1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic RegisterCoalescer interface which 11 // is used as the common interface used by all clients and 12 // implementations of register coalescing. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "regalloc" 17 #include "RegisterCoalescer.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 23 #include "llvm/CodeGen/LiveRangeEdit.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/RegisterClassInfo.h" 30 #include "llvm/CodeGen/VirtRegMap.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 #include <algorithm> 42 #include <cmath> 43 using namespace llvm; 44 45 STATISTIC(numJoins , "Number of interval joins performed"); 46 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 47 STATISTIC(numCommutes , "Number of instruction commuting performed"); 48 STATISTIC(numExtends , "Number of copies extended"); 49 STATISTIC(NumReMats , "Number of instructions re-materialized"); 50 STATISTIC(NumInflated , "Number of register classes inflated"); 51 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 52 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 53 54 static cl::opt<bool> 55 EnableJoining("join-liveintervals", 56 cl::desc("Coalesce copies (default=true)"), 57 cl::init(true)); 58 59 // Temporary flag to test critical edge unsplitting. 60 static cl::opt<bool> 61 EnableJoinSplits("join-splitedges", 62 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 63 64 // Temporary flag to test global copy optimization. 65 static cl::opt<cl::boolOrDefault> 66 EnableGlobalCopies("join-globalcopies", 67 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 68 cl::init(cl::BOU_UNSET), cl::Hidden); 69 70 static cl::opt<bool> 71 VerifyCoalescing("verify-coalescing", 72 cl::desc("Verify machine instrs before and after register coalescing"), 73 cl::Hidden); 74 75 namespace { 76 class RegisterCoalescer : public MachineFunctionPass, 77 private LiveRangeEdit::Delegate { 78 MachineFunction* MF; 79 MachineRegisterInfo* MRI; 80 const TargetMachine* TM; 81 const TargetRegisterInfo* TRI; 82 const TargetInstrInfo* TII; 83 LiveIntervals *LIS; 84 const MachineLoopInfo* Loops; 85 AliasAnalysis *AA; 86 RegisterClassInfo RegClassInfo; 87 88 /// \brief True if the coalescer should aggressively coalesce global copies 89 /// in favor of keeping local copies. 90 bool JoinGlobalCopies; 91 92 /// \brief True if the coalescer should aggressively coalesce fall-thru 93 /// blocks exclusively containing copies. 94 bool JoinSplitEdges; 95 96 /// WorkList - Copy instructions yet to be coalesced. 97 SmallVector<MachineInstr*, 8> WorkList; 98 SmallVector<MachineInstr*, 8> LocalWorkList; 99 100 /// ErasedInstrs - Set of instruction pointers that have been erased, and 101 /// that may be present in WorkList. 102 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 103 104 /// Dead instructions that are about to be deleted. 105 SmallVector<MachineInstr*, 8> DeadDefs; 106 107 /// Virtual registers to be considered for register class inflation. 108 SmallVector<unsigned, 8> InflateRegs; 109 110 /// Recursively eliminate dead defs in DeadDefs. 111 void eliminateDeadDefs(); 112 113 /// LiveRangeEdit callback. 114 void LRE_WillEraseInstruction(MachineInstr *MI) override; 115 116 /// coalesceLocals - coalesce the LocalWorkList. 117 void coalesceLocals(); 118 119 /// joinAllIntervals - join compatible live intervals 120 void joinAllIntervals(); 121 122 /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting 123 /// copies that cannot yet be coalesced into WorkList. 124 void copyCoalesceInMBB(MachineBasicBlock *MBB); 125 126 /// copyCoalesceWorkList - Try to coalesce all copies in CurrList. Return 127 /// true if any progress was made. 128 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 129 130 /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg, 131 /// which are the src/dst of the copy instruction CopyMI. This returns 132 /// true if the copy was successfully coalesced away. If it is not 133 /// currently possible to coalesce this interval, but it may be possible if 134 /// other things get coalesced, then it returns true by reference in 135 /// 'Again'. 136 bool joinCopy(MachineInstr *TheCopy, bool &Again); 137 138 /// joinIntervals - Attempt to join these two intervals. On failure, this 139 /// returns false. The output "SrcInt" will not have been modified, so we 140 /// can use this information below to update aliases. 141 bool joinIntervals(CoalescerPair &CP); 142 143 /// Attempt joining two virtual registers. Return true on success. 144 bool joinVirtRegs(CoalescerPair &CP); 145 146 /// Attempt joining with a reserved physreg. 147 bool joinReservedPhysReg(CoalescerPair &CP); 148 149 /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If 150 /// the source value number is defined by a copy from the destination reg 151 /// see if we can merge these two destination reg valno# into a single 152 /// value number, eliminating a copy. 153 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 154 155 /// hasOtherReachingDefs - Return true if there are definitions of IntB 156 /// other than BValNo val# that can reach uses of AValno val# of IntA. 157 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 158 VNInfo *AValNo, VNInfo *BValNo); 159 160 /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy. 161 /// If the source value number is defined by a commutable instruction and 162 /// its other operand is coalesced to the copy dest register, see if we 163 /// can transform the copy into a noop by commuting the definition. 164 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); 165 166 /// reMaterializeTrivialDef - If the source of a copy is defined by a 167 /// trivial computation, replace the copy by rematerialize the definition. 168 bool reMaterializeTrivialDef(CoalescerPair &CP, MachineInstr *CopyMI, 169 bool &IsDefCopy); 170 171 /// canJoinPhys - Return true if a physreg copy should be joined. 172 bool canJoinPhys(const CoalescerPair &CP); 173 174 /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and 175 /// update the subregister number if it is not zero. If DstReg is a 176 /// physical register and the existing subregister number of the def / use 177 /// being updated is not zero, make sure to set it to the correct physical 178 /// subregister. 179 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 180 181 /// eliminateUndefCopy - Handle copies of undef values. 182 bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP); 183 184 public: 185 static char ID; // Class identification, replacement for typeinfo 186 RegisterCoalescer() : MachineFunctionPass(ID) { 187 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 188 } 189 190 void getAnalysisUsage(AnalysisUsage &AU) const override; 191 192 void releaseMemory() override; 193 194 /// runOnMachineFunction - pass entry point 195 bool runOnMachineFunction(MachineFunction&) override; 196 197 /// print - Implement the dump method. 198 void print(raw_ostream &O, const Module* = 0) const override; 199 }; 200 } /// end anonymous namespace 201 202 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 203 204 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 205 "Simple Register Coalescing", false, false) 206 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 207 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 208 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 209 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 210 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 211 "Simple Register Coalescing", false, false) 212 213 char RegisterCoalescer::ID = 0; 214 215 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 216 unsigned &Src, unsigned &Dst, 217 unsigned &SrcSub, unsigned &DstSub) { 218 if (MI->isCopy()) { 219 Dst = MI->getOperand(0).getReg(); 220 DstSub = MI->getOperand(0).getSubReg(); 221 Src = MI->getOperand(1).getReg(); 222 SrcSub = MI->getOperand(1).getSubReg(); 223 } else if (MI->isSubregToReg()) { 224 Dst = MI->getOperand(0).getReg(); 225 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 226 MI->getOperand(3).getImm()); 227 Src = MI->getOperand(2).getReg(); 228 SrcSub = MI->getOperand(2).getSubReg(); 229 } else 230 return false; 231 return true; 232 } 233 234 // Return true if this block should be vacated by the coalescer to eliminate 235 // branches. The important cases to handle in the coalescer are critical edges 236 // split during phi elimination which contain only copies. Simple blocks that 237 // contain non-branches should also be vacated, but this can be handled by an 238 // earlier pass similar to early if-conversion. 239 static bool isSplitEdge(const MachineBasicBlock *MBB) { 240 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 241 return false; 242 243 for (MachineBasicBlock::const_iterator MII = MBB->begin(), E = MBB->end(); 244 MII != E; ++MII) { 245 if (!MII->isCopyLike() && !MII->isUnconditionalBranch()) 246 return false; 247 } 248 return true; 249 } 250 251 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 252 SrcReg = DstReg = 0; 253 SrcIdx = DstIdx = 0; 254 NewRC = 0; 255 Flipped = CrossClass = false; 256 257 unsigned Src, Dst, SrcSub, DstSub; 258 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 259 return false; 260 Partial = SrcSub || DstSub; 261 262 // If one register is a physreg, it must be Dst. 263 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 264 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 265 return false; 266 std::swap(Src, Dst); 267 std::swap(SrcSub, DstSub); 268 Flipped = true; 269 } 270 271 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 272 273 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 274 // Eliminate DstSub on a physreg. 275 if (DstSub) { 276 Dst = TRI.getSubReg(Dst, DstSub); 277 if (!Dst) return false; 278 DstSub = 0; 279 } 280 281 // Eliminate SrcSub by picking a corresponding Dst superregister. 282 if (SrcSub) { 283 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 284 if (!Dst) return false; 285 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 286 return false; 287 } 288 } else { 289 // Both registers are virtual. 290 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 291 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 292 293 // Both registers have subreg indices. 294 if (SrcSub && DstSub) { 295 // Copies between different sub-registers are never coalescable. 296 if (Src == Dst && SrcSub != DstSub) 297 return false; 298 299 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 300 SrcIdx, DstIdx); 301 if (!NewRC) 302 return false; 303 } else if (DstSub) { 304 // SrcReg will be merged with a sub-register of DstReg. 