in LI to entries in 2197 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 2198 SmallVector<int, 8> Assignments; 2199 2200 /// Conflict resolution for overlapping values. 2201 enum ConflictResolution { 2202 /// No overlap, simply keep this value. 2203 CR_Keep, 2204 2205 /// Merge this value into OtherVNI and erase the defining instruction. 2206 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 2207 /// values. 2208 CR_Erase, 2209 2210 /// Merge this value into OtherVNI but keep the defining instruction. 2211 /// This is for the special case where OtherVNI is defined by the same 2212 /// instruction. 2213 CR_Merge, 2214 2215 /// Keep this value, and have it replace OtherVNI where possible. This 2216 /// complicates value mapping since OtherVNI maps to two different values 2217 /// before and after this def. 2218 /// Used when clobbering undefined or dead lanes. 2219 CR_Replace, 2220 2221 /// Unresolved conflict. Visit later when all values have been mapped. 2222 CR_Unresolved, 2223 2224 /// Unresolvable conflict. Abort the join. 2225 CR_Impossible 2226 }; 2227 2228 /// Per-value info for LI. The lane bit masks are all relative to the final 2229 /// joined register, so they can be compared directly between SrcReg and 2230 /// DstReg. 2231 struct Val { 2232 ConflictResolution Resolution = CR_Keep; 2233 2234 /// Lanes written by this def, 0 for unanalyzed values. 2235 LaneBitmask WriteLanes; 2236 2237 /// Lanes with defined values in this register. Other lanes are undef and 2238 /// safe to clobber. 2239 LaneBitmask ValidLanes; 2240 2241 /// Value in LI being redefined by this def. 2242 VNInfo *RedefVNI = nullptr; 2243 2244 /// Value in the other live range that overlaps this def, if any. 2245 VNInfo *OtherVNI = nullptr; 2246 2247 /// Is this value an IMPLICIT_DEF that can be erased? 2248 /// 2249 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2250 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2251 /// safely erased if they are overlapping a live value in the other live 2252 /// interval. 2253 /// 2254 /// Weird control flow graphs and incomplete PHI handling in 2255 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2256 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2257 /// normal values. 2258 bool ErasableImplicitDef = false; 2259 2260 /// True when the live range of this value will be pruned because of an 2261 /// overlapping CR_Replace value in the other live range. 2262 bool Pruned = false; 2263 2264 /// True once Pruned above has been computed. 2265 bool PrunedComputed = false; 2266 2267 /// True if this value is determined to be identical to OtherVNI 2268 /// (in valuesIdentical). This is used with CR_Erase where the erased 2269 /// copy is redundant, i.e. the source value is already the same as 2270 /// the destination. In such cases the subranges need to be updated 2271 /// properly. See comment at pruneSubRegValues for more info. 2272 bool Identical = false; 2273 2274 Val() = default; 2275 2276 bool isAnalyzed() const { return WriteLanes.any(); } 2277 }; 2278 2279 /// One entry per value number in LI. 2280 SmallVector<Val, 8> Vals; 2281 2282 /// Compute the bitmask of lanes actually written by DefMI. 2283 /// Set Redef if there are any partial register definitions that depend on the 2284 /// previous value of the register. 2285 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2286 2287 /// Find the ultimate value that VNI was copied from. 2288 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 2289 2290 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const; 2291 2292 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2293 /// Return a conflict resolution when possible, but leave the hard cases as 2294 /// CR_Unresolved. 2295 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2296 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2297 /// The recursion always goes upwards in the dominator tree, making loops 2298 /// impossible. 2299 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2300 2301 /// Compute the value assignment for ValNo in RI. 2302 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2303 /// the stack. 2304 void computeAssignment(unsigned ValNo, JoinVals &Other); 2305 2306 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2307 /// the extent of the tainted lanes in the block. 2308 /// 2309 /// Multiple values in Other.LR can be affected since partial redefinitions 2310 /// can preserve previously tainted lanes. 2311 /// 2312 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2313 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2314 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2315 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2316 /// 2317 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2318 /// entry to TaintedVals. 2319 /// 2320 /// Returns false if the tainted lanes extend beyond the basic block. 2321 bool 2322 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2323 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); 2324 2325 /// Return true if MI uses any of the given Lanes from Reg. 2326 /// This does not include partial redefinitions of Reg. 2327 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; 2328 2329 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2330 /// be pruned: 2331 /// 2332 /// %dst = COPY %src 2333 /// %src = COPY %dst <-- This value to be pruned. 2334 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2335 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2336 2337 public: 2338 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 2339 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 2340 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2341 bool TrackSubRegLiveness) 2342 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2343 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2344 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2345 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {} 2346 2347 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2348 /// Returns false if any conflicts were impossible to resolve. 2349 bool mapValues(JoinVals &Other); 2350 2351 /// Try to resolve conflicts that require all values to be mapped. 2352 /// Returns false if any conflicts were impossible to resolve. 2353 bool resolveConflicts(JoinVals &Other); 2354 2355 /// Prune the live range of values in Other.LR where they would conflict with 2356 /// CR_Replace values in LR. Collect end points for restoring the live range 2357 /// after joining. 2358 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2359 bool changeInstrs); 2360 2361 /// Removes subranges starting at copies that get removed. This sometimes 2362 /// happens when undefined subranges are copied around. These ranges contain 2363 /// no useful information and can be removed. 2364 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2365 2366 /// Pruning values in subranges can lead to removing segments in these 2367 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2368 /// the main range also need to be removed. This function will mark 2369 /// the corresponding values in the main range as pruned, so that 2370 /// eraseInstrs can do the final cleanup. 