1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/MC/LaneBitmask.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <iterator>
55 #include <limits>
56 #include <tuple>
57 #include <utility>
58 #include <vector>
59 
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "regalloc"
63 
64 STATISTIC(numJoins    , "Number of interval joins performed");
65 STATISTIC(numCrossRCs , "Number of cross class joins performed");
66 STATISTIC(numCommutes , "Number of instruction commuting performed");
67 STATISTIC(numExtends  , "Number of copies extended");
68 STATISTIC(NumReMats   , "Number of instructions re-materialized");
69 STATISTIC(NumInflated , "Number of register classes inflated");
70 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
71 STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
72 STATISTIC(NumShrinkToUses,  "Number of shrinkToUses called");
73 
74 static cl::opt<bool> EnableJoining("join-liveintervals",
75                                    cl::desc("Coalesce copies (default=true)"),
76                                    cl::init(true), cl::Hidden);
77 
78 static cl::opt<bool> UseTerminalRule("terminal-rule",
79                                      cl::desc("Apply the terminal rule"),
80                                      cl::init(false), cl::Hidden);
81 
82 /// Temporary flag to test critical edge unsplitting.
83 static cl::opt<bool>
84 EnableJoinSplits("join-splitedges",
85   cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
86 
87 /// Temporary flag to test global copy optimization.
88 static cl::opt<cl::boolOrDefault>
89 EnableGlobalCopies("join-globalcopies",
90   cl::desc("Coalesce copies that span blocks (default=subtarget)"),
91   cl::init(cl::BOU_UNSET), cl::Hidden);
92 
93 static cl::opt<bool>
94 VerifyCoalescing("verify-coalescing",
95          cl::desc("Verify machine instrs before and after register coalescing"),
96          cl::Hidden);
97 
98 static cl::opt<unsigned> LateRematUpdateThreshold(
99     "late-remat-update-threshold", cl::Hidden,
100     cl::desc("During rematerialization for a copy, if the def instruction has "
101              "many other copy uses to be rematerialized, delay the multiple "
102              "separate live interval update work and do them all at once after "
103              "all those rematerialization are done. It will save a lot of "
104              "repeated work. "),
105     cl::init(100));
106 
107 static cl::opt<unsigned> LargeIntervalSizeThreshold(
108     "large-interval-size-threshold", cl::Hidden,
109     cl::desc("If the valnos size of an interval is larger than the threshold, "
110              "it is regarded as a large interval. "),
111     cl::init(100));
112 
113 static cl::opt<unsigned> LargeIntervalFreqThreshold(
114     "large-interval-freq-threshold", cl::Hidden,
115     cl::desc("For a large interval, if it is coalesed with other live "
116              "intervals many times more than the threshold, stop its "
117              "coalescing to control the compile time. "),
118     cl::init(100));
119 
120 namespace {
121 
122   class RegisterCoalescer : public MachineFunctionPass,
123                             private LiveRangeEdit::Delegate {
124     MachineFunction* MF;
125     MachineRegisterInfo* MRI;
126     const TargetRegisterInfo* TRI;
127     const TargetInstrInfo* TII;
128     LiveIntervals *LIS;
129     const MachineLoopInfo* Loops;
130     AliasAnalysis *AA;
131     RegisterClassInfo RegClassInfo;
132 
133     /// A LaneMask to remember on which subregister live ranges we need to call
134     /// shrinkToUses() later.
135     LaneBitmask ShrinkMask;
136 
137     /// True if the main range of the currently coalesced intervals should be
138     /// checked for smaller live intervals.
139     bool ShrinkMainRange;
140 
141     /// True if the coalescer should aggressively coalesce global copies
142     /// in favor of keeping local copies.
143     bool JoinGlobalCopies;
144 
145     /// True if the coalescer should aggressively coalesce fall-thru
146     /// blocks exclusively containing copies.
147     bool JoinSplitEdges;
148 
149     /// Copy instructions yet to be coalesced.
150     SmallVector<MachineInstr*, 8> WorkList;
151     SmallVector<MachineInstr*, 8> LocalWorkList;
152 
153     /// Set of instruction pointers that have been erased, and
154     /// that may be present in WorkList.
155     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
156 
157     /// Dead instructions that are about to be deleted.
158     SmallVector<MachineInstr*, 8> DeadDefs;
159 
160     /// Virtual registers to be considered for register class inflation.
161     SmallVector<unsigned, 8> InflateRegs;
162 
163     /// The collection of live intervals which should have been updated
164     /// immediately after rematerialiation but delayed until
165     /// lateLiveIntervalUpdate is called.
166     DenseSet<unsigned> ToBeUpdated;
167 
168     /// Record how many times the large live interval with many valnos
169     /// has been tried to join with other live interval.
170     DenseMap<unsigned, unsigned long> LargeLIVisitCounter;
171 
172     /// Recursively eliminate dead defs in DeadDefs.
173     void eliminateDeadDefs();
174 
175     /// LiveRangeEdit callback for eliminateDeadDefs().
176     void LRE_WillEraseInstruction(MachineInstr *MI) override;
177 
178     /// Coalesce the LocalWorkList.
179     void coalesceLocals();
180 
181     /// Join compatible live intervals
182     void joinAllIntervals();
183 
184     /// Coalesce copies in the specified MBB, putting
185     /// copies that cannot yet be coalesced into WorkList.
186     void copyCoalesceInMBB(MachineBasicBlock *MBB);
187 
188     /// Tries to coalesce all copies in CurrList. Returns true if any progress
189     /// was made.
190     bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
191 
192     /// If one def has many copy like uses, and those copy uses are all
193     /// rematerialized, the live interval update needed for those
194     /// rematerializations will be delayed and done all at once instead
195     /// of being done multiple times. This is to save compile cost because
196     /// live interval update is costly.
197     void lateLiveIntervalUpdate();
198 
199     /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
200     /// src/dst of the copy instruction CopyMI.  This returns true if the copy
201     /// was successfully coalesced away. If it is not currently possible to
202     /// coalesce this interval, but it may be possible if other things get
203     /// coalesced, then it returns true by reference in 'Again'.
204     bool joinCopy(MachineInstr *CopyMI, bool &Again);
205 
206     /// Attempt to join these two intervals.  On failure, this
207     /// returns false.  The output "SrcInt" will not have been modified, so we
208     /// can use this information below to update aliases.
209     bool joinIntervals(CoalescerPair &CP);
210 
211     /// Attempt joining two virtual registers. Return true on success.
212     bool joinVirtRegs(CoalescerPair &CP);
213 
214     /// If a live interval has many valnos and is coalesced with other
215     /// live intervals many times, we regard such live interval as having
216     /// high compile time cost.
217     bool isHighCostLiveInterval(LiveInterval &LI);
218 
219     /// Attempt joining with a reserved physreg.
220     bool joinReservedPhysReg(CoalescerPair &CP);
221 
222     /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
223     /// Subranges in @p LI which only partially interfere with the desired
224     /// LaneMask are split as necessary. @p LaneMask are the lanes that
225     /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
226     /// lanemasks already adjusted to the coalesced register.
227     void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
228                            LaneBitmask LaneMask, CoalescerPair &CP);
229 
230     /// Join the liveranges of two subregisters. Joins @p RRange into
231     /// @p LRange, @p RRange may be invalid afterwards.
232     void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
233                           LaneBitmask LaneMask, const CoalescerPair &CP);
234 
235     /// We found a non-trivially-coalescable copy. If the source value number is
236     /// defined by a copy from the destination reg see if we can merge these two
237     /// destination reg valno# into a single value number, eliminating a copy.
238     /// This returns true if an interval was modified.
239     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
240 
241     /// Return true if there are definitions of IntB
242     /// other than BValNo val# that can reach uses of AValno val# of IntA.
243     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
244                               VNInfo *AValNo, VNInfo *BValNo);
245 
246     /// We found a non-trivially-coalescable copy.
247     /// If the source value number is defined by a commutable instruction and
248     /// its other operand is coalesced to the copy dest register, see if we
249     /// can transform the copy into a noop by commuting the definition.
250     /// This returns a pair of two flags:
251     /// - the first element is true if an interval was modified,
252     /// - the second element is true if the destination interval needs
253     ///   to be shrunk after deleting the copy.
254     std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
255                                                   MachineInstr *CopyMI);
256 
257     /// We found a copy which can be moved to its less frequent predecessor.
258     bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
259 
260     /// If the source of a copy is defined by a
261     /// trivial computation, replace the copy by rematerialize the definition.
262     bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
263                                  bool &IsDefCopy);
264 
265     /// Return true if a copy involving a physreg should be joined.
266     bool canJoinPhys(const CoalescerPair &CP);
267 
268     /// Replace all defs and uses of SrcReg to DstReg and update the subregister
269     /// number if it is not zero. If DstReg is a physical register and the
270     /// existing subregister number of the def / use being updated is not zero,
271     /// make sure to set it to the correct physical subregister.
272     void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
273 
274     /// If the given machine operand reads only undefined lanes add an undef
275     /// flag.
276     /// This can happen when undef uses were previously concealed by a copy
277     /// which we coalesced. Example:
278     ///    %0:sub0<def,read-undef> = ...
279     ///    %1 = COPY %0           <-- Coalescing COPY reveals undef
280     ///       = use %1:sub1       <-- hidden undef use
281     void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
282                       MachineOperand &MO, unsigned SubRegIdx);
283 
284     /// Handle copies of undef values. If the undef value is an incoming
285     /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
286     /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
287     /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
288     MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
289 
290     /// Check whether or not we should apply the terminal rule on the
291     /// destination (Dst) of \p Copy.
292     /// When the terminal rule applies, Copy is not profitable to
293     /// coalesce.
294     /// Dst is terminal if it has exactly one affinity (Dst, Src) and
295     /// at least one interference (Dst, Dst2). If Dst is terminal, the
296     /// terminal rule consists in checking that at least one of
297     /// interfering node, say Dst2, has an affinity of equal or greater
298     /// weight with Src.
299     /// In that case, Dst2 and Dst will not be able to be both coalesced
300     /// with Src. Since Dst2 exposes more coalescing opportunities than
301     /// Dst, we can drop \p Copy.
302     bool applyTerminalRule(const MachineInstr &Copy) const;
303 
304     /// Wrapper method for \see LiveIntervals::shrinkToUses.
305     /// This method does the proper fixing of the live-ranges when the afore
306     /// mentioned method returns true.
307     void shrinkToUses(LiveInterval *LI,
308                       SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
309       NumShrinkToUses++;
310       if (LIS->shrinkToUses(LI, Dead)) {
311         /// Check whether or not \p LI is composed by multiple connected
312         /// components and if that is the case, fix that.
313         SmallVector<LiveInterval*, 8> SplitLIs;
314         LIS->splitSeparateComponents(*LI, SplitLIs);
315       }
316     }
317 
318     /// Wrapper Method to do all the necessary work when an Instruction is
319     /// deleted.
320     /// Optimizations should use this to make sure that deleted instructions
321     /// are always accounted for.
322     void deleteInstr(MachineInstr* MI) {
323       ErasedInstrs.insert(MI);
324       LIS->RemoveMachineInstrFromMaps(*MI);
325       MI->eraseFromParent();
326     }
327 
328   public:
329     static char ID; ///< Class identification, replacement for typeinfo
330 
331     RegisterCoalescer() : MachineFunctionPass(ID) {
332       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
333     }
334 
335     void getAnalysisUsage(AnalysisUsage &AU) const override;
336 
337     void releaseMemory() override;
338 
339     /// This is the pass entry point.
340     bool runOnMachineFunction(MachineFunction&) override;
341 
342     /// Implement the dump method.
343     void print(raw_ostream &O, const Module* = nullptr) const override;
344   };
345 
346 } // end anonymous namespace
347 
348 char RegisterCoalescer::ID = 0;
349 
350 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
351 
352 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
353                       "Simple Register Coalescing", false, false)
354 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
355 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
356 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
357 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
358 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
359                     "Simple Register Coalescing", false, false)
360 
361 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
362                         unsigned &Src, unsigned &Dst,
363                         unsigned &SrcSub, unsigned &DstSub) {
364   if (MI->isCopy()) {
365     Dst = MI->getOperand(0).getReg();
366     DstSub = MI->getOperand(0).getSubReg();
367     Src = MI->getOperand(1).getReg();
368     SrcSub = MI->getOperand(1).getSubReg();
369   } else if (MI->isSubregToReg()) {
370     Dst = MI->getOperand(0).getReg();
371     DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
372                                       MI->getOperand(3).getImm());
373     Src = MI->getOperand(2).getReg();
374     SrcSub = MI->getOperand(2).getSubReg();
375   } else
376     return false;
377   return true;
378 }
379 
380 /// Return true if this block should be vacated by the coalescer to eliminate
381 /// branches. The important cases to handle in the coalescer are critical edges
382 /// split during phi elimination which contain only copies. Simple blocks that
383 /// contain non-branches should also be vacated, but this can be handled by an
384 /// earlier pass similar to early if-conversion.
385 static bool isSplitEdge(const MachineBasicBlock *MBB) {
386   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
387     return false;
388 
389   for (const auto &MI : *MBB) {
390     if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
391       return false;
392   }
393   return true;
394 }
395 
396 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
397   SrcReg = DstReg = 0;
398   SrcIdx = DstIdx = 0;
399   NewRC = nullptr;
400   Flipped = CrossClass = false;
401 
402   unsigned Src, Dst, SrcSub, DstSub;
403   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
404     return false;
405   Partial = SrcSub || DstSub;
406 
407   // If one register is a physreg, it must be Dst.
408   if (TargetRegisterInfo::isPhysicalRegister(Src)) {
409     if (TargetRegisterInfo::isPhysicalRegister(Dst))
410       return false;
411     std::swap(Src, Dst);
412     std::swap(SrcSub, DstSub);
413     Flipped = true;
414   }
415 
416   const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
417 
418   if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
419     // Eliminate DstSub on a physreg.
420     if (DstSub) {
421       Dst = TRI.getSubReg(Dst, DstSub);
422       if (!Dst) return false;
423       DstSub = 0;
424     }
425 
426     // Eliminate SrcSub by picking a corresponding Dst superregister.
427     if (SrcSub) {
428       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
429       if (!Dst) return false;
430     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
431       return false;
432     }
433   } else {
434     // Both registers are virtual.
435     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
436     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
437 
438     // Both registers have subreg indices.
439     if (SrcSub && DstSub) {
440       // Copies between different sub-registers are never coalescable.
441       if (Src == Dst && SrcSub != DstSub)
442         return false;
443 
444       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
445                                          SrcIdx, DstIdx);
446       if (!NewRC)
447         return false;
448     } else if (DstSub) {
449       // SrcReg will be merged with a sub-register of DstReg.
450       SrcIdx = DstSub;
451       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
452     } else if (SrcSub) {
453       // DstReg will be merged with a sub-register of SrcReg.
454       DstIdx = SrcSub;
455       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
456     } else {
457       // This is a straight copy without sub-registers.
458       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
459     }
460 
461     // The combined constraint may be impossible to satisfy.
462     if (!NewRC)
463       return false;
464 
465     // Prefer SrcReg to be a sub-register of DstReg.
466     // FIXME: Coalescer should support subregs symmetrically.
467     if (DstIdx && !SrcIdx) {
468       std::swap(Src, Dst);
469       std::swap(SrcIdx, DstIdx);
470       Flipped = !Flipped;
471     }
472 
473     CrossClass = NewRC != DstRC || NewRC != SrcRC;
474   }
475   // Check our invariants
476   assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
477   assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
478          "Cannot have a physical SubIdx");
479   SrcReg = Src;
480   DstReg = Dst;
481   return true;
482 }
483 
484 bool CoalescerPair::flip() {
485   if (TargetRegisterInfo::isPhysicalRegister(DstReg))
486     return false;
487   std::swap(SrcReg, DstReg);
488   std::swap(SrcIdx, DstIdx);
489   Flipped = !Flipped;
490   return true;
491 }
492 
493 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
494   if (!MI)
495     return false;
496   unsigned Src, Dst, SrcSub, DstSub;
497   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
498     return false;
499 
500   // Find the virtual register that is SrcReg.