305 SrcIdx = DstSub; 306 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 307 } else if (SrcSub) { 308 // DstReg will be merged with a sub-register of SrcReg. 309 DstIdx = SrcSub; 310 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 311 } else { 312 // This is a straight copy without sub-registers. 313 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 314 } 315 316 // The combined constraint may be impossible to satisfy. 317 if (!NewRC) 318 return false; 319 320 // Prefer SrcReg to be a sub-register of DstReg. 321 // FIXME: Coalescer should support subregs symmetrically. 322 if (DstIdx && !SrcIdx) { 323 std::swap(Src, Dst); 324 std::swap(SrcIdx, DstIdx); 325 Flipped = !Flipped; 326 } 327 328 CrossClass = NewRC != DstRC || NewRC != SrcRC; 329 } 330 // Check our invariants 331 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 332 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 333 "Cannot have a physical SubIdx"); 334 SrcReg = Src; 335 DstReg = Dst; 336 return true; 337 } 338 339 bool CoalescerPair::flip() { 340 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 341 return false; 342 std::swap(SrcReg, DstReg); 343 std::swap(SrcIdx, DstIdx); 344 Flipped = !Flipped; 345 return true; 346 } 347 348 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 349 if (!MI) 350 return false; 351 unsigned Src, Dst, SrcSub, DstSub; 352 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 353 return false; 354 355 // Find the virtual register that is SrcReg. 356 if (Dst == SrcReg) { 357 std::swap(Src, Dst); 358 std::swap(SrcSub, DstSub); 359 } else if (Src != SrcReg) { 360 return false; 361 } 362 363 // Now check that Dst matches DstReg. 364 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 365 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 366 return false; 367 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 368 // DstSub could be set for a physreg from INSERT_SUBREG. 369 if (DstSub) 370 Dst = TRI.getSubReg(Dst, DstSub); 371 // Full copy of Src. 372 if (!SrcSub) 373 return DstReg == Dst; 374 // This is a partial register copy. Check that the parts match. 375 return TRI.getSubReg(DstReg, SrcSub) == Dst; 376 } else { 377 // DstReg is virtual. 378 if (DstReg != Dst) 379 return false; 380 // Registers match, do the subregisters line up? 381 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 382 TRI.composeSubRegIndices(DstIdx, DstSub); 383 } 384 } 385 386 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 387 AU.setPreservesCFG(); 388 AU.addRequired<AliasAnalysis>(); 389 AU.addRequired<LiveIntervals>(); 390 AU.addPreserved<LiveIntervals>(); 391 AU.addPreserved<SlotIndexes>(); 392 AU.addRequired<MachineLoopInfo>(); 393 AU.addPreserved<MachineLoopInfo>(); 394 AU.addPreservedID(MachineDominatorsID); 395 MachineFunctionPass::getAnalysisUsage(AU); 396 } 397 398 void RegisterCoalescer::eliminateDeadDefs() { 399 SmallVector<unsigned, 8> NewRegs; 400 LiveRangeEdit(0, NewRegs, *MF, *LIS, 0, this).eliminateDeadDefs(DeadDefs); 401 } 402 403 // Callback from eliminateDeadDefs(). 404 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 405 // MI may be in WorkList. Make sure we don't visit it. 406 ErasedInstrs.insert(MI); 407 } 408 409 /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA 410 /// being the source and IntB being the dest, thus this defines a value number 411 /// in IntB. If the source value number (in IntA) is defined by a copy from B, 412 /// see if we can merge these two pieces of B into a single value number, 413 /// eliminating a copy. For example: 414 /// 415 /// A3 = B0 416 /// ... 417 /// B1 = A3 <- this copy 418 /// 419 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1 420 /// value number to be replaced with B0 (which simplifies the B liveinterval). 421 /// 422 /// This returns true if an interval was modified. 423 /// 424 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 425 MachineInstr *CopyMI) { 426 assert(!CP.isPartial() && "This doesn't work for partial copies."); 427 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 428 429 LiveInterval &IntA = 430 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 431 LiveInterval &IntB = 432 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 433 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 434 435 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 436 // the example above. 437 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 438 if (BS == IntB.end()) return false; 439 VNInfo *BValNo = BS->valno; 440 441 // Get the location that B is defined at. Two options: either this value has 442 // an unknown definition point or it is defined at CopyIdx. If unknown, we 443 // can't process it. 444 if (BValNo->def != CopyIdx) return false; 445 446 // AValNo is the value number in A that defines the copy, A3 in the example. 447 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 448 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 449 // The live segment might not exist after fun with physreg coalescing. 450 if (AS == IntA.end()) return false; 451 VNInfo *AValNo = AS->valno; 452 453 // If AValNo is defined as a copy from IntB, we can potentially process this. 454 // Get the instruction that defines this value number. 455 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 456 // Don't allow any partial copies, even if isCoalescable() allows them. 457 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 458 return false; 459 460 // Get the Segment in IntB that this value number starts with. 461 LiveInterval::iterator ValS = 462 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 463 if (ValS == IntB.end()) 464 return false; 465 466 // Make sure that the end of the live segment is inside the same block as 467 // CopyMI. 468 MachineInstr *ValSEndInst = 469 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 470 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 471 return false; 472 473 // Okay, we now know that ValS ends in the same block that the CopyMI 474 // live-range starts. If there are no intervening live segments between them 475 // in IntB, we can merge them. 476 if (ValS+1 != BS) return false; 477 478 DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI)); 479 480 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 481 // We are about to delete CopyMI, so need to remove it as the 'instruction 482 // that defines this value #'. Update the valnum with the new defining 483 // instruction #. 484 BValNo->def = FillerStart; 485 486 // Okay, we can merge them. We need to insert a new liverange: 487 // [ValS.end, BS.begin) of either value number, then we merge the 488 // two value numbers. 489 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 490 491 // Okay, merge "B1" into the same value number as "B0". 492 if (BValNo != ValS->valno) 493 IntB.MergeValueNumberInto(BValNo, ValS->valno); 494 DEBUG(dbgs() << " result = " << IntB << '\n'); 495 496 // If the source instruction was killing the source register before the 497 // merge, unset the isKill marker given the live range has been extended. 498 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 499 if (UIdx != -1) { 500 ValSEndInst->getOperand(UIdx).setIsKill(false); 501 } 502 503 // Rewrite the copy. If the copy instruction was killing the destination 504 // register before the merge, find the last use and trim the live range. That 505 // will also add the isKill marker. 506 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 507 if (AS->end == CopyIdx) 508 LIS->shrinkToUses(&IntA); 509 510 ++numExtends; 511 return true; 512 } 513 514 /// hasOtherReachingDefs - Return true if there are definitions of IntB 515 /// other than BValNo val# that can reach uses of AValno val# of IntA. 516 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 517 LiveInterval &IntB, 518 VNInfo *AValNo, 519 VNInfo *BValNo) { 520 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 521 // the PHI values. 522 if (LIS->hasPHIKill(IntA, AValNo)) 523 return true; 524 525 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end(); 526 AI != AE; ++AI) { 527 if (AI->valno != AValNo) continue; 528 LiveInterval::iterator BI = 529 std::upper_bound(IntB.begin(), IntB.end(), AI->start); 530 if (BI != IntB.begin()) 531 --BI; 532 for (; BI != IntB.end() && AI->end >= BI->start; ++BI) { 533 if (BI->valno == BValNo) 534 continue; 535 if (BI->start <= AI->start && BI->end > AI->start) 536 return true; 537 if (BI->start > AI->start && BI->start < AI->end) 538 return true; 539 } 540 } 541 return false; 542 } 543 544 /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with 545 /// IntA being the source and IntB being the dest, thus this defines a value 546 /// number in IntB. If the source value number (in IntA) is defined by a 547 /// commutable instruction and its other operand is coalesced to the copy dest 548 /// register, see if we can transform the copy into a noop by commuting the 549 /// definition. For example, 550 /// 551 /// A3 = op A2 B0<kill> 552 /// ... 553 /// B1 = A3 <- this copy 554 /// ... 555 /// = op A3 <- more uses 556 /// 557 /// ==> 558 /// 559 /// B2 = op B0 A2<kill> 560 /// ... 561 /// B1 = B2 <- now an identify copy 562 /// ... 563 /// = op B2 <- more uses 564 /// 565 /// This returns true if an interval was modified. 566 /// 567 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 568 MachineInstr *CopyMI) { 569 assert (!CP.isPhys()); 570 571 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 572 573 LiveInterval &IntA = 574 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 575 LiveInterval &IntB = 576 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 577 578 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 579 // the example above. 580 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 581 if (!BValNo || BValNo->def != CopyIdx) 582 return false; 583 584 // AValNo is the value number in A that defines the copy, A3 in the example. 585 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 586 assert(AValNo && "COPY source not live"); 587 if (AValNo->isPHIDef() || AValNo->isUnused()) 588 return false; 589 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 590 if (!DefMI) 591 return false; 592 if (!DefMI->isCommutable()) 593 return false; 594 // If DefMI is a two-address instruction then commuting it will change the 595 // destination register. 