1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic RegisterCoalescer interface which 10 // is used as the common interface used by all clients and 11 // implementations of register coalescing. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "RegisterCoalescer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetOpcodes.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/LaneBitmask.h" 45 #include "llvm/MC/MCInstrDesc.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <iterator> 56 #include <limits> 57 #include <tuple> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "regalloc" 64 65 STATISTIC(numJoins , "Number of interval joins performed"); 66 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 67 STATISTIC(numCommutes , "Number of instruction commuting performed"); 68 STATISTIC(numExtends , "Number of copies extended"); 69 STATISTIC(NumReMats , "Number of instructions re-materialized"); 70 STATISTIC(NumInflated , "Number of register classes inflated"); 71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 72 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 73 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called"); 74 75 static cl::opt<bool> EnableJoining("join-liveintervals", 76 cl::desc("Coalesce copies (default=true)"), 77 cl::init(true), cl::Hidden); 78 79 static cl::opt<bool> UseTerminalRule("terminal-rule", 80 cl::desc("Apply the terminal rule"), 81 cl::init(false), cl::Hidden); 82 83 /// Temporary flag to test critical edge unsplitting. 84 static cl::opt<bool> 85 EnableJoinSplits("join-splitedges", 86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 87 88 /// Temporary flag to test global copy optimization. 89 static cl::opt<cl::boolOrDefault> 90 EnableGlobalCopies("join-globalcopies", 91 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 92 cl::init(cl::BOU_UNSET), cl::Hidden); 93 94 static cl::opt<bool> 95 VerifyCoalescing("verify-coalescing", 96 cl::desc("Verify machine instrs before and after register coalescing"), 97 cl::Hidden); 98 99 static cl::opt<unsigned> LateRematUpdateThreshold( 100 "late-remat-update-threshold", cl::Hidden, 101 cl::desc("During rematerialization for a copy, if the def instruction has " 102 "many other copy uses to be rematerialized, delay the multiple " 103 "separate live interval update work and do them all at once after " 104 "all those rematerialization are done. It will save a lot of " 105 "repeated work. "), 106 cl::init(100)); 107 108 static cl::opt<unsigned> LargeIntervalSizeThreshold( 109 "large-interval-size-threshold", cl::Hidden, 110 cl::desc("If the valnos size of an interval is larger than the threshold, " 111 "it is regarded as a large interval. "), 112 cl::init(100)); 113 114 static cl::opt<unsigned> LargeIntervalFreqThreshold( 115 "large-interval-freq-threshold", cl::Hidden, 116 cl::desc("For a large interval, if it is coalesed with other live " 117 "intervals many times more than the threshold, stop its " 118 "coalescing to control the compile time. "), 119 cl::init(100)); 120 121 namespace { 122 123 class JoinVals; 124 125 class RegisterCoalescer : public MachineFunctionPass, 126 private LiveRangeEdit::Delegate { 127 MachineFunction* MF = nullptr; 128 MachineRegisterInfo* MRI = nullptr; 129 const TargetRegisterInfo* TRI = nullptr; 130 const TargetInstrInfo* TII = nullptr; 131 LiveIntervals *LIS = nullptr; 132 const MachineLoopInfo* Loops = nullptr; 133 AliasAnalysis *AA = nullptr; 134 RegisterClassInfo RegClassInfo; 135 136 /// Debug variable location tracking -- for each VReg, maintain an 137 /// ordered-by-slot-index set of DBG_VALUEs, to help quick 138 /// identification of whether coalescing may change location validity. 139 using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>; 140 DenseMap<unsigned, std::vector<DbgValueLoc>> DbgVRegToValues; 141 142 /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached. 143 /// To avoid repeatedly merging sets of DbgValueLocs, instead record 144 /// which vregs have been coalesced, and where to. This map is from 145 /// vreg => {set of vregs merged in}. 146 DenseMap<unsigned, SmallVector<unsigned, 4>> DbgMergedVRegNums; 147 148 /// A LaneMask to remember on which subregister live ranges we need to call 149 /// shrinkToUses() later. 150 LaneBitmask ShrinkMask; 151 152 /// True if the main range of the currently coalesced intervals should be 153 /// checked for smaller live intervals. 154 bool ShrinkMainRange = false; 155 156 /// True if the coalescer should aggressively coalesce global copies 157 /// in favor of keeping local copies. 158 bool JoinGlobalCopies = false; 159 160 /// True if the coalescer should aggressively coalesce fall-thru 161 /// blocks exclusively containing copies. 162 bool JoinSplitEdges = false; 163 164 /// Copy instructions yet to be coalesced. 165 SmallVector<MachineInstr*, 8> WorkList; 166 SmallVector<MachineInstr*, 8> LocalWorkList; 167 168 /// Set of instruction pointers that have been erased, and 169 /// that may be present in WorkList. 170 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 171 172 /// Dead instructions that are about to be deleted. 173 SmallVector<MachineInstr*, 8> DeadDefs; 174 175 /// Virtual registers to be considered for register class inflation. 176 SmallVector<unsigned, 8> InflateRegs; 177 178 /// The collection of live intervals which should have been updated 179 /// immediately after rematerialiation but delayed until 180 /// lateLiveIntervalUpdate is called. 181 DenseSet<unsigned> ToBeUpdated; 182 183 /// Record how many times the large live interval with many valnos 184 /// has been tried to join with other live interval. 185 DenseMap<unsigned, unsigned long> LargeLIVisitCounter; 186 187 /// Recursively eliminate dead defs in DeadDefs. 188 void eliminateDeadDefs(); 189 190 /// LiveRangeEdit callback for eliminateDeadDefs(). 191 void LRE_WillEraseInstruction(MachineInstr *MI) override; 192 193 /// Coalesce the LocalWorkList. 194 void coalesceLocals(); 195 196 /// Join compatible live intervals 197 void joinAllIntervals(); 198 199 /// Coalesce copies in the specified MBB, putting 200 /// copies that cannot yet be coalesced into WorkList. 201 void copyCoalesceInMBB(MachineBasicBlock *MBB); 202 203 /// Tries to coalesce all copies in CurrList. Returns true if any progress 204 /// was made. 205 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 206 207 /// If one def has many copy like uses, and those copy uses are all 208 /// rematerialized, the live interval update needed for those 209 /// rematerializations will be delayed and done all at once instead 210 /// of being done multiple times. This is to save compile cost because 211 /// live interval update is costly. 212 void lateLiveIntervalUpdate(); 213 214 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 215 /// src/dst of the copy instruction CopyMI. This returns true if the copy 216 /// was successfully coalesced away. If it is not currently possible to 217 /// coalesce this interval, but it may be possible if other things get 218 /// coalesced, then it returns true by reference in 'Again'. 219 bool joinCopy(MachineInstr *CopyMI, bool &Again); 220 221 /// Attempt to join these two intervals. On failure, this 222 /// returns false. The output "SrcInt" will not have been modified, so we 223 /// can use this information below to update aliases. 224 bool joinIntervals(CoalescerPair &CP); 225 226 /// Attempt joining two virtual registers. Return true on success. 227 bool joinVirtRegs(CoalescerPair &CP); 228 229 /// If a live interval has many valnos and is coalesced with other 230 /// live intervals many times, we regard such live interval as having 231 /// high compile time cost. 232 bool isHighCostLiveInterval(LiveInterval &LI); 233 234 /// Attempt joining with a reserved physreg. 235 bool joinReservedPhysReg(CoalescerPair &CP); 236 237 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 238 /// Subranges in @p LI which only partially interfere with the desired 239 /// LaneMask are split as necessary. @p LaneMask are the lanes that 240 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 241 /// lanemasks already adjusted to the coalesced register. 242 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 243 LaneBitmask LaneMask, CoalescerPair &CP, 244 unsigned DstIdx); 245 246 /// Join the liveranges of two subregisters. Joins @p RRange into 247 /// @p LRange, @p RRange may be invalid afterwards. 248 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 249 LaneBitmask LaneMask, const CoalescerPair &CP); 250 251 /// We found a non-trivially-coalescable copy. If the source value number is 252 /// defined by a copy from the destination reg see if we can merge these two 253 /// destination reg valno# into a single value number, eliminating a copy. 254 /// This returns true if an interval was modified. 255 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 256 257 /// Return true if there are definitions of IntB 258 /// other than BValNo val# that can reach uses of AValno val# of IntA. 259 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 260 VNInfo *AValNo, VNInfo *BValNo); 261 262 /// We found a non-trivially-coalescable copy. 263 /// If the source value number is defined by a commutable instruction and 264 /// its other operand is coalesced to the copy dest register, see if we 265 /// can transform the copy into a noop by commuting the definition. 266 /// This returns a pair of two flags: 267 /// - the first element is true if an interval was modified, 268 /// - the second element is true if the destination interval needs 269 /// to be shrunk after deleting the copy. 270 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP, 271 MachineInstr *CopyMI); 272 273 /// We found a copy which can be moved to its less frequent predecessor. 274 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 275 276 /// If the source of a copy is defined by a 277 /// trivial computation, replace the copy by rematerialize the definition. 278 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 279 bool &IsDefCopy); 280 281 /// Return true if a copy involving a physreg should be joined. 282 bool canJoinPhys(const CoalescerPair &CP); 283 284 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 285 /// number if it is not zero. If DstReg is a physical register and the 286 /// existing subregister number of the def / use being updated is not zero, 287 /// make sure to set it to the correct physical subregister. 288 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 289 290 /// If the given machine operand reads only undefined lanes add an undef 291 /// flag. 292 /// This can happen when undef uses were previously concealed by a copy 293 /// which we coalesced. Example: 294 /// %0:sub0<def,read-undef> = ... 295 /// %1 = COPY %0 <-- Coalescing COPY reveals undef 296 /// = use %1:sub1 <-- hidden undef use 297 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 298 MachineOperand &MO, unsigned SubRegIdx); 299 300 /// Handle copies of undef values. If the undef value is an incoming 301 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF. 302 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise, 303 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point). 304 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI); 305 306 /// Check whether or not we should apply the terminal rule on the 307 /// destination (Dst) of \p Copy. 308 /// When the terminal rule applies, Copy is not profitable to 309 /// coalesce. 310 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 311 /// at least one interference (Dst, Dst2). If Dst is terminal, the 312 /// terminal rule consists in checking that at least one of 313 /// interfering node, say Dst2, has an affinity of equal or greater 314 /// weight with Src. 315 /// In that case, Dst2 and Dst will not be able to be both coalesced 316 /// with Src. Since Dst2 exposes more coalescing opportunities than 317 /// Dst, we can drop \p Copy. 318 bool applyTerminalRule(const MachineInstr &Copy) const; 319 320 /// Wrapper method for \see LiveIntervals::shrinkToUses. 321 /// This method does the proper fixing of the live-ranges when the afore 322 /// mentioned method returns true. 323 void shrinkToUses(LiveInterval *LI, 324 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 325 NumShrinkToUses++; 326 if (LIS->shrinkToUses(LI, Dead)) { 327 /// Check whether or not \p LI is composed by multiple connected 328 /// components and if that is the case, fix that. 329 SmallVector<LiveInterval*, 8> SplitLIs; 330 LIS->splitSeparateComponents(*LI, SplitLIs); 331 } 332 } 333 334 /// Wrapper Method to do all the necessary work when an Instruction is 335 /// deleted. 336 /// Optimizations should use this to make sure that deleted instructions 337 /// are always accounted for. 338 void deleteInstr(MachineInstr* MI) { 339 ErasedInstrs.insert(MI); 340 LIS->RemoveMachineInstrFromMaps(*MI); 341 MI->eraseFromParent(); 342 } 343 344 /// Walk over function and initialize the DbgVRegToValues map. 345 void buildVRegToDbgValueMap(MachineFunction &MF); 346 347 /// Test whether, after merging, any DBG_VALUEs would refer to a 348 /// different value number than before merging, and whether this can 349 /// be resolved. If not, mark the DBG_VALUE as being undef. 350 void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS, 351 JoinVals &LHSVals, LiveRange &RHS, 352 JoinVals &RHSVals); 353 354 void checkMergingChangesDbgValuesImpl(unsigned Reg, LiveRange &OtherRange, 355 LiveRange &RegRange, JoinVals &Vals2); 356 357 public: 358 static char ID; ///< Class identification, replacement for typeinfo 359 360 RegisterCoalescer() : MachineFunctionPass(ID) { 361 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 362 } 363 364 void getAnalysisUsage(AnalysisUsage &AU) const override; 365 366 void releaseMemory() override; 367 368 /// This is the pass entry point. 369 bool runOnMachineFunction(MachineFunction&) override; 370 371 /// Implement the dump method. 372 void print(raw_ostream &O, const Module* = nullptr) const override; 373 }; 374 375 } // end anonymous namespace 376 377 char RegisterCoalescer::ID = 0; 378 379 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 380 381 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 382 "Simple Register Coalescing", false, false) 383 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 384 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 385 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 386 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 387 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 388 "Simple Register Coalescing", false, false) 389 390 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri, 391 const MachineInstr *MI, unsigned &Src, 392 unsigned &Dst, unsigned &SrcSub, 393 unsigned &DstSub) { 394 if (MI->isCopy()) { 395 Dst = MI->getOperand(0).getReg(); 396 DstSub = MI->getOperand(0).getSubReg(); 397 Src = MI->getOperand(1).getReg(); 398 SrcSub = MI->getOperand(1).getSubReg(); 399 } else if (MI->isSubregToReg()) { 400 Dst = MI->getOperand(0).getReg(); 401 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 402 MI->getOperand(3).getImm()); 403 Src = MI->getOperand(2).getReg(); 404 SrcSub = MI->getOperand(2).getSubReg(); 405 } else 406 return false; 407 return true; 408 } 409 410 /// Return true if this block should be vacated by the coalescer to eliminate 411 /// branches. The important cases to handle in the coalescer are critical edges 412 /// split during phi elimination which contain only copies. Simple blocks that 413 /// contain non-branches should also be vacated, but this can be handled by an 414 /// earlier pass similar to early if-conversion. 415 static bool isSplitEdge(const MachineBasicBlock *MBB) { 416 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 417 return false; 418 419 for (const auto &MI : *MBB) { 420 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 421 return false; 422 } 423 return true; 424 } 425 426 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 427 SrcReg = DstReg = 0; 428 SrcIdx = DstIdx = 0; 429 NewRC = nullptr; 430 Flipped = CrossClass = false; 431 432 unsigned Src, Dst, SrcSub, DstSub; 433 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 434 return false; 435 Partial = SrcSub || DstSub; 436 437 // If one register is a physreg, it must be Dst. 438 if (Register::isPhysicalRegister(Src)) { 439 if (Register::isPhysicalRegister(Dst)) 440 return false; 441 std::swap(Src, Dst); 442 std::swap(SrcSub, DstSub); 443 Flipped = true; 444 } 445 446 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 447 448 if (Register::isPhysicalRegister(Dst)) { 449 // Eliminate DstSub on a physreg. 450 if (DstSub) { 451 Dst = TRI.getSubReg(Dst, DstSub); 452 if (!Dst) return false; 453 DstSub = 0; 454 } 455 456 // Eliminate SrcSub by picking a corresponding Dst superregister. 457 if (SrcSub) { 458 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 459 if (!Dst) return false; 460 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 461 return false; 462 } 463 } else { 464 // Both registers are virtual. 465 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 466 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 467 468 // Both registers have subreg indices. 469 if (SrcSub && DstSub) { 470 // Copies between different sub-registers are never coalescable. 471 if (Src == Dst && SrcSub != DstSub) 472 return false; 473 474 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 475 SrcIdx, DstIdx); 476 if (!NewRC) 477 return false; 478 } else if (DstSub) { 479 // SrcReg will be merged with a sub-register of DstReg. 480 SrcIdx = DstSub; 481 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 482 } else if (SrcSub) { 483 // DstReg will be merged with a sub-register of SrcReg. 484 DstIdx = SrcSub; 485 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 486 } else { 487 // This is a straight copy without sub-registers. 488 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 489 } 490 491 // The combined constraint may be impossible to satisfy. 492 if (!NewRC) 493 return false; 494 495 // Prefer SrcReg to be a sub-register of DstReg. 496 // FIXME: Coalescer should support subregs symmetrically. 497 if (DstIdx && !SrcIdx) { 498 std::swap(Src, Dst); 499 std::swap(SrcIdx, DstIdx); 500 Flipped = !Flipped; 501 } 502 503 CrossClass = NewRC != DstRC || NewRC != SrcRC; 504 } 505 // Check our invariants 506 assert(Register::isVirtualRegister(Src) && "Src must be virtual"); 507 assert(!