1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic RegisterCoalescer interface which 10 // is used as the common interface used by all clients and 11 // implementations of register coalescing. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "RegisterCoalescer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetOpcodes.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/MC/LaneBitmask.h" 44 #include "llvm/MC/MCInstrDesc.h" 45 #include "llvm/MC/MCRegisterInfo.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <iterator> 55 #include <limits> 56 #include <tuple> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "regalloc" 63 64 STATISTIC(numJoins , "Number of interval joins performed"); 65 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 66 STATISTIC(numCommutes , "Number of instruction commuting performed"); 67 STATISTIC(numExtends , "Number of copies extended"); 68 STATISTIC(NumReMats , "Number of instructions re-materialized"); 69 STATISTIC(NumInflated , "Number of register classes inflated"); 70 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 71 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 72 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called"); 73 74 static cl::opt<bool> EnableJoining("join-liveintervals", 75 cl::desc("Coalesce copies (default=true)"), 76 cl::init(true), cl::Hidden); 77 78 static cl::opt<bool> UseTerminalRule("terminal-rule", 79 cl::desc("Apply the terminal rule"), 80 cl::init(false), cl::Hidden); 81 82 /// Temporary flag to test critical edge unsplitting. 83 static cl::opt<bool> 84 EnableJoinSplits("join-splitedges", 85 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 86 87 /// Temporary flag to test global copy optimization. 88 static cl::opt<cl::boolOrDefault> 89 EnableGlobalCopies("join-globalcopies", 90 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 91 cl::init(cl::BOU_UNSET), cl::Hidden); 92 93 static cl::opt<bool> 94 VerifyCoalescing("verify-coalescing", 95 cl::desc("Verify machine instrs before and after register coalescing"), 96 cl::Hidden); 97 98 static cl::opt<unsigned> LateRematUpdateThreshold( 99 "late-remat-update-threshold", cl::Hidden, 100 cl::desc("During rematerialization for a copy, if the def instruction has " 101 "many other copy uses to be rematerialized, delay the multiple " 102 "separate live interval update work and do them all at once after " 103 "all those rematerialization are done. It will save a lot of " 104 "repeated work. "), 105 cl::init(100)); 106 107 static cl::opt<unsigned> LargeIntervalSizeThreshold( 108 "large-interval-size-threshold", cl::Hidden, 109 cl::desc("If the valnos size of an interval is larger than the threshold, " 110 "it is regarded as a large interval. "), 111 cl::init(100)); 112 113 static cl::opt<unsigned> LargeIntervalFreqThreshold( 114 "large-interval-freq-threshold", cl::Hidden, 115 cl::desc("For a large interval, if it is coalesed with other live " 116 "intervals many times more than the threshold, stop its " 117 "coalescing to control the compile time. "), 118 cl::init(100)); 119 120 namespace { 121 122 class RegisterCoalescer : public MachineFunctionPass, 123 private LiveRangeEdit::Delegate { 124 MachineFunction* MF; 125 MachineRegisterInfo* MRI; 126 const TargetRegisterInfo* TRI; 127 const TargetInstrInfo* TII; 128 LiveIntervals *LIS; 129 const MachineLoopInfo* Loops; 130 AliasAnalysis *AA; 131 RegisterClassInfo RegClassInfo; 132 133 /// A LaneMask to remember on which subregister live ranges we need to call 134 /// shrinkToUses() later. 135 LaneBitmask ShrinkMask; 136 137 /// True if the main range of the currently coalesced intervals should be 138 /// checked for smaller live intervals. 139 bool ShrinkMainRange; 140 141 /// True if the coalescer should aggressively coalesce global copies 142 /// in favor of keeping local copies. 143 bool JoinGlobalCopies; 144 145 /// True if the coalescer should aggressively coalesce fall-thru 146 /// blocks exclusively containing copies. 147 bool JoinSplitEdges; 148 149 /// Copy instructions yet to be coalesced. 150 SmallVector<MachineInstr*, 8> WorkList; 151 SmallVector<MachineInstr*, 8> LocalWorkList; 152 153 /// Set of instruction pointers that have been erased, and 154 /// that may be present in WorkList. 155 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 156 157 /// Dead instructions that are about to be deleted. 158 SmallVector<MachineInstr*, 8> DeadDefs; 159 160 /// Virtual registers to be considered for register class inflation. 161 SmallVector<unsigned, 8> InflateRegs; 162 163 /// The collection of live intervals which should have been updated 164 /// immediately after rematerialiation but delayed until 165 /// lateLiveIntervalUpdate is called. 166 DenseSet<unsigned> ToBeUpdated; 167 168 /// Record how many times the large live interval with many valnos 169 /// has been tried to join with other live interval. 170 DenseMap<unsigned, unsigned long> LargeLIVisitCounter; 171 172 /// Recursively eliminate dead defs in DeadDefs. 173 void eliminateDeadDefs(); 174 175 /// LiveRangeEdit callback for eliminateDeadDefs(). 176 void LRE_WillEraseInstruction(MachineInstr *MI) override; 177 178 /// Coalesce the LocalWorkList. 179 void coalesceLocals(); 180 181 /// Join compatible live intervals 182 void joinAllIntervals(); 183 184 /// Coalesce copies in the specified MBB, putting 185 /// copies that cannot yet be coalesced into WorkList. 186 void copyCoalesceInMBB(MachineBasicBlock *MBB); 187 188 /// Tries to coalesce all copies in CurrList. Returns true if any progress 189 /// was made. 190 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 191 192 /// If one def has many copy like uses, and those copy uses are all 193 /// rematerialized, the live interval update needed for those 194 /// rematerializations will be delayed and done all at once instead 195 /// of being done multiple times. This is to save compile cost because 196 /// live interval update is costly. 197 void lateLiveIntervalUpdate(); 198 199 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 200 /// src/dst of the copy instruction CopyMI. This returns true if the copy 201 /// was successfully coalesced away. If it is not currently possible to 202 /// coalesce this interval, but it may be possible if other things get 203 /// coalesced, then it returns true by reference in 'Again'. 204 bool joinCopy(MachineInstr *CopyMI, bool &Again); 205 206 /// Attempt to join these two intervals. On failure, this 207 /// returns false. The output "SrcInt" will not have been modified, so we 208 /// can use this information below to update aliases. 209 bool joinIntervals(CoalescerPair &CP); 210 211 /// Attempt joining two virtual registers. Return true on success. 212 bool joinVirtRegs(CoalescerPair &CP); 213 214 /// If a live interval has many valnos and is coalesced with other 215 /// live intervals many times, we regard such live interval as having 216 /// high compile time cost. 217 bool isHighCostLiveInterval(LiveInterval &LI); 218 219 /// Attempt joining with a reserved physreg. 220 bool joinReservedPhysReg(CoalescerPair &CP); 221 222 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 223 /// Subranges in @p LI which only partially interfere with the desired 224 /// LaneMask are split as necessary. @p LaneMask are the lanes that 225 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 226 /// lanemasks already adjusted to the coalesced register. 227 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 228 LaneBitmask LaneMask, CoalescerPair &CP); 229 230 /// Join the liveranges of two subregisters. Joins @p RRange into 231 /// @p LRange, @p RRange may be invalid afterwards. 232 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 233 LaneBitmask LaneMask, const CoalescerPair &CP); 234 235 /// We found a non-trivially-coalescable copy. If the source value number is 236 /// defined by a copy from the destination reg see if we can merge these two 237 /// destination reg valno# into a single value number, eliminating a copy. 238 /// This returns true if an interval was modified. 239 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 240 241 /// Return true if there are definitions of IntB 242 /// other than BValNo val# that can reach uses of AValno val# of IntA. 243 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 244 VNInfo *AValNo, VNInfo *BValNo); 245 246 /// We found a non-trivially-coalescable copy. 247 /// If the source value number is defined by a commutable instruction and 248 /// its other operand is coalesced to the copy dest register, see if we 249 /// can transform the copy into a noop by commuting the definition. 250 /// This returns a pair of two flags: 251 /// - the first element is true if an interval was modified, 252 /// - the second element is true if the destination interval needs 253 /// to be shrunk after deleting the copy. 254 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP, 255 MachineInstr *CopyMI); 256 257 /// We found a copy which can be moved to its less frequent predecessor. 258 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 259 260 /// If the source of a copy is defined by a 261 /// trivial computation, replace the copy by rematerialize the definition. 262 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 263 bool &IsDefCopy); 264 265 /// Return true if a copy involving a physreg should be joined. 266 bool canJoinPhys(const CoalescerPair &CP); 267 268 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 269 /// number if it is not zero. If DstReg is a physical register and the 270 /// existing subregister number of the def / use being updated is not zero, 271 /// make sure to set it to the correct physical subregister. 272 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 273 274 /// If the given machine operand reads only undefined lanes add an undef 275 /// flag. 276 /// This can happen when undef uses were previously concealed by a copy 277 /// which we coalesced. Example: 278 /// %0:sub0<def,read-undef> = ... 279 /// %1 = COPY %0 <-- Coalescing COPY reveals undef 280 /// = use %1:sub1 <-- hidden undef use 281 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 282 MachineOperand &MO, unsigned SubRegIdx); 283 284 /// Handle copies of undef values. If the undef value is an incoming 285 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF. 286 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise, 287 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point). 288 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI); 289 290 /// Check whether or not we should apply the terminal rule on the 291 /// destination (Dst) of \p Copy. 292 /// When the terminal rule applies, Copy is not profitable to 293 /// coalesce. 294 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 295 /// at least one interference (Dst, Dst2). If Dst is terminal, the 296 /// terminal rule consists in checking that at least one of 297 /// interfering node, say Dst2, has an affinity of equal or greater 298 /// weight with Src. 299 /// In that case, Dst2 and Dst will not be able to be both coalesced 300 /// with Src. Since Dst2 exposes more coalescing opportunities than 301 /// Dst, we can drop \p Copy. 302 bool applyTerminalRule(const MachineInstr &Copy) const; 303 304 /// Wrapper method for \see LiveIntervals::shrinkToUses. 305 /// This method does the proper fixing of the live-ranges when the afore 306 /// mentioned method returns true. 307 void shrinkToUses(LiveInterval *LI, 308 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 309 NumShrinkToUses++; 310 if (LIS->shrinkToUses(LI, Dead)) { 311 /// Check whether or not \p LI is composed by multiple connected 312 /// components and if that is the case, fix that. 313 SmallVector<LiveInterval*, 8> SplitLIs; 314 LIS->splitSeparateComponents(*LI, SplitLIs); 315 } 316 } 317 318 /// Wrapper Method to do all the necessary work when an Instruction is 319 /// deleted. 320 /// Optimizations should use this to make sure that deleted instructions 321 /// are always accounted for. 322 void deleteInstr(MachineInstr* MI) { 323 ErasedInstrs.insert(MI); 324 LIS->RemoveMachineInstrFromMaps(*MI); 325 MI->eraseFromParent(); 326 } 327 328 public: 329 static char ID; ///< Class identification, replacement for typeinfo 330 331 RegisterCoalescer() : MachineFunctionPass(ID) { 332 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 333 } 334 335 void getAnalysisUsage(AnalysisUsage &AU) const override; 336 337 void releaseMemory() override; 338 339 /// This is the pass entry point. 340 bool runOnMachineFunction(MachineFunction&) override; 341 342 /// Implement the dump method. 343 void print(raw_ostream &O, const Module* = nullptr) const override; 344 }; 345 346 } // end anonymous namespace 347 348 char RegisterCoalescer::ID = 0; 349 350 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 351 352 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 353 "Simple Register Coalescing", false, false) 354 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 355 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 356 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 357 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 358 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 359 "Simple Register Coalescing", false, false) 360 361 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri, 362 const MachineInstr *MI, unsigned &Src, 363 unsigned &Dst, unsigned &SrcSub, 364 unsigned &DstSub) { 365 if (MI->isCopy()) { 366 Dst = MI->getOperand(0).getReg(); 367 DstSub = MI->getOperand(0).getSubReg(); 368 Src = MI->getOperand(1).getReg(); 369 SrcSub = MI->getOperand(1).getSubReg(); 370 } else if (MI->isSubregToReg()) { 371 Dst = MI->getOperand(0).getReg(); 372 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 373 MI->getOperand(3).getImm()); 374 Src = MI->getOperand(2).getReg(); 375 SrcSub = MI->getOperand(2).getSubReg(); 376 } else 377 return false; 378 return true; 379 } 380 381 /// Return true if this block should be vacated by the coalescer to eliminate 382 /// branches. The important cases to handle in the coalescer are critical edges 383 /// split during phi elimination which contain only copies. Simple blocks that 384 /// contain non-branches should also be vacated, but this can be handled by an 385 /// earlier pass similar to early if-conversion. 386 static bool isSplitEdge(const MachineBasicBlock *MBB) { 387 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 388 return false; 389 390 for (const auto &MI : *MBB) { 391 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 392 return false; 393 } 394 return true; 395 } 396 397 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 398 SrcReg = DstReg = 0; 399 SrcIdx = DstIdx = 0; 400 NewRC = nullptr; 401 Flipped = CrossClass = false; 402 403 unsigned Src, Dst, SrcSub, DstSub; 404 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 405 return false; 406 Partial = SrcSub || DstSub; 407 408 // If one register is a physreg, it must be Dst. 409 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 410 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 411 return false; 412 std::swap(Src, Dst); 413 std::swap(SrcSub, DstSub); 414 Flipped = true; 415 } 416 417 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 418 419 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 420 // Eliminate DstSub on a physreg. 421 if (DstSub) { 422 Dst = TRI.getSubReg(Dst, DstSub); 423 if (!Dst) return false; 424 DstSub = 0; 425 } 426 427 // Eliminate SrcSub by picking a corresponding Dst superregister. 428 if (SrcSub) { 429 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 430 if (!Dst) return false; 431 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 432 return false; 433 } 434 } else { 435 // Both registers are virtual. 436 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 437 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 438 439 // Both registers have subreg indices. 440 if (SrcSub && DstSub) { 441 // Copies between different sub-registers are never coalescable. 442 if (Src == Dst && SrcSub != DstSub) 443 return false; 444 445 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 446 SrcIdx, DstIdx); 447 if (!NewRC) 448 return false; 449 } else if (DstSub) { 450 // SrcReg will be merged with a sub-register of DstReg. 451 SrcIdx = DstSub; 452 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 453 } else if (SrcSub) { 454 // DstReg will be merged with a sub-register of SrcReg. 455 DstIdx = SrcSub; 456 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 457 } else { 458 // This is a straight copy without sub-registers. 459 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 460 } 461 462 // The combined constraint may be impossible to satisfy. 463 if (!NewRC) 464 return false; 465 466 // Prefer SrcReg to be a sub-register of DstReg. 467 // FIXME: Coalescer should support subregs symmetrically. 468 if (DstIdx && !SrcIdx) { 469 std::swap(Src, Dst); 470 std::swap(SrcIdx, DstIdx); 471 Flipped = !Flipped; 472 } 473 474 CrossClass = NewRC != DstRC || NewRC != SrcRC; 475 } 476 // Check our invariants 477 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 478 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 479 "Cannot have a physical SubIdx"); 480 SrcReg = Src; 481 DstReg = Dst; 482 return true; 483 } 484 485 bool CoalescerPair::flip() { 486 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 487 return false; 488 std::swap(SrcReg, DstReg); 489 std::swap(SrcIdx, DstIdx); 490 Flipped = !Flipped; 491 return true; 492 } 493 494 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 495 if (!MI) 496 return false; 497 unsigned Src, Dst, SrcSub, DstSub; 498 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 499 return false; 500 501 // Find the virtual register that is SrcReg. 