501   if (Dst == SrcReg) {
502     std::swap(Src, Dst);
503     std::swap(SrcSub, DstSub);
504   } else if (Src != SrcReg) {
505     return false;
506   }
507 
508   // Now check that Dst matches DstReg.
509   if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
510     if (!TargetRegisterInfo::isPhysicalRegister(Dst))
511       return false;
512     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
513     // DstSub could be set for a physreg from INSERT_SUBREG.
514     if (DstSub)
515       Dst = TRI.getSubReg(Dst, DstSub);
516     // Full copy of Src.
517     if (!SrcSub)
518       return DstReg == Dst;
519     // This is a partial register copy. Check that the parts match.
520     return TRI.getSubReg(DstReg, SrcSub) == Dst;
521   } else {
522     // DstReg is virtual.
523     if (DstReg != Dst)
524       return false;
525     // Registers match, do the subregisters line up?
526     return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
527            TRI.composeSubRegIndices(DstIdx, DstSub);
528   }
529 }
530 
531 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
532   AU.setPreservesCFG();
533   AU.addRequired<AAResultsWrapperPass>();
534   AU.addRequired<LiveIntervals>();
535   AU.addPreserved<LiveIntervals>();
536   AU.addPreserved<SlotIndexes>();
537   AU.addRequired<MachineLoopInfo>();
538   AU.addPreserved<MachineLoopInfo>();
539   AU.addPreservedID(MachineDominatorsID);
540   MachineFunctionPass::getAnalysisUsage(AU);
541 }
542 
543 void RegisterCoalescer::eliminateDeadDefs() {
544   SmallVector<unsigned, 8> NewRegs;
545   LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
546                 nullptr, this).eliminateDeadDefs(DeadDefs);
547 }
548 
549 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
550   // MI may be in WorkList. Make sure we don't visit it.
551   ErasedInstrs.insert(MI);
552 }
553 
554 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
555                                              MachineInstr *CopyMI) {
556   assert(!CP.isPartial() && "This doesn't work for partial copies.");
557   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
558 
559   LiveInterval &IntA =
560     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
561   LiveInterval &IntB =
562     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
563   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
564 
565   // We have a non-trivially-coalescable copy with IntA being the source and
566   // IntB being the dest, thus this defines a value number in IntB.  If the
567   // source value number (in IntA) is defined by a copy from B, see if we can
568   // merge these two pieces of B into a single value number, eliminating a copy.
569   // For example:
570   //
571   //  A3 = B0
572   //    ...
573   //  B1 = A3      <- this copy
574   //
575   // In this case, B0 can be extended to where the B1 copy lives, allowing the
576   // B1 value number to be replaced with B0 (which simplifies the B
577   // liveinterval).
578 
579   // BValNo is a value number in B that is defined by a copy from A.  'B1' in
580   // the example above.
581   LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
582   if (BS == IntB.end()) return false;
583   VNInfo *BValNo = BS->valno;
584 
585   // Get the location that B is defined at.  Two options: either this value has
586   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
587   // can't process it.
588   if (BValNo->def != CopyIdx) return false;
589 
590   // AValNo is the value number in A that defines the copy, A3 in the example.
591   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
592   LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
593   // The live segment might not exist after fun with physreg coalescing.
594   if (AS == IntA.end()) return false;
595   VNInfo *AValNo = AS->valno;
596 
597   // If AValNo is defined as a copy from IntB, we can potentially process this.
598   // Get the instruction that defines this value number.
599   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
600   // Don't allow any partial copies, even if isCoalescable() allows them.
601   if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
602     return false;
603 
604   // Get the Segment in IntB that this value number starts with.
605   LiveInterval::iterator ValS =
606     IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
607   if (ValS == IntB.end())
608     return false;
609 
610   // Make sure that the end of the live segment is inside the same block as
611   // CopyMI.
612   MachineInstr *ValSEndInst =
613     LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
614   if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
615     return false;
616 
617   // Okay, we now know that ValS ends in the same block that the CopyMI
618   // live-range starts.  If there are no intervening live segments between them
619   // in IntB, we can merge them.
620   if (ValS+1 != BS) return false;
621 
622   LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI));
623 
624   SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
625   // We are about to delete CopyMI, so need to remove it as the 'instruction
626   // that defines this value #'. Update the valnum with the new defining
627   // instruction #.
628   BValNo->def = FillerStart;
629 
630   // Okay, we can merge them.  We need to insert a new liverange:
631   // [ValS.end, BS.begin) of either value number, then we merge the
632   // two value numbers.
633   IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
634 
635   // Okay, merge "B1" into the same value number as "B0".
636   if (BValNo != ValS->valno)
637     IntB.MergeValueNumberInto(BValNo, ValS->valno);
638 
639   // Do the same for the subregister segments.
640   for (LiveInterval::SubRange &S : IntB.subranges()) {
641     // Check for SubRange Segments of the form [1234r,1234d:0) which can be
642     // removed to prevent creating bogus SubRange Segments.
643     LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
644     if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
645       S.removeSegment(*SS, true);
646       continue;
647     }
648     VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
649     S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
650     VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
651     if (SubBValNo != SubValSNo)
652       S.MergeValueNumberInto(SubBValNo, SubValSNo);
653   }
654 
655   LLVM_DEBUG(dbgs() << "   result = " << IntB << '\n');
656 
657   // If the source instruction was killing the source register before the
658   // merge, unset the isKill marker given the live range has been extended.
659   int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
660   if (UIdx != -1) {
661     ValSEndInst->getOperand(UIdx).setIsKill(false);
662   }
663 
664   // Rewrite the copy.
665   CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
666   // If the copy instruction was killing the destination register or any
667   // subrange before the merge trim the live range.
668   bool RecomputeLiveRange = AS->end == CopyIdx;
669   if (!RecomputeLiveRange) {
670     for (LiveInterval::SubRange &S : IntA.subranges()) {
671       LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
672       if (SS != S.end() && SS->end == CopyIdx) {
673         RecomputeLiveRange = true;
674         break;
675       }
676     }
677   }
678   if (RecomputeLiveRange)
679     shrinkToUses(&IntA);
680 
681   ++numExtends;
682   return true;
683 }
684 
685 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
686                                              LiveInterval &IntB,
687                                              VNInfo *AValNo,
688                                              VNInfo *BValNo) {
689   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
690   // the PHI values.
691   if (LIS->hasPHIKill(IntA, AValNo))
692     return true;
693 
694   for (LiveRange::Segment &ASeg : IntA.segments) {
695     if (ASeg.valno != AValNo) continue;
696     LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
697     if (BI != IntB.begin())
698       --BI;
699     for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
700       if (BI->valno == BValNo)
701         continue;
702       if (BI->start <= ASeg.start && BI->end > ASeg.start)
703         return true;
704       if (BI->start > ASeg.start && BI->start < ASeg.end)
705         return true;
706     }
707   }
708   return false;
709 }
710 
711 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
712 /// range @Dst and use value number @p DstValNo there.
713 static std::pair<bool,bool>
714 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
715                      const VNInfo *SrcValNo) {
716   bool Changed = false;
717   bool MergedWithDead = false;
718   for (const LiveRange::Segment &S : Src.segments) {
719     if (S.valno != SrcValNo)
720       continue;
721     // This is adding a segment from Src that ends in a copy that is about
722     // to be removed. This segment is going to be merged with a pre-existing
723     // segment in Dst. This works, except in cases when the corresponding
724     // segment in Dst is dead. For example: adding [192r,208r:1) from Src
725     // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
726     // Recognized such cases, so that the segments can be shrunk.
727     LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
728     LiveRange::Segment &Merged = *Dst.addSegment(Added);
729     if (Merged.end.isDead())
730       MergedWithDead = true;
731     Changed = true;
732   }
733   return std::make_pair(Changed, MergedWithDead);
734 }
735 
736 std::pair<bool,bool>
737 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
738                                             MachineInstr *CopyMI) {
739   assert(!CP.isPhys());
740 
741   LiveInterval &IntA =
742       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
743   LiveInterval &IntB =
744       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
745 
746   // We found a non-trivially-coalescable copy with IntA being the source and
747   // IntB being the dest, thus this defines a value number in IntB.  If the
748   // source value number (in IntA) is defined by a commutable instruction and
749   // its other operand is coalesced to the copy dest register, see if we can
750   // transform the copy into a noop by commuting the definition. For example,
751   //
752   //  A3 = op A2 killed B0
753   //    ...
754   //  B1 = A3      <- this copy
755   //    ...
756   //     = op A3   <- more uses
757   //
758   // ==>
759   //
760   //  B2 = op B0 killed A2
761   //    ...
762   //  B1 = B2      <- now an identity copy
763   //    ...
764   //     = op B2   <- more uses
765 
766   // BValNo is a value number in B that is defined by a copy from A. 'B1' in
767   // the example above.
768   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
769   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
770   assert(BValNo != nullptr && BValNo->def == CopyIdx);
771 
772   // AValNo is the value number in A that defines the copy, A3 in the example.
773   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
774   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
775   if (AValNo->isPHIDef())
776     return { false, false };
777   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
778   if (!DefMI)
779     return { false, false };
780   if (!DefMI->isCommutable())
781     return { false, false };
782   // If DefMI is a two-address instruction then commuting it will change the
783   // destination register.
784   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
785   assert(DefIdx != -1);
786   unsigned UseOpIdx;
787   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
788     return { false, false };
789 
790   // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
791   // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
792   // passed to the method. That _other_ operand is chosen by
793   // the findCommutedOpIndices() method.
794   //
795   // That is obviously an area for improvement in case of instructions having
796   // more than 2 operands. For example, if some instruction has 3 commutable
797   // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
798   // op#2<->op#3) of commute transformation should be considered/tried here.
799   unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
800   if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
801     return { false, false };
802 
803   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
804   unsigned NewReg = NewDstMO.getReg();
805   if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
806     return { false, false };
807 
808   // Make sure there are no other definitions of IntB that would reach the
809   // uses which the new definition can reach.
810   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
811     return { false, false };
812 
813   // If some of the uses of IntA.reg is already coalesced away, return false.
814   // It's not possible to determine whether it's safe to perform the coalescing.
815   for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
816     MachineInstr *UseMI = MO.getParent();
817     unsigned OpNo = &MO - &UseMI->getOperand(0);
818     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
819     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
820     if (US == IntA.end() || US->valno != AValNo)
821       continue;
822     // If this use is tied to a def, we can't rewrite the register.
823     if (UseMI->isRegTiedToDefOperand(OpNo))
824       return { false, false };
825   }
826 
827   LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
828                     << *DefMI);
829 
830   // At this point we have decided that it is legal to do this
831   // transformation.  Start by commuting the instruction.
832   MachineBasicBlock *MBB = DefMI->getParent();
833   MachineInstr *NewMI =
834       TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
835   if (!NewMI)
836     return { false, false };
837   if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
838       TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
839       !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
840     return { false, false };
841   if (NewMI != DefMI) {
842     LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
843     MachineBasicBlock::iterator Pos = DefMI;
844     MBB->insert(Pos, NewMI);
845     MBB->erase(DefMI);
846   }
847 
848   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
849   // A = or A, B
850   // ...
851   // B = A
852   // ...
853   // C = killed A
854   // ...
855   //   = B
856 
857   // Update uses of IntA of the specific Val# with IntB.
858   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
859                                          UE = MRI->use_end();
860        UI != UE; /* ++UI is below because of possible MI removal */) {
861     MachineOperand &UseMO = *UI;
862     ++UI;
863     if (UseMO.isUndef())
864       continue;
865     MachineInstr *UseMI = UseMO.getParent();
866     if (UseMI->isDebugValue()) {
867       // FIXME These don't have an instruction index.  Not clear we have enough
868       // info to decide whether to do this replacement or not.  For now do it.
869       UseMO.setReg(NewReg);
870       continue;
871     }
872     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
873     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
874     assert(US != IntA.end() && "Use must be live");
875     if (US->valno != AValNo)
876       continue;
877     // Kill flags are no longer accurate. They are recomputed after RA.
878     UseMO.setIsKill(false);
879     if (TargetRegisterInfo::isPhysicalRegister(NewReg))
880       UseMO.substPhysReg(NewReg, *TRI);
881     else
882       UseMO.setReg(NewReg);
883     if (UseMI == CopyMI)
884       continue;
885     if (!UseMI->isCopy())
886       continue;
887     if (UseMI->getOperand(0).getReg() != IntB.reg ||
888         UseMI->getOperand(0).getSubReg())
889       continue;
890 
891     // This copy will become a noop. If it's defining a new val#, merge it into
892     // BValNo.
893     SlotIndex DefIdx = UseIdx.getRegSlot();
894     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
895     if (!DVNI)
896       continue;
897     LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
898     assert(DVNI->def == DefIdx);
899     BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
900     for (LiveInterval::SubRange &S : IntB.subranges()) {
901       VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
902       if (!SubDVNI)
903         continue;
904       VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
905       assert(SubBValNo->def == CopyIdx);
906       S.MergeValueNumberInto(SubDVNI, SubBValNo);
907     }
908 
909     deleteInstr(UseMI);
910   }
911 
912   // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
913   // is updated.
914   bool ShrinkB = false;
915   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
916   if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
917     if (!IntA.hasSubRanges()) {
918       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
919       IntA.createSubRangeFrom(Allocator, Mask, IntA);
920     } else if (!IntB.hasSubRanges()) {
921       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg);
922       IntB.createSubRangeFrom(Allocator, Mask, IntB);
923     }
924     SlotIndex AIdx = CopyIdx.getRegSlot(true);
925     LaneBitmask MaskA;
926     const SlotIndexes &Indexes = *LIS->getSlotIndexes();
927     for (LiveInterval::SubRange &SA : IntA.subranges()) {
928       VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
929       assert(ASubValNo != nullptr);
930       MaskA |= SA.LaneMask;
931 
932       IntB.refineSubRanges(
933           Allocator, SA.LaneMask,
934           [&Allocator, &SA, CopyIdx, ASubValNo,
935            &ShrinkB](LiveInterval::SubRange &SR) {
936             VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
937                                            : SR.getVNInfoAt(CopyIdx);
938             assert(BSubValNo != nullptr);
939             auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
940             ShrinkB |= P.second;
941             if (P.first)
942               BSubValNo->def = ASubValNo->def;
943           },
944           Indexes, *TRI);
945     }
946     // Go over all subranges of IntB that have not been covered by IntA,
947     // and delete the segments starting at CopyIdx. This can happen if
948     // IntA has undef lanes that are defined in IntB.
949     for (LiveInterval::SubRange &SB : IntB.subranges()) {
950       if ((SB.LaneMask & MaskA).any())
951         continue;
952       if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
953         if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
954           SB.removeSegment(*S, true);
955     }
956   }
957 
958   BValNo->def = AValNo->def;
959   auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
960   ShrinkB |= P.second;
961   LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
962 
963   LIS->removeVRegDefAt(IntA, AValNo->def);
964 
965   LLVM_DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
966   ++numCommutes;
967   return { true, ShrinkB };
968 }
969 
970 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
971 /// predecessor of BB2, and if B is not redefined on the way from A = B
972 /// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the
973 /// execution goes through the path from BB0 to BB2. We may move B = A
974 /// to the predecessor without such reversed copy.
975 /// So we will transform the program from:
976 ///   BB0:
977 ///      A = B;    BB1:
978 ///       ...         ...
