1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic RegisterCoalescer interface which 10 // is used as the common interface used by all clients and 11 // implementations of register coalescing. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "RegisterCoalescer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetOpcodes.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/LaneBitmask.h" 45 #include "llvm/MC/MCInstrDesc.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <iterator> 56 #include <limits> 57 #include <tuple> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "regalloc" 64 65 STATISTIC(numJoins , "Number of interval joins performed"); 66 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 67 STATISTIC(numCommutes , "Number of instruction commuting performed"); 68 STATISTIC(numExtends , "Number of copies extended"); 69 STATISTIC(NumReMats , "Number of instructions re-materialized"); 70 STATISTIC(NumInflated , "Number of register classes inflated"); 71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 72 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 73 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called"); 74 75 static cl::opt<bool> EnableJoining("join-liveintervals", 76 cl::desc("Coalesce copies (default=true)"), 77 cl::init(true), cl::Hidden); 78 79 static cl::opt<bool> UseTerminalRule("terminal-rule", 80 cl::desc("Apply the terminal rule"), 81 cl::init(false), cl::Hidden); 82 83 /// Temporary flag to test critical edge unsplitting. 84 static cl::opt<bool> 85 EnableJoinSplits("join-splitedges", 86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 87 88 /// Temporary flag to test global copy optimization. 89 static cl::opt<cl::boolOrDefault> 90 EnableGlobalCopies("join-globalcopies", 91 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 92 cl::init(cl::BOU_UNSET), cl::Hidden); 93 94 static cl::opt<bool> 95 VerifyCoalescing("verify-coalescing", 96 cl::desc("Verify machine instrs before and after register coalescing"), 97 cl::Hidden); 98 99 static cl::opt<unsigned> LateRematUpdateThreshold( 100 "late-remat-update-threshold", cl::Hidden, 101 cl::desc("During rematerialization for a copy, if the def instruction has " 102 "many other copy uses to be rematerialized, delay the multiple " 103 "separate live interval update work and do them all at once after " 104 "all those rematerialization are done. It will save a lot of " 105 "repeated work. "), 106 cl::init(100)); 107 108 static cl::opt<unsigned> LargeIntervalSizeThreshold( 109 "large-interval-size-threshold", cl::Hidden, 110 cl::desc("If the valnos size of an interval is larger than the threshold, " 111 "it is regarded as a large interval. "), 112 cl::init(100)); 113 114 static cl::opt<unsigned> LargeIntervalFreqThreshold( 115 "large-interval-freq-threshold", cl::Hidden, 116 cl::desc("For a large interval, if it is coalesed with other live " 117 "intervals many times more than the threshold, stop its " 118 "coalescing to control the compile time. "), 119 cl::init(100)); 120 121 namespace { 122 123 class JoinVals; 124 125 class RegisterCoalescer : public MachineFunctionPass, 126 private LiveRangeEdit::Delegate { 127 MachineFunction* MF = nullptr; 128 MachineRegisterInfo* MRI = nullptr; 129 const TargetRegisterInfo* TRI = nullptr; 130 const TargetInstrInfo* TII = nullptr; 131 LiveIntervals *LIS = nullptr; 132 const MachineLoopInfo* Loops = nullptr; 133 AliasAnalysis *AA = nullptr; 134 RegisterClassInfo RegClassInfo; 135 136 /// Position and VReg of a PHI instruction during coalescing. 137 struct PHIValPos { 138 SlotIndex SI; ///< Slot where this PHI occurs. 139 Register Reg; ///< VReg the PHI occurs in. 140 unsigned SubReg; ///< Qualifying subregister for Reg. 141 }; 142 143 /// Map from debug instruction number to PHI position during coalescing. 144 DenseMap<unsigned, PHIValPos> PHIValToPos; 145 /// Index of, for each VReg, which debug instruction numbers and 146 /// corresponding PHIs are sensitive to coalescing. Each VReg may have 147 /// multiple PHI defs, at different positions. 148 DenseMap<Register, SmallVector<unsigned, 2>> RegToPHIIdx; 149 150 /// Debug variable location tracking -- for each VReg, maintain an 151 /// ordered-by-slot-index set of DBG_VALUEs, to help quick 152 /// identification of whether coalescing may change location validity. 153 using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>; 154 DenseMap<Register, std::vector<DbgValueLoc>> DbgVRegToValues; 155 156 /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached. 157 /// To avoid repeatedly merging sets of DbgValueLocs, instead record 158 /// which vregs have been coalesced, and where to. This map is from 159 /// vreg => {set of vregs merged in}. 160 DenseMap<Register, SmallVector<Register, 4>> DbgMergedVRegNums; 161 162 /// A LaneMask to remember on which subregister live ranges we need to call 163 /// shrinkToUses() later. 164 LaneBitmask ShrinkMask; 165 166 /// True if the main range of the currently coalesced intervals should be 167 /// checked for smaller live intervals. 168 bool ShrinkMainRange = false; 169 170 /// True if the coalescer should aggressively coalesce global copies 171 /// in favor of keeping local copies. 172 bool JoinGlobalCopies = false; 173 174 /// True if the coalescer should aggressively coalesce fall-thru 175 /// blocks exclusively containing copies. 176 bool JoinSplitEdges = false; 177 178 /// Copy instructions yet to be coalesced. 179 SmallVector<MachineInstr*, 8> WorkList; 180 SmallVector<MachineInstr*, 8> LocalWorkList; 181 182 /// Set of instruction pointers that have been erased, and 183 /// that may be present in WorkList. 184 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 185 186 /// Dead instructions that are about to be deleted. 187 SmallVector<MachineInstr*, 8> DeadDefs; 188 189 /// Virtual registers to be considered for register class inflation. 190 SmallVector<Register, 8> InflateRegs; 191 192 /// The collection of live intervals which should have been updated 193 /// immediately after rematerialiation but delayed until 194 /// lateLiveIntervalUpdate is called. 195 DenseSet<Register> ToBeUpdated; 196 197 /// Record how many times the large live interval with many valnos 198 /// has been tried to join with other live interval. 199 DenseMap<Register, unsigned long> LargeLIVisitCounter; 200 201 /// Recursively eliminate dead defs in DeadDefs. 202 void eliminateDeadDefs(); 203 204 /// allUsesAvailableAt - Return true if all registers used by OrigMI at 205 /// OrigIdx are also available with the same value at UseIdx. 206 bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx, 207 SlotIndex UseIdx); 208 209 /// LiveRangeEdit callback for eliminateDeadDefs(). 210 void LRE_WillEraseInstruction(MachineInstr *MI) override; 211 212 /// Coalesce the LocalWorkList. 213 void coalesceLocals(); 214 215 /// Join compatible live intervals 216 void joinAllIntervals(); 217 218 /// Coalesce copies in the specified MBB, putting 219 /// copies that cannot yet be coalesced into WorkList. 220 void copyCoalesceInMBB(MachineBasicBlock *MBB); 221 222 /// Tries to coalesce all copies in CurrList. Returns true if any progress 223 /// was made. 224 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 225 226 /// If one def has many copy like uses, and those copy uses are all 227 /// rematerialized, the live interval update needed for those 228 /// rematerializations will be delayed and done all at once instead 229 /// of being done multiple times. This is to save compile cost because 230 /// live interval update is costly. 231 void lateLiveIntervalUpdate(); 232 233 /// Check if the incoming value defined by a COPY at \p SLRQ in the subrange 234 /// has no value defined in the predecessors. If the incoming value is the 235 /// same as defined by the copy itself, the value is considered undefined. 236 bool copyValueUndefInPredecessors(LiveRange &S, 237 const MachineBasicBlock *MBB, 238 LiveQueryResult SLRQ); 239 240 /// Set necessary undef flags on subregister uses after pruning out undef 241 /// lane segments from the subrange. 242 void setUndefOnPrunedSubRegUses(LiveInterval &LI, Register Reg, 243 LaneBitmask PrunedLanes); 244 245 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 246 /// src/dst of the copy instruction CopyMI. This returns true if the copy 247 /// was successfully coalesced away. If it is not currently possible to 248 /// coalesce this interval, but it may be possible if other things get 249 /// coalesced, then it returns true by reference in 'Again'. 250 bool joinCopy(MachineInstr *CopyMI, bool &Again); 251 252 /// Attempt to join these two intervals. On failure, this 253 /// returns false. The output "SrcInt" will not have been modified, so we 254 /// can use this information below to update aliases. 255 bool joinIntervals(CoalescerPair &CP); 256 257 /// Attempt joining two virtual registers. Return true on success. 258 bool joinVirtRegs(CoalescerPair &CP); 259 260 /// If a live interval has many valnos and is coalesced with other 261 /// live intervals many times, we regard such live interval as having 262 /// high compile time cost. 263 bool isHighCostLiveInterval(LiveInterval &LI); 264 265 /// Attempt joining with a reserved physreg. 266 bool joinReservedPhysReg(CoalescerPair &CP); 267 268 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 269 /// Subranges in @p LI which only partially interfere with the desired 270 /// LaneMask are split as necessary. @p LaneMask are the lanes that 271 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 272 /// lanemasks already adjusted to the coalesced register. 273 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 274 LaneBitmask LaneMask, CoalescerPair &CP, 275 unsigned DstIdx); 276 277 /// Join the liveranges of two subregisters. Joins @p RRange into 278 /// @p LRange, @p RRange may be invalid afterwards. 279 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 280 LaneBitmask LaneMask, const CoalescerPair &CP); 281 282 /// We found a non-trivially-coalescable copy. If the source value number is 283 /// defined by a copy from the destination reg see if we can merge these two 284 /// destination reg valno# into a single value number, eliminating a copy. 285 /// This returns true if an interval was modified. 286 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 287 288 /// Return true if there are definitions of IntB 289 /// other than BValNo val# that can reach uses of AValno val# of IntA. 290 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 291 VNInfo *AValNo, VNInfo *BValNo); 292 293 /// We found a non-trivially-coalescable copy. 294 /// If the source value number is defined by a commutable instruction and 295 /// its other operand is coalesced to the copy dest register, see if we 296 /// can transform the copy into a noop by commuting the definition. 297 /// This returns a pair of two flags: 298 /// - the first element is true if an interval was modified, 299 /// - the second element is true if the destination interval needs 300 /// to be shrunk after deleting the copy. 301 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP, 302 MachineInstr *CopyMI); 303 304 /// We found a copy which can be moved to its less frequent predecessor. 305 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 306 307 /// If the source of a copy is defined by a 308 /// trivial computation, replace the copy by rematerialize the definition. 309 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 310 bool &IsDefCopy); 311 312 /// Return true if a copy involving a physreg should be joined. 313 bool canJoinPhys(const CoalescerPair &CP); 314 315 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 316 /// number if it is not zero. If DstReg is a physical register and the 317 /// existing subregister number of the def / use being updated is not zero, 318 /// make sure to set it to the correct physical subregister. 319 void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx); 320 321 /// If the given machine operand reads only undefined lanes add an undef 322 /// flag. 323 /// This can happen when undef uses were previously concealed by a copy 324 /// which we coalesced. Example: 325 /// %0:sub0<def,read-undef> = ... 326 /// %1 = COPY %0 <-- Coalescing COPY reveals undef 327 /// = use %1:sub1 <-- hidden undef use 328 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 329 MachineOperand &MO, unsigned SubRegIdx); 330 331 /// Handle copies of undef values. If the undef value is an incoming 332 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF. 333 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise, 334 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point). 335 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI); 336 337 /// Check whether or not we should apply the terminal rule on the 338 /// destination (Dst) of \p Copy. 339 /// When the terminal rule applies, Copy is not profitable to 340 /// coalesce. 341 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 342 /// at least one interference (Dst, Dst2). If Dst is terminal, the 343 /// terminal rule consists in checking that at least one of 344 /// interfering node, say Dst2, has an affinity of equal or greater 345 /// weight with Src. 346 /// In that case, Dst2 and Dst will not be able to be both coalesced 347 /// with Src. Since Dst2 exposes more coalescing opportunities than 348 /// Dst, we can drop \p Copy. 349 bool applyTerminalRule(const MachineInstr &Copy) const; 350 351 /// Wrapper method for \see LiveIntervals::shrinkToUses. 352 /// This method does the proper fixing of the live-ranges when the afore 353 /// mentioned method returns true. 354 void shrinkToUses(LiveInterval *LI, 355 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 356 NumShrinkToUses++; 357 if (LIS->shrinkToUses(LI, Dead)) { 358 /// Check whether or not \p LI is composed by multiple connected 359 /// components and if that is the case, fix that. 360 SmallVector<LiveInterval*, 8> SplitLIs; 361 LIS->splitSeparateComponents(*LI, SplitLIs); 362 } 363 } 364 365 /// Wrapper Method to do all the necessary work when an Instruction is 366 /// deleted. 367 /// Optimizations should use this to make sure that deleted instructions 368 /// are always accounted for. 369 void deleteInstr(MachineInstr* MI) { 370 ErasedInstrs.insert(MI); 371 LIS->RemoveMachineInstrFromMaps(*MI); 372 MI->eraseFromParent(); 373 } 374 375 /// Walk over function and initialize the DbgVRegToValues map. 376 void buildVRegToDbgValueMap(MachineFunction &MF); 377 378 /// Test whether, after merging, any DBG_VALUEs would refer to a 379 /// different value number than before merging, and whether this can 380 /// be resolved. If not, mark the DBG_VALUE as being undef. 381 void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS, 382 JoinVals &LHSVals, LiveRange &RHS, 383 JoinVals &RHSVals); 384 385 void checkMergingChangesDbgValuesImpl(Register Reg, LiveRange &OtherRange, 386 LiveRange &RegRange, JoinVals &Vals2); 387 388 public: 389 static char ID; ///< Class identification, replacement for typeinfo 390 391 RegisterCoalescer() : MachineFunctionPass(ID) { 392 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 393 } 394 395 void getAnalysisUsage(AnalysisUsage &AU) const override; 396 397 void releaseMemory() override; 398 399 /// This is the pass entry point. 400 bool runOnMachineFunction(MachineFunction&) override; 401 402 /// Implement the dump method. 403 void print(raw_ostream &O, const Module* = nullptr) const override; 404 }; 405 406 } // end anonymous namespace 407 408 char RegisterCoalescer::ID = 0; 409 410 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 411 412 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 413 "Simple Register Coalescing", false, false) 414 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 415 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 416 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 417 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 418 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 419 "Simple Register Coalescing", false, false) 420 421 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri, 422 const MachineInstr *MI, Register &Src, 423 Register &Dst, unsigned &SrcSub, 424 unsigned &DstSub) { 425 if (MI->isCopy()) { 426 Dst = MI->getOperand(0).getReg(); 427 DstSub = MI->getOperand(0).getSubReg(); 428 Src = MI->getOperand(1).getReg(); 429 SrcSub = MI->getOperand(1).getSubReg(); 430 } else if (MI->isSubregToReg()) { 431 Dst = MI->getOperand(0).getReg(); 432 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 433 MI->getOperand(3).getImm()); 434 Src = MI->getOperand(2).getReg(); 435 SrcSub = MI->getOperand(2).getSubReg(); 436 } else 437 return false; 438 return true; 439 } 440 441 /// Return true if this block should be vacated by the coalescer to eliminate 442 /// branches. The important cases to handle in the coalescer are critical edges 443 /// split during phi elimination which contain only copies. Simple blocks that 444 /// contain non-branches should also be vacated, but this can be handled by an 445 /// earlier pass similar to early if-conversion. 446 static bool isSplitEdge(const MachineBasicBlock *MBB) { 447 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 448 return false; 449 450 for (const auto &MI : *MBB) { 451 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 452 return false; 453 } 454 return true; 455 } 456 457 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 458 SrcReg = DstReg = Register(); 459 SrcIdx = DstIdx = 0; 460 NewRC = nullptr; 461 Flipped = CrossClass = false; 462 463 Register Src, Dst; 464 unsigned SrcSub = 0, DstSub = 0; 465 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 466 return false; 467 Partial = SrcSub || DstSub; 468 469 // If one register is a physreg, it must be Dst. 470 if (Register::isPhysicalRegister(Src)) { 471 if (Register::isPhysicalRegister(Dst)) 472 return false; 473 std::swap(Src, Dst); 474 std::swap(SrcSub, DstSub); 475 Flipped = true; 476 } 477 478 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 479 480 if (Register::isPhysicalRegister(Dst)) { 481 // Eliminate DstSub on a physreg. 482 if (DstSub) { 483 Dst = TRI.getSubReg(Dst, DstSub); 484 if (!Dst) return false; 485 DstSub = 0; 486 } 487 488 // Eliminate SrcSub by picking a corresponding Dst superregister. 489 if (SrcSub) { 490 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 491 if (!Dst) return false; 492 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 493 return false; 494 } 495 } else { 496 // Both registers are virtual. 497 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 498 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 499 500 // Both registers have subreg indices. 501 if (SrcSub && DstSub) { 502 // Copies between different sub-registers are never coalescable. 503 if (Src == Dst && SrcSub != DstSub) 504 return false; 505 506 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 507 SrcIdx, DstIdx); 508 if (!NewRC) 509 return false; 510 } else if (DstSub) { 511 // SrcReg will be merged with a sub-register of DstReg. 512 SrcIdx = DstSub; 513 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 514 } else if (SrcSub) { 515 // DstReg will be merged with a sub-register of SrcReg. 516 DstIdx = SrcSub; 517 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 518 } else { 519 // This is a straight copy without sub-registers. 520 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 521 } 522 523 // The combined constraint may be impossible to satisfy. 524 if (!NewRC) 525 return false; 526 527 // Prefer SrcReg to be a sub-register of DstReg. 528 // FIXME: Coalescer should support subregs symmetrically. 