1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/MC/MCInstrDesc.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <iterator>
56 #include <limits>
57 #include <tuple>
58 #include <utility>
59 #include <vector>
60 
61 using namespace llvm;
62 
63 #define DEBUG_TYPE "regalloc"
64 
65 STATISTIC(numJoins    , "Number of interval joins performed");
66 STATISTIC(numCrossRCs , "Number of cross class joins performed");
67 STATISTIC(numCommutes , "Number of instruction commuting performed");
68 STATISTIC(numExtends  , "Number of copies extended");
69 STATISTIC(NumReMats   , "Number of instructions re-materialized");
70 STATISTIC(NumInflated , "Number of register classes inflated");
71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
72 STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
73 STATISTIC(NumShrinkToUses,  "Number of shrinkToUses called");
74 
75 static cl::opt<bool> EnableJoining("join-liveintervals",
76                                    cl::desc("Coalesce copies (default=true)"),
77                                    cl::init(true), cl::Hidden);
78 
79 static cl::opt<bool> UseTerminalRule("terminal-rule",
80                                      cl::desc("Apply the terminal rule"),
81                                      cl::init(false), cl::Hidden);
82 
83 /// Temporary flag to test critical edge unsplitting.
84 static cl::opt<bool>
85 EnableJoinSplits("join-splitedges",
86   cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87 
88 /// Temporary flag to test global copy optimization.
89 static cl::opt<cl::boolOrDefault>
90 EnableGlobalCopies("join-globalcopies",
91   cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92   cl::init(cl::BOU_UNSET), cl::Hidden);
93 
94 static cl::opt<bool>
95 VerifyCoalescing("verify-coalescing",
96          cl::desc("Verify machine instrs before and after register coalescing"),
97          cl::Hidden);
98 
99 static cl::opt<unsigned> LateRematUpdateThreshold(
100     "late-remat-update-threshold", cl::Hidden,
101     cl::desc("During rematerialization for a copy, if the def instruction has "
102              "many other copy uses to be rematerialized, delay the multiple "
103              "separate live interval update work and do them all at once after "
104              "all those rematerialization are done. It will save a lot of "
105              "repeated work. "),
106     cl::init(100));
107 
108 static cl::opt<unsigned> LargeIntervalSizeThreshold(
109     "large-interval-size-threshold", cl::Hidden,
110     cl::desc("If the valnos size of an interval is larger than the threshold, "
111              "it is regarded as a large interval. "),
112     cl::init(100));
113 
114 static cl::opt<unsigned> LargeIntervalFreqThreshold(
115     "large-interval-freq-threshold", cl::Hidden,
116     cl::desc("For a large interval, if it is coalesed with other live "
117              "intervals many times more than the threshold, stop its "
118              "coalescing to control the compile time. "),
119     cl::init(100));
120 
121 namespace {
122 
123   class JoinVals;
124 
125   class RegisterCoalescer : public MachineFunctionPass,
126                             private LiveRangeEdit::Delegate {
127     MachineFunction* MF = nullptr;
128     MachineRegisterInfo* MRI = nullptr;
129     const TargetRegisterInfo* TRI = nullptr;
130     const TargetInstrInfo* TII = nullptr;
131     LiveIntervals *LIS = nullptr;
132     const MachineLoopInfo* Loops = nullptr;
133     AliasAnalysis *AA = nullptr;
134     RegisterClassInfo RegClassInfo;
135 
136     /// Debug variable location tracking -- for each VReg, maintain an
137     /// ordered-by-slot-index set of DBG_VALUEs, to help quick
138     /// identification of whether coalescing may change location validity.
139     using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>;
140     DenseMap<unsigned, std::vector<DbgValueLoc>> DbgVRegToValues;
141 
142     /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached.
143     /// To avoid repeatedly merging sets of DbgValueLocs, instead record
144     /// which vregs have been coalesced, and where to. This map is from
145     /// vreg => {set of vregs merged in}.
146     DenseMap<unsigned, SmallVector<unsigned, 4>> DbgMergedVRegNums;
147 
148     /// A LaneMask to remember on which subregister live ranges we need to call
149     /// shrinkToUses() later.
150     LaneBitmask ShrinkMask;
151 
152     /// True if the main range of the currently coalesced intervals should be
153     /// checked for smaller live intervals.
154     bool ShrinkMainRange = false;
155 
156     /// True if the coalescer should aggressively coalesce global copies
157     /// in favor of keeping local copies.
158     bool JoinGlobalCopies = false;
159 
160     /// True if the coalescer should aggressively coalesce fall-thru
161     /// blocks exclusively containing copies.
162     bool JoinSplitEdges = false;
163 
164     /// Copy instructions yet to be coalesced.
165     SmallVector<MachineInstr*, 8> WorkList;
166     SmallVector<MachineInstr*, 8> LocalWorkList;
167 
168     /// Set of instruction pointers that have been erased, and
169     /// that may be present in WorkList.
170     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
171 
172     /// Dead instructions that are about to be deleted.
173     SmallVector<MachineInstr*, 8> DeadDefs;
174 
175     /// Virtual registers to be considered for register class inflation.
176     SmallVector<unsigned, 8> InflateRegs;
177 
178     /// The collection of live intervals which should have been updated
179     /// immediately after rematerialiation but delayed until
180     /// lateLiveIntervalUpdate is called.
181     DenseSet<unsigned> ToBeUpdated;
182 
183     /// Record how many times the large live interval with many valnos
184     /// has been tried to join with other live interval.
185     DenseMap<unsigned, unsigned long> LargeLIVisitCounter;
186 
187     /// Recursively eliminate dead defs in DeadDefs.
188     void eliminateDeadDefs();
189 
190     /// LiveRangeEdit callback for eliminateDeadDefs().
191     void LRE_WillEraseInstruction(MachineInstr *MI) override;
192 
193     /// Coalesce the LocalWorkList.
194     void coalesceLocals();
195 
196     /// Join compatible live intervals
197     void joinAllIntervals();
198 
199     /// Coalesce copies in the specified MBB, putting
200     /// copies that cannot yet be coalesced into WorkList.
201     void copyCoalesceInMBB(MachineBasicBlock *MBB);
202 
203     /// Tries to coalesce all copies in CurrList. Returns true if any progress
204     /// was made.
205     bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
206 
207     /// If one def has many copy like uses, and those copy uses are all
208     /// rematerialized, the live interval update needed for those
209     /// rematerializations will be delayed and done all at once instead
210     /// of being done multiple times. This is to save compile cost because
211     /// live interval update is costly.
212     void lateLiveIntervalUpdate();
213 
214     /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
215     /// src/dst of the copy instruction CopyMI.  This returns true if the copy
216     /// was successfully coalesced away. If it is not currently possible to
217     /// coalesce this interval, but it may be possible if other things get
218     /// coalesced, then it returns true by reference in 'Again'.
219     bool joinCopy(MachineInstr *CopyMI, bool &Again);
220 
221     /// Attempt to join these two intervals.  On failure, this
222     /// returns false.  The output "SrcInt" will not have been modified, so we
223     /// can use this information below to update aliases.
224     bool joinIntervals(CoalescerPair &CP);
225 
226     /// Attempt joining two virtual registers. Return true on success.
227     bool joinVirtRegs(CoalescerPair &CP);
228 
229     /// If a live interval has many valnos and is coalesced with other
230     /// live intervals many times, we regard such live interval as having
231     /// high compile time cost.
232     bool isHighCostLiveInterval(LiveInterval &LI);
233 
234     /// Attempt joining with a reserved physreg.
235     bool joinReservedPhysReg(CoalescerPair &CP);
236 
237     /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
238     /// Subranges in @p LI which only partially interfere with the desired
239     /// LaneMask are split as necessary. @p LaneMask are the lanes that
240     /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
241     /// lanemasks already adjusted to the coalesced register.
242     void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
243                            LaneBitmask LaneMask, CoalescerPair &CP,
244                            unsigned DstIdx);
245 
246     /// Join the liveranges of two subregisters. Joins @p RRange into
247     /// @p LRange, @p RRange may be invalid afterwards.
248     void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
249                           LaneBitmask LaneMask, const CoalescerPair &CP);
250 
251     /// We found a non-trivially-coalescable copy. If the source value number is
252     /// defined by a copy from the destination reg see if we can merge these two
253     /// destination reg valno# into a single value number, eliminating a copy.
254     /// This returns true if an interval was modified.
255     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
256 
257     /// Return true if there are definitions of IntB
258     /// other than BValNo val# that can reach uses of AValno val# of IntA.
259     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
260                               VNInfo *AValNo, VNInfo *BValNo);
261 
262     /// We found a non-trivially-coalescable copy.
263     /// If the source value number is defined by a commutable instruction and
264     /// its other operand is coalesced to the copy dest register, see if we
265     /// can transform the copy into a noop by commuting the definition.
266     /// This returns a pair of two flags:
267     /// - the first element is true if an interval was modified,
268     /// - the second element is true if the destination interval needs
269     ///   to be shrunk after deleting the copy.
270     std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
271                                                   MachineInstr *CopyMI);
272 
273     /// We found a copy which can be moved to its less frequent predecessor.
274     bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
275 
276     /// If the source of a copy is defined by a
277     /// trivial computation, replace the copy by rematerialize the definition.
278     bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
279                                  bool &IsDefCopy);
280 
281     /// Return true if a copy involving a physreg should be joined.
282     bool canJoinPhys(const CoalescerPair &CP);
283 
284     /// Replace all defs and uses of SrcReg to DstReg and update the subregister
285     /// number if it is not zero. If DstReg is a physical register and the
286     /// existing subregister number of the def / use being updated is not zero,
287     /// make sure to set it to the correct physical subregister.
288     void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
289 
290     /// If the given machine operand reads only undefined lanes add an undef
291     /// flag.
292     /// This can happen when undef uses were previously concealed by a copy
293     /// which we coalesced. Example:
294     ///    %0:sub0<def,read-undef> = ...
295     ///    %1 = COPY %0           <-- Coalescing COPY reveals undef
296     ///       = use %1:sub1       <-- hidden undef use
297     void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
298                       MachineOperand &MO, unsigned SubRegIdx);
299 
300     /// Handle copies of undef values. If the undef value is an incoming
301     /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
302     /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
303     /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
304     MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
305 
306     /// Check whether or not we should apply the terminal rule on the
307     /// destination (Dst) of \p Copy.
308     /// When the terminal rule applies, Copy is not profitable to
309     /// coalesce.
310     /// Dst is terminal if it has exactly one affinity (Dst, Src) and
311     /// at least one interference (Dst, Dst2). If Dst is terminal, the
312     /// terminal rule consists in checking that at least one of
313     /// interfering node, say Dst2, has an affinity of equal or greater
314     /// weight with Src.
315     /// In that case, Dst2 and Dst will not be able to be both coalesced
316     /// with Src. Since Dst2 exposes more coalescing opportunities than
317     /// Dst, we can drop \p Copy.
318     bool applyTerminalRule(const MachineInstr &Copy) const;
319 
320     /// Wrapper method for \see LiveIntervals::shrinkToUses.
321     /// This method does the proper fixing of the live-ranges when the afore
322     /// mentioned method returns true.
323     void shrinkToUses(LiveInterval *LI,
324                       SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
325       NumShrinkToUses++;
326       if (LIS->shrinkToUses(LI, Dead)) {
327         /// Check whether or not \p LI is composed by multiple connected
328         /// components and if that is the case, fix that.
329         SmallVector<LiveInterval*, 8> SplitLIs;
330         LIS->splitSeparateComponents(*LI, SplitLIs);
331       }
332     }
333 
334     /// Wrapper Method to do all the necessary work when an Instruction is
335     /// deleted.
336     /// Optimizations should use this to make sure that deleted instructions
337     /// are always accounted for.
338     void deleteInstr(MachineInstr* MI) {
339       ErasedInstrs.insert(MI);
340       LIS->RemoveMachineInstrFromMaps(*MI);
341       MI->eraseFromParent();
342     }
343 
344     /// Walk over function and initialize the DbgVRegToValues map.
345     void buildVRegToDbgValueMap(MachineFunction &MF);
346 
347     /// Test whether, after merging, any DBG_VALUEs would refer to a
348     /// different value number than before merging, and whether this can
349     /// be resolved. If not, mark the DBG_VALUE as being undef.
350     void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
351                                       JoinVals &LHSVals, LiveRange &RHS,
352                                       JoinVals &RHSVals);
353 
354     void checkMergingChangesDbgValuesImpl(unsigned Reg, LiveRange &OtherRange,
355                                           LiveRange &RegRange, JoinVals &Vals2);
356 
357   public:
358     static char ID; ///< Class identification, replacement for typeinfo
359 
360     RegisterCoalescer() : MachineFunctionPass(ID) {
361       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
362     }
363 
364     void getAnalysisUsage(AnalysisUsage &AU) const override;
365 
366     void releaseMemory() override;
367 
368     /// This is the pass entry point.
369     bool runOnMachineFunction(MachineFunction&) override;
370 
371     /// Implement the dump method.
372     void print(raw_ostream &O, const Module* = nullptr) const override;
373   };
374 
375 } // end anonymous namespace
376 
377 char RegisterCoalescer::ID = 0;
378 
379 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
380 
381 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
382                       "Simple Register Coalescing", false, false)
383 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
384 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
385 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
386 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
387 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
388                     "Simple Register Coalescing", false, false)
389 
390 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri,
391                                        const MachineInstr *MI, unsigned &Src,
392                                        unsigned &Dst, unsigned &SrcSub,
393                                        unsigned &DstSub) {
394   if (MI->isCopy()) {
395     Dst = MI->getOperand(0).getReg();
396     DstSub = MI->getOperand(0).getSubReg();
397     Src = MI->getOperand(1).getReg();
398     SrcSub = MI->getOperand(1).getSubReg();
399   } else if (MI->isSubregToReg()) {
400     Dst = MI->getOperand(0).getReg();
401     DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
402                                       MI->getOperand(3).getImm());
403     Src = MI->getOperand(2).getReg();
404     SrcSub = MI->getOperand(2).getSubReg();
405   } else
406     return false;
407   return true;
408 }
409 
410 /// Return true if this block should be vacated by the coalescer to eliminate
411 /// branches. The important cases to handle in the coalescer are critical edges
412 /// split during phi elimination which contain only copies. Simple blocks that
413 /// contain non-branches should also be vacated, but this can be handled by an
414 /// earlier pass similar to early if-conversion.
415 static bool isSplitEdge(const MachineBasicBlock *MBB) {
416   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
417     return false;
418 
419   for (const auto &MI : *MBB) {
420     if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
421       return false;
422   }
423   return true;
424 }
425 
426 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
427   SrcReg = DstReg = 0;
428   SrcIdx = DstIdx = 0;
429   NewRC = nullptr;
430   Flipped = CrossClass = false;
431 
432   unsigned Src, Dst, SrcSub, DstSub;
433   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
434     return false;
435   Partial = SrcSub || DstSub;
436 
437   // If one register is a physreg, it must be Dst.
438   if (Register::isPhysicalRegister(Src)) {
439     if (Register::isPhysicalRegister(Dst))
440       return false;
441     std::swap(Src, Dst);
442     std::swap(SrcSub, DstSub);
443     Flipped = true;
444   }
445 
446   const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
447 
448   if (Register::isPhysicalRegister(Dst)) {
449     // Eliminate DstSub on a physreg.
450     if (DstSub) {
451       Dst = TRI.getSubReg(Dst, DstSub);
452       if (!Dst) return false;
453       DstSub = 0;
454     }
455 
456     // Eliminate SrcSub by picking a corresponding Dst superregister.
457     if (SrcSub) {
458       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
459       if (!Dst) return false;
460     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
461       return false;
462     }
463   } else {
464     // Both registers are virtual.
465     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
466     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
467 
468     // Both registers have subreg indices.
469     if (SrcSub && DstSub) {
470       // Copies between different sub-registers are never coalescable.
471       if (Src == Dst && SrcSub != DstSub)
472         return false;
473 
474       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
475                                          SrcIdx, DstIdx);
476       if (!NewRC)
477         return false;
478     } else if (DstSub) {
479       // SrcReg will be merged with a sub-register of DstReg.
480       SrcIdx = DstSub;
481       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
482     } else if (SrcSub) {
483       // DstReg will be merged with a sub-register of SrcReg.
484       DstIdx = SrcSub;
485       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
486     } else {
487       // This is a straight copy without sub-registers.
488       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
489     }
490 
491     // The combined constraint may be impossible to satisfy.
492     if (!NewRC)
493       return false;
494 
495     // Prefer SrcReg to be a sub-register of DstReg.
496     // FIXME: Coalescer should support subregs symmetrically.