(Register::isPhysicalRegister(Dst) && DstSub) && 508 "Cannot have a physical SubIdx"); 509 SrcReg = Src; 510 DstReg = Dst; 511 return true; 512 } 513 514 bool CoalescerPair::flip() { 515 if (Register::isPhysicalRegister(DstReg)) 516 return false; 517 std::swap(SrcReg, DstReg); 518 std::swap(SrcIdx, DstIdx); 519 Flipped = !Flipped; 520 return true; 521 } 522 523 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 524 if (!MI) 525 return false; 526 unsigned Src, Dst, SrcSub, DstSub; 527 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 528 return false; 529 530 // Find the virtual register that is SrcReg. 531 if (Dst == SrcReg) { 532 std::swap(Src, Dst); 533 std::swap(SrcSub, DstSub); 534 } else if (Src != SrcReg) { 535 return false; 536 } 537 538 // Now check that Dst matches DstReg. 539 if (Register::isPhysicalRegister(DstReg)) { 540 if (!Register::isPhysicalRegister(Dst)) 541 return false; 542 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 543 // DstSub could be set for a physreg from INSERT_SUBREG. 544 if (DstSub) 545 Dst = TRI.getSubReg(Dst, DstSub); 546 // Full copy of Src. 547 if (!SrcSub) 548 return DstReg == Dst; 549 // This is a partial register copy. Check that the parts match. 550 return TRI.getSubReg(DstReg, SrcSub) == Dst; 551 } else { 552 // DstReg is virtual. 553 if (DstReg != Dst) 554 return false; 555 // Registers match, do the subregisters line up? 556 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 557 TRI.composeSubRegIndices(DstIdx, DstSub); 558 } 559 } 560 561 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 562 AU.setPreservesCFG(); 563 AU.addRequired<AAResultsWrapperPass>(); 564 AU.addRequired<LiveIntervals>(); 565 AU.addPreserved<LiveIntervals>(); 566 AU.addPreserved<SlotIndexes>(); 567 AU.addRequired<MachineLoopInfo>(); 568 AU.addPreserved<MachineLoopInfo>(); 569 AU.addPreservedID(MachineDominatorsID); 570 MachineFunctionPass::getAnalysisUsage(AU); 571 } 572 573 void RegisterCoalescer::eliminateDeadDefs() { 574 SmallVector<unsigned, 8> NewRegs; 575 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 576 nullptr, this).eliminateDeadDefs(DeadDefs); 577 } 578 579 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 580 // MI may be in WorkList. Make sure we don't visit it. 581 ErasedInstrs.insert(MI); 582 } 583 584 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 585 MachineInstr *CopyMI) { 586 assert(!CP.isPartial() && "This doesn't work for partial copies."); 587 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 588 589 LiveInterval &IntA = 590 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 591 LiveInterval &IntB = 592 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 593 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 594 595 // We have a non-trivially-coalescable copy with IntA being the source and 596 // IntB being the dest, thus this defines a value number in IntB. If the 597 // source value number (in IntA) is defined by a copy from B, see if we can 598 // merge these two pieces of B into a single value number, eliminating a copy. 599 // For example: 600 // 601 // A3 = B0 602 // ... 603 // B1 = A3 <- this copy 604 // 605 // In this case, B0 can be extended to where the B1 copy lives, allowing the 606 // B1 value number to be replaced with B0 (which simplifies the B 607 // liveinterval). 608 609 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 610 // the example above. 611 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 612 if (BS == IntB.end()) return false; 613 VNInfo *BValNo = BS->valno; 614 615 // Get the location that B is defined at. Two options: either this value has 616 // an unknown definition point or it is defined at CopyIdx. If unknown, we 617 // can't process it. 618 if (BValNo->def != CopyIdx) return false; 619 620 // AValNo is the value number in A that defines the copy, A3 in the example. 621 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 622 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 623 // The live segment might not exist after fun with physreg coalescing. 624 if (AS == IntA.end()) return false; 625 VNInfo *AValNo = AS->valno; 626 627 // If AValNo is defined as a copy from IntB, we can potentially process this. 628 // Get the instruction that defines this value number. 629 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 630 // Don't allow any partial copies, even if isCoalescable() allows them. 631 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 632 return false; 633 634 // Get the Segment in IntB that this value number starts with. 635 LiveInterval::iterator ValS = 636 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 637 if (ValS == IntB.end()) 638 return false; 639 640 // Make sure that the end of the live segment is inside the same block as 641 // CopyMI. 642 MachineInstr *ValSEndInst = 643 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 644 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 645 return false; 646 647 // Okay, we now know that ValS ends in the same block that the CopyMI 648 // live-range starts. If there are no intervening live segments between them 649 // in IntB, we can merge them. 650 if (ValS+1 != BS) return false; 651 652 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI)); 653 654 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 655 // We are about to delete CopyMI, so need to remove it as the 'instruction 656 // that defines this value #'. Update the valnum with the new defining 657 // instruction #. 658 BValNo->def = FillerStart; 659 660 // Okay, we can merge them. We need to insert a new liverange: 661 // [ValS.end, BS.begin) of either value number, then we merge the 662 // two value numbers. 663 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 664 665 // Okay, merge "B1" into the same value number as "B0". 666 if (BValNo != ValS->valno) 667 IntB.MergeValueNumberInto(BValNo, ValS->valno); 668 669 // Do the same for the subregister segments. 670 for (LiveInterval::SubRange &S : IntB.subranges()) { 671 // Check for SubRange Segments of the form [1234r,1234d:0) which can be 672 // removed to prevent creating bogus SubRange Segments. 673 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx); 674 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) { 675 S.removeSegment(*SS, true); 676 continue; 677 } 678 // The subrange may have ended before FillerStart. If so, extend it. 679 if (!S.getVNInfoAt(FillerStart)) { 680 SlotIndex BBStart = 681 LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart)); 682 S.extendInBlock(BBStart, FillerStart); 683 } 684 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 685 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 686 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 687 if (SubBValNo != SubValSNo) 688 S.MergeValueNumberInto(SubBValNo, SubValSNo); 689 } 690 691 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n'); 692 693 // If the source instruction was killing the source register before the 694 // merge, unset the isKill marker given the live range has been extended. 695 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 696 if (UIdx != -1) { 697 ValSEndInst->getOperand(UIdx).setIsKill(false); 698 } 699 700 // Rewrite the copy. 701 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 702 // If the copy instruction was killing the destination register or any 703 // subrange before the merge trim the live range. 704 bool RecomputeLiveRange = AS->end == CopyIdx; 705 if (!RecomputeLiveRange) { 706 for (LiveInterval::SubRange &S : IntA.subranges()) { 707 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx); 708 if (SS != S.end() && SS->end == CopyIdx) { 709 RecomputeLiveRange = true; 710 break; 711 } 712 } 713 } 714 if (RecomputeLiveRange) 715 shrinkToUses(&IntA); 716 717 ++numExtends; 718 return true; 719 } 720 721 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 722 LiveInterval &IntB, 723 VNInfo *AValNo, 724 VNInfo *BValNo) { 725 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 726 // the PHI values. 727 if (LIS->hasPHIKill(IntA, AValNo)) 728 return true; 729 730 for (LiveRange::Segment &ASeg : IntA.segments) { 731 if (ASeg.valno != AValNo) continue; 732 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start); 733 if (BI != IntB.begin()) 734 --BI; 735 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 736 if (BI->valno == BValNo) 737 continue; 738 if (BI->start <= ASeg.start && BI->end > ASeg.start) 739 return true; 740 if (BI->start > ASeg.start && BI->start < ASeg.end) 741 return true; 742 } 743 } 744 return false; 745 } 746 747 /// Copy segments with value number @p SrcValNo from liverange @p Src to live 748 /// range @Dst and use value number @p DstValNo there. 749 static std::pair<bool,bool> 750 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src, 751 const VNInfo *SrcValNo) { 752 bool Changed = false; 753 bool MergedWithDead = false; 754 for (const LiveRange::Segment &S : Src.segments) { 755 if (S.valno != SrcValNo) 756 continue; 757 // This is adding a segment from Src that ends in a copy that is about 758 // to be removed. This segment is going to be merged with a pre-existing 759 // segment in Dst. This works, except in cases when the corresponding 760 // segment in Dst is dead. For example: adding [192r,208r:1) from Src 761 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst. 762 // Recognized such cases, so that the segments can be shrunk. 763 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo); 764 LiveRange::Segment &Merged = *Dst.addSegment(Added); 765 if (Merged.end.isDead()) 766 MergedWithDead = true; 767 Changed = true; 768 } 769 return std::make_pair(Changed, MergedWithDead); 770 } 771 772 std::pair<bool,bool> 773 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 774 MachineInstr *CopyMI) { 775 assert(!CP.isPhys()); 776 777 LiveInterval &IntA = 778 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 779 LiveInterval &IntB = 780 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 781 782 // We found a non-trivially-coalescable copy with IntA being the source and 783 // IntB being the dest, thus this defines a value number in IntB. If the 784 // source value number (in IntA) is defined by a commutable instruction and 785 // its other operand is coalesced to the copy dest register, see if we can 786 // transform the copy into a noop by commuting the definition. For example, 787 // 788 // A3 = op A2 killed B0 789 // ... 790 // B1 = A3 <- this copy 791 // ... 792 // = op A3 <- more uses 793 // 794 // ==> 795 // 796 // B2 = op B0 killed A2 797 // ... 798 // B1 = B2 <- now an identity copy 799 // ... 800 // = op B2 <- more uses 801 802 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 803 // the example above. 804 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 805 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 806 assert(BValNo != nullptr && BValNo->def == CopyIdx); 807 808 // AValNo is the value number in A that defines the copy, A3 in the example. 809 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 810 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 811 if (AValNo->isPHIDef()) 812 return { false, false }; 813 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 814 if (!DefMI) 815 return { false, false }; 816 if (!DefMI->isCommutable()) 817 return { false, false }; 818 // If DefMI is a two-address instruction then commuting it will change the 819 // destination register. 820 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 821 assert(DefIdx != -1); 822 unsigned UseOpIdx; 823 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 824 return { false, false }; 825 826 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 827 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 828 // passed to the method. That _other_ operand is chosen by 829 // the findCommutedOpIndices() method. 830 // 831 // That is obviously an area for improvement in case of instructions having 832 // more than 2 operands. For example, if some instruction has 3 commutable 833 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 834 // op#2<->op#3) of commute transformation should be considered/tried here. 835 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 836 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 837 return { false, false }; 838 839 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 840 Register NewReg = NewDstMO.getReg(); 841 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 842 return { false, false }; 843 844 // Make sure there are no other definitions of IntB that would reach the 845 // uses which the new definition can reach. 846 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 847 return { false, false }; 848 849 // If some of the uses of IntA.reg is already coalesced away, return false. 850 // It's not possible to determine whether it's safe to perform the coalescing. 851 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 852 MachineInstr *UseMI = MO.getParent(); 853 unsigned OpNo = &MO - &UseMI->getOperand(0); 854 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 855 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 856 if (US == IntA.end() || US->valno != AValNo) 857 continue; 858 // If this use is tied to a def, we can't rewrite the register. 859 if (UseMI->isRegTiedToDefOperand(OpNo)) 860 return { false, false }; 861 } 862 863 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 864 << *DefMI); 865 866 // At this point we have decided that it is legal to do this 867 // transformation. Start by commuting the instruction. 868 MachineBasicBlock *MBB = DefMI->getParent(); 869 MachineInstr *NewMI = 870 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 871 if (!NewMI) 872 return { false, false }; 873 if (Register::isVirtualRegister(IntA.reg) && 874 Register::isVirtualRegister(IntB.reg) && 875 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 876 return { false, false }; 877 if (NewMI != DefMI) { 878 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 879 MachineBasicBlock::iterator Pos = DefMI; 880 MBB->insert(Pos, NewMI); 881 MBB->erase(DefMI); 882 } 883 884 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 885 // A = or A, B 886 // ... 887 // B = A 888 // ... 889 // C = killed A 890 // ... 891 // = B 892 893 // Update uses of IntA of the specific Val# with IntB. 894 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 895 UE = MRI->use_end(); 896 UI != UE; /* ++UI is below because of possible MI removal */) { 897 MachineOperand &UseMO = *UI; 898 ++UI; 899 if (UseMO.isUndef()) 900 continue; 901 MachineInstr *UseMI = UseMO.getParent(); 902 if (UseMI->isDebugValue()) { 903 // FIXME These don't have an instruction index. Not clear we have enough 904 // info to decide whether to do this replacement or not. For now do it. 905 UseMO.setReg(NewReg); 906 continue; 907 } 908 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 909 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 910 assert(US != IntA.end() && "Use must be live"); 911 if (US->valno != AValNo) 912 continue; 913 // Kill flags are no longer accurate. They are recomputed after RA. 914 UseMO.setIsKill(false); 915 if (Register::isPhysicalRegister(NewReg)) 916 UseMO.substPhysReg(NewReg, *TRI); 917 else 918 UseMO.setReg(NewReg); 919 if (UseMI == CopyMI) 920 continue; 921 if (!UseMI->isCopy()) 922 continue; 923 if (UseMI->getOperand(0).getReg() != IntB.reg || 924 UseMI->getOperand(0).getSubReg()) 925 continue; 926 927 // This copy will become a noop. If it's defining a new val#, merge it into 928 // BValNo. 929 SlotIndex DefIdx = UseIdx.getRegSlot(); 930 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 931 if (!DVNI) 932 continue; 933 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 934 assert(DVNI->def == DefIdx); 935 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 936 for (LiveInterval::SubRange &S : IntB.subranges()) { 937 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 938 if (!SubDVNI) 939 continue; 940 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 941 assert(SubBValNo->def == CopyIdx); 942 S.MergeValueNumberInto(SubDVNI, SubBValNo); 943 } 944 945 deleteInstr(UseMI); 946 } 947 948 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 949 // is updated. 950 bool ShrinkB = false; 951 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 952 if (IntA.hasSubRanges() || IntB.hasSubRanges()) { 953 if (!IntA.hasSubRanges()) { 954 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 955 IntA.createSubRangeFrom(Allocator, Mask, IntA); 956 } else if (!IntB.hasSubRanges()) { 957 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg); 958 IntB.createSubRangeFrom(Allocator, Mask, IntB); 959 } 960 SlotIndex AIdx = CopyIdx.getRegSlot(true); 961 LaneBitmask MaskA; 962 const SlotIndexes &Indexes = *LIS->getSlotIndexes(); 963 for (LiveInterval::SubRange &SA : IntA.subranges()) { 964 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 965 // Even if we are dealing with a full copy, some lanes can 966 // still be undefined. 967 // E.g., 968 // undef A.subLow = ... 969 // B = COPY A <== A.subHigh is undefined here and does 970 // not have a value number. 971 if (!ASubValNo) 972 continue; 973 MaskA |= SA.LaneMask; 974 975 IntB.refineSubRanges( 976 Allocator, SA.LaneMask, 977 [&Allocator, &SA, CopyIdx, ASubValNo, 978 &ShrinkB](LiveInterval::SubRange &SR) { 979 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator) 980 : SR.getVNInfoAt(CopyIdx); 981 assert(BSubValNo != nullptr); 982 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 983 ShrinkB |= P.second; 984 if (P.first) 985 BSubValNo->def = ASubValNo->def; 986 }, 987 Indexes, *TRI); 988 } 989 // Go over all subranges of IntB that have not been covered by IntA, 990 // and delete the segments starting at CopyIdx. This can happen if 991 // IntA has undef lanes that are defined in IntB. 992 for (LiveInterval::SubRange &SB : IntB.subranges()) { 993 if ((SB.LaneMask & MaskA).any()) 994 continue; 995 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx)) 996 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex()) 997 SB.removeSegment(*S, true); 998 } 999 } 1000 1001 BValNo->def = AValNo->def; 1002 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 1003 ShrinkB |= P.second; 1004 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 1005 1006 LIS->removeVRegDefAt(IntA, AValNo->def); 1007 1008 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 1009 ++numCommutes; 1010 return { true, ShrinkB }; 1011 } 1012 1013 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 1014 /// predecessor of BB2, and if B is not redefined on the way from A = B 1015 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the 1016 /// execution goes through the path from BB0 to BB2. We may move B = A 1017 /// to the predecessor without such reversed copy. 1018 /// So we will transform the program from: 1019 /// BB0: 1020 /// A = B; BB1: 1021 /// ... ... 