1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic RegisterCoalescer interface which 11 // is used as the common interface used by all clients and 12 // implementations of register coalescing. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "RegisterCoalescer.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/LiveRangeEdit.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineLoopInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/CodeGen/RegisterClassInfo.h" 29 #include "llvm/CodeGen/VirtRegMap.h" 30 #include "llvm/IR/Value.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetSubtargetInfo.h" 40 #include <algorithm> 41 #include <cmath> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "regalloc" 45 46 STATISTIC(numJoins , "Number of interval joins performed"); 47 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 48 STATISTIC(numCommutes , "Number of instruction commuting performed"); 49 STATISTIC(numExtends , "Number of copies extended"); 50 STATISTIC(NumReMats , "Number of instructions re-materialized"); 51 STATISTIC(NumInflated , "Number of register classes inflated"); 52 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 53 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 54 55 static cl::opt<bool> 56 EnableJoining("join-liveintervals", 57 cl::desc("Coalesce copies (default=true)"), 58 cl::init(true)); 59 60 static cl::opt<bool> UseTerminalRule("terminal-rule", 61 cl::desc("Apply the terminal rule"), 62 cl::init(false), cl::Hidden); 63 64 /// Temporary flag to test critical edge unsplitting. 65 static cl::opt<bool> 66 EnableJoinSplits("join-splitedges", 67 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 68 69 /// Temporary flag to test global copy optimization. 70 static cl::opt<cl::boolOrDefault> 71 EnableGlobalCopies("join-globalcopies", 72 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 73 cl::init(cl::BOU_UNSET), cl::Hidden); 74 75 static cl::opt<bool> 76 VerifyCoalescing("verify-coalescing", 77 cl::desc("Verify machine instrs before and after register coalescing"), 78 cl::Hidden); 79 80 namespace { 81 class RegisterCoalescer : public MachineFunctionPass, 82 private LiveRangeEdit::Delegate { 83 MachineFunction* MF; 84 MachineRegisterInfo* MRI; 85 const TargetMachine* TM; 86 const TargetRegisterInfo* TRI; 87 const TargetInstrInfo* TII; 88 LiveIntervals *LIS; 89 const MachineLoopInfo* Loops; 90 AliasAnalysis *AA; 91 RegisterClassInfo RegClassInfo; 92 93 /// A LaneMask to remember on which subregister live ranges we need to call 94 /// shrinkToUses() later. 95 LaneBitmask ShrinkMask; 96 97 /// True if the main range of the currently coalesced intervals should be 98 /// checked for smaller live intervals. 99 bool ShrinkMainRange; 100 101 /// \brief True if the coalescer should aggressively coalesce global copies 102 /// in favor of keeping local copies. 103 bool JoinGlobalCopies; 104 105 /// \brief True if the coalescer should aggressively coalesce fall-thru 106 /// blocks exclusively containing copies. 107 bool JoinSplitEdges; 108 109 /// Copy instructions yet to be coalesced. 110 SmallVector<MachineInstr*, 8> WorkList; 111 SmallVector<MachineInstr*, 8> LocalWorkList; 112 113 /// Set of instruction pointers that have been erased, and 114 /// that may be present in WorkList. 115 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 116 117 /// Dead instructions that are about to be deleted. 118 SmallVector<MachineInstr*, 8> DeadDefs; 119 120 /// Virtual registers to be considered for register class inflation. 121 SmallVector<unsigned, 8> InflateRegs; 122 123 /// Recursively eliminate dead defs in DeadDefs. 124 void eliminateDeadDefs(); 125 126 /// LiveRangeEdit callback for eliminateDeadDefs(). 127 void LRE_WillEraseInstruction(MachineInstr *MI) override; 128 129 /// Coalesce the LocalWorkList. 130 void coalesceLocals(); 131 132 /// Join compatible live intervals 133 void joinAllIntervals(); 134 135 /// Coalesce copies in the specified MBB, putting 136 /// copies that cannot yet be coalesced into WorkList. 137 void copyCoalesceInMBB(MachineBasicBlock *MBB); 138 139 /// Tries to coalesce all copies in CurrList. Returns true if any progress 140 /// was made. 141 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 142 143 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 144 /// src/dst of the copy instruction CopyMI. This returns true if the copy 145 /// was successfully coalesced away. If it is not currently possible to 146 /// coalesce this interval, but it may be possible if other things get 147 /// coalesced, then it returns true by reference in 'Again'. 148 bool joinCopy(MachineInstr *TheCopy, bool &Again); 149 150 /// Attempt to join these two intervals. On failure, this 151 /// returns false. The output "SrcInt" will not have been modified, so we 152 /// can use this information below to update aliases. 153 bool joinIntervals(CoalescerPair &CP); 154 155 /// Attempt joining two virtual registers. Return true on success. 156 bool joinVirtRegs(CoalescerPair &CP); 157 158 /// Attempt joining with a reserved physreg. 159 bool joinReservedPhysReg(CoalescerPair &CP); 160 161 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 162 /// Subranges in @p LI which only partially interfere with the desired 163 /// LaneMask are split as necessary. @p LaneMask are the lanes that 164 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 165 /// lanemasks already adjusted to the coalesced register. 166 /// @returns false if live range conflicts couldn't get resolved. 167 bool mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 168 LaneBitmask LaneMask, CoalescerPair &CP); 169 170 /// Join the liveranges of two subregisters. Joins @p RRange into 171 /// @p LRange, @p RRange may be invalid afterwards. 172 /// @returns false if live range conflicts couldn't get resolved. 173 bool joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 174 LaneBitmask LaneMask, const CoalescerPair &CP); 175 176 /// We found a non-trivially-coalescable copy. If the source value number is 177 /// defined by a copy from the destination reg see if we can merge these two 178 /// destination reg valno# into a single value number, eliminating a copy. 179 /// This returns true if an interval was modified. 180 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 181 182 /// Return true if there are definitions of IntB 183 /// other than BValNo val# that can reach uses of AValno val# of IntA. 184 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 185 VNInfo *AValNo, VNInfo *BValNo); 186 187 /// We found a non-trivially-coalescable copy. 188 /// If the source value number is defined by a commutable instruction and 189 /// its other operand is coalesced to the copy dest register, see if we 190 /// can transform the copy into a noop by commuting the definition. 191 /// This returns true if an interval was modified. 192 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); 193 194 /// If the source of a copy is defined by a 195 /// trivial computation, replace the copy by rematerialize the definition. 196 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 197 bool &IsDefCopy); 198 199 /// Return true if a copy involving a physreg should be joined. 200 bool canJoinPhys(const CoalescerPair &CP); 201 202 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 203 /// number if it is not zero. If DstReg is a physical register and the 204 /// existing subregister number of the def / use being updated is not zero, 205 /// make sure to set it to the correct physical subregister. 206 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 207 208 /// Handle copies of undef values. 209 /// Returns true if @p CopyMI was a copy of an undef value and eliminated. 210 bool eliminateUndefCopy(MachineInstr *CopyMI); 211 212 /// Check whether or not we should apply the terminal rule on the 213 /// destination (Dst) of \p Copy. 214 /// When the terminal rule applies, Copy is not profitable to 215 /// coalesce. 216 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 217 /// at least one interference (Dst, Dst2). If Dst is terminal, the 218 /// terminal rule consists in checking that at least one of 219 /// interfering node, say Dst2, has an affinity of equal or greater 220 /// weight with Src. 221 /// In that case, Dst2 and Dst will not be able to be both coalesced 222 /// with Src. Since Dst2 exposes more coalescing opportunities than 223 /// Dst, we can drop \p Copy. 224 bool applyTerminalRule(const MachineInstr &Copy) const; 225 226 /// Wrapper method for \see LiveIntervals::shrinkToUses. 227 /// This method does the proper fixing of the live-ranges when the afore 228 /// mentioned method returns true. 229 void shrinkToUses(LiveInterval *LI, 230 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 231 if (LIS->shrinkToUses(LI, Dead)) { 232 /// Check whether or not \p LI is composed by multiple connected 233 /// components and if that is the case, fix that. 234 SmallVector<LiveInterval*, 8> SplitLIs; 235 LIS->splitSeparateComponents(*LI, SplitLIs); 236 } 237 } 238 239 public: 240 static char ID; ///< Class identification, replacement for typeinfo 241 RegisterCoalescer() : MachineFunctionPass(ID) { 242 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 243 } 244 245 void getAnalysisUsage(AnalysisUsage &AU) const override; 246 247 void releaseMemory() override; 248 249 /// This is the pass entry point. 250 bool runOnMachineFunction(MachineFunction&) override; 251 252 /// Implement the dump method. 253 void print(raw_ostream &O, const Module* = nullptr) const override; 254 }; 255 } // end anonymous namespace 256 257 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 258 259 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 260 "Simple Register Coalescing", false, false) 261 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 262 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 263 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 264 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 265 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 266 "Simple Register Coalescing", false, false) 267 268 char RegisterCoalescer::ID = 0; 269 270 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 271 unsigned &Src, unsigned &Dst, 272 unsigned &SrcSub, unsigned &DstSub) { 273 if (MI->isCopy()) { 274 Dst = MI->getOperand(0).getReg(); 275 DstSub = MI->getOperand(0).getSubReg(); 276 Src = MI->getOperand(1).getReg(); 277 SrcSub = MI->getOperand(1).getSubReg(); 278 } else if (MI->isSubregToReg()) { 279 Dst = MI->getOperand(0).getReg(); 280 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 281 MI->getOperand(3).getImm()); 282 Src = MI->getOperand(2).getReg(); 283 SrcSub = MI->getOperand(2).getSubReg(); 284 } else 285 return false; 286 return true; 287 } 288 289 /// Return true if this block should be vacated by the coalescer to eliminate 290 /// branches. The important cases to handle in the coalescer are critical edges 291 /// split during phi elimination which contain only copies. Simple blocks that 292 /// contain non-branches should also be vacated, but this can be handled by an 293 /// earlier pass similar to early if-conversion. 294 static bool isSplitEdge(const MachineBasicBlock *MBB) { 295 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 296 return false; 297 298 for (const auto &MI : *MBB) { 299 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 300 return false; 301 } 302 return true; 303 } 304 305 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 306 SrcReg = DstReg = 0; 307 SrcIdx = DstIdx = 0; 308 NewRC = nullptr; 309 Flipped = CrossClass = false; 310 311 unsigned Src, Dst, SrcSub, DstSub; 312 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 313 return false; 314 Partial = SrcSub || DstSub; 315 316 // If one register is a physreg, it must be Dst. 317 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 318 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 319 return false; 320 std::swap(Src, Dst); 321 std::swap(SrcSub, DstSub); 322 Flipped = true; 323 } 324 325 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 326 327 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 328 // Eliminate DstSub on a physreg. 329 if (DstSub) { 330 Dst = TRI.getSubReg(Dst, DstSub); 331 if (!Dst) return false; 332 DstSub = 0; 333 } 334 335 // Eliminate SrcSub by picking a corresponding Dst superregister. 336 if (SrcSub) { 337 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 338 if (!Dst) return false; 339 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 340 return false; 341 } 342 } else { 343 // Both registers are virtual. 344 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 345 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 346 347 // Both registers have subreg indices. 348 if (SrcSub && DstSub) { 349 // Copies between different sub-registers are never coalescable. 350 if (Src == Dst && SrcSub != DstSub) 351 return false; 352 353 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 354 SrcIdx, DstIdx); 355 if (!NewRC) 356 return false; 357 } else if (DstSub) { 358 // SrcReg will be merged with a sub-register of DstReg. 359 SrcIdx = DstSub; 360 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 361 } else if (SrcSub) { 362 // DstReg will be merged with a sub-register of SrcReg. 363 DstIdx = SrcSub; 364 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 365 } else { 366 // This is a straight copy without sub-registers. 367 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 368 } 369 370 // The combined constraint may be impossible to satisfy. 371 if (!NewRC) 372 return false; 373 374 // Prefer SrcReg to be a sub-register of DstReg. 375 // FIXME: Coalescer should support subregs symmetrically. 