1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic RegisterCoalescer interface which 11 // is used as the common interface used by all clients and 12 // implementations of register coalescing. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "RegisterCoalescer.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetOpcodes.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/MC/LaneBitmask.h" 44 #include "llvm/MC/MCInstrDesc.h" 45 #include "llvm/MC/MCRegisterInfo.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <iterator> 55 #include <limits> 56 #include <tuple> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "regalloc" 63 64 STATISTIC(numJoins , "Number of interval joins performed"); 65 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 66 STATISTIC(numCommutes , "Number of instruction commuting performed"); 67 STATISTIC(numExtends , "Number of copies extended"); 68 STATISTIC(NumReMats , "Number of instructions re-materialized"); 69 STATISTIC(NumInflated , "Number of register classes inflated"); 70 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 71 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 72 73 static cl::opt<bool> EnableJoining("join-liveintervals", 74 cl::desc("Coalesce copies (default=true)"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<bool> UseTerminalRule("terminal-rule", 78 cl::desc("Apply the terminal rule"), 79 cl::init(false), cl::Hidden); 80 81 /// Temporary flag to test critical edge unsplitting. 82 static cl::opt<bool> 83 EnableJoinSplits("join-splitedges", 84 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 85 86 /// Temporary flag to test global copy optimization. 87 static cl::opt<cl::boolOrDefault> 88 EnableGlobalCopies("join-globalcopies", 89 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 90 cl::init(cl::BOU_UNSET), cl::Hidden); 91 92 static cl::opt<bool> 93 VerifyCoalescing("verify-coalescing", 94 cl::desc("Verify machine instrs before and after register coalescing"), 95 cl::Hidden); 96 97 namespace { 98 99 class RegisterCoalescer : public MachineFunctionPass, 100 private LiveRangeEdit::Delegate { 101 MachineFunction* MF; 102 MachineRegisterInfo* MRI; 103 const TargetRegisterInfo* TRI; 104 const TargetInstrInfo* TII; 105 LiveIntervals *LIS; 106 const MachineLoopInfo* Loops; 107 AliasAnalysis *AA; 108 RegisterClassInfo RegClassInfo; 109 110 /// A LaneMask to remember on which subregister live ranges we need to call 111 /// shrinkToUses() later. 112 LaneBitmask ShrinkMask; 113 114 /// True if the main range of the currently coalesced intervals should be 115 /// checked for smaller live intervals. 116 bool ShrinkMainRange; 117 118 /// \brief True if the coalescer should aggressively coalesce global copies 119 /// in favor of keeping local copies. 120 bool JoinGlobalCopies; 121 122 /// \brief True if the coalescer should aggressively coalesce fall-thru 123 /// blocks exclusively containing copies. 124 bool JoinSplitEdges; 125 126 /// Copy instructions yet to be coalesced. 127 SmallVector<MachineInstr*, 8> WorkList; 128 SmallVector<MachineInstr*, 8> LocalWorkList; 129 130 /// Set of instruction pointers that have been erased, and 131 /// that may be present in WorkList. 132 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 133 134 /// Dead instructions that are about to be deleted. 135 SmallVector<MachineInstr*, 8> DeadDefs; 136 137 /// Virtual registers to be considered for register class inflation. 138 SmallVector<unsigned, 8> InflateRegs; 139 140 /// Recursively eliminate dead defs in DeadDefs. 141 void eliminateDeadDefs(); 142 143 /// LiveRangeEdit callback for eliminateDeadDefs(). 144 void LRE_WillEraseInstruction(MachineInstr *MI) override; 145 146 /// Coalesce the LocalWorkList. 147 void coalesceLocals(); 148 149 /// Join compatible live intervals 150 void joinAllIntervals(); 151 152 /// Coalesce copies in the specified MBB, putting 153 /// copies that cannot yet be coalesced into WorkList. 154 void copyCoalesceInMBB(MachineBasicBlock *MBB); 155 156 /// Tries to coalesce all copies in CurrList. Returns true if any progress 157 /// was made. 158 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 159 160 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 161 /// src/dst of the copy instruction CopyMI. This returns true if the copy 162 /// was successfully coalesced away. If it is not currently possible to 163 /// coalesce this interval, but it may be possible if other things get 164 /// coalesced, then it returns true by reference in 'Again'. 165 bool joinCopy(MachineInstr *TheCopy, bool &Again); 166 167 /// Attempt to join these two intervals. On failure, this 168 /// returns false. The output "SrcInt" will not have been modified, so we 169 /// can use this information below to update aliases. 170 bool joinIntervals(CoalescerPair &CP); 171 172 /// Attempt joining two virtual registers. Return true on success. 173 bool joinVirtRegs(CoalescerPair &CP); 174 175 /// Attempt joining with a reserved physreg. 176 bool joinReservedPhysReg(CoalescerPair &CP); 177 178 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 179 /// Subranges in @p LI which only partially interfere with the desired 180 /// LaneMask are split as necessary. @p LaneMask are the lanes that 181 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 182 /// lanemasks already adjusted to the coalesced register. 183 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 184 LaneBitmask LaneMask, CoalescerPair &CP); 185 186 /// Join the liveranges of two subregisters. Joins @p RRange into 187 /// @p LRange, @p RRange may be invalid afterwards. 188 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 189 LaneBitmask LaneMask, const CoalescerPair &CP); 190 191 /// We found a non-trivially-coalescable copy. If the source value number is 192 /// defined by a copy from the destination reg see if we can merge these two 193 /// destination reg valno# into a single value number, eliminating a copy. 194 /// This returns true if an interval was modified. 195 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 196 197 /// Return true if there are definitions of IntB 198 /// other than BValNo val# that can reach uses of AValno val# of IntA. 199 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 200 VNInfo *AValNo, VNInfo *BValNo); 201 202 /// We found a non-trivially-coalescable copy. 203 /// If the source value number is defined by a commutable instruction and 204 /// its other operand is coalesced to the copy dest register, see if we 205 /// can transform the copy into a noop by commuting the definition. 206 /// This returns true if an interval was modified. 207 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); 208 209 /// We found a copy which can be moved to its less frequent predecessor. 210 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 211 212 /// If the source of a copy is defined by a 213 /// trivial computation, replace the copy by rematerialize the definition. 214 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 215 bool &IsDefCopy); 216 217 /// Return true if a copy involving a physreg should be joined. 218 bool canJoinPhys(const CoalescerPair &CP); 219 220 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 221 /// number if it is not zero. If DstReg is a physical register and the 222 /// existing subregister number of the def / use being updated is not zero, 223 /// make sure to set it to the correct physical subregister. 224 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 225 226 /// If the given machine operand reads only undefined lanes add an undef 227 /// flag. 228 /// This can happen when undef uses were previously concealed by a copy 229 /// which we coalesced. Example: 230 /// %0:sub0<def,read-undef> = ... 231 /// %1 = COPY %0 <-- Coalescing COPY reveals undef 232 /// = use %1:sub1 <-- hidden undef use 233 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 234 MachineOperand &MO, unsigned SubRegIdx); 235 236 /// Handle copies of undef values. 237 /// Returns true if @p CopyMI was a copy of an undef value and eliminated. 238 bool eliminateUndefCopy(MachineInstr *CopyMI); 239 240 /// Check whether or not we should apply the terminal rule on the 241 /// destination (Dst) of \p Copy. 242 /// When the terminal rule applies, Copy is not profitable to 243 /// coalesce. 244 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 245 /// at least one interference (Dst, Dst2). If Dst is terminal, the 246 /// terminal rule consists in checking that at least one of 247 /// interfering node, say Dst2, has an affinity of equal or greater 248 /// weight with Src. 249 /// In that case, Dst2 and Dst will not be able to be both coalesced 250 /// with Src. Since Dst2 exposes more coalescing opportunities than 251 /// Dst, we can drop \p Copy. 252 bool applyTerminalRule(const MachineInstr &Copy) const; 253 254 /// Wrapper method for \see LiveIntervals::shrinkToUses. 255 /// This method does the proper fixing of the live-ranges when the afore 256 /// mentioned method returns true. 257 void shrinkToUses(LiveInterval *LI, 258 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 259 if (LIS->shrinkToUses(LI, Dead)) { 260 /// Check whether or not \p LI is composed by multiple connected 261 /// components and if that is the case, fix that. 262 SmallVector<LiveInterval*, 8> SplitLIs; 263 LIS->splitSeparateComponents(*LI, SplitLIs); 264 } 265 } 266 267 /// Wrapper Method to do all the necessary work when an Instruction is 268 /// deleted. 269 /// Optimizations should use this to make sure that deleted instructions 270 /// are always accounted for. 271 void deleteInstr(MachineInstr* MI) { 272 ErasedInstrs.insert(MI); 273 LIS->RemoveMachineInstrFromMaps(*MI); 274 MI->eraseFromParent(); 275 } 276 277 public: 278 static char ID; ///< Class identification, replacement for typeinfo 279 280 RegisterCoalescer() : MachineFunctionPass(ID) { 281 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 282 } 283 284 void getAnalysisUsage(AnalysisUsage &AU) const override; 285 286 void releaseMemory() override; 287 288 /// This is the pass entry point. 289 bool runOnMachineFunction(MachineFunction&) override; 290 291 /// Implement the dump method. 292 void print(raw_ostream &O, const Module* = nullptr) const override; 293 }; 294 295 } // end anonymous namespace 296 297 char RegisterCoalescer::ID = 0; 298 299 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 300 301 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 302 "Simple Register Coalescing", false, false) 303 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 304 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 305 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 306 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 307 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 308 "Simple Register Coalescing", false, false) 309 310 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 311 unsigned &Src, unsigned &Dst, 312 unsigned &SrcSub, unsigned &DstSub) { 313 if (MI->isCopy()) { 314 Dst = MI->getOperand(0).getReg(); 315 DstSub = MI->getOperand(0).getSubReg(); 316 Src = MI->getOperand(1).getReg(); 317 SrcSub = MI->getOperand(1).getSubReg(); 318 } else if (MI->isSubregToReg()) { 319 Dst = MI->getOperand(0).getReg(); 320 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 321 MI->getOperand(3).getImm()); 322 Src = MI->getOperand(2).getReg(); 323 SrcSub = MI->getOperand(2).getSubReg(); 324 } else 325 return false; 326 return true; 327 } 328 329 /// Return true if this block should be vacated by the coalescer to eliminate 330 /// branches. The important cases to handle in the coalescer are critical edges 331 /// split during phi elimination which contain only copies. Simple blocks that 332 /// contain non-branches should also be vacated, but this can be handled by an 333 /// earlier pass similar to early if-conversion. 334 static bool isSplitEdge(const MachineBasicBlock *MBB) { 335 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 336 return false; 337 338 for (const auto &MI : *MBB) { 339 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 340 return false; 341 } 342 return true; 343 } 344 345 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 346 SrcReg = DstReg = 0; 347 SrcIdx = DstIdx = 0; 348 NewRC = nullptr; 349 Flipped = CrossClass = false; 350 351 unsigned Src, Dst, SrcSub, DstSub; 352 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 353 return false; 354 Partial = SrcSub || DstSub; 355 356 // If one register is a physreg, it must be Dst. 357 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 358 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 359 return false; 360 std::swap(Src, Dst); 361 std::swap(SrcSub, DstSub); 362 Flipped = true; 363 } 364 365 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 366 367 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 368 // Eliminate DstSub on a physreg. 369 if (DstSub) { 370 Dst = TRI.getSubReg(Dst, DstSub); 371 if (!Dst) return false; 372 DstSub = 0; 373 } 374 375 // Eliminate SrcSub by picking a corresponding Dst superregister. 376 if (SrcSub) { 377 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 378 if (!Dst) return false; 379 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 380 return false; 381 } 382 } else { 383 // Both registers are virtual. 384 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 385 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 386 387 // Both registers have subreg indices. 388 if (SrcSub && DstSub) { 389 // Copies between different sub-registers are never coalescable. 390 if (Src == Dst && SrcSub != DstSub) 391 return false; 392 393 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 394 SrcIdx, DstIdx); 395 if (!NewRC) 396 return false; 397 } else if (DstSub) { 398 // SrcReg will be merged with a sub-register of DstReg. 399 SrcIdx = DstSub; 400 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 401 } else if (SrcSub) { 402 // DstReg will be merged with a sub-register of SrcReg. 403 DstIdx = SrcSub; 404 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 405 } else { 406 // This is a straight copy without sub-registers. 407 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 408 } 409 410 // The combined constraint may be impossible to satisfy. 411 if (!NewRC) 412 return false; 413 414 // Prefer SrcReg to be a sub-register of DstReg. 415 // FIXME: Coalescer should support subregs symmetrically. 416 if (DstIdx && !SrcIdx) { 417 std::swap(Src, Dst); 418 std::swap(SrcIdx, DstIdx); 419 Flipped = !Flipped; 420 } 421 422 CrossClass = NewRC != DstRC || NewRC != SrcRC; 423 } 424 // Check our invariants 425 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 426 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 427 "Cannot have a physical SubIdx"); 428 SrcReg = Src; 429 DstReg = Dst; 430 return true; 431 } 432 433 bool CoalescerPair::flip() { 434 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 435 return false; 436 std::swap(SrcReg, DstReg); 437 std::swap(SrcIdx, DstIdx); 438 Flipped = !Flipped; 439 return true; 440 } 441 442 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 443 if (!MI) 444 return false; 445 unsigned Src, Dst, SrcSub, DstSub; 446 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 447 return false; 448 449 // Find the virtual register that is SrcReg. 450 if (Dst == SrcReg) { 451 std::swap(Src, Dst); 452 std::swap(SrcSub, DstSub); 453 } else if (Src != SrcReg) { 454 return false; 455 } 456 457 // Now check that Dst matches DstReg. 458 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 459 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 460 return false; 461 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 462 // DstSub could be set for a physreg from INSERT_SUBREG. 