1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic RegisterCoalescer interface which 10 // is used as the common interface used by all clients and 11 // implementations of register coalescing. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "RegisterCoalescer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetOpcodes.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/MC/LaneBitmask.h" 44 #include "llvm/MC/MCInstrDesc.h" 45 #include "llvm/MC/MCRegisterInfo.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <iterator> 55 #include <limits> 56 #include <tuple> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "regalloc" 63 64 STATISTIC(numJoins , "Number of interval joins performed"); 65 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 66 STATISTIC(numCommutes , "Number of instruction commuting performed"); 67 STATISTIC(numExtends , "Number of copies extended"); 68 STATISTIC(NumReMats , "Number of instructions re-materialized"); 69 STATISTIC(NumInflated , "Number of register classes inflated"); 70 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 71 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 72 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called"); 73 74 static cl::opt<bool> EnableJoining("join-liveintervals", 75 cl::desc("Coalesce copies (default=true)"), 76 cl::init(true), cl::Hidden); 77 78 static cl::opt<bool> UseTerminalRule("terminal-rule", 79 cl::desc("Apply the terminal rule"), 80 cl::init(false), cl::Hidden); 81 82 /// Temporary flag to test critical edge unsplitting. 83 static cl::opt<bool> 84 EnableJoinSplits("join-splitedges", 85 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 86 87 /// Temporary flag to test global copy optimization. 88 static cl::opt<cl::boolOrDefault> 89 EnableGlobalCopies("join-globalcopies", 90 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 91 cl::init(cl::BOU_UNSET), cl::Hidden); 92 93 static cl::opt<bool> 94 VerifyCoalescing("verify-coalescing", 95 cl::desc("Verify machine instrs before and after register coalescing"), 96 cl::Hidden); 97 98 static cl::opt<unsigned> LateRematUpdateThreshold( 99 "late-remat-update-threshold", cl::Hidden, 100 cl::desc("During rematerialization for a copy, if the def instruction has " 101 "many other copy uses to be rematerialized, delay the multiple " 102 "separate live interval update work and do them all at once after " 103 "all those rematerialization are done. It will save a lot of " 104 "repeated work. "), 105 cl::init(100)); 106 107 static cl::opt<unsigned> LargeIntervalSizeThreshold( 108 "large-interval-size-threshold", cl::Hidden, 109 cl::desc("If the valnos size of an interval is larger than the threshold, " 110 "it is regarded as a large interval. "), 111 cl::init(100)); 112 113 static cl::opt<unsigned> LargeIntervalFreqThreshold( 114 "large-interval-freq-threshold", cl::Hidden, 115 cl::desc("For a large interval, if it is coalesed with other live " 116 "intervals many times more than the threshold, stop its " 117 "coalescing to control the compile time. "), 118 cl::init(100)); 119 120 namespace { 121 122 class RegisterCoalescer : public MachineFunctionPass, 123 private LiveRangeEdit::Delegate { 124 MachineFunction* MF; 125 MachineRegisterInfo* MRI; 126 const TargetRegisterInfo* TRI; 127 const TargetInstrInfo* TII; 128 LiveIntervals *LIS; 129 const MachineLoopInfo* Loops; 130 AliasAnalysis *AA; 131 RegisterClassInfo RegClassInfo; 132 133 /// A LaneMask to remember on which subregister live ranges we need to call 134 /// shrinkToUses() later. 135 LaneBitmask ShrinkMask; 136 137 /// True if the main range of the currently coalesced intervals should be 138 /// checked for smaller live intervals. 139 bool ShrinkMainRange; 140 141 /// True if the coalescer should aggressively coalesce global copies 142 /// in favor of keeping local copies. 143 bool JoinGlobalCopies; 144 145 /// True if the coalescer should aggressively coalesce fall-thru 146 /// blocks exclusively containing copies. 147 bool JoinSplitEdges; 148 149 /// Copy instructions yet to be coalesced. 150 SmallVector<MachineInstr*, 8> WorkList; 151 SmallVector<MachineInstr*, 8> LocalWorkList; 152 153 /// Set of instruction pointers that have been erased, and 154 /// that may be present in WorkList. 155 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 156 157 /// Dead instructions that are about to be deleted. 158 SmallVector<MachineInstr*, 8> DeadDefs; 159 160 /// Virtual registers to be considered for register class inflation. 161 SmallVector<unsigned, 8> InflateRegs; 162 163 /// The collection of live intervals which should have been updated 164 /// immediately after rematerialiation but delayed until 165 /// lateLiveIntervalUpdate is called. 166 DenseSet<unsigned> ToBeUpdated; 167 168 /// Record how many times the large live interval with many valnos 169 /// has been tried to join with other live interval. 170 DenseMap<unsigned, unsigned long> LargeLIVisitCounter; 171 172 /// Recursively eliminate dead defs in DeadDefs. 173 void eliminateDeadDefs(); 174 175 /// LiveRangeEdit callback for eliminateDeadDefs(). 176 void LRE_WillEraseInstruction(MachineInstr *MI) override; 177 178 /// Coalesce the LocalWorkList. 179 void coalesceLocals(); 180 181 /// Join compatible live intervals 182 void joinAllIntervals(); 183 184 /// Coalesce copies in the specified MBB, putting 185 /// copies that cannot yet be coalesced into WorkList. 