2371 /// The parameter @p LI must be the interval whose main range is the 2372 /// live range LR. 2373 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2374 2375 /// Erase any machine instructions that have been coalesced away. 2376 /// Add erased instructions to ErasedInstrs. 2377 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2378 /// the erased instrs. 2379 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2380 SmallVectorImpl<unsigned> &ShrinkRegs, 2381 LiveInterval *LI = nullptr); 2382 2383 /// Remove liverange defs at places where implicit defs will be removed. 2384 void removeImplicitDefs(); 2385 2386 /// Get the value assignments suitable for passing to LiveInterval::join. 2387 const int *getAssignments() const { return Assignments.data(); } 2388 }; 2389 2390 } // end anonymous namespace 2391 2392 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2393 const { 2394 LaneBitmask L; 2395 for (const MachineOperand &MO : DefMI->operands()) { 2396 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2397 continue; 2398 L |= TRI->getSubRegIndexLaneMask( 2399 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2400 if (MO.readsReg()) 2401 Redef = true; 2402 } 2403 return L; 2404 } 2405 2406 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 2407 const VNInfo *VNI) const { 2408 unsigned TrackReg = Reg; 2409 2410 while (!VNI->isPHIDef()) { 2411 SlotIndex Def = VNI->def; 2412 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2413 assert(MI && "No defining instruction"); 2414 if (!MI->isFullCopy()) 2415 return std::make_pair(VNI, TrackReg); 2416 Register SrcReg = MI->getOperand(1).getReg(); 2417 if (!Register::isVirtualRegister(SrcReg)) 2418 return std::make_pair(VNI, TrackReg); 2419 2420 const LiveInterval &LI = LIS->getInterval(SrcReg); 2421 const VNInfo *ValueIn; 2422 // No subrange involved. 2423 if (!SubRangeJoin || !LI.hasSubRanges()) { 2424 LiveQueryResult LRQ = LI.Query(Def); 2425 ValueIn = LRQ.valueIn(); 2426 } else { 2427 // Query subranges. Ensure that all matching ones take us to the same def 2428 // (allowing some of them to be undef). 2429 ValueIn = nullptr; 2430 for (const LiveInterval::SubRange &S : LI.subranges()) { 2431 // Transform lanemask to a mask in the joined live interval. 2432 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2433 if ((SMask & LaneMask).none()) 2434 continue; 2435 LiveQueryResult LRQ = S.Query(Def); 2436 if (!ValueIn) { 2437 ValueIn = LRQ.valueIn(); 2438 continue; 2439 } 2440 if (LRQ.valueIn() && ValueIn != LRQ.valueIn()) 2441 return std::make_pair(VNI, TrackReg); 2442 } 2443 } 2444 if (ValueIn == nullptr) { 2445 // Reaching an undefined value is legitimate, for example: 2446 // 2447 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef 2448 // 2 %1 = COPY %0 ;; %1 is defined here. 2449 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition, 2450 // ;; but it's equivalent to "undef". 2451 return std::make_pair(nullptr, SrcReg); 2452 } 2453 VNI = ValueIn; 2454 TrackReg = SrcReg; 2455 } 2456 return std::make_pair(VNI, TrackReg); 2457 } 2458 2459 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2460 const JoinVals &Other) const { 2461 const VNInfo *Orig0; 2462 unsigned Reg0; 2463 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2464 if (Orig0 == Value1 && Reg0 == Other.Reg) 2465 return true; 2466 2467 const VNInfo *Orig1; 2468 unsigned Reg1; 2469 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2470 // If both values are undefined, and the source registers are the same 2471 // register, the values are identical. Filter out cases where only one 2472 // value is defined. 2473 if (Orig0 == nullptr || Orig1 == nullptr) 2474 return Orig0 == Orig1 && Reg0 == Reg1; 2475 2476 // The values are equal if they are defined at the same place and use the 2477 // same register. Note that we cannot compare VNInfos directly as some of 2478 // them might be from a copy created in mergeSubRangeInto() while the other 2479 // is from the original LiveInterval. 2480 return Orig0->def == Orig1->def && Reg0 == Reg1; 2481 } 2482 2483 JoinVals::ConflictResolution 2484 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2485 Val &V = Vals[ValNo]; 2486 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2487 VNInfo *VNI = LR.getValNumInfo(ValNo); 2488 if (VNI->isUnused()) { 2489 V.WriteLanes = LaneBitmask::getAll(); 2490 return CR_Keep; 2491 } 2492 2493 // Get the instruction defining this value, compute the lanes written. 2494 const MachineInstr *DefMI = nullptr; 2495 if (VNI->isPHIDef()) { 2496 // Conservatively assume that all lanes in a PHI are valid. 2497 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2498 : TRI->getSubRegIndexLaneMask(SubIdx); 2499 V.ValidLanes = V.WriteLanes = Lanes; 2500 } else { 2501 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2502 assert(DefMI != nullptr); 2503 if (SubRangeJoin) { 2504 // We don't care about the lanes when joining subregister ranges. 2505 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2506 if (DefMI->isImplicitDef()) { 2507 V.ValidLanes = LaneBitmask::getNone(); 2508 V.ErasableImplicitDef = true; 2509 } 2510 } else { 2511 bool Redef = false; 2512 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2513 2514 // If this is a read-modify-write instruction, there may be more valid 2515 // lanes than the ones written by this instruction. 2516 // This only covers partial redef operands. DefMI may have normal use 2517 // operands reading the register. They don't contribute valid lanes. 2518 // 2519 // This adds ssub1 to the set of valid lanes in %src: 2520 // 2521 // %src:ssub1 = FOO 2522 // 2523 // This leaves only ssub1 valid, making any other lanes undef: 2524 // 2525 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2526 // 2527 // The <read-undef> flag on the def operand means that old lane values are 2528 // not important. 2529 if (Redef) { 2530 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2531 assert((TrackSubRegLiveness || V.RedefVNI) && 2532 "Instruction is reading nonexistent value"); 2533 if (V.RedefVNI != nullptr) { 2534 computeAssignment(V.RedefVNI->id, Other); 2535 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2536 } 2537 } 2538 2539 // An IMPLICIT_DEF writes undef values. 2540 if (DefMI->isImplicitDef()) { 2541 // We normally expect IMPLICIT_DEF values to be live only until the end 2542 // of their block. If the value is really live longer and gets pruned in 2543 // another block, this flag is cleared again. 2544 // 2545 // Clearing the valid lanes is deferred until it is sure this can be 2546 // erased. 2547 V.ErasableImplicitDef = true; 2548 } 2549 } 2550 } 2551 2552 // Find the value in Other that overlaps VNI->def, if any. 2553 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2554 2555 // It is possible that both values are defined by the same instruction, or 2556 // the values are PHIs defined in the same block. When that happens, the two 2557 // values should be merged into one, but not into any preceding value. 2558 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2559 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2560 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2561 2562 // One value stays, the other is merged. Keep the earlier one, or the first 2563 // one we see. 2564 if (OtherVNI->def < VNI->def) 2565 Other.computeAssignment(OtherVNI->id, *this); 2566 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2567 // This is an early-clobber def overlapping a live-in value in the other 2568 // register. Not mergeable. 