497     if (DstIdx && !SrcIdx) {
498       std::swap(Src, Dst);
499       std::swap(SrcIdx, DstIdx);
500       Flipped = !Flipped;
501     }
502 
503     CrossClass = NewRC != DstRC || NewRC != SrcRC;
504   }
505   // Check our invariants
506   assert(Register::isVirtualRegister(Src) && "Src must be virtual");
507   assert(!(Register::isPhysicalRegister(Dst) && DstSub) &&
508          "Cannot have a physical SubIdx");
509   SrcReg = Src;
510   DstReg = Dst;
511   return true;
512 }
513 
514 bool CoalescerPair::flip() {
515   if (Register::isPhysicalRegister(DstReg))
516     return false;
517   std::swap(SrcReg, DstReg);
518   std::swap(SrcIdx, DstIdx);
519   Flipped = !Flipped;
520   return true;
521 }
522 
523 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
524   if (!MI)
525     return false;
526   unsigned Src, Dst, SrcSub, DstSub;
527   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
528     return false;
529 
530   // Find the virtual register that is SrcReg.
531   if (Dst == SrcReg) {
532     std::swap(Src, Dst);
533     std::swap(SrcSub, DstSub);
534   } else if (Src != SrcReg) {
535     return false;
536   }
537 
538   // Now check that Dst matches DstReg.
539   if (Register::isPhysicalRegister(DstReg)) {
540     if (!Register::isPhysicalRegister(Dst))
541       return false;
542     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
543     // DstSub could be set for a physreg from INSERT_SUBREG.
544     if (DstSub)
545       Dst = TRI.getSubReg(Dst, DstSub);
546     // Full copy of Src.
547     if (!SrcSub)
548       return DstReg == Dst;
549     // This is a partial register copy. Check that the parts match.
550     return TRI.getSubReg(DstReg, SrcSub) == Dst;
551   } else {
552     // DstReg is virtual.
553     if (DstReg != Dst)
554       return false;
555     // Registers match, do the subregisters line up?
556     return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
557            TRI.composeSubRegIndices(DstIdx, DstSub);
558   }
559 }
560 
561 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
562   AU.setPreservesCFG();
563   AU.addRequired<AAResultsWrapperPass>();
564   AU.addRequired<LiveIntervals>();
565   AU.addPreserved<LiveIntervals>();
566   AU.addPreserved<SlotIndexes>();
567   AU.addRequired<MachineLoopInfo>();
568   AU.addPreserved<MachineLoopInfo>();
569   AU.addPreservedID(MachineDominatorsID);
570   MachineFunctionPass::getAnalysisUsage(AU);
571 }
572 
573 void RegisterCoalescer::eliminateDeadDefs() {
574   SmallVector<Register, 8> NewRegs;
575   LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
576                 nullptr, this).eliminateDeadDefs(DeadDefs);
577 }
578 
579 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
580   // MI may be in WorkList. Make sure we don't visit it.
581   ErasedInstrs.insert(MI);
582 }
583 
584 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
585                                              MachineInstr *CopyMI) {
586   assert(!CP.isPartial() && "This doesn't work for partial copies.");
587   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
588 
589   LiveInterval &IntA =
590     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
591   LiveInterval &IntB =
592     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
593   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
594 
595   // We have a non-trivially-coalescable copy with IntA being the source and
596   // IntB being the dest, thus this defines a value number in IntB.  If the
597   // source value number (in IntA) is defined by a copy from B, see if we can
598   // merge these two pieces of B into a single value number, eliminating a copy.
599   // For example:
600   //
601   //  A3 = B0
602   //    ...
603   //  B1 = A3      <- this copy
604   //
605   // In this case, B0 can be extended to where the B1 copy lives, allowing the
606   // B1 value number to be replaced with B0 (which simplifies the B
607   // liveinterval).
608 
609   // BValNo is a value number in B that is defined by a copy from A.  'B1' in
610   // the example above.
611   LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
612   if (BS == IntB.end()) return false;
613   VNInfo *BValNo = BS->valno;
614 
615   // Get the location that B is defined at.  Two options: either this value has
616   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
617   // can't process it.
618   if (BValNo->def != CopyIdx) return false;
619 
620   // AValNo is the value number in A that defines the copy, A3 in the example.
621   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
622   LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
623   // The live segment might not exist after fun with physreg coalescing.
624   if (AS == IntA.end()) return false;
625   VNInfo *AValNo = AS->valno;
626 
627   // If AValNo is defined as a copy from IntB, we can potentially process this.
628   // Get the instruction that defines this value number.
629   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
630   // Don't allow any partial copies, even if isCoalescable() allows them.
631   if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
632     return false;
633 
634   // Get the Segment in IntB that this value number starts with.
635   LiveInterval::iterator ValS =
636     IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
637   if (ValS == IntB.end())
638     return false;
639 
640   // Make sure that the end of the live segment is inside the same block as
641   // CopyMI.
642   MachineInstr *ValSEndInst =
643     LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
644   if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
645     return false;
646 
647   // Okay, we now know that ValS ends in the same block that the CopyMI
648   // live-range starts.  If there are no intervening live segments between them
649   // in IntB, we can merge them.
650   if (ValS+1 != BS) return false;
651 
652   LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI));
653 
654   SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
655   // We are about to delete CopyMI, so need to remove it as the 'instruction
656   // that defines this value #'. Update the valnum with the new defining
657   // instruction #.
658   BValNo->def = FillerStart;
659 
660   // Okay, we can merge them.  We need to insert a new liverange:
661   // [ValS.end, BS.begin) of either value number, then we merge the
662   // two value numbers.
663   IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
664 
665   // Okay, merge "B1" into the same value number as "B0".
666   if (BValNo != ValS->valno)
667     IntB.MergeValueNumberInto(BValNo, ValS->valno);
668 
669   // Do the same for the subregister segments.
670   for (LiveInterval::SubRange &S : IntB.subranges()) {
671     // Check for SubRange Segments of the form [1234r,1234d:0) which can be
672     // removed to prevent creating bogus SubRange Segments.
673     LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
674     if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
675       S.removeSegment(*SS, true);
676       continue;
677     }
678     // The subrange may have ended before FillerStart. If so, extend it.
679     if (!S.getVNInfoAt(FillerStart)) {
680       SlotIndex BBStart =
681           LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart));
682       S.extendInBlock(BBStart, FillerStart);
683     }
684     VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
685     S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
686     VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
687     if (SubBValNo != SubValSNo)
688       S.MergeValueNumberInto(SubBValNo, SubValSNo);
689   }
690 
691   LLVM_DEBUG(dbgs() << "   result = " << IntB << '\n');
692 
693   // If the source instruction was killing the source register before the
694   // merge, unset the isKill marker given the live range has been extended.
695   int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true);
696   if (UIdx != -1) {
697     ValSEndInst->getOperand(UIdx).setIsKill(false);
698   }
699 
700   // Rewrite the copy.
701   CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI);
702   // If the copy instruction was killing the destination register or any
703   // subrange before the merge trim the live range.
704   bool RecomputeLiveRange = AS->end == CopyIdx;
705   if (!RecomputeLiveRange) {
706     for (LiveInterval::SubRange &S : IntA.subranges()) {
707       LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
708       if (SS != S.end() && SS->end == CopyIdx) {
709         RecomputeLiveRange = true;
710         break;
711       }
712     }
713   }
714   if (RecomputeLiveRange)
715     shrinkToUses(&IntA);
716 
717   ++numExtends;
718   return true;
719 }
720 
721 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
722                                              LiveInterval &IntB,
723                                              VNInfo *AValNo,
724                                              VNInfo *BValNo) {
725   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
726   // the PHI values.
727   if (LIS->hasPHIKill(IntA, AValNo))
728     return true;
729 
730   for (LiveRange::Segment &ASeg : IntA.segments) {
731     if (ASeg.valno != AValNo) continue;
732     LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
733     if (BI != IntB.begin())
734       --BI;
735     for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
736       if (BI->valno == BValNo)
737         continue;
738       if (BI->start <= ASeg.start && BI->end > ASeg.start)
739         return true;
740       if (BI->start > ASeg.start && BI->start < ASeg.end)
741         return true;
742     }
743   }
744   return false;
745 }
746 
747 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
748 /// range @Dst and use value number @p DstValNo there.
749 static std::pair<bool,bool>
750 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
751                      const VNInfo *SrcValNo) {
752   bool Changed = false;
753   bool MergedWithDead = false;
754   for (const LiveRange::Segment &S : Src.segments) {
755     if (S.valno != SrcValNo)
756       continue;
757     // This is adding a segment from Src that ends in a copy that is about
758     // to be removed. This segment is going to be merged with a pre-existing
759     // segment in Dst. This works, except in cases when the corresponding
760     // segment in Dst is dead. For example: adding [192r,208r:1) from Src
761     // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
762     // Recognized such cases, so that the segments can be shrunk.
763     LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
764     LiveRange::Segment &Merged = *Dst.addSegment(Added);
765     if (Merged.end.isDead())
766       MergedWithDead = true;
767     Changed = true;
768   }
769   return std::make_pair(Changed, MergedWithDead);
770 }
771 
772 std::pair<bool,bool>
773 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
774                                             MachineInstr *CopyMI) {
775   assert(!CP.isPhys());
776 
777   LiveInterval &IntA =
778       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
779   LiveInterval &IntB =
780       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
781 
782   // We found a non-trivially-coalescable copy with IntA being the source and
783   // IntB being the dest, thus this defines a value number in IntB.  If the
784   // source value number (in IntA) is defined by a commutable instruction and
785   // its other operand is coalesced to the copy dest register, see if we can
786   // transform the copy into a noop by commuting the definition. For example,
787   //
788   //  A3 = op A2 killed B0
789   //    ...
790   //  B1 = A3      <- this copy
791   //    ...
792   //     = op A3   <- more uses
793   //
794   // ==>
795   //
796   //  B2 = op B0 killed A2
797   //    ...
798   //  B1 = B2      <- now an identity copy
799   //    ...
800   //     = op B2   <- more uses
801 
802   // BValNo is a value number in B that is defined by a copy from A. 'B1' in
803   // the example above.
804   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
805   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
806   assert(BValNo != nullptr && BValNo->def == CopyIdx);
807 
808   // AValNo is the value number in A that defines the copy, A3 in the example.
809   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
810   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
811   if (AValNo->isPHIDef())
812     return { false, false };
813   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
814   if (!DefMI)
815     return { false, false };
816   if (!DefMI->isCommutable())
817     return { false, false };
818   // If DefMI is a two-address instruction then commuting it will change the
819   // destination register.
820   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg());
821   assert(DefIdx != -1);
822   unsigned UseOpIdx;
823   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
824     return { false, false };
825 
826   // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
827   // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
828   // passed to the method. That _other_ operand is chosen by
829   // the findCommutedOpIndices() method.
830   //
831   // That is obviously an area for improvement in case of instructions having
832   // more than 2 operands. For example, if some instruction has 3 commutable
833   // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
834   // op#2<->op#3) of commute transformation should be considered/tried here.
835   unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
836   if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
837     return { false, false };
838 
839   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
840   Register NewReg = NewDstMO.getReg();
841   if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill())
842     return { false, false };
843 
844   // Make sure there are no other definitions of IntB that would reach the
845   // uses which the new definition can reach.
846   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
847     return { false, false };
848 
849   // If some of the uses of IntA.reg is already coalesced away, return false.
850   // It's not possible to determine whether it's safe to perform the coalescing.
851   for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) {
852     MachineInstr *UseMI = MO.getParent();
853     unsigned OpNo = &MO - &UseMI->getOperand(0);
854     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
855     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
856     if (US == IntA.end() || US->valno != AValNo)
857       continue;
858     // If this use is tied to a def, we can't rewrite the register.
859     if (UseMI->isRegTiedToDefOperand(OpNo))
860       return { false, false };
861   }
862 
863   LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
864                     << *DefMI);
865 
866   // At this point we have decided that it is legal to do this
867   // transformation.  Start by commuting the instruction.
868   MachineBasicBlock *MBB = DefMI->getParent();
869   MachineInstr *NewMI =
870       TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
871   if (!NewMI)
872     return { false, false };
873   if (Register::isVirtualRegister(IntA.reg()) &&
874       Register::isVirtualRegister(IntB.reg()) &&
875       !MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg())))
876     return { false, false };
877   if (NewMI != DefMI) {
878     LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
879     MachineBasicBlock::iterator Pos = DefMI;
880     MBB->insert(Pos, NewMI);
881     MBB->erase(DefMI);
882   }
883 
884   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
885   // A = or A, B
886   // ...
887   // B = A
888   // ...
889   // C = killed A
890   // ...
891   //   = B
892 
893   // Update uses of IntA of the specific Val# with IntB.
894   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg()),
895                                          UE = MRI->use_end();
896        UI != UE;
897        /* ++UI is below because of possible MI removal */) {
898     MachineOperand &UseMO = *UI;
899     ++UI;
900     if (UseMO.isUndef())
901       continue;
902     MachineInstr *UseMI = UseMO.getParent();
903     if (UseMI->isDebugValue()) {
904       // FIXME These don't have an instruction index.  Not clear we have enough
905       // info to decide whether to do this replacement or not.  For now do it.
906       UseMO.setReg(NewReg);
907       continue;
908     }
909     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
910     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
911     assert(US != IntA.end() && "Use must be live");
912     if (US->valno != AValNo)
913       continue;
914     // Kill flags are no longer accurate. They are recomputed after RA.
915     UseMO.setIsKill(false);
916     if (Register::isPhysicalRegister(NewReg))
917       UseMO.substPhysReg(NewReg, *TRI);
918     else
919       UseMO.setReg(NewReg);
920     if (UseMI == CopyMI)
921       continue;
922     if (!UseMI->isCopy())
923       continue;
924     if (UseMI->getOperand(0).getReg() != IntB.reg() ||
925         UseMI->getOperand(0).getSubReg())
926       continue;
927 
928     // This copy will become a noop. If it's defining a new val#, merge it into
929     // BValNo.
930     SlotIndex DefIdx = UseIdx.getRegSlot();
931     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
932     if (!DVNI)
933       continue;
934     LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
935     assert(DVNI->def == DefIdx);
936     BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
937     for (LiveInterval::SubRange &S : IntB.subranges()) {
938       VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
939       if (!SubDVNI)
940         continue;
941       VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
942       assert(SubBValNo->def == CopyIdx);
943       S.MergeValueNumberInto(SubDVNI, SubBValNo);
944     }
945 
946     deleteInstr(UseMI);
947   }
948 
949   // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
950   // is updated.
951   bool ShrinkB = false;
952   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
953   if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
954     if (!IntA.hasSubRanges()) {
955       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg());
956       IntA.createSubRangeFrom(Allocator, Mask, IntA);
957     } else if (!IntB.hasSubRanges()) {
958       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg());
959       IntB.createSubRangeFrom(Allocator, Mask, IntB);
960     }
961     SlotIndex AIdx = CopyIdx.getRegSlot(true);
962     LaneBitmask MaskA;
963     const SlotIndexes &Indexes = *LIS->getSlotIndexes();
964     for (LiveInterval::SubRange &SA : IntA.subranges()) {
965       VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
966       // Even if we are dealing with a full copy, some lanes can
967       // still be undefined.
968       // E.g.,
969       // undef A.subLow = ...
970       // B = COPY A <== A.subHigh is undefined here and does
971       //                not have a value number.
972       if (!ASubValNo)
973         continue;
974       MaskA |= SA.LaneMask;
975 
976       IntB.refineSubRanges(
977           Allocator, SA.LaneMask,
978           [&Allocator, &SA, CopyIdx, ASubValNo,
979            &ShrinkB](LiveInterval::SubRange &SR) {
980             VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
981                                            : SR.getVNInfoAt(CopyIdx);
982             assert(BSubValNo != nullptr);
983             auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
984             ShrinkB |= P.second;
985             if (P.first)
986               BSubValNo->def = ASubValNo->def;
987           },
988           Indexes, *TRI);
989     }
990     // Go over all subranges of IntB that have not been covered by IntA,
991     // and delete the segments starting at CopyIdx. This can happen if
992     // IntA has undef lanes that are defined in IntB.
993     for (LiveInterval::SubRange &SB : IntB.subranges()) {
994       if ((SB.LaneMask & MaskA).any())
995         continue;
996       if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
997         if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
998           SB.removeSegment(*S, true);
999     }
1000   }
1001 
1002   BValNo->def = AValNo->def;
1003   auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
1004   ShrinkB |= P.second;
1005   LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
1006 
1007   LIS->removeVRegDefAt(IntA, AValNo->def);
1008 
1009   LLVM_DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
1010   ++numCommutes;
1011   return { true, ShrinkB };
1012 }
1013 
1014 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1015 /// predecessor of BB2, and if B is not redefined on the way from A = B
1016 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1017 /// execution goes through the path from BB0 to BB2. We may move B = A
1018 /// to the predecessor without such reversed copy.
1019 /// So we will transform the program from:
1020 ///   BB0:
1021 ///      A = B;    BB1:
1022 ///       ...         ...
1023 ///     /     \      /
1024 ///             BB2:
1025 ///               ...
1026 ///               B = A;
1027 ///
1028 /// to:
1029 ///
1030 ///   BB0:         BB1:
1031 ///      A = B;        ...
1032 ///       ...          B = A;
1033 ///     /     \       /
1034 ///             BB2:
1035 ///               ...
