1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic RegisterCoalescer interface which 11 // is used as the common interface used by all clients and 12 // implementations of register coalescing. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "RegisterCoalescer.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetOpcodes.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/MC/LaneBitmask.h" 44 #include "llvm/MC/MCInstrDesc.h" 45 #include "llvm/MC/MCRegisterInfo.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <iterator> 55 #include <limits> 56 #include <tuple> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "regalloc" 63 64 STATISTIC(numJoins , "Number of interval joins performed"); 65 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 66 STATISTIC(numCommutes , "Number of instruction commuting performed"); 67 STATISTIC(numExtends , "Number of copies extended"); 68 STATISTIC(NumReMats , "Number of instructions re-materialized"); 69 STATISTIC(NumInflated , "Number of register classes inflated"); 70 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 71 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 72 73 static cl::opt<bool> EnableJoining("join-liveintervals", 74 cl::desc("Coalesce copies (default=true)"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<bool> UseTerminalRule("terminal-rule", 78 cl::desc("Apply the terminal rule"), 79 cl::init(false), cl::Hidden); 80 81 /// Temporary flag to test critical edge unsplitting. 82 static cl::opt<bool> 83 EnableJoinSplits("join-splitedges", 84 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 85 86 /// Temporary flag to test global copy optimization. 87 static cl::opt<cl::boolOrDefault> 88 EnableGlobalCopies("join-globalcopies", 89 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 90 cl::init(cl::BOU_UNSET), cl::Hidden); 91 92 static cl::opt<bool> 93 VerifyCoalescing("verify-coalescing", 94 cl::desc("Verify machine instrs before and after register coalescing"), 95 cl::Hidden); 96 97 namespace { 98 99 class RegisterCoalescer : public MachineFunctionPass, 100 private LiveRangeEdit::Delegate { 101 MachineFunction* MF; 102 MachineRegisterInfo* MRI; 103 const TargetRegisterInfo* TRI; 104 const TargetInstrInfo* TII; 105 LiveIntervals *LIS; 106 const MachineLoopInfo* Loops; 107 AliasAnalysis *AA; 108 RegisterClassInfo RegClassInfo; 109 110 /// A LaneMask to remember on which subregister live ranges we need to call 111 /// shrinkToUses() later. 112 LaneBitmask ShrinkMask; 113 114 /// True if the main range of the currently coalesced intervals should be 115 /// checked for smaller live intervals. 116 bool ShrinkMainRange; 117 118 /// True if the coalescer should aggressively coalesce global copies 119 /// in favor of keeping local copies. 120 bool JoinGlobalCopies; 121 122 /// True if the coalescer should aggressively coalesce fall-thru 123 /// blocks exclusively containing copies. 124 bool JoinSplitEdges; 125 126 /// Copy instructions yet to be coalesced. 127 SmallVector<MachineInstr*, 8> WorkList; 128 SmallVector<MachineInstr*, 8> LocalWorkList; 129 130 /// Set of instruction pointers that have been erased, and 131 /// that may be present in WorkList. 132 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 133 134 /// Dead instructions that are about to be deleted. 135 SmallVector<MachineInstr*, 8> DeadDefs; 136 137 /// Virtual registers to be considered for register class inflation. 138 SmallVector<unsigned, 8> InflateRegs; 139 140 /// Recursively eliminate dead defs in DeadDefs. 141 void eliminateDeadDefs(); 142 143 /// LiveRangeEdit callback for eliminateDeadDefs(). 144 void LRE_WillEraseInstruction(MachineInstr *MI) override; 145 146 /// Coalesce the LocalWorkList. 147 void coalesceLocals(); 148 149 /// Join compatible live intervals 150 void joinAllIntervals(); 151 152 /// Coalesce copies in the specified MBB, putting 153 /// copies that cannot yet be coalesced into WorkList. 154 void copyCoalesceInMBB(MachineBasicBlock *MBB); 155 156 /// Tries to coalesce all copies in CurrList. Returns true if any progress 157 /// was made. 158 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 159 160 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 161 /// src/dst of the copy instruction CopyMI. This returns true if the copy 162 /// was successfully coalesced away. If it is not currently possible to 163 /// coalesce this interval, but it may be possible if other things get 164 /// coalesced, then it returns true by reference in 'Again'. 165 bool joinCopy(MachineInstr *TheCopy, bool &Again); 166 167 /// Attempt to join these two intervals. On failure, this 168 /// returns false. The output "SrcInt" will not have been modified, so we 169 /// can use this information below to update aliases. 170 bool joinIntervals(CoalescerPair &CP); 171 172 /// Attempt joining two virtual registers. Return true on success. 173 bool joinVirtRegs(CoalescerPair &CP); 174 175 /// Attempt joining with a reserved physreg. 176 bool joinReservedPhysReg(CoalescerPair &CP); 177 178 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 179 /// Subranges in @p LI which only partially interfere with the desired 180 /// LaneMask are split as necessary. @p LaneMask are the lanes that 181 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 182 /// lanemasks already adjusted to the coalesced register. 183 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 184 LaneBitmask LaneMask, CoalescerPair &CP); 185 186 /// Join the liveranges of two subregisters. Joins @p RRange into 187 /// @p LRange, @p RRange may be invalid afterwards. 188 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 189 LaneBitmask LaneMask, const CoalescerPair &CP); 190 191 /// We found a non-trivially-coalescable copy. If the source value number is 192 /// defined by a copy from the destination reg see if we can merge these two 193 /// destination reg valno# into a single value number, eliminating a copy. 194 /// This returns true if an interval was modified. 195 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 196 197 /// Return true if there are definitions of IntB 198 /// other than BValNo val# that can reach uses of AValno val# of IntA. 199 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 200 VNInfo *AValNo, VNInfo *BValNo); 201 202 /// We found a non-trivially-coalescable copy. 203 /// If the source value number is defined by a commutable instruction and 204 /// its other operand is coalesced to the copy dest register, see if we 205 /// can transform the copy into a noop by commuting the definition. 206 /// This returns true if an interval was modified. 207 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); 208 209 /// We found a copy which can be moved to its less frequent predecessor. 210 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 211 212 /// If the source of a copy is defined by a 213 /// trivial computation, replace the copy by rematerialize the definition. 214 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 215 bool &IsDefCopy); 216 217 /// Return true if a copy involving a physreg should be joined. 218 bool canJoinPhys(const CoalescerPair &CP); 219 220 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 221 /// number if it is not zero. If DstReg is a physical register and the 222 /// existing subregister number of the def / use being updated is not zero, 223 /// make sure to set it to the correct physical subregister. 224 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 225 226 /// If the given machine operand reads only undefined lanes add an undef 227 /// flag. 228 /// This can happen when undef uses were previously concealed by a copy 229 /// which we coalesced. Example: 230 /// %0:sub0<def,read-undef> = ... 231 /// %1 = COPY %0 <-- Coalescing COPY reveals undef 232 /// = use %1:sub1 <-- hidden undef use 233 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 234 MachineOperand &MO, unsigned SubRegIdx); 235 236 /// Handle copies of undef values. 237 /// Returns true if @p CopyMI was a copy of an undef value and eliminated. 238 bool eliminateUndefCopy(MachineInstr *CopyMI); 239 240 /// Check whether or not we should apply the terminal rule on the 241 /// destination (Dst) of \p Copy. 242 /// When the terminal rule applies, Copy is not profitable to 243 /// coalesce. 244 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 245 /// at least one interference (Dst, Dst2). If Dst is terminal, the 246 /// terminal rule consists in checking that at least one of 247 /// interfering node, say Dst2, has an affinity of equal or greater 248 /// weight with Src. 249 /// In that case, Dst2 and Dst will not be able to be both coalesced 250 /// with Src. Since Dst2 exposes more coalescing opportunities than 251 /// Dst, we can drop \p Copy. 252 bool applyTerminalRule(const MachineInstr &Copy) const; 253 254 /// Wrapper method for \see LiveIntervals::shrinkToUses. 255 /// This method does the proper fixing of the live-ranges when the afore 256 /// mentioned method returns true. 257 void shrinkToUses(LiveInterval *LI, 258 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 259 if (LIS->shrinkToUses(LI, Dead)) { 260 /// Check whether or not \p LI is composed by multiple connected 261 /// components and if that is the case, fix that. 262 SmallVector<LiveInterval*, 8> SplitLIs; 263 LIS->splitSeparateComponents(*LI, SplitLIs); 264 } 265 } 266 267 /// Wrapper Method to do all the necessary work when an Instruction is 268 /// deleted. 269 /// Optimizations should use this to make sure that deleted instructions 270 /// are always accounted for. 271 void deleteInstr(MachineInstr* MI) { 272 ErasedInstrs.insert(MI); 273 LIS->RemoveMachineInstrFromMaps(*MI); 274 MI->eraseFromParent(); 275 } 276 277 public: 278 static char ID; ///< Class identification, replacement for typeinfo 279 280 RegisterCoalescer() : MachineFunctionPass(ID) { 281 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 282 } 283 284 void getAnalysisUsage(AnalysisUsage &AU) const override; 285 286 void releaseMemory() override; 287 288 /// This is the pass entry point. 289 bool runOnMachineFunction(MachineFunction&) override; 290 291 /// Implement the dump method. 292 void print(raw_ostream &O, const Module* = nullptr) const override; 293 }; 294 295 } // end anonymous namespace 296 297 char RegisterCoalescer::ID = 0; 298 299 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 300 301 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 302 "Simple Register Coalescing", false, false) 303 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 304 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 305 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 306 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 307 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 308 "Simple Register Coalescing", false, false) 309 310 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 311 unsigned &Src, unsigned &Dst, 312 unsigned &SrcSub, unsigned &DstSub) { 313 if (MI->isCopy()) { 314 Dst = MI->getOperand(0).getReg(); 315 DstSub = MI->getOperand(0).getSubReg(); 316 Src = MI->getOperand(1).getReg(); 317 SrcSub = MI->getOperand(1).getSubReg(); 318 } else if (MI->isSubregToReg()) { 319 Dst = MI->getOperand(0).getReg(); 320 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 321 MI->getOperand(3).getImm()); 322 Src = MI->getOperand(2).getReg(); 323 SrcSub = MI->getOperand(2).getSubReg(); 324 } else 325 return false; 326 return true; 327 } 328 329 /// Return true if this block should be vacated by the coalescer to eliminate 330 /// branches. The important cases to handle in the coalescer are critical edges 331 /// split during phi elimination which contain only copies. Simple blocks that 332 /// contain non-branches should also be vacated, but this can be handled by an 333 /// earlier pass similar to early if-conversion. 334 static bool isSplitEdge(const MachineBasicBlock *MBB) { 335 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 336 return false; 337 338 for (const auto &MI : *MBB) { 339 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 340 return false; 341 } 342 return true; 343 } 344 345 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 346 SrcReg = DstReg = 0; 347 SrcIdx = DstIdx = 0; 348 NewRC = nullptr; 349 Flipped = CrossClass = false; 350 351 unsigned Src, Dst, SrcSub, DstSub; 352 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 353 return false; 354 Partial = SrcSub || DstSub; 355 356 // If one register is a physreg, it must be Dst. 357 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 358 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 359 return false; 360 std::swap(Src, Dst); 361 std::swap(SrcSub, DstSub); 362 Flipped = true; 363 } 364 365 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 366 367 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 368 // Eliminate DstSub on a physreg. 369 if (DstSub) { 370 Dst = TRI.getSubReg(Dst, DstSub); 371 if (!Dst) return false; 372 DstSub = 0; 373 } 374 375 // Eliminate SrcSub by picking a corresponding Dst superregister. 376 if (SrcSub) { 377 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 378 if (!Dst) return false; 379 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 380 return false; 381 } 382 } else { 383 // Both registers are virtual. 384 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 385 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 386 387 // Both registers have subreg indices. 388 if (SrcSub && DstSub) { 389 // Copies between different sub-registers are never coalescable. 390 if (Src == Dst && SrcSub != DstSub) 391 return false; 392 393 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 394 SrcIdx, DstIdx); 395 if (!NewRC) 396 return false; 397 } else if (DstSub) { 398 // SrcReg will be merged with a sub-register of DstReg. 399 SrcIdx = DstSub; 400 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 401 } else if (SrcSub) { 402 // DstReg will be merged with a sub-register of SrcReg. 403 DstIdx = SrcSub; 404 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 405 } else { 406 // This is a straight copy without sub-registers. 407 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 408 } 409 410 // The combined constraint may be impossible to satisfy. 411 if (!NewRC) 412 return false; 413 414 // Prefer SrcReg to be a sub-register of DstReg. 415 // FIXME: Coalescer should support subregs symmetrically. 416 if (DstIdx && !SrcIdx) { 417 std::swap(Src, Dst); 418 std::swap(SrcIdx, DstIdx); 419 Flipped = !Flipped; 420 } 421 422 CrossClass = NewRC != DstRC || NewRC != SrcRC; 423 } 424 // Check our invariants 425 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 426 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 427 "Cannot have a physical SubIdx"); 428 SrcReg = Src; 429 DstReg = Dst; 430 return true; 431 } 432 433 bool CoalescerPair::flip() { 434 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 435 return false; 436 std::swap(SrcReg, DstReg); 437 std::swap(SrcIdx, DstIdx); 438 Flipped = !Flipped; 439 return true; 440 } 441 442 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 443 if (!MI) 444 return false; 445 unsigned Src, Dst, SrcSub, DstSub; 446 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 447 return false; 448 449 // Find the virtual register that is SrcReg. 450 if (Dst == SrcReg) { 451 std::swap(Src, Dst); 452 std::swap(SrcSub, DstSub); 453 } else if (Src != SrcReg) { 454 return false; 455 } 456 457 // Now check that Dst matches DstReg. 458 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 459 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 460 return false; 461 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 462 // DstSub could be set for a physreg from INSERT_SUBREG. 