1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic RegisterCoalescer interface which 10 // is used as the common interface used by all clients and 11 // implementations of register coalescing. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "RegisterCoalescer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetOpcodes.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/LaneBitmask.h" 45 #include "llvm/MC/MCInstrDesc.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <iterator> 56 #include <limits> 57 #include <tuple> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "regalloc" 64 65 STATISTIC(numJoins , "Number of interval joins performed"); 66 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 67 STATISTIC(numCommutes , "Number of instruction commuting performed"); 68 STATISTIC(numExtends , "Number of copies extended"); 69 STATISTIC(NumReMats , "Number of instructions re-materialized"); 70 STATISTIC(NumInflated , "Number of register classes inflated"); 71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 72 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 73 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called"); 74 75 static cl::opt<bool> EnableJoining("join-liveintervals", 76 cl::desc("Coalesce copies (default=true)"), 77 cl::init(true), cl::Hidden); 78 79 static cl::opt<bool> UseTerminalRule("terminal-rule", 80 cl::desc("Apply the terminal rule"), 81 cl::init(false), cl::Hidden); 82 83 /// Temporary flag to test critical edge unsplitting. 84 static cl::opt<bool> 85 EnableJoinSplits("join-splitedges", 86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 87 88 /// Temporary flag to test global copy optimization. 89 static cl::opt<cl::boolOrDefault> 90 EnableGlobalCopies("join-globalcopies", 91 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 92 cl::init(cl::BOU_UNSET), cl::Hidden); 93 94 static cl::opt<bool> 95 VerifyCoalescing("verify-coalescing", 96 cl::desc("Verify machine instrs before and after register coalescing"), 97 cl::Hidden); 98 99 static cl::opt<unsigned> LateRematUpdateThreshold( 100 "late-remat-update-threshold", cl::Hidden, 101 cl::desc("During rematerialization for a copy, if the def instruction has " 102 "many other copy uses to be rematerialized, delay the multiple " 103 "separate live interval update work and do them all at once after " 104 "all those rematerialization are done. It will save a lot of " 105 "repeated work. "), 106 cl::init(100)); 107 108 static cl::opt<unsigned> LargeIntervalSizeThreshold( 109 "large-interval-size-threshold", cl::Hidden, 110 cl::desc("If the valnos size of an interval is larger than the threshold, " 111 "it is regarded as a large interval. "), 112 cl::init(100)); 113 114 static cl::opt<unsigned> LargeIntervalFreqThreshold( 115 "large-interval-freq-threshold", cl::Hidden, 116 cl::desc("For a large interval, if it is coalesed with other live " 117 "intervals many times more than the threshold, stop its " 118 "coalescing to control the compile time. "), 119 cl::init(100)); 120 121 namespace { 122 123 class JoinVals; 124 125 class RegisterCoalescer : public MachineFunctionPass, 126 private LiveRangeEdit::Delegate { 127 MachineFunction* MF = nullptr; 128 MachineRegisterInfo* MRI = nullptr; 129 const TargetRegisterInfo* TRI = nullptr; 130 const TargetInstrInfo* TII = nullptr; 131 LiveIntervals *LIS = nullptr; 132 const MachineLoopInfo* Loops = nullptr; 133 AliasAnalysis *AA = nullptr; 134 RegisterClassInfo RegClassInfo; 135 136 /// Debug variable location tracking -- for each VReg, maintain an 137 /// ordered-by-slot-index set of DBG_VALUEs, to help quick 138 /// identification of whether coalescing may change location validity. 139 using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>; 140 DenseMap<unsigned, std::vector<DbgValueLoc>> DbgVRegToValues; 141 142 /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached. 143 /// To avoid repeatedly merging sets of DbgValueLocs, instead record 144 /// which vregs have been coalesced, and where to. This map is from 145 /// vreg => {set of vregs merged in}. 146 DenseMap<unsigned, SmallVector<unsigned, 4>> DbgMergedVRegNums; 147 148 /// A LaneMask to remember on which subregister live ranges we need to call 149 /// shrinkToUses() later. 150 LaneBitmask ShrinkMask; 151 152 /// True if the main range of the currently coalesced intervals should be 153 /// checked for smaller live intervals. 154 bool ShrinkMainRange = false; 155 156 /// True if the coalescer should aggressively coalesce global copies 157 /// in favor of keeping local copies. 158 bool JoinGlobalCopies = false; 159 160 /// True if the coalescer should aggressively coalesce fall-thru 161 /// blocks exclusively containing copies. 162 bool JoinSplitEdges = false; 163 164 /// Copy instructions yet to be coalesced. 165 SmallVector<MachineInstr*, 8> WorkList; 166 SmallVector<MachineInstr*, 8> LocalWorkList; 167 168 /// Set of instruction pointers that have been erased, and 169 /// that may be present in WorkList. 170 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 171 172 /// Dead instructions that are about to be deleted. 173 SmallVector<MachineInstr*, 8> DeadDefs; 174 175 /// Virtual registers to be considered for register class inflation. 176 SmallVector<unsigned, 8> InflateRegs; 177 178 /// The collection of live intervals which should have been updated 179 /// immediately after rematerialiation but delayed until 180 /// lateLiveIntervalUpdate is called. 181 DenseSet<unsigned> ToBeUpdated; 182 183 /// Record how many times the large live interval with many valnos 184 /// has been tried to join with other live interval. 185 DenseMap<unsigned, unsigned long> LargeLIVisitCounter; 186 187 /// Recursively eliminate dead defs in DeadDefs. 188 void eliminateDeadDefs(); 189 190 /// LiveRangeEdit callback for eliminateDeadDefs(). 191 void LRE_WillEraseInstruction(MachineInstr *MI) override; 192 193 /// Coalesce the LocalWorkList. 194 void coalesceLocals(); 195 196 /// Join compatible live intervals 197 void joinAllIntervals(); 198 199 /// Coalesce copies in the specified MBB, putting 200 /// copies that cannot yet be coalesced into WorkList. 201 void copyCoalesceInMBB(MachineBasicBlock *MBB); 202 203 /// Tries to coalesce all copies in CurrList. Returns true if any progress 204 /// was made. 205 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 206 207 /// If one def has many copy like uses, and those copy uses are all 208 /// rematerialized, the live interval update needed for those 209 /// rematerializations will be delayed and done all at once instead 210 /// of being done multiple times. This is to save compile cost because 211 /// live interval update is costly. 212 void lateLiveIntervalUpdate(); 213 214 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 215 /// src/dst of the copy instruction CopyMI. This returns true if the copy 216 /// was successfully coalesced away. If it is not currently possible to 217 /// coalesce this interval, but it may be possible if other things get 218 /// coalesced, then it returns true by reference in 'Again'. 219 bool joinCopy(MachineInstr *CopyMI, bool &Again); 220 221 /// Attempt to join these two intervals. On failure, this 222 /// returns false. The output "SrcInt" will not have been modified, so we 223 /// can use this information below to update aliases. 224 bool joinIntervals(CoalescerPair &CP); 225 226 /// Attempt joining two virtual registers. Return true on success. 227 bool joinVirtRegs(CoalescerPair &CP); 228 229 /// If a live interval has many valnos and is coalesced with other 230 /// live intervals many times, we regard such live interval as having 231 /// high compile time cost. 232 bool isHighCostLiveInterval(LiveInterval &LI); 233 234 /// Attempt joining with a reserved physreg. 235 bool joinReservedPhysReg(CoalescerPair &CP); 236 237 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 238 /// Subranges in @p LI which only partially interfere with the desired 239 /// LaneMask are split as necessary. @p LaneMask are the lanes that 240 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 241 /// lanemasks already adjusted to the coalesced register. 242 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 243 LaneBitmask LaneMask, CoalescerPair &CP, 244 unsigned DstIdx); 245 246 /// Join the liveranges of two subregisters. Joins @p RRange into 247 /// @p LRange, @p RRange may be invalid afterwards. 248 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 249 LaneBitmask LaneMask, const CoalescerPair &CP); 250 251 /// We found a non-trivially-coalescable copy. If the source value number is 252 /// defined by a copy from the destination reg see if we can merge these two 253 /// destination reg valno# into a single value number, eliminating a copy. 254 /// This returns true if an interval was modified. 255 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 256 257 /// Return true if there are definitions of IntB 258 /// other than BValNo val# that can reach uses of AValno val# of IntA. 259 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 260 VNInfo *AValNo, VNInfo *BValNo); 261 262 /// We found a non-trivially-coalescable copy. 263 /// If the source value number is defined by a commutable instruction and 264 /// its other operand is coalesced to the copy dest register, see if we 265 /// can transform the copy into a noop by commuting the definition. 266 /// This returns a pair of two flags: 267 /// - the first element is true if an interval was modified, 268 /// - the second element is true if the destination interval needs 269 /// to be shrunk after deleting the copy. 270 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP, 271 MachineInstr *CopyMI); 272 273 /// We found a copy which can be moved to its less frequent predecessor. 274 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 275 276 /// If the source of a copy is defined by a 277 /// trivial computation, replace the copy by rematerialize the definition. 278 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 279 bool &IsDefCopy); 280 281 /// Return true if a copy involving a physreg should be joined. 282 bool canJoinPhys(const CoalescerPair &CP); 283 284 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 285 /// number if it is not zero. If DstReg is a physical register and the 286 /// existing subregister number of the def / use being updated is not zero, 287 /// make sure to set it to the correct physical subregister. 288 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 289 290 /// If the given machine operand reads only undefined lanes add an undef 291 /// flag. 292 /// This can happen when undef uses were previously concealed by a copy 293 /// which we coalesced. Example: 294 /// %0:sub0<def,read-undef> = ... 295 /// %1 = COPY %0 <-- Coalescing COPY reveals undef 296 /// = use %1:sub1 <-- hidden undef use 297 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 298 MachineOperand &MO, unsigned SubRegIdx); 299 300 /// Handle copies of undef values. If the undef value is an incoming 301 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF. 302 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise, 303 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point). 304 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI); 305 306 /// Check whether or not we should apply the terminal rule on the 307 /// destination (Dst) of \p Copy. 308 /// When the terminal rule applies, Copy is not profitable to 309 /// coalesce. 310 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 311 /// at least one interference (Dst, Dst2). If Dst is terminal, the 312 /// terminal rule consists in checking that at least one of 313 /// interfering node, say Dst2, has an affinity of equal or greater 314 /// weight with Src. 315 /// In that case, Dst2 and Dst will not be able to be both coalesced 316 /// with Src. Since Dst2 exposes more coalescing opportunities than 317 /// Dst, we can drop \p Copy. 318 bool applyTerminalRule(const MachineInstr &Copy) const; 319 320 /// Wrapper method for \see LiveIntervals::shrinkToUses. 321 /// This method does the proper fixing of the live-ranges when the afore 322 /// mentioned method returns true. 323 void shrinkToUses(LiveInterval *LI, 324 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 325 NumShrinkToUses++; 326 if (LIS->shrinkToUses(LI, Dead)) { 327 /// Check whether or not \p LI is composed by multiple connected 328 /// components and if that is the case, fix that. 329 SmallVector<LiveInterval*, 8> SplitLIs; 330 LIS->splitSeparateComponents(*LI, SplitLIs); 331 } 332 } 333 334 /// Wrapper Method to do all the necessary work when an Instruction is 335 /// deleted. 336 /// Optimizations should use this to make sure that deleted instructions 337 /// are always accounted for. 338 void deleteInstr(MachineInstr* MI) { 339 ErasedInstrs.insert(MI); 340 LIS->RemoveMachineInstrFromMaps(*MI); 341 MI->eraseFromParent(); 342 } 343 344 /// Walk over function and initialize the DbgVRegToValues map. 345 void buildVRegToDbgValueMap(MachineFunction &MF); 346 347 /// Test whether, after merging, any DBG_VALUEs would refer to a 348 /// different value number than before merging, and whether this can 349 /// be resolved. If not, mark the DBG_VALUE as being undef. 350 void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS, 351 JoinVals &LHSVals, LiveRange &RHS, 352 JoinVals &RHSVals); 353 354 void checkMergingChangesDbgValuesImpl(unsigned Reg, LiveRange &OtherRange, 355 LiveRange &RegRange, JoinVals &Vals2); 356 357 public: 358 static char ID; ///< Class identification, replacement for typeinfo 359 360 RegisterCoalescer() : MachineFunctionPass(ID) { 361 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 362 } 363 364 void getAnalysisUsage(AnalysisUsage &AU) const override; 365 366 void releaseMemory() override; 367 368 /// This is the pass entry point. 369 bool runOnMachineFunction(MachineFunction&) override; 370 371 /// Implement the dump method. 372 void print(raw_ostream &O, const Module* = nullptr) const override; 373 }; 374 375 } // end anonymous namespace 376 377 char RegisterCoalescer::ID = 0; 378 379 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 380 381 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 382 "Simple Register Coalescing", false, false) 383 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 384 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 385 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 386 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 387 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 388 "Simple Register Coalescing", false, false) 389 390 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri, 391 const MachineInstr *MI, unsigned &Src, 392 unsigned &Dst, unsigned &SrcSub, 393 unsigned &DstSub) { 394 if (MI->isCopy()) { 395 Dst = MI->getOperand(0).getReg(); 396 DstSub = MI->getOperand(0).getSubReg(); 397 Src = MI->getOperand(1).getReg(); 398 SrcSub = MI->getOperand(1).getSubReg(); 399 } else if (MI->isSubregToReg()) { 400 Dst = MI->getOperand(0).getReg(); 401 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 402 MI->getOperand(3).getImm()); 403 Src = MI->getOperand(2).getReg(); 404 SrcSub = MI->getOperand(2).getSubReg(); 405 } else 406 return false; 407 return true; 408 } 409 410 /// Return true if this block should be vacated by the coalescer to eliminate 411 /// branches. The important cases to handle in the coalescer are critical edges 412 /// split during phi elimination which contain only copies. Simple blocks that 413 /// contain non-branches should also be vacated, but this can be handled by an 414 /// earlier pass similar to early if-conversion. 415 static bool isSplitEdge(const MachineBasicBlock *MBB) { 416 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 417 return false; 418 419 for (const auto &MI : *MBB) { 420 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 421 return false; 422 } 423 return true; 424 } 425 426 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 427 SrcReg = DstReg = 0; 428 SrcIdx = DstIdx = 0; 429 NewRC = nullptr; 430 Flipped = CrossClass = false; 431 432 unsigned Src, Dst, SrcSub, DstSub; 433 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 434 return false; 435 Partial = SrcSub || DstSub; 436 437 // If one register is a physreg, it must be Dst. 438 if (Register::isPhysicalRegister(Src)) { 439 if (Register::isPhysicalRegister(Dst)) 440 return false; 441 std::swap(Src, Dst); 442 std::swap(SrcSub, DstSub); 443 Flipped = true; 444 } 445 446 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 447 448 if (Register::isPhysicalRegister(Dst)) { 449 // Eliminate DstSub on a physreg. 450 if (DstSub) { 451 Dst = TRI.getSubReg(Dst, DstSub); 452 if (!Dst) return false; 453 DstSub = 0; 454 } 455 456 // Eliminate SrcSub by picking a corresponding Dst superregister. 457 if (SrcSub) { 458 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 459 if (!Dst) return false; 460 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 461 return false; 462 } 463 } else { 464 // Both registers are virtual. 465 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 466 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 467 468 // Both registers have subreg indices. 469 if (SrcSub && DstSub) { 470 // Copies between different sub-registers are never coalescable. 471 if (Src == Dst && SrcSub != DstSub) 472 return false; 473 474 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 475 SrcIdx, DstIdx); 476 if (!NewRC) 477 return false; 478 } else if (DstSub) { 479 // SrcReg will be merged with a sub-register of DstReg. 480 SrcIdx = DstSub; 481 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 482 } else if (SrcSub) { 483 // DstReg will be merged with a sub-register of SrcReg. 484 DstIdx = SrcSub; 485 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 486 } else { 487 // This is a straight copy without sub-registers. 488 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 489 } 490 491 // The combined constraint may be impossible to satisfy. 492 if (!NewRC) 493 return false; 494 495 // Prefer SrcReg to be a sub-register of DstReg. 496 // FIXME: Coalescer should support subregs symmetrically. 497 if (DstIdx && !SrcIdx) { 498 std::swap(Src, Dst); 499 std::swap(SrcIdx, DstIdx); 500 Flipped = !Flipped; 501 } 502 503 CrossClass = NewRC != DstRC || NewRC != SrcRC; 504 } 505 // Check our invariants 506 assert(Register::isVirtualRegister(Src) && "Src must be virtual"); 507 assert(!