376 if (DstIdx && !SrcIdx) { 377 std::swap(Src, Dst); 378 std::swap(SrcIdx, DstIdx); 379 Flipped = !Flipped; 380 } 381 382 CrossClass = NewRC != DstRC || NewRC != SrcRC; 383 } 384 // Check our invariants 385 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 386 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 387 "Cannot have a physical SubIdx"); 388 SrcReg = Src; 389 DstReg = Dst; 390 return true; 391 } 392 393 bool CoalescerPair::flip() { 394 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 395 return false; 396 std::swap(SrcReg, DstReg); 397 std::swap(SrcIdx, DstIdx); 398 Flipped = !Flipped; 399 return true; 400 } 401 402 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 403 if (!MI) 404 return false; 405 unsigned Src, Dst, SrcSub, DstSub; 406 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 407 return false; 408 409 // Find the virtual register that is SrcReg. 410 if (Dst == SrcReg) { 411 std::swap(Src, Dst); 412 std::swap(SrcSub, DstSub); 413 } else if (Src != SrcReg) { 414 return false; 415 } 416 417 // Now check that Dst matches DstReg. 418 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 419 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 420 return false; 421 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 422 // DstSub could be set for a physreg from INSERT_SUBREG. 423 if (DstSub) 424 Dst = TRI.getSubReg(Dst, DstSub); 425 // Full copy of Src. 426 if (!SrcSub) 427 return DstReg == Dst; 428 // This is a partial register copy. Check that the parts match. 429 return TRI.getSubReg(DstReg, SrcSub) == Dst; 430 } else { 431 // DstReg is virtual. 432 if (DstReg != Dst) 433 return false; 434 // Registers match, do the subregisters line up? 435 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 436 TRI.composeSubRegIndices(DstIdx, DstSub); 437 } 438 } 439 440 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 441 AU.setPreservesCFG(); 442 AU.addRequired<AAResultsWrapperPass>(); 443 AU.addRequired<LiveIntervals>(); 444 AU.addPreserved<LiveIntervals>(); 445 AU.addPreserved<SlotIndexes>(); 446 AU.addRequired<MachineLoopInfo>(); 447 AU.addPreserved<MachineLoopInfo>(); 448 AU.addPreservedID(MachineDominatorsID); 449 MachineFunctionPass::getAnalysisUsage(AU); 450 } 451 452 void RegisterCoalescer::eliminateDeadDefs() { 453 SmallVector<unsigned, 8> NewRegs; 454 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 455 nullptr, this).eliminateDeadDefs(DeadDefs); 456 } 457 458 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 459 // MI may be in WorkList. Make sure we don't visit it. 460 ErasedInstrs.insert(MI); 461 } 462 463 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 464 MachineInstr *CopyMI) { 465 assert(!CP.isPartial() && "This doesn't work for partial copies."); 466 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 467 468 LiveInterval &IntA = 469 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 470 LiveInterval &IntB = 471 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 472 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 473 474 // We have a non-trivially-coalescable copy with IntA being the source and 475 // IntB being the dest, thus this defines a value number in IntB. If the 476 // source value number (in IntA) is defined by a copy from B, see if we can 477 // merge these two pieces of B into a single value number, eliminating a copy. 478 // For example: 479 // 480 // A3 = B0 481 // ... 482 // B1 = A3 <- this copy 483 // 484 // In this case, B0 can be extended to where the B1 copy lives, allowing the 485 // B1 value number to be replaced with B0 (which simplifies the B 486 // liveinterval). 487 488 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 489 // the example above. 490 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 491 if (BS == IntB.end()) return false; 492 VNInfo *BValNo = BS->valno; 493 494 // Get the location that B is defined at. Two options: either this value has 495 // an unknown definition point or it is defined at CopyIdx. If unknown, we 496 // can't process it. 497 if (BValNo->def != CopyIdx) return false; 498 499 // AValNo is the value number in A that defines the copy, A3 in the example. 500 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 501 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 502 // The live segment might not exist after fun with physreg coalescing. 503 if (AS == IntA.end()) return false; 504 VNInfo *AValNo = AS->valno; 505 506 // If AValNo is defined as a copy from IntB, we can potentially process this. 507 // Get the instruction that defines this value number. 508 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 509 // Don't allow any partial copies, even if isCoalescable() allows them. 510 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 511 return false; 512 513 // Get the Segment in IntB that this value number starts with. 514 LiveInterval::iterator ValS = 515 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 516 if (ValS == IntB.end()) 517 return false; 518 519 // Make sure that the end of the live segment is inside the same block as 520 // CopyMI. 521 MachineInstr *ValSEndInst = 522 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 523 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 524 return false; 525 526 // Okay, we now know that ValS ends in the same block that the CopyMI 527 // live-range starts. If there are no intervening live segments between them 528 // in IntB, we can merge them. 529 if (ValS+1 != BS) return false; 530 531 DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI)); 532 533 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 534 // We are about to delete CopyMI, so need to remove it as the 'instruction 535 // that defines this value #'. Update the valnum with the new defining 536 // instruction #. 537 BValNo->def = FillerStart; 538 539 // Okay, we can merge them. We need to insert a new liverange: 540 // [ValS.end, BS.begin) of either value number, then we merge the 541 // two value numbers. 542 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 543 544 // Okay, merge "B1" into the same value number as "B0". 545 if (BValNo != ValS->valno) 546 IntB.MergeValueNumberInto(BValNo, ValS->valno); 547 548 // Do the same for the subregister segments. 549 for (LiveInterval::SubRange &S : IntB.subranges()) { 550 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 551 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 552 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 553 if (SubBValNo != SubValSNo) 554 S.MergeValueNumberInto(SubBValNo, SubValSNo); 555 } 556 557 DEBUG(dbgs() << " result = " << IntB << '\n'); 558 559 // If the source instruction was killing the source register before the 560 // merge, unset the isKill marker given the live range has been extended. 561 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 562 if (UIdx != -1) { 563 ValSEndInst->getOperand(UIdx).setIsKill(false); 564 } 565 566 // Rewrite the copy. If the copy instruction was killing the destination 567 // register before the merge, find the last use and trim the live range. That 568 // will also add the isKill marker. 569 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 570 if (AS->end == CopyIdx) 571 shrinkToUses(&IntA); 572 573 ++numExtends; 574 return true; 575 } 576 577 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 578 LiveInterval &IntB, 579 VNInfo *AValNo, 580 VNInfo *BValNo) { 581 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 582 // the PHI values. 583 if (LIS->hasPHIKill(IntA, AValNo)) 584 return true; 585 586 for (LiveRange::Segment &ASeg : IntA.segments) { 587 if (ASeg.valno != AValNo) continue; 588 LiveInterval::iterator BI = 589 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start); 590 if (BI != IntB.begin()) 591 --BI; 592 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 593 if (BI->valno == BValNo) 594 continue; 595 if (BI->start <= ASeg.start && BI->end > ASeg.start) 596 return true; 597 if (BI->start > ASeg.start && BI->start < ASeg.end) 598 return true; 599 } 600 } 601 return false; 602 } 603 604 /// Copy segements with value number @p SrcValNo from liverange @p Src to live 605 /// range @Dst and use value number @p DstValNo there. 606 static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, 607 const LiveRange &Src, const VNInfo *SrcValNo) 608 { 609 for (const LiveRange::Segment &S : Src.segments) { 610 if (S.valno != SrcValNo) 611 continue; 612 Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo)); 613 } 614 } 615 616 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 617 MachineInstr *CopyMI) { 618 assert(!CP.isPhys()); 619 620 LiveInterval &IntA = 621 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 622 LiveInterval &IntB = 623 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 624 625 // We found a non-trivially-coalescable copy with IntA being the source and 626 // IntB being the dest, thus this defines a value number in IntB. If the 627 // source value number (in IntA) is defined by a commutable instruction and 628 // its other operand is coalesced to the copy dest register, see if we can 629 // transform the copy into a noop by commuting the definition. For example, 630 // 631 // A3 = op A2 B0<kill> 632 // ... 633 // B1 = A3 <- this copy 634 // ... 635 // = op A3 <- more uses 636 // 637 // ==> 638 // 639 // B2 = op B0 A2<kill> 640 // ... 641 // B1 = B2 <- now an identity copy 642 // ... 643 // = op B2 <- more uses 644 645 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 646 // the example above. 647 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 648 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 649 assert(BValNo != nullptr && BValNo->def == CopyIdx); 650 651 // AValNo is the value number in A that defines the copy, A3 in the example. 652 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 653 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 654 if (AValNo->isPHIDef()) 655 return false; 656 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 657 if (!DefMI) 658 return false; 659 if (!DefMI->isCommutable()) 660 return false; 661 // If DefMI is a two-address instruction then commuting it will change the 662 // destination register. 663 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 664 assert(DefIdx != -1); 665 unsigned UseOpIdx; 666 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 667 return false; 668 669 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 670 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 671 // passed to the method. That _other_ operand is chosen by 672 // the findCommutedOpIndices() method. 673 // 674 // That is obviously an area for improvement in case of instructions having 675 // more than 2 operands. For example, if some instruction has 3 commutable 676 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 677 // op#2<->op#3) of commute transformation should be considered/tried here. 678 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 679 if (!TII->findCommutedOpIndices(DefMI, UseOpIdx, NewDstIdx)) 680 return false; 681 682 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 683 unsigned NewReg = NewDstMO.getReg(); 684 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 685 return false; 686 687 // Make sure there are no other definitions of IntB that would reach the 688 // uses which the new definition can reach. 689 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 690 return false; 691 692 // If some of the uses of IntA.reg is already coalesced away, return false. 693 // It's not possible to determine whether it's safe to perform the coalescing. 694 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 695 MachineInstr *UseMI = MO.getParent(); 696 unsigned OpNo = &MO - &UseMI->getOperand(0); 697 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI); 698 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 699 if (US == IntA.end() || US->valno != AValNo) 700 continue; 701 // If this use is tied to a def, we can't rewrite the register. 702 if (UseMI->isRegTiedToDefOperand(OpNo)) 703 return false; 704 } 705 706 DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 707 << *DefMI); 708 709 // At this point we have decided that it is legal to do this 710 // transformation. Start by commuting the instruction. 711 MachineBasicBlock *MBB = DefMI->getParent(); 712 MachineInstr *NewMI = 713 TII->commuteInstruction(DefMI, false, UseOpIdx, NewDstIdx); 714 if (!NewMI) 715 return false; 716 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 717 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 718 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 719 return false; 720 if (NewMI != DefMI) { 721 LIS->ReplaceMachineInstrInMaps(DefMI, NewMI); 722 MachineBasicBlock::iterator Pos = DefMI; 723 MBB->insert(Pos, NewMI); 724 MBB->erase(DefMI); 725 } 726 727 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 728 // A = or A, B 729 // ... 730 // B = A 731 // ... 732 // C = A<kill> 733 // ... 734 // = B 735 736 // Update uses of IntA of the specific Val# with IntB. 737 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 738 UE = MRI->use_end(); 739 UI != UE; /* ++UI is below because of possible MI removal */) { 740 MachineOperand &UseMO = *UI; 741 ++UI; 742 if (UseMO.isUndef()) 743 continue; 744 MachineInstr *UseMI = UseMO.getParent(); 745 if (UseMI->isDebugValue()) { 746 // FIXME These don't have an instruction index. Not clear we have enough 747 // info to decide whether to do this replacement or not. For now do it. 748 UseMO.setReg(NewReg); 749 continue; 750 } 751 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true); 752 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 753 assert(US != IntA.end() && "Use must be live"); 754 if (US->valno != AValNo) 755 continue; 756 // Kill flags are no longer accurate. They are recomputed after RA. 757 UseMO.setIsKill(false); 758 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 759 UseMO.substPhysReg(NewReg, *TRI); 760 else 761 UseMO.setReg(NewReg); 762 if (UseMI == CopyMI) 763 continue; 764 if (!UseMI->isCopy()) 765 continue; 766 if (UseMI->getOperand(0).getReg() != IntB.reg || 767 UseMI->getOperand(0).getSubReg()) 768 continue; 769 770 // This copy will become a noop. If it's defining a new val#, merge it into 771 // BValNo. 