1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic RegisterCoalescer interface which 11 // is used as the common interface used by all clients and 12 // implementations of register coalescing. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "RegisterCoalescer.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/LiveRangeEdit.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/RegisterClassInfo.h" 30 #include "llvm/CodeGen/VirtRegMap.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 #include <algorithm> 42 #include <cmath> 43 using namespace llvm; 44 45 #define DEBUG_TYPE "regalloc" 46 47 STATISTIC(numJoins , "Number of interval joins performed"); 48 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 49 STATISTIC(numCommutes , "Number of instruction commuting performed"); 50 STATISTIC(numExtends , "Number of copies extended"); 51 STATISTIC(NumReMats , "Number of instructions re-materialized"); 52 STATISTIC(NumInflated , "Number of register classes inflated"); 53 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 54 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 55 56 static cl::opt<bool> 57 EnableJoining("join-liveintervals", 58 cl::desc("Coalesce copies (default=true)"), 59 cl::init(true)); 60 61 static cl::opt<bool> UseTerminalRule("terminal-rule", 62 cl::desc("Apply the terminal rule"), 63 cl::init(false), cl::Hidden); 64 65 /// Temporary flag to test critical edge unsplitting. 66 static cl::opt<bool> 67 EnableJoinSplits("join-splitedges", 68 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 69 70 /// Temporary flag to test global copy optimization. 71 static cl::opt<cl::boolOrDefault> 72 EnableGlobalCopies("join-globalcopies", 73 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 74 cl::init(cl::BOU_UNSET), cl::Hidden); 75 76 static cl::opt<bool> 77 VerifyCoalescing("verify-coalescing", 78 cl::desc("Verify machine instrs before and after register coalescing"), 79 cl::Hidden); 80 81 namespace { 82 class RegisterCoalescer : public MachineFunctionPass, 83 private LiveRangeEdit::Delegate { 84 MachineFunction* MF; 85 MachineRegisterInfo* MRI; 86 const TargetMachine* TM; 87 const TargetRegisterInfo* TRI; 88 const TargetInstrInfo* TII; 89 LiveIntervals *LIS; 90 const MachineLoopInfo* Loops; 91 AliasAnalysis *AA; 92 RegisterClassInfo RegClassInfo; 93 94 /// A LaneMask to remember on which subregister live ranges we need to call 95 /// shrinkToUses() later. 96 LaneBitmask ShrinkMask; 97 98 /// True if the main range of the currently coalesced intervals should be 99 /// checked for smaller live intervals. 100 bool ShrinkMainRange; 101 102 /// \brief True if the coalescer should aggressively coalesce global copies 103 /// in favor of keeping local copies. 104 bool JoinGlobalCopies; 105 106 /// \brief True if the coalescer should aggressively coalesce fall-thru 107 /// blocks exclusively containing copies. 108 bool JoinSplitEdges; 109 110 /// Copy instructions yet to be coalesced. 111 SmallVector<MachineInstr*, 8> WorkList; 112 SmallVector<MachineInstr*, 8> LocalWorkList; 113 114 /// Set of instruction pointers that have been erased, and 115 /// that may be present in WorkList. 116 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 117 118 /// Dead instructions that are about to be deleted. 119 SmallVector<MachineInstr*, 8> DeadDefs; 120 121 /// Virtual registers to be considered for register class inflation. 122 SmallVector<unsigned, 8> InflateRegs; 123 124 /// Recursively eliminate dead defs in DeadDefs. 125 void eliminateDeadDefs(); 126 127 /// LiveRangeEdit callback for eliminateDeadDefs(). 128 void LRE_WillEraseInstruction(MachineInstr *MI) override; 129 130 /// Coalesce the LocalWorkList. 131 void coalesceLocals(); 132 133 /// Join compatible live intervals 134 void joinAllIntervals(); 135 136 /// Coalesce copies in the specified MBB, putting 137 /// copies that cannot yet be coalesced into WorkList. 138 void copyCoalesceInMBB(MachineBasicBlock *MBB); 139 140 /// Tries to coalesce all copies in CurrList. Returns true if any progress 141 /// was made. 142 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 143 144 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 145 /// src/dst of the copy instruction CopyMI. This returns true if the copy 146 /// was successfully coalesced away. If it is not currently possible to 147 /// coalesce this interval, but it may be possible if other things get 148 /// coalesced, then it returns true by reference in 'Again'. 149 bool joinCopy(MachineInstr *TheCopy, bool &Again); 150 151 /// Attempt to join these two intervals. On failure, this 152 /// returns false. The output "SrcInt" will not have been modified, so we 153 /// can use this information below to update aliases. 154 bool joinIntervals(CoalescerPair &CP); 155 156 /// Attempt joining two virtual registers. Return true on success. 157 bool joinVirtRegs(CoalescerPair &CP); 158 159 /// Attempt joining with a reserved physreg. 160 bool joinReservedPhysReg(CoalescerPair &CP); 161 162 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 163 /// Subranges in @p LI which only partially interfere with the desired 164 /// LaneMask are split as necessary. @p LaneMask are the lanes that 165 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 166 /// lanemasks already adjusted to the coalesced register. 167 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 168 LaneBitmask LaneMask, CoalescerPair &CP); 169 170 /// Join the liveranges of two subregisters. Joins @p RRange into 171 /// @p LRange, @p RRange may be invalid afterwards. 172 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 173 LaneBitmask LaneMask, const CoalescerPair &CP); 174 175 /// We found a non-trivially-coalescable copy. If the source value number is 176 /// defined by a copy from the destination reg see if we can merge these two 177 /// destination reg valno# into a single value number, eliminating a copy. 178 /// This returns true if an interval was modified. 179 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 180 181 /// Return true if there are definitions of IntB 182 /// other than BValNo val# that can reach uses of AValno val# of IntA. 183 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 184 VNInfo *AValNo, VNInfo *BValNo); 185 186 /// We found a non-trivially-coalescable copy. 187 /// If the source value number is defined by a commutable instruction and 188 /// its other operand is coalesced to the copy dest register, see if we 189 /// can transform the copy into a noop by commuting the definition. 190 /// This returns true if an interval was modified. 191 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); 192 193 /// We found a copy which can be moved to its less frequent predecessor. 194 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 195 196 /// If the source of a copy is defined by a 197 /// trivial computation, replace the copy by rematerialize the definition. 198 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 199 bool &IsDefCopy); 200 201 /// Return true if a copy involving a physreg should be joined. 202 bool canJoinPhys(const CoalescerPair &CP); 203 204 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 205 /// number if it is not zero. If DstReg is a physical register and the 206 /// existing subregister number of the def / use being updated is not zero, 207 /// make sure to set it to the correct physical subregister. 208 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 209 210 /// If the given machine operand reads only undefined lanes add an undef 211 /// flag. 212 /// This can happen when undef uses were previously concealed by a copy 213 /// which we coalesced. Example: 214 /// %vreg0:sub0<def,read-undef> = ... 215 /// %vreg1 = COPY %vreg0 <-- Coalescing COPY reveals undef 216 /// = use %vreg1:sub1 <-- hidden undef use 217 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 218 MachineOperand &MO, unsigned SubRegIdx); 219 220 /// Handle copies of undef values. 221 /// Returns true if @p CopyMI was a copy of an undef value and eliminated. 222 bool eliminateUndefCopy(MachineInstr *CopyMI); 223 224 /// Check whether or not we should apply the terminal rule on the 225 /// destination (Dst) of \p Copy. 226 /// When the terminal rule applies, Copy is not profitable to 227 /// coalesce. 228 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 229 /// at least one interference (Dst, Dst2). If Dst is terminal, the 230 /// terminal rule consists in checking that at least one of 231 /// interfering node, say Dst2, has an affinity of equal or greater 232 /// weight with Src. 233 /// In that case, Dst2 and Dst will not be able to be both coalesced 234 /// with Src. Since Dst2 exposes more coalescing opportunities than 235 /// Dst, we can drop \p Copy. 236 bool applyTerminalRule(const MachineInstr &Copy) const; 237 238 /// Wrapper method for \see LiveIntervals::shrinkToUses. 239 /// This method does the proper fixing of the live-ranges when the afore 240 /// mentioned method returns true. 241 void shrinkToUses(LiveInterval *LI, 242 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 243 if (LIS->shrinkToUses(LI, Dead)) { 244 /// Check whether or not \p LI is composed by multiple connected 245 /// components and if that is the case, fix that. 246 SmallVector<LiveInterval*, 8> SplitLIs; 247 LIS->splitSeparateComponents(*LI, SplitLIs); 248 } 249 } 250 251 public: 252 static char ID; ///< Class identification, replacement for typeinfo 253 RegisterCoalescer() : MachineFunctionPass(ID) { 254 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 255 } 256 257 void getAnalysisUsage(AnalysisUsage &AU) const override; 258 259 void releaseMemory() override; 260 261 /// This is the pass entry point. 262 bool runOnMachineFunction(MachineFunction&) override; 263 264 /// Implement the dump method. 265 void print(raw_ostream &O, const Module* = nullptr) const override; 266 }; 267 } // end anonymous namespace 268 269 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 270 271 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 272 "Simple Register Coalescing", false, false) 273 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 274 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 275 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 276 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 277 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 278 "Simple Register Coalescing", false, false) 279 280 char RegisterCoalescer::ID = 0; 281 282 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 283 unsigned &Src, unsigned &Dst, 284 unsigned &SrcSub, unsigned &DstSub) { 285 if (MI->isCopy()) { 286 Dst = MI->getOperand(0).getReg(); 287 DstSub = MI->getOperand(0).getSubReg(); 288 Src = MI->getOperand(1).getReg(); 289 SrcSub = MI->getOperand(1).getSubReg(); 290 } else if (MI->isSubregToReg()) { 291 Dst = MI->getOperand(0).getReg(); 292 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 293 MI->getOperand(3).getImm()); 294 Src = MI->getOperand(2).getReg(); 295 SrcSub = MI->getOperand(2).getSubReg(); 296 } else 297 return false; 298 return true; 299 } 300 301 /// Return true if this block should be vacated by the coalescer to eliminate 302 /// branches. The important cases to handle in the coalescer are critical edges 303 /// split during phi elimination which contain only copies. Simple blocks that 304 /// contain non-branches should also be vacated, but this can be handled by an 305 /// earlier pass similar to early if-conversion. 306 static bool isSplitEdge(const MachineBasicBlock *MBB) { 307 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 308 return false; 309 310 for (const auto &MI : *MBB) { 311 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 312 return false; 313 } 314 return true; 315 } 316 317 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 318 SrcReg = DstReg = 0; 319 SrcIdx = DstIdx = 0; 320 NewRC = nullptr; 321 Flipped = CrossClass = false; 322 323 unsigned Src, Dst, SrcSub, DstSub; 324 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 325 return false; 326 Partial = SrcSub || DstSub; 327 328 // If one register is a physreg, it must be Dst. 329 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 330 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 331 return false; 332 std::swap(Src, Dst); 333 std::swap(SrcSub, DstSub); 334 Flipped = true; 335 } 336 337 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 338 339 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 340 // Eliminate DstSub on a physreg. 341 if (DstSub) { 342 Dst = TRI.getSubReg(Dst, DstSub); 343 if (!Dst) return false; 344 DstSub = 0; 345 } 346 347 // Eliminate SrcSub by picking a corresponding Dst superregister. 348 if (SrcSub) { 349 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 350 if (!Dst) return false; 351 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 352 return false; 353 } 354 } else { 355 // Both registers are virtual. 356 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 357 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 358 359 // Both registers have subreg indices. 360 if (SrcSub && DstSub) { 361 // Copies between different sub-registers are never coalescable. 362 if (Src == Dst && SrcSub != DstSub) 363 return false; 364 365 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 366 SrcIdx, DstIdx); 367 if (!NewRC) 368 return false; 369 } else if (DstSub) { 370 // SrcReg will be merged with a sub-register of DstReg. 371 SrcIdx = DstSub; 372 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 373 } else if (SrcSub) { 374 // DstReg will be merged with a sub-register of SrcReg. 375 DstIdx = SrcSub; 376 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 377 } else { 378 // This is a straight copy without sub-registers. 379 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 380 } 381 382 // The combined constraint may be impossible to satisfy. 383 if (!NewRC) 384 return false; 385 386 // Prefer SrcReg to be a sub-register of DstReg. 387 // FIXME: Coalescer should support subregs symmetrically. 388 if (DstIdx && !SrcIdx) { 389 std::swap(Src, Dst); 390 std::swap(SrcIdx, DstIdx); 391 Flipped = !Flipped; 392 } 393 394 CrossClass = NewRC != DstRC || NewRC != SrcRC; 395 } 396 // Check our invariants 397 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 398 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 399 "Cannot have a physical SubIdx"); 400 SrcReg = Src; 401 DstReg = Dst; 402 return true; 403 } 404 405 bool CoalescerPair::flip() { 406 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 407 return false; 408 std::swap(SrcReg, DstReg); 409 std::swap(SrcIdx, DstIdx); 410 Flipped = !Flipped; 411 return true; 412 } 413 414 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 415 if (!MI) 416 return false; 417 unsigned Src, Dst, SrcSub, DstSub; 418 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 419 return false; 420 421 // Find the virtual register that is SrcReg. 422 if (Dst == SrcReg) { 423 std::swap(Src, Dst); 424 std::swap(SrcSub, DstSub); 425 } else if (Src != SrcReg) { 426 return false; 427 } 428 429 // Now check that Dst matches DstReg. 430 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 431 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 432 return false; 433 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 434 // DstSub could be set for a physreg from INSERT_SUBREG. 435 if (DstSub) 436 Dst = TRI.getSubReg(Dst, DstSub); 437 // Full copy of Src. 438 if (!SrcSub) 439 return DstReg == Dst; 440 // This is a partial register copy. Check that the parts match. 441 return TRI.getSubReg(DstReg, SrcSub) == Dst; 442 } else { 443 // DstReg is virtual. 