1022 /// / \ / 1023 /// BB2: 1024 /// ... 1025 /// B = A; 1026 /// 1027 /// to: 1028 /// 1029 /// BB0: BB1: 1030 /// A = B; ... 1031 /// ... B = A; 1032 /// / \ / 1033 /// BB2: 1034 /// ... 1035 /// 1036 /// A special case is when BB0 and BB2 are the same BB which is the only 1037 /// BB in a loop: 1038 /// BB1: 1039 /// ... 1040 /// BB0/BB2: ---- 1041 /// B = A; | 1042 /// ... | 1043 /// A = B; | 1044 /// |------- 1045 /// | 1046 /// We may hoist B = A from BB0/BB2 to BB1. 1047 /// 1048 /// The major preconditions for correctness to remove such partial 1049 /// redundancy include: 1050 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 1051 /// the PHI is defined by the reversed copy A = B in BB0. 1052 /// 2. No B is referenced from the start of BB2 to B = A. 1053 /// 3. No B is defined from A = B to the end of BB0. 1054 /// 4. BB1 has only one successor. 1055 /// 1056 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 1057 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 1058 /// colder place, which not only prevent endless loop, but also make sure 1059 /// the movement of copy is beneficial. 1060 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 1061 MachineInstr &CopyMI) { 1062 assert(!CP.isPhys()); 1063 if (!CopyMI.isFullCopy()) 1064 return false; 1065 1066 MachineBasicBlock &MBB = *CopyMI.getParent(); 1067 if (MBB.isEHPad()) 1068 return false; 1069 1070 if (MBB.pred_size() != 2) 1071 return false; 1072 1073 LiveInterval &IntA = 1074 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 1075 LiveInterval &IntB = 1076 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 1077 1078 // A is defined by PHI at the entry of MBB. 1079 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 1080 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 1081 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 1082 if (!AValNo->isPHIDef()) 1083 return false; 1084 1085 // No B is referenced before CopyMI in MBB. 1086 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 1087 return false; 1088 1089 // MBB has two predecessors: one contains A = B so no copy will be inserted 1090 // for it. The other one will have a copy moved from MBB. 1091 bool FoundReverseCopy = false; 1092 MachineBasicBlock *CopyLeftBB = nullptr; 1093 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1094 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 1095 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 1096 if (!DefMI || !DefMI->isFullCopy()) { 1097 CopyLeftBB = Pred; 1098 continue; 1099 } 1100 // Check DefMI is a reverse copy and it is in BB Pred. 1101 if (DefMI->getOperand(0).getReg() != IntA.reg || 1102 DefMI->getOperand(1).getReg() != IntB.reg || 1103 DefMI->getParent() != Pred) { 1104 CopyLeftBB = Pred; 1105 continue; 1106 } 1107 // If there is any other def of B after DefMI and before the end of Pred, 1108 // we need to keep the copy of B = A at the end of Pred if we remove 1109 // B = A from MBB. 1110 bool ValB_Changed = false; 1111 for (auto VNI : IntB.valnos) { 1112 if (VNI->isUnused()) 1113 continue; 1114 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 1115 ValB_Changed = true; 1116 break; 1117 } 1118 } 1119 if (ValB_Changed) { 1120 CopyLeftBB = Pred; 1121 continue; 1122 } 1123 FoundReverseCopy = true; 1124 } 1125 1126 // If no reverse copy is found in predecessors, nothing to do. 1127 if (!FoundReverseCopy) 1128 return false; 1129 1130 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 1131 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 1132 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 1133 // update IntA/IntB. 1134 // 1135 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 1136 // MBB is hotter than CopyLeftBB. 1137 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 1138 return false; 1139 1140 // Now (almost sure it's) ok to move copy. 1141 if (CopyLeftBB) { 1142 // Position in CopyLeftBB where we should insert new copy. 1143 auto InsPos = CopyLeftBB->getFirstTerminator(); 1144 1145 // Make sure that B isn't referenced in the terminators (if any) at the end 1146 // of the predecessor since we're about to insert a new definition of B 1147 // before them. 1148 if (InsPos != CopyLeftBB->end()) { 1149 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true); 1150 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB))) 1151 return false; 1152 } 1153 1154 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to " 1155 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI); 1156 1157 // Insert new copy to CopyLeftBB. 1158 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1159 TII->get(TargetOpcode::COPY), IntB.reg) 1160 .addReg(IntA.reg); 1161 SlotIndex NewCopyIdx = 1162 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1163 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1164 for (LiveInterval::SubRange &SR : IntB.subranges()) 1165 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1166 1167 // If the newly created Instruction has an address of an instruction that was 1168 // deleted before (object recycled by the allocator) it needs to be removed from 1169 // the deleted list. 1170 ErasedInstrs.erase(NewCopyMI); 1171 } else { 1172 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from " 1173 << printMBBReference(MBB) << '\t' << CopyMI); 1174 } 1175 1176 // Remove CopyMI. 1177 // Note: This is fine to remove the copy before updating the live-ranges. 1178 // While updating the live-ranges, we only look at slot indices and 1179 // never go back to the instruction. 1180 // Mark instructions as deleted. 1181 deleteInstr(&CopyMI); 1182 1183 // Update the liveness. 1184 SmallVector<SlotIndex, 8> EndPoints; 1185 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1186 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1187 &EndPoints); 1188 BValNo->markUnused(); 1189 // Extend IntB to the EndPoints of its original live interval. 1190 LIS->extendToIndices(IntB, EndPoints); 1191 1192 // Now, do the same for its subranges. 1193 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1194 EndPoints.clear(); 1195 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1196 assert(BValNo && "All sublanes should be live"); 1197 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1198 BValNo->markUnused(); 1199 // We can have a situation where the result of the original copy is live, 1200 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes 1201 // the copy appear as an endpoint from pruneValue(), but we don't want it 1202 // to because the copy has been removed. We can go ahead and remove that 1203 // endpoint; there is no other situation here that there could be a use at 1204 // the same place as we know that the copy is a full copy. 1205 for (unsigned I = 0; I != EndPoints.size(); ) { 1206 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) { 1207 EndPoints[I] = EndPoints.back(); 1208 EndPoints.pop_back(); 1209 continue; 1210 } 1211 ++I; 1212 } 1213 LIS->extendToIndices(SR, EndPoints); 1214 } 1215 // If any dead defs were extended, truncate them. 1216 shrinkToUses(&IntB); 1217 1218 // Finally, update the live-range of IntA. 1219 shrinkToUses(&IntA); 1220 return true; 1221 } 1222 1223 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1224 /// defining a subregister. 1225 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 1226 assert(!Register::isPhysicalRegister(Reg) && 1227 "This code cannot handle physreg aliasing"); 1228 for (const MachineOperand &Op : MI.operands()) { 1229 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1230 continue; 1231 // Return true if we define the full register or don't care about the value 1232 // inside other subregisters. 1233 if (Op.getSubReg() == 0 || Op.isUndef()) 1234 return true; 1235 } 1236 return false; 1237 } 1238 1239 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1240 MachineInstr *CopyMI, 1241 bool &IsDefCopy) { 1242 IsDefCopy = false; 1243 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1244 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1245 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1246 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1247 if (Register::isPhysicalRegister(SrcReg)) 1248 return false; 1249 1250 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1251 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1252 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1253 if (!ValNo) 1254 return false; 1255 if (ValNo->isPHIDef() || ValNo->isUnused()) 1256 return false; 1257 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1258 if (!DefMI) 1259 return false; 1260 if (DefMI->isCopyLike()) { 1261 IsDefCopy = true; 1262 return false; 1263 } 1264 if (!TII->isAsCheapAsAMove(*DefMI)) 1265 return false; 1266 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1267 return false; 1268 if (!definesFullReg(*DefMI, SrcReg)) 1269 return false; 1270 bool SawStore = false; 1271 if (!DefMI->isSafeToMove(AA, SawStore)) 1272 return false; 1273 const MCInstrDesc &MCID = DefMI->getDesc(); 1274 if (MCID.getNumDefs() != 1) 1275 return false; 1276 // Only support subregister destinations when the def is read-undef. 1277 MachineOperand &DstOperand = CopyMI->getOperand(0); 1278 Register CopyDstReg = DstOperand.getReg(); 1279 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1280 return false; 1281 1282 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1283 // the register substantially (beyond both source and dest size). This is bad 1284 // for performance since it can cascade through a function, introducing many 1285 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1286 // around after a few subreg copies). 1287 if (SrcIdx && DstIdx) 1288 return false; 1289 1290 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1291 if (!DefMI->isImplicitDef()) { 1292 if (Register::isPhysicalRegister(DstReg)) { 1293 unsigned NewDstReg = DstReg; 1294 1295 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1296 DefMI->getOperand(0).getSubReg()); 1297 if (NewDstIdx) 1298 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1299 1300 // Finally, make sure that the physical subregister that will be 1301 // constructed later is permitted for the instruction. 1302 if (!DefRC->contains(NewDstReg)) 1303 return false; 1304 } else { 1305 // Theoretically, some stack frame reference could exist. Just make sure 1306 // it hasn't actually happened. 1307 assert(Register::isVirtualRegister(DstReg) && 1308 "Only expect to deal with virtual or physical registers"); 1309 } 1310 } 1311 1312 DebugLoc DL = CopyMI->getDebugLoc(); 1313 MachineBasicBlock *MBB = CopyMI->getParent(); 1314 MachineBasicBlock::iterator MII = 1315 std::next(MachineBasicBlock::iterator(CopyMI)); 1316 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1317 MachineInstr &NewMI = *std::prev(MII); 1318 NewMI.setDebugLoc(DL); 1319 1320 // In a situation like the following: 1321 // %0:subreg = instr ; DefMI, subreg = DstIdx 1322 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0 1323 // instead of widening %1 to the register class of %0 simply do: 1324 // %1 = instr 1325 const TargetRegisterClass *NewRC = CP.getNewRC(); 1326 if (DstIdx != 0) { 1327 MachineOperand &DefMO = NewMI.getOperand(0); 1328 if (DefMO.getSubReg() == DstIdx) { 1329 assert(SrcIdx == 0 && CP.isFlipped() 1330 && "Shouldn't have SrcIdx+DstIdx at this point"); 1331 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1332 const TargetRegisterClass *CommonRC = 1333 TRI->getCommonSubClass(DefRC, DstRC); 1334 if (CommonRC != nullptr) { 1335 NewRC = CommonRC; 1336 DstIdx = 0; 1337 DefMO.setSubReg(0); 1338 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1339 } 1340 } 1341 } 1342 1343 // CopyMI may have implicit operands, save them so that we can transfer them 1344 // over to the newly materialized instruction after CopyMI is removed. 1345 SmallVector<MachineOperand, 4> ImplicitOps; 1346 ImplicitOps.reserve(CopyMI->getNumOperands() - 1347 CopyMI->getDesc().getNumOperands()); 1348 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1349 E = CopyMI->getNumOperands(); 1350 I != E; ++I) { 1351 MachineOperand &MO = CopyMI->getOperand(I); 1352 if (MO.isReg()) { 1353 assert(MO.isImplicit() && "No explicit operands after implicit operands."); 1354 // Discard VReg implicit defs. 1355 if (Register::isPhysicalRegister(MO.getReg())) 1356 ImplicitOps.push_back(MO); 1357 } 1358 } 1359 1360 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1361 CopyMI->eraseFromParent(); 1362 ErasedInstrs.insert(CopyMI); 1363 1364 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1365 // We need to remember these so we can add intervals once we insert 1366 // NewMI into SlotIndexes. 1367 SmallVector<unsigned, 4> NewMIImplDefs; 1368 for (unsigned i = NewMI.getDesc().getNumOperands(), 1369 e = NewMI.getNumOperands(); 1370 i != e; ++i) { 1371 MachineOperand &MO = NewMI.getOperand(i); 1372 if (MO.isReg() && MO.isDef()) { 1373 assert(MO.isImplicit() && MO.isDead() && 1374 Register::isPhysicalRegister(MO.getReg())); 1375 NewMIImplDefs.push_back(MO.getReg()); 1376 } 1377 } 1378 1379 if (Register::isVirtualRegister(DstReg)) { 1380 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1381 1382 if (DefRC != nullptr) { 1383 if (NewIdx) 1384 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1385 else 1386 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1387 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1388 } 1389 // Remap subranges to new lanemask and change register class. 1390 LiveInterval &DstInt = LIS->getInterval(DstReg); 1391 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1392 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1393 } 1394 MRI->setRegClass(DstReg, NewRC); 1395 1396 // Update machine operands and add flags. 1397 updateRegDefsUses(DstReg, DstReg, DstIdx); 1398 NewMI.getOperand(0).setSubReg(NewIdx); 1399 // updateRegDefUses can add an "undef" flag to the definition, since 1400 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make 1401 // sure that "undef" is not set. 1402 if (NewIdx == 0) 1403 NewMI.getOperand(0).setIsUndef(false); 1404 // Add dead subregister definitions if we are defining the whole register 1405 // but only part of it is live. 1406 // This could happen if the rematerialization instruction is rematerializing 1407 // more than actually is used in the register. 1408 // An example would be: 1409 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1410 // ; Copying only part of the register here, but the rest is undef. 1411 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit 1412 // ==> 1413 // ; Materialize all the constants but only using one 1414 // %2 = LOAD_CONSTANTS 5, 8 1415 // 1416 // at this point for the part that wasn't defined before we could have 1417 // subranges missing the definition. 1418 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1419 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1420 SlotIndex DefIndex = 1421 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1422 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1423 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1424 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1425 if (!SR.liveAt(DefIndex)) 1426 SR.createDeadDef(DefIndex, Alloc); 1427 MaxMask &= ~SR.LaneMask; 1428 } 1429 if (MaxMask.any()) { 1430 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1431 SR->createDeadDef(DefIndex, Alloc); 1432 } 1433 } 1434 1435 // Make sure that the subrange for resultant undef is removed 1436 // For example: 1437 // %1:sub1<def,read-undef> = LOAD CONSTANT 1 1438 // %2 = COPY %1 1439 // ==> 1440 // %2:sub1<def, read-undef> = LOAD CONSTANT 1 1441 // ; Correct but need to remove the subrange for %2:sub0 1442 // ; as it is now undef 1443 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1444 // The affected subregister segments can be removed. 1445 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1446 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1447 bool UpdatedSubRanges = false; 1448 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1449 if ((SR.LaneMask & DstMask).none()) { 1450 LLVM_DEBUG(dbgs() 1451 << "Removing undefined SubRange " 1452 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1453 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1454 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1455 SR.removeValNo(RmValNo); 1456 UpdatedSubRanges = true; 1457 } 1458 } 1459 } 1460 if (UpdatedSubRanges) 1461 DstInt.removeEmptySubRanges(); 1462 } 1463 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1464 // The New instruction may be defining a sub-register of what's actually 1465 // been asked for. If so it must implicitly define the whole thing. 1466 assert(Register::isPhysicalRegister(DstReg) && 1467 "Only expect virtual or physical registers in remat"); 1468 NewMI.getOperand(0).setIsDead(true); 1469 NewMI.addOperand(MachineOperand::CreateReg( 1470 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1471 // Record small dead def live-ranges for all the subregisters 1472 // of the destination register. 1473 // Otherwise, variables that live through may miss some 1474 // interferences, thus creating invalid allocation. 1475 // E.g., i386 code: 1476 // %1 = somedef ; %1 GR8 1477 // %2 = remat ; %2 GR32 1478 // CL = COPY %2.sub_8bit 1479 // = somedef %1 ; %1 GR8 1480 // => 1481 // %1 = somedef ; %1 GR8 1482 // dead ECX = remat ; implicit-def CL 1483 // = somedef %1 ; %1 GR8 1484 // %1 will see the interferences with CL but not with CH since 1485 // no live-ranges would have been created for ECX. 1486 // Fix that! 1487 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1488 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1489 Units.isValid(); ++Units) 1490 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1491 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1492 } 1493 1494 if (NewMI.getOperand(0).getSubReg()) 1495 NewMI.getOperand(0).setIsUndef(); 1496 1497 // Transfer over implicit operands to the rematerialized instruction. 