463 if (DstSub) 464 Dst = TRI.getSubReg(Dst, DstSub); 465 // Full copy of Src. 466 if (!SrcSub) 467 return DstReg == Dst; 468 // This is a partial register copy. Check that the parts match. 469 return TRI.getSubReg(DstReg, SrcSub) == Dst; 470 } else { 471 // DstReg is virtual. 472 if (DstReg != Dst) 473 return false; 474 // Registers match, do the subregisters line up? 475 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 476 TRI.composeSubRegIndices(DstIdx, DstSub); 477 } 478 } 479 480 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 481 AU.setPreservesCFG(); 482 AU.addRequired<AAResultsWrapperPass>(); 483 AU.addRequired<LiveIntervals>(); 484 AU.addPreserved<LiveIntervals>(); 485 AU.addPreserved<SlotIndexes>(); 486 AU.addRequired<MachineLoopInfo>(); 487 AU.addPreserved<MachineLoopInfo>(); 488 AU.addPreservedID(MachineDominatorsID); 489 MachineFunctionPass::getAnalysisUsage(AU); 490 } 491 492 void RegisterCoalescer::eliminateDeadDefs() { 493 SmallVector<unsigned, 8> NewRegs; 494 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 495 nullptr, this).eliminateDeadDefs(DeadDefs); 496 } 497 498 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 499 // MI may be in WorkList. Make sure we don't visit it. 500 ErasedInstrs.insert(MI); 501 } 502 503 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 504 MachineInstr *CopyMI) { 505 assert(!CP.isPartial() && "This doesn't work for partial copies."); 506 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 507 508 LiveInterval &IntA = 509 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 510 LiveInterval &IntB = 511 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 512 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 513 514 // We have a non-trivially-coalescable copy with IntA being the source and 515 // IntB being the dest, thus this defines a value number in IntB. If the 516 // source value number (in IntA) is defined by a copy from B, see if we can 517 // merge these two pieces of B into a single value number, eliminating a copy. 518 // For example: 519 // 520 // A3 = B0 521 // ... 522 // B1 = A3 <- this copy 523 // 524 // In this case, B0 can be extended to where the B1 copy lives, allowing the 525 // B1 value number to be replaced with B0 (which simplifies the B 526 // liveinterval). 527 528 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 529 // the example above. 530 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 531 if (BS == IntB.end()) return false; 532 VNInfo *BValNo = BS->valno; 533 534 // Get the location that B is defined at. Two options: either this value has 535 // an unknown definition point or it is defined at CopyIdx. If unknown, we 536 // can't process it. 537 if (BValNo->def != CopyIdx) return false; 538 539 // AValNo is the value number in A that defines the copy, A3 in the example. 540 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 541 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 542 // The live segment might not exist after fun with physreg coalescing. 543 if (AS == IntA.end()) return false; 544 VNInfo *AValNo = AS->valno; 545 546 // If AValNo is defined as a copy from IntB, we can potentially process this. 547 // Get the instruction that defines this value number. 548 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 549 // Don't allow any partial copies, even if isCoalescable() allows them. 550 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 551 return false; 552 553 // Get the Segment in IntB that this value number starts with. 554 LiveInterval::iterator ValS = 555 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 556 if (ValS == IntB.end()) 557 return false; 558 559 // Make sure that the end of the live segment is inside the same block as 560 // CopyMI. 561 MachineInstr *ValSEndInst = 562 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 563 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 564 return false; 565 566 // Okay, we now know that ValS ends in the same block that the CopyMI 567 // live-range starts. If there are no intervening live segments between them 568 // in IntB, we can merge them. 569 if (ValS+1 != BS) return false; 570 571 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI)); 572 573 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 574 // We are about to delete CopyMI, so need to remove it as the 'instruction 575 // that defines this value #'. Update the valnum with the new defining 576 // instruction #. 577 BValNo->def = FillerStart; 578 579 // Okay, we can merge them. We need to insert a new liverange: 580 // [ValS.end, BS.begin) of either value number, then we merge the 581 // two value numbers. 582 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 583 584 // Okay, merge "B1" into the same value number as "B0". 585 if (BValNo != ValS->valno) 586 IntB.MergeValueNumberInto(BValNo, ValS->valno); 587 588 // Do the same for the subregister segments. 589 for (LiveInterval::SubRange &S : IntB.subranges()) { 590 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 591 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 592 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 593 if (SubBValNo != SubValSNo) 594 S.MergeValueNumberInto(SubBValNo, SubValSNo); 595 } 596 597 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n'); 598 599 // If the source instruction was killing the source register before the 600 // merge, unset the isKill marker given the live range has been extended. 601 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 602 if (UIdx != -1) { 603 ValSEndInst->getOperand(UIdx).setIsKill(false); 604 } 605 606 // Rewrite the copy. If the copy instruction was killing the destination 607 // register before the merge, find the last use and trim the live range. That 608 // will also add the isKill marker. 609 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 610 if (AS->end == CopyIdx) 611 shrinkToUses(&IntA); 612 613 ++numExtends; 614 return true; 615 } 616 617 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 618 LiveInterval &IntB, 619 VNInfo *AValNo, 620 VNInfo *BValNo) { 621 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 622 // the PHI values. 623 if (LIS->hasPHIKill(IntA, AValNo)) 624 return true; 625 626 for (LiveRange::Segment &ASeg : IntA.segments) { 627 if (ASeg.valno != AValNo) continue; 628 LiveInterval::iterator BI = 629 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start); 630 if (BI != IntB.begin()) 631 --BI; 632 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 633 if (BI->valno == BValNo) 634 continue; 635 if (BI->start <= ASeg.start && BI->end > ASeg.start) 636 return true; 637 if (BI->start > ASeg.start && BI->start < ASeg.end) 638 return true; 639 } 640 } 641 return false; 642 } 643 644 /// Copy segements with value number @p SrcValNo from liverange @p Src to live 645 /// range @Dst and use value number @p DstValNo there. 646 static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, 647 const LiveRange &Src, const VNInfo *SrcValNo) { 648 for (const LiveRange::Segment &S : Src.segments) { 649 if (S.valno != SrcValNo) 650 continue; 651 Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo)); 652 } 653 } 654 655 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 656 MachineInstr *CopyMI) { 657 assert(!CP.isPhys()); 658 659 LiveInterval &IntA = 660 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 661 LiveInterval &IntB = 662 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 663 664 // We found a non-trivially-coalescable copy with IntA being the source and 665 // IntB being the dest, thus this defines a value number in IntB. If the 666 // source value number (in IntA) is defined by a commutable instruction and 667 // its other operand is coalesced to the copy dest register, see if we can 668 // transform the copy into a noop by commuting the definition. For example, 669 // 670 // A3 = op A2 killed B0 671 // ... 672 // B1 = A3 <- this copy 673 // ... 674 // = op A3 <- more uses 675 // 676 // ==> 677 // 678 // B2 = op B0 killed A2 679 // ... 680 // B1 = B2 <- now an identity copy 681 // ... 682 // = op B2 <- more uses 683 684 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 685 // the example above. 686 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 687 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 688 assert(BValNo != nullptr && BValNo->def == CopyIdx); 689 690 // AValNo is the value number in A that defines the copy, A3 in the example. 691 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 692 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 693 if (AValNo->isPHIDef()) 694 return false; 695 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 696 if (!DefMI) 697 return false; 698 if (!DefMI->isCommutable()) 699 return false; 700 // If DefMI is a two-address instruction then commuting it will change the 701 // destination register. 702 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 703 assert(DefIdx != -1); 704 unsigned UseOpIdx; 705 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 706 return false; 707 708 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 709 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 710 // passed to the method. That _other_ operand is chosen by 711 // the findCommutedOpIndices() method. 712 // 713 // That is obviously an area for improvement in case of instructions having 714 // more than 2 operands. For example, if some instruction has 3 commutable 715 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 716 // op#2<->op#3) of commute transformation should be considered/tried here. 717 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 718 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 719 return false; 720 721 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 722 unsigned NewReg = NewDstMO.getReg(); 723 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 724 return false; 725 726 // Make sure there are no other definitions of IntB that would reach the 727 // uses which the new definition can reach. 728 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 729 return false; 730 731 // If some of the uses of IntA.reg is already coalesced away, return false. 732 // It's not possible to determine whether it's safe to perform the coalescing. 733 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 734 MachineInstr *UseMI = MO.getParent(); 735 unsigned OpNo = &MO - &UseMI->getOperand(0); 736 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 737 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 738 if (US == IntA.end() || US->valno != AValNo) 739 continue; 740 // If this use is tied to a def, we can't rewrite the register. 741 if (UseMI->isRegTiedToDefOperand(OpNo)) 742 return false; 743 } 744 745 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 746 << *DefMI); 747 748 // At this point we have decided that it is legal to do this 749 // transformation. Start by commuting the instruction. 750 MachineBasicBlock *MBB = DefMI->getParent(); 751 MachineInstr *NewMI = 752 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 753 if (!NewMI) 754 return false; 755 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 756 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 757 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 758 return false; 759 if (NewMI != DefMI) { 760 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 761 MachineBasicBlock::iterator Pos = DefMI; 762 MBB->insert(Pos, NewMI); 763 MBB->erase(DefMI); 764 } 765 766 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 767 // A = or A, B 768 // ... 769 // B = A 770 // ... 771 // C = killed A 772 // ... 773 // = B 774 775 // Update uses of IntA of the specific Val# with IntB. 776 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 777 UE = MRI->use_end(); 778 UI != UE; /* ++UI is below because of possible MI removal */) { 779 MachineOperand &UseMO = *UI; 780 ++UI; 781 if (UseMO.isUndef()) 782 continue; 783 MachineInstr *UseMI = UseMO.getParent(); 784 if (UseMI->isDebugValue()) { 785 // FIXME These don't have an instruction index. Not clear we have enough 786 // info to decide whether to do this replacement or not. For now do it. 787 UseMO.setReg(NewReg); 788 continue; 789 } 790 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 791 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 792 assert(US != IntA.end() && "Use must be live"); 793 if (US->valno != AValNo) 794 continue; 795 // Kill flags are no longer accurate. They are recomputed after RA. 796 UseMO.setIsKill(false); 797 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 798 UseMO.substPhysReg(NewReg, *TRI); 799 else 800 UseMO.setReg(NewReg); 801 if (UseMI == CopyMI) 802 continue; 803 if (!UseMI->isCopy()) 804 continue; 805 if (UseMI->getOperand(0).getReg() != IntB.reg || 806 UseMI->getOperand(0).getSubReg()) 807 continue; 808 809 // This copy will become a noop. If it's defining a new val#, merge it into 810 // BValNo. 811 SlotIndex DefIdx = UseIdx.getRegSlot(); 812 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 813 if (!DVNI) 814 continue; 815 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 816 assert(DVNI->def == DefIdx); 817 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 818 for (LiveInterval::SubRange &S : IntB.subranges()) { 819 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 820 if (!SubDVNI) 821 continue; 822 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 823 assert(SubBValNo->def == CopyIdx); 824 S.MergeValueNumberInto(SubDVNI, SubBValNo); 825 } 826 827 deleteInstr(UseMI); 828 } 829 830 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 831 // is updated. 832 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 833 if (IntB.hasSubRanges()) { 834 if (!IntA.hasSubRanges()) { 835 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 836 IntA.createSubRangeFrom(Allocator, Mask, IntA); 837 } 838 SlotIndex AIdx = CopyIdx.getRegSlot(true); 839 for (LiveInterval::SubRange &SA : IntA.subranges()) { 840 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 841 assert(ASubValNo != nullptr); 842 843 IntB.refineSubRanges(Allocator, SA.LaneMask, 844 [&Allocator,&SA,CopyIdx,ASubValNo](LiveInterval::SubRange &SR) { 845 VNInfo *BSubValNo = SR.empty() 846 ? SR.getNextValue(CopyIdx, Allocator) 847 : SR.getVNInfoAt(CopyIdx); 848 assert(BSubValNo != nullptr); 849 addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 850 }); 851 } 852 } 853 854 BValNo->def = AValNo->def; 855 addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 856 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 857 858 LIS->removeVRegDefAt(IntA, AValNo->def); 859 860 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 861 ++numCommutes; 862 return true; 863 } 864 865 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 866 /// predecessor of BB2, and if B is not redefined on the way from A = B 867 /// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the 868 /// execution goes through the path from BB0 to BB2. We may move B = A 869 /// to the predecessor without such reversed copy. 870 /// So we will transform the program from: 871 /// BB0: 872 /// A = B; BB1: 873 /// ... ... 874 /// / \ / 875 /// BB2: 876 /// ... 877 /// B = A; 878 /// 879 /// to: 880 /// 881 /// BB0: BB1: 882 /// A = B; ... 883 /// ... B = A; 884 /// / \ / 885 /// BB2: 886 /// ... 887 /// 888 /// A special case is when BB0 and BB2 are the same BB which is the only 889 /// BB in a loop: 890 /// BB1: 891 /// ... 892 /// BB0/BB2: ---- 893 /// B = A; | 894 /// ... | 895 /// A = B; | 896 /// |------- 897 /// | 898 /// We may hoist B = A from BB0/BB2 to BB1. 899 /// 900 /// The major preconditions for correctness to remove such partial 901 /// redundancy include: 902 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 903 /// the PHI is defined by the reversed copy A = B in BB0. 