(Register::isPhysicalRegister(Dst) && DstSub) && 508 "Cannot have a physical SubIdx"); 509 SrcReg = Src; 510 DstReg = Dst; 511 return true; 512 } 513 514 bool CoalescerPair::flip() { 515 if (Register::isPhysicalRegister(DstReg)) 516 return false; 517 std::swap(SrcReg, DstReg); 518 std::swap(SrcIdx, DstIdx); 519 Flipped = !Flipped; 520 return true; 521 } 522 523 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 524 if (!MI) 525 return false; 526 unsigned Src, Dst, SrcSub, DstSub; 527 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 528 return false; 529 530 // Find the virtual register that is SrcReg. 531 if (Dst == SrcReg) { 532 std::swap(Src, Dst); 533 std::swap(SrcSub, DstSub); 534 } else if (Src != SrcReg) { 535 return false; 536 } 537 538 // Now check that Dst matches DstReg. 539 if (Register::isPhysicalRegister(DstReg)) { 540 if (!Register::isPhysicalRegister(Dst)) 541 return false; 542 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 543 // DstSub could be set for a physreg from INSERT_SUBREG. 544 if (DstSub) 545 Dst = TRI.getSubReg(Dst, DstSub); 546 // Full copy of Src. 547 if (!SrcSub) 548 return DstReg == Dst; 549 // This is a partial register copy. Check that the parts match. 550 return TRI.getSubReg(DstReg, SrcSub) == Dst; 551 } else { 552 // DstReg is virtual. 553 if (DstReg != Dst) 554 return false; 555 // Registers match, do the subregisters line up? 556 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 557 TRI.composeSubRegIndices(DstIdx, DstSub); 558 } 559 } 560 561 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 562 AU.setPreservesCFG(); 563 AU.addRequired<AAResultsWrapperPass>(); 564 AU.addRequired<LiveIntervals>(); 565 AU.addPreserved<LiveIntervals>(); 566 AU.addPreserved<SlotIndexes>(); 567 AU.addRequired<MachineLoopInfo>(); 568 AU.addPreserved<MachineLoopInfo>(); 569 AU.addPreservedID(MachineDominatorsID); 570 MachineFunctionPass::getAnalysisUsage(AU); 571 } 572 573 void RegisterCoalescer::eliminateDeadDefs() { 574 SmallVector<Register, 8> NewRegs; 575 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 576 nullptr, this).eliminateDeadDefs(DeadDefs); 577 } 578 579 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 580 // MI may be in WorkList. Make sure we don't visit it. 581 ErasedInstrs.insert(MI); 582 } 583 584 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 585 MachineInstr *CopyMI) { 586 assert(!CP.isPartial() && "This doesn't work for partial copies."); 587 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 588 589 LiveInterval &IntA = 590 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 591 LiveInterval &IntB = 592 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 593 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 594 595 // We have a non-trivially-coalescable copy with IntA being the source and 596 // IntB being the dest, thus this defines a value number in IntB. If the 597 // source value number (in IntA) is defined by a copy from B, see if we can 598 // merge these two pieces of B into a single value number, eliminating a copy. 599 // For example: 600 // 601 // A3 = B0 602 // ... 603 // B1 = A3 <- this copy 604 // 605 // In this case, B0 can be extended to where the B1 copy lives, allowing the 606 // B1 value number to be replaced with B0 (which simplifies the B 607 // liveinterval). 608 609 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 610 // the example above. 611 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 612 if (BS == IntB.end()) return false; 613 VNInfo *BValNo = BS->valno; 614 615 // Get the location that B is defined at. Two options: either this value has 616 // an unknown definition point or it is defined at CopyIdx. If unknown, we 617 // can't process it. 618 if (BValNo->def != CopyIdx) return false; 619 620 // AValNo is the value number in A that defines the copy, A3 in the example. 621 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 622 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 623 // The live segment might not exist after fun with physreg coalescing. 624 if (AS == IntA.end()) return false; 625 VNInfo *AValNo = AS->valno; 626 627 // If AValNo is defined as a copy from IntB, we can potentially process this. 628 // Get the instruction that defines this value number. 629 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 630 // Don't allow any partial copies, even if isCoalescable() allows them. 631 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 632 return false; 633 634 // Get the Segment in IntB that this value number starts with. 635 LiveInterval::iterator ValS = 636 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 637 if (ValS == IntB.end()) 638 return false; 639 640 // Make sure that the end of the live segment is inside the same block as 641 // CopyMI. 642 MachineInstr *ValSEndInst = 643 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 644 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 645 return false; 646 647 // Okay, we now know that ValS ends in the same block that the CopyMI 648 // live-range starts. If there are no intervening live segments between them 649 // in IntB, we can merge them. 650 if (ValS+1 != BS) return false; 651 652 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI)); 653 654 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 655 // We are about to delete CopyMI, so need to remove it as the 'instruction 656 // that defines this value #'. Update the valnum with the new defining 657 // instruction #. 658 BValNo->def = FillerStart; 659 660 // Okay, we can merge them. We need to insert a new liverange: 661 // [ValS.end, BS.begin) of either value number, then we merge the 662 // two value numbers. 663 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 664 665 // Okay, merge "B1" into the same value number as "B0". 666 if (BValNo != ValS->valno) 667 IntB.MergeValueNumberInto(BValNo, ValS->valno); 668 669 // Do the same for the subregister segments. 670 for (LiveInterval::SubRange &S : IntB.subranges()) { 671 // Check for SubRange Segments of the form [1234r,1234d:0) which can be 672 // removed to prevent creating bogus SubRange Segments. 673 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx); 674 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) { 675 S.removeSegment(*SS, true); 676 continue; 677 } 678 // The subrange may have ended before FillerStart. If so, extend it. 679 if (!S.getVNInfoAt(FillerStart)) { 680 SlotIndex BBStart = 681 LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart)); 682 S.extendInBlock(BBStart, FillerStart); 683 } 684 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 685 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 686 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 687 if (SubBValNo != SubValSNo) 688 S.MergeValueNumberInto(SubBValNo, SubValSNo); 689 } 690 691 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n'); 692 693 // If the source instruction was killing the source register before the 694 // merge, unset the isKill marker given the live range has been extended. 695 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true); 696 if (UIdx != -1) { 697 ValSEndInst->getOperand(UIdx).setIsKill(false); 698 } 699 700 // Rewrite the copy. 701 CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI); 702 // If the copy instruction was killing the destination register or any 703 // subrange before the merge trim the live range. 704 bool RecomputeLiveRange = AS->end == CopyIdx; 705 if (!RecomputeLiveRange) { 706 for (LiveInterval::SubRange &S : IntA.subranges()) { 707 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx); 708 if (SS != S.end() && SS->end == CopyIdx) { 709 RecomputeLiveRange = true; 710 break; 711 } 712 } 713 } 714 if (RecomputeLiveRange) 715 shrinkToUses(&IntA); 716 717 ++numExtends; 718 return true; 719 } 720 721 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 722 LiveInterval &IntB, 723 VNInfo *AValNo, 724 VNInfo *BValNo) { 725 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 726 // the PHI values. 727 if (LIS->hasPHIKill(IntA, AValNo)) 728 return true; 729 730 for (LiveRange::Segment &ASeg : IntA.segments) { 731 if (ASeg.valno != AValNo) continue; 732 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start); 733 if (BI != IntB.begin()) 734 --BI; 735 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 736 if (BI->valno == BValNo) 737 continue; 738 if (BI->start <= ASeg.start && BI->end > ASeg.start) 739 return true; 740 if (BI->start > ASeg.start && BI->start < ASeg.end) 741 return true; 742 } 743 } 744 return false; 745 } 746 747 /// Copy segments with value number @p SrcValNo from liverange @p Src to live 748 /// range @Dst and use value number @p DstValNo there. 749 static std::pair<bool,bool> 750 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src, 751 const VNInfo *SrcValNo) { 752 bool Changed = false; 753 bool MergedWithDead = false; 754 for (const LiveRange::Segment &S : Src.segments) { 755 if (S.valno != SrcValNo) 756 continue; 757 // This is adding a segment from Src that ends in a copy that is about 758 // to be removed. This segment is going to be merged with a pre-existing 759 // segment in Dst. This works, except in cases when the corresponding 760 // segment in Dst is dead. For example: adding [192r,208r:1) from Src 761 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst. 762 // Recognized such cases, so that the segments can be shrunk. 763 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo); 764 LiveRange::Segment &Merged = *Dst.addSegment(Added); 765 if (Merged.end.isDead()) 766 MergedWithDead = true; 767 Changed = true; 768 } 769 return std::make_pair(Changed, MergedWithDead); 770 } 771 772 std::pair<bool,bool> 773 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 774 MachineInstr *CopyMI) { 775 assert(!CP.isPhys()); 776 777 LiveInterval &IntA = 778 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 779 LiveInterval &IntB = 780 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 781 782 // We found a non-trivially-coalescable copy with IntA being the source and 783 // IntB being the dest, thus this defines a value number in IntB. If the 784 // source value number (in IntA) is defined by a commutable instruction and 785 // its other operand is coalesced to the copy dest register, see if we can 786 // transform the copy into a noop by commuting the definition. For example, 787 // 788 // A3 = op A2 killed B0 789 // ... 790 // B1 = A3 <- this copy 791 // ... 792 // = op A3 <- more uses 793 // 794 // ==> 795 // 796 // B2 = op B0 killed A2 797 // ... 798 // B1 = B2 <- now an identity copy 799 // ... 800 // = op B2 <- more uses 801 802 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 803 // the example above. 804 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 805 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 806 assert(BValNo != nullptr && BValNo->def == CopyIdx); 807 808 // AValNo is the value number in A that defines the copy, A3 in the example. 809 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 810 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 811 if (AValNo->isPHIDef()) 812 return { false, false }; 813 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 814 if (!DefMI) 815 return { false, false }; 816 if (!DefMI->isCommutable()) 817 return { false, false }; 818 // If DefMI is a two-address instruction then commuting it will change the 819 // destination register. 820 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg()); 821 assert(DefIdx != -1); 822 unsigned UseOpIdx; 823 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 824 return { false, false }; 825 826 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 827 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 828 // passed to the method. That _other_ operand is chosen by 829 // the findCommutedOpIndices() method. 830 // 831 // That is obviously an area for improvement in case of instructions having 832 // more than 2 operands. For example, if some instruction has 3 commutable 833 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 834 // op#2<->op#3) of commute transformation should be considered/tried here. 835 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 836 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 837 return { false, false }; 838 839 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 840 Register NewReg = NewDstMO.getReg(); 841 if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill()) 842 return { false, false }; 843 844 // Make sure there are no other definitions of IntB that would reach the 845 // uses which the new definition can reach. 846 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 847 return { false, false }; 848 849 // If some of the uses of IntA.reg is already coalesced away, return false. 850 // It's not possible to determine whether it's safe to perform the coalescing. 851 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) { 852 MachineInstr *UseMI = MO.getParent(); 853 unsigned OpNo = &MO - &UseMI->getOperand(0); 854 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 855 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 856 if (US == IntA.end() || US->valno != AValNo) 857 continue; 858 // If this use is tied to a def, we can't rewrite the register. 859 if (UseMI->isRegTiedToDefOperand(OpNo)) 860 return { false, false }; 861 } 862 863 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 864 << *DefMI); 865 866 // At this point we have decided that it is legal to do this 867 // transformation. Start by commuting the instruction. 868 MachineBasicBlock *MBB = DefMI->getParent(); 869 MachineInstr *NewMI = 870 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 871 if (!NewMI) 872 return { false, false }; 873 if (Register::isVirtualRegister(IntA.reg()) && 874 Register::isVirtualRegister(IntB.reg()) && 875 !MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg()))) 876 return { false, false }; 877 if (NewMI != DefMI) { 878 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 879 MachineBasicBlock::iterator Pos = DefMI; 880 MBB->insert(Pos, NewMI); 881 MBB->erase(DefMI); 882 } 883 884 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 885 // A = or A, B 886 // ... 887 // B = A 888 // ... 889 // C = killed A 890 // ... 891 // = B 892 893 // Update uses of IntA of the specific Val# with IntB. 894 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg()), 895 UE = MRI->use_end(); 896 UI != UE; 897 /* ++UI is below because of possible MI removal */) { 898 MachineOperand &UseMO = *UI; 899 ++UI; 900 if (UseMO.isUndef()) 901 continue; 902 MachineInstr *UseMI = UseMO.getParent(); 903 if (UseMI->isDebugValue()) { 904 // FIXME These don't have an instruction index. Not clear we have enough 905 // info to decide whether to do this replacement or not. For now do it. 906 UseMO.setReg(NewReg); 907 continue; 908 } 909 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 910 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 911 assert(US != IntA.end() && "Use must be live"); 912 if (US->valno != AValNo) 913 continue; 914 // Kill flags are no longer accurate. They are recomputed after RA. 915 UseMO.setIsKill(false); 916 if (Register::isPhysicalRegister(NewReg)) 917 UseMO.substPhysReg(NewReg, *TRI); 918 else 919 UseMO.setReg(NewReg); 920 if (UseMI == CopyMI) 921 continue; 922 if (!UseMI->isCopy()) 923 continue; 924 if (UseMI->getOperand(0).getReg() != IntB.reg() || 925 UseMI->getOperand(0).getSubReg()) 926 continue; 927 928 // This copy will become a noop. If it's defining a new val#, merge it into 929 // BValNo. 930 SlotIndex DefIdx = UseIdx.getRegSlot(); 931 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 932 if (!DVNI) 933 continue; 934 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 935 assert(DVNI->def == DefIdx); 936 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 937 for (LiveInterval::SubRange &S : IntB.subranges()) { 938 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 939 if (!SubDVNI) 940 continue; 941 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 942 assert(SubBValNo->def == CopyIdx); 943 S.MergeValueNumberInto(SubDVNI, SubBValNo); 944 } 945 946 deleteInstr(UseMI); 947 } 948 949 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 950 // is updated. 951 bool ShrinkB = false; 952 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 953 if (IntA.hasSubRanges() || IntB.hasSubRanges()) { 954 if (!IntA.hasSubRanges()) { 955 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg()); 956 IntA.createSubRangeFrom(Allocator, Mask, IntA); 957 } else if (!IntB.hasSubRanges()) { 958 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg()); 959 IntB.createSubRangeFrom(Allocator, Mask, IntB); 960 } 961 SlotIndex AIdx = CopyIdx.getRegSlot(true); 962 LaneBitmask MaskA; 963 const SlotIndexes &Indexes = *LIS->getSlotIndexes(); 964 for (LiveInterval::SubRange &SA : IntA.subranges()) { 965 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 966 // Even if we are dealing with a full copy, some lanes can 967 // still be undefined. 968 // E.g., 969 // undef A.subLow = ... 970 // B = COPY A <== A.subHigh is undefined here and does 971 // not have a value number. 972 if (!ASubValNo) 973 continue; 974 MaskA |= SA.LaneMask; 975 976 IntB.refineSubRanges( 977 Allocator, SA.LaneMask, 978 [&Allocator, &SA, CopyIdx, ASubValNo, 979 &ShrinkB](LiveInterval::SubRange &SR) { 980 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator) 981 : SR.getVNInfoAt(CopyIdx); 982 assert(BSubValNo != nullptr); 983 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 984 ShrinkB |= P.second; 985 if (P.first) 986 BSubValNo->def = ASubValNo->def; 987 }, 988 Indexes, *TRI); 989 } 990 // Go over all subranges of IntB that have not been covered by IntA, 991 // and delete the segments starting at CopyIdx. This can happen if 992 // IntA has undef lanes that are defined in IntB. 993 for (LiveInterval::SubRange &SB : IntB.subranges()) { 994 if ((SB.LaneMask & MaskA).any()) 995 continue; 996 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx)) 997 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex()) 998 SB.removeSegment(*S, true); 999 } 1000 } 1001 1002 BValNo->def = AValNo->def; 1003 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 1004 ShrinkB |= P.second; 1005 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 1006 1007 LIS->removeVRegDefAt(IntA, AValNo->def); 1008 1009 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 1010 ++numCommutes; 1011 return { true, ShrinkB }; 1012 } 1013 1014 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 1015 /// predecessor of BB2, and if B is not redefined on the way from A = B 1016 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the 1017 /// execution goes through the path from BB0 to BB2. We may move B = A 1018 /// to the predecessor without such reversed copy. 1019 /// So we will transform the program from: 1020 /// BB0: 1021 /// A = B; BB1: 1022 /// ... ... 