1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic RegisterCoalescer interface which 11 // is used as the common interface used by all clients and 12 // implementations of register coalescing. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "RegisterCoalescer.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/LiveRangeEdit.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/RegisterClassInfo.h" 30 #include "llvm/CodeGen/VirtRegMap.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 #include <algorithm> 42 #include <cmath> 43 using namespace llvm; 44 45 #define DEBUG_TYPE "regalloc" 46 47 STATISTIC(numJoins , "Number of interval joins performed"); 48 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 49 STATISTIC(numCommutes , "Number of instruction commuting performed"); 50 STATISTIC(numExtends , "Number of copies extended"); 51 STATISTIC(NumReMats , "Number of instructions re-materialized"); 52 STATISTIC(NumInflated , "Number of register classes inflated"); 53 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 54 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 55 56 static cl::opt<bool> 57 EnableJoining("join-liveintervals", 58 cl::desc("Coalesce copies (default=true)"), 59 cl::init(true)); 60 61 static cl::opt<bool> UseTerminalRule("terminal-rule", 62 cl::desc("Apply the terminal rule"), 63 cl::init(false), cl::Hidden); 64 65 /// Temporary flag to test critical edge unsplitting. 66 static cl::opt<bool> 67 EnableJoinSplits("join-splitedges", 68 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 69 70 /// Temporary flag to test global copy optimization. 71 static cl::opt<cl::boolOrDefault> 72 EnableGlobalCopies("join-globalcopies", 73 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 74 cl::init(cl::BOU_UNSET), cl::Hidden); 75 76 static cl::opt<bool> 77 VerifyCoalescing("verify-coalescing", 78 cl::desc("Verify machine instrs before and after register coalescing"), 79 cl::Hidden); 80 81 namespace { 82 class RegisterCoalescer : public MachineFunctionPass, 83 private LiveRangeEdit::Delegate { 84 MachineFunction* MF; 85 MachineRegisterInfo* MRI; 86 const TargetMachine* TM; 87 const TargetRegisterInfo* TRI; 88 const TargetInstrInfo* TII; 89 LiveIntervals *LIS; 90 const MachineLoopInfo* Loops; 91 AliasAnalysis *AA; 92 RegisterClassInfo RegClassInfo; 93 94 /// A LaneMask to remember on which subregister live ranges we need to call 95 /// shrinkToUses() later. 96 LaneBitmask ShrinkMask; 97 98 /// True if the main range of the currently coalesced intervals should be 99 /// checked for smaller live intervals. 100 bool ShrinkMainRange; 101 102 /// \brief True if the coalescer should aggressively coalesce global copies 103 /// in favor of keeping local copies. 104 bool JoinGlobalCopies; 105 106 /// \brief True if the coalescer should aggressively coalesce fall-thru 107 /// blocks exclusively containing copies. 108 bool JoinSplitEdges; 109 110 /// Copy instructions yet to be coalesced. 111 SmallVector<MachineInstr*, 8> WorkList; 112 SmallVector<MachineInstr*, 8> LocalWorkList; 113 114 /// Set of instruction pointers that have been erased, and 115 /// that may be present in WorkList. 116 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 117 118 /// Dead instructions that are about to be deleted. 119 SmallVector<MachineInstr*, 8> DeadDefs; 120 121 /// Virtual registers to be considered for register class inflation. 122 SmallVector<unsigned, 8> InflateRegs; 123 124 /// Recursively eliminate dead defs in DeadDefs. 125 void eliminateDeadDefs(); 126 127 /// LiveRangeEdit callback for eliminateDeadDefs(). 128 void LRE_WillEraseInstruction(MachineInstr *MI) override; 129 130 /// Coalesce the LocalWorkList. 131 void coalesceLocals(); 132 133 /// Join compatible live intervals 134 void joinAllIntervals(); 135 136 /// Coalesce copies in the specified MBB, putting 137 /// copies that cannot yet be coalesced into WorkList. 138 void copyCoalesceInMBB(MachineBasicBlock *MBB); 139 140 /// Tries to coalesce all copies in CurrList. Returns true if any progress 141 /// was made. 142 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 143 144 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 145 /// src/dst of the copy instruction CopyMI. This returns true if the copy 146 /// was successfully coalesced away. If it is not currently possible to 147 /// coalesce this interval, but it may be possible if other things get 148 /// coalesced, then it returns true by reference in 'Again'. 149 bool joinCopy(MachineInstr *TheCopy, bool &Again); 150 151 /// Attempt to join these two intervals. On failure, this 152 /// returns false. The output "SrcInt" will not have been modified, so we 153 /// can use this information below to update aliases. 154 bool joinIntervals(CoalescerPair &CP); 155 156 /// Attempt joining two virtual registers. Return true on success. 157 bool joinVirtRegs(CoalescerPair &CP); 158 159 /// Attempt joining with a reserved physreg. 160 bool joinReservedPhysReg(CoalescerPair &CP); 161 162 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 163 /// Subranges in @p LI which only partially interfere with the desired 164 /// LaneMask are split as necessary. @p LaneMask are the lanes that 165 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 166 /// lanemasks already adjusted to the coalesced register. 167 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 168 LaneBitmask LaneMask, CoalescerPair &CP); 169 170 /// Join the liveranges of two subregisters. Joins @p RRange into 171 /// @p LRange, @p RRange may be invalid afterwards. 172 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 173 LaneBitmask LaneMask, const CoalescerPair &CP); 174 175 /// We found a non-trivially-coalescable copy. If the source value number is 176 /// defined by a copy from the destination reg see if we can merge these two 177 /// destination reg valno# into a single value number, eliminating a copy. 178 /// This returns true if an interval was modified. 179 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 180 181 /// Return true if there are definitions of IntB 182 /// other than BValNo val# that can reach uses of AValno val# of IntA. 183 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 184 VNInfo *AValNo, VNInfo *BValNo); 185 186 /// We found a non-trivially-coalescable copy. 187 /// If the source value number is defined by a commutable instruction and 188 /// its other operand is coalesced to the copy dest register, see if we 189 /// can transform the copy into a noop by commuting the definition. 190 /// This returns true if an interval was modified. 191 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); 192 193 /// We found a copy which can be moved to its less frequent predecessor. 194 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 195 196 /// If the source of a copy is defined by a 197 /// trivial computation, replace the copy by rematerialize the definition. 198 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 199 bool &IsDefCopy); 200 201 /// Return true if a copy involving a physreg should be joined. 202 bool canJoinPhys(const CoalescerPair &CP); 203 204 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 205 /// number if it is not zero. If DstReg is a physical register and the 206 /// existing subregister number of the def / use being updated is not zero, 207 /// make sure to set it to the correct physical subregister. 208 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 209 210 /// If the given machine operand reads only undefined lanes add an undef 211 /// flag. 212 /// This can happen when undef uses were previously concealed by a copy 213 /// which we coalesced. Example: 214 /// %vreg0:sub0<def,read-undef> = ... 215 /// %vreg1 = COPY %vreg0 <-- Coalescing COPY reveals undef 216 /// = use %vreg1:sub1 <-- hidden undef use 217 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 218 MachineOperand &MO, unsigned SubRegIdx); 219 220 /// Handle copies of undef values. 221 /// Returns true if @p CopyMI was a copy of an undef value and eliminated. 222 bool eliminateUndefCopy(MachineInstr *CopyMI); 223 224 /// Check whether or not we should apply the terminal rule on the 225 /// destination (Dst) of \p Copy. 226 /// When the terminal rule applies, Copy is not profitable to 227 /// coalesce. 228 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 229 /// at least one interference (Dst, Dst2). If Dst is terminal, the 230 /// terminal rule consists in checking that at least one of 231 /// interfering node, say Dst2, has an affinity of equal or greater 232 /// weight with Src. 233 /// In that case, Dst2 and Dst will not be able to be both coalesced 234 /// with Src. Since Dst2 exposes more coalescing opportunities than 235 /// Dst, we can drop \p Copy. 236 bool applyTerminalRule(const MachineInstr &Copy) const; 237 238 /// Wrapper method for \see LiveIntervals::shrinkToUses. 239 /// This method does the proper fixing of the live-ranges when the afore 240 /// mentioned method returns true. 241 void shrinkToUses(LiveInterval *LI, 242 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 243 if (LIS->shrinkToUses(LI, Dead)) { 244 /// Check whether or not \p LI is composed by multiple connected 245 /// components and if that is the case, fix that. 246 SmallVector<LiveInterval*, 8> SplitLIs; 247 LIS->splitSeparateComponents(*LI, SplitLIs); 248 } 249 } 250 251 /// Wrapper Method to do all the necessary work when an Instruction is 252 /// deleted. 253 /// Optimizations should use this to make sure that deleted instructions 254 /// are always accounted for. 255 void deleteInstr(MachineInstr* MI) { 256 ErasedInstrs.insert(MI); 257 LIS->RemoveMachineInstrFromMaps(*MI); 258 MI->eraseFromParent(); 259 } 260 261 public: 262 static char ID; ///< Class identification, replacement for typeinfo 263 RegisterCoalescer() : MachineFunctionPass(ID) { 264 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 265 } 266 267 void getAnalysisUsage(AnalysisUsage &AU) const override; 268 269 void releaseMemory() override; 270 271 /// This is the pass entry point. 272 bool runOnMachineFunction(MachineFunction&) override; 273 274 /// Implement the dump method. 275 void print(raw_ostream &O, const Module* = nullptr) const override; 276 }; 277 } // end anonymous namespace 278 279 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 280 281 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 282 "Simple Register Coalescing", false, false) 283 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 284 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 285 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 286 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 287 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 288 "Simple Register Coalescing", false, false) 289 290 char RegisterCoalescer::ID = 0; 291 292 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 293 unsigned &Src, unsigned &Dst, 294 unsigned &SrcSub, unsigned &DstSub) { 295 if (MI->isCopy()) { 296 Dst = MI->getOperand(0).getReg(); 297 DstSub = MI->getOperand(0).getSubReg(); 298 Src = MI->getOperand(1).getReg(); 299 SrcSub = MI->getOperand(1).getSubReg(); 300 } else if (MI->isSubregToReg()) { 301 Dst = MI->getOperand(0).getReg(); 302 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 303 MI->getOperand(3).getImm()); 304 Src = MI->getOperand(2).getReg(); 305 SrcSub = MI->getOperand(2).getSubReg(); 306 } else 307 return false; 308 return true; 309 } 310 311 /// Return true if this block should be vacated by the coalescer to eliminate 312 /// branches. The important cases to handle in the coalescer are critical edges 313 /// split during phi elimination which contain only copies. Simple blocks that 314 /// contain non-branches should also be vacated, but this can be handled by an 315 /// earlier pass similar to early if-conversion. 316 static bool isSplitEdge(const MachineBasicBlock *MBB) { 317 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 318 return false; 319 320 for (const auto &MI : *MBB) { 321 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 322 return false; 323 } 324 return true; 325 } 326 327 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 328 SrcReg = DstReg = 0; 329 SrcIdx = DstIdx = 0; 330 NewRC = nullptr; 331 Flipped = CrossClass = false; 332 333 unsigned Src, Dst, SrcSub, DstSub; 334 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 335 return false; 336 Partial = SrcSub || DstSub; 337 338 // If one register is a physreg, it must be Dst. 339 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 340 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 341 return false; 342 std::swap(Src, Dst); 343 std::swap(SrcSub, DstSub); 344 Flipped = true; 345 } 346 347 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 348 349 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 350 // Eliminate DstSub on a physreg. 351 if (DstSub) { 352 Dst = TRI.getSubReg(Dst, DstSub); 353 if (!Dst) return false; 354 DstSub = 0; 355 } 356 357 // Eliminate SrcSub by picking a corresponding Dst superregister. 358 if (SrcSub) { 359 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 360 if (!Dst) return false; 361 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 362 return false; 363 } 364 } else { 365 // Both registers are virtual. 366 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 367 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 368 369 // Both registers have subreg indices. 370 if (SrcSub && DstSub) { 371 // Copies between different sub-registers are never coalescable. 372 if (Src == Dst && SrcSub != DstSub) 373 return false; 374 375 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 376 SrcIdx, DstIdx); 377 if (!NewRC) 378 return false; 379 } else if (DstSub) { 380 // SrcReg will be merged with a sub-register of DstReg. 381 SrcIdx = DstSub; 382 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 383 } else if (SrcSub) { 384 // DstReg will be merged with a sub-register of SrcReg. 385 DstIdx = SrcSub; 386 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 387 } else { 388 // This is a straight copy without sub-registers. 389 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 390 } 391 392 // The combined constraint may be impossible to satisfy. 393 if (!NewRC) 394 return false; 395 396 // Prefer SrcReg to be a sub-register of DstReg. 397 // FIXME: Coalescer should support subregs symmetrically. 398 if (DstIdx && !SrcIdx) { 399 std::swap(Src, Dst); 400 std::swap(SrcIdx, DstIdx); 401 Flipped = !Flipped; 402 } 403 404 CrossClass = NewRC != DstRC || NewRC != SrcRC; 405 } 406 // Check our invariants 407 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 408 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 409 "Cannot have a physical SubIdx"); 410 SrcReg = Src; 411 DstReg = Dst; 412 return true; 413 } 414 415 bool CoalescerPair::flip() { 416 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 417 return false; 418 std::swap(SrcReg, DstReg); 419 std::swap(SrcIdx, DstIdx); 420 Flipped = !Flipped; 421 return true; 422 } 423 424 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 425 if (!MI) 426 return false; 427 unsigned Src, Dst, SrcSub, DstSub; 428 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 429 return false; 430 431 // Find the virtual register that is SrcReg. 432 if (Dst == SrcReg) { 433 std::swap(Src, Dst); 434 std::swap(SrcSub, DstSub); 435 } else if (Src != SrcReg) { 436 return false; 437 } 438 439 // Now check that Dst matches DstReg. 440 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 441 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 442 return false; 443 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 444 // DstSub could be set for a physreg from INSERT_SUBREG. 