529 if (DstIdx && !SrcIdx) { 530 std::swap(Src, Dst); 531 std::swap(SrcIdx, DstIdx); 532 Flipped = !Flipped; 533 } 534 535 CrossClass = NewRC != DstRC || NewRC != SrcRC; 536 } 537 // Check our invariants 538 assert(Register::isVirtualRegister(Src) && "Src must be virtual"); 539 assert(!(Register::isPhysicalRegister(Dst) && DstSub) && 540 "Cannot have a physical SubIdx"); 541 SrcReg = Src; 542 DstReg = Dst; 543 return true; 544 } 545 546 bool CoalescerPair::flip() { 547 if (Register::isPhysicalRegister(DstReg)) 548 return false; 549 std::swap(SrcReg, DstReg); 550 std::swap(SrcIdx, DstIdx); 551 Flipped = !Flipped; 552 return true; 553 } 554 555 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 556 if (!MI) 557 return false; 558 Register Src, Dst; 559 unsigned SrcSub = 0, DstSub = 0; 560 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 561 return false; 562 563 // Find the virtual register that is SrcReg. 564 if (Dst == SrcReg) { 565 std::swap(Src, Dst); 566 std::swap(SrcSub, DstSub); 567 } else if (Src != SrcReg) { 568 return false; 569 } 570 571 // Now check that Dst matches DstReg. 572 if (DstReg.isPhysical()) { 573 if (!Dst.isPhysical()) 574 return false; 575 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 576 // DstSub could be set for a physreg from INSERT_SUBREG. 577 if (DstSub) 578 Dst = TRI.getSubReg(Dst, DstSub); 579 // Full copy of Src. 580 if (!SrcSub) 581 return DstReg == Dst; 582 // This is a partial register copy. Check that the parts match. 583 return Register(TRI.getSubReg(DstReg, SrcSub)) == Dst; 584 } else { 585 // DstReg is virtual. 586 if (DstReg != Dst) 587 return false; 588 // Registers match, do the subregisters line up? 589 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 590 TRI.composeSubRegIndices(DstIdx, DstSub); 591 } 592 } 593 594 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 595 AU.setPreservesCFG(); 596 AU.addRequired<AAResultsWrapperPass>(); 597 AU.addRequired<LiveIntervals>(); 598 AU.addPreserved<LiveIntervals>(); 599 AU.addPreserved<SlotIndexes>(); 600 AU.addRequired<MachineLoopInfo>(); 601 AU.addPreserved<MachineLoopInfo>(); 602 AU.addPreservedID(MachineDominatorsID); 603 MachineFunctionPass::getAnalysisUsage(AU); 604 } 605 606 void RegisterCoalescer::eliminateDeadDefs() { 607 SmallVector<Register, 8> NewRegs; 608 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 609 nullptr, this).eliminateDeadDefs(DeadDefs); 610 } 611 612 bool RegisterCoalescer::allUsesAvailableAt(const MachineInstr *OrigMI, 613 SlotIndex OrigIdx, 614 SlotIndex UseIdx) { 615 SmallVector<Register, 8> NewRegs; 616 return LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, nullptr, this) 617 .allUsesAvailableAt(OrigMI, OrigIdx, UseIdx); 618 } 619 620 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 621 // MI may be in WorkList. Make sure we don't visit it. 622 ErasedInstrs.insert(MI); 623 } 624 625 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 626 MachineInstr *CopyMI) { 627 assert(!CP.isPartial() && "This doesn't work for partial copies."); 628 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 629 630 LiveInterval &IntA = 631 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 632 LiveInterval &IntB = 633 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 634 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 635 636 // We have a non-trivially-coalescable copy with IntA being the source and 637 // IntB being the dest, thus this defines a value number in IntB. If the 638 // source value number (in IntA) is defined by a copy from B, see if we can 639 // merge these two pieces of B into a single value number, eliminating a copy. 640 // For example: 641 // 642 // A3 = B0 643 // ... 644 // B1 = A3 <- this copy 645 // 646 // In this case, B0 can be extended to where the B1 copy lives, allowing the 647 // B1 value number to be replaced with B0 (which simplifies the B 648 // liveinterval). 649 650 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 651 // the example above. 652 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 653 if (BS == IntB.end()) return false; 654 VNInfo *BValNo = BS->valno; 655 656 // Get the location that B is defined at. Two options: either this value has 657 // an unknown definition point or it is defined at CopyIdx. If unknown, we 658 // can't process it. 659 if (BValNo->def != CopyIdx) return false; 660 661 // AValNo is the value number in A that defines the copy, A3 in the example. 662 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 663 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 664 // The live segment might not exist after fun with physreg coalescing. 665 if (AS == IntA.end()) return false; 666 VNInfo *AValNo = AS->valno; 667 668 // If AValNo is defined as a copy from IntB, we can potentially process this. 669 // Get the instruction that defines this value number. 670 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 671 // Don't allow any partial copies, even if isCoalescable() allows them. 672 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 673 return false; 674 675 // Get the Segment in IntB that this value number starts with. 676 LiveInterval::iterator ValS = 677 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 678 if (ValS == IntB.end()) 679 return false; 680 681 // Make sure that the end of the live segment is inside the same block as 682 // CopyMI. 683 MachineInstr *ValSEndInst = 684 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 685 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 686 return false; 687 688 // Okay, we now know that ValS ends in the same block that the CopyMI 689 // live-range starts. If there are no intervening live segments between them 690 // in IntB, we can merge them. 691 if (ValS+1 != BS) return false; 692 693 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI)); 694 695 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 696 // We are about to delete CopyMI, so need to remove it as the 'instruction 697 // that defines this value #'. Update the valnum with the new defining 698 // instruction #. 699 BValNo->def = FillerStart; 700 701 // Okay, we can merge them. We need to insert a new liverange: 702 // [ValS.end, BS.begin) of either value number, then we merge the 703 // two value numbers. 704 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 705 706 // Okay, merge "B1" into the same value number as "B0". 707 if (BValNo != ValS->valno) 708 IntB.MergeValueNumberInto(BValNo, ValS->valno); 709 710 // Do the same for the subregister segments. 711 for (LiveInterval::SubRange &S : IntB.subranges()) { 712 // Check for SubRange Segments of the form [1234r,1234d:0) which can be 713 // removed to prevent creating bogus SubRange Segments. 714 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx); 715 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) { 716 S.removeSegment(*SS, true); 717 continue; 718 } 719 // The subrange may have ended before FillerStart. If so, extend it. 720 if (!S.getVNInfoAt(FillerStart)) { 721 SlotIndex BBStart = 722 LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart)); 723 S.extendInBlock(BBStart, FillerStart); 724 } 725 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 726 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 727 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 728 if (SubBValNo != SubValSNo) 729 S.MergeValueNumberInto(SubBValNo, SubValSNo); 730 } 731 732 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n'); 733 734 // If the source instruction was killing the source register before the 735 // merge, unset the isKill marker given the live range has been extended. 736 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true); 737 if (UIdx != -1) { 738 ValSEndInst->getOperand(UIdx).setIsKill(false); 739 } 740 741 // Rewrite the copy. 742 CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI); 743 // If the copy instruction was killing the destination register or any 744 // subrange before the merge trim the live range. 745 bool RecomputeLiveRange = AS->end == CopyIdx; 746 if (!RecomputeLiveRange) { 747 for (LiveInterval::SubRange &S : IntA.subranges()) { 748 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx); 749 if (SS != S.end() && SS->end == CopyIdx) { 750 RecomputeLiveRange = true; 751 break; 752 } 753 } 754 } 755 if (RecomputeLiveRange) 756 shrinkToUses(&IntA); 757 758 ++numExtends; 759 return true; 760 } 761 762 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 763 LiveInterval &IntB, 764 VNInfo *AValNo, 765 VNInfo *BValNo) { 766 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 767 // the PHI values. 768 if (LIS->hasPHIKill(IntA, AValNo)) 769 return true; 770 771 for (LiveRange::Segment &ASeg : IntA.segments) { 772 if (ASeg.valno != AValNo) continue; 773 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start); 774 if (BI != IntB.begin()) 775 --BI; 776 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 777 if (BI->valno == BValNo) 778 continue; 779 if (BI->start <= ASeg.start && BI->end > ASeg.start) 780 return true; 781 if (BI->start > ASeg.start && BI->start < ASeg.end) 782 return true; 783 } 784 } 785 return false; 786 } 787 788 /// Copy segments with value number @p SrcValNo from liverange @p Src to live 789 /// range @Dst and use value number @p DstValNo there. 790 static std::pair<bool,bool> 791 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src, 792 const VNInfo *SrcValNo) { 793 bool Changed = false; 794 bool MergedWithDead = false; 795 for (const LiveRange::Segment &S : Src.segments) { 796 if (S.valno != SrcValNo) 797 continue; 798 // This is adding a segment from Src that ends in a copy that is about 799 // to be removed. This segment is going to be merged with a pre-existing 800 // segment in Dst. This works, except in cases when the corresponding 801 // segment in Dst is dead. For example: adding [192r,208r:1) from Src 802 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst. 803 // Recognized such cases, so that the segments can be shrunk. 804 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo); 805 LiveRange::Segment &Merged = *Dst.addSegment(Added); 806 if (Merged.end.isDead()) 807 MergedWithDead = true; 808 Changed = true; 809 } 810 return std::make_pair(Changed, MergedWithDead); 811 } 812 813 std::pair<bool,bool> 814 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 815 MachineInstr *CopyMI) { 816 assert(!CP.isPhys()); 817 818 LiveInterval &IntA = 819 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 820 LiveInterval &IntB = 821 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 822 823 // We found a non-trivially-coalescable copy with IntA being the source and 824 // IntB being the dest, thus this defines a value number in IntB. If the 825 // source value number (in IntA) is defined by a commutable instruction and 826 // its other operand is coalesced to the copy dest register, see if we can 827 // transform the copy into a noop by commuting the definition. For example, 828 // 829 // A3 = op A2 killed B0 830 // ... 831 // B1 = A3 <- this copy 832 // ... 833 // = op A3 <- more uses 834 // 835 // ==> 836 // 837 // B2 = op B0 killed A2 838 // ... 839 // B1 = B2 <- now an identity copy 840 // ... 841 // = op B2 <- more uses 842 843 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 844 // the example above. 845 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 846 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 847 assert(BValNo != nullptr && BValNo->def == CopyIdx); 848 849 // AValNo is the value number in A that defines the copy, A3 in the example. 850 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 851 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 852 if (AValNo->isPHIDef()) 853 return { false, false }; 854 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 855 if (!DefMI) 856 return { false, false }; 857 if (!DefMI->isCommutable()) 858 return { false, false }; 859 // If DefMI is a two-address instruction then commuting it will change the 860 // destination register. 861 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg()); 862 assert(DefIdx != -1); 863 unsigned UseOpIdx; 864 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 865 return { false, false }; 866 867 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 868 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 869 // passed to the method. That _other_ operand is chosen by 870 // the findCommutedOpIndices() method. 871 // 872 // That is obviously an area for improvement in case of instructions having 873 // more than 2 operands. For example, if some instruction has 3 commutable 874 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 875 // op#2<->op#3) of commute transformation should be considered/tried here. 876 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 877 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 878 return { false, false }; 879 880 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 881 Register NewReg = NewDstMO.getReg(); 882 if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill()) 883 return { false, false }; 884 885 // Make sure there are no other definitions of IntB that would reach the 886 // uses which the new definition can reach. 887 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 888 return { false, false }; 889 890 // If some of the uses of IntA.reg is already coalesced away, return false. 891 // It's not possible to determine whether it's safe to perform the coalescing. 892 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) { 893 MachineInstr *UseMI = MO.getParent(); 894 unsigned OpNo = &MO - &UseMI->getOperand(0); 895 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 896 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 897 if (US == IntA.end() || US->valno != AValNo) 898 continue; 899 // If this use is tied to a def, we can't rewrite the register. 900 if (UseMI->isRegTiedToDefOperand(OpNo)) 901 return { false, false }; 902 } 903 904 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 905 << *DefMI); 906 907 // At this point we have decided that it is legal to do this 908 // transformation. Start by commuting the instruction. 909 MachineBasicBlock *MBB = DefMI->getParent(); 910 MachineInstr *NewMI = 911 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 912 if (!NewMI) 913 return { false, false }; 914 if (Register::isVirtualRegister(IntA.reg()) && 915 Register::isVirtualRegister(IntB.reg()) && 916 !MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg()))) 917 return { false, false }; 918 if (NewMI != DefMI) { 919 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 920 MachineBasicBlock::iterator Pos = DefMI; 921 MBB->insert(Pos, NewMI); 922 MBB->erase(DefMI); 923 } 924 925 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 926 // A = or A, B 927 // ... 928 // B = A 929 // ... 930 // C = killed A 931 // ... 932 // = B 933 934 // Update uses of IntA of the specific Val# with IntB. 935 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg()), 936 UE = MRI->use_end(); 937 UI != UE; 938 /* ++UI is below because of possible MI removal */) { 939 MachineOperand &UseMO = *UI; 940 ++UI; 941 if (UseMO.isUndef()) 942 continue; 943 MachineInstr *UseMI = UseMO.getParent(); 944 if (UseMI->isDebugInstr()) { 945 // FIXME These don't have an instruction index. Not clear we have enough 946 // info to decide whether to do this replacement or not. For now do it. 947 UseMO.setReg(NewReg); 948 continue; 949 } 950 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 951 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 952 assert(US != IntA.end() && "Use must be live"); 953 if (US->valno != AValNo) 954 continue; 955 // Kill flags are no longer accurate. They are recomputed after RA. 956 UseMO.setIsKill(false); 957 if (Register::isPhysicalRegister(NewReg)) 958 UseMO.substPhysReg(NewReg, *TRI); 959 else 960 UseMO.setReg(NewReg); 961 if (UseMI == CopyMI) 962 continue; 963 if (!UseMI->isCopy()) 964 continue; 965 if (UseMI->getOperand(0).getReg() != IntB.reg() || 966 UseMI->getOperand(0).getSubReg()) 967 continue; 968 969 // This copy will become a noop. If it's defining a new val#, merge it into 970 // BValNo. 971 SlotIndex DefIdx = UseIdx.getRegSlot(); 972 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 973 if (!DVNI) 974 continue; 975 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 976 assert(DVNI->def == DefIdx); 977 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 978 for (LiveInterval::SubRange &S : IntB.subranges()) { 979 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 980 if (!SubDVNI) 981 continue; 982 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 983 assert(SubBValNo->def == CopyIdx); 984 S.MergeValueNumberInto(SubDVNI, SubBValNo); 985 } 986 987 deleteInstr(UseMI); 988 } 989 990 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 991 // is updated. 992 bool ShrinkB = false; 993 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 994 if (IntA.hasSubRanges() || IntB.hasSubRanges()) { 995 if (!IntA.hasSubRanges()) { 996 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg()); 997 IntA.createSubRangeFrom(Allocator, Mask, IntA); 998 } else if (!IntB.hasSubRanges()) { 999 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg()); 1000 IntB.createSubRangeFrom(Allocator, Mask, IntB); 1001 } 1002 SlotIndex AIdx = CopyIdx.getRegSlot(true); 1003 LaneBitmask MaskA; 1004 const SlotIndexes &Indexes = *LIS->getSlotIndexes(); 1005 for (LiveInterval::SubRange &SA : IntA.subranges()) { 1006 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 1007 // Even if we are dealing with a full copy, some lanes can 1008 // still be undefined. 1009 // E.g., 1010 // undef A.subLow = ... 1011 // B = COPY A <== A.subHigh is undefined here and does 1012 // not have a value number. 1013 if (!ASubValNo) 1014 continue; 1015 MaskA |= SA.LaneMask; 1016 1017 IntB.refineSubRanges( 1018 Allocator, SA.LaneMask, 1019 [&Allocator, &SA, CopyIdx, ASubValNo, 1020 &ShrinkB](LiveInterval::SubRange &SR) { 1021 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator) 1022 : SR.getVNInfoAt(CopyIdx); 1023 assert(BSubValNo != nullptr); 1024 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 1025 ShrinkB |= P.second; 1026 if (P.first) 1027 BSubValNo->def = ASubValNo->def; 1028 }, 1029 Indexes, *TRI); 1030 } 1031 // Go over all subranges of IntB that have not been covered by IntA, 1032 // and delete the segments starting at CopyIdx. This can happen if 1033 // IntA has undef lanes that are defined in IntB. 1034 for (LiveInterval::SubRange &SB : IntB.subranges()) { 1035 if ((SB.LaneMask & MaskA).any()) 1036 continue; 1037 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx)) 1038 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex()) 1039 SB.removeSegment(*S, true); 1040 } 1041 } 1042 1043 BValNo->def = AValNo->def; 1044 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 1045 ShrinkB |= P.second; 1046 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 1047 1048 LIS->removeVRegDefAt(IntA, AValNo->def); 1049 1050 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 1051 ++numCommutes; 1052 return { true, ShrinkB }; 1053 } 1054 1055 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 1056 /// predecessor of BB2, and if B is not redefined on the way from A = B 1057 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the 1058 /// execution goes through the path from BB0 to BB2. We may move B = A 1059 /// to the predecessor without such reversed copy. 1060 /// So we will transform the program from: 1061 /// BB0: 1062 /// A = B; BB1: 1063 /// ... ... 1064 /// / \ / 1065 /// BB2: 1066 /// ... 1067 /// B = A; 1068 /// 1069 /// to: 1070 /// 1071 /// BB0: BB1: 1072 /// A = B; ... 1073 /// ... B = A; 1074 /// / \ / 1075 /// BB2: 1076 /// ... 1077 /// 1078 /// A special case is when BB0 and BB2 are the same BB which is the only 1079 /// BB in a loop: 1080 /// BB1: 1081 /// ... 