444 if (DstReg != Dst) 445 return false; 446 // Registers match, do the subregisters line up? 447 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 448 TRI.composeSubRegIndices(DstIdx, DstSub); 449 } 450 } 451 452 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 453 AU.setPreservesCFG(); 454 AU.addRequired<AAResultsWrapperPass>(); 455 AU.addRequired<LiveIntervals>(); 456 AU.addPreserved<LiveIntervals>(); 457 AU.addPreserved<SlotIndexes>(); 458 AU.addRequired<MachineLoopInfo>(); 459 AU.addPreserved<MachineLoopInfo>(); 460 AU.addPreservedID(MachineDominatorsID); 461 MachineFunctionPass::getAnalysisUsage(AU); 462 } 463 464 void RegisterCoalescer::eliminateDeadDefs() { 465 SmallVector<unsigned, 8> NewRegs; 466 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 467 nullptr, this).eliminateDeadDefs(DeadDefs); 468 } 469 470 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 471 // MI may be in WorkList. Make sure we don't visit it. 472 ErasedInstrs.insert(MI); 473 } 474 475 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 476 MachineInstr *CopyMI) { 477 assert(!CP.isPartial() && "This doesn't work for partial copies."); 478 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 479 480 LiveInterval &IntA = 481 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 482 LiveInterval &IntB = 483 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 484 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 485 486 // We have a non-trivially-coalescable copy with IntA being the source and 487 // IntB being the dest, thus this defines a value number in IntB. If the 488 // source value number (in IntA) is defined by a copy from B, see if we can 489 // merge these two pieces of B into a single value number, eliminating a copy. 490 // For example: 491 // 492 // A3 = B0 493 // ... 494 // B1 = A3 <- this copy 495 // 496 // In this case, B0 can be extended to where the B1 copy lives, allowing the 497 // B1 value number to be replaced with B0 (which simplifies the B 498 // liveinterval). 499 500 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 501 // the example above. 502 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 503 if (BS == IntB.end()) return false; 504 VNInfo *BValNo = BS->valno; 505 506 // Get the location that B is defined at. Two options: either this value has 507 // an unknown definition point or it is defined at CopyIdx. If unknown, we 508 // can't process it. 509 if (BValNo->def != CopyIdx) return false; 510 511 // AValNo is the value number in A that defines the copy, A3 in the example. 512 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 513 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 514 // The live segment might not exist after fun with physreg coalescing. 515 if (AS == IntA.end()) return false; 516 VNInfo *AValNo = AS->valno; 517 518 // If AValNo is defined as a copy from IntB, we can potentially process this. 519 // Get the instruction that defines this value number. 520 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 521 // Don't allow any partial copies, even if isCoalescable() allows them. 522 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 523 return false; 524 525 // Get the Segment in IntB that this value number starts with. 526 LiveInterval::iterator ValS = 527 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 528 if (ValS == IntB.end()) 529 return false; 530 531 // Make sure that the end of the live segment is inside the same block as 532 // CopyMI. 533 MachineInstr *ValSEndInst = 534 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 535 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 536 return false; 537 538 // Okay, we now know that ValS ends in the same block that the CopyMI 539 // live-range starts. If there are no intervening live segments between them 540 // in IntB, we can merge them. 541 if (ValS+1 != BS) return false; 542 543 DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI)); 544 545 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 546 // We are about to delete CopyMI, so need to remove it as the 'instruction 547 // that defines this value #'. Update the valnum with the new defining 548 // instruction #. 549 BValNo->def = FillerStart; 550 551 // Okay, we can merge them. We need to insert a new liverange: 552 // [ValS.end, BS.begin) of either value number, then we merge the 553 // two value numbers. 554 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 555 556 // Okay, merge "B1" into the same value number as "B0". 557 if (BValNo != ValS->valno) 558 IntB.MergeValueNumberInto(BValNo, ValS->valno); 559 560 // Do the same for the subregister segments. 561 for (LiveInterval::SubRange &S : IntB.subranges()) { 562 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 563 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 564 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 565 if (SubBValNo != SubValSNo) 566 S.MergeValueNumberInto(SubBValNo, SubValSNo); 567 } 568 569 DEBUG(dbgs() << " result = " << IntB << '\n'); 570 571 // If the source instruction was killing the source register before the 572 // merge, unset the isKill marker given the live range has been extended. 573 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 574 if (UIdx != -1) { 575 ValSEndInst->getOperand(UIdx).setIsKill(false); 576 } 577 578 // Rewrite the copy. If the copy instruction was killing the destination 579 // register before the merge, find the last use and trim the live range. That 580 // will also add the isKill marker. 581 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 582 if (AS->end == CopyIdx) 583 shrinkToUses(&IntA); 584 585 ++numExtends; 586 return true; 587 } 588 589 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 590 LiveInterval &IntB, 591 VNInfo *AValNo, 592 VNInfo *BValNo) { 593 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 594 // the PHI values. 595 if (LIS->hasPHIKill(IntA, AValNo)) 596 return true; 597 598 for (LiveRange::Segment &ASeg : IntA.segments) { 599 if (ASeg.valno != AValNo) continue; 600 LiveInterval::iterator BI = 601 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start); 602 if (BI != IntB.begin()) 603 --BI; 604 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 605 if (BI->valno == BValNo) 606 continue; 607 if (BI->start <= ASeg.start && BI->end > ASeg.start) 608 return true; 609 if (BI->start > ASeg.start && BI->start < ASeg.end) 610 return true; 611 } 612 } 613 return false; 614 } 615 616 /// Copy segements with value number @p SrcValNo from liverange @p Src to live 617 /// range @Dst and use value number @p DstValNo there. 618 static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, 619 const LiveRange &Src, const VNInfo *SrcValNo) 620 { 621 for (const LiveRange::Segment &S : Src.segments) { 622 if (S.valno != SrcValNo) 623 continue; 624 Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo)); 625 } 626 } 627 628 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 629 MachineInstr *CopyMI) { 630 assert(!CP.isPhys()); 631 632 LiveInterval &IntA = 633 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 634 LiveInterval &IntB = 635 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 636 637 // We found a non-trivially-coalescable copy with IntA being the source and 638 // IntB being the dest, thus this defines a value number in IntB. If the 639 // source value number (in IntA) is defined by a commutable instruction and 640 // its other operand is coalesced to the copy dest register, see if we can 641 // transform the copy into a noop by commuting the definition. For example, 642 // 643 // A3 = op A2 B0<kill> 644 // ... 645 // B1 = A3 <- this copy 646 // ... 647 // = op A3 <- more uses 648 // 649 // ==> 650 // 651 // B2 = op B0 A2<kill> 652 // ... 653 // B1 = B2 <- now an identity copy 654 // ... 655 // = op B2 <- more uses 656 657 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 658 // the example above. 659 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 660 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 661 assert(BValNo != nullptr && BValNo->def == CopyIdx); 662 663 // AValNo is the value number in A that defines the copy, A3 in the example. 664 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 665 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 666 if (AValNo->isPHIDef()) 667 return false; 668 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 669 if (!DefMI) 670 return false; 671 if (!DefMI->isCommutable()) 672 return false; 673 // If DefMI is a two-address instruction then commuting it will change the 674 // destination register. 675 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 676 assert(DefIdx != -1); 677 unsigned UseOpIdx; 678 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 679 return false; 680 681 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 682 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 683 // passed to the method. That _other_ operand is chosen by 684 // the findCommutedOpIndices() method. 685 // 686 // That is obviously an area for improvement in case of instructions having 687 // more than 2 operands. For example, if some instruction has 3 commutable 688 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 689 // op#2<->op#3) of commute transformation should be considered/tried here. 690 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 691 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 692 return false; 693 694 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 695 unsigned NewReg = NewDstMO.getReg(); 696 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 697 return false; 698 699 // Make sure there are no other definitions of IntB that would reach the 700 // uses which the new definition can reach. 701 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 702 return false; 703 704 // If some of the uses of IntA.reg is already coalesced away, return false. 705 // It's not possible to determine whether it's safe to perform the coalescing. 706 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 707 MachineInstr *UseMI = MO.getParent(); 708 unsigned OpNo = &MO - &UseMI->getOperand(0); 709 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 710 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 711 if (US == IntA.end() || US->valno != AValNo) 712 continue; 713 // If this use is tied to a def, we can't rewrite the register. 714 if (UseMI->isRegTiedToDefOperand(OpNo)) 715 return false; 716 } 717 718 DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 719 << *DefMI); 720 721 // At this point we have decided that it is legal to do this 722 // transformation. Start by commuting the instruction. 723 MachineBasicBlock *MBB = DefMI->getParent(); 724 MachineInstr *NewMI = 725 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 726 if (!NewMI) 727 return false; 728 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 729 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 730 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 731 return false; 732 if (NewMI != DefMI) { 733 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 734 MachineBasicBlock::iterator Pos = DefMI; 735 MBB->insert(Pos, NewMI); 736 MBB->erase(DefMI); 737 } 738 739 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 740 // A = or A, B 741 // ... 742 // B = A 743 // ... 744 // C = A<kill> 745 // ... 746 // = B 747 748 // Update uses of IntA of the specific Val# with IntB. 749 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 750 UE = MRI->use_end(); 751 UI != UE; /* ++UI is below because of possible MI removal */) { 752 MachineOperand &UseMO = *UI; 753 ++UI; 754 if (UseMO.isUndef()) 755 continue; 756 MachineInstr *UseMI = UseMO.getParent(); 757 if (UseMI->isDebugValue()) { 758 // FIXME These don't have an instruction index. Not clear we have enough 759 // info to decide whether to do this replacement or not. For now do it. 760 UseMO.setReg(NewReg); 761 continue; 762 } 763 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 764 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 765 assert(US != IntA.end() && "Use must be live"); 766 if (US->valno != AValNo) 767 continue; 768 // Kill flags are no longer accurate. They are recomputed after RA. 769 UseMO.setIsKill(false); 770 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 771 UseMO.substPhysReg(NewReg, *TRI); 772 else 773 UseMO.setReg(NewReg); 774 if (UseMI == CopyMI) 775 continue; 776 if (!UseMI->isCopy()) 777 continue; 778 if (UseMI->getOperand(0).getReg() != IntB.reg || 779 UseMI->getOperand(0).getSubReg()) 780 continue; 781 782 // This copy will become a noop. If it's defining a new val#, merge it into 783 // BValNo. 784 SlotIndex DefIdx = UseIdx.getRegSlot(); 785 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 786 if (!DVNI) 787 continue; 788 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 789 assert(DVNI->def == DefIdx); 790 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 791 for (LiveInterval::SubRange &S : IntB.subranges()) { 792 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 793 if (!SubDVNI) 794 continue; 795 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 796 assert(SubBValNo->def == CopyIdx); 797 S.MergeValueNumberInto(SubDVNI, SubBValNo); 798 } 799 800 ErasedInstrs.insert(UseMI); 801 LIS->RemoveMachineInstrFromMaps(*UseMI); 802 UseMI->eraseFromParent(); 803 } 804 805 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 806 // is updated. 807 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 808 if (IntB.hasSubRanges()) { 809 if (!IntA.hasSubRanges()) { 810 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 811 IntA.createSubRangeFrom(Allocator, Mask, IntA); 812 } 813 SlotIndex AIdx = CopyIdx.getRegSlot(true); 814 for (LiveInterval::SubRange &SA : IntA.subranges()) { 815 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 816 assert(ASubValNo != nullptr); 817 818 LaneBitmask AMask = SA.LaneMask; 819 for (LiveInterval::SubRange &SB : IntB.subranges()) { 820 LaneBitmask BMask = SB.LaneMask; 821 LaneBitmask Common = BMask & AMask; 822 if (Common.none()) 823 continue; 824 825 DEBUG( dbgs() << "\t\tCopy_Merge " << PrintLaneMask(BMask) 826 << " into " << PrintLaneMask(Common) << '\n'); 827 LaneBitmask BRest = BMask & ~AMask; 828 LiveInterval::SubRange *CommonRange; 829 if (BRest.any()) { 830 SB.LaneMask = BRest; 831 DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(BRest) 832 << '\n'); 833 // Duplicate SubRange for newly merged common stuff. 834 CommonRange = IntB.createSubRangeFrom(Allocator, Common, SB); 835 } else { 836 // We van reuse the L SubRange. 837 SB.LaneMask = Common; 838 CommonRange = &SB; 839 } 840 LiveRange RangeCopy(SB, Allocator); 841 842 VNInfo *BSubValNo = CommonRange->getVNInfoAt(CopyIdx); 843 assert(BSubValNo->def == CopyIdx); 844 BSubValNo->def = ASubValNo->def; 845 addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo); 846 AMask &= ~BMask; 847 } 848 if (AMask.any()) { 849 DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(AMask) << '\n'); 850 LiveRange *NewRange = IntB.createSubRange(Allocator, AMask); 851 VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator); 852 addSegmentsWithValNo(*NewRange, BSubValNo, SA, ASubValNo); 853 } 854 } 855 } 856 857 BValNo->def = AValNo->def; 858 addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 859 DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 860 861 LIS->removeVRegDefAt(IntA, AValNo->def); 862 863 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 864 ++numCommutes; 865 return true; 866 } 867 868 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 869 /// predecessor of BB2, and if B is not redefined on the way from A = B 870 /// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the 871 /// execution goes through the path from BB0 to BB2. We may move B = A 872 /// to the predecessor without such reversed copy. 873 /// So we will transform the program from: 874 /// BB0: 875 /// A = B; BB1: 876 /// ... ... 