772 SlotIndex DefIdx = UseIdx.getRegSlot(); 773 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 774 if (!DVNI) 775 continue; 776 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 777 assert(DVNI->def == DefIdx); 778 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 779 for (LiveInterval::SubRange &S : IntB.subranges()) { 780 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 781 if (!SubDVNI) 782 continue; 783 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 784 assert(SubBValNo->def == CopyIdx); 785 S.MergeValueNumberInto(SubDVNI, SubBValNo); 786 } 787 788 ErasedInstrs.insert(UseMI); 789 LIS->RemoveMachineInstrFromMaps(UseMI); 790 UseMI->eraseFromParent(); 791 } 792 793 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 794 // is updated. 795 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 796 if (IntB.hasSubRanges()) { 797 if (!IntA.hasSubRanges()) { 798 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 799 IntA.createSubRangeFrom(Allocator, Mask, IntA); 800 } 801 SlotIndex AIdx = CopyIdx.getRegSlot(true); 802 for (LiveInterval::SubRange &SA : IntA.subranges()) { 803 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 804 assert(ASubValNo != nullptr); 805 806 LaneBitmask AMask = SA.LaneMask; 807 for (LiveInterval::SubRange &SB : IntB.subranges()) { 808 LaneBitmask BMask = SB.LaneMask; 809 LaneBitmask Common = BMask & AMask; 810 if (Common == 0) 811 continue; 812 813 DEBUG( dbgs() << "\t\tCopy_Merge " << PrintLaneMask(BMask) 814 << " into " << PrintLaneMask(Common) << '\n'); 815 LaneBitmask BRest = BMask & ~AMask; 816 LiveInterval::SubRange *CommonRange; 817 if (BRest != 0) { 818 SB.LaneMask = BRest; 819 DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(BRest) 820 << '\n'); 821 // Duplicate SubRange for newly merged common stuff. 822 CommonRange = IntB.createSubRangeFrom(Allocator, Common, SB); 823 } else { 824 // We van reuse the L SubRange. 825 SB.LaneMask = Common; 826 CommonRange = &SB; 827 } 828 LiveRange RangeCopy(SB, Allocator); 829 830 VNInfo *BSubValNo = CommonRange->getVNInfoAt(CopyIdx); 831 assert(BSubValNo->def == CopyIdx); 832 BSubValNo->def = ASubValNo->def; 833 addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo); 834 AMask &= ~BMask; 835 } 836 if (AMask != 0) { 837 DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(AMask) << '\n'); 838 LiveRange *NewRange = IntB.createSubRange(Allocator, AMask); 839 VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator); 840 addSegmentsWithValNo(*NewRange, BSubValNo, SA, ASubValNo); 841 } 842 } 843 } 844 845 BValNo->def = AValNo->def; 846 addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 847 DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 848 849 LIS->removeVRegDefAt(IntA, AValNo->def); 850 851 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 852 ++numCommutes; 853 return true; 854 } 855 856 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 857 /// defining a subregister. 858 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 859 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && 860 "This code cannot handle physreg aliasing"); 861 for (const MachineOperand &Op : MI.operands()) { 862 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 863 continue; 864 // Return true if we define the full register or don't care about the value 865 // inside other subregisters. 866 if (Op.getSubReg() == 0 || Op.isUndef()) 867 return true; 868 } 869 return false; 870 } 871 872 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 873 MachineInstr *CopyMI, 874 bool &IsDefCopy) { 875 IsDefCopy = false; 876 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 877 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 878 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 879 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 880 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 881 return false; 882 883 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 884 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI); 885 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 886 assert(ValNo && "CopyMI input register not live"); 887 if (ValNo->isPHIDef() || ValNo->isUnused()) 888 return false; 889 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 890 if (!DefMI) 891 return false; 892 if (DefMI->isCopyLike()) { 893 IsDefCopy = true; 894 return false; 895 } 896 if (!TII->isAsCheapAsAMove(DefMI)) 897 return false; 898 if (!TII->isTriviallyReMaterializable(DefMI, AA)) 899 return false; 900 if (!definesFullReg(*DefMI, SrcReg)) 901 return false; 902 bool SawStore = false; 903 if (!DefMI->isSafeToMove(AA, SawStore)) 904 return false; 905 const MCInstrDesc &MCID = DefMI->getDesc(); 906 if (MCID.getNumDefs() != 1) 907 return false; 908 // Only support subregister destinations when the def is read-undef. 909 MachineOperand &DstOperand = CopyMI->getOperand(0); 910 unsigned CopyDstReg = DstOperand.getReg(); 911 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 912 return false; 913 914 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 915 // the register substantially (beyond both source and dest size). This is bad 916 // for performance since it can cascade through a function, introducing many 917 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 918 // around after a few subreg copies). 919 if (SrcIdx && DstIdx) 920 return false; 921 922 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 923 if (!DefMI->isImplicitDef()) { 924 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 925 unsigned NewDstReg = DstReg; 926 927 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 928 DefMI->getOperand(0).getSubReg()); 929 if (NewDstIdx) 930 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 931 932 // Finally, make sure that the physical subregister that will be 933 // constructed later is permitted for the instruction. 934 if (!DefRC->contains(NewDstReg)) 935 return false; 936 } else { 937 // Theoretically, some stack frame reference could exist. Just make sure 938 // it hasn't actually happened. 939 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 940 "Only expect to deal with virtual or physical registers"); 941 } 942 } 943 944 MachineBasicBlock *MBB = CopyMI->getParent(); 945 MachineBasicBlock::iterator MII = 946 std::next(MachineBasicBlock::iterator(CopyMI)); 947 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI); 948 MachineInstr *NewMI = std::prev(MII); 949 950 // In a situation like the following: 951 // %vreg0:subreg = instr ; DefMI, subreg = DstIdx 952 // %vreg1 = copy %vreg0:subreg ; CopyMI, SrcIdx = 0 953 // instead of widening %vreg1 to the register class of %vreg0 simply do: 954 // %vreg1 = instr 955 const TargetRegisterClass *NewRC = CP.getNewRC(); 956 if (DstIdx != 0) { 957 MachineOperand &DefMO = NewMI->getOperand(0); 958 if (DefMO.getSubReg() == DstIdx) { 959 assert(SrcIdx == 0 && CP.isFlipped() 960 && "Shouldn't have SrcIdx+DstIdx at this point"); 961 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 962 const TargetRegisterClass *CommonRC = 963 TRI->getCommonSubClass(DefRC, DstRC); 964 if (CommonRC != nullptr) { 965 NewRC = CommonRC; 966 DstIdx = 0; 967 DefMO.setSubReg(0); 968 } 969 } 970 } 971 972 LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI); 973 CopyMI->eraseFromParent(); 974 ErasedInstrs.insert(CopyMI); 975 976 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 977 // We need to remember these so we can add intervals once we insert 978 // NewMI into SlotIndexes. 979 SmallVector<unsigned, 4> NewMIImplDefs; 980 for (unsigned i = NewMI->getDesc().getNumOperands(), 981 e = NewMI->getNumOperands(); i != e; ++i) { 982 MachineOperand &MO = NewMI->getOperand(i); 983 if (MO.isReg() && MO.isDef()) { 984 assert(MO.isImplicit() && MO.isDead() && 985 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 986 NewMIImplDefs.push_back(MO.getReg()); 987 } 988 } 989 990 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 991 unsigned NewIdx = NewMI->getOperand(0).getSubReg(); 992 993 if (DefRC != nullptr) { 994 if (NewIdx) 995 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 996 else 997 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 998 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 999 } 1000 MRI->setRegClass(DstReg, NewRC); 1001 1002 updateRegDefsUses(DstReg, DstReg, DstIdx); 1003 NewMI->getOperand(0).setSubReg(NewIdx); 1004 } else if (NewMI->getOperand(0).getReg() != CopyDstReg) { 1005 // The New instruction may be defining a sub-register of what's actually 1006 // been asked for. If so it must implicitly define the whole thing. 1007 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 1008 "Only expect virtual or physical registers in remat"); 1009 NewMI->getOperand(0).setIsDead(true); 1010 NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg, 1011 true /*IsDef*/, 1012 true /*IsImp*/, 1013 false /*IsKill*/)); 1014 // Record small dead def live-ranges for all the subregisters 1015 // of the destination register. 1016 // Otherwise, variables that live through may miss some 1017 // interferences, thus creating invalid allocation. 1018 // E.g., i386 code: 1019 // vreg1 = somedef ; vreg1 GR8 1020 // vreg2 = remat ; vreg2 GR32 1021 // CL = COPY vreg2.sub_8bit 1022 // = somedef vreg1 ; vreg1 GR8 1023 // => 1024 // vreg1 = somedef ; vreg1 GR8 1025 // ECX<def, dead> = remat ; CL<imp-def> 1026 // = somedef vreg1 ; vreg1 GR8 1027 // vreg1 will see the inteferences with CL but not with CH since 1028 // no live-ranges would have been created for ECX. 1029 // Fix that! 1030 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1031 for (MCRegUnitIterator Units(NewMI->getOperand(0).getReg(), TRI); 1032 Units.isValid(); ++Units) 1033 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1034 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1035 } 1036 1037 if (NewMI->getOperand(0).getSubReg()) 1038 NewMI->getOperand(0).setIsUndef(); 1039 1040 // CopyMI may have implicit operands, transfer them over to the newly 1041 // rematerialized instruction. And update implicit def interval valnos. 1042 for (unsigned i = CopyMI->getDesc().getNumOperands(), 1043 e = CopyMI->getNumOperands(); i != e; ++i) { 1044 MachineOperand &MO = CopyMI->getOperand(i); 1045 if (MO.isReg()) { 1046 assert(MO.isImplicit() && "No explicit operands after implict operands."); 1047 // Discard VReg implicit defs. 1048 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 1049 NewMI->addOperand(MO); 1050 } 1051 } 1052 } 1053 1054 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1055 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1056 unsigned Reg = NewMIImplDefs[i]; 1057 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1058 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1059 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1060 } 1061 1062 DEBUG(dbgs() << "Remat: " << *NewMI); 1063 ++NumReMats; 1064 1065 // The source interval can become smaller because we removed a use. 1066 shrinkToUses(&SrcInt, &DeadDefs); 1067 if (!DeadDefs.empty()) { 1068 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1069 // to describe DstReg instead. 1070 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1071 MachineInstr *UseMI = UseMO.getParent(); 1072 if (UseMI->isDebugValue()) { 1073 UseMO.setReg(DstReg); 1074 DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1075 } 1076 } 1077 eliminateDeadDefs(); 1078 } 1079 1080 return true; 1081 } 1082 1083 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1084 // ProcessImpicitDefs may leave some copies of <undef> values, it only removes 1085 // local variables. When we have a copy like: 1086 // 1087 // %vreg1 = COPY %vreg2<undef> 1088 // 1089 // We delete the copy and remove the corresponding value number from %vreg1. 1090 // Any uses of that value number are marked as <undef>. 1091 1092 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1093 // CoalescerPair may have a new register class with adjusted subreg indices 1094 // at this point. 1095 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1096 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx); 1097 1098 SlotIndex Idx = LIS->getInstructionIndex(CopyMI); 1099 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1100 // CopyMI is undef iff SrcReg is not live before the instruction. 1101 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1102 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1103 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1104 if ((SR.LaneMask & SrcMask) == 0) 1105 continue; 1106 if (SR.liveAt(Idx)) 1107 return false; 1108 } 1109 } else if (SrcLI.liveAt(Idx)) 1110 return false; 1111 1112 DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1113 1114 // Remove any DstReg segments starting at the instruction. 1115 LiveInterval &DstLI = LIS->getInterval(DstReg); 1116 SlotIndex RegIndex = Idx.getRegSlot(); 1117 // Remove value or merge with previous one in case of a subregister def. 1118 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1119 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1120 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1121 1122 // The affected subregister segments can be removed. 1123 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1124 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1125 if ((SR.LaneMask & DstMask) == 0) 1126 continue; 1127 1128 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1129 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1130 SR.removeValNo(SVNI); 1131 } 1132 DstLI.removeEmptySubRanges(); 1133 } else 1134 LIS->removeVRegDefAt(DstLI, RegIndex); 1135 1136 // Mark uses as undef. 