596 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 597 assert(DefIdx != -1); 598 unsigned UseOpIdx; 599 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 600 return false; 601 unsigned Op1, Op2, NewDstIdx; 602 if (!TII->findCommutedOpIndices(DefMI, Op1, Op2)) 603 return false; 604 if (Op1 == UseOpIdx) 605 NewDstIdx = Op2; 606 else if (Op2 == UseOpIdx) 607 NewDstIdx = Op1; 608 else 609 return false; 610 611 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 612 unsigned NewReg = NewDstMO.getReg(); 613 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 614 return false; 615 616 // Make sure there are no other definitions of IntB that would reach the 617 // uses which the new definition can reach. 618 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 619 return false; 620 621 // If some of the uses of IntA.reg is already coalesced away, return false. 622 // It's not possible to determine whether it's safe to perform the coalescing. 623 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 624 MachineInstr *UseMI = MO.getParent(); 625 unsigned OpNo = &MO - &UseMI->getOperand(0); 626 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI); 627 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 628 if (US == IntA.end() || US->valno != AValNo) 629 continue; 630 // If this use is tied to a def, we can't rewrite the register. 631 if (UseMI->isRegTiedToDefOperand(OpNo)) 632 return false; 633 } 634 635 DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 636 << *DefMI); 637 638 // At this point we have decided that it is legal to do this 639 // transformation. Start by commuting the instruction. 640 MachineBasicBlock *MBB = DefMI->getParent(); 641 MachineInstr *NewMI = TII->commuteInstruction(DefMI); 642 if (!NewMI) 643 return false; 644 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 645 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 646 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 647 return false; 648 if (NewMI != DefMI) { 649 LIS->ReplaceMachineInstrInMaps(DefMI, NewMI); 650 MachineBasicBlock::iterator Pos = DefMI; 651 MBB->insert(Pos, NewMI); 652 MBB->erase(DefMI); 653 } 654 unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false); 655 NewMI->getOperand(OpIdx).setIsKill(); 656 657 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 658 // A = or A, B 659 // ... 660 // B = A 661 // ... 662 // C = A<kill> 663 // ... 664 // = B 665 666 // Update uses of IntA of the specific Val# with IntB. 667 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 668 UE = MRI->use_end(); UI != UE;) { 669 MachineOperand &UseMO = *UI; 670 MachineInstr *UseMI = UseMO.getParent(); 671 ++UI; 672 if (UseMI->isDebugValue()) { 673 // FIXME These don't have an instruction index. Not clear we have enough 674 // info to decide whether to do this replacement or not. For now do it. 675 UseMO.setReg(NewReg); 676 continue; 677 } 678 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true); 679 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 680 if (US == IntA.end() || US->valno != AValNo) 681 continue; 682 // Kill flags are no longer accurate. They are recomputed after RA. 683 UseMO.setIsKill(false); 684 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 685 UseMO.substPhysReg(NewReg, *TRI); 686 else 687 UseMO.setReg(NewReg); 688 if (UseMI == CopyMI) 689 continue; 690 if (!UseMI->isCopy()) 691 continue; 692 if (UseMI->getOperand(0).getReg() != IntB.reg || 693 UseMI->getOperand(0).getSubReg()) 694 continue; 695 696 // This copy will become a noop. If it's defining a new val#, merge it into 697 // BValNo. 698 SlotIndex DefIdx = UseIdx.getRegSlot(); 699 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 700 if (!DVNI) 701 continue; 702 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 703 assert(DVNI->def == DefIdx); 704 BValNo = IntB.MergeValueNumberInto(BValNo, DVNI); 705 ErasedInstrs.insert(UseMI); 706 LIS->RemoveMachineInstrFromMaps(UseMI); 707 UseMI->eraseFromParent(); 708 } 709 710 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 711 // is updated. 712 VNInfo *ValNo = BValNo; 713 ValNo->def = AValNo->def; 714 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end(); 715 AI != AE; ++AI) { 716 if (AI->valno != AValNo) continue; 717 IntB.addSegment(LiveInterval::Segment(AI->start, AI->end, ValNo)); 718 } 719 DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 720 721 IntA.removeValNo(AValNo); 722 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 723 ++numCommutes; 724 return true; 725 } 726 727 /// reMaterializeTrivialDef - If the source of a copy is defined by a trivial 728 /// computation, replace the copy by rematerialize the definition. 729 bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP, 730 MachineInstr *CopyMI, 731 bool &IsDefCopy) { 732 IsDefCopy = false; 733 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 734 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 735 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 736 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 737 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 738 return false; 739 740 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 741 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI); 742 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 743 assert(ValNo && "CopyMI input register not live"); 744 if (ValNo->isPHIDef() || ValNo->isUnused()) 745 return false; 746 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 747 if (!DefMI) 748 return false; 749 if (DefMI->isCopyLike()) { 750 IsDefCopy = true; 751 return false; 752 } 753 if (!DefMI->isAsCheapAsAMove()) 754 return false; 755 if (!TII->isTriviallyReMaterializable(DefMI, AA)) 756 return false; 757 bool SawStore = false; 758 if (!DefMI->isSafeToMove(TII, AA, SawStore)) 759 return false; 760 const MCInstrDesc &MCID = DefMI->getDesc(); 761 if (MCID.getNumDefs() != 1) 762 return false; 763 // Only support subregister destinations when the def is read-undef. 764 MachineOperand &DstOperand = CopyMI->getOperand(0); 765 unsigned CopyDstReg = DstOperand.getReg(); 766 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 767 return false; 768 769 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 770 // the register substantially (beyond both source and dest size). This is bad 771 // for performance since it can cascade through a function, introducing many 772 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 773 // around after a few subreg copies). 774 if (SrcIdx && DstIdx) 775 return false; 776 777 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 778 if (!DefMI->isImplicitDef()) { 779 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 780 unsigned NewDstReg = DstReg; 781 782 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 783 DefMI->getOperand(0).getSubReg()); 784 if (NewDstIdx) 785 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 786 787 // Finally, make sure that the physical subregister that will be 788 // constructed later is permitted for the instruction. 789 if (!DefRC->contains(NewDstReg)) 790 return false; 791 } else { 792 // Theoretically, some stack frame reference could exist. Just make sure 793 // it hasn't actually happened. 794 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 795 "Only expect to deal with virtual or physical registers"); 796 } 797 } 798 799 MachineBasicBlock *MBB = CopyMI->getParent(); 800 MachineBasicBlock::iterator MII = 801 std::next(MachineBasicBlock::iterator(CopyMI)); 802 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI); 803 MachineInstr *NewMI = std::prev(MII); 804 805 LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI); 806 CopyMI->eraseFromParent(); 807 ErasedInstrs.insert(CopyMI); 808 809 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 810 // We need to remember these so we can add intervals once we insert 811 // NewMI into SlotIndexes. 812 SmallVector<unsigned, 4> NewMIImplDefs; 813 for (unsigned i = NewMI->getDesc().getNumOperands(), 814 e = NewMI->getNumOperands(); i != e; ++i) { 815 MachineOperand &MO = NewMI->getOperand(i); 816 if (MO.isReg()) { 817 assert(MO.isDef() && MO.isImplicit() && MO.isDead() && 818 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 819 NewMIImplDefs.push_back(MO.getReg()); 820 } 821 } 822 823 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 824 const TargetRegisterClass *NewRC = CP.getNewRC(); 825 unsigned NewIdx = NewMI->getOperand(0).getSubReg(); 826 827 if (NewIdx) 828 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 829 else 830 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 831 832 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 833 MRI->setRegClass(DstReg, NewRC); 834 835 updateRegDefsUses(DstReg, DstReg, DstIdx); 836 NewMI->getOperand(0).setSubReg(NewIdx); 837 } else if (NewMI->getOperand(0).getReg() != CopyDstReg) { 838 // The New instruction may be defining a sub-register of what's actually 839 // been asked for. If so it must implicitly define the whole thing. 840 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 841 "Only expect virtual or physical registers in remat"); 842 NewMI->getOperand(0).setIsDead(true); 843 NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg, 844 true /*IsDef*/, 845 true /*IsImp*/, 846 false /*IsKill*/)); 847 } 848 849 if (NewMI->getOperand(0).getSubReg()) 850 NewMI->getOperand(0).setIsUndef(); 851 852 // CopyMI may have implicit operands, transfer them over to the newly 853 // rematerialized instruction. And update implicit def interval valnos. 854 for (unsigned i = CopyMI->getDesc().getNumOperands(), 855 e = CopyMI->getNumOperands(); i != e; ++i) { 856 MachineOperand &MO = CopyMI->getOperand(i); 857 if (MO.isReg()) { 858 assert(MO.isImplicit() && "No explicit operands after implict operands."); 859 // Discard VReg implicit defs. 860 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 861 NewMI->addOperand(MO); 862 } 863 } 864 } 865 866 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 867 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 868 unsigned Reg = NewMIImplDefs[i]; 869 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 870 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 871 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 872 } 873 874 DEBUG(dbgs() << "Remat: " << *NewMI); 875 ++NumReMats; 876 877 // The source interval can become smaller because we removed a use. 878 LIS->shrinkToUses(&SrcInt, &DeadDefs); 879 if (!DeadDefs.empty()) 880 eliminateDeadDefs(); 881 882 return true; 883 } 884 885 /// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef> 886 /// values, it only removes local variables. When we have a copy like: 887 /// 888 /// %vreg1 = COPY %vreg2<undef> 889 /// 890 /// We delete the copy and remove the corresponding value number from %vreg1. 