2569 V.OtherVNI = OtherLRQ.valueIn(); 2570 return CR_Impossible; 2571 } 2572 V.OtherVNI = OtherVNI; 2573 Val &OtherV = Other.Vals[OtherVNI->id]; 2574 // Keep this value, check for conflicts when analyzing OtherVNI. 2575 if (!OtherV.isAnalyzed()) 2576 return CR_Keep; 2577 // Both sides have been analyzed now. 2578 // Allow overlapping PHI values. Any real interference would show up in a 2579 // predecessor, the PHI itself can't introduce any conflicts. 2580 if (VNI->isPHIDef()) 2581 return CR_Merge; 2582 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2583 // Overlapping lanes can't be resolved. 2584 return CR_Impossible; 2585 else 2586 return CR_Merge; 2587 } 2588 2589 // No simultaneous def. Is Other live at the def? 2590 V.OtherVNI = OtherLRQ.valueIn(); 2591 if (!V.OtherVNI) 2592 // No overlap, no conflict. 2593 return CR_Keep; 2594 2595 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2596 2597 // We have overlapping values, or possibly a kill of Other. 2598 // Recursively compute assignments up the dominator tree. 2599 Other.computeAssignment(V.OtherVNI->id, *this); 2600 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2601 2602 if (OtherV.ErasableImplicitDef) { 2603 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2604 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2605 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2606 // technically. 2607 // 2608 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2609 // to erase the IMPLICIT_DEF instruction. 2610 if (DefMI && 2611 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2612 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2613 << " extends into " 2614 << printMBBReference(*DefMI->getParent()) 2615 << ", keeping it.\n"); 2616 OtherV.ErasableImplicitDef = false; 2617 } else { 2618 // We deferred clearing these lanes in case we needed to save them 2619 OtherV.ValidLanes &= ~OtherV.WriteLanes; 2620 } 2621 } 2622 2623 // Allow overlapping PHI values. Any real interference would show up in a 2624 // predecessor, the PHI itself can't introduce any conflicts. 2625 if (VNI->isPHIDef()) 2626 return CR_Replace; 2627 2628 // Check for simple erasable conflicts. 2629 if (DefMI->isImplicitDef()) { 2630 // We need the def for the subregister if there is nothing else live at the 2631 // subrange at this point. 2632 if (TrackSubRegLiveness 2633 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none()) 2634 return CR_Replace; 2635 return CR_Erase; 2636 } 2637 2638 // Include the non-conflict where DefMI is a coalescable copy that kills 2639 // OtherVNI. We still want the copy erased and value numbers merged. 2640 if (CP.isCoalescable(DefMI)) { 2641 // Some of the lanes copied from OtherVNI may be undef, making them undef 2642 // here too. 2643 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2644 return CR_Erase; 2645 } 2646 2647 // This may not be a real conflict if DefMI simply kills Other and defines 2648 // VNI. 2649 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2650 return CR_Keep; 2651 2652 // Handle the case where VNI and OtherVNI can be proven to be identical: 2653 // 2654 // %other = COPY %ext 2655 // %this = COPY %ext <-- Erase this copy 2656 // 2657 if (DefMI->isFullCopy() && !CP.isPartial() && 2658 valuesIdentical(VNI, V.OtherVNI, Other)) { 2659 V.Identical = true; 2660 return CR_Erase; 2661 } 2662 2663 // The remaining checks apply to the lanes, which aren't tracked here. This 2664 // was already decided to be OK via the following CR_Replace condition. 2665 // CR_Replace. 2666 if (SubRangeJoin) 2667 return CR_Replace; 2668 2669 // If the lanes written by this instruction were all undef in OtherVNI, it is 2670 // still safe to join the live ranges. This can't be done with a simple value 2671 // mapping, though - OtherVNI will map to multiple values: 2672 // 2673 // 1 %dst:ssub0 = FOO <-- OtherVNI 2674 // 2 %src = BAR <-- VNI 2675 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy. 2676 // 4 BAZ killed %dst 2677 // 5 QUUX killed %src 2678 // 2679 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2680 // handles this complex value mapping. 2681 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2682 return CR_Replace; 2683 2684 // If the other live range is killed by DefMI and the live ranges are still 2685 // overlapping, it must be because we're looking at an early clobber def: 2686 // 2687 // %dst<def,early-clobber> = ASM killed %src 2688 // 2689 // In this case, it is illegal to merge the two live ranges since the early 2690 // clobber def would clobber %src before it was read. 2691 if (OtherLRQ.isKill()) { 2692 // This case where the def doesn't overlap the kill is handled above. 2693 assert(VNI->def.isEarlyClobber() && 2694 "Only early clobber defs can overlap a kill"); 2695 return CR_Impossible; 2696 } 2697 2698 // VNI is clobbering live lanes in OtherVNI, but there is still the 2699 // possibility that no instructions actually read the clobbered lanes. 2700 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2701 // Otherwise Other.RI wouldn't be live here. 2702 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2703 return CR_Impossible; 2704 2705 // We need to verify that no instructions are reading the clobbered lanes. To 2706 // save compile time, we'll only check that locally. Don't allow the tainted 2707 // value to escape the basic block. 2708 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2709 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2710 return CR_Impossible; 2711 2712 // There are still some things that could go wrong besides clobbered lanes 2713 // being read, for example OtherVNI may be only partially redefined in MBB, 2714 // and some clobbered lanes could escape the block. Save this analysis for 2715 // resolveConflicts() when all values have been mapped. We need to know 2716 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2717 // that now - the recursive analyzeValue() calls must go upwards in the 2718 // dominator tree. 2719 return CR_Unresolved; 2720 } 2721 2722 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2723 Val &V = Vals[ValNo]; 2724 if (V.isAnalyzed()) { 2725 // Recursion should always move up the dominator tree, so ValNo is not 2726 // supposed to reappear before it has been assigned. 2727 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2728 return; 2729 } 2730 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2731 case CR_Erase: 2732 case CR_Merge: 2733 // Merge this ValNo into OtherVNI. 2734 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2735 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2736 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2737 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@' 2738 << LR.getValNumInfo(ValNo)->def << " into " 2739 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2740 << V.OtherVNI->def << " --> @" 2741 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2742 break; 2743 case CR_Replace: 2744 case CR_Unresolved: { 2745 // The other value is going to be pruned if this join is successful. 2746 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2747 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2748 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2749 // its lanes. 