1498 for (MachineOperand &MO : ImplicitOps) 1499 NewMI.addOperand(MO); 1500 1501 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1502 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1503 unsigned Reg = NewMIImplDefs[i]; 1504 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1505 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1506 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1507 } 1508 1509 LLVM_DEBUG(dbgs() << "Remat: " << NewMI); 1510 ++NumReMats; 1511 1512 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1513 // to describe DstReg instead. 1514 if (MRI->use_nodbg_empty(SrcReg)) { 1515 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1516 MachineInstr *UseMI = UseMO.getParent(); 1517 if (UseMI->isDebugValue()) { 1518 if (Register::isPhysicalRegister(DstReg)) 1519 UseMO.substPhysReg(DstReg, *TRI); 1520 else 1521 UseMO.setReg(DstReg); 1522 // Move the debug value directly after the def of the rematerialized 1523 // value in DstReg. 1524 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); 1525 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1526 } 1527 } 1528 } 1529 1530 if (ToBeUpdated.count(SrcReg)) 1531 return true; 1532 1533 unsigned NumCopyUses = 0; 1534 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 1535 if (UseMO.getParent()->isCopyLike()) 1536 NumCopyUses++; 1537 } 1538 if (NumCopyUses < LateRematUpdateThreshold) { 1539 // The source interval can become smaller because we removed a use. 1540 shrinkToUses(&SrcInt, &DeadDefs); 1541 if (!DeadDefs.empty()) 1542 eliminateDeadDefs(); 1543 } else { 1544 ToBeUpdated.insert(SrcReg); 1545 } 1546 return true; 1547 } 1548 1549 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1550 // ProcessImplicitDefs may leave some copies of <undef> values, it only 1551 // removes local variables. When we have a copy like: 1552 // 1553 // %1 = COPY undef %2 1554 // 1555 // We delete the copy and remove the corresponding value number from %1. 1556 // Any uses of that value number are marked as <undef>. 1557 1558 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1559 // CoalescerPair may have a new register class with adjusted subreg indices 1560 // at this point. 1561 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1562 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) 1563 return nullptr; 1564 1565 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1566 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1567 // CopyMI is undef iff SrcReg is not live before the instruction. 1568 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1569 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1570 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1571 if ((SR.LaneMask & SrcMask).none()) 1572 continue; 1573 if (SR.liveAt(Idx)) 1574 return nullptr; 1575 } 1576 } else if (SrcLI.liveAt(Idx)) 1577 return nullptr; 1578 1579 // If the undef copy defines a live-out value (i.e. an input to a PHI def), 1580 // then replace it with an IMPLICIT_DEF. 1581 LiveInterval &DstLI = LIS->getInterval(DstReg); 1582 SlotIndex RegIndex = Idx.getRegSlot(); 1583 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex); 1584 assert(Seg != nullptr && "No segment for defining instruction"); 1585 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) { 1586 if (V->isPHIDef()) { 1587 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1588 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) { 1589 MachineOperand &MO = CopyMI->getOperand(i-1); 1590 if (MO.isReg() && MO.isUse()) 1591 CopyMI->RemoveOperand(i-1); 1592 } 1593 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an " 1594 "implicit def\n"); 1595 return CopyMI; 1596 } 1597 } 1598 1599 // Remove any DstReg segments starting at the instruction. 1600 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1601 1602 // Remove value or merge with previous one in case of a subregister def. 1603 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1604 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1605 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1606 1607 // The affected subregister segments can be removed. 1608 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1609 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1610 if ((SR.LaneMask & DstMask).none()) 1611 continue; 1612 1613 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1614 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1615 SR.removeValNo(SVNI); 1616 } 1617 DstLI.removeEmptySubRanges(); 1618 } else 1619 LIS->removeVRegDefAt(DstLI, RegIndex); 1620 1621 // Mark uses as undef. 1622 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1623 if (MO.isDef() /*|| MO.isUndef()*/) 1624 continue; 1625 const MachineInstr &MI = *MO.getParent(); 1626 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1627 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1628 bool isLive; 1629 if (!UseMask.all() && DstLI.hasSubRanges()) { 1630 isLive = false; 1631 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1632 if ((SR.LaneMask & UseMask).none()) 1633 continue; 1634 if (SR.liveAt(UseIdx)) { 1635 isLive = true; 1636 break; 1637 } 1638 } 1639 } else 1640 isLive = DstLI.liveAt(UseIdx); 1641 if (isLive) 1642 continue; 1643 MO.setIsUndef(true); 1644 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1645 } 1646 1647 // A def of a subregister may be a use of the other subregisters, so 1648 // deleting a def of a subregister may also remove uses. Since CopyMI 1649 // is still part of the function (but about to be erased), mark all 1650 // defs of DstReg in it as <undef>, so that shrinkToUses would 1651 // ignore them. 1652 for (MachineOperand &MO : CopyMI->operands()) 1653 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1654 MO.setIsUndef(true); 1655 LIS->shrinkToUses(&DstLI); 1656 1657 return CopyMI; 1658 } 1659 1660 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1661 MachineOperand &MO, unsigned SubRegIdx) { 1662 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1663 if (MO.isDef()) 1664 Mask = ~Mask; 1665 bool IsUndef = true; 1666 for (const LiveInterval::SubRange &S : Int.subranges()) { 1667 if ((S.LaneMask & Mask).none()) 1668 continue; 1669 if (S.liveAt(UseIdx)) { 1670 IsUndef = false; 1671 break; 1672 } 1673 } 1674 if (IsUndef) { 1675 MO.setIsUndef(true); 1676 // We found out some subregister use is actually reading an undefined 1677 // value. In some cases the whole vreg has become undefined at this 1678 // point so we have to potentially shrink the main range if the 1679 // use was ending a live segment there. 1680 LiveQueryResult Q = Int.Query(UseIdx); 1681 if (Q.valueOut() == nullptr) 1682 ShrinkMainRange = true; 1683 } 1684 } 1685 1686 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, unsigned DstReg, 1687 unsigned SubIdx) { 1688 bool DstIsPhys = Register::isPhysicalRegister(DstReg); 1689 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1690 1691 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1692 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1693 unsigned SubReg = MO.getSubReg(); 1694 if (SubReg == 0 || MO.isUndef()) 1695 continue; 1696 MachineInstr &MI = *MO.getParent(); 1697 if (MI.isDebugValue()) 1698 continue; 1699 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1700 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1701 } 1702 } 1703 1704 SmallPtrSet<MachineInstr*, 8> Visited; 1705 for (MachineRegisterInfo::reg_instr_iterator 1706 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1707 I != E; ) { 1708 MachineInstr *UseMI = &*(I++); 1709 1710 // Each instruction can only be rewritten once because sub-register 1711 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1712 // the UseMI operands removes them from the SrcReg use-def chain, but when 1713 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1714 // operands mentioning the virtual register. 1715 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1716 continue; 1717 1718 SmallVector<unsigned,8> Ops; 1719 bool Reads, Writes; 1720 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1721 1722 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1723 // because SrcReg is a sub-register. 1724 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) 1725 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1726 1727 // Replace SrcReg with DstReg in all UseMI operands. 1728 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1729 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1730 1731 // Adjust <undef> flags in case of sub-register joins. We don't want to 1732 // turn a full def into a read-modify-write sub-register def and vice 1733 // versa. 1734 if (SubIdx && MO.isDef()) 1735 MO.setIsUndef(!Reads); 1736 1737 // A subreg use of a partially undef (super) register may be a complete 1738 // undef use now and then has to be marked that way. 1739 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1740 if (!DstInt->hasSubRanges()) { 1741 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1742 LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1743 LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx); 1744 LaneBitmask UnusedLanes = FullMask & ~UsedLanes; 1745 DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt); 1746 // The unused lanes are just empty live-ranges at this point. 1747 // It is the caller responsibility to set the proper 1748 // dead segments if there is an actual dead def of the 1749 // unused lanes. This may happen with rematerialization. 1750 DstInt->createSubRange(Allocator, UnusedLanes); 1751 } 1752 SlotIndex MIIdx = UseMI->isDebugValue() 1753 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1754 : LIS->getInstructionIndex(*UseMI); 1755 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1756 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1757 } 1758 1759 if (DstIsPhys) 1760 MO.substPhysReg(DstReg, *TRI); 1761 else 1762 MO.substVirtReg(DstReg, SubIdx, *TRI); 1763 } 1764 1765 LLVM_DEBUG({ 1766 dbgs() << "\t\tupdated: "; 1767 if (!UseMI->isDebugValue()) 1768 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1769 dbgs() << *UseMI; 1770 }); 1771 } 1772 } 1773 1774 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1775 // Always join simple intervals that are defined by a single copy from a 1776 // reserved register. This doesn't increase register pressure, so it is 1777 // always beneficial. 1778 if (!MRI->isReserved(CP.getDstReg())) { 1779 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1780 return false; 1781 } 1782 1783 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1784 if (JoinVInt.containsOneValue()) 1785 return true; 1786 1787 LLVM_DEBUG( 1788 dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1789 return false; 1790 } 1791 1792 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1793 Again = false; 1794 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1795 1796 CoalescerPair CP(*TRI); 1797 if (!CP.setRegisters(CopyMI)) { 1798 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n"); 1799 return false; 1800 } 1801 1802 if (CP.getNewRC()) { 1803 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1804 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1805 unsigned SrcIdx = CP.getSrcIdx(); 1806 unsigned DstIdx = CP.getDstIdx(); 1807 if (CP.isFlipped()) { 1808 std::swap(SrcIdx, DstIdx); 1809 std::swap(SrcRC, DstRC); 1810 } 1811 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1812 CP.getNewRC(), *LIS)) { 1813 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1814 return false; 1815 } 1816 } 1817 1818 // Dead code elimination. This really should be handled by MachineDCE, but 1819 // sometimes dead copies slip through, and we can't generate invalid live 1820 // ranges. 1821 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1822 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n"); 1823 DeadDefs.push_back(CopyMI); 1824 eliminateDeadDefs(); 1825 return true; 1826 } 1827 1828 // Eliminate undefs. 1829 if (!CP.isPhys()) { 1830 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce. 1831 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) { 1832 if (UndefMI->isImplicitDef()) 1833 return false; 1834 deleteInstr(CopyMI); 1835 return false; // Not coalescable. 1836 } 1837 } 1838 1839 // Coalesced copies are normally removed immediately, but transformations 1840 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1841 // When that happens, just join the values and remove the copy. 1842 if (CP.getSrcReg() == CP.getDstReg()) { 1843 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1844 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1845 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1846 LiveQueryResult LRQ = LI.Query(CopyIdx); 1847 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1848 VNInfo *ReadVNI = LRQ.valueIn(); 1849 assert(ReadVNI && "No value before copy and no <undef> flag."); 1850 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1851 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1852 1853 // Process subregister liveranges. 1854 for (LiveInterval::SubRange &S : LI.subranges()) { 1855 LiveQueryResult SLRQ = S.Query(CopyIdx); 1856 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1857 VNInfo *SReadVNI = SLRQ.valueIn(); 1858 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1859 } 1860 } 1861 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1862 } 1863 deleteInstr(CopyMI); 1864 return true; 1865 } 1866 1867 // Enforce policies. 1868 if (CP.isPhys()) { 1869 LLVM_DEBUG(dbgs() << "\tConsidering merging " 1870 << printReg(CP.getSrcReg(), TRI) << " with " 1871 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'); 1872 if (!canJoinPhys(CP)) { 1873 // Before giving up coalescing, if definition of source is defined by 1874 // trivial computation, try rematerializing it. 1875 bool IsDefCopy; 1876 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1877 return true; 1878 if (IsDefCopy) 1879 Again = true; // May be possible to coalesce later. 1880 return false; 1881 } 1882 } else { 1883 // When possible, let DstReg be the larger interval. 1884 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1885 LIS->getInterval(CP.getDstReg()).size()) 1886 CP.flip(); 1887 1888 LLVM_DEBUG({ 1889 dbgs() << "\tConsidering merging to " 1890 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1891 if (CP.getDstIdx() && CP.getSrcIdx()) 1892 dbgs() << printReg(CP.getDstReg()) << " in " 1893 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1894 << printReg(CP.getSrcReg()) << " in " 1895 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1896 else 1897 dbgs() << printReg(CP.getSrcReg(), TRI) << " in " 1898 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1899 }); 1900 } 1901 1902 ShrinkMask = LaneBitmask::getNone(); 1903 ShrinkMainRange = false; 1904 1905 // Okay, attempt to join these two intervals. On failure, this returns false. 1906 // Otherwise, if one of the intervals being joined is a physreg, this method 1907 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1908 // been modified, so we can use this information below to update aliases. 1909 if (!joinIntervals(CP)) { 1910 // Coalescing failed. 1911 1912 // If definition of source is defined by trivial computation, try 1913 // rematerializing it. 1914 bool IsDefCopy; 1915 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1916 return true; 1917 1918 // If we can eliminate the copy without merging the live segments, do so 1919 // now. 1920 if (!CP.isPartial() && !CP.isPhys()) { 1921 bool Changed = adjustCopiesBackFrom(CP, CopyMI); 1922 bool Shrink = false; 1923 if (!Changed) 1924 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI); 1925 if (Changed) { 1926 deleteInstr(CopyMI); 1927 if (Shrink) { 1928 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1929 LiveInterval &DstLI = LIS->getInterval(DstReg); 1930 shrinkToUses(&DstLI); 1931 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n'); 1932 } 1933 LLVM_DEBUG(dbgs() << "\tTrivial!\n"); 1934 return true; 1935 } 1936 } 1937 1938 // Try and see if we can partially eliminate the copy by moving the copy to 1939 // its predecessor. 1940 if (!CP.isPartial() && !CP.isPhys()) 1941 if (removePartialRedundancy(CP, *CopyMI)) 1942 return true; 1943 1944 // Otherwise, we are unable to join the intervals. 1945 LLVM_DEBUG(dbgs() << "\tInterference!\n"); 1946 Again = true; // May be possible to coalesce later. 1947 return false; 1948 } 1949 1950 // Coalescing to a virtual register that is of a sub-register class of the 1951 // other. Make sure the resulting register is set to the right register class. 1952 if (CP.isCrossClass()) { 1953 ++numCrossRCs; 1954 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1955 } 1956 1957 // Removing sub-register copies can ease the register class constraints. 1958 // Make sure we attempt to inflate the register class of DstReg. 1959 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1960 InflateRegs.push_back(CP.getDstReg()); 1961 1962 // CopyMI has been erased by joinIntervals at this point. Remove it from 1963 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1964 // to the work list. This keeps ErasedInstrs from growing needlessly. 1965 ErasedInstrs.erase(CopyMI); 1966 1967 // Rewrite all SrcReg operands to DstReg. 1968 // Also update DstReg operands to include DstIdx if it is set. 1969 if (CP.getDstIdx()) 1970 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1971 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1972 1973 // Shrink subregister ranges if necessary. 1974 if (ShrinkMask.any()) { 1975 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1976 for (LiveInterval::SubRange &S : LI.subranges()) { 1977 if ((S.LaneMask & ShrinkMask).none()) 1978 continue; 1979 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1980 << ")\n"); 1981 LIS->shrinkToUses(S, LI.reg); 1982 } 1983 LI.removeEmptySubRanges(); 1984 } 1985 1986 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live 1987 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval 1988 // is not up-to-date, need to update the merged live interval here. 1989 if (ToBeUpdated.count(CP.getSrcReg())) 1990 ShrinkMainRange = true; 1991 1992 if (ShrinkMainRange) { 1993 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1994 shrinkToUses(&LI); 1995 } 1996 1997 // SrcReg is guaranteed to be the register whose live interval that is 1998 // being merged. 