891 /// Any uses of that value number are marked as <undef>. 892 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI, 893 const CoalescerPair &CP) { 894 SlotIndex Idx = LIS->getInstructionIndex(CopyMI); 895 LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg()); 896 if (SrcInt->liveAt(Idx)) 897 return false; 898 LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg()); 899 if (DstInt->liveAt(Idx)) 900 return false; 901 902 // No intervals are live-in to CopyMI - it is undef. 903 if (CP.isFlipped()) 904 DstInt = SrcInt; 905 SrcInt = 0; 906 907 VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot()); 908 assert(DeadVNI && "No value defined in DstInt"); 909 DstInt->removeValNo(DeadVNI); 910 911 // Find new undef uses. 912 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstInt->reg)) { 913 if (MO.isDef() || MO.isUndef()) 914 continue; 915 MachineInstr *MI = MO.getParent(); 916 SlotIndex Idx = LIS->getInstructionIndex(MI); 917 if (DstInt->liveAt(Idx)) 918 continue; 919 MO.setIsUndef(true); 920 DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI); 921 } 922 return true; 923 } 924 925 /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and 926 /// update the subregister number if it is not zero. If DstReg is a 927 /// physical register and the existing subregister number of the def / use 928 /// being updated is not zero, make sure to set it to the correct physical 929 /// subregister. 930 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 931 unsigned DstReg, 932 unsigned SubIdx) { 933 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 934 LiveInterval *DstInt = DstIsPhys ? 0 : &LIS->getInterval(DstReg); 935 936 SmallPtrSet<MachineInstr*, 8> Visited; 937 for (MachineRegisterInfo::reg_instr_iterator 938 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 939 I != E; ) { 940 MachineInstr *UseMI = &*(I++); 941 942 // Each instruction can only be rewritten once because sub-register 943 // composition is not always idempotent. When SrcReg != DstReg, rewriting 944 // the UseMI operands removes them from the SrcReg use-def chain, but when 945 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 946 // operands mentioning the virtual register. 947 if (SrcReg == DstReg && !Visited.insert(UseMI)) 948 continue; 949 950 SmallVector<unsigned,8> Ops; 951 bool Reads, Writes; 952 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 953 954 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 955 // because SrcReg is a sub-register. 956 if (DstInt && !Reads && SubIdx) 957 Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI)); 958 959 // Replace SrcReg with DstReg in all UseMI operands. 960 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 961 MachineOperand &MO = UseMI->getOperand(Ops[i]); 962 963 // Adjust <undef> flags in case of sub-register joins. We don't want to 964 // turn a full def into a read-modify-write sub-register def and vice 965 // versa. 966 if (SubIdx && MO.isDef()) 967 MO.setIsUndef(!Reads); 968 969 if (DstIsPhys) 970 MO.substPhysReg(DstReg, *TRI); 971 else 972 MO.substVirtReg(DstReg, SubIdx, *TRI); 973 } 974 975 DEBUG({ 976 dbgs() << "\t\tupdated: "; 977 if (!UseMI->isDebugValue()) 978 dbgs() << LIS->getInstructionIndex(UseMI) << "\t"; 979 dbgs() << *UseMI; 980 }); 981 } 982 } 983 984 /// canJoinPhys - Return true if a copy involving a physreg should be joined. 985 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 986 /// Always join simple intervals that are defined by a single copy from a 987 /// reserved register. This doesn't increase register pressure, so it is 988 /// always beneficial. 989 if (!MRI->isReserved(CP.getDstReg())) { 990 DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 991 return false; 992 } 993 994 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 995 if (CP.isFlipped() && JoinVInt.containsOneValue()) 996 return true; 997 998 DEBUG(dbgs() << "\tCannot join defs into reserved register.\n"); 999 return false; 1000 } 1001 1002 /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg, 1003 /// which are the src/dst of the copy instruction CopyMI. This returns true 1004 /// if the copy was successfully coalesced away. If it is not currently 1005 /// possible to coalesce this interval, but it may be possible if other 1006 /// things get coalesced, then it returns true by reference in 'Again'. 1007 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1008 1009 Again = false; 1010 DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI); 1011 1012 CoalescerPair CP(*TRI); 1013 if (!CP.setRegisters(CopyMI)) { 1014 DEBUG(dbgs() << "\tNot coalescable.\n"); 1015 return false; 1016 } 1017 1018 // Dead code elimination. This really should be handled by MachineDCE, but 1019 // sometimes dead copies slip through, and we can't generate invalid live 1020 // ranges. 1021 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1022 DEBUG(dbgs() << "\tCopy is dead.\n"); 1023 DeadDefs.push_back(CopyMI); 1024 eliminateDeadDefs(); 1025 return true; 1026 } 1027 1028 // Eliminate undefs. 1029 if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) { 1030 DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n"); 1031 LIS->RemoveMachineInstrFromMaps(CopyMI); 1032 CopyMI->eraseFromParent(); 1033 return false; // Not coalescable. 1034 } 1035 1036 // Coalesced copies are normally removed immediately, but transformations 1037 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1038 // When that happens, just join the values and remove the copy. 1039 if (CP.getSrcReg() == CP.getDstReg()) { 1040 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1041 DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1042 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(CopyMI)); 1043 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1044 VNInfo *ReadVNI = LRQ.valueIn(); 1045 assert(ReadVNI && "No value before copy and no <undef> flag."); 1046 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1047 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1048 DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1049 } 1050 LIS->RemoveMachineInstrFromMaps(CopyMI); 1051 CopyMI->eraseFromParent(); 1052 return true; 1053 } 1054 1055 // Enforce policies. 1056 if (CP.isPhys()) { 1057 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI) 1058 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) 1059 << '\n'); 1060 if (!canJoinPhys(CP)) { 1061 // Before giving up coalescing, if definition of source is defined by 1062 // trivial computation, try rematerializing it. 1063 bool IsDefCopy; 1064 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1065 return true; 1066 if (IsDefCopy) 1067 Again = true; // May be possible to coalesce later. 1068 return false; 1069 } 1070 } else { 1071 DEBUG({ 1072 dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName() 1073 << " with "; 1074 if (CP.getDstIdx() && CP.getSrcIdx()) 1075 dbgs() << PrintReg(CP.getDstReg()) << " in " 1076 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1077 << PrintReg(CP.getSrcReg()) << " in " 1078 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1079 else 1080 dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in " 1081 << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1082 }); 1083 1084 // When possible, let DstReg be the larger interval. 1085 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1086 LIS->getInterval(CP.getDstReg()).size()) 1087 CP.flip(); 1088 } 1089 1090 // Okay, attempt to join these two intervals. On failure, this returns false. 1091 // Otherwise, if one of the intervals being joined is a physreg, this method 1092 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1093 // been modified, so we can use this information below to update aliases. 1094 if (!joinIntervals(CP)) { 1095 // Coalescing failed. 1096 1097 // If definition of source is defined by trivial computation, try 1098 // rematerializing it. 1099 bool IsDefCopy; 1100 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1101 return true; 1102 1103 // If we can eliminate the copy without merging the live segments, do so 1104 // now. 1105 if (!CP.isPartial() && !CP.isPhys()) { 1106 if (adjustCopiesBackFrom(CP, CopyMI) || 1107 removeCopyByCommutingDef(CP, CopyMI)) { 1108 LIS->RemoveMachineInstrFromMaps(CopyMI); 1109 CopyMI->eraseFromParent(); 1110 DEBUG(dbgs() << "\tTrivial!\n"); 1111 return true; 1112 } 1113 } 1114 1115 // Otherwise, we are unable to join the intervals. 1116 DEBUG(dbgs() << "\tInterference!\n"); 1117 Again = true; // May be possible to coalesce later. 1118 return false; 1119 } 1120 1121 // Coalescing to a virtual register that is of a sub-register class of the 1122 // other. Make sure the resulting register is set to the right register class. 1123 if (CP.isCrossClass()) { 1124 ++numCrossRCs; 1125 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1126 } 1127 1128 // Removing sub-register copies can ease the register class constraints. 1129 // Make sure we attempt to inflate the register class of DstReg. 1130 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1131 InflateRegs.push_back(CP.getDstReg()); 1132 1133 // CopyMI has been erased by joinIntervals at this point. Remove it from 1134 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1135 // to the work list. This keeps ErasedInstrs from growing needlessly. 1136 ErasedInstrs.erase(CopyMI); 1137 1138 // Rewrite all SrcReg operands to DstReg. 1139 // Also update DstReg operands to include DstIdx if it is set. 1140 if (CP.getDstIdx()) 1141 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1142 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1143 1144 // SrcReg is guaranteed to be the register whose live interval that is 1145 // being merged. 1146 LIS->removeInterval(CP.getSrcReg()); 1147 1148 // Update regalloc hint. 1149 TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1150 1151 DEBUG({ 1152 dbgs() << "\tJoined. Result = "; 1153 if (CP.isPhys()) 1154 dbgs() << PrintReg(CP.getDstReg(), TRI); 1155 else 1156 dbgs() << LIS->getInterval(CP.getDstReg()); 1157 dbgs() << '\n'; 1158 }); 1159 1160 ++numJoins; 1161 return true; 1162 } 1163 1164 /// Attempt joining with a reserved physreg. 