904 /// 2. No B is referenced from the start of BB2 to B = A. 905 /// 3. No B is defined from A = B to the end of BB0. 906 /// 4. BB1 has only one successor. 907 /// 908 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 909 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 910 /// colder place, which not only prevent endless loop, but also make sure 911 /// the movement of copy is beneficial. 912 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 913 MachineInstr &CopyMI) { 914 assert(!CP.isPhys()); 915 if (!CopyMI.isFullCopy()) 916 return false; 917 918 MachineBasicBlock &MBB = *CopyMI.getParent(); 919 if (MBB.isEHPad()) 920 return false; 921 922 if (MBB.pred_size() != 2) 923 return false; 924 925 LiveInterval &IntA = 926 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 927 LiveInterval &IntB = 928 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 929 930 // A is defined by PHI at the entry of MBB. 931 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 932 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 933 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 934 if (!AValNo->isPHIDef()) 935 return false; 936 937 // No B is referenced before CopyMI in MBB. 938 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 939 return false; 940 941 // MBB has two predecessors: one contains A = B so no copy will be inserted 942 // for it. The other one will have a copy moved from MBB. 943 bool FoundReverseCopy = false; 944 MachineBasicBlock *CopyLeftBB = nullptr; 945 for (MachineBasicBlock *Pred : MBB.predecessors()) { 946 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 947 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 948 if (!DefMI || !DefMI->isFullCopy()) { 949 CopyLeftBB = Pred; 950 continue; 951 } 952 // Check DefMI is a reverse copy and it is in BB Pred. 953 if (DefMI->getOperand(0).getReg() != IntA.reg || 954 DefMI->getOperand(1).getReg() != IntB.reg || 955 DefMI->getParent() != Pred) { 956 CopyLeftBB = Pred; 957 continue; 958 } 959 // If there is any other def of B after DefMI and before the end of Pred, 960 // we need to keep the copy of B = A at the end of Pred if we remove 961 // B = A from MBB. 962 bool ValB_Changed = false; 963 for (auto VNI : IntB.valnos) { 964 if (VNI->isUnused()) 965 continue; 966 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 967 ValB_Changed = true; 968 break; 969 } 970 } 971 if (ValB_Changed) { 972 CopyLeftBB = Pred; 973 continue; 974 } 975 FoundReverseCopy = true; 976 } 977 978 // If no reverse copy is found in predecessors, nothing to do. 979 if (!FoundReverseCopy) 980 return false; 981 982 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 983 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 984 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 985 // update IntA/IntB. 986 // 987 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 988 // MBB is hotter than CopyLeftBB. 989 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 990 return false; 991 992 // Now (almost sure it's) ok to move copy. 993 if (CopyLeftBB) { 994 // Position in CopyLeftBB where we should insert new copy. 995 auto InsPos = CopyLeftBB->getFirstTerminator(); 996 997 // Make sure that B isn't referenced in the terminators (if any) at the end 998 // of the predecessor since we're about to insert a new definition of B 999 // before them. 1000 if (InsPos != CopyLeftBB->end()) { 1001 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true); 1002 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB))) 1003 return false; 1004 } 1005 1006 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to " 1007 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI); 1008 1009 // Insert new copy to CopyLeftBB. 1010 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1011 TII->get(TargetOpcode::COPY), IntB.reg) 1012 .addReg(IntA.reg); 1013 SlotIndex NewCopyIdx = 1014 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1015 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1016 for (LiveInterval::SubRange &SR : IntB.subranges()) 1017 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1018 1019 // If the newly created Instruction has an address of an instruction that was 1020 // deleted before (object recycled by the allocator) it needs to be removed from 1021 // the deleted list. 1022 ErasedInstrs.erase(NewCopyMI); 1023 } else { 1024 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from " 1025 << printMBBReference(MBB) << '\t' << CopyMI); 1026 } 1027 1028 // Remove CopyMI. 1029 // Note: This is fine to remove the copy before updating the live-ranges. 1030 // While updating the live-ranges, we only look at slot indices and 1031 // never go back to the instruction. 1032 // Mark instructions as deleted. 1033 deleteInstr(&CopyMI); 1034 1035 // Update the liveness. 1036 SmallVector<SlotIndex, 8> EndPoints; 1037 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1038 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1039 &EndPoints); 1040 BValNo->markUnused(); 1041 // Extend IntB to the EndPoints of its original live interval. 1042 LIS->extendToIndices(IntB, EndPoints); 1043 1044 // Now, do the same for its subranges. 1045 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1046 EndPoints.clear(); 1047 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1048 assert(BValNo && "All sublanes should be live"); 1049 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1050 BValNo->markUnused(); 1051 LIS->extendToIndices(SR, EndPoints); 1052 } 1053 1054 // Finally, update the live-range of IntA. 1055 shrinkToUses(&IntA); 1056 return true; 1057 } 1058 1059 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1060 /// defining a subregister. 1061 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 1062 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && 1063 "This code cannot handle physreg aliasing"); 1064 for (const MachineOperand &Op : MI.operands()) { 1065 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1066 continue; 1067 // Return true if we define the full register or don't care about the value 1068 // inside other subregisters. 1069 if (Op.getSubReg() == 0 || Op.isUndef()) 1070 return true; 1071 } 1072 return false; 1073 } 1074 1075 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1076 MachineInstr *CopyMI, 1077 bool &IsDefCopy) { 1078 IsDefCopy = false; 1079 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1080 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1081 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1082 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1083 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1084 return false; 1085 1086 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1087 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1088 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1089 assert(ValNo && "CopyMI input register not live"); 1090 if (ValNo->isPHIDef() || ValNo->isUnused()) 1091 return false; 1092 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1093 if (!DefMI) 1094 return false; 1095 if (DefMI->isCopyLike()) { 1096 IsDefCopy = true; 1097 return false; 1098 } 1099 if (!TII->isAsCheapAsAMove(*DefMI)) 1100 return false; 1101 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1102 return false; 1103 if (!definesFullReg(*DefMI, SrcReg)) 1104 return false; 1105 bool SawStore = false; 1106 if (!DefMI->isSafeToMove(AA, SawStore)) 1107 return false; 1108 const MCInstrDesc &MCID = DefMI->getDesc(); 1109 if (MCID.getNumDefs() != 1) 1110 return false; 1111 // Only support subregister destinations when the def is read-undef. 1112 MachineOperand &DstOperand = CopyMI->getOperand(0); 1113 unsigned CopyDstReg = DstOperand.getReg(); 1114 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1115 return false; 1116 1117 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1118 // the register substantially (beyond both source and dest size). This is bad 1119 // for performance since it can cascade through a function, introducing many 1120 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1121 // around after a few subreg copies). 1122 if (SrcIdx && DstIdx) 1123 return false; 1124 1125 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1126 if (!DefMI->isImplicitDef()) { 1127 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 1128 unsigned NewDstReg = DstReg; 1129 1130 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1131 DefMI->getOperand(0).getSubReg()); 1132 if (NewDstIdx) 1133 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1134 1135 // Finally, make sure that the physical subregister that will be 1136 // constructed later is permitted for the instruction. 1137 if (!DefRC->contains(NewDstReg)) 1138 return false; 1139 } else { 1140 // Theoretically, some stack frame reference could exist. Just make sure 1141 // it hasn't actually happened. 1142 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 1143 "Only expect to deal with virtual or physical registers"); 1144 } 1145 } 1146 1147 DebugLoc DL = CopyMI->getDebugLoc(); 1148 MachineBasicBlock *MBB = CopyMI->getParent(); 1149 MachineBasicBlock::iterator MII = 1150 std::next(MachineBasicBlock::iterator(CopyMI)); 1151 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1152 MachineInstr &NewMI = *std::prev(MII); 1153 NewMI.setDebugLoc(DL); 1154 1155 // In a situation like the following: 1156 // %0:subreg = instr ; DefMI, subreg = DstIdx 1157 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0 1158 // instead of widening %1 to the register class of %0 simply do: 1159 // %1 = instr 1160 const TargetRegisterClass *NewRC = CP.getNewRC(); 1161 if (DstIdx != 0) { 1162 MachineOperand &DefMO = NewMI.getOperand(0); 1163 if (DefMO.getSubReg() == DstIdx) { 1164 assert(SrcIdx == 0 && CP.isFlipped() 1165 && "Shouldn't have SrcIdx+DstIdx at this point"); 1166 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1167 const TargetRegisterClass *CommonRC = 1168 TRI->getCommonSubClass(DefRC, DstRC); 1169 if (CommonRC != nullptr) { 1170 NewRC = CommonRC; 1171 DstIdx = 0; 1172 DefMO.setSubReg(0); 1173 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1174 } 1175 } 1176 } 1177 1178 // CopyMI may have implicit operands, save them so that we can transfer them 1179 // over to the newly materialized instruction after CopyMI is removed. 1180 SmallVector<MachineOperand, 4> ImplicitOps; 1181 ImplicitOps.reserve(CopyMI->getNumOperands() - 1182 CopyMI->getDesc().getNumOperands()); 1183 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1184 E = CopyMI->getNumOperands(); 1185 I != E; ++I) { 1186 MachineOperand &MO = CopyMI->getOperand(I); 1187 if (MO.isReg()) { 1188 assert(MO.isImplicit() && "No explicit operands after implict operands."); 1189 // Discard VReg implicit defs. 1190 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1191 ImplicitOps.push_back(MO); 1192 } 1193 } 1194 1195 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1196 CopyMI->eraseFromParent(); 1197 ErasedInstrs.insert(CopyMI); 1198 1199 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1200 // We need to remember these so we can add intervals once we insert 1201 // NewMI into SlotIndexes. 1202 SmallVector<unsigned, 4> NewMIImplDefs; 1203 for (unsigned i = NewMI.getDesc().getNumOperands(), 1204 e = NewMI.getNumOperands(); 1205 i != e; ++i) { 1206 MachineOperand &MO = NewMI.getOperand(i); 1207 if (MO.isReg() && MO.isDef()) { 1208 assert(MO.isImplicit() && MO.isDead() && 1209 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 1210 NewMIImplDefs.push_back(MO.getReg()); 1211 } 1212 } 1213 1214 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 1215 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1216 1217 if (DefRC != nullptr) { 1218 if (NewIdx) 1219 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1220 else 1221 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1222 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1223 } 1224 // Remap subranges to new lanemask and change register class. 1225 LiveInterval &DstInt = LIS->getInterval(DstReg); 1226 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1227 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1228 } 1229 MRI->setRegClass(DstReg, NewRC); 1230 1231 // Update machine operands and add flags. 1232 updateRegDefsUses(DstReg, DstReg, DstIdx); 1233 NewMI.getOperand(0).setSubReg(NewIdx); 1234 // Add dead subregister definitions if we are defining the whole register 1235 // but only part of it is live. 1236 // This could happen if the rematerialization instruction is rematerializing 1237 // more than actually is used in the register. 1238 // An example would be: 1239 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1240 // ; Copying only part of the register here, but the rest is undef. 1241 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit 1242 // ==> 1243 // ; Materialize all the constants but only using one 1244 // %2 = LOAD_CONSTANTS 5, 8 1245 // 1246 // at this point for the part that wasn't defined before we could have 1247 // subranges missing the definition. 1248 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1249 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1250 SlotIndex DefIndex = 1251 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1252 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1253 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1254 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1255 if (!SR.liveAt(DefIndex)) 1256 SR.createDeadDef(DefIndex, Alloc); 1257 MaxMask &= ~SR.LaneMask; 1258 } 1259 if (MaxMask.any()) { 1260 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1261 SR->createDeadDef(DefIndex, Alloc); 1262 } 1263 } 1264 1265 // Make sure that the subrange for resultant undef is removed 1266 // For example: 1267 // %1:sub1<def,read-undef> = LOAD CONSTANT 1 1268 // %2 = COPY %1 1269 // ==> 1270 // %2:sub1<def, read-undef> = LOAD CONSTANT 1 1271 // ; Correct but need to remove the subrange for %2:sub0 1272 // ; as it is now undef 1273 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1274 // The affected subregister segments can be removed. 1275 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1276 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1277 bool UpdatedSubRanges = false; 1278 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1279 if ((SR.LaneMask & DstMask).none()) { 1280 LLVM_DEBUG(dbgs() 1281 << "Removing undefined SubRange " 1282 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1283 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1284 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1285 SR.removeValNo(RmValNo); 1286 UpdatedSubRanges = true; 1287 } 1288 } 1289 } 1290 if (UpdatedSubRanges) 1291 DstInt.removeEmptySubRanges(); 1292 } 1293 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1294 // The New instruction may be defining a sub-register of what's actually 1295 // been asked for. If so it must implicitly define the whole thing. 1296 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 1297 "Only expect virtual or physical registers in remat"); 1298 NewMI.getOperand(0).setIsDead(true); 1299 NewMI.addOperand(MachineOperand::CreateReg( 1300 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1301 // Record small dead def live-ranges for all the subregisters 1302 // of the destination register. 1303 // Otherwise, variables that live through may miss some 1304 // interferences, thus creating invalid allocation. 