502 if (Dst == SrcReg) { 503 std::swap(Src, Dst); 504 std::swap(SrcSub, DstSub); 505 } else if (Src != SrcReg) { 506 return false; 507 } 508 509 // Now check that Dst matches DstReg. 510 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 511 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 512 return false; 513 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 514 // DstSub could be set for a physreg from INSERT_SUBREG. 515 if (DstSub) 516 Dst = TRI.getSubReg(Dst, DstSub); 517 // Full copy of Src. 518 if (!SrcSub) 519 return DstReg == Dst; 520 // This is a partial register copy. Check that the parts match. 521 return TRI.getSubReg(DstReg, SrcSub) == Dst; 522 } else { 523 // DstReg is virtual. 524 if (DstReg != Dst) 525 return false; 526 // Registers match, do the subregisters line up? 527 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 528 TRI.composeSubRegIndices(DstIdx, DstSub); 529 } 530 } 531 532 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 533 AU.setPreservesCFG(); 534 AU.addRequired<AAResultsWrapperPass>(); 535 AU.addRequired<LiveIntervals>(); 536 AU.addPreserved<LiveIntervals>(); 537 AU.addPreserved<SlotIndexes>(); 538 AU.addRequired<MachineLoopInfo>(); 539 AU.addPreserved<MachineLoopInfo>(); 540 AU.addPreservedID(MachineDominatorsID); 541 MachineFunctionPass::getAnalysisUsage(AU); 542 } 543 544 void RegisterCoalescer::eliminateDeadDefs() { 545 SmallVector<unsigned, 8> NewRegs; 546 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 547 nullptr, this).eliminateDeadDefs(DeadDefs); 548 } 549 550 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 551 // MI may be in WorkList. Make sure we don't visit it. 552 ErasedInstrs.insert(MI); 553 } 554 555 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 556 MachineInstr *CopyMI) { 557 assert(!CP.isPartial() && "This doesn't work for partial copies."); 558 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 559 560 LiveInterval &IntA = 561 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 562 LiveInterval &IntB = 563 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 564 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 565 566 // We have a non-trivially-coalescable copy with IntA being the source and 567 // IntB being the dest, thus this defines a value number in IntB. If the 568 // source value number (in IntA) is defined by a copy from B, see if we can 569 // merge these two pieces of B into a single value number, eliminating a copy. 570 // For example: 571 // 572 // A3 = B0 573 // ... 574 // B1 = A3 <- this copy 575 // 576 // In this case, B0 can be extended to where the B1 copy lives, allowing the 577 // B1 value number to be replaced with B0 (which simplifies the B 578 // liveinterval). 579 580 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 581 // the example above. 582 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 583 if (BS == IntB.end()) return false; 584 VNInfo *BValNo = BS->valno; 585 586 // Get the location that B is defined at. Two options: either this value has 587 // an unknown definition point or it is defined at CopyIdx. If unknown, we 588 // can't process it. 589 if (BValNo->def != CopyIdx) return false; 590 591 // AValNo is the value number in A that defines the copy, A3 in the example. 592 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 593 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 594 // The live segment might not exist after fun with physreg coalescing. 595 if (AS == IntA.end()) return false; 596 VNInfo *AValNo = AS->valno; 597 598 // If AValNo is defined as a copy from IntB, we can potentially process this. 599 // Get the instruction that defines this value number. 600 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 601 // Don't allow any partial copies, even if isCoalescable() allows them. 602 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 603 return false; 604 605 // Get the Segment in IntB that this value number starts with. 606 LiveInterval::iterator ValS = 607 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 608 if (ValS == IntB.end()) 609 return false; 610 611 // Make sure that the end of the live segment is inside the same block as 612 // CopyMI. 613 MachineInstr *ValSEndInst = 614 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 615 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 616 return false; 617 618 // Okay, we now know that ValS ends in the same block that the CopyMI 619 // live-range starts. If there are no intervening live segments between them 620 // in IntB, we can merge them. 621 if (ValS+1 != BS) return false; 622 623 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI)); 624 625 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 626 // We are about to delete CopyMI, so need to remove it as the 'instruction 627 // that defines this value #'. Update the valnum with the new defining 628 // instruction #. 629 BValNo->def = FillerStart; 630 631 // Okay, we can merge them. We need to insert a new liverange: 632 // [ValS.end, BS.begin) of either value number, then we merge the 633 // two value numbers. 634 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 635 636 // Okay, merge "B1" into the same value number as "B0". 637 if (BValNo != ValS->valno) 638 IntB.MergeValueNumberInto(BValNo, ValS->valno); 639 640 // Do the same for the subregister segments. 641 for (LiveInterval::SubRange &S : IntB.subranges()) { 642 // Check for SubRange Segments of the form [1234r,1234d:0) which can be 643 // removed to prevent creating bogus SubRange Segments. 644 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx); 645 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) { 646 S.removeSegment(*SS, true); 647 continue; 648 } 649 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 650 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 651 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 652 if (SubBValNo != SubValSNo) 653 S.MergeValueNumberInto(SubBValNo, SubValSNo); 654 } 655 656 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n'); 657 658 // If the source instruction was killing the source register before the 659 // merge, unset the isKill marker given the live range has been extended. 660 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 661 if (UIdx != -1) { 662 ValSEndInst->getOperand(UIdx).setIsKill(false); 663 } 664 665 // Rewrite the copy. 666 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 667 // If the copy instruction was killing the destination register or any 668 // subrange before the merge trim the live range. 669 bool RecomputeLiveRange = AS->end == CopyIdx; 670 if (!RecomputeLiveRange) { 671 for (LiveInterval::SubRange &S : IntA.subranges()) { 672 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx); 673 if (SS != S.end() && SS->end == CopyIdx) { 674 RecomputeLiveRange = true; 675 break; 676 } 677 } 678 } 679 if (RecomputeLiveRange) 680 shrinkToUses(&IntA); 681 682 ++numExtends; 683 return true; 684 } 685 686 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 687 LiveInterval &IntB, 688 VNInfo *AValNo, 689 VNInfo *BValNo) { 690 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 691 // the PHI values. 692 if (LIS->hasPHIKill(IntA, AValNo)) 693 return true; 694 695 for (LiveRange::Segment &ASeg : IntA.segments) { 696 if (ASeg.valno != AValNo) continue; 697 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start); 698 if (BI != IntB.begin()) 699 --BI; 700 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 701 if (BI->valno == BValNo) 702 continue; 703 if (BI->start <= ASeg.start && BI->end > ASeg.start) 704 return true; 705 if (BI->start > ASeg.start && BI->start < ASeg.end) 706 return true; 707 } 708 } 709 return false; 710 } 711 712 /// Copy segments with value number @p SrcValNo from liverange @p Src to live 713 /// range @Dst and use value number @p DstValNo there. 714 static std::pair<bool,bool> 715 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src, 716 const VNInfo *SrcValNo) { 717 bool Changed = false; 718 bool MergedWithDead = false; 719 for (const LiveRange::Segment &S : Src.segments) { 720 if (S.valno != SrcValNo) 721 continue; 722 // This is adding a segment from Src that ends in a copy that is about 723 // to be removed. This segment is going to be merged with a pre-existing 724 // segment in Dst. This works, except in cases when the corresponding 725 // segment in Dst is dead. For example: adding [192r,208r:1) from Src 726 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst. 727 // Recognized such cases, so that the segments can be shrunk. 728 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo); 729 LiveRange::Segment &Merged = *Dst.addSegment(Added); 730 if (Merged.end.isDead()) 731 MergedWithDead = true; 732 Changed = true; 733 } 734 return std::make_pair(Changed, MergedWithDead); 735 } 736 737 std::pair<bool,bool> 738 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 739 MachineInstr *CopyMI) { 740 assert(!CP.isPhys()); 741 742 LiveInterval &IntA = 743 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 744 LiveInterval &IntB = 745 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 746 747 // We found a non-trivially-coalescable copy with IntA being the source and 748 // IntB being the dest, thus this defines a value number in IntB. If the 749 // source value number (in IntA) is defined by a commutable instruction and 750 // its other operand is coalesced to the copy dest register, see if we can 751 // transform the copy into a noop by commuting the definition. For example, 752 // 753 // A3 = op A2 killed B0 754 // ... 755 // B1 = A3 <- this copy 756 // ... 757 // = op A3 <- more uses 758 // 759 // ==> 760 // 761 // B2 = op B0 killed A2 762 // ... 763 // B1 = B2 <- now an identity copy 764 // ... 765 // = op B2 <- more uses 766 767 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 768 // the example above. 769 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 770 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 771 assert(BValNo != nullptr && BValNo->def == CopyIdx); 772 773 // AValNo is the value number in A that defines the copy, A3 in the example. 774 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 775 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 776 if (AValNo->isPHIDef()) 777 return { false, false }; 778 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 779 if (!DefMI) 780 return { false, false }; 781 if (!DefMI->isCommutable()) 782 return { false, false }; 783 // If DefMI is a two-address instruction then commuting it will change the 784 // destination register. 785 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 786 assert(DefIdx != -1); 787 unsigned UseOpIdx; 788 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 789 return { false, false }; 790 791 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 792 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 793 // passed to the method. That _other_ operand is chosen by 794 // the findCommutedOpIndices() method. 795 // 796 // That is obviously an area for improvement in case of instructions having 797 // more than 2 operands. For example, if some instruction has 3 commutable 798 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 799 // op#2<->op#3) of commute transformation should be considered/tried here. 800 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 801 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 802 return { false, false }; 803 804 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 805 unsigned NewReg = NewDstMO.getReg(); 806 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 807 return { false, false }; 808 809 // Make sure there are no other definitions of IntB that would reach the 810 // uses which the new definition can reach. 811 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 812 return { false, false }; 813 814 // If some of the uses of IntA.reg is already coalesced away, return false. 815 // It's not possible to determine whether it's safe to perform the coalescing. 816 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 817 MachineInstr *UseMI = MO.getParent(); 818 unsigned OpNo = &MO - &UseMI->getOperand(0); 819 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 820 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 821 if (US == IntA.end() || US->valno != AValNo) 822 continue; 823 // If this use is tied to a def, we can't rewrite the register. 824 if (UseMI->isRegTiedToDefOperand(OpNo)) 825 return { false, false }; 826 } 827 828 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 829 << *DefMI); 830 831 // At this point we have decided that it is legal to do this 832 // transformation. Start by commuting the instruction. 833 MachineBasicBlock *MBB = DefMI->getParent(); 834 MachineInstr *NewMI = 835 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 836 if (!NewMI) 837 return { false, false }; 838 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 839 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 840 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 841 return { false, false }; 842 if (NewMI != DefMI) { 843 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 844 MachineBasicBlock::iterator Pos = DefMI; 845 MBB->insert(Pos, NewMI); 846 MBB->erase(DefMI); 847 } 848 849 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 850 // A = or A, B 851 // ... 852 // B = A 853 // ... 854 // C = killed A 855 // ... 856 // = B 857 858 // Update uses of IntA of the specific Val# with IntB. 859 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 860 UE = MRI->use_end(); 861 UI != UE; /* ++UI is below because of possible MI removal */) { 862 MachineOperand &UseMO = *UI; 863 ++UI; 864 if (UseMO.isUndef()) 865 continue; 866 MachineInstr *UseMI = UseMO.getParent(); 867 if (UseMI->isDebugValue()) { 868 // FIXME These don't have an instruction index. Not clear we have enough 869 // info to decide whether to do this replacement or not. For now do it. 870 UseMO.setReg(NewReg); 871 continue; 872 } 873 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 874 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 875 assert(US != IntA.end() && "Use must be live"); 876 if (US->valno != AValNo) 877 continue; 878 // Kill flags are no longer accurate. They are recomputed after RA. 879 UseMO.setIsKill(false); 880 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 881 UseMO.substPhysReg(NewReg, *TRI); 882 else 883 UseMO.setReg(NewReg); 884 if (UseMI == CopyMI) 885 continue; 886 if (!UseMI->isCopy()) 887 continue; 888 if (UseMI->getOperand(0).getReg() != IntB.reg || 889 UseMI->getOperand(0).getSubReg()) 890 continue; 891 892 // This copy will become a noop. If it's defining a new val#, merge it into 893 // BValNo. 894 SlotIndex DefIdx = UseIdx.getRegSlot(); 895 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 896 if (!DVNI) 897 continue; 898 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 899 assert(DVNI->def == DefIdx); 900 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 901 for (LiveInterval::SubRange &S : IntB.subranges()) { 902 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 903 if (!SubDVNI) 904 continue; 905 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 906 assert(SubBValNo->def == CopyIdx); 907 S.MergeValueNumberInto(SubDVNI, SubBValNo); 908 } 909 910 deleteInstr(UseMI); 911 } 912 913 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 914 // is updated. 915 bool ShrinkB = false; 916 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 917 if (IntA.hasSubRanges() || IntB.hasSubRanges()) { 918 if (!IntA.hasSubRanges()) { 919 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 920 IntA.createSubRangeFrom(Allocator, Mask, IntA); 921 } else if (!IntB.hasSubRanges()) { 922 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg); 923 IntB.createSubRangeFrom(Allocator, Mask, IntB); 924 } 925 SlotIndex AIdx = CopyIdx.getRegSlot(true); 926 LaneBitmask MaskA; 927 const SlotIndexes &Indexes = *LIS->getSlotIndexes(); 928 for (LiveInterval::SubRange &SA : IntA.subranges()) { 929 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 930 assert(ASubValNo != nullptr); 931 MaskA |= SA.LaneMask; 932 933 IntB.refineSubRanges( 934 Allocator, SA.LaneMask, 935 [&Allocator, &SA, CopyIdx, ASubValNo, 936 &ShrinkB](LiveInterval::SubRange &SR) { 937 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator) 938 : SR.getVNInfoAt(CopyIdx); 939 assert(BSubValNo != nullptr); 940 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 941 ShrinkB |= P.second; 942 if (P.first) 943 BSubValNo->def = ASubValNo->def; 944 }, 945 Indexes, *TRI); 946 } 947 // Go over all subranges of IntB that have not been covered by IntA, 948 // and delete the segments starting at CopyIdx. This can happen if 949 // IntA has undef lanes that are defined in IntB. 950 for (LiveInterval::SubRange &SB : IntB.subranges()) { 951 if ((SB.LaneMask & MaskA).any()) 952 continue; 953 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx)) 954 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex()) 955 SB.removeSegment(*S, true); 956 } 957 } 958 959 BValNo->def = AValNo->def; 960 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 961 ShrinkB |= P.second; 962 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 963 964 LIS->removeVRegDefAt(IntA, AValNo->def); 965 966 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 967 ++numCommutes; 968 return { true, ShrinkB }; 969 } 970 971 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 972 /// predecessor of BB2, and if B is not redefined on the way from A = B 973 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the 974 /// execution goes through the path from BB0 to BB2. We may move B = A 975 /// to the predecessor without such reversed copy. 976 /// So we will transform the program from: 977 /// BB0: 978 /// A = B; BB1: 979 /// ... ... 