2750 if (OtherV.ErasableImplicitDef && 2751 TrackSubRegLiveness && 2752 (OtherV.WriteLanes & ~V.ValidLanes).any()) { 2753 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n"); 2754 2755 OtherV.ErasableImplicitDef = false; 2756 // The valid lanes written by the implicit_def were speculatively cleared 2757 // before, so make this more conservative. It may be better to track this, 2758 // I haven't found a testcase where it matters. 2759 OtherV.ValidLanes = LaneBitmask::getAll(); 2760 } 2761 2762 OtherV.Pruned = true; 2763 LLVM_FALLTHROUGH; 2764 } 2765 default: 2766 // This value number needs to go in the final joined live range. 2767 Assignments[ValNo] = NewVNInfo.size(); 2768 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2769 break; 2770 } 2771 } 2772 2773 bool JoinVals::mapValues(JoinVals &Other) { 2774 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2775 computeAssignment(i, Other); 2776 if (Vals[i].Resolution == CR_Impossible) { 2777 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i 2778 << '@' << LR.getValNumInfo(i)->def << '\n'); 2779 return false; 2780 } 2781 } 2782 return true; 2783 } 2784 2785 bool JoinVals:: 2786 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2787 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { 2788 VNInfo *VNI = LR.getValNumInfo(ValNo); 2789 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2790 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2791 2792 // Scan Other.LR from VNI.def to MBBEnd. 2793 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2794 assert(OtherI != Other.LR.end() && "No conflict?"); 2795 do { 2796 // OtherI is pointing to a tainted value. Abort the join if the tainted 2797 // lanes escape the block. 2798 SlotIndex End = OtherI->end; 2799 if (End >= MBBEnd) { 2800 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':' 2801 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2802 return false; 2803 } 2804 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':' 2805 << OtherI->valno->id << '@' << OtherI->start << " to " 2806 << End << '\n'); 2807 // A dead def is not a problem. 2808 if (End.isDead()) 2809 break; 2810 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2811 2812 // Check for another def in the MBB. 2813 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2814 break; 2815 2816 // Lanes written by the new def are no longer tainted. 2817 const Val &OV = Other.Vals[OtherI->valno->id]; 2818 TaintedLanes &= ~OV.WriteLanes; 2819 if (!OV.RedefVNI) 2820 break; 2821 } while (TaintedLanes.any()); 2822 return true; 2823 } 2824 2825 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, 2826 LaneBitmask Lanes) const { 2827 if (MI.isDebugInstr()) 2828 return false; 2829 for (const MachineOperand &MO : MI.operands()) { 2830 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2831 continue; 2832 if (!MO.readsReg()) 2833 continue; 2834 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2835 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2836 return true; 2837 } 2838 return false; 2839 } 2840 2841 bool JoinVals::resolveConflicts(JoinVals &Other) { 2842 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2843 Val &V = Vals[i]; 2844 assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); 2845 if (V.Resolution != CR_Unresolved) 2846 continue; 2847 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@' 2848 << LR.getValNumInfo(i)->def << '\n'); 2849 if (SubRangeJoin) 2850 return false; 2851 2852 ++NumLaneConflicts; 2853 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2854 VNInfo *VNI = LR.getValNumInfo(i); 2855 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2856 2857 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2858 // join, those lanes will be tainted with a wrong value. Get the extent of 2859 // the tainted lanes. 2860 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2861 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2862 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2863 // Tainted lanes would extend beyond the basic block. 2864 return false; 2865 2866 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2867 2868 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2869 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2870 MachineBasicBlock::iterator MI = MBB->begin(); 2871 if (!VNI->isPHIDef()) { 2872 MI = Indexes->getInstructionFromIndex(VNI->def); 2873 // No need to check the instruction defining VNI for reads. 2874 ++MI; 2875 } 2876 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2877 "Interference ends on VNI->def. Should have been handled earlier"); 2878 MachineInstr *LastMI = 2879 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2880 assert(LastMI && "Range must end at a proper instruction"); 2881 unsigned TaintNum = 0; 2882 while (true) { 2883 assert(MI != MBB->end() && "Bad LastMI"); 2884 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2885 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2886 return false; 2887 } 2888 // LastMI is the last instruction to use the current value. 2889 if (&*MI == LastMI) { 2890 if (++TaintNum == TaintExtent.size()) 2891 break; 2892 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2893 assert(LastMI && "Range must end at a proper instruction"); 2894 TaintedLanes = TaintExtent[TaintNum].second; 2895 } 2896 ++MI; 2897 } 2898 2899 // The tainted lanes are unused. 2900 V.Resolution = CR_Replace; 2901 ++NumLaneResolves; 2902 } 2903 return true; 2904 } 2905 2906 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2907 Val &V = Vals[ValNo]; 2908 if (V.Pruned || V.PrunedComputed) 2909 return V.Pruned; 2910 2911 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2912 return V.Pruned; 2913 2914 // Follow copies up the dominator tree and check if any intermediate value 2915 // has been pruned. 2916 V.PrunedComputed = true; 2917 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2918 return V.Pruned; 2919 } 2920 2921 void JoinVals::pruneValues(JoinVals &Other, 2922 SmallVectorImpl<SlotIndex> &EndPoints, 2923 bool changeInstrs) { 2924 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2925 SlotIndex Def = LR.getValNumInfo(i)->def; 2926 switch (Vals[i].Resolution) { 2927 case CR_Keep: 2928 break; 2929 case CR_Replace: { 2930 // This value takes precedence over the value in Other.LR. 2931 LIS->pruneValue(Other.LR, Def, &EndPoints); 2932 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2933 // instructions are only inserted to provide a live-out value for PHI 2934 // predecessors, so the instruction should simply go away once its value 2935 // has been replaced. 2936 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2937 bool EraseImpDef = OtherV.ErasableImplicitDef && 2938 OtherV.Resolution == CR_Keep; 2939 if (!Def.isBlock()) { 2940 if (changeInstrs) { 2941 // Remove <def,read-undef> flags. This def is now a partial redef. 2942 // Also remove dead flags since the joined live range will 2943 // continue past this instruction. 