445 if (DstSub) 446 Dst = TRI.getSubReg(Dst, DstSub); 447 // Full copy of Src. 448 if (!SrcSub) 449 return DstReg == Dst; 450 // This is a partial register copy. Check that the parts match. 451 return TRI.getSubReg(DstReg, SrcSub) == Dst; 452 } else { 453 // DstReg is virtual. 454 if (DstReg != Dst) 455 return false; 456 // Registers match, do the subregisters line up? 457 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 458 TRI.composeSubRegIndices(DstIdx, DstSub); 459 } 460 } 461 462 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 463 AU.setPreservesCFG(); 464 AU.addRequired<AAResultsWrapperPass>(); 465 AU.addRequired<LiveIntervals>(); 466 AU.addPreserved<LiveIntervals>(); 467 AU.addPreserved<SlotIndexes>(); 468 AU.addRequired<MachineLoopInfo>(); 469 AU.addPreserved<MachineLoopInfo>(); 470 AU.addPreservedID(MachineDominatorsID); 471 MachineFunctionPass::getAnalysisUsage(AU); 472 } 473 474 void RegisterCoalescer::eliminateDeadDefs() { 475 SmallVector<unsigned, 8> NewRegs; 476 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 477 nullptr, this).eliminateDeadDefs(DeadDefs); 478 } 479 480 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 481 // MI may be in WorkList. Make sure we don't visit it. 482 ErasedInstrs.insert(MI); 483 } 484 485 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 486 MachineInstr *CopyMI) { 487 assert(!CP.isPartial() && "This doesn't work for partial copies."); 488 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 489 490 LiveInterval &IntA = 491 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 492 LiveInterval &IntB = 493 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 494 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 495 496 // We have a non-trivially-coalescable copy with IntA being the source and 497 // IntB being the dest, thus this defines a value number in IntB. If the 498 // source value number (in IntA) is defined by a copy from B, see if we can 499 // merge these two pieces of B into a single value number, eliminating a copy. 500 // For example: 501 // 502 // A3 = B0 503 // ... 504 // B1 = A3 <- this copy 505 // 506 // In this case, B0 can be extended to where the B1 copy lives, allowing the 507 // B1 value number to be replaced with B0 (which simplifies the B 508 // liveinterval). 509 510 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 511 // the example above. 512 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 513 if (BS == IntB.end()) return false; 514 VNInfo *BValNo = BS->valno; 515 516 // Get the location that B is defined at. Two options: either this value has 517 // an unknown definition point or it is defined at CopyIdx. If unknown, we 518 // can't process it. 519 if (BValNo->def != CopyIdx) return false; 520 521 // AValNo is the value number in A that defines the copy, A3 in the example. 522 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 523 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 524 // The live segment might not exist after fun with physreg coalescing. 525 if (AS == IntA.end()) return false; 526 VNInfo *AValNo = AS->valno; 527 528 // If AValNo is defined as a copy from IntB, we can potentially process this. 529 // Get the instruction that defines this value number. 530 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 531 // Don't allow any partial copies, even if isCoalescable() allows them. 532 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 533 return false; 534 535 // Get the Segment in IntB that this value number starts with. 536 LiveInterval::iterator ValS = 537 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 538 if (ValS == IntB.end()) 539 return false; 540 541 // Make sure that the end of the live segment is inside the same block as 542 // CopyMI. 543 MachineInstr *ValSEndInst = 544 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 545 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 546 return false; 547 548 // Okay, we now know that ValS ends in the same block that the CopyMI 549 // live-range starts. If there are no intervening live segments between them 550 // in IntB, we can merge them. 551 if (ValS+1 != BS) return false; 552 553 DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI)); 554 555 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 556 // We are about to delete CopyMI, so need to remove it as the 'instruction 557 // that defines this value #'. Update the valnum with the new defining 558 // instruction #. 559 BValNo->def = FillerStart; 560 561 // Okay, we can merge them. We need to insert a new liverange: 562 // [ValS.end, BS.begin) of either value number, then we merge the 563 // two value numbers. 564 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 565 566 // Okay, merge "B1" into the same value number as "B0". 567 if (BValNo != ValS->valno) 568 IntB.MergeValueNumberInto(BValNo, ValS->valno); 569 570 // Do the same for the subregister segments. 571 for (LiveInterval::SubRange &S : IntB.subranges()) { 572 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 573 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 574 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 575 if (SubBValNo != SubValSNo) 576 S.MergeValueNumberInto(SubBValNo, SubValSNo); 577 } 578 579 DEBUG(dbgs() << " result = " << IntB << '\n'); 580 581 // If the source instruction was killing the source register before the 582 // merge, unset the isKill marker given the live range has been extended. 583 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 584 if (UIdx != -1) { 585 ValSEndInst->getOperand(UIdx).setIsKill(false); 586 } 587 588 // Rewrite the copy. If the copy instruction was killing the destination 589 // register before the merge, find the last use and trim the live range. That 590 // will also add the isKill marker. 591 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 592 if (AS->end == CopyIdx) 593 shrinkToUses(&IntA); 594 595 ++numExtends; 596 return true; 597 } 598 599 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 600 LiveInterval &IntB, 601 VNInfo *AValNo, 602 VNInfo *BValNo) { 603 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 604 // the PHI values. 605 if (LIS->hasPHIKill(IntA, AValNo)) 606 return true; 607 608 for (LiveRange::Segment &ASeg : IntA.segments) { 609 if (ASeg.valno != AValNo) continue; 610 LiveInterval::iterator BI = 611 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start); 612 if (BI != IntB.begin()) 613 --BI; 614 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 615 if (BI->valno == BValNo) 616 continue; 617 if (BI->start <= ASeg.start && BI->end > ASeg.start) 618 return true; 619 if (BI->start > ASeg.start && BI->start < ASeg.end) 620 return true; 621 } 622 } 623 return false; 624 } 625 626 /// Copy segements with value number @p SrcValNo from liverange @p Src to live 627 /// range @Dst and use value number @p DstValNo there. 628 static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, 629 const LiveRange &Src, const VNInfo *SrcValNo) 630 { 631 for (const LiveRange::Segment &S : Src.segments) { 632 if (S.valno != SrcValNo) 633 continue; 634 Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo)); 635 } 636 } 637 638 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 639 MachineInstr *CopyMI) { 640 assert(!CP.isPhys()); 641 642 LiveInterval &IntA = 643 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 644 LiveInterval &IntB = 645 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 646 647 // We found a non-trivially-coalescable copy with IntA being the source and 648 // IntB being the dest, thus this defines a value number in IntB. If the 649 // source value number (in IntA) is defined by a commutable instruction and 650 // its other operand is coalesced to the copy dest register, see if we can 651 // transform the copy into a noop by commuting the definition. For example, 652 // 653 // A3 = op A2 B0<kill> 654 // ... 655 // B1 = A3 <- this copy 656 // ... 657 // = op A3 <- more uses 658 // 659 // ==> 660 // 661 // B2 = op B0 A2<kill> 662 // ... 663 // B1 = B2 <- now an identity copy 664 // ... 665 // = op B2 <- more uses 666 667 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 668 // the example above. 669 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 670 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 671 assert(BValNo != nullptr && BValNo->def == CopyIdx); 672 673 // AValNo is the value number in A that defines the copy, A3 in the example. 674 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 675 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 676 if (AValNo->isPHIDef()) 677 return false; 678 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 679 if (!DefMI) 680 return false; 681 if (!DefMI->isCommutable()) 682 return false; 683 // If DefMI is a two-address instruction then commuting it will change the 684 // destination register. 685 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 686 assert(DefIdx != -1); 687 unsigned UseOpIdx; 688 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 689 return false; 690 691 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 692 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 693 // passed to the method. That _other_ operand is chosen by 694 // the findCommutedOpIndices() method. 695 // 696 // That is obviously an area for improvement in case of instructions having 697 // more than 2 operands. For example, if some instruction has 3 commutable 698 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 699 // op#2<->op#3) of commute transformation should be considered/tried here. 700 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 701 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 702 return false; 703 704 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 705 unsigned NewReg = NewDstMO.getReg(); 706 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 707 return false; 708 709 // Make sure there are no other definitions of IntB that would reach the 710 // uses which the new definition can reach. 711 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 712 return false; 713 714 // If some of the uses of IntA.reg is already coalesced away, return false. 715 // It's not possible to determine whether it's safe to perform the coalescing. 716 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 717 MachineInstr *UseMI = MO.getParent(); 718 unsigned OpNo = &MO - &UseMI->getOperand(0); 719 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 720 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 721 if (US == IntA.end() || US->valno != AValNo) 722 continue; 723 // If this use is tied to a def, we can't rewrite the register. 724 if (UseMI->isRegTiedToDefOperand(OpNo)) 725 return false; 726 } 727 728 DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 729 << *DefMI); 730 731 // At this point we have decided that it is legal to do this 732 // transformation. Start by commuting the instruction. 733 MachineBasicBlock *MBB = DefMI->getParent(); 734 MachineInstr *NewMI = 735 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 736 if (!NewMI) 737 return false; 738 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 739 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 740 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 741 return false; 742 if (NewMI != DefMI) { 743 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 744 MachineBasicBlock::iterator Pos = DefMI; 745 MBB->insert(Pos, NewMI); 746 MBB->erase(DefMI); 747 } 748 749 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 750 // A = or A, B 751 // ... 752 // B = A 753 // ... 754 // C = A<kill> 755 // ... 756 // = B 757 758 // Update uses of IntA of the specific Val# with IntB. 759 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 760 UE = MRI->use_end(); 761 UI != UE; /* ++UI is below because of possible MI removal */) { 762 MachineOperand &UseMO = *UI; 763 ++UI; 764 if (UseMO.isUndef()) 765 continue; 766 MachineInstr *UseMI = UseMO.getParent(); 767 if (UseMI->isDebugValue()) { 768 // FIXME These don't have an instruction index. Not clear we have enough 769 // info to decide whether to do this replacement or not. For now do it. 770 UseMO.setReg(NewReg); 771 continue; 772 } 773 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 774 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 775 assert(US != IntA.end() && "Use must be live"); 776 if (US->valno != AValNo) 777 continue; 778 // Kill flags are no longer accurate. They are recomputed after RA. 779 UseMO.setIsKill(false); 780 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 781 UseMO.substPhysReg(NewReg, *TRI); 782 else 783 UseMO.setReg(NewReg); 784 if (UseMI == CopyMI) 785 continue; 786 if (!UseMI->isCopy()) 787 continue; 788 if (UseMI->getOperand(0).getReg() != IntB.reg || 789 UseMI->getOperand(0).getSubReg()) 790 continue; 791 792 // This copy will become a noop. If it's defining a new val#, merge it into 793 // BValNo. 794 SlotIndex DefIdx = UseIdx.getRegSlot(); 795 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 796 if (!DVNI) 797 continue; 798 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 799 assert(DVNI->def == DefIdx); 800 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 801 for (LiveInterval::SubRange &S : IntB.subranges()) { 802 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 803 if (!SubDVNI) 804 continue; 805 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 806 assert(SubBValNo->def == CopyIdx); 807 S.MergeValueNumberInto(SubDVNI, SubBValNo); 808 } 809 810 deleteInstr(UseMI); 811 } 812 813 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 814 // is updated. 815 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 816 if (IntB.hasSubRanges()) { 817 if (!IntA.hasSubRanges()) { 818 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 819 IntA.createSubRangeFrom(Allocator, Mask, IntA); 820 } 821 SlotIndex AIdx = CopyIdx.getRegSlot(true); 822 for (LiveInterval::SubRange &SA : IntA.subranges()) { 823 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 824 assert(ASubValNo != nullptr); 825 826 IntB.refineSubRanges(Allocator, SA.LaneMask, 827 [&Allocator,&SA,CopyIdx,ASubValNo](LiveInterval::SubRange &SR) { 828 VNInfo *BSubValNo = SR.empty() 829 ? SR.getNextValue(CopyIdx, Allocator) 830 : SR.getVNInfoAt(CopyIdx); 831 assert(BSubValNo != nullptr); 832 addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 833 }); 834 } 835 } 836 837 BValNo->def = AValNo->def; 838 addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 839 DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 840 841 LIS->removeVRegDefAt(IntA, AValNo->def); 842 843 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 844 ++numCommutes; 845 return true; 846 } 847 848 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 849 /// predecessor of BB2, and if B is not redefined on the way from A = B 850 /// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the 851 /// execution goes through the path from BB0 to BB2. We may move B = A 852 /// to the predecessor without such reversed copy. 853 /// So we will transform the program from: 854 /// BB0: 855 /// A = B; BB1: 856 /// ... ... 857 /// / \ / 858 /// BB2: 859 /// ... 860 /// B = A; 861 /// 862 /// to: 863 /// 864 /// BB0: BB1: 865 /// A = B; ... 866 /// ... B = A; 867 /// / \ / 868 /// BB2: 869 /// ... 870 /// 871 /// A special case is when BB0 and BB2 are the same BB which is the only 872 /// BB in a loop: 873 /// BB1: 874 /// ... 875 /// BB0/BB2: ---- 876 /// B = A; | 877 /// ... | 878 /// A = B; | 879 /// |------- 880 /// | 881 /// We may hoist B = A from BB0/BB2 to BB1. 