1023 /// / \ / 1024 /// BB2: 1025 /// ... 1026 /// B = A; 1027 /// 1028 /// to: 1029 /// 1030 /// BB0: BB1: 1031 /// A = B; ... 1032 /// ... B = A; 1033 /// / \ / 1034 /// BB2: 1035 /// ... 1036 /// 1037 /// A special case is when BB0 and BB2 are the same BB which is the only 1038 /// BB in a loop: 1039 /// BB1: 1040 /// ... 1041 /// BB0/BB2: ---- 1042 /// B = A; | 1043 /// ... | 1044 /// A = B; | 1045 /// |------- 1046 /// | 1047 /// We may hoist B = A from BB0/BB2 to BB1. 1048 /// 1049 /// The major preconditions for correctness to remove such partial 1050 /// redundancy include: 1051 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 1052 /// the PHI is defined by the reversed copy A = B in BB0. 1053 /// 2. No B is referenced from the start of BB2 to B = A. 1054 /// 3. No B is defined from A = B to the end of BB0. 1055 /// 4. BB1 has only one successor. 1056 /// 1057 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 1058 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 1059 /// colder place, which not only prevent endless loop, but also make sure 1060 /// the movement of copy is beneficial. 1061 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 1062 MachineInstr &CopyMI) { 1063 assert(!CP.isPhys()); 1064 if (!CopyMI.isFullCopy()) 1065 return false; 1066 1067 MachineBasicBlock &MBB = *CopyMI.getParent(); 1068 // If this block is the target of an invoke/inlineasm_br, moving the copy into 1069 // the predecessor is tricker, and we don't handle it. 1070 if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget()) 1071 return false; 1072 1073 if (MBB.pred_size() != 2) 1074 return false; 1075 1076 LiveInterval &IntA = 1077 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 1078 LiveInterval &IntB = 1079 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 1080 1081 // A is defined by PHI at the entry of MBB. 1082 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 1083 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 1084 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 1085 if (!AValNo->isPHIDef()) 1086 return false; 1087 1088 // No B is referenced before CopyMI in MBB. 1089 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 1090 return false; 1091 1092 // MBB has two predecessors: one contains A = B so no copy will be inserted 1093 // for it. The other one will have a copy moved from MBB. 1094 bool FoundReverseCopy = false; 1095 MachineBasicBlock *CopyLeftBB = nullptr; 1096 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1097 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 1098 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 1099 if (!DefMI || !DefMI->isFullCopy()) { 1100 CopyLeftBB = Pred; 1101 continue; 1102 } 1103 // Check DefMI is a reverse copy and it is in BB Pred. 1104 if (DefMI->getOperand(0).getReg() != IntA.reg() || 1105 DefMI->getOperand(1).getReg() != IntB.reg() || 1106 DefMI->getParent() != Pred) { 1107 CopyLeftBB = Pred; 1108 continue; 1109 } 1110 // If there is any other def of B after DefMI and before the end of Pred, 1111 // we need to keep the copy of B = A at the end of Pred if we remove 1112 // B = A from MBB. 1113 bool ValB_Changed = false; 1114 for (auto VNI : IntB.valnos) { 1115 if (VNI->isUnused()) 1116 continue; 1117 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 1118 ValB_Changed = true; 1119 break; 1120 } 1121 } 1122 if (ValB_Changed) { 1123 CopyLeftBB = Pred; 1124 continue; 1125 } 1126 FoundReverseCopy = true; 1127 } 1128 1129 // If no reverse copy is found in predecessors, nothing to do. 1130 if (!FoundReverseCopy) 1131 return false; 1132 1133 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 1134 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 1135 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 1136 // update IntA/IntB. 1137 // 1138 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 1139 // MBB is hotter than CopyLeftBB. 1140 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 1141 return false; 1142 1143 // Now (almost sure it's) ok to move copy. 1144 if (CopyLeftBB) { 1145 // Position in CopyLeftBB where we should insert new copy. 1146 auto InsPos = CopyLeftBB->getFirstTerminator(); 1147 1148 // Make sure that B isn't referenced in the terminators (if any) at the end 1149 // of the predecessor since we're about to insert a new definition of B 1150 // before them. 1151 if (InsPos != CopyLeftBB->end()) { 1152 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true); 1153 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB))) 1154 return false; 1155 } 1156 1157 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to " 1158 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI); 1159 1160 // Insert new copy to CopyLeftBB. 1161 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1162 TII->get(TargetOpcode::COPY), IntB.reg()) 1163 .addReg(IntA.reg()); 1164 SlotIndex NewCopyIdx = 1165 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1166 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1167 for (LiveInterval::SubRange &SR : IntB.subranges()) 1168 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1169 1170 // If the newly created Instruction has an address of an instruction that was 1171 // deleted before (object recycled by the allocator) it needs to be removed from 1172 // the deleted list. 1173 ErasedInstrs.erase(NewCopyMI); 1174 } else { 1175 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from " 1176 << printMBBReference(MBB) << '\t' << CopyMI); 1177 } 1178 1179 // Remove CopyMI. 1180 // Note: This is fine to remove the copy before updating the live-ranges. 1181 // While updating the live-ranges, we only look at slot indices and 1182 // never go back to the instruction. 1183 // Mark instructions as deleted. 1184 deleteInstr(&CopyMI); 1185 1186 // Update the liveness. 1187 SmallVector<SlotIndex, 8> EndPoints; 1188 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1189 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1190 &EndPoints); 1191 BValNo->markUnused(); 1192 // Extend IntB to the EndPoints of its original live interval. 1193 LIS->extendToIndices(IntB, EndPoints); 1194 1195 // Now, do the same for its subranges. 1196 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1197 EndPoints.clear(); 1198 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1199 assert(BValNo && "All sublanes should be live"); 1200 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1201 BValNo->markUnused(); 1202 // We can have a situation where the result of the original copy is live, 1203 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes 1204 // the copy appear as an endpoint from pruneValue(), but we don't want it 1205 // to because the copy has been removed. We can go ahead and remove that 1206 // endpoint; there is no other situation here that there could be a use at 1207 // the same place as we know that the copy is a full copy. 1208 for (unsigned I = 0; I != EndPoints.size(); ) { 1209 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) { 1210 EndPoints[I] = EndPoints.back(); 1211 EndPoints.pop_back(); 1212 continue; 1213 } 1214 ++I; 1215 } 1216 LIS->extendToIndices(SR, EndPoints); 1217 } 1218 // If any dead defs were extended, truncate them. 1219 shrinkToUses(&IntB); 1220 1221 // Finally, update the live-range of IntA. 1222 shrinkToUses(&IntA); 1223 return true; 1224 } 1225 1226 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1227 /// defining a subregister. 1228 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 1229 assert(!Register::isPhysicalRegister(Reg) && 1230 "This code cannot handle physreg aliasing"); 1231 for (const MachineOperand &Op : MI.operands()) { 1232 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1233 continue; 1234 // Return true if we define the full register or don't care about the value 1235 // inside other subregisters. 1236 if (Op.getSubReg() == 0 || Op.isUndef()) 1237 return true; 1238 } 1239 return false; 1240 } 1241 1242 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1243 MachineInstr *CopyMI, 1244 bool &IsDefCopy) { 1245 IsDefCopy = false; 1246 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1247 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1248 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1249 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1250 if (Register::isPhysicalRegister(SrcReg)) 1251 return false; 1252 1253 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1254 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1255 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1256 if (!ValNo) 1257 return false; 1258 if (ValNo->isPHIDef() || ValNo->isUnused()) 1259 return false; 1260 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1261 if (!DefMI) 1262 return false; 1263 if (DefMI->isCopyLike()) { 1264 IsDefCopy = true; 1265 return false; 1266 } 1267 if (!TII->isAsCheapAsAMove(*DefMI)) 1268 return false; 1269 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1270 return false; 1271 if (!definesFullReg(*DefMI, SrcReg)) 1272 return false; 1273 bool SawStore = false; 1274 if (!DefMI->isSafeToMove(AA, SawStore)) 1275 return false; 1276 const MCInstrDesc &MCID = DefMI->getDesc(); 1277 if (MCID.getNumDefs() != 1) 1278 return false; 1279 // Only support subregister destinations when the def is read-undef. 1280 MachineOperand &DstOperand = CopyMI->getOperand(0); 1281 Register CopyDstReg = DstOperand.getReg(); 1282 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1283 return false; 1284 1285 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1286 // the register substantially (beyond both source and dest size). This is bad 1287 // for performance since it can cascade through a function, introducing many 1288 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1289 // around after a few subreg copies). 1290 if (SrcIdx && DstIdx) 1291 return false; 1292 1293 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1294 if (!DefMI->isImplicitDef()) { 1295 if (Register::isPhysicalRegister(DstReg)) { 1296 unsigned NewDstReg = DstReg; 1297 1298 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1299 DefMI->getOperand(0).getSubReg()); 1300 if (NewDstIdx) 1301 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1302 1303 // Finally, make sure that the physical subregister that will be 1304 // constructed later is permitted for the instruction. 1305 if (!DefRC->contains(NewDstReg)) 1306 return false; 1307 } else { 1308 // Theoretically, some stack frame reference could exist. Just make sure 1309 // it hasn't actually happened. 1310 assert(Register::isVirtualRegister(DstReg) && 1311 "Only expect to deal with virtual or physical registers"); 1312 } 1313 } 1314 1315 DebugLoc DL = CopyMI->getDebugLoc(); 1316 MachineBasicBlock *MBB = CopyMI->getParent(); 1317 MachineBasicBlock::iterator MII = 1318 std::next(MachineBasicBlock::iterator(CopyMI)); 1319 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1320 MachineInstr &NewMI = *std::prev(MII); 1321 NewMI.setDebugLoc(DL); 1322 1323 // In a situation like the following: 1324 // %0:subreg = instr ; DefMI, subreg = DstIdx 1325 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0 1326 // instead of widening %1 to the register class of %0 simply do: 1327 // %1 = instr 1328 const TargetRegisterClass *NewRC = CP.getNewRC(); 1329 if (DstIdx != 0) { 1330 MachineOperand &DefMO = NewMI.getOperand(0); 1331 if (DefMO.getSubReg() == DstIdx) { 1332 assert(SrcIdx == 0 && CP.isFlipped() 1333 && "Shouldn't have SrcIdx+DstIdx at this point"); 1334 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1335 const TargetRegisterClass *CommonRC = 1336 TRI->getCommonSubClass(DefRC, DstRC); 1337 if (CommonRC != nullptr) { 1338 NewRC = CommonRC; 1339 DstIdx = 0; 1340 DefMO.setSubReg(0); 1341 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1342 } 1343 } 1344 } 1345 1346 // CopyMI may have implicit operands, save them so that we can transfer them 1347 // over to the newly materialized instruction after CopyMI is removed. 1348 SmallVector<MachineOperand, 4> ImplicitOps; 1349 ImplicitOps.reserve(CopyMI->getNumOperands() - 1350 CopyMI->getDesc().getNumOperands()); 1351 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1352 E = CopyMI->getNumOperands(); 1353 I != E; ++I) { 1354 MachineOperand &MO = CopyMI->getOperand(I); 1355 if (MO.isReg()) { 1356 assert(MO.isImplicit() && "No explicit operands after implicit operands."); 1357 // Discard VReg implicit defs. 1358 if (Register::isPhysicalRegister(MO.getReg())) 1359 ImplicitOps.push_back(MO); 1360 } 1361 } 1362 1363 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1364 CopyMI->eraseFromParent(); 1365 ErasedInstrs.insert(CopyMI); 1366 1367 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1368 // We need to remember these so we can add intervals once we insert 1369 // NewMI into SlotIndexes. 1370 SmallVector<unsigned, 4> NewMIImplDefs; 1371 for (unsigned i = NewMI.getDesc().getNumOperands(), 1372 e = NewMI.getNumOperands(); 1373 i != e; ++i) { 1374 MachineOperand &MO = NewMI.getOperand(i); 1375 if (MO.isReg() && MO.isDef()) { 1376 assert(MO.isImplicit() && MO.isDead() && 1377 Register::isPhysicalRegister(MO.getReg())); 1378 NewMIImplDefs.push_back(MO.getReg()); 1379 } 1380 } 1381 1382 if (Register::isVirtualRegister(DstReg)) { 1383 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1384 1385 if (DefRC != nullptr) { 1386 if (NewIdx) 1387 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1388 else 1389 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1390 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1391 } 1392 // Remap subranges to new lanemask and change register class. 1393 LiveInterval &DstInt = LIS->getInterval(DstReg); 1394 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1395 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1396 } 1397 MRI->setRegClass(DstReg, NewRC); 1398 1399 // Update machine operands and add flags. 1400 updateRegDefsUses(DstReg, DstReg, DstIdx); 1401 NewMI.getOperand(0).setSubReg(NewIdx); 1402 // updateRegDefUses can add an "undef" flag to the definition, since 1403 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make 1404 // sure that "undef" is not set. 1405 if (NewIdx == 0) 1406 NewMI.getOperand(0).setIsUndef(false); 1407 // Add dead subregister definitions if we are defining the whole register 1408 // but only part of it is live. 1409 // This could happen if the rematerialization instruction is rematerializing 1410 // more than actually is used in the register. 1411 // An example would be: 1412 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1413 // ; Copying only part of the register here, but the rest is undef. 1414 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit 1415 // ==> 1416 // ; Materialize all the constants but only using one 1417 // %2 = LOAD_CONSTANTS 5, 8 1418 // 1419 // at this point for the part that wasn't defined before we could have 1420 // subranges missing the definition. 1421 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1422 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1423 SlotIndex DefIndex = 1424 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1425 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1426 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1427 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1428 if (!SR.liveAt(DefIndex)) 1429 SR.createDeadDef(DefIndex, Alloc); 1430 MaxMask &= ~SR.LaneMask; 1431 } 1432 if (MaxMask.any()) { 1433 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1434 SR->createDeadDef(DefIndex, Alloc); 1435 } 1436 } 1437 1438 // Make sure that the subrange for resultant undef is removed 1439 // For example: 1440 // %1:sub1<def,read-undef> = LOAD CONSTANT 1 1441 // %2 = COPY %1 1442 // ==> 1443 // %2:sub1<def, read-undef> = LOAD CONSTANT 1 1444 // ; Correct but need to remove the subrange for %2:sub0 1445 // ; as it is now undef 1446 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1447 // The affected subregister segments can be removed. 1448 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1449 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1450 bool UpdatedSubRanges = false; 1451 SlotIndex DefIndex = 1452 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1453 VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator(); 1454 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1455 if ((SR.LaneMask & DstMask).none()) { 1456 LLVM_DEBUG(dbgs() 1457 << "Removing undefined SubRange " 1458 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1459 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1460 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1461 SR.removeValNo(RmValNo); 1462 UpdatedSubRanges = true; 1463 } 1464 } else { 1465 // We know that this lane is defined by this instruction, 1466 // but at this point it may be empty because it is not used by 1467 // anything. This happens when updateRegDefUses adds the missing 1468 // lanes. Assign that lane a dead def so that the interferences 1469 // are properly modeled. 1470 if (SR.empty()) 1471 SR.createDeadDef(DefIndex, Alloc); 1472 } 1473 } 1474 if (UpdatedSubRanges) 1475 DstInt.removeEmptySubRanges(); 1476 } 1477 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1478 // The New instruction may be defining a sub-register of what's actually 1479 // been asked for. If so it must implicitly define the whole thing. 1480 assert(Register::isPhysicalRegister(DstReg) && 1481 "Only expect virtual or physical registers in remat"); 1482 NewMI.getOperand(0).setIsDead(true); 1483 NewMI.addOperand(MachineOperand::CreateReg( 1484 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1485 // Record small dead def live-ranges for all the subregisters 1486 // of the destination register. 1487 // Otherwise, variables that live through may miss some 1488 // interferences, thus creating invalid allocation. 