1305 // E.g., i386 code: 1306 // %1 = somedef ; %1 GR8 1307 // %2 = remat ; %2 GR32 1308 // CL = COPY %2.sub_8bit 1309 // = somedef %1 ; %1 GR8 1310 // => 1311 // %1 = somedef ; %1 GR8 1312 // dead ECX = remat ; implicit-def CL 1313 // = somedef %1 ; %1 GR8 1314 // %1 will see the inteferences with CL but not with CH since 1315 // no live-ranges would have been created for ECX. 1316 // Fix that! 1317 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1318 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1319 Units.isValid(); ++Units) 1320 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1321 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1322 } 1323 1324 if (NewMI.getOperand(0).getSubReg()) 1325 NewMI.getOperand(0).setIsUndef(); 1326 1327 // Transfer over implicit operands to the rematerialized instruction. 1328 for (MachineOperand &MO : ImplicitOps) 1329 NewMI.addOperand(MO); 1330 1331 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1332 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1333 unsigned Reg = NewMIImplDefs[i]; 1334 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1335 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1336 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1337 } 1338 1339 LLVM_DEBUG(dbgs() << "Remat: " << NewMI); 1340 ++NumReMats; 1341 1342 // The source interval can become smaller because we removed a use. 1343 shrinkToUses(&SrcInt, &DeadDefs); 1344 if (!DeadDefs.empty()) { 1345 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1346 // to describe DstReg instead. 1347 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1348 MachineInstr *UseMI = UseMO.getParent(); 1349 if (UseMI->isDebugValue()) { 1350 UseMO.setReg(DstReg); 1351 // Move the debug value directly after the def of the rematerialized 1352 // value in DstReg. 1353 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); 1354 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1355 } 1356 } 1357 eliminateDeadDefs(); 1358 } 1359 1360 return true; 1361 } 1362 1363 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1364 // ProcessImpicitDefs may leave some copies of <undef> values, it only removes 1365 // local variables. When we have a copy like: 1366 // 1367 // %1 = COPY undef %2 1368 // 1369 // We delete the copy and remove the corresponding value number from %1. 1370 // Any uses of that value number are marked as <undef>. 1371 1372 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1373 // CoalescerPair may have a new register class with adjusted subreg indices 1374 // at this point. 1375 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1376 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx); 1377 1378 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1379 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1380 // CopyMI is undef iff SrcReg is not live before the instruction. 1381 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1382 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1383 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1384 if ((SR.LaneMask & SrcMask).none()) 1385 continue; 1386 if (SR.liveAt(Idx)) 1387 return false; 1388 } 1389 } else if (SrcLI.liveAt(Idx)) 1390 return false; 1391 1392 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1393 1394 // Remove any DstReg segments starting at the instruction. 1395 LiveInterval &DstLI = LIS->getInterval(DstReg); 1396 SlotIndex RegIndex = Idx.getRegSlot(); 1397 // Remove value or merge with previous one in case of a subregister def. 1398 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1399 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1400 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1401 1402 // The affected subregister segments can be removed. 1403 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1404 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1405 if ((SR.LaneMask & DstMask).none()) 1406 continue; 1407 1408 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1409 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1410 SR.removeValNo(SVNI); 1411 } 1412 DstLI.removeEmptySubRanges(); 1413 } else 1414 LIS->removeVRegDefAt(DstLI, RegIndex); 1415 1416 // Mark uses as undef. 1417 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1418 if (MO.isDef() /*|| MO.isUndef()*/) 1419 continue; 1420 const MachineInstr &MI = *MO.getParent(); 1421 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1422 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1423 bool isLive; 1424 if (!UseMask.all() && DstLI.hasSubRanges()) { 1425 isLive = false; 1426 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1427 if ((SR.LaneMask & UseMask).none()) 1428 continue; 1429 if (SR.liveAt(UseIdx)) { 1430 isLive = true; 1431 break; 1432 } 1433 } 1434 } else 1435 isLive = DstLI.liveAt(UseIdx); 1436 if (isLive) 1437 continue; 1438 MO.setIsUndef(true); 1439 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1440 } 1441 1442 // A def of a subregister may be a use of the other subregisters, so 1443 // deleting a def of a subregister may also remove uses. Since CopyMI 1444 // is still part of the function (but about to be erased), mark all 1445 // defs of DstReg in it as <undef>, so that shrinkToUses would 1446 // ignore them. 1447 for (MachineOperand &MO : CopyMI->operands()) 1448 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1449 MO.setIsUndef(true); 1450 LIS->shrinkToUses(&DstLI); 1451 1452 return true; 1453 } 1454 1455 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1456 MachineOperand &MO, unsigned SubRegIdx) { 1457 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1458 if (MO.isDef()) 1459 Mask = ~Mask; 1460 bool IsUndef = true; 1461 for (const LiveInterval::SubRange &S : Int.subranges()) { 1462 if ((S.LaneMask & Mask).none()) 1463 continue; 1464 if (S.liveAt(UseIdx)) { 1465 IsUndef = false; 1466 break; 1467 } 1468 } 1469 if (IsUndef) { 1470 MO.setIsUndef(true); 1471 // We found out some subregister use is actually reading an undefined 1472 // value. In some cases the whole vreg has become undefined at this 1473 // point so we have to potentially shrink the main range if the 1474 // use was ending a live segment there. 1475 LiveQueryResult Q = Int.Query(UseIdx); 1476 if (Q.valueOut() == nullptr) 1477 ShrinkMainRange = true; 1478 } 1479 } 1480 1481 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 1482 unsigned DstReg, 1483 unsigned SubIdx) { 1484 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 1485 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1486 1487 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1488 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1489 unsigned SubReg = MO.getSubReg(); 1490 if (SubReg == 0 || MO.isUndef()) 1491 continue; 1492 MachineInstr &MI = *MO.getParent(); 1493 if (MI.isDebugValue()) 1494 continue; 1495 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1496 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1497 } 1498 } 1499 1500 SmallPtrSet<MachineInstr*, 8> Visited; 1501 for (MachineRegisterInfo::reg_instr_iterator 1502 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1503 I != E; ) { 1504 MachineInstr *UseMI = &*(I++); 1505 1506 // Each instruction can only be rewritten once because sub-register 1507 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1508 // the UseMI operands removes them from the SrcReg use-def chain, but when 1509 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1510 // operands mentioning the virtual register. 1511 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1512 continue; 1513 1514 SmallVector<unsigned,8> Ops; 1515 bool Reads, Writes; 1516 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1517 1518 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1519 // because SrcReg is a sub-register. 1520 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) 1521 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1522 1523 // Replace SrcReg with DstReg in all UseMI operands. 1524 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1525 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1526 1527 // Adjust <undef> flags in case of sub-register joins. We don't want to 1528 // turn a full def into a read-modify-write sub-register def and vice 1529 // versa. 1530 if (SubIdx && MO.isDef()) 1531 MO.setIsUndef(!Reads); 1532 1533 // A subreg use of a partially undef (super) register may be a complete 1534 // undef use now and then has to be marked that way. 1535 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1536 if (!DstInt->hasSubRanges()) { 1537 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1538 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1539 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1540 } 1541 SlotIndex MIIdx = UseMI->isDebugValue() 1542 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1543 : LIS->getInstructionIndex(*UseMI); 1544 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1545 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1546 } 1547 1548 if (DstIsPhys) 1549 MO.substPhysReg(DstReg, *TRI); 1550 else 1551 MO.substVirtReg(DstReg, SubIdx, *TRI); 1552 } 1553 1554 LLVM_DEBUG({ 1555 dbgs() << "\t\tupdated: "; 1556 if (!UseMI->isDebugValue()) 1557 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1558 dbgs() << *UseMI; 1559 }); 1560 } 1561 } 1562 1563 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1564 // Always join simple intervals that are defined by a single copy from a 1565 // reserved register. This doesn't increase register pressure, so it is 1566 // always beneficial. 1567 if (!MRI->isReserved(CP.getDstReg())) { 1568 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1569 return false; 1570 } 1571 1572 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1573 if (JoinVInt.containsOneValue()) 1574 return true; 1575 1576 LLVM_DEBUG( 1577 dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1578 return false; 1579 } 1580 1581 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1582 Again = false; 1583 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1584 1585 CoalescerPair CP(*TRI); 1586 if (!CP.setRegisters(CopyMI)) { 1587 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n"); 1588 return false; 1589 } 1590 1591 if (CP.getNewRC()) { 1592 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1593 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1594 unsigned SrcIdx = CP.getSrcIdx(); 1595 unsigned DstIdx = CP.getDstIdx(); 1596 if (CP.isFlipped()) { 1597 std::swap(SrcIdx, DstIdx); 1598 std::swap(SrcRC, DstRC); 1599 } 1600 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1601 CP.getNewRC(), *LIS)) { 1602 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1603 return false; 1604 } 1605 } 1606 1607 // Dead code elimination. This really should be handled by MachineDCE, but 1608 // sometimes dead copies slip through, and we can't generate invalid live 1609 // ranges. 1610 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1611 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n"); 1612 DeadDefs.push_back(CopyMI); 1613 eliminateDeadDefs(); 1614 return true; 1615 } 1616 1617 // Eliminate undefs. 1618 if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) { 1619 deleteInstr(CopyMI); 1620 return false; // Not coalescable. 1621 } 1622 1623 // Coalesced copies are normally removed immediately, but transformations 1624 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1625 // When that happens, just join the values and remove the copy. 1626 if (CP.getSrcReg() == CP.getDstReg()) { 1627 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1628 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1629 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1630 LiveQueryResult LRQ = LI.Query(CopyIdx); 1631 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1632 VNInfo *ReadVNI = LRQ.valueIn(); 1633 assert(ReadVNI && "No value before copy and no <undef> flag."); 1634 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1635 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1636 1637 // Process subregister liveranges. 1638 for (LiveInterval::SubRange &S : LI.subranges()) { 1639 LiveQueryResult SLRQ = S.Query(CopyIdx); 1640 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1641 VNInfo *SReadVNI = SLRQ.valueIn(); 1642 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1643 } 1644 } 1645 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1646 } 1647 deleteInstr(CopyMI); 1648 return true; 1649 } 1650 1651 // Enforce policies. 1652 if (CP.isPhys()) { 1653 LLVM_DEBUG(dbgs() << "\tConsidering merging " 1654 << printReg(CP.getSrcReg(), TRI) << " with " 1655 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'); 1656 if (!canJoinPhys(CP)) { 1657 // Before giving up coalescing, if definition of source is defined by 1658 // trivial computation, try rematerializing it. 1659 bool IsDefCopy; 1660 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1661 return true; 1662 if (IsDefCopy) 1663 Again = true; // May be possible to coalesce later. 1664 return false; 1665 } 1666 } else { 1667 // When possible, let DstReg be the larger interval. 1668 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1669 LIS->getInterval(CP.getDstReg()).size()) 1670 CP.flip(); 1671 1672 LLVM_DEBUG({ 1673 dbgs() << "\tConsidering merging to " 1674 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1675 if (CP.getDstIdx() && CP.getSrcIdx()) 1676 dbgs() << printReg(CP.getDstReg()) << " in " 1677 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1678 << printReg(CP.getSrcReg()) << " in " 1679 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1680 else 1681 dbgs() << printReg(CP.getSrcReg(), TRI) << " in " 1682 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1683 }); 1684 } 1685 1686 ShrinkMask = LaneBitmask::getNone(); 1687 ShrinkMainRange = false; 1688 1689 // Okay, attempt to join these two intervals. On failure, this returns false. 1690 // Otherwise, if one of the intervals being joined is a physreg, this method 1691 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1692 // been modified, so we can use this information below to update aliases. 1693 if (!joinIntervals(CP)) { 1694 // Coalescing failed. 1695 1696 // If definition of source is defined by trivial computation, try 1697 // rematerializing it. 1698 bool IsDefCopy; 1699 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1700 return true; 1701 1702 // If we can eliminate the copy without merging the live segments, do so 1703 // now. 1704 if (!CP.isPartial() && !CP.isPhys()) { 1705 if (adjustCopiesBackFrom(CP, CopyMI) || 1706 removeCopyByCommutingDef(CP, CopyMI)) { 1707 deleteInstr(CopyMI); 1708 LLVM_DEBUG(dbgs() << "\tTrivial!\n"); 1709 return true; 1710 } 1711 } 1712 1713 // Try and see if we can partially eliminate the copy by moving the copy to 1714 // its predecessor. 1715 if (!CP.isPartial() && !CP.isPhys()) 1716 if (removePartialRedundancy(CP, *CopyMI)) 1717 return true; 1718 1719 // Otherwise, we are unable to join the intervals. 1720 LLVM_DEBUG(dbgs() << "\tInterference!\n"); 1721 Again = true; // May be possible to coalesce later. 1722 return false; 1723 } 1724 1725 // Coalescing to a virtual register that is of a sub-register class of the 1726 // other. Make sure the resulting register is set to the right register class. 1727 if (CP.isCrossClass()) { 1728 ++numCrossRCs; 1729 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1730 } 1731 1732 // Removing sub-register copies can ease the register class constraints. 1733 // Make sure we attempt to inflate the register class of DstReg. 1734 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1735 InflateRegs.push_back(CP.getDstReg()); 1736 1737 // CopyMI has been erased by joinIntervals at this point. Remove it from 1738 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1739 // to the work list. This keeps ErasedInstrs from growing needlessly. 1740 ErasedInstrs.erase(CopyMI); 1741 1742 // Rewrite all SrcReg operands to DstReg. 1743 // Also update DstReg operands to include DstIdx if it is set. 1744 if (CP.getDstIdx()) 1745 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1746 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1747 1748 // Shrink subregister ranges if necessary. 