882 /// 883 /// The major preconditions for correctness to remove such partial 884 /// redundancy include: 885 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 886 /// the PHI is defined by the reversed copy A = B in BB0. 887 /// 2. No B is referenced from the start of BB2 to B = A. 888 /// 3. No B is defined from A = B to the end of BB0. 889 /// 4. BB1 has only one successor. 890 /// 891 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 892 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 893 /// colder place, which not only prevent endless loop, but also make sure 894 /// the movement of copy is beneficial. 895 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 896 MachineInstr &CopyMI) { 897 assert(!CP.isPhys()); 898 if (!CopyMI.isFullCopy()) 899 return false; 900 901 MachineBasicBlock &MBB = *CopyMI.getParent(); 902 if (MBB.isEHPad()) 903 return false; 904 905 if (MBB.pred_size() != 2) 906 return false; 907 908 LiveInterval &IntA = 909 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 910 LiveInterval &IntB = 911 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 912 913 // A is defined by PHI at the entry of MBB. 914 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 915 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 916 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 917 if (!AValNo->isPHIDef()) 918 return false; 919 920 // No B is referenced before CopyMI in MBB. 921 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 922 return false; 923 924 // MBB has two predecessors: one contains A = B so no copy will be inserted 925 // for it. The other one will have a copy moved from MBB. 926 bool FoundReverseCopy = false; 927 MachineBasicBlock *CopyLeftBB = nullptr; 928 for (MachineBasicBlock *Pred : MBB.predecessors()) { 929 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 930 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 931 if (!DefMI || !DefMI->isFullCopy()) { 932 CopyLeftBB = Pred; 933 continue; 934 } 935 // Check DefMI is a reverse copy and it is in BB Pred. 936 if (DefMI->getOperand(0).getReg() != IntA.reg || 937 DefMI->getOperand(1).getReg() != IntB.reg || 938 DefMI->getParent() != Pred) { 939 CopyLeftBB = Pred; 940 continue; 941 } 942 // If there is any other def of B after DefMI and before the end of Pred, 943 // we need to keep the copy of B = A at the end of Pred if we remove 944 // B = A from MBB. 945 bool ValB_Changed = false; 946 for (auto VNI : IntB.valnos) { 947 if (VNI->isUnused()) 948 continue; 949 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 950 ValB_Changed = true; 951 break; 952 } 953 } 954 if (ValB_Changed) { 955 CopyLeftBB = Pred; 956 continue; 957 } 958 FoundReverseCopy = true; 959 } 960 961 // If no reverse copy is found in predecessors, nothing to do. 962 if (!FoundReverseCopy) 963 return false; 964 965 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 966 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 967 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 968 // update IntA/IntB. 969 // 970 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 971 // MBB is hotter than CopyLeftBB. 972 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 973 return false; 974 975 // Now ok to move copy. 976 if (CopyLeftBB) { 977 DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to BB#" 978 << CopyLeftBB->getNumber() << '\t' << CopyMI); 979 980 // Insert new copy to CopyLeftBB. 981 auto InsPos = CopyLeftBB->getFirstTerminator(); 982 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 983 TII->get(TargetOpcode::COPY), IntB.reg) 984 .addReg(IntA.reg); 985 SlotIndex NewCopyIdx = 986 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 987 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 988 for (LiveInterval::SubRange &SR : IntB.subranges()) 989 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 990 991 // If the newly created Instruction has an address of an instruction that was 992 // deleted before (object recycled by the allocator) it needs to be removed from 993 // the deleted list. 994 ErasedInstrs.erase(NewCopyMI); 995 } else { 996 DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from BB#" 997 << MBB.getNumber() << '\t' << CopyMI); 998 } 999 1000 // Remove CopyMI. 1001 // Note: This is fine to remove the copy before updating the live-ranges. 1002 // While updating the live-ranges, we only look at slot indices and 1003 // never go back to the instruction. 1004 // Mark instructions as deleted. 1005 deleteInstr(&CopyMI); 1006 1007 // Update the liveness. 1008 SmallVector<SlotIndex, 8> EndPoints; 1009 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1010 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1011 &EndPoints); 1012 BValNo->markUnused(); 1013 // Extend IntB to the EndPoints of its original live interval. 1014 LIS->extendToIndices(IntB, EndPoints); 1015 1016 // Now, do the same for its subranges. 1017 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1018 EndPoints.clear(); 1019 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1020 assert(BValNo && "All sublanes should be live"); 1021 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1022 BValNo->markUnused(); 1023 LIS->extendToIndices(SR, EndPoints); 1024 } 1025 1026 // Finally, update the live-range of IntA. 1027 shrinkToUses(&IntA); 1028 return true; 1029 } 1030 1031 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1032 /// defining a subregister. 1033 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 1034 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && 1035 "This code cannot handle physreg aliasing"); 1036 for (const MachineOperand &Op : MI.operands()) { 1037 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1038 continue; 1039 // Return true if we define the full register or don't care about the value 1040 // inside other subregisters. 1041 if (Op.getSubReg() == 0 || Op.isUndef()) 1042 return true; 1043 } 1044 return false; 1045 } 1046 1047 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1048 MachineInstr *CopyMI, 1049 bool &IsDefCopy) { 1050 IsDefCopy = false; 1051 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1052 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1053 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1054 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1055 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1056 return false; 1057 1058 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1059 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1060 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1061 assert(ValNo && "CopyMI input register not live"); 1062 if (ValNo->isPHIDef() || ValNo->isUnused()) 1063 return false; 1064 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1065 if (!DefMI) 1066 return false; 1067 if (DefMI->isCopyLike()) { 1068 IsDefCopy = true; 1069 return false; 1070 } 1071 if (!TII->isAsCheapAsAMove(*DefMI)) 1072 return false; 1073 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1074 return false; 1075 if (!definesFullReg(*DefMI, SrcReg)) 1076 return false; 1077 bool SawStore = false; 1078 if (!DefMI->isSafeToMove(AA, SawStore)) 1079 return false; 1080 const MCInstrDesc &MCID = DefMI->getDesc(); 1081 if (MCID.getNumDefs() != 1) 1082 return false; 1083 // Only support subregister destinations when the def is read-undef. 1084 MachineOperand &DstOperand = CopyMI->getOperand(0); 1085 unsigned CopyDstReg = DstOperand.getReg(); 1086 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1087 return false; 1088 1089 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1090 // the register substantially (beyond both source and dest size). This is bad 1091 // for performance since it can cascade through a function, introducing many 1092 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1093 // around after a few subreg copies). 1094 if (SrcIdx && DstIdx) 1095 return false; 1096 1097 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1098 if (!DefMI->isImplicitDef()) { 1099 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 1100 unsigned NewDstReg = DstReg; 1101 1102 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1103 DefMI->getOperand(0).getSubReg()); 1104 if (NewDstIdx) 1105 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1106 1107 // Finally, make sure that the physical subregister that will be 1108 // constructed later is permitted for the instruction. 1109 if (!DefRC->contains(NewDstReg)) 1110 return false; 1111 } else { 1112 // Theoretically, some stack frame reference could exist. Just make sure 1113 // it hasn't actually happened. 1114 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 1115 "Only expect to deal with virtual or physical registers"); 1116 } 1117 } 1118 1119 DebugLoc DL = CopyMI->getDebugLoc(); 1120 MachineBasicBlock *MBB = CopyMI->getParent(); 1121 MachineBasicBlock::iterator MII = 1122 std::next(MachineBasicBlock::iterator(CopyMI)); 1123 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1124 MachineInstr &NewMI = *std::prev(MII); 1125 NewMI.setDebugLoc(DL); 1126 1127 // In a situation like the following: 1128 // %vreg0:subreg = instr ; DefMI, subreg = DstIdx 1129 // %vreg1 = copy %vreg0:subreg ; CopyMI, SrcIdx = 0 1130 // instead of widening %vreg1 to the register class of %vreg0 simply do: 1131 // %vreg1 = instr 1132 const TargetRegisterClass *NewRC = CP.getNewRC(); 1133 if (DstIdx != 0) { 1134 MachineOperand &DefMO = NewMI.getOperand(0); 1135 if (DefMO.getSubReg() == DstIdx) { 1136 assert(SrcIdx == 0 && CP.isFlipped() 1137 && "Shouldn't have SrcIdx+DstIdx at this point"); 1138 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1139 const TargetRegisterClass *CommonRC = 1140 TRI->getCommonSubClass(DefRC, DstRC); 1141 if (CommonRC != nullptr) { 1142 NewRC = CommonRC; 1143 DstIdx = 0; 1144 DefMO.setSubReg(0); 1145 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1146 } 1147 } 1148 } 1149 1150 // CopyMI may have implicit operands, save them so that we can transfer them 1151 // over to the newly materialized instruction after CopyMI is removed. 1152 SmallVector<MachineOperand, 4> ImplicitOps; 1153 ImplicitOps.reserve(CopyMI->getNumOperands() - 1154 CopyMI->getDesc().getNumOperands()); 1155 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1156 E = CopyMI->getNumOperands(); 1157 I != E; ++I) { 1158 MachineOperand &MO = CopyMI->getOperand(I); 1159 if (MO.isReg()) { 1160 assert(MO.isImplicit() && "No explicit operands after implict operands."); 1161 // Discard VReg implicit defs. 1162 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1163 ImplicitOps.push_back(MO); 1164 } 1165 } 1166 1167 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1168 CopyMI->eraseFromParent(); 1169 ErasedInstrs.insert(CopyMI); 1170 1171 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1172 // We need to remember these so we can add intervals once we insert 1173 // NewMI into SlotIndexes. 1174 SmallVector<unsigned, 4> NewMIImplDefs; 1175 for (unsigned i = NewMI.getDesc().getNumOperands(), 1176 e = NewMI.getNumOperands(); 1177 i != e; ++i) { 1178 MachineOperand &MO = NewMI.getOperand(i); 1179 if (MO.isReg() && MO.isDef()) { 1180 assert(MO.isImplicit() && MO.isDead() && 1181 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 1182 NewMIImplDefs.push_back(MO.getReg()); 1183 } 1184 } 1185 1186 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 1187 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1188 1189 if (DefRC != nullptr) { 1190 if (NewIdx) 1191 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1192 else 1193 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1194 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1195 } 1196 // Remap subranges to new lanemask and change register class. 1197 LiveInterval &DstInt = LIS->getInterval(DstReg); 1198 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1199 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1200 } 1201 MRI->setRegClass(DstReg, NewRC); 1202 1203 // Update machine operands and add flags. 1204 updateRegDefsUses(DstReg, DstReg, DstIdx); 1205 NewMI.getOperand(0).setSubReg(NewIdx); 1206 // Add dead subregister definitions if we are defining the whole register 1207 // but only part of it is live. 1208 // This could happen if the rematerialization instruction is rematerializing 1209 // more than actually is used in the register. 1210 // An example would be: 1211 // vreg1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1212 // ; Copying only part of the register here, but the rest is undef. 1213 // vreg2:sub_16bit<def, read-undef> = COPY vreg1:sub_16bit 1214 // ==> 1215 // ; Materialize all the constants but only using one 1216 // vreg2 = LOAD_CONSTANTS 5, 8 1217 // 1218 // at this point for the part that wasn't defined before we could have 1219 // subranges missing the definition. 1220 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1221 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1222 SlotIndex DefIndex = 1223 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1224 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1225 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1226 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1227 if (!SR.liveAt(DefIndex)) 1228 SR.createDeadDef(DefIndex, Alloc); 1229 MaxMask &= ~SR.LaneMask; 1230 } 1231 if (MaxMask.any()) { 1232 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1233 SR->createDeadDef(DefIndex, Alloc); 1234 } 1235 } 1236 1237 // Make sure that the subrange for resultant undef is removed 1238 // For example: 1239 // vreg1:sub1<def,read-undef> = LOAD CONSTANT 1 1240 // vreg2<def> = COPY vreg1 1241 // ==> 1242 // vreg2:sub1<def, read-undef> = LOAD CONSTANT 1 1243 // ; Correct but need to remove the subrange for vreg2:sub0 1244 // ; as it is now undef 1245 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1246 // The affected subregister segments can be removed. 1247 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1248 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1249 bool UpdatedSubRanges = false; 1250 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1251 if ((SR.LaneMask & DstMask).none()) { 1252 DEBUG(dbgs() << "Removing undefined SubRange " 1253 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1254 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1255 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1256 SR.removeValNo(RmValNo); 1257 UpdatedSubRanges = true; 1258 } 1259 } 1260 } 1261 if (UpdatedSubRanges) 1262 DstInt.removeEmptySubRanges(); 1263 } 1264 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1265 // The New instruction may be defining a sub-register of what's actually 1266 // been asked for. If so it must implicitly define the whole thing. 1267 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 1268 "Only expect virtual or physical registers in remat"); 1269 NewMI.getOperand(0).setIsDead(true); 1270 NewMI.addOperand(MachineOperand::CreateReg( 1271 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1272 // Record small dead def live-ranges for all the subregisters 1273 // of the destination register. 1274 // Otherwise, variables that live through may miss some 1275 // interferences, thus creating invalid allocation. 1276 // E.g., i386 code: 1277 // vreg1 = somedef ; vreg1 GR8 1278 // vreg2 = remat ; vreg2 GR32 1279 // CL = COPY vreg2.sub_8bit 1280 // = somedef vreg1 ; vreg1 GR8 1281 // => 1282 // vreg1 = somedef ; vreg1 GR8 1283 // ECX<def, dead> = remat ; CL<imp-def> 1284 // = somedef vreg1 ; vreg1 GR8 1285 // vreg1 will see the inteferences with CL but not with CH since 1286 // no live-ranges would have been created for ECX. 1287 // Fix that! 1288 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1289 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1290 Units.isValid(); ++Units) 1291 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1292 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1293 } 1294 1295 if (NewMI.getOperand(0).getSubReg()) 1296 NewMI.getOperand(0).setIsUndef(); 1297 1298 // Transfer over implicit operands to the rematerialized instruction. 