980 /// / \ / 981 /// BB2: 982 /// ... 983 /// B = A; 984 /// 985 /// to: 986 /// 987 /// BB0: BB1: 988 /// A = B; ... 989 /// ... B = A; 990 /// / \ / 991 /// BB2: 992 /// ... 993 /// 994 /// A special case is when BB0 and BB2 are the same BB which is the only 995 /// BB in a loop: 996 /// BB1: 997 /// ... 998 /// BB0/BB2: ---- 999 /// B = A; | 1000 /// ... | 1001 /// A = B; | 1002 /// |------- 1003 /// | 1004 /// We may hoist B = A from BB0/BB2 to BB1. 1005 /// 1006 /// The major preconditions for correctness to remove such partial 1007 /// redundancy include: 1008 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 1009 /// the PHI is defined by the reversed copy A = B in BB0. 1010 /// 2. No B is referenced from the start of BB2 to B = A. 1011 /// 3. No B is defined from A = B to the end of BB0. 1012 /// 4. BB1 has only one successor. 1013 /// 1014 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 1015 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 1016 /// colder place, which not only prevent endless loop, but also make sure 1017 /// the movement of copy is beneficial. 1018 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 1019 MachineInstr &CopyMI) { 1020 assert(!CP.isPhys()); 1021 if (!CopyMI.isFullCopy()) 1022 return false; 1023 1024 MachineBasicBlock &MBB = *CopyMI.getParent(); 1025 if (MBB.isEHPad()) 1026 return false; 1027 1028 if (MBB.pred_size() != 2) 1029 return false; 1030 1031 LiveInterval &IntA = 1032 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 1033 LiveInterval &IntB = 1034 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 1035 1036 // A is defined by PHI at the entry of MBB. 1037 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 1038 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 1039 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 1040 if (!AValNo->isPHIDef()) 1041 return false; 1042 1043 // No B is referenced before CopyMI in MBB. 1044 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 1045 return false; 1046 1047 // MBB has two predecessors: one contains A = B so no copy will be inserted 1048 // for it. The other one will have a copy moved from MBB. 1049 bool FoundReverseCopy = false; 1050 MachineBasicBlock *CopyLeftBB = nullptr; 1051 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1052 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 1053 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 1054 if (!DefMI || !DefMI->isFullCopy()) { 1055 CopyLeftBB = Pred; 1056 continue; 1057 } 1058 // Check DefMI is a reverse copy and it is in BB Pred. 1059 if (DefMI->getOperand(0).getReg() != IntA.reg || 1060 DefMI->getOperand(1).getReg() != IntB.reg || 1061 DefMI->getParent() != Pred) { 1062 CopyLeftBB = Pred; 1063 continue; 1064 } 1065 // If there is any other def of B after DefMI and before the end of Pred, 1066 // we need to keep the copy of B = A at the end of Pred if we remove 1067 // B = A from MBB. 1068 bool ValB_Changed = false; 1069 for (auto VNI : IntB.valnos) { 1070 if (VNI->isUnused()) 1071 continue; 1072 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 1073 ValB_Changed = true; 1074 break; 1075 } 1076 } 1077 if (ValB_Changed) { 1078 CopyLeftBB = Pred; 1079 continue; 1080 } 1081 FoundReverseCopy = true; 1082 } 1083 1084 // If no reverse copy is found in predecessors, nothing to do. 1085 if (!FoundReverseCopy) 1086 return false; 1087 1088 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 1089 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 1090 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 1091 // update IntA/IntB. 1092 // 1093 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 1094 // MBB is hotter than CopyLeftBB. 1095 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 1096 return false; 1097 1098 // Now (almost sure it's) ok to move copy. 1099 if (CopyLeftBB) { 1100 // Position in CopyLeftBB where we should insert new copy. 1101 auto InsPos = CopyLeftBB->getFirstTerminator(); 1102 1103 // Make sure that B isn't referenced in the terminators (if any) at the end 1104 // of the predecessor since we're about to insert a new definition of B 1105 // before them. 1106 if (InsPos != CopyLeftBB->end()) { 1107 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true); 1108 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB))) 1109 return false; 1110 } 1111 1112 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to " 1113 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI); 1114 1115 // Insert new copy to CopyLeftBB. 1116 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1117 TII->get(TargetOpcode::COPY), IntB.reg) 1118 .addReg(IntA.reg); 1119 SlotIndex NewCopyIdx = 1120 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1121 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1122 for (LiveInterval::SubRange &SR : IntB.subranges()) 1123 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1124 1125 // If the newly created Instruction has an address of an instruction that was 1126 // deleted before (object recycled by the allocator) it needs to be removed from 1127 // the deleted list. 1128 ErasedInstrs.erase(NewCopyMI); 1129 } else { 1130 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from " 1131 << printMBBReference(MBB) << '\t' << CopyMI); 1132 } 1133 1134 // Remove CopyMI. 1135 // Note: This is fine to remove the copy before updating the live-ranges. 1136 // While updating the live-ranges, we only look at slot indices and 1137 // never go back to the instruction. 1138 // Mark instructions as deleted. 1139 deleteInstr(&CopyMI); 1140 1141 // Update the liveness. 1142 SmallVector<SlotIndex, 8> EndPoints; 1143 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1144 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1145 &EndPoints); 1146 BValNo->markUnused(); 1147 // Extend IntB to the EndPoints of its original live interval. 1148 LIS->extendToIndices(IntB, EndPoints); 1149 1150 // Now, do the same for its subranges. 1151 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1152 EndPoints.clear(); 1153 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1154 assert(BValNo && "All sublanes should be live"); 1155 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1156 BValNo->markUnused(); 1157 // We can have a situation where the result of the original copy is live, 1158 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes 1159 // the copy appear as an endpoint from pruneValue(), but we don't want it 1160 // to because the copy has been removed. We can go ahead and remove that 1161 // endpoint; there is no other situation here that there could be a use at 1162 // the same place as we know that the copy is a full copy. 1163 for (unsigned I = 0; I != EndPoints.size(); ) { 1164 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) { 1165 EndPoints[I] = EndPoints.back(); 1166 EndPoints.pop_back(); 1167 continue; 1168 } 1169 ++I; 1170 } 1171 LIS->extendToIndices(SR, EndPoints); 1172 } 1173 // If any dead defs were extended, truncate them. 1174 shrinkToUses(&IntB); 1175 1176 // Finally, update the live-range of IntA. 1177 shrinkToUses(&IntA); 1178 return true; 1179 } 1180 1181 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1182 /// defining a subregister. 1183 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 1184 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && 1185 "This code cannot handle physreg aliasing"); 1186 for (const MachineOperand &Op : MI.operands()) { 1187 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1188 continue; 1189 // Return true if we define the full register or don't care about the value 1190 // inside other subregisters. 1191 if (Op.getSubReg() == 0 || Op.isUndef()) 1192 return true; 1193 } 1194 return false; 1195 } 1196 1197 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1198 MachineInstr *CopyMI, 1199 bool &IsDefCopy) { 1200 IsDefCopy = false; 1201 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1202 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1203 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1204 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1205 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1206 return false; 1207 1208 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1209 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1210 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1211 if (!ValNo) 1212 return false; 1213 if (ValNo->isPHIDef() || ValNo->isUnused()) 1214 return false; 1215 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1216 if (!DefMI) 1217 return false; 1218 if (DefMI->isCopyLike()) { 1219 IsDefCopy = true; 1220 return false; 1221 } 1222 if (!TII->isAsCheapAsAMove(*DefMI)) 1223 return false; 1224 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1225 return false; 1226 if (!definesFullReg(*DefMI, SrcReg)) 1227 return false; 1228 bool SawStore = false; 1229 if (!DefMI->isSafeToMove(AA, SawStore)) 1230 return false; 1231 const MCInstrDesc &MCID = DefMI->getDesc(); 1232 if (MCID.getNumDefs() != 1) 1233 return false; 1234 // Only support subregister destinations when the def is read-undef. 1235 MachineOperand &DstOperand = CopyMI->getOperand(0); 1236 unsigned CopyDstReg = DstOperand.getReg(); 1237 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1238 return false; 1239 1240 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1241 // the register substantially (beyond both source and dest size). This is bad 1242 // for performance since it can cascade through a function, introducing many 1243 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1244 // around after a few subreg copies). 1245 if (SrcIdx && DstIdx) 1246 return false; 1247 1248 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1249 if (!DefMI->isImplicitDef()) { 1250 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 1251 unsigned NewDstReg = DstReg; 1252 1253 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1254 DefMI->getOperand(0).getSubReg()); 1255 if (NewDstIdx) 1256 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1257 1258 // Finally, make sure that the physical subregister that will be 1259 // constructed later is permitted for the instruction. 1260 if (!DefRC->contains(NewDstReg)) 1261 return false; 1262 } else { 1263 // Theoretically, some stack frame reference could exist. Just make sure 1264 // it hasn't actually happened. 1265 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 1266 "Only expect to deal with virtual or physical registers"); 1267 } 1268 } 1269 1270 DebugLoc DL = CopyMI->getDebugLoc(); 1271 MachineBasicBlock *MBB = CopyMI->getParent(); 1272 MachineBasicBlock::iterator MII = 1273 std::next(MachineBasicBlock::iterator(CopyMI)); 1274 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1275 MachineInstr &NewMI = *std::prev(MII); 1276 NewMI.setDebugLoc(DL); 1277 1278 // In a situation like the following: 1279 // %0:subreg = instr ; DefMI, subreg = DstIdx 1280 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0 1281 // instead of widening %1 to the register class of %0 simply do: 1282 // %1 = instr 1283 const TargetRegisterClass *NewRC = CP.getNewRC(); 1284 if (DstIdx != 0) { 1285 MachineOperand &DefMO = NewMI.getOperand(0); 1286 if (DefMO.getSubReg() == DstIdx) { 1287 assert(SrcIdx == 0 && CP.isFlipped() 1288 && "Shouldn't have SrcIdx+DstIdx at this point"); 1289 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1290 const TargetRegisterClass *CommonRC = 1291 TRI->getCommonSubClass(DefRC, DstRC); 1292 if (CommonRC != nullptr) { 1293 NewRC = CommonRC; 1294 DstIdx = 0; 1295 DefMO.setSubReg(0); 1296 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1297 } 1298 } 1299 } 1300 1301 // CopyMI may have implicit operands, save them so that we can transfer them 1302 // over to the newly materialized instruction after CopyMI is removed. 1303 SmallVector<MachineOperand, 4> ImplicitOps; 1304 ImplicitOps.reserve(CopyMI->getNumOperands() - 1305 CopyMI->getDesc().getNumOperands()); 1306 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1307 E = CopyMI->getNumOperands(); 1308 I != E; ++I) { 1309 MachineOperand &MO = CopyMI->getOperand(I); 1310 if (MO.isReg()) { 1311 assert(MO.isImplicit() && "No explicit operands after implicit operands."); 1312 // Discard VReg implicit defs. 1313 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1314 ImplicitOps.push_back(MO); 1315 } 1316 } 1317 1318 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1319 CopyMI->eraseFromParent(); 1320 ErasedInstrs.insert(CopyMI); 1321 1322 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1323 // We need to remember these so we can add intervals once we insert 1324 // NewMI into SlotIndexes. 1325 SmallVector<unsigned, 4> NewMIImplDefs; 1326 for (unsigned i = NewMI.getDesc().getNumOperands(), 1327 e = NewMI.getNumOperands(); 1328 i != e; ++i) { 1329 MachineOperand &MO = NewMI.getOperand(i); 1330 if (MO.isReg() && MO.isDef()) { 1331 assert(MO.isImplicit() && MO.isDead() && 1332 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 1333 NewMIImplDefs.push_back(MO.getReg()); 1334 } 1335 } 1336 1337 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 1338 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1339 1340 if (DefRC != nullptr) { 1341 if (NewIdx) 1342 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1343 else 1344 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1345 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1346 } 1347 // Remap subranges to new lanemask and change register class. 1348 LiveInterval &DstInt = LIS->getInterval(DstReg); 1349 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1350 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1351 } 1352 MRI->setRegClass(DstReg, NewRC); 1353 1354 // Update machine operands and add flags. 1355 updateRegDefsUses(DstReg, DstReg, DstIdx); 1356 NewMI.getOperand(0).setSubReg(NewIdx); 1357 // updateRegDefUses can add an "undef" flag to the definition, since 1358 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make 1359 // sure that "undef" is not set. 1360 if (NewIdx == 0) 1361 NewMI.getOperand(0).setIsUndef(false); 1362 // Add dead subregister definitions if we are defining the whole register 1363 // but only part of it is live. 1364 // This could happen if the rematerialization instruction is rematerializing 1365 // more than actually is used in the register. 1366 // An example would be: 1367 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1368 // ; Copying only part of the register here, but the rest is undef. 1369 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit 1370 // ==> 1371 // ; Materialize all the constants but only using one 1372 // %2 = LOAD_CONSTANTS 5, 8 1373 // 1374 // at this point for the part that wasn't defined before we could have 1375 // subranges missing the definition. 1376 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1377 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1378 SlotIndex DefIndex = 1379 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1380 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1381 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1382 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1383 if (!SR.liveAt(DefIndex)) 1384 SR.createDeadDef(DefIndex, Alloc); 1385 MaxMask &= ~SR.LaneMask; 1386 } 1387 if (MaxMask.any()) { 1388 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1389 SR->createDeadDef(DefIndex, Alloc); 1390 } 1391 } 1392 1393 // Make sure that the subrange for resultant undef is removed 1394 // For example: 1395 // %1:sub1<def,read-undef> = LOAD CONSTANT 1 1396 // %2 = COPY %1 1397 // ==> 1398 // %2:sub1<def, read-undef> = LOAD CONSTANT 1 1399 // ; Correct but need to remove the subrange for %2:sub0 1400 // ; as it is now undef 1401 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1402 // The affected subregister segments can be removed. 1403 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1404 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1405 bool UpdatedSubRanges = false; 1406 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1407 if ((SR.LaneMask & DstMask).none()) { 1408 LLVM_DEBUG(dbgs() 1409 << "Removing undefined SubRange " 1410 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1411 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1412 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1413 SR.removeValNo(RmValNo); 1414 UpdatedSubRanges = true; 1415 } 1416 } 1417 } 1418 if (UpdatedSubRanges) 1419 DstInt.removeEmptySubRanges(); 1420 } 1421 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1422 // The New instruction may be defining a sub-register of what's actually 1423 // been asked for. If so it must implicitly define the whole thing. 