1489 // E.g., i386 code: 1490 // %1 = somedef ; %1 GR8 1491 // %2 = remat ; %2 GR32 1492 // CL = COPY %2.sub_8bit 1493 // = somedef %1 ; %1 GR8 1494 // => 1495 // %1 = somedef ; %1 GR8 1496 // dead ECX = remat ; implicit-def CL 1497 // = somedef %1 ; %1 GR8 1498 // %1 will see the interferences with CL but not with CH since 1499 // no live-ranges would have been created for ECX. 1500 // Fix that! 1501 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1502 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1503 Units.isValid(); ++Units) 1504 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1505 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1506 } 1507 1508 if (NewMI.getOperand(0).getSubReg()) 1509 NewMI.getOperand(0).setIsUndef(); 1510 1511 // Transfer over implicit operands to the rematerialized instruction. 1512 for (MachineOperand &MO : ImplicitOps) 1513 NewMI.addOperand(MO); 1514 1515 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1516 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1517 unsigned Reg = NewMIImplDefs[i]; 1518 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1519 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1520 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1521 } 1522 1523 LLVM_DEBUG(dbgs() << "Remat: " << NewMI); 1524 ++NumReMats; 1525 1526 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1527 // to describe DstReg instead. 1528 if (MRI->use_nodbg_empty(SrcReg)) { 1529 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1530 MachineInstr *UseMI = UseMO.getParent(); 1531 if (UseMI->isDebugValue()) { 1532 if (Register::isPhysicalRegister(DstReg)) 1533 UseMO.substPhysReg(DstReg, *TRI); 1534 else 1535 UseMO.setReg(DstReg); 1536 // Move the debug value directly after the def of the rematerialized 1537 // value in DstReg. 1538 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); 1539 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1540 } 1541 } 1542 } 1543 1544 if (ToBeUpdated.count(SrcReg)) 1545 return true; 1546 1547 unsigned NumCopyUses = 0; 1548 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 1549 if (UseMO.getParent()->isCopyLike()) 1550 NumCopyUses++; 1551 } 1552 if (NumCopyUses < LateRematUpdateThreshold) { 1553 // The source interval can become smaller because we removed a use. 1554 shrinkToUses(&SrcInt, &DeadDefs); 1555 if (!DeadDefs.empty()) 1556 eliminateDeadDefs(); 1557 } else { 1558 ToBeUpdated.insert(SrcReg); 1559 } 1560 return true; 1561 } 1562 1563 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1564 // ProcessImplicitDefs may leave some copies of <undef> values, it only 1565 // removes local variables. When we have a copy like: 1566 // 1567 // %1 = COPY undef %2 1568 // 1569 // We delete the copy and remove the corresponding value number from %1. 1570 // Any uses of that value number are marked as <undef>. 1571 1572 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1573 // CoalescerPair may have a new register class with adjusted subreg indices 1574 // at this point. 1575 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1576 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) 1577 return nullptr; 1578 1579 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1580 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1581 // CopyMI is undef iff SrcReg is not live before the instruction. 1582 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1583 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1584 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1585 if ((SR.LaneMask & SrcMask).none()) 1586 continue; 1587 if (SR.liveAt(Idx)) 1588 return nullptr; 1589 } 1590 } else if (SrcLI.liveAt(Idx)) 1591 return nullptr; 1592 1593 // If the undef copy defines a live-out value (i.e. an input to a PHI def), 1594 // then replace it with an IMPLICIT_DEF. 1595 LiveInterval &DstLI = LIS->getInterval(DstReg); 1596 SlotIndex RegIndex = Idx.getRegSlot(); 1597 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex); 1598 assert(Seg != nullptr && "No segment for defining instruction"); 1599 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) { 1600 if (V->isPHIDef()) { 1601 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1602 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) { 1603 MachineOperand &MO = CopyMI->getOperand(i-1); 1604 if (MO.isReg() && MO.isUse()) 1605 CopyMI->RemoveOperand(i-1); 1606 } 1607 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an " 1608 "implicit def\n"); 1609 return CopyMI; 1610 } 1611 } 1612 1613 // Remove any DstReg segments starting at the instruction. 1614 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1615 1616 // Remove value or merge with previous one in case of a subregister def. 1617 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1618 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1619 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1620 1621 // The affected subregister segments can be removed. 1622 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1623 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1624 if ((SR.LaneMask & DstMask).none()) 1625 continue; 1626 1627 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1628 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1629 SR.removeValNo(SVNI); 1630 } 1631 DstLI.removeEmptySubRanges(); 1632 } else 1633 LIS->removeVRegDefAt(DstLI, RegIndex); 1634 1635 // Mark uses as undef. 1636 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1637 if (MO.isDef() /*|| MO.isUndef()*/) 1638 continue; 1639 const MachineInstr &MI = *MO.getParent(); 1640 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1641 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1642 bool isLive; 1643 if (!UseMask.all() && DstLI.hasSubRanges()) { 1644 isLive = false; 1645 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1646 if ((SR.LaneMask & UseMask).none()) 1647 continue; 1648 if (SR.liveAt(UseIdx)) { 1649 isLive = true; 1650 break; 1651 } 1652 } 1653 } else 1654 isLive = DstLI.liveAt(UseIdx); 1655 if (isLive) 1656 continue; 1657 MO.setIsUndef(true); 1658 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1659 } 1660 1661 // A def of a subregister may be a use of the other subregisters, so 1662 // deleting a def of a subregister may also remove uses. Since CopyMI 1663 // is still part of the function (but about to be erased), mark all 1664 // defs of DstReg in it as <undef>, so that shrinkToUses would 1665 // ignore them. 1666 for (MachineOperand &MO : CopyMI->operands()) 1667 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1668 MO.setIsUndef(true); 1669 LIS->shrinkToUses(&DstLI); 1670 1671 return CopyMI; 1672 } 1673 1674 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1675 MachineOperand &MO, unsigned SubRegIdx) { 1676 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1677 if (MO.isDef()) 1678 Mask = ~Mask; 1679 bool IsUndef = true; 1680 for (const LiveInterval::SubRange &S : Int.subranges()) { 1681 if ((S.LaneMask & Mask).none()) 1682 continue; 1683 if (S.liveAt(UseIdx)) { 1684 IsUndef = false; 1685 break; 1686 } 1687 } 1688 if (IsUndef) { 1689 MO.setIsUndef(true); 1690 // We found out some subregister use is actually reading an undefined 1691 // value. In some cases the whole vreg has become undefined at this 1692 // point so we have to potentially shrink the main range if the 1693 // use was ending a live segment there. 1694 LiveQueryResult Q = Int.Query(UseIdx); 1695 if (Q.valueOut() == nullptr) 1696 ShrinkMainRange = true; 1697 } 1698 } 1699 1700 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, unsigned DstReg, 1701 unsigned SubIdx) { 1702 bool DstIsPhys = Register::isPhysicalRegister(DstReg); 1703 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1704 1705 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1706 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1707 unsigned SubReg = MO.getSubReg(); 1708 if (SubReg == 0 || MO.isUndef()) 1709 continue; 1710 MachineInstr &MI = *MO.getParent(); 1711 if (MI.isDebugValue()) 1712 continue; 1713 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1714 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1715 } 1716 } 1717 1718 SmallPtrSet<MachineInstr*, 8> Visited; 1719 for (MachineRegisterInfo::reg_instr_iterator 1720 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1721 I != E; ) { 1722 MachineInstr *UseMI = &*(I++); 1723 1724 // Each instruction can only be rewritten once because sub-register 1725 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1726 // the UseMI operands removes them from the SrcReg use-def chain, but when 1727 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1728 // operands mentioning the virtual register. 1729 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1730 continue; 1731 1732 SmallVector<unsigned,8> Ops; 1733 bool Reads, Writes; 1734 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1735 1736 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1737 // because SrcReg is a sub-register. 1738 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) 1739 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1740 1741 // Replace SrcReg with DstReg in all UseMI operands. 1742 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1743 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1744 1745 // Adjust <undef> flags in case of sub-register joins. We don't want to 1746 // turn a full def into a read-modify-write sub-register def and vice 1747 // versa. 1748 if (SubIdx && MO.isDef()) 1749 MO.setIsUndef(!Reads); 1750 1751 // A subreg use of a partially undef (super) register may be a complete 1752 // undef use now and then has to be marked that way. 1753 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1754 if (!DstInt->hasSubRanges()) { 1755 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1756 LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg()); 1757 LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx); 1758 LaneBitmask UnusedLanes = FullMask & ~UsedLanes; 1759 DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt); 1760 // The unused lanes are just empty live-ranges at this point. 1761 // It is the caller responsibility to set the proper 1762 // dead segments if there is an actual dead def of the 1763 // unused lanes. This may happen with rematerialization. 1764 DstInt->createSubRange(Allocator, UnusedLanes); 1765 } 1766 SlotIndex MIIdx = UseMI->isDebugValue() 1767 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1768 : LIS->getInstructionIndex(*UseMI); 1769 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1770 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1771 } 1772 1773 if (DstIsPhys) 1774 MO.substPhysReg(DstReg, *TRI); 1775 else 1776 MO.substVirtReg(DstReg, SubIdx, *TRI); 1777 } 1778 1779 LLVM_DEBUG({ 1780 dbgs() << "\t\tupdated: "; 1781 if (!UseMI->isDebugValue()) 1782 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1783 dbgs() << *UseMI; 1784 }); 1785 } 1786 } 1787 1788 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1789 // Always join simple intervals that are defined by a single copy from a 1790 // reserved register. This doesn't increase register pressure, so it is 1791 // always beneficial. 1792 if (!MRI->isReserved(CP.getDstReg())) { 1793 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1794 return false; 1795 } 1796 1797 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1798 if (JoinVInt.containsOneValue()) 1799 return true; 1800 1801 LLVM_DEBUG( 1802 dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1803 return false; 1804 } 1805 1806 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1807 Again = false; 1808 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1809 1810 CoalescerPair CP(*TRI); 1811 if (!CP.setRegisters(CopyMI)) { 1812 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n"); 1813 return false; 1814 } 1815 1816 if (CP.getNewRC()) { 1817 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1818 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1819 unsigned SrcIdx = CP.getSrcIdx(); 1820 unsigned DstIdx = CP.getDstIdx(); 1821 if (CP.isFlipped()) { 1822 std::swap(SrcIdx, DstIdx); 1823 std::swap(SrcRC, DstRC); 1824 } 1825 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1826 CP.getNewRC(), *LIS)) { 1827 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1828 return false; 1829 } 1830 } 1831 1832 // Dead code elimination. This really should be handled by MachineDCE, but 1833 // sometimes dead copies slip through, and we can't generate invalid live 1834 // ranges. 1835 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1836 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n"); 1837 DeadDefs.push_back(CopyMI); 1838 eliminateDeadDefs(); 1839 return true; 1840 } 1841 1842 // Eliminate undefs. 1843 if (!CP.isPhys()) { 1844 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce. 1845 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) { 1846 if (UndefMI->isImplicitDef()) 1847 return false; 1848 deleteInstr(CopyMI); 1849 return false; // Not coalescable. 1850 } 1851 } 1852 1853 // Coalesced copies are normally removed immediately, but transformations 1854 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1855 // When that happens, just join the values and remove the copy. 1856 if (CP.getSrcReg() == CP.getDstReg()) { 1857 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1858 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1859 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1860 LiveQueryResult LRQ = LI.Query(CopyIdx); 1861 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1862 VNInfo *ReadVNI = LRQ.valueIn(); 1863 assert(ReadVNI && "No value before copy and no <undef> flag."); 1864 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1865 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1866 1867 // Process subregister liveranges. 1868 for (LiveInterval::SubRange &S : LI.subranges()) { 1869 LiveQueryResult SLRQ = S.Query(CopyIdx); 1870 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1871 VNInfo *SReadVNI = SLRQ.valueIn(); 1872 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1873 } 1874 } 1875 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1876 } 1877 deleteInstr(CopyMI); 1878 return true; 1879 } 1880 1881 // Enforce policies. 1882 if (CP.isPhys()) { 1883 LLVM_DEBUG(dbgs() << "\tConsidering merging " 1884 << printReg(CP.getSrcReg(), TRI) << " with " 1885 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'); 1886 if (!canJoinPhys(CP)) { 1887 // Before giving up coalescing, if definition of source is defined by 1888 // trivial computation, try rematerializing it. 1889 bool IsDefCopy; 1890 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1891 return true; 1892 if (IsDefCopy) 1893 Again = true; // May be possible to coalesce later. 1894 return false; 1895 } 1896 } else { 1897 // When possible, let DstReg be the larger interval. 1898 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1899 LIS->getInterval(CP.getDstReg()).size()) 1900 CP.flip(); 1901 1902 LLVM_DEBUG({ 1903 dbgs() << "\tConsidering merging to " 1904 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1905 if (CP.getDstIdx() && CP.getSrcIdx()) 1906 dbgs() << printReg(CP.getDstReg()) << " in " 1907 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1908 << printReg(CP.getSrcReg()) << " in " 1909 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1910 else 1911 dbgs() << printReg(CP.getSrcReg(), TRI) << " in " 1912 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1913 }); 1914 } 1915 1916 ShrinkMask = LaneBitmask::getNone(); 1917 ShrinkMainRange = false; 1918 1919 // Okay, attempt to join these two intervals. On failure, this returns false. 1920 // Otherwise, if one of the intervals being joined is a physreg, this method 1921 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1922 // been modified, so we can use this information below to update aliases. 1923 if (!joinIntervals(CP)) { 1924 // Coalescing failed. 1925 1926 // If definition of source is defined by trivial computation, try 1927 // rematerializing it. 1928 bool IsDefCopy; 1929 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1930 return true; 1931 1932 // If we can eliminate the copy without merging the live segments, do so 1933 // now. 1934 if (!CP.isPartial() && !CP.isPhys()) { 1935 bool Changed = adjustCopiesBackFrom(CP, CopyMI); 1936 bool Shrink = false; 1937 if (!Changed) 1938 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI); 1939 if (Changed) { 1940 deleteInstr(CopyMI); 1941 if (Shrink) { 1942 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1943 LiveInterval &DstLI = LIS->getInterval(DstReg); 1944 shrinkToUses(&DstLI); 1945 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n'); 1946 } 1947 LLVM_DEBUG(dbgs() << "\tTrivial!\n"); 1948 return true; 1949 } 1950 } 1951 1952 // Try and see if we can partially eliminate the copy by moving the copy to 1953 // its predecessor. 1954 if (!CP.isPartial() && !CP.isPhys()) 1955 if (removePartialRedundancy(CP, *CopyMI)) 1956 return true; 1957 1958 // Otherwise, we are unable to join the intervals. 1959 LLVM_DEBUG(dbgs() << "\tInterference!\n"); 1960 Again = true; // May be possible to coalesce later. 1961 return false; 1962 } 1963 1964 // Coalescing to a virtual register that is of a sub-register class of the 1965 // other. Make sure the resulting register is set to the right register class. 1966 if (CP.isCrossClass()) { 1967 ++numCrossRCs; 1968 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1969 } 1970 1971 // Removing sub-register copies can ease the register class constraints. 1972 // Make sure we attempt to inflate the register class of DstReg. 1973 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1974 InflateRegs.push_back(CP.getDstReg()); 1975 1976 // CopyMI has been erased by joinIntervals at this point. Remove it from 1977 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1978 // to the work list. This keeps ErasedInstrs from growing needlessly. 1979 ErasedInstrs.erase(CopyMI); 1980 1981 // Rewrite all SrcReg operands to DstReg. 1982 // Also update DstReg operands to include DstIdx if it is set. 1983 if (CP.getDstIdx()) 1984 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1985 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1986 1987 // Shrink subregister ranges if necessary. 1988 if (ShrinkMask.any()) { 1989 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1990 for (LiveInterval::SubRange &S : LI.subranges()) { 1991 if ((S.LaneMask & ShrinkMask).none()) 1992 continue; 1993 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1994 << ")\n"); 1995 LIS->shrinkToUses(S, LI.reg()); 1996 } 1997 LI.removeEmptySubRanges(); 1998 } 1999 2000 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live 2001 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval 2002 // is not up-to-date, need to update the merged live interval here. 2003 if (ToBeUpdated.count(CP.getSrcReg())) 2004 ShrinkMainRange = true; 2005 2006 if (ShrinkMainRange) { 2007 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 2008 shrinkToUses(&LI); 2009 } 2010 2011 // SrcReg is guaranteed to be the register whose live interval that is 2012 // being merged. 