1299 for (MachineOperand &MO : ImplicitOps) 1300 NewMI.addOperand(MO); 1301 1302 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1303 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1304 unsigned Reg = NewMIImplDefs[i]; 1305 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1306 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1307 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1308 } 1309 1310 DEBUG(dbgs() << "Remat: " << NewMI); 1311 ++NumReMats; 1312 1313 // The source interval can become smaller because we removed a use. 1314 shrinkToUses(&SrcInt, &DeadDefs); 1315 if (!DeadDefs.empty()) { 1316 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1317 // to describe DstReg instead. 1318 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1319 MachineInstr *UseMI = UseMO.getParent(); 1320 if (UseMI->isDebugValue()) { 1321 UseMO.setReg(DstReg); 1322 DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1323 } 1324 } 1325 eliminateDeadDefs(); 1326 } 1327 1328 return true; 1329 } 1330 1331 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1332 // ProcessImpicitDefs may leave some copies of <undef> values, it only removes 1333 // local variables. When we have a copy like: 1334 // 1335 // %vreg1 = COPY %vreg2<undef> 1336 // 1337 // We delete the copy and remove the corresponding value number from %vreg1. 1338 // Any uses of that value number are marked as <undef>. 1339 1340 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1341 // CoalescerPair may have a new register class with adjusted subreg indices 1342 // at this point. 1343 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1344 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx); 1345 1346 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1347 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1348 // CopyMI is undef iff SrcReg is not live before the instruction. 1349 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1350 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1351 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1352 if ((SR.LaneMask & SrcMask).none()) 1353 continue; 1354 if (SR.liveAt(Idx)) 1355 return false; 1356 } 1357 } else if (SrcLI.liveAt(Idx)) 1358 return false; 1359 1360 DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1361 1362 // Remove any DstReg segments starting at the instruction. 1363 LiveInterval &DstLI = LIS->getInterval(DstReg); 1364 SlotIndex RegIndex = Idx.getRegSlot(); 1365 // Remove value or merge with previous one in case of a subregister def. 1366 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1367 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1368 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1369 1370 // The affected subregister segments can be removed. 1371 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1372 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1373 if ((SR.LaneMask & DstMask).none()) 1374 continue; 1375 1376 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1377 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1378 SR.removeValNo(SVNI); 1379 } 1380 DstLI.removeEmptySubRanges(); 1381 } else 1382 LIS->removeVRegDefAt(DstLI, RegIndex); 1383 1384 // Mark uses as undef. 1385 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1386 if (MO.isDef() /*|| MO.isUndef()*/) 1387 continue; 1388 const MachineInstr &MI = *MO.getParent(); 1389 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1390 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1391 bool isLive; 1392 if (!UseMask.all() && DstLI.hasSubRanges()) { 1393 isLive = false; 1394 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1395 if ((SR.LaneMask & UseMask).none()) 1396 continue; 1397 if (SR.liveAt(UseIdx)) { 1398 isLive = true; 1399 break; 1400 } 1401 } 1402 } else 1403 isLive = DstLI.liveAt(UseIdx); 1404 if (isLive) 1405 continue; 1406 MO.setIsUndef(true); 1407 DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1408 } 1409 1410 // A def of a subregister may be a use of the other subregisters, so 1411 // deleting a def of a subregister may also remove uses. Since CopyMI 1412 // is still part of the function (but about to be erased), mark all 1413 // defs of DstReg in it as <undef>, so that shrinkToUses would 1414 // ignore them. 1415 for (MachineOperand &MO : CopyMI->operands()) 1416 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1417 MO.setIsUndef(true); 1418 LIS->shrinkToUses(&DstLI); 1419 1420 return true; 1421 } 1422 1423 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1424 MachineOperand &MO, unsigned SubRegIdx) { 1425 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1426 if (MO.isDef()) 1427 Mask = ~Mask; 1428 bool IsUndef = true; 1429 for (const LiveInterval::SubRange &S : Int.subranges()) { 1430 if ((S.LaneMask & Mask).none()) 1431 continue; 1432 if (S.liveAt(UseIdx)) { 1433 IsUndef = false; 1434 break; 1435 } 1436 } 1437 if (IsUndef) { 1438 MO.setIsUndef(true); 1439 // We found out some subregister use is actually reading an undefined 1440 // value. In some cases the whole vreg has become undefined at this 1441 // point so we have to potentially shrink the main range if the 1442 // use was ending a live segment there. 1443 LiveQueryResult Q = Int.Query(UseIdx); 1444 if (Q.valueOut() == nullptr) 1445 ShrinkMainRange = true; 1446 } 1447 } 1448 1449 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 1450 unsigned DstReg, 1451 unsigned SubIdx) { 1452 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 1453 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1454 1455 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1456 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1457 unsigned SubReg = MO.getSubReg(); 1458 if (SubReg == 0 || MO.isUndef()) 1459 continue; 1460 MachineInstr &MI = *MO.getParent(); 1461 if (MI.isDebugValue()) 1462 continue; 1463 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1464 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1465 } 1466 } 1467 1468 SmallPtrSet<MachineInstr*, 8> Visited; 1469 for (MachineRegisterInfo::reg_instr_iterator 1470 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1471 I != E; ) { 1472 MachineInstr *UseMI = &*(I++); 1473 1474 // Each instruction can only be rewritten once because sub-register 1475 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1476 // the UseMI operands removes them from the SrcReg use-def chain, but when 1477 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1478 // operands mentioning the virtual register. 1479 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1480 continue; 1481 1482 SmallVector<unsigned,8> Ops; 1483 bool Reads, Writes; 1484 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1485 1486 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1487 // because SrcReg is a sub-register. 1488 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) 1489 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1490 1491 // Replace SrcReg with DstReg in all UseMI operands. 1492 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1493 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1494 1495 // Adjust <undef> flags in case of sub-register joins. We don't want to 1496 // turn a full def into a read-modify-write sub-register def and vice 1497 // versa. 1498 if (SubIdx && MO.isDef()) 1499 MO.setIsUndef(!Reads); 1500 1501 // A subreg use of a partially undef (super) register may be a complete 1502 // undef use now and then has to be marked that way. 1503 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1504 if (!DstInt->hasSubRanges()) { 1505 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1506 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1507 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1508 } 1509 SlotIndex MIIdx = UseMI->isDebugValue() 1510 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1511 : LIS->getInstructionIndex(*UseMI); 1512 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1513 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1514 } 1515 1516 if (DstIsPhys) 1517 MO.substPhysReg(DstReg, *TRI); 1518 else 1519 MO.substVirtReg(DstReg, SubIdx, *TRI); 1520 } 1521 1522 DEBUG({ 1523 dbgs() << "\t\tupdated: "; 1524 if (!UseMI->isDebugValue()) 1525 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1526 dbgs() << *UseMI; 1527 }); 1528 } 1529 } 1530 1531 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1532 // Always join simple intervals that are defined by a single copy from a 1533 // reserved register. This doesn't increase register pressure, so it is 1534 // always beneficial. 1535 if (!MRI->isReserved(CP.getDstReg())) { 1536 DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1537 return false; 1538 } 1539 1540 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1541 if (JoinVInt.containsOneValue()) 1542 return true; 1543 1544 DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1545 return false; 1546 } 1547 1548 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1549 1550 Again = false; 1551 DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1552 1553 CoalescerPair CP(*TRI); 1554 if (!CP.setRegisters(CopyMI)) { 1555 DEBUG(dbgs() << "\tNot coalescable.\n"); 1556 return false; 1557 } 1558 1559 if (CP.getNewRC()) { 1560 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1561 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1562 unsigned SrcIdx = CP.getSrcIdx(); 1563 unsigned DstIdx = CP.getDstIdx(); 1564 if (CP.isFlipped()) { 1565 std::swap(SrcIdx, DstIdx); 1566 std::swap(SrcRC, DstRC); 1567 } 1568 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1569 CP.getNewRC())) { 1570 DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1571 return false; 1572 } 1573 } 1574 1575 // Dead code elimination. This really should be handled by MachineDCE, but 1576 // sometimes dead copies slip through, and we can't generate invalid live 1577 // ranges. 1578 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1579 DEBUG(dbgs() << "\tCopy is dead.\n"); 1580 DeadDefs.push_back(CopyMI); 1581 eliminateDeadDefs(); 1582 return true; 1583 } 1584 1585 // Eliminate undefs. 1586 if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) { 1587 deleteInstr(CopyMI); 1588 return false; // Not coalescable. 1589 } 1590 1591 // Coalesced copies are normally removed immediately, but transformations 1592 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1593 // When that happens, just join the values and remove the copy. 1594 if (CP.getSrcReg() == CP.getDstReg()) { 1595 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1596 DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1597 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1598 LiveQueryResult LRQ = LI.Query(CopyIdx); 1599 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1600 VNInfo *ReadVNI = LRQ.valueIn(); 1601 assert(ReadVNI && "No value before copy and no <undef> flag."); 1602 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1603 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1604 1605 // Process subregister liveranges. 1606 for (LiveInterval::SubRange &S : LI.subranges()) { 1607 LiveQueryResult SLRQ = S.Query(CopyIdx); 1608 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1609 VNInfo *SReadVNI = SLRQ.valueIn(); 1610 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1611 } 1612 } 1613 DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1614 } 1615 deleteInstr(CopyMI); 1616 return true; 1617 } 1618 1619 // Enforce policies. 1620 if (CP.isPhys()) { 1621 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI) 1622 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) 1623 << '\n'); 1624 if (!canJoinPhys(CP)) { 1625 // Before giving up coalescing, if definition of source is defined by 1626 // trivial computation, try rematerializing it. 1627 bool IsDefCopy; 1628 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1629 return true; 1630 if (IsDefCopy) 1631 Again = true; // May be possible to coalesce later. 1632 return false; 1633 } 1634 } else { 1635 // When possible, let DstReg be the larger interval. 1636 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1637 LIS->getInterval(CP.getDstReg()).size()) 1638 CP.flip(); 1639 1640 DEBUG({ 1641 dbgs() << "\tConsidering merging to " 1642 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1643 if (CP.getDstIdx() && CP.getSrcIdx()) 1644 dbgs() << PrintReg(CP.getDstReg()) << " in " 1645 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1646 << PrintReg(CP.getSrcReg()) << " in " 1647 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1648 else 1649 dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in " 1650 << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1651 }); 1652 } 1653 1654 ShrinkMask = LaneBitmask::getNone(); 1655 ShrinkMainRange = false; 1656 1657 // Okay, attempt to join these two intervals. On failure, this returns false. 1658 // Otherwise, if one of the intervals being joined is a physreg, this method 1659 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1660 // been modified, so we can use this information below to update aliases. 1661 if (!joinIntervals(CP)) { 1662 // Coalescing failed. 1663 1664 // If definition of source is defined by trivial computation, try 1665 // rematerializing it. 1666 bool IsDefCopy; 1667 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1668 return true; 1669 1670 // If we can eliminate the copy without merging the live segments, do so 1671 // now. 1672 if (!CP.isPartial() && !CP.isPhys()) { 1673 if (adjustCopiesBackFrom(CP, CopyMI) || 1674 removeCopyByCommutingDef(CP, CopyMI)) { 1675 deleteInstr(CopyMI); 1676 DEBUG(dbgs() << "\tTrivial!\n"); 1677 return true; 1678 } 1679 } 1680 1681 // Try and see if we can partially eliminate the copy by moving the copy to 1682 // its predecessor. 1683 if (!CP.isPartial() && !CP.isPhys()) 1684 if (removePartialRedundancy(CP, *CopyMI)) 1685 return true; 1686 1687 // Otherwise, we are unable to join the intervals. 1688 DEBUG(dbgs() << "\tInterference!\n"); 1689 Again = true; // May be possible to coalesce later. 1690 return false; 1691 } 1692 1693 // Coalescing to a virtual register that is of a sub-register class of the 1694 // other. Make sure the resulting register is set to the right register class. 1695 if (CP.isCrossClass()) { 1696 ++numCrossRCs; 1697 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1698 } 1699 1700 // Removing sub-register copies can ease the register class constraints. 1701 // Make sure we attempt to inflate the register class of DstReg. 1702 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1703 InflateRegs.push_back(CP.getDstReg()); 1704 1705 // CopyMI has been erased by joinIntervals at this point. Remove it from 1706 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1707 // to the work list. This keeps ErasedInstrs from growing needlessly. 1708 ErasedInstrs.erase(CopyMI); 1709 1710 // Rewrite all SrcReg operands to DstReg. 1711 // Also update DstReg operands to include DstIdx if it is set. 1712 if (CP.getDstIdx()) 1713 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1714 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1715 1716 // Shrink subregister ranges if necessary. 