1165 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1166 assert(CP.isPhys() && "Must be a physreg copy"); 1167 assert(MRI->isReserved(CP.getDstReg()) && "Not a reserved register"); 1168 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 1169 DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1170 1171 assert(CP.isFlipped() && RHS.containsOneValue() && 1172 "Invalid join with reserved register"); 1173 1174 // Optimization for reserved registers like ESP. We can only merge with a 1175 // reserved physreg if RHS has a single value that is a copy of CP.DstReg(). 1176 // The live range of the reserved register will look like a set of dead defs 1177 // - we don't properly track the live range of reserved registers. 1178 1179 // Deny any overlapping intervals. This depends on all the reserved 1180 // register live ranges to look like dead defs. 1181 for (MCRegUnitIterator UI(CP.getDstReg(), TRI); UI.isValid(); ++UI) 1182 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1183 DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n'); 1184 return false; 1185 } 1186 1187 // Skip any value computations, we are not adding new values to the 1188 // reserved register. Also skip merging the live ranges, the reserved 1189 // register live range doesn't need to be accurate as long as all the 1190 // defs are there. 1191 1192 // Delete the identity copy. 1193 MachineInstr *CopyMI = MRI->getVRegDef(RHS.reg); 1194 LIS->RemoveMachineInstrFromMaps(CopyMI); 1195 CopyMI->eraseFromParent(); 1196 1197 // We don't track kills for reserved registers. 1198 MRI->clearKillFlags(CP.getSrcReg()); 1199 1200 return true; 1201 } 1202 1203 //===----------------------------------------------------------------------===// 1204 // Interference checking and interval joining 1205 //===----------------------------------------------------------------------===// 1206 // 1207 // In the easiest case, the two live ranges being joined are disjoint, and 1208 // there is no interference to consider. It is quite common, though, to have 1209 // overlapping live ranges, and we need to check if the interference can be 1210 // resolved. 1211 // 1212 // The live range of a single SSA value forms a sub-tree of the dominator tree. 1213 // This means that two SSA values overlap if and only if the def of one value 1214 // is contained in the live range of the other value. As a special case, the 1215 // overlapping values can be defined at the same index. 1216 // 1217 // The interference from an overlapping def can be resolved in these cases: 1218 // 1219 // 1. Coalescable copies. The value is defined by a copy that would become an 1220 // identity copy after joining SrcReg and DstReg. The copy instruction will 1221 // be removed, and the value will be merged with the source value. 1222 // 1223 // There can be several copies back and forth, causing many values to be 1224 // merged into one. We compute a list of ultimate values in the joined live 1225 // range as well as a mappings from the old value numbers. 1226 // 1227 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 1228 // predecessors have a live out value. It doesn't cause real interference, 1229 // and can be merged into the value it overlaps. Like a coalescable copy, it 1230 // can be erased after joining. 1231 // 1232 // 3. Copy of external value. The overlapping def may be a copy of a value that 1233 // is already in the other register. This is like a coalescable copy, but 1234 // the live range of the source register must be trimmed after erasing the 1235 // copy instruction: 1236 // 1237 // %src = COPY %ext 1238 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 1239 // 1240 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 1241 // defining one lane at a time: 1242 // 1243 // %dst:ssub0<def,read-undef> = FOO 1244 // %src = BAR 1245 // %dst:ssub1<def> = COPY %src 1246 // 1247 // The live range of %src overlaps the %dst value defined by FOO, but 1248 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 1249 // which was undef anyway. 1250 // 1251 // The value mapping is more complicated in this case. The final live range 1252 // will have different value numbers for both FOO and BAR, but there is no 1253 // simple mapping from old to new values. It may even be necessary to add 1254 // new PHI values. 1255 // 1256 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 1257 // is live, but never read. This can happen because we don't compute 1258 // individual live ranges per lane. 1259 // 1260 // %dst<def> = FOO 1261 // %src = BAR 1262 // %dst:ssub1<def> = COPY %src 1263 // 1264 // This kind of interference is only resolved locally. If the clobbered 1265 // lane value escapes the block, the join is aborted. 1266 1267 namespace { 1268 /// Track information about values in a single virtual register about to be 1269 /// joined. Objects of this class are always created in pairs - one for each 1270 /// side of the CoalescerPair. 1271 class JoinVals { 1272 LiveInterval &LI; 1273 1274 // Location of this register in the final joined register. 1275 // Either CP.DstIdx or CP.SrcIdx. 1276 unsigned SubIdx; 1277 1278 // Values that will be present in the final live range. 1279 SmallVectorImpl<VNInfo*> &NewVNInfo; 1280 1281 const CoalescerPair &CP; 1282 LiveIntervals *LIS; 1283 SlotIndexes *Indexes; 1284 const TargetRegisterInfo *TRI; 1285 1286 // Value number assignments. Maps value numbers in LI to entries in NewVNInfo. 1287 // This is suitable for passing to LiveInterval::join(). 1288 SmallVector<int, 8> Assignments; 1289 1290 // Conflict resolution for overlapping values. 1291 enum ConflictResolution { 1292 // No overlap, simply keep this value. 1293 CR_Keep, 1294 1295 // Merge this value into OtherVNI and erase the defining instruction. 1296 // Used for IMPLICIT_DEF, coalescable copies, and copies from external 1297 // values. 1298 CR_Erase, 1299 1300 // Merge this value into OtherVNI but keep the defining instruction. 1301 // This is for the special case where OtherVNI is defined by the same 1302 // instruction. 1303 CR_Merge, 1304 1305 // Keep this value, and have it replace OtherVNI where possible. This 1306 // complicates value mapping since OtherVNI maps to two different values 1307 // before and after this def. 1308 // Used when clobbering undefined or dead lanes. 1309 CR_Replace, 1310 1311 // Unresolved conflict. Visit later when all values have been mapped. 1312 CR_Unresolved, 1313 1314 // Unresolvable conflict. Abort the join. 1315 CR_Impossible 1316 }; 1317 1318 // Per-value info for LI. The lane bit masks are all relative to the final 1319 // joined register, so they can be compared directly between SrcReg and 1320 // DstReg. 1321 struct Val { 1322 ConflictResolution Resolution; 1323 1324 // Lanes written by this def, 0 for unanalyzed values. 1325 unsigned WriteLanes; 1326 1327 // Lanes with defined values in this register. Other lanes are undef and 1328 // safe to clobber. 1329 unsigned ValidLanes; 1330 1331 // Value in LI being redefined by this def. 1332 VNInfo *RedefVNI; 1333 1334 // Value in the other live range that overlaps this def, if any. 1335 VNInfo *OtherVNI; 1336 1337 // Is this value an IMPLICIT_DEF that can be erased? 1338 // 1339 // IMPLICIT_DEF values should only exist at the end of a basic block that 1340 // is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 1341 // safely erased if they are overlapping a live value in the other live 1342 // interval. 1343 // 1344 // Weird control flow graphs and incomplete PHI handling in 1345 // ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 1346 // longer live ranges. Such IMPLICIT_DEF values should be treated like 1347 // normal values. 1348 bool ErasableImplicitDef; 1349 1350 // True when the live range of this value will be pruned because of an 1351 // overlapping CR_Replace value in the other live range. 1352 bool Pruned; 1353 1354 // True once Pruned above has been computed. 1355 bool PrunedComputed; 1356 1357 Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0), 1358 RedefVNI(0), OtherVNI(0), ErasableImplicitDef(false), 1359 Pruned(false), PrunedComputed(false) {} 1360 1361 bool isAnalyzed() const { return WriteLanes != 0; } 1362 }; 1363 1364 // One entry per value number in LI. 1365 SmallVector<Val, 8> Vals; 1366 1367 unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef); 1368 VNInfo *stripCopies(VNInfo *VNI); 1369 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 1370 void computeAssignment(unsigned ValNo, JoinVals &Other); 1371 bool taintExtent(unsigned, unsigned, JoinVals&, 1372 SmallVectorImpl<std::pair<SlotIndex, unsigned> >&); 1373 bool usesLanes(MachineInstr *MI, unsigned, unsigned, unsigned); 1374 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 1375 1376 public: 1377 JoinVals(LiveInterval &li, unsigned subIdx, 1378 SmallVectorImpl<VNInfo*> &newVNInfo, 1379 const CoalescerPair &cp, 1380 LiveIntervals *lis, 1381 const TargetRegisterInfo *tri) 1382 : LI(li), SubIdx(subIdx), NewVNInfo(newVNInfo), CP(cp), LIS(lis), 1383 Indexes(LIS->getSlotIndexes()), TRI(tri), 1384 Assignments(LI.getNumValNums(), -1), Vals(LI.getNumValNums()) 1385 {} 1386 1387 /// Analyze defs in LI and compute a value mapping in NewVNInfo. 1388 /// Returns false if any conflicts were impossible to resolve. 1389 bool mapValues(JoinVals &Other); 1390 1391 /// Try to resolve conflicts that require all values to be mapped. 1392 /// Returns false if any conflicts were impossible to resolve. 1393 bool resolveConflicts(JoinVals &Other); 1394 1395 /// Prune the live range of values in Other.LI where they would conflict with 1396 /// CR_Replace values in LI. Collect end points for restoring the live range 1397 /// after joining. 1398 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints); 1399 1400 /// Erase any machine instructions that have been coalesced away. 1401 /// Add erased instructions to ErasedInstrs. 1402 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 1403 /// the erased instrs. 1404 void eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs, 1405 SmallVectorImpl<unsigned> &ShrinkRegs); 1406 1407 /// Get the value assignments suitable for passing to LiveInterval::join. 1408 const int *getAssignments() const { return Assignments.data(); } 1409 }; 1410 } // end anonymous namespace 1411 1412 /// Compute the bitmask of lanes actually written by DefMI. 1413 /// Set Redef if there are any partial register definitions that depend on the 1414 /// previous value of the register. 