2944 for (MachineOperand &MO : 2945 Indexes->getInstructionFromIndex(Def)->operands()) { 2946 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 2947 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) 2948 MO.setIsUndef(false); 2949 MO.setIsDead(false); 2950 } 2951 } 2952 } 2953 // This value will reach instructions below, but we need to make sure 2954 // the live range also reaches the instruction at Def. 2955 if (!EraseImpDef) 2956 EndPoints.push_back(Def); 2957 } 2958 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def 2959 << ": " << Other.LR << '\n'); 2960 break; 2961 } 2962 case CR_Erase: 2963 case CR_Merge: 2964 if (isPrunedValue(i, Other)) { 2965 // This value is ultimately a copy of a pruned value in LR or Other.LR. 2966 // We can no longer trust the value mapping computed by 2967 // computeAssignment(), the value that was originally copied could have 2968 // been replaced. 2969 LIS->pruneValue(LR, Def, &EndPoints); 2970 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at " 2971 << Def << ": " << LR << '\n'); 2972 } 2973 break; 2974 case CR_Unresolved: 2975 case CR_Impossible: 2976 llvm_unreachable("Unresolved conflicts"); 2977 } 2978 } 2979 } 2980 2981 /// Consider the following situation when coalescing the copy between 2982 /// %31 and %45 at 800. (The vertical lines represent live range segments.) 2983 /// 2984 /// Main range Subrange 0004 (sub2) 2985 /// %31 %45 %31 %45 2986 /// 544 %45 = COPY %28 + + 2987 /// | v1 | v1 2988 /// 560B bb.1: + + 2989 /// 624 = %45.sub2 | v2 | v2 2990 /// 800 %31 = COPY %45 + + + + 2991 /// | v0 | v0 2992 /// 816 %31.sub1 = ... + | 2993 /// 880 %30 = COPY %31 | v1 + 2994 /// 928 %45 = COPY %30 | + + 2995 /// | | v0 | v0 <--+ 2996 /// 992B ; backedge -> bb.1 | + + | 2997 /// 1040 = %31.sub0 + | 2998 /// This value must remain 2999 /// live-out! 3000 /// 3001 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes 3002 /// redundant, since it copies the value from %45 back into it. The 3003 /// conflict resolution for the main range determines that %45.v0 is 3004 /// to be erased, which is ok since %31.v1 is identical to it. 3005 /// The problem happens with the subrange for sub2: it has to be live 3006 /// on exit from the block, but since 928 was actually a point of 3007 /// definition of %45.sub2, %45.sub2 was not live immediately prior 3008 /// to that definition. As a result, when 928 was erased, the value v0 3009 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an 3010 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2, 3011 /// providing an incorrect value to the use at 624. 3012 /// 3013 /// Since the main-range values %31.v1 and %45.v0 were proved to be 3014 /// identical, the corresponding values in subranges must also be the 3015 /// same. A redundant copy is removed because it's not needed, and not 3016 /// because it copied an undefined value, so any liveness that originated 3017 /// from that copy cannot disappear. When pruning a value that started 3018 /// at the removed copy, the corresponding identical value must be 3019 /// extended to replace it. 3020 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 3021 // Look for values being erased. 3022 bool DidPrune = false; 3023 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3024 Val &V = Vals[i]; 3025 // We should trigger in all cases in which eraseInstrs() does something. 3026 // match what eraseInstrs() is doing, print a message so 3027 if (V.Resolution != CR_Erase && 3028 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)) 3029 continue; 3030 3031 // Check subranges at the point where the copy will be removed. 3032 SlotIndex Def = LR.getValNumInfo(i)->def; 3033 SlotIndex OtherDef; 3034 if (V.Identical) 3035 OtherDef = V.OtherVNI->def; 3036 3037 // Print message so mismatches with eraseInstrs() can be diagnosed. 3038 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def 3039 << '\n'); 3040 for (LiveInterval::SubRange &S : LI.subranges()) { 3041 LiveQueryResult Q = S.Query(Def); 3042 3043 // If a subrange starts at the copy then an undefined value has been 3044 // copied and we must remove that subrange value as well. 3045 VNInfo *ValueOut = Q.valueOutOrDead(); 3046 if (ValueOut != nullptr && (Q.valueIn() == nullptr || 3047 (V.Identical && V.Resolution == CR_Erase && 3048 ValueOut->def == Def))) { 3049 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 3050 << " at " << Def << "\n"); 3051 SmallVector<SlotIndex,8> EndPoints; 3052 LIS->pruneValue(S, Def, &EndPoints); 3053 DidPrune = true; 3054 // Mark value number as unused. 3055 ValueOut->markUnused(); 3056 3057 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) { 3058 // If V is identical to V.OtherVNI (and S was live at OtherDef), 3059 // then we can't simply prune V from S. V needs to be replaced 3060 // with V.OtherVNI. 3061 LIS->extendToIndices(S, EndPoints); 3062 } 3063 continue; 3064 } 3065 // If a subrange ends at the copy, then a value was copied but only 3066 // partially used later. Shrink the subregister range appropriately. 3067 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 3068 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane " 3069 << PrintLaneMask(S.LaneMask) << " at " << Def 3070 << "\n"); 3071 ShrinkMask |= S.LaneMask; 3072 } 3073 } 3074 } 3075 if (DidPrune) 3076 LI.removeEmptySubRanges(); 3077 } 3078 3079 /// Check if any of the subranges of @p LI contain a definition at @p Def. 3080 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 3081 for (LiveInterval::SubRange &SR : LI.subranges()) { 3082 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 3083 if (VNI->def == Def) 3084 return true; 3085 } 3086 return false; 3087 } 3088 3089 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 3090 assert(&static_cast<LiveRange&>(LI) == &LR); 3091 3092 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3093 if (Vals[i].Resolution != CR_Keep) 3094 continue; 3095 VNInfo *VNI = LR.getValNumInfo(i); 3096 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 3097 continue; 3098 Vals[i].Pruned = true; 3099 ShrinkMainRange = true; 3100 } 3101 } 3102 3103 void JoinVals::removeImplicitDefs() { 3104 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3105 Val &V = Vals[i]; 3106 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 3107 continue; 3108 3109 VNInfo *VNI = LR.getValNumInfo(i); 3110 VNI->markUnused(); 3111 LR.removeValNo(VNI); 3112 } 3113 } 3114 3115 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 3116 SmallVectorImpl<unsigned> &ShrinkRegs, 3117 LiveInterval *LI) { 3118 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3119 // Get the def location before markUnused() below invalidates it. 3120 VNInfo *VNI = LR.getValNumInfo(i); 3121 SlotIndex Def = VNI->def; 3122 switch (Vals[i].Resolution) { 3123 case CR_Keep: { 3124 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 3125 // longer. The IMPLICIT_DEF instructions are only inserted by 3126 // PHIElimination to guarantee that all PHI predecessors have a value. 3127 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 3128 break; 3129 // Remove value number i from LR. 3130 // For intervals with subranges, removing a segment from the main range 3131 // may require extending the previous segment: for each definition of 3132 // a subregister, there will be a corresponding def in the main range. 3133 // That def may fall in the middle of a segment from another subrange. 3134 // In such cases, removing this def from the main range must be 3135 // complemented by extending the main range to account for the liveness 3136 // of the other subrange. 3137 // The new end point of the main range segment to be extended. 