979 ///     /     \      /
980 ///             BB2:
981 ///               ...
982 ///               B = A;
983 ///
984 /// to:
985 ///
986 ///   BB0:         BB1:
987 ///      A = B;        ...
988 ///       ...          B = A;
989 ///     /     \       /
990 ///             BB2:
991 ///               ...
992 ///
993 /// A special case is when BB0 and BB2 are the same BB which is the only
994 /// BB in a loop:
995 ///   BB1:
996 ///        ...
997 ///   BB0/BB2:  ----
998 ///        B = A;   |
999 ///        ...      |
1000 ///        A = B;   |
1001 ///          |-------
1002 ///          |
1003 /// We may hoist B = A from BB0/BB2 to BB1.
1004 ///
1005 /// The major preconditions for correctness to remove such partial
1006 /// redundancy include:
1007 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1008 ///    the PHI is defined by the reversed copy A = B in BB0.
1009 /// 2. No B is referenced from the start of BB2 to B = A.
1010 /// 3. No B is defined from A = B to the end of BB0.
1011 /// 4. BB1 has only one successor.
1012 ///
1013 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1014 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1015 /// colder place, which not only prevent endless loop, but also make sure
1016 /// the movement of copy is beneficial.
1017 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1018                                                 MachineInstr &CopyMI) {
1019   assert(!CP.isPhys());
1020   if (!CopyMI.isFullCopy())
1021     return false;
1022 
1023   MachineBasicBlock &MBB = *CopyMI.getParent();
1024   if (MBB.isEHPad())
1025     return false;
1026 
1027   if (MBB.pred_size() != 2)
1028     return false;
1029 
1030   LiveInterval &IntA =
1031       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1032   LiveInterval &IntB =
1033       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1034 
1035   // A is defined by PHI at the entry of MBB.
1036   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1037   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1038   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1039   if (!AValNo->isPHIDef())
1040     return false;
1041 
1042   // No B is referenced before CopyMI in MBB.
1043   if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1044     return false;
1045 
1046   // MBB has two predecessors: one contains A = B so no copy will be inserted
1047   // for it. The other one will have a copy moved from MBB.
1048   bool FoundReverseCopy = false;
1049   MachineBasicBlock *CopyLeftBB = nullptr;
1050   for (MachineBasicBlock *Pred : MBB.predecessors()) {
1051     VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1052     MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1053     if (!DefMI || !DefMI->isFullCopy()) {
1054       CopyLeftBB = Pred;
1055       continue;
1056     }
1057     // Check DefMI is a reverse copy and it is in BB Pred.
1058     if (DefMI->getOperand(0).getReg() != IntA.reg ||
1059         DefMI->getOperand(1).getReg() != IntB.reg ||
1060         DefMI->getParent() != Pred) {
1061       CopyLeftBB = Pred;
1062       continue;
1063     }
1064     // If there is any other def of B after DefMI and before the end of Pred,
1065     // we need to keep the copy of B = A at the end of Pred if we remove
1066     // B = A from MBB.
1067     bool ValB_Changed = false;
1068     for (auto VNI : IntB.valnos) {
1069       if (VNI->isUnused())
1070         continue;
1071       if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1072         ValB_Changed = true;
1073         break;
1074       }
1075     }
1076     if (ValB_Changed) {
1077       CopyLeftBB = Pred;
1078       continue;
1079     }
1080     FoundReverseCopy = true;
1081   }
1082 
1083   // If no reverse copy is found in predecessors, nothing to do.
1084   if (!FoundReverseCopy)
1085     return false;
1086 
1087   // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1088   // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1089   // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1090   // update IntA/IntB.
1091   //
1092   // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1093   // MBB is hotter than CopyLeftBB.
1094   if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1095     return false;
1096 
1097   // Now (almost sure it's) ok to move copy.
1098   if (CopyLeftBB) {
1099     // Position in CopyLeftBB where we should insert new copy.
1100     auto InsPos = CopyLeftBB->getFirstTerminator();
1101 
1102     // Make sure that B isn't referenced in the terminators (if any) at the end
1103     // of the predecessor since we're about to insert a new definition of B
1104     // before them.
1105     if (InsPos != CopyLeftBB->end()) {
1106       SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1107       if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1108         return false;
1109     }
1110 
1111     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1112                       << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1113 
1114     // Insert new copy to CopyLeftBB.
1115     MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1116                                       TII->get(TargetOpcode::COPY), IntB.reg)
1117                                   .addReg(IntA.reg);
1118     SlotIndex NewCopyIdx =
1119         LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1120     IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1121     for (LiveInterval::SubRange &SR : IntB.subranges())
1122       SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1123 
1124     // If the newly created Instruction has an address of an instruction that was
1125     // deleted before (object recycled by the allocator) it needs to be removed from
1126     // the deleted list.
1127     ErasedInstrs.erase(NewCopyMI);
1128   } else {
1129     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1130                       << printMBBReference(MBB) << '\t' << CopyMI);
1131   }
1132 
1133   // Remove CopyMI.
1134   // Note: This is fine to remove the copy before updating the live-ranges.
1135   // While updating the live-ranges, we only look at slot indices and
1136   // never go back to the instruction.
1137   // Mark instructions as deleted.
1138   deleteInstr(&CopyMI);
1139 
1140   // Update the liveness.
1141   SmallVector<SlotIndex, 8> EndPoints;
1142   VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1143   LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1144                   &EndPoints);
1145   BValNo->markUnused();
1146   // Extend IntB to the EndPoints of its original live interval.
1147   LIS->extendToIndices(IntB, EndPoints);
1148 
1149   // Now, do the same for its subranges.
1150   for (LiveInterval::SubRange &SR : IntB.subranges()) {
1151     EndPoints.clear();
1152     VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1153     assert(BValNo && "All sublanes should be live");
1154     LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1155     BValNo->markUnused();
1156     // We can have a situation where the result of the original copy is live,
1157     // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1158     // the copy appear as an endpoint from pruneValue(), but we don't want it
1159     // to because the copy has been removed.  We can go ahead and remove that
1160     // endpoint; there is no other situation here that there could be a use at
1161     // the same place as we know that the copy is a full copy.
1162     for (unsigned I = 0; I != EndPoints.size(); ) {
1163       if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1164         EndPoints[I] = EndPoints.back();
1165         EndPoints.pop_back();
1166         continue;
1167       }
1168       ++I;
1169     }
1170     LIS->extendToIndices(SR, EndPoints);
1171   }
1172   // If any dead defs were extended, truncate them.
1173   shrinkToUses(&IntB);
1174 
1175   // Finally, update the live-range of IntA.
1176   shrinkToUses(&IntA);
1177   return true;
1178 }
1179 
1180 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1181 /// defining a subregister.
1182 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
1183   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
1184          "This code cannot handle physreg aliasing");
1185   for (const MachineOperand &Op : MI.operands()) {
1186     if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1187       continue;
1188     // Return true if we define the full register or don't care about the value
1189     // inside other subregisters.
1190     if (Op.getSubReg() == 0 || Op.isUndef())
1191       return true;
1192   }
1193   return false;
1194 }
1195 
1196 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1197                                                 MachineInstr *CopyMI,
1198                                                 bool &IsDefCopy) {
1199   IsDefCopy = false;
1200   unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1201   unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1202   unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1203   unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1204   if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
1205     return false;
1206 
1207   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1208   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1209   VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1210   if (!ValNo)
1211     return false;
1212   if (ValNo->isPHIDef() || ValNo->isUnused())
1213     return false;
1214   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1215   if (!DefMI)
1216     return false;
1217   if (DefMI->isCopyLike()) {
1218     IsDefCopy = true;
1219     return false;
1220   }
1221   if (!TII->isAsCheapAsAMove(*DefMI))
1222     return false;
1223   if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1224     return false;
1225   if (!definesFullReg(*DefMI, SrcReg))
1226     return false;
1227   bool SawStore = false;
1228   if (!DefMI->isSafeToMove(AA, SawStore))
1229     return false;
1230   const MCInstrDesc &MCID = DefMI->getDesc();
1231   if (MCID.getNumDefs() != 1)
1232     return false;
1233   // Only support subregister destinations when the def is read-undef.
1234   MachineOperand &DstOperand = CopyMI->getOperand(0);
1235   unsigned CopyDstReg = DstOperand.getReg();
1236   if (DstOperand.getSubReg() && !DstOperand.isUndef())
1237     return false;
1238 
1239   // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1240   // the register substantially (beyond both source and dest size). This is bad
1241   // for performance since it can cascade through a function, introducing many
1242   // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1243   // around after a few subreg copies).
1244   if (SrcIdx && DstIdx)
1245     return false;
1246 
1247   const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1248   if (!DefMI->isImplicitDef()) {
1249     if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
1250       unsigned NewDstReg = DstReg;
1251 
1252       unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1253                                               DefMI->getOperand(0).getSubReg());
1254       if (NewDstIdx)
1255         NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1256 
1257       // Finally, make sure that the physical subregister that will be
1258       // constructed later is permitted for the instruction.
1259       if (!DefRC->contains(NewDstReg))
1260         return false;
1261     } else {
1262       // Theoretically, some stack frame reference could exist. Just make sure
1263       // it hasn't actually happened.
1264       assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
1265              "Only expect to deal with virtual or physical registers");
1266     }
1267   }
1268 
1269   DebugLoc DL = CopyMI->getDebugLoc();
1270   MachineBasicBlock *MBB = CopyMI->getParent();
1271   MachineBasicBlock::iterator MII =
1272     std::next(MachineBasicBlock::iterator(CopyMI));
1273   TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1274   MachineInstr &NewMI = *std::prev(MII);
1275   NewMI.setDebugLoc(DL);
1276 
1277   // In a situation like the following:
1278   //     %0:subreg = instr              ; DefMI, subreg = DstIdx
1279   //     %1        = copy %0:subreg ; CopyMI, SrcIdx = 0
1280   // instead of widening %1 to the register class of %0 simply do:
1281   //     %1 = instr
1282   const TargetRegisterClass *NewRC = CP.getNewRC();
1283   if (DstIdx != 0) {
1284     MachineOperand &DefMO = NewMI.getOperand(0);
1285     if (DefMO.getSubReg() == DstIdx) {
1286       assert(SrcIdx == 0 && CP.isFlipped()
1287              && "Shouldn't have SrcIdx+DstIdx at this point");
1288       const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1289       const TargetRegisterClass *CommonRC =
1290         TRI->getCommonSubClass(DefRC, DstRC);
1291       if (CommonRC != nullptr) {
1292         NewRC = CommonRC;
1293         DstIdx = 0;
1294         DefMO.setSubReg(0);
1295         DefMO.setIsUndef(false); // Only subregs can have def+undef.
1296       }
1297     }
1298   }
1299 
1300   // CopyMI may have implicit operands, save them so that we can transfer them
1301   // over to the newly materialized instruction after CopyMI is removed.
1302   SmallVector<MachineOperand, 4> ImplicitOps;
1303   ImplicitOps.reserve(CopyMI->getNumOperands() -
1304                       CopyMI->getDesc().getNumOperands());
1305   for (unsigned I = CopyMI->getDesc().getNumOperands(),
1306                 E = CopyMI->getNumOperands();
1307        I != E; ++I) {
1308     MachineOperand &MO = CopyMI->getOperand(I);
1309     if (MO.isReg()) {
1310       assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1311       // Discard VReg implicit defs.
1312       if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1313         ImplicitOps.push_back(MO);
1314     }
1315   }
1316 
1317   LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1318   CopyMI->eraseFromParent();
1319   ErasedInstrs.insert(CopyMI);
1320 
1321   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1322   // We need to remember these so we can add intervals once we insert
1323   // NewMI into SlotIndexes.
1324   SmallVector<unsigned, 4> NewMIImplDefs;
1325   for (unsigned i = NewMI.getDesc().getNumOperands(),
1326                 e = NewMI.getNumOperands();
1327        i != e; ++i) {
1328     MachineOperand &MO = NewMI.getOperand(i);
1329     if (MO.isReg() && MO.isDef()) {
1330       assert(MO.isImplicit() && MO.isDead() &&
1331              TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
1332       NewMIImplDefs.push_back(MO.getReg());
1333     }
1334   }
1335 
1336   if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
1337     unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1338 
1339     if (DefRC != nullptr) {
1340       if (NewIdx)
1341         NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1342       else
1343         NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1344       assert(NewRC && "subreg chosen for remat incompatible with instruction");
1345     }
1346     // Remap subranges to new lanemask and change register class.
1347     LiveInterval &DstInt = LIS->getInterval(DstReg);
1348     for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1349       SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1350     }
1351     MRI->setRegClass(DstReg, NewRC);
1352 
1353     // Update machine operands and add flags.
1354     updateRegDefsUses(DstReg, DstReg, DstIdx);
1355     NewMI.getOperand(0).setSubReg(NewIdx);
1356     // updateRegDefUses can add an "undef" flag to the definition, since
1357     // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1358     // sure that "undef" is not set.
1359     if (NewIdx == 0)
1360       NewMI.getOperand(0).setIsUndef(false);
1361     // Add dead subregister definitions if we are defining the whole register
1362     // but only part of it is live.
1363     // This could happen if the rematerialization instruction is rematerializing
1364     // more than actually is used in the register.
1365     // An example would be:
1366     // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1367     // ; Copying only part of the register here, but the rest is undef.
1368     // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1369     // ==>
1370     // ; Materialize all the constants but only using one
1371     // %2 = LOAD_CONSTANTS 5, 8
1372     //
1373     // at this point for the part that wasn't defined before we could have
1374     // subranges missing the definition.
1375     if (NewIdx == 0 && DstInt.hasSubRanges()) {
1376       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1377       SlotIndex DefIndex =
1378           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1379       LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1380       VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1381       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1382         if (!SR.liveAt(DefIndex))
1383           SR.createDeadDef(DefIndex, Alloc);
1384         MaxMask &= ~SR.LaneMask;
1385       }
1386       if (MaxMask.any()) {
1387         LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1388         SR->createDeadDef(DefIndex, Alloc);
1389       }
1390     }
1391 
1392     // Make sure that the subrange for resultant undef is removed
1393     // For example:
1394     //   %1:sub1<def,read-undef> = LOAD CONSTANT 1
1395     //   %2 = COPY %1
1396     // ==>
1397     //   %2:sub1<def, read-undef> = LOAD CONSTANT 1
1398     //     ; Correct but need to remove the subrange for %2:sub0
1399     //     ; as it is now undef
1400     if (NewIdx != 0 && DstInt.hasSubRanges()) {
1401       // The affected subregister segments can be removed.
1402       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1403       LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1404       bool UpdatedSubRanges = false;
1405       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1406         if ((SR.LaneMask & DstMask).none()) {
1407           LLVM_DEBUG(dbgs()
1408                      << "Removing undefined SubRange "
1409                      << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1410           // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1411           if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1412             SR.removeValNo(RmValNo);
1413             UpdatedSubRanges = true;
1414           }
1415         }
1416       }
1417       if (UpdatedSubRanges)
1418         DstInt.removeEmptySubRanges();
1419     }
1420   } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1421     // The New instruction may be defining a sub-register of what's actually
1422     // been asked for. If so it must implicitly define the whole thing.
1423     assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
1424            "Only expect virtual or physical registers in remat");
1425     NewMI.getOperand(0).setIsDead(true);
1426     NewMI.addOperand(MachineOperand::CreateReg(
1427         CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1428     // Record small dead def live-ranges for all the subregisters
1429     // of the destination register.
1430     // Otherwise, variables that live through may miss some
1431     // interferences, thus creating invalid allocation.