1137 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1138 if (MO.isDef() /*|| MO.isUndef()*/) 1139 continue; 1140 const MachineInstr &MI = *MO.getParent(); 1141 SlotIndex UseIdx = LIS->getInstructionIndex(&MI); 1142 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1143 bool isLive; 1144 if (UseMask != ~0u && DstLI.hasSubRanges()) { 1145 isLive = false; 1146 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1147 if ((SR.LaneMask & UseMask) == 0) 1148 continue; 1149 if (SR.liveAt(UseIdx)) { 1150 isLive = true; 1151 break; 1152 } 1153 } 1154 } else 1155 isLive = DstLI.liveAt(UseIdx); 1156 if (isLive) 1157 continue; 1158 MO.setIsUndef(true); 1159 DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1160 } 1161 return true; 1162 } 1163 1164 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 1165 unsigned DstReg, 1166 unsigned SubIdx) { 1167 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 1168 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1169 1170 SmallPtrSet<MachineInstr*, 8> Visited; 1171 for (MachineRegisterInfo::reg_instr_iterator 1172 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1173 I != E; ) { 1174 MachineInstr *UseMI = &*(I++); 1175 1176 // Each instruction can only be rewritten once because sub-register 1177 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1178 // the UseMI operands removes them from the SrcReg use-def chain, but when 1179 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1180 // operands mentioning the virtual register. 1181 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1182 continue; 1183 1184 SmallVector<unsigned,8> Ops; 1185 bool Reads, Writes; 1186 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1187 1188 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1189 // because SrcReg is a sub-register. 1190 if (DstInt && !Reads && SubIdx) 1191 Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI)); 1192 1193 // Replace SrcReg with DstReg in all UseMI operands. 1194 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1195 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1196 1197 // Adjust <undef> flags in case of sub-register joins. We don't want to 1198 // turn a full def into a read-modify-write sub-register def and vice 1199 // versa. 1200 if (SubIdx && MO.isDef()) 1201 MO.setIsUndef(!Reads); 1202 1203 // A subreg use of a partially undef (super) register may be a complete 1204 // undef use now and then has to be marked that way. 1205 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1206 if (!DstInt->hasSubRanges()) { 1207 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1208 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1209 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1210 } 1211 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubIdx); 1212 bool IsUndef = true; 1213 SlotIndex MIIdx = UseMI->isDebugValue() 1214 ? LIS->getSlotIndexes()->getIndexBefore(UseMI) 1215 : LIS->getInstructionIndex(UseMI); 1216 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1217 for (LiveInterval::SubRange &S : DstInt->subranges()) { 1218 if ((S.LaneMask & Mask) == 0) 1219 continue; 1220 if (S.liveAt(UseIdx)) { 1221 IsUndef = false; 1222 break; 1223 } 1224 } 1225 if (IsUndef) { 1226 MO.setIsUndef(true); 1227 // We found out some subregister use is actually reading an undefined 1228 // value. In some cases the whole vreg has become undefined at this 1229 // point so we have to potentially shrink the main range if the 1230 // use was ending a live segment there. 1231 LiveQueryResult Q = DstInt->Query(MIIdx); 1232 if (Q.valueOut() == nullptr) 1233 ShrinkMainRange = true; 1234 } 1235 } 1236 1237 if (DstIsPhys) 1238 MO.substPhysReg(DstReg, *TRI); 1239 else 1240 MO.substVirtReg(DstReg, SubIdx, *TRI); 1241 } 1242 1243 DEBUG({ 1244 dbgs() << "\t\tupdated: "; 1245 if (!UseMI->isDebugValue()) 1246 dbgs() << LIS->getInstructionIndex(UseMI) << "\t"; 1247 dbgs() << *UseMI; 1248 }); 1249 } 1250 } 1251 1252 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1253 // Always join simple intervals that are defined by a single copy from a 1254 // reserved register. This doesn't increase register pressure, so it is 1255 // always beneficial. 1256 if (!MRI->isReserved(CP.getDstReg())) { 1257 DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1258 return false; 1259 } 1260 1261 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1262 if (JoinVInt.containsOneValue()) 1263 return true; 1264 1265 DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1266 return false; 1267 } 1268 1269 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1270 1271 Again = false; 1272 DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI); 1273 1274 CoalescerPair CP(*TRI); 1275 if (!CP.setRegisters(CopyMI)) { 1276 DEBUG(dbgs() << "\tNot coalescable.\n"); 1277 return false; 1278 } 1279 1280 if (CP.getNewRC()) { 1281 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1282 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1283 unsigned SrcIdx = CP.getSrcIdx(); 1284 unsigned DstIdx = CP.getDstIdx(); 1285 if (CP.isFlipped()) { 1286 std::swap(SrcIdx, DstIdx); 1287 std::swap(SrcRC, DstRC); 1288 } 1289 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1290 CP.getNewRC())) { 1291 DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1292 return false; 1293 } 1294 } 1295 1296 // Dead code elimination. This really should be handled by MachineDCE, but 1297 // sometimes dead copies slip through, and we can't generate invalid live 1298 // ranges. 1299 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1300 DEBUG(dbgs() << "\tCopy is dead.\n"); 1301 DeadDefs.push_back(CopyMI); 1302 eliminateDeadDefs(); 1303 return true; 1304 } 1305 1306 // Eliminate undefs. 1307 if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) { 1308 LIS->RemoveMachineInstrFromMaps(CopyMI); 1309 CopyMI->eraseFromParent(); 1310 return false; // Not coalescable. 1311 } 1312 1313 // Coalesced copies are normally removed immediately, but transformations 1314 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1315 // When that happens, just join the values and remove the copy. 1316 if (CP.getSrcReg() == CP.getDstReg()) { 1317 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1318 DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1319 const SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI); 1320 LiveQueryResult LRQ = LI.Query(CopyIdx); 1321 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1322 VNInfo *ReadVNI = LRQ.valueIn(); 1323 assert(ReadVNI && "No value before copy and no <undef> flag."); 1324 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1325 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1326 1327 // Process subregister liveranges. 1328 for (LiveInterval::SubRange &S : LI.subranges()) { 1329 LiveQueryResult SLRQ = S.Query(CopyIdx); 1330 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1331 VNInfo *SReadVNI = SLRQ.valueIn(); 1332 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1333 } 1334 } 1335 DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1336 } 1337 LIS->RemoveMachineInstrFromMaps(CopyMI); 1338 CopyMI->eraseFromParent(); 1339 return true; 1340 } 1341 1342 // Enforce policies. 1343 if (CP.isPhys()) { 1344 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI) 1345 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) 1346 << '\n'); 1347 if (!canJoinPhys(CP)) { 1348 // Before giving up coalescing, if definition of source is defined by 1349 // trivial computation, try rematerializing it. 1350 bool IsDefCopy; 1351 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1352 return true; 1353 if (IsDefCopy) 1354 Again = true; // May be possible to coalesce later. 1355 return false; 1356 } 1357 } else { 1358 // When possible, let DstReg be the larger interval. 1359 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1360 LIS->getInterval(CP.getDstReg()).size()) 1361 CP.flip(); 1362 1363 DEBUG({ 1364 dbgs() << "\tConsidering merging to " 1365 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1366 if (CP.getDstIdx() && CP.getSrcIdx()) 1367 dbgs() << PrintReg(CP.getDstReg()) << " in " 1368 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1369 << PrintReg(CP.getSrcReg()) << " in " 1370 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1371 else 1372 dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in " 1373 << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1374 }); 1375 } 1376 1377 ShrinkMask = 0; 1378 ShrinkMainRange = false; 1379 1380 // Okay, attempt to join these two intervals. On failure, this returns false. 1381 // Otherwise, if one of the intervals being joined is a physreg, this method 1382 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1383 // been modified, so we can use this information below to update aliases. 1384 if (!joinIntervals(CP)) { 1385 // Coalescing failed. 1386 1387 // If definition of source is defined by trivial computation, try 1388 // rematerializing it. 1389 bool IsDefCopy; 1390 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1391 return true; 1392 1393 // If we can eliminate the copy without merging the live segments, do so 1394 // now. 1395 if (!CP.isPartial() && !CP.isPhys()) { 1396 if (adjustCopiesBackFrom(CP, CopyMI) || 1397 removeCopyByCommutingDef(CP, CopyMI)) { 1398 LIS->RemoveMachineInstrFromMaps(CopyMI); 1399 CopyMI->eraseFromParent(); 1400 DEBUG(dbgs() << "\tTrivial!\n"); 1401 return true; 1402 } 1403 } 1404 1405 // Otherwise, we are unable to join the intervals. 1406 DEBUG(dbgs() << "\tInterference!\n"); 1407 Again = true; // May be possible to coalesce later. 1408 return false; 1409 } 1410 1411 // Coalescing to a virtual register that is of a sub-register class of the 1412 // other. Make sure the resulting register is set to the right register class. 1413 if (CP.isCrossClass()) { 1414 ++numCrossRCs; 1415 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1416 } 1417 1418 // Removing sub-register copies can ease the register class constraints. 1419 // Make sure we attempt to inflate the register class of DstReg. 1420 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1421 InflateRegs.push_back(CP.getDstReg()); 1422 1423 // CopyMI has been erased by joinIntervals at this point. Remove it from 1424 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1425 // to the work list. This keeps ErasedInstrs from growing needlessly. 1426 ErasedInstrs.erase(CopyMI); 1427 1428 // Rewrite all SrcReg operands to DstReg. 1429 // Also update DstReg operands to include DstIdx if it is set. 1430 if (CP.getDstIdx()) 1431 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1432 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1433 1434 // Shrink subregister ranges if necessary. 1435 if (ShrinkMask != 0) { 1436 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1437 for (LiveInterval::SubRange &S : LI.subranges()) { 1438 if ((S.LaneMask & ShrinkMask) == 0) 1439 continue; 1440 DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1441 << ")\n"); 1442 LIS->shrinkToUses(S, LI.reg); 1443 } 1444 LI.removeEmptySubRanges(); 1445 } 1446 if (ShrinkMainRange) { 1447 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1448 shrinkToUses(&LI); 1449 } 1450 1451 // SrcReg is guaranteed to be the register whose live interval that is 1452 // being merged. 1453 LIS->removeInterval(CP.getSrcReg()); 1454 1455 // Update regalloc hint. 1456 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1457 1458 DEBUG({ 1459 dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 1460 << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 1461 dbgs() << "\tResult = "; 1462 if (CP.isPhys()) 1463 dbgs() << PrintReg(CP.getDstReg(), TRI); 1464 else 1465 dbgs() << LIS->getInterval(CP.getDstReg()); 1466 dbgs() << '\n'; 1467 }); 1468 1469 ++numJoins; 1470 return true; 1471 } 1472 1473 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1474 unsigned DstReg = CP.getDstReg(); 1475 assert(CP.isPhys() && "Must be a physreg copy"); 1476 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 1477 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 1478 DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1479 1480 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 1481 1482 // Optimization for reserved registers like ESP. We can only merge with a 1483 // reserved physreg if RHS has a single value that is a copy of DstReg. 1484 // The live range of the reserved register will look like a set of dead defs 1485 // - we don't properly track the live range of reserved registers. 1486 1487 // Deny any overlapping intervals. This depends on all the reserved 1488 // register live ranges to look like dead defs. 1489 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) 1490 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1491 DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n'); 1492 return false; 1493 } 1494 1495 // Skip any value computations, we are not adding new values to the 1496 // reserved register. Also skip merging the live ranges, the reserved 1497 // register live range doesn't need to be accurate as long as all the 1498 // defs are there. 1499 1500 // Delete the identity copy. 1501 MachineInstr *CopyMI; 1502 if (CP.isFlipped()) { 1503 CopyMI = MRI->getVRegDef(RHS.reg); 1504 } else { 1505 if (!MRI->hasOneNonDBGUse(RHS.reg)) { 1506 DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 1507 return false; 1508 } 1509 1510 MachineInstr *DestMI = MRI->getVRegDef(RHS.reg); 1511 CopyMI = &*MRI->use_instr_nodbg_begin(RHS.reg); 1512 const SlotIndex CopyRegIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 1513 const SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 1514 1515 // We checked above that there are no interfering defs of the physical 1516 // register. However, for this case, where we intent to move up the def of 1517 // the physical register, we also need to check for interfering uses. 1518 SlotIndexes *Indexes = LIS->getSlotIndexes(); 1519 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 1520 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 1521 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 1522 if (MI->readsRegister(DstReg, TRI)) { 1523 DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 1524 return false; 1525 } 1526 1527 // We must also check for clobbers caused by regmasks. 