1036 ///
1037 /// A special case is when BB0 and BB2 are the same BB which is the only
1038 /// BB in a loop:
1039 ///   BB1:
1040 ///        ...
1041 ///   BB0/BB2:  ----
1042 ///        B = A;   |
1043 ///        ...      |
1044 ///        A = B;   |
1045 ///          |-------
1046 ///          |
1047 /// We may hoist B = A from BB0/BB2 to BB1.
1048 ///
1049 /// The major preconditions for correctness to remove such partial
1050 /// redundancy include:
1051 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1052 ///    the PHI is defined by the reversed copy A = B in BB0.
1053 /// 2. No B is referenced from the start of BB2 to B = A.
1054 /// 3. No B is defined from A = B to the end of BB0.
1055 /// 4. BB1 has only one successor.
1056 ///
1057 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1058 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1059 /// colder place, which not only prevent endless loop, but also make sure
1060 /// the movement of copy is beneficial.
1061 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1062                                                 MachineInstr &CopyMI) {
1063   assert(!CP.isPhys());
1064   if (!CopyMI.isFullCopy())
1065     return false;
1066 
1067   MachineBasicBlock &MBB = *CopyMI.getParent();
1068   // If this block is the target of an invoke/inlineasm_br, moving the copy into
1069   // the predecessor is tricker, and we don't handle it.
1070   if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget())
1071     return false;
1072 
1073   if (MBB.pred_size() != 2)
1074     return false;
1075 
1076   LiveInterval &IntA =
1077       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1078   LiveInterval &IntB =
1079       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1080 
1081   // A is defined by PHI at the entry of MBB.
1082   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1083   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1084   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1085   if (!AValNo->isPHIDef())
1086     return false;
1087 
1088   // No B is referenced before CopyMI in MBB.
1089   if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1090     return false;
1091 
1092   // MBB has two predecessors: one contains A = B so no copy will be inserted
1093   // for it. The other one will have a copy moved from MBB.
1094   bool FoundReverseCopy = false;
1095   MachineBasicBlock *CopyLeftBB = nullptr;
1096   for (MachineBasicBlock *Pred : MBB.predecessors()) {
1097     VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1098     MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1099     if (!DefMI || !DefMI->isFullCopy()) {
1100       CopyLeftBB = Pred;
1101       continue;
1102     }
1103     // Check DefMI is a reverse copy and it is in BB Pred.
1104     if (DefMI->getOperand(0).getReg() != IntA.reg() ||
1105         DefMI->getOperand(1).getReg() != IntB.reg() ||
1106         DefMI->getParent() != Pred) {
1107       CopyLeftBB = Pred;
1108       continue;
1109     }
1110     // If there is any other def of B after DefMI and before the end of Pred,
1111     // we need to keep the copy of B = A at the end of Pred if we remove
1112     // B = A from MBB.
1113     bool ValB_Changed = false;
1114     for (auto VNI : IntB.valnos) {
1115       if (VNI->isUnused())
1116         continue;
1117       if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1118         ValB_Changed = true;
1119         break;
1120       }
1121     }
1122     if (ValB_Changed) {
1123       CopyLeftBB = Pred;
1124       continue;
1125     }
1126     FoundReverseCopy = true;
1127   }
1128 
1129   // If no reverse copy is found in predecessors, nothing to do.
1130   if (!FoundReverseCopy)
1131     return false;
1132 
1133   // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1134   // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1135   // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1136   // update IntA/IntB.
1137   //
1138   // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1139   // MBB is hotter than CopyLeftBB.
1140   if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1141     return false;
1142 
1143   // Now (almost sure it's) ok to move copy.
1144   if (CopyLeftBB) {
1145     // Position in CopyLeftBB where we should insert new copy.
1146     auto InsPos = CopyLeftBB->getFirstTerminator();
1147 
1148     // Make sure that B isn't referenced in the terminators (if any) at the end
1149     // of the predecessor since we're about to insert a new definition of B
1150     // before them.
1151     if (InsPos != CopyLeftBB->end()) {
1152       SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1153       if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1154         return false;
1155     }
1156 
1157     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1158                       << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1159 
1160     // Insert new copy to CopyLeftBB.
1161     MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1162                                       TII->get(TargetOpcode::COPY), IntB.reg())
1163                                   .addReg(IntA.reg());
1164     SlotIndex NewCopyIdx =
1165         LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1166     IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1167     for (LiveInterval::SubRange &SR : IntB.subranges())
1168       SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1169 
1170     // If the newly created Instruction has an address of an instruction that was
1171     // deleted before (object recycled by the allocator) it needs to be removed from
1172     // the deleted list.
1173     ErasedInstrs.erase(NewCopyMI);
1174   } else {
1175     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1176                       << printMBBReference(MBB) << '\t' << CopyMI);
1177   }
1178 
1179   // Remove CopyMI.
1180   // Note: This is fine to remove the copy before updating the live-ranges.
1181   // While updating the live-ranges, we only look at slot indices and
1182   // never go back to the instruction.
1183   // Mark instructions as deleted.
1184   deleteInstr(&CopyMI);
1185 
1186   // Update the liveness.
1187   SmallVector<SlotIndex, 8> EndPoints;
1188   VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1189   LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1190                   &EndPoints);
1191   BValNo->markUnused();
1192   // Extend IntB to the EndPoints of its original live interval.
1193   LIS->extendToIndices(IntB, EndPoints);
1194 
1195   // Now, do the same for its subranges.
1196   for (LiveInterval::SubRange &SR : IntB.subranges()) {
1197     EndPoints.clear();
1198     VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1199     assert(BValNo && "All sublanes should be live");
1200     LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1201     BValNo->markUnused();
1202     // We can have a situation where the result of the original copy is live,
1203     // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1204     // the copy appear as an endpoint from pruneValue(), but we don't want it
1205     // to because the copy has been removed.  We can go ahead and remove that
1206     // endpoint; there is no other situation here that there could be a use at
1207     // the same place as we know that the copy is a full copy.
1208     for (unsigned I = 0; I != EndPoints.size(); ) {
1209       if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1210         EndPoints[I] = EndPoints.back();
1211         EndPoints.pop_back();
1212         continue;
1213       }
1214       ++I;
1215     }
1216     LIS->extendToIndices(SR, EndPoints);
1217   }
1218   // If any dead defs were extended, truncate them.
1219   shrinkToUses(&IntB);
1220 
1221   // Finally, update the live-range of IntA.
1222   shrinkToUses(&IntA);
1223   return true;
1224 }
1225 
1226 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1227 /// defining a subregister.
1228 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
1229   assert(!Register::isPhysicalRegister(Reg) &&
1230          "This code cannot handle physreg aliasing");
1231   for (const MachineOperand &Op : MI.operands()) {
1232     if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1233       continue;
1234     // Return true if we define the full register or don't care about the value
1235     // inside other subregisters.
1236     if (Op.getSubReg() == 0 || Op.isUndef())
1237       return true;
1238   }
1239   return false;
1240 }
1241 
1242 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1243                                                 MachineInstr *CopyMI,
1244                                                 bool &IsDefCopy) {
1245   IsDefCopy = false;
1246   unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1247   unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1248   unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1249   unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1250   if (Register::isPhysicalRegister(SrcReg))
1251     return false;
1252 
1253   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1254   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1255   VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1256   if (!ValNo)
1257     return false;
1258   if (ValNo->isPHIDef() || ValNo->isUnused())
1259     return false;
1260   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1261   if (!DefMI)
1262     return false;
1263   if (DefMI->isCopyLike()) {
1264     IsDefCopy = true;
1265     return false;
1266   }
1267   if (!TII->isAsCheapAsAMove(*DefMI))
1268     return false;
1269   if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1270     return false;
1271   if (!definesFullReg(*DefMI, SrcReg))
1272     return false;
1273   bool SawStore = false;
1274   if (!DefMI->isSafeToMove(AA, SawStore))
1275     return false;
1276   const MCInstrDesc &MCID = DefMI->getDesc();
1277   if (MCID.getNumDefs() != 1)
1278     return false;
1279   // Only support subregister destinations when the def is read-undef.
1280   MachineOperand &DstOperand = CopyMI->getOperand(0);
1281   Register CopyDstReg = DstOperand.getReg();
1282   if (DstOperand.getSubReg() && !DstOperand.isUndef())
1283     return false;
1284 
1285   // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1286   // the register substantially (beyond both source and dest size). This is bad
1287   // for performance since it can cascade through a function, introducing many
1288   // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1289   // around after a few subreg copies).
1290   if (SrcIdx && DstIdx)
1291     return false;
1292 
1293   const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1294   if (!DefMI->isImplicitDef()) {
1295     if (Register::isPhysicalRegister(DstReg)) {
1296       unsigned NewDstReg = DstReg;
1297 
1298       unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1299                                               DefMI->getOperand(0).getSubReg());
1300       if (NewDstIdx)
1301         NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1302 
1303       // Finally, make sure that the physical subregister that will be
1304       // constructed later is permitted for the instruction.
1305       if (!DefRC->contains(NewDstReg))
1306         return false;
1307     } else {
1308       // Theoretically, some stack frame reference could exist. Just make sure
1309       // it hasn't actually happened.
1310       assert(Register::isVirtualRegister(DstReg) &&
1311              "Only expect to deal with virtual or physical registers");
1312     }
1313   }
1314 
1315   DebugLoc DL = CopyMI->getDebugLoc();
1316   MachineBasicBlock *MBB = CopyMI->getParent();
1317   MachineBasicBlock::iterator MII =
1318     std::next(MachineBasicBlock::iterator(CopyMI));
1319   TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1320   MachineInstr &NewMI = *std::prev(MII);
1321   NewMI.setDebugLoc(DL);
1322 
1323   // In a situation like the following:
1324   //     %0:subreg = instr              ; DefMI, subreg = DstIdx
1325   //     %1        = copy %0:subreg ; CopyMI, SrcIdx = 0
1326   // instead of widening %1 to the register class of %0 simply do:
1327   //     %1 = instr
1328   const TargetRegisterClass *NewRC = CP.getNewRC();
1329   if (DstIdx != 0) {
1330     MachineOperand &DefMO = NewMI.getOperand(0);
1331     if (DefMO.getSubReg() == DstIdx) {
1332       assert(SrcIdx == 0 && CP.isFlipped()
1333              && "Shouldn't have SrcIdx+DstIdx at this point");
1334       const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1335       const TargetRegisterClass *CommonRC =
1336         TRI->getCommonSubClass(DefRC, DstRC);
1337       if (CommonRC != nullptr) {
1338         NewRC = CommonRC;
1339         DstIdx = 0;
1340         DefMO.setSubReg(0);
1341         DefMO.setIsUndef(false); // Only subregs can have def+undef.
1342       }
1343     }
1344   }
1345 
1346   // CopyMI may have implicit operands, save them so that we can transfer them
1347   // over to the newly materialized instruction after CopyMI is removed.
1348   SmallVector<MachineOperand, 4> ImplicitOps;
1349   ImplicitOps.reserve(CopyMI->getNumOperands() -
1350                       CopyMI->getDesc().getNumOperands());
1351   for (unsigned I = CopyMI->getDesc().getNumOperands(),
1352                 E = CopyMI->getNumOperands();
1353        I != E; ++I) {
1354     MachineOperand &MO = CopyMI->getOperand(I);
1355     if (MO.isReg()) {
1356       assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1357       // Discard VReg implicit defs.
1358       if (Register::isPhysicalRegister(MO.getReg()))
1359         ImplicitOps.push_back(MO);
1360     }
1361   }
1362 
1363   LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1364   CopyMI->eraseFromParent();
1365   ErasedInstrs.insert(CopyMI);
1366 
1367   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1368   // We need to remember these so we can add intervals once we insert
1369   // NewMI into SlotIndexes.
1370   SmallVector<unsigned, 4> NewMIImplDefs;
1371   for (unsigned i = NewMI.getDesc().getNumOperands(),
1372                 e = NewMI.getNumOperands();
1373        i != e; ++i) {
1374     MachineOperand &MO = NewMI.getOperand(i);
1375     if (MO.isReg() && MO.isDef()) {
1376       assert(MO.isImplicit() && MO.isDead() &&
1377              Register::isPhysicalRegister(MO.getReg()));
1378       NewMIImplDefs.push_back(MO.getReg());
1379     }
1380   }
1381 
1382   if (Register::isVirtualRegister(DstReg)) {
1383     unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1384 
1385     if (DefRC != nullptr) {
1386       if (NewIdx)
1387         NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1388       else
1389         NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1390       assert(NewRC && "subreg chosen for remat incompatible with instruction");
1391     }
1392     // Remap subranges to new lanemask and change register class.
1393     LiveInterval &DstInt = LIS->getInterval(DstReg);
1394     for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1395       SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1396     }
1397     MRI->setRegClass(DstReg, NewRC);
1398 
1399     // Update machine operands and add flags.
1400     updateRegDefsUses(DstReg, DstReg, DstIdx);
1401     NewMI.getOperand(0).setSubReg(NewIdx);
1402     // updateRegDefUses can add an "undef" flag to the definition, since
1403     // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1404     // sure that "undef" is not set.
1405     if (NewIdx == 0)
1406       NewMI.getOperand(0).setIsUndef(false);
1407     // Add dead subregister definitions if we are defining the whole register
1408     // but only part of it is live.
1409     // This could happen if the rematerialization instruction is rematerializing
1410     // more than actually is used in the register.
1411     // An example would be:
1412     // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1413     // ; Copying only part of the register here, but the rest is undef.
1414     // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1415     // ==>
1416     // ; Materialize all the constants but only using one
1417     // %2 = LOAD_CONSTANTS 5, 8
1418     //
1419     // at this point for the part that wasn't defined before we could have
1420     // subranges missing the definition.
1421     if (NewIdx == 0 && DstInt.hasSubRanges()) {
1422       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1423       SlotIndex DefIndex =
1424           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1425       LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1426       VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1427       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1428         if (!SR.liveAt(DefIndex))
1429           SR.createDeadDef(DefIndex, Alloc);
1430         MaxMask &= ~SR.LaneMask;
1431       }
1432       if (MaxMask.any()) {
1433         LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1434         SR->createDeadDef(DefIndex, Alloc);
1435       }
1436     }
1437 
1438     // Make sure that the subrange for resultant undef is removed
1439     // For example:
1440     //   %1:sub1<def,read-undef> = LOAD CONSTANT 1
1441     //   %2 = COPY %1
1442     // ==>
1443     //   %2:sub1<def, read-undef> = LOAD CONSTANT 1
1444     //     ; Correct but need to remove the subrange for %2:sub0
1445     //     ; as it is now undef
1446     if (NewIdx != 0 && DstInt.hasSubRanges()) {
1447       // The affected subregister segments can be removed.
1448       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1449       LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1450       bool UpdatedSubRanges = false;
1451       SlotIndex DefIndex =
1452           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1453       VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator();
1454       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1455         if ((SR.LaneMask & DstMask).none()) {
1456           LLVM_DEBUG(dbgs()
1457                      << "Removing undefined SubRange "
1458                      << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1459           // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1460           if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1461             SR.removeValNo(RmValNo);
1462             UpdatedSubRanges = true;
1463           }
1464         } else {
1465           // We know that this lane is defined by this instruction,
1466           // but at this point it may be empty because it is not used by
1467           // anything. This happens when updateRegDefUses adds the missing
1468           // lanes. Assign that lane a dead def so that the interferences
1469           // are properly modeled.
1470           if (SR.empty())
1471             SR.createDeadDef(DefIndex, Alloc);
1472         }
1473       }
1474       if (UpdatedSubRanges)
1475         DstInt.removeEmptySubRanges();
1476     }
1477   } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1478     // The New instruction may be defining a sub-register of what's actually
1479     // been asked for. If so it must implicitly define the whole thing.
1480     assert(Register::isPhysicalRegister(DstReg) &&
1481            "Only expect virtual or physical registers in remat");
1482     NewMI.getOperand(0).setIsDead(true);
1483     NewMI.addOperand(MachineOperand::CreateReg(
1484         CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1485     // Record small dead def live-ranges for all the subregisters
1486     // of the destination register.
1487     // Otherwise, variables that live through may miss some
1488     // interferences, thus creating invalid allocation.
1489     // E.g., i386 code:
1490     // %1 = somedef ; %1 GR8
1491     // %2 = remat ; %2 GR32
1492     // CL = COPY %2.sub_8bit
1493     // = somedef %1 ; %1 GR8
1494     // =>
1495     // %1 = somedef ; %1 GR8
1496     // dead ECX = remat ; implicit-def CL
1497     // = somedef %1 ; %1 GR8
1498     // %1 will see the interferences with CL but not with CH since
1499     // no live-ranges would have been created for ECX.
1500     // Fix that!
1501     SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1502     for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1503          Units.isValid(); ++Units)
1504       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1505         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1506   }
1507 
1508   if (NewMI.getOperand(0).getSubReg())
1509     NewMI.getOperand(0).setIsUndef();
1510 
1511   // Transfer over implicit operands to the rematerialized instruction.