877 /// / \ / 878 /// BB2: 879 /// ... 880 /// B = A; 881 /// 882 /// to: 883 /// 884 /// BB0: BB1: 885 /// A = B; ... 886 /// ... B = A; 887 /// / \ / 888 /// BB2: 889 /// ... 890 /// 891 /// A special case is when BB0 and BB2 are the same BB which is the only 892 /// BB in a loop: 893 /// BB1: 894 /// ... 895 /// BB0/BB2: ---- 896 /// B = A; | 897 /// ... | 898 /// A = B; | 899 /// |------- 900 /// | 901 /// We may hoist B = A from BB0/BB2 to BB1. 902 /// 903 /// The major preconditions for correctness to remove such partial 904 /// redundancy include: 905 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 906 /// the PHI is defined by the reversed copy A = B in BB0. 907 /// 2. No B is referenced from the start of BB2 to B = A. 908 /// 3. No B is defined from A = B to the end of BB0. 909 /// 4. BB1 has only one successor. 910 /// 911 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 912 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 913 /// colder place, which not only prevent endless loop, but also make sure 914 /// the movement of copy is beneficial. 915 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 916 MachineInstr &CopyMI) { 917 assert(!CP.isPhys()); 918 if (!CopyMI.isFullCopy()) 919 return false; 920 921 MachineBasicBlock &MBB = *CopyMI.getParent(); 922 if (MBB.isEHPad()) 923 return false; 924 925 if (MBB.pred_size() != 2) 926 return false; 927 928 LiveInterval &IntA = 929 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 930 LiveInterval &IntB = 931 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 932 933 // A is defined by PHI at the entry of MBB. 934 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 935 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 936 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 937 if (!AValNo->isPHIDef()) 938 return false; 939 940 // No B is referenced before CopyMI in MBB. 941 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 942 return false; 943 944 // MBB has two predecessors: one contains A = B so no copy will be inserted 945 // for it. The other one will have a copy moved from MBB. 946 bool FoundReverseCopy = false; 947 MachineBasicBlock *CopyLeftBB = nullptr; 948 for (MachineBasicBlock *Pred : MBB.predecessors()) { 949 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 950 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 951 if (!DefMI || !DefMI->isFullCopy()) { 952 CopyLeftBB = Pred; 953 continue; 954 } 955 // Check DefMI is a reverse copy and it is in BB Pred. 956 if (DefMI->getOperand(0).getReg() != IntA.reg || 957 DefMI->getOperand(1).getReg() != IntB.reg || 958 DefMI->getParent() != Pred) { 959 CopyLeftBB = Pred; 960 continue; 961 } 962 // If there is any other def of B after DefMI and before the end of Pred, 963 // we need to keep the copy of B = A at the end of Pred if we remove 964 // B = A from MBB. 965 bool ValB_Changed = false; 966 for (auto VNI : IntB.valnos) { 967 if (VNI->isUnused()) 968 continue; 969 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 970 ValB_Changed = true; 971 break; 972 } 973 } 974 if (ValB_Changed) { 975 CopyLeftBB = Pred; 976 continue; 977 } 978 FoundReverseCopy = true; 979 } 980 981 // If no reverse copy is found in predecessors, nothing to do. 982 if (!FoundReverseCopy) 983 return false; 984 985 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 986 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 987 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 988 // update IntA/IntB. 989 // 990 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 991 // MBB is hotter than CopyLeftBB. 992 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 993 return false; 994 995 // Now ok to move copy. 996 if (CopyLeftBB) { 997 DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to BB#" 998 << CopyLeftBB->getNumber() << '\t' << CopyMI); 999 1000 // Insert new copy to CopyLeftBB. 1001 auto InsPos = CopyLeftBB->getFirstTerminator(); 1002 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1003 TII->get(TargetOpcode::COPY), IntB.reg) 1004 .addReg(IntA.reg); 1005 SlotIndex NewCopyIdx = 1006 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1007 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1008 for (LiveInterval::SubRange &SR : IntB.subranges()) 1009 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1010 } else { 1011 DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from BB#" 1012 << MBB.getNumber() << '\t' << CopyMI); 1013 } 1014 1015 // Remove CopyMI. 1016 // Note: This is fine to remove the copy before updating the live-ranges. 1017 // While updating the live-ranges, we only look at slot indices and 1018 // never go back to the instruction. 1019 LIS->RemoveMachineInstrFromMaps(CopyMI); 1020 CopyMI.eraseFromParent(); 1021 1022 // Update the liveness. 1023 SmallVector<SlotIndex, 8> EndPoints; 1024 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1025 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1026 &EndPoints); 1027 BValNo->markUnused(); 1028 // Extend IntB to the EndPoints of its original live interval. 1029 LIS->extendToIndices(IntB, EndPoints); 1030 1031 // Now, do the same for its subranges. 1032 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1033 EndPoints.clear(); 1034 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1035 assert(BValNo && "All sublanes should be live"); 1036 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1037 BValNo->markUnused(); 1038 LIS->extendToIndices(SR, EndPoints); 1039 } 1040 1041 // Finally, update the live-range of IntA. 1042 shrinkToUses(&IntA); 1043 return true; 1044 } 1045 1046 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1047 /// defining a subregister. 1048 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 1049 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && 1050 "This code cannot handle physreg aliasing"); 1051 for (const MachineOperand &Op : MI.operands()) { 1052 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1053 continue; 1054 // Return true if we define the full register or don't care about the value 1055 // inside other subregisters. 1056 if (Op.getSubReg() == 0 || Op.isUndef()) 1057 return true; 1058 } 1059 return false; 1060 } 1061 1062 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1063 MachineInstr *CopyMI, 1064 bool &IsDefCopy) { 1065 IsDefCopy = false; 1066 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1067 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1068 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1069 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1070 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1071 return false; 1072 1073 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1074 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1075 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1076 assert(ValNo && "CopyMI input register not live"); 1077 if (ValNo->isPHIDef() || ValNo->isUnused()) 1078 return false; 1079 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1080 if (!DefMI) 1081 return false; 1082 if (DefMI->isCopyLike()) { 1083 IsDefCopy = true; 1084 return false; 1085 } 1086 if (!TII->isAsCheapAsAMove(*DefMI)) 1087 return false; 1088 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1089 return false; 1090 if (!definesFullReg(*DefMI, SrcReg)) 1091 return false; 1092 bool SawStore = false; 1093 if (!DefMI->isSafeToMove(AA, SawStore)) 1094 return false; 1095 const MCInstrDesc &MCID = DefMI->getDesc(); 1096 if (MCID.getNumDefs() != 1) 1097 return false; 1098 // Only support subregister destinations when the def is read-undef. 1099 MachineOperand &DstOperand = CopyMI->getOperand(0); 1100 unsigned CopyDstReg = DstOperand.getReg(); 1101 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1102 return false; 1103 1104 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1105 // the register substantially (beyond both source and dest size). This is bad 1106 // for performance since it can cascade through a function, introducing many 1107 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1108 // around after a few subreg copies). 1109 if (SrcIdx && DstIdx) 1110 return false; 1111 1112 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1113 if (!DefMI->isImplicitDef()) { 1114 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 1115 unsigned NewDstReg = DstReg; 1116 1117 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1118 DefMI->getOperand(0).getSubReg()); 1119 if (NewDstIdx) 1120 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1121 1122 // Finally, make sure that the physical subregister that will be 1123 // constructed later is permitted for the instruction. 1124 if (!DefRC->contains(NewDstReg)) 1125 return false; 1126 } else { 1127 // Theoretically, some stack frame reference could exist. Just make sure 1128 // it hasn't actually happened. 1129 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 1130 "Only expect to deal with virtual or physical registers"); 1131 } 1132 } 1133 1134 DebugLoc DL = CopyMI->getDebugLoc(); 1135 MachineBasicBlock *MBB = CopyMI->getParent(); 1136 MachineBasicBlock::iterator MII = 1137 std::next(MachineBasicBlock::iterator(CopyMI)); 1138 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1139 MachineInstr &NewMI = *std::prev(MII); 1140 NewMI.setDebugLoc(DL); 1141 1142 // In a situation like the following: 1143 // %vreg0:subreg = instr ; DefMI, subreg = DstIdx 1144 // %vreg1 = copy %vreg0:subreg ; CopyMI, SrcIdx = 0 1145 // instead of widening %vreg1 to the register class of %vreg0 simply do: 1146 // %vreg1 = instr 1147 const TargetRegisterClass *NewRC = CP.getNewRC(); 1148 if (DstIdx != 0) { 1149 MachineOperand &DefMO = NewMI.getOperand(0); 1150 if (DefMO.getSubReg() == DstIdx) { 1151 assert(SrcIdx == 0 && CP.isFlipped() 1152 && "Shouldn't have SrcIdx+DstIdx at this point"); 1153 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1154 const TargetRegisterClass *CommonRC = 1155 TRI->getCommonSubClass(DefRC, DstRC); 1156 if (CommonRC != nullptr) { 1157 NewRC = CommonRC; 1158 DstIdx = 0; 1159 DefMO.setSubReg(0); 1160 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1161 } 1162 } 1163 } 1164 1165 // CopyMI may have implicit operands, save them so that we can transfer them 1166 // over to the newly materialized instruction after CopyMI is removed. 1167 SmallVector<MachineOperand, 4> ImplicitOps; 1168 ImplicitOps.reserve(CopyMI->getNumOperands() - 1169 CopyMI->getDesc().getNumOperands()); 1170 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1171 E = CopyMI->getNumOperands(); 1172 I != E; ++I) { 1173 MachineOperand &MO = CopyMI->getOperand(I); 1174 if (MO.isReg()) { 1175 assert(MO.isImplicit() && "No explicit operands after implict operands."); 1176 // Discard VReg implicit defs. 1177 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1178 ImplicitOps.push_back(MO); 1179 } 1180 } 1181 1182 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1183 CopyMI->eraseFromParent(); 1184 ErasedInstrs.insert(CopyMI); 1185 1186 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1187 // We need to remember these so we can add intervals once we insert 1188 // NewMI into SlotIndexes. 1189 SmallVector<unsigned, 4> NewMIImplDefs; 1190 for (unsigned i = NewMI.getDesc().getNumOperands(), 1191 e = NewMI.getNumOperands(); 1192 i != e; ++i) { 1193 MachineOperand &MO = NewMI.getOperand(i); 1194 if (MO.isReg() && MO.isDef()) { 1195 assert(MO.isImplicit() && MO.isDead() && 1196 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 1197 NewMIImplDefs.push_back(MO.getReg()); 1198 } 1199 } 1200 1201 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 1202 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1203 1204 if (DefRC != nullptr) { 1205 if (NewIdx) 1206 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1207 else 1208 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1209 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1210 } 1211 // Remap subranges to new lanemask and change register class. 1212 LiveInterval &DstInt = LIS->getInterval(DstReg); 1213 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1214 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1215 } 1216 MRI->setRegClass(DstReg, NewRC); 1217 1218 // Update machine operands and add flags. 1219 updateRegDefsUses(DstReg, DstReg, DstIdx); 1220 NewMI.getOperand(0).setSubReg(NewIdx); 1221 // Add dead subregister definitions if we are defining the whole register 1222 // but only part of it is live. 1223 // This could happen if the rematerialization instruction is rematerializing 1224 // more than actually is used in the register. 1225 // An example would be: 1226 // vreg1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1227 // ; Copying only part of the register here, but the rest is undef. 1228 // vreg2:sub_16bit<def, read-undef> = COPY vreg1:sub_16bit 1229 // ==> 1230 // ; Materialize all the constants but only using one 1231 // vreg2 = LOAD_CONSTANTS 5, 8 1232 // 1233 // at this point for the part that wasn't defined before we could have 1234 // subranges missing the definition. 1235 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1236 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1237 SlotIndex DefIndex = 1238 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1239 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1240 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1241 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1242 if (!SR.liveAt(DefIndex)) 1243 SR.createDeadDef(DefIndex, Alloc); 1244 MaxMask &= ~SR.LaneMask; 1245 } 1246 if (MaxMask.any()) { 1247 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1248 SR->createDeadDef(DefIndex, Alloc); 1249 } 1250 } 1251 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1252 // The New instruction may be defining a sub-register of what's actually 1253 // been asked for. If so it must implicitly define the whole thing. 1254 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 1255 "Only expect virtual or physical registers in remat"); 1256 NewMI.getOperand(0).setIsDead(true); 1257 NewMI.addOperand(MachineOperand::CreateReg( 1258 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1259 // Record small dead def live-ranges for all the subregisters 1260 // of the destination register. 1261 // Otherwise, variables that live through may miss some 1262 // interferences, thus creating invalid allocation. 1263 // E.g., i386 code: 1264 // vreg1 = somedef ; vreg1 GR8 1265 // vreg2 = remat ; vreg2 GR32 1266 // CL = COPY vreg2.sub_8bit 1267 // = somedef vreg1 ; vreg1 GR8 1268 // => 1269 // vreg1 = somedef ; vreg1 GR8 1270 // ECX<def, dead> = remat ; CL<imp-def> 1271 // = somedef vreg1 ; vreg1 GR8 1272 // vreg1 will see the inteferences with CL but not with CH since 1273 // no live-ranges would have been created for ECX. 1274 // Fix that! 1275 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1276 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1277 Units.isValid(); ++Units) 1278 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1279 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1280 } 1281 1282 if (NewMI.getOperand(0).getSubReg()) 1283 NewMI.getOperand(0).setIsUndef(); 1284 1285 // Transfer over implicit operands to the rematerialized instruction. 