1999 LIS->removeInterval(CP.getSrcReg()); 2000 2001 // Update regalloc hint. 2002 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 2003 2004 LLVM_DEBUG({ 2005 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 2006 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 2007 dbgs() << "\tResult = "; 2008 if (CP.isPhys()) 2009 dbgs() << printReg(CP.getDstReg(), TRI); 2010 else 2011 dbgs() << LIS->getInterval(CP.getDstReg()); 2012 dbgs() << '\n'; 2013 }); 2014 2015 ++numJoins; 2016 return true; 2017 } 2018 2019 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 2020 unsigned DstReg = CP.getDstReg(); 2021 unsigned SrcReg = CP.getSrcReg(); 2022 assert(CP.isPhys() && "Must be a physreg copy"); 2023 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 2024 LiveInterval &RHS = LIS->getInterval(SrcReg); 2025 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 2026 2027 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 2028 2029 // Optimization for reserved registers like ESP. We can only merge with a 2030 // reserved physreg if RHS has a single value that is a copy of DstReg. 2031 // The live range of the reserved register will look like a set of dead defs 2032 // - we don't properly track the live range of reserved registers. 2033 2034 // Deny any overlapping intervals. This depends on all the reserved 2035 // register live ranges to look like dead defs. 2036 if (!MRI->isConstantPhysReg(DstReg)) { 2037 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2038 // Abort if not all the regunits are reserved. 2039 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 2040 if (!MRI->isReserved(*RI)) 2041 return false; 2042 } 2043 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 2044 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) 2045 << '\n'); 2046 return false; 2047 } 2048 } 2049 2050 // We must also check for overlaps with regmask clobbers. 2051 BitVector RegMaskUsable; 2052 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 2053 !RegMaskUsable.test(DstReg)) { 2054 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n"); 2055 return false; 2056 } 2057 } 2058 2059 // Skip any value computations, we are not adding new values to the 2060 // reserved register. Also skip merging the live ranges, the reserved 2061 // register live range doesn't need to be accurate as long as all the 2062 // defs are there. 2063 2064 // Delete the identity copy. 2065 MachineInstr *CopyMI; 2066 if (CP.isFlipped()) { 2067 // Physreg is copied into vreg 2068 // %y = COPY %physreg_x 2069 // ... //< no other def of %physreg_x here 2070 // use %y 2071 // => 2072 // ... 2073 // use %physreg_x 2074 CopyMI = MRI->getVRegDef(SrcReg); 2075 } else { 2076 // VReg is copied into physreg: 2077 // %y = def 2078 // ... //< no other def or use of %physreg_x here 2079 // %physreg_x = COPY %y 2080 // => 2081 // %physreg_x = def 2082 // ... 2083 if (!MRI->hasOneNonDBGUse(SrcReg)) { 2084 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 2085 return false; 2086 } 2087 2088 if (!LIS->intervalIsInOneMBB(RHS)) { 2089 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n"); 2090 return false; 2091 } 2092 2093 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 2094 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 2095 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 2096 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 2097 2098 if (!MRI->isConstantPhysReg(DstReg)) { 2099 // We checked above that there are no interfering defs of the physical 2100 // register. However, for this case, where we intend to move up the def of 2101 // the physical register, we also need to check for interfering uses. 2102 SlotIndexes *Indexes = LIS->getSlotIndexes(); 2103 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 2104 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 2105 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 2106 if (MI->readsRegister(DstReg, TRI)) { 2107 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 2108 return false; 2109 } 2110 } 2111 } 2112 2113 // We're going to remove the copy which defines a physical reserved 2114 // register, so remove its valno, etc. 2115 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of " 2116 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n"); 2117 2118 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 2119 // Create a new dead def at the new def location. 2120 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2121 LiveRange &LR = LIS->getRegUnit(*UI); 2122 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 2123 } 2124 } 2125 2126 deleteInstr(CopyMI); 2127 2128 // We don't track kills for reserved registers. 2129 MRI->clearKillFlags(CP.getSrcReg()); 2130 2131 return true; 2132 } 2133 2134 //===----------------------------------------------------------------------===// 2135 // Interference checking and interval joining 2136 //===----------------------------------------------------------------------===// 2137 // 2138 // In the easiest case, the two live ranges being joined are disjoint, and 2139 // there is no interference to consider. It is quite common, though, to have 2140 // overlapping live ranges, and we need to check if the interference can be 2141 // resolved. 2142 // 2143 // The live range of a single SSA value forms a sub-tree of the dominator tree. 2144 // This means that two SSA values overlap if and only if the def of one value 2145 // is contained in the live range of the other value. As a special case, the 2146 // overlapping values can be defined at the same index. 2147 // 2148 // The interference from an overlapping def can be resolved in these cases: 2149 // 2150 // 1. Coalescable copies. The value is defined by a copy that would become an 2151 // identity copy after joining SrcReg and DstReg. The copy instruction will 2152 // be removed, and the value will be merged with the source value. 2153 // 2154 // There can be several copies back and forth, causing many values to be 2155 // merged into one. We compute a list of ultimate values in the joined live 2156 // range as well as a mappings from the old value numbers. 2157 // 2158 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 2159 // predecessors have a live out value. It doesn't cause real interference, 2160 // and can be merged into the value it overlaps. Like a coalescable copy, it 2161 // can be erased after joining. 2162 // 2163 // 3. Copy of external value. The overlapping def may be a copy of a value that 2164 // is already in the other register. This is like a coalescable copy, but 2165 // the live range of the source register must be trimmed after erasing the 2166 // copy instruction: 2167 // 2168 // %src = COPY %ext 2169 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 2170 // 2171 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 2172 // defining one lane at a time: 2173 // 2174 // %dst:ssub0<def,read-undef> = FOO 2175 // %src = BAR 2176 // %dst:ssub1 = COPY %src 2177 // 2178 // The live range of %src overlaps the %dst value defined by FOO, but 2179 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 2180 // which was undef anyway. 2181 // 2182 // The value mapping is more complicated in this case. The final live range 2183 // will have different value numbers for both FOO and BAR, but there is no 2184 // simple mapping from old to new values. It may even be necessary to add 2185 // new PHI values. 2186 // 2187 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 2188 // is live, but never read. This can happen because we don't compute 2189 // individual live ranges per lane. 2190 // 2191 // %dst = FOO 2192 // %src = BAR 2193 // %dst:ssub1 = COPY %src 2194 // 2195 // This kind of interference is only resolved locally. If the clobbered 2196 // lane value escapes the block, the join is aborted. 2197 2198 namespace { 2199 2200 /// Track information about values in a single virtual register about to be 2201 /// joined. Objects of this class are always created in pairs - one for each 2202 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 2203 /// pair) 2204 class JoinVals { 2205 /// Live range we work on. 2206 LiveRange &LR; 2207 2208 /// (Main) register we work on. 2209 const unsigned Reg; 2210 2211 /// Reg (and therefore the values in this liverange) will end up as 2212 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 2213 /// CP.SrcIdx. 2214 const unsigned SubIdx; 2215 2216 /// The LaneMask that this liverange will occupy the coalesced register. May 2217 /// be smaller than the lanemask produced by SubIdx when merging subranges. 2218 const LaneBitmask LaneMask; 2219 2220 /// This is true when joining sub register ranges, false when joining main 2221 /// ranges. 2222 const bool SubRangeJoin; 2223 2224 /// Whether the current LiveInterval tracks subregister liveness. 2225 const bool TrackSubRegLiveness; 2226 2227 /// Values that will be present in the final live range. 2228 SmallVectorImpl<VNInfo*> &NewVNInfo; 2229 2230 const CoalescerPair &CP; 2231 LiveIntervals *LIS; 2232 SlotIndexes *Indexes; 2233 const TargetRegisterInfo *TRI; 2234 2235 /// Value number assignments. Maps value numbers in LI to entries in 2236 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 2237 SmallVector<int, 8> Assignments; 2238 2239 public: 2240 /// Conflict resolution for overlapping values. 2241 enum ConflictResolution { 2242 /// No overlap, simply keep this value. 2243 CR_Keep, 2244 2245 /// Merge this value into OtherVNI and erase the defining instruction. 2246 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 2247 /// values. 2248 CR_Erase, 2249 2250 /// Merge this value into OtherVNI but keep the defining instruction. 2251 /// This is for the special case where OtherVNI is defined by the same 2252 /// instruction. 2253 CR_Merge, 2254 2255 /// Keep this value, and have it replace OtherVNI where possible. This 2256 /// complicates value mapping since OtherVNI maps to two different values 2257 /// before and after this def. 2258 /// Used when clobbering undefined or dead lanes. 2259 CR_Replace, 2260 2261 /// Unresolved conflict. Visit later when all values have been mapped. 2262 CR_Unresolved, 2263 2264 /// Unresolvable conflict. Abort the join. 2265 CR_Impossible 2266 }; 2267 2268 private: 2269 /// Per-value info for LI. The lane bit masks are all relative to the final 2270 /// joined register, so they can be compared directly between SrcReg and 2271 /// DstReg. 2272 struct Val { 2273 ConflictResolution Resolution = CR_Keep; 2274 2275 /// Lanes written by this def, 0 for unanalyzed values. 2276 LaneBitmask WriteLanes; 2277 2278 /// Lanes with defined values in this register. Other lanes are undef and 2279 /// safe to clobber. 2280 LaneBitmask ValidLanes; 2281 2282 /// Value in LI being redefined by this def. 2283 VNInfo *RedefVNI = nullptr; 2284 2285 /// Value in the other live range that overlaps this def, if any. 2286 VNInfo *OtherVNI = nullptr; 2287 2288 /// Is this value an IMPLICIT_DEF that can be erased? 2289 /// 2290 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2291 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2292 /// safely erased if they are overlapping a live value in the other live 2293 /// interval. 2294 /// 2295 /// Weird control flow graphs and incomplete PHI handling in 2296 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2297 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2298 /// normal values. 2299 bool ErasableImplicitDef = false; 2300 2301 /// True when the live range of this value will be pruned because of an 2302 /// overlapping CR_Replace value in the other live range. 2303 bool Pruned = false; 2304 2305 /// True once Pruned above has been computed. 2306 bool PrunedComputed = false; 2307 2308 /// True if this value is determined to be identical to OtherVNI 2309 /// (in valuesIdentical). This is used with CR_Erase where the erased 2310 /// copy is redundant, i.e. the source value is already the same as 2311 /// the destination. In such cases the subranges need to be updated 2312 /// properly. See comment at pruneSubRegValues for more info. 2313 bool Identical = false; 2314 2315 Val() = default; 2316 2317 bool isAnalyzed() const { return WriteLanes.any(); } 2318 }; 2319 2320 /// One entry per value number in LI. 2321 SmallVector<Val, 8> Vals; 2322 2323 /// Compute the bitmask of lanes actually written by DefMI. 2324 /// Set Redef if there are any partial register definitions that depend on the 2325 /// previous value of the register. 2326 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2327 2328 /// Find the ultimate value that VNI was copied from. 2329 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 2330 2331 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const; 2332 2333 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2334 /// Return a conflict resolution when possible, but leave the hard cases as 2335 /// CR_Unresolved. 2336 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2337 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2338 /// The recursion always goes upwards in the dominator tree, making loops 2339 /// impossible. 2340 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2341 2342 /// Compute the value assignment for ValNo in RI. 2343 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2344 /// the stack. 2345 void computeAssignment(unsigned ValNo, JoinVals &Other); 2346 2347 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2348 /// the extent of the tainted lanes in the block. 2349 /// 2350 /// Multiple values in Other.LR can be affected since partial redefinitions 2351 /// can preserve previously tainted lanes. 2352 /// 2353 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2354 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2355 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2356 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2357 /// 2358 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2359 /// entry to TaintedVals. 2360 /// 2361 /// Returns false if the tainted lanes extend beyond the basic block. 2362 bool 2363 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2364 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); 2365 2366 /// Return true if MI uses any of the given Lanes from Reg. 2367 /// This does not include partial redefinitions of Reg. 2368 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; 2369 2370 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2371 /// be pruned: 2372 /// 2373 /// %dst = COPY %src 2374 /// %src = COPY %dst <-- This value to be pruned. 2375 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2376 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2377 2378 public: 2379 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 2380 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 2381 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2382 bool TrackSubRegLiveness) 2383 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2384 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2385 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2386 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {} 2387 2388 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2389 /// Returns false if any conflicts were impossible to resolve. 2390 bool mapValues(JoinVals &Other); 2391 2392 /// Try to resolve conflicts that require all values to be mapped. 2393 /// Returns false if any conflicts were impossible to resolve. 2394 bool resolveConflicts(JoinVals &Other); 2395 2396 /// Prune the live range of values in Other.LR where they would conflict with 2397 /// CR_Replace values in LR. Collect end points for restoring the live range 2398 /// after joining. 2399 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2400 bool changeInstrs); 2401 2402 /// Removes subranges starting at copies that get removed. This sometimes 2403 /// happens when undefined subranges are copied around. These ranges contain 2404 /// no useful information and can be removed. 2405 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2406 2407 /// Pruning values in subranges can lead to removing segments in these 2408 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2409 /// the main range also need to be removed. This function will mark 2410 /// the corresponding values in the main range as pruned, so that 2411 /// eraseInstrs can do the final cleanup. 2412 /// The parameter @p LI must be the interval whose main range is the 2413 /// live range LR. 2414 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2415 2416 /// Erase any machine instructions that have been coalesced away. 2417 /// Add erased instructions to ErasedInstrs. 2418 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2419 /// the erased instrs. 2420 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2421 SmallVectorImpl<unsigned> &ShrinkRegs, 2422 LiveInterval *LI = nullptr); 2423 2424 /// Remove liverange defs at places where implicit defs will be removed. 2425 void removeImplicitDefs(); 2426 2427 /// Get the value assignments suitable for passing to LiveInterval::join. 2428 const int *getAssignments() const { return Assignments.data(); } 2429 2430 /// Get the conflict resolution for a value number. 2431 ConflictResolution getResolution(unsigned Num) const { 2432 return Vals[Num].Resolution; 2433 } 2434 }; 2435 2436 } // end anonymous namespace 2437 2438 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2439 const { 2440 LaneBitmask L; 2441 for (const MachineOperand &MO : DefMI->operands()) { 2442 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2443 continue; 2444 L |= TRI->getSubRegIndexLaneMask( 2445 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2446 if (MO.readsReg()) 2447 Redef = true; 2448 } 2449 return L; 2450 } 2451 2452 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 2453 const VNInfo *VNI) const { 2454 unsigned TrackReg = Reg; 2455 2456 while (!VNI->isPHIDef()) { 2457 SlotIndex Def = VNI->def; 2458 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2459 assert(MI && "No defining instruction"); 2460 if (!MI->isFullCopy()) 2461 return std::make_pair(VNI, TrackReg); 2462 Register SrcReg = MI->getOperand(1).getReg(); 2463 if (!Register::isVirtualRegister(SrcReg)) 2464 return std::make_pair(VNI, TrackReg); 2465 2466 const LiveInterval &LI = LIS->getInterval(SrcReg); 2467 const VNInfo *ValueIn; 2468 // No subrange involved. 