1512   for (MachineOperand &MO : ImplicitOps)
1513     NewMI.addOperand(MO);
1514 
1515   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1516   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1517     unsigned Reg = NewMIImplDefs[i];
1518     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1519       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1520         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1521   }
1522 
1523   LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1524   ++NumReMats;
1525 
1526   // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1527   // to describe DstReg instead.
1528   if (MRI->use_nodbg_empty(SrcReg)) {
1529     for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1530       MachineInstr *UseMI = UseMO.getParent();
1531       if (UseMI->isDebugValue()) {
1532         if (Register::isPhysicalRegister(DstReg))
1533           UseMO.substPhysReg(DstReg, *TRI);
1534         else
1535           UseMO.setReg(DstReg);
1536         // Move the debug value directly after the def of the rematerialized
1537         // value in DstReg.
1538         MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1539         LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1540       }
1541     }
1542   }
1543 
1544   if (ToBeUpdated.count(SrcReg))
1545     return true;
1546 
1547   unsigned NumCopyUses = 0;
1548   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1549     if (UseMO.getParent()->isCopyLike())
1550       NumCopyUses++;
1551   }
1552   if (NumCopyUses < LateRematUpdateThreshold) {
1553     // The source interval can become smaller because we removed a use.
1554     shrinkToUses(&SrcInt, &DeadDefs);
1555     if (!DeadDefs.empty())
1556       eliminateDeadDefs();
1557   } else {
1558     ToBeUpdated.insert(SrcReg);
1559   }
1560   return true;
1561 }
1562 
1563 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1564   // ProcessImplicitDefs may leave some copies of <undef> values, it only
1565   // removes local variables. When we have a copy like:
1566   //
1567   //   %1 = COPY undef %2
1568   //
1569   // We delete the copy and remove the corresponding value number from %1.
1570   // Any uses of that value number are marked as <undef>.
1571 
1572   // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1573   // CoalescerPair may have a new register class with adjusted subreg indices
1574   // at this point.
1575   unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1576   if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
1577     return nullptr;
1578 
1579   SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1580   const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1581   // CopyMI is undef iff SrcReg is not live before the instruction.
1582   if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1583     LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1584     for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1585       if ((SR.LaneMask & SrcMask).none())
1586         continue;
1587       if (SR.liveAt(Idx))
1588         return nullptr;
1589     }
1590   } else if (SrcLI.liveAt(Idx))
1591     return nullptr;
1592 
1593   // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1594   // then replace it with an IMPLICIT_DEF.
1595   LiveInterval &DstLI = LIS->getInterval(DstReg);
1596   SlotIndex RegIndex = Idx.getRegSlot();
1597   LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1598   assert(Seg != nullptr && "No segment for defining instruction");
1599   if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1600     if (V->isPHIDef()) {
1601       CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1602       for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1603         MachineOperand &MO = CopyMI->getOperand(i-1);
1604         if (MO.isReg() && MO.isUse())
1605           CopyMI->RemoveOperand(i-1);
1606       }
1607       LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1608                            "implicit def\n");
1609       return CopyMI;
1610     }
1611   }
1612 
1613   // Remove any DstReg segments starting at the instruction.
1614   LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1615 
1616   // Remove value or merge with previous one in case of a subregister def.
1617   if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1618     VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1619     DstLI.MergeValueNumberInto(VNI, PrevVNI);
1620 
1621     // The affected subregister segments can be removed.
1622     LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1623     for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1624       if ((SR.LaneMask & DstMask).none())
1625         continue;
1626 
1627       VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1628       assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1629       SR.removeValNo(SVNI);
1630     }
1631     DstLI.removeEmptySubRanges();
1632   } else
1633     LIS->removeVRegDefAt(DstLI, RegIndex);
1634 
1635   // Mark uses as undef.
1636   for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1637     if (MO.isDef() /*|| MO.isUndef()*/)
1638       continue;
1639     const MachineInstr &MI = *MO.getParent();
1640     SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1641     LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1642     bool isLive;
1643     if (!UseMask.all() && DstLI.hasSubRanges()) {
1644       isLive = false;
1645       for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1646         if ((SR.LaneMask & UseMask).none())
1647           continue;
1648         if (SR.liveAt(UseIdx)) {
1649           isLive = true;
1650           break;
1651         }
1652       }
1653     } else
1654       isLive = DstLI.liveAt(UseIdx);
1655     if (isLive)
1656       continue;
1657     MO.setIsUndef(true);
1658     LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1659   }
1660 
1661   // A def of a subregister may be a use of the other subregisters, so
1662   // deleting a def of a subregister may also remove uses. Since CopyMI
1663   // is still part of the function (but about to be erased), mark all
1664   // defs of DstReg in it as <undef>, so that shrinkToUses would
1665   // ignore them.
1666   for (MachineOperand &MO : CopyMI->operands())
1667     if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1668       MO.setIsUndef(true);
1669   LIS->shrinkToUses(&DstLI);
1670 
1671   return CopyMI;
1672 }
1673 
1674 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1675                                      MachineOperand &MO, unsigned SubRegIdx) {
1676   LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1677   if (MO.isDef())
1678     Mask = ~Mask;
1679   bool IsUndef = true;
1680   for (const LiveInterval::SubRange &S : Int.subranges()) {
1681     if ((S.LaneMask & Mask).none())
1682       continue;
1683     if (S.liveAt(UseIdx)) {
1684       IsUndef = false;
1685       break;
1686     }
1687   }
1688   if (IsUndef) {
1689     MO.setIsUndef(true);
1690     // We found out some subregister use is actually reading an undefined
1691     // value. In some cases the whole vreg has become undefined at this
1692     // point so we have to potentially shrink the main range if the
1693     // use was ending a live segment there.
1694     LiveQueryResult Q = Int.Query(UseIdx);
1695     if (Q.valueOut() == nullptr)
1696       ShrinkMainRange = true;
1697   }
1698 }
1699 
1700 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, unsigned DstReg,
1701                                           unsigned SubIdx) {
1702   bool DstIsPhys = Register::isPhysicalRegister(DstReg);
1703   LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1704 
1705   if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1706     for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1707       unsigned SubReg = MO.getSubReg();
1708       if (SubReg == 0 || MO.isUndef())
1709         continue;
1710       MachineInstr &MI = *MO.getParent();
1711       if (MI.isDebugValue())
1712         continue;
1713       SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1714       addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1715     }
1716   }
1717 
1718   SmallPtrSet<MachineInstr*, 8> Visited;
1719   for (MachineRegisterInfo::reg_instr_iterator
1720        I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1721        I != E; ) {
1722     MachineInstr *UseMI = &*(I++);
1723 
1724     // Each instruction can only be rewritten once because sub-register
1725     // composition is not always idempotent. When SrcReg != DstReg, rewriting
1726     // the UseMI operands removes them from the SrcReg use-def chain, but when
1727     // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1728     // operands mentioning the virtual register.
1729     if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1730       continue;
1731 
1732     SmallVector<unsigned,8> Ops;
1733     bool Reads, Writes;
1734     std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1735 
1736     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1737     // because SrcReg is a sub-register.
1738     if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
1739       Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1740 
1741     // Replace SrcReg with DstReg in all UseMI operands.
1742     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1743       MachineOperand &MO = UseMI->getOperand(Ops[i]);
1744 
1745       // Adjust <undef> flags in case of sub-register joins. We don't want to
1746       // turn a full def into a read-modify-write sub-register def and vice
1747       // versa.
1748       if (SubIdx && MO.isDef())
1749         MO.setIsUndef(!Reads);
1750 
1751       // A subreg use of a partially undef (super) register may be a complete
1752       // undef use now and then has to be marked that way.
1753       if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1754         if (!DstInt->hasSubRanges()) {
1755           BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1756           LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg());
1757           LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1758           LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
1759           DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt);
1760           // The unused lanes are just empty live-ranges at this point.
1761           // It is the caller responsibility to set the proper
1762           // dead segments if there is an actual dead def of the
1763           // unused lanes. This may happen with rematerialization.
1764           DstInt->createSubRange(Allocator, UnusedLanes);
1765         }
1766         SlotIndex MIIdx = UseMI->isDebugValue()
1767                               ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1768                               : LIS->getInstructionIndex(*UseMI);
1769         SlotIndex UseIdx = MIIdx.getRegSlot(true);
1770         addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
1771       }
1772 
1773       if (DstIsPhys)
1774         MO.substPhysReg(DstReg, *TRI);
1775       else
1776         MO.substVirtReg(DstReg, SubIdx, *TRI);
1777     }
1778 
1779     LLVM_DEBUG({
1780       dbgs() << "\t\tupdated: ";
1781       if (!UseMI->isDebugValue())
1782         dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1783       dbgs() << *UseMI;
1784     });
1785   }
1786 }
1787 
1788 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1789   // Always join simple intervals that are defined by a single copy from a
1790   // reserved register. This doesn't increase register pressure, so it is
1791   // always beneficial.
1792   if (!MRI->isReserved(CP.getDstReg())) {
1793     LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1794     return false;
1795   }
1796 
1797   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1798   if (JoinVInt.containsOneValue())
1799     return true;
1800 
1801   LLVM_DEBUG(
1802       dbgs() << "\tCannot join complex intervals into reserved register.\n");
1803   return false;
1804 }
1805 
1806 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1807   Again = false;
1808   LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1809 
1810   CoalescerPair CP(*TRI);
1811   if (!CP.setRegisters(CopyMI)) {
1812     LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1813     return false;
1814   }
1815 
1816   if (CP.getNewRC()) {
1817     auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1818     auto DstRC = MRI->getRegClass(CP.getDstReg());
1819     unsigned SrcIdx = CP.getSrcIdx();
1820     unsigned DstIdx = CP.getDstIdx();
1821     if (CP.isFlipped()) {
1822       std::swap(SrcIdx, DstIdx);
1823       std::swap(SrcRC, DstRC);
1824     }
1825     if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1826                              CP.getNewRC(), *LIS)) {
1827       LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1828       return false;
1829     }
1830   }
1831 
1832   // Dead code elimination. This really should be handled by MachineDCE, but
1833   // sometimes dead copies slip through, and we can't generate invalid live
1834   // ranges.
1835   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1836     LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1837     DeadDefs.push_back(CopyMI);
1838     eliminateDeadDefs();
1839     return true;
1840   }
1841 
1842   // Eliminate undefs.
1843   if (!CP.isPhys()) {
1844     // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1845     if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1846       if (UndefMI->isImplicitDef())
1847         return false;
1848       deleteInstr(CopyMI);
1849       return false;  // Not coalescable.
1850     }
1851   }
1852 
1853   // Coalesced copies are normally removed immediately, but transformations
1854   // like removeCopyByCommutingDef() can inadvertently create identity copies.
1855   // When that happens, just join the values and remove the copy.
1856   if (CP.getSrcReg() == CP.getDstReg()) {
1857     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1858     LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1859     const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1860     LiveQueryResult LRQ = LI.Query(CopyIdx);
1861     if (VNInfo *DefVNI = LRQ.valueDefined()) {
1862       VNInfo *ReadVNI = LRQ.valueIn();
1863       assert(ReadVNI && "No value before copy and no <undef> flag.");
1864       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1865       LI.MergeValueNumberInto(DefVNI, ReadVNI);
1866 
1867       // Process subregister liveranges.
1868       for (LiveInterval::SubRange &S : LI.subranges()) {
1869         LiveQueryResult SLRQ = S.Query(CopyIdx);
1870         if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1871           VNInfo *SReadVNI = SLRQ.valueIn();
1872           S.MergeValueNumberInto(SDefVNI, SReadVNI);
1873         }
1874       }
1875       LLVM_DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1876     }
1877     deleteInstr(CopyMI);
1878     return true;
1879   }
1880 
1881   // Enforce policies.
1882   if (CP.isPhys()) {
1883     LLVM_DEBUG(dbgs() << "\tConsidering merging "
1884                       << printReg(CP.getSrcReg(), TRI) << " with "
1885                       << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1886     if (!canJoinPhys(CP)) {
1887       // Before giving up coalescing, if definition of source is defined by
1888       // trivial computation, try rematerializing it.
1889       bool IsDefCopy;
1890       if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1891         return true;
1892       if (IsDefCopy)
1893         Again = true;  // May be possible to coalesce later.
1894       return false;
1895     }
1896   } else {
1897     // When possible, let DstReg be the larger interval.
1898     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1899                            LIS->getInterval(CP.getDstReg()).size())
1900       CP.flip();
1901 
1902     LLVM_DEBUG({
1903       dbgs() << "\tConsidering merging to "
1904              << TRI->getRegClassName(CP.getNewRC()) << " with ";
1905       if (CP.getDstIdx() && CP.getSrcIdx())
1906         dbgs() << printReg(CP.getDstReg()) << " in "
1907                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1908                << printReg(CP.getSrcReg()) << " in "
1909                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1910       else
1911         dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
1912                << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1913     });
1914   }
1915 
1916   ShrinkMask = LaneBitmask::getNone();
1917   ShrinkMainRange = false;
1918 
1919   // Okay, attempt to join these two intervals.  On failure, this returns false.
1920   // Otherwise, if one of the intervals being joined is a physreg, this method
1921   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1922   // been modified, so we can use this information below to update aliases.
1923   if (!joinIntervals(CP)) {
1924     // Coalescing failed.
1925 
1926     // If definition of source is defined by trivial computation, try
1927     // rematerializing it.
1928     bool IsDefCopy;
1929     if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1930       return true;
1931 
1932     // If we can eliminate the copy without merging the live segments, do so
1933     // now.
1934     if (!CP.isPartial() && !CP.isPhys()) {
1935       bool Changed = adjustCopiesBackFrom(CP, CopyMI);
1936       bool Shrink = false;
1937       if (!Changed)
1938         std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
1939       if (Changed) {
1940         deleteInstr(CopyMI);
1941         if (Shrink) {
1942           unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1943           LiveInterval &DstLI = LIS->getInterval(DstReg);
1944           shrinkToUses(&DstLI);
1945           LLVM_DEBUG(dbgs() << "\t\tshrunk:   " << DstLI << '\n');
1946         }
1947         LLVM_DEBUG(dbgs() << "\tTrivial!\n");
1948         return true;
1949       }
1950     }
1951 
1952     // Try and see if we can partially eliminate the copy by moving the copy to
1953     // its predecessor.
1954     if (!CP.isPartial() && !CP.isPhys())
1955       if (removePartialRedundancy(CP, *CopyMI))
1956         return true;
1957 
1958     // Otherwise, we are unable to join the intervals.
1959     LLVM_DEBUG(dbgs() << "\tInterference!\n");
1960     Again = true;  // May be possible to coalesce later.
1961     return false;
1962   }
1963 
1964   // Coalescing to a virtual register that is of a sub-register class of the
1965   // other. Make sure the resulting register is set to the right register class.
1966   if (CP.isCrossClass()) {
1967     ++numCrossRCs;
1968     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1969   }
1970 
1971   // Removing sub-register copies can ease the register class constraints.
1972   // Make sure we attempt to inflate the register class of DstReg.
1973   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1974     InflateRegs.push_back(CP.getDstReg());
1975 
1976   // CopyMI has been erased by joinIntervals at this point. Remove it from
1977   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1978   // to the work list. This keeps ErasedInstrs from growing needlessly.
1979   ErasedInstrs.erase(CopyMI);
1980 
1981   // Rewrite all SrcReg operands to DstReg.
1982   // Also update DstReg operands to include DstIdx if it is set.
1983   if (CP.getDstIdx())
1984     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1985   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1986 
1987   // Shrink subregister ranges if necessary.
1988   if (ShrinkMask.any()) {
1989     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1990     for (LiveInterval::SubRange &S : LI.subranges()) {
1991       if ((S.LaneMask & ShrinkMask).none())
1992         continue;
1993       LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
1994                         << ")\n");
1995       LIS->shrinkToUses(S, LI.reg());
1996     }
1997     LI.removeEmptySubRanges();
1998   }
1999 
2000   // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
2001   // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
2002   // is not up-to-date, need to update the merged live interval here.
2003   if (ToBeUpdated.count(CP.getSrcReg()))
2004     ShrinkMainRange = true;
2005 
2006   if (ShrinkMainRange) {
2007     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2008     shrinkToUses(&LI);
2009   }
2010 
2011   // SrcReg is guaranteed to be the register whose live interval that is
2012   // being merged.
2013   LIS->removeInterval(CP.getSrcReg());
2014 
2015   // Update regalloc hint.
2016   TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
2017 
2018   LLVM_DEBUG({
2019     dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
2020            << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
2021     dbgs() << "\tResult = ";
2022     if (CP.isPhys())
2023       dbgs() << printReg(CP.getDstReg(), TRI);
2024     else
2025       dbgs() << LIS->getInterval(CP.getDstReg());
2026     dbgs() << '\n';
2027   });
2028 
2029   ++numJoins;
2030   return true;
2031 }
2032 
2033 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
2034   unsigned DstReg = CP.getDstReg();
2035   unsigned SrcReg = CP.getSrcReg();
2036   assert(CP.isPhys() && "Must be a physreg copy");
2037   assert(MRI->isReserved(DstReg) && "Not a reserved register");
2038   LiveInterval &RHS = LIS->getInterval(SrcReg);
2039   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
2040 
2041   assert(RHS.containsOneValue() && "Invalid join with reserved register");
2042 
2043   // Optimization for reserved registers like ESP. We can only merge with a
2044   // reserved physreg if RHS has a single value that is a copy of DstReg.