1286 for (MachineOperand &MO : ImplicitOps) 1287 NewMI.addOperand(MO); 1288 1289 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1290 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1291 unsigned Reg = NewMIImplDefs[i]; 1292 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1293 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1294 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1295 } 1296 1297 DEBUG(dbgs() << "Remat: " << NewMI); 1298 ++NumReMats; 1299 1300 // The source interval can become smaller because we removed a use. 1301 shrinkToUses(&SrcInt, &DeadDefs); 1302 if (!DeadDefs.empty()) { 1303 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1304 // to describe DstReg instead. 1305 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1306 MachineInstr *UseMI = UseMO.getParent(); 1307 if (UseMI->isDebugValue()) { 1308 UseMO.setReg(DstReg); 1309 DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1310 } 1311 } 1312 eliminateDeadDefs(); 1313 } 1314 1315 return true; 1316 } 1317 1318 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1319 // ProcessImpicitDefs may leave some copies of <undef> values, it only removes 1320 // local variables. When we have a copy like: 1321 // 1322 // %vreg1 = COPY %vreg2<undef> 1323 // 1324 // We delete the copy and remove the corresponding value number from %vreg1. 1325 // Any uses of that value number are marked as <undef>. 1326 1327 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1328 // CoalescerPair may have a new register class with adjusted subreg indices 1329 // at this point. 1330 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1331 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx); 1332 1333 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1334 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1335 // CopyMI is undef iff SrcReg is not live before the instruction. 1336 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1337 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1338 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1339 if ((SR.LaneMask & SrcMask).none()) 1340 continue; 1341 if (SR.liveAt(Idx)) 1342 return false; 1343 } 1344 } else if (SrcLI.liveAt(Idx)) 1345 return false; 1346 1347 DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1348 1349 // Remove any DstReg segments starting at the instruction. 1350 LiveInterval &DstLI = LIS->getInterval(DstReg); 1351 SlotIndex RegIndex = Idx.getRegSlot(); 1352 // Remove value or merge with previous one in case of a subregister def. 1353 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1354 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1355 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1356 1357 // The affected subregister segments can be removed. 1358 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1359 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1360 if ((SR.LaneMask & DstMask).none()) 1361 continue; 1362 1363 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1364 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1365 SR.removeValNo(SVNI); 1366 } 1367 DstLI.removeEmptySubRanges(); 1368 } else 1369 LIS->removeVRegDefAt(DstLI, RegIndex); 1370 1371 // Mark uses as undef. 1372 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1373 if (MO.isDef() /*|| MO.isUndef()*/) 1374 continue; 1375 const MachineInstr &MI = *MO.getParent(); 1376 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1377 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1378 bool isLive; 1379 if (!UseMask.all() && DstLI.hasSubRanges()) { 1380 isLive = false; 1381 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1382 if ((SR.LaneMask & UseMask).none()) 1383 continue; 1384 if (SR.liveAt(UseIdx)) { 1385 isLive = true; 1386 break; 1387 } 1388 } 1389 } else 1390 isLive = DstLI.liveAt(UseIdx); 1391 if (isLive) 1392 continue; 1393 MO.setIsUndef(true); 1394 DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1395 } 1396 1397 // A def of a subregister may be a use of the other subregisters, so 1398 // deleting a def of a subregister may also remove uses. Since CopyMI 1399 // is still part of the function (but about to be erased), mark all 1400 // defs of DstReg in it as <undef>, so that shrinkToUses would 1401 // ignore them. 1402 for (MachineOperand &MO : CopyMI->operands()) 1403 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1404 MO.setIsUndef(true); 1405 LIS->shrinkToUses(&DstLI); 1406 1407 return true; 1408 } 1409 1410 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1411 MachineOperand &MO, unsigned SubRegIdx) { 1412 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1413 if (MO.isDef()) 1414 Mask = ~Mask; 1415 bool IsUndef = true; 1416 for (const LiveInterval::SubRange &S : Int.subranges()) { 1417 if ((S.LaneMask & Mask).none()) 1418 continue; 1419 if (S.liveAt(UseIdx)) { 1420 IsUndef = false; 1421 break; 1422 } 1423 } 1424 if (IsUndef) { 1425 MO.setIsUndef(true); 1426 // We found out some subregister use is actually reading an undefined 1427 // value. In some cases the whole vreg has become undefined at this 1428 // point so we have to potentially shrink the main range if the 1429 // use was ending a live segment there. 1430 LiveQueryResult Q = Int.Query(UseIdx); 1431 if (Q.valueOut() == nullptr) 1432 ShrinkMainRange = true; 1433 } 1434 } 1435 1436 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 1437 unsigned DstReg, 1438 unsigned SubIdx) { 1439 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 1440 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1441 1442 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1443 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1444 unsigned SubReg = MO.getSubReg(); 1445 if (SubReg == 0 || MO.isUndef()) 1446 continue; 1447 MachineInstr &MI = *MO.getParent(); 1448 if (MI.isDebugValue()) 1449 continue; 1450 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1451 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1452 } 1453 } 1454 1455 SmallPtrSet<MachineInstr*, 8> Visited; 1456 for (MachineRegisterInfo::reg_instr_iterator 1457 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1458 I != E; ) { 1459 MachineInstr *UseMI = &*(I++); 1460 1461 // Each instruction can only be rewritten once because sub-register 1462 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1463 // the UseMI operands removes them from the SrcReg use-def chain, but when 1464 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1465 // operands mentioning the virtual register. 1466 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1467 continue; 1468 1469 SmallVector<unsigned,8> Ops; 1470 bool Reads, Writes; 1471 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1472 1473 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1474 // because SrcReg is a sub-register. 1475 if (DstInt && !Reads && SubIdx) 1476 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1477 1478 // Replace SrcReg with DstReg in all UseMI operands. 1479 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1480 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1481 1482 // Adjust <undef> flags in case of sub-register joins. We don't want to 1483 // turn a full def into a read-modify-write sub-register def and vice 1484 // versa. 1485 if (SubIdx && MO.isDef()) 1486 MO.setIsUndef(!Reads); 1487 1488 // A subreg use of a partially undef (super) register may be a complete 1489 // undef use now and then has to be marked that way. 1490 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1491 if (!DstInt->hasSubRanges()) { 1492 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1493 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1494 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1495 } 1496 SlotIndex MIIdx = UseMI->isDebugValue() 1497 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1498 : LIS->getInstructionIndex(*UseMI); 1499 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1500 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1501 } 1502 1503 if (DstIsPhys) 1504 MO.substPhysReg(DstReg, *TRI); 1505 else 1506 MO.substVirtReg(DstReg, SubIdx, *TRI); 1507 } 1508 1509 DEBUG({ 1510 dbgs() << "\t\tupdated: "; 1511 if (!UseMI->isDebugValue()) 1512 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1513 dbgs() << *UseMI; 1514 }); 1515 } 1516 } 1517 1518 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1519 // Always join simple intervals that are defined by a single copy from a 1520 // reserved register. This doesn't increase register pressure, so it is 1521 // always beneficial. 1522 if (!MRI->isReserved(CP.getDstReg())) { 1523 DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1524 return false; 1525 } 1526 1527 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1528 if (JoinVInt.containsOneValue()) 1529 return true; 1530 1531 DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1532 return false; 1533 } 1534 1535 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1536 1537 Again = false; 1538 DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1539 1540 CoalescerPair CP(*TRI); 1541 if (!CP.setRegisters(CopyMI)) { 1542 DEBUG(dbgs() << "\tNot coalescable.\n"); 1543 return false; 1544 } 1545 1546 if (CP.getNewRC()) { 1547 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1548 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1549 unsigned SrcIdx = CP.getSrcIdx(); 1550 unsigned DstIdx = CP.getDstIdx(); 1551 if (CP.isFlipped()) { 1552 std::swap(SrcIdx, DstIdx); 1553 std::swap(SrcRC, DstRC); 1554 } 1555 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1556 CP.getNewRC())) { 1557 DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1558 return false; 1559 } 1560 } 1561 1562 // Dead code elimination. This really should be handled by MachineDCE, but 1563 // sometimes dead copies slip through, and we can't generate invalid live 1564 // ranges. 1565 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1566 DEBUG(dbgs() << "\tCopy is dead.\n"); 1567 DeadDefs.push_back(CopyMI); 1568 eliminateDeadDefs(); 1569 return true; 1570 } 1571 1572 // Eliminate undefs. 1573 if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) { 1574 LIS->RemoveMachineInstrFromMaps(*CopyMI); 1575 CopyMI->eraseFromParent(); 1576 return false; // Not coalescable. 1577 } 1578 1579 // Coalesced copies are normally removed immediately, but transformations 1580 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1581 // When that happens, just join the values and remove the copy. 1582 if (CP.getSrcReg() == CP.getDstReg()) { 1583 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1584 DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1585 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1586 LiveQueryResult LRQ = LI.Query(CopyIdx); 1587 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1588 VNInfo *ReadVNI = LRQ.valueIn(); 1589 assert(ReadVNI && "No value before copy and no <undef> flag."); 1590 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1591 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1592 1593 // Process subregister liveranges. 1594 for (LiveInterval::SubRange &S : LI.subranges()) { 1595 LiveQueryResult SLRQ = S.Query(CopyIdx); 1596 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1597 VNInfo *SReadVNI = SLRQ.valueIn(); 1598 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1599 } 1600 } 1601 DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1602 } 1603 LIS->RemoveMachineInstrFromMaps(*CopyMI); 1604 CopyMI->eraseFromParent(); 1605 return true; 1606 } 1607 1608 // Enforce policies. 1609 if (CP.isPhys()) { 1610 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI) 1611 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) 1612 << '\n'); 1613 if (!canJoinPhys(CP)) { 1614 // Before giving up coalescing, if definition of source is defined by 1615 // trivial computation, try rematerializing it. 1616 bool IsDefCopy; 1617 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1618 return true; 1619 if (IsDefCopy) 1620 Again = true; // May be possible to coalesce later. 1621 return false; 1622 } 1623 } else { 1624 // When possible, let DstReg be the larger interval. 1625 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1626 LIS->getInterval(CP.getDstReg()).size()) 1627 CP.flip(); 1628 1629 DEBUG({ 1630 dbgs() << "\tConsidering merging to " 1631 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1632 if (CP.getDstIdx() && CP.getSrcIdx()) 1633 dbgs() << PrintReg(CP.getDstReg()) << " in " 1634 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1635 << PrintReg(CP.getSrcReg()) << " in " 1636 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1637 else 1638 dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in " 1639 << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1640 }); 1641 } 1642 1643 ShrinkMask = LaneBitmask::getNone(); 1644 ShrinkMainRange = false; 1645 1646 // Okay, attempt to join these two intervals. On failure, this returns false. 1647 // Otherwise, if one of the intervals being joined is a physreg, this method 1648 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1649 // been modified, so we can use this information below to update aliases. 1650 if (!joinIntervals(CP)) { 1651 // Coalescing failed. 1652 1653 // If definition of source is defined by trivial computation, try 1654 // rematerializing it. 1655 bool IsDefCopy; 1656 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1657 return true; 1658 1659 // If we can eliminate the copy without merging the live segments, do so 1660 // now. 1661 if (!CP.isPartial() && !CP.isPhys()) { 1662 if (adjustCopiesBackFrom(CP, CopyMI) || 1663 removeCopyByCommutingDef(CP, CopyMI)) { 1664 LIS->RemoveMachineInstrFromMaps(*CopyMI); 1665 CopyMI->eraseFromParent(); 1666 DEBUG(dbgs() << "\tTrivial!\n"); 1667 return true; 1668 } 1669 } 1670 1671 // Try and see if we can partially eliminate the copy by moving the copy to 1672 // its predecessor. 1673 if (!CP.isPartial() && !CP.isPhys()) 1674 if (removePartialRedundancy(CP, *CopyMI)) 1675 return true; 1676 1677 // Otherwise, we are unable to join the intervals. 1678 DEBUG(dbgs() << "\tInterference!\n"); 1679 Again = true; // May be possible to coalesce later. 1680 return false; 1681 } 1682 1683 // Coalescing to a virtual register that is of a sub-register class of the 1684 // other. Make sure the resulting register is set to the right register class. 1685 if (CP.isCrossClass()) { 1686 ++numCrossRCs; 1687 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1688 } 1689 1690 // Removing sub-register copies can ease the register class constraints. 1691 // Make sure we attempt to inflate the register class of DstReg. 1692 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1693 InflateRegs.push_back(CP.getDstReg()); 1694 1695 // CopyMI has been erased by joinIntervals at this point. Remove it from 1696 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1697 // to the work list. This keeps ErasedInstrs from growing needlessly. 1698 ErasedInstrs.erase(CopyMI); 1699 1700 // Rewrite all SrcReg operands to DstReg. 1701 // Also update DstReg operands to include DstIdx if it is set. 1702 if (CP.getDstIdx()) 1703 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1704 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1705 1706 // Shrink subregister ranges if necessary. 1707 if (ShrinkMask.any()) { 1708 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1709 for (LiveInterval::SubRange &S : LI.subranges()) { 1710 if ((S.LaneMask & ShrinkMask).none()) 1711 continue; 1712 DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1713 << ")\n"); 1714 LIS->shrinkToUses(S, LI.reg); 1715 } 1716 LI.removeEmptySubRanges(); 1717 } 1718 if (ShrinkMainRange) { 1719 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1720 shrinkToUses(&LI); 1721 } 1722 1723 // SrcReg is guaranteed to be the register whose live interval that is 1724 // being merged. 