1528 for (const auto &MO : MI->operands()) { 1529 if (MO.isRegMask() && MO.clobbersPhysReg(DstReg)) { 1530 DEBUG(dbgs() << "\t\tInterference (regmask clobber): " << *MI); 1531 return false; 1532 } 1533 } 1534 } 1535 1536 // We're going to remove the copy which defines a physical reserved 1537 // register, so remove its valno, etc. 1538 DEBUG(dbgs() << "\t\tRemoving phys reg def of " << DstReg << " at " 1539 << CopyRegIdx << "\n"); 1540 1541 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 1542 // Create a new dead def at the new def location. 1543 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1544 LiveRange &LR = LIS->getRegUnit(*UI); 1545 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 1546 } 1547 } 1548 1549 LIS->RemoveMachineInstrFromMaps(CopyMI); 1550 CopyMI->eraseFromParent(); 1551 1552 // We don't track kills for reserved registers. 1553 MRI->clearKillFlags(CP.getSrcReg()); 1554 1555 return true; 1556 } 1557 1558 //===----------------------------------------------------------------------===// 1559 // Interference checking and interval joining 1560 //===----------------------------------------------------------------------===// 1561 // 1562 // In the easiest case, the two live ranges being joined are disjoint, and 1563 // there is no interference to consider. It is quite common, though, to have 1564 // overlapping live ranges, and we need to check if the interference can be 1565 // resolved. 1566 // 1567 // The live range of a single SSA value forms a sub-tree of the dominator tree. 1568 // This means that two SSA values overlap if and only if the def of one value 1569 // is contained in the live range of the other value. As a special case, the 1570 // overlapping values can be defined at the same index. 1571 // 1572 // The interference from an overlapping def can be resolved in these cases: 1573 // 1574 // 1. Coalescable copies. The value is defined by a copy that would become an 1575 // identity copy after joining SrcReg and DstReg. The copy instruction will 1576 // be removed, and the value will be merged with the source value. 1577 // 1578 // There can be several copies back and forth, causing many values to be 1579 // merged into one. We compute a list of ultimate values in the joined live 1580 // range as well as a mappings from the old value numbers. 1581 // 1582 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 1583 // predecessors have a live out value. It doesn't cause real interference, 1584 // and can be merged into the value it overlaps. Like a coalescable copy, it 1585 // can be erased after joining. 1586 // 1587 // 3. Copy of external value. The overlapping def may be a copy of a value that 1588 // is already in the other register. This is like a coalescable copy, but 1589 // the live range of the source register must be trimmed after erasing the 1590 // copy instruction: 1591 // 1592 // %src = COPY %ext 1593 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 1594 // 1595 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 1596 // defining one lane at a time: 1597 // 1598 // %dst:ssub0<def,read-undef> = FOO 1599 // %src = BAR 1600 // %dst:ssub1<def> = COPY %src 1601 // 1602 // The live range of %src overlaps the %dst value defined by FOO, but 1603 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 1604 // which was undef anyway. 1605 // 1606 // The value mapping is more complicated in this case. The final live range 1607 // will have different value numbers for both FOO and BAR, but there is no 1608 // simple mapping from old to new values. It may even be necessary to add 1609 // new PHI values. 1610 // 1611 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 1612 // is live, but never read. This can happen because we don't compute 1613 // individual live ranges per lane. 1614 // 1615 // %dst<def> = FOO 1616 // %src = BAR 1617 // %dst:ssub1<def> = COPY %src 1618 // 1619 // This kind of interference is only resolved locally. If the clobbered 1620 // lane value escapes the block, the join is aborted. 1621 1622 namespace { 1623 /// Track information about values in a single virtual register about to be 1624 /// joined. Objects of this class are always created in pairs - one for each 1625 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 1626 /// pair) 1627 class JoinVals { 1628 /// Live range we work on. 1629 LiveRange &LR; 1630 /// (Main) register we work on. 1631 const unsigned Reg; 1632 1633 /// Reg (and therefore the values in this liverange) will end up as 1634 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 1635 /// CP.SrcIdx. 1636 const unsigned SubIdx; 1637 /// The LaneMask that this liverange will occupy the coalesced register. May 1638 /// be smaller than the lanemask produced by SubIdx when merging subranges. 1639 const LaneBitmask LaneMask; 1640 1641 /// This is true when joining sub register ranges, false when joining main 1642 /// ranges. 1643 const bool SubRangeJoin; 1644 /// Whether the current LiveInterval tracks subregister liveness. 1645 const bool TrackSubRegLiveness; 1646 1647 /// Values that will be present in the final live range. 1648 SmallVectorImpl<VNInfo*> &NewVNInfo; 1649 1650 const CoalescerPair &CP; 1651 LiveIntervals *LIS; 1652 SlotIndexes *Indexes; 1653 const TargetRegisterInfo *TRI; 1654 1655 /// Value number assignments. Maps value numbers in LI to entries in 1656 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 1657 SmallVector<int, 8> Assignments; 1658 1659 /// Conflict resolution for overlapping values. 1660 enum ConflictResolution { 1661 /// No overlap, simply keep this value. 1662 CR_Keep, 1663 1664 /// Merge this value into OtherVNI and erase the defining instruction. 1665 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 1666 /// values. 1667 CR_Erase, 1668 1669 /// Merge this value into OtherVNI but keep the defining instruction. 1670 /// This is for the special case where OtherVNI is defined by the same 1671 /// instruction. 1672 CR_Merge, 1673 1674 /// Keep this value, and have it replace OtherVNI where possible. This 1675 /// complicates value mapping since OtherVNI maps to two different values 1676 /// before and after this def. 1677 /// Used when clobbering undefined or dead lanes. 1678 CR_Replace, 1679 1680 /// Unresolved conflict. Visit later when all values have been mapped. 1681 CR_Unresolved, 1682 1683 /// Unresolvable conflict. Abort the join. 1684 CR_Impossible 1685 }; 1686 1687 /// Per-value info for LI. The lane bit masks are all relative to the final 1688 /// joined register, so they can be compared directly between SrcReg and 1689 /// DstReg. 1690 struct Val { 1691 ConflictResolution Resolution; 1692 1693 /// Lanes written by this def, 0 for unanalyzed values. 1694 LaneBitmask WriteLanes; 1695 1696 /// Lanes with defined values in this register. Other lanes are undef and 1697 /// safe to clobber. 1698 LaneBitmask ValidLanes; 1699 1700 /// Value in LI being redefined by this def. 1701 VNInfo *RedefVNI; 1702 1703 /// Value in the other live range that overlaps this def, if any. 1704 VNInfo *OtherVNI; 1705 1706 /// Is this value an IMPLICIT_DEF that can be erased? 1707 /// 1708 /// IMPLICIT_DEF values should only exist at the end of a basic block that 1709 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 1710 /// safely erased if they are overlapping a live value in the other live 1711 /// interval. 1712 /// 1713 /// Weird control flow graphs and incomplete PHI handling in 1714 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 1715 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 1716 /// normal values. 1717 bool ErasableImplicitDef; 1718 1719 /// True when the live range of this value will be pruned because of an 1720 /// overlapping CR_Replace value in the other live range. 1721 bool Pruned; 1722 1723 /// True once Pruned above has been computed. 1724 bool PrunedComputed; 1725 1726 Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0), 1727 RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false), 1728 Pruned(false), PrunedComputed(false) {} 1729 1730 bool isAnalyzed() const { return WriteLanes != 0; } 1731 }; 1732 1733 /// One entry per value number in LI. 1734 SmallVector<Val, 8> Vals; 1735 1736 /// Compute the bitmask of lanes actually written by DefMI. 1737 /// Set Redef if there are any partial register definitions that depend on the 1738 /// previous value of the register. 1739 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 1740 1741 /// Find the ultimate value that VNI was copied from. 1742 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 1743 1744 bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const; 1745 1746 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 1747 /// Return a conflict resolution when possible, but leave the hard cases as 1748 /// CR_Unresolved. 1749 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 1750 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 1751 /// The recursion always goes upwards in the dominator tree, making loops 1752 /// impossible. 1753 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 1754 1755 /// Compute the value assignment for ValNo in RI. 1756 /// This may be called recursively by analyzeValue(), but never for a ValNo on 1757 /// the stack. 1758 void computeAssignment(unsigned ValNo, JoinVals &Other); 1759 1760 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 1761 /// the extent of the tainted lanes in the block. 1762 /// 1763 /// Multiple values in Other.LR can be affected since partial redefinitions 1764 /// can preserve previously tainted lanes. 1765 /// 1766 /// 1 %dst = VLOAD <-- Define all lanes in %dst 1767 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 1768 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 1769 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 1770 /// 1771 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 1772 /// entry to TaintedVals. 1773 /// 1774 /// Returns false if the tainted lanes extend beyond the basic block. 1775 bool taintExtent(unsigned, LaneBitmask, JoinVals&, 1776 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> >&); 1777 1778 /// Return true if MI uses any of the given Lanes from Reg. 1779 /// This does not include partial redefinitions of Reg. 1780 bool usesLanes(const MachineInstr *MI, unsigned, unsigned, LaneBitmask) const; 1781 1782 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 1783 /// be pruned: 1784 /// 1785 /// %dst = COPY %src 1786 /// %src = COPY %dst <-- This value to be pruned. 1787 /// %dst = COPY %src <-- This value is a copy of a pruned value. 1788 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 1789 1790 public: 1791 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 1792 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 1793 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 1794 bool TrackSubRegLiveness) 1795 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 1796 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 1797 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 1798 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) 1799 {} 1800 1801 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 1802 /// Returns false if any conflicts were impossible to resolve. 1803 bool mapValues(JoinVals &Other); 1804 1805 /// Try to resolve conflicts that require all values to be mapped. 1806 /// Returns false if any conflicts were impossible to resolve. 1807 bool resolveConflicts(JoinVals &Other); 1808 1809 /// Prune the live range of values in Other.LR where they would conflict with 1810 /// CR_Replace values in LR. Collect end points for restoring the live range 1811 /// after joining. 1812 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 1813 bool changeInstrs); 1814 1815 /// Removes subranges starting at copies that get removed. This sometimes 1816 /// happens when undefined subranges are copied around. These ranges contain 1817 /// no useful information and can be removed. 1818 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 1819 1820 /// Erase any machine instructions that have been coalesced away. 1821 /// Add erased instructions to ErasedInstrs. 1822 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 1823 /// the erased instrs. 1824 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 1825 SmallVectorImpl<unsigned> &ShrinkRegs); 1826 1827 /// Remove liverange defs at places where implicit defs will be removed. 1828 void removeImplicitDefs(); 1829 1830 /// Get the value assignments suitable for passing to LiveInterval::join. 1831 const int *getAssignments() const { return Assignments.data(); } 1832 }; 1833 } // end anonymous namespace 1834 1835 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 1836 const { 1837 LaneBitmask L = 0; 1838 for (const MachineOperand &MO : DefMI->operands()) { 1839 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 1840 continue; 1841 L |= TRI->getSubRegIndexLaneMask( 1842 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 1843 if (MO.readsReg()) 1844 Redef = true; 1845 } 1846 return L; 1847 } 1848 1849 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 1850 const VNInfo *VNI) const { 1851 unsigned Reg = this->Reg; 1852 1853 while (!VNI->isPHIDef()) { 1854 SlotIndex Def = VNI->def; 1855 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 1856 assert(MI && "No defining instruction"); 1857 if (!MI->isFullCopy()) 1858 return std::make_pair(VNI, Reg); 1859 unsigned SrcReg = MI->getOperand(1).getReg(); 1860 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1861 return std::make_pair(VNI, Reg); 1862 1863 const LiveInterval &LI = LIS->getInterval(SrcReg); 1864 const VNInfo *ValueIn; 1865 // No subrange involved. 1866 if (!SubRangeJoin || !LI.hasSubRanges()) { 1867 LiveQueryResult LRQ = LI.Query(Def); 1868 ValueIn = LRQ.valueIn(); 1869 } else { 1870 // Query subranges. Pick the first matching one. 1871 ValueIn = nullptr; 1872 for (const LiveInterval::SubRange &S : LI.subranges()) { 1873 // Transform lanemask to a mask in the joined live interval. 