2045   // The live range of the reserved register will look like a set of dead defs
2046   // - we don't properly track the live range of reserved registers.
2047 
2048   // Deny any overlapping intervals.  This depends on all the reserved
2049   // register live ranges to look like dead defs.
2050   if (!MRI->isConstantPhysReg(DstReg)) {
2051     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2052       // Abort if not all the regunits are reserved.
2053       for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
2054         if (!MRI->isReserved(*RI))
2055           return false;
2056       }
2057       if (RHS.overlaps(LIS->getRegUnit(*UI))) {
2058         LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
2059                           << '\n');
2060         return false;
2061       }
2062     }
2063 
2064     // We must also check for overlaps with regmask clobbers.
2065     BitVector RegMaskUsable;
2066     if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2067         !RegMaskUsable.test(DstReg)) {
2068       LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2069       return false;
2070     }
2071   }
2072 
2073   // Skip any value computations, we are not adding new values to the
2074   // reserved register.  Also skip merging the live ranges, the reserved
2075   // register live range doesn't need to be accurate as long as all the
2076   // defs are there.
2077 
2078   // Delete the identity copy.
2079   MachineInstr *CopyMI;
2080   if (CP.isFlipped()) {
2081     // Physreg is copied into vreg
2082     //   %y = COPY %physreg_x
2083     //   ...  //< no other def of %physreg_x here
2084     //   use %y
2085     // =>
2086     //   ...
2087     //   use %physreg_x
2088     CopyMI = MRI->getVRegDef(SrcReg);
2089   } else {
2090     // VReg is copied into physreg:
2091     //   %y = def
2092     //   ... //< no other def or use of %physreg_x here
2093     //   %physreg_x = COPY %y
2094     // =>
2095     //   %physreg_x = def
2096     //   ...
2097     if (!MRI->hasOneNonDBGUse(SrcReg)) {
2098       LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2099       return false;
2100     }
2101 
2102     if (!LIS->intervalIsInOneMBB(RHS)) {
2103       LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2104       return false;
2105     }
2106 
2107     MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2108     CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2109     SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2110     SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2111 
2112     if (!MRI->isConstantPhysReg(DstReg)) {
2113       // We checked above that there are no interfering defs of the physical
2114       // register. However, for this case, where we intend to move up the def of
2115       // the physical register, we also need to check for interfering uses.
2116       SlotIndexes *Indexes = LIS->getSlotIndexes();
2117       for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2118            SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2119         MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2120         if (MI->readsRegister(DstReg, TRI)) {
2121           LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2122           return false;
2123         }
2124       }
2125     }
2126 
2127     // We're going to remove the copy which defines a physical reserved
2128     // register, so remove its valno, etc.
2129     LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2130                       << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2131 
2132     LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
2133     // Create a new dead def at the new def location.
2134     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2135       LiveRange &LR = LIS->getRegUnit(*UI);
2136       LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2137     }
2138   }
2139 
2140   deleteInstr(CopyMI);
2141 
2142   // We don't track kills for reserved registers.
2143   MRI->clearKillFlags(CP.getSrcReg());
2144 
2145   return true;
2146 }
2147 
2148 //===----------------------------------------------------------------------===//
2149 //                 Interference checking and interval joining
2150 //===----------------------------------------------------------------------===//
2151 //
2152 // In the easiest case, the two live ranges being joined are disjoint, and
2153 // there is no interference to consider. It is quite common, though, to have
2154 // overlapping live ranges, and we need to check if the interference can be
2155 // resolved.
2156 //
2157 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2158 // This means that two SSA values overlap if and only if the def of one value
2159 // is contained in the live range of the other value. As a special case, the
2160 // overlapping values can be defined at the same index.
2161 //
2162 // The interference from an overlapping def can be resolved in these cases:
2163 //
2164 // 1. Coalescable copies. The value is defined by a copy that would become an
2165 //    identity copy after joining SrcReg and DstReg. The copy instruction will
2166 //    be removed, and the value will be merged with the source value.
2167 //
2168 //    There can be several copies back and forth, causing many values to be
2169 //    merged into one. We compute a list of ultimate values in the joined live
2170 //    range as well as a mappings from the old value numbers.
2171 //
2172 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2173 //    predecessors have a live out value. It doesn't cause real interference,
2174 //    and can be merged into the value it overlaps. Like a coalescable copy, it
2175 //    can be erased after joining.
2176 //
2177 // 3. Copy of external value. The overlapping def may be a copy of a value that
2178 //    is already in the other register. This is like a coalescable copy, but
2179 //    the live range of the source register must be trimmed after erasing the
2180 //    copy instruction:
2181 //
2182 //      %src = COPY %ext
2183 //      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
2184 //
2185 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2186 //    defining one lane at a time:
2187 //
2188 //      %dst:ssub0<def,read-undef> = FOO
2189 //      %src = BAR
2190 //      %dst:ssub1 = COPY %src
2191 //
2192 //    The live range of %src overlaps the %dst value defined by FOO, but
2193 //    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2194 //    which was undef anyway.
2195 //
2196 //    The value mapping is more complicated in this case. The final live range
2197 //    will have different value numbers for both FOO and BAR, but there is no
2198 //    simple mapping from old to new values. It may even be necessary to add
2199 //    new PHI values.
2200 //
2201 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2202 //    is live, but never read. This can happen because we don't compute
2203 //    individual live ranges per lane.
2204 //
2205 //      %dst = FOO
2206 //      %src = BAR
2207 //      %dst:ssub1 = COPY %src
2208 //
2209 //    This kind of interference is only resolved locally. If the clobbered
2210 //    lane value escapes the block, the join is aborted.
2211 
2212 namespace {
2213 
2214 /// Track information about values in a single virtual register about to be
2215 /// joined. Objects of this class are always created in pairs - one for each
2216 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2217 /// pair)
2218 class JoinVals {
2219   /// Live range we work on.
2220   LiveRange &LR;
2221 
2222   /// (Main) register we work on.
2223   const unsigned Reg;
2224 
2225   /// Reg (and therefore the values in this liverange) will end up as
2226   /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2227   /// CP.SrcIdx.
2228   const unsigned SubIdx;
2229 
2230   /// The LaneMask that this liverange will occupy the coalesced register. May
2231   /// be smaller than the lanemask produced by SubIdx when merging subranges.
2232   const LaneBitmask LaneMask;
2233 
2234   /// This is true when joining sub register ranges, false when joining main
2235   /// ranges.
2236   const bool SubRangeJoin;
2237 
2238   /// Whether the current LiveInterval tracks subregister liveness.
2239   const bool TrackSubRegLiveness;
2240 
2241   /// Values that will be present in the final live range.
2242   SmallVectorImpl<VNInfo*> &NewVNInfo;
2243 
2244   const CoalescerPair &CP;
2245   LiveIntervals *LIS;
2246   SlotIndexes *Indexes;
2247   const TargetRegisterInfo *TRI;
2248 
2249   /// Value number assignments. Maps value numbers in LI to entries in
2250   /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2251   SmallVector<int, 8> Assignments;
2252 
2253   public:
2254   /// Conflict resolution for overlapping values.
2255   enum ConflictResolution {
2256     /// No overlap, simply keep this value.
2257     CR_Keep,
2258 
2259     /// Merge this value into OtherVNI and erase the defining instruction.
2260     /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2261     /// values.
2262     CR_Erase,
2263 
2264     /// Merge this value into OtherVNI but keep the defining instruction.
2265     /// This is for the special case where OtherVNI is defined by the same
2266     /// instruction.
2267     CR_Merge,
2268 
2269     /// Keep this value, and have it replace OtherVNI where possible. This
2270     /// complicates value mapping since OtherVNI maps to two different values
2271     /// before and after this def.
2272     /// Used when clobbering undefined or dead lanes.
2273     CR_Replace,
2274 
2275     /// Unresolved conflict. Visit later when all values have been mapped.
2276     CR_Unresolved,
2277 
2278     /// Unresolvable conflict. Abort the join.
2279     CR_Impossible
2280   };
2281 
2282   private:
2283   /// Per-value info for LI. The lane bit masks are all relative to the final
2284   /// joined register, so they can be compared directly between SrcReg and
2285   /// DstReg.
2286   struct Val {
2287     ConflictResolution Resolution = CR_Keep;
2288 
2289     /// Lanes written by this def, 0 for unanalyzed values.
2290     LaneBitmask WriteLanes;
2291 
2292     /// Lanes with defined values in this register. Other lanes are undef and
2293     /// safe to clobber.
2294     LaneBitmask ValidLanes;
2295 
2296     /// Value in LI being redefined by this def.
2297     VNInfo *RedefVNI = nullptr;
2298 
2299     /// Value in the other live range that overlaps this def, if any.
2300     VNInfo *OtherVNI = nullptr;
2301 
2302     /// Is this value an IMPLICIT_DEF that can be erased?
2303     ///
2304     /// IMPLICIT_DEF values should only exist at the end of a basic block that
2305     /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2306     /// safely erased if they are overlapping a live value in the other live
2307     /// interval.
2308     ///
2309     /// Weird control flow graphs and incomplete PHI handling in
2310     /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2311     /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2312     /// normal values.
2313     bool ErasableImplicitDef = false;
2314 
2315     /// True when the live range of this value will be pruned because of an
2316     /// overlapping CR_Replace value in the other live range.
2317     bool Pruned = false;
2318 
2319     /// True once Pruned above has been computed.
2320     bool PrunedComputed = false;
2321 
2322     /// True if this value is determined to be identical to OtherVNI
2323     /// (in valuesIdentical). This is used with CR_Erase where the erased
2324     /// copy is redundant, i.e. the source value is already the same as
2325     /// the destination. In such cases the subranges need to be updated
2326     /// properly. See comment at pruneSubRegValues for more info.
2327     bool Identical = false;
2328 
2329     Val() = default;
2330 
2331     bool isAnalyzed() const { return WriteLanes.any(); }
2332   };
2333 
2334   /// One entry per value number in LI.
2335   SmallVector<Val, 8> Vals;
2336 
2337   /// Compute the bitmask of lanes actually written by DefMI.
2338   /// Set Redef if there are any partial register definitions that depend on the
2339   /// previous value of the register.
2340   LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2341 
2342   /// Find the ultimate value that VNI was copied from.
2343   std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
2344 
2345   bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2346 
2347   /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2348   /// Return a conflict resolution when possible, but leave the hard cases as
2349   /// CR_Unresolved.
2350   /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2351   /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2352   /// The recursion always goes upwards in the dominator tree, making loops
2353   /// impossible.
2354   ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2355 
2356   /// Compute the value assignment for ValNo in RI.
2357   /// This may be called recursively by analyzeValue(), but never for a ValNo on
2358   /// the stack.
2359   void computeAssignment(unsigned ValNo, JoinVals &Other);
2360 
2361   /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2362   /// the extent of the tainted lanes in the block.
2363   ///
2364   /// Multiple values in Other.LR can be affected since partial redefinitions
2365   /// can preserve previously tainted lanes.
2366   ///
2367   ///   1 %dst = VLOAD           <-- Define all lanes in %dst
2368   ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
2369   ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
2370   ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2371   ///
2372   /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2373   /// entry to TaintedVals.
2374   ///
2375   /// Returns false if the tainted lanes extend beyond the basic block.
2376   bool
2377   taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2378               SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2379 
2380   /// Return true if MI uses any of the given Lanes from Reg.
2381   /// This does not include partial redefinitions of Reg.
2382   bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
2383 
2384   /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2385   /// be pruned:
2386   ///
2387   ///   %dst = COPY %src
2388   ///   %src = COPY %dst  <-- This value to be pruned.
2389   ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
2390   bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2391 
2392 public:
2393   JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
2394            SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
2395            LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2396            bool TrackSubRegLiveness)
2397     : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2398       SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2399       NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2400       TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {}
2401 
2402   /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2403   /// Returns false if any conflicts were impossible to resolve.
2404   bool mapValues(JoinVals &Other);
2405 
2406   /// Try to resolve conflicts that require all values to be mapped.
2407   /// Returns false if any conflicts were impossible to resolve.
2408   bool resolveConflicts(JoinVals &Other);
2409 
2410   /// Prune the live range of values in Other.LR where they would conflict with
2411   /// CR_Replace values in LR. Collect end points for restoring the live range
2412   /// after joining.
2413   void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2414                    bool changeInstrs);
2415 
2416   /// Removes subranges starting at copies that get removed. This sometimes
2417   /// happens when undefined subranges are copied around. These ranges contain
2418   /// no useful information and can be removed.
2419   void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2420 
2421   /// Pruning values in subranges can lead to removing segments in these
2422   /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2423   /// the main range also need to be removed. This function will mark
2424   /// the corresponding values in the main range as pruned, so that
2425   /// eraseInstrs can do the final cleanup.
2426   /// The parameter @p LI must be the interval whose main range is the
2427   /// live range LR.
2428   void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2429 
2430   /// Erase any machine instructions that have been coalesced away.
2431   /// Add erased instructions to ErasedInstrs.
2432   /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2433   /// the erased instrs.
2434   void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2435                    SmallVectorImpl<Register> &ShrinkRegs,
2436                    LiveInterval *LI = nullptr);
2437 
2438   /// Remove liverange defs at places where implicit defs will be removed.
2439   void removeImplicitDefs();
2440 
2441   /// Get the value assignments suitable for passing to LiveInterval::join.
2442   const int *getAssignments() const { return Assignments.data(); }
2443 
2444   /// Get the conflict resolution for a value number.
2445   ConflictResolution getResolution(unsigned Num) const {
2446     return Vals[Num].Resolution;
2447   }
2448 };
2449 
2450 } // end anonymous namespace
2451 
2452 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2453   const {
2454   LaneBitmask L;
2455   for (const MachineOperand &MO : DefMI->operands()) {
2456     if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2457       continue;
2458     L |= TRI->getSubRegIndexLaneMask(
2459            TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2460     if (MO.readsReg())
2461       Redef = true;
2462   }
2463   return L;
2464 }
2465 
2466 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
2467     const VNInfo *VNI) const {
2468   unsigned TrackReg = Reg;
2469 
2470   while (!VNI->isPHIDef()) {
2471     SlotIndex Def = VNI->def;
2472     MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2473     assert(MI && "No defining instruction");
2474     if (!MI->isFullCopy())
2475       return std::make_pair(VNI, TrackReg);
2476     Register SrcReg = MI->getOperand(1).getReg();
2477     if (!Register::isVirtualRegister(SrcReg))
2478       return std::make_pair(VNI, TrackReg);
2479 
2480     const LiveInterval &LI = LIS->getInterval(SrcReg);
2481     const VNInfo *ValueIn;
2482     // No subrange involved.
2483     if (!SubRangeJoin || !LI.hasSubRanges()) {
2484       LiveQueryResult LRQ = LI.Query(Def);
2485       ValueIn = LRQ.valueIn();
2486     } else {
2487       // Query subranges. Ensure that all matching ones take us to the same def
2488       // (allowing some of them to be undef).
2489       ValueIn = nullptr;
2490       for (const LiveInterval::SubRange &S : LI.subranges()) {
2491         // Transform lanemask to a mask in the joined live interval.
2492         LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2493         if ((SMask & LaneMask).none())
2494           continue;
2495         LiveQueryResult LRQ = S.Query(Def);
2496         if (!ValueIn) {
2497           ValueIn = LRQ.valueIn();
2498           continue;
2499         }
2500         if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2501           return std::make_pair(VNI, TrackReg);
2502       }
2503     }
2504     if (ValueIn == nullptr) {
2505       // Reaching an undefined value is legitimate, for example:
2506       //
2507       // 1   undef %0.sub1 = ...  ;; %0.sub0 == undef
2508       // 2   %1 = COPY %0         ;; %1 is defined here.
2509       // 3   %0 = COPY %1         ;; Now %0.sub0 has a definition,
2510       //                          ;; but it's equivalent to "undef".
2511       return std::make_pair(nullptr, SrcReg);
2512     }
2513     VNI = ValueIn;
2514     TrackReg = SrcReg;
2515   }
2516   return std::make_pair(VNI, TrackReg);
2517 }
2518 
2519 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2520                                const JoinVals &Other) const {
2521   const VNInfo *Orig0;
2522   unsigned Reg0;
2523   std::tie(Orig0, Reg0) = followCopyChain(Value0);
2524   if (Orig0 == Value1 && Reg0 == Other.Reg)
2525     return true;
2526 
2527   const VNInfo *Orig1;
2528   unsigned Reg1;
2529   std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2530   // If both values are undefined, and the source registers are the same
2531   // register, the values are identical. Filter out cases where only one
2532   // value is defined.