1725 LIS->removeInterval(CP.getSrcReg()); 1726 1727 // Update regalloc hint. 1728 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1729 1730 DEBUG({ 1731 dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 1732 << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 1733 dbgs() << "\tResult = "; 1734 if (CP.isPhys()) 1735 dbgs() << PrintReg(CP.getDstReg(), TRI); 1736 else 1737 dbgs() << LIS->getInterval(CP.getDstReg()); 1738 dbgs() << '\n'; 1739 }); 1740 1741 ++numJoins; 1742 return true; 1743 } 1744 1745 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1746 unsigned DstReg = CP.getDstReg(); 1747 assert(CP.isPhys() && "Must be a physreg copy"); 1748 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 1749 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 1750 DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1751 1752 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 1753 1754 // Optimization for reserved registers like ESP. We can only merge with a 1755 // reserved physreg if RHS has a single value that is a copy of DstReg. 1756 // The live range of the reserved register will look like a set of dead defs 1757 // - we don't properly track the live range of reserved registers. 1758 1759 // Deny any overlapping intervals. This depends on all the reserved 1760 // register live ranges to look like dead defs. 1761 if (!MRI->isConstantPhysReg(DstReg)) { 1762 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1763 // Abort if not all the regunits are reserved. 1764 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 1765 if (!MRI->isReserved(*RI)) 1766 return false; 1767 } 1768 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1769 DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n'); 1770 return false; 1771 } 1772 } 1773 1774 // We must also check for overlaps with regmask clobbers. 1775 BitVector RegMaskUsable; 1776 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 1777 !RegMaskUsable.test(DstReg)) { 1778 DEBUG(dbgs() << "\t\tRegMask interference\n"); 1779 return false; 1780 } 1781 } 1782 1783 // Skip any value computations, we are not adding new values to the 1784 // reserved register. Also skip merging the live ranges, the reserved 1785 // register live range doesn't need to be accurate as long as all the 1786 // defs are there. 1787 1788 // Delete the identity copy. 1789 MachineInstr *CopyMI; 1790 if (CP.isFlipped()) { 1791 CopyMI = MRI->getVRegDef(RHS.reg); 1792 } else { 1793 if (!MRI->hasOneNonDBGUse(RHS.reg)) { 1794 DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 1795 return false; 1796 } 1797 1798 MachineInstr *DestMI = MRI->getVRegDef(RHS.reg); 1799 CopyMI = &*MRI->use_instr_nodbg_begin(RHS.reg); 1800 const SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 1801 const SlotIndex DestRegIdx = LIS->getInstructionIndex(*DestMI).getRegSlot(); 1802 1803 if (!MRI->isConstantPhysReg(DstReg)) { 1804 // We checked above that there are no interfering defs of the physical 1805 // register. However, for this case, where we intent to move up the def of 1806 // the physical register, we also need to check for interfering uses. 1807 SlotIndexes *Indexes = LIS->getSlotIndexes(); 1808 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 1809 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 1810 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 1811 if (MI->readsRegister(DstReg, TRI)) { 1812 DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 1813 return false; 1814 } 1815 } 1816 } 1817 1818 // We're going to remove the copy which defines a physical reserved 1819 // register, so remove its valno, etc. 1820 DEBUG(dbgs() << "\t\tRemoving phys reg def of " << DstReg << " at " 1821 << CopyRegIdx << "\n"); 1822 1823 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 1824 // Create a new dead def at the new def location. 1825 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1826 LiveRange &LR = LIS->getRegUnit(*UI); 1827 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 1828 } 1829 } 1830 1831 LIS->RemoveMachineInstrFromMaps(*CopyMI); 1832 CopyMI->eraseFromParent(); 1833 1834 // We don't track kills for reserved registers. 1835 MRI->clearKillFlags(CP.getSrcReg()); 1836 1837 return true; 1838 } 1839 1840 //===----------------------------------------------------------------------===// 1841 // Interference checking and interval joining 1842 //===----------------------------------------------------------------------===// 1843 // 1844 // In the easiest case, the two live ranges being joined are disjoint, and 1845 // there is no interference to consider. It is quite common, though, to have 1846 // overlapping live ranges, and we need to check if the interference can be 1847 // resolved. 1848 // 1849 // The live range of a single SSA value forms a sub-tree of the dominator tree. 1850 // This means that two SSA values overlap if and only if the def of one value 1851 // is contained in the live range of the other value. As a special case, the 1852 // overlapping values can be defined at the same index. 1853 // 1854 // The interference from an overlapping def can be resolved in these cases: 1855 // 1856 // 1. Coalescable copies. The value is defined by a copy that would become an 1857 // identity copy after joining SrcReg and DstReg. The copy instruction will 1858 // be removed, and the value will be merged with the source value. 1859 // 1860 // There can be several copies back and forth, causing many values to be 1861 // merged into one. We compute a list of ultimate values in the joined live 1862 // range as well as a mappings from the old value numbers. 1863 // 1864 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 1865 // predecessors have a live out value. It doesn't cause real interference, 1866 // and can be merged into the value it overlaps. Like a coalescable copy, it 1867 // can be erased after joining. 1868 // 1869 // 3. Copy of external value. The overlapping def may be a copy of a value that 1870 // is already in the other register. This is like a coalescable copy, but 1871 // the live range of the source register must be trimmed after erasing the 1872 // copy instruction: 1873 // 1874 // %src = COPY %ext 1875 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 1876 // 1877 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 1878 // defining one lane at a time: 1879 // 1880 // %dst:ssub0<def,read-undef> = FOO 1881 // %src = BAR 1882 // %dst:ssub1<def> = COPY %src 1883 // 1884 // The live range of %src overlaps the %dst value defined by FOO, but 1885 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 1886 // which was undef anyway. 1887 // 1888 // The value mapping is more complicated in this case. The final live range 1889 // will have different value numbers for both FOO and BAR, but there is no 1890 // simple mapping from old to new values. It may even be necessary to add 1891 // new PHI values. 1892 // 1893 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 1894 // is live, but never read. This can happen because we don't compute 1895 // individual live ranges per lane. 1896 // 1897 // %dst<def> = FOO 1898 // %src = BAR 1899 // %dst:ssub1<def> = COPY %src 1900 // 1901 // This kind of interference is only resolved locally. If the clobbered 1902 // lane value escapes the block, the join is aborted. 1903 1904 namespace { 1905 /// Track information about values in a single virtual register about to be 1906 /// joined. Objects of this class are always created in pairs - one for each 1907 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 1908 /// pair) 1909 class JoinVals { 1910 /// Live range we work on. 1911 LiveRange &LR; 1912 /// (Main) register we work on. 1913 const unsigned Reg; 1914 1915 /// Reg (and therefore the values in this liverange) will end up as 1916 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 1917 /// CP.SrcIdx. 1918 const unsigned SubIdx; 1919 /// The LaneMask that this liverange will occupy the coalesced register. May 1920 /// be smaller than the lanemask produced by SubIdx when merging subranges. 1921 const LaneBitmask LaneMask; 1922 1923 /// This is true when joining sub register ranges, false when joining main 1924 /// ranges. 1925 const bool SubRangeJoin; 1926 /// Whether the current LiveInterval tracks subregister liveness. 1927 const bool TrackSubRegLiveness; 1928 1929 /// Values that will be present in the final live range. 1930 SmallVectorImpl<VNInfo*> &NewVNInfo; 1931 1932 const CoalescerPair &CP; 1933 LiveIntervals *LIS; 1934 SlotIndexes *Indexes; 1935 const TargetRegisterInfo *TRI; 1936 1937 /// Value number assignments. Maps value numbers in LI to entries in 1938 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 1939 SmallVector<int, 8> Assignments; 1940 1941 /// Conflict resolution for overlapping values. 1942 enum ConflictResolution { 1943 /// No overlap, simply keep this value. 1944 CR_Keep, 1945 1946 /// Merge this value into OtherVNI and erase the defining instruction. 1947 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 1948 /// values. 1949 CR_Erase, 1950 1951 /// Merge this value into OtherVNI but keep the defining instruction. 1952 /// This is for the special case where OtherVNI is defined by the same 1953 /// instruction. 1954 CR_Merge, 1955 1956 /// Keep this value, and have it replace OtherVNI where possible. This 1957 /// complicates value mapping since OtherVNI maps to two different values 1958 /// before and after this def. 1959 /// Used when clobbering undefined or dead lanes. 1960 CR_Replace, 1961 1962 /// Unresolved conflict. Visit later when all values have been mapped. 1963 CR_Unresolved, 1964 1965 /// Unresolvable conflict. Abort the join. 1966 CR_Impossible 1967 }; 1968 1969 /// Per-value info for LI. The lane bit masks are all relative to the final 1970 /// joined register, so they can be compared directly between SrcReg and 1971 /// DstReg. 1972 struct Val { 1973 ConflictResolution Resolution; 1974 1975 /// Lanes written by this def, 0 for unanalyzed values. 1976 LaneBitmask WriteLanes; 1977 1978 /// Lanes with defined values in this register. Other lanes are undef and 1979 /// safe to clobber. 1980 LaneBitmask ValidLanes; 1981 1982 /// Value in LI being redefined by this def. 1983 VNInfo *RedefVNI; 1984 1985 /// Value in the other live range that overlaps this def, if any. 1986 VNInfo *OtherVNI; 1987 1988 /// Is this value an IMPLICIT_DEF that can be erased? 1989 /// 1990 /// IMPLICIT_DEF values should only exist at the end of a basic block that 1991 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 1992 /// safely erased if they are overlapping a live value in the other live 1993 /// interval. 1994 /// 1995 /// Weird control flow graphs and incomplete PHI handling in 1996 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 1997 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 1998 /// normal values. 1999 bool ErasableImplicitDef; 2000 2001 /// True when the live range of this value will be pruned because of an 2002 /// overlapping CR_Replace value in the other live range. 2003 bool Pruned; 2004 2005 /// True once Pruned above has been computed. 2006 bool PrunedComputed; 2007 2008 Val() : Resolution(CR_Keep), WriteLanes(), ValidLanes(), 2009 RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false), 2010 Pruned(false), PrunedComputed(false) {} 2011 2012 bool isAnalyzed() const { return WriteLanes.any(); } 2013 }; 2014 2015 /// One entry per value number in LI. 2016 SmallVector<Val, 8> Vals; 2017 2018 /// Compute the bitmask of lanes actually written by DefMI. 2019 /// Set Redef if there are any partial register definitions that depend on the 2020 /// previous value of the register. 2021 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2022 2023 /// Find the ultimate value that VNI was copied from. 2024 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 2025 2026 bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const; 2027 2028 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2029 /// Return a conflict resolution when possible, but leave the hard cases as 2030 /// CR_Unresolved. 2031 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2032 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2033 /// The recursion always goes upwards in the dominator tree, making loops 2034 /// impossible. 2035 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2036 2037 /// Compute the value assignment for ValNo in RI. 2038 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2039 /// the stack. 2040 void computeAssignment(unsigned ValNo, JoinVals &Other); 2041 2042 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2043 /// the extent of the tainted lanes in the block. 2044 /// 2045 /// Multiple values in Other.LR can be affected since partial redefinitions 2046 /// can preserve previously tainted lanes. 2047 /// 2048 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2049 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2050 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2051 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2052 /// 2053 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2054 /// entry to TaintedVals. 2055 /// 2056 /// Returns false if the tainted lanes extend beyond the basic block. 2057 bool taintExtent(unsigned, LaneBitmask, JoinVals&, 2058 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> >&); 2059 2060 /// Return true if MI uses any of the given Lanes from Reg. 2061 /// This does not include partial redefinitions of Reg. 2062 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; 2063 2064 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2065 /// be pruned: 2066 /// 2067 /// %dst = COPY %src 2068 /// %src = COPY %dst <-- This value to be pruned. 2069 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2070 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2071 2072 public: 2073 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 2074 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 2075 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2076 bool TrackSubRegLiveness) 2077 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2078 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2079 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2080 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) 2081 {} 2082 2083 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2084 /// Returns false if any conflicts were impossible to resolve. 2085 bool mapValues(JoinVals &Other); 2086 2087 /// Try to resolve conflicts that require all values to be mapped. 2088 /// Returns false if any conflicts were impossible to resolve. 2089 bool resolveConflicts(JoinVals &Other); 2090 2091 /// Prune the live range of values in Other.LR where they would conflict with 2092 /// CR_Replace values in LR. Collect end points for restoring the live range 2093 /// after joining. 2094 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2095 bool changeInstrs); 2096 2097 /// Removes subranges starting at copies that get removed. This sometimes 2098 /// happens when undefined subranges are copied around. These ranges contain 2099 /// no useful information and can be removed. 2100 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2101 2102 /// Pruning values in subranges can lead to removing segments in these 2103 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2104 /// the main range also need to be removed. This function will mark 2105 /// the corresponding values in the main range as pruned, so that 2106 /// eraseInstrs can do the final cleanup. 