1432     // E.g., i386 code:
1433     // %1 = somedef ; %1 GR8
1434     // %2 = remat ; %2 GR32
1435     // CL = COPY %2.sub_8bit
1436     // = somedef %1 ; %1 GR8
1437     // =>
1438     // %1 = somedef ; %1 GR8
1439     // dead ECX = remat ; implicit-def CL
1440     // = somedef %1 ; %1 GR8
1441     // %1 will see the interferences with CL but not with CH since
1442     // no live-ranges would have been created for ECX.
1443     // Fix that!
1444     SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1445     for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1446          Units.isValid(); ++Units)
1447       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1448         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1449   }
1450 
1451   if (NewMI.getOperand(0).getSubReg())
1452     NewMI.getOperand(0).setIsUndef();
1453 
1454   // Transfer over implicit operands to the rematerialized instruction.
1455   for (MachineOperand &MO : ImplicitOps)
1456     NewMI.addOperand(MO);
1457 
1458   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1459   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1460     unsigned Reg = NewMIImplDefs[i];
1461     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1462       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1463         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1464   }
1465 
1466   LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1467   ++NumReMats;
1468 
1469   // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1470   // to describe DstReg instead.
1471   if (MRI->use_nodbg_empty(SrcReg)) {
1472     for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1473       MachineInstr *UseMI = UseMO.getParent();
1474       if (UseMI->isDebugValue()) {
1475         if (TargetRegisterInfo::isPhysicalRegister(DstReg))
1476           UseMO.substPhysReg(DstReg, *TRI);
1477         else
1478           UseMO.setReg(DstReg);
1479         // Move the debug value directly after the def of the rematerialized
1480         // value in DstReg.
1481         MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1482         LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1483       }
1484     }
1485   }
1486 
1487   if (ToBeUpdated.count(SrcReg))
1488     return true;
1489 
1490   unsigned NumCopyUses = 0;
1491   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1492     if (UseMO.getParent()->isCopyLike())
1493       NumCopyUses++;
1494   }
1495   if (NumCopyUses < LateRematUpdateThreshold) {
1496     // The source interval can become smaller because we removed a use.
1497     shrinkToUses(&SrcInt, &DeadDefs);
1498     if (!DeadDefs.empty())
1499       eliminateDeadDefs();
1500   } else {
1501     ToBeUpdated.insert(SrcReg);
1502   }
1503   return true;
1504 }
1505 
1506 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1507   // ProcessImplicitDefs may leave some copies of <undef> values, it only
1508   // removes local variables. When we have a copy like:
1509   //
1510   //   %1 = COPY undef %2
1511   //
1512   // We delete the copy and remove the corresponding value number from %1.
1513   // Any uses of that value number are marked as <undef>.
1514 
1515   // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1516   // CoalescerPair may have a new register class with adjusted subreg indices
1517   // at this point.
1518   unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1519   isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
1520 
1521   SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1522   const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1523   // CopyMI is undef iff SrcReg is not live before the instruction.
1524   if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1525     LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1526     for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1527       if ((SR.LaneMask & SrcMask).none())
1528         continue;
1529       if (SR.liveAt(Idx))
1530         return nullptr;
1531     }
1532   } else if (SrcLI.liveAt(Idx))
1533     return nullptr;
1534 
1535   // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1536   // then replace it with an IMPLICIT_DEF.
1537   LiveInterval &DstLI = LIS->getInterval(DstReg);
1538   SlotIndex RegIndex = Idx.getRegSlot();
1539   LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1540   assert(Seg != nullptr && "No segment for defining instruction");
1541   if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1542     if (V->isPHIDef()) {
1543       CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1544       for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1545         MachineOperand &MO = CopyMI->getOperand(i-1);
1546         if (MO.isReg() && MO.isUse())
1547           CopyMI->RemoveOperand(i-1);
1548       }
1549       LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1550                            "implicit def\n");
1551       return CopyMI;
1552     }
1553   }
1554 
1555   // Remove any DstReg segments starting at the instruction.
1556   LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1557 
1558   // Remove value or merge with previous one in case of a subregister def.
1559   if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1560     VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1561     DstLI.MergeValueNumberInto(VNI, PrevVNI);
1562 
1563     // The affected subregister segments can be removed.
1564     LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1565     for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1566       if ((SR.LaneMask & DstMask).none())
1567         continue;
1568 
1569       VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1570       assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1571       SR.removeValNo(SVNI);
1572     }
1573     DstLI.removeEmptySubRanges();
1574   } else
1575     LIS->removeVRegDefAt(DstLI, RegIndex);
1576 
1577   // Mark uses as undef.
1578   for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1579     if (MO.isDef() /*|| MO.isUndef()*/)
1580       continue;
1581     const MachineInstr &MI = *MO.getParent();
1582     SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1583     LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1584     bool isLive;
1585     if (!UseMask.all() && DstLI.hasSubRanges()) {
1586       isLive = false;
1587       for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1588         if ((SR.LaneMask & UseMask).none())
1589           continue;
1590         if (SR.liveAt(UseIdx)) {
1591           isLive = true;
1592           break;
1593         }
1594       }
1595     } else
1596       isLive = DstLI.liveAt(UseIdx);
1597     if (isLive)
1598       continue;
1599     MO.setIsUndef(true);
1600     LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1601   }
1602 
1603   // A def of a subregister may be a use of the other subregisters, so
1604   // deleting a def of a subregister may also remove uses. Since CopyMI
1605   // is still part of the function (but about to be erased), mark all
1606   // defs of DstReg in it as <undef>, so that shrinkToUses would
1607   // ignore them.
1608   for (MachineOperand &MO : CopyMI->operands())
1609     if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1610       MO.setIsUndef(true);
1611   LIS->shrinkToUses(&DstLI);
1612 
1613   return CopyMI;
1614 }
1615 
1616 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1617                                      MachineOperand &MO, unsigned SubRegIdx) {
1618   LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1619   if (MO.isDef())
1620     Mask = ~Mask;
1621   bool IsUndef = true;
1622   for (const LiveInterval::SubRange &S : Int.subranges()) {
1623     if ((S.LaneMask & Mask).none())
1624       continue;
1625     if (S.liveAt(UseIdx)) {
1626       IsUndef = false;
1627       break;
1628     }
1629   }
1630   if (IsUndef) {
1631     MO.setIsUndef(true);
1632     // We found out some subregister use is actually reading an undefined
1633     // value. In some cases the whole vreg has become undefined at this
1634     // point so we have to potentially shrink the main range if the
1635     // use was ending a live segment there.
1636     LiveQueryResult Q = Int.Query(UseIdx);
1637     if (Q.valueOut() == nullptr)
1638       ShrinkMainRange = true;
1639   }
1640 }
1641 
1642 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
1643                                           unsigned DstReg,
1644                                           unsigned SubIdx) {
1645   bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1646   LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1647 
1648   if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1649     for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1650       unsigned SubReg = MO.getSubReg();
1651       if (SubReg == 0 || MO.isUndef())
1652         continue;
1653       MachineInstr &MI = *MO.getParent();
1654       if (MI.isDebugValue())
1655         continue;
1656       SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1657       addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1658     }
1659   }
1660 
1661   SmallPtrSet<MachineInstr*, 8> Visited;
1662   for (MachineRegisterInfo::reg_instr_iterator
1663        I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1664        I != E; ) {
1665     MachineInstr *UseMI = &*(I++);
1666 
1667     // Each instruction can only be rewritten once because sub-register
1668     // composition is not always idempotent. When SrcReg != DstReg, rewriting
1669     // the UseMI operands removes them from the SrcReg use-def chain, but when
1670     // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1671     // operands mentioning the virtual register.
1672     if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1673       continue;
1674 
1675     SmallVector<unsigned,8> Ops;
1676     bool Reads, Writes;
1677     std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1678 
1679     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1680     // because SrcReg is a sub-register.
1681     if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
1682       Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1683 
1684     // Replace SrcReg with DstReg in all UseMI operands.
1685     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1686       MachineOperand &MO = UseMI->getOperand(Ops[i]);
1687 
1688       // Adjust <undef> flags in case of sub-register joins. We don't want to
1689       // turn a full def into a read-modify-write sub-register def and vice
1690       // versa.
1691       if (SubIdx && MO.isDef())
1692         MO.setIsUndef(!Reads);
1693 
1694       // A subreg use of a partially undef (super) register may be a complete
1695       // undef use now and then has to be marked that way.
1696       if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1697         if (!DstInt->hasSubRanges()) {
1698           BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1699           LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
1700           DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
1701         }
1702         SlotIndex MIIdx = UseMI->isDebugValue()
1703                               ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1704                               : LIS->getInstructionIndex(*UseMI);
1705         SlotIndex UseIdx = MIIdx.getRegSlot(true);
1706         addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
1707       }
1708 
1709       if (DstIsPhys)
1710         MO.substPhysReg(DstReg, *TRI);
1711       else
1712         MO.substVirtReg(DstReg, SubIdx, *TRI);
1713     }
1714 
1715     LLVM_DEBUG({
1716       dbgs() << "\t\tupdated: ";
1717       if (!UseMI->isDebugValue())
1718         dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1719       dbgs() << *UseMI;
1720     });
1721   }
1722 }
1723 
1724 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1725   // Always join simple intervals that are defined by a single copy from a
1726   // reserved register. This doesn't increase register pressure, so it is
1727   // always beneficial.
1728   if (!MRI->isReserved(CP.getDstReg())) {
1729     LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1730     return false;
1731   }
1732 
1733   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1734   if (JoinVInt.containsOneValue())
1735     return true;
1736 
1737   LLVM_DEBUG(
1738       dbgs() << "\tCannot join complex intervals into reserved register.\n");
1739   return false;
1740 }
1741 
1742 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1743   Again = false;
1744   LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1745 
1746   CoalescerPair CP(*TRI);
1747   if (!CP.setRegisters(CopyMI)) {
1748     LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1749     return false;
1750   }
1751 
1752   if (CP.getNewRC()) {
1753     auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1754     auto DstRC = MRI->getRegClass(CP.getDstReg());
1755     unsigned SrcIdx = CP.getSrcIdx();
1756     unsigned DstIdx = CP.getDstIdx();
1757     if (CP.isFlipped()) {
1758       std::swap(SrcIdx, DstIdx);
1759       std::swap(SrcRC, DstRC);
1760     }
1761     if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1762                              CP.getNewRC(), *LIS)) {
1763       LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1764       return false;
1765     }
1766   }
1767 
1768   // Dead code elimination. This really should be handled by MachineDCE, but
1769   // sometimes dead copies slip through, and we can't generate invalid live
1770   // ranges.
1771   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1772     LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1773     DeadDefs.push_back(CopyMI);
1774     eliminateDeadDefs();
1775     return true;
1776   }
1777 
1778   // Eliminate undefs.
1779   if (!CP.isPhys()) {
1780     // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1781     if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1782       if (UndefMI->isImplicitDef())
1783         return false;
1784       deleteInstr(CopyMI);
1785       return false;  // Not coalescable.
1786     }
1787   }
1788 
1789   // Coalesced copies are normally removed immediately, but transformations
1790   // like removeCopyByCommutingDef() can inadvertently create identity copies.
1791   // When that happens, just join the values and remove the copy.
1792   if (CP.getSrcReg() == CP.getDstReg()) {
1793     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1794     LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1795     const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1796     LiveQueryResult LRQ = LI.Query(CopyIdx);
1797     if (VNInfo *DefVNI = LRQ.valueDefined()) {
1798       VNInfo *ReadVNI = LRQ.valueIn();
1799       assert(ReadVNI && "No value before copy and no <undef> flag.");
1800       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1801       LI.MergeValueNumberInto(DefVNI, ReadVNI);
1802 
1803       // Process subregister liveranges.
1804       for (LiveInterval::SubRange &S : LI.subranges()) {
1805         LiveQueryResult SLRQ = S.Query(CopyIdx);
1806         if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1807           VNInfo *SReadVNI = SLRQ.valueIn();
1808           S.MergeValueNumberInto(SDefVNI, SReadVNI);
1809         }
1810       }
1811       LLVM_DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1812     }
1813     deleteInstr(CopyMI);
1814     return true;
1815   }
1816 
1817   // Enforce policies.
1818   if (CP.isPhys()) {
1819     LLVM_DEBUG(dbgs() << "\tConsidering merging "
1820                       << printReg(CP.getSrcReg(), TRI) << " with "
1821                       << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1822     if (!canJoinPhys(CP)) {
1823       // Before giving up coalescing, if definition of source is defined by
1824       // trivial computation, try rematerializing it.
1825       bool IsDefCopy;
1826       if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1827         return true;
1828       if (IsDefCopy)
1829         Again = true;  // May be possible to coalesce later.
1830       return false;
1831     }
1832   } else {
1833     // When possible, let DstReg be the larger interval.
1834     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1835                            LIS->getInterval(CP.getDstReg()).size())
1836       CP.flip();
1837 
1838     LLVM_DEBUG({
1839       dbgs() << "\tConsidering merging to "
1840              << TRI->getRegClassName(CP.getNewRC()) << " with ";
1841       if (CP.getDstIdx() && CP.getSrcIdx())
1842         dbgs() << printReg(CP.getDstReg()) << " in "
1843                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1844                << printReg(CP.getSrcReg()) << " in "
1845                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1846       else
1847         dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
1848                << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1849     });
1850   }
1851 
1852   ShrinkMask = LaneBitmask::getNone();
1853   ShrinkMainRange = false;
1854 
1855   // Okay, attempt to join these two intervals.  On failure, this returns false.
1856   // Otherwise, if one of the intervals being joined is a physreg, this method
1857   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1858   // been modified, so we can use this information below to update aliases.
1859   if (!joinIntervals(CP)) {
1860     // Coalescing failed.
1861 
1862     // If definition of source is defined by trivial computation, try
1863     // rematerializing it.
1864     bool IsDefCopy;
1865     if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1866       return true;
1867 
1868     // If we can eliminate the copy without merging the live segments, do so
1869     // now.
1870     if (!CP.isPartial() && !CP.isPhys()) {
1871       bool Changed = adjustCopiesBackFrom(CP, CopyMI);
1872       bool Shrink = false;
1873       if (!Changed)
1874         std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
1875       if (Changed) {
1876         deleteInstr(CopyMI);
1877         if (Shrink) {
1878           unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1879           LiveInterval &DstLI = LIS->getInterval(DstReg);
1880           shrinkToUses(&DstLI);
1881           LLVM_DEBUG(dbgs() << "\t\tshrunk:   " << DstLI << '\n');
1882         }
1883         LLVM_DEBUG(dbgs() << "\tTrivial!\n");
1884         return true;
1885       }
1886     }
1887 
1888     // Try and see if we can partially eliminate the copy by moving the copy to
1889     // its predecessor.
1890     if (!CP.isPartial() && !CP.isPhys())
1891       if (removePartialRedundancy(CP, *CopyMI))
1892         return true;
1893 
1894     // Otherwise, we are unable to join the intervals.
1895     LLVM_DEBUG(dbgs() << "\tInterference!\n");
1896     Again = true;  // May be possible to coalesce later.
1897     return false;
1898   }
1899 
1900   // Coalescing to a virtual register that is of a sub-register class of the
1901   // other. Make sure the resulting register is set to the right register class.
1902   if (CP.isCrossClass()) {
1903     ++numCrossRCs;
1904     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1905   }
1906 
1907   // Removing sub-register copies can ease the register class constraints.
1908   // Make sure we attempt to inflate the register class of DstReg.
1909   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1910     InflateRegs.push_back(CP.getDstReg());
1911 
1912   // CopyMI has been erased by joinIntervals at this point. Remove it from
1913   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1914   // to the work list. This keeps ErasedInstrs from growing needlessly.
1915   ErasedInstrs.erase(CopyMI);
1916 
1917   // Rewrite all SrcReg operands to DstReg.
1918   // Also update DstReg operands to include DstIdx if it is set.