1874 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 1875 if ((SMask & LaneMask) == 0) 1876 continue; 1877 LiveQueryResult LRQ = S.Query(Def); 1878 ValueIn = LRQ.valueIn(); 1879 break; 1880 } 1881 } 1882 if (ValueIn == nullptr) 1883 break; 1884 VNI = ValueIn; 1885 Reg = SrcReg; 1886 } 1887 return std::make_pair(VNI, Reg); 1888 } 1889 1890 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 1891 const JoinVals &Other) const { 1892 const VNInfo *Orig0; 1893 unsigned Reg0; 1894 std::tie(Orig0, Reg0) = followCopyChain(Value0); 1895 if (Orig0 == Value1) 1896 return true; 1897 1898 const VNInfo *Orig1; 1899 unsigned Reg1; 1900 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 1901 1902 // The values are equal if they are defined at the same place and use the 1903 // same register. Note that we cannot compare VNInfos directly as some of 1904 // them might be from a copy created in mergeSubRangeInto() while the other 1905 // is from the original LiveInterval. 1906 return Orig0->def == Orig1->def && Reg0 == Reg1; 1907 } 1908 1909 JoinVals::ConflictResolution 1910 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 1911 Val &V = Vals[ValNo]; 1912 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 1913 VNInfo *VNI = LR.getValNumInfo(ValNo); 1914 if (VNI->isUnused()) { 1915 V.WriteLanes = ~0u; 1916 return CR_Keep; 1917 } 1918 1919 // Get the instruction defining this value, compute the lanes written. 1920 const MachineInstr *DefMI = nullptr; 1921 if (VNI->isPHIDef()) { 1922 // Conservatively assume that all lanes in a PHI are valid. 1923 LaneBitmask Lanes = SubRangeJoin ? 1 : TRI->getSubRegIndexLaneMask(SubIdx); 1924 V.ValidLanes = V.WriteLanes = Lanes; 1925 } else { 1926 DefMI = Indexes->getInstructionFromIndex(VNI->def); 1927 assert(DefMI != nullptr); 1928 if (SubRangeJoin) { 1929 // We don't care about the lanes when joining subregister ranges. 1930 V.WriteLanes = V.ValidLanes = 1; 1931 if (DefMI->isImplicitDef()) { 1932 V.ValidLanes = 0; 1933 V.ErasableImplicitDef = true; 1934 } 1935 } else { 1936 bool Redef = false; 1937 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 1938 1939 // If this is a read-modify-write instruction, there may be more valid 1940 // lanes than the ones written by this instruction. 1941 // This only covers partial redef operands. DefMI may have normal use 1942 // operands reading the register. They don't contribute valid lanes. 1943 // 1944 // This adds ssub1 to the set of valid lanes in %src: 1945 // 1946 // %src:ssub1<def> = FOO 1947 // 1948 // This leaves only ssub1 valid, making any other lanes undef: 1949 // 1950 // %src:ssub1<def,read-undef> = FOO %src:ssub2 1951 // 1952 // The <read-undef> flag on the def operand means that old lane values are 1953 // not important. 1954 if (Redef) { 1955 V.RedefVNI = LR.Query(VNI->def).valueIn(); 1956 assert((TrackSubRegLiveness || V.RedefVNI) && 1957 "Instruction is reading nonexistent value"); 1958 if (V.RedefVNI != nullptr) { 1959 computeAssignment(V.RedefVNI->id, Other); 1960 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 1961 } 1962 } 1963 1964 // An IMPLICIT_DEF writes undef values. 1965 if (DefMI->isImplicitDef()) { 1966 // We normally expect IMPLICIT_DEF values to be live only until the end 1967 // of their block. If the value is really live longer and gets pruned in 1968 // another block, this flag is cleared again. 1969 V.ErasableImplicitDef = true; 1970 V.ValidLanes &= ~V.WriteLanes; 1971 } 1972 } 1973 } 1974 1975 // Find the value in Other that overlaps VNI->def, if any. 1976 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 1977 1978 // It is possible that both values are defined by the same instruction, or 1979 // the values are PHIs defined in the same block. When that happens, the two 1980 // values should be merged into one, but not into any preceding value. 1981 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 1982 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 1983 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 1984 1985 // One value stays, the other is merged. Keep the earlier one, or the first 1986 // one we see. 1987 if (OtherVNI->def < VNI->def) 1988 Other.computeAssignment(OtherVNI->id, *this); 1989 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 1990 // This is an early-clobber def overlapping a live-in value in the other 1991 // register. Not mergeable. 1992 V.OtherVNI = OtherLRQ.valueIn(); 1993 return CR_Impossible; 1994 } 1995 V.OtherVNI = OtherVNI; 1996 Val &OtherV = Other.Vals[OtherVNI->id]; 1997 // Keep this value, check for conflicts when analyzing OtherVNI. 1998 if (!OtherV.isAnalyzed()) 1999 return CR_Keep; 2000 // Both sides have been analyzed now. 2001 // Allow overlapping PHI values. Any real interference would show up in a 2002 // predecessor, the PHI itself can't introduce any conflicts. 2003 if (VNI->isPHIDef()) 2004 return CR_Merge; 2005 if (V.ValidLanes & OtherV.ValidLanes) 2006 // Overlapping lanes can't be resolved. 2007 return CR_Impossible; 2008 else 2009 return CR_Merge; 2010 } 2011 2012 // No simultaneous def. Is Other live at the def? 2013 V.OtherVNI = OtherLRQ.valueIn(); 2014 if (!V.OtherVNI) 2015 // No overlap, no conflict. 2016 return CR_Keep; 2017 2018 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2019 2020 // We have overlapping values, or possibly a kill of Other. 2021 // Recursively compute assignments up the dominator tree. 2022 Other.computeAssignment(V.OtherVNI->id, *this); 2023 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2024 2025 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2026 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2027 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2028 // technically. 2029 // 2030 // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2031 // to erase the IMPLICIT_DEF instruction. 2032 if (OtherV.ErasableImplicitDef && DefMI && 2033 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2034 DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2035 << " extends into BB#" << DefMI->getParent()->getNumber() 2036 << ", keeping it.\n"); 2037 OtherV.ErasableImplicitDef = false; 2038 } 2039 2040 // Allow overlapping PHI values. Any real interference would show up in a 2041 // predecessor, the PHI itself can't introduce any conflicts. 2042 if (VNI->isPHIDef()) 2043 return CR_Replace; 2044 2045 // Check for simple erasable conflicts. 2046 if (DefMI->isImplicitDef()) { 2047 // We need the def for the subregister if there is nothing else live at the 2048 // subrange at this point. 2049 if (TrackSubRegLiveness 2050 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)) == 0) 2051 return CR_Replace; 2052 return CR_Erase; 2053 } 2054 2055 // Include the non-conflict where DefMI is a coalescable copy that kills 2056 // OtherVNI. We still want the copy erased and value numbers merged. 2057 if (CP.isCoalescable(DefMI)) { 2058 // Some of the lanes copied from OtherVNI may be undef, making them undef 2059 // here too. 2060 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2061 return CR_Erase; 2062 } 2063 2064 // This may not be a real conflict if DefMI simply kills Other and defines 2065 // VNI. 2066 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2067 return CR_Keep; 2068 2069 // Handle the case where VNI and OtherVNI can be proven to be identical: 2070 // 2071 // %other = COPY %ext 2072 // %this = COPY %ext <-- Erase this copy 2073 // 2074 if (DefMI->isFullCopy() && !CP.isPartial() 2075 && valuesIdentical(VNI, V.OtherVNI, Other)) 2076 return CR_Erase; 2077 2078 // If the lanes written by this instruction were all undef in OtherVNI, it is 2079 // still safe to join the live ranges. This can't be done with a simple value 2080 // mapping, though - OtherVNI will map to multiple values: 2081 // 2082 // 1 %dst:ssub0 = FOO <-- OtherVNI 2083 // 2 %src = BAR <-- VNI 2084 // 3 %dst:ssub1 = COPY %src<kill> <-- Eliminate this copy. 2085 // 4 BAZ %dst<kill> 2086 // 5 QUUX %src<kill> 2087 // 2088 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2089 // handles this complex value mapping. 2090 if ((V.WriteLanes & OtherV.ValidLanes) == 0) 2091 return CR_Replace; 2092 2093 // If the other live range is killed by DefMI and the live ranges are still 2094 // overlapping, it must be because we're looking at an early clobber def: 2095 // 2096 // %dst<def,early-clobber> = ASM %src<kill> 2097 // 2098 // In this case, it is illegal to merge the two live ranges since the early 2099 // clobber def would clobber %src before it was read. 2100 if (OtherLRQ.isKill()) { 2101 // This case where the def doesn't overlap the kill is handled above. 2102 assert(VNI->def.isEarlyClobber() && 2103 "Only early clobber defs can overlap a kill"); 2104 return CR_Impossible; 2105 } 2106 2107 // VNI is clobbering live lanes in OtherVNI, but there is still the 2108 // possibility that no instructions actually read the clobbered lanes. 2109 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2110 // Otherwise Other.RI wouldn't be live here. 2111 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0) 2112 return CR_Impossible; 2113 2114 // We need to verify that no instructions are reading the clobbered lanes. To 2115 // save compile time, we'll only check that locally. Don't allow the tainted 2116 // value to escape the basic block. 2117 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2118 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2119 return CR_Impossible; 2120 2121 // There are still some things that could go wrong besides clobbered lanes 2122 // being read, for example OtherVNI may be only partially redefined in MBB, 2123 // and some clobbered lanes could escape the block. Save this analysis for 2124 // resolveConflicts() when all values have been mapped. We need to know 2125 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2126 // that now - the recursive analyzeValue() calls must go upwards in the 2127 // dominator tree. 2128 return CR_Unresolved; 2129 } 2130 2131 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2132 Val &V = Vals[ValNo]; 2133 if (V.isAnalyzed()) { 2134 // Recursion should always move up the dominator tree, so ValNo is not 2135 // supposed to reappear before it has been assigned. 2136 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2137 return; 2138 } 2139 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2140 case CR_Erase: 2141 case CR_Merge: 2142 // Merge this ValNo into OtherVNI. 2143 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2144 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2145 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2146 DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@' 2147 << LR.getValNumInfo(ValNo)->def << " into " 2148 << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2149 << V.OtherVNI->def << " --> @" 2150 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2151 break; 2152 case CR_Replace: 2153 case CR_Unresolved: { 2154 // The other value is going to be pruned if this join is successful. 2155 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2156 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2157 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2158 // its lanes. 2159 if ((OtherV.WriteLanes & ~V.ValidLanes) != 0 && TrackSubRegLiveness) 2160 OtherV.ErasableImplicitDef = false; 2161 OtherV.Pruned = true; 2162 } 2163 // Fall through. 2164 default: 2165 // This value number needs to go in the final joined live range. 2166 Assignments[ValNo] = NewVNInfo.size(); 2167 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2168 break; 2169 } 2170 } 2171 2172 bool JoinVals::mapValues(JoinVals &Other) { 2173 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2174 computeAssignment(i, Other); 2175 if (Vals[i].Resolution == CR_Impossible) { 2176 DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i 2177 << '@' << LR.getValNumInfo(i)->def << '\n'); 2178 return false; 2179 } 2180 } 2181 return true; 2182 } 2183 2184 bool JoinVals:: 2185 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2186 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> > &TaintExtent) { 2187 VNInfo *VNI = LR.getValNumInfo(ValNo); 2188 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2189 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2190 2191 // Scan Other.LR from VNI.def to MBBEnd. 2192 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2193 assert(OtherI != Other.LR.end() && "No conflict?"); 2194 do { 2195 // OtherI is pointing to a tainted value. Abort the join if the tainted 2196 // lanes escape the block. 2197 SlotIndex End = OtherI->end; 2198 if (End >= MBBEnd) { 2199 DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':' 2200 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2201 return false; 2202 } 2203 DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':' 2204 << OtherI->valno->id << '@' << OtherI->start 2205 << " to " << End << '\n'); 2206 // A dead def is not a problem. 2207 if (End.isDead()) 2208 break; 2209 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2210 2211 // Check for another def in the MBB. 2212 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2213 break; 2214 2215 // Lanes written by the new def are no longer tainted. 2216 const Val &OV = Other.Vals[OtherI->valno->id]; 2217 TaintedLanes &= ~OV.WriteLanes; 2218 if (!OV.RedefVNI) 2219 break; 2220 } while (TaintedLanes); 2221 return true; 2222 } 2223 2224 bool JoinVals::usesLanes(const MachineInstr *MI, unsigned Reg, unsigned SubIdx, 2225 LaneBitmask Lanes) const { 2226 if (MI->isDebugValue()) 2227 return false; 2228 for (const MachineOperand &MO : MI->operands()) { 2229 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2230 continue; 2231 if (!MO.readsReg()) 2232 continue; 2233 if (Lanes & TRI->getSubRegIndexLaneMask( 2234 TRI->composeSubRegIndices(SubIdx, MO.getSubReg()))) 2235 return true; 2236 } 2237 return false; 2238 } 2239 2240 bool JoinVals::resolveConflicts(JoinVals &Other) { 2241 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2242 Val &V = Vals[i]; 2243 assert (V.Resolution != CR_Impossible && "Unresolvable conflict"); 2244 if (V.Resolution != CR_Unresolved) 2245 continue; 2246 DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i 2247 << '@' << LR.getValNumInfo(i)->def << '\n'); 2248 if (SubRangeJoin) 2249 return false; 2250 2251 ++NumLaneConflicts; 2252 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2253 VNInfo *VNI = LR.getValNumInfo(i); 2254 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2255 2256 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2257 // join, those lanes will be tainted with a wrong value. Get the extent of 2258 // the tainted lanes. 