3138 SlotIndex NewEnd; 3139 if (LI != nullptr) { 3140 LiveRange::iterator I = LR.FindSegmentContaining(Def); 3141 assert(I != LR.end()); 3142 // Do not extend beyond the end of the segment being removed. 3143 // The segment may have been pruned in preparation for joining 3144 // live ranges. 3145 NewEnd = I->end; 3146 } 3147 3148 LR.removeValNo(VNI); 3149 // Note that this VNInfo is reused and still referenced in NewVNInfo, 3150 // make it appear like an unused value number. 3151 VNI->markUnused(); 3152 3153 if (LI != nullptr && LI->hasSubRanges()) { 3154 assert(static_cast<LiveRange*>(LI) == &LR); 3155 // Determine the end point based on the subrange information: 3156 // minimum of (earliest def of next segment, 3157 // latest end point of containing segment) 3158 SlotIndex ED, LE; 3159 for (LiveInterval::SubRange &SR : LI->subranges()) { 3160 LiveRange::iterator I = SR.find(Def); 3161 if (I == SR.end()) 3162 continue; 3163 if (I->start > Def) 3164 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 3165 else 3166 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 3167 } 3168 if (LE.isValid()) 3169 NewEnd = std::min(NewEnd, LE); 3170 if (ED.isValid()) 3171 NewEnd = std::min(NewEnd, ED); 3172 3173 // We only want to do the extension if there was a subrange that 3174 // was live across Def. 3175 if (LE.isValid()) { 3176 LiveRange::iterator S = LR.find(Def); 3177 if (S != LR.begin()) 3178 std::prev(S)->end = NewEnd; 3179 } 3180 } 3181 LLVM_DEBUG({ 3182 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 3183 if (LI != nullptr) 3184 dbgs() << "\t\t LHS = " << *LI << '\n'; 3185 }); 3186 LLVM_FALLTHROUGH; 3187 } 3188 3189 case CR_Erase: { 3190 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 3191 assert(MI && "No instruction to erase"); 3192 if (MI->isCopy()) { 3193 Register Reg = MI->getOperand(1).getReg(); 3194 if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() && 3195 Reg != CP.getDstReg()) 3196 ShrinkRegs.push_back(Reg); 3197 } 3198 ErasedInstrs.insert(MI); 3199 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 3200 LIS->RemoveMachineInstrFromMaps(*MI); 3201 MI->eraseFromParent(); 3202 break; 3203 } 3204 default: 3205 break; 3206 } 3207 } 3208 } 3209 3210 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 3211 LaneBitmask LaneMask, 3212 const CoalescerPair &CP) { 3213 SmallVector<VNInfo*, 16> NewVNInfo; 3214 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 3215 NewVNInfo, CP, LIS, TRI, true, true); 3216 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 3217 NewVNInfo, CP, LIS, TRI, true, true); 3218 3219 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 3220 // We should be able to resolve all conflicts here as we could successfully do 3221 // it on the mainrange already. There is however a problem when multiple 3222 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 3223 // interferences. 3224 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 3225 // We already determined that it is legal to merge the intervals, so this 3226 // should never fail. 3227 llvm_unreachable("*** Couldn't join subrange!\n"); 3228 } 3229 if (!LHSVals.resolveConflicts(RHSVals) || 3230 !RHSVals.resolveConflicts(LHSVals)) { 3231 // We already determined that it is legal to merge the intervals, so this 3232 // should never fail. 3233 llvm_unreachable("*** Couldn't join subrange!\n"); 3234 } 3235 3236 // The merging algorithm in LiveInterval::join() can't handle conflicting 3237 // value mappings, so we need to remove any live ranges that overlap a 3238 // CR_Replace resolution. Collect a set of end points that can be used to 3239 // restore the live range after joining. 3240 SmallVector<SlotIndex, 8> EndPoints; 3241 LHSVals.pruneValues(RHSVals, EndPoints, false); 3242 RHSVals.pruneValues(LHSVals, EndPoints, false); 3243 3244 LHSVals.removeImplicitDefs(); 3245 RHSVals.removeImplicitDefs(); 3246 3247 LRange.verify(); 3248 RRange.verify(); 3249 3250 // Join RRange into LHS. 3251 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 3252 NewVNInfo); 3253 3254 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask) 3255 << ' ' << LRange << "\n"); 3256 if (EndPoints.empty()) 3257 return; 3258 3259 // Recompute the parts of the live range we had to remove because of 3260 // CR_Replace conflicts. 3261 LLVM_DEBUG({ 3262 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3263 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3264 dbgs() << EndPoints[i]; 3265 if (i != n-1) 3266 dbgs() << ','; 3267 } 3268 dbgs() << ": " << LRange << '\n'; 3269 }); 3270 LIS->extendToIndices(LRange, EndPoints); 3271 } 3272 3273 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 3274 const LiveRange &ToMerge, 3275 LaneBitmask LaneMask, 3276 CoalescerPair &CP, 3277 unsigned ComposeSubRegIdx) { 3278 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3279 LI.refineSubRanges( 3280 Allocator, LaneMask, 3281 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) { 3282 if (SR.empty()) { 3283 SR.assign(ToMerge, Allocator); 3284 } else { 3285 // joinSubRegRange() destroys the merged range, so we need a copy. 3286 LiveRange RangeCopy(ToMerge, Allocator); 3287 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 3288 } 3289 }, 3290 *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx); 3291 } 3292 3293 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) { 3294 if (LI.valnos.size() < LargeIntervalSizeThreshold) 3295 return false; 3296 auto &Counter = LargeLIVisitCounter[LI.reg]; 3297 if (Counter < LargeIntervalFreqThreshold) { 3298 Counter++; 3299 return false; 3300 } 3301 return true; 3302 } 3303 3304 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 3305 SmallVector<VNInfo*, 16> NewVNInfo; 3306 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 3307 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 3308 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 3309 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 3310 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3311 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 3312 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3313 3314 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n'); 3315 3316 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS)) 3317 return false; 3318 3319 // First compute NewVNInfo and the simple value mappings. 3320 // Detect impossible conflicts early. 3321 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 3322 return false; 3323 3324 // Some conflicts can only be resolved after all values have been mapped. 3325 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 3326 return false; 3327 3328 // All clear, the live ranges can be merged. 3329 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 3330 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3331 3332 // Transform lanemasks from the LHS to masks in the coalesced register and 3333 // create initial subranges if necessary. 3334 unsigned DstIdx = CP.getDstIdx(); 3335 if (!LHS.hasSubRanges()) { 3336 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 3337 : TRI->getSubRegIndexLaneMask(DstIdx); 3338 // LHS must support subregs or we wouldn't be in this codepath. 3339 assert(Mask.any()); 3340 LHS.createSubRangeFrom(Allocator, Mask, LHS); 3341 } else if (DstIdx != 0) { 3342 // Transform LHS lanemasks to new register class if necessary. 