2469 if (!SubRangeJoin || !LI.hasSubRanges()) { 2470 LiveQueryResult LRQ = LI.Query(Def); 2471 ValueIn = LRQ.valueIn(); 2472 } else { 2473 // Query subranges. Ensure that all matching ones take us to the same def 2474 // (allowing some of them to be undef). 2475 ValueIn = nullptr; 2476 for (const LiveInterval::SubRange &S : LI.subranges()) { 2477 // Transform lanemask to a mask in the joined live interval. 2478 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2479 if ((SMask & LaneMask).none()) 2480 continue; 2481 LiveQueryResult LRQ = S.Query(Def); 2482 if (!ValueIn) { 2483 ValueIn = LRQ.valueIn(); 2484 continue; 2485 } 2486 if (LRQ.valueIn() && ValueIn != LRQ.valueIn()) 2487 return std::make_pair(VNI, TrackReg); 2488 } 2489 } 2490 if (ValueIn == nullptr) { 2491 // Reaching an undefined value is legitimate, for example: 2492 // 2493 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef 2494 // 2 %1 = COPY %0 ;; %1 is defined here. 2495 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition, 2496 // ;; but it's equivalent to "undef". 2497 return std::make_pair(nullptr, SrcReg); 2498 } 2499 VNI = ValueIn; 2500 TrackReg = SrcReg; 2501 } 2502 return std::make_pair(VNI, TrackReg); 2503 } 2504 2505 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2506 const JoinVals &Other) const { 2507 const VNInfo *Orig0; 2508 unsigned Reg0; 2509 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2510 if (Orig0 == Value1 && Reg0 == Other.Reg) 2511 return true; 2512 2513 const VNInfo *Orig1; 2514 unsigned Reg1; 2515 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2516 // If both values are undefined, and the source registers are the same 2517 // register, the values are identical. Filter out cases where only one 2518 // value is defined. 2519 if (Orig0 == nullptr || Orig1 == nullptr) 2520 return Orig0 == Orig1 && Reg0 == Reg1; 2521 2522 // The values are equal if they are defined at the same place and use the 2523 // same register. Note that we cannot compare VNInfos directly as some of 2524 // them might be from a copy created in mergeSubRangeInto() while the other 2525 // is from the original LiveInterval. 2526 return Orig0->def == Orig1->def && Reg0 == Reg1; 2527 } 2528 2529 JoinVals::ConflictResolution 2530 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2531 Val &V = Vals[ValNo]; 2532 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2533 VNInfo *VNI = LR.getValNumInfo(ValNo); 2534 if (VNI->isUnused()) { 2535 V.WriteLanes = LaneBitmask::getAll(); 2536 return CR_Keep; 2537 } 2538 2539 // Get the instruction defining this value, compute the lanes written. 2540 const MachineInstr *DefMI = nullptr; 2541 if (VNI->isPHIDef()) { 2542 // Conservatively assume that all lanes in a PHI are valid. 2543 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2544 : TRI->getSubRegIndexLaneMask(SubIdx); 2545 V.ValidLanes = V.WriteLanes = Lanes; 2546 } else { 2547 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2548 assert(DefMI != nullptr); 2549 if (SubRangeJoin) { 2550 // We don't care about the lanes when joining subregister ranges. 2551 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2552 if (DefMI->isImplicitDef()) { 2553 V.ValidLanes = LaneBitmask::getNone(); 2554 V.ErasableImplicitDef = true; 2555 } 2556 } else { 2557 bool Redef = false; 2558 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2559 2560 // If this is a read-modify-write instruction, there may be more valid 2561 // lanes than the ones written by this instruction. 2562 // This only covers partial redef operands. DefMI may have normal use 2563 // operands reading the register. They don't contribute valid lanes. 2564 // 2565 // This adds ssub1 to the set of valid lanes in %src: 2566 // 2567 // %src:ssub1 = FOO 2568 // 2569 // This leaves only ssub1 valid, making any other lanes undef: 2570 // 2571 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2572 // 2573 // The <read-undef> flag on the def operand means that old lane values are 2574 // not important. 2575 if (Redef) { 2576 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2577 assert((TrackSubRegLiveness || V.RedefVNI) && 2578 "Instruction is reading nonexistent value"); 2579 if (V.RedefVNI != nullptr) { 2580 computeAssignment(V.RedefVNI->id, Other); 2581 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2582 } 2583 } 2584 2585 // An IMPLICIT_DEF writes undef values. 2586 if (DefMI->isImplicitDef()) { 2587 // We normally expect IMPLICIT_DEF values to be live only until the end 2588 // of their block. If the value is really live longer and gets pruned in 2589 // another block, this flag is cleared again. 2590 // 2591 // Clearing the valid lanes is deferred until it is sure this can be 2592 // erased. 2593 V.ErasableImplicitDef = true; 2594 } 2595 } 2596 } 2597 2598 // Find the value in Other that overlaps VNI->def, if any. 2599 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2600 2601 // It is possible that both values are defined by the same instruction, or 2602 // the values are PHIs defined in the same block. When that happens, the two 2603 // values should be merged into one, but not into any preceding value. 2604 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2605 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2606 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2607 2608 // One value stays, the other is merged. Keep the earlier one, or the first 2609 // one we see. 2610 if (OtherVNI->def < VNI->def) 2611 Other.computeAssignment(OtherVNI->id, *this); 2612 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2613 // This is an early-clobber def overlapping a live-in value in the other 2614 // register. Not mergeable. 2615 V.OtherVNI = OtherLRQ.valueIn(); 2616 return CR_Impossible; 2617 } 2618 V.OtherVNI = OtherVNI; 2619 Val &OtherV = Other.Vals[OtherVNI->id]; 2620 // Keep this value, check for conflicts when analyzing OtherVNI. 2621 if (!OtherV.isAnalyzed()) 2622 return CR_Keep; 2623 // Both sides have been analyzed now. 2624 // Allow overlapping PHI values. Any real interference would show up in a 2625 // predecessor, the PHI itself can't introduce any conflicts. 2626 if (VNI->isPHIDef()) 2627 return CR_Merge; 2628 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2629 // Overlapping lanes can't be resolved. 2630 return CR_Impossible; 2631 else 2632 return CR_Merge; 2633 } 2634 2635 // No simultaneous def. Is Other live at the def? 2636 V.OtherVNI = OtherLRQ.valueIn(); 2637 if (!V.OtherVNI) 2638 // No overlap, no conflict. 2639 return CR_Keep; 2640 2641 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2642 2643 // We have overlapping values, or possibly a kill of Other. 2644 // Recursively compute assignments up the dominator tree. 2645 Other.computeAssignment(V.OtherVNI->id, *this); 2646 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2647 2648 if (OtherV.ErasableImplicitDef) { 2649 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2650 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2651 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2652 // technically. 2653 // 2654 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2655 // to erase the IMPLICIT_DEF instruction. 2656 if (DefMI && 2657 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2658 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2659 << " extends into " 2660 << printMBBReference(*DefMI->getParent()) 2661 << ", keeping it.\n"); 2662 OtherV.ErasableImplicitDef = false; 2663 } else { 2664 // We deferred clearing these lanes in case we needed to save them 2665 OtherV.ValidLanes &= ~OtherV.WriteLanes; 2666 } 2667 } 2668 2669 // Allow overlapping PHI values. Any real interference would show up in a 2670 // predecessor, the PHI itself can't introduce any conflicts. 2671 if (VNI->isPHIDef()) 2672 return CR_Replace; 2673 2674 // Check for simple erasable conflicts. 2675 if (DefMI->isImplicitDef()) { 2676 // We need the def for the subregister if there is nothing else live at the 2677 // subrange at this point. 2678 if (TrackSubRegLiveness 2679 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none()) 2680 return CR_Replace; 2681 return CR_Erase; 2682 } 2683 2684 // Include the non-conflict where DefMI is a coalescable copy that kills 2685 // OtherVNI. We still want the copy erased and value numbers merged. 2686 if (CP.isCoalescable(DefMI)) { 2687 // Some of the lanes copied from OtherVNI may be undef, making them undef 2688 // here too. 2689 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2690 return CR_Erase; 2691 } 2692 2693 // This may not be a real conflict if DefMI simply kills Other and defines 2694 // VNI. 2695 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2696 return CR_Keep; 2697 2698 // Handle the case where VNI and OtherVNI can be proven to be identical: 2699 // 2700 // %other = COPY %ext 2701 // %this = COPY %ext <-- Erase this copy 2702 // 2703 if (DefMI->isFullCopy() && !CP.isPartial() && 2704 valuesIdentical(VNI, V.OtherVNI, Other)) { 2705 V.Identical = true; 2706 return CR_Erase; 2707 } 2708 2709 // The remaining checks apply to the lanes, which aren't tracked here. This 2710 // was already decided to be OK via the following CR_Replace condition. 2711 // CR_Replace. 2712 if (SubRangeJoin) 2713 return CR_Replace; 2714 2715 // If the lanes written by this instruction were all undef in OtherVNI, it is 2716 // still safe to join the live ranges. This can't be done with a simple value 2717 // mapping, though - OtherVNI will map to multiple values: 2718 // 2719 // 1 %dst:ssub0 = FOO <-- OtherVNI 2720 // 2 %src = BAR <-- VNI 2721 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy. 2722 // 4 BAZ killed %dst 2723 // 5 QUUX killed %src 2724 // 2725 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2726 // handles this complex value mapping. 2727 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2728 return CR_Replace; 2729 2730 // If the other live range is killed by DefMI and the live ranges are still 2731 // overlapping, it must be because we're looking at an early clobber def: 2732 // 2733 // %dst<def,early-clobber> = ASM killed %src 2734 // 2735 // In this case, it is illegal to merge the two live ranges since the early 2736 // clobber def would clobber %src before it was read. 2737 if (OtherLRQ.isKill()) { 2738 // This case where the def doesn't overlap the kill is handled above. 2739 assert(VNI->def.isEarlyClobber() && 2740 "Only early clobber defs can overlap a kill"); 2741 return CR_Impossible; 2742 } 2743 2744 // VNI is clobbering live lanes in OtherVNI, but there is still the 2745 // possibility that no instructions actually read the clobbered lanes. 2746 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2747 // Otherwise Other.RI wouldn't be live here. 2748 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2749 return CR_Impossible; 2750 2751 // We need to verify that no instructions are reading the clobbered lanes. To 2752 // save compile time, we'll only check that locally. Don't allow the tainted 2753 // value to escape the basic block. 2754 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2755 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2756 return CR_Impossible; 2757 2758 // There are still some things that could go wrong besides clobbered lanes 2759 // being read, for example OtherVNI may be only partially redefined in MBB, 2760 // and some clobbered lanes could escape the block. Save this analysis for 2761 // resolveConflicts() when all values have been mapped. We need to know 2762 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2763 // that now - the recursive analyzeValue() calls must go upwards in the 2764 // dominator tree. 2765 return CR_Unresolved; 2766 } 2767 2768 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2769 Val &V = Vals[ValNo]; 2770 if (V.isAnalyzed()) { 2771 // Recursion should always move up the dominator tree, so ValNo is not 2772 // supposed to reappear before it has been assigned. 2773 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2774 return; 2775 } 2776 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2777 case CR_Erase: 2778 case CR_Merge: 2779 // Merge this ValNo into OtherVNI. 2780 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2781 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2782 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2783 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@' 2784 << LR.getValNumInfo(ValNo)->def << " into " 2785 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2786 << V.OtherVNI->def << " --> @" 2787 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2788 break; 2789 case CR_Replace: 2790 case CR_Unresolved: { 2791 // The other value is going to be pruned if this join is successful. 2792 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2793 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2794 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2795 // its lanes. 2796 if (OtherV.ErasableImplicitDef && 2797 TrackSubRegLiveness && 2798 (OtherV.WriteLanes & ~V.ValidLanes).any()) { 2799 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n"); 2800 2801 OtherV.ErasableImplicitDef = false; 2802 // The valid lanes written by the implicit_def were speculatively cleared 2803 // before, so make this more conservative. It may be better to track this, 2804 // I haven't found a testcase where it matters. 2805 OtherV.ValidLanes = LaneBitmask::getAll(); 2806 } 2807 2808 OtherV.Pruned = true; 2809 LLVM_FALLTHROUGH; 2810 } 2811 default: 2812 // This value number needs to go in the final joined live range. 2813 Assignments[ValNo] = NewVNInfo.size(); 2814 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2815 break; 2816 } 2817 } 2818 2819 bool JoinVals::mapValues(JoinVals &Other) { 2820 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2821 computeAssignment(i, Other); 2822 if (Vals[i].Resolution == CR_Impossible) { 2823 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i 2824 << '@' << LR.getValNumInfo(i)->def << '\n'); 2825 return false; 2826 } 2827 } 2828 return true; 2829 } 2830 2831 bool JoinVals:: 2832 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2833 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { 2834 VNInfo *VNI = LR.getValNumInfo(ValNo); 2835 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2836 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2837 2838 // Scan Other.LR from VNI.def to MBBEnd. 2839 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2840 assert(OtherI != Other.LR.end() && "No conflict?"); 2841 do { 2842 // OtherI is pointing to a tainted value. Abort the join if the tainted 2843 // lanes escape the block. 2844 SlotIndex End = OtherI->end; 2845 if (End >= MBBEnd) { 2846 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':' 2847 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2848 return false; 2849 } 2850 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':' 2851 << OtherI->valno->id << '@' << OtherI->start << " to " 2852 << End << '\n'); 2853 // A dead def is not a problem. 2854 if (End.isDead()) 2855 break; 2856 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2857 2858 // Check for another def in the MBB. 2859 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2860 break; 2861 2862 // Lanes written by the new def are no longer tainted. 2863 const Val &OV = Other.Vals[OtherI->valno->id]; 2864 TaintedLanes &= ~OV.WriteLanes; 2865 if (!OV.RedefVNI) 2866 break; 2867 } while (TaintedLanes.any()); 2868 return true; 2869 } 2870 2871 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, 2872 LaneBitmask Lanes) const { 2873 if (MI.isDebugInstr()) 2874 return false; 2875 for (const MachineOperand &MO : MI.operands()) { 2876 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2877 continue; 2878 if (!MO.readsReg()) 2879 continue; 2880 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2881 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2882 return true; 2883 } 2884 return false; 2885 } 2886 2887 bool JoinVals::resolveConflicts(JoinVals &Other) { 2888 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2889 Val &V = Vals[i]; 2890 assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); 2891 if (V.Resolution != CR_Unresolved) 2892 continue; 2893 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@' 2894 << LR.getValNumInfo(i)->def 2895 << ' ' << PrintLaneMask(LaneMask) << '\n'); 2896 if (SubRangeJoin) 2897 return false; 2898 2899 ++NumLaneConflicts; 2900 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2901 VNInfo *VNI = LR.getValNumInfo(i); 2902 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2903 2904 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2905 // join, those lanes will be tainted with a wrong value. Get the extent of 2906 // the tainted lanes. 2907 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2908 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2909 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2910 // Tainted lanes would extend beyond the basic block. 2911 return false; 2912 2913 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2914 2915 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2916 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2917 MachineBasicBlock::iterator MI = MBB->begin(); 2918 if (!VNI->isPHIDef()) { 2919 MI = Indexes->getInstructionFromIndex(VNI->def); 2920 // No need to check the instruction defining VNI for reads. 2921 ++MI; 2922 } 2923 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2924 "Interference ends on VNI->def. Should have been handled earlier"); 2925 MachineInstr *LastMI = 2926 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2927 assert(LastMI && "Range must end at a proper instruction"); 2928 unsigned TaintNum = 0; 2929 while (true) { 2930 assert(MI != MBB->end() && "Bad LastMI"); 2931 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2932 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2933 return false; 2934 } 2935 // LastMI is the last instruction to use the current value. 2936 if (&*MI == LastMI) { 2937 if (++TaintNum == TaintExtent.size()) 2938 break; 2939 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2940 assert(LastMI && "Range must end at a proper instruction"); 2941 TaintedLanes = TaintExtent[TaintNum].second; 2942 } 2943 ++MI; 2944 } 2945 2946 // The tainted lanes are unused. 