2259 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2260 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2261 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2262 // Tainted lanes would extend beyond the basic block. 2263 return false; 2264 2265 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2266 2267 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2268 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2269 MachineBasicBlock::iterator MI = MBB->begin(); 2270 if (!VNI->isPHIDef()) { 2271 MI = Indexes->getInstructionFromIndex(VNI->def); 2272 // No need to check the instruction defining VNI for reads. 2273 ++MI; 2274 } 2275 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2276 "Interference ends on VNI->def. Should have been handled earlier"); 2277 MachineInstr *LastMI = 2278 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2279 assert(LastMI && "Range must end at a proper instruction"); 2280 unsigned TaintNum = 0; 2281 for(;;) { 2282 assert(MI != MBB->end() && "Bad LastMI"); 2283 if (usesLanes(MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2284 DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2285 return false; 2286 } 2287 // LastMI is the last instruction to use the current value. 2288 if (&*MI == LastMI) { 2289 if (++TaintNum == TaintExtent.size()) 2290 break; 2291 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2292 assert(LastMI && "Range must end at a proper instruction"); 2293 TaintedLanes = TaintExtent[TaintNum].second; 2294 } 2295 ++MI; 2296 } 2297 2298 // The tainted lanes are unused. 2299 V.Resolution = CR_Replace; 2300 ++NumLaneResolves; 2301 } 2302 return true; 2303 } 2304 2305 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2306 Val &V = Vals[ValNo]; 2307 if (V.Pruned || V.PrunedComputed) 2308 return V.Pruned; 2309 2310 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2311 return V.Pruned; 2312 2313 // Follow copies up the dominator tree and check if any intermediate value 2314 // has been pruned. 2315 V.PrunedComputed = true; 2316 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2317 return V.Pruned; 2318 } 2319 2320 void JoinVals::pruneValues(JoinVals &Other, 2321 SmallVectorImpl<SlotIndex> &EndPoints, 2322 bool changeInstrs) { 2323 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2324 SlotIndex Def = LR.getValNumInfo(i)->def; 2325 switch (Vals[i].Resolution) { 2326 case CR_Keep: 2327 break; 2328 case CR_Replace: { 2329 // This value takes precedence over the value in Other.LR. 2330 LIS->pruneValue(Other.LR, Def, &EndPoints); 2331 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2332 // instructions are only inserted to provide a live-out value for PHI 2333 // predecessors, so the instruction should simply go away once its value 2334 // has been replaced. 2335 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2336 bool EraseImpDef = OtherV.ErasableImplicitDef && 2337 OtherV.Resolution == CR_Keep; 2338 if (!Def.isBlock()) { 2339 if (changeInstrs) { 2340 // Remove <def,read-undef> flags. This def is now a partial redef. 2341 // Also remove <def,dead> flags since the joined live range will 2342 // continue past this instruction. 2343 for (MachineOperand &MO : 2344 Indexes->getInstructionFromIndex(Def)->operands()) { 2345 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 2346 MO.setIsUndef(EraseImpDef); 2347 MO.setIsDead(false); 2348 } 2349 } 2350 } 2351 // This value will reach instructions below, but we need to make sure 2352 // the live range also reaches the instruction at Def. 2353 if (!EraseImpDef) 2354 EndPoints.push_back(Def); 2355 } 2356 DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def 2357 << ": " << Other.LR << '\n'); 2358 break; 2359 } 2360 case CR_Erase: 2361 case CR_Merge: 2362 if (isPrunedValue(i, Other)) { 2363 // This value is ultimately a copy of a pruned value in LR or Other.LR. 2364 // We can no longer trust the value mapping computed by 2365 // computeAssignment(), the value that was originally copied could have 2366 // been replaced. 2367 LIS->pruneValue(LR, Def, &EndPoints); 2368 DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at " 2369 << Def << ": " << LR << '\n'); 2370 } 2371 break; 2372 case CR_Unresolved: 2373 case CR_Impossible: 2374 llvm_unreachable("Unresolved conflicts"); 2375 } 2376 } 2377 } 2378 2379 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) 2380 { 2381 // Look for values being erased. 2382 bool DidPrune = false; 2383 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2384 if (Vals[i].Resolution != CR_Erase) 2385 continue; 2386 2387 // Check subranges at the point where the copy will be removed. 2388 SlotIndex Def = LR.getValNumInfo(i)->def; 2389 for (LiveInterval::SubRange &S : LI.subranges()) { 2390 LiveQueryResult Q = S.Query(Def); 2391 2392 // If a subrange starts at the copy then an undefined value has been 2393 // copied and we must remove that subrange value as well. 2394 VNInfo *ValueOut = Q.valueOutOrDead(); 2395 if (ValueOut != nullptr && Q.valueIn() == nullptr) { 2396 DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 2397 << " at " << Def << "\n"); 2398 LIS->pruneValue(S, Def, nullptr); 2399 DidPrune = true; 2400 // Mark value number as unused. 2401 ValueOut->markUnused(); 2402 continue; 2403 } 2404 // If a subrange ends at the copy, then a value was copied but only 2405 // partially used later. Shrink the subregister range appropriately. 2406 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 2407 DEBUG(dbgs() << "\t\tDead uses at sublane " << PrintLaneMask(S.LaneMask) 2408 << " at " << Def << "\n"); 2409 ShrinkMask |= S.LaneMask; 2410 } 2411 } 2412 } 2413 if (DidPrune) 2414 LI.removeEmptySubRanges(); 2415 } 2416 2417 void JoinVals::removeImplicitDefs() { 2418 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2419 Val &V = Vals[i]; 2420 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 2421 continue; 2422 2423 VNInfo *VNI = LR.getValNumInfo(i); 2424 VNI->markUnused(); 2425 LR.removeValNo(VNI); 2426 } 2427 } 2428 2429 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2430 SmallVectorImpl<unsigned> &ShrinkRegs) { 2431 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2432 // Get the def location before markUnused() below invalidates it. 2433 SlotIndex Def = LR.getValNumInfo(i)->def; 2434 switch (Vals[i].Resolution) { 2435 case CR_Keep: { 2436 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 2437 // longer. The IMPLICIT_DEF instructions are only inserted by 2438 // PHIElimination to guarantee that all PHI predecessors have a value. 2439 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 2440 break; 2441 // Remove value number i from LR. 2442 VNInfo *VNI = LR.getValNumInfo(i); 2443 LR.removeValNo(VNI); 2444 // Note that this VNInfo is reused and still referenced in NewVNInfo, 2445 // make it appear like an unused value number. 2446 VNI->markUnused(); 2447 DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'); 2448 // FALL THROUGH. 2449 } 2450 2451 case CR_Erase: { 2452 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2453 assert(MI && "No instruction to erase"); 2454 if (MI->isCopy()) { 2455 unsigned Reg = MI->getOperand(1).getReg(); 2456 if (TargetRegisterInfo::isVirtualRegister(Reg) && 2457 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 2458 ShrinkRegs.push_back(Reg); 2459 } 2460 ErasedInstrs.insert(MI); 2461 DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 2462 LIS->RemoveMachineInstrFromMaps(MI); 2463 MI->eraseFromParent(); 2464 break; 2465 } 2466 default: 2467 break; 2468 } 2469 } 2470 } 2471 2472 bool RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 2473 LaneBitmask LaneMask, 2474 const CoalescerPair &CP) { 2475 SmallVector<VNInfo*, 16> NewVNInfo; 2476 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 2477 NewVNInfo, CP, LIS, TRI, true, true); 2478 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 2479 NewVNInfo, CP, LIS, TRI, true, true); 2480 2481 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 2482 // We should be able to resolve all conflicts here as we could successfully do 2483 // it on the mainrange already. There is however a problem when multiple 2484 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 2485 // interferences. 2486 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 2487 DEBUG(dbgs() << "*** Couldn't join subrange!\n"); 2488 return false; 2489 } 2490 if (!LHSVals.resolveConflicts(RHSVals) || 2491 !RHSVals.resolveConflicts(LHSVals)) { 2492 DEBUG(dbgs() << "*** Couldn't join subrange!\n"); 2493 return false; 2494 } 2495 2496 // The merging algorithm in LiveInterval::join() can't handle conflicting 2497 // value mappings, so we need to remove any live ranges that overlap a 2498 // CR_Replace resolution. Collect a set of end points that can be used to 2499 // restore the live range after joining. 2500 SmallVector<SlotIndex, 8> EndPoints; 2501 LHSVals.pruneValues(RHSVals, EndPoints, false); 2502 RHSVals.pruneValues(LHSVals, EndPoints, false); 2503 2504 LHSVals.removeImplicitDefs(); 2505 RHSVals.removeImplicitDefs(); 2506 2507 LRange.verify(); 2508 RRange.verify(); 2509 2510 // Join RRange into LHS. 2511 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 2512 NewVNInfo); 2513 2514 DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n"); 2515 if (EndPoints.empty()) 2516 return true; 2517 2518 // Recompute the parts of the live range we had to remove because of 2519 // CR_Replace conflicts. 2520 DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size() 2521 << " points: " << LRange << '\n'); 2522 LIS->extendToIndices(LRange, EndPoints); 2523 return true; 2524 } 2525 2526 bool RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 2527 const LiveRange &ToMerge, 2528 LaneBitmask LaneMask, 2529 CoalescerPair &CP) { 2530 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2531 for (LiveInterval::SubRange &R : LI.subranges()) { 2532 LaneBitmask RMask = R.LaneMask; 2533 // LaneMask of subregisters common to subrange R and ToMerge. 2534 LaneBitmask Common = RMask & LaneMask; 2535 // There is nothing to do without common subregs. 2536 if (Common == 0) 2537 continue; 2538 2539 DEBUG(dbgs() << "\t\tCopy+Merge " << PrintLaneMask(RMask) << " into " 2540 << PrintLaneMask(Common) << '\n'); 2541 // LaneMask of subregisters contained in the R range but not in ToMerge, 2542 // they have to split into their own subrange. 2543 LaneBitmask LRest = RMask & ~LaneMask; 2544 LiveInterval::SubRange *CommonRange; 2545 if (LRest != 0) { 2546 R.LaneMask = LRest; 2547 DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(LRest) << '\n'); 2548 // Duplicate SubRange for newly merged common stuff. 2549 CommonRange = LI.createSubRangeFrom(Allocator, Common, R); 2550 } else { 2551 // Reuse the existing range. 2552 R.LaneMask = Common; 2553 CommonRange = &R; 2554 } 2555 LiveRange RangeCopy(ToMerge, Allocator); 2556 if (!joinSubRegRanges(*CommonRange, RangeCopy, Common, CP)) 2557 return false; 2558 LaneMask &= ~RMask; 2559 } 2560 2561 if (LaneMask != 0) { 2562 DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(LaneMask) << '\n'); 2563 LI.createSubRangeFrom(Allocator, LaneMask, ToMerge); 2564 } 2565 return true; 2566 } 2567 2568 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 2569 SmallVector<VNInfo*, 16> NewVNInfo; 2570 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 2571 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 2572 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 2573 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), 0, NewVNInfo, CP, LIS, 2574 TRI, false, TrackSubRegLiveness); 2575 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), 0, NewVNInfo, CP, LIS, 2576 TRI, false, TrackSubRegLiveness); 2577 2578 DEBUG(dbgs() << "\t\tRHS = " << RHS 2579 << "\n\t\tLHS = " << LHS 2580 << '\n'); 2581 2582 // First compute NewVNInfo and the simple value mappings. 2583 // Detect impossible conflicts early. 2584 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 2585 return false; 2586 2587 // Some conflicts can only be resolved after all values have been mapped. 2588 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 2589 return false; 2590 2591 // All clear, the live ranges can be merged. 2592 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 2593 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2594 2595 // Transform lanemasks from the LHS to masks in the coalesced register and 2596 // create initial subranges if necessary. 2597 unsigned DstIdx = CP.getDstIdx(); 2598 if (!LHS.hasSubRanges()) { 2599 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 2600 : TRI->getSubRegIndexLaneMask(DstIdx); 2601 // LHS must support subregs or we wouldn't be in this codepath. 2602 assert(Mask != 0); 2603 LHS.createSubRangeFrom(Allocator, Mask, LHS); 2604 } else if (DstIdx != 0) { 2605 // Transform LHS lanemasks to new register class if necessary. 2606 for (LiveInterval::SubRange &R : LHS.subranges()) { 2607 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 2608 R.LaneMask = Mask; 2609 } 2610 } 2611 DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg()) 2612 << ' ' << LHS << '\n'); 2613 2614 // Determine lanemasks of RHS in the coalesced register and merge subranges. 2615 unsigned SrcIdx = CP.getSrcIdx(); 2616 bool Abort = false; 2617 if (!RHS.hasSubRanges()) { 2618 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 2619 : TRI->getSubRegIndexLaneMask(SrcIdx); 2620 if (!mergeSubRangeInto(LHS, RHS, Mask, CP)) 2621 Abort = true; 2622 } else { 2623 // Pair up subranges and merge. 