2013 LIS->removeInterval(CP.getSrcReg()); 2014 2015 // Update regalloc hint. 2016 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 2017 2018 LLVM_DEBUG({ 2019 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 2020 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 2021 dbgs() << "\tResult = "; 2022 if (CP.isPhys()) 2023 dbgs() << printReg(CP.getDstReg(), TRI); 2024 else 2025 dbgs() << LIS->getInterval(CP.getDstReg()); 2026 dbgs() << '\n'; 2027 }); 2028 2029 ++numJoins; 2030 return true; 2031 } 2032 2033 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 2034 unsigned DstReg = CP.getDstReg(); 2035 unsigned SrcReg = CP.getSrcReg(); 2036 assert(CP.isPhys() && "Must be a physreg copy"); 2037 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 2038 LiveInterval &RHS = LIS->getInterval(SrcReg); 2039 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 2040 2041 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 2042 2043 // Optimization for reserved registers like ESP. We can only merge with a 2044 // reserved physreg if RHS has a single value that is a copy of DstReg. 2045 // The live range of the reserved register will look like a set of dead defs 2046 // - we don't properly track the live range of reserved registers. 2047 2048 // Deny any overlapping intervals. This depends on all the reserved 2049 // register live ranges to look like dead defs. 2050 if (!MRI->isConstantPhysReg(DstReg)) { 2051 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2052 // Abort if not all the regunits are reserved. 2053 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 2054 if (!MRI->isReserved(*RI)) 2055 return false; 2056 } 2057 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 2058 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) 2059 << '\n'); 2060 return false; 2061 } 2062 } 2063 2064 // We must also check for overlaps with regmask clobbers. 2065 BitVector RegMaskUsable; 2066 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 2067 !RegMaskUsable.test(DstReg)) { 2068 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n"); 2069 return false; 2070 } 2071 } 2072 2073 // Skip any value computations, we are not adding new values to the 2074 // reserved register. Also skip merging the live ranges, the reserved 2075 // register live range doesn't need to be accurate as long as all the 2076 // defs are there. 2077 2078 // Delete the identity copy. 2079 MachineInstr *CopyMI; 2080 if (CP.isFlipped()) { 2081 // Physreg is copied into vreg 2082 // %y = COPY %physreg_x 2083 // ... //< no other def of %physreg_x here 2084 // use %y 2085 // => 2086 // ... 2087 // use %physreg_x 2088 CopyMI = MRI->getVRegDef(SrcReg); 2089 } else { 2090 // VReg is copied into physreg: 2091 // %y = def 2092 // ... //< no other def or use of %physreg_x here 2093 // %physreg_x = COPY %y 2094 // => 2095 // %physreg_x = def 2096 // ... 2097 if (!MRI->hasOneNonDBGUse(SrcReg)) { 2098 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 2099 return false; 2100 } 2101 2102 if (!LIS->intervalIsInOneMBB(RHS)) { 2103 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n"); 2104 return false; 2105 } 2106 2107 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 2108 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 2109 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 2110 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 2111 2112 if (!MRI->isConstantPhysReg(DstReg)) { 2113 // We checked above that there are no interfering defs of the physical 2114 // register. However, for this case, where we intend to move up the def of 2115 // the physical register, we also need to check for interfering uses. 2116 SlotIndexes *Indexes = LIS->getSlotIndexes(); 2117 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 2118 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 2119 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 2120 if (MI->readsRegister(DstReg, TRI)) { 2121 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 2122 return false; 2123 } 2124 } 2125 } 2126 2127 // We're going to remove the copy which defines a physical reserved 2128 // register, so remove its valno, etc. 2129 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of " 2130 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n"); 2131 2132 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 2133 // Create a new dead def at the new def location. 2134 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2135 LiveRange &LR = LIS->getRegUnit(*UI); 2136 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 2137 } 2138 } 2139 2140 deleteInstr(CopyMI); 2141 2142 // We don't track kills for reserved registers. 2143 MRI->clearKillFlags(CP.getSrcReg()); 2144 2145 return true; 2146 } 2147 2148 //===----------------------------------------------------------------------===// 2149 // Interference checking and interval joining 2150 //===----------------------------------------------------------------------===// 2151 // 2152 // In the easiest case, the two live ranges being joined are disjoint, and 2153 // there is no interference to consider. It is quite common, though, to have 2154 // overlapping live ranges, and we need to check if the interference can be 2155 // resolved. 2156 // 2157 // The live range of a single SSA value forms a sub-tree of the dominator tree. 2158 // This means that two SSA values overlap if and only if the def of one value 2159 // is contained in the live range of the other value. As a special case, the 2160 // overlapping values can be defined at the same index. 2161 // 2162 // The interference from an overlapping def can be resolved in these cases: 2163 // 2164 // 1. Coalescable copies. The value is defined by a copy that would become an 2165 // identity copy after joining SrcReg and DstReg. The copy instruction will 2166 // be removed, and the value will be merged with the source value. 2167 // 2168 // There can be several copies back and forth, causing many values to be 2169 // merged into one. We compute a list of ultimate values in the joined live 2170 // range as well as a mappings from the old value numbers. 2171 // 2172 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 2173 // predecessors have a live out value. It doesn't cause real interference, 2174 // and can be merged into the value it overlaps. Like a coalescable copy, it 2175 // can be erased after joining. 2176 // 2177 // 3. Copy of external value. The overlapping def may be a copy of a value that 2178 // is already in the other register. This is like a coalescable copy, but 2179 // the live range of the source register must be trimmed after erasing the 2180 // copy instruction: 2181 // 2182 // %src = COPY %ext 2183 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 2184 // 2185 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 2186 // defining one lane at a time: 2187 // 2188 // %dst:ssub0<def,read-undef> = FOO 2189 // %src = BAR 2190 // %dst:ssub1 = COPY %src 2191 // 2192 // The live range of %src overlaps the %dst value defined by FOO, but 2193 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 2194 // which was undef anyway. 2195 // 2196 // The value mapping is more complicated in this case. The final live range 2197 // will have different value numbers for both FOO and BAR, but there is no 2198 // simple mapping from old to new values. It may even be necessary to add 2199 // new PHI values. 2200 // 2201 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 2202 // is live, but never read. This can happen because we don't compute 2203 // individual live ranges per lane. 2204 // 2205 // %dst = FOO 2206 // %src = BAR 2207 // %dst:ssub1 = COPY %src 2208 // 2209 // This kind of interference is only resolved locally. If the clobbered 2210 // lane value escapes the block, the join is aborted. 2211 2212 namespace { 2213 2214 /// Track information about values in a single virtual register about to be 2215 /// joined. Objects of this class are always created in pairs - one for each 2216 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 2217 /// pair) 2218 class JoinVals { 2219 /// Live range we work on. 2220 LiveRange &LR; 2221 2222 /// (Main) register we work on. 2223 const unsigned Reg; 2224 2225 /// Reg (and therefore the values in this liverange) will end up as 2226 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 2227 /// CP.SrcIdx. 2228 const unsigned SubIdx; 2229 2230 /// The LaneMask that this liverange will occupy the coalesced register. May 2231 /// be smaller than the lanemask produced by SubIdx when merging subranges. 2232 const LaneBitmask LaneMask; 2233 2234 /// This is true when joining sub register ranges, false when joining main 2235 /// ranges. 2236 const bool SubRangeJoin; 2237 2238 /// Whether the current LiveInterval tracks subregister liveness. 2239 const bool TrackSubRegLiveness; 2240 2241 /// Values that will be present in the final live range. 2242 SmallVectorImpl<VNInfo*> &NewVNInfo; 2243 2244 const CoalescerPair &CP; 2245 LiveIntervals *LIS; 2246 SlotIndexes *Indexes; 2247 const TargetRegisterInfo *TRI; 2248 2249 /// Value number assignments. Maps value numbers in LI to entries in 2250 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 2251 SmallVector<int, 8> Assignments; 2252 2253 public: 2254 /// Conflict resolution for overlapping values. 2255 enum ConflictResolution { 2256 /// No overlap, simply keep this value. 2257 CR_Keep, 2258 2259 /// Merge this value into OtherVNI and erase the defining instruction. 2260 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 2261 /// values. 2262 CR_Erase, 2263 2264 /// Merge this value into OtherVNI but keep the defining instruction. 2265 /// This is for the special case where OtherVNI is defined by the same 2266 /// instruction. 2267 CR_Merge, 2268 2269 /// Keep this value, and have it replace OtherVNI where possible. This 2270 /// complicates value mapping since OtherVNI maps to two different values 2271 /// before and after this def. 2272 /// Used when clobbering undefined or dead lanes. 2273 CR_Replace, 2274 2275 /// Unresolved conflict. Visit later when all values have been mapped. 2276 CR_Unresolved, 2277 2278 /// Unresolvable conflict. Abort the join. 2279 CR_Impossible 2280 }; 2281 2282 private: 2283 /// Per-value info for LI. The lane bit masks are all relative to the final 2284 /// joined register, so they can be compared directly between SrcReg and 2285 /// DstReg. 2286 struct Val { 2287 ConflictResolution Resolution = CR_Keep; 2288 2289 /// Lanes written by this def, 0 for unanalyzed values. 2290 LaneBitmask WriteLanes; 2291 2292 /// Lanes with defined values in this register. Other lanes are undef and 2293 /// safe to clobber. 2294 LaneBitmask ValidLanes; 2295 2296 /// Value in LI being redefined by this def. 2297 VNInfo *RedefVNI = nullptr; 2298 2299 /// Value in the other live range that overlaps this def, if any. 2300 VNInfo *OtherVNI = nullptr; 2301 2302 /// Is this value an IMPLICIT_DEF that can be erased? 2303 /// 2304 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2305 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2306 /// safely erased if they are overlapping a live value in the other live 2307 /// interval. 2308 /// 2309 /// Weird control flow graphs and incomplete PHI handling in 2310 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2311 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2312 /// normal values. 2313 bool ErasableImplicitDef = false; 2314 2315 /// True when the live range of this value will be pruned because of an 2316 /// overlapping CR_Replace value in the other live range. 2317 bool Pruned = false; 2318 2319 /// True once Pruned above has been computed. 2320 bool PrunedComputed = false; 2321 2322 /// True if this value is determined to be identical to OtherVNI 2323 /// (in valuesIdentical). This is used with CR_Erase where the erased 2324 /// copy is redundant, i.e. the source value is already the same as 2325 /// the destination. In such cases the subranges need to be updated 2326 /// properly. See comment at pruneSubRegValues for more info. 2327 bool Identical = false; 2328 2329 Val() = default; 2330 2331 bool isAnalyzed() const { return WriteLanes.any(); } 2332 }; 2333 2334 /// One entry per value number in LI. 2335 SmallVector<Val, 8> Vals; 2336 2337 /// Compute the bitmask of lanes actually written by DefMI. 2338 /// Set Redef if there are any partial register definitions that depend on the 2339 /// previous value of the register. 2340 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2341 2342 /// Find the ultimate value that VNI was copied from. 2343 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 2344 2345 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const; 2346 2347 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2348 /// Return a conflict resolution when possible, but leave the hard cases as 2349 /// CR_Unresolved. 2350 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2351 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2352 /// The recursion always goes upwards in the dominator tree, making loops 2353 /// impossible. 2354 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2355 2356 /// Compute the value assignment for ValNo in RI. 2357 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2358 /// the stack. 2359 void computeAssignment(unsigned ValNo, JoinVals &Other); 2360 2361 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2362 /// the extent of the tainted lanes in the block. 2363 /// 2364 /// Multiple values in Other.LR can be affected since partial redefinitions 2365 /// can preserve previously tainted lanes. 2366 /// 2367 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2368 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2369 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2370 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2371 /// 2372 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2373 /// entry to TaintedVals. 2374 /// 2375 /// Returns false if the tainted lanes extend beyond the basic block. 2376 bool 2377 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2378 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); 2379 2380 /// Return true if MI uses any of the given Lanes from Reg. 2381 /// This does not include partial redefinitions of Reg. 2382 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; 2383 2384 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2385 /// be pruned: 2386 /// 2387 /// %dst = COPY %src 2388 /// %src = COPY %dst <-- This value to be pruned. 2389 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2390 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2391 2392 public: 2393 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 2394 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 2395 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2396 bool TrackSubRegLiveness) 2397 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2398 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2399 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2400 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {} 2401 2402 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2403 /// Returns false if any conflicts were impossible to resolve. 2404 bool mapValues(JoinVals &Other); 2405 2406 /// Try to resolve conflicts that require all values to be mapped. 2407 /// Returns false if any conflicts were impossible to resolve. 2408 bool resolveConflicts(JoinVals &Other); 2409 2410 /// Prune the live range of values in Other.LR where they would conflict with 2411 /// CR_Replace values in LR. Collect end points for restoring the live range 2412 /// after joining. 2413 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2414 bool changeInstrs); 2415 2416 /// Removes subranges starting at copies that get removed. This sometimes 2417 /// happens when undefined subranges are copied around. These ranges contain 2418 /// no useful information and can be removed. 2419 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2420 2421 /// Pruning values in subranges can lead to removing segments in these 2422 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2423 /// the main range also need to be removed. This function will mark 2424 /// the corresponding values in the main range as pruned, so that 2425 /// eraseInstrs can do the final cleanup. 2426 /// The parameter @p LI must be the interval whose main range is the 2427 /// live range LR. 2428 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2429 2430 /// Erase any machine instructions that have been coalesced away. 2431 /// Add erased instructions to ErasedInstrs. 2432 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2433 /// the erased instrs. 2434 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2435 SmallVectorImpl<Register> &ShrinkRegs, 2436 LiveInterval *LI = nullptr); 2437 2438 /// Remove liverange defs at places where implicit defs will be removed. 2439 void removeImplicitDefs(); 2440 2441 /// Get the value assignments suitable for passing to LiveInterval::join. 2442 const int *getAssignments() const { return Assignments.data(); } 2443 2444 /// Get the conflict resolution for a value number. 2445 ConflictResolution getResolution(unsigned Num) const { 2446 return Vals[Num].Resolution; 2447 } 2448 }; 2449 2450 } // end anonymous namespace 2451 2452 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2453 const { 2454 LaneBitmask L; 2455 for (const MachineOperand &MO : DefMI->operands()) { 2456 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2457 continue; 2458 L |= TRI->getSubRegIndexLaneMask( 2459 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2460 if (MO.readsReg()) 2461 Redef = true; 2462 } 2463 return L; 2464 } 2465 2466 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 2467 const VNInfo *VNI) const { 2468 unsigned TrackReg = Reg; 2469 2470 while (!VNI->isPHIDef()) { 2471 SlotIndex Def = VNI->def; 2472 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2473 assert(MI && "No defining instruction"); 2474 if (!MI->isFullCopy()) 2475 return std::make_pair(VNI, TrackReg); 2476 Register SrcReg = MI->getOperand(1).getReg(); 2477 if (!Register::isVirtualRegister(SrcReg)) 2478 return std::make_pair(VNI, TrackReg); 2479 2480 const LiveInterval &LI = LIS->getInterval(SrcReg); 2481 const VNInfo *ValueIn; 2482 // No subrange involved. 