1415 unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) { 1416 unsigned L = 0; 1417 for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) { 1418 if (!MO->isReg() || MO->getReg() != LI.reg || !MO->isDef()) 1419 continue; 1420 L |= TRI->getSubRegIndexLaneMask( 1421 TRI->composeSubRegIndices(SubIdx, MO->getSubReg())); 1422 if (MO->readsReg()) 1423 Redef = true; 1424 } 1425 return L; 1426 } 1427 1428 /// Find the ultimate value that VNI was copied from. 1429 VNInfo *JoinVals::stripCopies(VNInfo *VNI) { 1430 while (!VNI->isPHIDef()) { 1431 MachineInstr *MI = Indexes->getInstructionFromIndex(VNI->def); 1432 assert(MI && "No defining instruction"); 1433 if (!MI->isFullCopy()) 1434 break; 1435 unsigned Reg = MI->getOperand(1).getReg(); 1436 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1437 break; 1438 LiveQueryResult LRQ = LIS->getInterval(Reg).Query(VNI->def); 1439 if (!LRQ.valueIn()) 1440 break; 1441 VNI = LRQ.valueIn(); 1442 } 1443 return VNI; 1444 } 1445 1446 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 1447 /// Return a conflict resolution when possible, but leave the hard cases as 1448 /// CR_Unresolved. 1449 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 1450 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 1451 /// The recursion always goes upwards in the dominator tree, making loops 1452 /// impossible. 1453 JoinVals::ConflictResolution 1454 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 1455 Val &V = Vals[ValNo]; 1456 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 1457 VNInfo *VNI = LI.getValNumInfo(ValNo); 1458 if (VNI->isUnused()) { 1459 V.WriteLanes = ~0u; 1460 return CR_Keep; 1461 } 1462 1463 // Get the instruction defining this value, compute the lanes written. 1464 const MachineInstr *DefMI = 0; 1465 if (VNI->isPHIDef()) { 1466 // Conservatively assume that all lanes in a PHI are valid. 1467 V.ValidLanes = V.WriteLanes = TRI->getSubRegIndexLaneMask(SubIdx); 1468 } else { 1469 DefMI = Indexes->getInstructionFromIndex(VNI->def); 1470 bool Redef = false; 1471 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 1472 1473 // If this is a read-modify-write instruction, there may be more valid 1474 // lanes than the ones written by this instruction. 1475 // This only covers partial redef operands. DefMI may have normal use 1476 // operands reading the register. They don't contribute valid lanes. 1477 // 1478 // This adds ssub1 to the set of valid lanes in %src: 1479 // 1480 // %src:ssub1<def> = FOO 1481 // 1482 // This leaves only ssub1 valid, making any other lanes undef: 1483 // 1484 // %src:ssub1<def,read-undef> = FOO %src:ssub2 1485 // 1486 // The <read-undef> flag on the def operand means that old lane values are 1487 // not important. 1488 if (Redef) { 1489 V.RedefVNI = LI.Query(VNI->def).valueIn(); 1490 assert(V.RedefVNI && "Instruction is reading nonexistent value"); 1491 computeAssignment(V.RedefVNI->id, Other); 1492 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 1493 } 1494 1495 // An IMPLICIT_DEF writes undef values. 1496 if (DefMI->isImplicitDef()) { 1497 // We normally expect IMPLICIT_DEF values to be live only until the end 1498 // of their block. If the value is really live longer and gets pruned in 1499 // another block, this flag is cleared again. 1500 V.ErasableImplicitDef = true; 1501 V.ValidLanes &= ~V.WriteLanes; 1502 } 1503 } 1504 1505 // Find the value in Other that overlaps VNI->def, if any. 1506 LiveQueryResult OtherLRQ = Other.LI.Query(VNI->def); 1507 1508 // It is possible that both values are defined by the same instruction, or 1509 // the values are PHIs defined in the same block. When that happens, the two 1510 // values should be merged into one, but not into any preceding value. 1511 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 1512 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 1513 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 1514 1515 // One value stays, the other is merged. Keep the earlier one, or the first 1516 // one we see. 1517 if (OtherVNI->def < VNI->def) 1518 Other.computeAssignment(OtherVNI->id, *this); 1519 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 1520 // This is an early-clobber def overlapping a live-in value in the other 1521 // register. Not mergeable. 1522 V.OtherVNI = OtherLRQ.valueIn(); 1523 return CR_Impossible; 1524 } 1525 V.OtherVNI = OtherVNI; 1526 Val &OtherV = Other.Vals[OtherVNI->id]; 1527 // Keep this value, check for conflicts when analyzing OtherVNI. 1528 if (!OtherV.isAnalyzed()) 1529 return CR_Keep; 1530 // Both sides have been analyzed now. 1531 // Allow overlapping PHI values. Any real interference would show up in a 1532 // predecessor, the PHI itself can't introduce any conflicts. 1533 if (VNI->isPHIDef()) 1534 return CR_Merge; 1535 if (V.ValidLanes & OtherV.ValidLanes) 1536 // Overlapping lanes can't be resolved. 1537 return CR_Impossible; 1538 else 1539 return CR_Merge; 1540 } 1541 1542 // No simultaneous def. Is Other live at the def? 1543 V.OtherVNI = OtherLRQ.valueIn(); 1544 if (!V.OtherVNI) 1545 // No overlap, no conflict. 1546 return CR_Keep; 1547 1548 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 1549 1550 // We have overlapping values, or possibly a kill of Other. 1551 // Recursively compute assignments up the dominator tree. 1552 Other.computeAssignment(V.OtherVNI->id, *this); 1553 Val &OtherV = Other.Vals[V.OtherVNI->id]; 1554 1555 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 1556 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 1557 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 1558 // technically. 1559 // 1560 // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try 1561 // to erase the IMPLICIT_DEF instruction. 1562 if (OtherV.ErasableImplicitDef && DefMI && 1563 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 1564 DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 1565 << " extends into BB#" << DefMI->getParent()->getNumber() 1566 << ", keeping it.\n"); 1567 OtherV.ErasableImplicitDef = false; 1568 } 1569 1570 // Allow overlapping PHI values. Any real interference would show up in a 1571 // predecessor, the PHI itself can't introduce any conflicts. 1572 if (VNI->isPHIDef()) 1573 return CR_Replace; 1574 1575 // Check for simple erasable conflicts. 1576 if (DefMI->isImplicitDef()) 1577 return CR_Erase; 1578 1579 // Include the non-conflict where DefMI is a coalescable copy that kills 1580 // OtherVNI. We still want the copy erased and value numbers merged. 1581 if (CP.isCoalescable(DefMI)) { 1582 // Some of the lanes copied from OtherVNI may be undef, making them undef 1583 // here too. 1584 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 1585 return CR_Erase; 1586 } 1587 1588 // This may not be a real conflict if DefMI simply kills Other and defines 1589 // VNI. 1590 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 1591 return CR_Keep; 1592 1593 // Handle the case where VNI and OtherVNI can be proven to be identical: 1594 // 1595 // %other = COPY %ext 1596 // %this = COPY %ext <-- Erase this copy 1597 // 1598 if (DefMI->isFullCopy() && !CP.isPartial() && 1599 stripCopies(VNI) == stripCopies(V.OtherVNI)) 1600 return CR_Erase; 1601 1602 // If the lanes written by this instruction were all undef in OtherVNI, it is 1603 // still safe to join the live ranges. This can't be done with a simple value 1604 // mapping, though - OtherVNI will map to multiple values: 1605 // 1606 // 1 %dst:ssub0 = FOO <-- OtherVNI 1607 // 2 %src = BAR <-- VNI 1608 // 3 %dst:ssub1 = COPY %src<kill> <-- Eliminate this copy. 1609 // 4 BAZ %dst<kill> 1610 // 5 QUUX %src<kill> 1611 // 1612 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 1613 // handles this complex value mapping. 1614 if ((V.WriteLanes & OtherV.ValidLanes) == 0) 1615 return CR_Replace; 1616 1617 // If the other live range is killed by DefMI and the live ranges are still 1618 // overlapping, it must be because we're looking at an early clobber def: 1619 // 1620 // %dst<def,early-clobber> = ASM %src<kill> 1621 // 1622 // In this case, it is illegal to merge the two live ranges since the early 1623 // clobber def would clobber %src before it was read. 1624 if (OtherLRQ.isKill()) { 1625 // This case where the def doesn't overlap the kill is handled above. 1626 assert(VNI->def.isEarlyClobber() && 1627 "Only early clobber defs can overlap a kill"); 1628 return CR_Impossible; 1629 } 1630 1631 // VNI is clobbering live lanes in OtherVNI, but there is still the 1632 // possibility that no instructions actually read the clobbered lanes. 1633 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 1634 // Otherwise Other.LI wouldn't be live here. 1635 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0) 1636 return CR_Impossible; 1637 1638 // We need to verify that no instructions are reading the clobbered lanes. To 1639 // save compile time, we'll only check that locally. Don't allow the tainted 1640 // value to escape the basic block. 1641 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 1642 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 1643 return CR_Impossible; 1644 1645 // There are still some things that could go wrong besides clobbered lanes 1646 // being read, for example OtherVNI may be only partially redefined in MBB, 1647 // and some clobbered lanes could escape the block. Save this analysis for 1648 // resolveConflicts() when all values have been mapped. We need to know 1649 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 1650 // that now - the recursive analyzeValue() calls must go upwards in the 1651 // dominator tree. 1652 return CR_Unresolved; 1653 } 1654 1655 /// Compute the value assignment for ValNo in LI. 1656 /// This may be called recursively by analyzeValue(), but never for a ValNo on 1657 /// the stack. 1658 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 1659 Val &V = Vals[ValNo]; 1660 if (V.isAnalyzed()) { 1661 // Recursion should always move up the dominator tree, so ValNo is not 1662 // supposed to reappear before it has been assigned. 1663 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 1664 return; 1665 } 1666 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 1667 case CR_Erase: 1668 case CR_Merge: 1669 // Merge this ValNo into OtherVNI. 1670 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 1671 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 1672 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 1673 DEBUG(dbgs() << "\t\tmerge " << PrintReg(LI.reg) << ':' << ValNo << '@' 1674 << LI.getValNumInfo(ValNo)->def << " into " 1675 << PrintReg(Other.LI.reg) << ':' << V.OtherVNI->id << '@' 1676 << V.OtherVNI->def << " --> @" 1677 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 1678 break; 1679 case CR_Replace: 1680 case CR_Unresolved: 1681 // The other value is going to be pruned if this join is successful. 