2107 /// The parameter @p LI must be the interval whose main range is the 2108 /// live range LR. 2109 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2110 2111 /// Erase any machine instructions that have been coalesced away. 2112 /// Add erased instructions to ErasedInstrs. 2113 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2114 /// the erased instrs. 2115 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2116 SmallVectorImpl<unsigned> &ShrinkRegs, 2117 LiveInterval *LI = nullptr); 2118 2119 /// Remove liverange defs at places where implicit defs will be removed. 2120 void removeImplicitDefs(); 2121 2122 /// Get the value assignments suitable for passing to LiveInterval::join. 2123 const int *getAssignments() const { return Assignments.data(); } 2124 }; 2125 } // end anonymous namespace 2126 2127 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2128 const { 2129 LaneBitmask L; 2130 for (const MachineOperand &MO : DefMI->operands()) { 2131 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2132 continue; 2133 L |= TRI->getSubRegIndexLaneMask( 2134 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2135 if (MO.readsReg()) 2136 Redef = true; 2137 } 2138 return L; 2139 } 2140 2141 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 2142 const VNInfo *VNI) const { 2143 unsigned Reg = this->Reg; 2144 2145 while (!VNI->isPHIDef()) { 2146 SlotIndex Def = VNI->def; 2147 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2148 assert(MI && "No defining instruction"); 2149 if (!MI->isFullCopy()) 2150 return std::make_pair(VNI, Reg); 2151 unsigned SrcReg = MI->getOperand(1).getReg(); 2152 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 2153 return std::make_pair(VNI, Reg); 2154 2155 const LiveInterval &LI = LIS->getInterval(SrcReg); 2156 const VNInfo *ValueIn; 2157 // No subrange involved. 2158 if (!SubRangeJoin || !LI.hasSubRanges()) { 2159 LiveQueryResult LRQ = LI.Query(Def); 2160 ValueIn = LRQ.valueIn(); 2161 } else { 2162 // Query subranges. Pick the first matching one. 2163 ValueIn = nullptr; 2164 for (const LiveInterval::SubRange &S : LI.subranges()) { 2165 // Transform lanemask to a mask in the joined live interval. 2166 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2167 if ((SMask & LaneMask).none()) 2168 continue; 2169 LiveQueryResult LRQ = S.Query(Def); 2170 ValueIn = LRQ.valueIn(); 2171 break; 2172 } 2173 } 2174 if (ValueIn == nullptr) 2175 break; 2176 VNI = ValueIn; 2177 Reg = SrcReg; 2178 } 2179 return std::make_pair(VNI, Reg); 2180 } 2181 2182 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2183 const JoinVals &Other) const { 2184 const VNInfo *Orig0; 2185 unsigned Reg0; 2186 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2187 if (Orig0 == Value1) 2188 return true; 2189 2190 const VNInfo *Orig1; 2191 unsigned Reg1; 2192 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2193 2194 // The values are equal if they are defined at the same place and use the 2195 // same register. Note that we cannot compare VNInfos directly as some of 2196 // them might be from a copy created in mergeSubRangeInto() while the other 2197 // is from the original LiveInterval. 2198 return Orig0->def == Orig1->def && Reg0 == Reg1; 2199 } 2200 2201 JoinVals::ConflictResolution 2202 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2203 Val &V = Vals[ValNo]; 2204 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2205 VNInfo *VNI = LR.getValNumInfo(ValNo); 2206 if (VNI->isUnused()) { 2207 V.WriteLanes = LaneBitmask::getAll(); 2208 return CR_Keep; 2209 } 2210 2211 // Get the instruction defining this value, compute the lanes written. 2212 const MachineInstr *DefMI = nullptr; 2213 if (VNI->isPHIDef()) { 2214 // Conservatively assume that all lanes in a PHI are valid. 2215 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask(1) 2216 : TRI->getSubRegIndexLaneMask(SubIdx); 2217 V.ValidLanes = V.WriteLanes = Lanes; 2218 } else { 2219 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2220 assert(DefMI != nullptr); 2221 if (SubRangeJoin) { 2222 // We don't care about the lanes when joining subregister ranges. 2223 V.WriteLanes = V.ValidLanes = LaneBitmask(1); 2224 if (DefMI->isImplicitDef()) { 2225 V.ValidLanes = LaneBitmask::getNone(); 2226 V.ErasableImplicitDef = true; 2227 } 2228 } else { 2229 bool Redef = false; 2230 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2231 2232 // If this is a read-modify-write instruction, there may be more valid 2233 // lanes than the ones written by this instruction. 2234 // This only covers partial redef operands. DefMI may have normal use 2235 // operands reading the register. They don't contribute valid lanes. 2236 // 2237 // This adds ssub1 to the set of valid lanes in %src: 2238 // 2239 // %src:ssub1<def> = FOO 2240 // 2241 // This leaves only ssub1 valid, making any other lanes undef: 2242 // 2243 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2244 // 2245 // The <read-undef> flag on the def operand means that old lane values are 2246 // not important. 2247 if (Redef) { 2248 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2249 assert((TrackSubRegLiveness || V.RedefVNI) && 2250 "Instruction is reading nonexistent value"); 2251 if (V.RedefVNI != nullptr) { 2252 computeAssignment(V.RedefVNI->id, Other); 2253 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2254 } 2255 } 2256 2257 // An IMPLICIT_DEF writes undef values. 2258 if (DefMI->isImplicitDef()) { 2259 // We normally expect IMPLICIT_DEF values to be live only until the end 2260 // of their block. If the value is really live longer and gets pruned in 2261 // another block, this flag is cleared again. 2262 V.ErasableImplicitDef = true; 2263 V.ValidLanes &= ~V.WriteLanes; 2264 } 2265 } 2266 } 2267 2268 // Find the value in Other that overlaps VNI->def, if any. 2269 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2270 2271 // It is possible that both values are defined by the same instruction, or 2272 // the values are PHIs defined in the same block. When that happens, the two 2273 // values should be merged into one, but not into any preceding value. 2274 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2275 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2276 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2277 2278 // One value stays, the other is merged. Keep the earlier one, or the first 2279 // one we see. 2280 if (OtherVNI->def < VNI->def) 2281 Other.computeAssignment(OtherVNI->id, *this); 2282 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2283 // This is an early-clobber def overlapping a live-in value in the other 2284 // register. Not mergeable. 2285 V.OtherVNI = OtherLRQ.valueIn(); 2286 return CR_Impossible; 2287 } 2288 V.OtherVNI = OtherVNI; 2289 Val &OtherV = Other.Vals[OtherVNI->id]; 2290 // Keep this value, check for conflicts when analyzing OtherVNI. 2291 if (!OtherV.isAnalyzed()) 2292 return CR_Keep; 2293 // Both sides have been analyzed now. 2294 // Allow overlapping PHI values. Any real interference would show up in a 2295 // predecessor, the PHI itself can't introduce any conflicts. 2296 if (VNI->isPHIDef()) 2297 return CR_Merge; 2298 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2299 // Overlapping lanes can't be resolved. 2300 return CR_Impossible; 2301 else 2302 return CR_Merge; 2303 } 2304 2305 // No simultaneous def. Is Other live at the def? 2306 V.OtherVNI = OtherLRQ.valueIn(); 2307 if (!V.OtherVNI) 2308 // No overlap, no conflict. 2309 return CR_Keep; 2310 2311 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2312 2313 // We have overlapping values, or possibly a kill of Other. 2314 // Recursively compute assignments up the dominator tree. 2315 Other.computeAssignment(V.OtherVNI->id, *this); 2316 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2317 2318 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2319 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2320 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2321 // technically. 2322 // 2323 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2324 // to erase the IMPLICIT_DEF instruction. 2325 if (OtherV.ErasableImplicitDef && DefMI && 2326 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2327 DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2328 << " extends into BB#" << DefMI->getParent()->getNumber() 2329 << ", keeping it.\n"); 2330 OtherV.ErasableImplicitDef = false; 2331 } 2332 2333 // Allow overlapping PHI values. Any real interference would show up in a 2334 // predecessor, the PHI itself can't introduce any conflicts. 2335 if (VNI->isPHIDef()) 2336 return CR_Replace; 2337 2338 // Check for simple erasable conflicts. 2339 if (DefMI->isImplicitDef()) { 2340 // We need the def for the subregister if there is nothing else live at the 2341 // subrange at this point. 2342 if (TrackSubRegLiveness 2343 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none()) 2344 return CR_Replace; 2345 return CR_Erase; 2346 } 2347 2348 // Include the non-conflict where DefMI is a coalescable copy that kills 2349 // OtherVNI. We still want the copy erased and value numbers merged. 2350 if (CP.isCoalescable(DefMI)) { 2351 // Some of the lanes copied from OtherVNI may be undef, making them undef 2352 // here too. 2353 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2354 return CR_Erase; 2355 } 2356 2357 // This may not be a real conflict if DefMI simply kills Other and defines 2358 // VNI. 2359 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2360 return CR_Keep; 2361 2362 // Handle the case where VNI and OtherVNI can be proven to be identical: 2363 // 2364 // %other = COPY %ext 2365 // %this = COPY %ext <-- Erase this copy 2366 // 2367 if (DefMI->isFullCopy() && !CP.isPartial() 2368 && valuesIdentical(VNI, V.OtherVNI, Other)) 2369 return CR_Erase; 2370 2371 // If the lanes written by this instruction were all undef in OtherVNI, it is 2372 // still safe to join the live ranges. This can't be done with a simple value 2373 // mapping, though - OtherVNI will map to multiple values: 2374 // 2375 // 1 %dst:ssub0 = FOO <-- OtherVNI 2376 // 2 %src = BAR <-- VNI 2377 // 3 %dst:ssub1 = COPY %src<kill> <-- Eliminate this copy. 2378 // 4 BAZ %dst<kill> 2379 // 5 QUUX %src<kill> 2380 // 2381 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2382 // handles this complex value mapping. 2383 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2384 return CR_Replace; 2385 2386 // If the other live range is killed by DefMI and the live ranges are still 2387 // overlapping, it must be because we're looking at an early clobber def: 2388 // 2389 // %dst<def,early-clobber> = ASM %src<kill> 2390 // 2391 // In this case, it is illegal to merge the two live ranges since the early 2392 // clobber def would clobber %src before it was read. 2393 if (OtherLRQ.isKill()) { 2394 // This case where the def doesn't overlap the kill is handled above. 2395 assert(VNI->def.isEarlyClobber() && 2396 "Only early clobber defs can overlap a kill"); 2397 return CR_Impossible; 2398 } 2399 2400 // VNI is clobbering live lanes in OtherVNI, but there is still the 2401 // possibility that no instructions actually read the clobbered lanes. 2402 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2403 // Otherwise Other.RI wouldn't be live here. 2404 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2405 return CR_Impossible; 2406 2407 // We need to verify that no instructions are reading the clobbered lanes. To 2408 // save compile time, we'll only check that locally. Don't allow the tainted 2409 // value to escape the basic block. 2410 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2411 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2412 return CR_Impossible; 2413 2414 // There are still some things that could go wrong besides clobbered lanes 2415 // being read, for example OtherVNI may be only partially redefined in MBB, 2416 // and some clobbered lanes could escape the block. Save this analysis for 2417 // resolveConflicts() when all values have been mapped. We need to know 2418 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2419 // that now - the recursive analyzeValue() calls must go upwards in the 2420 // dominator tree. 2421 return CR_Unresolved; 2422 } 2423 2424 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2425 Val &V = Vals[ValNo]; 2426 if (V.isAnalyzed()) { 2427 // Recursion should always move up the dominator tree, so ValNo is not 2428 // supposed to reappear before it has been assigned. 2429 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2430 return; 2431 } 2432 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2433 case CR_Erase: 2434 case CR_Merge: 2435 // Merge this ValNo into OtherVNI. 2436 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2437 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2438 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2439 DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@' 2440 << LR.getValNumInfo(ValNo)->def << " into " 2441 << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2442 << V.OtherVNI->def << " --> @" 2443 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2444 break; 2445 case CR_Replace: 2446 case CR_Unresolved: { 2447 // The other value is going to be pruned if this join is successful. 2448 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2449 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2450 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2451 // its lanes. 2452 if ((OtherV.WriteLanes & ~V.ValidLanes).any() && TrackSubRegLiveness) 2453 OtherV.ErasableImplicitDef = false; 2454 OtherV.Pruned = true; 2455 LLVM_FALLTHROUGH; 2456 } 2457 default: 2458 // This value number needs to go in the final joined live range. 2459 Assignments[ValNo] = NewVNInfo.size(); 2460 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2461 break; 2462 } 2463 } 2464 2465 bool JoinVals::mapValues(JoinVals &Other) { 2466 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2467 computeAssignment(i, Other); 2468 if (Vals[i].Resolution == CR_Impossible) { 2469 DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i 2470 << '@' << LR.getValNumInfo(i)->def << '\n'); 2471 return false; 2472 } 2473 } 2474 return true; 2475 } 2476 2477 bool JoinVals:: 2478 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2479 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> > &TaintExtent) { 2480 VNInfo *VNI = LR.getValNumInfo(ValNo); 2481 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2482 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2483 2484 // Scan Other.LR from VNI.def to MBBEnd. 2485 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2486 assert(OtherI != Other.LR.end() && "No conflict?"); 2487 do { 2488 // OtherI is pointing to a tainted value. Abort the join if the tainted 2489 // lanes escape the block. 2490 SlotIndex End = OtherI->end; 2491 if (End >= MBBEnd) { 2492 DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':' 2493 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2494 return false; 2495 } 2496 DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':' 2497 << OtherI->valno->id << '@' << OtherI->start 2498 << " to " << End << '\n'); 2499 // A dead def is not a problem. 2500 if (End.isDead()) 2501 break; 2502 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2503 2504 // Check for another def in the MBB. 2505 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2506 break; 2507 2508 // Lanes written by the new def are no longer tainted. 