1717 if (ShrinkMask.any()) { 1718 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1719 for (LiveInterval::SubRange &S : LI.subranges()) { 1720 if ((S.LaneMask & ShrinkMask).none()) 1721 continue; 1722 DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1723 << ")\n"); 1724 LIS->shrinkToUses(S, LI.reg); 1725 } 1726 LI.removeEmptySubRanges(); 1727 } 1728 if (ShrinkMainRange) { 1729 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1730 shrinkToUses(&LI); 1731 } 1732 1733 // SrcReg is guaranteed to be the register whose live interval that is 1734 // being merged. 1735 LIS->removeInterval(CP.getSrcReg()); 1736 1737 // Update regalloc hint. 1738 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1739 1740 DEBUG({ 1741 dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 1742 << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 1743 dbgs() << "\tResult = "; 1744 if (CP.isPhys()) 1745 dbgs() << PrintReg(CP.getDstReg(), TRI); 1746 else 1747 dbgs() << LIS->getInterval(CP.getDstReg()); 1748 dbgs() << '\n'; 1749 }); 1750 1751 ++numJoins; 1752 return true; 1753 } 1754 1755 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1756 unsigned DstReg = CP.getDstReg(); 1757 unsigned SrcReg = CP.getSrcReg(); 1758 assert(CP.isPhys() && "Must be a physreg copy"); 1759 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 1760 LiveInterval &RHS = LIS->getInterval(SrcReg); 1761 DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1762 1763 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 1764 1765 // Optimization for reserved registers like ESP. We can only merge with a 1766 // reserved physreg if RHS has a single value that is a copy of DstReg. 1767 // The live range of the reserved register will look like a set of dead defs 1768 // - we don't properly track the live range of reserved registers. 1769 1770 // Deny any overlapping intervals. This depends on all the reserved 1771 // register live ranges to look like dead defs. 1772 if (!MRI->isConstantPhysReg(DstReg)) { 1773 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1774 // Abort if not all the regunits are reserved. 1775 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 1776 if (!MRI->isReserved(*RI)) 1777 return false; 1778 } 1779 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1780 DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n'); 1781 return false; 1782 } 1783 } 1784 1785 // We must also check for overlaps with regmask clobbers. 1786 BitVector RegMaskUsable; 1787 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 1788 !RegMaskUsable.test(DstReg)) { 1789 DEBUG(dbgs() << "\t\tRegMask interference\n"); 1790 return false; 1791 } 1792 } 1793 1794 // Skip any value computations, we are not adding new values to the 1795 // reserved register. Also skip merging the live ranges, the reserved 1796 // register live range doesn't need to be accurate as long as all the 1797 // defs are there. 1798 1799 // Delete the identity copy. 1800 MachineInstr *CopyMI; 1801 if (CP.isFlipped()) { 1802 // Physreg is copied into vreg 1803 // %vregY = COPY %X 1804 // ... //< no other def of %X here 1805 // use %vregY 1806 // => 1807 // ... 1808 // use %X 1809 CopyMI = MRI->getVRegDef(SrcReg); 1810 } else { 1811 // VReg is copied into physreg: 1812 // %vregX = def 1813 // ... //< no other def or use of %Y here 1814 // %Y = COPY %vregX 1815 // => 1816 // %Y = def 1817 // ... 1818 if (!MRI->hasOneNonDBGUse(SrcReg)) { 1819 DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 1820 return false; 1821 } 1822 1823 if (!LIS->intervalIsInOneMBB(RHS)) { 1824 DEBUG(dbgs() << "\t\tComplex control flow!\n"); 1825 return false; 1826 } 1827 1828 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 1829 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 1830 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 1831 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 1832 1833 if (!MRI->isConstantPhysReg(DstReg)) { 1834 // We checked above that there are no interfering defs of the physical 1835 // register. However, for this case, where we intend to move up the def of 1836 // the physical register, we also need to check for interfering uses. 1837 SlotIndexes *Indexes = LIS->getSlotIndexes(); 1838 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 1839 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 1840 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 1841 if (MI->readsRegister(DstReg, TRI)) { 1842 DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 1843 return false; 1844 } 1845 } 1846 } 1847 1848 // We're going to remove the copy which defines a physical reserved 1849 // register, so remove its valno, etc. 1850 DEBUG(dbgs() << "\t\tRemoving phys reg def of " << PrintReg(DstReg, TRI) 1851 << " at " << CopyRegIdx << "\n"); 1852 1853 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 1854 // Create a new dead def at the new def location. 1855 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1856 LiveRange &LR = LIS->getRegUnit(*UI); 1857 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 1858 } 1859 } 1860 1861 deleteInstr(CopyMI); 1862 1863 // We don't track kills for reserved registers. 1864 MRI->clearKillFlags(CP.getSrcReg()); 1865 1866 return true; 1867 } 1868 1869 //===----------------------------------------------------------------------===// 1870 // Interference checking and interval joining 1871 //===----------------------------------------------------------------------===// 1872 // 1873 // In the easiest case, the two live ranges being joined are disjoint, and 1874 // there is no interference to consider. It is quite common, though, to have 1875 // overlapping live ranges, and we need to check if the interference can be 1876 // resolved. 1877 // 1878 // The live range of a single SSA value forms a sub-tree of the dominator tree. 1879 // This means that two SSA values overlap if and only if the def of one value 1880 // is contained in the live range of the other value. As a special case, the 1881 // overlapping values can be defined at the same index. 1882 // 1883 // The interference from an overlapping def can be resolved in these cases: 1884 // 1885 // 1. Coalescable copies. The value is defined by a copy that would become an 1886 // identity copy after joining SrcReg and DstReg. The copy instruction will 1887 // be removed, and the value will be merged with the source value. 1888 // 1889 // There can be several copies back and forth, causing many values to be 1890 // merged into one. We compute a list of ultimate values in the joined live 1891 // range as well as a mappings from the old value numbers. 1892 // 1893 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 1894 // predecessors have a live out value. It doesn't cause real interference, 1895 // and can be merged into the value it overlaps. Like a coalescable copy, it 1896 // can be erased after joining. 1897 // 1898 // 3. Copy of external value. The overlapping def may be a copy of a value that 1899 // is already in the other register. This is like a coalescable copy, but 1900 // the live range of the source register must be trimmed after erasing the 1901 // copy instruction: 1902 // 1903 // %src = COPY %ext 1904 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 1905 // 1906 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 1907 // defining one lane at a time: 1908 // 1909 // %dst:ssub0<def,read-undef> = FOO 1910 // %src = BAR 1911 // %dst:ssub1<def> = COPY %src 1912 // 1913 // The live range of %src overlaps the %dst value defined by FOO, but 1914 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 1915 // which was undef anyway. 1916 // 1917 // The value mapping is more complicated in this case. The final live range 1918 // will have different value numbers for both FOO and BAR, but there is no 1919 // simple mapping from old to new values. It may even be necessary to add 1920 // new PHI values. 1921 // 1922 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 1923 // is live, but never read. This can happen because we don't compute 1924 // individual live ranges per lane. 1925 // 1926 // %dst<def> = FOO 1927 // %src = BAR 1928 // %dst:ssub1<def> = COPY %src 1929 // 1930 // This kind of interference is only resolved locally. If the clobbered 1931 // lane value escapes the block, the join is aborted. 1932 1933 namespace { 1934 /// Track information about values in a single virtual register about to be 1935 /// joined. Objects of this class are always created in pairs - one for each 1936 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 1937 /// pair) 1938 class JoinVals { 1939 /// Live range we work on. 1940 LiveRange &LR; 1941 /// (Main) register we work on. 1942 const unsigned Reg; 1943 1944 /// Reg (and therefore the values in this liverange) will end up as 1945 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 1946 /// CP.SrcIdx. 1947 const unsigned SubIdx; 1948 /// The LaneMask that this liverange will occupy the coalesced register. May 1949 /// be smaller than the lanemask produced by SubIdx when merging subranges. 1950 const LaneBitmask LaneMask; 1951 1952 /// This is true when joining sub register ranges, false when joining main 1953 /// ranges. 1954 const bool SubRangeJoin; 1955 /// Whether the current LiveInterval tracks subregister liveness. 1956 const bool TrackSubRegLiveness; 1957 1958 /// Values that will be present in the final live range. 1959 SmallVectorImpl<VNInfo*> &NewVNInfo; 1960 1961 const CoalescerPair &CP; 1962 LiveIntervals *LIS; 1963 SlotIndexes *Indexes; 1964 const TargetRegisterInfo *TRI; 1965 1966 /// Value number assignments. Maps value numbers in LI to entries in 1967 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 1968 SmallVector<int, 8> Assignments; 1969 1970 /// Conflict resolution for overlapping values. 1971 enum ConflictResolution { 1972 /// No overlap, simply keep this value. 1973 CR_Keep, 1974 1975 /// Merge this value into OtherVNI and erase the defining instruction. 1976 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 1977 /// values. 1978 CR_Erase, 1979 1980 /// Merge this value into OtherVNI but keep the defining instruction. 1981 /// This is for the special case where OtherVNI is defined by the same 1982 /// instruction. 1983 CR_Merge, 1984 1985 /// Keep this value, and have it replace OtherVNI where possible. This 1986 /// complicates value mapping since OtherVNI maps to two different values 1987 /// before and after this def. 1988 /// Used when clobbering undefined or dead lanes. 1989 CR_Replace, 1990 1991 /// Unresolved conflict. Visit later when all values have been mapped. 1992 CR_Unresolved, 1993 1994 /// Unresolvable conflict. Abort the join. 1995 CR_Impossible 1996 }; 1997 1998 /// Per-value info for LI. The lane bit masks are all relative to the final 1999 /// joined register, so they can be compared directly between SrcReg and 2000 /// DstReg. 2001 struct Val { 2002 ConflictResolution Resolution; 2003 2004 /// Lanes written by this def, 0 for unanalyzed values. 2005 LaneBitmask WriteLanes; 2006 2007 /// Lanes with defined values in this register. Other lanes are undef and 2008 /// safe to clobber. 2009 LaneBitmask ValidLanes; 2010 2011 /// Value in LI being redefined by this def. 2012 VNInfo *RedefVNI; 2013 2014 /// Value in the other live range that overlaps this def, if any. 2015 VNInfo *OtherVNI; 2016 2017 /// Is this value an IMPLICIT_DEF that can be erased? 2018 /// 2019 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2020 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2021 /// safely erased if they are overlapping a live value in the other live 2022 /// interval. 2023 /// 2024 /// Weird control flow graphs and incomplete PHI handling in 2025 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2026 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2027 /// normal values. 2028 bool ErasableImplicitDef; 2029 2030 /// True when the live range of this value will be pruned because of an 2031 /// overlapping CR_Replace value in the other live range. 2032 bool Pruned; 2033 2034 /// True once Pruned above has been computed. 2035 bool PrunedComputed; 2036 2037 Val() : Resolution(CR_Keep), WriteLanes(), ValidLanes(), 2038 RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false), 2039 Pruned(false), PrunedComputed(false) {} 2040 2041 bool isAnalyzed() const { return WriteLanes.any(); } 2042 }; 2043 2044 /// One entry per value number in LI. 2045 SmallVector<Val, 8> Vals; 2046 2047 /// Compute the bitmask of lanes actually written by DefMI. 2048 /// Set Redef if there are any partial register definitions that depend on the 2049 /// previous value of the register. 2050 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2051 2052 /// Find the ultimate value that VNI was copied from. 2053 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 2054 2055 bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const; 2056 2057 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2058 /// Return a conflict resolution when possible, but leave the hard cases as 2059 /// CR_Unresolved. 2060 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2061 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2062 /// The recursion always goes upwards in the dominator tree, making loops 2063 /// impossible. 2064 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2065 2066 /// Compute the value assignment for ValNo in RI. 2067 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2068 /// the stack. 2069 void computeAssignment(unsigned ValNo, JoinVals &Other); 2070 2071 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2072 /// the extent of the tainted lanes in the block. 2073 /// 2074 /// Multiple values in Other.LR can be affected since partial redefinitions 2075 /// can preserve previously tainted lanes. 2076 /// 2077 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2078 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2079 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2080 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2081 /// 2082 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2083 /// entry to TaintedVals. 2084 /// 2085 /// Returns false if the tainted lanes extend beyond the basic block. 2086 bool taintExtent(unsigned, LaneBitmask, JoinVals&, 2087 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> >&); 2088 2089 /// Return true if MI uses any of the given Lanes from Reg. 2090 /// This does not include partial redefinitions of Reg. 2091 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; 2092 2093 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2094 /// be pruned: 2095 /// 2096 /// %dst = COPY %src 2097 /// %src = COPY %dst <-- This value to be pruned. 2098 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2099 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2100 2101 public: 2102 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 2103 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 2104 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2105 bool TrackSubRegLiveness) 2106 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2107 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2108 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2109 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) 2110 {} 2111 2112 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2113 /// Returns false if any conflicts were impossible to resolve. 2114 bool mapValues(JoinVals &Other); 2115 2116 /// Try to resolve conflicts that require all values to be mapped. 2117 /// Returns false if any conflicts were impossible to resolve. 2118 bool resolveConflicts(JoinVals &Other); 2119 2120 /// Prune the live range of values in Other.LR where they would conflict with 2121 /// CR_Replace values in LR. Collect end points for restoring the live range 2122 /// after joining. 