463 if (DstSub) 464 Dst = TRI.getSubReg(Dst, DstSub); 465 // Full copy of Src. 466 if (!SrcSub) 467 return DstReg == Dst; 468 // This is a partial register copy. Check that the parts match. 469 return TRI.getSubReg(DstReg, SrcSub) == Dst; 470 } else { 471 // DstReg is virtual. 472 if (DstReg != Dst) 473 return false; 474 // Registers match, do the subregisters line up? 475 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 476 TRI.composeSubRegIndices(DstIdx, DstSub); 477 } 478 } 479 480 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 481 AU.setPreservesCFG(); 482 AU.addRequired<AAResultsWrapperPass>(); 483 AU.addRequired<LiveIntervals>(); 484 AU.addPreserved<LiveIntervals>(); 485 AU.addPreserved<SlotIndexes>(); 486 AU.addRequired<MachineLoopInfo>(); 487 AU.addPreserved<MachineLoopInfo>(); 488 AU.addPreservedID(MachineDominatorsID); 489 MachineFunctionPass::getAnalysisUsage(AU); 490 } 491 492 void RegisterCoalescer::eliminateDeadDefs() { 493 SmallVector<unsigned, 8> NewRegs; 494 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 495 nullptr, this).eliminateDeadDefs(DeadDefs); 496 } 497 498 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 499 // MI may be in WorkList. Make sure we don't visit it. 500 ErasedInstrs.insert(MI); 501 } 502 503 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 504 MachineInstr *CopyMI) { 505 assert(!CP.isPartial() && "This doesn't work for partial copies."); 506 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 507 508 LiveInterval &IntA = 509 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 510 LiveInterval &IntB = 511 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 512 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 513 514 // We have a non-trivially-coalescable copy with IntA being the source and 515 // IntB being the dest, thus this defines a value number in IntB. If the 516 // source value number (in IntA) is defined by a copy from B, see if we can 517 // merge these two pieces of B into a single value number, eliminating a copy. 518 // For example: 519 // 520 // A3 = B0 521 // ... 522 // B1 = A3 <- this copy 523 // 524 // In this case, B0 can be extended to where the B1 copy lives, allowing the 525 // B1 value number to be replaced with B0 (which simplifies the B 526 // liveinterval). 527 528 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 529 // the example above. 530 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 531 if (BS == IntB.end()) return false; 532 VNInfo *BValNo = BS->valno; 533 534 // Get the location that B is defined at. Two options: either this value has 535 // an unknown definition point or it is defined at CopyIdx. If unknown, we 536 // can't process it. 537 if (BValNo->def != CopyIdx) return false; 538 539 // AValNo is the value number in A that defines the copy, A3 in the example. 540 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 541 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 542 // The live segment might not exist after fun with physreg coalescing. 543 if (AS == IntA.end()) return false; 544 VNInfo *AValNo = AS->valno; 545 546 // If AValNo is defined as a copy from IntB, we can potentially process this. 547 // Get the instruction that defines this value number. 548 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 549 // Don't allow any partial copies, even if isCoalescable() allows them. 550 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 551 return false; 552 553 // Get the Segment in IntB that this value number starts with. 554 LiveInterval::iterator ValS = 555 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 556 if (ValS == IntB.end()) 557 return false; 558 559 // Make sure that the end of the live segment is inside the same block as 560 // CopyMI. 561 MachineInstr *ValSEndInst = 562 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 563 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 564 return false; 565 566 // Okay, we now know that ValS ends in the same block that the CopyMI 567 // live-range starts. If there are no intervening live segments between them 568 // in IntB, we can merge them. 569 if (ValS+1 != BS) return false; 570 571 DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI)); 572 573 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 574 // We are about to delete CopyMI, so need to remove it as the 'instruction 575 // that defines this value #'. Update the valnum with the new defining 576 // instruction #. 577 BValNo->def = FillerStart; 578 579 // Okay, we can merge them. We need to insert a new liverange: 580 // [ValS.end, BS.begin) of either value number, then we merge the 581 // two value numbers. 582 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 583 584 // Okay, merge "B1" into the same value number as "B0". 585 if (BValNo != ValS->valno) 586 IntB.MergeValueNumberInto(BValNo, ValS->valno); 587 588 // Do the same for the subregister segments. 589 for (LiveInterval::SubRange &S : IntB.subranges()) { 590 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 591 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 592 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 593 if (SubBValNo != SubValSNo) 594 S.MergeValueNumberInto(SubBValNo, SubValSNo); 595 } 596 597 DEBUG(dbgs() << " result = " << IntB << '\n'); 598 599 // If the source instruction was killing the source register before the 600 // merge, unset the isKill marker given the live range has been extended. 601 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 602 if (UIdx != -1) { 603 ValSEndInst->getOperand(UIdx).setIsKill(false); 604 } 605 606 // Rewrite the copy. If the copy instruction was killing the destination 607 // register before the merge, find the last use and trim the live range. That 608 // will also add the isKill marker. 609 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 610 if (AS->end == CopyIdx) 611 shrinkToUses(&IntA); 612 613 ++numExtends; 614 return true; 615 } 616 617 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 618 LiveInterval &IntB, 619 VNInfo *AValNo, 620 VNInfo *BValNo) { 621 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 622 // the PHI values. 623 if (LIS->hasPHIKill(IntA, AValNo)) 624 return true; 625 626 for (LiveRange::Segment &ASeg : IntA.segments) { 627 if (ASeg.valno != AValNo) continue; 628 LiveInterval::iterator BI = 629 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start); 630 if (BI != IntB.begin()) 631 --BI; 632 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 633 if (BI->valno == BValNo) 634 continue; 635 if (BI->start <= ASeg.start && BI->end > ASeg.start) 636 return true; 637 if (BI->start > ASeg.start && BI->start < ASeg.end) 638 return true; 639 } 640 } 641 return false; 642 } 643 644 /// Copy segements with value number @p SrcValNo from liverange @p Src to live 645 /// range @Dst and use value number @p DstValNo there. 646 static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, 647 const LiveRange &Src, const VNInfo *SrcValNo) { 648 for (const LiveRange::Segment &S : Src.segments) { 649 if (S.valno != SrcValNo) 650 continue; 651 Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo)); 652 } 653 } 654 655 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 656 MachineInstr *CopyMI) { 657 assert(!CP.isPhys()); 658 659 LiveInterval &IntA = 660 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 661 LiveInterval &IntB = 662 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 663 664 // We found a non-trivially-coalescable copy with IntA being the source and 665 // IntB being the dest, thus this defines a value number in IntB. If the 666 // source value number (in IntA) is defined by a commutable instruction and 667 // its other operand is coalesced to the copy dest register, see if we can 668 // transform the copy into a noop by commuting the definition. For example, 669 // 670 // A3 = op A2 killed B0 671 // ... 672 // B1 = A3 <- this copy 673 // ... 674 // = op A3 <- more uses 675 // 676 // ==> 677 // 678 // B2 = op B0 killed A2 679 // ... 680 // B1 = B2 <- now an identity copy 681 // ... 682 // = op B2 <- more uses 683 684 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 685 // the example above. 686 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 687 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 688 assert(BValNo != nullptr && BValNo->def == CopyIdx); 689 690 // AValNo is the value number in A that defines the copy, A3 in the example. 691 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 692 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 693 if (AValNo->isPHIDef()) 694 return false; 695 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 696 if (!DefMI) 697 return false; 698 if (!DefMI->isCommutable()) 699 return false; 700 // If DefMI is a two-address instruction then commuting it will change the 701 // destination register. 702 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 703 assert(DefIdx != -1); 704 unsigned UseOpIdx; 705 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 706 return false; 707 708 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 709 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 710 // passed to the method. That _other_ operand is chosen by 711 // the findCommutedOpIndices() method. 712 // 713 // That is obviously an area for improvement in case of instructions having 714 // more than 2 operands. For example, if some instruction has 3 commutable 715 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 716 // op#2<->op#3) of commute transformation should be considered/tried here. 717 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 718 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 719 return false; 720 721 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 722 unsigned NewReg = NewDstMO.getReg(); 723 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 724 return false; 725 726 // Make sure there are no other definitions of IntB that would reach the 727 // uses which the new definition can reach. 728 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 729 return false; 730 731 // If some of the uses of IntA.reg is already coalesced away, return false. 732 // It's not possible to determine whether it's safe to perform the coalescing. 733 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 734 MachineInstr *UseMI = MO.getParent(); 735 unsigned OpNo = &MO - &UseMI->getOperand(0); 736 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 737 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 738 if (US == IntA.end() || US->valno != AValNo) 739 continue; 740 // If this use is tied to a def, we can't rewrite the register. 741 if (UseMI->isRegTiedToDefOperand(OpNo)) 742 return false; 743 } 744 745 DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 746 << *DefMI); 747 748 // At this point we have decided that it is legal to do this 749 // transformation. Start by commuting the instruction. 750 MachineBasicBlock *MBB = DefMI->getParent(); 751 MachineInstr *NewMI = 752 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 753 if (!NewMI) 754 return false; 755 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 756 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 757 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 758 return false; 759 if (NewMI != DefMI) { 760 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 761 MachineBasicBlock::iterator Pos = DefMI; 762 MBB->insert(Pos, NewMI); 763 MBB->erase(DefMI); 764 } 765 766 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 767 // A = or A, B 768 // ... 769 // B = A 770 // ... 771 // C = killed A 772 // ... 773 // = B 774 775 // Update uses of IntA of the specific Val# with IntB. 776 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 777 UE = MRI->use_end(); 778 UI != UE; /* ++UI is below because of possible MI removal */) { 779 MachineOperand &UseMO = *UI; 780 ++UI; 781 if (UseMO.isUndef()) 782 continue; 783 MachineInstr *UseMI = UseMO.getParent(); 784 if (UseMI->isDebugValue()) { 785 // FIXME These don't have an instruction index. Not clear we have enough 786 // info to decide whether to do this replacement or not. For now do it. 787 UseMO.setReg(NewReg); 788 continue; 789 } 790 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 791 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 792 assert(US != IntA.end() && "Use must be live"); 793 if (US->valno != AValNo) 794 continue; 795 // Kill flags are no longer accurate. They are recomputed after RA. 796 UseMO.setIsKill(false); 797 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 798 UseMO.substPhysReg(NewReg, *TRI); 799 else 800 UseMO.setReg(NewReg); 801 if (UseMI == CopyMI) 802 continue; 803 if (!UseMI->isCopy()) 804 continue; 805 if (UseMI->getOperand(0).getReg() != IntB.reg || 806 UseMI->getOperand(0).getSubReg()) 807 continue; 808 809 // This copy will become a noop. If it's defining a new val#, merge it into 810 // BValNo. 811 SlotIndex DefIdx = UseIdx.getRegSlot(); 812 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 813 if (!DVNI) 814 continue; 815 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 816 assert(DVNI->def == DefIdx); 817 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 818 for (LiveInterval::SubRange &S : IntB.subranges()) { 819 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 820 if (!SubDVNI) 821 continue; 822 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 823 assert(SubBValNo->def == CopyIdx); 824 S.MergeValueNumberInto(SubDVNI, SubBValNo); 825 } 826 827 deleteInstr(UseMI); 828 } 829 830 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 831 // is updated. 832 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 833 if (IntB.hasSubRanges()) { 834 if (!IntA.hasSubRanges()) { 835 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 836 IntA.createSubRangeFrom(Allocator, Mask, IntA); 837 } 838 SlotIndex AIdx = CopyIdx.getRegSlot(true); 839 for (LiveInterval::SubRange &SA : IntA.subranges()) { 840 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 841 assert(ASubValNo != nullptr); 842 843 IntB.refineSubRanges(Allocator, SA.LaneMask, 844 [&Allocator,&SA,CopyIdx,ASubValNo](LiveInterval::SubRange &SR) { 845 VNInfo *BSubValNo = SR.empty() 846 ? SR.getNextValue(CopyIdx, Allocator) 847 : SR.getVNInfoAt(CopyIdx); 848 assert(BSubValNo != nullptr); 849 addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 850 }); 851 } 852 } 853 854 BValNo->def = AValNo->def; 855 addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 856 DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 857 858 LIS->removeVRegDefAt(IntA, AValNo->def); 859 860 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 861 ++numCommutes; 862 return true; 863 } 864 865 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 866 /// predecessor of BB2, and if B is not redefined on the way from A = B 867 /// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the 868 /// execution goes through the path from BB0 to BB2. We may move B = A 869 /// to the predecessor without such reversed copy. 870 /// So we will transform the program from: 871 /// BB0: 872 /// A = B; BB1: 873 /// ... ... 874 /// / \ / 875 /// BB2: 876 /// ... 877 /// B = A; 878 /// 879 /// to: 880 /// 881 /// BB0: BB1: 882 /// A = B; ... 883 /// ... B = A; 884 /// / \ / 885 /// BB2: 886 /// ... 887 /// 888 /// A special case is when BB0 and BB2 are the same BB which is the only 889 /// BB in a loop: 890 /// BB1: 891 /// ... 892 /// BB0/BB2: ---- 893 /// B = A; | 894 /// ... | 895 /// A = B; | 896 /// |------- 897 /// | 898 /// We may hoist B = A from BB0/BB2 to BB1. 899 /// 900 /// The major preconditions for correctness to remove such partial 901 /// redundancy include: 902 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 903 /// the PHI is defined by the reversed copy A = B in BB0. 