1424 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 1425 "Only expect virtual or physical registers in remat"); 1426 NewMI.getOperand(0).setIsDead(true); 1427 NewMI.addOperand(MachineOperand::CreateReg( 1428 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1429 // Record small dead def live-ranges for all the subregisters 1430 // of the destination register. 1431 // Otherwise, variables that live through may miss some 1432 // interferences, thus creating invalid allocation. 1433 // E.g., i386 code: 1434 // %1 = somedef ; %1 GR8 1435 // %2 = remat ; %2 GR32 1436 // CL = COPY %2.sub_8bit 1437 // = somedef %1 ; %1 GR8 1438 // => 1439 // %1 = somedef ; %1 GR8 1440 // dead ECX = remat ; implicit-def CL 1441 // = somedef %1 ; %1 GR8 1442 // %1 will see the interferences with CL but not with CH since 1443 // no live-ranges would have been created for ECX. 1444 // Fix that! 1445 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1446 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1447 Units.isValid(); ++Units) 1448 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1449 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1450 } 1451 1452 if (NewMI.getOperand(0).getSubReg()) 1453 NewMI.getOperand(0).setIsUndef(); 1454 1455 // Transfer over implicit operands to the rematerialized instruction. 1456 for (MachineOperand &MO : ImplicitOps) 1457 NewMI.addOperand(MO); 1458 1459 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1460 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1461 unsigned Reg = NewMIImplDefs[i]; 1462 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1463 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1464 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1465 } 1466 1467 LLVM_DEBUG(dbgs() << "Remat: " << NewMI); 1468 ++NumReMats; 1469 1470 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1471 // to describe DstReg instead. 1472 if (MRI->use_nodbg_empty(SrcReg)) { 1473 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1474 MachineInstr *UseMI = UseMO.getParent(); 1475 if (UseMI->isDebugValue()) { 1476 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 1477 UseMO.substPhysReg(DstReg, *TRI); 1478 else 1479 UseMO.setReg(DstReg); 1480 // Move the debug value directly after the def of the rematerialized 1481 // value in DstReg. 1482 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); 1483 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1484 } 1485 } 1486 } 1487 1488 if (ToBeUpdated.count(SrcReg)) 1489 return true; 1490 1491 unsigned NumCopyUses = 0; 1492 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 1493 if (UseMO.getParent()->isCopyLike()) 1494 NumCopyUses++; 1495 } 1496 if (NumCopyUses < LateRematUpdateThreshold) { 1497 // The source interval can become smaller because we removed a use. 1498 shrinkToUses(&SrcInt, &DeadDefs); 1499 if (!DeadDefs.empty()) 1500 eliminateDeadDefs(); 1501 } else { 1502 ToBeUpdated.insert(SrcReg); 1503 } 1504 return true; 1505 } 1506 1507 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1508 // ProcessImplicitDefs may leave some copies of <undef> values, it only 1509 // removes local variables. When we have a copy like: 1510 // 1511 // %1 = COPY undef %2 1512 // 1513 // We delete the copy and remove the corresponding value number from %1. 1514 // Any uses of that value number are marked as <undef>. 1515 1516 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1517 // CoalescerPair may have a new register class with adjusted subreg indices 1518 // at this point. 1519 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1520 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) 1521 return nullptr; 1522 1523 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1524 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1525 // CopyMI is undef iff SrcReg is not live before the instruction. 1526 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1527 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1528 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1529 if ((SR.LaneMask & SrcMask).none()) 1530 continue; 1531 if (SR.liveAt(Idx)) 1532 return nullptr; 1533 } 1534 } else if (SrcLI.liveAt(Idx)) 1535 return nullptr; 1536 1537 // If the undef copy defines a live-out value (i.e. an input to a PHI def), 1538 // then replace it with an IMPLICIT_DEF. 1539 LiveInterval &DstLI = LIS->getInterval(DstReg); 1540 SlotIndex RegIndex = Idx.getRegSlot(); 1541 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex); 1542 assert(Seg != nullptr && "No segment for defining instruction"); 1543 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) { 1544 if (V->isPHIDef()) { 1545 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1546 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) { 1547 MachineOperand &MO = CopyMI->getOperand(i-1); 1548 if (MO.isReg() && MO.isUse()) 1549 CopyMI->RemoveOperand(i-1); 1550 } 1551 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an " 1552 "implicit def\n"); 1553 return CopyMI; 1554 } 1555 } 1556 1557 // Remove any DstReg segments starting at the instruction. 1558 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1559 1560 // Remove value or merge with previous one in case of a subregister def. 1561 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1562 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1563 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1564 1565 // The affected subregister segments can be removed. 1566 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1567 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1568 if ((SR.LaneMask & DstMask).none()) 1569 continue; 1570 1571 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1572 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1573 SR.removeValNo(SVNI); 1574 } 1575 DstLI.removeEmptySubRanges(); 1576 } else 1577 LIS->removeVRegDefAt(DstLI, RegIndex); 1578 1579 // Mark uses as undef. 1580 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1581 if (MO.isDef() /*|| MO.isUndef()*/) 1582 continue; 1583 const MachineInstr &MI = *MO.getParent(); 1584 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1585 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1586 bool isLive; 1587 if (!UseMask.all() && DstLI.hasSubRanges()) { 1588 isLive = false; 1589 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1590 if ((SR.LaneMask & UseMask).none()) 1591 continue; 1592 if (SR.liveAt(UseIdx)) { 1593 isLive = true; 1594 break; 1595 } 1596 } 1597 } else 1598 isLive = DstLI.liveAt(UseIdx); 1599 if (isLive) 1600 continue; 1601 MO.setIsUndef(true); 1602 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1603 } 1604 1605 // A def of a subregister may be a use of the other subregisters, so 1606 // deleting a def of a subregister may also remove uses. Since CopyMI 1607 // is still part of the function (but about to be erased), mark all 1608 // defs of DstReg in it as <undef>, so that shrinkToUses would 1609 // ignore them. 1610 for (MachineOperand &MO : CopyMI->operands()) 1611 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1612 MO.setIsUndef(true); 1613 LIS->shrinkToUses(&DstLI); 1614 1615 return CopyMI; 1616 } 1617 1618 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1619 MachineOperand &MO, unsigned SubRegIdx) { 1620 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1621 if (MO.isDef()) 1622 Mask = ~Mask; 1623 bool IsUndef = true; 1624 for (const LiveInterval::SubRange &S : Int.subranges()) { 1625 if ((S.LaneMask & Mask).none()) 1626 continue; 1627 if (S.liveAt(UseIdx)) { 1628 IsUndef = false; 1629 break; 1630 } 1631 } 1632 if (IsUndef) { 1633 MO.setIsUndef(true); 1634 // We found out some subregister use is actually reading an undefined 1635 // value. In some cases the whole vreg has become undefined at this 1636 // point so we have to potentially shrink the main range if the 1637 // use was ending a live segment there. 1638 LiveQueryResult Q = Int.Query(UseIdx); 1639 if (Q.valueOut() == nullptr) 1640 ShrinkMainRange = true; 1641 } 1642 } 1643 1644 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 1645 unsigned DstReg, 1646 unsigned SubIdx) { 1647 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 1648 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1649 1650 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1651 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1652 unsigned SubReg = MO.getSubReg(); 1653 if (SubReg == 0 || MO.isUndef()) 1654 continue; 1655 MachineInstr &MI = *MO.getParent(); 1656 if (MI.isDebugValue()) 1657 continue; 1658 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1659 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1660 } 1661 } 1662 1663 SmallPtrSet<MachineInstr*, 8> Visited; 1664 for (MachineRegisterInfo::reg_instr_iterator 1665 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1666 I != E; ) { 1667 MachineInstr *UseMI = &*(I++); 1668 1669 // Each instruction can only be rewritten once because sub-register 1670 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1671 // the UseMI operands removes them from the SrcReg use-def chain, but when 1672 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1673 // operands mentioning the virtual register. 1674 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1675 continue; 1676 1677 SmallVector<unsigned,8> Ops; 1678 bool Reads, Writes; 1679 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1680 1681 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1682 // because SrcReg is a sub-register. 1683 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) 1684 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1685 1686 // Replace SrcReg with DstReg in all UseMI operands. 1687 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1688 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1689 1690 // Adjust <undef> flags in case of sub-register joins. We don't want to 1691 // turn a full def into a read-modify-write sub-register def and vice 1692 // versa. 1693 if (SubIdx && MO.isDef()) 1694 MO.setIsUndef(!Reads); 1695 1696 // A subreg use of a partially undef (super) register may be a complete 1697 // undef use now and then has to be marked that way. 1698 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1699 if (!DstInt->hasSubRanges()) { 1700 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1701 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1702 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1703 } 1704 SlotIndex MIIdx = UseMI->isDebugValue() 1705 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1706 : LIS->getInstructionIndex(*UseMI); 1707 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1708 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1709 } 1710 1711 if (DstIsPhys) 1712 MO.substPhysReg(DstReg, *TRI); 1713 else 1714 MO.substVirtReg(DstReg, SubIdx, *TRI); 1715 } 1716 1717 LLVM_DEBUG({ 1718 dbgs() << "\t\tupdated: "; 1719 if (!UseMI->isDebugValue()) 1720 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1721 dbgs() << *UseMI; 1722 }); 1723 } 1724 } 1725 1726 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1727 // Always join simple intervals that are defined by a single copy from a 1728 // reserved register. This doesn't increase register pressure, so it is 1729 // always beneficial. 1730 if (!MRI->isReserved(CP.getDstReg())) { 1731 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1732 return false; 1733 } 1734 1735 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1736 if (JoinVInt.containsOneValue()) 1737 return true; 1738 1739 LLVM_DEBUG( 1740 dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1741 return false; 1742 } 1743 1744 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1745 Again = false; 1746 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1747 1748 CoalescerPair CP(*TRI); 1749 if (!CP.setRegisters(CopyMI)) { 1750 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n"); 1751 return false; 1752 } 1753 1754 if (CP.getNewRC()) { 1755 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1756 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1757 unsigned SrcIdx = CP.getSrcIdx(); 1758 unsigned DstIdx = CP.getDstIdx(); 1759 if (CP.isFlipped()) { 1760 std::swap(SrcIdx, DstIdx); 1761 std::swap(SrcRC, DstRC); 1762 } 1763 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1764 CP.getNewRC(), *LIS)) { 1765 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1766 return false; 1767 } 1768 } 1769 1770 // Dead code elimination. This really should be handled by MachineDCE, but 1771 // sometimes dead copies slip through, and we can't generate invalid live 1772 // ranges. 1773 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1774 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n"); 1775 DeadDefs.push_back(CopyMI); 1776 eliminateDeadDefs(); 1777 return true; 1778 } 1779 1780 // Eliminate undefs. 1781 if (!CP.isPhys()) { 1782 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce. 1783 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) { 1784 if (UndefMI->isImplicitDef()) 1785 return false; 1786 deleteInstr(CopyMI); 1787 return false; // Not coalescable. 1788 } 1789 } 1790 1791 // Coalesced copies are normally removed immediately, but transformations 1792 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1793 // When that happens, just join the values and remove the copy. 1794 if (CP.getSrcReg() == CP.getDstReg()) { 1795 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1796 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1797 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1798 LiveQueryResult LRQ = LI.Query(CopyIdx); 1799 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1800 VNInfo *ReadVNI = LRQ.valueIn(); 1801 assert(ReadVNI && "No value before copy and no <undef> flag."); 1802 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1803 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1804 1805 // Process subregister liveranges. 1806 for (LiveInterval::SubRange &S : LI.subranges()) { 1807 LiveQueryResult SLRQ = S.Query(CopyIdx); 1808 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1809 VNInfo *SReadVNI = SLRQ.valueIn(); 1810 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1811 } 1812 } 1813 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1814 } 1815 deleteInstr(CopyMI); 1816 return true; 1817 } 1818 1819 // Enforce policies. 1820 if (CP.isPhys()) { 1821 LLVM_DEBUG(dbgs() << "\tConsidering merging " 1822 << printReg(CP.getSrcReg(), TRI) << " with " 1823 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'); 1824 if (!canJoinPhys(CP)) { 1825 // Before giving up coalescing, if definition of source is defined by 1826 // trivial computation, try rematerializing it. 1827 bool IsDefCopy; 1828 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1829 return true; 1830 if (IsDefCopy) 1831 Again = true; // May be possible to coalesce later. 1832 return false; 1833 } 1834 } else { 1835 // When possible, let DstReg be the larger interval. 1836 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1837 LIS->getInterval(CP.getDstReg()).size()) 1838 CP.flip(); 1839 1840 LLVM_DEBUG({ 1841 dbgs() << "\tConsidering merging to " 1842 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1843 if (CP.getDstIdx() && CP.getSrcIdx()) 1844 dbgs() << printReg(CP.getDstReg()) << " in " 1845 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1846 << printReg(CP.getSrcReg()) << " in " 1847 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1848 else 1849 dbgs() << printReg(CP.getSrcReg(), TRI) << " in " 1850 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1851 }); 1852 } 1853 1854 ShrinkMask = LaneBitmask::getNone(); 1855 ShrinkMainRange = false; 1856 1857 // Okay, attempt to join these two intervals. On failure, this returns false. 1858 // Otherwise, if one of the intervals being joined is a physreg, this method 1859 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1860 // been modified, so we can use this information below to update aliases. 1861 if (!joinIntervals(CP)) { 1862 // Coalescing failed. 1863 1864 // If definition of source is defined by trivial computation, try 1865 // rematerializing it. 1866 bool IsDefCopy; 1867 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1868 return true; 1869 1870 // If we can eliminate the copy without merging the live segments, do so 1871 // now. 1872 if (!CP.isPartial() && !CP.isPhys()) { 1873 bool Changed = adjustCopiesBackFrom(CP, CopyMI); 1874 bool Shrink = false; 1875 if (!Changed) 1876 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI); 1877 if (Changed) { 1878 deleteInstr(CopyMI); 1879 if (Shrink) { 1880 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1881 LiveInterval &DstLI = LIS->getInterval(DstReg); 1882 shrinkToUses(&DstLI); 1883 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n'); 1884 } 1885 LLVM_DEBUG(dbgs() << "\tTrivial!\n"); 1886 return true; 1887 } 1888 } 1889 1890 // Try and see if we can partially eliminate the copy by moving the copy to 1891 // its predecessor. 1892 if (!CP.isPartial() && !CP.isPhys()) 1893 if (removePartialRedundancy(CP, *CopyMI)) 1894 return true; 1895 1896 // Otherwise, we are unable to join the intervals. 1897 LLVM_DEBUG(dbgs() << "\tInterference!\n"); 1898 Again = true; // May be possible to coalesce later. 1899 return false; 1900 } 1901 1902 // Coalescing to a virtual register that is of a sub-register class of the 1903 // other. Make sure the resulting register is set to the right register class. 