1919   if (CP.getDstIdx())
1920     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1921   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1922 
1923   // Shrink subregister ranges if necessary.
1924   if (ShrinkMask.any()) {
1925     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1926     for (LiveInterval::SubRange &S : LI.subranges()) {
1927       if ((S.LaneMask & ShrinkMask).none())
1928         continue;
1929       LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
1930                         << ")\n");
1931       LIS->shrinkToUses(S, LI.reg);
1932     }
1933     LI.removeEmptySubRanges();
1934   }
1935 
1936   // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
1937   // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
1938   // is not up-to-date, need to update the merged live interval here.
1939   if (ToBeUpdated.count(CP.getSrcReg()))
1940     ShrinkMainRange = true;
1941 
1942   if (ShrinkMainRange) {
1943     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1944     shrinkToUses(&LI);
1945   }
1946 
1947   // SrcReg is guaranteed to be the register whose live interval that is
1948   // being merged.
1949   LIS->removeInterval(CP.getSrcReg());
1950 
1951   // Update regalloc hint.
1952   TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1953 
1954   LLVM_DEBUG({
1955     dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
1956            << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
1957     dbgs() << "\tResult = ";
1958     if (CP.isPhys())
1959       dbgs() << printReg(CP.getDstReg(), TRI);
1960     else
1961       dbgs() << LIS->getInterval(CP.getDstReg());
1962     dbgs() << '\n';
1963   });
1964 
1965   ++numJoins;
1966   return true;
1967 }
1968 
1969 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1970   unsigned DstReg = CP.getDstReg();
1971   unsigned SrcReg = CP.getSrcReg();
1972   assert(CP.isPhys() && "Must be a physreg copy");
1973   assert(MRI->isReserved(DstReg) && "Not a reserved register");
1974   LiveInterval &RHS = LIS->getInterval(SrcReg);
1975   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
1976 
1977   assert(RHS.containsOneValue() && "Invalid join with reserved register");
1978 
1979   // Optimization for reserved registers like ESP. We can only merge with a
1980   // reserved physreg if RHS has a single value that is a copy of DstReg.
1981   // The live range of the reserved register will look like a set of dead defs
1982   // - we don't properly track the live range of reserved registers.
1983 
1984   // Deny any overlapping intervals.  This depends on all the reserved
1985   // register live ranges to look like dead defs.
1986   if (!MRI->isConstantPhysReg(DstReg)) {
1987     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
1988       // Abort if not all the regunits are reserved.
1989       for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
1990         if (!MRI->isReserved(*RI))
1991           return false;
1992       }
1993       if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1994         LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
1995                           << '\n');
1996         return false;
1997       }
1998     }
1999 
2000     // We must also check for overlaps with regmask clobbers.
2001     BitVector RegMaskUsable;
2002     if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2003         !RegMaskUsable.test(DstReg)) {
2004       LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2005       return false;
2006     }
2007   }
2008 
2009   // Skip any value computations, we are not adding new values to the
2010   // reserved register.  Also skip merging the live ranges, the reserved
2011   // register live range doesn't need to be accurate as long as all the
2012   // defs are there.
2013 
2014   // Delete the identity copy.
2015   MachineInstr *CopyMI;
2016   if (CP.isFlipped()) {
2017     // Physreg is copied into vreg
2018     //   %y = COPY %physreg_x
2019     //   ...  //< no other def of %x here
2020     //   use %y
2021     // =>
2022     //   ...
2023     //   use %x
2024     CopyMI = MRI->getVRegDef(SrcReg);
2025   } else {
2026     // VReg is copied into physreg:
2027     //   %y = def
2028     //   ... //< no other def or use of %y here
2029     //   %y = COPY %physreg_x
2030     // =>
2031     //   %y = def
2032     //   ...
2033     if (!MRI->hasOneNonDBGUse(SrcReg)) {
2034       LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2035       return false;
2036     }
2037 
2038     if (!LIS->intervalIsInOneMBB(RHS)) {
2039       LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2040       return false;
2041     }
2042 
2043     MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2044     CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2045     SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2046     SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2047 
2048     if (!MRI->isConstantPhysReg(DstReg)) {
2049       // We checked above that there are no interfering defs of the physical
2050       // register. However, for this case, where we intend to move up the def of
2051       // the physical register, we also need to check for interfering uses.
2052       SlotIndexes *Indexes = LIS->getSlotIndexes();
2053       for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2054            SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2055         MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2056         if (MI->readsRegister(DstReg, TRI)) {
2057           LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2058           return false;
2059         }
2060       }
2061     }
2062 
2063     // We're going to remove the copy which defines a physical reserved
2064     // register, so remove its valno, etc.
2065     LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2066                       << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2067 
2068     LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
2069     // Create a new dead def at the new def location.
2070     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2071       LiveRange &LR = LIS->getRegUnit(*UI);
2072       LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2073     }
2074   }
2075 
2076   deleteInstr(CopyMI);
2077 
2078   // We don't track kills for reserved registers.
2079   MRI->clearKillFlags(CP.getSrcReg());
2080 
2081   return true;
2082 }
2083 
2084 //===----------------------------------------------------------------------===//
2085 //                 Interference checking and interval joining
2086 //===----------------------------------------------------------------------===//
2087 //
2088 // In the easiest case, the two live ranges being joined are disjoint, and
2089 // there is no interference to consider. It is quite common, though, to have
2090 // overlapping live ranges, and we need to check if the interference can be
2091 // resolved.
2092 //
2093 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2094 // This means that two SSA values overlap if and only if the def of one value
2095 // is contained in the live range of the other value. As a special case, the
2096 // overlapping values can be defined at the same index.
2097 //
2098 // The interference from an overlapping def can be resolved in these cases:
2099 //
2100 // 1. Coalescable copies. The value is defined by a copy that would become an
2101 //    identity copy after joining SrcReg and DstReg. The copy instruction will
2102 //    be removed, and the value will be merged with the source value.
2103 //
2104 //    There can be several copies back and forth, causing many values to be
2105 //    merged into one. We compute a list of ultimate values in the joined live
2106 //    range as well as a mappings from the old value numbers.
2107 //
2108 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2109 //    predecessors have a live out value. It doesn't cause real interference,
2110 //    and can be merged into the value it overlaps. Like a coalescable copy, it
2111 //    can be erased after joining.
2112 //
2113 // 3. Copy of external value. The overlapping def may be a copy of a value that
2114 //    is already in the other register. This is like a coalescable copy, but
2115 //    the live range of the source register must be trimmed after erasing the
2116 //    copy instruction:
2117 //
2118 //      %src = COPY %ext
2119 //      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
2120 //
2121 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2122 //    defining one lane at a time:
2123 //
2124 //      %dst:ssub0<def,read-undef> = FOO
2125 //      %src = BAR
2126 //      %dst:ssub1 = COPY %src
2127 //
2128 //    The live range of %src overlaps the %dst value defined by FOO, but
2129 //    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2130 //    which was undef anyway.
2131 //
2132 //    The value mapping is more complicated in this case. The final live range
2133 //    will have different value numbers for both FOO and BAR, but there is no
2134 //    simple mapping from old to new values. It may even be necessary to add
2135 //    new PHI values.
2136 //
2137 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2138 //    is live, but never read. This can happen because we don't compute
2139 //    individual live ranges per lane.
2140 //
2141 //      %dst = FOO
2142 //      %src = BAR
2143 //      %dst:ssub1 = COPY %src
2144 //
2145 //    This kind of interference is only resolved locally. If the clobbered
2146 //    lane value escapes the block, the join is aborted.
2147 
2148 namespace {
2149 
2150 /// Track information about values in a single virtual register about to be
2151 /// joined. Objects of this class are always created in pairs - one for each
2152 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2153 /// pair)
2154 class JoinVals {
2155   /// Live range we work on.
2156   LiveRange &LR;
2157 
2158   /// (Main) register we work on.
2159   const unsigned Reg;
2160 
2161   /// Reg (and therefore the values in this liverange) will end up as
2162   /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2163   /// CP.SrcIdx.
2164   const unsigned SubIdx;
2165 
2166   /// The LaneMask that this liverange will occupy the coalesced register. May
2167   /// be smaller than the lanemask produced by SubIdx when merging subranges.
2168   const LaneBitmask LaneMask;
2169 
2170   /// This is true when joining sub register ranges, false when joining main
2171   /// ranges.
2172   const bool SubRangeJoin;
2173 
2174   /// Whether the current LiveInterval tracks subregister liveness.
2175   const bool TrackSubRegLiveness;
2176 
2177   /// Values that will be present in the final live range.
2178   SmallVectorImpl<VNInfo*> &NewVNInfo;
2179 
2180   const CoalescerPair &CP;
2181   LiveIntervals *LIS;
2182   SlotIndexes *Indexes;
2183   const TargetRegisterInfo *TRI;
2184 
2185   /// Value number assignments. Maps value numbers in LI to entries in
2186   /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2187   SmallVector<int, 8> Assignments;
2188 
2189   /// Conflict resolution for overlapping values.
2190   enum ConflictResolution {
2191     /// No overlap, simply keep this value.
2192     CR_Keep,
2193 
2194     /// Merge this value into OtherVNI and erase the defining instruction.
2195     /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2196     /// values.
2197     CR_Erase,
2198 
2199     /// Merge this value into OtherVNI but keep the defining instruction.
2200     /// This is for the special case where OtherVNI is defined by the same
2201     /// instruction.
2202     CR_Merge,
2203 
2204     /// Keep this value, and have it replace OtherVNI where possible. This
2205     /// complicates value mapping since OtherVNI maps to two different values
2206     /// before and after this def.
2207     /// Used when clobbering undefined or dead lanes.
2208     CR_Replace,
2209 
2210     /// Unresolved conflict. Visit later when all values have been mapped.
2211     CR_Unresolved,
2212 
2213     /// Unresolvable conflict. Abort the join.
2214     CR_Impossible
2215   };
2216 
2217   /// Per-value info for LI. The lane bit masks are all relative to the final
2218   /// joined register, so they can be compared directly between SrcReg and
2219   /// DstReg.
2220   struct Val {
2221     ConflictResolution Resolution = CR_Keep;
2222 
2223     /// Lanes written by this def, 0 for unanalyzed values.
2224     LaneBitmask WriteLanes;
2225 
2226     /// Lanes with defined values in this register. Other lanes are undef and
2227     /// safe to clobber.
2228     LaneBitmask ValidLanes;
2229 
2230     /// Value in LI being redefined by this def.
2231     VNInfo *RedefVNI = nullptr;
2232 
2233     /// Value in the other live range that overlaps this def, if any.
2234     VNInfo *OtherVNI = nullptr;
2235 
2236     /// Is this value an IMPLICIT_DEF that can be erased?
2237     ///
2238     /// IMPLICIT_DEF values should only exist at the end of a basic block that
2239     /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2240     /// safely erased if they are overlapping a live value in the other live
2241     /// interval.
2242     ///
2243     /// Weird control flow graphs and incomplete PHI handling in
2244     /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2245     /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2246     /// normal values.
2247     bool ErasableImplicitDef = false;
2248 
2249     /// True when the live range of this value will be pruned because of an
2250     /// overlapping CR_Replace value in the other live range.
2251     bool Pruned = false;
2252 
2253     /// True once Pruned above has been computed.
2254     bool PrunedComputed = false;
2255 
2256     /// True if this value is determined to be identical to OtherVNI
2257     /// (in valuesIdentical). This is used with CR_Erase where the erased
2258     /// copy is redundant, i.e. the source value is already the same as
2259     /// the destination. In such cases the subranges need to be updated
2260     /// properly. See comment at pruneSubRegValues for more info.
2261     bool Identical = false;
2262 
2263     Val() = default;
2264 
2265     bool isAnalyzed() const { return WriteLanes.any(); }
2266   };
2267 
2268   /// One entry per value number in LI.
2269   SmallVector<Val, 8> Vals;
2270 
2271   /// Compute the bitmask of lanes actually written by DefMI.
2272   /// Set Redef if there are any partial register definitions that depend on the
2273   /// previous value of the register.
2274   LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2275 
2276   /// Find the ultimate value that VNI was copied from.
2277   std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
2278 
2279   bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2280 
2281   /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2282   /// Return a conflict resolution when possible, but leave the hard cases as
2283   /// CR_Unresolved.
2284   /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2285   /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2286   /// The recursion always goes upwards in the dominator tree, making loops
2287   /// impossible.
2288   ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2289 
2290   /// Compute the value assignment for ValNo in RI.
2291   /// This may be called recursively by analyzeValue(), but never for a ValNo on
2292   /// the stack.
2293   void computeAssignment(unsigned ValNo, JoinVals &Other);
2294 
2295   /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2296   /// the extent of the tainted lanes in the block.
2297   ///
2298   /// Multiple values in Other.LR can be affected since partial redefinitions
2299   /// can preserve previously tainted lanes.
2300   ///
2301   ///   1 %dst = VLOAD           <-- Define all lanes in %dst
2302   ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
2303   ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
2304   ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2305   ///
2306   /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2307   /// entry to TaintedVals.
2308   ///
2309   /// Returns false if the tainted lanes extend beyond the basic block.
2310   bool
2311   taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2312               SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2313 
2314   /// Return true if MI uses any of the given Lanes from Reg.
2315   /// This does not include partial redefinitions of Reg.
2316   bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
2317 
2318   /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2319   /// be pruned:
2320   ///
2321   ///   %dst = COPY %src
2322   ///   %src = COPY %dst  <-- This value to be pruned.
2323   ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
2324   bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2325 
2326 public:
2327   JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
2328            SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
2329            LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2330            bool TrackSubRegLiveness)
2331     : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2332       SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2333       NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2334       TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {}
2335 
2336   /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2337   /// Returns false if any conflicts were impossible to resolve.
2338   bool mapValues(JoinVals &Other);
2339 
2340   /// Try to resolve conflicts that require all values to be mapped.
2341   /// Returns false if any conflicts were impossible to resolve.
2342   bool resolveConflicts(JoinVals &Other);
2343 
2344   /// Prune the live range of values in Other.LR where they would conflict with
2345   /// CR_Replace values in LR. Collect end points for restoring the live range
2346   /// after joining.
2347   void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2348                    bool changeInstrs);
2349 
2350   /// Removes subranges starting at copies that get removed. This sometimes
2351   /// happens when undefined subranges are copied around. These ranges contain
2352   /// no useful information and can be removed.
2353   void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2354 
2355   /// Pruning values in subranges can lead to removing segments in these
2356   /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2357   /// the main range also need to be removed. This function will mark
2358   /// the corresponding values in the main range as pruned, so that
2359   /// eraseInstrs can do the final cleanup.
2360   /// The parameter @p LI must be the interval whose main range is the
2361   /// live range LR.
2362   void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2363 
2364   /// Erase any machine instructions that have been coalesced away.
2365   /// Add erased instructions to ErasedInstrs.
2366   /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2367   /// the erased instrs.
2368   void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2369                    SmallVectorImpl<unsigned> &ShrinkRegs,
2370                    LiveInterval *LI = nullptr);
2371 
2372   /// Remove liverange defs at places where implicit defs will be removed.
2373   void removeImplicitDefs();
2374 
2375   /// Get the value assignments suitable for passing to LiveInterval::join.
2376   const int *getAssignments() const { return Assignments.data(); }
2377 };
2378 
2379 } // end anonymous namespace
2380 
2381 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2382   const {
2383   LaneBitmask L;
2384   for (const MachineOperand &MO : DefMI->operands()) {
2385     if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2386       continue;
2387     L |= TRI->getSubRegIndexLaneMask(
2388            TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2389     if (MO.readsReg())
2390       Redef = true;
2391   }
2392   return L;
2393 }
2394 
2395 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
2396     const VNInfo *VNI) const {
2397   unsigned TrackReg = Reg;
2398 
2399   while (!VNI->isPHIDef()) {
2400     SlotIndex Def = VNI->def;
2401     MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2402     assert(MI && "No defining instruction");
2403     if (!MI->isFullCopy())
2404       return std::make_pair(VNI, TrackReg);
2405     unsigned SrcReg = MI->getOperand(1).getReg();
2406     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
2407       return std::make_pair(VNI, TrackReg);
2408 
2409     const LiveInterval &LI = LIS->getInterval(SrcReg);
2410     const VNInfo *ValueIn;
2411     // No subrange involved.