904 /// 2. No B is referenced from the start of BB2 to B = A. 905 /// 3. No B is defined from A = B to the end of BB0. 906 /// 4. BB1 has only one successor. 907 /// 908 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 909 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 910 /// colder place, which not only prevent endless loop, but also make sure 911 /// the movement of copy is beneficial. 912 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 913 MachineInstr &CopyMI) { 914 assert(!CP.isPhys()); 915 if (!CopyMI.isFullCopy()) 916 return false; 917 918 MachineBasicBlock &MBB = *CopyMI.getParent(); 919 if (MBB.isEHPad()) 920 return false; 921 922 if (MBB.pred_size() != 2) 923 return false; 924 925 LiveInterval &IntA = 926 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 927 LiveInterval &IntB = 928 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 929 930 // A is defined by PHI at the entry of MBB. 931 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 932 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 933 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 934 if (!AValNo->isPHIDef()) 935 return false; 936 937 // No B is referenced before CopyMI in MBB. 938 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 939 return false; 940 941 // MBB has two predecessors: one contains A = B so no copy will be inserted 942 // for it. The other one will have a copy moved from MBB. 943 bool FoundReverseCopy = false; 944 MachineBasicBlock *CopyLeftBB = nullptr; 945 for (MachineBasicBlock *Pred : MBB.predecessors()) { 946 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 947 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 948 if (!DefMI || !DefMI->isFullCopy()) { 949 CopyLeftBB = Pred; 950 continue; 951 } 952 // Check DefMI is a reverse copy and it is in BB Pred. 953 if (DefMI->getOperand(0).getReg() != IntA.reg || 954 DefMI->getOperand(1).getReg() != IntB.reg || 955 DefMI->getParent() != Pred) { 956 CopyLeftBB = Pred; 957 continue; 958 } 959 // If there is any other def of B after DefMI and before the end of Pred, 960 // we need to keep the copy of B = A at the end of Pred if we remove 961 // B = A from MBB. 962 bool ValB_Changed = false; 963 for (auto VNI : IntB.valnos) { 964 if (VNI->isUnused()) 965 continue; 966 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 967 ValB_Changed = true; 968 break; 969 } 970 } 971 if (ValB_Changed) { 972 CopyLeftBB = Pred; 973 continue; 974 } 975 FoundReverseCopy = true; 976 } 977 978 // If no reverse copy is found in predecessors, nothing to do. 979 if (!FoundReverseCopy) 980 return false; 981 982 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 983 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 984 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 985 // update IntA/IntB. 986 // 987 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 988 // MBB is hotter than CopyLeftBB. 989 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 990 return false; 991 992 // Now (almost sure it's) ok to move copy. 993 if (CopyLeftBB) { 994 // Position in CopyLeftBB where we should insert new copy. 995 auto InsPos = CopyLeftBB->getFirstTerminator(); 996 997 // Make sure that B isn't referenced in the terminators (if any) at the end 998 // of the predecessor since we're about to insert a new definition of B 999 // before them. 1000 if (InsPos != CopyLeftBB->end()) { 1001 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true); 1002 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB))) 1003 return false; 1004 } 1005 1006 DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to " 1007 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI); 1008 1009 // Insert new copy to CopyLeftBB. 1010 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1011 TII->get(TargetOpcode::COPY), IntB.reg) 1012 .addReg(IntA.reg); 1013 SlotIndex NewCopyIdx = 1014 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1015 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1016 for (LiveInterval::SubRange &SR : IntB.subranges()) 1017 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1018 1019 // If the newly created Instruction has an address of an instruction that was 1020 // deleted before (object recycled by the allocator) it needs to be removed from 1021 // the deleted list. 1022 ErasedInstrs.erase(NewCopyMI); 1023 } else { 1024 DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from " 1025 << printMBBReference(MBB) << '\t' << CopyMI); 1026 } 1027 1028 // Remove CopyMI. 1029 // Note: This is fine to remove the copy before updating the live-ranges. 1030 // While updating the live-ranges, we only look at slot indices and 1031 // never go back to the instruction. 1032 // Mark instructions as deleted. 1033 deleteInstr(&CopyMI); 1034 1035 // Update the liveness. 1036 SmallVector<SlotIndex, 8> EndPoints; 1037 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1038 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1039 &EndPoints); 1040 BValNo->markUnused(); 1041 // Extend IntB to the EndPoints of its original live interval. 1042 LIS->extendToIndices(IntB, EndPoints); 1043 1044 // Now, do the same for its subranges. 1045 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1046 EndPoints.clear(); 1047 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1048 assert(BValNo && "All sublanes should be live"); 1049 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1050 BValNo->markUnused(); 1051 LIS->extendToIndices(SR, EndPoints); 1052 } 1053 1054 // Finally, update the live-range of IntA. 1055 shrinkToUses(&IntA); 1056 return true; 1057 } 1058 1059 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1060 /// defining a subregister. 1061 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 1062 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && 1063 "This code cannot handle physreg aliasing"); 1064 for (const MachineOperand &Op : MI.operands()) { 1065 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1066 continue; 1067 // Return true if we define the full register or don't care about the value 1068 // inside other subregisters. 1069 if (Op.getSubReg() == 0 || Op.isUndef()) 1070 return true; 1071 } 1072 return false; 1073 } 1074 1075 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1076 MachineInstr *CopyMI, 1077 bool &IsDefCopy) { 1078 IsDefCopy = false; 1079 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1080 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1081 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1082 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1083 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1084 return false; 1085 1086 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1087 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1088 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1089 assert(ValNo && "CopyMI input register not live"); 1090 if (ValNo->isPHIDef() || ValNo->isUnused()) 1091 return false; 1092 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1093 if (!DefMI) 1094 return false; 1095 if (DefMI->isCopyLike()) { 1096 IsDefCopy = true; 1097 return false; 1098 } 1099 if (!TII->isAsCheapAsAMove(*DefMI)) 1100 return false; 1101 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1102 return false; 1103 if (!definesFullReg(*DefMI, SrcReg)) 1104 return false; 1105 bool SawStore = false; 1106 if (!DefMI->isSafeToMove(AA, SawStore)) 1107 return false; 1108 const MCInstrDesc &MCID = DefMI->getDesc(); 1109 if (MCID.getNumDefs() != 1) 1110 return false; 1111 // Only support subregister destinations when the def is read-undef. 1112 MachineOperand &DstOperand = CopyMI->getOperand(0); 1113 unsigned CopyDstReg = DstOperand.getReg(); 1114 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1115 return false; 1116 1117 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1118 // the register substantially (beyond both source and dest size). This is bad 1119 // for performance since it can cascade through a function, introducing many 1120 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1121 // around after a few subreg copies). 1122 if (SrcIdx && DstIdx) 1123 return false; 1124 1125 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1126 if (!DefMI->isImplicitDef()) { 1127 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 1128 unsigned NewDstReg = DstReg; 1129 1130 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1131 DefMI->getOperand(0).getSubReg()); 1132 if (NewDstIdx) 1133 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1134 1135 // Finally, make sure that the physical subregister that will be 1136 // constructed later is permitted for the instruction. 1137 if (!DefRC->contains(NewDstReg)) 1138 return false; 1139 } else { 1140 // Theoretically, some stack frame reference could exist. Just make sure 1141 // it hasn't actually happened. 1142 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 1143 "Only expect to deal with virtual or physical registers"); 1144 } 1145 } 1146 1147 DebugLoc DL = CopyMI->getDebugLoc(); 1148 MachineBasicBlock *MBB = CopyMI->getParent(); 1149 MachineBasicBlock::iterator MII = 1150 std::next(MachineBasicBlock::iterator(CopyMI)); 1151 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1152 MachineInstr &NewMI = *std::prev(MII); 1153 NewMI.setDebugLoc(DL); 1154 1155 // In a situation like the following: 1156 // %0:subreg = instr ; DefMI, subreg = DstIdx 1157 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0 1158 // instead of widening %1 to the register class of %0 simply do: 1159 // %1 = instr 1160 const TargetRegisterClass *NewRC = CP.getNewRC(); 1161 if (DstIdx != 0) { 1162 MachineOperand &DefMO = NewMI.getOperand(0); 1163 if (DefMO.getSubReg() == DstIdx) { 1164 assert(SrcIdx == 0 && CP.isFlipped() 1165 && "Shouldn't have SrcIdx+DstIdx at this point"); 1166 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1167 const TargetRegisterClass *CommonRC = 1168 TRI->getCommonSubClass(DefRC, DstRC); 1169 if (CommonRC != nullptr) { 1170 NewRC = CommonRC; 1171 DstIdx = 0; 1172 DefMO.setSubReg(0); 1173 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1174 } 1175 } 1176 } 1177 1178 // CopyMI may have implicit operands, save them so that we can transfer them 1179 // over to the newly materialized instruction after CopyMI is removed. 1180 SmallVector<MachineOperand, 4> ImplicitOps; 1181 ImplicitOps.reserve(CopyMI->getNumOperands() - 1182 CopyMI->getDesc().getNumOperands()); 1183 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1184 E = CopyMI->getNumOperands(); 1185 I != E; ++I) { 1186 MachineOperand &MO = CopyMI->getOperand(I); 1187 if (MO.isReg()) { 1188 assert(MO.isImplicit() && "No explicit operands after implict operands."); 1189 // Discard VReg implicit defs. 1190 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1191 ImplicitOps.push_back(MO); 1192 } 1193 } 1194 1195 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1196 CopyMI->eraseFromParent(); 1197 ErasedInstrs.insert(CopyMI); 1198 1199 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1200 // We need to remember these so we can add intervals once we insert 1201 // NewMI into SlotIndexes. 1202 SmallVector<unsigned, 4> NewMIImplDefs; 1203 for (unsigned i = NewMI.getDesc().getNumOperands(), 1204 e = NewMI.getNumOperands(); 1205 i != e; ++i) { 1206 MachineOperand &MO = NewMI.getOperand(i); 1207 if (MO.isReg() && MO.isDef()) { 1208 assert(MO.isImplicit() && MO.isDead() && 1209 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 1210 NewMIImplDefs.push_back(MO.getReg()); 1211 } 1212 } 1213 1214 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 1215 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1216 1217 if (DefRC != nullptr) { 1218 if (NewIdx) 1219 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1220 else 1221 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1222 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1223 } 1224 // Remap subranges to new lanemask and change register class. 1225 LiveInterval &DstInt = LIS->getInterval(DstReg); 1226 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1227 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1228 } 1229 MRI->setRegClass(DstReg, NewRC); 1230 1231 // Update machine operands and add flags. 1232 updateRegDefsUses(DstReg, DstReg, DstIdx); 1233 NewMI.getOperand(0).setSubReg(NewIdx); 1234 // Add dead subregister definitions if we are defining the whole register 1235 // but only part of it is live. 1236 // This could happen if the rematerialization instruction is rematerializing 1237 // more than actually is used in the register. 1238 // An example would be: 1239 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1240 // ; Copying only part of the register here, but the rest is undef. 1241 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit 1242 // ==> 1243 // ; Materialize all the constants but only using one 1244 // %2 = LOAD_CONSTANTS 5, 8 1245 // 1246 // at this point for the part that wasn't defined before we could have 1247 // subranges missing the definition. 1248 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1249 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1250 SlotIndex DefIndex = 1251 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1252 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1253 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1254 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1255 if (!SR.liveAt(DefIndex)) 1256 SR.createDeadDef(DefIndex, Alloc); 1257 MaxMask &= ~SR.LaneMask; 1258 } 1259 if (MaxMask.any()) { 1260 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1261 SR->createDeadDef(DefIndex, Alloc); 1262 } 1263 } 1264 1265 // Make sure that the subrange for resultant undef is removed 1266 // For example: 1267 // %1:sub1<def,read-undef> = LOAD CONSTANT 1 1268 // %2 = COPY %1 1269 // ==> 1270 // %2:sub1<def, read-undef> = LOAD CONSTANT 1 1271 // ; Correct but need to remove the subrange for %2:sub0 1272 // ; as it is now undef 1273 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1274 // The affected subregister segments can be removed. 1275 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1276 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1277 bool UpdatedSubRanges = false; 1278 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1279 if ((SR.LaneMask & DstMask).none()) { 1280 DEBUG(dbgs() << "Removing undefined SubRange " 1281 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1282 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1283 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1284 SR.removeValNo(RmValNo); 1285 UpdatedSubRanges = true; 1286 } 1287 } 1288 } 1289 if (UpdatedSubRanges) 1290 DstInt.removeEmptySubRanges(); 1291 } 1292 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1293 // The New instruction may be defining a sub-register of what's actually 1294 // been asked for. If so it must implicitly define the whole thing. 1295 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 1296 "Only expect virtual or physical registers in remat"); 1297 NewMI.getOperand(0).setIsDead(true); 1298 NewMI.addOperand(MachineOperand::CreateReg( 1299 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1300 // Record small dead def live-ranges for all the subregisters 1301 // of the destination register. 1302 // Otherwise, variables that live through may miss some 1303 // interferences, thus creating invalid allocation. 