1682 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 1683 Other.Vals[V.OtherVNI->id].Pruned = true; 1684 // Fall through. 1685 default: 1686 // This value number needs to go in the final joined live range. 1687 Assignments[ValNo] = NewVNInfo.size(); 1688 NewVNInfo.push_back(LI.getValNumInfo(ValNo)); 1689 break; 1690 } 1691 } 1692 1693 bool JoinVals::mapValues(JoinVals &Other) { 1694 for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) { 1695 computeAssignment(i, Other); 1696 if (Vals[i].Resolution == CR_Impossible) { 1697 DEBUG(dbgs() << "\t\tinterference at " << PrintReg(LI.reg) << ':' << i 1698 << '@' << LI.getValNumInfo(i)->def << '\n'); 1699 return false; 1700 } 1701 } 1702 return true; 1703 } 1704 1705 /// Assuming ValNo is going to clobber some valid lanes in Other.LI, compute 1706 /// the extent of the tainted lanes in the block. 1707 /// 1708 /// Multiple values in Other.LI can be affected since partial redefinitions can 1709 /// preserve previously tainted lanes. 1710 /// 1711 /// 1 %dst = VLOAD <-- Define all lanes in %dst 1712 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 1713 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 1714 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 1715 /// 1716 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 1717 /// entry to TaintedVals. 1718 /// 1719 /// Returns false if the tainted lanes extend beyond the basic block. 1720 bool JoinVals:: 1721 taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other, 1722 SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) { 1723 VNInfo *VNI = LI.getValNumInfo(ValNo); 1724 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 1725 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 1726 1727 // Scan Other.LI from VNI.def to MBBEnd. 1728 LiveInterval::iterator OtherI = Other.LI.find(VNI->def); 1729 assert(OtherI != Other.LI.end() && "No conflict?"); 1730 do { 1731 // OtherI is pointing to a tainted value. Abort the join if the tainted 1732 // lanes escape the block. 1733 SlotIndex End = OtherI->end; 1734 if (End >= MBBEnd) { 1735 DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.LI.reg) << ':' 1736 << OtherI->valno->id << '@' << OtherI->start << '\n'); 1737 return false; 1738 } 1739 DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.LI.reg) << ':' 1740 << OtherI->valno->id << '@' << OtherI->start 1741 << " to " << End << '\n'); 1742 // A dead def is not a problem. 1743 if (End.isDead()) 1744 break; 1745 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 1746 1747 // Check for another def in the MBB. 1748 if (++OtherI == Other.LI.end() || OtherI->start >= MBBEnd) 1749 break; 1750 1751 // Lanes written by the new def are no longer tainted. 1752 const Val &OV = Other.Vals[OtherI->valno->id]; 1753 TaintedLanes &= ~OV.WriteLanes; 1754 if (!OV.RedefVNI) 1755 break; 1756 } while (TaintedLanes); 1757 return true; 1758 } 1759 1760 /// Return true if MI uses any of the given Lanes from Reg. 1761 /// This does not include partial redefinitions of Reg. 1762 bool JoinVals::usesLanes(MachineInstr *MI, unsigned Reg, unsigned SubIdx, 1763 unsigned Lanes) { 1764 if (MI->isDebugValue()) 1765 return false; 1766 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { 1767 if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg) 1768 continue; 1769 if (!MO->readsReg()) 1770 continue; 1771 if (Lanes & TRI->getSubRegIndexLaneMask( 1772 TRI->composeSubRegIndices(SubIdx, MO->getSubReg()))) 1773 return true; 1774 } 1775 return false; 1776 } 1777 1778 bool JoinVals::resolveConflicts(JoinVals &Other) { 1779 for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) { 1780 Val &V = Vals[i]; 1781 assert (V.Resolution != CR_Impossible && "Unresolvable conflict"); 1782 if (V.Resolution != CR_Unresolved) 1783 continue; 1784 DEBUG(dbgs() << "\t\tconflict at " << PrintReg(LI.reg) << ':' << i 1785 << '@' << LI.getValNumInfo(i)->def << '\n'); 1786 ++NumLaneConflicts; 1787 assert(V.OtherVNI && "Inconsistent conflict resolution."); 1788 VNInfo *VNI = LI.getValNumInfo(i); 1789 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 1790 1791 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 1792 // join, those lanes will be tainted with a wrong value. Get the extent of 1793 // the tainted lanes. 1794 unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 1795 SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent; 1796 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 1797 // Tainted lanes would extend beyond the basic block. 1798 return false; 1799 1800 assert(!TaintExtent.empty() && "There should be at least one conflict."); 1801 1802 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 1803 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 1804 MachineBasicBlock::iterator MI = MBB->begin(); 1805 if (!VNI->isPHIDef()) { 1806 MI = Indexes->getInstructionFromIndex(VNI->def); 1807 // No need to check the instruction defining VNI for reads. 1808 ++MI; 1809 } 1810 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 1811 "Interference ends on VNI->def. Should have been handled earlier"); 1812 MachineInstr *LastMI = 1813 Indexes->getInstructionFromIndex(TaintExtent.front().first); 1814 assert(LastMI && "Range must end at a proper instruction"); 1815 unsigned TaintNum = 0; 1816 for(;;) { 1817 assert(MI != MBB->end() && "Bad LastMI"); 1818 if (usesLanes(MI, Other.LI.reg, Other.SubIdx, TaintedLanes)) { 1819 DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 1820 return false; 1821 } 1822 // LastMI is the last instruction to use the current value. 1823 if (&*MI == LastMI) { 1824 if (++TaintNum == TaintExtent.size()) 1825 break; 1826 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 1827 assert(LastMI && "Range must end at a proper instruction"); 1828 TaintedLanes = TaintExtent[TaintNum].second; 1829 } 1830 ++MI; 1831 } 1832 1833 // The tainted lanes are unused. 1834 V.Resolution = CR_Replace; 1835 ++NumLaneResolves; 1836 } 1837 return true; 1838 } 1839 1840 // Determine if ValNo is a copy of a value number in LI or Other.LI that will 1841 // be pruned: 1842 // 1843 // %dst = COPY %src 1844 // %src = COPY %dst <-- This value to be pruned. 1845 // %dst = COPY %src <-- This value is a copy of a pruned value. 1846 // 1847 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 1848 Val &V = Vals[ValNo]; 1849 if (V.Pruned || V.PrunedComputed) 1850 return V.Pruned; 1851 1852 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 1853 return V.Pruned; 1854 1855 // Follow copies up the dominator tree and check if any intermediate value 1856 // has been pruned. 1857 V.PrunedComputed = true; 1858 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 1859 return V.Pruned; 1860 } 1861 1862 void JoinVals::pruneValues(JoinVals &Other, 1863 SmallVectorImpl<SlotIndex> &EndPoints) { 1864 for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) { 1865 SlotIndex Def = LI.getValNumInfo(i)->def; 1866 switch (Vals[i].Resolution) { 1867 case CR_Keep: 1868 break; 1869 case CR_Replace: { 1870 // This value takes precedence over the value in Other.LI. 1871 LIS->pruneValue(&Other.LI, Def, &EndPoints); 1872 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 1873 // instructions are only inserted to provide a live-out value for PHI 1874 // predecessors, so the instruction should simply go away once its value 1875 // has been replaced. 1876 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 1877 bool EraseImpDef = OtherV.ErasableImplicitDef && 1878 OtherV.Resolution == CR_Keep; 1879 if (!Def.isBlock()) { 1880 // Remove <def,read-undef> flags. This def is now a partial redef. 1881 // Also remove <def,dead> flags since the joined live range will 1882 // continue past this instruction. 1883 for (MIOperands MO(Indexes->getInstructionFromIndex(Def)); 1884 MO.isValid(); ++MO) 1885 if (MO->isReg() && MO->isDef() && MO->getReg() == LI.reg) { 1886 MO->setIsUndef(EraseImpDef); 1887 MO->setIsDead(false); 1888 } 1889 // This value will reach instructions below, but we need to make sure 1890 // the live range also reaches the instruction at Def. 1891 if (!EraseImpDef) 1892 EndPoints.push_back(Def); 1893 } 1894 DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.LI.reg) << " at " << Def 1895 << ": " << Other.LI << '\n'); 1896 break; 1897 } 1898 case CR_Erase: 1899 case CR_Merge: 1900 if (isPrunedValue(i, Other)) { 1901 // This value is ultimately a copy of a pruned value in LI or Other.LI. 1902 // We can no longer trust the value mapping computed by 1903 // computeAssignment(), the value that was originally copied could have 1904 // been replaced. 1905 LIS->pruneValue(&LI, Def, &EndPoints); 1906 DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(LI.reg) << " at " 1907 << Def << ": " << LI << '\n'); 1908 } 1909 break; 1910 case CR_Unresolved: 1911 case CR_Impossible: 1912 llvm_unreachable("Unresolved conflicts"); 1913 } 1914 } 1915 } 1916 1917 void JoinVals::eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs, 1918 SmallVectorImpl<unsigned> &ShrinkRegs) { 1919 for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) { 1920 // Get the def location before markUnused() below invalidates it. 1921 SlotIndex Def = LI.getValNumInfo(i)->def; 1922 switch (Vals[i].Resolution) { 1923 case CR_Keep: 1924 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 1925 // longer. The IMPLICIT_DEF instructions are only inserted by 1926 // PHIElimination to guarantee that all PHI predecessors have a value. 1927 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 1928 break; 1929 // Remove value number i from LI. Note that this VNInfo is still present 1930 // in NewVNInfo, so it will appear as an unused value number in the final 1931 // joined interval. 1932 LI.getValNumInfo(i)->markUnused(); 1933 LI.removeValNo(LI.getValNumInfo(i)); 1934 DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LI << '\n'); 1935 // FALL THROUGH. 