1904 if (CP.isCrossClass()) { 1905 ++numCrossRCs; 1906 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1907 } 1908 1909 // Removing sub-register copies can ease the register class constraints. 1910 // Make sure we attempt to inflate the register class of DstReg. 1911 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1912 InflateRegs.push_back(CP.getDstReg()); 1913 1914 // CopyMI has been erased by joinIntervals at this point. Remove it from 1915 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1916 // to the work list. This keeps ErasedInstrs from growing needlessly. 1917 ErasedInstrs.erase(CopyMI); 1918 1919 // Rewrite all SrcReg operands to DstReg. 1920 // Also update DstReg operands to include DstIdx if it is set. 1921 if (CP.getDstIdx()) 1922 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1923 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1924 1925 // Shrink subregister ranges if necessary. 1926 if (ShrinkMask.any()) { 1927 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1928 for (LiveInterval::SubRange &S : LI.subranges()) { 1929 if ((S.LaneMask & ShrinkMask).none()) 1930 continue; 1931 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1932 << ")\n"); 1933 LIS->shrinkToUses(S, LI.reg); 1934 } 1935 LI.removeEmptySubRanges(); 1936 } 1937 1938 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live 1939 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval 1940 // is not up-to-date, need to update the merged live interval here. 1941 if (ToBeUpdated.count(CP.getSrcReg())) 1942 ShrinkMainRange = true; 1943 1944 if (ShrinkMainRange) { 1945 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1946 shrinkToUses(&LI); 1947 } 1948 1949 // SrcReg is guaranteed to be the register whose live interval that is 1950 // being merged. 1951 LIS->removeInterval(CP.getSrcReg()); 1952 1953 // Update regalloc hint. 1954 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1955 1956 LLVM_DEBUG({ 1957 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 1958 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 1959 dbgs() << "\tResult = "; 1960 if (CP.isPhys()) 1961 dbgs() << printReg(CP.getDstReg(), TRI); 1962 else 1963 dbgs() << LIS->getInterval(CP.getDstReg()); 1964 dbgs() << '\n'; 1965 }); 1966 1967 ++numJoins; 1968 return true; 1969 } 1970 1971 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1972 unsigned DstReg = CP.getDstReg(); 1973 unsigned SrcReg = CP.getSrcReg(); 1974 assert(CP.isPhys() && "Must be a physreg copy"); 1975 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 1976 LiveInterval &RHS = LIS->getInterval(SrcReg); 1977 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1978 1979 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 1980 1981 // Optimization for reserved registers like ESP. We can only merge with a 1982 // reserved physreg if RHS has a single value that is a copy of DstReg. 1983 // The live range of the reserved register will look like a set of dead defs 1984 // - we don't properly track the live range of reserved registers. 1985 1986 // Deny any overlapping intervals. This depends on all the reserved 1987 // register live ranges to look like dead defs. 1988 if (!MRI->isConstantPhysReg(DstReg)) { 1989 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1990 // Abort if not all the regunits are reserved. 1991 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 1992 if (!MRI->isReserved(*RI)) 1993 return false; 1994 } 1995 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1996 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) 1997 << '\n'); 1998 return false; 1999 } 2000 } 2001 2002 // We must also check for overlaps with regmask clobbers. 2003 BitVector RegMaskUsable; 2004 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 2005 !RegMaskUsable.test(DstReg)) { 2006 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n"); 2007 return false; 2008 } 2009 } 2010 2011 // Skip any value computations, we are not adding new values to the 2012 // reserved register. Also skip merging the live ranges, the reserved 2013 // register live range doesn't need to be accurate as long as all the 2014 // defs are there. 2015 2016 // Delete the identity copy. 2017 MachineInstr *CopyMI; 2018 if (CP.isFlipped()) { 2019 // Physreg is copied into vreg 2020 // %y = COPY %physreg_x 2021 // ... //< no other def of %physreg_x here 2022 // use %y 2023 // => 2024 // ... 2025 // use %physreg_x 2026 CopyMI = MRI->getVRegDef(SrcReg); 2027 } else { 2028 // VReg is copied into physreg: 2029 // %y = def 2030 // ... //< no other def or use of %physreg_x here 2031 // %physreg_x = COPY %y 2032 // => 2033 // %physreg_x = def 2034 // ... 2035 if (!MRI->hasOneNonDBGUse(SrcReg)) { 2036 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 2037 return false; 2038 } 2039 2040 if (!LIS->intervalIsInOneMBB(RHS)) { 2041 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n"); 2042 return false; 2043 } 2044 2045 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 2046 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 2047 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 2048 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 2049 2050 if (!MRI->isConstantPhysReg(DstReg)) { 2051 // We checked above that there are no interfering defs of the physical 2052 // register. However, for this case, where we intend to move up the def of 2053 // the physical register, we also need to check for interfering uses. 2054 SlotIndexes *Indexes = LIS->getSlotIndexes(); 2055 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 2056 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 2057 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 2058 if (MI->readsRegister(DstReg, TRI)) { 2059 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 2060 return false; 2061 } 2062 } 2063 } 2064 2065 // We're going to remove the copy which defines a physical reserved 2066 // register, so remove its valno, etc. 2067 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of " 2068 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n"); 2069 2070 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 2071 // Create a new dead def at the new def location. 2072 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2073 LiveRange &LR = LIS->getRegUnit(*UI); 2074 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 2075 } 2076 } 2077 2078 deleteInstr(CopyMI); 2079 2080 // We don't track kills for reserved registers. 2081 MRI->clearKillFlags(CP.getSrcReg()); 2082 2083 return true; 2084 } 2085 2086 //===----------------------------------------------------------------------===// 2087 // Interference checking and interval joining 2088 //===----------------------------------------------------------------------===// 2089 // 2090 // In the easiest case, the two live ranges being joined are disjoint, and 2091 // there is no interference to consider. It is quite common, though, to have 2092 // overlapping live ranges, and we need to check if the interference can be 2093 // resolved. 2094 // 2095 // The live range of a single SSA value forms a sub-tree of the dominator tree. 2096 // This means that two SSA values overlap if and only if the def of one value 2097 // is contained in the live range of the other value. As a special case, the 2098 // overlapping values can be defined at the same index. 2099 // 2100 // The interference from an overlapping def can be resolved in these cases: 2101 // 2102 // 1. Coalescable copies. The value is defined by a copy that would become an 2103 // identity copy after joining SrcReg and DstReg. The copy instruction will 2104 // be removed, and the value will be merged with the source value. 2105 // 2106 // There can be several copies back and forth, causing many values to be 2107 // merged into one. We compute a list of ultimate values in the joined live 2108 // range as well as a mappings from the old value numbers. 2109 // 2110 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 2111 // predecessors have a live out value. It doesn't cause real interference, 2112 // and can be merged into the value it overlaps. Like a coalescable copy, it 2113 // can be erased after joining. 2114 // 2115 // 3. Copy of external value. The overlapping def may be a copy of a value that 2116 // is already in the other register. This is like a coalescable copy, but 2117 // the live range of the source register must be trimmed after erasing the 2118 // copy instruction: 2119 // 2120 // %src = COPY %ext 2121 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 2122 // 2123 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 2124 // defining one lane at a time: 2125 // 2126 // %dst:ssub0<def,read-undef> = FOO 2127 // %src = BAR 2128 // %dst:ssub1 = COPY %src 2129 // 2130 // The live range of %src overlaps the %dst value defined by FOO, but 2131 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 2132 // which was undef anyway. 2133 // 2134 // The value mapping is more complicated in this case. The final live range 2135 // will have different value numbers for both FOO and BAR, but there is no 2136 // simple mapping from old to new values. It may even be necessary to add 2137 // new PHI values. 2138 // 2139 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 2140 // is live, but never read. This can happen because we don't compute 2141 // individual live ranges per lane. 2142 // 2143 // %dst = FOO 2144 // %src = BAR 2145 // %dst:ssub1 = COPY %src 2146 // 2147 // This kind of interference is only resolved locally. If the clobbered 2148 // lane value escapes the block, the join is aborted. 2149 2150 namespace { 2151 2152 /// Track information about values in a single virtual register about to be 2153 /// joined. Objects of this class are always created in pairs - one for each 2154 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 2155 /// pair) 2156 class JoinVals { 2157 /// Live range we work on. 2158 LiveRange &LR; 2159 2160 /// (Main) register we work on. 2161 const unsigned Reg; 2162 2163 /// Reg (and therefore the values in this liverange) will end up as 2164 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 2165 /// CP.SrcIdx. 2166 const unsigned SubIdx; 2167 2168 /// The LaneMask that this liverange will occupy the coalesced register. May 2169 /// be smaller than the lanemask produced by SubIdx when merging subranges. 2170 const LaneBitmask LaneMask; 2171 2172 /// This is true when joining sub register ranges, false when joining main 2173 /// ranges. 2174 const bool SubRangeJoin; 2175 2176 /// Whether the current LiveInterval tracks subregister liveness. 2177 const bool TrackSubRegLiveness; 2178 2179 /// Values that will be present in the final live range. 2180 SmallVectorImpl<VNInfo*> &NewVNInfo; 2181 2182 const CoalescerPair &CP; 2183 LiveIntervals *LIS; 2184 SlotIndexes *Indexes; 2185 const TargetRegisterInfo *TRI; 2186 2187 /// Value number assignments. Maps value numbers in LI to entries in 2188 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 2189 SmallVector<int, 8> Assignments; 2190 2191 /// Conflict resolution for overlapping values. 2192 enum ConflictResolution { 2193 /// No overlap, simply keep this value. 2194 CR_Keep, 2195 2196 /// Merge this value into OtherVNI and erase the defining instruction. 2197 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 2198 /// values. 2199 CR_Erase, 2200 2201 /// Merge this value into OtherVNI but keep the defining instruction. 2202 /// This is for the special case where OtherVNI is defined by the same 2203 /// instruction. 2204 CR_Merge, 2205 2206 /// Keep this value, and have it replace OtherVNI where possible. This 2207 /// complicates value mapping since OtherVNI maps to two different values 2208 /// before and after this def. 2209 /// Used when clobbering undefined or dead lanes. 2210 CR_Replace, 2211 2212 /// Unresolved conflict. Visit later when all values have been mapped. 2213 CR_Unresolved, 2214 2215 /// Unresolvable conflict. Abort the join. 2216 CR_Impossible 2217 }; 2218 2219 /// Per-value info for LI. The lane bit masks are all relative to the final 2220 /// joined register, so they can be compared directly between SrcReg and 2221 /// DstReg. 2222 struct Val { 2223 ConflictResolution Resolution = CR_Keep; 2224 2225 /// Lanes written by this def, 0 for unanalyzed values. 2226 LaneBitmask WriteLanes; 2227 2228 /// Lanes with defined values in this register. Other lanes are undef and 2229 /// safe to clobber. 2230 LaneBitmask ValidLanes; 2231 2232 /// Value in LI being redefined by this def. 2233 VNInfo *RedefVNI = nullptr; 2234 2235 /// Value in the other live range that overlaps this def, if any. 2236 VNInfo *OtherVNI = nullptr; 2237 2238 /// Is this value an IMPLICIT_DEF that can be erased? 2239 /// 2240 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2241 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2242 /// safely erased if they are overlapping a live value in the other live 2243 /// interval. 2244 /// 2245 /// Weird control flow graphs and incomplete PHI handling in 2246 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2247 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2248 /// normal values. 2249 bool ErasableImplicitDef = false; 2250 2251 /// True when the live range of this value will be pruned because of an 2252 /// overlapping CR_Replace value in the other live range. 2253 bool Pruned = false; 2254 2255 /// True once Pruned above has been computed. 2256 bool PrunedComputed = false; 2257 2258 /// True if this value is determined to be identical to OtherVNI 2259 /// (in valuesIdentical). This is used with CR_Erase where the erased 2260 /// copy is redundant, i.e. the source value is already the same as 2261 /// the destination. In such cases the subranges need to be updated 2262 /// properly. See comment at pruneSubRegValues for more info. 2263 bool Identical = false; 2264 2265 Val() = default; 2266 2267 bool isAnalyzed() const { return WriteLanes.any(); } 2268 }; 2269 2270 /// One entry per value number in LI. 2271 SmallVector<Val, 8> Vals; 2272 2273 /// Compute the bitmask of lanes actually written by DefMI. 2274 /// Set Redef if there are any partial register definitions that depend on the 2275 /// previous value of the register. 2276 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2277 2278 /// Find the ultimate value that VNI was copied from. 2279 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 2280 2281 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const; 2282 2283 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2284 /// Return a conflict resolution when possible, but leave the hard cases as 2285 /// CR_Unresolved. 2286 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2287 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2288 /// The recursion always goes upwards in the dominator tree, making loops 2289 /// impossible. 2290 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2291 2292 /// Compute the value assignment for ValNo in RI. 2293 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2294 /// the stack. 2295 void computeAssignment(unsigned ValNo, JoinVals &Other); 2296 2297 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2298 /// the extent of the tainted lanes in the block. 2299 /// 2300 /// Multiple values in Other.LR can be affected since partial redefinitions 2301 /// can preserve previously tainted lanes. 2302 /// 2303 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2304 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2305 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2306 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2307 /// 2308 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2309 /// entry to TaintedVals. 2310 /// 2311 /// Returns false if the tainted lanes extend beyond the basic block. 2312 bool 2313 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2314 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); 2315 2316 /// Return true if MI uses any of the given Lanes from Reg. 2317 /// This does not include partial redefinitions of Reg. 2318 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; 2319 2320 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2321 /// be pruned: 2322 /// 2323 /// %dst = COPY %src 2324 /// %src = COPY %dst <-- This value to be pruned. 2325 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2326 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2327 2328 public: 2329 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 2330 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 2331 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2332 bool TrackSubRegLiveness) 2333 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2334 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2335 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2336 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {} 2337 2338 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2339 /// Returns false if any conflicts were impossible to resolve. 2340 bool mapValues(JoinVals &Other); 2341 2342 /// Try to resolve conflicts that require all values to be mapped. 2343 /// Returns false if any conflicts were impossible to resolve. 2344 bool resolveConflicts(JoinVals &Other); 2345 2346 /// Prune the live range of values in Other.LR where they would conflict with 2347 /// CR_Replace values in LR. Collect end points for restoring the live range 2348 /// after joining. 