2533   if (Orig0 == nullptr || Orig1 == nullptr)
2534     return Orig0 == Orig1 && Reg0 == Reg1;
2535 
2536   // The values are equal if they are defined at the same place and use the
2537   // same register. Note that we cannot compare VNInfos directly as some of
2538   // them might be from a copy created in mergeSubRangeInto()  while the other
2539   // is from the original LiveInterval.
2540   return Orig0->def == Orig1->def && Reg0 == Reg1;
2541 }
2542 
2543 JoinVals::ConflictResolution
2544 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2545   Val &V = Vals[ValNo];
2546   assert(!V.isAnalyzed() && "Value has already been analyzed!");
2547   VNInfo *VNI = LR.getValNumInfo(ValNo);
2548   if (VNI->isUnused()) {
2549     V.WriteLanes = LaneBitmask::getAll();
2550     return CR_Keep;
2551   }
2552 
2553   // Get the instruction defining this value, compute the lanes written.
2554   const MachineInstr *DefMI = nullptr;
2555   if (VNI->isPHIDef()) {
2556     // Conservatively assume that all lanes in a PHI are valid.
2557     LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2558                                      : TRI->getSubRegIndexLaneMask(SubIdx);
2559     V.ValidLanes = V.WriteLanes = Lanes;
2560   } else {
2561     DefMI = Indexes->getInstructionFromIndex(VNI->def);
2562     assert(DefMI != nullptr);
2563     if (SubRangeJoin) {
2564       // We don't care about the lanes when joining subregister ranges.
2565       V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2566       if (DefMI->isImplicitDef()) {
2567         V.ValidLanes = LaneBitmask::getNone();
2568         V.ErasableImplicitDef = true;
2569       }
2570     } else {
2571       bool Redef = false;
2572       V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2573 
2574       // If this is a read-modify-write instruction, there may be more valid
2575       // lanes than the ones written by this instruction.
2576       // This only covers partial redef operands. DefMI may have normal use
2577       // operands reading the register. They don't contribute valid lanes.
2578       //
2579       // This adds ssub1 to the set of valid lanes in %src:
2580       //
2581       //   %src:ssub1 = FOO
2582       //
2583       // This leaves only ssub1 valid, making any other lanes undef:
2584       //
2585       //   %src:ssub1<def,read-undef> = FOO %src:ssub2
2586       //
2587       // The <read-undef> flag on the def operand means that old lane values are
2588       // not important.
2589       if (Redef) {
2590         V.RedefVNI = LR.Query(VNI->def).valueIn();
2591         assert((TrackSubRegLiveness || V.RedefVNI) &&
2592                "Instruction is reading nonexistent value");
2593         if (V.RedefVNI != nullptr) {
2594           computeAssignment(V.RedefVNI->id, Other);
2595           V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2596         }
2597       }
2598 
2599       // An IMPLICIT_DEF writes undef values.
2600       if (DefMI->isImplicitDef()) {
2601         // We normally expect IMPLICIT_DEF values to be live only until the end
2602         // of their block. If the value is really live longer and gets pruned in
2603         // another block, this flag is cleared again.
2604         //
2605         // Clearing the valid lanes is deferred until it is sure this can be
2606         // erased.
2607         V.ErasableImplicitDef = true;
2608       }
2609     }
2610   }
2611 
2612   // Find the value in Other that overlaps VNI->def, if any.
2613   LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2614 
2615   // It is possible that both values are defined by the same instruction, or
2616   // the values are PHIs defined in the same block. When that happens, the two
2617   // values should be merged into one, but not into any preceding value.
2618   // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2619   if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2620     assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2621 
2622     // One value stays, the other is merged. Keep the earlier one, or the first
2623     // one we see.
2624     if (OtherVNI->def < VNI->def)
2625       Other.computeAssignment(OtherVNI->id, *this);
2626     else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2627       // This is an early-clobber def overlapping a live-in value in the other
2628       // register. Not mergeable.
2629       V.OtherVNI = OtherLRQ.valueIn();
2630       return CR_Impossible;
2631     }
2632     V.OtherVNI = OtherVNI;
2633     Val &OtherV = Other.Vals[OtherVNI->id];
2634     // Keep this value, check for conflicts when analyzing OtherVNI.
2635     if (!OtherV.isAnalyzed())
2636       return CR_Keep;
2637     // Both sides have been analyzed now.
2638     // Allow overlapping PHI values. Any real interference would show up in a
2639     // predecessor, the PHI itself can't introduce any conflicts.
2640     if (VNI->isPHIDef())
2641       return CR_Merge;
2642     if ((V.ValidLanes & OtherV.ValidLanes).any())
2643       // Overlapping lanes can't be resolved.
2644       return CR_Impossible;
2645     else
2646       return CR_Merge;
2647   }
2648 
2649   // No simultaneous def. Is Other live at the def?
2650   V.OtherVNI = OtherLRQ.valueIn();
2651   if (!V.OtherVNI)
2652     // No overlap, no conflict.
2653     return CR_Keep;
2654 
2655   assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2656 
2657   // We have overlapping values, or possibly a kill of Other.
2658   // Recursively compute assignments up the dominator tree.
2659   Other.computeAssignment(V.OtherVNI->id, *this);
2660   Val &OtherV = Other.Vals[V.OtherVNI->id];
2661 
2662   if (OtherV.ErasableImplicitDef) {
2663     // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2664     // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2665     // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2666     // technically.
2667     //
2668     // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2669     // to erase the IMPLICIT_DEF instruction.
2670     if (DefMI &&
2671         DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2672       LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2673                  << " extends into "
2674                  << printMBBReference(*DefMI->getParent())
2675                  << ", keeping it.\n");
2676       OtherV.ErasableImplicitDef = false;
2677     } else {
2678       // We deferred clearing these lanes in case we needed to save them
2679       OtherV.ValidLanes &= ~OtherV.WriteLanes;
2680     }
2681   }
2682 
2683   // Allow overlapping PHI values. Any real interference would show up in a
2684   // predecessor, the PHI itself can't introduce any conflicts.
2685   if (VNI->isPHIDef())
2686     return CR_Replace;
2687 
2688   // Check for simple erasable conflicts.
2689   if (DefMI->isImplicitDef()) {
2690     // We need the def for the subregister if there is nothing else live at the
2691     // subrange at this point.
2692     if (TrackSubRegLiveness
2693         && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none())
2694       return CR_Replace;
2695     return CR_Erase;
2696   }
2697 
2698   // Include the non-conflict where DefMI is a coalescable copy that kills
2699   // OtherVNI. We still want the copy erased and value numbers merged.
2700   if (CP.isCoalescable(DefMI)) {
2701     // Some of the lanes copied from OtherVNI may be undef, making them undef
2702     // here too.
2703     V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2704     return CR_Erase;
2705   }
2706 
2707   // This may not be a real conflict if DefMI simply kills Other and defines
2708   // VNI.
2709   if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2710     return CR_Keep;
2711 
2712   // Handle the case where VNI and OtherVNI can be proven to be identical:
2713   //
2714   //   %other = COPY %ext
2715   //   %this  = COPY %ext <-- Erase this copy
2716   //
2717   if (DefMI->isFullCopy() && !CP.isPartial() &&
2718       valuesIdentical(VNI, V.OtherVNI, Other)) {
2719     V.Identical = true;
2720     return CR_Erase;
2721   }
2722 
2723   // The remaining checks apply to the lanes, which aren't tracked here.  This
2724   // was already decided to be OK via the following CR_Replace condition.
2725   // CR_Replace.
2726   if (SubRangeJoin)
2727     return CR_Replace;
2728 
2729   // If the lanes written by this instruction were all undef in OtherVNI, it is
2730   // still safe to join the live ranges. This can't be done with a simple value
2731   // mapping, though - OtherVNI will map to multiple values:
2732   //
2733   //   1 %dst:ssub0 = FOO                <-- OtherVNI
2734   //   2 %src = BAR                      <-- VNI
2735   //   3 %dst:ssub1 = COPY killed %src    <-- Eliminate this copy.
2736   //   4 BAZ killed %dst
2737   //   5 QUUX killed %src
2738   //
2739   // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2740   // handles this complex value mapping.
2741   if ((V.WriteLanes & OtherV.ValidLanes).none())
2742     return CR_Replace;
2743 
2744   // If the other live range is killed by DefMI and the live ranges are still
2745   // overlapping, it must be because we're looking at an early clobber def:
2746   //
2747   //   %dst<def,early-clobber> = ASM killed %src
2748   //
2749   // In this case, it is illegal to merge the two live ranges since the early
2750   // clobber def would clobber %src before it was read.
2751   if (OtherLRQ.isKill()) {
2752     // This case where the def doesn't overlap the kill is handled above.
2753     assert(VNI->def.isEarlyClobber() &&
2754            "Only early clobber defs can overlap a kill");
2755     return CR_Impossible;
2756   }
2757 
2758   // VNI is clobbering live lanes in OtherVNI, but there is still the
2759   // possibility that no instructions actually read the clobbered lanes.
2760   // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2761   // Otherwise Other.RI wouldn't be live here.
2762   if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2763     return CR_Impossible;
2764 
2765   // We need to verify that no instructions are reading the clobbered lanes. To
2766   // save compile time, we'll only check that locally. Don't allow the tainted
2767   // value to escape the basic block.
2768   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2769   if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2770     return CR_Impossible;
2771 
2772   // There are still some things that could go wrong besides clobbered lanes
2773   // being read, for example OtherVNI may be only partially redefined in MBB,
2774   // and some clobbered lanes could escape the block. Save this analysis for
2775   // resolveConflicts() when all values have been mapped. We need to know
2776   // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2777   // that now - the recursive analyzeValue() calls must go upwards in the
2778   // dominator tree.
2779   return CR_Unresolved;
2780 }
2781 
2782 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2783   Val &V = Vals[ValNo];
2784   if (V.isAnalyzed()) {
2785     // Recursion should always move up the dominator tree, so ValNo is not
2786     // supposed to reappear before it has been assigned.
2787     assert(Assignments[ValNo] != -1 && "Bad recursion?");
2788     return;
2789   }
2790   switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2791   case CR_Erase:
2792   case CR_Merge:
2793     // Merge this ValNo into OtherVNI.
2794     assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2795     assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2796     Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2797     LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2798                       << LR.getValNumInfo(ValNo)->def << " into "
2799                       << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2800                       << V.OtherVNI->def << " --> @"
2801                       << NewVNInfo[Assignments[ValNo]]->def << '\n');
2802     break;
2803   case CR_Replace:
2804   case CR_Unresolved: {
2805     // The other value is going to be pruned if this join is successful.
2806     assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2807     Val &OtherV = Other.Vals[V.OtherVNI->id];
2808     // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2809     // its lanes.
2810     if (OtherV.ErasableImplicitDef &&
2811         TrackSubRegLiveness &&
2812         (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2813       LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2814 
2815       OtherV.ErasableImplicitDef = false;
2816       // The valid lanes written by the implicit_def were speculatively cleared
2817       // before, so make this more conservative. It may be better to track this,
2818       // I haven't found a testcase where it matters.
2819       OtherV.ValidLanes = LaneBitmask::getAll();
2820     }
2821 
2822     OtherV.Pruned = true;
2823     LLVM_FALLTHROUGH;
2824   }
2825   default:
2826     // This value number needs to go in the final joined live range.
2827     Assignments[ValNo] = NewVNInfo.size();
2828     NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2829     break;
2830   }
2831 }
2832 
2833 bool JoinVals::mapValues(JoinVals &Other) {
2834   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2835     computeAssignment(i, Other);
2836     if (Vals[i].Resolution == CR_Impossible) {
2837       LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2838                         << '@' << LR.getValNumInfo(i)->def << '\n');
2839       return false;
2840     }
2841   }
2842   return true;
2843 }
2844 
2845 bool JoinVals::
2846 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2847             SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2848   VNInfo *VNI = LR.getValNumInfo(ValNo);
2849   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2850   SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2851 
2852   // Scan Other.LR from VNI.def to MBBEnd.
2853   LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2854   assert(OtherI != Other.LR.end() && "No conflict?");
2855   do {
2856     // OtherI is pointing to a tainted value. Abort the join if the tainted
2857     // lanes escape the block.
2858     SlotIndex End = OtherI->end;
2859     if (End >= MBBEnd) {
2860       LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2861                         << OtherI->valno->id << '@' << OtherI->start << '\n');
2862       return false;
2863     }
2864     LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
2865                       << OtherI->valno->id << '@' << OtherI->start << " to "
2866                       << End << '\n');
2867     // A dead def is not a problem.
2868     if (End.isDead())
2869       break;
2870     TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2871 
2872     // Check for another def in the MBB.
2873     if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2874       break;
2875 
2876     // Lanes written by the new def are no longer tainted.
2877     const Val &OV = Other.Vals[OtherI->valno->id];
2878     TaintedLanes &= ~OV.WriteLanes;
2879     if (!OV.RedefVNI)
2880       break;
2881   } while (TaintedLanes.any());
2882   return true;
2883 }
2884 
2885 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
2886                          LaneBitmask Lanes) const {
2887   if (MI.isDebugInstr())
2888     return false;
2889   for (const MachineOperand &MO : MI.operands()) {
2890     if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2891       continue;
2892     if (!MO.readsReg())
2893       continue;
2894     unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
2895     if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
2896       return true;
2897   }
2898   return false;
2899 }
2900 
2901 bool JoinVals::resolveConflicts(JoinVals &Other) {
2902   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2903     Val &V = Vals[i];
2904     assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
2905     if (V.Resolution != CR_Unresolved)
2906       continue;
2907     LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
2908                       << LR.getValNumInfo(i)->def
2909                       << ' ' << PrintLaneMask(LaneMask) << '\n');
2910     if (SubRangeJoin)
2911       return false;
2912 
2913     ++NumLaneConflicts;
2914     assert(V.OtherVNI && "Inconsistent conflict resolution.");
2915     VNInfo *VNI = LR.getValNumInfo(i);
2916     const Val &OtherV = Other.Vals[V.OtherVNI->id];
2917 
2918     // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2919     // join, those lanes will be tainted with a wrong value. Get the extent of
2920     // the tainted lanes.
2921     LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2922     SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2923     if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2924       // Tainted lanes would extend beyond the basic block.
2925       return false;
2926 
2927     assert(!TaintExtent.empty() && "There should be at least one conflict.");
2928 
2929     // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2930     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2931     MachineBasicBlock::iterator MI = MBB->begin();
2932     if (!VNI->isPHIDef()) {
2933       MI = Indexes->getInstructionFromIndex(VNI->def);
2934       // No need to check the instruction defining VNI for reads.
2935       ++MI;
2936     }
2937     assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2938            "Interference ends on VNI->def. Should have been handled earlier");
2939     MachineInstr *LastMI =
2940       Indexes->getInstructionFromIndex(TaintExtent.front().first);
2941     assert(LastMI && "Range must end at a proper instruction");
2942     unsigned TaintNum = 0;
2943     while (true) {
2944       assert(MI != MBB->end() && "Bad LastMI");
2945       if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2946         LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2947         return false;
2948       }
2949       // LastMI is the last instruction to use the current value.
2950       if (&*MI == LastMI) {
2951         if (++TaintNum == TaintExtent.size())
2952           break;
2953         LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2954         assert(LastMI && "Range must end at a proper instruction");
2955         TaintedLanes = TaintExtent[TaintNum].second;
2956       }
2957       ++MI;
2958     }
2959 
2960     // The tainted lanes are unused.
2961     V.Resolution = CR_Replace;
2962     ++NumLaneResolves;
2963   }
2964   return true;
2965 }
2966 
2967 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2968   Val &V = Vals[ValNo];
2969   if (V.Pruned || V.PrunedComputed)
2970     return V.Pruned;
2971 
2972   if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2973     return V.Pruned;
2974 
2975   // Follow copies up the dominator tree and check if any intermediate value
2976   // has been pruned.
2977   V.PrunedComputed = true;
2978   V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2979   return V.Pruned;
2980 }
2981 
2982 void JoinVals::pruneValues(JoinVals &Other,
2983                            SmallVectorImpl<SlotIndex> &EndPoints,
2984                            bool changeInstrs) {
2985   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2986     SlotIndex Def = LR.getValNumInfo(i)->def;
2987     switch (Vals[i].Resolution) {
2988     case CR_Keep:
2989       break;
2990     case CR_Replace: {
2991       // This value takes precedence over the value in Other.LR.
2992       LIS->pruneValue(Other.LR, Def, &EndPoints);
2993       // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2994       // instructions are only inserted to provide a live-out value for PHI
2995       // predecessors, so the instruction should simply go away once its value
2996       // has been replaced.
2997       Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2998       bool EraseImpDef = OtherV.ErasableImplicitDef &&
2999                          OtherV.Resolution == CR_Keep;
3000       if (!Def.isBlock()) {
3001         if (changeInstrs) {
3002           // Remove <def,read-undef> flags. This def is now a partial redef.