1936 1937 case CR_Erase: { 1938 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 1939 assert(MI && "No instruction to erase"); 1940 if (MI->isCopy()) { 1941 unsigned Reg = MI->getOperand(1).getReg(); 1942 if (TargetRegisterInfo::isVirtualRegister(Reg) && 1943 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 1944 ShrinkRegs.push_back(Reg); 1945 } 1946 ErasedInstrs.insert(MI); 1947 DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 1948 LIS->RemoveMachineInstrFromMaps(MI); 1949 MI->eraseFromParent(); 1950 break; 1951 } 1952 default: 1953 break; 1954 } 1955 } 1956 } 1957 1958 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 1959 SmallVector<VNInfo*, 16> NewVNInfo; 1960 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 1961 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 1962 JoinVals RHSVals(RHS, CP.getSrcIdx(), NewVNInfo, CP, LIS, TRI); 1963 JoinVals LHSVals(LHS, CP.getDstIdx(), NewVNInfo, CP, LIS, TRI); 1964 1965 DEBUG(dbgs() << "\t\tRHS = " << RHS 1966 << "\n\t\tLHS = " << LHS 1967 << '\n'); 1968 1969 // First compute NewVNInfo and the simple value mappings. 1970 // Detect impossible conflicts early. 1971 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 1972 return false; 1973 1974 // Some conflicts can only be resolved after all values have been mapped. 1975 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 1976 return false; 1977 1978 // All clear, the live ranges can be merged. 1979 1980 // The merging algorithm in LiveInterval::join() can't handle conflicting 1981 // value mappings, so we need to remove any live ranges that overlap a 1982 // CR_Replace resolution. Collect a set of end points that can be used to 1983 // restore the live range after joining. 1984 SmallVector<SlotIndex, 8> EndPoints; 1985 LHSVals.pruneValues(RHSVals, EndPoints); 1986 RHSVals.pruneValues(LHSVals, EndPoints); 1987 1988 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 1989 // registers to require trimming. 1990 SmallVector<unsigned, 8> ShrinkRegs; 1991 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 1992 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 1993 while (!ShrinkRegs.empty()) 1994 LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 1995 1996 // Join RHS into LHS. 1997 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 1998 1999 // Kill flags are going to be wrong if the live ranges were overlapping. 2000 // Eventually, we should simply clear all kill flags when computing live 2001 // ranges. They are reinserted after register allocation. 2002 MRI->clearKillFlags(LHS.reg); 2003 MRI->clearKillFlags(RHS.reg); 2004 2005 if (EndPoints.empty()) 2006 return true; 2007 2008 // Recompute the parts of the live range we had to remove because of 2009 // CR_Replace conflicts. 2010 DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size() 2011 << " points: " << LHS << '\n'); 2012 LIS->extendToIndices(LHS, EndPoints); 2013 return true; 2014 } 2015 2016 /// joinIntervals - Attempt to join these two intervals. On failure, this 2017 /// returns false. 2018 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 2019 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 2020 } 2021 2022 namespace { 2023 // Information concerning MBB coalescing priority. 2024 struct MBBPriorityInfo { 2025 MachineBasicBlock *MBB; 2026 unsigned Depth; 2027 bool IsSplit; 2028 2029 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 2030 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 2031 }; 2032 } 2033 2034 // C-style comparator that sorts first based on the loop depth of the basic 2035 // block (the unsigned), and then on the MBB number. 2036 // 2037 // EnableGlobalCopies assumes that the primary sort key is loop depth. 2038 static int compareMBBPriority(const MBBPriorityInfo *LHS, 2039 const MBBPriorityInfo *RHS) { 2040 // Deeper loops first 2041 if (LHS->Depth != RHS->Depth) 2042 return LHS->Depth > RHS->Depth ? -1 : 1; 2043 2044 // Try to unsplit critical edges next. 2045 if (LHS->IsSplit != RHS->IsSplit) 2046 return LHS->IsSplit ? -1 : 1; 2047 2048 // Prefer blocks that are more connected in the CFG. This takes care of 2049 // the most difficult copies first while intervals are short. 2050 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 2051 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 2052 if (cl != cr) 2053 return cl > cr ? -1 : 1; 2054 2055 // As a last resort, sort by block number. 2056 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 2057 } 2058 2059 /// \returns true if the given copy uses or defines a local live range. 2060 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 2061 if (!Copy->isCopy()) 2062 return false; 2063 2064 if (Copy->getOperand(1).isUndef()) 2065 return false; 2066 2067 unsigned SrcReg = Copy->getOperand(1).getReg(); 2068 unsigned DstReg = Copy->getOperand(0).getReg(); 2069 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 2070 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 2071 return false; 2072 2073 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 2074 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 2075 } 2076 2077 // Try joining WorkList copies starting from index From. 2078 // Null out any successful joins. 2079 bool RegisterCoalescer:: 2080 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 2081 bool Progress = false; 2082 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 2083 if (!CurrList[i]) 2084 continue; 2085 // Skip instruction pointers that have already been erased, for example by 2086 // dead code elimination. 2087 if (ErasedInstrs.erase(CurrList[i])) { 2088 CurrList[i] = 0; 2089 continue; 2090 } 2091 bool Again = false; 2092 bool Success = joinCopy(CurrList[i], Again); 2093 Progress |= Success; 2094 if (Success || !Again) 2095 CurrList[i] = 0; 2096 } 2097 return Progress; 2098 } 2099 2100 void 2101 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 2102 DEBUG(dbgs() << MBB->getName() << ":\n"); 2103 2104 // Collect all copy-like instructions in MBB. Don't start coalescing anything 2105 // yet, it might invalidate the iterator. 2106 const unsigned PrevSize = WorkList.size(); 2107 if (JoinGlobalCopies) { 2108 // Coalesce copies bottom-up to coalesce local defs before local uses. They 2109 // are not inherently easier to resolve, but slightly preferable until we 2110 // have local live range splitting. In particular this is required by 2111 // cmp+jmp macro fusion. 2112 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 2113 MII != E; ++MII) { 2114 if (!MII->isCopyLike()) 2115 continue; 2116 if (isLocalCopy(&(*MII), LIS)) 2117 LocalWorkList.push_back(&(*MII)); 2118 else 2119 WorkList.push_back(&(*MII)); 2120 } 2121 } 2122 else { 2123 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 2124 MII != E; ++MII) 2125 if (MII->isCopyLike()) 2126 WorkList.push_back(MII); 2127 } 2128 // Try coalescing the collected copies immediately, and remove the nulls. 2129 // This prevents the WorkList from getting too large since most copies are 2130 // joinable on the first attempt. 2131 MutableArrayRef<MachineInstr*> 2132 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 2133 if (copyCoalesceWorkList(CurrList)) 2134 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 2135 (MachineInstr*)0), WorkList.end()); 2136 } 2137 2138 void RegisterCoalescer::coalesceLocals() { 2139 copyCoalesceWorkList(LocalWorkList); 2140 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 2141 if (LocalWorkList[j]) 2142 WorkList.push_back(LocalWorkList[j]); 2143 } 2144 LocalWorkList.clear(); 2145 } 2146 2147 void RegisterCoalescer::joinAllIntervals() { 2148 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 2149 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 2150 2151 std::vector<MBBPriorityInfo> MBBs; 2152 MBBs.reserve(MF->size()); 2153 for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){ 2154 MachineBasicBlock *MBB = I; 2155 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 2156 JoinSplitEdges && isSplitEdge(MBB))); 2157 } 2158 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 2159 2160 // Coalesce intervals in MBB priority order. 2161 unsigned CurrDepth = UINT_MAX; 2162 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 2163 // Try coalescing the collected local copies for deeper loops. 2164 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 2165 coalesceLocals(); 2166 CurrDepth = MBBs[i].Depth; 2167 } 2168 copyCoalesceInMBB(MBBs[i].MBB); 2169 } 2170 coalesceLocals(); 2171 2172 // Joining intervals can allow other intervals to be joined. Iteratively join 2173 // until we make no progress. 2174 while (copyCoalesceWorkList(WorkList)) 2175 /* empty */ ; 2176 } 2177 2178 void RegisterCoalescer::releaseMemory() { 2179 ErasedInstrs.clear(); 2180 WorkList.clear(); 2181 DeadDefs.clear(); 2182 InflateRegs.clear(); 2183 } 2184 2185 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 2186 MF = &fn; 2187 MRI = &fn.getRegInfo(); 2188 TM = &fn.getTarget(); 2189 TRI = TM->getRegisterInfo(); 2190 TII = TM->getInstrInfo(); 2191 LIS = &getAnalysis<LiveIntervals>(); 2192 AA = &getAnalysis<AliasAnalysis>(); 2193 Loops = &getAnalysis<MachineLoopInfo>(); 2194 2195 const TargetSubtargetInfo &ST = TM->getSubtarget<TargetSubtargetInfo>(); 2196 if (EnableGlobalCopies == cl::BOU_UNSET) 2197 JoinGlobalCopies = ST.useMachineScheduler(); 2198 else 2199 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 2200 2201 // The MachineScheduler does not currently require JoinSplitEdges. This will 2202 // either be enabled unconditionally or replaced by a more general live range 2203 // splitting optimization. 2204 JoinSplitEdges = EnableJoinSplits; 2205 2206 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 2207 << "********** Function: " << MF->getName() << '\n'); 2208 2209 if (VerifyCoalescing) 2210 MF->verify(this, "Before register coalescing"); 2211 2212 RegClassInfo.runOnMachineFunction(fn); 2213 2214 // Join (coalesce) intervals if requested. 2215 if (EnableJoining) 2216 joinAllIntervals(); 2217 2218 // After deleting a lot of copies, register classes may be less constrained. 2219 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 2220 // DPR inflation. 2221 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 2222 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 2223 InflateRegs.end()); 2224 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n"); 2225 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 2226 unsigned Reg = InflateRegs[i]; 2227 if (MRI->reg_nodbg_empty(Reg)) 2228 continue; 2229 if (MRI->recomputeRegClass(Reg, *TM)) { 2230 DEBUG(dbgs() << PrintReg(Reg) << " inflated to " 2231 << MRI->getRegClass(Reg)->getName() << '\n'); 2232 ++NumInflated; 2233 } 2234 } 2235 2236 DEBUG(dump()); 2237 if (VerifyCoalescing) 2238 MF->verify(this, "After register coalescing"); 2239 return true; 2240 } 2241 2242 /// print - Implement the dump method. 2243 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 2244 LIS->print(O, m); 2245 } 2246