1749 if (ShrinkMask.any()) { 1750 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1751 for (LiveInterval::SubRange &S : LI.subranges()) { 1752 if ((S.LaneMask & ShrinkMask).none()) 1753 continue; 1754 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1755 << ")\n"); 1756 LIS->shrinkToUses(S, LI.reg); 1757 } 1758 LI.removeEmptySubRanges(); 1759 } 1760 if (ShrinkMainRange) { 1761 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1762 shrinkToUses(&LI); 1763 } 1764 1765 // SrcReg is guaranteed to be the register whose live interval that is 1766 // being merged. 1767 LIS->removeInterval(CP.getSrcReg()); 1768 1769 // Update regalloc hint. 1770 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1771 1772 LLVM_DEBUG({ 1773 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 1774 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 1775 dbgs() << "\tResult = "; 1776 if (CP.isPhys()) 1777 dbgs() << printReg(CP.getDstReg(), TRI); 1778 else 1779 dbgs() << LIS->getInterval(CP.getDstReg()); 1780 dbgs() << '\n'; 1781 }); 1782 1783 ++numJoins; 1784 return true; 1785 } 1786 1787 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1788 unsigned DstReg = CP.getDstReg(); 1789 unsigned SrcReg = CP.getSrcReg(); 1790 assert(CP.isPhys() && "Must be a physreg copy"); 1791 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 1792 LiveInterval &RHS = LIS->getInterval(SrcReg); 1793 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1794 1795 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 1796 1797 // Optimization for reserved registers like ESP. We can only merge with a 1798 // reserved physreg if RHS has a single value that is a copy of DstReg. 1799 // The live range of the reserved register will look like a set of dead defs 1800 // - we don't properly track the live range of reserved registers. 1801 1802 // Deny any overlapping intervals. This depends on all the reserved 1803 // register live ranges to look like dead defs. 1804 if (!MRI->isConstantPhysReg(DstReg)) { 1805 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1806 // Abort if not all the regunits are reserved. 1807 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 1808 if (!MRI->isReserved(*RI)) 1809 return false; 1810 } 1811 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1812 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) 1813 << '\n'); 1814 return false; 1815 } 1816 } 1817 1818 // We must also check for overlaps with regmask clobbers. 1819 BitVector RegMaskUsable; 1820 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 1821 !RegMaskUsable.test(DstReg)) { 1822 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n"); 1823 return false; 1824 } 1825 } 1826 1827 // Skip any value computations, we are not adding new values to the 1828 // reserved register. Also skip merging the live ranges, the reserved 1829 // register live range doesn't need to be accurate as long as all the 1830 // defs are there. 1831 1832 // Delete the identity copy. 1833 MachineInstr *CopyMI; 1834 if (CP.isFlipped()) { 1835 // Physreg is copied into vreg 1836 // %y = COPY %physreg_x 1837 // ... //< no other def of %x here 1838 // use %y 1839 // => 1840 // ... 1841 // use %x 1842 CopyMI = MRI->getVRegDef(SrcReg); 1843 } else { 1844 // VReg is copied into physreg: 1845 // %y = def 1846 // ... //< no other def or use of %y here 1847 // %y = COPY %physreg_x 1848 // => 1849 // %y = def 1850 // ... 1851 if (!MRI->hasOneNonDBGUse(SrcReg)) { 1852 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 1853 return false; 1854 } 1855 1856 if (!LIS->intervalIsInOneMBB(RHS)) { 1857 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n"); 1858 return false; 1859 } 1860 1861 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 1862 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 1863 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 1864 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 1865 1866 if (!MRI->isConstantPhysReg(DstReg)) { 1867 // We checked above that there are no interfering defs of the physical 1868 // register. However, for this case, where we intend to move up the def of 1869 // the physical register, we also need to check for interfering uses. 1870 SlotIndexes *Indexes = LIS->getSlotIndexes(); 1871 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 1872 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 1873 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 1874 if (MI->readsRegister(DstReg, TRI)) { 1875 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 1876 return false; 1877 } 1878 } 1879 } 1880 1881 // We're going to remove the copy which defines a physical reserved 1882 // register, so remove its valno, etc. 1883 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of " 1884 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n"); 1885 1886 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 1887 // Create a new dead def at the new def location. 1888 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1889 LiveRange &LR = LIS->getRegUnit(*UI); 1890 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 1891 } 1892 } 1893 1894 deleteInstr(CopyMI); 1895 1896 // We don't track kills for reserved registers. 1897 MRI->clearKillFlags(CP.getSrcReg()); 1898 1899 return true; 1900 } 1901 1902 //===----------------------------------------------------------------------===// 1903 // Interference checking and interval joining 1904 //===----------------------------------------------------------------------===// 1905 // 1906 // In the easiest case, the two live ranges being joined are disjoint, and 1907 // there is no interference to consider. It is quite common, though, to have 1908 // overlapping live ranges, and we need to check if the interference can be 1909 // resolved. 1910 // 1911 // The live range of a single SSA value forms a sub-tree of the dominator tree. 1912 // This means that two SSA values overlap if and only if the def of one value 1913 // is contained in the live range of the other value. As a special case, the 1914 // overlapping values can be defined at the same index. 1915 // 1916 // The interference from an overlapping def can be resolved in these cases: 1917 // 1918 // 1. Coalescable copies. The value is defined by a copy that would become an 1919 // identity copy after joining SrcReg and DstReg. The copy instruction will 1920 // be removed, and the value will be merged with the source value. 1921 // 1922 // There can be several copies back and forth, causing many values to be 1923 // merged into one. We compute a list of ultimate values in the joined live 1924 // range as well as a mappings from the old value numbers. 1925 // 1926 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 1927 // predecessors have a live out value. It doesn't cause real interference, 1928 // and can be merged into the value it overlaps. Like a coalescable copy, it 1929 // can be erased after joining. 1930 // 1931 // 3. Copy of external value. The overlapping def may be a copy of a value that 1932 // is already in the other register. This is like a coalescable copy, but 1933 // the live range of the source register must be trimmed after erasing the 1934 // copy instruction: 1935 // 1936 // %src = COPY %ext 1937 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 1938 // 1939 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 1940 // defining one lane at a time: 1941 // 1942 // %dst:ssub0<def,read-undef> = FOO 1943 // %src = BAR 1944 // %dst:ssub1 = COPY %src 1945 // 1946 // The live range of %src overlaps the %dst value defined by FOO, but 1947 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 1948 // which was undef anyway. 1949 // 1950 // The value mapping is more complicated in this case. The final live range 1951 // will have different value numbers for both FOO and BAR, but there is no 1952 // simple mapping from old to new values. It may even be necessary to add 1953 // new PHI values. 1954 // 1955 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 1956 // is live, but never read. This can happen because we don't compute 1957 // individual live ranges per lane. 1958 // 1959 // %dst = FOO 1960 // %src = BAR 1961 // %dst:ssub1 = COPY %src 1962 // 1963 // This kind of interference is only resolved locally. If the clobbered 1964 // lane value escapes the block, the join is aborted. 1965 1966 namespace { 1967 1968 /// Track information about values in a single virtual register about to be 1969 /// joined. Objects of this class are always created in pairs - one for each 1970 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 1971 /// pair) 1972 class JoinVals { 1973 /// Live range we work on. 1974 LiveRange &LR; 1975 1976 /// (Main) register we work on. 1977 const unsigned Reg; 1978 1979 /// Reg (and therefore the values in this liverange) will end up as 1980 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 1981 /// CP.SrcIdx. 1982 const unsigned SubIdx; 1983 1984 /// The LaneMask that this liverange will occupy the coalesced register. May 1985 /// be smaller than the lanemask produced by SubIdx when merging subranges. 1986 const LaneBitmask LaneMask; 1987 1988 /// This is true when joining sub register ranges, false when joining main 1989 /// ranges. 1990 const bool SubRangeJoin; 1991 1992 /// Whether the current LiveInterval tracks subregister liveness. 1993 const bool TrackSubRegLiveness; 1994 1995 /// Values that will be present in the final live range. 1996 SmallVectorImpl<VNInfo*> &NewVNInfo; 1997 1998 const CoalescerPair &CP; 1999 LiveIntervals *LIS; 2000 SlotIndexes *Indexes; 2001 const TargetRegisterInfo *TRI; 2002 2003 /// Value number assignments. Maps value numbers in LI to entries in 2004 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 2005 SmallVector<int, 8> Assignments; 2006 2007 /// Conflict resolution for overlapping values. 2008 enum ConflictResolution { 2009 /// No overlap, simply keep this value. 2010 CR_Keep, 2011 2012 /// Merge this value into OtherVNI and erase the defining instruction. 2013 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 2014 /// values. 2015 CR_Erase, 2016 2017 /// Merge this value into OtherVNI but keep the defining instruction. 2018 /// This is for the special case where OtherVNI is defined by the same 2019 /// instruction. 2020 CR_Merge, 2021 2022 /// Keep this value, and have it replace OtherVNI where possible. This 2023 /// complicates value mapping since OtherVNI maps to two different values 2024 /// before and after this def. 2025 /// Used when clobbering undefined or dead lanes. 2026 CR_Replace, 2027 2028 /// Unresolved conflict. Visit later when all values have been mapped. 2029 CR_Unresolved, 2030 2031 /// Unresolvable conflict. Abort the join. 2032 CR_Impossible 2033 }; 2034 2035 /// Per-value info for LI. The lane bit masks are all relative to the final 2036 /// joined register, so they can be compared directly between SrcReg and 2037 /// DstReg. 2038 struct Val { 2039 ConflictResolution Resolution = CR_Keep; 2040 2041 /// Lanes written by this def, 0 for unanalyzed values. 2042 LaneBitmask WriteLanes; 2043 2044 /// Lanes with defined values in this register. Other lanes are undef and 2045 /// safe to clobber. 2046 LaneBitmask ValidLanes; 2047 2048 /// Value in LI being redefined by this def. 2049 VNInfo *RedefVNI = nullptr; 2050 2051 /// Value in the other live range that overlaps this def, if any. 2052 VNInfo *OtherVNI = nullptr; 2053 2054 /// Is this value an IMPLICIT_DEF that can be erased? 2055 /// 2056 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2057 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2058 /// safely erased if they are overlapping a live value in the other live 2059 /// interval. 2060 /// 2061 /// Weird control flow graphs and incomplete PHI handling in 2062 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2063 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2064 /// normal values. 2065 bool ErasableImplicitDef = false; 2066 2067 /// True when the live range of this value will be pruned because of an 2068 /// overlapping CR_Replace value in the other live range. 2069 bool Pruned = false; 2070 2071 /// True once Pruned above has been computed. 2072 bool PrunedComputed = false; 2073 2074 Val() = default; 2075 2076 bool isAnalyzed() const { return WriteLanes.any(); } 2077 }; 2078 2079 /// One entry per value number in LI. 2080 SmallVector<Val, 8> Vals; 2081 2082 /// Compute the bitmask of lanes actually written by DefMI. 2083 /// Set Redef if there are any partial register definitions that depend on the 2084 /// previous value of the register. 2085 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2086 2087 /// Find the ultimate value that VNI was copied from. 2088 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 2089 2090 bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const; 2091 2092 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2093 /// Return a conflict resolution when possible, but leave the hard cases as 2094 /// CR_Unresolved. 2095 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2096 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2097 /// The recursion always goes upwards in the dominator tree, making loops 2098 /// impossible. 2099 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2100 2101 /// Compute the value assignment for ValNo in RI. 2102 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2103 /// the stack. 2104 void computeAssignment(unsigned ValNo, JoinVals &Other); 2105 2106 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2107 /// the extent of the tainted lanes in the block. 2108 /// 2109 /// Multiple values in Other.LR can be affected since partial redefinitions 2110 /// can preserve previously tainted lanes. 2111 /// 2112 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2113 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2114 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2115 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2116 /// 2117 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2118 /// entry to TaintedVals. 2119 /// 2120 /// Returns false if the tainted lanes extend beyond the basic block. 2121 bool 2122 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2123 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); 2124 2125 /// Return true if MI uses any of the given Lanes from Reg. 2126 /// This does not include partial redefinitions of Reg. 2127 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; 2128 2129 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2130 /// be pruned: 2131 /// 2132 /// %dst = COPY %src 2133 /// %src = COPY %dst <-- This value to be pruned. 2134 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2135 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2136 2137 public: 2138 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 2139 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 2140 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2141 bool TrackSubRegLiveness) 2142 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2143 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2144 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2145 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {} 2146 2147 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2148 /// Returns false if any conflicts were impossible to resolve. 2149 bool mapValues(JoinVals &Other); 2150 2151 /// Try to resolve conflicts that require all values to be mapped. 2152 /// Returns false if any conflicts were impossible to resolve. 2153 bool resolveConflicts(JoinVals &Other); 2154 2155 /// Prune the live range of values in Other.LR where they would conflict with 2156 /// CR_Replace values in LR. Collect end points for restoring the live range 2157 /// after joining. 