2412     if (!SubRangeJoin || !LI.hasSubRanges()) {
2413       LiveQueryResult LRQ = LI.Query(Def);
2414       ValueIn = LRQ.valueIn();
2415     } else {
2416       // Query subranges. Ensure that all matching ones take us to the same def
2417       // (allowing some of them to be undef).
2418       ValueIn = nullptr;
2419       for (const LiveInterval::SubRange &S : LI.subranges()) {
2420         // Transform lanemask to a mask in the joined live interval.
2421         LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2422         if ((SMask & LaneMask).none())
2423           continue;
2424         LiveQueryResult LRQ = S.Query(Def);
2425         if (!ValueIn) {
2426           ValueIn = LRQ.valueIn();
2427           continue;
2428         }
2429         if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2430           return std::make_pair(VNI, TrackReg);
2431       }
2432     }
2433     if (ValueIn == nullptr) {
2434       // Reaching an undefined value is legitimate, for example:
2435       //
2436       // 1   undef %0.sub1 = ...  ;; %0.sub0 == undef
2437       // 2   %1 = COPY %0         ;; %1 is defined here.
2438       // 3   %0 = COPY %1         ;; Now %0.sub0 has a definition,
2439       //                          ;; but it's equivalent to "undef".
2440       return std::make_pair(nullptr, SrcReg);
2441     }
2442     VNI = ValueIn;
2443     TrackReg = SrcReg;
2444   }
2445   return std::make_pair(VNI, TrackReg);
2446 }
2447 
2448 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2449                                const JoinVals &Other) const {
2450   const VNInfo *Orig0;
2451   unsigned Reg0;
2452   std::tie(Orig0, Reg0) = followCopyChain(Value0);
2453   if (Orig0 == Value1 && Reg0 == Other.Reg)
2454     return true;
2455 
2456   const VNInfo *Orig1;
2457   unsigned Reg1;
2458   std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2459   // If both values are undefined, and the source registers are the same
2460   // register, the values are identical. Filter out cases where only one
2461   // value is defined.
2462   if (Orig0 == nullptr || Orig1 == nullptr)
2463     return Orig0 == Orig1 && Reg0 == Reg1;
2464 
2465   // The values are equal if they are defined at the same place and use the
2466   // same register. Note that we cannot compare VNInfos directly as some of
2467   // them might be from a copy created in mergeSubRangeInto()  while the other
2468   // is from the original LiveInterval.
2469   return Orig0->def == Orig1->def && Reg0 == Reg1;
2470 }
2471 
2472 JoinVals::ConflictResolution
2473 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2474   Val &V = Vals[ValNo];
2475   assert(!V.isAnalyzed() && "Value has already been analyzed!");
2476   VNInfo *VNI = LR.getValNumInfo(ValNo);
2477   if (VNI->isUnused()) {
2478     V.WriteLanes = LaneBitmask::getAll();
2479     return CR_Keep;
2480   }
2481 
2482   // Get the instruction defining this value, compute the lanes written.
2483   const MachineInstr *DefMI = nullptr;
2484   if (VNI->isPHIDef()) {
2485     // Conservatively assume that all lanes in a PHI are valid.
2486     LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2487                                      : TRI->getSubRegIndexLaneMask(SubIdx);
2488     V.ValidLanes = V.WriteLanes = Lanes;
2489   } else {
2490     DefMI = Indexes->getInstructionFromIndex(VNI->def);
2491     assert(DefMI != nullptr);
2492     if (SubRangeJoin) {
2493       // We don't care about the lanes when joining subregister ranges.
2494       V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2495       if (DefMI->isImplicitDef()) {
2496         V.ValidLanes = LaneBitmask::getNone();
2497         V.ErasableImplicitDef = true;
2498       }
2499     } else {
2500       bool Redef = false;
2501       V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2502 
2503       // If this is a read-modify-write instruction, there may be more valid
2504       // lanes than the ones written by this instruction.
2505       // This only covers partial redef operands. DefMI may have normal use
2506       // operands reading the register. They don't contribute valid lanes.
2507       //
2508       // This adds ssub1 to the set of valid lanes in %src:
2509       //
2510       //   %src:ssub1 = FOO
2511       //
2512       // This leaves only ssub1 valid, making any other lanes undef:
2513       //
2514       //   %src:ssub1<def,read-undef> = FOO %src:ssub2
2515       //
2516       // The <read-undef> flag on the def operand means that old lane values are
2517       // not important.
2518       if (Redef) {
2519         V.RedefVNI = LR.Query(VNI->def).valueIn();
2520         assert((TrackSubRegLiveness || V.RedefVNI) &&
2521                "Instruction is reading nonexistent value");
2522         if (V.RedefVNI != nullptr) {
2523           computeAssignment(V.RedefVNI->id, Other);
2524           V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2525         }
2526       }
2527 
2528       // An IMPLICIT_DEF writes undef values.
2529       if (DefMI->isImplicitDef()) {
2530         // We normally expect IMPLICIT_DEF values to be live only until the end
2531         // of their block. If the value is really live longer and gets pruned in
2532         // another block, this flag is cleared again.
2533         //
2534         // Clearing the valid lanes is deferred until it is sure this can be
2535         // erased.
2536         V.ErasableImplicitDef = true;
2537       }
2538     }
2539   }
2540 
2541   // Find the value in Other that overlaps VNI->def, if any.
2542   LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2543 
2544   // It is possible that both values are defined by the same instruction, or
2545   // the values are PHIs defined in the same block. When that happens, the two
2546   // values should be merged into one, but not into any preceding value.
2547   // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2548   if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2549     assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2550 
2551     // One value stays, the other is merged. Keep the earlier one, or the first
2552     // one we see.
2553     if (OtherVNI->def < VNI->def)
2554       Other.computeAssignment(OtherVNI->id, *this);
2555     else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2556       // This is an early-clobber def overlapping a live-in value in the other
2557       // register. Not mergeable.
2558       V.OtherVNI = OtherLRQ.valueIn();
2559       return CR_Impossible;
2560     }
2561     V.OtherVNI = OtherVNI;
2562     Val &OtherV = Other.Vals[OtherVNI->id];
2563     // Keep this value, check for conflicts when analyzing OtherVNI.
2564     if (!OtherV.isAnalyzed())
2565       return CR_Keep;
2566     // Both sides have been analyzed now.
2567     // Allow overlapping PHI values. Any real interference would show up in a
2568     // predecessor, the PHI itself can't introduce any conflicts.
2569     if (VNI->isPHIDef())
2570       return CR_Merge;
2571     if ((V.ValidLanes & OtherV.ValidLanes).any())
2572       // Overlapping lanes can't be resolved.
2573       return CR_Impossible;
2574     else
2575       return CR_Merge;
2576   }
2577 
2578   // No simultaneous def. Is Other live at the def?
2579   V.OtherVNI = OtherLRQ.valueIn();
2580   if (!V.OtherVNI)
2581     // No overlap, no conflict.
2582     return CR_Keep;
2583 
2584   assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2585 
2586   // We have overlapping values, or possibly a kill of Other.
2587   // Recursively compute assignments up the dominator tree.
2588   Other.computeAssignment(V.OtherVNI->id, *this);
2589   Val &OtherV = Other.Vals[V.OtherVNI->id];
2590 
2591   if (OtherV.ErasableImplicitDef) {
2592     // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2593     // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2594     // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2595     // technically.
2596     //
2597     // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2598     // to erase the IMPLICIT_DEF instruction.
2599     if (DefMI &&
2600         DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2601       LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2602                  << " extends into "
2603                  << printMBBReference(*DefMI->getParent())
2604                  << ", keeping it.\n");
2605       OtherV.ErasableImplicitDef = false;
2606     } else {
2607       // We deferred clearing these lanes in case we needed to save them
2608       OtherV.ValidLanes &= ~OtherV.WriteLanes;
2609     }
2610   }
2611 
2612   // Allow overlapping PHI values. Any real interference would show up in a
2613   // predecessor, the PHI itself can't introduce any conflicts.
2614   if (VNI->isPHIDef())
2615     return CR_Replace;
2616 
2617   // Check for simple erasable conflicts.
2618   if (DefMI->isImplicitDef()) {
2619     // We need the def for the subregister if there is nothing else live at the
2620     // subrange at this point.
2621     if (TrackSubRegLiveness
2622         && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none())
2623       return CR_Replace;
2624     return CR_Erase;
2625   }
2626 
2627   // Include the non-conflict where DefMI is a coalescable copy that kills
2628   // OtherVNI. We still want the copy erased and value numbers merged.
2629   if (CP.isCoalescable(DefMI)) {
2630     // Some of the lanes copied from OtherVNI may be undef, making them undef
2631     // here too.
2632     V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2633     return CR_Erase;
2634   }
2635 
2636   // This may not be a real conflict if DefMI simply kills Other and defines
2637   // VNI.
2638   if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2639     return CR_Keep;
2640 
2641   // Handle the case where VNI and OtherVNI can be proven to be identical:
2642   //
2643   //   %other = COPY %ext
2644   //   %this  = COPY %ext <-- Erase this copy
2645   //
2646   if (DefMI->isFullCopy() && !CP.isPartial() &&
2647       valuesIdentical(VNI, V.OtherVNI, Other)) {
2648     V.Identical = true;
2649     return CR_Erase;
2650   }
2651 
2652   // The remaining checks apply to the lanes, which aren't tracked here.  This
2653   // was already decided to be OK via the following CR_Replace condition.
2654   // CR_Replace.
2655   if (SubRangeJoin)
2656     return CR_Replace;
2657 
2658   // If the lanes written by this instruction were all undef in OtherVNI, it is
2659   // still safe to join the live ranges. This can't be done with a simple value
2660   // mapping, though - OtherVNI will map to multiple values:
2661   //
2662   //   1 %dst:ssub0 = FOO                <-- OtherVNI
2663   //   2 %src = BAR                      <-- VNI
2664   //   3 %dst:ssub1 = COPY killed %src    <-- Eliminate this copy.
2665   //   4 BAZ killed %dst
2666   //   5 QUUX killed %src
2667   //
2668   // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2669   // handles this complex value mapping.
2670   if ((V.WriteLanes & OtherV.ValidLanes).none())
2671     return CR_Replace;
2672 
2673   // If the other live range is killed by DefMI and the live ranges are still
2674   // overlapping, it must be because we're looking at an early clobber def:
2675   //
2676   //   %dst<def,early-clobber> = ASM killed %src
2677   //
2678   // In this case, it is illegal to merge the two live ranges since the early
2679   // clobber def would clobber %src before it was read.
2680   if (OtherLRQ.isKill()) {
2681     // This case where the def doesn't overlap the kill is handled above.
2682     assert(VNI->def.isEarlyClobber() &&
2683            "Only early clobber defs can overlap a kill");
2684     return CR_Impossible;
2685   }
2686 
2687   // VNI is clobbering live lanes in OtherVNI, but there is still the
2688   // possibility that no instructions actually read the clobbered lanes.
2689   // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2690   // Otherwise Other.RI wouldn't be live here.
2691   if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2692     return CR_Impossible;
2693 
2694   // We need to verify that no instructions are reading the clobbered lanes. To
2695   // save compile time, we'll only check that locally. Don't allow the tainted
2696   // value to escape the basic block.
2697   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2698   if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2699     return CR_Impossible;
2700 
2701   // There are still some things that could go wrong besides clobbered lanes
2702   // being read, for example OtherVNI may be only partially redefined in MBB,
2703   // and some clobbered lanes could escape the block. Save this analysis for
2704   // resolveConflicts() when all values have been mapped. We need to know
2705   // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2706   // that now - the recursive analyzeValue() calls must go upwards in the
2707   // dominator tree.
2708   return CR_Unresolved;
2709 }
2710 
2711 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2712   Val &V = Vals[ValNo];
2713   if (V.isAnalyzed()) {
2714     // Recursion should always move up the dominator tree, so ValNo is not
2715     // supposed to reappear before it has been assigned.
2716     assert(Assignments[ValNo] != -1 && "Bad recursion?");
2717     return;
2718   }
2719   switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2720   case CR_Erase:
2721   case CR_Merge:
2722     // Merge this ValNo into OtherVNI.
2723     assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2724     assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2725     Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2726     LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2727                       << LR.getValNumInfo(ValNo)->def << " into "
2728                       << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2729                       << V.OtherVNI->def << " --> @"
2730                       << NewVNInfo[Assignments[ValNo]]->def << '\n');
2731     break;
2732   case CR_Replace:
2733   case CR_Unresolved: {
2734     // The other value is going to be pruned if this join is successful.
2735     assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2736     Val &OtherV = Other.Vals[V.OtherVNI->id];
2737     // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2738     // its lanes.
2739     if (OtherV.ErasableImplicitDef &&
2740         TrackSubRegLiveness &&
2741         (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2742       LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2743 
2744       OtherV.ErasableImplicitDef = false;
2745       // The valid lanes written by the implicit_def were speculatively cleared
2746       // before, so make this more conservative. It may be better to track this,
2747       // I haven't found a testcase where it matters.
2748       OtherV.ValidLanes = LaneBitmask::getAll();
2749     }
2750 
2751     OtherV.Pruned = true;
2752     LLVM_FALLTHROUGH;
2753   }
2754   default:
2755     // This value number needs to go in the final joined live range.
2756     Assignments[ValNo] = NewVNInfo.size();
2757     NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2758     break;
2759   }
2760 }
2761 
2762 bool JoinVals::mapValues(JoinVals &Other) {
2763   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2764     computeAssignment(i, Other);
2765     if (Vals[i].Resolution == CR_Impossible) {
2766       LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2767                         << '@' << LR.getValNumInfo(i)->def << '\n');
2768       return false;
2769     }
2770   }
2771   return true;
2772 }
2773 
2774 bool JoinVals::
2775 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2776             SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2777   VNInfo *VNI = LR.getValNumInfo(ValNo);
2778   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2779   SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2780 
2781   // Scan Other.LR from VNI.def to MBBEnd.
2782   LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2783   assert(OtherI != Other.LR.end() && "No conflict?");
2784   do {
2785     // OtherI is pointing to a tainted value. Abort the join if the tainted
2786     // lanes escape the block.
2787     SlotIndex End = OtherI->end;
2788     if (End >= MBBEnd) {
2789       LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2790                         << OtherI->valno->id << '@' << OtherI->start << '\n');
2791       return false;
2792     }
2793     LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
2794                       << OtherI->valno->id << '@' << OtherI->start << " to "
2795                       << End << '\n');
2796     // A dead def is not a problem.
2797     if (End.isDead())
2798       break;
2799     TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2800 
2801     // Check for another def in the MBB.
2802     if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2803       break;
2804 
2805     // Lanes written by the new def are no longer tainted.