2483 if (!SubRangeJoin || !LI.hasSubRanges()) { 2484 LiveQueryResult LRQ = LI.Query(Def); 2485 ValueIn = LRQ.valueIn(); 2486 } else { 2487 // Query subranges. Ensure that all matching ones take us to the same def 2488 // (allowing some of them to be undef). 2489 ValueIn = nullptr; 2490 for (const LiveInterval::SubRange &S : LI.subranges()) { 2491 // Transform lanemask to a mask in the joined live interval. 2492 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2493 if ((SMask & LaneMask).none()) 2494 continue; 2495 LiveQueryResult LRQ = S.Query(Def); 2496 if (!ValueIn) { 2497 ValueIn = LRQ.valueIn(); 2498 continue; 2499 } 2500 if (LRQ.valueIn() && ValueIn != LRQ.valueIn()) 2501 return std::make_pair(VNI, TrackReg); 2502 } 2503 } 2504 if (ValueIn == nullptr) { 2505 // Reaching an undefined value is legitimate, for example: 2506 // 2507 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef 2508 // 2 %1 = COPY %0 ;; %1 is defined here. 2509 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition, 2510 // ;; but it's equivalent to "undef". 2511 return std::make_pair(nullptr, SrcReg); 2512 } 2513 VNI = ValueIn; 2514 TrackReg = SrcReg; 2515 } 2516 return std::make_pair(VNI, TrackReg); 2517 } 2518 2519 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2520 const JoinVals &Other) const { 2521 const VNInfo *Orig0; 2522 unsigned Reg0; 2523 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2524 if (Orig0 == Value1 && Reg0 == Other.Reg) 2525 return true; 2526 2527 const VNInfo *Orig1; 2528 unsigned Reg1; 2529 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2530 // If both values are undefined, and the source registers are the same 2531 // register, the values are identical. Filter out cases where only one 2532 // value is defined. 2533 if (Orig0 == nullptr || Orig1 == nullptr) 2534 return Orig0 == Orig1 && Reg0 == Reg1; 2535 2536 // The values are equal if they are defined at the same place and use the 2537 // same register. Note that we cannot compare VNInfos directly as some of 2538 // them might be from a copy created in mergeSubRangeInto() while the other 2539 // is from the original LiveInterval. 2540 return Orig0->def == Orig1->def && Reg0 == Reg1; 2541 } 2542 2543 JoinVals::ConflictResolution 2544 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2545 Val &V = Vals[ValNo]; 2546 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2547 VNInfo *VNI = LR.getValNumInfo(ValNo); 2548 if (VNI->isUnused()) { 2549 V.WriteLanes = LaneBitmask::getAll(); 2550 return CR_Keep; 2551 } 2552 2553 // Get the instruction defining this value, compute the lanes written. 2554 const MachineInstr *DefMI = nullptr; 2555 if (VNI->isPHIDef()) { 2556 // Conservatively assume that all lanes in a PHI are valid. 2557 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2558 : TRI->getSubRegIndexLaneMask(SubIdx); 2559 V.ValidLanes = V.WriteLanes = Lanes; 2560 } else { 2561 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2562 assert(DefMI != nullptr); 2563 if (SubRangeJoin) { 2564 // We don't care about the lanes when joining subregister ranges. 2565 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2566 if (DefMI->isImplicitDef()) { 2567 V.ValidLanes = LaneBitmask::getNone(); 2568 V.ErasableImplicitDef = true; 2569 } 2570 } else { 2571 bool Redef = false; 2572 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2573 2574 // If this is a read-modify-write instruction, there may be more valid 2575 // lanes than the ones written by this instruction. 2576 // This only covers partial redef operands. DefMI may have normal use 2577 // operands reading the register. They don't contribute valid lanes. 2578 // 2579 // This adds ssub1 to the set of valid lanes in %src: 2580 // 2581 // %src:ssub1 = FOO 2582 // 2583 // This leaves only ssub1 valid, making any other lanes undef: 2584 // 2585 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2586 // 2587 // The <read-undef> flag on the def operand means that old lane values are 2588 // not important. 2589 if (Redef) { 2590 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2591 assert((TrackSubRegLiveness || V.RedefVNI) && 2592 "Instruction is reading nonexistent value"); 2593 if (V.RedefVNI != nullptr) { 2594 computeAssignment(V.RedefVNI->id, Other); 2595 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2596 } 2597 } 2598 2599 // An IMPLICIT_DEF writes undef values. 2600 if (DefMI->isImplicitDef()) { 2601 // We normally expect IMPLICIT_DEF values to be live only until the end 2602 // of their block. If the value is really live longer and gets pruned in 2603 // another block, this flag is cleared again. 2604 // 2605 // Clearing the valid lanes is deferred until it is sure this can be 2606 // erased. 2607 V.ErasableImplicitDef = true; 2608 } 2609 } 2610 } 2611 2612 // Find the value in Other that overlaps VNI->def, if any. 2613 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2614 2615 // It is possible that both values are defined by the same instruction, or 2616 // the values are PHIs defined in the same block. When that happens, the two 2617 // values should be merged into one, but not into any preceding value. 2618 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2619 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2620 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2621 2622 // One value stays, the other is merged. Keep the earlier one, or the first 2623 // one we see. 2624 if (OtherVNI->def < VNI->def) 2625 Other.computeAssignment(OtherVNI->id, *this); 2626 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2627 // This is an early-clobber def overlapping a live-in value in the other 2628 // register. Not mergeable. 2629 V.OtherVNI = OtherLRQ.valueIn(); 2630 return CR_Impossible; 2631 } 2632 V.OtherVNI = OtherVNI; 2633 Val &OtherV = Other.Vals[OtherVNI->id]; 2634 // Keep this value, check for conflicts when analyzing OtherVNI. 2635 if (!OtherV.isAnalyzed()) 2636 return CR_Keep; 2637 // Both sides have been analyzed now. 2638 // Allow overlapping PHI values. Any real interference would show up in a 2639 // predecessor, the PHI itself can't introduce any conflicts. 2640 if (VNI->isPHIDef()) 2641 return CR_Merge; 2642 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2643 // Overlapping lanes can't be resolved. 2644 return CR_Impossible; 2645 else 2646 return CR_Merge; 2647 } 2648 2649 // No simultaneous def. Is Other live at the def? 2650 V.OtherVNI = OtherLRQ.valueIn(); 2651 if (!V.OtherVNI) 2652 // No overlap, no conflict. 2653 return CR_Keep; 2654 2655 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2656 2657 // We have overlapping values, or possibly a kill of Other. 2658 // Recursively compute assignments up the dominator tree. 2659 Other.computeAssignment(V.OtherVNI->id, *this); 2660 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2661 2662 if (OtherV.ErasableImplicitDef) { 2663 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2664 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2665 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2666 // technically. 2667 // 2668 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2669 // to erase the IMPLICIT_DEF instruction. 2670 if (DefMI && 2671 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2672 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2673 << " extends into " 2674 << printMBBReference(*DefMI->getParent()) 2675 << ", keeping it.\n"); 2676 OtherV.ErasableImplicitDef = false; 2677 } else { 2678 // We deferred clearing these lanes in case we needed to save them 2679 OtherV.ValidLanes &= ~OtherV.WriteLanes; 2680 } 2681 } 2682 2683 // Allow overlapping PHI values. Any real interference would show up in a 2684 // predecessor, the PHI itself can't introduce any conflicts. 2685 if (VNI->isPHIDef()) 2686 return CR_Replace; 2687 2688 // Check for simple erasable conflicts. 2689 if (DefMI->isImplicitDef()) { 2690 // We need the def for the subregister if there is nothing else live at the 2691 // subrange at this point. 2692 if (TrackSubRegLiveness 2693 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none()) 2694 return CR_Replace; 2695 return CR_Erase; 2696 } 2697 2698 // Include the non-conflict where DefMI is a coalescable copy that kills 2699 // OtherVNI. We still want the copy erased and value numbers merged. 2700 if (CP.isCoalescable(DefMI)) { 2701 // Some of the lanes copied from OtherVNI may be undef, making them undef 2702 // here too. 2703 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2704 return CR_Erase; 2705 } 2706 2707 // This may not be a real conflict if DefMI simply kills Other and defines 2708 // VNI. 2709 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2710 return CR_Keep; 2711 2712 // Handle the case where VNI and OtherVNI can be proven to be identical: 2713 // 2714 // %other = COPY %ext 2715 // %this = COPY %ext <-- Erase this copy 2716 // 2717 if (DefMI->isFullCopy() && !CP.isPartial() && 2718 valuesIdentical(VNI, V.OtherVNI, Other)) { 2719 V.Identical = true; 2720 return CR_Erase; 2721 } 2722 2723 // The remaining checks apply to the lanes, which aren't tracked here. This 2724 // was already decided to be OK via the following CR_Replace condition. 2725 // CR_Replace. 2726 if (SubRangeJoin) 2727 return CR_Replace; 2728 2729 // If the lanes written by this instruction were all undef in OtherVNI, it is 2730 // still safe to join the live ranges. This can't be done with a simple value 2731 // mapping, though - OtherVNI will map to multiple values: 2732 // 2733 // 1 %dst:ssub0 = FOO <-- OtherVNI 2734 // 2 %src = BAR <-- VNI 2735 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy. 2736 // 4 BAZ killed %dst 2737 // 5 QUUX killed %src 2738 // 2739 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2740 // handles this complex value mapping. 2741 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2742 return CR_Replace; 2743 2744 // If the other live range is killed by DefMI and the live ranges are still 2745 // overlapping, it must be because we're looking at an early clobber def: 2746 // 2747 // %dst<def,early-clobber> = ASM killed %src 2748 // 2749 // In this case, it is illegal to merge the two live ranges since the early 2750 // clobber def would clobber %src before it was read. 2751 if (OtherLRQ.isKill()) { 2752 // This case where the def doesn't overlap the kill is handled above. 2753 assert(VNI->def.isEarlyClobber() && 2754 "Only early clobber defs can overlap a kill"); 2755 return CR_Impossible; 2756 } 2757 2758 // VNI is clobbering live lanes in OtherVNI, but there is still the 2759 // possibility that no instructions actually read the clobbered lanes. 2760 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2761 // Otherwise Other.RI wouldn't be live here. 2762 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2763 return CR_Impossible; 2764 2765 // We need to verify that no instructions are reading the clobbered lanes. To 2766 // save compile time, we'll only check that locally. Don't allow the tainted 2767 // value to escape the basic block. 2768 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2769 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2770 return CR_Impossible; 2771 2772 // There are still some things that could go wrong besides clobbered lanes 2773 // being read, for example OtherVNI may be only partially redefined in MBB, 2774 // and some clobbered lanes could escape the block. Save this analysis for 2775 // resolveConflicts() when all values have been mapped. We need to know 2776 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2777 // that now - the recursive analyzeValue() calls must go upwards in the 2778 // dominator tree. 2779 return CR_Unresolved; 2780 } 2781 2782 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2783 Val &V = Vals[ValNo]; 2784 if (V.isAnalyzed()) { 2785 // Recursion should always move up the dominator tree, so ValNo is not 2786 // supposed to reappear before it has been assigned. 2787 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2788 return; 2789 } 2790 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2791 case CR_Erase: 2792 case CR_Merge: 2793 // Merge this ValNo into OtherVNI. 2794 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2795 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2796 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2797 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@' 2798 << LR.getValNumInfo(ValNo)->def << " into " 2799 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2800 << V.OtherVNI->def << " --> @" 2801 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2802 break; 2803 case CR_Replace: 2804 case CR_Unresolved: { 2805 // The other value is going to be pruned if this join is successful. 2806 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2807 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2808 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2809 // its lanes. 2810 if (OtherV.ErasableImplicitDef && 2811 TrackSubRegLiveness && 2812 (OtherV.WriteLanes & ~V.ValidLanes).any()) { 2813 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n"); 2814 2815 OtherV.ErasableImplicitDef = false; 2816 // The valid lanes written by the implicit_def were speculatively cleared 2817 // before, so make this more conservative. It may be better to track this, 2818 // I haven't found a testcase where it matters. 2819 OtherV.ValidLanes = LaneBitmask::getAll(); 2820 } 2821 2822 OtherV.Pruned = true; 2823 LLVM_FALLTHROUGH; 2824 } 2825 default: 2826 // This value number needs to go in the final joined live range. 2827 Assignments[ValNo] = NewVNInfo.size(); 2828 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2829 break; 2830 } 2831 } 2832 2833 bool JoinVals::mapValues(JoinVals &Other) { 2834 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2835 computeAssignment(i, Other); 2836 if (Vals[i].Resolution == CR_Impossible) { 2837 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i 2838 << '@' << LR.getValNumInfo(i)->def << '\n'); 2839 return false; 2840 } 2841 } 2842 return true; 2843 } 2844 2845 bool JoinVals:: 2846 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2847 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { 2848 VNInfo *VNI = LR.getValNumInfo(ValNo); 2849 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2850 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2851 2852 // Scan Other.LR from VNI.def to MBBEnd. 2853 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2854 assert(OtherI != Other.LR.end() && "No conflict?"); 2855 do { 2856 // OtherI is pointing to a tainted value. Abort the join if the tainted 2857 // lanes escape the block. 2858 SlotIndex End = OtherI->end; 2859 if (End >= MBBEnd) { 2860 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':' 2861 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2862 return false; 2863 } 2864 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':' 2865 << OtherI->valno->id << '@' << OtherI->start << " to " 2866 << End << '\n'); 2867 // A dead def is not a problem. 2868 if (End.isDead()) 2869 break; 2870 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2871 2872 // Check for another def in the MBB. 2873 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2874 break; 2875 2876 // Lanes written by the new def are no longer tainted. 2877 const Val &OV = Other.Vals[OtherI->valno->id]; 2878 TaintedLanes &= ~OV.WriteLanes; 2879 if (!OV.RedefVNI) 2880 break; 2881 } while (TaintedLanes.any()); 2882 return true; 2883 } 2884 2885 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, 2886 LaneBitmask Lanes) const { 2887 if (MI.isDebugInstr()) 2888 return false; 2889 for (const MachineOperand &MO : MI.operands()) { 2890 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2891 continue; 2892 if (!MO.readsReg()) 2893 continue; 2894 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2895 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2896 return true; 2897 } 2898 return false; 2899 } 2900 2901 bool JoinVals::resolveConflicts(JoinVals &Other) { 2902 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2903 Val &V = Vals[i]; 2904 assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); 2905 if (V.Resolution != CR_Unresolved) 2906 continue; 2907 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@' 2908 << LR.getValNumInfo(i)->def 2909 << ' ' << PrintLaneMask(LaneMask) << '\n'); 2910 if (SubRangeJoin) 2911 return false; 2912 2913 ++NumLaneConflicts; 2914 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2915 VNInfo *VNI = LR.getValNumInfo(i); 2916 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2917 2918 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2919 // join, those lanes will be tainted with a wrong value. Get the extent of 2920 // the tainted lanes. 2921 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2922 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2923 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2924 // Tainted lanes would extend beyond the basic block. 2925 return false; 2926 2927 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2928 2929 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2930 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2931 MachineBasicBlock::iterator MI = MBB->begin(); 2932 if (!VNI->isPHIDef()) { 2933 MI = Indexes->getInstructionFromIndex(VNI->def); 2934 // No need to check the instruction defining VNI for reads. 2935 ++MI; 2936 } 2937 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2938 "Interference ends on VNI->def. Should have been handled earlier"); 2939 MachineInstr *LastMI = 2940 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2941 assert(LastMI && "Range must end at a proper instruction"); 2942 unsigned TaintNum = 0; 2943 while (true) { 2944 assert(MI != MBB->end() && "Bad LastMI"); 2945 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2946 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2947 return false; 2948 } 2949 // LastMI is the last instruction to use the current value. 2950 if (&*MI == LastMI) { 2951 if (++TaintNum == TaintExtent.size()) 2952 break; 2953 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2954 assert(LastMI && "Range must end at a proper instruction"); 2955 TaintedLanes = TaintExtent[TaintNum].second; 2956 } 2957 ++MI; 2958 } 2959 2960 // The tainted lanes are unused. 