2158 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2159 bool changeInstrs); 2160 2161 /// Removes subranges starting at copies that get removed. This sometimes 2162 /// happens when undefined subranges are copied around. These ranges contain 2163 /// no useful information and can be removed. 2164 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2165 2166 /// Pruning values in subranges can lead to removing segments in these 2167 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2168 /// the main range also need to be removed. This function will mark 2169 /// the corresponding values in the main range as pruned, so that 2170 /// eraseInstrs can do the final cleanup. 2171 /// The parameter @p LI must be the interval whose main range is the 2172 /// live range LR. 2173 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2174 2175 /// Erase any machine instructions that have been coalesced away. 2176 /// Add erased instructions to ErasedInstrs. 2177 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2178 /// the erased instrs. 2179 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2180 SmallVectorImpl<unsigned> &ShrinkRegs, 2181 LiveInterval *LI = nullptr); 2182 2183 /// Remove liverange defs at places where implicit defs will be removed. 2184 void removeImplicitDefs(); 2185 2186 /// Get the value assignments suitable for passing to LiveInterval::join. 2187 const int *getAssignments() const { return Assignments.data(); } 2188 }; 2189 2190 } // end anonymous namespace 2191 2192 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2193 const { 2194 LaneBitmask L; 2195 for (const MachineOperand &MO : DefMI->operands()) { 2196 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2197 continue; 2198 L |= TRI->getSubRegIndexLaneMask( 2199 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2200 if (MO.readsReg()) 2201 Redef = true; 2202 } 2203 return L; 2204 } 2205 2206 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 2207 const VNInfo *VNI) const { 2208 unsigned Reg = this->Reg; 2209 2210 while (!VNI->isPHIDef()) { 2211 SlotIndex Def = VNI->def; 2212 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2213 assert(MI && "No defining instruction"); 2214 if (!MI->isFullCopy()) 2215 return std::make_pair(VNI, Reg); 2216 unsigned SrcReg = MI->getOperand(1).getReg(); 2217 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 2218 return std::make_pair(VNI, Reg); 2219 2220 const LiveInterval &LI = LIS->getInterval(SrcReg); 2221 const VNInfo *ValueIn; 2222 // No subrange involved. 2223 if (!SubRangeJoin || !LI.hasSubRanges()) { 2224 LiveQueryResult LRQ = LI.Query(Def); 2225 ValueIn = LRQ.valueIn(); 2226 } else { 2227 // Query subranges. Pick the first matching one. 2228 ValueIn = nullptr; 2229 for (const LiveInterval::SubRange &S : LI.subranges()) { 2230 // Transform lanemask to a mask in the joined live interval. 2231 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2232 if ((SMask & LaneMask).none()) 2233 continue; 2234 LiveQueryResult LRQ = S.Query(Def); 2235 ValueIn = LRQ.valueIn(); 2236 break; 2237 } 2238 } 2239 if (ValueIn == nullptr) 2240 break; 2241 VNI = ValueIn; 2242 Reg = SrcReg; 2243 } 2244 return std::make_pair(VNI, Reg); 2245 } 2246 2247 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2248 const JoinVals &Other) const { 2249 const VNInfo *Orig0; 2250 unsigned Reg0; 2251 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2252 if (Orig0 == Value1) 2253 return true; 2254 2255 const VNInfo *Orig1; 2256 unsigned Reg1; 2257 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2258 2259 // The values are equal if they are defined at the same place and use the 2260 // same register. Note that we cannot compare VNInfos directly as some of 2261 // them might be from a copy created in mergeSubRangeInto() while the other 2262 // is from the original LiveInterval. 2263 return Orig0->def == Orig1->def && Reg0 == Reg1; 2264 } 2265 2266 JoinVals::ConflictResolution 2267 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2268 Val &V = Vals[ValNo]; 2269 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2270 VNInfo *VNI = LR.getValNumInfo(ValNo); 2271 if (VNI->isUnused()) { 2272 V.WriteLanes = LaneBitmask::getAll(); 2273 return CR_Keep; 2274 } 2275 2276 // Get the instruction defining this value, compute the lanes written. 2277 const MachineInstr *DefMI = nullptr; 2278 if (VNI->isPHIDef()) { 2279 // Conservatively assume that all lanes in a PHI are valid. 2280 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2281 : TRI->getSubRegIndexLaneMask(SubIdx); 2282 V.ValidLanes = V.WriteLanes = Lanes; 2283 } else { 2284 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2285 assert(DefMI != nullptr); 2286 if (SubRangeJoin) { 2287 // We don't care about the lanes when joining subregister ranges. 2288 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2289 if (DefMI->isImplicitDef()) { 2290 V.ValidLanes = LaneBitmask::getNone(); 2291 V.ErasableImplicitDef = true; 2292 } 2293 } else { 2294 bool Redef = false; 2295 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2296 2297 // If this is a read-modify-write instruction, there may be more valid 2298 // lanes than the ones written by this instruction. 2299 // This only covers partial redef operands. DefMI may have normal use 2300 // operands reading the register. They don't contribute valid lanes. 2301 // 2302 // This adds ssub1 to the set of valid lanes in %src: 2303 // 2304 // %src:ssub1 = FOO 2305 // 2306 // This leaves only ssub1 valid, making any other lanes undef: 2307 // 2308 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2309 // 2310 // The <read-undef> flag on the def operand means that old lane values are 2311 // not important. 2312 if (Redef) { 2313 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2314 assert((TrackSubRegLiveness || V.RedefVNI) && 2315 "Instruction is reading nonexistent value"); 2316 if (V.RedefVNI != nullptr) { 2317 computeAssignment(V.RedefVNI->id, Other); 2318 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2319 } 2320 } 2321 2322 // An IMPLICIT_DEF writes undef values. 2323 if (DefMI->isImplicitDef()) { 2324 // We normally expect IMPLICIT_DEF values to be live only until the end 2325 // of their block. If the value is really live longer and gets pruned in 2326 // another block, this flag is cleared again. 2327 V.ErasableImplicitDef = true; 2328 V.ValidLanes &= ~V.WriteLanes; 2329 } 2330 } 2331 } 2332 2333 // Find the value in Other that overlaps VNI->def, if any. 2334 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2335 2336 // It is possible that both values are defined by the same instruction, or 2337 // the values are PHIs defined in the same block. When that happens, the two 2338 // values should be merged into one, but not into any preceding value. 2339 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2340 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2341 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2342 2343 // One value stays, the other is merged. Keep the earlier one, or the first 2344 // one we see. 2345 if (OtherVNI->def < VNI->def) 2346 Other.computeAssignment(OtherVNI->id, *this); 2347 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2348 // This is an early-clobber def overlapping a live-in value in the other 2349 // register. Not mergeable. 2350 V.OtherVNI = OtherLRQ.valueIn(); 2351 return CR_Impossible; 2352 } 2353 V.OtherVNI = OtherVNI; 2354 Val &OtherV = Other.Vals[OtherVNI->id]; 2355 // Keep this value, check for conflicts when analyzing OtherVNI. 2356 if (!OtherV.isAnalyzed()) 2357 return CR_Keep; 2358 // Both sides have been analyzed now. 2359 // Allow overlapping PHI values. Any real interference would show up in a 2360 // predecessor, the PHI itself can't introduce any conflicts. 2361 if (VNI->isPHIDef()) 2362 return CR_Merge; 2363 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2364 // Overlapping lanes can't be resolved. 2365 return CR_Impossible; 2366 else 2367 return CR_Merge; 2368 } 2369 2370 // No simultaneous def. Is Other live at the def? 2371 V.OtherVNI = OtherLRQ.valueIn(); 2372 if (!V.OtherVNI) 2373 // No overlap, no conflict. 2374 return CR_Keep; 2375 2376 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2377 2378 // We have overlapping values, or possibly a kill of Other. 2379 // Recursively compute assignments up the dominator tree. 2380 Other.computeAssignment(V.OtherVNI->id, *this); 2381 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2382 2383 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2384 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2385 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2386 // technically. 2387 // 2388 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2389 // to erase the IMPLICIT_DEF instruction. 2390 if (OtherV.ErasableImplicitDef && DefMI && 2391 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2392 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2393 << " extends into " 2394 << printMBBReference(*DefMI->getParent()) 2395 << ", keeping it.\n"); 2396 OtherV.ErasableImplicitDef = false; 2397 } 2398 2399 // Allow overlapping PHI values. Any real interference would show up in a 2400 // predecessor, the PHI itself can't introduce any conflicts. 2401 if (VNI->isPHIDef()) 2402 return CR_Replace; 2403 2404 // Check for simple erasable conflicts. 2405 if (DefMI->isImplicitDef()) { 2406 // We need the def for the subregister if there is nothing else live at the 2407 // subrange at this point. 2408 if (TrackSubRegLiveness 2409 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none()) 2410 return CR_Replace; 2411 return CR_Erase; 2412 } 2413 2414 // Include the non-conflict where DefMI is a coalescable copy that kills 2415 // OtherVNI. We still want the copy erased and value numbers merged. 2416 if (CP.isCoalescable(DefMI)) { 2417 // Some of the lanes copied from OtherVNI may be undef, making them undef 2418 // here too. 2419 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2420 return CR_Erase; 2421 } 2422 2423 // This may not be a real conflict if DefMI simply kills Other and defines 2424 // VNI. 2425 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2426 return CR_Keep; 2427 2428 // Handle the case where VNI and OtherVNI can be proven to be identical: 2429 // 2430 // %other = COPY %ext 2431 // %this = COPY %ext <-- Erase this copy 2432 // 2433 if (DefMI->isFullCopy() && !CP.isPartial() 2434 && valuesIdentical(VNI, V.OtherVNI, Other)) 2435 return CR_Erase; 2436 2437 // If the lanes written by this instruction were all undef in OtherVNI, it is 2438 // still safe to join the live ranges. This can't be done with a simple value 2439 // mapping, though - OtherVNI will map to multiple values: 2440 // 2441 // 1 %dst:ssub0 = FOO <-- OtherVNI 2442 // 2 %src = BAR <-- VNI 2443 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy. 2444 // 4 BAZ killed %dst 2445 // 5 QUUX killed %src 2446 // 2447 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2448 // handles this complex value mapping. 2449 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2450 return CR_Replace; 2451 2452 // If the other live range is killed by DefMI and the live ranges are still 2453 // overlapping, it must be because we're looking at an early clobber def: 2454 // 2455 // %dst<def,early-clobber> = ASM killed %src 2456 // 2457 // In this case, it is illegal to merge the two live ranges since the early 2458 // clobber def would clobber %src before it was read. 2459 if (OtherLRQ.isKill()) { 2460 // This case where the def doesn't overlap the kill is handled above. 2461 assert(VNI->def.isEarlyClobber() && 2462 "Only early clobber defs can overlap a kill"); 2463 return CR_Impossible; 2464 } 2465 2466 // VNI is clobbering live lanes in OtherVNI, but there is still the 2467 // possibility that no instructions actually read the clobbered lanes. 2468 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2469 // Otherwise Other.RI wouldn't be live here. 2470 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2471 return CR_Impossible; 2472 2473 // We need to verify that no instructions are reading the clobbered lanes. To 2474 // save compile time, we'll only check that locally. Don't allow the tainted 2475 // value to escape the basic block. 2476 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2477 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2478 return CR_Impossible; 2479 2480 // There are still some things that could go wrong besides clobbered lanes 2481 // being read, for example OtherVNI may be only partially redefined in MBB, 2482 // and some clobbered lanes could escape the block. Save this analysis for 2483 // resolveConflicts() when all values have been mapped. We need to know 2484 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2485 // that now - the recursive analyzeValue() calls must go upwards in the 2486 // dominator tree. 2487 return CR_Unresolved; 2488 } 2489 2490 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2491 Val &V = Vals[ValNo]; 2492 if (V.isAnalyzed()) { 2493 // Recursion should always move up the dominator tree, so ValNo is not 2494 // supposed to reappear before it has been assigned. 2495 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2496 return; 2497 } 2498 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2499 case CR_Erase: 2500 case CR_Merge: 2501 // Merge this ValNo into OtherVNI. 2502 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2503 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2504 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2505 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@' 2506 << LR.getValNumInfo(ValNo)->def << " into " 2507 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2508 << V.OtherVNI->def << " --> @" 2509 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2510 break; 2511 case CR_Replace: 2512 case CR_Unresolved: { 2513 // The other value is going to be pruned if this join is successful. 2514 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2515 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2516 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2517 // its lanes. 2518 if ((OtherV.WriteLanes & ~V.ValidLanes).any() && TrackSubRegLiveness) 2519 OtherV.ErasableImplicitDef = false; 2520 OtherV.Pruned = true; 2521 LLVM_FALLTHROUGH; 2522 } 2523 default: 2524 // This value number needs to go in the final joined live range. 2525 Assignments[ValNo] = NewVNInfo.size(); 2526 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2527 break; 2528 } 2529 } 2530 2531 bool JoinVals::mapValues(JoinVals &Other) { 2532 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2533 computeAssignment(i, Other); 2534 if (Vals[i].Resolution == CR_Impossible) { 2535 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i 2536 << '@' << LR.getValNumInfo(i)->def << '\n'); 2537 return false; 2538 } 2539 } 2540 return true; 2541 } 2542 2543 bool JoinVals:: 2544 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2545 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { 2546 VNInfo *VNI = LR.getValNumInfo(ValNo); 2547 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2548 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2549 2550 // Scan Other.LR from VNI.def to MBBEnd. 2551 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2552 assert(OtherI != Other.LR.end() && "No conflict?"); 2553 do { 2554 // OtherI is pointing to a tainted value. Abort the join if the tainted 2555 // lanes escape the block. 