2349 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2350 bool changeInstrs); 2351 2352 /// Removes subranges starting at copies that get removed. This sometimes 2353 /// happens when undefined subranges are copied around. These ranges contain 2354 /// no useful information and can be removed. 2355 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2356 2357 /// Pruning values in subranges can lead to removing segments in these 2358 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2359 /// the main range also need to be removed. This function will mark 2360 /// the corresponding values in the main range as pruned, so that 2361 /// eraseInstrs can do the final cleanup. 2362 /// The parameter @p LI must be the interval whose main range is the 2363 /// live range LR. 2364 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2365 2366 /// Erase any machine instructions that have been coalesced away. 2367 /// Add erased instructions to ErasedInstrs. 2368 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2369 /// the erased instrs. 2370 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2371 SmallVectorImpl<unsigned> &ShrinkRegs, 2372 LiveInterval *LI = nullptr); 2373 2374 /// Remove liverange defs at places where implicit defs will be removed. 2375 void removeImplicitDefs(); 2376 2377 /// Get the value assignments suitable for passing to LiveInterval::join. 2378 const int *getAssignments() const { return Assignments.data(); } 2379 }; 2380 2381 } // end anonymous namespace 2382 2383 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2384 const { 2385 LaneBitmask L; 2386 for (const MachineOperand &MO : DefMI->operands()) { 2387 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2388 continue; 2389 L |= TRI->getSubRegIndexLaneMask( 2390 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2391 if (MO.readsReg()) 2392 Redef = true; 2393 } 2394 return L; 2395 } 2396 2397 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 2398 const VNInfo *VNI) const { 2399 unsigned TrackReg = Reg; 2400 2401 while (!VNI->isPHIDef()) { 2402 SlotIndex Def = VNI->def; 2403 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2404 assert(MI && "No defining instruction"); 2405 if (!MI->isFullCopy()) 2406 return std::make_pair(VNI, TrackReg); 2407 unsigned SrcReg = MI->getOperand(1).getReg(); 2408 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 2409 return std::make_pair(VNI, TrackReg); 2410 2411 const LiveInterval &LI = LIS->getInterval(SrcReg); 2412 const VNInfo *ValueIn; 2413 // No subrange involved. 2414 if (!SubRangeJoin || !LI.hasSubRanges()) { 2415 LiveQueryResult LRQ = LI.Query(Def); 2416 ValueIn = LRQ.valueIn(); 2417 } else { 2418 // Query subranges. Ensure that all matching ones take us to the same def 2419 // (allowing some of them to be undef). 2420 ValueIn = nullptr; 2421 for (const LiveInterval::SubRange &S : LI.subranges()) { 2422 // Transform lanemask to a mask in the joined live interval. 2423 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2424 if ((SMask & LaneMask).none()) 2425 continue; 2426 LiveQueryResult LRQ = S.Query(Def); 2427 if (!ValueIn) { 2428 ValueIn = LRQ.valueIn(); 2429 continue; 2430 } 2431 if (LRQ.valueIn() && ValueIn != LRQ.valueIn()) 2432 return std::make_pair(VNI, TrackReg); 2433 } 2434 } 2435 if (ValueIn == nullptr) { 2436 // Reaching an undefined value is legitimate, for example: 2437 // 2438 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef 2439 // 2 %1 = COPY %0 ;; %1 is defined here. 2440 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition, 2441 // ;; but it's equivalent to "undef". 2442 return std::make_pair(nullptr, SrcReg); 2443 } 2444 VNI = ValueIn; 2445 TrackReg = SrcReg; 2446 } 2447 return std::make_pair(VNI, TrackReg); 2448 } 2449 2450 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2451 const JoinVals &Other) const { 2452 const VNInfo *Orig0; 2453 unsigned Reg0; 2454 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2455 if (Orig0 == Value1 && Reg0 == Other.Reg) 2456 return true; 2457 2458 const VNInfo *Orig1; 2459 unsigned Reg1; 2460 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2461 // If both values are undefined, and the source registers are the same 2462 // register, the values are identical. Filter out cases where only one 2463 // value is defined. 2464 if (Orig0 == nullptr || Orig1 == nullptr) 2465 return Orig0 == Orig1 && Reg0 == Reg1; 2466 2467 // The values are equal if they are defined at the same place and use the 2468 // same register. Note that we cannot compare VNInfos directly as some of 2469 // them might be from a copy created in mergeSubRangeInto() while the other 2470 // is from the original LiveInterval. 2471 return Orig0->def == Orig1->def && Reg0 == Reg1; 2472 } 2473 2474 JoinVals::ConflictResolution 2475 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2476 Val &V = Vals[ValNo]; 2477 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2478 VNInfo *VNI = LR.getValNumInfo(ValNo); 2479 if (VNI->isUnused()) { 2480 V.WriteLanes = LaneBitmask::getAll(); 2481 return CR_Keep; 2482 } 2483 2484 // Get the instruction defining this value, compute the lanes written. 2485 const MachineInstr *DefMI = nullptr; 2486 if (VNI->isPHIDef()) { 2487 // Conservatively assume that all lanes in a PHI are valid. 2488 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2489 : TRI->getSubRegIndexLaneMask(SubIdx); 2490 V.ValidLanes = V.WriteLanes = Lanes; 2491 } else { 2492 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2493 assert(DefMI != nullptr); 2494 if (SubRangeJoin) { 2495 // We don't care about the lanes when joining subregister ranges. 2496 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2497 if (DefMI->isImplicitDef()) { 2498 V.ValidLanes = LaneBitmask::getNone(); 2499 V.ErasableImplicitDef = true; 2500 } 2501 } else { 2502 bool Redef = false; 2503 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2504 2505 // If this is a read-modify-write instruction, there may be more valid 2506 // lanes than the ones written by this instruction. 2507 // This only covers partial redef operands. DefMI may have normal use 2508 // operands reading the register. They don't contribute valid lanes. 2509 // 2510 // This adds ssub1 to the set of valid lanes in %src: 2511 // 2512 // %src:ssub1 = FOO 2513 // 2514 // This leaves only ssub1 valid, making any other lanes undef: 2515 // 2516 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2517 // 2518 // The <read-undef> flag on the def operand means that old lane values are 2519 // not important. 2520 if (Redef) { 2521 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2522 assert((TrackSubRegLiveness || V.RedefVNI) && 2523 "Instruction is reading nonexistent value"); 2524 if (V.RedefVNI != nullptr) { 2525 computeAssignment(V.RedefVNI->id, Other); 2526 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2527 } 2528 } 2529 2530 // An IMPLICIT_DEF writes undef values. 2531 if (DefMI->isImplicitDef()) { 2532 // We normally expect IMPLICIT_DEF values to be live only until the end 2533 // of their block. If the value is really live longer and gets pruned in 2534 // another block, this flag is cleared again. 2535 // 2536 // Clearing the valid lanes is deferred until it is sure this can be 2537 // erased. 2538 V.ErasableImplicitDef = true; 2539 } 2540 } 2541 } 2542 2543 // Find the value in Other that overlaps VNI->def, if any. 2544 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2545 2546 // It is possible that both values are defined by the same instruction, or 2547 // the values are PHIs defined in the same block. When that happens, the two 2548 // values should be merged into one, but not into any preceding value. 2549 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2550 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2551 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2552 2553 // One value stays, the other is merged. Keep the earlier one, or the first 2554 // one we see. 2555 if (OtherVNI->def < VNI->def) 2556 Other.computeAssignment(OtherVNI->id, *this); 2557 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2558 // This is an early-clobber def overlapping a live-in value in the other 2559 // register. Not mergeable. 2560 V.OtherVNI = OtherLRQ.valueIn(); 2561 return CR_Impossible; 2562 } 2563 V.OtherVNI = OtherVNI; 2564 Val &OtherV = Other.Vals[OtherVNI->id]; 2565 // Keep this value, check for conflicts when analyzing OtherVNI. 2566 if (!OtherV.isAnalyzed()) 2567 return CR_Keep; 2568 // Both sides have been analyzed now. 2569 // Allow overlapping PHI values. Any real interference would show up in a 2570 // predecessor, the PHI itself can't introduce any conflicts. 2571 if (VNI->isPHIDef()) 2572 return CR_Merge; 2573 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2574 // Overlapping lanes can't be resolved. 2575 return CR_Impossible; 2576 else 2577 return CR_Merge; 2578 } 2579 2580 // No simultaneous def. Is Other live at the def? 2581 V.OtherVNI = OtherLRQ.valueIn(); 2582 if (!V.OtherVNI) 2583 // No overlap, no conflict. 2584 return CR_Keep; 2585 2586 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2587 2588 // We have overlapping values, or possibly a kill of Other. 2589 // Recursively compute assignments up the dominator tree. 2590 Other.computeAssignment(V.OtherVNI->id, *this); 2591 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2592 2593 if (OtherV.ErasableImplicitDef) { 2594 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2595 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2596 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2597 // technically. 2598 // 2599 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2600 // to erase the IMPLICIT_DEF instruction. 2601 if (DefMI && 2602 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2603 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2604 << " extends into " 2605 << printMBBReference(*DefMI->getParent()) 2606 << ", keeping it.\n"); 2607 OtherV.ErasableImplicitDef = false; 2608 } else { 2609 // We deferred clearing these lanes in case we needed to save them 2610 OtherV.ValidLanes &= ~OtherV.WriteLanes; 2611 } 2612 } 2613 2614 // Allow overlapping PHI values. Any real interference would show up in a 2615 // predecessor, the PHI itself can't introduce any conflicts. 2616 if (VNI->isPHIDef()) 2617 return CR_Replace; 2618 2619 // Check for simple erasable conflicts. 2620 if (DefMI->isImplicitDef()) { 2621 // We need the def for the subregister if there is nothing else live at the 2622 // subrange at this point. 2623 if (TrackSubRegLiveness 2624 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none()) 2625 return CR_Replace; 2626 return CR_Erase; 2627 } 2628 2629 // Include the non-conflict where DefMI is a coalescable copy that kills 2630 // OtherVNI. We still want the copy erased and value numbers merged. 2631 if (CP.isCoalescable(DefMI)) { 2632 // Some of the lanes copied from OtherVNI may be undef, making them undef 2633 // here too. 2634 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2635 return CR_Erase; 2636 } 2637 2638 // This may not be a real conflict if DefMI simply kills Other and defines 2639 // VNI. 2640 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2641 return CR_Keep; 2642 2643 // Handle the case where VNI and OtherVNI can be proven to be identical: 2644 // 2645 // %other = COPY %ext 2646 // %this = COPY %ext <-- Erase this copy 2647 // 2648 if (DefMI->isFullCopy() && !CP.isPartial() && 2649 valuesIdentical(VNI, V.OtherVNI, Other)) { 2650 V.Identical = true; 2651 return CR_Erase; 2652 } 2653 2654 // The remaining checks apply to the lanes, which aren't tracked here. This 2655 // was already decided to be OK via the following CR_Replace condition. 2656 // CR_Replace. 2657 if (SubRangeJoin) 2658 return CR_Replace; 2659 2660 // If the lanes written by this instruction were all undef in OtherVNI, it is 2661 // still safe to join the live ranges. This can't be done with a simple value 2662 // mapping, though - OtherVNI will map to multiple values: 2663 // 2664 // 1 %dst:ssub0 = FOO <-- OtherVNI 2665 // 2 %src = BAR <-- VNI 2666 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy. 2667 // 4 BAZ killed %dst 2668 // 5 QUUX killed %src 2669 // 2670 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2671 // handles this complex value mapping. 2672 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2673 return CR_Replace; 2674 2675 // If the other live range is killed by DefMI and the live ranges are still 2676 // overlapping, it must be because we're looking at an early clobber def: 2677 // 2678 // %dst<def,early-clobber> = ASM killed %src 2679 // 2680 // In this case, it is illegal to merge the two live ranges since the early 2681 // clobber def would clobber %src before it was read. 2682 if (OtherLRQ.isKill()) { 2683 // This case where the def doesn't overlap the kill is handled above. 2684 assert(VNI->def.isEarlyClobber() && 2685 "Only early clobber defs can overlap a kill"); 2686 return CR_Impossible; 2687 } 2688 2689 // VNI is clobbering live lanes in OtherVNI, but there is still the 2690 // possibility that no instructions actually read the clobbered lanes. 2691 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2692 // Otherwise Other.RI wouldn't be live here. 2693 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2694 return CR_Impossible; 2695 2696 // We need to verify that no instructions are reading the clobbered lanes. To 2697 // save compile time, we'll only check that locally. Don't allow the tainted 2698 // value to escape the basic block. 2699 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2700 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2701 return CR_Impossible; 2702 2703 // There are still some things that could go wrong besides clobbered lanes 2704 // being read, for example OtherVNI may be only partially redefined in MBB, 2705 // and some clobbered lanes could escape the block. Save this analysis for 2706 // resolveConflicts() when all values have been mapped. We need to know 2707 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2708 // that now - the recursive analyzeValue() calls must go upwards in the 2709 // dominator tree. 2710 return CR_Unresolved; 2711 } 2712 2713 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2714 Val &V = Vals[ValNo]; 2715 if (V.isAnalyzed()) { 2716 // Recursion should always move up the dominator tree, so ValNo is not 2717 // supposed to reappear before it has been assigned. 2718 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2719 return; 2720 } 2721 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2722 case CR_Erase: 2723 case CR_Merge: 2724 // Merge this ValNo into OtherVNI. 2725 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2726 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2727 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2728 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@' 2729 << LR.getValNumInfo(ValNo)->def << " into " 2730 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2731 << V.OtherVNI->def << " --> @" 2732 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2733 break; 2734 case CR_Replace: 2735 case CR_Unresolved: { 2736 // The other value is going to be pruned if this join is successful. 2737 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2738 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2739 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2740 // its lanes. 2741 if (OtherV.ErasableImplicitDef && 2742 TrackSubRegLiveness && 2743 (OtherV.WriteLanes & ~V.ValidLanes).any()) { 2744 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n"); 2745 2746 OtherV.ErasableImplicitDef = false; 2747 // The valid lanes written by the implicit_def were speculatively cleared 2748 // before, so make this more conservative. It may be better to track this, 2749 // I haven't found a testcase where it matters. 2750 OtherV.ValidLanes = LaneBitmask::getAll(); 2751 } 2752 2753 OtherV.Pruned = true; 2754 LLVM_FALLTHROUGH; 2755 } 2756 default: 2757 // This value number needs to go in the final joined live range. 2758 Assignments[ValNo] = NewVNInfo.size(); 2759 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2760 break; 2761 } 2762 } 2763 2764 bool JoinVals::mapValues(JoinVals &Other) { 2765 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2766 computeAssignment(i, Other); 2767 if (Vals[i].Resolution == CR_Impossible) { 2768 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i 2769 << '@' << LR.getValNumInfo(i)->def << '\n'); 2770 return false; 2771 } 2772 } 2773 return true; 2774 } 2775 2776 bool JoinVals:: 2777 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2778 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { 2779 VNInfo *VNI = LR.getValNumInfo(ValNo); 2780 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2781 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2782 2783 // Scan Other.LR from VNI.def to MBBEnd. 2784 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2785 assert(OtherI != Other.LR.end() && "No conflict?"); 2786 do { 2787 // OtherI is pointing to a tainted value. Abort the join if the tainted 2788 // lanes escape the block. 