2961 V.Resolution = CR_Replace; 2962 ++NumLaneResolves; 2963 } 2964 return true; 2965 } 2966 2967 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2968 Val &V = Vals[ValNo]; 2969 if (V.Pruned || V.PrunedComputed) 2970 return V.Pruned; 2971 2972 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2973 return V.Pruned; 2974 2975 // Follow copies up the dominator tree and check if any intermediate value 2976 // has been pruned. 2977 V.PrunedComputed = true; 2978 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2979 return V.Pruned; 2980 } 2981 2982 void JoinVals::pruneValues(JoinVals &Other, 2983 SmallVectorImpl<SlotIndex> &EndPoints, 2984 bool changeInstrs) { 2985 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2986 SlotIndex Def = LR.getValNumInfo(i)->def; 2987 switch (Vals[i].Resolution) { 2988 case CR_Keep: 2989 break; 2990 case CR_Replace: { 2991 // This value takes precedence over the value in Other.LR. 2992 LIS->pruneValue(Other.LR, Def, &EndPoints); 2993 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2994 // instructions are only inserted to provide a live-out value for PHI 2995 // predecessors, so the instruction should simply go away once its value 2996 // has been replaced. 2997 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2998 bool EraseImpDef = OtherV.ErasableImplicitDef && 2999 OtherV.Resolution == CR_Keep; 3000 if (!Def.isBlock()) { 3001 if (changeInstrs) { 3002 // Remove <def,read-undef> flags. This def is now a partial redef. 3003 // Also remove dead flags since the joined live range will 3004 // continue past this instruction. 3005 for (MachineOperand &MO : 3006 Indexes->getInstructionFromIndex(Def)->operands()) { 3007 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 3008 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) 3009 MO.setIsUndef(false); 3010 MO.setIsDead(false); 3011 } 3012 } 3013 } 3014 // This value will reach instructions below, but we need to make sure 3015 // the live range also reaches the instruction at Def. 3016 if (!EraseImpDef) 3017 EndPoints.push_back(Def); 3018 } 3019 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def 3020 << ": " << Other.LR << '\n'); 3021 break; 3022 } 3023 case CR_Erase: 3024 case CR_Merge: 3025 if (isPrunedValue(i, Other)) { 3026 // This value is ultimately a copy of a pruned value in LR or Other.LR. 3027 // We can no longer trust the value mapping computed by 3028 // computeAssignment(), the value that was originally copied could have 3029 // been replaced. 3030 LIS->pruneValue(LR, Def, &EndPoints); 3031 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at " 3032 << Def << ": " << LR << '\n'); 3033 } 3034 break; 3035 case CR_Unresolved: 3036 case CR_Impossible: 3037 llvm_unreachable("Unresolved conflicts"); 3038 } 3039 } 3040 } 3041 3042 /// Consider the following situation when coalescing the copy between 3043 /// %31 and %45 at 800. (The vertical lines represent live range segments.) 3044 /// 3045 /// Main range Subrange 0004 (sub2) 3046 /// %31 %45 %31 %45 3047 /// 544 %45 = COPY %28 + + 3048 /// | v1 | v1 3049 /// 560B bb.1: + + 3050 /// 624 = %45.sub2 | v2 | v2 3051 /// 800 %31 = COPY %45 + + + + 3052 /// | v0 | v0 3053 /// 816 %31.sub1 = ... + | 3054 /// 880 %30 = COPY %31 | v1 + 3055 /// 928 %45 = COPY %30 | + + 3056 /// | | v0 | v0 <--+ 3057 /// 992B ; backedge -> bb.1 | + + | 3058 /// 1040 = %31.sub0 + | 3059 /// This value must remain 3060 /// live-out! 3061 /// 3062 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes 3063 /// redundant, since it copies the value from %45 back into it. The 3064 /// conflict resolution for the main range determines that %45.v0 is 3065 /// to be erased, which is ok since %31.v1 is identical to it. 3066 /// The problem happens with the subrange for sub2: it has to be live 3067 /// on exit from the block, but since 928 was actually a point of 3068 /// definition of %45.sub2, %45.sub2 was not live immediately prior 3069 /// to that definition. As a result, when 928 was erased, the value v0 3070 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an 3071 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2, 3072 /// providing an incorrect value to the use at 624. 3073 /// 3074 /// Since the main-range values %31.v1 and %45.v0 were proved to be 3075 /// identical, the corresponding values in subranges must also be the 3076 /// same. A redundant copy is removed because it's not needed, and not 3077 /// because it copied an undefined value, so any liveness that originated 3078 /// from that copy cannot disappear. When pruning a value that started 3079 /// at the removed copy, the corresponding identical value must be 3080 /// extended to replace it. 3081 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 3082 // Look for values being erased. 3083 bool DidPrune = false; 3084 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3085 Val &V = Vals[i]; 3086 // We should trigger in all cases in which eraseInstrs() does something. 3087 // match what eraseInstrs() is doing, print a message so 3088 if (V.Resolution != CR_Erase && 3089 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)) 3090 continue; 3091 3092 // Check subranges at the point where the copy will be removed. 3093 SlotIndex Def = LR.getValNumInfo(i)->def; 3094 SlotIndex OtherDef; 3095 if (V.Identical) 3096 OtherDef = V.OtherVNI->def; 3097 3098 // Print message so mismatches with eraseInstrs() can be diagnosed. 3099 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def 3100 << '\n'); 3101 for (LiveInterval::SubRange &S : LI.subranges()) { 3102 LiveQueryResult Q = S.Query(Def); 3103 3104 // If a subrange starts at the copy then an undefined value has been 3105 // copied and we must remove that subrange value as well. 3106 VNInfo *ValueOut = Q.valueOutOrDead(); 3107 if (ValueOut != nullptr && (Q.valueIn() == nullptr || 3108 (V.Identical && V.Resolution == CR_Erase && 3109 ValueOut->def == Def))) { 3110 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 3111 << " at " << Def << "\n"); 3112 SmallVector<SlotIndex,8> EndPoints; 3113 LIS->pruneValue(S, Def, &EndPoints); 3114 DidPrune = true; 3115 // Mark value number as unused. 3116 ValueOut->markUnused(); 3117 3118 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) { 3119 // If V is identical to V.OtherVNI (and S was live at OtherDef), 3120 // then we can't simply prune V from S. V needs to be replaced 3121 // with V.OtherVNI. 3122 LIS->extendToIndices(S, EndPoints); 3123 } 3124 continue; 3125 } 3126 // If a subrange ends at the copy, then a value was copied but only 3127 // partially used later. Shrink the subregister range appropriately. 3128 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 3129 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane " 3130 << PrintLaneMask(S.LaneMask) << " at " << Def 3131 << "\n"); 3132 ShrinkMask |= S.LaneMask; 3133 } 3134 } 3135 } 3136 if (DidPrune) 3137 LI.removeEmptySubRanges(); 3138 } 3139 3140 /// Check if any of the subranges of @p LI contain a definition at @p Def. 3141 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 3142 for (LiveInterval::SubRange &SR : LI.subranges()) { 3143 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 3144 if (VNI->def == Def) 3145 return true; 3146 } 3147 return false; 3148 } 3149 3150 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 3151 assert(&static_cast<LiveRange&>(LI) == &LR); 3152 3153 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3154 if (Vals[i].Resolution != CR_Keep) 3155 continue; 3156 VNInfo *VNI = LR.getValNumInfo(i); 3157 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 3158 continue; 3159 Vals[i].Pruned = true; 3160 ShrinkMainRange = true; 3161 } 3162 } 3163 3164 void JoinVals::removeImplicitDefs() { 3165 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3166 Val &V = Vals[i]; 3167 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 3168 continue; 3169 3170 VNInfo *VNI = LR.getValNumInfo(i); 3171 VNI->markUnused(); 3172 LR.removeValNo(VNI); 3173 } 3174 } 3175 3176 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 3177 SmallVectorImpl<Register> &ShrinkRegs, 3178 LiveInterval *LI) { 3179 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3180 // Get the def location before markUnused() below invalidates it. 3181 VNInfo *VNI = LR.getValNumInfo(i); 3182 SlotIndex Def = VNI->def; 3183 switch (Vals[i].Resolution) { 3184 case CR_Keep: { 3185 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 3186 // longer. The IMPLICIT_DEF instructions are only inserted by 3187 // PHIElimination to guarantee that all PHI predecessors have a value. 3188 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 3189 break; 3190 // Remove value number i from LR. 3191 // For intervals with subranges, removing a segment from the main range 3192 // may require extending the previous segment: for each definition of 3193 // a subregister, there will be a corresponding def in the main range. 3194 // That def may fall in the middle of a segment from another subrange. 3195 // In such cases, removing this def from the main range must be 3196 // complemented by extending the main range to account for the liveness 3197 // of the other subrange. 3198 // The new end point of the main range segment to be extended. 3199 SlotIndex NewEnd; 3200 if (LI != nullptr) { 3201 LiveRange::iterator I = LR.FindSegmentContaining(Def); 3202 assert(I != LR.end()); 3203 // Do not extend beyond the end of the segment being removed. 3204 // The segment may have been pruned in preparation for joining 3205 // live ranges. 3206 NewEnd = I->end; 3207 } 3208 3209 LR.removeValNo(VNI); 3210 // Note that this VNInfo is reused and still referenced in NewVNInfo, 3211 // make it appear like an unused value number. 3212 VNI->markUnused(); 3213 3214 if (LI != nullptr && LI->hasSubRanges()) { 3215 assert(static_cast<LiveRange*>(LI) == &LR); 3216 // Determine the end point based on the subrange information: 3217 // minimum of (earliest def of next segment, 3218 // latest end point of containing segment) 3219 SlotIndex ED, LE; 3220 for (LiveInterval::SubRange &SR : LI->subranges()) { 3221 LiveRange::iterator I = SR.find(Def); 3222 if (I == SR.end()) 3223 continue; 3224 if (I->start > Def) 3225 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 3226 else 3227 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 3228 } 3229 if (LE.isValid()) 3230 NewEnd = std::min(NewEnd, LE); 3231 if (ED.isValid()) 3232 NewEnd = std::min(NewEnd, ED); 3233 3234 // We only want to do the extension if there was a subrange that 3235 // was live across Def. 3236 if (LE.isValid()) { 3237 LiveRange::iterator S = LR.find(Def); 3238 if (S != LR.begin()) 3239 std::prev(S)->end = NewEnd; 3240 } 3241 } 3242 LLVM_DEBUG({ 3243 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 3244 if (LI != nullptr) 3245 dbgs() << "\t\t LHS = " << *LI << '\n'; 3246 }); 3247 LLVM_FALLTHROUGH; 3248 } 3249 3250 case CR_Erase: { 3251 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 3252 assert(MI && "No instruction to erase"); 3253 if (MI->isCopy()) { 3254 Register Reg = MI->getOperand(1).getReg(); 3255 if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() && 3256 Reg != CP.getDstReg()) 3257 ShrinkRegs.push_back(Reg); 3258 } 3259 ErasedInstrs.insert(MI); 3260 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 3261 LIS->RemoveMachineInstrFromMaps(*MI); 3262 MI->eraseFromParent(); 3263 break; 3264 } 3265 default: 3266 break; 3267 } 3268 } 3269 } 3270 3271 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 3272 LaneBitmask LaneMask, 3273 const CoalescerPair &CP) { 3274 SmallVector<VNInfo*, 16> NewVNInfo; 3275 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 3276 NewVNInfo, CP, LIS, TRI, true, true); 3277 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 3278 NewVNInfo, CP, LIS, TRI, true, true); 3279 3280 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 3281 // We should be able to resolve all conflicts here as we could successfully do 3282 // it on the mainrange already. There is however a problem when multiple 3283 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 3284 // interferences. 3285 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 3286 // We already determined that it is legal to merge the intervals, so this 3287 // should never fail. 3288 llvm_unreachable("*** Couldn't join subrange!\n"); 3289 } 3290 if (!LHSVals.resolveConflicts(RHSVals) || 3291 !RHSVals.resolveConflicts(LHSVals)) { 3292 // We already determined that it is legal to merge the intervals, so this 3293 // should never fail. 3294 llvm_unreachable("*** Couldn't join subrange!\n"); 3295 } 3296 3297 // The merging algorithm in LiveInterval::join() can't handle conflicting 3298 // value mappings, so we need to remove any live ranges that overlap a 3299 // CR_Replace resolution. Collect a set of end points that can be used to 3300 // restore the live range after joining. 3301 SmallVector<SlotIndex, 8> EndPoints; 3302 LHSVals.pruneValues(RHSVals, EndPoints, false); 3303 RHSVals.pruneValues(LHSVals, EndPoints, false); 3304 3305 LHSVals.removeImplicitDefs(); 3306 RHSVals.removeImplicitDefs(); 3307 3308 LRange.verify(); 3309 RRange.verify(); 3310 3311 // Join RRange into LHS. 3312 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 3313 NewVNInfo); 3314 3315 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask) 3316 << ' ' << LRange << "\n"); 3317 if (EndPoints.empty()) 3318 return; 3319 3320 // Recompute the parts of the live range we had to remove because of 3321 // CR_Replace conflicts. 3322 LLVM_DEBUG({ 3323 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3324 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3325 dbgs() << EndPoints[i]; 3326 if (i != n-1) 3327 dbgs() << ','; 3328 } 3329 dbgs() << ": " << LRange << '\n'; 3330 }); 3331 LIS->extendToIndices(LRange, EndPoints); 3332 } 3333 3334 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 3335 const LiveRange &ToMerge, 3336 LaneBitmask LaneMask, 3337 CoalescerPair &CP, 3338 unsigned ComposeSubRegIdx) { 3339 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3340 LI.refineSubRanges( 3341 Allocator, LaneMask, 3342 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) { 3343 if (SR.empty()) { 3344 SR.assign(ToMerge, Allocator); 3345 } else { 3346 // joinSubRegRange() destroys the merged range, so we need a copy. 3347 LiveRange RangeCopy(ToMerge, Allocator); 3348 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 3349 } 3350 }, 3351 *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx); 3352 } 3353 3354 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) { 3355 if (LI.valnos.size() < LargeIntervalSizeThreshold) 3356 return false; 3357 auto &Counter = LargeLIVisitCounter[LI.reg()]; 3358 if (Counter < LargeIntervalFreqThreshold) { 3359 Counter++; 3360 return false; 3361 } 3362 return true; 3363 } 3364 3365 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 3366 SmallVector<VNInfo*, 16> NewVNInfo; 3367 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 3368 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 3369 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 3370 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 3371 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3372 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 3373 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3374 3375 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n'); 3376 3377 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS)) 3378 return false; 3379 3380 // First compute NewVNInfo and the simple value mappings. 3381 // Detect impossible conflicts early. 3382 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 3383 return false; 3384 3385 // Some conflicts can only be resolved after all values have been mapped. 3386 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 3387 return false; 3388 3389 // All clear, the live ranges can be merged. 3390 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 3391 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3392 3393 // Transform lanemasks from the LHS to masks in the coalesced register and 3394 // create initial subranges if necessary. 3395 unsigned DstIdx = CP.getDstIdx(); 3396 if (!LHS.hasSubRanges()) { 3397 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 3398 : TRI->getSubRegIndexLaneMask(DstIdx); 3399 // LHS must support subregs or we wouldn't be in this codepath. 3400 assert(Mask.any()); 3401 LHS.createSubRangeFrom(Allocator, Mask, LHS); 3402 } else if (DstIdx != 0) { 3403 // Transform LHS lanemasks to new register class if necessary. 3404 for (LiveInterval::SubRange &R : LHS.subranges()) { 3405 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 3406 R.LaneMask = Mask; 3407 } 3408 } 3409 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS 3410 << '\n'); 3411 3412 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3413 unsigned SrcIdx = CP.getSrcIdx(); 3414 if (!RHS.hasSubRanges()) { 3415 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3416 : TRI->getSubRegIndexLaneMask(SrcIdx); 3417 mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx); 3418 } else { 3419 // Pair up subranges and merge. 3420 for (LiveInterval::SubRange &R : RHS.subranges()) { 3421 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3422 mergeSubRangeInto(LHS, R, Mask, CP, DstIdx); 3423 } 3424 } 3425 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3426 3427 // Pruning implicit defs from subranges may result in the main range 3428 // having stale segments. 3429 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3430 3431 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3432 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3433 } 3434 3435 // The merging algorithm in LiveInterval::join() can't handle conflicting 3436 // value mappings, so we need to remove any live ranges that overlap a 3437 // CR_Replace resolution. Collect a set of end points that can be used to 3438 // restore the live range after joining. 3439 SmallVector<SlotIndex, 8> EndPoints; 3440 LHSVals.pruneValues(RHSVals, EndPoints, true); 3441 RHSVals.pruneValues(LHSVals, EndPoints, true); 3442 3443 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3444 // registers to require trimming. 3445 SmallVector<Register, 8> ShrinkRegs; 3446 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3447 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3448 while (!ShrinkRegs.empty()) 3449 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3450 3451 // Scan and mark undef any DBG_VALUEs that would refer to a different value. 3452 checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals); 3453 3454 // Join RHS into LHS. 3455 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3456 3457 // Kill flags are going to be wrong if the live ranges were overlapping. 