2509 const Val &OV = Other.Vals[OtherI->valno->id]; 2510 TaintedLanes &= ~OV.WriteLanes; 2511 if (!OV.RedefVNI) 2512 break; 2513 } while (TaintedLanes.any()); 2514 return true; 2515 } 2516 2517 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, 2518 LaneBitmask Lanes) const { 2519 if (MI.isDebugValue()) 2520 return false; 2521 for (const MachineOperand &MO : MI.operands()) { 2522 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2523 continue; 2524 if (!MO.readsReg()) 2525 continue; 2526 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2527 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2528 return true; 2529 } 2530 return false; 2531 } 2532 2533 bool JoinVals::resolveConflicts(JoinVals &Other) { 2534 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2535 Val &V = Vals[i]; 2536 assert (V.Resolution != CR_Impossible && "Unresolvable conflict"); 2537 if (V.Resolution != CR_Unresolved) 2538 continue; 2539 DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i 2540 << '@' << LR.getValNumInfo(i)->def << '\n'); 2541 if (SubRangeJoin) 2542 return false; 2543 2544 ++NumLaneConflicts; 2545 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2546 VNInfo *VNI = LR.getValNumInfo(i); 2547 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2548 2549 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2550 // join, those lanes will be tainted with a wrong value. Get the extent of 2551 // the tainted lanes. 2552 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2553 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2554 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2555 // Tainted lanes would extend beyond the basic block. 2556 return false; 2557 2558 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2559 2560 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2561 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2562 MachineBasicBlock::iterator MI = MBB->begin(); 2563 if (!VNI->isPHIDef()) { 2564 MI = Indexes->getInstructionFromIndex(VNI->def); 2565 // No need to check the instruction defining VNI for reads. 2566 ++MI; 2567 } 2568 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2569 "Interference ends on VNI->def. Should have been handled earlier"); 2570 MachineInstr *LastMI = 2571 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2572 assert(LastMI && "Range must end at a proper instruction"); 2573 unsigned TaintNum = 0; 2574 for (;;) { 2575 assert(MI != MBB->end() && "Bad LastMI"); 2576 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2577 DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2578 return false; 2579 } 2580 // LastMI is the last instruction to use the current value. 2581 if (&*MI == LastMI) { 2582 if (++TaintNum == TaintExtent.size()) 2583 break; 2584 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2585 assert(LastMI && "Range must end at a proper instruction"); 2586 TaintedLanes = TaintExtent[TaintNum].second; 2587 } 2588 ++MI; 2589 } 2590 2591 // The tainted lanes are unused. 2592 V.Resolution = CR_Replace; 2593 ++NumLaneResolves; 2594 } 2595 return true; 2596 } 2597 2598 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2599 Val &V = Vals[ValNo]; 2600 if (V.Pruned || V.PrunedComputed) 2601 return V.Pruned; 2602 2603 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2604 return V.Pruned; 2605 2606 // Follow copies up the dominator tree and check if any intermediate value 2607 // has been pruned. 2608 V.PrunedComputed = true; 2609 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2610 return V.Pruned; 2611 } 2612 2613 void JoinVals::pruneValues(JoinVals &Other, 2614 SmallVectorImpl<SlotIndex> &EndPoints, 2615 bool changeInstrs) { 2616 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2617 SlotIndex Def = LR.getValNumInfo(i)->def; 2618 switch (Vals[i].Resolution) { 2619 case CR_Keep: 2620 break; 2621 case CR_Replace: { 2622 // This value takes precedence over the value in Other.LR. 2623 LIS->pruneValue(Other.LR, Def, &EndPoints); 2624 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2625 // instructions are only inserted to provide a live-out value for PHI 2626 // predecessors, so the instruction should simply go away once its value 2627 // has been replaced. 2628 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2629 bool EraseImpDef = OtherV.ErasableImplicitDef && 2630 OtherV.Resolution == CR_Keep; 2631 if (!Def.isBlock()) { 2632 if (changeInstrs) { 2633 // Remove <def,read-undef> flags. This def is now a partial redef. 2634 // Also remove <def,dead> flags since the joined live range will 2635 // continue past this instruction. 2636 for (MachineOperand &MO : 2637 Indexes->getInstructionFromIndex(Def)->operands()) { 2638 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 2639 if (MO.getSubReg() != 0) 2640 MO.setIsUndef(EraseImpDef); 2641 MO.setIsDead(false); 2642 } 2643 } 2644 } 2645 // This value will reach instructions below, but we need to make sure 2646 // the live range also reaches the instruction at Def. 2647 if (!EraseImpDef) 2648 EndPoints.push_back(Def); 2649 } 2650 DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def 2651 << ": " << Other.LR << '\n'); 2652 break; 2653 } 2654 case CR_Erase: 2655 case CR_Merge: 2656 if (isPrunedValue(i, Other)) { 2657 // This value is ultimately a copy of a pruned value in LR or Other.LR. 2658 // We can no longer trust the value mapping computed by 2659 // computeAssignment(), the value that was originally copied could have 2660 // been replaced. 2661 LIS->pruneValue(LR, Def, &EndPoints); 2662 DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at " 2663 << Def << ": " << LR << '\n'); 2664 } 2665 break; 2666 case CR_Unresolved: 2667 case CR_Impossible: 2668 llvm_unreachable("Unresolved conflicts"); 2669 } 2670 } 2671 } 2672 2673 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 2674 // Look for values being erased. 2675 bool DidPrune = false; 2676 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2677 if (Vals[i].Resolution != CR_Erase) 2678 continue; 2679 2680 // Check subranges at the point where the copy will be removed. 2681 SlotIndex Def = LR.getValNumInfo(i)->def; 2682 for (LiveInterval::SubRange &S : LI.subranges()) { 2683 LiveQueryResult Q = S.Query(Def); 2684 2685 // If a subrange starts at the copy then an undefined value has been 2686 // copied and we must remove that subrange value as well. 2687 VNInfo *ValueOut = Q.valueOutOrDead(); 2688 if (ValueOut != nullptr && Q.valueIn() == nullptr) { 2689 DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 2690 << " at " << Def << "\n"); 2691 LIS->pruneValue(S, Def, nullptr); 2692 DidPrune = true; 2693 // Mark value number as unused. 2694 ValueOut->markUnused(); 2695 continue; 2696 } 2697 // If a subrange ends at the copy, then a value was copied but only 2698 // partially used later. Shrink the subregister range appropriately. 2699 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 2700 DEBUG(dbgs() << "\t\tDead uses at sublane " << PrintLaneMask(S.LaneMask) 2701 << " at " << Def << "\n"); 2702 ShrinkMask |= S.LaneMask; 2703 } 2704 } 2705 } 2706 if (DidPrune) 2707 LI.removeEmptySubRanges(); 2708 } 2709 2710 /// Check if any of the subranges of @p LI contain a definition at @p Def. 2711 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 2712 for (LiveInterval::SubRange &SR : LI.subranges()) { 2713 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 2714 if (VNI->def == Def) 2715 return true; 2716 } 2717 return false; 2718 } 2719 2720 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 2721 assert(&static_cast<LiveRange&>(LI) == &LR); 2722 2723 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2724 if (Vals[i].Resolution != CR_Keep) 2725 continue; 2726 VNInfo *VNI = LR.getValNumInfo(i); 2727 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 2728 continue; 2729 Vals[i].Pruned = true; 2730 ShrinkMainRange = true; 2731 } 2732 } 2733 2734 void JoinVals::removeImplicitDefs() { 2735 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2736 Val &V = Vals[i]; 2737 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 2738 continue; 2739 2740 VNInfo *VNI = LR.getValNumInfo(i); 2741 VNI->markUnused(); 2742 LR.removeValNo(VNI); 2743 } 2744 } 2745 2746 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2747 SmallVectorImpl<unsigned> &ShrinkRegs, 2748 LiveInterval *LI) { 2749 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2750 // Get the def location before markUnused() below invalidates it. 2751 SlotIndex Def = LR.getValNumInfo(i)->def; 2752 switch (Vals[i].Resolution) { 2753 case CR_Keep: { 2754 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 2755 // longer. The IMPLICIT_DEF instructions are only inserted by 2756 // PHIElimination to guarantee that all PHI predecessors have a value. 2757 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 2758 break; 2759 // Remove value number i from LR. 2760 // For intervals with subranges, removing a segment from the main range 2761 // may require extending the previous segment: for each definition of 2762 // a subregister, there will be a corresponding def in the main range. 2763 // That def may fall in the middle of a segment from another subrange. 2764 // In such cases, removing this def from the main range must be 2765 // complemented by extending the main range to account for the liveness 2766 // of the other subrange. 2767 VNInfo *VNI = LR.getValNumInfo(i); 2768 SlotIndex Def = VNI->def; 2769 // The new end point of the main range segment to be extended. 2770 SlotIndex NewEnd; 2771 if (LI != nullptr) { 2772 LiveRange::iterator I = LR.FindSegmentContaining(Def); 2773 assert(I != LR.end()); 2774 // Do not extend beyond the end of the segment being removed. 2775 // The segment may have been pruned in preparation for joining 2776 // live ranges. 2777 NewEnd = I->end; 2778 } 2779 2780 LR.removeValNo(VNI); 2781 // Note that this VNInfo is reused and still referenced in NewVNInfo, 2782 // make it appear like an unused value number. 2783 VNI->markUnused(); 2784 2785 if (LI != nullptr && LI->hasSubRanges()) { 2786 assert(static_cast<LiveRange*>(LI) == &LR); 2787 // Determine the end point based on the subrange information: 2788 // minimum of (earliest def of next segment, 2789 // latest end point of containing segment) 2790 SlotIndex ED, LE; 2791 for (LiveInterval::SubRange &SR : LI->subranges()) { 2792 LiveRange::iterator I = SR.find(Def); 2793 if (I == SR.end()) 2794 continue; 2795 if (I->start > Def) 2796 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 2797 else 2798 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 2799 } 2800 if (LE.isValid()) 2801 NewEnd = std::min(NewEnd, LE); 2802 if (ED.isValid()) 2803 NewEnd = std::min(NewEnd, ED); 2804 2805 // We only want to do the extension if there was a subrange that 2806 // was live across Def. 2807 if (LE.isValid()) { 2808 LiveRange::iterator S = LR.find(Def); 2809 if (S != LR.begin()) 2810 std::prev(S)->end = NewEnd; 2811 } 2812 } 2813 DEBUG({ 2814 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 2815 if (LI != nullptr) 2816 dbgs() << "\t\t LHS = " << *LI << '\n'; 2817 }); 2818 LLVM_FALLTHROUGH; 2819 } 2820 2821 case CR_Erase: { 2822 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2823 assert(MI && "No instruction to erase"); 2824 if (MI->isCopy()) { 2825 unsigned Reg = MI->getOperand(1).getReg(); 2826 if (TargetRegisterInfo::isVirtualRegister(Reg) && 2827 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 2828 ShrinkRegs.push_back(Reg); 2829 } 2830 ErasedInstrs.insert(MI); 2831 DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 2832 LIS->RemoveMachineInstrFromMaps(*MI); 2833 MI->eraseFromParent(); 2834 break; 2835 } 2836 default: 2837 break; 2838 } 2839 } 2840 } 2841 2842 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 2843 LaneBitmask LaneMask, 2844 const CoalescerPair &CP) { 2845 SmallVector<VNInfo*, 16> NewVNInfo; 2846 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 2847 NewVNInfo, CP, LIS, TRI, true, true); 2848 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 2849 NewVNInfo, CP, LIS, TRI, true, true); 2850 2851 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 2852 // We should be able to resolve all conflicts here as we could successfully do 2853 // it on the mainrange already. There is however a problem when multiple 2854 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 2855 // interferences. 2856 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 2857 // We already determined that it is legal to merge the intervals, so this 2858 // should never fail. 2859 llvm_unreachable("*** Couldn't join subrange!\n"); 2860 } 2861 if (!LHSVals.resolveConflicts(RHSVals) || 2862 !RHSVals.resolveConflicts(LHSVals)) { 2863 // We already determined that it is legal to merge the intervals, so this 2864 // should never fail. 2865 llvm_unreachable("*** Couldn't join subrange!\n"); 2866 } 2867 2868 // The merging algorithm in LiveInterval::join() can't handle conflicting 2869 // value mappings, so we need to remove any live ranges that overlap a 2870 // CR_Replace resolution. Collect a set of end points that can be used to 2871 // restore the live range after joining. 2872 SmallVector<SlotIndex, 8> EndPoints; 2873 LHSVals.pruneValues(RHSVals, EndPoints, false); 2874 RHSVals.pruneValues(LHSVals, EndPoints, false); 2875 2876 LHSVals.removeImplicitDefs(); 2877 RHSVals.removeImplicitDefs(); 2878 2879 LRange.verify(); 2880 RRange.verify(); 2881 2882 // Join RRange into LHS. 2883 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 2884 NewVNInfo); 2885 2886 DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n"); 2887 if (EndPoints.empty()) 2888 return; 2889 2890 // Recompute the parts of the live range we had to remove because of 2891 // CR_Replace conflicts. 2892 DEBUG({ 2893 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 2894 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 2895 dbgs() << EndPoints[i]; 2896 if (i != n-1) 2897 dbgs() << ','; 2898 } 2899 dbgs() << ": " << LRange << '\n'; 2900 }); 2901 LIS->extendToIndices(LRange, EndPoints); 2902 } 2903 2904 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 2905 const LiveRange &ToMerge, 2906 LaneBitmask LaneMask, 2907 CoalescerPair &CP) { 2908 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2909 for (LiveInterval::SubRange &R : LI.subranges()) { 2910 LaneBitmask RMask = R.LaneMask; 2911 // LaneMask of subregisters common to subrange R and ToMerge. 2912 LaneBitmask Common = RMask & LaneMask; 2913 // There is nothing to do without common subregs. 2914 if (Common.none()) 2915 continue; 2916 2917 DEBUG(dbgs() << "\t\tCopy+Merge " << PrintLaneMask(RMask) << " into " 2918 << PrintLaneMask(Common) << '\n'); 2919 // LaneMask of subregisters contained in the R range but not in ToMerge, 2920 // they have to split into their own subrange. 2921 LaneBitmask LRest = RMask & ~LaneMask; 2922 LiveInterval::SubRange *CommonRange; 2923 if (LRest.any()) { 2924 R.LaneMask = LRest; 2925 DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(LRest) << '\n'); 2926 // Duplicate SubRange for newly merged common stuff. 2927 CommonRange = LI.createSubRangeFrom(Allocator, Common, R); 2928 } else { 2929 // Reuse the existing range. 2930 R.LaneMask = Common; 2931 CommonRange = &R; 2932 } 2933 LiveRange RangeCopy(ToMerge, Allocator); 2934 joinSubRegRanges(*CommonRange, RangeCopy, Common, CP); 2935 LaneMask &= ~RMask; 2936 } 2937 2938 if (LaneMask.any()) { 2939 DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(LaneMask) << '\n'); 2940 LI.createSubRangeFrom(Allocator, LaneMask, ToMerge); 2941 } 2942 } 2943 2944 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 2945 SmallVector<VNInfo*, 16> NewVNInfo; 2946 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 2947 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 2948 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 2949 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 2950 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 2951 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 2952 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 2953 2954 DEBUG(dbgs() << "\t\tRHS = " << RHS 2955 << "\n\t\tLHS = " << LHS 2956 << '\n'); 2957 2958 // First compute NewVNInfo and the simple value mappings. 