2789 SlotIndex End = OtherI->end; 2790 if (End >= MBBEnd) { 2791 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':' 2792 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2793 return false; 2794 } 2795 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':' 2796 << OtherI->valno->id << '@' << OtherI->start << " to " 2797 << End << '\n'); 2798 // A dead def is not a problem. 2799 if (End.isDead()) 2800 break; 2801 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2802 2803 // Check for another def in the MBB. 2804 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2805 break; 2806 2807 // Lanes written by the new def are no longer tainted. 2808 const Val &OV = Other.Vals[OtherI->valno->id]; 2809 TaintedLanes &= ~OV.WriteLanes; 2810 if (!OV.RedefVNI) 2811 break; 2812 } while (TaintedLanes.any()); 2813 return true; 2814 } 2815 2816 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, 2817 LaneBitmask Lanes) const { 2818 if (MI.isDebugInstr()) 2819 return false; 2820 for (const MachineOperand &MO : MI.operands()) { 2821 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2822 continue; 2823 if (!MO.readsReg()) 2824 continue; 2825 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2826 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2827 return true; 2828 } 2829 return false; 2830 } 2831 2832 bool JoinVals::resolveConflicts(JoinVals &Other) { 2833 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2834 Val &V = Vals[i]; 2835 assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); 2836 if (V.Resolution != CR_Unresolved) 2837 continue; 2838 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@' 2839 << LR.getValNumInfo(i)->def << '\n'); 2840 if (SubRangeJoin) 2841 return false; 2842 2843 ++NumLaneConflicts; 2844 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2845 VNInfo *VNI = LR.getValNumInfo(i); 2846 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2847 2848 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2849 // join, those lanes will be tainted with a wrong value. Get the extent of 2850 // the tainted lanes. 2851 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2852 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2853 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2854 // Tainted lanes would extend beyond the basic block. 2855 return false; 2856 2857 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2858 2859 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2860 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2861 MachineBasicBlock::iterator MI = MBB->begin(); 2862 if (!VNI->isPHIDef()) { 2863 MI = Indexes->getInstructionFromIndex(VNI->def); 2864 // No need to check the instruction defining VNI for reads. 2865 ++MI; 2866 } 2867 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2868 "Interference ends on VNI->def. Should have been handled earlier"); 2869 MachineInstr *LastMI = 2870 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2871 assert(LastMI && "Range must end at a proper instruction"); 2872 unsigned TaintNum = 0; 2873 while (true) { 2874 assert(MI != MBB->end() && "Bad LastMI"); 2875 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2876 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2877 return false; 2878 } 2879 // LastMI is the last instruction to use the current value. 2880 if (&*MI == LastMI) { 2881 if (++TaintNum == TaintExtent.size()) 2882 break; 2883 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2884 assert(LastMI && "Range must end at a proper instruction"); 2885 TaintedLanes = TaintExtent[TaintNum].second; 2886 } 2887 ++MI; 2888 } 2889 2890 // The tainted lanes are unused. 2891 V.Resolution = CR_Replace; 2892 ++NumLaneResolves; 2893 } 2894 return true; 2895 } 2896 2897 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2898 Val &V = Vals[ValNo]; 2899 if (V.Pruned || V.PrunedComputed) 2900 return V.Pruned; 2901 2902 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2903 return V.Pruned; 2904 2905 // Follow copies up the dominator tree and check if any intermediate value 2906 // has been pruned. 2907 V.PrunedComputed = true; 2908 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2909 return V.Pruned; 2910 } 2911 2912 void JoinVals::pruneValues(JoinVals &Other, 2913 SmallVectorImpl<SlotIndex> &EndPoints, 2914 bool changeInstrs) { 2915 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2916 SlotIndex Def = LR.getValNumInfo(i)->def; 2917 switch (Vals[i].Resolution) { 2918 case CR_Keep: 2919 break; 2920 case CR_Replace: { 2921 // This value takes precedence over the value in Other.LR. 2922 LIS->pruneValue(Other.LR, Def, &EndPoints); 2923 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2924 // instructions are only inserted to provide a live-out value for PHI 2925 // predecessors, so the instruction should simply go away once its value 2926 // has been replaced. 2927 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2928 bool EraseImpDef = OtherV.ErasableImplicitDef && 2929 OtherV.Resolution == CR_Keep; 2930 if (!Def.isBlock()) { 2931 if (changeInstrs) { 2932 // Remove <def,read-undef> flags. This def is now a partial redef. 2933 // Also remove dead flags since the joined live range will 2934 // continue past this instruction. 2935 for (MachineOperand &MO : 2936 Indexes->getInstructionFromIndex(Def)->operands()) { 2937 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 2938 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) 2939 MO.setIsUndef(false); 2940 MO.setIsDead(false); 2941 } 2942 } 2943 } 2944 // This value will reach instructions below, but we need to make sure 2945 // the live range also reaches the instruction at Def. 2946 if (!EraseImpDef) 2947 EndPoints.push_back(Def); 2948 } 2949 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def 2950 << ": " << Other.LR << '\n'); 2951 break; 2952 } 2953 case CR_Erase: 2954 case CR_Merge: 2955 if (isPrunedValue(i, Other)) { 2956 // This value is ultimately a copy of a pruned value in LR or Other.LR. 2957 // We can no longer trust the value mapping computed by 2958 // computeAssignment(), the value that was originally copied could have 2959 // been replaced. 2960 LIS->pruneValue(LR, Def, &EndPoints); 2961 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at " 2962 << Def << ": " << LR << '\n'); 2963 } 2964 break; 2965 case CR_Unresolved: 2966 case CR_Impossible: 2967 llvm_unreachable("Unresolved conflicts"); 2968 } 2969 } 2970 } 2971 2972 /// Consider the following situation when coalescing the copy between 2973 /// %31 and %45 at 800. (The vertical lines represent live range segments.) 2974 /// 2975 /// Main range Subrange 0004 (sub2) 2976 /// %31 %45 %31 %45 2977 /// 544 %45 = COPY %28 + + 2978 /// | v1 | v1 2979 /// 560B bb.1: + + 2980 /// 624 = %45.sub2 | v2 | v2 2981 /// 800 %31 = COPY %45 + + + + 2982 /// | v0 | v0 2983 /// 816 %31.sub1 = ... + | 2984 /// 880 %30 = COPY %31 | v1 + 2985 /// 928 %45 = COPY %30 | + + 2986 /// | | v0 | v0 <--+ 2987 /// 992B ; backedge -> bb.1 | + + | 2988 /// 1040 = %31.sub0 + | 2989 /// This value must remain 2990 /// live-out! 2991 /// 2992 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes 2993 /// redundant, since it copies the value from %45 back into it. The 2994 /// conflict resolution for the main range determines that %45.v0 is 2995 /// to be erased, which is ok since %31.v1 is identical to it. 2996 /// The problem happens with the subrange for sub2: it has to be live 2997 /// on exit from the block, but since 928 was actually a point of 2998 /// definition of %45.sub2, %45.sub2 was not live immediately prior 2999 /// to that definition. As a result, when 928 was erased, the value v0 3000 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an 3001 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2, 3002 /// providing an incorrect value to the use at 624. 3003 /// 3004 /// Since the main-range values %31.v1 and %45.v0 were proved to be 3005 /// identical, the corresponding values in subranges must also be the 3006 /// same. A redundant copy is removed because it's not needed, and not 3007 /// because it copied an undefined value, so any liveness that originated 3008 /// from that copy cannot disappear. When pruning a value that started 3009 /// at the removed copy, the corresponding identical value must be 3010 /// extended to replace it. 3011 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 3012 // Look for values being erased. 3013 bool DidPrune = false; 3014 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3015 Val &V = Vals[i]; 3016 // We should trigger in all cases in which eraseInstrs() does something. 3017 // match what eraseInstrs() is doing, print a message so 3018 if (V.Resolution != CR_Erase && 3019 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)) 3020 continue; 3021 3022 // Check subranges at the point where the copy will be removed. 3023 SlotIndex Def = LR.getValNumInfo(i)->def; 3024 SlotIndex OtherDef; 3025 if (V.Identical) 3026 OtherDef = V.OtherVNI->def; 3027 3028 // Print message so mismatches with eraseInstrs() can be diagnosed. 3029 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def 3030 << '\n'); 3031 for (LiveInterval::SubRange &S : LI.subranges()) { 3032 LiveQueryResult Q = S.Query(Def); 3033 3034 // If a subrange starts at the copy then an undefined value has been 3035 // copied and we must remove that subrange value as well. 3036 VNInfo *ValueOut = Q.valueOutOrDead(); 3037 if (ValueOut != nullptr && (Q.valueIn() == nullptr || 3038 (V.Identical && V.Resolution == CR_Erase && 3039 ValueOut->def == Def))) { 3040 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 3041 << " at " << Def << "\n"); 3042 SmallVector<SlotIndex,8> EndPoints; 3043 LIS->pruneValue(S, Def, &EndPoints); 3044 DidPrune = true; 3045 // Mark value number as unused. 3046 ValueOut->markUnused(); 3047 3048 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) { 3049 // If V is identical to V.OtherVNI (and S was live at OtherDef), 3050 // then we can't simply prune V from S. V needs to be replaced 3051 // with V.OtherVNI. 3052 LIS->extendToIndices(S, EndPoints); 3053 } 3054 continue; 3055 } 3056 // If a subrange ends at the copy, then a value was copied but only 3057 // partially used later. Shrink the subregister range appropriately. 3058 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 3059 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane " 3060 << PrintLaneMask(S.LaneMask) << " at " << Def 3061 << "\n"); 3062 ShrinkMask |= S.LaneMask; 3063 } 3064 } 3065 } 3066 if (DidPrune) 3067 LI.removeEmptySubRanges(); 3068 } 3069 3070 /// Check if any of the subranges of @p LI contain a definition at @p Def. 3071 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 3072 for (LiveInterval::SubRange &SR : LI.subranges()) { 3073 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 3074 if (VNI->def == Def) 3075 return true; 3076 } 3077 return false; 3078 } 3079 3080 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 3081 assert(&static_cast<LiveRange&>(LI) == &LR); 3082 3083 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3084 if (Vals[i].Resolution != CR_Keep) 3085 continue; 3086 VNInfo *VNI = LR.getValNumInfo(i); 3087 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 3088 continue; 3089 Vals[i].Pruned = true; 3090 ShrinkMainRange = true; 3091 } 3092 } 3093 3094 void JoinVals::removeImplicitDefs() { 3095 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3096 Val &V = Vals[i]; 3097 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 3098 continue; 3099 3100 VNInfo *VNI = LR.getValNumInfo(i); 3101 VNI->markUnused(); 3102 LR.removeValNo(VNI); 3103 } 3104 } 3105 3106 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 3107 SmallVectorImpl<unsigned> &ShrinkRegs, 3108 LiveInterval *LI) { 3109 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3110 // Get the def location before markUnused() below invalidates it. 3111 SlotIndex Def = LR.getValNumInfo(i)->def; 3112 switch (Vals[i].Resolution) { 3113 case CR_Keep: { 3114 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 3115 // longer. The IMPLICIT_DEF instructions are only inserted by 3116 // PHIElimination to guarantee that all PHI predecessors have a value. 3117 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 3118 break; 3119 // Remove value number i from LR. 3120 // For intervals with subranges, removing a segment from the main range 3121 // may require extending the previous segment: for each definition of 3122 // a subregister, there will be a corresponding def in the main range. 3123 // That def may fall in the middle of a segment from another subrange. 3124 // In such cases, removing this def from the main range must be 3125 // complemented by extending the main range to account for the liveness 3126 // of the other subrange. 3127 VNInfo *VNI = LR.getValNumInfo(i); 3128 SlotIndex Def = VNI->def; 3129 // The new end point of the main range segment to be extended. 3130 SlotIndex NewEnd; 3131 if (LI != nullptr) { 3132 LiveRange::iterator I = LR.FindSegmentContaining(Def); 3133 assert(I != LR.end()); 3134 // Do not extend beyond the end of the segment being removed. 3135 // The segment may have been pruned in preparation for joining 3136 // live ranges. 3137 NewEnd = I->end; 3138 } 3139 3140 LR.removeValNo(VNI); 3141 // Note that this VNInfo is reused and still referenced in NewVNInfo, 3142 // make it appear like an unused value number. 3143 VNI->markUnused(); 3144 3145 if (LI != nullptr && LI->hasSubRanges()) { 3146 assert(static_cast<LiveRange*>(LI) == &LR); 3147 // Determine the end point based on the subrange information: 3148 // minimum of (earliest def of next segment, 3149 // latest end point of containing segment) 3150 SlotIndex ED, LE; 3151 for (LiveInterval::SubRange &SR : LI->subranges()) { 3152 LiveRange::iterator I = SR.find(Def); 3153 if (I == SR.end()) 3154 continue; 3155 if (I->start > Def) 3156 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 3157 else 3158 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 3159 } 3160 if (LE.isValid()) 3161 NewEnd = std::min(NewEnd, LE); 3162 if (ED.isValid()) 3163 NewEnd = std::min(NewEnd, ED); 3164 3165 // We only want to do the extension if there was a subrange that 3166 // was live across Def. 3167 if (LE.isValid()) { 3168 LiveRange::iterator S = LR.find(Def); 3169 if (S != LR.begin()) 3170 std::prev(S)->end = NewEnd; 3171 } 3172 } 3173 LLVM_DEBUG({ 3174 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 3175 if (LI != nullptr) 3176 dbgs() << "\t\t LHS = " << *LI << '\n'; 3177 }); 3178 LLVM_FALLTHROUGH; 3179 } 3180 3181 case CR_Erase: { 3182 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 3183 assert(MI && "No instruction to erase"); 3184 if (MI->isCopy()) { 3185 unsigned Reg = MI->getOperand(1).getReg(); 3186 if (TargetRegisterInfo::isVirtualRegister(Reg) && 3187 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 3188 ShrinkRegs.push_back(Reg); 3189 } 3190 ErasedInstrs.insert(MI); 3191 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 3192 LIS->RemoveMachineInstrFromMaps(*MI); 3193 MI->eraseFromParent(); 3194 break; 3195 } 3196 default: 3197 break; 3198 } 3199 } 3200 } 3201 3202 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 3203 LaneBitmask LaneMask, 3204 const CoalescerPair &CP) { 3205 SmallVector<VNInfo*, 16> NewVNInfo; 3206 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 3207 NewVNInfo, CP, LIS, TRI, true, true); 3208 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 3209 NewVNInfo, CP, LIS, TRI, true, true); 3210 3211 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 3212 // We should be able to resolve all conflicts here as we could successfully do 3213 // it on the mainrange already. There is however a problem when multiple 3214 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 3215 // interferences. 3216 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 3217 // We already determined that it is legal to merge the intervals, so this 3218 // should never fail. 3219 llvm_unreachable("*** Couldn't join subrange!\n"); 3220 } 3221 if (!LHSVals.resolveConflicts(RHSVals) || 3222 !RHSVals.resolveConflicts(LHSVals)) { 3223 // We already determined that it is legal to merge the intervals, so this 3224 // should never fail. 3225 llvm_unreachable("*** Couldn't join subrange!\n"); 3226 } 3227 3228 // The merging algorithm in LiveInterval::join() can't handle conflicting 3229 // value mappings, so we need to remove any live ranges that overlap a 3230 // CR_Replace resolution. Collect a set of end points that can be used to 3231 // restore the live range after joining. 3232 SmallVector<SlotIndex, 8> EndPoints; 3233 LHSVals.pruneValues(RHSVals, EndPoints, false); 3234 RHSVals.pruneValues(LHSVals, EndPoints, false); 3235 3236 LHSVals.removeImplicitDefs(); 3237 RHSVals.removeImplicitDefs(); 3238 3239 LRange.verify(); 3240 RRange.verify(); 3241 3242 // Join RRange into LHS. 3243 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 3244 NewVNInfo); 3245 3246 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask) 3247 << ' ' << LRange << "\n"); 3248 if (EndPoints.empty()) 3249 return; 3250 3251 // Recompute the parts of the live range we had to remove because of 3252 // CR_Replace conflicts. 