2556 SlotIndex End = OtherI->end; 2557 if (End >= MBBEnd) { 2558 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':' 2559 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2560 return false; 2561 } 2562 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':' 2563 << OtherI->valno->id << '@' << OtherI->start << " to " 2564 << End << '\n'); 2565 // A dead def is not a problem. 2566 if (End.isDead()) 2567 break; 2568 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2569 2570 // Check for another def in the MBB. 2571 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2572 break; 2573 2574 // Lanes written by the new def are no longer tainted. 2575 const Val &OV = Other.Vals[OtherI->valno->id]; 2576 TaintedLanes &= ~OV.WriteLanes; 2577 if (!OV.RedefVNI) 2578 break; 2579 } while (TaintedLanes.any()); 2580 return true; 2581 } 2582 2583 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, 2584 LaneBitmask Lanes) const { 2585 if (MI.isDebugInstr()) 2586 return false; 2587 for (const MachineOperand &MO : MI.operands()) { 2588 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2589 continue; 2590 if (!MO.readsReg()) 2591 continue; 2592 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2593 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2594 return true; 2595 } 2596 return false; 2597 } 2598 2599 bool JoinVals::resolveConflicts(JoinVals &Other) { 2600 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2601 Val &V = Vals[i]; 2602 assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); 2603 if (V.Resolution != CR_Unresolved) 2604 continue; 2605 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@' 2606 << LR.getValNumInfo(i)->def << '\n'); 2607 if (SubRangeJoin) 2608 return false; 2609 2610 ++NumLaneConflicts; 2611 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2612 VNInfo *VNI = LR.getValNumInfo(i); 2613 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2614 2615 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2616 // join, those lanes will be tainted with a wrong value. Get the extent of 2617 // the tainted lanes. 2618 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2619 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2620 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2621 // Tainted lanes would extend beyond the basic block. 2622 return false; 2623 2624 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2625 2626 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2627 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2628 MachineBasicBlock::iterator MI = MBB->begin(); 2629 if (!VNI->isPHIDef()) { 2630 MI = Indexes->getInstructionFromIndex(VNI->def); 2631 // No need to check the instruction defining VNI for reads. 2632 ++MI; 2633 } 2634 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2635 "Interference ends on VNI->def. Should have been handled earlier"); 2636 MachineInstr *LastMI = 2637 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2638 assert(LastMI && "Range must end at a proper instruction"); 2639 unsigned TaintNum = 0; 2640 while (true) { 2641 assert(MI != MBB->end() && "Bad LastMI"); 2642 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2643 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2644 return false; 2645 } 2646 // LastMI is the last instruction to use the current value. 2647 if (&*MI == LastMI) { 2648 if (++TaintNum == TaintExtent.size()) 2649 break; 2650 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2651 assert(LastMI && "Range must end at a proper instruction"); 2652 TaintedLanes = TaintExtent[TaintNum].second; 2653 } 2654 ++MI; 2655 } 2656 2657 // The tainted lanes are unused. 2658 V.Resolution = CR_Replace; 2659 ++NumLaneResolves; 2660 } 2661 return true; 2662 } 2663 2664 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2665 Val &V = Vals[ValNo]; 2666 if (V.Pruned || V.PrunedComputed) 2667 return V.Pruned; 2668 2669 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2670 return V.Pruned; 2671 2672 // Follow copies up the dominator tree and check if any intermediate value 2673 // has been pruned. 2674 V.PrunedComputed = true; 2675 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2676 return V.Pruned; 2677 } 2678 2679 void JoinVals::pruneValues(JoinVals &Other, 2680 SmallVectorImpl<SlotIndex> &EndPoints, 2681 bool changeInstrs) { 2682 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2683 SlotIndex Def = LR.getValNumInfo(i)->def; 2684 switch (Vals[i].Resolution) { 2685 case CR_Keep: 2686 break; 2687 case CR_Replace: { 2688 // This value takes precedence over the value in Other.LR. 2689 LIS->pruneValue(Other.LR, Def, &EndPoints); 2690 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2691 // instructions are only inserted to provide a live-out value for PHI 2692 // predecessors, so the instruction should simply go away once its value 2693 // has been replaced. 2694 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2695 bool EraseImpDef = OtherV.ErasableImplicitDef && 2696 OtherV.Resolution == CR_Keep; 2697 if (!Def.isBlock()) { 2698 if (changeInstrs) { 2699 // Remove <def,read-undef> flags. This def is now a partial redef. 2700 // Also remove dead flags since the joined live range will 2701 // continue past this instruction. 2702 for (MachineOperand &MO : 2703 Indexes->getInstructionFromIndex(Def)->operands()) { 2704 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 2705 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) 2706 MO.setIsUndef(false); 2707 MO.setIsDead(false); 2708 } 2709 } 2710 } 2711 // This value will reach instructions below, but we need to make sure 2712 // the live range also reaches the instruction at Def. 2713 if (!EraseImpDef) 2714 EndPoints.push_back(Def); 2715 } 2716 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def 2717 << ": " << Other.LR << '\n'); 2718 break; 2719 } 2720 case CR_Erase: 2721 case CR_Merge: 2722 if (isPrunedValue(i, Other)) { 2723 // This value is ultimately a copy of a pruned value in LR or Other.LR. 2724 // We can no longer trust the value mapping computed by 2725 // computeAssignment(), the value that was originally copied could have 2726 // been replaced. 2727 LIS->pruneValue(LR, Def, &EndPoints); 2728 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at " 2729 << Def << ": " << LR << '\n'); 2730 } 2731 break; 2732 case CR_Unresolved: 2733 case CR_Impossible: 2734 llvm_unreachable("Unresolved conflicts"); 2735 } 2736 } 2737 } 2738 2739 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 2740 // Look for values being erased. 2741 bool DidPrune = false; 2742 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2743 // We should trigger in all cases in which eraseInstrs() does something. 2744 // match what eraseInstrs() is doing, print a message so 2745 if (Vals[i].Resolution != CR_Erase && 2746 (Vals[i].Resolution != CR_Keep || !Vals[i].ErasableImplicitDef || 2747 !Vals[i].Pruned)) 2748 continue; 2749 2750 // Check subranges at the point where the copy will be removed. 2751 SlotIndex Def = LR.getValNumInfo(i)->def; 2752 // Print message so mismatches with eraseInstrs() can be diagnosed. 2753 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def 2754 << '\n'); 2755 for (LiveInterval::SubRange &S : LI.subranges()) { 2756 LiveQueryResult Q = S.Query(Def); 2757 2758 // If a subrange starts at the copy then an undefined value has been 2759 // copied and we must remove that subrange value as well. 2760 VNInfo *ValueOut = Q.valueOutOrDead(); 2761 if (ValueOut != nullptr && Q.valueIn() == nullptr) { 2762 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 2763 << " at " << Def << "\n"); 2764 LIS->pruneValue(S, Def, nullptr); 2765 DidPrune = true; 2766 // Mark value number as unused. 2767 ValueOut->markUnused(); 2768 continue; 2769 } 2770 // If a subrange ends at the copy, then a value was copied but only 2771 // partially used later. Shrink the subregister range appropriately. 2772 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 2773 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane " 2774 << PrintLaneMask(S.LaneMask) << " at " << Def 2775 << "\n"); 2776 ShrinkMask |= S.LaneMask; 2777 } 2778 } 2779 } 2780 if (DidPrune) 2781 LI.removeEmptySubRanges(); 2782 } 2783 2784 /// Check if any of the subranges of @p LI contain a definition at @p Def. 2785 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 2786 for (LiveInterval::SubRange &SR : LI.subranges()) { 2787 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 2788 if (VNI->def == Def) 2789 return true; 2790 } 2791 return false; 2792 } 2793 2794 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 2795 assert(&static_cast<LiveRange&>(LI) == &LR); 2796 2797 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2798 if (Vals[i].Resolution != CR_Keep) 2799 continue; 2800 VNInfo *VNI = LR.getValNumInfo(i); 2801 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 2802 continue; 2803 Vals[i].Pruned = true; 2804 ShrinkMainRange = true; 2805 } 2806 } 2807 2808 void JoinVals::removeImplicitDefs() { 2809 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2810 Val &V = Vals[i]; 2811 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 2812 continue; 2813 2814 VNInfo *VNI = LR.getValNumInfo(i); 2815 VNI->markUnused(); 2816 LR.removeValNo(VNI); 2817 } 2818 } 2819 2820 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2821 SmallVectorImpl<unsigned> &ShrinkRegs, 2822 LiveInterval *LI) { 2823 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2824 // Get the def location before markUnused() below invalidates it. 2825 SlotIndex Def = LR.getValNumInfo(i)->def; 2826 switch (Vals[i].Resolution) { 2827 case CR_Keep: { 2828 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 2829 // longer. The IMPLICIT_DEF instructions are only inserted by 2830 // PHIElimination to guarantee that all PHI predecessors have a value. 2831 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 2832 break; 2833 // Remove value number i from LR. 2834 // For intervals with subranges, removing a segment from the main range 2835 // may require extending the previous segment: for each definition of 2836 // a subregister, there will be a corresponding def in the main range. 2837 // That def may fall in the middle of a segment from another subrange. 2838 // In such cases, removing this def from the main range must be 2839 // complemented by extending the main range to account for the liveness 2840 // of the other subrange. 2841 VNInfo *VNI = LR.getValNumInfo(i); 2842 SlotIndex Def = VNI->def; 2843 // The new end point of the main range segment to be extended. 2844 SlotIndex NewEnd; 2845 if (LI != nullptr) { 2846 LiveRange::iterator I = LR.FindSegmentContaining(Def); 2847 assert(I != LR.end()); 2848 // Do not extend beyond the end of the segment being removed. 2849 // The segment may have been pruned in preparation for joining 2850 // live ranges. 2851 NewEnd = I->end; 2852 } 2853 2854 LR.removeValNo(VNI); 2855 // Note that this VNInfo is reused and still referenced in NewVNInfo, 2856 // make it appear like an unused value number. 2857 VNI->markUnused(); 2858 2859 if (LI != nullptr && LI->hasSubRanges()) { 2860 assert(static_cast<LiveRange*>(LI) == &LR); 2861 // Determine the end point based on the subrange information: 2862 // minimum of (earliest def of next segment, 2863 // latest end point of containing segment) 2864 SlotIndex ED, LE; 2865 for (LiveInterval::SubRange &SR : LI->subranges()) { 2866 LiveRange::iterator I = SR.find(Def); 2867 if (I == SR.end()) 2868 continue; 2869 if (I->start > Def) 2870 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 2871 else 2872 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 2873 } 2874 if (LE.isValid()) 2875 NewEnd = std::min(NewEnd, LE); 2876 if (ED.isValid()) 2877 NewEnd = std::min(NewEnd, ED); 2878 2879 // We only want to do the extension if there was a subrange that 2880 // was live across Def. 2881 if (LE.isValid()) { 2882 LiveRange::iterator S = LR.find(Def); 2883 if (S != LR.begin()) 2884 std::prev(S)->end = NewEnd; 2885 } 2886 } 2887 LLVM_DEBUG({ 2888 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 2889 if (LI != nullptr) 2890 dbgs() << "\t\t LHS = " << *LI << '\n'; 2891 }); 2892 LLVM_FALLTHROUGH; 2893 } 2894 2895 case CR_Erase: { 2896 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2897 assert(MI && "No instruction to erase"); 2898 if (MI->isCopy()) { 2899 unsigned Reg = MI->getOperand(1).getReg(); 2900 if (TargetRegisterInfo::isVirtualRegister(Reg) && 2901 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 2902 ShrinkRegs.push_back(Reg); 2903 } 2904 ErasedInstrs.insert(MI); 2905 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 2906 LIS->RemoveMachineInstrFromMaps(*MI); 2907 MI->eraseFromParent(); 2908 break; 2909 } 2910 default: 2911 break; 2912 } 2913 } 2914 } 2915 2916 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 2917 LaneBitmask LaneMask, 2918 const CoalescerPair &CP) { 2919 SmallVector<VNInfo*, 16> NewVNInfo; 2920 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 2921 NewVNInfo, CP, LIS, TRI, true, true); 2922 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 2923 NewVNInfo, CP, LIS, TRI, true, true); 2924 2925 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 2926 // We should be able to resolve all conflicts here as we could successfully do 2927 // it on the mainrange already. There is however a problem when multiple 2928 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 2929 // interferences. 2930 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 2931 // We already determined that it is legal to merge the intervals, so this 2932 // should never fail. 2933 llvm_unreachable("*** Couldn't join subrange!\n"); 2934 } 2935 if (!LHSVals.resolveConflicts(RHSVals) || 2936 !RHSVals.resolveConflicts(LHSVals)) { 2937 // We already determined that it is legal to merge the intervals, so this 2938 // should never fail. 2939 llvm_unreachable("*** Couldn't join subrange!\n"); 2940 } 2941 2942 // The merging algorithm in LiveInterval::join() can't handle conflicting 2943 // value mappings, so we need to remove any live ranges that overlap a 2944 // CR_Replace resolution. Collect a set of end points that can be used to 2945 // restore the live range after joining. 2946 SmallVector<SlotIndex, 8> EndPoints; 2947 LHSVals.pruneValues(RHSVals, EndPoints, false); 2948 RHSVals.pruneValues(LHSVals, EndPoints, false); 2949 2950 LHSVals.removeImplicitDefs(); 2951 RHSVals.removeImplicitDefs(); 2952 2953 LRange.verify(); 2954 RRange.verify(); 2955 2956 // Join RRange into LHS. 2957 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 2958 NewVNInfo); 2959 2960 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n"); 2961 if (EndPoints.empty()) 2962 return; 2963 2964 // Recompute the parts of the live range we had to remove because of 2965 // CR_Replace conflicts. 2966 LLVM_DEBUG({ 2967 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 2968 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 2969 dbgs() << EndPoints[i]; 2970 if (i != n-1) 2971 dbgs() << ','; 2972 } 2973 dbgs() << ": " << LRange << '\n'; 2974 }); 2975 LIS->extendToIndices(LRange, EndPoints); 2976 } 2977 2978 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 2979 const LiveRange &ToMerge, 2980 LaneBitmask LaneMask, 2981 CoalescerPair &CP) { 2982 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2983 LI.refineSubRanges(Allocator, LaneMask, 2984 [this,&Allocator,&ToMerge,&CP](LiveInterval::SubRange &SR) { 2985 if (SR.empty()) { 2986 SR.assign(ToMerge, Allocator); 2987 } else { 2988 // joinSubRegRange() destroys the merged range, so we need a copy. 2989 LiveRange RangeCopy(ToMerge, Allocator); 2990 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 2991 } 2992 }); 2993 } 2994 2995 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 2996 SmallVector<VNInfo*, 16> NewVNInfo; 2997 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 2998 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 2999 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 3000 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 3001 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3002 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 3003 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3004 3005 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n'); 3006 3007 // First compute NewVNInfo and the simple value mappings. 