1304 // E.g., i386 code: 1305 // %1 = somedef ; %1 GR8 1306 // %2 = remat ; %2 GR32 1307 // CL = COPY %2.sub_8bit 1308 // = somedef %1 ; %1 GR8 1309 // => 1310 // %1 = somedef ; %1 GR8 1311 // dead ECX = remat ; implicit-def CL 1312 // = somedef %1 ; %1 GR8 1313 // %1 will see the inteferences with CL but not with CH since 1314 // no live-ranges would have been created for ECX. 1315 // Fix that! 1316 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1317 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1318 Units.isValid(); ++Units) 1319 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1320 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1321 } 1322 1323 if (NewMI.getOperand(0).getSubReg()) 1324 NewMI.getOperand(0).setIsUndef(); 1325 1326 // Transfer over implicit operands to the rematerialized instruction. 1327 for (MachineOperand &MO : ImplicitOps) 1328 NewMI.addOperand(MO); 1329 1330 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1331 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1332 unsigned Reg = NewMIImplDefs[i]; 1333 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1334 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1335 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1336 } 1337 1338 DEBUG(dbgs() << "Remat: " << NewMI); 1339 ++NumReMats; 1340 1341 // The source interval can become smaller because we removed a use. 1342 shrinkToUses(&SrcInt, &DeadDefs); 1343 if (!DeadDefs.empty()) { 1344 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1345 // to describe DstReg instead. 1346 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1347 MachineInstr *UseMI = UseMO.getParent(); 1348 if (UseMI->isDebugValue()) { 1349 UseMO.setReg(DstReg); 1350 // Move the debug value directly after the def of the rematerialized 1351 // value in DstReg. 1352 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); 1353 DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1354 } 1355 } 1356 eliminateDeadDefs(); 1357 } 1358 1359 return true; 1360 } 1361 1362 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1363 // ProcessImpicitDefs may leave some copies of <undef> values, it only removes 1364 // local variables. When we have a copy like: 1365 // 1366 // %1 = COPY undef %2 1367 // 1368 // We delete the copy and remove the corresponding value number from %1. 1369 // Any uses of that value number are marked as <undef>. 1370 1371 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1372 // CoalescerPair may have a new register class with adjusted subreg indices 1373 // at this point. 1374 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1375 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx); 1376 1377 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1378 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1379 // CopyMI is undef iff SrcReg is not live before the instruction. 1380 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1381 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1382 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1383 if ((SR.LaneMask & SrcMask).none()) 1384 continue; 1385 if (SR.liveAt(Idx)) 1386 return false; 1387 } 1388 } else if (SrcLI.liveAt(Idx)) 1389 return false; 1390 1391 DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1392 1393 // Remove any DstReg segments starting at the instruction. 1394 LiveInterval &DstLI = LIS->getInterval(DstReg); 1395 SlotIndex RegIndex = Idx.getRegSlot(); 1396 // Remove value or merge with previous one in case of a subregister def. 1397 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1398 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1399 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1400 1401 // The affected subregister segments can be removed. 1402 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1403 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1404 if ((SR.LaneMask & DstMask).none()) 1405 continue; 1406 1407 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1408 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1409 SR.removeValNo(SVNI); 1410 } 1411 DstLI.removeEmptySubRanges(); 1412 } else 1413 LIS->removeVRegDefAt(DstLI, RegIndex); 1414 1415 // Mark uses as undef. 1416 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1417 if (MO.isDef() /*|| MO.isUndef()*/) 1418 continue; 1419 const MachineInstr &MI = *MO.getParent(); 1420 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1421 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1422 bool isLive; 1423 if (!UseMask.all() && DstLI.hasSubRanges()) { 1424 isLive = false; 1425 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1426 if ((SR.LaneMask & UseMask).none()) 1427 continue; 1428 if (SR.liveAt(UseIdx)) { 1429 isLive = true; 1430 break; 1431 } 1432 } 1433 } else 1434 isLive = DstLI.liveAt(UseIdx); 1435 if (isLive) 1436 continue; 1437 MO.setIsUndef(true); 1438 DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1439 } 1440 1441 // A def of a subregister may be a use of the other subregisters, so 1442 // deleting a def of a subregister may also remove uses. Since CopyMI 1443 // is still part of the function (but about to be erased), mark all 1444 // defs of DstReg in it as <undef>, so that shrinkToUses would 1445 // ignore them. 1446 for (MachineOperand &MO : CopyMI->operands()) 1447 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1448 MO.setIsUndef(true); 1449 LIS->shrinkToUses(&DstLI); 1450 1451 return true; 1452 } 1453 1454 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1455 MachineOperand &MO, unsigned SubRegIdx) { 1456 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1457 if (MO.isDef()) 1458 Mask = ~Mask; 1459 bool IsUndef = true; 1460 for (const LiveInterval::SubRange &S : Int.subranges()) { 1461 if ((S.LaneMask & Mask).none()) 1462 continue; 1463 if (S.liveAt(UseIdx)) { 1464 IsUndef = false; 1465 break; 1466 } 1467 } 1468 if (IsUndef) { 1469 MO.setIsUndef(true); 1470 // We found out some subregister use is actually reading an undefined 1471 // value. In some cases the whole vreg has become undefined at this 1472 // point so we have to potentially shrink the main range if the 1473 // use was ending a live segment there. 1474 LiveQueryResult Q = Int.Query(UseIdx); 1475 if (Q.valueOut() == nullptr) 1476 ShrinkMainRange = true; 1477 } 1478 } 1479 1480 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 1481 unsigned DstReg, 1482 unsigned SubIdx) { 1483 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 1484 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1485 1486 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1487 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1488 unsigned SubReg = MO.getSubReg(); 1489 if (SubReg == 0 || MO.isUndef()) 1490 continue; 1491 MachineInstr &MI = *MO.getParent(); 1492 if (MI.isDebugValue()) 1493 continue; 1494 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1495 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1496 } 1497 } 1498 1499 SmallPtrSet<MachineInstr*, 8> Visited; 1500 for (MachineRegisterInfo::reg_instr_iterator 1501 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1502 I != E; ) { 1503 MachineInstr *UseMI = &*(I++); 1504 1505 // Each instruction can only be rewritten once because sub-register 1506 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1507 // the UseMI operands removes them from the SrcReg use-def chain, but when 1508 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1509 // operands mentioning the virtual register. 1510 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1511 continue; 1512 1513 SmallVector<unsigned,8> Ops; 1514 bool Reads, Writes; 1515 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1516 1517 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1518 // because SrcReg is a sub-register. 1519 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) 1520 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1521 1522 // Replace SrcReg with DstReg in all UseMI operands. 1523 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1524 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1525 1526 // Adjust <undef> flags in case of sub-register joins. We don't want to 1527 // turn a full def into a read-modify-write sub-register def and vice 1528 // versa. 1529 if (SubIdx && MO.isDef()) 1530 MO.setIsUndef(!Reads); 1531 1532 // A subreg use of a partially undef (super) register may be a complete 1533 // undef use now and then has to be marked that way. 1534 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1535 if (!DstInt->hasSubRanges()) { 1536 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1537 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1538 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1539 } 1540 SlotIndex MIIdx = UseMI->isDebugValue() 1541 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1542 : LIS->getInstructionIndex(*UseMI); 1543 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1544 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1545 } 1546 1547 if (DstIsPhys) 1548 MO.substPhysReg(DstReg, *TRI); 1549 else 1550 MO.substVirtReg(DstReg, SubIdx, *TRI); 1551 } 1552 1553 DEBUG({ 1554 dbgs() << "\t\tupdated: "; 1555 if (!UseMI->isDebugValue()) 1556 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1557 dbgs() << *UseMI; 1558 }); 1559 } 1560 } 1561 1562 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1563 // Always join simple intervals that are defined by a single copy from a 1564 // reserved register. This doesn't increase register pressure, so it is 1565 // always beneficial. 1566 if (!MRI->isReserved(CP.getDstReg())) { 1567 DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1568 return false; 1569 } 1570 1571 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1572 if (JoinVInt.containsOneValue()) 1573 return true; 1574 1575 DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1576 return false; 1577 } 1578 1579 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1580 Again = false; 1581 DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1582 1583 CoalescerPair CP(*TRI); 1584 if (!CP.setRegisters(CopyMI)) { 1585 DEBUG(dbgs() << "\tNot coalescable.\n"); 1586 return false; 1587 } 1588 1589 if (CP.getNewRC()) { 1590 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1591 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1592 unsigned SrcIdx = CP.getSrcIdx(); 1593 unsigned DstIdx = CP.getDstIdx(); 1594 if (CP.isFlipped()) { 1595 std::swap(SrcIdx, DstIdx); 1596 std::swap(SrcRC, DstRC); 1597 } 1598 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1599 CP.getNewRC(), *LIS)) { 1600 DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1601 return false; 1602 } 1603 } 1604 1605 // Dead code elimination. This really should be handled by MachineDCE, but 1606 // sometimes dead copies slip through, and we can't generate invalid live 1607 // ranges. 1608 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1609 DEBUG(dbgs() << "\tCopy is dead.\n"); 1610 DeadDefs.push_back(CopyMI); 1611 eliminateDeadDefs(); 1612 return true; 1613 } 1614 1615 // Eliminate undefs. 1616 if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) { 1617 deleteInstr(CopyMI); 1618 return false; // Not coalescable. 1619 } 1620 1621 // Coalesced copies are normally removed immediately, but transformations 1622 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1623 // When that happens, just join the values and remove the copy. 1624 if (CP.getSrcReg() == CP.getDstReg()) { 1625 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1626 DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1627 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1628 LiveQueryResult LRQ = LI.Query(CopyIdx); 1629 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1630 VNInfo *ReadVNI = LRQ.valueIn(); 1631 assert(ReadVNI && "No value before copy and no <undef> flag."); 1632 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1633 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1634 1635 // Process subregister liveranges. 1636 for (LiveInterval::SubRange &S : LI.subranges()) { 1637 LiveQueryResult SLRQ = S.Query(CopyIdx); 1638 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1639 VNInfo *SReadVNI = SLRQ.valueIn(); 1640 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1641 } 1642 } 1643 DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1644 } 1645 deleteInstr(CopyMI); 1646 return true; 1647 } 1648 1649 // Enforce policies. 1650 if (CP.isPhys()) { 1651 DEBUG(dbgs() << "\tConsidering merging " << printReg(CP.getSrcReg(), TRI) 1652 << " with " << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) 1653 << '\n'); 1654 if (!canJoinPhys(CP)) { 1655 // Before giving up coalescing, if definition of source is defined by 1656 // trivial computation, try rematerializing it. 1657 bool IsDefCopy; 1658 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1659 return true; 1660 if (IsDefCopy) 1661 Again = true; // May be possible to coalesce later. 1662 return false; 1663 } 1664 } else { 1665 // When possible, let DstReg be the larger interval. 1666 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1667 LIS->getInterval(CP.getDstReg()).size()) 1668 CP.flip(); 1669 1670 DEBUG({ 1671 dbgs() << "\tConsidering merging to " 1672 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1673 if (CP.getDstIdx() && CP.getSrcIdx()) 1674 dbgs() << printReg(CP.getDstReg()) << " in " 1675 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1676 << printReg(CP.getSrcReg()) << " in " 1677 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1678 else 1679 dbgs() << printReg(CP.getSrcReg(), TRI) << " in " 1680 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1681 }); 1682 } 1683 1684 ShrinkMask = LaneBitmask::getNone(); 1685 ShrinkMainRange = false; 1686 1687 // Okay, attempt to join these two intervals. On failure, this returns false. 1688 // Otherwise, if one of the intervals being joined is a physreg, this method 1689 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1690 // been modified, so we can use this information below to update aliases. 1691 if (!joinIntervals(CP)) { 1692 // Coalescing failed. 1693 1694 // If definition of source is defined by trivial computation, try 1695 // rematerializing it. 1696 bool IsDefCopy; 1697 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1698 return true; 1699 1700 // If we can eliminate the copy without merging the live segments, do so 1701 // now. 1702 if (!CP.isPartial() && !CP.isPhys()) { 1703 if (adjustCopiesBackFrom(CP, CopyMI) || 1704 removeCopyByCommutingDef(CP, CopyMI)) { 1705 deleteInstr(CopyMI); 1706 DEBUG(dbgs() << "\tTrivial!\n"); 1707 return true; 1708 } 1709 } 1710 1711 // Try and see if we can partially eliminate the copy by moving the copy to 1712 // its predecessor. 1713 if (!CP.isPartial() && !CP.isPhys()) 1714 if (removePartialRedundancy(CP, *CopyMI)) 1715 return true; 1716 1717 // Otherwise, we are unable to join the intervals. 1718 DEBUG(dbgs() << "\tInterference!\n"); 1719 Again = true; // May be possible to coalesce later. 1720 return false; 1721 } 1722 1723 // Coalescing to a virtual register that is of a sub-register class of the 1724 // other. Make sure the resulting register is set to the right register class. 1725 if (CP.isCrossClass()) { 1726 ++numCrossRCs; 1727 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1728 } 1729 1730 // Removing sub-register copies can ease the register class constraints. 1731 // Make sure we attempt to inflate the register class of DstReg. 1732 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1733 InflateRegs.push_back(CP.getDstReg()); 1734 1735 // CopyMI has been erased by joinIntervals at this point. Remove it from 1736 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1737 // to the work list. This keeps ErasedInstrs from growing needlessly. 1738 ErasedInstrs.erase(CopyMI); 1739 1740 // Rewrite all SrcReg operands to DstReg. 1741 // Also update DstReg operands to include DstIdx if it is set. 1742 if (CP.getDstIdx()) 1743 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1744 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1745 1746 // Shrink subregister ranges if necessary. 