3253 LLVM_DEBUG({ 3254 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3255 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3256 dbgs() << EndPoints[i]; 3257 if (i != n-1) 3258 dbgs() << ','; 3259 } 3260 dbgs() << ": " << LRange << '\n'; 3261 }); 3262 LIS->extendToIndices(LRange, EndPoints); 3263 } 3264 3265 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 3266 const LiveRange &ToMerge, 3267 LaneBitmask LaneMask, 3268 CoalescerPair &CP) { 3269 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3270 LI.refineSubRanges( 3271 Allocator, LaneMask, 3272 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) { 3273 if (SR.empty()) { 3274 SR.assign(ToMerge, Allocator); 3275 } else { 3276 // joinSubRegRange() destroys the merged range, so we need a copy. 3277 LiveRange RangeCopy(ToMerge, Allocator); 3278 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 3279 } 3280 }, 3281 *LIS->getSlotIndexes(), *TRI); 3282 } 3283 3284 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) { 3285 if (LI.valnos.size() < LargeIntervalSizeThreshold) 3286 return false; 3287 auto &Counter = LargeLIVisitCounter[LI.reg]; 3288 if (Counter < LargeIntervalFreqThreshold) { 3289 Counter++; 3290 return false; 3291 } 3292 return true; 3293 } 3294 3295 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 3296 SmallVector<VNInfo*, 16> NewVNInfo; 3297 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 3298 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 3299 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 3300 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 3301 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3302 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 3303 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3304 3305 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n'); 3306 3307 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS)) 3308 return false; 3309 3310 // First compute NewVNInfo and the simple value mappings. 3311 // Detect impossible conflicts early. 3312 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 3313 return false; 3314 3315 // Some conflicts can only be resolved after all values have been mapped. 3316 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 3317 return false; 3318 3319 // All clear, the live ranges can be merged. 3320 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 3321 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3322 3323 // Transform lanemasks from the LHS to masks in the coalesced register and 3324 // create initial subranges if necessary. 3325 unsigned DstIdx = CP.getDstIdx(); 3326 if (!LHS.hasSubRanges()) { 3327 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 3328 : TRI->getSubRegIndexLaneMask(DstIdx); 3329 // LHS must support subregs or we wouldn't be in this codepath. 3330 assert(Mask.any()); 3331 LHS.createSubRangeFrom(Allocator, Mask, LHS); 3332 } else if (DstIdx != 0) { 3333 // Transform LHS lanemasks to new register class if necessary. 3334 for (LiveInterval::SubRange &R : LHS.subranges()) { 3335 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 3336 R.LaneMask = Mask; 3337 } 3338 } 3339 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS 3340 << '\n'); 3341 3342 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3343 unsigned SrcIdx = CP.getSrcIdx(); 3344 if (!RHS.hasSubRanges()) { 3345 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3346 : TRI->getSubRegIndexLaneMask(SrcIdx); 3347 mergeSubRangeInto(LHS, RHS, Mask, CP); 3348 } else { 3349 // Pair up subranges and merge. 3350 for (LiveInterval::SubRange &R : RHS.subranges()) { 3351 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3352 mergeSubRangeInto(LHS, R, Mask, CP); 3353 } 3354 } 3355 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3356 3357 // Pruning implicit defs from subranges may result in the main range 3358 // having stale segments. 3359 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3360 3361 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3362 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3363 } 3364 3365 // The merging algorithm in LiveInterval::join() can't handle conflicting 3366 // value mappings, so we need to remove any live ranges that overlap a 3367 // CR_Replace resolution. Collect a set of end points that can be used to 3368 // restore the live range after joining. 3369 SmallVector<SlotIndex, 8> EndPoints; 3370 LHSVals.pruneValues(RHSVals, EndPoints, true); 3371 RHSVals.pruneValues(LHSVals, EndPoints, true); 3372 3373 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3374 // registers to require trimming. 3375 SmallVector<unsigned, 8> ShrinkRegs; 3376 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3377 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3378 while (!ShrinkRegs.empty()) 3379 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3380 3381 // Join RHS into LHS. 3382 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3383 3384 // Kill flags are going to be wrong if the live ranges were overlapping. 3385 // Eventually, we should simply clear all kill flags when computing live 3386 // ranges. They are reinserted after register allocation. 3387 MRI->clearKillFlags(LHS.reg); 3388 MRI->clearKillFlags(RHS.reg); 3389 3390 if (!EndPoints.empty()) { 3391 // Recompute the parts of the live range we had to remove because of 3392 // CR_Replace conflicts. 3393 LLVM_DEBUG({ 3394 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3395 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3396 dbgs() << EndPoints[i]; 3397 if (i != n-1) 3398 dbgs() << ','; 3399 } 3400 dbgs() << ": " << LHS << '\n'; 3401 }); 3402 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3403 } 3404 3405 return true; 3406 } 3407 3408 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3409 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3410 } 3411 3412 namespace { 3413 3414 /// Information concerning MBB coalescing priority. 3415 struct MBBPriorityInfo { 3416 MachineBasicBlock *MBB; 3417 unsigned Depth; 3418 bool IsSplit; 3419 3420 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3421 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3422 }; 3423 3424 } // end anonymous namespace 3425 3426 /// C-style comparator that sorts first based on the loop depth of the basic 3427 /// block (the unsigned), and then on the MBB number. 3428 /// 3429 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3430 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3431 const MBBPriorityInfo *RHS) { 3432 // Deeper loops first 3433 if (LHS->Depth != RHS->Depth) 3434 return LHS->Depth > RHS->Depth ? -1 : 1; 3435 3436 // Try to unsplit critical edges next. 3437 if (LHS->IsSplit != RHS->IsSplit) 3438 return LHS->IsSplit ? -1 : 1; 3439 3440 // Prefer blocks that are more connected in the CFG. This takes care of 3441 // the most difficult copies first while intervals are short. 3442 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3443 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3444 if (cl != cr) 3445 return cl > cr ? -1 : 1; 3446 3447 // As a last resort, sort by block number. 3448 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3449 } 3450 3451 /// \returns true if the given copy uses or defines a local live range. 3452 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3453 if (!Copy->isCopy()) 3454 return false; 3455 3456 if (Copy->getOperand(1).isUndef()) 3457 return false; 3458 3459 unsigned SrcReg = Copy->getOperand(1).getReg(); 3460 unsigned DstReg = Copy->getOperand(0).getReg(); 3461 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 3462 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 3463 return false; 3464 3465 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3466 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3467 } 3468 3469 void RegisterCoalescer::lateLiveIntervalUpdate() { 3470 for (unsigned reg : ToBeUpdated) { 3471 if (!LIS->hasInterval(reg)) 3472 continue; 3473 LiveInterval &LI = LIS->getInterval(reg); 3474 shrinkToUses(&LI, &DeadDefs); 3475 if (!DeadDefs.empty()) 3476 eliminateDeadDefs(); 3477 } 3478 ToBeUpdated.clear(); 3479 } 3480 3481 bool RegisterCoalescer:: 3482 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3483 bool Progress = false; 3484 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3485 if (!CurrList[i]) 3486 continue; 3487 // Skip instruction pointers that have already been erased, for example by 3488 // dead code elimination. 3489 if (ErasedInstrs.count(CurrList[i])) { 3490 CurrList[i] = nullptr; 3491 continue; 3492 } 3493 bool Again = false; 3494 bool Success = joinCopy(CurrList[i], Again); 3495 Progress |= Success; 3496 if (Success || !Again) 3497 CurrList[i] = nullptr; 3498 } 3499 return Progress; 3500 } 3501 3502 /// Check if DstReg is a terminal node. 3503 /// I.e., it does not have any affinity other than \p Copy. 3504 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 3505 const MachineRegisterInfo *MRI) { 3506 assert(Copy.isCopyLike()); 3507 // Check if the destination of this copy as any other affinity. 3508 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3509 if (&MI != &Copy && MI.isCopyLike()) 3510 return false; 3511 return true; 3512 } 3513 3514 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3515 assert(Copy.isCopyLike()); 3516 if (!UseTerminalRule) 3517 return false; 3518 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 3519 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg)) 3520 return false; 3521 // Check if the destination of this copy has any other affinity. 3522 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 3523 // If SrcReg is a physical register, the copy won't be coalesced. 3524 // Ignoring it may have other side effect (like missing 3525 // rematerialization). So keep it. 3526 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 3527 !isTerminalReg(DstReg, Copy, MRI)) 3528 return false; 3529 3530 // DstReg is a terminal node. Check if it interferes with any other 3531 // copy involving SrcReg. 3532 const MachineBasicBlock *OrigBB = Copy.getParent(); 3533 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3534 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3535 // Technically we should check if the weight of the new copy is 3536 // interesting compared to the other one and update the weight 3537 // of the copies accordingly. However, this would only work if 3538 // we would gather all the copies first then coalesce, whereas 3539 // right now we interleave both actions. 3540 // For now, just consider the copies that are in the same block. 3541 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3542 continue; 3543 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 3544 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3545 OtherSubReg)) 3546 return false; 3547 if (OtherReg == SrcReg) 3548 OtherReg = OtherSrcReg; 3549 // Check if OtherReg is a non-terminal. 3550 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) || 3551 isTerminalReg(OtherReg, MI, MRI)) 3552 continue; 3553 // Check that OtherReg interfere with DstReg. 3554 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3555 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) 3556 << '\n'); 3557 return true; 3558 } 3559 } 3560 return false; 3561 } 3562 3563 void 3564 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3565 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n"); 3566 3567 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3568 // yet, it might invalidate the iterator. 3569 const unsigned PrevSize = WorkList.size(); 3570 if (JoinGlobalCopies) { 3571 SmallVector<MachineInstr*, 2> LocalTerminals; 3572 SmallVector<MachineInstr*, 2> GlobalTerminals; 3573 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3574 // are not inherently easier to resolve, but slightly preferable until we 3575 // have local live range splitting. In particular this is required by 3576 // cmp+jmp macro fusion. 3577 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3578 MII != E; ++MII) { 3579 if (!MII->isCopyLike()) 3580 continue; 3581 bool ApplyTerminalRule = applyTerminalRule(*MII); 3582 if (isLocalCopy(&(*MII), LIS)) { 3583 if (ApplyTerminalRule) 3584 LocalTerminals.push_back(&(*MII)); 3585 else 3586 LocalWorkList.push_back(&(*MII)); 3587 } else { 3588 if (ApplyTerminalRule) 3589 GlobalTerminals.push_back(&(*MII)); 3590 else 3591 WorkList.push_back(&(*MII)); 3592 } 3593 } 3594 // Append the copies evicted by the terminal rule at the end of the list. 3595 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3596 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3597 } 3598 else { 3599 SmallVector<MachineInstr*, 2> Terminals; 3600 for (MachineInstr &MII : *MBB) 3601 if (MII.isCopyLike()) { 3602 if (applyTerminalRule(MII)) 3603 Terminals.push_back(&MII); 3604 else 3605 WorkList.push_back(&MII); 3606 } 3607 // Append the copies evicted by the terminal rule at the end of the list. 3608 WorkList.append(Terminals.begin(), Terminals.end()); 3609 } 3610 // Try coalescing the collected copies immediately, and remove the nulls. 3611 // This prevents the WorkList from getting too large since most copies are 3612 // joinable on the first attempt. 3613 MutableArrayRef<MachineInstr*> 3614 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3615 if (copyCoalesceWorkList(CurrList)) 3616 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3617 nullptr), WorkList.end()); 3618 } 3619 3620 void RegisterCoalescer::coalesceLocals() { 3621 copyCoalesceWorkList(LocalWorkList); 3622 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3623 if (LocalWorkList[j]) 3624 WorkList.push_back(LocalWorkList[j]); 3625 } 3626 LocalWorkList.clear(); 3627 } 3628 3629 void RegisterCoalescer::joinAllIntervals() { 3630 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3631 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3632 3633 std::vector<MBBPriorityInfo> MBBs; 3634 MBBs.reserve(MF->size()); 3635 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3636 MachineBasicBlock *MBB = &*I; 3637 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3638 JoinSplitEdges && isSplitEdge(MBB))); 3639 } 3640 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3641 3642 // Coalesce intervals in MBB priority order. 3643 unsigned CurrDepth = std::numeric_limits<unsigned>::max(); 3644 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3645 // Try coalescing the collected local copies for deeper loops. 3646 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3647 coalesceLocals(); 3648 CurrDepth = MBBs[i].Depth; 3649 } 3650 copyCoalesceInMBB(MBBs[i].MBB); 3651 } 3652 lateLiveIntervalUpdate(); 3653 coalesceLocals(); 3654 3655 // Joining intervals can allow other intervals to be joined. Iteratively join 3656 // until we make no progress. 3657 while (copyCoalesceWorkList(WorkList)) 3658 /* empty */ ; 3659 lateLiveIntervalUpdate(); 3660 } 3661 3662 void RegisterCoalescer::releaseMemory() { 3663 ErasedInstrs.clear(); 3664 WorkList.clear(); 3665 DeadDefs.clear(); 3666 InflateRegs.clear(); 3667 LargeLIVisitCounter.clear(); 3668 } 3669 3670 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3671 MF = &fn; 3672 MRI = &fn.getRegInfo(); 3673 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3674 TRI = STI.getRegisterInfo(); 3675 TII = STI.getInstrInfo(); 3676 LIS = &getAnalysis<LiveIntervals>(); 3677 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3678 Loops = &getAnalysis<MachineLoopInfo>(); 3679 if (EnableGlobalCopies == cl::BOU_UNSET) 3680 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3681 else 3682 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3683 3684 // The MachineScheduler does not currently require JoinSplitEdges. This will 3685 // either be enabled unconditionally or replaced by a more general live range 3686 // splitting optimization. 3687 JoinSplitEdges = EnableJoinSplits; 3688 3689 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3690 << "********** Function: " << MF->getName() << '\n'); 3691 3692 if (VerifyCoalescing) 3693 MF->verify(this, "Before register coalescing"); 3694 3695 RegClassInfo.runOnMachineFunction(fn); 3696 3697 // Join (coalesce) intervals if requested. 3698 if (EnableJoining) 3699 joinAllIntervals(); 3700 3701 // After deleting a lot of copies, register classes may be less constrained. 3702 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3703 // DPR inflation. 3704 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3705 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3706 InflateRegs.end()); 3707 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() 3708 << " regs.\n"); 3709 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3710 unsigned Reg = InflateRegs[i]; 3711 if (MRI->reg_nodbg_empty(Reg)) 3712 continue; 3713 if (MRI->recomputeRegClass(Reg)) { 3714 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to " 3715 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3716 ++NumInflated; 3717 3718 LiveInterval &LI = LIS->getInterval(Reg); 3719 if (LI.hasSubRanges()) { 3720 // If the inflated register class does not support subregisters anymore 3721 // remove the subranges. 3722 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3723 LI.clearSubRanges(); 3724 } else { 3725 #ifndef NDEBUG 3726 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3727 // If subranges are still supported, then the same subregs 3728 // should still be supported. 3729 for (LiveInterval::SubRange &S : LI.subranges()) { 3730 assert((S.LaneMask & ~MaxMask).none()); 3731 } 3732 #endif 3733 } 3734 } 3735 } 3736 } 3737 3738 LLVM_DEBUG(dump()); 3739 if (VerifyCoalescing) 3740 MF->verify(this, "After register coalescing"); 3741 return true; 3742 } 3743 3744 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3745 LIS->print(O, m); 3746 } 3747