3458 // Eventually, we should simply clear all kill flags when computing live 3459 // ranges. They are reinserted after register allocation. 3460 MRI->clearKillFlags(LHS.reg()); 3461 MRI->clearKillFlags(RHS.reg()); 3462 3463 if (!EndPoints.empty()) { 3464 // Recompute the parts of the live range we had to remove because of 3465 // CR_Replace conflicts. 3466 LLVM_DEBUG({ 3467 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3468 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3469 dbgs() << EndPoints[i]; 3470 if (i != n-1) 3471 dbgs() << ','; 3472 } 3473 dbgs() << ": " << LHS << '\n'; 3474 }); 3475 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3476 } 3477 3478 return true; 3479 } 3480 3481 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3482 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3483 } 3484 3485 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF) 3486 { 3487 const SlotIndexes &Slots = *LIS->getSlotIndexes(); 3488 SmallVector<MachineInstr *, 8> ToInsert; 3489 3490 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the 3491 // vreg => DbgValueLoc map. 3492 auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) { 3493 for (auto *X : ToInsert) 3494 DbgVRegToValues[X->getDebugOperand(0).getReg()].push_back({Slot, X}); 3495 3496 ToInsert.clear(); 3497 }; 3498 3499 // Iterate over all instructions, collecting them into the ToInsert vector. 3500 // Once a non-debug instruction is found, record the slot index of the 3501 // collected DBG_VALUEs. 3502 for (auto &MBB : MF) { 3503 SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB); 3504 3505 for (auto &MI : MBB) { 3506 if (MI.isDebugValue() && MI.getDebugOperand(0).isReg() && 3507 MI.getDebugOperand(0).getReg().isVirtual()) { 3508 ToInsert.push_back(&MI); 3509 } else if (!MI.isDebugInstr()) { 3510 CurrentSlot = Slots.getInstructionIndex(MI); 3511 CloseNewDVRange(CurrentSlot); 3512 } 3513 } 3514 3515 // Close range of DBG_VALUEs at the end of blocks. 3516 CloseNewDVRange(Slots.getMBBEndIdx(&MBB)); 3517 } 3518 3519 // Sort all DBG_VALUEs we've seen by slot number. 3520 for (auto &Pair : DbgVRegToValues) 3521 llvm::sort(Pair.second); 3522 } 3523 3524 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP, 3525 LiveRange &LHS, 3526 JoinVals &LHSVals, 3527 LiveRange &RHS, 3528 JoinVals &RHSVals) { 3529 auto ScanForDstReg = [&](unsigned Reg) { 3530 checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals); 3531 }; 3532 3533 auto ScanForSrcReg = [&](unsigned Reg) { 3534 checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals); 3535 }; 3536 3537 // Scan for potentially unsound DBG_VALUEs: examine first the register number 3538 // Reg, and then any other vregs that may have been merged into it. 3539 auto PerformScan = [this](unsigned Reg, std::function<void(unsigned)> Func) { 3540 Func(Reg); 3541 if (DbgMergedVRegNums.count(Reg)) 3542 for (unsigned X : DbgMergedVRegNums[Reg]) 3543 Func(X); 3544 }; 3545 3546 // Scan for unsound updates of both the source and destination register. 3547 PerformScan(CP.getSrcReg(), ScanForSrcReg); 3548 PerformScan(CP.getDstReg(), ScanForDstReg); 3549 } 3550 3551 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(unsigned Reg, 3552 LiveRange &OtherLR, 3553 LiveRange &RegLR, 3554 JoinVals &RegVals) { 3555 // Are there any DBG_VALUEs to examine? 3556 auto VRegMapIt = DbgVRegToValues.find(Reg); 3557 if (VRegMapIt == DbgVRegToValues.end()) 3558 return; 3559 3560 auto &DbgValueSet = VRegMapIt->second; 3561 auto DbgValueSetIt = DbgValueSet.begin(); 3562 auto SegmentIt = OtherLR.begin(); 3563 3564 bool LastUndefResult = false; 3565 SlotIndex LastUndefIdx; 3566 3567 // If the "Other" register is live at a slot Idx, test whether Reg can 3568 // safely be merged with it, or should be marked undef. 3569 auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult, 3570 &LastUndefIdx](SlotIndex Idx) -> bool { 3571 // Our worst-case performance typically happens with asan, causing very 3572 // many DBG_VALUEs of the same location. Cache a copy of the most recent 3573 // result for this edge-case. 3574 if (LastUndefIdx == Idx) 3575 return LastUndefResult; 3576 3577 // If the other range was live, and Reg's was not, the register coalescer 3578 // will not have tried to resolve any conflicts. We don't know whether 3579 // the DBG_VALUE will refer to the same value number, so it must be made 3580 // undef. 3581 auto OtherIt = RegLR.find(Idx); 3582 if (OtherIt == RegLR.end()) 3583 return true; 3584 3585 // Both the registers were live: examine the conflict resolution record for 3586 // the value number Reg refers to. CR_Keep meant that this value number 3587 // "won" and the merged register definitely refers to that value. CR_Erase 3588 // means the value number was a redundant copy of the other value, which 3589 // was coalesced and Reg deleted. It's safe to refer to the other register 3590 // (which will be the source of the copy). 3591 auto Resolution = RegVals.getResolution(OtherIt->valno->id); 3592 LastUndefResult = Resolution != JoinVals::CR_Keep && 3593 Resolution != JoinVals::CR_Erase; 3594 LastUndefIdx = Idx; 3595 return LastUndefResult; 3596 }; 3597 3598 // Iterate over both the live-range of the "Other" register, and the set of 3599 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest 3600 // slot index. This relies on the DbgValueSet being ordered. 3601 while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) { 3602 if (DbgValueSetIt->first < SegmentIt->end) { 3603 // "Other" is live and there is a DBG_VALUE of Reg: test if we should 3604 // set it undef. 3605 if (DbgValueSetIt->first >= SegmentIt->start && 3606 DbgValueSetIt->second->getDebugOperand(0).getReg() != 0 && 3607 ShouldUndef(DbgValueSetIt->first)) { 3608 // Mark undef, erase record of this DBG_VALUE to avoid revisiting. 3609 DbgValueSetIt->second->setDebugValueUndef(); 3610 continue; 3611 } 3612 ++DbgValueSetIt; 3613 } else { 3614 ++SegmentIt; 3615 } 3616 } 3617 } 3618 3619 namespace { 3620 3621 /// Information concerning MBB coalescing priority. 3622 struct MBBPriorityInfo { 3623 MachineBasicBlock *MBB; 3624 unsigned Depth; 3625 bool IsSplit; 3626 3627 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3628 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3629 }; 3630 3631 } // end anonymous namespace 3632 3633 /// C-style comparator that sorts first based on the loop depth of the basic 3634 /// block (the unsigned), and then on the MBB number. 3635 /// 3636 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3637 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3638 const MBBPriorityInfo *RHS) { 3639 // Deeper loops first 3640 if (LHS->Depth != RHS->Depth) 3641 return LHS->Depth > RHS->Depth ? -1 : 1; 3642 3643 // Try to unsplit critical edges next. 3644 if (LHS->IsSplit != RHS->IsSplit) 3645 return LHS->IsSplit ? -1 : 1; 3646 3647 // Prefer blocks that are more connected in the CFG. This takes care of 3648 // the most difficult copies first while intervals are short. 3649 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3650 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3651 if (cl != cr) 3652 return cl > cr ? -1 : 1; 3653 3654 // As a last resort, sort by block number. 3655 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3656 } 3657 3658 /// \returns true if the given copy uses or defines a local live range. 3659 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3660 if (!Copy->isCopy()) 3661 return false; 3662 3663 if (Copy->getOperand(1).isUndef()) 3664 return false; 3665 3666 Register SrcReg = Copy->getOperand(1).getReg(); 3667 Register DstReg = Copy->getOperand(0).getReg(); 3668 if (Register::isPhysicalRegister(SrcReg) || 3669 Register::isPhysicalRegister(DstReg)) 3670 return false; 3671 3672 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3673 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3674 } 3675 3676 void RegisterCoalescer::lateLiveIntervalUpdate() { 3677 for (unsigned reg : ToBeUpdated) { 3678 if (!LIS->hasInterval(reg)) 3679 continue; 3680 LiveInterval &LI = LIS->getInterval(reg); 3681 shrinkToUses(&LI, &DeadDefs); 3682 if (!DeadDefs.empty()) 3683 eliminateDeadDefs(); 3684 } 3685 ToBeUpdated.clear(); 3686 } 3687 3688 bool RegisterCoalescer:: 3689 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3690 bool Progress = false; 3691 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3692 if (!CurrList[i]) 3693 continue; 3694 // Skip instruction pointers that have already been erased, for example by 3695 // dead code elimination. 3696 if (ErasedInstrs.count(CurrList[i])) { 3697 CurrList[i] = nullptr; 3698 continue; 3699 } 3700 bool Again = false; 3701 bool Success = joinCopy(CurrList[i], Again); 3702 Progress |= Success; 3703 if (Success || !Again) 3704 CurrList[i] = nullptr; 3705 } 3706 return Progress; 3707 } 3708 3709 /// Check if DstReg is a terminal node. 3710 /// I.e., it does not have any affinity other than \p Copy. 3711 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 3712 const MachineRegisterInfo *MRI) { 3713 assert(Copy.isCopyLike()); 3714 // Check if the destination of this copy as any other affinity. 3715 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3716 if (&MI != &Copy && MI.isCopyLike()) 3717 return false; 3718 return true; 3719 } 3720 3721 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3722 assert(Copy.isCopyLike()); 3723 if (!UseTerminalRule) 3724 return false; 3725 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 3726 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg)) 3727 return false; 3728 // Check if the destination of this copy has any other affinity. 3729 if (Register::isPhysicalRegister(DstReg) || 3730 // If SrcReg is a physical register, the copy won't be coalesced. 3731 // Ignoring it may have other side effect (like missing 3732 // rematerialization). So keep it. 3733 Register::isPhysicalRegister(SrcReg) || !isTerminalReg(DstReg, Copy, MRI)) 3734 return false; 3735 3736 // DstReg is a terminal node. Check if it interferes with any other 3737 // copy involving SrcReg. 3738 const MachineBasicBlock *OrigBB = Copy.getParent(); 3739 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3740 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3741 // Technically we should check if the weight of the new copy is 3742 // interesting compared to the other one and update the weight 3743 // of the copies accordingly. However, this would only work if 3744 // we would gather all the copies first then coalesce, whereas 3745 // right now we interleave both actions. 3746 // For now, just consider the copies that are in the same block. 3747 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3748 continue; 3749 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 3750 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3751 OtherSubReg)) 3752 return false; 3753 if (OtherReg == SrcReg) 3754 OtherReg = OtherSrcReg; 3755 // Check if OtherReg is a non-terminal. 3756 if (Register::isPhysicalRegister(OtherReg) || 3757 isTerminalReg(OtherReg, MI, MRI)) 3758 continue; 3759 // Check that OtherReg interfere with DstReg. 3760 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3761 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) 3762 << '\n'); 3763 return true; 3764 } 3765 } 3766 return false; 3767 } 3768 3769 void 3770 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3771 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n"); 3772 3773 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3774 // yet, it might invalidate the iterator. 3775 const unsigned PrevSize = WorkList.size(); 3776 if (JoinGlobalCopies) { 3777 SmallVector<MachineInstr*, 2> LocalTerminals; 3778 SmallVector<MachineInstr*, 2> GlobalTerminals; 3779 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3780 // are not inherently easier to resolve, but slightly preferable until we 3781 // have local live range splitting. In particular this is required by 3782 // cmp+jmp macro fusion. 3783 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3784 MII != E; ++MII) { 3785 if (!MII->isCopyLike()) 3786 continue; 3787 bool ApplyTerminalRule = applyTerminalRule(*MII); 3788 if (isLocalCopy(&(*MII), LIS)) { 3789 if (ApplyTerminalRule) 3790 LocalTerminals.push_back(&(*MII)); 3791 else 3792 LocalWorkList.push_back(&(*MII)); 3793 } else { 3794 if (ApplyTerminalRule) 3795 GlobalTerminals.push_back(&(*MII)); 3796 else 3797 WorkList.push_back(&(*MII)); 3798 } 3799 } 3800 // Append the copies evicted by the terminal rule at the end of the list. 3801 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3802 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3803 } 3804 else { 3805 SmallVector<MachineInstr*, 2> Terminals; 3806 for (MachineInstr &MII : *MBB) 3807 if (MII.isCopyLike()) { 3808 if (applyTerminalRule(MII)) 3809 Terminals.push_back(&MII); 3810 else 3811 WorkList.push_back(&MII); 3812 } 3813 // Append the copies evicted by the terminal rule at the end of the list. 3814 WorkList.append(Terminals.begin(), Terminals.end()); 3815 } 3816 // Try coalescing the collected copies immediately, and remove the nulls. 3817 // This prevents the WorkList from getting too large since most copies are 3818 // joinable on the first attempt. 3819 MutableArrayRef<MachineInstr*> 3820 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3821 if (copyCoalesceWorkList(CurrList)) 3822 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3823 nullptr), WorkList.end()); 3824 } 3825 3826 void RegisterCoalescer::coalesceLocals() { 3827 copyCoalesceWorkList(LocalWorkList); 3828 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3829 if (LocalWorkList[j]) 3830 WorkList.push_back(LocalWorkList[j]); 3831 } 3832 LocalWorkList.clear(); 3833 } 3834 3835 void RegisterCoalescer::joinAllIntervals() { 3836 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3837 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3838 3839 std::vector<MBBPriorityInfo> MBBs; 3840 MBBs.reserve(MF->size()); 3841 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3842 MachineBasicBlock *MBB = &*I; 3843 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3844 JoinSplitEdges && isSplitEdge(MBB))); 3845 } 3846 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3847 3848 // Coalesce intervals in MBB priority order. 3849 unsigned CurrDepth = std::numeric_limits<unsigned>::max(); 3850 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3851 // Try coalescing the collected local copies for deeper loops. 3852 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3853 coalesceLocals(); 3854 CurrDepth = MBBs[i].Depth; 3855 } 3856 copyCoalesceInMBB(MBBs[i].MBB); 3857 } 3858 lateLiveIntervalUpdate(); 3859 coalesceLocals(); 3860 3861 // Joining intervals can allow other intervals to be joined. Iteratively join 3862 // until we make no progress. 3863 while (copyCoalesceWorkList(WorkList)) 3864 /* empty */ ; 3865 lateLiveIntervalUpdate(); 3866 } 3867 3868 void RegisterCoalescer::releaseMemory() { 3869 ErasedInstrs.clear(); 3870 WorkList.clear(); 3871 DeadDefs.clear(); 3872 InflateRegs.clear(); 3873 LargeLIVisitCounter.clear(); 3874 } 3875 3876 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3877 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3878 << "********** Function: " << fn.getName() << '\n'); 3879 3880 // Variables changed between a setjmp and a longjump can have undefined value 3881 // after the longjmp. This behaviour can be observed if such a variable is 3882 // spilled, so longjmp won't restore the value in the spill slot. 3883 // RegisterCoalescer should not run in functions with a setjmp to avoid 3884 // merging such undefined variables with predictable ones. 3885 // 3886 // TODO: Could specifically disable coalescing registers live across setjmp 3887 // calls 3888 if (fn.exposesReturnsTwice()) { 3889 LLVM_DEBUG( 3890 dbgs() << "* Skipped as it exposes funcions that returns twice.\n"); 3891 return false; 3892 } 3893 3894 MF = &fn; 3895 MRI = &fn.getRegInfo(); 3896 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3897 TRI = STI.getRegisterInfo(); 3898 TII = STI.getInstrInfo(); 3899 LIS = &getAnalysis<LiveIntervals>(); 3900 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3901 Loops = &getAnalysis<MachineLoopInfo>(); 3902 if (EnableGlobalCopies == cl::BOU_UNSET) 3903 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3904 else 3905 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3906 3907 // The MachineScheduler does not currently require JoinSplitEdges. This will 3908 // either be enabled unconditionally or replaced by a more general live range 3909 // splitting optimization. 3910 JoinSplitEdges = EnableJoinSplits; 3911 3912 if (VerifyCoalescing) 3913 MF->verify(this, "Before register coalescing"); 3914 3915 DbgVRegToValues.clear(); 3916 DbgMergedVRegNums.clear(); 3917 buildVRegToDbgValueMap(fn); 3918 3919 RegClassInfo.runOnMachineFunction(fn); 3920 3921 // Join (coalesce) intervals if requested. 3922 if (EnableJoining) 3923 joinAllIntervals(); 3924 3925 // After deleting a lot of copies, register classes may be less constrained. 3926 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3927 // DPR inflation. 3928 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3929 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3930 InflateRegs.end()); 3931 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() 3932 << " regs.\n"); 3933 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3934 unsigned Reg = InflateRegs[i]; 3935 if (MRI->reg_nodbg_empty(Reg)) 3936 continue; 3937 if (MRI->recomputeRegClass(Reg)) { 3938 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to " 3939 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3940 ++NumInflated; 3941 3942 LiveInterval &LI = LIS->getInterval(Reg); 3943 if (LI.hasSubRanges()) { 3944 // If the inflated register class does not support subregisters anymore 3945 // remove the subranges. 3946 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3947 LI.clearSubRanges(); 3948 } else { 3949 #ifndef NDEBUG 3950 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3951 // If subranges are still supported, then the same subregs 3952 // should still be supported. 3953 for (LiveInterval::SubRange &S : LI.subranges()) { 3954 assert((S.LaneMask & ~MaxMask).none()); 3955 } 3956 #endif 3957 } 3958 } 3959 } 3960 } 3961 3962 LLVM_DEBUG(dump()); 3963 if (VerifyCoalescing) 3964 MF->verify(this, "After register coalescing"); 3965 return true; 3966 } 3967 3968 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3969 LIS->print(O, m); 3970 } 3971