1082 /// BB0/BB2: ---- 1083 /// B = A; | 1084 /// ... | 1085 /// A = B; | 1086 /// |------- 1087 /// | 1088 /// We may hoist B = A from BB0/BB2 to BB1. 1089 /// 1090 /// The major preconditions for correctness to remove such partial 1091 /// redundancy include: 1092 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 1093 /// the PHI is defined by the reversed copy A = B in BB0. 1094 /// 2. No B is referenced from the start of BB2 to B = A. 1095 /// 3. No B is defined from A = B to the end of BB0. 1096 /// 4. BB1 has only one successor. 1097 /// 1098 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 1099 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 1100 /// colder place, which not only prevent endless loop, but also make sure 1101 /// the movement of copy is beneficial. 1102 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 1103 MachineInstr &CopyMI) { 1104 assert(!CP.isPhys()); 1105 if (!CopyMI.isFullCopy()) 1106 return false; 1107 1108 MachineBasicBlock &MBB = *CopyMI.getParent(); 1109 // If this block is the target of an invoke/inlineasm_br, moving the copy into 1110 // the predecessor is tricker, and we don't handle it. 1111 if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget()) 1112 return false; 1113 1114 if (MBB.pred_size() != 2) 1115 return false; 1116 1117 LiveInterval &IntA = 1118 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 1119 LiveInterval &IntB = 1120 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 1121 1122 // A is defined by PHI at the entry of MBB. 1123 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 1124 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 1125 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 1126 if (!AValNo->isPHIDef()) 1127 return false; 1128 1129 // No B is referenced before CopyMI in MBB. 1130 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 1131 return false; 1132 1133 // MBB has two predecessors: one contains A = B so no copy will be inserted 1134 // for it. The other one will have a copy moved from MBB. 1135 bool FoundReverseCopy = false; 1136 MachineBasicBlock *CopyLeftBB = nullptr; 1137 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1138 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 1139 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 1140 if (!DefMI || !DefMI->isFullCopy()) { 1141 CopyLeftBB = Pred; 1142 continue; 1143 } 1144 // Check DefMI is a reverse copy and it is in BB Pred. 1145 if (DefMI->getOperand(0).getReg() != IntA.reg() || 1146 DefMI->getOperand(1).getReg() != IntB.reg() || 1147 DefMI->getParent() != Pred) { 1148 CopyLeftBB = Pred; 1149 continue; 1150 } 1151 // If there is any other def of B after DefMI and before the end of Pred, 1152 // we need to keep the copy of B = A at the end of Pred if we remove 1153 // B = A from MBB. 1154 bool ValB_Changed = false; 1155 for (auto VNI : IntB.valnos) { 1156 if (VNI->isUnused()) 1157 continue; 1158 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 1159 ValB_Changed = true; 1160 break; 1161 } 1162 } 1163 if (ValB_Changed) { 1164 CopyLeftBB = Pred; 1165 continue; 1166 } 1167 FoundReverseCopy = true; 1168 } 1169 1170 // If no reverse copy is found in predecessors, nothing to do. 1171 if (!FoundReverseCopy) 1172 return false; 1173 1174 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 1175 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 1176 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 1177 // update IntA/IntB. 1178 // 1179 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 1180 // MBB is hotter than CopyLeftBB. 1181 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 1182 return false; 1183 1184 // Now (almost sure it's) ok to move copy. 1185 if (CopyLeftBB) { 1186 // Position in CopyLeftBB where we should insert new copy. 1187 auto InsPos = CopyLeftBB->getFirstTerminator(); 1188 1189 // Make sure that B isn't referenced in the terminators (if any) at the end 1190 // of the predecessor since we're about to insert a new definition of B 1191 // before them. 1192 if (InsPos != CopyLeftBB->end()) { 1193 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true); 1194 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB))) 1195 return false; 1196 } 1197 1198 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to " 1199 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI); 1200 1201 // Insert new copy to CopyLeftBB. 1202 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1203 TII->get(TargetOpcode::COPY), IntB.reg()) 1204 .addReg(IntA.reg()); 1205 SlotIndex NewCopyIdx = 1206 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1207 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1208 for (LiveInterval::SubRange &SR : IntB.subranges()) 1209 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1210 1211 // If the newly created Instruction has an address of an instruction that was 1212 // deleted before (object recycled by the allocator) it needs to be removed from 1213 // the deleted list. 1214 ErasedInstrs.erase(NewCopyMI); 1215 } else { 1216 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from " 1217 << printMBBReference(MBB) << '\t' << CopyMI); 1218 } 1219 1220 // Remove CopyMI. 1221 // Note: This is fine to remove the copy before updating the live-ranges. 1222 // While updating the live-ranges, we only look at slot indices and 1223 // never go back to the instruction. 1224 // Mark instructions as deleted. 1225 deleteInstr(&CopyMI); 1226 1227 // Update the liveness. 1228 SmallVector<SlotIndex, 8> EndPoints; 1229 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1230 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1231 &EndPoints); 1232 BValNo->markUnused(); 1233 // Extend IntB to the EndPoints of its original live interval. 1234 LIS->extendToIndices(IntB, EndPoints); 1235 1236 // Now, do the same for its subranges. 1237 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1238 EndPoints.clear(); 1239 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1240 assert(BValNo && "All sublanes should be live"); 1241 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1242 BValNo->markUnused(); 1243 // We can have a situation where the result of the original copy is live, 1244 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes 1245 // the copy appear as an endpoint from pruneValue(), but we don't want it 1246 // to because the copy has been removed. We can go ahead and remove that 1247 // endpoint; there is no other situation here that there could be a use at 1248 // the same place as we know that the copy is a full copy. 1249 for (unsigned I = 0; I != EndPoints.size(); ) { 1250 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) { 1251 EndPoints[I] = EndPoints.back(); 1252 EndPoints.pop_back(); 1253 continue; 1254 } 1255 ++I; 1256 } 1257 SmallVector<SlotIndex, 8> Undefs; 1258 IntB.computeSubRangeUndefs(Undefs, SR.LaneMask, *MRI, 1259 *LIS->getSlotIndexes()); 1260 LIS->extendToIndices(SR, EndPoints, Undefs); 1261 } 1262 // If any dead defs were extended, truncate them. 1263 shrinkToUses(&IntB); 1264 1265 // Finally, update the live-range of IntA. 1266 shrinkToUses(&IntA); 1267 return true; 1268 } 1269 1270 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1271 /// defining a subregister. 1272 static bool definesFullReg(const MachineInstr &MI, Register Reg) { 1273 assert(!Reg.isPhysical() && "This code cannot handle physreg aliasing"); 1274 1275 for (const MachineOperand &Op : MI.operands()) { 1276 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1277 continue; 1278 // Return true if we define the full register or don't care about the value 1279 // inside other subregisters. 1280 if (Op.getSubReg() == 0 || Op.isUndef()) 1281 return true; 1282 } 1283 return false; 1284 } 1285 1286 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1287 MachineInstr *CopyMI, 1288 bool &IsDefCopy) { 1289 IsDefCopy = false; 1290 Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1291 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1292 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1293 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1294 if (Register::isPhysicalRegister(SrcReg)) 1295 return false; 1296 1297 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1298 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1299 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1300 if (!ValNo) 1301 return false; 1302 if (ValNo->isPHIDef() || ValNo->isUnused()) 1303 return false; 1304 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1305 if (!DefMI) 1306 return false; 1307 if (DefMI->isCopyLike()) { 1308 IsDefCopy = true; 1309 return false; 1310 } 1311 if (!TII->isAsCheapAsAMove(*DefMI)) 1312 return false; 1313 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1314 return false; 1315 if (!definesFullReg(*DefMI, SrcReg)) 1316 return false; 1317 bool SawStore = false; 1318 if (!DefMI->isSafeToMove(AA, SawStore)) 1319 return false; 1320 const MCInstrDesc &MCID = DefMI->getDesc(); 1321 if (MCID.getNumDefs() != 1) 1322 return false; 1323 // Only support subregister destinations when the def is read-undef. 1324 MachineOperand &DstOperand = CopyMI->getOperand(0); 1325 Register CopyDstReg = DstOperand.getReg(); 1326 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1327 return false; 1328 1329 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1330 // the register substantially (beyond both source and dest size). This is bad 1331 // for performance since it can cascade through a function, introducing many 1332 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1333 // around after a few subreg copies). 1334 if (SrcIdx && DstIdx) 1335 return false; 1336 1337 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1338 if (!DefMI->isImplicitDef()) { 1339 if (DstReg.isPhysical()) { 1340 Register NewDstReg = DstReg; 1341 1342 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1343 DefMI->getOperand(0).getSubReg()); 1344 if (NewDstIdx) 1345 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1346 1347 // Finally, make sure that the physical subregister that will be 1348 // constructed later is permitted for the instruction. 1349 if (!DefRC->contains(NewDstReg)) 1350 return false; 1351 } else { 1352 // Theoretically, some stack frame reference could exist. Just make sure 1353 // it hasn't actually happened. 1354 assert(Register::isVirtualRegister(DstReg) && 1355 "Only expect to deal with virtual or physical registers"); 1356 } 1357 } 1358 1359 if (!allUsesAvailableAt(DefMI, ValNo->def, CopyIdx)) 1360 return false; 1361 1362 DebugLoc DL = CopyMI->getDebugLoc(); 1363 MachineBasicBlock *MBB = CopyMI->getParent(); 1364 MachineBasicBlock::iterator MII = 1365 std::next(MachineBasicBlock::iterator(CopyMI)); 1366 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1367 MachineInstr &NewMI = *std::prev(MII); 1368 NewMI.setDebugLoc(DL); 1369 1370 // In a situation like the following: 1371 // %0:subreg = instr ; DefMI, subreg = DstIdx 1372 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0 1373 // instead of widening %1 to the register class of %0 simply do: 1374 // %1 = instr 1375 const TargetRegisterClass *NewRC = CP.getNewRC(); 1376 if (DstIdx != 0) { 1377 MachineOperand &DefMO = NewMI.getOperand(0); 1378 if (DefMO.getSubReg() == DstIdx) { 1379 assert(SrcIdx == 0 && CP.isFlipped() 1380 && "Shouldn't have SrcIdx+DstIdx at this point"); 1381 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1382 const TargetRegisterClass *CommonRC = 1383 TRI->getCommonSubClass(DefRC, DstRC); 1384 if (CommonRC != nullptr) { 1385 NewRC = CommonRC; 1386 DstIdx = 0; 1387 DefMO.setSubReg(0); 1388 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1389 } 1390 } 1391 } 1392 1393 // CopyMI may have implicit operands, save them so that we can transfer them 1394 // over to the newly materialized instruction after CopyMI is removed. 1395 SmallVector<MachineOperand, 4> ImplicitOps; 1396 ImplicitOps.reserve(CopyMI->getNumOperands() - 1397 CopyMI->getDesc().getNumOperands()); 1398 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1399 E = CopyMI->getNumOperands(); 1400 I != E; ++I) { 1401 MachineOperand &MO = CopyMI->getOperand(I); 1402 if (MO.isReg()) { 1403 assert(MO.isImplicit() && "No explicit operands after implicit operands."); 1404 // Discard VReg implicit defs. 1405 if (Register::isPhysicalRegister(MO.getReg())) 1406 ImplicitOps.push_back(MO); 1407 } 1408 } 1409 1410 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1411 CopyMI->eraseFromParent(); 1412 ErasedInstrs.insert(CopyMI); 1413 1414 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1415 // We need to remember these so we can add intervals once we insert 1416 // NewMI into SlotIndexes. 1417 SmallVector<MCRegister, 4> NewMIImplDefs; 1418 for (unsigned i = NewMI.getDesc().getNumOperands(), 1419 e = NewMI.getNumOperands(); 1420 i != e; ++i) { 1421 MachineOperand &MO = NewMI.getOperand(i); 1422 if (MO.isReg() && MO.isDef()) { 1423 assert(MO.isImplicit() && MO.isDead() && 1424 Register::isPhysicalRegister(MO.getReg())); 1425 NewMIImplDefs.push_back(MO.getReg().asMCReg()); 1426 } 1427 } 1428 1429 if (DstReg.isVirtual()) { 1430 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1431 1432 if (DefRC != nullptr) { 1433 if (NewIdx) 1434 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1435 else 1436 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1437 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1438 } 1439 // Remap subranges to new lanemask and change register class. 1440 LiveInterval &DstInt = LIS->getInterval(DstReg); 1441 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1442 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1443 } 1444 MRI->setRegClass(DstReg, NewRC); 1445 1446 // Update machine operands and add flags. 1447 updateRegDefsUses(DstReg, DstReg, DstIdx); 1448 NewMI.getOperand(0).setSubReg(NewIdx); 1449 // updateRegDefUses can add an "undef" flag to the definition, since 1450 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make 1451 // sure that "undef" is not set. 1452 if (NewIdx == 0) 1453 NewMI.getOperand(0).setIsUndef(false); 1454 // Add dead subregister definitions if we are defining the whole register 1455 // but only part of it is live. 1456 // This could happen if the rematerialization instruction is rematerializing 1457 // more than actually is used in the register. 1458 // An example would be: 1459 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1460 // ; Copying only part of the register here, but the rest is undef. 1461 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit 1462 // ==> 1463 // ; Materialize all the constants but only using one 1464 // %2 = LOAD_CONSTANTS 5, 8 1465 // 1466 // at this point for the part that wasn't defined before we could have 1467 // subranges missing the definition. 1468 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1469 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1470 SlotIndex DefIndex = 1471 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1472 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1473 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1474 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1475 if (!SR.liveAt(DefIndex)) 1476 SR.createDeadDef(DefIndex, Alloc); 1477 MaxMask &= ~SR.LaneMask; 1478 } 1479 if (MaxMask.any()) { 1480 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1481 SR->createDeadDef(DefIndex, Alloc); 1482 } 1483 } 1484 1485 // Make sure that the subrange for resultant undef is removed 1486 // For example: 1487 // %1:sub1<def,read-undef> = LOAD CONSTANT 1 1488 // %2 = COPY %1 1489 // ==> 1490 // %2:sub1<def, read-undef> = LOAD CONSTANT 1 1491 // ; Correct but need to remove the subrange for %2:sub0 1492 // ; as it is now undef 1493 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1494 // The affected subregister segments can be removed. 1495 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1496 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1497 bool UpdatedSubRanges = false; 1498 SlotIndex DefIndex = 1499 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1500 VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator(); 1501 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1502 if ((SR.LaneMask & DstMask).none()) { 1503 LLVM_DEBUG(dbgs() 1504 << "Removing undefined SubRange " 1505 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1506 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1507 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1508 SR.removeValNo(RmValNo); 1509 UpdatedSubRanges = true; 1510 } 1511 } else { 1512 // We know that this lane is defined by this instruction, 1513 // but at this point it may be empty because it is not used by 1514 // anything. This happens when updateRegDefUses adds the missing 1515 // lanes. Assign that lane a dead def so that the interferences 1516 // are properly modeled. 1517 if (SR.empty()) 1518 SR.createDeadDef(DefIndex, Alloc); 1519 } 1520 } 1521 if (UpdatedSubRanges) 1522 DstInt.removeEmptySubRanges(); 1523 } 1524 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1525 // The New instruction may be defining a sub-register of what's actually 1526 // been asked for. If so it must implicitly define the whole thing. 1527 assert(Register::isPhysicalRegister(DstReg) && 1528 "Only expect virtual or physical registers in remat"); 1529 NewMI.getOperand(0).setIsDead(true); 1530 NewMI.addOperand(MachineOperand::CreateReg( 1531 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1532 // Record small dead def live-ranges for all the subregisters 1533 // of the destination register. 1534 // Otherwise, variables that live through may miss some 1535 // interferences, thus creating invalid allocation. 1536 // E.g., i386 code: 1537 // %1 = somedef ; %1 GR8 1538 // %2 = remat ; %2 GR32 1539 // CL = COPY %2.sub_8bit 1540 // = somedef %1 ; %1 GR8 1541 // => 1542 // %1 = somedef ; %1 GR8 1543 // dead ECX = remat ; implicit-def CL 1544 // = somedef %1 ; %1 GR8 1545 // %1 will see the interferences with CL but not with CH since 1546 // no live-ranges would have been created for ECX. 1547 // Fix that! 1548 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1549 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1550 Units.isValid(); ++Units) 1551 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1552 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1553 } 1554 1555 if (NewMI.getOperand(0).getSubReg()) 1556 NewMI.getOperand(0).setIsUndef(); 1557 1558 // Transfer over implicit operands to the rematerialized instruction. 1559 for (MachineOperand &MO : ImplicitOps) 1560 NewMI.addOperand(MO); 1561 1562 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1563 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1564 MCRegister Reg = NewMIImplDefs[i]; 1565 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1566 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1567 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1568 } 1569 1570 LLVM_DEBUG(dbgs() << "Remat: " << NewMI); 1571 ++NumReMats; 1572 1573 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1574 // to describe DstReg instead. 1575 if (MRI->use_nodbg_empty(SrcReg)) { 1576 for (MachineOperand &UseMO : 1577 llvm::make_early_inc_range(MRI->use_operands(SrcReg))) { 1578 MachineInstr *UseMI = UseMO.getParent(); 1579 if (UseMI->isDebugInstr()) { 1580 if (Register::isPhysicalRegister(DstReg)) 1581 UseMO.substPhysReg(DstReg, *TRI); 1582 else 1583 UseMO.setReg(DstReg); 1584 // Move the debug value directly after the def of the rematerialized 1585 // value in DstReg. 