2806     const Val &OV = Other.Vals[OtherI->valno->id];
2807     TaintedLanes &= ~OV.WriteLanes;
2808     if (!OV.RedefVNI)
2809       break;
2810   } while (TaintedLanes.any());
2811   return true;
2812 }
2813 
2814 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
2815                          LaneBitmask Lanes) const {
2816   if (MI.isDebugInstr())
2817     return false;
2818   for (const MachineOperand &MO : MI.operands()) {
2819     if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2820       continue;
2821     if (!MO.readsReg())
2822       continue;
2823     unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
2824     if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
2825       return true;
2826   }
2827   return false;
2828 }
2829 
2830 bool JoinVals::resolveConflicts(JoinVals &Other) {
2831   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2832     Val &V = Vals[i];
2833     assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
2834     if (V.Resolution != CR_Unresolved)
2835       continue;
2836     LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
2837                       << LR.getValNumInfo(i)->def << '\n');
2838     if (SubRangeJoin)
2839       return false;
2840 
2841     ++NumLaneConflicts;
2842     assert(V.OtherVNI && "Inconsistent conflict resolution.");
2843     VNInfo *VNI = LR.getValNumInfo(i);
2844     const Val &OtherV = Other.Vals[V.OtherVNI->id];
2845 
2846     // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2847     // join, those lanes will be tainted with a wrong value. Get the extent of
2848     // the tainted lanes.
2849     LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2850     SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2851     if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2852       // Tainted lanes would extend beyond the basic block.
2853       return false;
2854 
2855     assert(!TaintExtent.empty() && "There should be at least one conflict.");
2856 
2857     // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2858     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2859     MachineBasicBlock::iterator MI = MBB->begin();
2860     if (!VNI->isPHIDef()) {
2861       MI = Indexes->getInstructionFromIndex(VNI->def);
2862       // No need to check the instruction defining VNI for reads.
2863       ++MI;
2864     }
2865     assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2866            "Interference ends on VNI->def. Should have been handled earlier");
2867     MachineInstr *LastMI =
2868       Indexes->getInstructionFromIndex(TaintExtent.front().first);
2869     assert(LastMI && "Range must end at a proper instruction");
2870     unsigned TaintNum = 0;
2871     while (true) {
2872       assert(MI != MBB->end() && "Bad LastMI");
2873       if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2874         LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2875         return false;
2876       }
2877       // LastMI is the last instruction to use the current value.
2878       if (&*MI == LastMI) {
2879         if (++TaintNum == TaintExtent.size())
2880           break;
2881         LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2882         assert(LastMI && "Range must end at a proper instruction");
2883         TaintedLanes = TaintExtent[TaintNum].second;
2884       }
2885       ++MI;
2886     }
2887 
2888     // The tainted lanes are unused.
2889     V.Resolution = CR_Replace;
2890     ++NumLaneResolves;
2891   }
2892   return true;
2893 }
2894 
2895 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2896   Val &V = Vals[ValNo];
2897   if (V.Pruned || V.PrunedComputed)
2898     return V.Pruned;
2899 
2900   if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2901     return V.Pruned;
2902 
2903   // Follow copies up the dominator tree and check if any intermediate value
2904   // has been pruned.
2905   V.PrunedComputed = true;
2906   V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2907   return V.Pruned;
2908 }
2909 
2910 void JoinVals::pruneValues(JoinVals &Other,
2911                            SmallVectorImpl<SlotIndex> &EndPoints,
2912                            bool changeInstrs) {
2913   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2914     SlotIndex Def = LR.getValNumInfo(i)->def;
2915     switch (Vals[i].Resolution) {
2916     case CR_Keep:
2917       break;
2918     case CR_Replace: {
2919       // This value takes precedence over the value in Other.LR.
2920       LIS->pruneValue(Other.LR, Def, &EndPoints);
2921       // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2922       // instructions are only inserted to provide a live-out value for PHI
2923       // predecessors, so the instruction should simply go away once its value
2924       // has been replaced.
2925       Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2926       bool EraseImpDef = OtherV.ErasableImplicitDef &&
2927                          OtherV.Resolution == CR_Keep;
2928       if (!Def.isBlock()) {
2929         if (changeInstrs) {
2930           // Remove <def,read-undef> flags. This def is now a partial redef.
2931           // Also remove dead flags since the joined live range will
2932           // continue past this instruction.
2933           for (MachineOperand &MO :
2934                Indexes->getInstructionFromIndex(Def)->operands()) {
2935             if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
2936               if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
2937                 MO.setIsUndef(false);
2938               MO.setIsDead(false);
2939             }
2940           }
2941         }
2942         // This value will reach instructions below, but we need to make sure
2943         // the live range also reaches the instruction at Def.
2944         if (!EraseImpDef)
2945           EndPoints.push_back(Def);
2946       }
2947       LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
2948                         << ": " << Other.LR << '\n');
2949       break;
2950     }
2951     case CR_Erase:
2952     case CR_Merge:
2953       if (isPrunedValue(i, Other)) {
2954         // This value is ultimately a copy of a pruned value in LR or Other.LR.
2955         // We can no longer trust the value mapping computed by
2956         // computeAssignment(), the value that was originally copied could have
2957         // been replaced.
2958         LIS->pruneValue(LR, Def, &EndPoints);
2959         LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
2960                           << Def << ": " << LR << '\n');
2961       }
2962       break;
2963     case CR_Unresolved:
2964     case CR_Impossible:
2965       llvm_unreachable("Unresolved conflicts");
2966     }
2967   }
2968 }
2969 
2970 /// Consider the following situation when coalescing the copy between
2971 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
2972 ///
2973 ///                              Main range         Subrange 0004 (sub2)
2974 ///                              %31    %45           %31    %45
2975 ///  544    %45 = COPY %28               +                    +
2976 ///                                      | v1                 | v1
2977 ///  560B bb.1:                          +                    +
2978 ///  624        = %45.sub2               | v2                 | v2
2979 ///  800    %31 = COPY %45        +      +             +      +
2980 ///                               | v0                 | v0
2981 ///  816    %31.sub1 = ...        +                    |
2982 ///  880    %30 = COPY %31        | v1                 +
2983 ///  928    %45 = COPY %30        |      +                    +
2984 ///                               |      | v0                 | v0  <--+
2985 ///  992B   ; backedge -> bb.1    |      +                    +        |
2986 /// 1040        = %31.sub0        +                                    |
2987 ///                                                 This value must remain
2988 ///                                                 live-out!
2989 ///
2990 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
2991 /// redundant, since it copies the value from %45 back into it. The
2992 /// conflict resolution for the main range determines that %45.v0 is
2993 /// to be erased, which is ok since %31.v1 is identical to it.
2994 /// The problem happens with the subrange for sub2: it has to be live
2995 /// on exit from the block, but since 928 was actually a point of
2996 /// definition of %45.sub2, %45.sub2 was not live immediately prior
2997 /// to that definition. As a result, when 928 was erased, the value v0
2998 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
2999 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3000 /// providing an incorrect value to the use at 624.
3001 ///
3002 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3003 /// identical, the corresponding values in subranges must also be the
3004 /// same. A redundant copy is removed because it's not needed, and not
3005 /// because it copied an undefined value, so any liveness that originated
3006 /// from that copy cannot disappear. When pruning a value that started
3007 /// at the removed copy, the corresponding identical value must be
3008 /// extended to replace it.
3009 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3010   // Look for values being erased.
3011   bool DidPrune = false;
3012   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3013     Val &V = Vals[i];
3014     // We should trigger in all cases in which eraseInstrs() does something.
3015     // match what eraseInstrs() is doing, print a message so
3016     if (V.Resolution != CR_Erase &&
3017         (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3018       continue;
3019 
3020     // Check subranges at the point where the copy will be removed.
3021     SlotIndex Def = LR.getValNumInfo(i)->def;
3022     SlotIndex OtherDef;
3023     if (V.Identical)
3024       OtherDef = V.OtherVNI->def;
3025 
3026     // Print message so mismatches with eraseInstrs() can be diagnosed.
3027     LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3028                       << '\n');
3029     for (LiveInterval::SubRange &S : LI.subranges()) {
3030       LiveQueryResult Q = S.Query(Def);
3031 
3032       // If a subrange starts at the copy then an undefined value has been
3033       // copied and we must remove that subrange value as well.
3034       VNInfo *ValueOut = Q.valueOutOrDead();
3035       if (ValueOut != nullptr && Q.valueIn() == nullptr) {
3036         LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3037                           << " at " << Def << "\n");
3038         SmallVector<SlotIndex,8> EndPoints;
3039         LIS->pruneValue(S, Def, &EndPoints);
3040         DidPrune = true;
3041         // Mark value number as unused.
3042         ValueOut->markUnused();
3043 
3044         if (V.Identical && S.Query(OtherDef).valueOut()) {
3045           // If V is identical to V.OtherVNI (and S was live at OtherDef),
3046           // then we can't simply prune V from S. V needs to be replaced
3047           // with V.OtherVNI.
3048           LIS->extendToIndices(S, EndPoints);
3049         }
3050         continue;
3051       }
3052       // If a subrange ends at the copy, then a value was copied but only
3053       // partially used later. Shrink the subregister range appropriately.
3054       if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
3055         LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3056                           << PrintLaneMask(S.LaneMask) << " at " << Def
3057                           << "\n");
3058         ShrinkMask |= S.LaneMask;
3059       }
3060     }
3061   }
3062   if (DidPrune)
3063     LI.removeEmptySubRanges();
3064 }
3065 
3066 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3067 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3068   for (LiveInterval::SubRange &SR : LI.subranges()) {
3069     if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3070       if (VNI->def == Def)
3071         return true;
3072   }
3073   return false;
3074 }
3075 
3076 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3077   assert(&static_cast<LiveRange&>(LI) == &LR);
3078 
3079   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3080     if (Vals[i].Resolution != CR_Keep)
3081       continue;
3082     VNInfo *VNI = LR.getValNumInfo(i);
3083     if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3084       continue;
3085     Vals[i].Pruned = true;
3086     ShrinkMainRange = true;
3087   }
3088 }
3089 
3090 void JoinVals::removeImplicitDefs() {
3091   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3092     Val &V = Vals[i];
3093     if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3094       continue;
3095 
3096     VNInfo *VNI = LR.getValNumInfo(i);
3097     VNI->markUnused();
3098     LR.removeValNo(VNI);
3099   }
3100 }
3101 
3102 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3103                            SmallVectorImpl<unsigned> &ShrinkRegs,
3104                            LiveInterval *LI) {
3105   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3106     // Get the def location before markUnused() below invalidates it.
3107     SlotIndex Def = LR.getValNumInfo(i)->def;
3108     switch (Vals[i].Resolution) {
3109     case CR_Keep: {
3110       // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3111       // longer. The IMPLICIT_DEF instructions are only inserted by
3112       // PHIElimination to guarantee that all PHI predecessors have a value.
3113       if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3114         break;
3115       // Remove value number i from LR.
3116       // For intervals with subranges, removing a segment from the main range
3117       // may require extending the previous segment: for each definition of
3118       // a subregister, there will be a corresponding def in the main range.
3119       // That def may fall in the middle of a segment from another subrange.
3120       // In such cases, removing this def from the main range must be
3121       // complemented by extending the main range to account for the liveness
3122       // of the other subrange.
3123       VNInfo *VNI = LR.getValNumInfo(i);
3124       SlotIndex Def = VNI->def;
3125       // The new end point of the main range segment to be extended.
3126       SlotIndex NewEnd;
3127       if (LI != nullptr) {
3128         LiveRange::iterator I = LR.FindSegmentContaining(Def);
3129         assert(I != LR.end());
3130         // Do not extend beyond the end of the segment being removed.
3131         // The segment may have been pruned in preparation for joining
3132         // live ranges.
3133         NewEnd = I->end;
3134       }
3135 
3136       LR.removeValNo(VNI);
3137       // Note that this VNInfo is reused and still referenced in NewVNInfo,
3138       // make it appear like an unused value number.
3139       VNI->markUnused();
3140 
3141       if (LI != nullptr && LI->hasSubRanges()) {
3142         assert(static_cast<LiveRange*>(LI) == &LR);
3143         // Determine the end point based on the subrange information:
3144         // minimum of (earliest def of next segment,
3145         //             latest end point of containing segment)
3146         SlotIndex ED, LE;
3147         for (LiveInterval::SubRange &SR : LI->subranges()) {
3148           LiveRange::iterator I = SR.find(Def);
3149           if (I == SR.end())
3150             continue;
3151           if (I->start > Def)
3152             ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3153           else
3154             LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3155         }
3156         if (LE.isValid())
3157           NewEnd = std::min(NewEnd, LE);
3158         if (ED.isValid())
3159           NewEnd = std::min(NewEnd, ED);
3160 
3161         // We only want to do the extension if there was a subrange that
3162         // was live across Def.
3163         if (LE.isValid()) {
3164           LiveRange::iterator S = LR.find(Def);
3165           if (S != LR.begin())
3166             std::prev(S)->end = NewEnd;
3167         }
3168       }
3169       LLVM_DEBUG({
3170         dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3171         if (LI != nullptr)
3172           dbgs() << "\t\t  LHS = " << *LI << '\n';
3173       });
3174       LLVM_FALLTHROUGH;
3175     }
3176 
3177     case CR_Erase: {
3178       MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3179       assert(MI && "No instruction to erase");
3180       if (MI->isCopy()) {
3181         unsigned Reg = MI->getOperand(1).getReg();
3182         if (TargetRegisterInfo::isVirtualRegister(Reg) &&
3183             Reg != CP.getSrcReg() && Reg != CP.getDstReg())
3184           ShrinkRegs.push_back(Reg);
3185       }
3186       ErasedInstrs.insert(MI);
3187       LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3188       LIS->RemoveMachineInstrFromMaps(*MI);
3189       MI->eraseFromParent();
3190       break;
3191     }
3192     default:
3193       break;
3194     }
3195   }
3196 }
3197 
3198 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3199                                          LaneBitmask LaneMask,
3200                                          const CoalescerPair &CP) {
3201   SmallVector<VNInfo*, 16> NewVNInfo;
3202   JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3203                    NewVNInfo, CP, LIS, TRI, true, true);
3204   JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3205                    NewVNInfo, CP, LIS, TRI, true, true);
3206 
3207   // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3208   // We should be able to resolve all conflicts here as we could successfully do
3209   // it on the mainrange already. There is however a problem when multiple
3210   // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3211   // interferences.
3212   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3213     // We already determined that it is legal to merge the intervals, so this
3214     // should never fail.
3215     llvm_unreachable("*** Couldn't join subrange!\n");
3216   }
3217   if (!LHSVals.resolveConflicts(RHSVals) ||
3218       !RHSVals.resolveConflicts(LHSVals)) {
3219     // We already determined that it is legal to merge the intervals, so this
3220     // should never fail.
3221     llvm_unreachable("*** Couldn't join subrange!\n");
3222   }
3223 
3224   // The merging algorithm in LiveInterval::join() can't handle conflicting
3225   // value mappings, so we need to remove any live ranges that overlap a
3226   // CR_Replace resolution. Collect a set of end points that can be used to
3227   // restore the live range after joining.
3228   SmallVector<SlotIndex, 8> EndPoints;
3229   LHSVals.pruneValues(RHSVals, EndPoints, false);
3230   RHSVals.pruneValues(LHSVals, EndPoints, false);
3231 
3232   LHSVals.removeImplicitDefs();
3233   RHSVals.removeImplicitDefs();
3234 
3235   LRange.verify();
3236   RRange.verify();
3237 
3238   // Join RRange into LHS.
3239   LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3240               NewVNInfo);
3241 
3242   LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3243                     << ' ' << LRange << "\n");
3244   if (EndPoints.empty())
3245     return;
3246 
3247   // Recompute the parts of the live range we had to remove because of
3248   // CR_Replace conflicts.
3249   LLVM_DEBUG({
3250     dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3251     for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3252       dbgs() << EndPoints[i];
3253       if (i != n-1)
3254         dbgs() << ',';
3255     }
3256     dbgs() << ":  " << LRange << '\n';
3257   });
3258   LIS->extendToIndices(LRange, EndPoints);
3259 }
3260 
3261 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3262                                           const LiveRange &ToMerge,
3263                                           LaneBitmask LaneMask,
3264                                           CoalescerPair &CP) {
3265   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3266   LI.refineSubRanges(
3267       Allocator, LaneMask,
3268       [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3269         if (SR.empty()) {
3270           SR.assign(ToMerge, Allocator);
3271         } else {
3272           // joinSubRegRange() destroys the merged range, so we need a copy.