2947 V.Resolution = CR_Replace; 2948 ++NumLaneResolves; 2949 } 2950 return true; 2951 } 2952 2953 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2954 Val &V = Vals[ValNo]; 2955 if (V.Pruned || V.PrunedComputed) 2956 return V.Pruned; 2957 2958 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2959 return V.Pruned; 2960 2961 // Follow copies up the dominator tree and check if any intermediate value 2962 // has been pruned. 2963 V.PrunedComputed = true; 2964 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2965 return V.Pruned; 2966 } 2967 2968 void JoinVals::pruneValues(JoinVals &Other, 2969 SmallVectorImpl<SlotIndex> &EndPoints, 2970 bool changeInstrs) { 2971 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2972 SlotIndex Def = LR.getValNumInfo(i)->def; 2973 switch (Vals[i].Resolution) { 2974 case CR_Keep: 2975 break; 2976 case CR_Replace: { 2977 // This value takes precedence over the value in Other.LR. 2978 LIS->pruneValue(Other.LR, Def, &EndPoints); 2979 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2980 // instructions are only inserted to provide a live-out value for PHI 2981 // predecessors, so the instruction should simply go away once its value 2982 // has been replaced. 2983 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2984 bool EraseImpDef = OtherV.ErasableImplicitDef && 2985 OtherV.Resolution == CR_Keep; 2986 if (!Def.isBlock()) { 2987 if (changeInstrs) { 2988 // Remove <def,read-undef> flags. This def is now a partial redef. 2989 // Also remove dead flags since the joined live range will 2990 // continue past this instruction. 2991 for (MachineOperand &MO : 2992 Indexes->getInstructionFromIndex(Def)->operands()) { 2993 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 2994 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) 2995 MO.setIsUndef(false); 2996 MO.setIsDead(false); 2997 } 2998 } 2999 } 3000 // This value will reach instructions below, but we need to make sure 3001 // the live range also reaches the instruction at Def. 3002 if (!EraseImpDef) 3003 EndPoints.push_back(Def); 3004 } 3005 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def 3006 << ": " << Other.LR << '\n'); 3007 break; 3008 } 3009 case CR_Erase: 3010 case CR_Merge: 3011 if (isPrunedValue(i, Other)) { 3012 // This value is ultimately a copy of a pruned value in LR or Other.LR. 3013 // We can no longer trust the value mapping computed by 3014 // computeAssignment(), the value that was originally copied could have 3015 // been replaced. 3016 LIS->pruneValue(LR, Def, &EndPoints); 3017 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at " 3018 << Def << ": " << LR << '\n'); 3019 } 3020 break; 3021 case CR_Unresolved: 3022 case CR_Impossible: 3023 llvm_unreachable("Unresolved conflicts"); 3024 } 3025 } 3026 } 3027 3028 /// Consider the following situation when coalescing the copy between 3029 /// %31 and %45 at 800. (The vertical lines represent live range segments.) 3030 /// 3031 /// Main range Subrange 0004 (sub2) 3032 /// %31 %45 %31 %45 3033 /// 544 %45 = COPY %28 + + 3034 /// | v1 | v1 3035 /// 560B bb.1: + + 3036 /// 624 = %45.sub2 | v2 | v2 3037 /// 800 %31 = COPY %45 + + + + 3038 /// | v0 | v0 3039 /// 816 %31.sub1 = ... + | 3040 /// 880 %30 = COPY %31 | v1 + 3041 /// 928 %45 = COPY %30 | + + 3042 /// | | v0 | v0 <--+ 3043 /// 992B ; backedge -> bb.1 | + + | 3044 /// 1040 = %31.sub0 + | 3045 /// This value must remain 3046 /// live-out! 3047 /// 3048 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes 3049 /// redundant, since it copies the value from %45 back into it. The 3050 /// conflict resolution for the main range determines that %45.v0 is 3051 /// to be erased, which is ok since %31.v1 is identical to it. 3052 /// The problem happens with the subrange for sub2: it has to be live 3053 /// on exit from the block, but since 928 was actually a point of 3054 /// definition of %45.sub2, %45.sub2 was not live immediately prior 3055 /// to that definition. As a result, when 928 was erased, the value v0 3056 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an 3057 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2, 3058 /// providing an incorrect value to the use at 624. 3059 /// 3060 /// Since the main-range values %31.v1 and %45.v0 were proved to be 3061 /// identical, the corresponding values in subranges must also be the 3062 /// same. A redundant copy is removed because it's not needed, and not 3063 /// because it copied an undefined value, so any liveness that originated 3064 /// from that copy cannot disappear. When pruning a value that started 3065 /// at the removed copy, the corresponding identical value must be 3066 /// extended to replace it. 3067 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 3068 // Look for values being erased. 3069 bool DidPrune = false; 3070 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3071 Val &V = Vals[i]; 3072 // We should trigger in all cases in which eraseInstrs() does something. 3073 // match what eraseInstrs() is doing, print a message so 3074 if (V.Resolution != CR_Erase && 3075 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)) 3076 continue; 3077 3078 // Check subranges at the point where the copy will be removed. 3079 SlotIndex Def = LR.getValNumInfo(i)->def; 3080 SlotIndex OtherDef; 3081 if (V.Identical) 3082 OtherDef = V.OtherVNI->def; 3083 3084 // Print message so mismatches with eraseInstrs() can be diagnosed. 3085 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def 3086 << '\n'); 3087 for (LiveInterval::SubRange &S : LI.subranges()) { 3088 LiveQueryResult Q = S.Query(Def); 3089 3090 // If a subrange starts at the copy then an undefined value has been 3091 // copied and we must remove that subrange value as well. 3092 VNInfo *ValueOut = Q.valueOutOrDead(); 3093 if (ValueOut != nullptr && (Q.valueIn() == nullptr || 3094 (V.Identical && V.Resolution == CR_Erase && 3095 ValueOut->def == Def))) { 3096 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 3097 << " at " << Def << "\n"); 3098 SmallVector<SlotIndex,8> EndPoints; 3099 LIS->pruneValue(S, Def, &EndPoints); 3100 DidPrune = true; 3101 // Mark value number as unused. 3102 ValueOut->markUnused(); 3103 3104 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) { 3105 // If V is identical to V.OtherVNI (and S was live at OtherDef), 3106 // then we can't simply prune V from S. V needs to be replaced 3107 // with V.OtherVNI. 3108 LIS->extendToIndices(S, EndPoints); 3109 } 3110 continue; 3111 } 3112 // If a subrange ends at the copy, then a value was copied but only 3113 // partially used later. Shrink the subregister range appropriately. 3114 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 3115 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane " 3116 << PrintLaneMask(S.LaneMask) << " at " << Def 3117 << "\n"); 3118 ShrinkMask |= S.LaneMask; 3119 } 3120 } 3121 } 3122 if (DidPrune) 3123 LI.removeEmptySubRanges(); 3124 } 3125 3126 /// Check if any of the subranges of @p LI contain a definition at @p Def. 3127 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 3128 for (LiveInterval::SubRange &SR : LI.subranges()) { 3129 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 3130 if (VNI->def == Def) 3131 return true; 3132 } 3133 return false; 3134 } 3135 3136 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 3137 assert(&static_cast<LiveRange&>(LI) == &LR); 3138 3139 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3140 if (Vals[i].Resolution != CR_Keep) 3141 continue; 3142 VNInfo *VNI = LR.getValNumInfo(i); 3143 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 3144 continue; 3145 Vals[i].Pruned = true; 3146 ShrinkMainRange = true; 3147 } 3148 } 3149 3150 void JoinVals::removeImplicitDefs() { 3151 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3152 Val &V = Vals[i]; 3153 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 3154 continue; 3155 3156 VNInfo *VNI = LR.getValNumInfo(i); 3157 VNI->markUnused(); 3158 LR.removeValNo(VNI); 3159 } 3160 } 3161 3162 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 3163 SmallVectorImpl<unsigned> &ShrinkRegs, 3164 LiveInterval *LI) { 3165 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3166 // Get the def location before markUnused() below invalidates it. 3167 VNInfo *VNI = LR.getValNumInfo(i); 3168 SlotIndex Def = VNI->def; 3169 switch (Vals[i].Resolution) { 3170 case CR_Keep: { 3171 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 3172 // longer. The IMPLICIT_DEF instructions are only inserted by 3173 // PHIElimination to guarantee that all PHI predecessors have a value. 3174 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 3175 break; 3176 // Remove value number i from LR. 3177 // For intervals with subranges, removing a segment from the main range 3178 // may require extending the previous segment: for each definition of 3179 // a subregister, there will be a corresponding def in the main range. 3180 // That def may fall in the middle of a segment from another subrange. 3181 // In such cases, removing this def from the main range must be 3182 // complemented by extending the main range to account for the liveness 3183 // of the other subrange. 3184 // The new end point of the main range segment to be extended. 3185 SlotIndex NewEnd; 3186 if (LI != nullptr) { 3187 LiveRange::iterator I = LR.FindSegmentContaining(Def); 3188 assert(I != LR.end()); 3189 // Do not extend beyond the end of the segment being removed. 3190 // The segment may have been pruned in preparation for joining 3191 // live ranges. 3192 NewEnd = I->end; 3193 } 3194 3195 LR.removeValNo(VNI); 3196 // Note that this VNInfo is reused and still referenced in NewVNInfo, 3197 // make it appear like an unused value number. 3198 VNI->markUnused(); 3199 3200 if (LI != nullptr && LI->hasSubRanges()) { 3201 assert(static_cast<LiveRange*>(LI) == &LR); 3202 // Determine the end point based on the subrange information: 3203 // minimum of (earliest def of next segment, 3204 // latest end point of containing segment) 3205 SlotIndex ED, LE; 3206 for (LiveInterval::SubRange &SR : LI->subranges()) { 3207 LiveRange::iterator I = SR.find(Def); 3208 if (I == SR.end()) 3209 continue; 3210 if (I->start > Def) 3211 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 3212 else 3213 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 3214 } 3215 if (LE.isValid()) 3216 NewEnd = std::min(NewEnd, LE); 3217 if (ED.isValid()) 3218 NewEnd = std::min(NewEnd, ED); 3219 3220 // We only want to do the extension if there was a subrange that 3221 // was live across Def. 3222 if (LE.isValid()) { 3223 LiveRange::iterator S = LR.find(Def); 3224 if (S != LR.begin()) 3225 std::prev(S)->end = NewEnd; 3226 } 3227 } 3228 LLVM_DEBUG({ 3229 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 3230 if (LI != nullptr) 3231 dbgs() << "\t\t LHS = " << *LI << '\n'; 3232 }); 3233 LLVM_FALLTHROUGH; 3234 } 3235 3236 case CR_Erase: { 3237 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 3238 assert(MI && "No instruction to erase"); 3239 if (MI->isCopy()) { 3240 Register Reg = MI->getOperand(1).getReg(); 3241 if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() && 3242 Reg != CP.getDstReg()) 3243 ShrinkRegs.push_back(Reg); 3244 } 3245 ErasedInstrs.insert(MI); 3246 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 3247 LIS->RemoveMachineInstrFromMaps(*MI); 3248 MI->eraseFromParent(); 3249 break; 3250 } 3251 default: 3252 break; 3253 } 3254 } 3255 } 3256 3257 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 3258 LaneBitmask LaneMask, 3259 const CoalescerPair &CP) { 3260 SmallVector<VNInfo*, 16> NewVNInfo; 3261 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 3262 NewVNInfo, CP, LIS, TRI, true, true); 3263 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 3264 NewVNInfo, CP, LIS, TRI, true, true); 3265 3266 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 3267 // We should be able to resolve all conflicts here as we could successfully do 3268 // it on the mainrange already. There is however a problem when multiple 3269 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 3270 // interferences. 3271 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 3272 // We already determined that it is legal to merge the intervals, so this 3273 // should never fail. 3274 llvm_unreachable("*** Couldn't join subrange!\n"); 3275 } 3276 if (!LHSVals.resolveConflicts(RHSVals) || 3277 !RHSVals.resolveConflicts(LHSVals)) { 3278 // We already determined that it is legal to merge the intervals, so this 3279 // should never fail. 3280 llvm_unreachable("*** Couldn't join subrange!\n"); 3281 } 3282 3283 // The merging algorithm in LiveInterval::join() can't handle conflicting 3284 // value mappings, so we need to remove any live ranges that overlap a 3285 // CR_Replace resolution. Collect a set of end points that can be used to 3286 // restore the live range after joining. 3287 SmallVector<SlotIndex, 8> EndPoints; 3288 LHSVals.pruneValues(RHSVals, EndPoints, false); 3289 RHSVals.pruneValues(LHSVals, EndPoints, false); 3290 3291 LHSVals.removeImplicitDefs(); 3292 RHSVals.removeImplicitDefs(); 3293 3294 LRange.verify(); 3295 RRange.verify(); 3296 3297 // Join RRange into LHS. 3298 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 3299 NewVNInfo); 3300 3301 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask) 3302 << ' ' << LRange << "\n"); 3303 if (EndPoints.empty()) 3304 return; 3305 3306 // Recompute the parts of the live range we had to remove because of 3307 // CR_Replace conflicts. 3308 LLVM_DEBUG({ 3309 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3310 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3311 dbgs() << EndPoints[i]; 3312 if (i != n-1) 3313 dbgs() << ','; 3314 } 3315 dbgs() << ": " << LRange << '\n'; 3316 }); 3317 LIS->extendToIndices(LRange, EndPoints); 3318 } 3319 3320 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 3321 const LiveRange &ToMerge, 3322 LaneBitmask LaneMask, 3323 CoalescerPair &CP, 3324 unsigned ComposeSubRegIdx) { 3325 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3326 LI.refineSubRanges( 3327 Allocator, LaneMask, 3328 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) { 3329 if (SR.empty()) { 3330 SR.assign(ToMerge, Allocator); 3331 } else { 3332 // joinSubRegRange() destroys the merged range, so we need a copy. 3333 LiveRange RangeCopy(ToMerge, Allocator); 3334 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 3335 } 3336 }, 3337 *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx); 3338 } 3339 3340 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) { 3341 if (LI.valnos.size() < LargeIntervalSizeThreshold) 3342 return false; 3343 auto &Counter = LargeLIVisitCounter[LI.reg]; 3344 if (Counter < LargeIntervalFreqThreshold) { 3345 Counter++; 3346 return false; 3347 } 3348 return true; 3349 } 3350 3351 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 3352 SmallVector<VNInfo*, 16> NewVNInfo; 3353 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 3354 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 3355 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 3356 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 3357 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3358 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 3359 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3360 3361 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n'); 3362 3363 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS)) 3364 return false; 3365 3366 // First compute NewVNInfo and the simple value mappings. 3367 // Detect impossible conflicts early. 3368 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 3369 return false; 3370 3371 // Some conflicts can only be resolved after all values have been mapped. 3372 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 3373 return false; 3374 3375 // All clear, the live ranges can be merged. 3376 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 3377 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3378 3379 // Transform lanemasks from the LHS to masks in the coalesced register and 3380 // create initial subranges if necessary. 3381 unsigned DstIdx = CP.getDstIdx(); 3382 if (!LHS.hasSubRanges()) { 3383 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 3384 : TRI->getSubRegIndexLaneMask(DstIdx); 3385 // LHS must support subregs or we wouldn't be in this codepath. 3386 assert(Mask.any()); 3387 LHS.createSubRangeFrom(Allocator, Mask, LHS); 3388 } else if (DstIdx != 0) { 3389 // Transform LHS lanemasks to new register class if necessary. 3390 for (LiveInterval::SubRange &R : LHS.subranges()) { 3391 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 3392 R.LaneMask = Mask; 3393 } 3394 } 3395 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS 3396 << '\n'); 3397 3398 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3399 unsigned SrcIdx = CP.getSrcIdx(); 3400 if (!RHS.hasSubRanges()) { 3401 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3402 : TRI->getSubRegIndexLaneMask(SrcIdx); 3403 mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx); 3404 } else { 3405 // Pair up subranges and merge. 3406 for (LiveInterval::SubRange &R : RHS.subranges()) { 3407 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3408 mergeSubRangeInto(LHS, R, Mask, CP, DstIdx); 3409 } 3410 } 3411 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3412 3413 // Pruning implicit defs from subranges may result in the main range 3414 // having stale segments. 3415 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3416 3417 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3418 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3419 } 3420 3421 // The merging algorithm in LiveInterval::join() can't handle conflicting 3422 // value mappings, so we need to remove any live ranges that overlap a 3423 // CR_Replace resolution. Collect a set of end points that can be used to 3424 // restore the live range after joining. 3425 SmallVector<SlotIndex, 8> EndPoints; 3426 LHSVals.pruneValues(RHSVals, EndPoints, true); 3427 RHSVals.pruneValues(LHSVals, EndPoints, true); 3428 3429 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3430 // registers to require trimming. 