1586 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); 1587 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1588 } 1589 } 1590 } 1591 1592 if (ToBeUpdated.count(SrcReg)) 1593 return true; 1594 1595 unsigned NumCopyUses = 0; 1596 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 1597 if (UseMO.getParent()->isCopyLike()) 1598 NumCopyUses++; 1599 } 1600 if (NumCopyUses < LateRematUpdateThreshold) { 1601 // The source interval can become smaller because we removed a use. 1602 shrinkToUses(&SrcInt, &DeadDefs); 1603 if (!DeadDefs.empty()) 1604 eliminateDeadDefs(); 1605 } else { 1606 ToBeUpdated.insert(SrcReg); 1607 } 1608 return true; 1609 } 1610 1611 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1612 // ProcessImplicitDefs may leave some copies of <undef> values, it only 1613 // removes local variables. When we have a copy like: 1614 // 1615 // %1 = COPY undef %2 1616 // 1617 // We delete the copy and remove the corresponding value number from %1. 1618 // Any uses of that value number are marked as <undef>. 1619 1620 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1621 // CoalescerPair may have a new register class with adjusted subreg indices 1622 // at this point. 1623 Register SrcReg, DstReg; 1624 unsigned SrcSubIdx = 0, DstSubIdx = 0; 1625 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) 1626 return nullptr; 1627 1628 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1629 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1630 // CopyMI is undef iff SrcReg is not live before the instruction. 1631 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1632 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1633 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1634 if ((SR.LaneMask & SrcMask).none()) 1635 continue; 1636 if (SR.liveAt(Idx)) 1637 return nullptr; 1638 } 1639 } else if (SrcLI.liveAt(Idx)) 1640 return nullptr; 1641 1642 // If the undef copy defines a live-out value (i.e. an input to a PHI def), 1643 // then replace it with an IMPLICIT_DEF. 1644 LiveInterval &DstLI = LIS->getInterval(DstReg); 1645 SlotIndex RegIndex = Idx.getRegSlot(); 1646 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex); 1647 assert(Seg != nullptr && "No segment for defining instruction"); 1648 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) { 1649 if (V->isPHIDef()) { 1650 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1651 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) { 1652 MachineOperand &MO = CopyMI->getOperand(i-1); 1653 if (MO.isReg() && MO.isUse()) 1654 CopyMI->RemoveOperand(i-1); 1655 } 1656 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an " 1657 "implicit def\n"); 1658 return CopyMI; 1659 } 1660 } 1661 1662 // Remove any DstReg segments starting at the instruction. 1663 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1664 1665 // Remove value or merge with previous one in case of a subregister def. 1666 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1667 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1668 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1669 1670 // The affected subregister segments can be removed. 1671 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1672 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1673 if ((SR.LaneMask & DstMask).none()) 1674 continue; 1675 1676 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1677 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1678 SR.removeValNo(SVNI); 1679 } 1680 DstLI.removeEmptySubRanges(); 1681 } else 1682 LIS->removeVRegDefAt(DstLI, RegIndex); 1683 1684 // Mark uses as undef. 1685 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1686 if (MO.isDef() /*|| MO.isUndef()*/) 1687 continue; 1688 const MachineInstr &MI = *MO.getParent(); 1689 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1690 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1691 bool isLive; 1692 if (!UseMask.all() && DstLI.hasSubRanges()) { 1693 isLive = false; 1694 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1695 if ((SR.LaneMask & UseMask).none()) 1696 continue; 1697 if (SR.liveAt(UseIdx)) { 1698 isLive = true; 1699 break; 1700 } 1701 } 1702 } else 1703 isLive = DstLI.liveAt(UseIdx); 1704 if (isLive) 1705 continue; 1706 MO.setIsUndef(true); 1707 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1708 } 1709 1710 // A def of a subregister may be a use of the other subregisters, so 1711 // deleting a def of a subregister may also remove uses. Since CopyMI 1712 // is still part of the function (but about to be erased), mark all 1713 // defs of DstReg in it as <undef>, so that shrinkToUses would 1714 // ignore them. 1715 for (MachineOperand &MO : CopyMI->operands()) 1716 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1717 MO.setIsUndef(true); 1718 LIS->shrinkToUses(&DstLI); 1719 1720 return CopyMI; 1721 } 1722 1723 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1724 MachineOperand &MO, unsigned SubRegIdx) { 1725 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1726 if (MO.isDef()) 1727 Mask = ~Mask; 1728 bool IsUndef = true; 1729 for (const LiveInterval::SubRange &S : Int.subranges()) { 1730 if ((S.LaneMask & Mask).none()) 1731 continue; 1732 if (S.liveAt(UseIdx)) { 1733 IsUndef = false; 1734 break; 1735 } 1736 } 1737 if (IsUndef) { 1738 MO.setIsUndef(true); 1739 // We found out some subregister use is actually reading an undefined 1740 // value. In some cases the whole vreg has become undefined at this 1741 // point so we have to potentially shrink the main range if the 1742 // use was ending a live segment there. 1743 LiveQueryResult Q = Int.Query(UseIdx); 1744 if (Q.valueOut() == nullptr) 1745 ShrinkMainRange = true; 1746 } 1747 } 1748 1749 void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg, 1750 unsigned SubIdx) { 1751 bool DstIsPhys = Register::isPhysicalRegister(DstReg); 1752 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1753 1754 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1755 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1756 unsigned SubReg = MO.getSubReg(); 1757 if (SubReg == 0 || MO.isUndef()) 1758 continue; 1759 MachineInstr &MI = *MO.getParent(); 1760 if (MI.isDebugInstr()) 1761 continue; 1762 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1763 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1764 } 1765 } 1766 1767 SmallPtrSet<MachineInstr*, 8> Visited; 1768 for (MachineRegisterInfo::reg_instr_iterator 1769 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1770 I != E; ) { 1771 MachineInstr *UseMI = &*(I++); 1772 1773 // Each instruction can only be rewritten once because sub-register 1774 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1775 // the UseMI operands removes them from the SrcReg use-def chain, but when 1776 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1777 // operands mentioning the virtual register. 1778 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1779 continue; 1780 1781 SmallVector<unsigned,8> Ops; 1782 bool Reads, Writes; 1783 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1784 1785 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1786 // because SrcReg is a sub-register. 1787 if (DstInt && !Reads && SubIdx && !UseMI->isDebugInstr()) 1788 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1789 1790 // Replace SrcReg with DstReg in all UseMI operands. 1791 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1792 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1793 1794 // Adjust <undef> flags in case of sub-register joins. We don't want to 1795 // turn a full def into a read-modify-write sub-register def and vice 1796 // versa. 1797 if (SubIdx && MO.isDef()) 1798 MO.setIsUndef(!Reads); 1799 1800 // A subreg use of a partially undef (super) register may be a complete 1801 // undef use now and then has to be marked that way. 1802 if (MO.isUse() && !DstIsPhys) { 1803 unsigned SubUseIdx = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 1804 if (SubUseIdx != 0 && MRI->shouldTrackSubRegLiveness(DstReg)) { 1805 if (!DstInt->hasSubRanges()) { 1806 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1807 LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg()); 1808 LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx); 1809 LaneBitmask UnusedLanes = FullMask & ~UsedLanes; 1810 DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt); 1811 // The unused lanes are just empty live-ranges at this point. 1812 // It is the caller responsibility to set the proper 1813 // dead segments if there is an actual dead def of the 1814 // unused lanes. This may happen with rematerialization. 1815 DstInt->createSubRange(Allocator, UnusedLanes); 1816 } 1817 SlotIndex MIIdx = UseMI->isDebugInstr() 1818 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1819 : LIS->getInstructionIndex(*UseMI); 1820 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1821 addUndefFlag(*DstInt, UseIdx, MO, SubUseIdx); 1822 } 1823 } 1824 1825 if (DstIsPhys) 1826 MO.substPhysReg(DstReg, *TRI); 1827 else 1828 MO.substVirtReg(DstReg, SubIdx, *TRI); 1829 } 1830 1831 LLVM_DEBUG({ 1832 dbgs() << "\t\tupdated: "; 1833 if (!UseMI->isDebugInstr()) 1834 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1835 dbgs() << *UseMI; 1836 }); 1837 } 1838 } 1839 1840 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1841 // Always join simple intervals that are defined by a single copy from a 1842 // reserved register. This doesn't increase register pressure, so it is 1843 // always beneficial. 1844 if (!MRI->isReserved(CP.getDstReg())) { 1845 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1846 return false; 1847 } 1848 1849 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1850 if (JoinVInt.containsOneValue()) 1851 return true; 1852 1853 LLVM_DEBUG( 1854 dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1855 return false; 1856 } 1857 1858 bool RegisterCoalescer::copyValueUndefInPredecessors( 1859 LiveRange &S, const MachineBasicBlock *MBB, LiveQueryResult SLRQ) { 1860 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 1861 SlotIndex PredEnd = LIS->getMBBEndIdx(Pred); 1862 if (VNInfo *V = S.getVNInfoAt(PredEnd.getPrevSlot())) { 1863 // If this is a self loop, we may be reading the same value. 1864 if (V->id != SLRQ.valueOutOrDead()->id) 1865 return false; 1866 } 1867 } 1868 1869 return true; 1870 } 1871 1872 void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval &LI, 1873 Register Reg, 1874 LaneBitmask PrunedLanes) { 1875 // If we had other instructions in the segment reading the undef sublane 1876 // value, we need to mark them with undef. 1877 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 1878 unsigned SubRegIdx = MO.getSubReg(); 1879 if (SubRegIdx == 0 || MO.isUndef()) 1880 continue; 1881 1882 LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1883 SlotIndex Pos = LIS->getInstructionIndex(*MO.getParent()); 1884 for (LiveInterval::SubRange &S : LI.subranges()) { 1885 if (!S.liveAt(Pos) && (PrunedLanes & SubRegMask).any()) { 1886 MO.setIsUndef(); 1887 break; 1888 } 1889 } 1890 } 1891 1892 LI.removeEmptySubRanges(); 1893 1894 // A def of a subregister may be a use of other register lanes. Replacing 1895 // such a def with a def of a different register will eliminate the use, 1896 // and may cause the recorded live range to be larger than the actual 1897 // liveness in the program IR. 1898 LIS->shrinkToUses(&LI); 1899 } 1900 1901 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1902 Again = false; 1903 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1904 1905 CoalescerPair CP(*TRI); 1906 if (!CP.setRegisters(CopyMI)) { 1907 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n"); 1908 return false; 1909 } 1910 1911 if (CP.getNewRC()) { 1912 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1913 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1914 unsigned SrcIdx = CP.getSrcIdx(); 1915 unsigned DstIdx = CP.getDstIdx(); 1916 if (CP.isFlipped()) { 1917 std::swap(SrcIdx, DstIdx); 1918 std::swap(SrcRC, DstRC); 1919 } 1920 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1921 CP.getNewRC(), *LIS)) { 1922 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1923 return false; 1924 } 1925 } 1926 1927 // Dead code elimination. This really should be handled by MachineDCE, but 1928 // sometimes dead copies slip through, and we can't generate invalid live 1929 // ranges. 1930 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1931 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n"); 1932 DeadDefs.push_back(CopyMI); 1933 eliminateDeadDefs(); 1934 return true; 1935 } 1936 1937 // Eliminate undefs. 1938 if (!CP.isPhys()) { 1939 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce. 1940 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) { 1941 if (UndefMI->isImplicitDef()) 1942 return false; 1943 deleteInstr(CopyMI); 1944 return false; // Not coalescable. 1945 } 1946 } 1947 1948 // Coalesced copies are normally removed immediately, but transformations 1949 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1950 // When that happens, just join the values and remove the copy. 1951 if (CP.getSrcReg() == CP.getDstReg()) { 1952 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1953 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1954 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1955 LiveQueryResult LRQ = LI.Query(CopyIdx); 1956 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1957 VNInfo *ReadVNI = LRQ.valueIn(); 1958 assert(ReadVNI && "No value before copy and no <undef> flag."); 1959 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1960 1961 // Track incoming undef lanes we need to eliminate from the subrange. 1962 LaneBitmask PrunedLanes; 1963 MachineBasicBlock *MBB = CopyMI->getParent(); 1964 1965 // Process subregister liveranges. 1966 for (LiveInterval::SubRange &S : LI.subranges()) { 1967 LiveQueryResult SLRQ = S.Query(CopyIdx); 1968 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1969 if (VNInfo *SReadVNI = SLRQ.valueIn()) 1970 SDefVNI = S.MergeValueNumberInto(SDefVNI, SReadVNI); 1971 1972 // If this copy introduced an undef subrange from an incoming value, 1973 // we need to eliminate the undef live in values from the subrange. 1974 if (copyValueUndefInPredecessors(S, MBB, SLRQ)) { 1975 LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n"); 1976 PrunedLanes |= S.LaneMask; 1977 S.removeValNo(SDefVNI); 1978 } 1979 } 1980 } 1981 1982 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1983 if (PrunedLanes.any()) { 1984 LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: " 1985 << PrunedLanes << '\n'); 1986 setUndefOnPrunedSubRegUses(LI, CP.getSrcReg(), PrunedLanes); 1987 } 1988 1989 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1990 } 1991 deleteInstr(CopyMI); 1992 return true; 1993 } 1994 1995 // Enforce policies. 1996 if (CP.isPhys()) { 1997 LLVM_DEBUG(dbgs() << "\tConsidering merging " 1998 << printReg(CP.getSrcReg(), TRI) << " with " 1999 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'); 2000 if (!canJoinPhys(CP)) { 2001 // Before giving up coalescing, if definition of source is defined by 2002 // trivial computation, try rematerializing it. 2003 bool IsDefCopy = false; 2004 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 2005 return true; 2006 if (IsDefCopy) 2007 Again = true; // May be possible to coalesce later. 2008 return false; 2009 } 2010 } else { 2011 // When possible, let DstReg be the larger interval. 2012 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 2013 LIS->getInterval(CP.getDstReg()).size()) 2014 CP.flip(); 2015 2016 LLVM_DEBUG({ 2017 dbgs() << "\tConsidering merging to " 2018 << TRI->getRegClassName(CP.getNewRC()) << " with "; 2019 if (CP.getDstIdx() && CP.getSrcIdx()) 2020 dbgs() << printReg(CP.getDstReg()) << " in " 2021 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 2022 << printReg(CP.getSrcReg()) << " in " 2023 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 2024 else 2025 dbgs() << printReg(CP.getSrcReg(), TRI) << " in " 2026 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 2027 }); 2028 } 2029 2030 ShrinkMask = LaneBitmask::getNone(); 2031 ShrinkMainRange = false; 2032 2033 // Okay, attempt to join these two intervals. On failure, this returns false. 2034 // Otherwise, if one of the intervals being joined is a physreg, this method 2035 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 2036 // been modified, so we can use this information below to update aliases. 2037 if (!joinIntervals(CP)) { 2038 // Coalescing failed. 2039 2040 // If definition of source is defined by trivial computation, try 2041 // rematerializing it. 2042 bool IsDefCopy = false; 2043 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 2044 return true; 2045 2046 // If we can eliminate the copy without merging the live segments, do so 2047 // now. 2048 if (!CP.isPartial() && !CP.isPhys()) { 2049 bool Changed = adjustCopiesBackFrom(CP, CopyMI); 2050 bool Shrink = false; 2051 if (!Changed) 2052 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI); 2053 if (Changed) { 2054 deleteInstr(CopyMI); 2055 if (Shrink) { 2056 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 2057 LiveInterval &DstLI = LIS->getInterval(DstReg); 2058 shrinkToUses(&DstLI); 2059 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n'); 2060 } 2061 LLVM_DEBUG(dbgs() << "\tTrivial!\n"); 2062 return true; 2063 } 2064 } 2065 2066 // Try and see if we can partially eliminate the copy by moving the copy to 2067 // its predecessor. 2068 if (!CP.isPartial() && !CP.isPhys()) 2069 if (removePartialRedundancy(CP, *CopyMI)) 2070 return true; 2071 2072 // Otherwise, we are unable to join the intervals. 2073 LLVM_DEBUG(dbgs() << "\tInterference!\n"); 2074 Again = true; // May be possible to coalesce later. 2075 return false; 2076 } 2077 2078 // Coalescing to a virtual register that is of a sub-register class of the 2079 // other. Make sure the resulting register is set to the right register class. 2080 if (CP.isCrossClass()) { 2081 ++numCrossRCs; 2082 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 2083 } 2084 2085 // Removing sub-register copies can ease the register class constraints. 2086 // Make sure we attempt to inflate the register class of DstReg. 2087 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 2088 InflateRegs.push_back(CP.getDstReg()); 2089 2090 // CopyMI has been erased by joinIntervals at this point. Remove it from 2091 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 2092 // to the work list. This keeps ErasedInstrs from growing needlessly. 2093 ErasedInstrs.erase(CopyMI); 2094 2095 // Rewrite all SrcReg operands to DstReg. 2096 // Also update DstReg operands to include DstIdx if it is set. 2097 if (CP.getDstIdx()) 2098 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 2099 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 2100 2101 // Shrink subregister ranges if necessary. 2102 if (ShrinkMask.any()) { 2103 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 2104 for (LiveInterval::SubRange &S : LI.subranges()) { 2105 if ((S.LaneMask & ShrinkMask).none()) 2106 continue; 2107 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 2108 << ")\n"); 2109 LIS->shrinkToUses(S, LI.reg()); 2110 } 2111 LI.removeEmptySubRanges(); 2112 } 2113 2114 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live 2115 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval 2116 // is not up-to-date, need to update the merged live interval here. 2117 if (ToBeUpdated.count(CP.getSrcReg())) 2118 ShrinkMainRange = true; 2119 2120 if (ShrinkMainRange) { 2121 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 2122 shrinkToUses(&LI); 2123 } 2124 2125 // SrcReg is guaranteed to be the register whose live interval that is 2126 // being merged. 