1747 if (ShrinkMask.any()) { 1748 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1749 for (LiveInterval::SubRange &S : LI.subranges()) { 1750 if ((S.LaneMask & ShrinkMask).none()) 1751 continue; 1752 DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1753 << ")\n"); 1754 LIS->shrinkToUses(S, LI.reg); 1755 } 1756 LI.removeEmptySubRanges(); 1757 } 1758 if (ShrinkMainRange) { 1759 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1760 shrinkToUses(&LI); 1761 } 1762 1763 // SrcReg is guaranteed to be the register whose live interval that is 1764 // being merged. 1765 LIS->removeInterval(CP.getSrcReg()); 1766 1767 // Update regalloc hint. 1768 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1769 1770 DEBUG({ 1771 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 1772 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 1773 dbgs() << "\tResult = "; 1774 if (CP.isPhys()) 1775 dbgs() << printReg(CP.getDstReg(), TRI); 1776 else 1777 dbgs() << LIS->getInterval(CP.getDstReg()); 1778 dbgs() << '\n'; 1779 }); 1780 1781 ++numJoins; 1782 return true; 1783 } 1784 1785 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1786 unsigned DstReg = CP.getDstReg(); 1787 unsigned SrcReg = CP.getSrcReg(); 1788 assert(CP.isPhys() && "Must be a physreg copy"); 1789 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 1790 LiveInterval &RHS = LIS->getInterval(SrcReg); 1791 DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1792 1793 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 1794 1795 // Optimization for reserved registers like ESP. We can only merge with a 1796 // reserved physreg if RHS has a single value that is a copy of DstReg. 1797 // The live range of the reserved register will look like a set of dead defs 1798 // - we don't properly track the live range of reserved registers. 1799 1800 // Deny any overlapping intervals. This depends on all the reserved 1801 // register live ranges to look like dead defs. 1802 if (!MRI->isConstantPhysReg(DstReg)) { 1803 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1804 // Abort if not all the regunits are reserved. 1805 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 1806 if (!MRI->isReserved(*RI)) 1807 return false; 1808 } 1809 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1810 DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) << '\n'); 1811 return false; 1812 } 1813 } 1814 1815 // We must also check for overlaps with regmask clobbers. 1816 BitVector RegMaskUsable; 1817 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 1818 !RegMaskUsable.test(DstReg)) { 1819 DEBUG(dbgs() << "\t\tRegMask interference\n"); 1820 return false; 1821 } 1822 } 1823 1824 // Skip any value computations, we are not adding new values to the 1825 // reserved register. Also skip merging the live ranges, the reserved 1826 // register live range doesn't need to be accurate as long as all the 1827 // defs are there. 1828 1829 // Delete the identity copy. 1830 MachineInstr *CopyMI; 1831 if (CP.isFlipped()) { 1832 // Physreg is copied into vreg 1833 // %y = COPY %physreg_x 1834 // ... //< no other def of %x here 1835 // use %y 1836 // => 1837 // ... 1838 // use %x 1839 CopyMI = MRI->getVRegDef(SrcReg); 1840 } else { 1841 // VReg is copied into physreg: 1842 // %y = def 1843 // ... //< no other def or use of %y here 1844 // %y = COPY %physreg_x 1845 // => 1846 // %y = def 1847 // ... 1848 if (!MRI->hasOneNonDBGUse(SrcReg)) { 1849 DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 1850 return false; 1851 } 1852 1853 if (!LIS->intervalIsInOneMBB(RHS)) { 1854 DEBUG(dbgs() << "\t\tComplex control flow!\n"); 1855 return false; 1856 } 1857 1858 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 1859 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 1860 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 1861 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 1862 1863 if (!MRI->isConstantPhysReg(DstReg)) { 1864 // We checked above that there are no interfering defs of the physical 1865 // register. However, for this case, where we intend to move up the def of 1866 // the physical register, we also need to check for interfering uses. 1867 SlotIndexes *Indexes = LIS->getSlotIndexes(); 1868 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 1869 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 1870 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 1871 if (MI->readsRegister(DstReg, TRI)) { 1872 DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 1873 return false; 1874 } 1875 } 1876 } 1877 1878 // We're going to remove the copy which defines a physical reserved 1879 // register, so remove its valno, etc. 1880 DEBUG(dbgs() << "\t\tRemoving phys reg def of " << printReg(DstReg, TRI) 1881 << " at " << CopyRegIdx << "\n"); 1882 1883 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 1884 // Create a new dead def at the new def location. 1885 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1886 LiveRange &LR = LIS->getRegUnit(*UI); 1887 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 1888 } 1889 } 1890 1891 deleteInstr(CopyMI); 1892 1893 // We don't track kills for reserved registers. 1894 MRI->clearKillFlags(CP.getSrcReg()); 1895 1896 return true; 1897 } 1898 1899 //===----------------------------------------------------------------------===// 1900 // Interference checking and interval joining 1901 //===----------------------------------------------------------------------===// 1902 // 1903 // In the easiest case, the two live ranges being joined are disjoint, and 1904 // there is no interference to consider. It is quite common, though, to have 1905 // overlapping live ranges, and we need to check if the interference can be 1906 // resolved. 1907 // 1908 // The live range of a single SSA value forms a sub-tree of the dominator tree. 1909 // This means that two SSA values overlap if and only if the def of one value 1910 // is contained in the live range of the other value. As a special case, the 1911 // overlapping values can be defined at the same index. 1912 // 1913 // The interference from an overlapping def can be resolved in these cases: 1914 // 1915 // 1. Coalescable copies. The value is defined by a copy that would become an 1916 // identity copy after joining SrcReg and DstReg. The copy instruction will 1917 // be removed, and the value will be merged with the source value. 1918 // 1919 // There can be several copies back and forth, causing many values to be 1920 // merged into one. We compute a list of ultimate values in the joined live 1921 // range as well as a mappings from the old value numbers. 1922 // 1923 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 1924 // predecessors have a live out value. It doesn't cause real interference, 1925 // and can be merged into the value it overlaps. Like a coalescable copy, it 1926 // can be erased after joining. 1927 // 1928 // 3. Copy of external value. The overlapping def may be a copy of a value that 1929 // is already in the other register. This is like a coalescable copy, but 1930 // the live range of the source register must be trimmed after erasing the 1931 // copy instruction: 1932 // 1933 // %src = COPY %ext 1934 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 1935 // 1936 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 1937 // defining one lane at a time: 1938 // 1939 // %dst:ssub0<def,read-undef> = FOO 1940 // %src = BAR 1941 // %dst:ssub1 = COPY %src 1942 // 1943 // The live range of %src overlaps the %dst value defined by FOO, but 1944 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 1945 // which was undef anyway. 1946 // 1947 // The value mapping is more complicated in this case. The final live range 1948 // will have different value numbers for both FOO and BAR, but there is no 1949 // simple mapping from old to new values. It may even be necessary to add 1950 // new PHI values. 1951 // 1952 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 1953 // is live, but never read. This can happen because we don't compute 1954 // individual live ranges per lane. 1955 // 1956 // %dst = FOO 1957 // %src = BAR 1958 // %dst:ssub1 = COPY %src 1959 // 1960 // This kind of interference is only resolved locally. If the clobbered 1961 // lane value escapes the block, the join is aborted. 1962 1963 namespace { 1964 1965 /// Track information about values in a single virtual register about to be 1966 /// joined. Objects of this class are always created in pairs - one for each 1967 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 1968 /// pair) 1969 class JoinVals { 1970 /// Live range we work on. 1971 LiveRange &LR; 1972 1973 /// (Main) register we work on. 1974 const unsigned Reg; 1975 1976 /// Reg (and therefore the values in this liverange) will end up as 1977 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 1978 /// CP.SrcIdx. 1979 const unsigned SubIdx; 1980 1981 /// The LaneMask that this liverange will occupy the coalesced register. May 1982 /// be smaller than the lanemask produced by SubIdx when merging subranges. 1983 const LaneBitmask LaneMask; 1984 1985 /// This is true when joining sub register ranges, false when joining main 1986 /// ranges. 1987 const bool SubRangeJoin; 1988 1989 /// Whether the current LiveInterval tracks subregister liveness. 1990 const bool TrackSubRegLiveness; 1991 1992 /// Values that will be present in the final live range. 1993 SmallVectorImpl<VNInfo*> &NewVNInfo; 1994 1995 const CoalescerPair &CP; 1996 LiveIntervals *LIS; 1997 SlotIndexes *Indexes; 1998 const TargetRegisterInfo *TRI; 1999 2000 /// Value number assignments. Maps value numbers in LI to entries in 2001 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 2002 SmallVector<int, 8> Assignments; 2003 2004 /// Conflict resolution for overlapping values. 2005 enum ConflictResolution { 2006 /// No overlap, simply keep this value. 2007 CR_Keep, 2008 2009 /// Merge this value into OtherVNI and erase the defining instruction. 2010 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 2011 /// values. 2012 CR_Erase, 2013 2014 /// Merge this value into OtherVNI but keep the defining instruction. 2015 /// This is for the special case where OtherVNI is defined by the same 2016 /// instruction. 2017 CR_Merge, 2018 2019 /// Keep this value, and have it replace OtherVNI where possible. This 2020 /// complicates value mapping since OtherVNI maps to two different values 2021 /// before and after this def. 2022 /// Used when clobbering undefined or dead lanes. 2023 CR_Replace, 2024 2025 /// Unresolved conflict. Visit later when all values have been mapped. 2026 CR_Unresolved, 2027 2028 /// Unresolvable conflict. Abort the join. 2029 CR_Impossible 2030 }; 2031 2032 /// Per-value info for LI. The lane bit masks are all relative to the final 2033 /// joined register, so they can be compared directly between SrcReg and 2034 /// DstReg. 2035 struct Val { 2036 ConflictResolution Resolution = CR_Keep; 2037 2038 /// Lanes written by this def, 0 for unanalyzed values. 2039 LaneBitmask WriteLanes; 2040 2041 /// Lanes with defined values in this register. Other lanes are undef and 2042 /// safe to clobber. 2043 LaneBitmask ValidLanes; 2044 2045 /// Value in LI being redefined by this def. 2046 VNInfo *RedefVNI = nullptr; 2047 2048 /// Value in the other live range that overlaps this def, if any. 2049 VNInfo *OtherVNI = nullptr; 2050 2051 /// Is this value an IMPLICIT_DEF that can be erased? 2052 /// 2053 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2054 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2055 /// safely erased if they are overlapping a live value in the other live 2056 /// interval. 2057 /// 2058 /// Weird control flow graphs and incomplete PHI handling in 2059 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2060 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2061 /// normal values. 2062 bool ErasableImplicitDef = false; 2063 2064 /// True when the live range of this value will be pruned because of an 2065 /// overlapping CR_Replace value in the other live range. 2066 bool Pruned = false; 2067 2068 /// True once Pruned above has been computed. 2069 bool PrunedComputed = false; 2070 2071 Val() = default; 2072 2073 bool isAnalyzed() const { return WriteLanes.any(); } 2074 }; 2075 2076 /// One entry per value number in LI. 2077 SmallVector<Val, 8> Vals; 2078 2079 /// Compute the bitmask of lanes actually written by DefMI. 2080 /// Set Redef if there are any partial register definitions that depend on the 2081 /// previous value of the register. 2082 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2083 2084 /// Find the ultimate value that VNI was copied from. 2085 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 2086 2087 bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const; 2088 2089 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2090 /// Return a conflict resolution when possible, but leave the hard cases as 2091 /// CR_Unresolved. 2092 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2093 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2094 /// The recursion always goes upwards in the dominator tree, making loops 2095 /// impossible. 2096 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2097 2098 /// Compute the value assignment for ValNo in RI. 2099 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2100 /// the stack. 2101 void computeAssignment(unsigned ValNo, JoinVals &Other); 2102 2103 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2104 /// the extent of the tainted lanes in the block. 2105 /// 2106 /// Multiple values in Other.LR can be affected since partial redefinitions 2107 /// can preserve previously tainted lanes. 2108 /// 2109 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2110 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2111 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2112 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2113 /// 2114 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2115 /// entry to TaintedVals. 2116 /// 2117 /// Returns false if the tainted lanes extend beyond the basic block. 2118 bool 2119 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2120 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); 2121 2122 /// Return true if MI uses any of the given Lanes from Reg. 2123 /// This does not include partial redefinitions of Reg. 2124 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; 2125 2126 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2127 /// be pruned: 2128 /// 2129 /// %dst = COPY %src 2130 /// %src = COPY %dst <-- This value to be pruned. 2131 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2132 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2133 2134 public: 2135 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 2136 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 2137 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2138 bool TrackSubRegLiveness) 2139 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2140 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2141 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2142 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {} 2143 2144 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2145 /// Returns false if any conflicts were impossible to resolve. 2146 bool mapValues(JoinVals &Other); 2147 2148 /// Try to resolve conflicts that require all values to be mapped. 2149 /// Returns false if any conflicts were impossible to resolve. 2150 bool resolveConflicts(JoinVals &Other); 2151 2152 /// Prune the live range of values in Other.LR where they would conflict with 2153 /// CR_Replace values in LR. Collect end points for restoring the live range 2154 /// after joining. 