2123 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2124 bool changeInstrs); 2125 2126 /// Removes subranges starting at copies that get removed. This sometimes 2127 /// happens when undefined subranges are copied around. These ranges contain 2128 /// no useful information and can be removed. 2129 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2130 2131 /// Pruning values in subranges can lead to removing segments in these 2132 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2133 /// the main range also need to be removed. This function will mark 2134 /// the corresponding values in the main range as pruned, so that 2135 /// eraseInstrs can do the final cleanup. 2136 /// The parameter @p LI must be the interval whose main range is the 2137 /// live range LR. 2138 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2139 2140 /// Erase any machine instructions that have been coalesced away. 2141 /// Add erased instructions to ErasedInstrs. 2142 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2143 /// the erased instrs. 2144 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2145 SmallVectorImpl<unsigned> &ShrinkRegs, 2146 LiveInterval *LI = nullptr); 2147 2148 /// Remove liverange defs at places where implicit defs will be removed. 2149 void removeImplicitDefs(); 2150 2151 /// Get the value assignments suitable for passing to LiveInterval::join. 2152 const int *getAssignments() const { return Assignments.data(); } 2153 }; 2154 } // end anonymous namespace 2155 2156 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2157 const { 2158 LaneBitmask L; 2159 for (const MachineOperand &MO : DefMI->operands()) { 2160 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2161 continue; 2162 L |= TRI->getSubRegIndexLaneMask( 2163 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2164 if (MO.readsReg()) 2165 Redef = true; 2166 } 2167 return L; 2168 } 2169 2170 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 2171 const VNInfo *VNI) const { 2172 unsigned Reg = this->Reg; 2173 2174 while (!VNI->isPHIDef()) { 2175 SlotIndex Def = VNI->def; 2176 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2177 assert(MI && "No defining instruction"); 2178 if (!MI->isFullCopy()) 2179 return std::make_pair(VNI, Reg); 2180 unsigned SrcReg = MI->getOperand(1).getReg(); 2181 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 2182 return std::make_pair(VNI, Reg); 2183 2184 const LiveInterval &LI = LIS->getInterval(SrcReg); 2185 const VNInfo *ValueIn; 2186 // No subrange involved. 2187 if (!SubRangeJoin || !LI.hasSubRanges()) { 2188 LiveQueryResult LRQ = LI.Query(Def); 2189 ValueIn = LRQ.valueIn(); 2190 } else { 2191 // Query subranges. Pick the first matching one. 2192 ValueIn = nullptr; 2193 for (const LiveInterval::SubRange &S : LI.subranges()) { 2194 // Transform lanemask to a mask in the joined live interval. 2195 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2196 if ((SMask & LaneMask).none()) 2197 continue; 2198 LiveQueryResult LRQ = S.Query(Def); 2199 ValueIn = LRQ.valueIn(); 2200 break; 2201 } 2202 } 2203 if (ValueIn == nullptr) 2204 break; 2205 VNI = ValueIn; 2206 Reg = SrcReg; 2207 } 2208 return std::make_pair(VNI, Reg); 2209 } 2210 2211 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2212 const JoinVals &Other) const { 2213 const VNInfo *Orig0; 2214 unsigned Reg0; 2215 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2216 if (Orig0 == Value1) 2217 return true; 2218 2219 const VNInfo *Orig1; 2220 unsigned Reg1; 2221 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2222 2223 // The values are equal if they are defined at the same place and use the 2224 // same register. Note that we cannot compare VNInfos directly as some of 2225 // them might be from a copy created in mergeSubRangeInto() while the other 2226 // is from the original LiveInterval. 2227 return Orig0->def == Orig1->def && Reg0 == Reg1; 2228 } 2229 2230 JoinVals::ConflictResolution 2231 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2232 Val &V = Vals[ValNo]; 2233 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2234 VNInfo *VNI = LR.getValNumInfo(ValNo); 2235 if (VNI->isUnused()) { 2236 V.WriteLanes = LaneBitmask::getAll(); 2237 return CR_Keep; 2238 } 2239 2240 // Get the instruction defining this value, compute the lanes written. 2241 const MachineInstr *DefMI = nullptr; 2242 if (VNI->isPHIDef()) { 2243 // Conservatively assume that all lanes in a PHI are valid. 2244 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2245 : TRI->getSubRegIndexLaneMask(SubIdx); 2246 V.ValidLanes = V.WriteLanes = Lanes; 2247 } else { 2248 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2249 assert(DefMI != nullptr); 2250 if (SubRangeJoin) { 2251 // We don't care about the lanes when joining subregister ranges. 2252 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2253 if (DefMI->isImplicitDef()) { 2254 V.ValidLanes = LaneBitmask::getNone(); 2255 V.ErasableImplicitDef = true; 2256 } 2257 } else { 2258 bool Redef = false; 2259 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2260 2261 // If this is a read-modify-write instruction, there may be more valid 2262 // lanes than the ones written by this instruction. 2263 // This only covers partial redef operands. DefMI may have normal use 2264 // operands reading the register. They don't contribute valid lanes. 2265 // 2266 // This adds ssub1 to the set of valid lanes in %src: 2267 // 2268 // %src:ssub1<def> = FOO 2269 // 2270 // This leaves only ssub1 valid, making any other lanes undef: 2271 // 2272 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2273 // 2274 // The <read-undef> flag on the def operand means that old lane values are 2275 // not important. 2276 if (Redef) { 2277 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2278 assert((TrackSubRegLiveness || V.RedefVNI) && 2279 "Instruction is reading nonexistent value"); 2280 if (V.RedefVNI != nullptr) { 2281 computeAssignment(V.RedefVNI->id, Other); 2282 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2283 } 2284 } 2285 2286 // An IMPLICIT_DEF writes undef values. 2287 if (DefMI->isImplicitDef()) { 2288 // We normally expect IMPLICIT_DEF values to be live only until the end 2289 // of their block. If the value is really live longer and gets pruned in 2290 // another block, this flag is cleared again. 2291 V.ErasableImplicitDef = true; 2292 V.ValidLanes &= ~V.WriteLanes; 2293 } 2294 } 2295 } 2296 2297 // Find the value in Other that overlaps VNI->def, if any. 2298 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2299 2300 // It is possible that both values are defined by the same instruction, or 2301 // the values are PHIs defined in the same block. When that happens, the two 2302 // values should be merged into one, but not into any preceding value. 2303 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2304 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2305 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2306 2307 // One value stays, the other is merged. Keep the earlier one, or the first 2308 // one we see. 2309 if (OtherVNI->def < VNI->def) 2310 Other.computeAssignment(OtherVNI->id, *this); 2311 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2312 // This is an early-clobber def overlapping a live-in value in the other 2313 // register. Not mergeable. 2314 V.OtherVNI = OtherLRQ.valueIn(); 2315 return CR_Impossible; 2316 } 2317 V.OtherVNI = OtherVNI; 2318 Val &OtherV = Other.Vals[OtherVNI->id]; 2319 // Keep this value, check for conflicts when analyzing OtherVNI. 2320 if (!OtherV.isAnalyzed()) 2321 return CR_Keep; 2322 // Both sides have been analyzed now. 2323 // Allow overlapping PHI values. Any real interference would show up in a 2324 // predecessor, the PHI itself can't introduce any conflicts. 2325 if (VNI->isPHIDef()) 2326 return CR_Merge; 2327 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2328 // Overlapping lanes can't be resolved. 2329 return CR_Impossible; 2330 else 2331 return CR_Merge; 2332 } 2333 2334 // No simultaneous def. Is Other live at the def? 2335 V.OtherVNI = OtherLRQ.valueIn(); 2336 if (!V.OtherVNI) 2337 // No overlap, no conflict. 2338 return CR_Keep; 2339 2340 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2341 2342 // We have overlapping values, or possibly a kill of Other. 2343 // Recursively compute assignments up the dominator tree. 2344 Other.computeAssignment(V.OtherVNI->id, *this); 2345 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2346 2347 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2348 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2349 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2350 // technically. 2351 // 2352 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2353 // to erase the IMPLICIT_DEF instruction. 2354 if (OtherV.ErasableImplicitDef && DefMI && 2355 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2356 DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2357 << " extends into BB#" << DefMI->getParent()->getNumber() 2358 << ", keeping it.\n"); 2359 OtherV.ErasableImplicitDef = false; 2360 } 2361 2362 // Allow overlapping PHI values. Any real interference would show up in a 2363 // predecessor, the PHI itself can't introduce any conflicts. 2364 if (VNI->isPHIDef()) 2365 return CR_Replace; 2366 2367 // Check for simple erasable conflicts. 2368 if (DefMI->isImplicitDef()) { 2369 // We need the def for the subregister if there is nothing else live at the 2370 // subrange at this point. 2371 if (TrackSubRegLiveness 2372 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none()) 2373 return CR_Replace; 2374 return CR_Erase; 2375 } 2376 2377 // Include the non-conflict where DefMI is a coalescable copy that kills 2378 // OtherVNI. We still want the copy erased and value numbers merged. 2379 if (CP.isCoalescable(DefMI)) { 2380 // Some of the lanes copied from OtherVNI may be undef, making them undef 2381 // here too. 2382 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2383 return CR_Erase; 2384 } 2385 2386 // This may not be a real conflict if DefMI simply kills Other and defines 2387 // VNI. 2388 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2389 return CR_Keep; 2390 2391 // Handle the case where VNI and OtherVNI can be proven to be identical: 2392 // 2393 // %other = COPY %ext 2394 // %this = COPY %ext <-- Erase this copy 2395 // 2396 if (DefMI->isFullCopy() && !CP.isPartial() 2397 && valuesIdentical(VNI, V.OtherVNI, Other)) 2398 return CR_Erase; 2399 2400 // If the lanes written by this instruction were all undef in OtherVNI, it is 2401 // still safe to join the live ranges. This can't be done with a simple value 2402 // mapping, though - OtherVNI will map to multiple values: 2403 // 2404 // 1 %dst:ssub0 = FOO <-- OtherVNI 2405 // 2 %src = BAR <-- VNI 2406 // 3 %dst:ssub1 = COPY %src<kill> <-- Eliminate this copy. 2407 // 4 BAZ %dst<kill> 2408 // 5 QUUX %src<kill> 2409 // 2410 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2411 // handles this complex value mapping. 2412 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2413 return CR_Replace; 2414 2415 // If the other live range is killed by DefMI and the live ranges are still 2416 // overlapping, it must be because we're looking at an early clobber def: 2417 // 2418 // %dst<def,early-clobber> = ASM %src<kill> 2419 // 2420 // In this case, it is illegal to merge the two live ranges since the early 2421 // clobber def would clobber %src before it was read. 2422 if (OtherLRQ.isKill()) { 2423 // This case where the def doesn't overlap the kill is handled above. 2424 assert(VNI->def.isEarlyClobber() && 2425 "Only early clobber defs can overlap a kill"); 2426 return CR_Impossible; 2427 } 2428 2429 // VNI is clobbering live lanes in OtherVNI, but there is still the 2430 // possibility that no instructions actually read the clobbered lanes. 2431 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2432 // Otherwise Other.RI wouldn't be live here. 2433 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2434 return CR_Impossible; 2435 2436 // We need to verify that no instructions are reading the clobbered lanes. To 2437 // save compile time, we'll only check that locally. Don't allow the tainted 2438 // value to escape the basic block. 2439 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2440 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2441 return CR_Impossible; 2442 2443 // There are still some things that could go wrong besides clobbered lanes 2444 // being read, for example OtherVNI may be only partially redefined in MBB, 2445 // and some clobbered lanes could escape the block. Save this analysis for 2446 // resolveConflicts() when all values have been mapped. We need to know 2447 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2448 // that now - the recursive analyzeValue() calls must go upwards in the 2449 // dominator tree. 2450 return CR_Unresolved; 2451 } 2452 2453 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2454 Val &V = Vals[ValNo]; 2455 if (V.isAnalyzed()) { 2456 // Recursion should always move up the dominator tree, so ValNo is not 2457 // supposed to reappear before it has been assigned. 2458 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2459 return; 2460 } 2461 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2462 case CR_Erase: 2463 case CR_Merge: 2464 // Merge this ValNo into OtherVNI. 2465 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2466 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2467 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2468 DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@' 2469 << LR.getValNumInfo(ValNo)->def << " into " 2470 << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2471 << V.OtherVNI->def << " --> @" 2472 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2473 break; 2474 case CR_Replace: 2475 case CR_Unresolved: { 2476 // The other value is going to be pruned if this join is successful. 2477 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2478 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2479 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2480 // its lanes. 2481 if ((OtherV.WriteLanes & ~V.ValidLanes).any() && TrackSubRegLiveness) 2482 OtherV.ErasableImplicitDef = false; 2483 OtherV.Pruned = true; 2484 LLVM_FALLTHROUGH; 2485 } 2486 default: 2487 // This value number needs to go in the final joined live range. 2488 Assignments[ValNo] = NewVNInfo.size(); 2489 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2490 break; 2491 } 2492 } 2493 2494 bool JoinVals::mapValues(JoinVals &Other) { 2495 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2496 computeAssignment(i, Other); 2497 if (Vals[i].Resolution == CR_Impossible) { 2498 DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i 2499 << '@' << LR.getValNumInfo(i)->def << '\n'); 2500 return false; 2501 } 2502 } 2503 return true; 2504 } 2505 2506 bool JoinVals:: 2507 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2508 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> > &TaintExtent) { 2509 VNInfo *VNI = LR.getValNumInfo(ValNo); 2510 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2511 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2512 2513 // Scan Other.LR from VNI.def to MBBEnd. 2514 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2515 assert(OtherI != Other.LR.end() && "No conflict?"); 2516 do { 2517 // OtherI is pointing to a tainted value. Abort the join if the tainted 2518 // lanes escape the block. 2519 SlotIndex End = OtherI->end; 2520 if (End >= MBBEnd) { 2521 DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':' 2522 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2523 return false; 2524 } 2525 DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':' 2526 << OtherI->valno->id << '@' << OtherI->start 2527 << " to " << End << '\n'); 2528 // A dead def is not a problem. 