2127 LIS->removeInterval(CP.getSrcReg()); 2128 2129 // Update regalloc hint. 2130 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 2131 2132 LLVM_DEBUG({ 2133 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 2134 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 2135 dbgs() << "\tResult = "; 2136 if (CP.isPhys()) 2137 dbgs() << printReg(CP.getDstReg(), TRI); 2138 else 2139 dbgs() << LIS->getInterval(CP.getDstReg()); 2140 dbgs() << '\n'; 2141 }); 2142 2143 ++numJoins; 2144 return true; 2145 } 2146 2147 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 2148 Register DstReg = CP.getDstReg(); 2149 Register SrcReg = CP.getSrcReg(); 2150 assert(CP.isPhys() && "Must be a physreg copy"); 2151 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 2152 LiveInterval &RHS = LIS->getInterval(SrcReg); 2153 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 2154 2155 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 2156 2157 // Optimization for reserved registers like ESP. We can only merge with a 2158 // reserved physreg if RHS has a single value that is a copy of DstReg. 2159 // The live range of the reserved register will look like a set of dead defs 2160 // - we don't properly track the live range of reserved registers. 2161 2162 // Deny any overlapping intervals. This depends on all the reserved 2163 // register live ranges to look like dead defs. 2164 if (!MRI->isConstantPhysReg(DstReg)) { 2165 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2166 // Abort if not all the regunits are reserved. 2167 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 2168 if (!MRI->isReserved(*RI)) 2169 return false; 2170 } 2171 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 2172 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) 2173 << '\n'); 2174 return false; 2175 } 2176 } 2177 2178 // We must also check for overlaps with regmask clobbers. 2179 BitVector RegMaskUsable; 2180 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 2181 !RegMaskUsable.test(DstReg)) { 2182 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n"); 2183 return false; 2184 } 2185 } 2186 2187 // Skip any value computations, we are not adding new values to the 2188 // reserved register. Also skip merging the live ranges, the reserved 2189 // register live range doesn't need to be accurate as long as all the 2190 // defs are there. 2191 2192 // Delete the identity copy. 2193 MachineInstr *CopyMI; 2194 if (CP.isFlipped()) { 2195 // Physreg is copied into vreg 2196 // %y = COPY %physreg_x 2197 // ... //< no other def of %physreg_x here 2198 // use %y 2199 // => 2200 // ... 2201 // use %physreg_x 2202 CopyMI = MRI->getVRegDef(SrcReg); 2203 } else { 2204 // VReg is copied into physreg: 2205 // %y = def 2206 // ... //< no other def or use of %physreg_x here 2207 // %physreg_x = COPY %y 2208 // => 2209 // %physreg_x = def 2210 // ... 2211 if (!MRI->hasOneNonDBGUse(SrcReg)) { 2212 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 2213 return false; 2214 } 2215 2216 if (!LIS->intervalIsInOneMBB(RHS)) { 2217 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n"); 2218 return false; 2219 } 2220 2221 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 2222 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 2223 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 2224 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 2225 2226 if (!MRI->isConstantPhysReg(DstReg)) { 2227 // We checked above that there are no interfering defs of the physical 2228 // register. However, for this case, where we intend to move up the def of 2229 // the physical register, we also need to check for interfering uses. 2230 SlotIndexes *Indexes = LIS->getSlotIndexes(); 2231 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 2232 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 2233 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 2234 if (MI->readsRegister(DstReg, TRI)) { 2235 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 2236 return false; 2237 } 2238 } 2239 } 2240 2241 // We're going to remove the copy which defines a physical reserved 2242 // register, so remove its valno, etc. 2243 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of " 2244 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n"); 2245 2246 LIS->removePhysRegDefAt(DstReg.asMCReg(), CopyRegIdx); 2247 // Create a new dead def at the new def location. 2248 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2249 LiveRange &LR = LIS->getRegUnit(*UI); 2250 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 2251 } 2252 } 2253 2254 deleteInstr(CopyMI); 2255 2256 // We don't track kills for reserved registers. 2257 MRI->clearKillFlags(CP.getSrcReg()); 2258 2259 return true; 2260 } 2261 2262 //===----------------------------------------------------------------------===// 2263 // Interference checking and interval joining 2264 //===----------------------------------------------------------------------===// 2265 // 2266 // In the easiest case, the two live ranges being joined are disjoint, and 2267 // there is no interference to consider. It is quite common, though, to have 2268 // overlapping live ranges, and we need to check if the interference can be 2269 // resolved. 2270 // 2271 // The live range of a single SSA value forms a sub-tree of the dominator tree. 2272 // This means that two SSA values overlap if and only if the def of one value 2273 // is contained in the live range of the other value. As a special case, the 2274 // overlapping values can be defined at the same index. 2275 // 2276 // The interference from an overlapping def can be resolved in these cases: 2277 // 2278 // 1. Coalescable copies. The value is defined by a copy that would become an 2279 // identity copy after joining SrcReg and DstReg. The copy instruction will 2280 // be removed, and the value will be merged with the source value. 2281 // 2282 // There can be several copies back and forth, causing many values to be 2283 // merged into one. We compute a list of ultimate values in the joined live 2284 // range as well as a mappings from the old value numbers. 2285 // 2286 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 2287 // predecessors have a live out value. It doesn't cause real interference, 2288 // and can be merged into the value it overlaps. Like a coalescable copy, it 2289 // can be erased after joining. 2290 // 2291 // 3. Copy of external value. The overlapping def may be a copy of a value that 2292 // is already in the other register. This is like a coalescable copy, but 2293 // the live range of the source register must be trimmed after erasing the 2294 // copy instruction: 2295 // 2296 // %src = COPY %ext 2297 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 2298 // 2299 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 2300 // defining one lane at a time: 2301 // 2302 // %dst:ssub0<def,read-undef> = FOO 2303 // %src = BAR 2304 // %dst:ssub1 = COPY %src 2305 // 2306 // The live range of %src overlaps the %dst value defined by FOO, but 2307 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 2308 // which was undef anyway. 2309 // 2310 // The value mapping is more complicated in this case. The final live range 2311 // will have different value numbers for both FOO and BAR, but there is no 2312 // simple mapping from old to new values. It may even be necessary to add 2313 // new PHI values. 2314 // 2315 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 2316 // is live, but never read. This can happen because we don't compute 2317 // individual live ranges per lane. 2318 // 2319 // %dst = FOO 2320 // %src = BAR 2321 // %dst:ssub1 = COPY %src 2322 // 2323 // This kind of interference is only resolved locally. If the clobbered 2324 // lane value escapes the block, the join is aborted. 2325 2326 namespace { 2327 2328 /// Track information about values in a single virtual register about to be 2329 /// joined. Objects of this class are always created in pairs - one for each 2330 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 2331 /// pair) 2332 class JoinVals { 2333 /// Live range we work on. 2334 LiveRange &LR; 2335 2336 /// (Main) register we work on. 2337 const Register Reg; 2338 2339 /// Reg (and therefore the values in this liverange) will end up as 2340 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 2341 /// CP.SrcIdx. 2342 const unsigned SubIdx; 2343 2344 /// The LaneMask that this liverange will occupy the coalesced register. May 2345 /// be smaller than the lanemask produced by SubIdx when merging subranges. 2346 const LaneBitmask LaneMask; 2347 2348 /// This is true when joining sub register ranges, false when joining main 2349 /// ranges. 2350 const bool SubRangeJoin; 2351 2352 /// Whether the current LiveInterval tracks subregister liveness. 2353 const bool TrackSubRegLiveness; 2354 2355 /// Values that will be present in the final live range. 2356 SmallVectorImpl<VNInfo*> &NewVNInfo; 2357 2358 const CoalescerPair &CP; 2359 LiveIntervals *LIS; 2360 SlotIndexes *Indexes; 2361 const TargetRegisterInfo *TRI; 2362 2363 /// Value number assignments. Maps value numbers in LI to entries in 2364 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 2365 SmallVector<int, 8> Assignments; 2366 2367 public: 2368 /// Conflict resolution for overlapping values. 2369 enum ConflictResolution { 2370 /// No overlap, simply keep this value. 2371 CR_Keep, 2372 2373 /// Merge this value into OtherVNI and erase the defining instruction. 2374 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 2375 /// values. 2376 CR_Erase, 2377 2378 /// Merge this value into OtherVNI but keep the defining instruction. 2379 /// This is for the special case where OtherVNI is defined by the same 2380 /// instruction. 2381 CR_Merge, 2382 2383 /// Keep this value, and have it replace OtherVNI where possible. This 2384 /// complicates value mapping since OtherVNI maps to two different values 2385 /// before and after this def. 2386 /// Used when clobbering undefined or dead lanes. 2387 CR_Replace, 2388 2389 /// Unresolved conflict. Visit later when all values have been mapped. 2390 CR_Unresolved, 2391 2392 /// Unresolvable conflict. Abort the join. 2393 CR_Impossible 2394 }; 2395 2396 private: 2397 /// Per-value info for LI. The lane bit masks are all relative to the final 2398 /// joined register, so they can be compared directly between SrcReg and 2399 /// DstReg. 2400 struct Val { 2401 ConflictResolution Resolution = CR_Keep; 2402 2403 /// Lanes written by this def, 0 for unanalyzed values. 2404 LaneBitmask WriteLanes; 2405 2406 /// Lanes with defined values in this register. Other lanes are undef and 2407 /// safe to clobber. 2408 LaneBitmask ValidLanes; 2409 2410 /// Value in LI being redefined by this def. 2411 VNInfo *RedefVNI = nullptr; 2412 2413 /// Value in the other live range that overlaps this def, if any. 2414 VNInfo *OtherVNI = nullptr; 2415 2416 /// Is this value an IMPLICIT_DEF that can be erased? 2417 /// 2418 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2419 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2420 /// safely erased if they are overlapping a live value in the other live 2421 /// interval. 2422 /// 2423 /// Weird control flow graphs and incomplete PHI handling in 2424 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2425 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2426 /// normal values. 2427 bool ErasableImplicitDef = false; 2428 2429 /// True when the live range of this value will be pruned because of an 2430 /// overlapping CR_Replace value in the other live range. 2431 bool Pruned = false; 2432 2433 /// True once Pruned above has been computed. 2434 bool PrunedComputed = false; 2435 2436 /// True if this value is determined to be identical to OtherVNI 2437 /// (in valuesIdentical). This is used with CR_Erase where the erased 2438 /// copy is redundant, i.e. the source value is already the same as 2439 /// the destination. In such cases the subranges need to be updated 2440 /// properly. See comment at pruneSubRegValues for more info. 2441 bool Identical = false; 2442 2443 Val() = default; 2444 2445 bool isAnalyzed() const { return WriteLanes.any(); } 2446 }; 2447 2448 /// One entry per value number in LI. 2449 SmallVector<Val, 8> Vals; 2450 2451 /// Compute the bitmask of lanes actually written by DefMI. 2452 /// Set Redef if there are any partial register definitions that depend on the 2453 /// previous value of the register. 2454 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2455 2456 /// Find the ultimate value that VNI was copied from. 2457 std::pair<const VNInfo *, Register> followCopyChain(const VNInfo *VNI) const; 2458 2459 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const; 2460 2461 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2462 /// Return a conflict resolution when possible, but leave the hard cases as 2463 /// CR_Unresolved. 2464 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2465 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2466 /// The recursion always goes upwards in the dominator tree, making loops 2467 /// impossible. 2468 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2469 2470 /// Compute the value assignment for ValNo in RI. 2471 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2472 /// the stack. 2473 void computeAssignment(unsigned ValNo, JoinVals &Other); 2474 2475 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2476 /// the extent of the tainted lanes in the block. 2477 /// 2478 /// Multiple values in Other.LR can be affected since partial redefinitions 2479 /// can preserve previously tainted lanes. 2480 /// 2481 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2482 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2483 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2484 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2485 /// 2486 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2487 /// entry to TaintedVals. 2488 /// 2489 /// Returns false if the tainted lanes extend beyond the basic block. 2490 bool 2491 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2492 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); 2493 2494 /// Return true if MI uses any of the given Lanes from Reg. 2495 /// This does not include partial redefinitions of Reg. 2496 bool usesLanes(const MachineInstr &MI, Register, unsigned, LaneBitmask) const; 2497 2498 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2499 /// be pruned: 2500 /// 2501 /// %dst = COPY %src 2502 /// %src = COPY %dst <-- This value to be pruned. 2503 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2504 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2505 2506 public: 2507 JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask, 2508 SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp, 2509 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2510 bool TrackSubRegLiveness) 2511 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2512 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2513 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2514 TRI(TRI), Assignments(LR.getNumValNums(), -1), 2515 Vals(LR.getNumValNums()) {} 2516 2517 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2518 /// Returns false if any conflicts were impossible to resolve. 2519 bool mapValues(JoinVals &Other); 2520 2521 /// Try to resolve conflicts that require all values to be mapped. 2522 /// Returns false if any conflicts were impossible to resolve. 2523 bool resolveConflicts(JoinVals &Other); 2524 2525 /// Prune the live range of values in Other.LR where they would conflict with 2526 /// CR_Replace values in LR. Collect end points for restoring the live range 2527 /// after joining. 2528 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2529 bool changeInstrs); 2530 2531 /// Removes subranges starting at copies that get removed. This sometimes 2532 /// happens when undefined subranges are copied around. These ranges contain 2533 /// no useful information and can be removed. 2534 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2535 2536 /// Pruning values in subranges can lead to removing segments in these 2537 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2538 /// the main range also need to be removed. This function will mark 2539 /// the corresponding values in the main range as pruned, so that 2540 /// eraseInstrs can do the final cleanup. 2541 /// The parameter @p LI must be the interval whose main range is the 2542 /// live range LR. 2543 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2544 2545 /// Erase any machine instructions that have been coalesced away. 2546 /// Add erased instructions to ErasedInstrs. 2547 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2548 /// the erased instrs. 2549 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2550 SmallVectorImpl<Register> &ShrinkRegs, 2551 LiveInterval *LI = nullptr); 2552 2553 /// Remove liverange defs at places where implicit defs will be removed. 2554 void removeImplicitDefs(); 2555 2556 /// Get the value assignments suitable for passing to LiveInterval::join. 2557 const int *getAssignments() const { return Assignments.data(); } 2558 2559 /// Get the conflict resolution for a value number. 2560 ConflictResolution getResolution(unsigned Num) const { 2561 return Vals[Num].Resolution; 2562 } 2563 }; 2564 2565 } // end anonymous namespace 2566 2567 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2568 const { 2569 LaneBitmask L; 2570 for (const MachineOperand &MO : DefMI->operands()) { 2571 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2572 continue; 2573 L |= TRI->getSubRegIndexLaneMask( 2574 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2575 if (MO.readsReg()) 2576 Redef = true; 2577 } 2578 return L; 2579 } 2580 2581 std::pair<const VNInfo *, Register> 2582 JoinVals::followCopyChain(const VNInfo *VNI) const { 2583 Register TrackReg = Reg; 2584 2585 while (!VNI->isPHIDef()) { 2586 SlotIndex Def = VNI->def; 2587 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2588 assert(MI && "No defining instruction"); 2589 if (!MI->isFullCopy()) 2590 return std::make_pair(VNI, TrackReg); 2591 Register SrcReg = MI->getOperand(1).getReg(); 2592 if (!SrcReg.isVirtual()) 2593 return std::make_pair(VNI, TrackReg); 2594 2595 const LiveInterval &LI = LIS->getInterval(SrcReg); 2596 const VNInfo *ValueIn; 2597 // No subrange involved. 2598 if (!SubRangeJoin || !LI.hasSubRanges()) { 2599 LiveQueryResult LRQ = LI.Query(Def); 2600 ValueIn = LRQ.valueIn(); 2601 } else { 2602 // Query subranges. Ensure that all matching ones take us to the same def 2603 // (allowing some of them to be undef). 2604 ValueIn = nullptr; 2605 for (const LiveInterval::SubRange &S : LI.subranges()) { 2606 // Transform lanemask to a mask in the joined live interval. 2607 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2608 if ((SMask & LaneMask).none()) 2609 continue; 2610 LiveQueryResult LRQ = S.Query(Def); 2611 if (!ValueIn) { 2612 ValueIn = LRQ.valueIn(); 2613 continue; 2614 } 2615 if (LRQ.valueIn() && ValueIn != LRQ.valueIn()) 2616 return std::make_pair(VNI, TrackReg); 2617 } 2618 } 2619 if (ValueIn == nullptr) { 2620 // Reaching an undefined value is legitimate, for example: 2621 // 2622 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef 2623 // 2 %1 = COPY %0 ;; %1 is defined here. 2624 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition, 2625 // ;; but it's equivalent to "undef". 2626 return std::make_pair(nullptr, SrcReg); 2627 } 2628 VNI = ValueIn; 2629 TrackReg = SrcReg; 2630 } 2631 return std::make_pair(VNI, TrackReg); 2632 } 2633 2634 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2635 const JoinVals &Other) const { 2636 const VNInfo *Orig0; 2637 Register Reg0; 2638 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2639 if (Orig0 == Value1 && Reg0 == Other.Reg) 2640 return true; 2641 2642 const VNInfo *Orig1; 2643 Register Reg1; 2644 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2645 // If both values are undefined, and the source registers are the same 2646 // register, the values are identical. Filter out cases where only one 2647 // value is defined. 