2155 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2156 bool changeInstrs); 2157 2158 /// Removes subranges starting at copies that get removed. This sometimes 2159 /// happens when undefined subranges are copied around. These ranges contain 2160 /// no useful information and can be removed. 2161 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2162 2163 /// Pruning values in subranges can lead to removing segments in these 2164 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2165 /// the main range also need to be removed. This function will mark 2166 /// the corresponding values in the main range as pruned, so that 2167 /// eraseInstrs can do the final cleanup. 2168 /// The parameter @p LI must be the interval whose main range is the 2169 /// live range LR. 2170 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2171 2172 /// Erase any machine instructions that have been coalesced away. 2173 /// Add erased instructions to ErasedInstrs. 2174 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2175 /// the erased instrs. 2176 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2177 SmallVectorImpl<unsigned> &ShrinkRegs, 2178 LiveInterval *LI = nullptr); 2179 2180 /// Remove liverange defs at places where implicit defs will be removed. 2181 void removeImplicitDefs(); 2182 2183 /// Get the value assignments suitable for passing to LiveInterval::join. 2184 const int *getAssignments() const { return Assignments.data(); } 2185 }; 2186 2187 } // end anonymous namespace 2188 2189 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2190 const { 2191 LaneBitmask L; 2192 for (const MachineOperand &MO : DefMI->operands()) { 2193 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2194 continue; 2195 L |= TRI->getSubRegIndexLaneMask( 2196 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2197 if (MO.readsReg()) 2198 Redef = true; 2199 } 2200 return L; 2201 } 2202 2203 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 2204 const VNInfo *VNI) const { 2205 unsigned Reg = this->Reg; 2206 2207 while (!VNI->isPHIDef()) { 2208 SlotIndex Def = VNI->def; 2209 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2210 assert(MI && "No defining instruction"); 2211 if (!MI->isFullCopy()) 2212 return std::make_pair(VNI, Reg); 2213 unsigned SrcReg = MI->getOperand(1).getReg(); 2214 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 2215 return std::make_pair(VNI, Reg); 2216 2217 const LiveInterval &LI = LIS->getInterval(SrcReg); 2218 const VNInfo *ValueIn; 2219 // No subrange involved. 2220 if (!SubRangeJoin || !LI.hasSubRanges()) { 2221 LiveQueryResult LRQ = LI.Query(Def); 2222 ValueIn = LRQ.valueIn(); 2223 } else { 2224 // Query subranges. Pick the first matching one. 2225 ValueIn = nullptr; 2226 for (const LiveInterval::SubRange &S : LI.subranges()) { 2227 // Transform lanemask to a mask in the joined live interval. 2228 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2229 if ((SMask & LaneMask).none()) 2230 continue; 2231 LiveQueryResult LRQ = S.Query(Def); 2232 ValueIn = LRQ.valueIn(); 2233 break; 2234 } 2235 } 2236 if (ValueIn == nullptr) 2237 break; 2238 VNI = ValueIn; 2239 Reg = SrcReg; 2240 } 2241 return std::make_pair(VNI, Reg); 2242 } 2243 2244 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2245 const JoinVals &Other) const { 2246 const VNInfo *Orig0; 2247 unsigned Reg0; 2248 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2249 if (Orig0 == Value1) 2250 return true; 2251 2252 const VNInfo *Orig1; 2253 unsigned Reg1; 2254 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2255 2256 // The values are equal if they are defined at the same place and use the 2257 // same register. Note that we cannot compare VNInfos directly as some of 2258 // them might be from a copy created in mergeSubRangeInto() while the other 2259 // is from the original LiveInterval. 2260 return Orig0->def == Orig1->def && Reg0 == Reg1; 2261 } 2262 2263 JoinVals::ConflictResolution 2264 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2265 Val &V = Vals[ValNo]; 2266 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2267 VNInfo *VNI = LR.getValNumInfo(ValNo); 2268 if (VNI->isUnused()) { 2269 V.WriteLanes = LaneBitmask::getAll(); 2270 return CR_Keep; 2271 } 2272 2273 // Get the instruction defining this value, compute the lanes written. 2274 const MachineInstr *DefMI = nullptr; 2275 if (VNI->isPHIDef()) { 2276 // Conservatively assume that all lanes in a PHI are valid. 2277 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2278 : TRI->getSubRegIndexLaneMask(SubIdx); 2279 V.ValidLanes = V.WriteLanes = Lanes; 2280 } else { 2281 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2282 assert(DefMI != nullptr); 2283 if (SubRangeJoin) { 2284 // We don't care about the lanes when joining subregister ranges. 2285 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2286 if (DefMI->isImplicitDef()) { 2287 V.ValidLanes = LaneBitmask::getNone(); 2288 V.ErasableImplicitDef = true; 2289 } 2290 } else { 2291 bool Redef = false; 2292 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2293 2294 // If this is a read-modify-write instruction, there may be more valid 2295 // lanes than the ones written by this instruction. 2296 // This only covers partial redef operands. DefMI may have normal use 2297 // operands reading the register. They don't contribute valid lanes. 2298 // 2299 // This adds ssub1 to the set of valid lanes in %src: 2300 // 2301 // %src:ssub1 = FOO 2302 // 2303 // This leaves only ssub1 valid, making any other lanes undef: 2304 // 2305 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2306 // 2307 // The <read-undef> flag on the def operand means that old lane values are 2308 // not important. 2309 if (Redef) { 2310 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2311 assert((TrackSubRegLiveness || V.RedefVNI) && 2312 "Instruction is reading nonexistent value"); 2313 if (V.RedefVNI != nullptr) { 2314 computeAssignment(V.RedefVNI->id, Other); 2315 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2316 } 2317 } 2318 2319 // An IMPLICIT_DEF writes undef values. 2320 if (DefMI->isImplicitDef()) { 2321 // We normally expect IMPLICIT_DEF values to be live only until the end 2322 // of their block. If the value is really live longer and gets pruned in 2323 // another block, this flag is cleared again. 2324 V.ErasableImplicitDef = true; 2325 V.ValidLanes &= ~V.WriteLanes; 2326 } 2327 } 2328 } 2329 2330 // Find the value in Other that overlaps VNI->def, if any. 2331 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2332 2333 // It is possible that both values are defined by the same instruction, or 2334 // the values are PHIs defined in the same block. When that happens, the two 2335 // values should be merged into one, but not into any preceding value. 2336 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2337 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2338 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2339 2340 // One value stays, the other is merged. Keep the earlier one, or the first 2341 // one we see. 2342 if (OtherVNI->def < VNI->def) 2343 Other.computeAssignment(OtherVNI->id, *this); 2344 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2345 // This is an early-clobber def overlapping a live-in value in the other 2346 // register. Not mergeable. 2347 V.OtherVNI = OtherLRQ.valueIn(); 2348 return CR_Impossible; 2349 } 2350 V.OtherVNI = OtherVNI; 2351 Val &OtherV = Other.Vals[OtherVNI->id]; 2352 // Keep this value, check for conflicts when analyzing OtherVNI. 2353 if (!OtherV.isAnalyzed()) 2354 return CR_Keep; 2355 // Both sides have been analyzed now. 2356 // Allow overlapping PHI values. Any real interference would show up in a 2357 // predecessor, the PHI itself can't introduce any conflicts. 2358 if (VNI->isPHIDef()) 2359 return CR_Merge; 2360 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2361 // Overlapping lanes can't be resolved. 2362 return CR_Impossible; 2363 else 2364 return CR_Merge; 2365 } 2366 2367 // No simultaneous def. Is Other live at the def? 2368 V.OtherVNI = OtherLRQ.valueIn(); 2369 if (!V.OtherVNI) 2370 // No overlap, no conflict. 2371 return CR_Keep; 2372 2373 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2374 2375 // We have overlapping values, or possibly a kill of Other. 2376 // Recursively compute assignments up the dominator tree. 2377 Other.computeAssignment(V.OtherVNI->id, *this); 2378 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2379 2380 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2381 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2382 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2383 // technically. 2384 // 2385 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2386 // to erase the IMPLICIT_DEF instruction. 2387 if (OtherV.ErasableImplicitDef && DefMI && 2388 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2389 DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2390 << " extends into " << printMBBReference(*DefMI->getParent()) 2391 << ", keeping it.\n"); 2392 OtherV.ErasableImplicitDef = false; 2393 } 2394 2395 // Allow overlapping PHI values. Any real interference would show up in a 2396 // predecessor, the PHI itself can't introduce any conflicts. 2397 if (VNI->isPHIDef()) 2398 return CR_Replace; 2399 2400 // Check for simple erasable conflicts. 2401 if (DefMI->isImplicitDef()) { 2402 // We need the def for the subregister if there is nothing else live at the 2403 // subrange at this point. 2404 if (TrackSubRegLiveness 2405 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none()) 2406 return CR_Replace; 2407 return CR_Erase; 2408 } 2409 2410 // Include the non-conflict where DefMI is a coalescable copy that kills 2411 // OtherVNI. We still want the copy erased and value numbers merged. 2412 if (CP.isCoalescable(DefMI)) { 2413 // Some of the lanes copied from OtherVNI may be undef, making them undef 2414 // here too. 2415 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2416 return CR_Erase; 2417 } 2418 2419 // This may not be a real conflict if DefMI simply kills Other and defines 2420 // VNI. 2421 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2422 return CR_Keep; 2423 2424 // Handle the case where VNI and OtherVNI can be proven to be identical: 2425 // 2426 // %other = COPY %ext 2427 // %this = COPY %ext <-- Erase this copy 2428 // 2429 if (DefMI->isFullCopy() && !CP.isPartial() 2430 && valuesIdentical(VNI, V.OtherVNI, Other)) 2431 return CR_Erase; 2432 2433 // If the lanes written by this instruction were all undef in OtherVNI, it is 2434 // still safe to join the live ranges. This can't be done with a simple value 2435 // mapping, though - OtherVNI will map to multiple values: 2436 // 2437 // 1 %dst:ssub0 = FOO <-- OtherVNI 2438 // 2 %src = BAR <-- VNI 2439 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy. 2440 // 4 BAZ killed %dst 2441 // 5 QUUX killed %src 2442 // 2443 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2444 // handles this complex value mapping. 2445 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2446 return CR_Replace; 2447 2448 // If the other live range is killed by DefMI and the live ranges are still 2449 // overlapping, it must be because we're looking at an early clobber def: 2450 // 2451 // %dst<def,early-clobber> = ASM killed %src 2452 // 2453 // In this case, it is illegal to merge the two live ranges since the early 2454 // clobber def would clobber %src before it was read. 2455 if (OtherLRQ.isKill()) { 2456 // This case where the def doesn't overlap the kill is handled above. 2457 assert(VNI->def.isEarlyClobber() && 2458 "Only early clobber defs can overlap a kill"); 2459 return CR_Impossible; 2460 } 2461 2462 // VNI is clobbering live lanes in OtherVNI, but there is still the 2463 // possibility that no instructions actually read the clobbered lanes. 2464 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2465 // Otherwise Other.RI wouldn't be live here. 2466 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2467 return CR_Impossible; 2468 2469 // We need to verify that no instructions are reading the clobbered lanes. To 2470 // save compile time, we'll only check that locally. Don't allow the tainted 2471 // value to escape the basic block. 2472 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2473 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2474 return CR_Impossible; 2475 2476 // There are still some things that could go wrong besides clobbered lanes 2477 // being read, for example OtherVNI may be only partially redefined in MBB, 2478 // and some clobbered lanes could escape the block. Save this analysis for 2479 // resolveConflicts() when all values have been mapped. We need to know 2480 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2481 // that now - the recursive analyzeValue() calls must go upwards in the 2482 // dominator tree. 2483 return CR_Unresolved; 2484 } 2485 2486 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2487 Val &V = Vals[ValNo]; 2488 if (V.isAnalyzed()) { 2489 // Recursion should always move up the dominator tree, so ValNo is not 2490 // supposed to reappear before it has been assigned. 2491 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2492 return; 2493 } 2494 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2495 case CR_Erase: 2496 case CR_Merge: 2497 // Merge this ValNo into OtherVNI. 2498 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2499 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2500 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2501 DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@' 2502 << LR.getValNumInfo(ValNo)->def << " into " 2503 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2504 << V.OtherVNI->def << " --> @" 2505 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2506 break; 2507 case CR_Replace: 2508 case CR_Unresolved: { 2509 // The other value is going to be pruned if this join is successful. 2510 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2511 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2512 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2513 // its lanes. 2514 if ((OtherV.WriteLanes & ~V.ValidLanes).any() && TrackSubRegLiveness) 2515 OtherV.ErasableImplicitDef = false; 2516 OtherV.Pruned = true; 2517 LLVM_FALLTHROUGH; 2518 } 2519 default: 2520 // This value number needs to go in the final joined live range. 2521 Assignments[ValNo] = NewVNInfo.size(); 2522 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2523 break; 2524 } 2525 } 2526 2527 bool JoinVals::mapValues(JoinVals &Other) { 2528 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2529 computeAssignment(i, Other); 2530 if (Vals[i].Resolution == CR_Impossible) { 2531 DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i 2532 << '@' << LR.getValNumInfo(i)->def << '\n'); 2533 return false; 2534 } 2535 } 2536 return true; 2537 } 2538 2539 bool JoinVals:: 2540 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2541 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { 2542 VNInfo *VNI = LR.getValNumInfo(ValNo); 2543 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2544 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2545 2546 // Scan Other.LR from VNI.def to MBBEnd. 2547 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2548 assert(OtherI != Other.LR.end() && "No conflict?"); 2549 do { 2550 // OtherI is pointing to a tainted value. Abort the join if the tainted 2551 // lanes escape the block. 