2624 for (LiveInterval::SubRange &R : RHS.subranges()) { 2625 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 2626 if (!mergeSubRangeInto(LHS, R, Mask, CP)) { 2627 Abort = true; 2628 break; 2629 } 2630 } 2631 } 2632 if (Abort) { 2633 // This shouldn't have happened :-( 2634 // However we are aware of at least one existing problem where we 2635 // can't merge subranges when multiple ranges end up in the 2636 // "overflow bit" 32. As a workaround we drop all subregister ranges 2637 // which means we loose some precision but are back to a well defined 2638 // state. 2639 assert(TargetRegisterInfo::isImpreciseLaneMask( 2640 CP.getNewRC()->getLaneMask()) 2641 && "SubRange merge should only fail when merging into bit 32."); 2642 DEBUG(dbgs() << "\tSubrange join aborted!\n"); 2643 LHS.clearSubRanges(); 2644 RHS.clearSubRanges(); 2645 } else { 2646 DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 2647 2648 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 2649 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 2650 } 2651 } 2652 2653 // The merging algorithm in LiveInterval::join() can't handle conflicting 2654 // value mappings, so we need to remove any live ranges that overlap a 2655 // CR_Replace resolution. Collect a set of end points that can be used to 2656 // restore the live range after joining. 2657 SmallVector<SlotIndex, 8> EndPoints; 2658 LHSVals.pruneValues(RHSVals, EndPoints, true); 2659 RHSVals.pruneValues(LHSVals, EndPoints, true); 2660 2661 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 2662 // registers to require trimming. 2663 SmallVector<unsigned, 8> ShrinkRegs; 2664 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 2665 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 2666 while (!ShrinkRegs.empty()) 2667 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 2668 2669 // Join RHS into LHS. 2670 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 2671 2672 // Kill flags are going to be wrong if the live ranges were overlapping. 2673 // Eventually, we should simply clear all kill flags when computing live 2674 // ranges. They are reinserted after register allocation. 2675 MRI->clearKillFlags(LHS.reg); 2676 MRI->clearKillFlags(RHS.reg); 2677 2678 if (!EndPoints.empty()) { 2679 // Recompute the parts of the live range we had to remove because of 2680 // CR_Replace conflicts. 2681 DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size() 2682 << " points: " << LHS << '\n'); 2683 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 2684 } 2685 2686 return true; 2687 } 2688 2689 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 2690 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 2691 } 2692 2693 namespace { 2694 /// Information concerning MBB coalescing priority. 2695 struct MBBPriorityInfo { 2696 MachineBasicBlock *MBB; 2697 unsigned Depth; 2698 bool IsSplit; 2699 2700 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 2701 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 2702 }; 2703 } 2704 2705 /// C-style comparator that sorts first based on the loop depth of the basic 2706 /// block (the unsigned), and then on the MBB number. 2707 /// 2708 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 2709 static int compareMBBPriority(const MBBPriorityInfo *LHS, 2710 const MBBPriorityInfo *RHS) { 2711 // Deeper loops first 2712 if (LHS->Depth != RHS->Depth) 2713 return LHS->Depth > RHS->Depth ? -1 : 1; 2714 2715 // Try to unsplit critical edges next. 2716 if (LHS->IsSplit != RHS->IsSplit) 2717 return LHS->IsSplit ? -1 : 1; 2718 2719 // Prefer blocks that are more connected in the CFG. This takes care of 2720 // the most difficult copies first while intervals are short. 2721 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 2722 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 2723 if (cl != cr) 2724 return cl > cr ? -1 : 1; 2725 2726 // As a last resort, sort by block number. 2727 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 2728 } 2729 2730 /// \returns true if the given copy uses or defines a local live range. 2731 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 2732 if (!Copy->isCopy()) 2733 return false; 2734 2735 if (Copy->getOperand(1).isUndef()) 2736 return false; 2737 2738 unsigned SrcReg = Copy->getOperand(1).getReg(); 2739 unsigned DstReg = Copy->getOperand(0).getReg(); 2740 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 2741 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 2742 return false; 2743 2744 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 2745 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 2746 } 2747 2748 bool RegisterCoalescer:: 2749 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 2750 bool Progress = false; 2751 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 2752 if (!CurrList[i]) 2753 continue; 2754 // Skip instruction pointers that have already been erased, for example by 2755 // dead code elimination. 2756 if (ErasedInstrs.erase(CurrList[i])) { 2757 CurrList[i] = nullptr; 2758 continue; 2759 } 2760 bool Again = false; 2761 bool Success = joinCopy(CurrList[i], Again); 2762 Progress |= Success; 2763 if (Success || !Again) 2764 CurrList[i] = nullptr; 2765 } 2766 return Progress; 2767 } 2768 2769 /// Check if DstReg is a terminal node. 2770 /// I.e., it does not have any affinity other than \p Copy. 2771 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 2772 const MachineRegisterInfo *MRI) { 2773 assert(Copy.isCopyLike()); 2774 // Check if the destination of this copy as any other affinity. 2775 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 2776 if (&MI != &Copy && MI.isCopyLike()) 2777 return false; 2778 return true; 2779 } 2780 2781 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 2782 assert(Copy.isCopyLike()); 2783 if (!UseTerminalRule) 2784 return false; 2785 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 2786 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg); 2787 // Check if the destination of this copy has any other affinity. 2788 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 2789 // If SrcReg is a physical register, the copy won't be coalesced. 2790 // Ignoring it may have other side effect (like missing 2791 // rematerialization). So keep it. 2792 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 2793 !isTerminalReg(DstReg, Copy, MRI)) 2794 return false; 2795 2796 // DstReg is a terminal node. Check if it interferes with any other 2797 // copy involving SrcReg. 2798 const MachineBasicBlock *OrigBB = Copy.getParent(); 2799 const LiveInterval &DstLI = LIS->getInterval(DstReg); 2800 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 2801 // Technically we should check if the weight of the new copy is 2802 // interesting compared to the other one and update the weight 2803 // of the copies accordingly. However, this would only work if 2804 // we would gather all the copies first then coalesce, whereas 2805 // right now we interleave both actions. 2806 // For now, just consider the copies that are in the same block. 2807 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 2808 continue; 2809 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 2810 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 2811 OtherSubReg); 2812 if (OtherReg == SrcReg) 2813 OtherReg = OtherSrcReg; 2814 // Check if OtherReg is a non-terminal. 2815 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) || 2816 isTerminalReg(OtherReg, MI, MRI)) 2817 continue; 2818 // Check that OtherReg interfere with DstReg. 2819 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 2820 DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n'); 2821 return true; 2822 } 2823 } 2824 return false; 2825 } 2826 2827 void 2828 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 2829 DEBUG(dbgs() << MBB->getName() << ":\n"); 2830 2831 // Collect all copy-like instructions in MBB. Don't start coalescing anything 2832 // yet, it might invalidate the iterator. 2833 const unsigned PrevSize = WorkList.size(); 2834 if (JoinGlobalCopies) { 2835 SmallVector<MachineInstr*, 2> LocalTerminals; 2836 SmallVector<MachineInstr*, 2> GlobalTerminals; 2837 // Coalesce copies bottom-up to coalesce local defs before local uses. They 2838 // are not inherently easier to resolve, but slightly preferable until we 2839 // have local live range splitting. In particular this is required by 2840 // cmp+jmp macro fusion. 2841 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 2842 MII != E; ++MII) { 2843 if (!MII->isCopyLike()) 2844 continue; 2845 bool ApplyTerminalRule = applyTerminalRule(*MII); 2846 if (isLocalCopy(&(*MII), LIS)) { 2847 if (ApplyTerminalRule) 2848 LocalTerminals.push_back(&(*MII)); 2849 else 2850 LocalWorkList.push_back(&(*MII)); 2851 } else { 2852 if (ApplyTerminalRule) 2853 GlobalTerminals.push_back(&(*MII)); 2854 else 2855 WorkList.push_back(&(*MII)); 2856 } 2857 } 2858 // Append the copies evicted by the terminal rule at the end of the list. 2859 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 2860 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 2861 } 2862 else { 2863 SmallVector<MachineInstr*, 2> Terminals; 2864 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 2865 MII != E; ++MII) 2866 if (MII->isCopyLike()) { 2867 if (applyTerminalRule(*MII)) 2868 Terminals.push_back(&(*MII)); 2869 else 2870 WorkList.push_back(MII); 2871 } 2872 // Append the copies evicted by the terminal rule at the end of the list. 2873 WorkList.append(Terminals.begin(), Terminals.end()); 2874 } 2875 // Try coalescing the collected copies immediately, and remove the nulls. 2876 // This prevents the WorkList from getting too large since most copies are 2877 // joinable on the first attempt. 2878 MutableArrayRef<MachineInstr*> 2879 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 2880 if (copyCoalesceWorkList(CurrList)) 2881 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 2882 (MachineInstr*)nullptr), WorkList.end()); 2883 } 2884 2885 void RegisterCoalescer::coalesceLocals() { 2886 copyCoalesceWorkList(LocalWorkList); 2887 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 2888 if (LocalWorkList[j]) 2889 WorkList.push_back(LocalWorkList[j]); 2890 } 2891 LocalWorkList.clear(); 2892 } 2893 2894 void RegisterCoalescer::joinAllIntervals() { 2895 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 2896 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 2897 2898 std::vector<MBBPriorityInfo> MBBs; 2899 MBBs.reserve(MF->size()); 2900 for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){ 2901 MachineBasicBlock *MBB = I; 2902 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 2903 JoinSplitEdges && isSplitEdge(MBB))); 2904 } 2905 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 2906 2907 // Coalesce intervals in MBB priority order. 2908 unsigned CurrDepth = UINT_MAX; 2909 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 2910 // Try coalescing the collected local copies for deeper loops. 2911 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 2912 coalesceLocals(); 2913 CurrDepth = MBBs[i].Depth; 2914 } 2915 copyCoalesceInMBB(MBBs[i].MBB); 2916 } 2917 coalesceLocals(); 2918 2919 // Joining intervals can allow other intervals to be joined. Iteratively join 2920 // until we make no progress. 2921 while (copyCoalesceWorkList(WorkList)) 2922 /* empty */ ; 2923 } 2924 2925 void RegisterCoalescer::releaseMemory() { 2926 ErasedInstrs.clear(); 2927 WorkList.clear(); 2928 DeadDefs.clear(); 2929 InflateRegs.clear(); 2930 } 2931 2932 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 2933 MF = &fn; 2934 MRI = &fn.getRegInfo(); 2935 TM = &fn.getTarget(); 2936 const TargetSubtargetInfo &STI = fn.getSubtarget(); 2937 TRI = STI.getRegisterInfo(); 2938 TII = STI.getInstrInfo(); 2939 LIS = &getAnalysis<LiveIntervals>(); 2940 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2941 Loops = &getAnalysis<MachineLoopInfo>(); 2942 if (EnableGlobalCopies == cl::BOU_UNSET) 2943 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 2944 else 2945 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 2946 2947 // The MachineScheduler does not currently require JoinSplitEdges. This will 2948 // either be enabled unconditionally or replaced by a more general live range 2949 // splitting optimization. 2950 JoinSplitEdges = EnableJoinSplits; 2951 2952 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 2953 << "********** Function: " << MF->getName() << '\n'); 2954 2955 if (VerifyCoalescing) 2956 MF->verify(this, "Before register coalescing"); 2957 2958 RegClassInfo.runOnMachineFunction(fn); 2959 2960 // Join (coalesce) intervals if requested. 2961 if (EnableJoining) 2962 joinAllIntervals(); 2963 2964 // After deleting a lot of copies, register classes may be less constrained. 2965 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 2966 // DPR inflation. 2967 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 2968 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 2969 InflateRegs.end()); 2970 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n"); 2971 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 2972 unsigned Reg = InflateRegs[i]; 2973 if (MRI->reg_nodbg_empty(Reg)) 2974 continue; 2975 if (MRI->recomputeRegClass(Reg)) { 2976 DEBUG(dbgs() << PrintReg(Reg) << " inflated to " 2977 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 2978 LiveInterval &LI = LIS->getInterval(Reg); 2979 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2980 if (MaxMask == 0) { 2981 // If the inflated register class does not support subregisters anymore 2982 // remove the subranges. 2983 LI.clearSubRanges(); 2984 } else { 2985 #ifndef NDEBUG 2986 // If subranges are still supported, then the same subregs should still 2987 // be supported. 2988 for (LiveInterval::SubRange &S : LI.subranges()) { 2989 assert ((S.LaneMask & ~MaxMask) == 0); 2990 } 2991 #endif 2992 } 2993 ++NumInflated; 2994 } 2995 } 2996 2997 DEBUG(dump()); 2998 if (VerifyCoalescing) 2999 MF->verify(this, "After register coalescing"); 3000 return true; 3001 } 3002 3003 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3004 LIS->print(O, m); 3005 } 3006