2648 if (Orig0 == nullptr || Orig1 == nullptr) 2649 return Orig0 == Orig1 && Reg0 == Reg1; 2650 2651 // The values are equal if they are defined at the same place and use the 2652 // same register. Note that we cannot compare VNInfos directly as some of 2653 // them might be from a copy created in mergeSubRangeInto() while the other 2654 // is from the original LiveInterval. 2655 return Orig0->def == Orig1->def && Reg0 == Reg1; 2656 } 2657 2658 JoinVals::ConflictResolution 2659 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2660 Val &V = Vals[ValNo]; 2661 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2662 VNInfo *VNI = LR.getValNumInfo(ValNo); 2663 if (VNI->isUnused()) { 2664 V.WriteLanes = LaneBitmask::getAll(); 2665 return CR_Keep; 2666 } 2667 2668 // Get the instruction defining this value, compute the lanes written. 2669 const MachineInstr *DefMI = nullptr; 2670 if (VNI->isPHIDef()) { 2671 // Conservatively assume that all lanes in a PHI are valid. 2672 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2673 : TRI->getSubRegIndexLaneMask(SubIdx); 2674 V.ValidLanes = V.WriteLanes = Lanes; 2675 } else { 2676 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2677 assert(DefMI != nullptr); 2678 if (SubRangeJoin) { 2679 // We don't care about the lanes when joining subregister ranges. 2680 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2681 if (DefMI->isImplicitDef()) { 2682 V.ValidLanes = LaneBitmask::getNone(); 2683 V.ErasableImplicitDef = true; 2684 } 2685 } else { 2686 bool Redef = false; 2687 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2688 2689 // If this is a read-modify-write instruction, there may be more valid 2690 // lanes than the ones written by this instruction. 2691 // This only covers partial redef operands. DefMI may have normal use 2692 // operands reading the register. They don't contribute valid lanes. 2693 // 2694 // This adds ssub1 to the set of valid lanes in %src: 2695 // 2696 // %src:ssub1 = FOO 2697 // 2698 // This leaves only ssub1 valid, making any other lanes undef: 2699 // 2700 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2701 // 2702 // The <read-undef> flag on the def operand means that old lane values are 2703 // not important. 2704 if (Redef) { 2705 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2706 assert((TrackSubRegLiveness || V.RedefVNI) && 2707 "Instruction is reading nonexistent value"); 2708 if (V.RedefVNI != nullptr) { 2709 computeAssignment(V.RedefVNI->id, Other); 2710 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2711 } 2712 } 2713 2714 // An IMPLICIT_DEF writes undef values. 2715 if (DefMI->isImplicitDef()) { 2716 // We normally expect IMPLICIT_DEF values to be live only until the end 2717 // of their block. If the value is really live longer and gets pruned in 2718 // another block, this flag is cleared again. 2719 // 2720 // Clearing the valid lanes is deferred until it is sure this can be 2721 // erased. 2722 V.ErasableImplicitDef = true; 2723 } 2724 } 2725 } 2726 2727 // Find the value in Other that overlaps VNI->def, if any. 2728 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2729 2730 // It is possible that both values are defined by the same instruction, or 2731 // the values are PHIs defined in the same block. When that happens, the two 2732 // values should be merged into one, but not into any preceding value. 2733 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2734 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2735 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2736 2737 // One value stays, the other is merged. Keep the earlier one, or the first 2738 // one we see. 2739 if (OtherVNI->def < VNI->def) 2740 Other.computeAssignment(OtherVNI->id, *this); 2741 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2742 // This is an early-clobber def overlapping a live-in value in the other 2743 // register. Not mergeable. 2744 V.OtherVNI = OtherLRQ.valueIn(); 2745 return CR_Impossible; 2746 } 2747 V.OtherVNI = OtherVNI; 2748 Val &OtherV = Other.Vals[OtherVNI->id]; 2749 // Keep this value, check for conflicts when analyzing OtherVNI. 2750 if (!OtherV.isAnalyzed()) 2751 return CR_Keep; 2752 // Both sides have been analyzed now. 2753 // Allow overlapping PHI values. Any real interference would show up in a 2754 // predecessor, the PHI itself can't introduce any conflicts. 2755 if (VNI->isPHIDef()) 2756 return CR_Merge; 2757 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2758 // Overlapping lanes can't be resolved. 2759 return CR_Impossible; 2760 else 2761 return CR_Merge; 2762 } 2763 2764 // No simultaneous def. Is Other live at the def? 2765 V.OtherVNI = OtherLRQ.valueIn(); 2766 if (!V.OtherVNI) 2767 // No overlap, no conflict. 2768 return CR_Keep; 2769 2770 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2771 2772 // We have overlapping values, or possibly a kill of Other. 2773 // Recursively compute assignments up the dominator tree. 2774 Other.computeAssignment(V.OtherVNI->id, *this); 2775 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2776 2777 if (OtherV.ErasableImplicitDef) { 2778 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2779 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2780 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2781 // technically. 2782 // 2783 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2784 // to erase the IMPLICIT_DEF instruction. 2785 if (DefMI && 2786 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2787 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2788 << " extends into " 2789 << printMBBReference(*DefMI->getParent()) 2790 << ", keeping it.\n"); 2791 OtherV.ErasableImplicitDef = false; 2792 } else { 2793 // We deferred clearing these lanes in case we needed to save them 2794 OtherV.ValidLanes &= ~OtherV.WriteLanes; 2795 } 2796 } 2797 2798 // Allow overlapping PHI values. Any real interference would show up in a 2799 // predecessor, the PHI itself can't introduce any conflicts. 2800 if (VNI->isPHIDef()) 2801 return CR_Replace; 2802 2803 // Check for simple erasable conflicts. 2804 if (DefMI->isImplicitDef()) 2805 return CR_Erase; 2806 2807 // Include the non-conflict where DefMI is a coalescable copy that kills 2808 // OtherVNI. We still want the copy erased and value numbers merged. 2809 if (CP.isCoalescable(DefMI)) { 2810 // Some of the lanes copied from OtherVNI may be undef, making them undef 2811 // here too. 2812 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2813 return CR_Erase; 2814 } 2815 2816 // This may not be a real conflict if DefMI simply kills Other and defines 2817 // VNI. 2818 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2819 return CR_Keep; 2820 2821 // Handle the case where VNI and OtherVNI can be proven to be identical: 2822 // 2823 // %other = COPY %ext 2824 // %this = COPY %ext <-- Erase this copy 2825 // 2826 if (DefMI->isFullCopy() && !CP.isPartial() && 2827 valuesIdentical(VNI, V.OtherVNI, Other)) { 2828 V.Identical = true; 2829 return CR_Erase; 2830 } 2831 2832 // The remaining checks apply to the lanes, which aren't tracked here. This 2833 // was already decided to be OK via the following CR_Replace condition. 2834 // CR_Replace. 2835 if (SubRangeJoin) 2836 return CR_Replace; 2837 2838 // If the lanes written by this instruction were all undef in OtherVNI, it is 2839 // still safe to join the live ranges. This can't be done with a simple value 2840 // mapping, though - OtherVNI will map to multiple values: 2841 // 2842 // 1 %dst:ssub0 = FOO <-- OtherVNI 2843 // 2 %src = BAR <-- VNI 2844 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy. 2845 // 4 BAZ killed %dst 2846 // 5 QUUX killed %src 2847 // 2848 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2849 // handles this complex value mapping. 2850 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2851 return CR_Replace; 2852 2853 // If the other live range is killed by DefMI and the live ranges are still 2854 // overlapping, it must be because we're looking at an early clobber def: 2855 // 2856 // %dst<def,early-clobber> = ASM killed %src 2857 // 2858 // In this case, it is illegal to merge the two live ranges since the early 2859 // clobber def would clobber %src before it was read. 2860 if (OtherLRQ.isKill()) { 2861 // This case where the def doesn't overlap the kill is handled above. 2862 assert(VNI->def.isEarlyClobber() && 2863 "Only early clobber defs can overlap a kill"); 2864 return CR_Impossible; 2865 } 2866 2867 // VNI is clobbering live lanes in OtherVNI, but there is still the 2868 // possibility that no instructions actually read the clobbered lanes. 2869 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2870 // Otherwise Other.RI wouldn't be live here. 2871 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2872 return CR_Impossible; 2873 2874 if (TrackSubRegLiveness) { 2875 auto &OtherLI = LIS->getInterval(Other.Reg); 2876 // If OtherVNI does not have subranges, it means all the lanes of OtherVNI 2877 // share the same live range, so we just need to check whether they have 2878 // any conflict bit in their LaneMask. 2879 if (!OtherLI.hasSubRanges()) { 2880 LaneBitmask OtherMask = TRI->getSubRegIndexLaneMask(Other.SubIdx); 2881 return (OtherMask & V.WriteLanes).none() ? CR_Replace : CR_Impossible; 2882 } 2883 2884 // If we are clobbering some active lanes of OtherVNI at VNI->def, it is 2885 // impossible to resolve the conflict. Otherwise, we can just replace 2886 // OtherVNI because of no real conflict. 2887 for (LiveInterval::SubRange &OtherSR : OtherLI.subranges()) { 2888 LaneBitmask OtherMask = 2889 TRI->composeSubRegIndexLaneMask(Other.SubIdx, OtherSR.LaneMask); 2890 if ((OtherMask & V.WriteLanes).none()) 2891 continue; 2892 2893 auto OtherSRQ = OtherSR.Query(VNI->def); 2894 if (OtherSRQ.valueIn() && OtherSRQ.endPoint() > VNI->def) { 2895 // VNI is clobbering some lanes of OtherVNI, they have real conflict. 2896 return CR_Impossible; 2897 } 2898 } 2899 2900 // VNI is NOT clobbering any lane of OtherVNI, just replace OtherVNI. 2901 return CR_Replace; 2902 } 2903 2904 // We need to verify that no instructions are reading the clobbered lanes. 2905 // To save compile time, we'll only check that locally. Don't allow the 2906 // tainted value to escape the basic block. 2907 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2908 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2909 return CR_Impossible; 2910 2911 // There are still some things that could go wrong besides clobbered lanes 2912 // being read, for example OtherVNI may be only partially redefined in MBB, 2913 // and some clobbered lanes could escape the block. Save this analysis for 2914 // resolveConflicts() when all values have been mapped. We need to know 2915 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2916 // that now - the recursive analyzeValue() calls must go upwards in the 2917 // dominator tree. 2918 return CR_Unresolved; 2919 } 2920 2921 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2922 Val &V = Vals[ValNo]; 2923 if (V.isAnalyzed()) { 2924 // Recursion should always move up the dominator tree, so ValNo is not 2925 // supposed to reappear before it has been assigned. 2926 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2927 return; 2928 } 2929 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2930 case CR_Erase: 2931 case CR_Merge: 2932 // Merge this ValNo into OtherVNI. 2933 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2934 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2935 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2936 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@' 2937 << LR.getValNumInfo(ValNo)->def << " into " 2938 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2939 << V.OtherVNI->def << " --> @" 2940 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2941 break; 2942 case CR_Replace: 2943 case CR_Unresolved: { 2944 // The other value is going to be pruned if this join is successful. 2945 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2946 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2947 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2948 // its lanes. 2949 if (OtherV.ErasableImplicitDef && 2950 TrackSubRegLiveness && 2951 (OtherV.WriteLanes & ~V.ValidLanes).any()) { 2952 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n"); 2953 2954 OtherV.ErasableImplicitDef = false; 2955 // The valid lanes written by the implicit_def were speculatively cleared 2956 // before, so make this more conservative. It may be better to track this, 2957 // I haven't found a testcase where it matters. 2958 OtherV.ValidLanes = LaneBitmask::getAll(); 2959 } 2960 2961 OtherV.Pruned = true; 2962 LLVM_FALLTHROUGH; 2963 } 2964 default: 2965 // This value number needs to go in the final joined live range. 2966 Assignments[ValNo] = NewVNInfo.size(); 2967 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2968 break; 2969 } 2970 } 2971 2972 bool JoinVals::mapValues(JoinVals &Other) { 2973 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2974 computeAssignment(i, Other); 2975 if (Vals[i].Resolution == CR_Impossible) { 2976 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i 2977 << '@' << LR.getValNumInfo(i)->def << '\n'); 2978 return false; 2979 } 2980 } 2981 return true; 2982 } 2983 2984 bool JoinVals:: 2985 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2986 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { 2987 VNInfo *VNI = LR.getValNumInfo(ValNo); 2988 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2989 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2990 2991 // Scan Other.LR from VNI.def to MBBEnd. 2992 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2993 assert(OtherI != Other.LR.end() && "No conflict?"); 2994 do { 2995 // OtherI is pointing to a tainted value. Abort the join if the tainted 2996 // lanes escape the block. 2997 SlotIndex End = OtherI->end; 2998 if (End >= MBBEnd) { 2999 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':' 3000 << OtherI->valno->id << '@' << OtherI->start << '\n'); 3001 return false; 3002 } 3003 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':' 3004 << OtherI->valno->id << '@' << OtherI->start << " to " 3005 << End << '\n'); 3006 // A dead def is not a problem. 3007 if (End.isDead()) 3008 break; 3009 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 3010 3011 // Check for another def in the MBB. 3012 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 3013 break; 3014 3015 // Lanes written by the new def are no longer tainted. 3016 const Val &OV = Other.Vals[OtherI->valno->id]; 3017 TaintedLanes &= ~OV.WriteLanes; 3018 if (!OV.RedefVNI) 3019 break; 3020 } while (TaintedLanes.any()); 3021 return true; 3022 } 3023 3024 bool JoinVals::usesLanes(const MachineInstr &MI, Register Reg, unsigned SubIdx, 3025 LaneBitmask Lanes) const { 3026 if (MI.isDebugOrPseudoInstr()) 3027 return false; 3028 for (const MachineOperand &MO : MI.operands()) { 3029 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 3030 continue; 3031 if (!MO.readsReg()) 3032 continue; 3033 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 3034 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 3035 return true; 3036 } 3037 return false; 3038 } 3039 3040 bool JoinVals::resolveConflicts(JoinVals &Other) { 3041 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3042 Val &V = Vals[i]; 3043 assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); 3044 if (V.Resolution != CR_Unresolved) 3045 continue; 3046 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@' 3047 << LR.getValNumInfo(i)->def 3048 << ' ' << PrintLaneMask(LaneMask) << '\n'); 3049 if (SubRangeJoin) 3050 return false; 3051 3052 ++NumLaneConflicts; 3053 assert(V.OtherVNI && "Inconsistent conflict resolution."); 3054 VNInfo *VNI = LR.getValNumInfo(i); 3055 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 3056 3057 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 3058 // join, those lanes will be tainted with a wrong value. Get the extent of 3059 // the tainted lanes. 3060 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 3061 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 3062 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 3063 // Tainted lanes would extend beyond the basic block. 3064 return false; 3065 3066 assert(!TaintExtent.empty() && "There should be at least one conflict."); 3067 3068 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 3069 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 3070 MachineBasicBlock::iterator MI = MBB->begin(); 3071 if (!VNI->isPHIDef()) { 3072 MI = Indexes->getInstructionFromIndex(VNI->def); 3073 if (!VNI->def.isEarlyClobber()) { 3074 // No need to check the instruction defining VNI for reads. 3075 ++MI; 3076 } 3077 } 3078 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 3079 "Interference ends on VNI->def. Should have been handled earlier"); 3080 MachineInstr *LastMI = 3081 Indexes->getInstructionFromIndex(TaintExtent.front().first); 3082 assert(LastMI && "Range must end at a proper instruction"); 3083 unsigned TaintNum = 0; 3084 while (true) { 3085 assert(MI != MBB->end() && "Bad LastMI"); 3086 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 3087 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 3088 return false; 3089 } 3090 // LastMI is the last instruction to use the current value. 3091 if (&*MI == LastMI) { 3092 if (++TaintNum == TaintExtent.size()) 3093 break; 3094 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 3095 assert(LastMI && "Range must end at a proper instruction"); 3096 TaintedLanes = TaintExtent[TaintNum].second; 3097 } 3098 ++MI; 3099 } 3100 3101 // The tainted lanes are unused. 3102 V.Resolution = CR_Replace; 3103 ++NumLaneResolves; 3104 } 3105 return true; 3106 } 3107 3108 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 3109 Val &V = Vals[ValNo]; 3110 if (V.Pruned || V.PrunedComputed) 3111 return V.Pruned; 3112 3113 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 3114 return V.Pruned; 3115 3116 // Follow copies up the dominator tree and check if any intermediate value 3117 // has been pruned. 3118 V.PrunedComputed = true; 3119 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 3120 return V.Pruned; 3121 } 3122 3123 void JoinVals::pruneValues(JoinVals &Other, 3124 SmallVectorImpl<SlotIndex> &EndPoints, 3125 bool changeInstrs) { 3126 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3127 SlotIndex Def = LR.getValNumInfo(i)->def; 3128 switch (Vals[i].Resolution) { 3129 case CR_Keep: 3130 break; 3131 case CR_Replace: { 3132 // This value takes precedence over the value in Other.LR. 3133 LIS->pruneValue(Other.LR, Def, &EndPoints); 3134 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 3135 // instructions are only inserted to provide a live-out value for PHI 3136 // predecessors, so the instruction should simply go away once its value 3137 // has been replaced. 3138 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 3139 bool EraseImpDef = OtherV.ErasableImplicitDef && 3140 OtherV.Resolution == CR_Keep; 3141 if (!Def.isBlock()) { 3142 if (changeInstrs) { 3143 // Remove <def,read-undef> flags. This def is now a partial redef. 3144 // Also remove dead flags since the joined live range will 3145 // continue past this instruction. 