3343 for (LiveInterval::SubRange &R : LHS.subranges()) { 3344 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 3345 R.LaneMask = Mask; 3346 } 3347 } 3348 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS 3349 << '\n'); 3350 3351 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3352 unsigned SrcIdx = CP.getSrcIdx(); 3353 if (!RHS.hasSubRanges()) { 3354 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3355 : TRI->getSubRegIndexLaneMask(SrcIdx); 3356 mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx); 3357 } else { 3358 // Pair up subranges and merge. 3359 for (LiveInterval::SubRange &R : RHS.subranges()) { 3360 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3361 mergeSubRangeInto(LHS, R, Mask, CP, DstIdx); 3362 } 3363 } 3364 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3365 3366 // Pruning implicit defs from subranges may result in the main range 3367 // having stale segments. 3368 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3369 3370 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3371 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3372 } 3373 3374 // The merging algorithm in LiveInterval::join() can't handle conflicting 3375 // value mappings, so we need to remove any live ranges that overlap a 3376 // CR_Replace resolution. Collect a set of end points that can be used to 3377 // restore the live range after joining. 3378 SmallVector<SlotIndex, 8> EndPoints; 3379 LHSVals.pruneValues(RHSVals, EndPoints, true); 3380 RHSVals.pruneValues(LHSVals, EndPoints, true); 3381 3382 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3383 // registers to require trimming. 3384 SmallVector<unsigned, 8> ShrinkRegs; 3385 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3386 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3387 while (!ShrinkRegs.empty()) 3388 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3389 3390 // Join RHS into LHS. 3391 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3392 3393 // Kill flags are going to be wrong if the live ranges were overlapping. 3394 // Eventually, we should simply clear all kill flags when computing live 3395 // ranges. They are reinserted after register allocation. 3396 MRI->clearKillFlags(LHS.reg); 3397 MRI->clearKillFlags(RHS.reg); 3398 3399 if (!EndPoints.empty()) { 3400 // Recompute the parts of the live range we had to remove because of 3401 // CR_Replace conflicts. 3402 LLVM_DEBUG({ 3403 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3404 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3405 dbgs() << EndPoints[i]; 3406 if (i != n-1) 3407 dbgs() << ','; 3408 } 3409 dbgs() << ": " << LHS << '\n'; 3410 }); 3411 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3412 } 3413 3414 return true; 3415 } 3416 3417 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3418 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3419 } 3420 3421 namespace { 3422 3423 /// Information concerning MBB coalescing priority. 3424 struct MBBPriorityInfo { 3425 MachineBasicBlock *MBB; 3426 unsigned Depth; 3427 bool IsSplit; 3428 3429 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3430 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3431 }; 3432 3433 } // end anonymous namespace 3434 3435 /// C-style comparator that sorts first based on the loop depth of the basic 3436 /// block (the unsigned), and then on the MBB number. 3437 /// 3438 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3439 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3440 const MBBPriorityInfo *RHS) { 3441 // Deeper loops first 3442 if (LHS->Depth != RHS->Depth) 3443 return LHS->Depth > RHS->Depth ? -1 : 1; 3444 3445 // Try to unsplit critical edges next. 3446 if (LHS->IsSplit != RHS->IsSplit) 3447 return LHS->IsSplit ? -1 : 1; 3448 3449 // Prefer blocks that are more connected in the CFG. This takes care of 3450 // the most difficult copies first while intervals are short. 3451 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3452 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3453 if (cl != cr) 3454 return cl > cr ? -1 : 1; 3455 3456 // As a last resort, sort by block number. 3457 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3458 } 3459 3460 /// \returns true if the given copy uses or defines a local live range. 3461 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3462 if (!Copy->isCopy()) 3463 return false; 3464 3465 if (Copy->getOperand(1).isUndef()) 3466 return false; 3467 3468 Register SrcReg = Copy->getOperand(1).getReg(); 3469 Register DstReg = Copy->getOperand(0).getReg(); 3470 if (Register::isPhysicalRegister(SrcReg) || 3471 Register::isPhysicalRegister(DstReg)) 3472 return false; 3473 3474 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3475 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3476 } 3477 3478 void RegisterCoalescer::lateLiveIntervalUpdate() { 3479 for (unsigned reg : ToBeUpdated) { 3480 if (!LIS->hasInterval(reg)) 3481 continue; 3482 LiveInterval &LI = LIS->getInterval(reg); 3483 shrinkToUses(&LI, &DeadDefs); 3484 if (!DeadDefs.empty()) 3485 eliminateDeadDefs(); 3486 } 3487 ToBeUpdated.clear(); 3488 } 3489 3490 bool RegisterCoalescer:: 3491 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3492 bool Progress = false; 3493 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3494 if (!CurrList[i]) 3495 continue; 3496 // Skip instruction pointers that have already been erased, for example by 3497 // dead code elimination. 3498 if (ErasedInstrs.count(CurrList[i])) { 3499 CurrList[i] = nullptr; 3500 continue; 3501 } 3502 bool Again = false; 3503 bool Success = joinCopy(CurrList[i], Again); 3504 Progress |= Success; 3505 if (Success || !Again) 3506 CurrList[i] = nullptr; 3507 } 3508 return Progress; 3509 } 3510 3511 /// Check if DstReg is a terminal node. 3512 /// I.e., it does not have any affinity other than \p Copy. 3513 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 3514 const MachineRegisterInfo *MRI) { 3515 assert(Copy.isCopyLike()); 3516 // Check if the destination of this copy as any other affinity. 3517 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3518 if (&MI != &Copy && MI.isCopyLike()) 3519 return false; 3520 return true; 3521 } 3522 3523 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3524 assert(Copy.isCopyLike()); 3525 if (!UseTerminalRule) 3526 return false; 3527 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 3528 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg)) 3529 return false; 3530 // Check if the destination of this copy has any other affinity. 3531 if (Register::isPhysicalRegister(DstReg) || 3532 // If SrcReg is a physical register, the copy won't be coalesced. 3533 // Ignoring it may have other side effect (like missing 3534 // rematerialization). So keep it. 3535 Register::isPhysicalRegister(SrcReg) || !isTerminalReg(DstReg, Copy, MRI)) 3536 return false; 3537 3538 // DstReg is a terminal node. Check if it interferes with any other 3539 // copy involving SrcReg. 3540 const MachineBasicBlock *OrigBB = Copy.getParent(); 3541 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3542 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3543 // Technically we should check if the weight of the new copy is 3544 // interesting compared to the other one and update the weight 3545 // of the copies accordingly. However, this would only work if 3546 // we would gather all the copies first then coalesce, whereas 3547 // right now we interleave both actions. 