3431 SmallVector<unsigned, 8> ShrinkRegs; 3432 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3433 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3434 while (!ShrinkRegs.empty()) 3435 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3436 3437 // Scan and mark undef any DBG_VALUEs that would refer to a different value. 3438 checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals); 3439 3440 // Join RHS into LHS. 3441 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3442 3443 // Kill flags are going to be wrong if the live ranges were overlapping. 3444 // Eventually, we should simply clear all kill flags when computing live 3445 // ranges. They are reinserted after register allocation. 3446 MRI->clearKillFlags(LHS.reg); 3447 MRI->clearKillFlags(RHS.reg); 3448 3449 if (!EndPoints.empty()) { 3450 // Recompute the parts of the live range we had to remove because of 3451 // CR_Replace conflicts. 3452 LLVM_DEBUG({ 3453 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3454 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3455 dbgs() << EndPoints[i]; 3456 if (i != n-1) 3457 dbgs() << ','; 3458 } 3459 dbgs() << ": " << LHS << '\n'; 3460 }); 3461 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3462 } 3463 3464 return true; 3465 } 3466 3467 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3468 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3469 } 3470 3471 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF) 3472 { 3473 const SlotIndexes &Slots = *LIS->getSlotIndexes(); 3474 SmallVector<MachineInstr *, 8> ToInsert; 3475 3476 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the 3477 // vreg => DbgValueLoc map. 3478 auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) { 3479 for (auto *X : ToInsert) 3480 DbgVRegToValues[X->getOperand(0).getReg()].push_back({Slot, X}); 3481 3482 ToInsert.clear(); 3483 }; 3484 3485 // Iterate over all instructions, collecting them into the ToInsert vector. 3486 // Once a non-debug instruction is found, record the slot index of the 3487 // collected DBG_VALUEs. 3488 for (auto &MBB : MF) { 3489 SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB); 3490 3491 for (auto &MI : MBB) { 3492 if (MI.isDebugValue() && MI.getOperand(0).isReg() && 3493 MI.getOperand(0).getReg().isVirtual()) { 3494 ToInsert.push_back(&MI); 3495 } else if (!MI.isDebugInstr()) { 3496 CurrentSlot = Slots.getInstructionIndex(MI); 3497 CloseNewDVRange(CurrentSlot); 3498 } 3499 } 3500 3501 // Close range of DBG_VALUEs at the end of blocks. 3502 CloseNewDVRange(Slots.getMBBEndIdx(&MBB)); 3503 } 3504 3505 // Sort all DBG_VALUEs we've seen by slot number. 3506 for (auto &Pair : DbgVRegToValues) 3507 llvm::sort(Pair.second); 3508 } 3509 3510 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP, 3511 LiveRange &LHS, 3512 JoinVals &LHSVals, 3513 LiveRange &RHS, 3514 JoinVals &RHSVals) { 3515 auto ScanForDstReg = [&](unsigned Reg) { 3516 checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals); 3517 }; 3518 3519 auto ScanForSrcReg = [&](unsigned Reg) { 3520 checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals); 3521 }; 3522 3523 // Scan for potentially unsound DBG_VALUEs: examine first the register number 3524 // Reg, and then any other vregs that may have been merged into it. 3525 auto PerformScan = [this](unsigned Reg, std::function<void(unsigned)> Func) { 3526 Func(Reg); 3527 if (DbgMergedVRegNums.count(Reg)) 3528 for (unsigned X : DbgMergedVRegNums[Reg]) 3529 Func(X); 3530 }; 3531 3532 // Scan for unsound updates of both the source and destination register. 3533 PerformScan(CP.getSrcReg(), ScanForSrcReg); 3534 PerformScan(CP.getDstReg(), ScanForDstReg); 3535 } 3536 3537 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(unsigned Reg, 3538 LiveRange &OtherLR, 3539 LiveRange &RegLR, 3540 JoinVals &RegVals) { 3541 // Are there any DBG_VALUEs to examine? 3542 auto VRegMapIt = DbgVRegToValues.find(Reg); 3543 if (VRegMapIt == DbgVRegToValues.end()) 3544 return; 3545 3546 auto &DbgValueSet = VRegMapIt->second; 3547 auto DbgValueSetIt = DbgValueSet.begin(); 3548 auto SegmentIt = OtherLR.begin(); 3549 3550 bool LastUndefResult = false; 3551 SlotIndex LastUndefIdx; 3552 3553 // If the "Other" register is live at a slot Idx, test whether Reg can 3554 // safely be merged with it, or should be marked undef. 3555 auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult, 3556 &LastUndefIdx](SlotIndex Idx) -> bool { 3557 // Our worst-case performance typically happens with asan, causing very 3558 // many DBG_VALUEs of the same location. Cache a copy of the most recent 3559 // result for this edge-case. 3560 if (LastUndefIdx == Idx) 3561 return LastUndefResult; 3562 3563 // If the other range was live, and Reg's was not, the register coalescer 3564 // will not have tried to resolve any conflicts. We don't know whether 3565 // the DBG_VALUE will refer to the same value number, so it must be made 3566 // undef. 3567 auto OtherIt = RegLR.find(Idx); 3568 if (OtherIt == RegLR.end()) 3569 return true; 3570 3571 // Both the registers were live: examine the conflict resolution record for 3572 // the value number Reg refers to. CR_Keep meant that this value number 3573 // "won" and the merged register definitely refers to that value. CR_Erase 3574 // means the value number was a redundant copy of the other value, which 3575 // was coalesced and Reg deleted. It's safe to refer to the other register 3576 // (which will be the source of the copy). 3577 auto Resolution = RegVals.getResolution(OtherIt->valno->id); 3578 LastUndefResult = Resolution != JoinVals::CR_Keep && 3579 Resolution != JoinVals::CR_Erase; 3580 LastUndefIdx = Idx; 3581 return LastUndefResult; 3582 }; 3583 3584 // Iterate over both the live-range of the "Other" register, and the set of 3585 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest 3586 // slot index. This relies on the DbgValueSet being ordered. 3587 while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) { 3588 if (DbgValueSetIt->first < SegmentIt->end) { 3589 // "Other" is live and there is a DBG_VALUE of Reg: test if we should 3590 // set it undef. 3591 if (DbgValueSetIt->first >= SegmentIt->start && 3592 DbgValueSetIt->second->getOperand(0).getReg() != 0 && 3593 ShouldUndef(DbgValueSetIt->first)) { 3594 // Mark undef, erase record of this DBG_VALUE to avoid revisiting. 3595 DbgValueSetIt->second->getOperand(0).setReg(0); 3596 continue; 3597 } 3598 ++DbgValueSetIt; 3599 } else { 3600 ++SegmentIt; 3601 } 3602 } 3603 } 3604 3605 namespace { 3606 3607 /// Information concerning MBB coalescing priority. 3608 struct MBBPriorityInfo { 3609 MachineBasicBlock *MBB; 3610 unsigned Depth; 3611 bool IsSplit; 3612 3613 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3614 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3615 }; 3616 3617 } // end anonymous namespace 3618 3619 /// C-style comparator that sorts first based on the loop depth of the basic 3620 /// block (the unsigned), and then on the MBB number. 3621 /// 3622 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3623 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3624 const MBBPriorityInfo *RHS) { 3625 // Deeper loops first 3626 if (LHS->Depth != RHS->Depth) 3627 return LHS->Depth > RHS->Depth ? -1 : 1; 3628 3629 // Try to unsplit critical edges next. 3630 if (LHS->IsSplit != RHS->IsSplit) 3631 return LHS->IsSplit ? -1 : 1; 3632 3633 // Prefer blocks that are more connected in the CFG. This takes care of 3634 // the most difficult copies first while intervals are short. 3635 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3636 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3637 if (cl != cr) 3638 return cl > cr ? -1 : 1; 3639 3640 // As a last resort, sort by block number. 3641 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3642 } 3643 3644 /// \returns true if the given copy uses or defines a local live range. 3645 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3646 if (!Copy->isCopy()) 3647 return false; 3648 3649 if (Copy->getOperand(1).isUndef()) 3650 return false; 3651 3652 Register SrcReg = Copy->getOperand(1).getReg(); 3653 Register DstReg = Copy->getOperand(0).getReg(); 3654 if (Register::isPhysicalRegister(SrcReg) || 3655 Register::isPhysicalRegister(DstReg)) 3656 return false; 3657 3658 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3659 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3660 } 3661 3662 void RegisterCoalescer::lateLiveIntervalUpdate() { 3663 for (unsigned reg : ToBeUpdated) { 3664 if (!LIS->hasInterval(reg)) 3665 continue; 3666 LiveInterval &LI = LIS->getInterval(reg); 3667 shrinkToUses(&LI, &DeadDefs); 3668 if (!DeadDefs.empty()) 3669 eliminateDeadDefs(); 3670 } 3671 ToBeUpdated.clear(); 3672 } 3673 3674 bool RegisterCoalescer:: 3675 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3676 bool Progress = false; 3677 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3678 if (!CurrList[i]) 3679 continue; 3680 // Skip instruction pointers that have already been erased, for example by 3681 // dead code elimination. 3682 if (ErasedInstrs.count(CurrList[i])) { 3683 CurrList[i] = nullptr; 3684 continue; 3685 } 3686 bool Again = false; 3687 bool Success = joinCopy(CurrList[i], Again); 3688 Progress |= Success; 3689 if (Success || !Again) 3690 CurrList[i] = nullptr; 3691 } 3692 return Progress; 3693 } 3694 3695 /// Check if DstReg is a terminal node. 3696 /// I.e., it does not have any affinity other than \p Copy. 3697 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 3698 const MachineRegisterInfo *MRI) { 3699 assert(Copy.isCopyLike()); 3700 // Check if the destination of this copy as any other affinity. 3701 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3702 if (&MI != &Copy && MI.isCopyLike()) 3703 return false; 3704 return true; 3705 } 3706 3707 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3708 assert(Copy.isCopyLike()); 3709 if (!UseTerminalRule) 3710 return false; 3711 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 3712 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg)) 3713 return false; 3714 // Check if the destination of this copy has any other affinity. 3715 if (Register::isPhysicalRegister(DstReg) || 3716 // If SrcReg is a physical register, the copy won't be coalesced. 3717 // Ignoring it may have other side effect (like missing 3718 // rematerialization). So keep it. 3719 Register::isPhysicalRegister(SrcReg) || !isTerminalReg(DstReg, Copy, MRI)) 3720 return false; 3721 3722 // DstReg is a terminal node. Check if it interferes with any other 3723 // copy involving SrcReg. 3724 const MachineBasicBlock *OrigBB = Copy.getParent(); 3725 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3726 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3727 // Technically we should check if the weight of the new copy is 3728 // interesting compared to the other one and update the weight 3729 // of the copies accordingly. However, this would only work if 3730 // we would gather all the copies first then coalesce, whereas 3731 // right now we interleave both actions. 3732 // For now, just consider the copies that are in the same block. 3733 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3734 continue; 3735 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 3736 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3737 OtherSubReg)) 3738 return false; 3739 if (OtherReg == SrcReg) 3740 OtherReg = OtherSrcReg; 3741 // Check if OtherReg is a non-terminal. 3742 if (Register::isPhysicalRegister(OtherReg) || 3743 isTerminalReg(OtherReg, MI, MRI)) 3744 continue; 3745 // Check that OtherReg interfere with DstReg. 3746 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3747 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) 3748 << '\n'); 3749 return true; 3750 } 3751 } 3752 return false; 3753 } 3754 3755 void 3756 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3757 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n"); 3758 3759 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3760 // yet, it might invalidate the iterator. 3761 const unsigned PrevSize = WorkList.size(); 3762 if (JoinGlobalCopies) { 3763 SmallVector<MachineInstr*, 2> LocalTerminals; 3764 SmallVector<MachineInstr*, 2> GlobalTerminals; 3765 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3766 // are not inherently easier to resolve, but slightly preferable until we 3767 // have local live range splitting. In particular this is required by 3768 // cmp+jmp macro fusion. 3769 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3770 MII != E; ++MII) { 3771 if (!MII->isCopyLike()) 3772 continue; 3773 bool ApplyTerminalRule = applyTerminalRule(*MII); 3774 if (isLocalCopy(&(*MII), LIS)) { 3775 if (ApplyTerminalRule) 3776 LocalTerminals.push_back(&(*MII)); 3777 else 3778 LocalWorkList.push_back(&(*MII)); 3779 } else { 3780 if (ApplyTerminalRule) 3781 GlobalTerminals.push_back(&(*MII)); 3782 else 3783 WorkList.push_back(&(*MII)); 3784 } 3785 } 3786 // Append the copies evicted by the terminal rule at the end of the list. 3787 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3788 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3789 } 3790 else { 3791 SmallVector<MachineInstr*, 2> Terminals; 3792 for (MachineInstr &MII : *MBB) 3793 if (MII.isCopyLike()) { 3794 if (applyTerminalRule(MII)) 3795 Terminals.push_back(&MII); 3796 else 3797 WorkList.push_back(&MII); 3798 } 3799 // Append the copies evicted by the terminal rule at the end of the list. 3800 WorkList.append(Terminals.begin(), Terminals.end()); 3801 } 3802 // Try coalescing the collected copies immediately, and remove the nulls. 3803 // This prevents the WorkList from getting too large since most copies are 3804 // joinable on the first attempt. 3805 MutableArrayRef<MachineInstr*> 3806 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3807 if (copyCoalesceWorkList(CurrList)) 3808 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3809 nullptr), WorkList.end()); 3810 } 3811 3812 void RegisterCoalescer::coalesceLocals() { 3813 copyCoalesceWorkList(LocalWorkList); 3814 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3815 if (LocalWorkList[j]) 3816 WorkList.push_back(LocalWorkList[j]); 3817 } 3818 LocalWorkList.clear(); 3819 } 3820 3821 void RegisterCoalescer::joinAllIntervals() { 3822 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3823 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3824 3825 std::vector<MBBPriorityInfo> MBBs; 3826 MBBs.reserve(MF->size()); 3827 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3828 MachineBasicBlock *MBB = &*I; 3829 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3830 JoinSplitEdges && isSplitEdge(MBB))); 3831 } 3832 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3833 3834 // Coalesce intervals in MBB priority order. 3835 unsigned CurrDepth = std::numeric_limits<unsigned>::max(); 3836 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3837 // Try coalescing the collected local copies for deeper loops. 3838 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3839 coalesceLocals(); 3840 CurrDepth = MBBs[i].Depth; 3841 } 3842 copyCoalesceInMBB(MBBs[i].MBB); 3843 } 3844 lateLiveIntervalUpdate(); 3845 coalesceLocals(); 3846 3847 // Joining intervals can allow other intervals to be joined. Iteratively join 3848 // until we make no progress. 3849 while (copyCoalesceWorkList(WorkList)) 3850 /* empty */ ; 3851 lateLiveIntervalUpdate(); 3852 } 3853 3854 void RegisterCoalescer::releaseMemory() { 3855 ErasedInstrs.clear(); 3856 WorkList.clear(); 3857 DeadDefs.clear(); 3858 InflateRegs.clear(); 3859 LargeLIVisitCounter.clear(); 3860 } 3861 3862 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3863 MF = &fn; 3864 MRI = &fn.getRegInfo(); 3865 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3866 TRI = STI.getRegisterInfo(); 3867 TII = STI.getInstrInfo(); 3868 LIS = &getAnalysis<LiveIntervals>(); 3869 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3870 Loops = &getAnalysis<MachineLoopInfo>(); 3871 if (EnableGlobalCopies == cl::BOU_UNSET) 3872 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3873 else 3874 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3875 3876 // The MachineScheduler does not currently require JoinSplitEdges. This will 3877 // either be enabled unconditionally or replaced by a more general live range 3878 // splitting optimization. 3879 JoinSplitEdges = EnableJoinSplits; 3880 3881 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3882 << "********** Function: " << MF->getName() << '\n'); 3883 3884 if (VerifyCoalescing) 3885 MF->verify(this, "Before register coalescing"); 3886 3887 DbgVRegToValues.clear(); 3888 DbgMergedVRegNums.clear(); 3889 buildVRegToDbgValueMap(fn); 3890 3891 RegClassInfo.runOnMachineFunction(fn); 3892 3893 // Join (coalesce) intervals if requested. 3894 if (EnableJoining) 3895 joinAllIntervals(); 3896 3897 // After deleting a lot of copies, register classes may be less constrained. 3898 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3899 // DPR inflation. 3900 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3901 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3902 InflateRegs.end()); 3903 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() 3904 << " regs.\n"); 3905 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3906 unsigned Reg = InflateRegs[i]; 3907 if (MRI->reg_nodbg_empty(Reg)) 3908 continue; 3909 if (MRI->recomputeRegClass(Reg)) { 3910 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to " 3911 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3912 ++NumInflated; 3913 3914 LiveInterval &LI = LIS->getInterval(Reg); 3915 if (LI.hasSubRanges()) { 3916 // If the inflated register class does not support subregisters anymore 3917 // remove the subranges. 3918 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3919 LI.clearSubRanges(); 3920 } else { 3921 #ifndef NDEBUG 3922 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3923 // If subranges are still supported, then the same subregs 3924 // should still be supported. 3925 for (LiveInterval::SubRange &S : LI.subranges()) { 3926 assert((S.LaneMask & ~MaxMask).none()); 3927 } 3928 #endif 3929 } 3930 } 3931 } 3932 } 3933 3934 LLVM_DEBUG(dump()); 3935 if (VerifyCoalescing) 3936 MF->verify(this, "After register coalescing"); 3937 return true; 3938 } 3939 3940 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3941 LIS->print(O, m); 3942 } 3943