3146 for (MachineOperand &MO : 3147 Indexes->getInstructionFromIndex(Def)->operands()) { 3148 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 3149 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) 3150 MO.setIsUndef(false); 3151 MO.setIsDead(false); 3152 } 3153 } 3154 } 3155 // This value will reach instructions below, but we need to make sure 3156 // the live range also reaches the instruction at Def. 3157 if (!EraseImpDef) 3158 EndPoints.push_back(Def); 3159 } 3160 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def 3161 << ": " << Other.LR << '\n'); 3162 break; 3163 } 3164 case CR_Erase: 3165 case CR_Merge: 3166 if (isPrunedValue(i, Other)) { 3167 // This value is ultimately a copy of a pruned value in LR or Other.LR. 3168 // We can no longer trust the value mapping computed by 3169 // computeAssignment(), the value that was originally copied could have 3170 // been replaced. 3171 LIS->pruneValue(LR, Def, &EndPoints); 3172 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at " 3173 << Def << ": " << LR << '\n'); 3174 } 3175 break; 3176 case CR_Unresolved: 3177 case CR_Impossible: 3178 llvm_unreachable("Unresolved conflicts"); 3179 } 3180 } 3181 } 3182 3183 // Check if the segment consists of a copied live-through value (i.e. the copy 3184 // in the block only extended the liveness, of an undef value which we may need 3185 // to handle). 3186 static bool isLiveThrough(const LiveQueryResult Q) { 3187 return Q.valueIn() && Q.valueIn()->isPHIDef() && Q.valueIn() == Q.valueOut(); 3188 } 3189 3190 /// Consider the following situation when coalescing the copy between 3191 /// %31 and %45 at 800. (The vertical lines represent live range segments.) 3192 /// 3193 /// Main range Subrange 0004 (sub2) 3194 /// %31 %45 %31 %45 3195 /// 544 %45 = COPY %28 + + 3196 /// | v1 | v1 3197 /// 560B bb.1: + + 3198 /// 624 = %45.sub2 | v2 | v2 3199 /// 800 %31 = COPY %45 + + + + 3200 /// | v0 | v0 3201 /// 816 %31.sub1 = ... + | 3202 /// 880 %30 = COPY %31 | v1 + 3203 /// 928 %45 = COPY %30 | + + 3204 /// | | v0 | v0 <--+ 3205 /// 992B ; backedge -> bb.1 | + + | 3206 /// 1040 = %31.sub0 + | 3207 /// This value must remain 3208 /// live-out! 3209 /// 3210 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes 3211 /// redundant, since it copies the value from %45 back into it. The 3212 /// conflict resolution for the main range determines that %45.v0 is 3213 /// to be erased, which is ok since %31.v1 is identical to it. 3214 /// The problem happens with the subrange for sub2: it has to be live 3215 /// on exit from the block, but since 928 was actually a point of 3216 /// definition of %45.sub2, %45.sub2 was not live immediately prior 3217 /// to that definition. As a result, when 928 was erased, the value v0 3218 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an 3219 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2, 3220 /// providing an incorrect value to the use at 624. 3221 /// 3222 /// Since the main-range values %31.v1 and %45.v0 were proved to be 3223 /// identical, the corresponding values in subranges must also be the 3224 /// same. A redundant copy is removed because it's not needed, and not 3225 /// because it copied an undefined value, so any liveness that originated 3226 /// from that copy cannot disappear. When pruning a value that started 3227 /// at the removed copy, the corresponding identical value must be 3228 /// extended to replace it. 3229 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 3230 // Look for values being erased. 3231 bool DidPrune = false; 3232 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3233 Val &V = Vals[i]; 3234 // We should trigger in all cases in which eraseInstrs() does something. 3235 // match what eraseInstrs() is doing, print a message so 3236 if (V.Resolution != CR_Erase && 3237 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)) 3238 continue; 3239 3240 // Check subranges at the point where the copy will be removed. 3241 SlotIndex Def = LR.getValNumInfo(i)->def; 3242 SlotIndex OtherDef; 3243 if (V.Identical) 3244 OtherDef = V.OtherVNI->def; 3245 3246 // Print message so mismatches with eraseInstrs() can be diagnosed. 3247 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def 3248 << '\n'); 3249 for (LiveInterval::SubRange &S : LI.subranges()) { 3250 LiveQueryResult Q = S.Query(Def); 3251 3252 // If a subrange starts at the copy then an undefined value has been 3253 // copied and we must remove that subrange value as well. 3254 VNInfo *ValueOut = Q.valueOutOrDead(); 3255 if (ValueOut != nullptr && (Q.valueIn() == nullptr || 3256 (V.Identical && V.Resolution == CR_Erase && 3257 ValueOut->def == Def))) { 3258 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 3259 << " at " << Def << "\n"); 3260 SmallVector<SlotIndex,8> EndPoints; 3261 LIS->pruneValue(S, Def, &EndPoints); 3262 DidPrune = true; 3263 // Mark value number as unused. 3264 ValueOut->markUnused(); 3265 3266 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) { 3267 // If V is identical to V.OtherVNI (and S was live at OtherDef), 3268 // then we can't simply prune V from S. V needs to be replaced 3269 // with V.OtherVNI. 3270 LIS->extendToIndices(S, EndPoints); 3271 } 3272 3273 // We may need to eliminate the subrange if the copy introduced a live 3274 // out undef value. 3275 if (ValueOut->isPHIDef()) 3276 ShrinkMask |= S.LaneMask; 3277 continue; 3278 } 3279 3280 // If a subrange ends at the copy, then a value was copied but only 3281 // partially used later. Shrink the subregister range appropriately. 3282 // 3283 // Ultimately this calls shrinkToUses, so assuming ShrinkMask is 3284 // conservatively correct. 3285 if ((Q.valueIn() != nullptr && Q.valueOut() == nullptr) || 3286 (V.Resolution == CR_Erase && isLiveThrough(Q))) { 3287 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane " 3288 << PrintLaneMask(S.LaneMask) << " at " << Def 3289 << "\n"); 3290 ShrinkMask |= S.LaneMask; 3291 } 3292 } 3293 } 3294 if (DidPrune) 3295 LI.removeEmptySubRanges(); 3296 } 3297 3298 /// Check if any of the subranges of @p LI contain a definition at @p Def. 3299 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 3300 for (LiveInterval::SubRange &SR : LI.subranges()) { 3301 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 3302 if (VNI->def == Def) 3303 return true; 3304 } 3305 return false; 3306 } 3307 3308 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 3309 assert(&static_cast<LiveRange&>(LI) == &LR); 3310 3311 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3312 if (Vals[i].Resolution != CR_Keep) 3313 continue; 3314 VNInfo *VNI = LR.getValNumInfo(i); 3315 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 3316 continue; 3317 Vals[i].Pruned = true; 3318 ShrinkMainRange = true; 3319 } 3320 } 3321 3322 void JoinVals::removeImplicitDefs() { 3323 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3324 Val &V = Vals[i]; 3325 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 3326 continue; 3327 3328 VNInfo *VNI = LR.getValNumInfo(i); 3329 VNI->markUnused(); 3330 LR.removeValNo(VNI); 3331 } 3332 } 3333 3334 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 3335 SmallVectorImpl<Register> &ShrinkRegs, 3336 LiveInterval *LI) { 3337 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3338 // Get the def location before markUnused() below invalidates it. 3339 VNInfo *VNI = LR.getValNumInfo(i); 3340 SlotIndex Def = VNI->def; 3341 switch (Vals[i].Resolution) { 3342 case CR_Keep: { 3343 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 3344 // longer. The IMPLICIT_DEF instructions are only inserted by 3345 // PHIElimination to guarantee that all PHI predecessors have a value. 3346 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 3347 break; 3348 // Remove value number i from LR. 3349 // For intervals with subranges, removing a segment from the main range 3350 // may require extending the previous segment: for each definition of 3351 // a subregister, there will be a corresponding def in the main range. 3352 // That def may fall in the middle of a segment from another subrange. 3353 // In such cases, removing this def from the main range must be 3354 // complemented by extending the main range to account for the liveness 3355 // of the other subrange. 3356 // The new end point of the main range segment to be extended. 3357 SlotIndex NewEnd; 3358 if (LI != nullptr) { 3359 LiveRange::iterator I = LR.FindSegmentContaining(Def); 3360 assert(I != LR.end()); 3361 // Do not extend beyond the end of the segment being removed. 3362 // The segment may have been pruned in preparation for joining 3363 // live ranges. 3364 NewEnd = I->end; 3365 } 3366 3367 LR.removeValNo(VNI); 3368 // Note that this VNInfo is reused and still referenced in NewVNInfo, 3369 // make it appear like an unused value number. 3370 VNI->markUnused(); 3371 3372 if (LI != nullptr && LI->hasSubRanges()) { 3373 assert(static_cast<LiveRange*>(LI) == &LR); 3374 // Determine the end point based on the subrange information: 3375 // minimum of (earliest def of next segment, 3376 // latest end point of containing segment) 3377 SlotIndex ED, LE; 3378 for (LiveInterval::SubRange &SR : LI->subranges()) { 3379 LiveRange::iterator I = SR.find(Def); 3380 if (I == SR.end()) 3381 continue; 3382 if (I->start > Def) 3383 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 3384 else 3385 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 3386 } 3387 if (LE.isValid()) 3388 NewEnd = std::min(NewEnd, LE); 3389 if (ED.isValid()) 3390 NewEnd = std::min(NewEnd, ED); 3391 3392 // We only want to do the extension if there was a subrange that 3393 // was live across Def. 3394 if (LE.isValid()) { 3395 LiveRange::iterator S = LR.find(Def); 3396 if (S != LR.begin()) 3397 std::prev(S)->end = NewEnd; 3398 } 3399 } 3400 LLVM_DEBUG({ 3401 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 3402 if (LI != nullptr) 3403 dbgs() << "\t\t LHS = " << *LI << '\n'; 3404 }); 3405 LLVM_FALLTHROUGH; 3406 } 3407 3408 case CR_Erase: { 3409 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 3410 assert(MI && "No instruction to erase"); 3411 if (MI->isCopy()) { 3412 Register Reg = MI->getOperand(1).getReg(); 3413 if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() && 3414 Reg != CP.getDstReg()) 3415 ShrinkRegs.push_back(Reg); 3416 } 3417 ErasedInstrs.insert(MI); 3418 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 3419 LIS->RemoveMachineInstrFromMaps(*MI); 3420 MI->eraseFromParent(); 3421 break; 3422 } 3423 default: 3424 break; 3425 } 3426 } 3427 } 3428 3429 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 3430 LaneBitmask LaneMask, 3431 const CoalescerPair &CP) { 3432 SmallVector<VNInfo*, 16> NewVNInfo; 3433 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 3434 NewVNInfo, CP, LIS, TRI, true, true); 3435 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 3436 NewVNInfo, CP, LIS, TRI, true, true); 3437 3438 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 3439 // We should be able to resolve all conflicts here as we could successfully do 3440 // it on the mainrange already. There is however a problem when multiple 3441 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 3442 // interferences. 3443 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 3444 // We already determined that it is legal to merge the intervals, so this 3445 // should never fail. 3446 llvm_unreachable("*** Couldn't join subrange!\n"); 3447 } 3448 if (!LHSVals.resolveConflicts(RHSVals) || 3449 !RHSVals.resolveConflicts(LHSVals)) { 3450 // We already determined that it is legal to merge the intervals, so this 3451 // should never fail. 3452 llvm_unreachable("*** Couldn't join subrange!\n"); 3453 } 3454 3455 // The merging algorithm in LiveInterval::join() can't handle conflicting 3456 // value mappings, so we need to remove any live ranges that overlap a 3457 // CR_Replace resolution. Collect a set of end points that can be used to 3458 // restore the live range after joining. 3459 SmallVector<SlotIndex, 8> EndPoints; 3460 LHSVals.pruneValues(RHSVals, EndPoints, false); 3461 RHSVals.pruneValues(LHSVals, EndPoints, false); 3462 3463 LHSVals.removeImplicitDefs(); 3464 RHSVals.removeImplicitDefs(); 3465 3466 LRange.verify(); 3467 RRange.verify(); 3468 3469 // Join RRange into LHS. 3470 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 3471 NewVNInfo); 3472 3473 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask) 3474 << ' ' << LRange << "\n"); 3475 if (EndPoints.empty()) 3476 return; 3477 3478 // Recompute the parts of the live range we had to remove because of 3479 // CR_Replace conflicts. 3480 LLVM_DEBUG({ 3481 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3482 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3483 dbgs() << EndPoints[i]; 3484 if (i != n-1) 3485 dbgs() << ','; 3486 } 3487 dbgs() << ": " << LRange << '\n'; 3488 }); 3489 LIS->extendToIndices(LRange, EndPoints); 3490 } 3491 3492 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 3493 const LiveRange &ToMerge, 3494 LaneBitmask LaneMask, 3495 CoalescerPair &CP, 3496 unsigned ComposeSubRegIdx) { 3497 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3498 LI.refineSubRanges( 3499 Allocator, LaneMask, 3500 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) { 3501 if (SR.empty()) { 3502 SR.assign(ToMerge, Allocator); 3503 } else { 3504 // joinSubRegRange() destroys the merged range, so we need a copy. 3505 LiveRange RangeCopy(ToMerge, Allocator); 3506 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 3507 } 3508 }, 3509 *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx); 3510 } 3511 3512 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) { 3513 if (LI.valnos.size() < LargeIntervalSizeThreshold) 3514 return false; 3515 auto &Counter = LargeLIVisitCounter[LI.reg()]; 3516 if (Counter < LargeIntervalFreqThreshold) { 3517 Counter++; 3518 return false; 3519 } 3520 return true; 3521 } 3522 3523 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 3524 SmallVector<VNInfo*, 16> NewVNInfo; 3525 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 3526 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 3527 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 3528 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 3529 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3530 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 3531 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3532 3533 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n'); 3534 3535 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS)) 3536 return false; 3537 3538 // First compute NewVNInfo and the simple value mappings. 3539 // Detect impossible conflicts early. 3540 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 3541 return false; 3542 3543 // Some conflicts can only be resolved after all values have been mapped. 3544 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 3545 return false; 3546 3547 // All clear, the live ranges can be merged. 3548 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 3549 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3550 3551 // Transform lanemasks from the LHS to masks in the coalesced register and 3552 // create initial subranges if necessary. 3553 unsigned DstIdx = CP.getDstIdx(); 3554 if (!LHS.hasSubRanges()) { 3555 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 3556 : TRI->getSubRegIndexLaneMask(DstIdx); 3557 // LHS must support subregs or we wouldn't be in this codepath. 3558 assert(Mask.any()); 3559 LHS.createSubRangeFrom(Allocator, Mask, LHS); 3560 } else if (DstIdx != 0) { 3561 // Transform LHS lanemasks to new register class if necessary. 3562 for (LiveInterval::SubRange &R : LHS.subranges()) { 3563 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 3564 R.LaneMask = Mask; 3565 } 3566 } 3567 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS 3568 << '\n'); 3569 3570 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3571 unsigned SrcIdx = CP.getSrcIdx(); 3572 if (!RHS.hasSubRanges()) { 3573 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3574 : TRI->getSubRegIndexLaneMask(SrcIdx); 3575 mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx); 3576 } else { 3577 // Pair up subranges and merge. 3578 for (LiveInterval::SubRange &R : RHS.subranges()) { 3579 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3580 mergeSubRangeInto(LHS, R, Mask, CP, DstIdx); 3581 } 3582 } 3583 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3584 3585 // Pruning implicit defs from subranges may result in the main range 3586 // having stale segments. 3587 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3588 3589 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3590 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3591 } 3592 3593 // The merging algorithm in LiveInterval::join() can't handle conflicting 3594 // value mappings, so we need to remove any live ranges that overlap a 3595 // CR_Replace resolution. Collect a set of end points that can be used to 3596 // restore the live range after joining. 3597 SmallVector<SlotIndex, 8> EndPoints; 3598 LHSVals.pruneValues(RHSVals, EndPoints, true); 3599 RHSVals.pruneValues(LHSVals, EndPoints, true); 3600 3601 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3602 // registers to require trimming. 3603 SmallVector<Register, 8> ShrinkRegs; 3604 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3605 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3606 while (!ShrinkRegs.empty()) 3607 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3608 3609 // Scan and mark undef any DBG_VALUEs that would refer to a different value. 3610 checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals); 3611 3612 // If the RHS covers any PHI locations that were tracked for debug-info, we 3613 // must update tracking information to reflect the join. 3614 auto RegIt = RegToPHIIdx.find(CP.getSrcReg()); 3615 if (RegIt != RegToPHIIdx.end()) { 3616 // Iterate over all the debug instruction numbers assigned this register. 3617 for (unsigned InstID : RegIt->second) { 3618 auto PHIIt = PHIValToPos.find(InstID); 3619 assert(PHIIt != PHIValToPos.end()); 3620 const SlotIndex &SI = PHIIt->second.SI; 3621 3622 // Does the RHS cover the position of this PHI? 3623 auto LII = RHS.find(SI); 3624 if (LII == RHS.end() || LII->start > SI) 3625 continue; 3626 3627 // Accept two kinds of subregister movement: 3628 // * When we merge from one register class into a larger register: 3629 // %1:gr16 = some-inst 3630 // -> 3631 // %2:gr32.sub_16bit = some-inst 3632 // * When the PHI is already in a subregister, and the larger class 3633 // is coalesced: 3634 // %2:gr32.sub_16bit = some-inst 3635 // %3:gr32 = COPY %2 3636 // -> 3637 // %3:gr32.sub_16bit = some-inst 3638 // Test for subregister move: 3639 if (CP.getSrcIdx() != 0 || CP.getDstIdx() != 0) 3640 // If we're moving between different subregisters, ignore this join. 3641 // The PHI will not get a location, dropping variable locations. 3642 if (PHIIt->second.SubReg && PHIIt->second.SubReg != CP.getSrcIdx()) 3643 continue; 3644 3645 // Update our tracking of where the PHI is. 3646 PHIIt->second.Reg = CP.getDstReg(); 3647 3648 // If we merge into a sub-register of a larger class (test above), 3649 // update SubReg. 3650 if (CP.getSrcIdx() != 0) 3651 PHIIt->second.SubReg = CP.getSrcIdx(); 3652 } 3653 3654 // Rebuild the register index in RegToPHIIdx to account for PHIs tracking 3655 // different VRegs now. Copy old collection of debug instruction numbers and 3656 // erase the old one: 3657 auto InstrNums = RegIt->second; 3658 RegToPHIIdx.erase(RegIt); 3659 3660 // There might already be PHIs being tracked in the destination VReg. Insert 3661 // into an existing tracking collection, or insert a new one. 3662 RegIt = RegToPHIIdx.find(CP.getDstReg()); 3663 if (RegIt != RegToPHIIdx.end()) 3664 RegIt->second.insert(RegIt->second.end(), InstrNums.begin(), 3665 InstrNums.end()); 3666 else 3667 RegToPHIIdx.insert({CP.getDstReg(), InstrNums}); 3668 } 3669 3670 // Join RHS into LHS. 3671 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3672 3673 // Kill flags are going to be wrong if the live ranges were overlapping. 