2529 if (End.isDead()) 2530 break; 2531 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2532 2533 // Check for another def in the MBB. 2534 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2535 break; 2536 2537 // Lanes written by the new def are no longer tainted. 2538 const Val &OV = Other.Vals[OtherI->valno->id]; 2539 TaintedLanes &= ~OV.WriteLanes; 2540 if (!OV.RedefVNI) 2541 break; 2542 } while (TaintedLanes.any()); 2543 return true; 2544 } 2545 2546 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, 2547 LaneBitmask Lanes) const { 2548 if (MI.isDebugValue()) 2549 return false; 2550 for (const MachineOperand &MO : MI.operands()) { 2551 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2552 continue; 2553 if (!MO.readsReg()) 2554 continue; 2555 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2556 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2557 return true; 2558 } 2559 return false; 2560 } 2561 2562 bool JoinVals::resolveConflicts(JoinVals &Other) { 2563 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2564 Val &V = Vals[i]; 2565 assert (V.Resolution != CR_Impossible && "Unresolvable conflict"); 2566 if (V.Resolution != CR_Unresolved) 2567 continue; 2568 DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i 2569 << '@' << LR.getValNumInfo(i)->def << '\n'); 2570 if (SubRangeJoin) 2571 return false; 2572 2573 ++NumLaneConflicts; 2574 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2575 VNInfo *VNI = LR.getValNumInfo(i); 2576 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2577 2578 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2579 // join, those lanes will be tainted with a wrong value. Get the extent of 2580 // the tainted lanes. 2581 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2582 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2583 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2584 // Tainted lanes would extend beyond the basic block. 2585 return false; 2586 2587 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2588 2589 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2590 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2591 MachineBasicBlock::iterator MI = MBB->begin(); 2592 if (!VNI->isPHIDef()) { 2593 MI = Indexes->getInstructionFromIndex(VNI->def); 2594 // No need to check the instruction defining VNI for reads. 2595 ++MI; 2596 } 2597 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2598 "Interference ends on VNI->def. Should have been handled earlier"); 2599 MachineInstr *LastMI = 2600 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2601 assert(LastMI && "Range must end at a proper instruction"); 2602 unsigned TaintNum = 0; 2603 for (;;) { 2604 assert(MI != MBB->end() && "Bad LastMI"); 2605 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2606 DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2607 return false; 2608 } 2609 // LastMI is the last instruction to use the current value. 2610 if (&*MI == LastMI) { 2611 if (++TaintNum == TaintExtent.size()) 2612 break; 2613 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2614 assert(LastMI && "Range must end at a proper instruction"); 2615 TaintedLanes = TaintExtent[TaintNum].second; 2616 } 2617 ++MI; 2618 } 2619 2620 // The tainted lanes are unused. 2621 V.Resolution = CR_Replace; 2622 ++NumLaneResolves; 2623 } 2624 return true; 2625 } 2626 2627 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2628 Val &V = Vals[ValNo]; 2629 if (V.Pruned || V.PrunedComputed) 2630 return V.Pruned; 2631 2632 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2633 return V.Pruned; 2634 2635 // Follow copies up the dominator tree and check if any intermediate value 2636 // has been pruned. 2637 V.PrunedComputed = true; 2638 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2639 return V.Pruned; 2640 } 2641 2642 void JoinVals::pruneValues(JoinVals &Other, 2643 SmallVectorImpl<SlotIndex> &EndPoints, 2644 bool changeInstrs) { 2645 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2646 SlotIndex Def = LR.getValNumInfo(i)->def; 2647 switch (Vals[i].Resolution) { 2648 case CR_Keep: 2649 break; 2650 case CR_Replace: { 2651 // This value takes precedence over the value in Other.LR. 2652 LIS->pruneValue(Other.LR, Def, &EndPoints); 2653 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2654 // instructions are only inserted to provide a live-out value for PHI 2655 // predecessors, so the instruction should simply go away once its value 2656 // has been replaced. 2657 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2658 bool EraseImpDef = OtherV.ErasableImplicitDef && 2659 OtherV.Resolution == CR_Keep; 2660 if (!Def.isBlock()) { 2661 if (changeInstrs) { 2662 // Remove <def,read-undef> flags. This def is now a partial redef. 2663 // Also remove <def,dead> flags since the joined live range will 2664 // continue past this instruction. 2665 for (MachineOperand &MO : 2666 Indexes->getInstructionFromIndex(Def)->operands()) { 2667 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 2668 if (MO.getSubReg() != 0) 2669 MO.setIsUndef(EraseImpDef); 2670 MO.setIsDead(false); 2671 } 2672 } 2673 } 2674 // This value will reach instructions below, but we need to make sure 2675 // the live range also reaches the instruction at Def. 2676 if (!EraseImpDef) 2677 EndPoints.push_back(Def); 2678 } 2679 DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def 2680 << ": " << Other.LR << '\n'); 2681 break; 2682 } 2683 case CR_Erase: 2684 case CR_Merge: 2685 if (isPrunedValue(i, Other)) { 2686 // This value is ultimately a copy of a pruned value in LR or Other.LR. 2687 // We can no longer trust the value mapping computed by 2688 // computeAssignment(), the value that was originally copied could have 2689 // been replaced. 2690 LIS->pruneValue(LR, Def, &EndPoints); 2691 DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at " 2692 << Def << ": " << LR << '\n'); 2693 } 2694 break; 2695 case CR_Unresolved: 2696 case CR_Impossible: 2697 llvm_unreachable("Unresolved conflicts"); 2698 } 2699 } 2700 } 2701 2702 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 2703 // Look for values being erased. 2704 bool DidPrune = false; 2705 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2706 // We should trigger in all cases in which eraseInstrs() does something. 2707 // match what eraseInstrs() is doing, print a message so 2708 if (Vals[i].Resolution != CR_Erase && 2709 (Vals[i].Resolution != CR_Keep || !Vals[i].ErasableImplicitDef || 2710 !Vals[i].Pruned)) 2711 continue; 2712 2713 // Check subranges at the point where the copy will be removed. 2714 SlotIndex Def = LR.getValNumInfo(i)->def; 2715 // Print message so mismatches with eraseInstrs() can be diagnosed. 2716 DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def << '\n'); 2717 for (LiveInterval::SubRange &S : LI.subranges()) { 2718 LiveQueryResult Q = S.Query(Def); 2719 2720 // If a subrange starts at the copy then an undefined value has been 2721 // copied and we must remove that subrange value as well. 2722 VNInfo *ValueOut = Q.valueOutOrDead(); 2723 if (ValueOut != nullptr && Q.valueIn() == nullptr) { 2724 DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 2725 << " at " << Def << "\n"); 2726 LIS->pruneValue(S, Def, nullptr); 2727 DidPrune = true; 2728 // Mark value number as unused. 2729 ValueOut->markUnused(); 2730 continue; 2731 } 2732 // If a subrange ends at the copy, then a value was copied but only 2733 // partially used later. Shrink the subregister range appropriately. 2734 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 2735 DEBUG(dbgs() << "\t\tDead uses at sublane " << PrintLaneMask(S.LaneMask) 2736 << " at " << Def << "\n"); 2737 ShrinkMask |= S.LaneMask; 2738 } 2739 } 2740 } 2741 if (DidPrune) 2742 LI.removeEmptySubRanges(); 2743 } 2744 2745 /// Check if any of the subranges of @p LI contain a definition at @p Def. 2746 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 2747 for (LiveInterval::SubRange &SR : LI.subranges()) { 2748 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 2749 if (VNI->def == Def) 2750 return true; 2751 } 2752 return false; 2753 } 2754 2755 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 2756 assert(&static_cast<LiveRange&>(LI) == &LR); 2757 2758 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2759 if (Vals[i].Resolution != CR_Keep) 2760 continue; 2761 VNInfo *VNI = LR.getValNumInfo(i); 2762 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 2763 continue; 2764 Vals[i].Pruned = true; 2765 ShrinkMainRange = true; 2766 } 2767 } 2768 2769 void JoinVals::removeImplicitDefs() { 2770 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2771 Val &V = Vals[i]; 2772 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 2773 continue; 2774 2775 VNInfo *VNI = LR.getValNumInfo(i); 2776 VNI->markUnused(); 2777 LR.removeValNo(VNI); 2778 } 2779 } 2780 2781 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2782 SmallVectorImpl<unsigned> &ShrinkRegs, 2783 LiveInterval *LI) { 2784 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2785 // Get the def location before markUnused() below invalidates it. 2786 SlotIndex Def = LR.getValNumInfo(i)->def; 2787 switch (Vals[i].Resolution) { 2788 case CR_Keep: { 2789 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 2790 // longer. The IMPLICIT_DEF instructions are only inserted by 2791 // PHIElimination to guarantee that all PHI predecessors have a value. 2792 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 2793 break; 2794 // Remove value number i from LR. 2795 // For intervals with subranges, removing a segment from the main range 2796 // may require extending the previous segment: for each definition of 2797 // a subregister, there will be a corresponding def in the main range. 2798 // That def may fall in the middle of a segment from another subrange. 2799 // In such cases, removing this def from the main range must be 2800 // complemented by extending the main range to account for the liveness 2801 // of the other subrange. 2802 VNInfo *VNI = LR.getValNumInfo(i); 2803 SlotIndex Def = VNI->def; 2804 // The new end point of the main range segment to be extended. 2805 SlotIndex NewEnd; 2806 if (LI != nullptr) { 2807 LiveRange::iterator I = LR.FindSegmentContaining(Def); 2808 assert(I != LR.end()); 2809 // Do not extend beyond the end of the segment being removed. 2810 // The segment may have been pruned in preparation for joining 2811 // live ranges. 2812 NewEnd = I->end; 2813 } 2814 2815 LR.removeValNo(VNI); 2816 // Note that this VNInfo is reused and still referenced in NewVNInfo, 2817 // make it appear like an unused value number. 2818 VNI->markUnused(); 2819 2820 if (LI != nullptr && LI->hasSubRanges()) { 2821 assert(static_cast<LiveRange*>(LI) == &LR); 2822 // Determine the end point based on the subrange information: 2823 // minimum of (earliest def of next segment, 2824 // latest end point of containing segment) 2825 SlotIndex ED, LE; 2826 for (LiveInterval::SubRange &SR : LI->subranges()) { 2827 LiveRange::iterator I = SR.find(Def); 2828 if (I == SR.end()) 2829 continue; 2830 if (I->start > Def) 2831 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 2832 else 2833 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 2834 } 2835 if (LE.isValid()) 2836 NewEnd = std::min(NewEnd, LE); 2837 if (ED.isValid()) 2838 NewEnd = std::min(NewEnd, ED); 2839 2840 // We only want to do the extension if there was a subrange that 2841 // was live across Def. 2842 if (LE.isValid()) { 2843 LiveRange::iterator S = LR.find(Def); 2844 if (S != LR.begin()) 2845 std::prev(S)->end = NewEnd; 2846 } 2847 } 2848 DEBUG({ 2849 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 2850 if (LI != nullptr) 2851 dbgs() << "\t\t LHS = " << *LI << '\n'; 2852 }); 2853 LLVM_FALLTHROUGH; 2854 } 2855 2856 case CR_Erase: { 2857 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2858 assert(MI && "No instruction to erase"); 2859 if (MI->isCopy()) { 2860 unsigned Reg = MI->getOperand(1).getReg(); 2861 if (TargetRegisterInfo::isVirtualRegister(Reg) && 2862 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 2863 ShrinkRegs.push_back(Reg); 2864 } 2865 ErasedInstrs.insert(MI); 2866 DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 2867 LIS->RemoveMachineInstrFromMaps(*MI); 2868 MI->eraseFromParent(); 2869 break; 2870 } 2871 default: 2872 break; 2873 } 2874 } 2875 } 2876 2877 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 2878 LaneBitmask LaneMask, 2879 const CoalescerPair &CP) { 2880 SmallVector<VNInfo*, 16> NewVNInfo; 2881 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 2882 NewVNInfo, CP, LIS, TRI, true, true); 2883 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 2884 NewVNInfo, CP, LIS, TRI, true, true); 2885 2886 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 2887 // We should be able to resolve all conflicts here as we could successfully do 2888 // it on the mainrange already. There is however a problem when multiple 2889 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 2890 // interferences. 2891 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 2892 // We already determined that it is legal to merge the intervals, so this 2893 // should never fail. 2894 llvm_unreachable("*** Couldn't join subrange!\n"); 2895 } 2896 if (!LHSVals.resolveConflicts(RHSVals) || 2897 !RHSVals.resolveConflicts(LHSVals)) { 2898 // We already determined that it is legal to merge the intervals, so this 2899 // should never fail. 2900 llvm_unreachable("*** Couldn't join subrange!\n"); 2901 } 2902 2903 // The merging algorithm in LiveInterval::join() can't handle conflicting 2904 // value mappings, so we need to remove any live ranges that overlap a 2905 // CR_Replace resolution. Collect a set of end points that can be used to 2906 // restore the live range after joining. 2907 SmallVector<SlotIndex, 8> EndPoints; 2908 LHSVals.pruneValues(RHSVals, EndPoints, false); 2909 RHSVals.pruneValues(LHSVals, EndPoints, false); 2910 2911 LHSVals.removeImplicitDefs(); 2912 RHSVals.removeImplicitDefs(); 2913 2914 LRange.verify(); 2915 RRange.verify(); 2916 2917 // Join RRange into LHS. 2918 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 2919 NewVNInfo); 2920 2921 DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n"); 2922 if (EndPoints.empty()) 2923 return; 2924 2925 // Recompute the parts of the live range we had to remove because of 2926 // CR_Replace conflicts. 2927 DEBUG({ 2928 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 2929 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 2930 dbgs() << EndPoints[i]; 2931 if (i != n-1) 2932 dbgs() << ','; 2933 } 2934 dbgs() << ": " << LRange << '\n'; 2935 }); 2936 LIS->extendToIndices(LRange, EndPoints); 2937 } 2938 2939 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 2940 const LiveRange &ToMerge, 2941 LaneBitmask LaneMask, 2942 CoalescerPair &CP) { 2943 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2944 LI.refineSubRanges(Allocator, LaneMask, 2945 [this,&Allocator,&ToMerge,&CP](LiveInterval::SubRange &SR) { 2946 if (SR.empty()) { 2947 SR.assign(ToMerge, Allocator); 2948 } else { 2949 // joinSubRegRange() destroys the merged range, so we need a copy. 2950 LiveRange RangeCopy(ToMerge, Allocator); 2951 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 2952 } 2953 }); 2954 } 2955 2956 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 2957 SmallVector<VNInfo*, 16> NewVNInfo; 2958 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 2959 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 2960 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 2961 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 2962 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 2963 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 2964 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 2965 2966 DEBUG(dbgs() << "\t\tRHS = " << RHS 2967 << "\n\t\tLHS = " << LHS 2968 << '\n'); 2969 2970 // First compute NewVNInfo and the simple value mappings. 