3273           LiveRange RangeCopy(ToMerge, Allocator);
3274           joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3275         }
3276       },
3277       *LIS->getSlotIndexes(), *TRI);
3278 }
3279 
3280 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3281   if (LI.valnos.size() < LargeIntervalSizeThreshold)
3282     return false;
3283   auto &Counter = LargeLIVisitCounter[LI.reg];
3284   if (Counter < LargeIntervalFreqThreshold) {
3285     Counter++;
3286     return false;
3287   }
3288   return true;
3289 }
3290 
3291 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3292   SmallVector<VNInfo*, 16> NewVNInfo;
3293   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3294   LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3295   bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3296   JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3297                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3298   JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3299                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3300 
3301   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3302 
3303   if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3304     return false;
3305 
3306   // First compute NewVNInfo and the simple value mappings.
3307   // Detect impossible conflicts early.
3308   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3309     return false;
3310 
3311   // Some conflicts can only be resolved after all values have been mapped.
3312   if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3313     return false;
3314 
3315   // All clear, the live ranges can be merged.
3316   if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3317     BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3318 
3319     // Transform lanemasks from the LHS to masks in the coalesced register and
3320     // create initial subranges if necessary.
3321     unsigned DstIdx = CP.getDstIdx();
3322     if (!LHS.hasSubRanges()) {
3323       LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3324                                      : TRI->getSubRegIndexLaneMask(DstIdx);
3325       // LHS must support subregs or we wouldn't be in this codepath.
3326       assert(Mask.any());
3327       LHS.createSubRangeFrom(Allocator, Mask, LHS);
3328     } else if (DstIdx != 0) {
3329       // Transform LHS lanemasks to new register class if necessary.
3330       for (LiveInterval::SubRange &R : LHS.subranges()) {
3331         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3332         R.LaneMask = Mask;
3333       }
3334     }
3335     LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3336                       << '\n');
3337 
3338     // Determine lanemasks of RHS in the coalesced register and merge subranges.
3339     unsigned SrcIdx = CP.getSrcIdx();
3340     if (!RHS.hasSubRanges()) {
3341       LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3342                                      : TRI->getSubRegIndexLaneMask(SrcIdx);
3343       mergeSubRangeInto(LHS, RHS, Mask, CP);
3344     } else {
3345       // Pair up subranges and merge.
3346       for (LiveInterval::SubRange &R : RHS.subranges()) {
3347         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3348         mergeSubRangeInto(LHS, R, Mask, CP);
3349       }
3350     }
3351     LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3352 
3353     // Pruning implicit defs from subranges may result in the main range
3354     // having stale segments.
3355     LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3356 
3357     LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3358     RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3359   }
3360 
3361   // The merging algorithm in LiveInterval::join() can't handle conflicting
3362   // value mappings, so we need to remove any live ranges that overlap a
3363   // CR_Replace resolution. Collect a set of end points that can be used to
3364   // restore the live range after joining.
3365   SmallVector<SlotIndex, 8> EndPoints;
3366   LHSVals.pruneValues(RHSVals, EndPoints, true);
3367   RHSVals.pruneValues(LHSVals, EndPoints, true);
3368 
3369   // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3370   // registers to require trimming.
3371   SmallVector<unsigned, 8> ShrinkRegs;
3372   LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3373   RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3374   while (!ShrinkRegs.empty())
3375     shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3376 
3377   // Join RHS into LHS.
3378   LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3379 
3380   // Kill flags are going to be wrong if the live ranges were overlapping.
3381   // Eventually, we should simply clear all kill flags when computing live
3382   // ranges. They are reinserted after register allocation.
3383   MRI->clearKillFlags(LHS.reg);
3384   MRI->clearKillFlags(RHS.reg);
3385 
3386   if (!EndPoints.empty()) {
3387     // Recompute the parts of the live range we had to remove because of
3388     // CR_Replace conflicts.
3389     LLVM_DEBUG({
3390       dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3391       for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3392         dbgs() << EndPoints[i];
3393         if (i != n-1)
3394           dbgs() << ',';
3395       }
3396       dbgs() << ":  " << LHS << '\n';
3397     });
3398     LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3399   }
3400 
3401   return true;
3402 }
3403 
3404 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3405   return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3406 }
3407 
3408 namespace {
3409 
3410 /// Information concerning MBB coalescing priority.
3411 struct MBBPriorityInfo {
3412   MachineBasicBlock *MBB;
3413   unsigned Depth;
3414   bool IsSplit;
3415 
3416   MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3417     : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3418 };
3419 
3420 } // end anonymous namespace
3421 
3422 /// C-style comparator that sorts first based on the loop depth of the basic
3423 /// block (the unsigned), and then on the MBB number.
3424 ///
3425 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3426 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3427                               const MBBPriorityInfo *RHS) {
3428   // Deeper loops first
3429   if (LHS->Depth != RHS->Depth)
3430     return LHS->Depth > RHS->Depth ? -1 : 1;
3431 
3432   // Try to unsplit critical edges next.
3433   if (LHS->IsSplit != RHS->IsSplit)
3434     return LHS->IsSplit ? -1 : 1;
3435 
3436   // Prefer blocks that are more connected in the CFG. This takes care of
3437   // the most difficult copies first while intervals are short.
3438   unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3439   unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3440   if (cl != cr)
3441     return cl > cr ? -1 : 1;
3442 
3443   // As a last resort, sort by block number.
3444   return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3445 }
3446 
3447 /// \returns true if the given copy uses or defines a local live range.
3448 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3449   if (!Copy->isCopy())
3450     return false;
3451 
3452   if (Copy->getOperand(1).isUndef())
3453     return false;
3454 
3455   unsigned SrcReg = Copy->getOperand(1).getReg();
3456   unsigned DstReg = Copy->getOperand(0).getReg();
3457   if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
3458       || TargetRegisterInfo::isPhysicalRegister(DstReg))
3459     return false;
3460 
3461   return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3462     || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3463 }
3464 
3465 void RegisterCoalescer::lateLiveIntervalUpdate() {
3466   for (unsigned reg : ToBeUpdated) {
3467     if (!LIS->hasInterval(reg))
3468       continue;
3469     LiveInterval &LI = LIS->getInterval(reg);
3470     shrinkToUses(&LI, &DeadDefs);
3471     if (!DeadDefs.empty())
3472       eliminateDeadDefs();
3473   }
3474   ToBeUpdated.clear();
3475 }
3476 
3477 bool RegisterCoalescer::
3478 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3479   bool Progress = false;
3480   for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3481     if (!CurrList[i])
3482       continue;
3483     // Skip instruction pointers that have already been erased, for example by
3484     // dead code elimination.
3485     if (ErasedInstrs.count(CurrList[i])) {
3486       CurrList[i] = nullptr;
3487       continue;
3488     }
3489     bool Again = false;
3490     bool Success = joinCopy(CurrList[i], Again);
3491     Progress |= Success;
3492     if (Success || !Again)
3493       CurrList[i] = nullptr;
3494   }
3495   return Progress;
3496 }
3497 
3498 /// Check if DstReg is a terminal node.
3499 /// I.e., it does not have any affinity other than \p Copy.
3500 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
3501                           const MachineRegisterInfo *MRI) {
3502   assert(Copy.isCopyLike());
3503   // Check if the destination of this copy as any other affinity.
3504   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3505     if (&MI != &Copy && MI.isCopyLike())
3506       return false;
3507   return true;
3508 }
3509 
3510 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3511   assert(Copy.isCopyLike());
3512   if (!UseTerminalRule)
3513     return false;
3514   unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
3515   isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg);
3516   // Check if the destination of this copy has any other affinity.
3517   if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
3518       // If SrcReg is a physical register, the copy won't be coalesced.
3519       // Ignoring it may have other side effect (like missing
3520       // rematerialization). So keep it.
3521       TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
3522       !isTerminalReg(DstReg, Copy, MRI))
3523     return false;
3524 
3525   // DstReg is a terminal node. Check if it interferes with any other
3526   // copy involving SrcReg.
3527   const MachineBasicBlock *OrigBB = Copy.getParent();
3528   const LiveInterval &DstLI = LIS->getInterval(DstReg);
3529   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3530     // Technically we should check if the weight of the new copy is
3531     // interesting compared to the other one and update the weight
3532     // of the copies accordingly. However, this would only work if
3533     // we would gather all the copies first then coalesce, whereas
3534     // right now we interleave both actions.
3535     // For now, just consider the copies that are in the same block.
3536     if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3537       continue;
3538     unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
3539     isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3540                 OtherSubReg);
3541     if (OtherReg == SrcReg)
3542       OtherReg = OtherSrcReg;
3543     // Check if OtherReg is a non-terminal.
3544     if (TargetRegisterInfo::isPhysicalRegister(OtherReg) ||
3545         isTerminalReg(OtherReg, MI, MRI))
3546       continue;
3547     // Check that OtherReg interfere with DstReg.
3548     if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3549       LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3550                         << '\n');
3551       return true;
3552     }
3553   }
3554   return false;
3555 }
3556 
3557 void
3558 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3559   LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3560 
3561   // Collect all copy-like instructions in MBB. Don't start coalescing anything
3562   // yet, it might invalidate the iterator.
3563   const unsigned PrevSize = WorkList.size();
3564   if (JoinGlobalCopies) {
3565     SmallVector<MachineInstr*, 2> LocalTerminals;
3566     SmallVector<MachineInstr*, 2> GlobalTerminals;
3567     // Coalesce copies bottom-up to coalesce local defs before local uses. They
3568     // are not inherently easier to resolve, but slightly preferable until we
3569     // have local live range splitting. In particular this is required by
3570     // cmp+jmp macro fusion.
3571     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
3572          MII != E; ++MII) {
3573       if (!MII->isCopyLike())
3574         continue;
3575       bool ApplyTerminalRule = applyTerminalRule(*MII);
3576       if (isLocalCopy(&(*MII), LIS)) {
3577         if (ApplyTerminalRule)
3578           LocalTerminals.push_back(&(*MII));
3579         else
3580           LocalWorkList.push_back(&(*MII));
3581       } else {
3582         if (ApplyTerminalRule)
3583           GlobalTerminals.push_back(&(*MII));
3584         else
3585           WorkList.push_back(&(*MII));
3586       }
3587     }
3588     // Append the copies evicted by the terminal rule at the end of the list.
3589     LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
3590     WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
3591   }
3592   else {
3593     SmallVector<MachineInstr*, 2> Terminals;
3594     for (MachineInstr &MII : *MBB)
3595       if (MII.isCopyLike()) {
3596         if (applyTerminalRule(MII))
3597           Terminals.push_back(&MII);
3598         else
3599           WorkList.push_back(&MII);
3600       }
3601     // Append the copies evicted by the terminal rule at the end of the list.
3602     WorkList.append(Terminals.begin(), Terminals.end());
3603   }
3604   // Try coalescing the collected copies immediately, and remove the nulls.
3605   // This prevents the WorkList from getting too large since most copies are
3606   // joinable on the first attempt.
3607   MutableArrayRef<MachineInstr*>
3608     CurrList(WorkList.begin() + PrevSize, WorkList.end());
3609   if (copyCoalesceWorkList(CurrList))
3610     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
3611                                nullptr), WorkList.end());
3612 }
3613 
3614 void RegisterCoalescer::coalesceLocals() {
3615   copyCoalesceWorkList(LocalWorkList);
3616   for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
3617     if (LocalWorkList[j])
3618       WorkList.push_back(LocalWorkList[j]);
3619   }
3620   LocalWorkList.clear();
3621 }
3622 
3623 void RegisterCoalescer::joinAllIntervals() {
3624   LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
3625   assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
3626 
3627   std::vector<MBBPriorityInfo> MBBs;
3628   MBBs.reserve(MF->size());
3629   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
3630     MachineBasicBlock *MBB = &*I;
3631     MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
3632                                    JoinSplitEdges && isSplitEdge(MBB)));
3633   }
3634   array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
3635 
3636   // Coalesce intervals in MBB priority order.
3637   unsigned CurrDepth = std::numeric_limits<unsigned>::max();
3638   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
3639     // Try coalescing the collected local copies for deeper loops.
3640     if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
3641       coalesceLocals();
3642       CurrDepth = MBBs[i].Depth;
3643     }
3644     copyCoalesceInMBB(MBBs[i].MBB);
3645   }
3646   lateLiveIntervalUpdate();
3647   coalesceLocals();
3648 
3649   // Joining intervals can allow other intervals to be joined.  Iteratively join
3650   // until we make no progress.
3651   while (copyCoalesceWorkList(WorkList))
3652     /* empty */ ;
3653   lateLiveIntervalUpdate();
3654 }
3655 
3656 void RegisterCoalescer::releaseMemory() {
3657   ErasedInstrs.clear();
3658   WorkList.clear();
3659   DeadDefs.clear();
3660   InflateRegs.clear();
3661   LargeLIVisitCounter.clear();
3662 }
3663 
3664 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
3665   MF = &fn;
3666   MRI = &fn.getRegInfo();
3667   const TargetSubtargetInfo &STI = fn.getSubtarget();
3668   TRI = STI.getRegisterInfo();
3669   TII = STI.getInstrInfo();
3670   LIS = &getAnalysis<LiveIntervals>();
3671   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3672   Loops = &getAnalysis<MachineLoopInfo>();
3673   if (EnableGlobalCopies == cl::BOU_UNSET)
3674     JoinGlobalCopies = STI.enableJoinGlobalCopies();
3675   else
3676     JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
3677 
3678   // The MachineScheduler does not currently require JoinSplitEdges. This will
3679   // either be enabled unconditionally or replaced by a more general live range
3680   // splitting optimization.
3681   JoinSplitEdges = EnableJoinSplits;
3682 
3683   LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3684                     << "********** Function: " << MF->getName() << '\n');
3685 
3686   if (VerifyCoalescing)
3687     MF->verify(this, "Before register coalescing");
3688 
3689   RegClassInfo.runOnMachineFunction(fn);
3690 
3691   // Join (coalesce) intervals if requested.
3692   if (EnableJoining)
3693     joinAllIntervals();
3694 
3695   // After deleting a lot of copies, register classes may be less constrained.
3696   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3697   // DPR inflation.
3698   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
3699   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
3700                     InflateRegs.end());
3701   LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
3702                     << " regs.\n");
3703   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
3704     unsigned Reg = InflateRegs[i];
3705     if (MRI->reg_nodbg_empty(Reg))
3706       continue;
3707     if (MRI->recomputeRegClass(Reg)) {
3708       LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
3709                         << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
3710       ++NumInflated;
3711 
3712       LiveInterval &LI = LIS->getInterval(Reg);
3713       if (LI.hasSubRanges()) {
3714         // If the inflated register class does not support subregisters anymore
3715         // remove the subranges.
3716         if (!MRI->shouldTrackSubRegLiveness(Reg)) {
3717           LI.clearSubRanges();
3718         } else {
3719 #ifndef NDEBUG
3720           LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3721           // If subranges are still supported, then the same subregs
3722           // should still be supported.
3723           for (LiveInterval::SubRange &S : LI.subranges()) {
3724             assert((S.LaneMask & ~MaxMask).none());
3725           }
3726 #endif
3727         }
3728       }
3729     }
3730   }
3731 
3732   LLVM_DEBUG(dump());
3733   if (VerifyCoalescing)
3734     MF->verify(this, "After register coalescing");
3735   return true;
3736 }
3737 
3738 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3739    LIS->print(O, m);
3740 }
3741