2552 SlotIndex End = OtherI->end; 2553 if (End >= MBBEnd) { 2554 DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':' 2555 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2556 return false; 2557 } 2558 DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':' 2559 << OtherI->valno->id << '@' << OtherI->start 2560 << " to " << End << '\n'); 2561 // A dead def is not a problem. 2562 if (End.isDead()) 2563 break; 2564 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2565 2566 // Check for another def in the MBB. 2567 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2568 break; 2569 2570 // Lanes written by the new def are no longer tainted. 2571 const Val &OV = Other.Vals[OtherI->valno->id]; 2572 TaintedLanes &= ~OV.WriteLanes; 2573 if (!OV.RedefVNI) 2574 break; 2575 } while (TaintedLanes.any()); 2576 return true; 2577 } 2578 2579 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, 2580 LaneBitmask Lanes) const { 2581 if (MI.isDebugValue()) 2582 return false; 2583 for (const MachineOperand &MO : MI.operands()) { 2584 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2585 continue; 2586 if (!MO.readsReg()) 2587 continue; 2588 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2589 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2590 return true; 2591 } 2592 return false; 2593 } 2594 2595 bool JoinVals::resolveConflicts(JoinVals &Other) { 2596 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2597 Val &V = Vals[i]; 2598 assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); 2599 if (V.Resolution != CR_Unresolved) 2600 continue; 2601 DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i 2602 << '@' << LR.getValNumInfo(i)->def << '\n'); 2603 if (SubRangeJoin) 2604 return false; 2605 2606 ++NumLaneConflicts; 2607 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2608 VNInfo *VNI = LR.getValNumInfo(i); 2609 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2610 2611 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2612 // join, those lanes will be tainted with a wrong value. Get the extent of 2613 // the tainted lanes. 2614 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2615 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2616 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2617 // Tainted lanes would extend beyond the basic block. 2618 return false; 2619 2620 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2621 2622 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2623 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2624 MachineBasicBlock::iterator MI = MBB->begin(); 2625 if (!VNI->isPHIDef()) { 2626 MI = Indexes->getInstructionFromIndex(VNI->def); 2627 // No need to check the instruction defining VNI for reads. 2628 ++MI; 2629 } 2630 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2631 "Interference ends on VNI->def. Should have been handled earlier"); 2632 MachineInstr *LastMI = 2633 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2634 assert(LastMI && "Range must end at a proper instruction"); 2635 unsigned TaintNum = 0; 2636 while (true) { 2637 assert(MI != MBB->end() && "Bad LastMI"); 2638 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2639 DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2640 return false; 2641 } 2642 // LastMI is the last instruction to use the current value. 2643 if (&*MI == LastMI) { 2644 if (++TaintNum == TaintExtent.size()) 2645 break; 2646 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2647 assert(LastMI && "Range must end at a proper instruction"); 2648 TaintedLanes = TaintExtent[TaintNum].second; 2649 } 2650 ++MI; 2651 } 2652 2653 // The tainted lanes are unused. 2654 V.Resolution = CR_Replace; 2655 ++NumLaneResolves; 2656 } 2657 return true; 2658 } 2659 2660 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2661 Val &V = Vals[ValNo]; 2662 if (V.Pruned || V.PrunedComputed) 2663 return V.Pruned; 2664 2665 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2666 return V.Pruned; 2667 2668 // Follow copies up the dominator tree and check if any intermediate value 2669 // has been pruned. 2670 V.PrunedComputed = true; 2671 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2672 return V.Pruned; 2673 } 2674 2675 void JoinVals::pruneValues(JoinVals &Other, 2676 SmallVectorImpl<SlotIndex> &EndPoints, 2677 bool changeInstrs) { 2678 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2679 SlotIndex Def = LR.getValNumInfo(i)->def; 2680 switch (Vals[i].Resolution) { 2681 case CR_Keep: 2682 break; 2683 case CR_Replace: { 2684 // This value takes precedence over the value in Other.LR. 2685 LIS->pruneValue(Other.LR, Def, &EndPoints); 2686 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2687 // instructions are only inserted to provide a live-out value for PHI 2688 // predecessors, so the instruction should simply go away once its value 2689 // has been replaced. 2690 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2691 bool EraseImpDef = OtherV.ErasableImplicitDef && 2692 OtherV.Resolution == CR_Keep; 2693 if (!Def.isBlock()) { 2694 if (changeInstrs) { 2695 // Remove <def,read-undef> flags. This def is now a partial redef. 2696 // Also remove dead flags since the joined live range will 2697 // continue past this instruction. 2698 for (MachineOperand &MO : 2699 Indexes->getInstructionFromIndex(Def)->operands()) { 2700 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 2701 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) 2702 MO.setIsUndef(false); 2703 MO.setIsDead(false); 2704 } 2705 } 2706 } 2707 // This value will reach instructions below, but we need to make sure 2708 // the live range also reaches the instruction at Def. 2709 if (!EraseImpDef) 2710 EndPoints.push_back(Def); 2711 } 2712 DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def 2713 << ": " << Other.LR << '\n'); 2714 break; 2715 } 2716 case CR_Erase: 2717 case CR_Merge: 2718 if (isPrunedValue(i, Other)) { 2719 // This value is ultimately a copy of a pruned value in LR or Other.LR. 2720 // We can no longer trust the value mapping computed by 2721 // computeAssignment(), the value that was originally copied could have 2722 // been replaced. 2723 LIS->pruneValue(LR, Def, &EndPoints); 2724 DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at " 2725 << Def << ": " << LR << '\n'); 2726 } 2727 break; 2728 case CR_Unresolved: 2729 case CR_Impossible: 2730 llvm_unreachable("Unresolved conflicts"); 2731 } 2732 } 2733 } 2734 2735 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 2736 // Look for values being erased. 2737 bool DidPrune = false; 2738 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2739 // We should trigger in all cases in which eraseInstrs() does something. 2740 // match what eraseInstrs() is doing, print a message so 2741 if (Vals[i].Resolution != CR_Erase && 2742 (Vals[i].Resolution != CR_Keep || !Vals[i].ErasableImplicitDef || 2743 !Vals[i].Pruned)) 2744 continue; 2745 2746 // Check subranges at the point where the copy will be removed. 2747 SlotIndex Def = LR.getValNumInfo(i)->def; 2748 // Print message so mismatches with eraseInstrs() can be diagnosed. 2749 DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def << '\n'); 2750 for (LiveInterval::SubRange &S : LI.subranges()) { 2751 LiveQueryResult Q = S.Query(Def); 2752 2753 // If a subrange starts at the copy then an undefined value has been 2754 // copied and we must remove that subrange value as well. 2755 VNInfo *ValueOut = Q.valueOutOrDead(); 2756 if (ValueOut != nullptr && Q.valueIn() == nullptr) { 2757 DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 2758 << " at " << Def << "\n"); 2759 LIS->pruneValue(S, Def, nullptr); 2760 DidPrune = true; 2761 // Mark value number as unused. 2762 ValueOut->markUnused(); 2763 continue; 2764 } 2765 // If a subrange ends at the copy, then a value was copied but only 2766 // partially used later. Shrink the subregister range appropriately. 2767 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 2768 DEBUG(dbgs() << "\t\tDead uses at sublane " << PrintLaneMask(S.LaneMask) 2769 << " at " << Def << "\n"); 2770 ShrinkMask |= S.LaneMask; 2771 } 2772 } 2773 } 2774 if (DidPrune) 2775 LI.removeEmptySubRanges(); 2776 } 2777 2778 /// Check if any of the subranges of @p LI contain a definition at @p Def. 2779 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 2780 for (LiveInterval::SubRange &SR : LI.subranges()) { 2781 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 2782 if (VNI->def == Def) 2783 return true; 2784 } 2785 return false; 2786 } 2787 2788 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 2789 assert(&static_cast<LiveRange&>(LI) == &LR); 2790 2791 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2792 if (Vals[i].Resolution != CR_Keep) 2793 continue; 2794 VNInfo *VNI = LR.getValNumInfo(i); 2795 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 2796 continue; 2797 Vals[i].Pruned = true; 2798 ShrinkMainRange = true; 2799 } 2800 } 2801 2802 void JoinVals::removeImplicitDefs() { 2803 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2804 Val &V = Vals[i]; 2805 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 2806 continue; 2807 2808 VNInfo *VNI = LR.getValNumInfo(i); 2809 VNI->markUnused(); 2810 LR.removeValNo(VNI); 2811 } 2812 } 2813 2814 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2815 SmallVectorImpl<unsigned> &ShrinkRegs, 2816 LiveInterval *LI) { 2817 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2818 // Get the def location before markUnused() below invalidates it. 2819 SlotIndex Def = LR.getValNumInfo(i)->def; 2820 switch (Vals[i].Resolution) { 2821 case CR_Keep: { 2822 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 2823 // longer. The IMPLICIT_DEF instructions are only inserted by 2824 // PHIElimination to guarantee that all PHI predecessors have a value. 2825 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 2826 break; 2827 // Remove value number i from LR. 2828 // For intervals with subranges, removing a segment from the main range 2829 // may require extending the previous segment: for each definition of 2830 // a subregister, there will be a corresponding def in the main range. 2831 // That def may fall in the middle of a segment from another subrange. 2832 // In such cases, removing this def from the main range must be 2833 // complemented by extending the main range to account for the liveness 2834 // of the other subrange. 2835 VNInfo *VNI = LR.getValNumInfo(i); 2836 SlotIndex Def = VNI->def; 2837 // The new end point of the main range segment to be extended. 2838 SlotIndex NewEnd; 2839 if (LI != nullptr) { 2840 LiveRange::iterator I = LR.FindSegmentContaining(Def); 2841 assert(I != LR.end()); 2842 // Do not extend beyond the end of the segment being removed. 2843 // The segment may have been pruned in preparation for joining 2844 // live ranges. 2845 NewEnd = I->end; 2846 } 2847 2848 LR.removeValNo(VNI); 2849 // Note that this VNInfo is reused and still referenced in NewVNInfo, 2850 // make it appear like an unused value number. 2851 VNI->markUnused(); 2852 2853 if (LI != nullptr && LI->hasSubRanges()) { 2854 assert(static_cast<LiveRange*>(LI) == &LR); 2855 // Determine the end point based on the subrange information: 2856 // minimum of (earliest def of next segment, 2857 // latest end point of containing segment) 2858 SlotIndex ED, LE; 2859 for (LiveInterval::SubRange &SR : LI->subranges()) { 2860 LiveRange::iterator I = SR.find(Def); 2861 if (I == SR.end()) 2862 continue; 2863 if (I->start > Def) 2864 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 2865 else 2866 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 2867 } 2868 if (LE.isValid()) 2869 NewEnd = std::min(NewEnd, LE); 2870 if (ED.isValid()) 2871 NewEnd = std::min(NewEnd, ED); 2872 2873 // We only want to do the extension if there was a subrange that 2874 // was live across Def. 2875 if (LE.isValid()) { 2876 LiveRange::iterator S = LR.find(Def); 2877 if (S != LR.begin()) 2878 std::prev(S)->end = NewEnd; 2879 } 2880 } 2881 DEBUG({ 2882 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 2883 if (LI != nullptr) 2884 dbgs() << "\t\t LHS = " << *LI << '\n'; 2885 }); 2886 LLVM_FALLTHROUGH; 2887 } 2888 2889 case CR_Erase: { 2890 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2891 assert(MI && "No instruction to erase"); 2892 if (MI->isCopy()) { 2893 unsigned Reg = MI->getOperand(1).getReg(); 2894 if (TargetRegisterInfo::isVirtualRegister(Reg) && 2895 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 2896 ShrinkRegs.push_back(Reg); 2897 } 2898 ErasedInstrs.insert(MI); 2899 DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 2900 LIS->RemoveMachineInstrFromMaps(*MI); 2901 MI->eraseFromParent(); 2902 break; 2903 } 2904 default: 2905 break; 2906 } 2907 } 2908 } 2909 2910 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 2911 LaneBitmask LaneMask, 2912 const CoalescerPair &CP) { 2913 SmallVector<VNInfo*, 16> NewVNInfo; 2914 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 2915 NewVNInfo, CP, LIS, TRI, true, true); 2916 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 2917 NewVNInfo, CP, LIS, TRI, true, true); 2918 2919 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 2920 // We should be able to resolve all conflicts here as we could successfully do 2921 // it on the mainrange already. There is however a problem when multiple 2922 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 2923 // interferences. 2924 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 2925 // We already determined that it is legal to merge the intervals, so this 2926 // should never fail. 2927 llvm_unreachable("*** Couldn't join subrange!\n"); 2928 } 2929 if (!LHSVals.resolveConflicts(RHSVals) || 2930 !RHSVals.resolveConflicts(LHSVals)) { 2931 // We already determined that it is legal to merge the intervals, so this 2932 // should never fail. 2933 llvm_unreachable("*** Couldn't join subrange!\n"); 2934 } 2935 2936 // The merging algorithm in LiveInterval::join() can't handle conflicting 2937 // value mappings, so we need to remove any live ranges that overlap a 2938 // CR_Replace resolution. Collect a set of end points that can be used to 2939 // restore the live range after joining. 2940 SmallVector<SlotIndex, 8> EndPoints; 2941 LHSVals.pruneValues(RHSVals, EndPoints, false); 2942 RHSVals.pruneValues(LHSVals, EndPoints, false); 2943 2944 LHSVals.removeImplicitDefs(); 2945 RHSVals.removeImplicitDefs(); 2946 2947 LRange.verify(); 2948 RRange.verify(); 2949 2950 // Join RRange into LHS. 2951 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 2952 NewVNInfo); 2953 2954 DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n"); 2955 if (EndPoints.empty()) 2956 return; 2957 2958 // Recompute the parts of the live range we had to remove because of 2959 // CR_Replace conflicts. 2960 DEBUG({ 2961 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 2962 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 2963 dbgs() << EndPoints[i]; 2964 if (i != n-1) 2965 dbgs() << ','; 2966 } 2967 dbgs() << ": " << LRange << '\n'; 2968 }); 2969 LIS->extendToIndices(LRange, EndPoints); 2970 } 2971 2972 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 2973 const LiveRange &ToMerge, 2974 LaneBitmask LaneMask, 2975 CoalescerPair &CP) { 2976 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2977 LI.refineSubRanges(Allocator, LaneMask, 2978 [this,&Allocator,&ToMerge,&CP](LiveInterval::SubRange &SR) { 2979 if (SR.empty()) { 2980 SR.assign(ToMerge, Allocator); 2981 } else { 2982 // joinSubRegRange() destroys the merged range, so we need a copy. 2983 LiveRange RangeCopy(ToMerge, Allocator); 2984 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 2985 } 2986 }); 2987 } 2988 2989 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 2990 SmallVector<VNInfo*, 16> NewVNInfo; 2991 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 2992 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 2993 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 2994 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 2995 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 2996 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 2997 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 2998 2999 DEBUG(dbgs() << "\t\tRHS = " << RHS 3000 << "\n\t\tLHS = " << LHS 3001 << '\n'); 3002 3003 // First compute NewVNInfo and the simple value mappings. 