3008 // Detect impossible conflicts early. 3009 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 3010 return false; 3011 3012 // Some conflicts can only be resolved after all values have been mapped. 3013 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 3014 return false; 3015 3016 // All clear, the live ranges can be merged. 3017 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 3018 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3019 3020 // Transform lanemasks from the LHS to masks in the coalesced register and 3021 // create initial subranges if necessary. 3022 unsigned DstIdx = CP.getDstIdx(); 3023 if (!LHS.hasSubRanges()) { 3024 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 3025 : TRI->getSubRegIndexLaneMask(DstIdx); 3026 // LHS must support subregs or we wouldn't be in this codepath. 3027 assert(Mask.any()); 3028 LHS.createSubRangeFrom(Allocator, Mask, LHS); 3029 } else if (DstIdx != 0) { 3030 // Transform LHS lanemasks to new register class if necessary. 3031 for (LiveInterval::SubRange &R : LHS.subranges()) { 3032 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 3033 R.LaneMask = Mask; 3034 } 3035 } 3036 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS 3037 << '\n'); 3038 3039 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3040 unsigned SrcIdx = CP.getSrcIdx(); 3041 if (!RHS.hasSubRanges()) { 3042 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3043 : TRI->getSubRegIndexLaneMask(SrcIdx); 3044 mergeSubRangeInto(LHS, RHS, Mask, CP); 3045 } else { 3046 // Pair up subranges and merge. 3047 for (LiveInterval::SubRange &R : RHS.subranges()) { 3048 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3049 mergeSubRangeInto(LHS, R, Mask, CP); 3050 } 3051 } 3052 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3053 3054 // Pruning implicit defs from subranges may result in the main range 3055 // having stale segments. 3056 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3057 3058 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3059 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3060 } 3061 3062 // The merging algorithm in LiveInterval::join() can't handle conflicting 3063 // value mappings, so we need to remove any live ranges that overlap a 3064 // CR_Replace resolution. Collect a set of end points that can be used to 3065 // restore the live range after joining. 3066 SmallVector<SlotIndex, 8> EndPoints; 3067 LHSVals.pruneValues(RHSVals, EndPoints, true); 3068 RHSVals.pruneValues(LHSVals, EndPoints, true); 3069 3070 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3071 // registers to require trimming. 3072 SmallVector<unsigned, 8> ShrinkRegs; 3073 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3074 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3075 while (!ShrinkRegs.empty()) 3076 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3077 3078 // Join RHS into LHS. 3079 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3080 3081 // Kill flags are going to be wrong if the live ranges were overlapping. 3082 // Eventually, we should simply clear all kill flags when computing live 3083 // ranges. They are reinserted after register allocation. 3084 MRI->clearKillFlags(LHS.reg); 3085 MRI->clearKillFlags(RHS.reg); 3086 3087 if (!EndPoints.empty()) { 3088 // Recompute the parts of the live range we had to remove because of 3089 // CR_Replace conflicts. 3090 LLVM_DEBUG({ 3091 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3092 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3093 dbgs() << EndPoints[i]; 3094 if (i != n-1) 3095 dbgs() << ','; 3096 } 3097 dbgs() << ": " << LHS << '\n'; 3098 }); 3099 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3100 } 3101 3102 return true; 3103 } 3104 3105 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3106 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3107 } 3108 3109 namespace { 3110 3111 /// Information concerning MBB coalescing priority. 3112 struct MBBPriorityInfo { 3113 MachineBasicBlock *MBB; 3114 unsigned Depth; 3115 bool IsSplit; 3116 3117 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3118 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3119 }; 3120 3121 } // end anonymous namespace 3122 3123 /// C-style comparator that sorts first based on the loop depth of the basic 3124 /// block (the unsigned), and then on the MBB number. 3125 /// 3126 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3127 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3128 const MBBPriorityInfo *RHS) { 3129 // Deeper loops first 3130 if (LHS->Depth != RHS->Depth) 3131 return LHS->Depth > RHS->Depth ? -1 : 1; 3132 3133 // Try to unsplit critical edges next. 3134 if (LHS->IsSplit != RHS->IsSplit) 3135 return LHS->IsSplit ? -1 : 1; 3136 3137 // Prefer blocks that are more connected in the CFG. This takes care of 3138 // the most difficult copies first while intervals are short. 3139 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3140 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3141 if (cl != cr) 3142 return cl > cr ? -1 : 1; 3143 3144 // As a last resort, sort by block number. 3145 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3146 } 3147 3148 /// \returns true if the given copy uses or defines a local live range. 3149 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3150 if (!Copy->isCopy()) 3151 return false; 3152 3153 if (Copy->getOperand(1).isUndef()) 3154 return false; 3155 3156 unsigned SrcReg = Copy->getOperand(1).getReg(); 3157 unsigned DstReg = Copy->getOperand(0).getReg(); 3158 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 3159 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 3160 return false; 3161 3162 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3163 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3164 } 3165 3166 bool RegisterCoalescer:: 3167 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3168 bool Progress = false; 3169 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3170 if (!CurrList[i]) 3171 continue; 3172 // Skip instruction pointers that have already been erased, for example by 3173 // dead code elimination. 3174 if (ErasedInstrs.count(CurrList[i])) { 3175 CurrList[i] = nullptr; 3176 continue; 3177 } 3178 bool Again = false; 3179 bool Success = joinCopy(CurrList[i], Again); 3180 Progress |= Success; 3181 if (Success || !Again) 3182 CurrList[i] = nullptr; 3183 } 3184 return Progress; 3185 } 3186 3187 /// Check if DstReg is a terminal node. 3188 /// I.e., it does not have any affinity other than \p Copy. 3189 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 3190 const MachineRegisterInfo *MRI) { 3191 assert(Copy.isCopyLike()); 3192 // Check if the destination of this copy as any other affinity. 3193 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3194 if (&MI != &Copy && MI.isCopyLike()) 3195 return false; 3196 return true; 3197 } 3198 3199 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3200 assert(Copy.isCopyLike()); 3201 if (!UseTerminalRule) 3202 return false; 3203 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 3204 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg); 3205 // Check if the destination of this copy has any other affinity. 3206 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 3207 // If SrcReg is a physical register, the copy won't be coalesced. 3208 // Ignoring it may have other side effect (like missing 3209 // rematerialization). So keep it. 3210 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 3211 !isTerminalReg(DstReg, Copy, MRI)) 3212 return false; 3213 3214 // DstReg is a terminal node. Check if it interferes with any other 3215 // copy involving SrcReg. 3216 const MachineBasicBlock *OrigBB = Copy.getParent(); 3217 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3218 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3219 // Technically we should check if the weight of the new copy is 3220 // interesting compared to the other one and update the weight 3221 // of the copies accordingly. However, this would only work if 3222 // we would gather all the copies first then coalesce, whereas 3223 // right now we interleave both actions. 3224 // For now, just consider the copies that are in the same block. 3225 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3226 continue; 3227 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 3228 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3229 OtherSubReg); 3230 if (OtherReg == SrcReg) 3231 OtherReg = OtherSrcReg; 3232 // Check if OtherReg is a non-terminal. 3233 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) || 3234 isTerminalReg(OtherReg, MI, MRI)) 3235 continue; 3236 // Check that OtherReg interfere with DstReg. 3237 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3238 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) 3239 << '\n'); 3240 return true; 3241 } 3242 } 3243 return false; 3244 } 3245 3246 void 3247 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3248 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n"); 3249 3250 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3251 // yet, it might invalidate the iterator. 3252 const unsigned PrevSize = WorkList.size(); 3253 if (JoinGlobalCopies) { 3254 SmallVector<MachineInstr*, 2> LocalTerminals; 3255 SmallVector<MachineInstr*, 2> GlobalTerminals; 3256 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3257 // are not inherently easier to resolve, but slightly preferable until we 3258 // have local live range splitting. In particular this is required by 3259 // cmp+jmp macro fusion. 3260 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3261 MII != E; ++MII) { 3262 if (!MII->isCopyLike()) 3263 continue; 3264 bool ApplyTerminalRule = applyTerminalRule(*MII); 3265 if (isLocalCopy(&(*MII), LIS)) { 3266 if (ApplyTerminalRule) 3267 LocalTerminals.push_back(&(*MII)); 3268 else 3269 LocalWorkList.push_back(&(*MII)); 3270 } else { 3271 if (ApplyTerminalRule) 3272 GlobalTerminals.push_back(&(*MII)); 3273 else 3274 WorkList.push_back(&(*MII)); 3275 } 3276 } 3277 // Append the copies evicted by the terminal rule at the end of the list. 3278 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3279 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3280 } 3281 else { 3282 SmallVector<MachineInstr*, 2> Terminals; 3283 for (MachineInstr &MII : *MBB) 3284 if (MII.isCopyLike()) { 3285 if (applyTerminalRule(MII)) 3286 Terminals.push_back(&MII); 3287 else 3288 WorkList.push_back(&MII); 3289 } 3290 // Append the copies evicted by the terminal rule at the end of the list. 3291 WorkList.append(Terminals.begin(), Terminals.end()); 3292 } 3293 // Try coalescing the collected copies immediately, and remove the nulls. 3294 // This prevents the WorkList from getting too large since most copies are 3295 // joinable on the first attempt. 3296 MutableArrayRef<MachineInstr*> 3297 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3298 if (copyCoalesceWorkList(CurrList)) 3299 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3300 nullptr), WorkList.end()); 3301 } 3302 3303 void RegisterCoalescer::coalesceLocals() { 3304 copyCoalesceWorkList(LocalWorkList); 3305 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3306 if (LocalWorkList[j]) 3307 WorkList.push_back(LocalWorkList[j]); 3308 } 3309 LocalWorkList.clear(); 3310 } 3311 3312 void RegisterCoalescer::joinAllIntervals() { 3313 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3314 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3315 3316 std::vector<MBBPriorityInfo> MBBs; 3317 MBBs.reserve(MF->size()); 3318 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3319 MachineBasicBlock *MBB = &*I; 3320 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3321 JoinSplitEdges && isSplitEdge(MBB))); 3322 } 3323 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3324 3325 // Coalesce intervals in MBB priority order. 3326 unsigned CurrDepth = std::numeric_limits<unsigned>::max(); 3327 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3328 // Try coalescing the collected local copies for deeper loops. 3329 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3330 coalesceLocals(); 3331 CurrDepth = MBBs[i].Depth; 3332 } 3333 copyCoalesceInMBB(MBBs[i].MBB); 3334 } 3335 coalesceLocals(); 3336 3337 // Joining intervals can allow other intervals to be joined. Iteratively join 3338 // until we make no progress. 3339 while (copyCoalesceWorkList(WorkList)) 3340 /* empty */ ; 3341 } 3342 3343 void RegisterCoalescer::releaseMemory() { 3344 ErasedInstrs.clear(); 3345 WorkList.clear(); 3346 DeadDefs.clear(); 3347 InflateRegs.clear(); 3348 } 3349 3350 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3351 MF = &fn; 3352 MRI = &fn.getRegInfo(); 3353 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3354 TRI = STI.getRegisterInfo(); 3355 TII = STI.getInstrInfo(); 3356 LIS = &getAnalysis<LiveIntervals>(); 3357 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3358 Loops = &getAnalysis<MachineLoopInfo>(); 3359 if (EnableGlobalCopies == cl::BOU_UNSET) 3360 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3361 else 3362 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3363 3364 // The MachineScheduler does not currently require JoinSplitEdges. This will 3365 // either be enabled unconditionally or replaced by a more general live range 3366 // splitting optimization. 3367 JoinSplitEdges = EnableJoinSplits; 3368 3369 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3370 << "********** Function: " << MF->getName() << '\n'); 3371 3372 if (VerifyCoalescing) 3373 MF->verify(this, "Before register coalescing"); 3374 3375 RegClassInfo.runOnMachineFunction(fn); 3376 3377 // Join (coalesce) intervals if requested. 3378 if (EnableJoining) 3379 joinAllIntervals(); 3380 3381 // After deleting a lot of copies, register classes may be less constrained. 3382 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3383 // DPR inflation. 3384 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3385 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3386 InflateRegs.end()); 3387 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() 3388 << " regs.\n"); 3389 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3390 unsigned Reg = InflateRegs[i]; 3391 if (MRI->reg_nodbg_empty(Reg)) 3392 continue; 3393 if (MRI->recomputeRegClass(Reg)) { 3394 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to " 3395 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3396 ++NumInflated; 3397 3398 LiveInterval &LI = LIS->getInterval(Reg); 3399 if (LI.hasSubRanges()) { 3400 // If the inflated register class does not support subregisters anymore 3401 // remove the subranges. 3402 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3403 LI.clearSubRanges(); 3404 } else { 3405 #ifndef NDEBUG 3406 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3407 // If subranges are still supported, then the same subregs 3408 // should still be supported. 3409 for (LiveInterval::SubRange &S : LI.subranges()) { 3410 assert((S.LaneMask & ~MaxMask).none()); 3411 } 3412 #endif 3413 } 3414 } 3415 } 3416 } 3417 3418 LLVM_DEBUG(dump()); 3419 if (VerifyCoalescing) 3420 MF->verify(this, "After register coalescing"); 3421 return true; 3422 } 3423 3424 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3425 LIS->print(O, m); 3426 } 3427