2959 // Detect impossible conflicts early. 2960 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 2961 return false; 2962 2963 // Some conflicts can only be resolved after all values have been mapped. 2964 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 2965 return false; 2966 2967 // All clear, the live ranges can be merged. 2968 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 2969 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2970 2971 // Transform lanemasks from the LHS to masks in the coalesced register and 2972 // create initial subranges if necessary. 2973 unsigned DstIdx = CP.getDstIdx(); 2974 if (!LHS.hasSubRanges()) { 2975 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 2976 : TRI->getSubRegIndexLaneMask(DstIdx); 2977 // LHS must support subregs or we wouldn't be in this codepath. 2978 assert(Mask.any()); 2979 LHS.createSubRangeFrom(Allocator, Mask, LHS); 2980 } else if (DstIdx != 0) { 2981 // Transform LHS lanemasks to new register class if necessary. 2982 for (LiveInterval::SubRange &R : LHS.subranges()) { 2983 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 2984 R.LaneMask = Mask; 2985 } 2986 } 2987 DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg()) 2988 << ' ' << LHS << '\n'); 2989 2990 // Determine lanemasks of RHS in the coalesced register and merge subranges. 2991 unsigned SrcIdx = CP.getSrcIdx(); 2992 if (!RHS.hasSubRanges()) { 2993 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 2994 : TRI->getSubRegIndexLaneMask(SrcIdx); 2995 mergeSubRangeInto(LHS, RHS, Mask, CP); 2996 } else { 2997 // Pair up subranges and merge. 2998 for (LiveInterval::SubRange &R : RHS.subranges()) { 2999 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3000 mergeSubRangeInto(LHS, R, Mask, CP); 3001 } 3002 } 3003 DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3004 3005 // Pruning implicit defs from subranges may result in the main range 3006 // having stale segments. 3007 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3008 3009 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3010 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3011 } 3012 3013 // The merging algorithm in LiveInterval::join() can't handle conflicting 3014 // value mappings, so we need to remove any live ranges that overlap a 3015 // CR_Replace resolution. Collect a set of end points that can be used to 3016 // restore the live range after joining. 3017 SmallVector<SlotIndex, 8> EndPoints; 3018 LHSVals.pruneValues(RHSVals, EndPoints, true); 3019 RHSVals.pruneValues(LHSVals, EndPoints, true); 3020 3021 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3022 // registers to require trimming. 3023 SmallVector<unsigned, 8> ShrinkRegs; 3024 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3025 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3026 while (!ShrinkRegs.empty()) 3027 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3028 3029 // Join RHS into LHS. 3030 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3031 3032 // Kill flags are going to be wrong if the live ranges were overlapping. 3033 // Eventually, we should simply clear all kill flags when computing live 3034 // ranges. They are reinserted after register allocation. 3035 MRI->clearKillFlags(LHS.reg); 3036 MRI->clearKillFlags(RHS.reg); 3037 3038 if (!EndPoints.empty()) { 3039 // Recompute the parts of the live range we had to remove because of 3040 // CR_Replace conflicts. 3041 DEBUG({ 3042 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3043 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3044 dbgs() << EndPoints[i]; 3045 if (i != n-1) 3046 dbgs() << ','; 3047 } 3048 dbgs() << ": " << LHS << '\n'; 3049 }); 3050 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3051 } 3052 3053 return true; 3054 } 3055 3056 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3057 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3058 } 3059 3060 namespace { 3061 /// Information concerning MBB coalescing priority. 3062 struct MBBPriorityInfo { 3063 MachineBasicBlock *MBB; 3064 unsigned Depth; 3065 bool IsSplit; 3066 3067 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3068 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3069 }; 3070 } 3071 3072 /// C-style comparator that sorts first based on the loop depth of the basic 3073 /// block (the unsigned), and then on the MBB number. 3074 /// 3075 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3076 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3077 const MBBPriorityInfo *RHS) { 3078 // Deeper loops first 3079 if (LHS->Depth != RHS->Depth) 3080 return LHS->Depth > RHS->Depth ? -1 : 1; 3081 3082 // Try to unsplit critical edges next. 3083 if (LHS->IsSplit != RHS->IsSplit) 3084 return LHS->IsSplit ? -1 : 1; 3085 3086 // Prefer blocks that are more connected in the CFG. This takes care of 3087 // the most difficult copies first while intervals are short. 3088 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3089 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3090 if (cl != cr) 3091 return cl > cr ? -1 : 1; 3092 3093 // As a last resort, sort by block number. 3094 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3095 } 3096 3097 /// \returns true if the given copy uses or defines a local live range. 3098 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3099 if (!Copy->isCopy()) 3100 return false; 3101 3102 if (Copy->getOperand(1).isUndef()) 3103 return false; 3104 3105 unsigned SrcReg = Copy->getOperand(1).getReg(); 3106 unsigned DstReg = Copy->getOperand(0).getReg(); 3107 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 3108 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 3109 return false; 3110 3111 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3112 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3113 } 3114 3115 bool RegisterCoalescer:: 3116 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3117 bool Progress = false; 3118 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3119 if (!CurrList[i]) 3120 continue; 3121 // Skip instruction pointers that have already been erased, for example by 3122 // dead code elimination. 3123 if (ErasedInstrs.erase(CurrList[i])) { 3124 CurrList[i] = nullptr; 3125 continue; 3126 } 3127 bool Again = false; 3128 bool Success = joinCopy(CurrList[i], Again); 3129 Progress |= Success; 3130 if (Success || !Again) 3131 CurrList[i] = nullptr; 3132 } 3133 return Progress; 3134 } 3135 3136 /// Check if DstReg is a terminal node. 3137 /// I.e., it does not have any affinity other than \p Copy. 3138 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 3139 const MachineRegisterInfo *MRI) { 3140 assert(Copy.isCopyLike()); 3141 // Check if the destination of this copy as any other affinity. 3142 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3143 if (&MI != &Copy && MI.isCopyLike()) 3144 return false; 3145 return true; 3146 } 3147 3148 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3149 assert(Copy.isCopyLike()); 3150 if (!UseTerminalRule) 3151 return false; 3152 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 3153 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg); 3154 // Check if the destination of this copy has any other affinity. 3155 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 3156 // If SrcReg is a physical register, the copy won't be coalesced. 3157 // Ignoring it may have other side effect (like missing 3158 // rematerialization). So keep it. 3159 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 3160 !isTerminalReg(DstReg, Copy, MRI)) 3161 return false; 3162 3163 // DstReg is a terminal node. Check if it interferes with any other 3164 // copy involving SrcReg. 3165 const MachineBasicBlock *OrigBB = Copy.getParent(); 3166 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3167 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3168 // Technically we should check if the weight of the new copy is 3169 // interesting compared to the other one and update the weight 3170 // of the copies accordingly. However, this would only work if 3171 // we would gather all the copies first then coalesce, whereas 3172 // right now we interleave both actions. 3173 // For now, just consider the copies that are in the same block. 3174 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3175 continue; 3176 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 3177 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3178 OtherSubReg); 3179 if (OtherReg == SrcReg) 3180 OtherReg = OtherSrcReg; 3181 // Check if OtherReg is a non-terminal. 3182 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) || 3183 isTerminalReg(OtherReg, MI, MRI)) 3184 continue; 3185 // Check that OtherReg interfere with DstReg. 3186 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3187 DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n'); 3188 return true; 3189 } 3190 } 3191 return false; 3192 } 3193 3194 void 3195 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3196 DEBUG(dbgs() << MBB->getName() << ":\n"); 3197 3198 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3199 // yet, it might invalidate the iterator. 3200 const unsigned PrevSize = WorkList.size(); 3201 if (JoinGlobalCopies) { 3202 SmallVector<MachineInstr*, 2> LocalTerminals; 3203 SmallVector<MachineInstr*, 2> GlobalTerminals; 3204 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3205 // are not inherently easier to resolve, but slightly preferable until we 3206 // have local live range splitting. In particular this is required by 3207 // cmp+jmp macro fusion. 3208 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3209 MII != E; ++MII) { 3210 if (!MII->isCopyLike()) 3211 continue; 3212 bool ApplyTerminalRule = applyTerminalRule(*MII); 3213 if (isLocalCopy(&(*MII), LIS)) { 3214 if (ApplyTerminalRule) 3215 LocalTerminals.push_back(&(*MII)); 3216 else 3217 LocalWorkList.push_back(&(*MII)); 3218 } else { 3219 if (ApplyTerminalRule) 3220 GlobalTerminals.push_back(&(*MII)); 3221 else 3222 WorkList.push_back(&(*MII)); 3223 } 3224 } 3225 // Append the copies evicted by the terminal rule at the end of the list. 3226 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3227 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3228 } 3229 else { 3230 SmallVector<MachineInstr*, 2> Terminals; 3231 for (MachineInstr &MII : *MBB) 3232 if (MII.isCopyLike()) { 3233 if (applyTerminalRule(MII)) 3234 Terminals.push_back(&MII); 3235 else 3236 WorkList.push_back(&MII); 3237 } 3238 // Append the copies evicted by the terminal rule at the end of the list. 3239 WorkList.append(Terminals.begin(), Terminals.end()); 3240 } 3241 // Try coalescing the collected copies immediately, and remove the nulls. 3242 // This prevents the WorkList from getting too large since most copies are 3243 // joinable on the first attempt. 3244 MutableArrayRef<MachineInstr*> 3245 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3246 if (copyCoalesceWorkList(CurrList)) 3247 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3248 (MachineInstr*)nullptr), WorkList.end()); 3249 } 3250 3251 void RegisterCoalescer::coalesceLocals() { 3252 copyCoalesceWorkList(LocalWorkList); 3253 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3254 if (LocalWorkList[j]) 3255 WorkList.push_back(LocalWorkList[j]); 3256 } 3257 LocalWorkList.clear(); 3258 } 3259 3260 void RegisterCoalescer::joinAllIntervals() { 3261 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3262 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3263 3264 std::vector<MBBPriorityInfo> MBBs; 3265 MBBs.reserve(MF->size()); 3266 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3267 MachineBasicBlock *MBB = &*I; 3268 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3269 JoinSplitEdges && isSplitEdge(MBB))); 3270 } 3271 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3272 3273 // Coalesce intervals in MBB priority order. 3274 unsigned CurrDepth = UINT_MAX; 3275 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3276 // Try coalescing the collected local copies for deeper loops. 3277 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3278 coalesceLocals(); 3279 CurrDepth = MBBs[i].Depth; 3280 } 3281 copyCoalesceInMBB(MBBs[i].MBB); 3282 } 3283 coalesceLocals(); 3284 3285 // Joining intervals can allow other intervals to be joined. Iteratively join 3286 // until we make no progress. 3287 while (copyCoalesceWorkList(WorkList)) 3288 /* empty */ ; 3289 } 3290 3291 void RegisterCoalescer::releaseMemory() { 3292 ErasedInstrs.clear(); 3293 WorkList.clear(); 3294 DeadDefs.clear(); 3295 InflateRegs.clear(); 3296 } 3297 3298 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3299 MF = &fn; 3300 MRI = &fn.getRegInfo(); 3301 TM = &fn.getTarget(); 3302 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3303 TRI = STI.getRegisterInfo(); 3304 TII = STI.getInstrInfo(); 3305 LIS = &getAnalysis<LiveIntervals>(); 3306 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3307 Loops = &getAnalysis<MachineLoopInfo>(); 3308 if (EnableGlobalCopies == cl::BOU_UNSET) 3309 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3310 else 3311 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3312 3313 // The MachineScheduler does not currently require JoinSplitEdges. This will 3314 // either be enabled unconditionally or replaced by a more general live range 3315 // splitting optimization. 3316 JoinSplitEdges = EnableJoinSplits; 3317 3318 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3319 << "********** Function: " << MF->getName() << '\n'); 3320 3321 if (VerifyCoalescing) 3322 MF->verify(this, "Before register coalescing"); 3323 3324 RegClassInfo.runOnMachineFunction(fn); 3325 3326 // Join (coalesce) intervals if requested. 3327 if (EnableJoining) 3328 joinAllIntervals(); 3329 3330 // After deleting a lot of copies, register classes may be less constrained. 3331 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3332 // DPR inflation. 3333 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3334 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3335 InflateRegs.end()); 3336 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n"); 3337 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3338 unsigned Reg = InflateRegs[i]; 3339 if (MRI->reg_nodbg_empty(Reg)) 3340 continue; 3341 if (MRI->recomputeRegClass(Reg)) { 3342 DEBUG(dbgs() << PrintReg(Reg) << " inflated to " 3343 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3344 ++NumInflated; 3345 3346 LiveInterval &LI = LIS->getInterval(Reg); 3347 if (LI.hasSubRanges()) { 3348 // If the inflated register class does not support subregisters anymore 3349 // remove the subranges. 3350 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3351 LI.clearSubRanges(); 3352 } else { 3353 #ifndef NDEBUG 3354 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3355 // If subranges are still supported, then the same subregs 3356 // should still be supported. 3357 for (LiveInterval::SubRange &S : LI.subranges()) { 3358 assert((S.LaneMask & ~MaxMask).none()); 3359 } 3360 #endif 3361 } 3362 } 3363 } 3364 } 3365 3366 DEBUG(dump()); 3367 if (VerifyCoalescing) 3368 MF->verify(this, "After register coalescing"); 3369 return true; 3370 } 3371 3372 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3373 LIS->print(O, m); 3374 } 3375