3004 // Detect impossible conflicts early. 3005 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 3006 return false; 3007 3008 // Some conflicts can only be resolved after all values have been mapped. 3009 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 3010 return false; 3011 3012 // All clear, the live ranges can be merged. 3013 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 3014 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3015 3016 // Transform lanemasks from the LHS to masks in the coalesced register and 3017 // create initial subranges if necessary. 3018 unsigned DstIdx = CP.getDstIdx(); 3019 if (!LHS.hasSubRanges()) { 3020 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 3021 : TRI->getSubRegIndexLaneMask(DstIdx); 3022 // LHS must support subregs or we wouldn't be in this codepath. 3023 assert(Mask.any()); 3024 LHS.createSubRangeFrom(Allocator, Mask, LHS); 3025 } else if (DstIdx != 0) { 3026 // Transform LHS lanemasks to new register class if necessary. 3027 for (LiveInterval::SubRange &R : LHS.subranges()) { 3028 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 3029 R.LaneMask = Mask; 3030 } 3031 } 3032 DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) 3033 << ' ' << LHS << '\n'); 3034 3035 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3036 unsigned SrcIdx = CP.getSrcIdx(); 3037 if (!RHS.hasSubRanges()) { 3038 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3039 : TRI->getSubRegIndexLaneMask(SrcIdx); 3040 mergeSubRangeInto(LHS, RHS, Mask, CP); 3041 } else { 3042 // Pair up subranges and merge. 3043 for (LiveInterval::SubRange &R : RHS.subranges()) { 3044 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3045 mergeSubRangeInto(LHS, R, Mask, CP); 3046 } 3047 } 3048 DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3049 3050 // Pruning implicit defs from subranges may result in the main range 3051 // having stale segments. 3052 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3053 3054 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3055 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3056 } 3057 3058 // The merging algorithm in LiveInterval::join() can't handle conflicting 3059 // value mappings, so we need to remove any live ranges that overlap a 3060 // CR_Replace resolution. Collect a set of end points that can be used to 3061 // restore the live range after joining. 3062 SmallVector<SlotIndex, 8> EndPoints; 3063 LHSVals.pruneValues(RHSVals, EndPoints, true); 3064 RHSVals.pruneValues(LHSVals, EndPoints, true); 3065 3066 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3067 // registers to require trimming. 3068 SmallVector<unsigned, 8> ShrinkRegs; 3069 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3070 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3071 while (!ShrinkRegs.empty()) 3072 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3073 3074 // Join RHS into LHS. 3075 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3076 3077 // Kill flags are going to be wrong if the live ranges were overlapping. 3078 // Eventually, we should simply clear all kill flags when computing live 3079 // ranges. They are reinserted after register allocation. 3080 MRI->clearKillFlags(LHS.reg); 3081 MRI->clearKillFlags(RHS.reg); 3082 3083 if (!EndPoints.empty()) { 3084 // Recompute the parts of the live range we had to remove because of 3085 // CR_Replace conflicts. 3086 DEBUG({ 3087 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3088 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3089 dbgs() << EndPoints[i]; 3090 if (i != n-1) 3091 dbgs() << ','; 3092 } 3093 dbgs() << ": " << LHS << '\n'; 3094 }); 3095 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3096 } 3097 3098 return true; 3099 } 3100 3101 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3102 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3103 } 3104 3105 namespace { 3106 3107 /// Information concerning MBB coalescing priority. 3108 struct MBBPriorityInfo { 3109 MachineBasicBlock *MBB; 3110 unsigned Depth; 3111 bool IsSplit; 3112 3113 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3114 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3115 }; 3116 3117 } // end anonymous namespace 3118 3119 /// C-style comparator that sorts first based on the loop depth of the basic 3120 /// block (the unsigned), and then on the MBB number. 3121 /// 3122 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3123 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3124 const MBBPriorityInfo *RHS) { 3125 // Deeper loops first 3126 if (LHS->Depth != RHS->Depth) 3127 return LHS->Depth > RHS->Depth ? -1 : 1; 3128 3129 // Try to unsplit critical edges next. 3130 if (LHS->IsSplit != RHS->IsSplit) 3131 return LHS->IsSplit ? -1 : 1; 3132 3133 // Prefer blocks that are more connected in the CFG. This takes care of 3134 // the most difficult copies first while intervals are short. 3135 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3136 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3137 if (cl != cr) 3138 return cl > cr ? -1 : 1; 3139 3140 // As a last resort, sort by block number. 3141 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3142 } 3143 3144 /// \returns true if the given copy uses or defines a local live range. 3145 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3146 if (!Copy->isCopy()) 3147 return false; 3148 3149 if (Copy->getOperand(1).isUndef()) 3150 return false; 3151 3152 unsigned SrcReg = Copy->getOperand(1).getReg(); 3153 unsigned DstReg = Copy->getOperand(0).getReg(); 3154 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 3155 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 3156 return false; 3157 3158 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3159 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3160 } 3161 3162 bool RegisterCoalescer:: 3163 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3164 bool Progress = false; 3165 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3166 if (!CurrList[i]) 3167 continue; 3168 // Skip instruction pointers that have already been erased, for example by 3169 // dead code elimination. 3170 if (ErasedInstrs.count(CurrList[i])) { 3171 CurrList[i] = nullptr; 3172 continue; 3173 } 3174 bool Again = false; 3175 bool Success = joinCopy(CurrList[i], Again); 3176 Progress |= Success; 3177 if (Success || !Again) 3178 CurrList[i] = nullptr; 3179 } 3180 return Progress; 3181 } 3182 3183 /// Check if DstReg is a terminal node. 3184 /// I.e., it does not have any affinity other than \p Copy. 3185 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 3186 const MachineRegisterInfo *MRI) { 3187 assert(Copy.isCopyLike()); 3188 // Check if the destination of this copy as any other affinity. 3189 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3190 if (&MI != &Copy && MI.isCopyLike()) 3191 return false; 3192 return true; 3193 } 3194 3195 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3196 assert(Copy.isCopyLike()); 3197 if (!UseTerminalRule) 3198 return false; 3199 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 3200 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg); 3201 // Check if the destination of this copy has any other affinity. 3202 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 3203 // If SrcReg is a physical register, the copy won't be coalesced. 3204 // Ignoring it may have other side effect (like missing 3205 // rematerialization). So keep it. 3206 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 3207 !isTerminalReg(DstReg, Copy, MRI)) 3208 return false; 3209 3210 // DstReg is a terminal node. Check if it interferes with any other 3211 // copy involving SrcReg. 3212 const MachineBasicBlock *OrigBB = Copy.getParent(); 3213 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3214 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3215 // Technically we should check if the weight of the new copy is 3216 // interesting compared to the other one and update the weight 3217 // of the copies accordingly. However, this would only work if 3218 // we would gather all the copies first then coalesce, whereas 3219 // right now we interleave both actions. 3220 // For now, just consider the copies that are in the same block. 3221 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3222 continue; 3223 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 3224 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3225 OtherSubReg); 3226 if (OtherReg == SrcReg) 3227 OtherReg = OtherSrcReg; 3228 // Check if OtherReg is a non-terminal. 3229 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) || 3230 isTerminalReg(OtherReg, MI, MRI)) 3231 continue; 3232 // Check that OtherReg interfere with DstReg. 3233 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3234 DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) << '\n'); 3235 return true; 3236 } 3237 } 3238 return false; 3239 } 3240 3241 void 3242 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3243 DEBUG(dbgs() << MBB->getName() << ":\n"); 3244 3245 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3246 // yet, it might invalidate the iterator. 3247 const unsigned PrevSize = WorkList.size(); 3248 if (JoinGlobalCopies) { 3249 SmallVector<MachineInstr*, 2> LocalTerminals; 3250 SmallVector<MachineInstr*, 2> GlobalTerminals; 3251 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3252 // are not inherently easier to resolve, but slightly preferable until we 3253 // have local live range splitting. In particular this is required by 3254 // cmp+jmp macro fusion. 3255 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3256 MII != E; ++MII) { 3257 if (!MII->isCopyLike()) 3258 continue; 3259 bool ApplyTerminalRule = applyTerminalRule(*MII); 3260 if (isLocalCopy(&(*MII), LIS)) { 3261 if (ApplyTerminalRule) 3262 LocalTerminals.push_back(&(*MII)); 3263 else 3264 LocalWorkList.push_back(&(*MII)); 3265 } else { 3266 if (ApplyTerminalRule) 3267 GlobalTerminals.push_back(&(*MII)); 3268 else 3269 WorkList.push_back(&(*MII)); 3270 } 3271 } 3272 // Append the copies evicted by the terminal rule at the end of the list. 3273 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3274 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3275 } 3276 else { 3277 SmallVector<MachineInstr*, 2> Terminals; 3278 for (MachineInstr &MII : *MBB) 3279 if (MII.isCopyLike()) { 3280 if (applyTerminalRule(MII)) 3281 Terminals.push_back(&MII); 3282 else 3283 WorkList.push_back(&MII); 3284 } 3285 // Append the copies evicted by the terminal rule at the end of the list. 3286 WorkList.append(Terminals.begin(), Terminals.end()); 3287 } 3288 // Try coalescing the collected copies immediately, and remove the nulls. 3289 // This prevents the WorkList from getting too large since most copies are 3290 // joinable on the first attempt. 3291 MutableArrayRef<MachineInstr*> 3292 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3293 if (copyCoalesceWorkList(CurrList)) 3294 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3295 nullptr), WorkList.end()); 3296 } 3297 3298 void RegisterCoalescer::coalesceLocals() { 3299 copyCoalesceWorkList(LocalWorkList); 3300 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3301 if (LocalWorkList[j]) 3302 WorkList.push_back(LocalWorkList[j]); 3303 } 3304 LocalWorkList.clear(); 3305 } 3306 3307 void RegisterCoalescer::joinAllIntervals() { 3308 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3309 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3310 3311 std::vector<MBBPriorityInfo> MBBs; 3312 MBBs.reserve(MF->size()); 3313 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3314 MachineBasicBlock *MBB = &*I; 3315 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3316 JoinSplitEdges && isSplitEdge(MBB))); 3317 } 3318 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3319 3320 // Coalesce intervals in MBB priority order. 3321 unsigned CurrDepth = std::numeric_limits<unsigned>::max(); 3322 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3323 // Try coalescing the collected local copies for deeper loops. 3324 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3325 coalesceLocals(); 3326 CurrDepth = MBBs[i].Depth; 3327 } 3328 copyCoalesceInMBB(MBBs[i].MBB); 3329 } 3330 coalesceLocals(); 3331 3332 // Joining intervals can allow other intervals to be joined. Iteratively join 3333 // until we make no progress. 3334 while (copyCoalesceWorkList(WorkList)) 3335 /* empty */ ; 3336 } 3337 3338 void RegisterCoalescer::releaseMemory() { 3339 ErasedInstrs.clear(); 3340 WorkList.clear(); 3341 DeadDefs.clear(); 3342 InflateRegs.clear(); 3343 } 3344 3345 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3346 MF = &fn; 3347 MRI = &fn.getRegInfo(); 3348 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3349 TRI = STI.getRegisterInfo(); 3350 TII = STI.getInstrInfo(); 3351 LIS = &getAnalysis<LiveIntervals>(); 3352 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3353 Loops = &getAnalysis<MachineLoopInfo>(); 3354 if (EnableGlobalCopies == cl::BOU_UNSET) 3355 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3356 else 3357 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3358 3359 // The MachineScheduler does not currently require JoinSplitEdges. This will 3360 // either be enabled unconditionally or replaced by a more general live range 3361 // splitting optimization. 3362 JoinSplitEdges = EnableJoinSplits; 3363 3364 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3365 << "********** Function: " << MF->getName() << '\n'); 3366 3367 if (VerifyCoalescing) 3368 MF->verify(this, "Before register coalescing"); 3369 3370 RegClassInfo.runOnMachineFunction(fn); 3371 3372 // Join (coalesce) intervals if requested. 3373 if (EnableJoining) 3374 joinAllIntervals(); 3375 3376 // After deleting a lot of copies, register classes may be less constrained. 3377 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3378 // DPR inflation. 3379 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3380 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3381 InflateRegs.end()); 3382 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n"); 3383 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3384 unsigned Reg = InflateRegs[i]; 3385 if (MRI->reg_nodbg_empty(Reg)) 3386 continue; 3387 if (MRI->recomputeRegClass(Reg)) { 3388 DEBUG(dbgs() << printReg(Reg) << " inflated to " 3389 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3390 ++NumInflated; 3391 3392 LiveInterval &LI = LIS->getInterval(Reg); 3393 if (LI.hasSubRanges()) { 3394 // If the inflated register class does not support subregisters anymore 3395 // remove the subranges. 3396 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3397 LI.clearSubRanges(); 3398 } else { 3399 #ifndef NDEBUG 3400 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3401 // If subranges are still supported, then the same subregs 3402 // should still be supported. 3403 for (LiveInterval::SubRange &S : LI.subranges()) { 3404 assert((S.LaneMask & ~MaxMask).none()); 3405 } 3406 #endif 3407 } 3408 } 3409 } 3410 } 3411 3412 DEBUG(dump()); 3413 if (VerifyCoalescing) 3414 MF->verify(this, "After register coalescing"); 3415 return true; 3416 } 3417 3418 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3419 LIS->print(O, m); 3420 } 3421