3003           // Also remove dead flags since the joined live range will
3004           // continue past this instruction.
3005           for (MachineOperand &MO :
3006                Indexes->getInstructionFromIndex(Def)->operands()) {
3007             if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
3008               if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
3009                 MO.setIsUndef(false);
3010               MO.setIsDead(false);
3011             }
3012           }
3013         }
3014         // This value will reach instructions below, but we need to make sure
3015         // the live range also reaches the instruction at Def.
3016         if (!EraseImpDef)
3017           EndPoints.push_back(Def);
3018       }
3019       LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
3020                         << ": " << Other.LR << '\n');
3021       break;
3022     }
3023     case CR_Erase:
3024     case CR_Merge:
3025       if (isPrunedValue(i, Other)) {
3026         // This value is ultimately a copy of a pruned value in LR or Other.LR.
3027         // We can no longer trust the value mapping computed by
3028         // computeAssignment(), the value that was originally copied could have
3029         // been replaced.
3030         LIS->pruneValue(LR, Def, &EndPoints);
3031         LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
3032                           << Def << ": " << LR << '\n');
3033       }
3034       break;
3035     case CR_Unresolved:
3036     case CR_Impossible:
3037       llvm_unreachable("Unresolved conflicts");
3038     }
3039   }
3040 }
3041 
3042 /// Consider the following situation when coalescing the copy between
3043 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
3044 ///
3045 ///                              Main range         Subrange 0004 (sub2)
3046 ///                              %31    %45           %31    %45
3047 ///  544    %45 = COPY %28               +                    +
3048 ///                                      | v1                 | v1
3049 ///  560B bb.1:                          +                    +
3050 ///  624        = %45.sub2               | v2                 | v2
3051 ///  800    %31 = COPY %45        +      +             +      +
3052 ///                               | v0                 | v0
3053 ///  816    %31.sub1 = ...        +                    |
3054 ///  880    %30 = COPY %31        | v1                 +
3055 ///  928    %45 = COPY %30        |      +                    +
3056 ///                               |      | v0                 | v0  <--+
3057 ///  992B   ; backedge -> bb.1    |      +                    +        |
3058 /// 1040        = %31.sub0        +                                    |
3059 ///                                                 This value must remain
3060 ///                                                 live-out!
3061 ///
3062 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3063 /// redundant, since it copies the value from %45 back into it. The
3064 /// conflict resolution for the main range determines that %45.v0 is
3065 /// to be erased, which is ok since %31.v1 is identical to it.
3066 /// The problem happens with the subrange for sub2: it has to be live
3067 /// on exit from the block, but since 928 was actually a point of
3068 /// definition of %45.sub2, %45.sub2 was not live immediately prior
3069 /// to that definition. As a result, when 928 was erased, the value v0
3070 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3071 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3072 /// providing an incorrect value to the use at 624.
3073 ///
3074 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3075 /// identical, the corresponding values in subranges must also be the
3076 /// same. A redundant copy is removed because it's not needed, and not
3077 /// because it copied an undefined value, so any liveness that originated
3078 /// from that copy cannot disappear. When pruning a value that started
3079 /// at the removed copy, the corresponding identical value must be
3080 /// extended to replace it.
3081 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3082   // Look for values being erased.
3083   bool DidPrune = false;
3084   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3085     Val &V = Vals[i];
3086     // We should trigger in all cases in which eraseInstrs() does something.
3087     // match what eraseInstrs() is doing, print a message so
3088     if (V.Resolution != CR_Erase &&
3089         (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3090       continue;
3091 
3092     // Check subranges at the point where the copy will be removed.
3093     SlotIndex Def = LR.getValNumInfo(i)->def;
3094     SlotIndex OtherDef;
3095     if (V.Identical)
3096       OtherDef = V.OtherVNI->def;
3097 
3098     // Print message so mismatches with eraseInstrs() can be diagnosed.
3099     LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3100                       << '\n');
3101     for (LiveInterval::SubRange &S : LI.subranges()) {
3102       LiveQueryResult Q = S.Query(Def);
3103 
3104       // If a subrange starts at the copy then an undefined value has been
3105       // copied and we must remove that subrange value as well.
3106       VNInfo *ValueOut = Q.valueOutOrDead();
3107       if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
3108                                   (V.Identical && V.Resolution == CR_Erase &&
3109                                    ValueOut->def == Def))) {
3110         LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3111                           << " at " << Def << "\n");
3112         SmallVector<SlotIndex,8> EndPoints;
3113         LIS->pruneValue(S, Def, &EndPoints);
3114         DidPrune = true;
3115         // Mark value number as unused.
3116         ValueOut->markUnused();
3117 
3118         if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
3119           // If V is identical to V.OtherVNI (and S was live at OtherDef),
3120           // then we can't simply prune V from S. V needs to be replaced
3121           // with V.OtherVNI.
3122           LIS->extendToIndices(S, EndPoints);
3123         }
3124         continue;
3125       }
3126       // If a subrange ends at the copy, then a value was copied but only
3127       // partially used later. Shrink the subregister range appropriately.
3128       if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
3129         LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3130                           << PrintLaneMask(S.LaneMask) << " at " << Def
3131                           << "\n");
3132         ShrinkMask |= S.LaneMask;
3133       }
3134     }
3135   }
3136   if (DidPrune)
3137     LI.removeEmptySubRanges();
3138 }
3139 
3140 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3141 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3142   for (LiveInterval::SubRange &SR : LI.subranges()) {
3143     if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3144       if (VNI->def == Def)
3145         return true;
3146   }
3147   return false;
3148 }
3149 
3150 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3151   assert(&static_cast<LiveRange&>(LI) == &LR);
3152 
3153   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3154     if (Vals[i].Resolution != CR_Keep)
3155       continue;
3156     VNInfo *VNI = LR.getValNumInfo(i);
3157     if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3158       continue;
3159     Vals[i].Pruned = true;
3160     ShrinkMainRange = true;
3161   }
3162 }
3163 
3164 void JoinVals::removeImplicitDefs() {
3165   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3166     Val &V = Vals[i];
3167     if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3168       continue;
3169 
3170     VNInfo *VNI = LR.getValNumInfo(i);
3171     VNI->markUnused();
3172     LR.removeValNo(VNI);
3173   }
3174 }
3175 
3176 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3177                            SmallVectorImpl<Register> &ShrinkRegs,
3178                            LiveInterval *LI) {
3179   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3180     // Get the def location before markUnused() below invalidates it.
3181     VNInfo *VNI = LR.getValNumInfo(i);
3182     SlotIndex Def = VNI->def;
3183     switch (Vals[i].Resolution) {
3184     case CR_Keep: {
3185       // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3186       // longer. The IMPLICIT_DEF instructions are only inserted by
3187       // PHIElimination to guarantee that all PHI predecessors have a value.
3188       if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3189         break;
3190       // Remove value number i from LR.
3191       // For intervals with subranges, removing a segment from the main range
3192       // may require extending the previous segment: for each definition of
3193       // a subregister, there will be a corresponding def in the main range.
3194       // That def may fall in the middle of a segment from another subrange.
3195       // In such cases, removing this def from the main range must be
3196       // complemented by extending the main range to account for the liveness
3197       // of the other subrange.
3198       // The new end point of the main range segment to be extended.
3199       SlotIndex NewEnd;
3200       if (LI != nullptr) {
3201         LiveRange::iterator I = LR.FindSegmentContaining(Def);
3202         assert(I != LR.end());
3203         // Do not extend beyond the end of the segment being removed.
3204         // The segment may have been pruned in preparation for joining
3205         // live ranges.
3206         NewEnd = I->end;
3207       }
3208 
3209       LR.removeValNo(VNI);
3210       // Note that this VNInfo is reused and still referenced in NewVNInfo,
3211       // make it appear like an unused value number.
3212       VNI->markUnused();
3213 
3214       if (LI != nullptr && LI->hasSubRanges()) {
3215         assert(static_cast<LiveRange*>(LI) == &LR);
3216         // Determine the end point based on the subrange information:
3217         // minimum of (earliest def of next segment,
3218         //             latest end point of containing segment)
3219         SlotIndex ED, LE;
3220         for (LiveInterval::SubRange &SR : LI->subranges()) {
3221           LiveRange::iterator I = SR.find(Def);
3222           if (I == SR.end())
3223             continue;
3224           if (I->start > Def)
3225             ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3226           else
3227             LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3228         }
3229         if (LE.isValid())
3230           NewEnd = std::min(NewEnd, LE);
3231         if (ED.isValid())
3232           NewEnd = std::min(NewEnd, ED);
3233 
3234         // We only want to do the extension if there was a subrange that
3235         // was live across Def.
3236         if (LE.isValid()) {
3237           LiveRange::iterator S = LR.find(Def);
3238           if (S != LR.begin())
3239             std::prev(S)->end = NewEnd;
3240         }
3241       }
3242       LLVM_DEBUG({
3243         dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3244         if (LI != nullptr)
3245           dbgs() << "\t\t  LHS = " << *LI << '\n';
3246       });
3247       LLVM_FALLTHROUGH;
3248     }
3249 
3250     case CR_Erase: {
3251       MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3252       assert(MI && "No instruction to erase");
3253       if (MI->isCopy()) {
3254         Register Reg = MI->getOperand(1).getReg();
3255         if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() &&
3256             Reg != CP.getDstReg())
3257           ShrinkRegs.push_back(Reg);
3258       }
3259       ErasedInstrs.insert(MI);
3260       LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3261       LIS->RemoveMachineInstrFromMaps(*MI);
3262       MI->eraseFromParent();
3263       break;
3264     }
3265     default:
3266       break;
3267     }
3268   }
3269 }
3270 
3271 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3272                                          LaneBitmask LaneMask,
3273                                          const CoalescerPair &CP) {
3274   SmallVector<VNInfo*, 16> NewVNInfo;
3275   JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3276                    NewVNInfo, CP, LIS, TRI, true, true);
3277   JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3278                    NewVNInfo, CP, LIS, TRI, true, true);
3279 
3280   // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3281   // We should be able to resolve all conflicts here as we could successfully do
3282   // it on the mainrange already. There is however a problem when multiple
3283   // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3284   // interferences.
3285   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3286     // We already determined that it is legal to merge the intervals, so this
3287     // should never fail.
3288     llvm_unreachable("*** Couldn't join subrange!\n");
3289   }
3290   if (!LHSVals.resolveConflicts(RHSVals) ||
3291       !RHSVals.resolveConflicts(LHSVals)) {
3292     // We already determined that it is legal to merge the intervals, so this
3293     // should never fail.
3294     llvm_unreachable("*** Couldn't join subrange!\n");
3295   }
3296 
3297   // The merging algorithm in LiveInterval::join() can't handle conflicting
3298   // value mappings, so we need to remove any live ranges that overlap a
3299   // CR_Replace resolution. Collect a set of end points that can be used to
3300   // restore the live range after joining.
3301   SmallVector<SlotIndex, 8> EndPoints;
3302   LHSVals.pruneValues(RHSVals, EndPoints, false);
3303   RHSVals.pruneValues(LHSVals, EndPoints, false);
3304 
3305   LHSVals.removeImplicitDefs();
3306   RHSVals.removeImplicitDefs();
3307 
3308   LRange.verify();
3309   RRange.verify();
3310 
3311   // Join RRange into LHS.
3312   LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3313               NewVNInfo);
3314 
3315   LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3316                     << ' ' << LRange << "\n");
3317   if (EndPoints.empty())
3318     return;
3319 
3320   // Recompute the parts of the live range we had to remove because of
3321   // CR_Replace conflicts.
3322   LLVM_DEBUG({
3323     dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3324     for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3325       dbgs() << EndPoints[i];
3326       if (i != n-1)
3327         dbgs() << ',';
3328     }
3329     dbgs() << ":  " << LRange << '\n';
3330   });
3331   LIS->extendToIndices(LRange, EndPoints);
3332 }
3333 
3334 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3335                                           const LiveRange &ToMerge,
3336                                           LaneBitmask LaneMask,
3337                                           CoalescerPair &CP,
3338                                           unsigned ComposeSubRegIdx) {
3339   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3340   LI.refineSubRanges(
3341       Allocator, LaneMask,
3342       [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3343         if (SR.empty()) {
3344           SR.assign(ToMerge, Allocator);
3345         } else {
3346           // joinSubRegRange() destroys the merged range, so we need a copy.
3347           LiveRange RangeCopy(ToMerge, Allocator);
3348           joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3349         }
3350       },
3351       *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx);
3352 }
3353 
3354 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3355   if (LI.valnos.size() < LargeIntervalSizeThreshold)
3356     return false;
3357   auto &Counter = LargeLIVisitCounter[LI.reg()];
3358   if (Counter < LargeIntervalFreqThreshold) {
3359     Counter++;
3360     return false;
3361   }
3362   return true;
3363 }
3364 
3365 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3366   SmallVector<VNInfo*, 16> NewVNInfo;
3367   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3368   LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3369   bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3370   JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3371                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3372   JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3373                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3374 
3375   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3376 
3377   if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3378     return false;
3379 
3380   // First compute NewVNInfo and the simple value mappings.
3381   // Detect impossible conflicts early.
3382   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3383     return false;
3384 
3385   // Some conflicts can only be resolved after all values have been mapped.
3386   if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3387     return false;
3388 
3389   // All clear, the live ranges can be merged.
3390   if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3391     BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3392 
3393     // Transform lanemasks from the LHS to masks in the coalesced register and
3394     // create initial subranges if necessary.
3395     unsigned DstIdx = CP.getDstIdx();
3396     if (!LHS.hasSubRanges()) {
3397       LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3398                                      : TRI->getSubRegIndexLaneMask(DstIdx);
3399       // LHS must support subregs or we wouldn't be in this codepath.
3400       assert(Mask.any());
3401       LHS.createSubRangeFrom(Allocator, Mask, LHS);
3402     } else if (DstIdx != 0) {
3403       // Transform LHS lanemasks to new register class if necessary.
3404       for (LiveInterval::SubRange &R : LHS.subranges()) {
3405         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3406         R.LaneMask = Mask;
3407       }
3408     }
3409     LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3410                       << '\n');
3411 
3412     // Determine lanemasks of RHS in the coalesced register and merge subranges.
3413     unsigned SrcIdx = CP.getSrcIdx();
3414     if (!RHS.hasSubRanges()) {
3415       LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3416                                      : TRI->getSubRegIndexLaneMask(SrcIdx);
3417       mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx);
3418     } else {
3419       // Pair up subranges and merge.
3420       for (LiveInterval::SubRange &R : RHS.subranges()) {
3421         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3422         mergeSubRangeInto(LHS, R, Mask, CP, DstIdx);
3423       }
3424     }
3425     LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3426 
3427     // Pruning implicit defs from subranges may result in the main range
3428     // having stale segments.
3429     LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3430 
3431     LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3432     RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3433   }
3434 
3435   // The merging algorithm in LiveInterval::join() can't handle conflicting
3436   // value mappings, so we need to remove any live ranges that overlap a
3437   // CR_Replace resolution. Collect a set of end points that can be used to
3438   // restore the live range after joining.
3439   SmallVector<SlotIndex, 8> EndPoints;
3440   LHSVals.pruneValues(RHSVals, EndPoints, true);
3441   RHSVals.pruneValues(LHSVals, EndPoints, true);
3442 
3443   // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3444   // registers to require trimming.
3445   SmallVector<Register, 8> ShrinkRegs;
3446   LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3447   RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3448   while (!ShrinkRegs.empty())
3449     shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3450 
3451   // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3452   checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
3453 
3454   // Join RHS into LHS.
3455   LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3456 
3457   // Kill flags are going to be wrong if the live ranges were overlapping.
3458   // Eventually, we should simply clear all kill flags when computing live
3459   // ranges. They are reinserted after register allocation.
3460   MRI->clearKillFlags(LHS.reg());
3461   MRI->clearKillFlags(RHS.reg());
3462 
3463   if (!EndPoints.empty()) {
3464     // Recompute the parts of the live range we had to remove because of
3465     // CR_Replace conflicts.
3466     LLVM_DEBUG({
3467       dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3468       for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3469         dbgs() << EndPoints[i];
3470         if (i != n-1)
3471           dbgs() << ',';
3472       }
3473       dbgs() << ":  " << LHS << '\n';
3474     });
3475     LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3476   }
3477 
3478   return true;
3479 }
3480 
3481 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3482   return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3483 }
3484 
3485 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF)
3486 {
3487   const SlotIndexes &Slots = *LIS->getSlotIndexes();
3488   SmallVector<MachineInstr *, 8> ToInsert;
3489 
3490   // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3491   // vreg => DbgValueLoc map.
3492   auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
3493     for (auto *X : ToInsert)
3494       DbgVRegToValues[X->getDebugOperand(0).getReg()].push_back({Slot, X});
3495 
3496     ToInsert.clear();
3497   };
3498 
3499   // Iterate over all instructions, collecting them into the ToInsert vector.
3500   // Once a non-debug instruction is found, record the slot index of the
3501   // collected DBG_VALUEs.