2971 // Detect impossible conflicts early. 2972 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 2973 return false; 2974 2975 // Some conflicts can only be resolved after all values have been mapped. 2976 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 2977 return false; 2978 2979 // All clear, the live ranges can be merged. 2980 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 2981 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2982 2983 // Transform lanemasks from the LHS to masks in the coalesced register and 2984 // create initial subranges if necessary. 2985 unsigned DstIdx = CP.getDstIdx(); 2986 if (!LHS.hasSubRanges()) { 2987 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 2988 : TRI->getSubRegIndexLaneMask(DstIdx); 2989 // LHS must support subregs or we wouldn't be in this codepath. 2990 assert(Mask.any()); 2991 LHS.createSubRangeFrom(Allocator, Mask, LHS); 2992 } else if (DstIdx != 0) { 2993 // Transform LHS lanemasks to new register class if necessary. 2994 for (LiveInterval::SubRange &R : LHS.subranges()) { 2995 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 2996 R.LaneMask = Mask; 2997 } 2998 } 2999 DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg()) 3000 << ' ' << LHS << '\n'); 3001 3002 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3003 unsigned SrcIdx = CP.getSrcIdx(); 3004 if (!RHS.hasSubRanges()) { 3005 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3006 : TRI->getSubRegIndexLaneMask(SrcIdx); 3007 mergeSubRangeInto(LHS, RHS, Mask, CP); 3008 } else { 3009 // Pair up subranges and merge. 3010 for (LiveInterval::SubRange &R : RHS.subranges()) { 3011 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3012 mergeSubRangeInto(LHS, R, Mask, CP); 3013 } 3014 } 3015 DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3016 3017 // Pruning implicit defs from subranges may result in the main range 3018 // having stale segments. 3019 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3020 3021 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3022 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3023 } 3024 3025 // The merging algorithm in LiveInterval::join() can't handle conflicting 3026 // value mappings, so we need to remove any live ranges that overlap a 3027 // CR_Replace resolution. Collect a set of end points that can be used to 3028 // restore the live range after joining. 3029 SmallVector<SlotIndex, 8> EndPoints; 3030 LHSVals.pruneValues(RHSVals, EndPoints, true); 3031 RHSVals.pruneValues(LHSVals, EndPoints, true); 3032 3033 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3034 // registers to require trimming. 3035 SmallVector<unsigned, 8> ShrinkRegs; 3036 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3037 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3038 while (!ShrinkRegs.empty()) 3039 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3040 3041 // Join RHS into LHS. 3042 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3043 3044 // Kill flags are going to be wrong if the live ranges were overlapping. 3045 // Eventually, we should simply clear all kill flags when computing live 3046 // ranges. They are reinserted after register allocation. 3047 MRI->clearKillFlags(LHS.reg); 3048 MRI->clearKillFlags(RHS.reg); 3049 3050 if (!EndPoints.empty()) { 3051 // Recompute the parts of the live range we had to remove because of 3052 // CR_Replace conflicts. 3053 DEBUG({ 3054 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3055 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3056 dbgs() << EndPoints[i]; 3057 if (i != n-1) 3058 dbgs() << ','; 3059 } 3060 dbgs() << ": " << LHS << '\n'; 3061 }); 3062 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3063 } 3064 3065 return true; 3066 } 3067 3068 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3069 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3070 } 3071 3072 namespace { 3073 /// Information concerning MBB coalescing priority. 3074 struct MBBPriorityInfo { 3075 MachineBasicBlock *MBB; 3076 unsigned Depth; 3077 bool IsSplit; 3078 3079 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3080 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3081 }; 3082 } 3083 3084 /// C-style comparator that sorts first based on the loop depth of the basic 3085 /// block (the unsigned), and then on the MBB number. 3086 /// 3087 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3088 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3089 const MBBPriorityInfo *RHS) { 3090 // Deeper loops first 3091 if (LHS->Depth != RHS->Depth) 3092 return LHS->Depth > RHS->Depth ? -1 : 1; 3093 3094 // Try to unsplit critical edges next. 3095 if (LHS->IsSplit != RHS->IsSplit) 3096 return LHS->IsSplit ? -1 : 1; 3097 3098 // Prefer blocks that are more connected in the CFG. This takes care of 3099 // the most difficult copies first while intervals are short. 3100 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3101 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3102 if (cl != cr) 3103 return cl > cr ? -1 : 1; 3104 3105 // As a last resort, sort by block number. 3106 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3107 } 3108 3109 /// \returns true if the given copy uses or defines a local live range. 3110 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3111 if (!Copy->isCopy()) 3112 return false; 3113 3114 if (Copy->getOperand(1).isUndef()) 3115 return false; 3116 3117 unsigned SrcReg = Copy->getOperand(1).getReg(); 3118 unsigned DstReg = Copy->getOperand(0).getReg(); 3119 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 3120 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 3121 return false; 3122 3123 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3124 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3125 } 3126 3127 bool RegisterCoalescer:: 3128 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3129 bool Progress = false; 3130 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3131 if (!CurrList[i]) 3132 continue; 3133 // Skip instruction pointers that have already been erased, for example by 3134 // dead code elimination. 3135 if (ErasedInstrs.count(CurrList[i])) { 3136 CurrList[i] = nullptr; 3137 continue; 3138 } 3139 bool Again = false; 3140 bool Success = joinCopy(CurrList[i], Again); 3141 Progress |= Success; 3142 if (Success || !Again) 3143 CurrList[i] = nullptr; 3144 } 3145 return Progress; 3146 } 3147 3148 /// Check if DstReg is a terminal node. 3149 /// I.e., it does not have any affinity other than \p Copy. 3150 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 3151 const MachineRegisterInfo *MRI) { 3152 assert(Copy.isCopyLike()); 3153 // Check if the destination of this copy as any other affinity. 3154 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3155 if (&MI != &Copy && MI.isCopyLike()) 3156 return false; 3157 return true; 3158 } 3159 3160 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3161 assert(Copy.isCopyLike()); 3162 if (!UseTerminalRule) 3163 return false; 3164 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 3165 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg); 3166 // Check if the destination of this copy has any other affinity. 3167 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 3168 // If SrcReg is a physical register, the copy won't be coalesced. 3169 // Ignoring it may have other side effect (like missing 3170 // rematerialization). So keep it. 3171 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 3172 !isTerminalReg(DstReg, Copy, MRI)) 3173 return false; 3174 3175 // DstReg is a terminal node. Check if it interferes with any other 3176 // copy involving SrcReg. 3177 const MachineBasicBlock *OrigBB = Copy.getParent(); 3178 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3179 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3180 // Technically we should check if the weight of the new copy is 3181 // interesting compared to the other one and update the weight 3182 // of the copies accordingly. However, this would only work if 3183 // we would gather all the copies first then coalesce, whereas 3184 // right now we interleave both actions. 3185 // For now, just consider the copies that are in the same block. 3186 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3187 continue; 3188 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 3189 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3190 OtherSubReg); 3191 if (OtherReg == SrcReg) 3192 OtherReg = OtherSrcReg; 3193 // Check if OtherReg is a non-terminal. 3194 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) || 3195 isTerminalReg(OtherReg, MI, MRI)) 3196 continue; 3197 // Check that OtherReg interfere with DstReg. 3198 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3199 DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n'); 3200 return true; 3201 } 3202 } 3203 return false; 3204 } 3205 3206 void 3207 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3208 DEBUG(dbgs() << MBB->getName() << ":\n"); 3209 3210 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3211 // yet, it might invalidate the iterator. 3212 const unsigned PrevSize = WorkList.size(); 3213 if (JoinGlobalCopies) { 3214 SmallVector<MachineInstr*, 2> LocalTerminals; 3215 SmallVector<MachineInstr*, 2> GlobalTerminals; 3216 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3217 // are not inherently easier to resolve, but slightly preferable until we 3218 // have local live range splitting. In particular this is required by 3219 // cmp+jmp macro fusion. 3220 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3221 MII != E; ++MII) { 3222 if (!MII->isCopyLike()) 3223 continue; 3224 bool ApplyTerminalRule = applyTerminalRule(*MII); 3225 if (isLocalCopy(&(*MII), LIS)) { 3226 if (ApplyTerminalRule) 3227 LocalTerminals.push_back(&(*MII)); 3228 else 3229 LocalWorkList.push_back(&(*MII)); 3230 } else { 3231 if (ApplyTerminalRule) 3232 GlobalTerminals.push_back(&(*MII)); 3233 else 3234 WorkList.push_back(&(*MII)); 3235 } 3236 } 3237 // Append the copies evicted by the terminal rule at the end of the list. 3238 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3239 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3240 } 3241 else { 3242 SmallVector<MachineInstr*, 2> Terminals; 3243 for (MachineInstr &MII : *MBB) 3244 if (MII.isCopyLike()) { 3245 if (applyTerminalRule(MII)) 3246 Terminals.push_back(&MII); 3247 else 3248 WorkList.push_back(&MII); 3249 } 3250 // Append the copies evicted by the terminal rule at the end of the list. 3251 WorkList.append(Terminals.begin(), Terminals.end()); 3252 } 3253 // Try coalescing the collected copies immediately, and remove the nulls. 3254 // This prevents the WorkList from getting too large since most copies are 3255 // joinable on the first attempt. 3256 MutableArrayRef<MachineInstr*> 3257 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3258 if (copyCoalesceWorkList(CurrList)) 3259 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3260 nullptr), WorkList.end()); 3261 } 3262 3263 void RegisterCoalescer::coalesceLocals() { 3264 copyCoalesceWorkList(LocalWorkList); 3265 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3266 if (LocalWorkList[j]) 3267 WorkList.push_back(LocalWorkList[j]); 3268 } 3269 LocalWorkList.clear(); 3270 } 3271 3272 void RegisterCoalescer::joinAllIntervals() { 3273 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3274 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3275 3276 std::vector<MBBPriorityInfo> MBBs; 3277 MBBs.reserve(MF->size()); 3278 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3279 MachineBasicBlock *MBB = &*I; 3280 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3281 JoinSplitEdges && isSplitEdge(MBB))); 3282 } 3283 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3284 3285 // Coalesce intervals in MBB priority order. 3286 unsigned CurrDepth = UINT_MAX; 3287 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3288 // Try coalescing the collected local copies for deeper loops. 3289 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3290 coalesceLocals(); 3291 CurrDepth = MBBs[i].Depth; 3292 } 3293 copyCoalesceInMBB(MBBs[i].MBB); 3294 } 3295 coalesceLocals(); 3296 3297 // Joining intervals can allow other intervals to be joined. Iteratively join 3298 // until we make no progress. 3299 while (copyCoalesceWorkList(WorkList)) 3300 /* empty */ ; 3301 } 3302 3303 void RegisterCoalescer::releaseMemory() { 3304 ErasedInstrs.clear(); 3305 WorkList.clear(); 3306 DeadDefs.clear(); 3307 InflateRegs.clear(); 3308 } 3309 3310 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3311 MF = &fn; 3312 MRI = &fn.getRegInfo(); 3313 TM = &fn.getTarget(); 3314 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3315 TRI = STI.getRegisterInfo(); 3316 TII = STI.getInstrInfo(); 3317 LIS = &getAnalysis<LiveIntervals>(); 3318 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3319 Loops = &getAnalysis<MachineLoopInfo>(); 3320 if (EnableGlobalCopies == cl::BOU_UNSET) 3321 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3322 else 3323 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3324 3325 // The MachineScheduler does not currently require JoinSplitEdges. This will 3326 // either be enabled unconditionally or replaced by a more general live range 3327 // splitting optimization. 3328 JoinSplitEdges = EnableJoinSplits; 3329 3330 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3331 << "********** Function: " << MF->getName() << '\n'); 3332 3333 if (VerifyCoalescing) 3334 MF->verify(this, "Before register coalescing"); 3335 3336 RegClassInfo.runOnMachineFunction(fn); 3337 3338 // Join (coalesce) intervals if requested. 3339 if (EnableJoining) 3340 joinAllIntervals(); 3341 3342 // After deleting a lot of copies, register classes may be less constrained. 3343 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3344 // DPR inflation. 3345 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3346 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3347 InflateRegs.end()); 3348 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n"); 3349 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3350 unsigned Reg = InflateRegs[i]; 3351 if (MRI->reg_nodbg_empty(Reg)) 3352 continue; 3353 if (MRI->recomputeRegClass(Reg)) { 3354 DEBUG(dbgs() << PrintReg(Reg) << " inflated to " 3355 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3356 ++NumInflated; 3357 3358 LiveInterval &LI = LIS->getInterval(Reg); 3359 if (LI.hasSubRanges()) { 3360 // If the inflated register class does not support subregisters anymore 3361 // remove the subranges. 3362 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3363 LI.clearSubRanges(); 3364 } else { 3365 #ifndef NDEBUG 3366 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3367 // If subranges are still supported, then the same subregs 3368 // should still be supported. 3369 for (LiveInterval::SubRange &S : LI.subranges()) { 3370 assert((S.LaneMask & ~MaxMask).none()); 3371 } 3372 #endif 3373 } 3374 } 3375 } 3376 } 3377 3378 DEBUG(dump()); 3379 if (VerifyCoalescing) 3380 MF->verify(this, "After register coalescing"); 3381 return true; 3382 } 3383 3384 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3385 LIS->print(O, m); 3386 } 3387