3548 // For now, just consider the copies that are in the same block. 3549 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3550 continue; 3551 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 3552 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3553 OtherSubReg)) 3554 return false; 3555 if (OtherReg == SrcReg) 3556 OtherReg = OtherSrcReg; 3557 // Check if OtherReg is a non-terminal. 3558 if (Register::isPhysicalRegister(OtherReg) || 3559 isTerminalReg(OtherReg, MI, MRI)) 3560 continue; 3561 // Check that OtherReg interfere with DstReg. 3562 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3563 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) 3564 << '\n'); 3565 return true; 3566 } 3567 } 3568 return false; 3569 } 3570 3571 void 3572 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3573 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n"); 3574 3575 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3576 // yet, it might invalidate the iterator. 3577 const unsigned PrevSize = WorkList.size(); 3578 if (JoinGlobalCopies) { 3579 SmallVector<MachineInstr*, 2> LocalTerminals; 3580 SmallVector<MachineInstr*, 2> GlobalTerminals; 3581 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3582 // are not inherently easier to resolve, but slightly preferable until we 3583 // have local live range splitting. In particular this is required by 3584 // cmp+jmp macro fusion. 3585 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3586 MII != E; ++MII) { 3587 if (!MII->isCopyLike()) 3588 continue; 3589 bool ApplyTerminalRule = applyTerminalRule(*MII); 3590 if (isLocalCopy(&(*MII), LIS)) { 3591 if (ApplyTerminalRule) 3592 LocalTerminals.push_back(&(*MII)); 3593 else 3594 LocalWorkList.push_back(&(*MII)); 3595 } else { 3596 if (ApplyTerminalRule) 3597 GlobalTerminals.push_back(&(*MII)); 3598 else 3599 WorkList.push_back(&(*MII)); 3600 } 3601 } 3602 // Append the copies evicted by the terminal rule at the end of the list. 3603 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3604 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3605 } 3606 else { 3607 SmallVector<MachineInstr*, 2> Terminals; 3608 for (MachineInstr &MII : *MBB) 3609 if (MII.isCopyLike()) { 3610 if (applyTerminalRule(MII)) 3611 Terminals.push_back(&MII); 3612 else 3613 WorkList.push_back(&MII); 3614 } 3615 // Append the copies evicted by the terminal rule at the end of the list. 3616 WorkList.append(Terminals.begin(), Terminals.end()); 3617 } 3618 // Try coalescing the collected copies immediately, and remove the nulls. 3619 // This prevents the WorkList from getting too large since most copies are 3620 // joinable on the first attempt. 3621 MutableArrayRef<MachineInstr*> 3622 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3623 if (copyCoalesceWorkList(CurrList)) 3624 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3625 nullptr), WorkList.end()); 3626 } 3627 3628 void RegisterCoalescer::coalesceLocals() { 3629 copyCoalesceWorkList(LocalWorkList); 3630 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3631 if (LocalWorkList[j]) 3632 WorkList.push_back(LocalWorkList[j]); 3633 } 3634 LocalWorkList.clear(); 3635 } 3636 3637 void RegisterCoalescer::joinAllIntervals() { 3638 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3639 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3640 3641 std::vector<MBBPriorityInfo> MBBs; 3642 MBBs.reserve(MF->size()); 3643 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3644 MachineBasicBlock *MBB = &*I; 3645 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3646 JoinSplitEdges && isSplitEdge(MBB))); 3647 } 3648 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3649 3650 // Coalesce intervals in MBB priority order. 3651 unsigned CurrDepth = std::numeric_limits<unsigned>::max(); 3652 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3653 // Try coalescing the collected local copies for deeper loops. 3654 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3655 coalesceLocals(); 3656 CurrDepth = MBBs[i].Depth; 3657 } 3658 copyCoalesceInMBB(MBBs[i].MBB); 3659 } 3660 lateLiveIntervalUpdate(); 3661 coalesceLocals(); 3662 3663 // Joining intervals can allow other intervals to be joined. Iteratively join 3664 // until we make no progress. 3665 while (copyCoalesceWorkList(WorkList)) 3666 /* empty */ ; 3667 lateLiveIntervalUpdate(); 3668 } 3669 3670 void RegisterCoalescer::releaseMemory() { 3671 ErasedInstrs.clear(); 3672 WorkList.clear(); 3673 DeadDefs.clear(); 3674 InflateRegs.clear(); 3675 LargeLIVisitCounter.clear(); 3676 } 3677 3678 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3679 MF = &fn; 3680 MRI = &fn.getRegInfo(); 3681 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3682 TRI = STI.getRegisterInfo(); 3683 TII = STI.getInstrInfo(); 3684 LIS = &getAnalysis<LiveIntervals>(); 3685 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3686 Loops = &getAnalysis<MachineLoopInfo>(); 3687 if (EnableGlobalCopies == cl::BOU_UNSET) 3688 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3689 else 3690 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3691 3692 // The MachineScheduler does not currently require JoinSplitEdges. This will 3693 // either be enabled unconditionally or replaced by a more general live range 3694 // splitting optimization. 3695 JoinSplitEdges = EnableJoinSplits; 3696 3697 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3698 << "********** Function: " << MF->getName() << '\n'); 3699 3700 if (VerifyCoalescing) 3701 MF->verify(this, "Before register coalescing"); 3702 3703 RegClassInfo.runOnMachineFunction(fn); 3704 3705 // Join (coalesce) intervals if requested. 3706 if (EnableJoining) 3707 joinAllIntervals(); 3708 3709 // After deleting a lot of copies, register classes may be less constrained. 3710 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3711 // DPR inflation. 3712 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3713 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3714 InflateRegs.end()); 3715 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() 3716 << " regs.\n"); 3717 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3718 unsigned Reg = InflateRegs[i]; 3719 if (MRI->reg_nodbg_empty(Reg)) 3720 continue; 3721 if (MRI->recomputeRegClass(Reg)) { 3722 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to " 3723 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3724 ++NumInflated; 3725 3726 LiveInterval &LI = LIS->getInterval(Reg); 3727 if (LI.hasSubRanges()) { 3728 // If the inflated register class does not support subregisters anymore 3729 // remove the subranges. 3730 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3731 LI.clearSubRanges(); 3732 } else { 3733 #ifndef NDEBUG 3734 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3735 // If subranges are still supported, then the same subregs 3736 // should still be supported. 3737 for (LiveInterval::SubRange &S : LI.subranges()) { 3738 assert((S.LaneMask & ~MaxMask).none()); 3739 } 3740 #endif 3741 } 3742 } 3743 } 3744 } 3745 3746 LLVM_DEBUG(dump()); 3747 if (VerifyCoalescing) 3748 MF->verify(this, "After register coalescing"); 3749 return true; 3750 } 3751 3752 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3753 LIS->print(O, m); 3754 } 3755