3502   for (auto &MBB : MF) {
3503     SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB);
3504 
3505     for (auto &MI : MBB) {
3506       if (MI.isDebugValue() && MI.getDebugOperand(0).isReg() &&
3507           MI.getDebugOperand(0).getReg().isVirtual()) {
3508         ToInsert.push_back(&MI);
3509       } else if (!MI.isDebugInstr()) {
3510         CurrentSlot = Slots.getInstructionIndex(MI);
3511         CloseNewDVRange(CurrentSlot);
3512       }
3513     }
3514 
3515     // Close range of DBG_VALUEs at the end of blocks.
3516     CloseNewDVRange(Slots.getMBBEndIdx(&MBB));
3517   }
3518 
3519   // Sort all DBG_VALUEs we've seen by slot number.
3520   for (auto &Pair : DbgVRegToValues)
3521     llvm::sort(Pair.second);
3522 }
3523 
3524 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
3525                                                      LiveRange &LHS,
3526                                                      JoinVals &LHSVals,
3527                                                      LiveRange &RHS,
3528                                                      JoinVals &RHSVals) {
3529   auto ScanForDstReg = [&](unsigned Reg) {
3530     checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals);
3531   };
3532 
3533   auto ScanForSrcReg = [&](unsigned Reg) {
3534     checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals);
3535   };
3536 
3537   // Scan for potentially unsound DBG_VALUEs: examine first the register number
3538   // Reg, and then any other vregs that may have been merged into  it.
3539   auto PerformScan = [this](unsigned Reg, std::function<void(unsigned)> Func) {
3540     Func(Reg);
3541     if (DbgMergedVRegNums.count(Reg))
3542       for (unsigned X : DbgMergedVRegNums[Reg])
3543         Func(X);
3544   };
3545 
3546   // Scan for unsound updates of both the source and destination register.
3547   PerformScan(CP.getSrcReg(), ScanForSrcReg);
3548   PerformScan(CP.getDstReg(), ScanForDstReg);
3549 }
3550 
3551 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(unsigned Reg,
3552                                                          LiveRange &OtherLR,
3553                                                          LiveRange &RegLR,
3554                                                          JoinVals &RegVals) {
3555   // Are there any DBG_VALUEs to examine?
3556   auto VRegMapIt = DbgVRegToValues.find(Reg);
3557   if (VRegMapIt == DbgVRegToValues.end())
3558     return;
3559 
3560   auto &DbgValueSet = VRegMapIt->second;
3561   auto DbgValueSetIt = DbgValueSet.begin();
3562   auto SegmentIt = OtherLR.begin();
3563 
3564   bool LastUndefResult = false;
3565   SlotIndex LastUndefIdx;
3566 
3567   // If the "Other" register is live at a slot Idx, test whether Reg can
3568   // safely be merged with it, or should be marked undef.
3569   auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
3570                       &LastUndefIdx](SlotIndex Idx) -> bool {
3571     // Our worst-case performance typically happens with asan, causing very
3572     // many DBG_VALUEs of the same location. Cache a copy of the most recent
3573     // result for this edge-case.
3574     if (LastUndefIdx == Idx)
3575       return LastUndefResult;
3576 
3577     // If the other range was live, and Reg's was not, the register coalescer
3578     // will not have tried to resolve any conflicts. We don't know whether
3579     // the DBG_VALUE will refer to the same value number, so it must be made
3580     // undef.
3581     auto OtherIt = RegLR.find(Idx);
3582     if (OtherIt == RegLR.end())
3583       return true;
3584 
3585     // Both the registers were live: examine the conflict resolution record for
3586     // the value number Reg refers to. CR_Keep meant that this value number
3587     // "won" and the merged register definitely refers to that value. CR_Erase
3588     // means the value number was a redundant copy of the other value, which
3589     // was coalesced and Reg deleted. It's safe to refer to the other register
3590     // (which will be the source of the copy).
3591     auto Resolution = RegVals.getResolution(OtherIt->valno->id);
3592     LastUndefResult = Resolution != JoinVals::CR_Keep &&
3593                       Resolution != JoinVals::CR_Erase;
3594     LastUndefIdx = Idx;
3595     return LastUndefResult;
3596   };
3597 
3598   // Iterate over both the live-range of the "Other" register, and the set of
3599   // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3600   // slot index. This relies on the DbgValueSet being ordered.
3601   while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
3602     if (DbgValueSetIt->first < SegmentIt->end) {
3603       // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3604       // set it undef.
3605       if (DbgValueSetIt->first >= SegmentIt->start &&
3606           DbgValueSetIt->second->getDebugOperand(0).getReg() != 0 &&
3607           ShouldUndef(DbgValueSetIt->first)) {
3608         // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3609         DbgValueSetIt->second->setDebugValueUndef();
3610         continue;
3611       }
3612       ++DbgValueSetIt;
3613     } else {
3614       ++SegmentIt;
3615     }
3616   }
3617 }
3618 
3619 namespace {
3620 
3621 /// Information concerning MBB coalescing priority.
3622 struct MBBPriorityInfo {
3623   MachineBasicBlock *MBB;
3624   unsigned Depth;
3625   bool IsSplit;
3626 
3627   MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3628     : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3629 };
3630 
3631 } // end anonymous namespace
3632 
3633 /// C-style comparator that sorts first based on the loop depth of the basic
3634 /// block (the unsigned), and then on the MBB number.
3635 ///
3636 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3637 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3638                               const MBBPriorityInfo *RHS) {
3639   // Deeper loops first
3640   if (LHS->Depth != RHS->Depth)
3641     return LHS->Depth > RHS->Depth ? -1 : 1;
3642 
3643   // Try to unsplit critical edges next.
3644   if (LHS->IsSplit != RHS->IsSplit)
3645     return LHS->IsSplit ? -1 : 1;
3646 
3647   // Prefer blocks that are more connected in the CFG. This takes care of
3648   // the most difficult copies first while intervals are short.
3649   unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3650   unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3651   if (cl != cr)
3652     return cl > cr ? -1 : 1;
3653 
3654   // As a last resort, sort by block number.
3655   return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3656 }
3657 
3658 /// \returns true if the given copy uses or defines a local live range.
3659 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3660   if (!Copy->isCopy())
3661     return false;
3662 
3663   if (Copy->getOperand(1).isUndef())
3664     return false;
3665 
3666   Register SrcReg = Copy->getOperand(1).getReg();
3667   Register DstReg = Copy->getOperand(0).getReg();
3668   if (Register::isPhysicalRegister(SrcReg) ||
3669       Register::isPhysicalRegister(DstReg))
3670     return false;
3671 
3672   return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3673     || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3674 }
3675 
3676 void RegisterCoalescer::lateLiveIntervalUpdate() {
3677   for (unsigned reg : ToBeUpdated) {
3678     if (!LIS->hasInterval(reg))
3679       continue;
3680     LiveInterval &LI = LIS->getInterval(reg);
3681     shrinkToUses(&LI, &DeadDefs);
3682     if (!DeadDefs.empty())
3683       eliminateDeadDefs();
3684   }
3685   ToBeUpdated.clear();
3686 }
3687 
3688 bool RegisterCoalescer::
3689 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3690   bool Progress = false;
3691   for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3692     if (!CurrList[i])
3693       continue;
3694     // Skip instruction pointers that have already been erased, for example by
3695     // dead code elimination.
3696     if (ErasedInstrs.count(CurrList[i])) {
3697       CurrList[i] = nullptr;
3698       continue;
3699     }
3700     bool Again = false;
3701     bool Success = joinCopy(CurrList[i], Again);
3702     Progress |= Success;
3703     if (Success || !Again)
3704       CurrList[i] = nullptr;
3705   }
3706   return Progress;
3707 }
3708 
3709 /// Check if DstReg is a terminal node.
3710 /// I.e., it does not have any affinity other than \p Copy.
3711 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
3712                           const MachineRegisterInfo *MRI) {
3713   assert(Copy.isCopyLike());
3714   // Check if the destination of this copy as any other affinity.
3715   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3716     if (&MI != &Copy && MI.isCopyLike())
3717       return false;
3718   return true;
3719 }
3720 
3721 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3722   assert(Copy.isCopyLike());
3723   if (!UseTerminalRule)
3724     return false;
3725   unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
3726   if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
3727     return false;
3728   // Check if the destination of this copy has any other affinity.
3729   if (Register::isPhysicalRegister(DstReg) ||
3730       // If SrcReg is a physical register, the copy won't be coalesced.
3731       // Ignoring it may have other side effect (like missing
3732       // rematerialization). So keep it.
3733       Register::isPhysicalRegister(SrcReg) || !isTerminalReg(DstReg, Copy, MRI))
3734     return false;
3735 
3736   // DstReg is a terminal node. Check if it interferes with any other
3737   // copy involving SrcReg.
3738   const MachineBasicBlock *OrigBB = Copy.getParent();
3739   const LiveInterval &DstLI = LIS->getInterval(DstReg);
3740   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3741     // Technically we should check if the weight of the new copy is
3742     // interesting compared to the other one and update the weight
3743     // of the copies accordingly. However, this would only work if
3744     // we would gather all the copies first then coalesce, whereas
3745     // right now we interleave both actions.
3746     // For now, just consider the copies that are in the same block.
3747     if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3748       continue;
3749     unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
3750     if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3751                 OtherSubReg))
3752       return false;
3753     if (OtherReg == SrcReg)
3754       OtherReg = OtherSrcReg;
3755     // Check if OtherReg is a non-terminal.
3756     if (Register::isPhysicalRegister(OtherReg) ||
3757         isTerminalReg(OtherReg, MI, MRI))
3758       continue;
3759     // Check that OtherReg interfere with DstReg.
3760     if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3761       LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3762                         << '\n');
3763       return true;
3764     }
3765   }
3766   return false;
3767 }
3768 
3769 void
3770 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3771   LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3772 
3773   // Collect all copy-like instructions in MBB. Don't start coalescing anything
3774   // yet, it might invalidate the iterator.
3775   const unsigned PrevSize = WorkList.size();
3776   if (JoinGlobalCopies) {
3777     SmallVector<MachineInstr*, 2> LocalTerminals;
3778     SmallVector<MachineInstr*, 2> GlobalTerminals;
3779     // Coalesce copies bottom-up to coalesce local defs before local uses. They
3780     // are not inherently easier to resolve, but slightly preferable until we
3781     // have local live range splitting. In particular this is required by
3782     // cmp+jmp macro fusion.
3783     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
3784          MII != E; ++MII) {
3785       if (!MII->isCopyLike())
3786         continue;
3787       bool ApplyTerminalRule = applyTerminalRule(*MII);
3788       if (isLocalCopy(&(*MII), LIS)) {
3789         if (ApplyTerminalRule)
3790           LocalTerminals.push_back(&(*MII));
3791         else
3792           LocalWorkList.push_back(&(*MII));
3793       } else {
3794         if (ApplyTerminalRule)
3795           GlobalTerminals.push_back(&(*MII));
3796         else
3797           WorkList.push_back(&(*MII));
3798       }
3799     }
3800     // Append the copies evicted by the terminal rule at the end of the list.
3801     LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
3802     WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
3803   }
3804   else {
3805     SmallVector<MachineInstr*, 2> Terminals;
3806     for (MachineInstr &MII : *MBB)
3807       if (MII.isCopyLike()) {
3808         if (applyTerminalRule(MII))
3809           Terminals.push_back(&MII);
3810         else
3811           WorkList.push_back(&MII);
3812       }
3813     // Append the copies evicted by the terminal rule at the end of the list.
3814     WorkList.append(Terminals.begin(), Terminals.end());
3815   }
3816   // Try coalescing the collected copies immediately, and remove the nulls.
3817   // This prevents the WorkList from getting too large since most copies are
3818   // joinable on the first attempt.
3819   MutableArrayRef<MachineInstr*>
3820     CurrList(WorkList.begin() + PrevSize, WorkList.end());
3821   if (copyCoalesceWorkList(CurrList))
3822     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
3823                                nullptr), WorkList.end());
3824 }
3825 
3826 void RegisterCoalescer::coalesceLocals() {
3827   copyCoalesceWorkList(LocalWorkList);
3828   for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
3829     if (LocalWorkList[j])
3830       WorkList.push_back(LocalWorkList[j]);
3831   }
3832   LocalWorkList.clear();
3833 }
3834 
3835 void RegisterCoalescer::joinAllIntervals() {
3836   LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
3837   assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
3838 
3839   std::vector<MBBPriorityInfo> MBBs;
3840   MBBs.reserve(MF->size());
3841   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
3842     MachineBasicBlock *MBB = &*I;
3843     MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
3844                                    JoinSplitEdges && isSplitEdge(MBB)));
3845   }
3846   array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
3847 
3848   // Coalesce intervals in MBB priority order.
3849   unsigned CurrDepth = std::numeric_limits<unsigned>::max();
3850   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
3851     // Try coalescing the collected local copies for deeper loops.
3852     if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
3853       coalesceLocals();
3854       CurrDepth = MBBs[i].Depth;
3855     }
3856     copyCoalesceInMBB(MBBs[i].MBB);
3857   }
3858   lateLiveIntervalUpdate();
3859   coalesceLocals();
3860 
3861   // Joining intervals can allow other intervals to be joined.  Iteratively join
3862   // until we make no progress.
3863   while (copyCoalesceWorkList(WorkList))
3864     /* empty */ ;
3865   lateLiveIntervalUpdate();
3866 }
3867 
3868 void RegisterCoalescer::releaseMemory() {
3869   ErasedInstrs.clear();
3870   WorkList.clear();
3871   DeadDefs.clear();
3872   InflateRegs.clear();
3873   LargeLIVisitCounter.clear();
3874 }
3875 
3876 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
3877   LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3878                     << "********** Function: " << fn.getName() << '\n');
3879 
3880   // Variables changed between a setjmp and a longjump can have undefined value
3881   // after the longjmp. This behaviour can be observed if such a variable is
3882   // spilled, so longjmp won't restore the value in the spill slot.
3883   // RegisterCoalescer should not run in functions with a setjmp to avoid
3884   // merging such undefined variables with predictable ones.
3885   //
3886   // TODO: Could specifically disable coalescing registers live across setjmp
3887   // calls
3888   if (fn.exposesReturnsTwice()) {
3889     LLVM_DEBUG(
3890         dbgs() << "* Skipped as it exposes funcions that returns twice.\n");
3891     return false;
3892   }
3893 
3894   MF = &fn;
3895   MRI = &fn.getRegInfo();
3896   const TargetSubtargetInfo &STI = fn.getSubtarget();
3897   TRI = STI.getRegisterInfo();
3898   TII = STI.getInstrInfo();
3899   LIS = &getAnalysis<LiveIntervals>();
3900   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3901   Loops = &getAnalysis<MachineLoopInfo>();
3902   if (EnableGlobalCopies == cl::BOU_UNSET)
3903     JoinGlobalCopies = STI.enableJoinGlobalCopies();
3904   else
3905     JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
3906 
3907   // The MachineScheduler does not currently require JoinSplitEdges. This will
3908   // either be enabled unconditionally or replaced by a more general live range
3909   // splitting optimization.
3910   JoinSplitEdges = EnableJoinSplits;
3911 
3912   if (VerifyCoalescing)
3913     MF->verify(this, "Before register coalescing");
3914 
3915   DbgVRegToValues.clear();
3916   DbgMergedVRegNums.clear();
3917   buildVRegToDbgValueMap(fn);
3918 
3919   RegClassInfo.runOnMachineFunction(fn);
3920 
3921   // Join (coalesce) intervals if requested.
3922   if (EnableJoining)
3923     joinAllIntervals();
3924 
3925   // After deleting a lot of copies, register classes may be less constrained.
3926   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3927   // DPR inflation.
3928   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
3929   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
3930                     InflateRegs.end());
3931   LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
3932                     << " regs.\n");
3933   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
3934     unsigned Reg = InflateRegs[i];
3935     if (MRI->reg_nodbg_empty(Reg))
3936       continue;
3937     if (MRI->recomputeRegClass(Reg)) {
3938       LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
3939                         << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
3940       ++NumInflated;
3941 
3942       LiveInterval &LI = LIS->getInterval(Reg);
3943       if (LI.hasSubRanges()) {
3944         // If the inflated register class does not support subregisters anymore
3945         // remove the subranges.
3946         if (!MRI->shouldTrackSubRegLiveness(Reg)) {
3947           LI.clearSubRanges();
3948         } else {
3949 #ifndef NDEBUG
3950           LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3951           // If subranges are still supported, then the same subregs
3952           // should still be supported.
3953           for (LiveInterval::SubRange &S : LI.subranges()) {
3954             assert((S.LaneMask & ~MaxMask).none());
3955           }
3956 #endif
3957         }
3958       }
3959     }
3960   }
3961 
3962   LLVM_DEBUG(dump());
3963   if (VerifyCoalescing)
3964     MF->verify(this, "After register coalescing");
3965   return true;
3966 }
3967 
3968 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3969    LIS->print(O, m);
3970 }
3971