3674 // Eventually, we should simply clear all kill flags when computing live 3675 // ranges. They are reinserted after register allocation. 3676 MRI->clearKillFlags(LHS.reg()); 3677 MRI->clearKillFlags(RHS.reg()); 3678 3679 if (!EndPoints.empty()) { 3680 // Recompute the parts of the live range we had to remove because of 3681 // CR_Replace conflicts. 3682 LLVM_DEBUG({ 3683 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3684 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3685 dbgs() << EndPoints[i]; 3686 if (i != n-1) 3687 dbgs() << ','; 3688 } 3689 dbgs() << ": " << LHS << '\n'; 3690 }); 3691 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3692 } 3693 3694 return true; 3695 } 3696 3697 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3698 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3699 } 3700 3701 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF) 3702 { 3703 const SlotIndexes &Slots = *LIS->getSlotIndexes(); 3704 SmallVector<MachineInstr *, 8> ToInsert; 3705 3706 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the 3707 // vreg => DbgValueLoc map. 3708 auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) { 3709 for (auto *X : ToInsert) { 3710 for (const auto &Op : X->debug_operands()) { 3711 if (Op.isReg() && Op.getReg().isVirtual()) 3712 DbgVRegToValues[Op.getReg()].push_back({Slot, X}); 3713 } 3714 } 3715 3716 ToInsert.clear(); 3717 }; 3718 3719 // Iterate over all instructions, collecting them into the ToInsert vector. 3720 // Once a non-debug instruction is found, record the slot index of the 3721 // collected DBG_VALUEs. 3722 for (auto &MBB : MF) { 3723 SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB); 3724 3725 for (auto &MI : MBB) { 3726 if (MI.isDebugValue()) { 3727 if (any_of(MI.debug_operands(), [](const MachineOperand &MO) { 3728 return MO.isReg() && MO.getReg().isVirtual(); 3729 })) 3730 ToInsert.push_back(&MI); 3731 } else if (!MI.isDebugOrPseudoInstr()) { 3732 CurrentSlot = Slots.getInstructionIndex(MI); 3733 CloseNewDVRange(CurrentSlot); 3734 } 3735 } 3736 3737 // Close range of DBG_VALUEs at the end of blocks. 3738 CloseNewDVRange(Slots.getMBBEndIdx(&MBB)); 3739 } 3740 3741 // Sort all DBG_VALUEs we've seen by slot number. 3742 for (auto &Pair : DbgVRegToValues) 3743 llvm::sort(Pair.second); 3744 } 3745 3746 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP, 3747 LiveRange &LHS, 3748 JoinVals &LHSVals, 3749 LiveRange &RHS, 3750 JoinVals &RHSVals) { 3751 auto ScanForDstReg = [&](Register Reg) { 3752 checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals); 3753 }; 3754 3755 auto ScanForSrcReg = [&](Register Reg) { 3756 checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals); 3757 }; 3758 3759 // Scan for potentially unsound DBG_VALUEs: examine first the register number 3760 // Reg, and then any other vregs that may have been merged into it. 3761 auto PerformScan = [this](Register Reg, std::function<void(Register)> Func) { 3762 Func(Reg); 3763 if (DbgMergedVRegNums.count(Reg)) 3764 for (Register X : DbgMergedVRegNums[Reg]) 3765 Func(X); 3766 }; 3767 3768 // Scan for unsound updates of both the source and destination register. 3769 PerformScan(CP.getSrcReg(), ScanForSrcReg); 3770 PerformScan(CP.getDstReg(), ScanForDstReg); 3771 } 3772 3773 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg, 3774 LiveRange &OtherLR, 3775 LiveRange &RegLR, 3776 JoinVals &RegVals) { 3777 // Are there any DBG_VALUEs to examine? 3778 auto VRegMapIt = DbgVRegToValues.find(Reg); 3779 if (VRegMapIt == DbgVRegToValues.end()) 3780 return; 3781 3782 auto &DbgValueSet = VRegMapIt->second; 3783 auto DbgValueSetIt = DbgValueSet.begin(); 3784 auto SegmentIt = OtherLR.begin(); 3785 3786 bool LastUndefResult = false; 3787 SlotIndex LastUndefIdx; 3788 3789 // If the "Other" register is live at a slot Idx, test whether Reg can 3790 // safely be merged with it, or should be marked undef. 3791 auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult, 3792 &LastUndefIdx](SlotIndex Idx) -> bool { 3793 // Our worst-case performance typically happens with asan, causing very 3794 // many DBG_VALUEs of the same location. Cache a copy of the most recent 3795 // result for this edge-case. 3796 if (LastUndefIdx == Idx) 3797 return LastUndefResult; 3798 3799 // If the other range was live, and Reg's was not, the register coalescer 3800 // will not have tried to resolve any conflicts. We don't know whether 3801 // the DBG_VALUE will refer to the same value number, so it must be made 3802 // undef. 3803 auto OtherIt = RegLR.find(Idx); 3804 if (OtherIt == RegLR.end()) 3805 return true; 3806 3807 // Both the registers were live: examine the conflict resolution record for 3808 // the value number Reg refers to. CR_Keep meant that this value number 3809 // "won" and the merged register definitely refers to that value. CR_Erase 3810 // means the value number was a redundant copy of the other value, which 3811 // was coalesced and Reg deleted. It's safe to refer to the other register 3812 // (which will be the source of the copy). 3813 auto Resolution = RegVals.getResolution(OtherIt->valno->id); 3814 LastUndefResult = Resolution != JoinVals::CR_Keep && 3815 Resolution != JoinVals::CR_Erase; 3816 LastUndefIdx = Idx; 3817 return LastUndefResult; 3818 }; 3819 3820 // Iterate over both the live-range of the "Other" register, and the set of 3821 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest 3822 // slot index. This relies on the DbgValueSet being ordered. 3823 while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) { 3824 if (DbgValueSetIt->first < SegmentIt->end) { 3825 // "Other" is live and there is a DBG_VALUE of Reg: test if we should 3826 // set it undef. 3827 if (DbgValueSetIt->first >= SegmentIt->start) { 3828 bool HasReg = DbgValueSetIt->second->hasDebugOperandForReg(Reg); 3829 bool ShouldUndefReg = ShouldUndef(DbgValueSetIt->first); 3830 if (HasReg && ShouldUndefReg) { 3831 // Mark undef, erase record of this DBG_VALUE to avoid revisiting. 3832 DbgValueSetIt->second->setDebugValueUndef(); 3833 continue; 3834 } 3835 } 3836 ++DbgValueSetIt; 3837 } else { 3838 ++SegmentIt; 3839 } 3840 } 3841 } 3842 3843 namespace { 3844 3845 /// Information concerning MBB coalescing priority. 3846 struct MBBPriorityInfo { 3847 MachineBasicBlock *MBB; 3848 unsigned Depth; 3849 bool IsSplit; 3850 3851 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3852 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3853 }; 3854 3855 } // end anonymous namespace 3856 3857 /// C-style comparator that sorts first based on the loop depth of the basic 3858 /// block (the unsigned), and then on the MBB number. 3859 /// 3860 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3861 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3862 const MBBPriorityInfo *RHS) { 3863 // Deeper loops first 3864 if (LHS->Depth != RHS->Depth) 3865 return LHS->Depth > RHS->Depth ? -1 : 1; 3866 3867 // Try to unsplit critical edges next. 3868 if (LHS->IsSplit != RHS->IsSplit) 3869 return LHS->IsSplit ? -1 : 1; 3870 3871 // Prefer blocks that are more connected in the CFG. This takes care of 3872 // the most difficult copies first while intervals are short. 3873 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3874 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3875 if (cl != cr) 3876 return cl > cr ? -1 : 1; 3877 3878 // As a last resort, sort by block number. 3879 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3880 } 3881 3882 /// \returns true if the given copy uses or defines a local live range. 3883 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3884 if (!Copy->isCopy()) 3885 return false; 3886 3887 if (Copy->getOperand(1).isUndef()) 3888 return false; 3889 3890 Register SrcReg = Copy->getOperand(1).getReg(); 3891 Register DstReg = Copy->getOperand(0).getReg(); 3892 if (Register::isPhysicalRegister(SrcReg) || 3893 Register::isPhysicalRegister(DstReg)) 3894 return false; 3895 3896 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3897 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3898 } 3899 3900 void RegisterCoalescer::lateLiveIntervalUpdate() { 3901 for (Register reg : ToBeUpdated) { 3902 if (!LIS->hasInterval(reg)) 3903 continue; 3904 LiveInterval &LI = LIS->getInterval(reg); 3905 shrinkToUses(&LI, &DeadDefs); 3906 if (!DeadDefs.empty()) 3907 eliminateDeadDefs(); 3908 } 3909 ToBeUpdated.clear(); 3910 } 3911 3912 bool RegisterCoalescer:: 3913 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3914 bool Progress = false; 3915 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3916 if (!CurrList[i]) 3917 continue; 3918 // Skip instruction pointers that have already been erased, for example by 3919 // dead code elimination. 3920 if (ErasedInstrs.count(CurrList[i])) { 3921 CurrList[i] = nullptr; 3922 continue; 3923 } 3924 bool Again = false; 3925 bool Success = joinCopy(CurrList[i], Again); 3926 Progress |= Success; 3927 if (Success || !Again) 3928 CurrList[i] = nullptr; 3929 } 3930 return Progress; 3931 } 3932 3933 /// Check if DstReg is a terminal node. 3934 /// I.e., it does not have any affinity other than \p Copy. 3935 static bool isTerminalReg(Register DstReg, const MachineInstr &Copy, 3936 const MachineRegisterInfo *MRI) { 3937 assert(Copy.isCopyLike()); 3938 // Check if the destination of this copy as any other affinity. 3939 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3940 if (&MI != &Copy && MI.isCopyLike()) 3941 return false; 3942 return true; 3943 } 3944 3945 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3946 assert(Copy.isCopyLike()); 3947 if (!UseTerminalRule) 3948 return false; 3949 Register SrcReg, DstReg; 3950 unsigned SrcSubReg = 0, DstSubReg = 0; 3951 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg)) 3952 return false; 3953 // Check if the destination of this copy has any other affinity. 3954 if (DstReg.isPhysical() || 3955 // If SrcReg is a physical register, the copy won't be coalesced. 3956 // Ignoring it may have other side effect (like missing 3957 // rematerialization). So keep it. 3958 SrcReg.isPhysical() || !isTerminalReg(DstReg, Copy, MRI)) 3959 return false; 3960 3961 // DstReg is a terminal node. Check if it interferes with any other 3962 // copy involving SrcReg. 3963 const MachineBasicBlock *OrigBB = Copy.getParent(); 3964 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3965 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3966 // Technically we should check if the weight of the new copy is 3967 // interesting compared to the other one and update the weight 3968 // of the copies accordingly. However, this would only work if 3969 // we would gather all the copies first then coalesce, whereas 3970 // right now we interleave both actions. 3971 // For now, just consider the copies that are in the same block. 3972 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3973 continue; 3974 Register OtherSrcReg, OtherReg; 3975 unsigned OtherSrcSubReg = 0, OtherSubReg = 0; 3976 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3977 OtherSubReg)) 3978 return false; 3979 if (OtherReg == SrcReg) 3980 OtherReg = OtherSrcReg; 3981 // Check if OtherReg is a non-terminal. 3982 if (Register::isPhysicalRegister(OtherReg) || 3983 isTerminalReg(OtherReg, MI, MRI)) 3984 continue; 3985 // Check that OtherReg interfere with DstReg. 3986 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3987 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) 3988 << '\n'); 3989 return true; 3990 } 3991 } 3992 return false; 3993 } 3994 3995 void 3996 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3997 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n"); 3998 3999 // Collect all copy-like instructions in MBB. Don't start coalescing anything 4000 // yet, it might invalidate the iterator. 4001 const unsigned PrevSize = WorkList.size(); 4002 if (JoinGlobalCopies) { 4003 SmallVector<MachineInstr*, 2> LocalTerminals; 4004 SmallVector<MachineInstr*, 2> GlobalTerminals; 4005 // Coalesce copies bottom-up to coalesce local defs before local uses. They 4006 // are not inherently easier to resolve, but slightly preferable until we 4007 // have local live range splitting. In particular this is required by 4008 // cmp+jmp macro fusion. 4009 for (MachineInstr &MI : *MBB) { 4010 if (!MI.isCopyLike()) 4011 continue; 4012 bool ApplyTerminalRule = applyTerminalRule(MI); 4013 if (isLocalCopy(&MI, LIS)) { 4014 if (ApplyTerminalRule) 4015 LocalTerminals.push_back(&MI); 4016 else 4017 LocalWorkList.push_back(&MI); 4018 } else { 4019 if (ApplyTerminalRule) 4020 GlobalTerminals.push_back(&MI); 4021 else 4022 WorkList.push_back(&MI); 4023 } 4024 } 4025 // Append the copies evicted by the terminal rule at the end of the list. 4026 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 4027 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 4028 } 4029 else { 4030 SmallVector<MachineInstr*, 2> Terminals; 4031 for (MachineInstr &MII : *MBB) 4032 if (MII.isCopyLike()) { 4033 if (applyTerminalRule(MII)) 4034 Terminals.push_back(&MII); 4035 else 4036 WorkList.push_back(&MII); 4037 } 4038 // Append the copies evicted by the terminal rule at the end of the list. 4039 WorkList.append(Terminals.begin(), Terminals.end()); 4040 } 4041 // Try coalescing the collected copies immediately, and remove the nulls. 4042 // This prevents the WorkList from getting too large since most copies are 4043 // joinable on the first attempt. 4044 MutableArrayRef<MachineInstr*> 4045 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 4046 if (copyCoalesceWorkList(CurrList)) 4047 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 4048 nullptr), WorkList.end()); 4049 } 4050 4051 void RegisterCoalescer::coalesceLocals() { 4052 copyCoalesceWorkList(LocalWorkList); 4053 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 4054 if (LocalWorkList[j]) 4055 WorkList.push_back(LocalWorkList[j]); 4056 } 4057 LocalWorkList.clear(); 4058 } 4059 4060 void RegisterCoalescer::joinAllIntervals() { 4061 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 4062 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 4063 4064 std::vector<MBBPriorityInfo> MBBs; 4065 MBBs.reserve(MF->size()); 4066 for (MachineBasicBlock &MBB : *MF) { 4067 MBBs.push_back(MBBPriorityInfo(&MBB, Loops->getLoopDepth(&MBB), 4068 JoinSplitEdges && isSplitEdge(&MBB))); 4069 } 4070 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 4071 4072 // Coalesce intervals in MBB priority order. 4073 unsigned CurrDepth = std::numeric_limits<unsigned>::max(); 4074 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 4075 // Try coalescing the collected local copies for deeper loops. 4076 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 4077 coalesceLocals(); 4078 CurrDepth = MBBs[i].Depth; 4079 } 4080 copyCoalesceInMBB(MBBs[i].MBB); 4081 } 4082 lateLiveIntervalUpdate(); 4083 coalesceLocals(); 4084 4085 // Joining intervals can allow other intervals to be joined. Iteratively join 4086 // until we make no progress. 4087 while (copyCoalesceWorkList(WorkList)) 4088 /* empty */ ; 4089 lateLiveIntervalUpdate(); 4090 } 4091 4092 void RegisterCoalescer::releaseMemory() { 4093 ErasedInstrs.clear(); 4094 WorkList.clear(); 4095 DeadDefs.clear(); 4096 InflateRegs.clear(); 4097 LargeLIVisitCounter.clear(); 4098 } 4099 4100 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 4101 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 4102 << "********** Function: " << fn.getName() << '\n'); 4103 4104 // Variables changed between a setjmp and a longjump can have undefined value 4105 // after the longjmp. This behaviour can be observed if such a variable is 4106 // spilled, so longjmp won't restore the value in the spill slot. 4107 // RegisterCoalescer should not run in functions with a setjmp to avoid 4108 // merging such undefined variables with predictable ones. 4109 // 4110 // TODO: Could specifically disable coalescing registers live across setjmp 4111 // calls 4112 if (fn.exposesReturnsTwice()) { 4113 LLVM_DEBUG( 4114 dbgs() << "* Skipped as it exposes funcions that returns twice.\n"); 4115 return false; 4116 } 4117 4118 MF = &fn; 4119 MRI = &fn.getRegInfo(); 4120 const TargetSubtargetInfo &STI = fn.getSubtarget(); 4121 TRI = STI.getRegisterInfo(); 4122 TII = STI.getInstrInfo(); 4123 LIS = &getAnalysis<LiveIntervals>(); 4124 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4125 Loops = &getAnalysis<MachineLoopInfo>(); 4126 if (EnableGlobalCopies == cl::BOU_UNSET) 4127 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 4128 else 4129 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 4130 4131 // If there are PHIs tracked by debug-info, they will need updating during 4132 // coalescing. Build an index of those PHIs to ease updating. 4133 SlotIndexes *Slots = LIS->getSlotIndexes(); 4134 for (const auto &DebugPHI : MF->DebugPHIPositions) { 4135 MachineBasicBlock *MBB = DebugPHI.second.MBB; 4136 Register Reg = DebugPHI.second.Reg; 4137 unsigned SubReg = DebugPHI.second.SubReg; 4138 SlotIndex SI = Slots->getMBBStartIdx(MBB); 4139 PHIValPos P = {SI, Reg, SubReg}; 4140 PHIValToPos.insert(std::make_pair(DebugPHI.first, P)); 4141 RegToPHIIdx[Reg].push_back(DebugPHI.first); 4142 } 4143 4144 // The MachineScheduler does not currently require JoinSplitEdges. This will 4145 // either be enabled unconditionally or replaced by a more general live range 4146 // splitting optimization. 4147 JoinSplitEdges = EnableJoinSplits; 4148 4149 if (VerifyCoalescing) 4150 MF->verify(this, "Before register coalescing"); 4151 4152 DbgVRegToValues.clear(); 4153 DbgMergedVRegNums.clear(); 4154 buildVRegToDbgValueMap(fn); 4155 4156 RegClassInfo.runOnMachineFunction(fn); 4157 4158 // Join (coalesce) intervals if requested. 4159 if (EnableJoining) 4160 joinAllIntervals(); 4161 4162 // After deleting a lot of copies, register classes may be less constrained. 4163 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 4164 // DPR inflation. 4165 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 4166 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 4167 InflateRegs.end()); 4168 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() 4169 << " regs.\n"); 4170 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 4171 Register Reg = InflateRegs[i]; 4172 if (MRI->reg_nodbg_empty(Reg)) 4173 continue; 4174 if (MRI->recomputeRegClass(Reg)) { 4175 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to " 4176 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 4177 ++NumInflated; 4178 4179 LiveInterval &LI = LIS->getInterval(Reg); 4180 if (LI.hasSubRanges()) { 4181 // If the inflated register class does not support subregisters anymore 4182 // remove the subranges. 4183 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 4184 LI.clearSubRanges(); 4185 } else { 4186 #ifndef NDEBUG 4187 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 4188 // If subranges are still supported, then the same subregs 4189 // should still be supported. 4190 for (LiveInterval::SubRange &S : LI.subranges()) { 4191 assert((S.LaneMask & ~MaxMask).none()); 4192 } 4193 #endif 4194 } 4195 } 4196 } 4197 } 4198 4199 // After coalescing, update any PHIs that are being tracked by debug-info 4200 // with their new VReg locations. 4201 for (auto &p : MF->DebugPHIPositions) { 4202 auto it = PHIValToPos.find(p.first); 4203 assert(it != PHIValToPos.end()); 4204 p.second.Reg = it->second.Reg; 4205 p.second.SubReg = it->second.SubReg; 4206 } 4207 4208 PHIValToPos.clear(); 4209 RegToPHIIdx.clear(); 4210 4211 LLVM_DEBUG(dump()); 4212 if (VerifyCoalescing) 4213 MF->verify(this, "After register coalescing"); 4214 return true; 4215 } 4216 4217 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 4218 LIS->print(O, m); 4219 } 4220