186 void copyCoalesceInMBB(MachineBasicBlock *MBB); 187 188 /// Tries to coalesce all copies in CurrList. Returns true if any progress 189 /// was made. 190 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 191 192 /// If one def has many copy like uses, and those copy uses are all 193 /// rematerialized, the live interval update needed for those 194 /// rematerializations will be delayed and done all at once instead 195 /// of being done multiple times. This is to save compile cost because 196 /// live interval update is costly. 197 void lateLiveIntervalUpdate(); 198 199 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 200 /// src/dst of the copy instruction CopyMI. This returns true if the copy 201 /// was successfully coalesced away. If it is not currently possible to 202 /// coalesce this interval, but it may be possible if other things get 203 /// coalesced, then it returns true by reference in 'Again'. 204 bool joinCopy(MachineInstr *CopyMI, bool &Again); 205 206 /// Attempt to join these two intervals. On failure, this 207 /// returns false. The output "SrcInt" will not have been modified, so we 208 /// can use this information below to update aliases. 209 bool joinIntervals(CoalescerPair &CP); 210 211 /// Attempt joining two virtual registers. Return true on success. 212 bool joinVirtRegs(CoalescerPair &CP); 213 214 /// If a live interval has many valnos and is coalesced with other 215 /// live intervals many times, we regard such live interval as having 216 /// high compile time cost. 217 bool isHighCostLiveInterval(LiveInterval &LI); 218 219 /// Attempt joining with a reserved physreg. 220 bool joinReservedPhysReg(CoalescerPair &CP); 221 222 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 223 /// Subranges in @p LI which only partially interfere with the desired 224 /// LaneMask are split as necessary. @p LaneMask are the lanes that 225 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 226 /// lanemasks already adjusted to the coalesced register. 227 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 228 LaneBitmask LaneMask, CoalescerPair &CP); 229 230 /// Join the liveranges of two subregisters. Joins @p RRange into 231 /// @p LRange, @p RRange may be invalid afterwards. 232 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 233 LaneBitmask LaneMask, const CoalescerPair &CP); 234 235 /// We found a non-trivially-coalescable copy. If the source value number is 236 /// defined by a copy from the destination reg see if we can merge these two 237 /// destination reg valno# into a single value number, eliminating a copy. 238 /// This returns true if an interval was modified. 239 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 240 241 /// Return true if there are definitions of IntB 242 /// other than BValNo val# that can reach uses of AValno val# of IntA. 243 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 244 VNInfo *AValNo, VNInfo *BValNo); 245 246 /// We found a non-trivially-coalescable copy. 247 /// If the source value number is defined by a commutable instruction and 248 /// its other operand is coalesced to the copy dest register, see if we 249 /// can transform the copy into a noop by commuting the definition. 250 /// This returns a pair of two flags: 251 /// - the first element is true if an interval was modified, 252 /// - the second element is true if the destination interval needs 253 /// to be shrunk after deleting the copy. 254 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP, 255 MachineInstr *CopyMI); 256 257 /// We found a copy which can be moved to its less frequent predecessor. 258 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 259 260 /// If the source of a copy is defined by a 261 /// trivial computation, replace the copy by rematerialize the definition. 262 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 263 bool &IsDefCopy); 264 265 /// Return true if a copy involving a physreg should be joined. 266 bool canJoinPhys(const CoalescerPair &CP); 267 268 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 269 /// number if it is not zero. If DstReg is a physical register and the 270 /// existing subregister number of the def / use being updated is not zero, 271 /// make sure to set it to the correct physical subregister. 272 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 273 274 /// If the given machine operand reads only undefined lanes add an undef 275 /// flag. 276 /// This can happen when undef uses were previously concealed by a copy 277 /// which we coalesced. Example: 278 /// %0:sub0<def,read-undef> = ... 279 /// %1 = COPY %0 <-- Coalescing COPY reveals undef 280 /// = use %1:sub1 <-- hidden undef use 281 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 282 MachineOperand &MO, unsigned SubRegIdx); 283 284 /// Handle copies of undef values. If the undef value is an incoming 285 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF. 286 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise, 287 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point). 288 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI); 289 290 /// Check whether or not we should apply the terminal rule on the 291 /// destination (Dst) of \p Copy. 292 /// When the terminal rule applies, Copy is not profitable to 293 /// coalesce. 294 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 295 /// at least one interference (Dst, Dst2). If Dst is terminal, the 296 /// terminal rule consists in checking that at least one of 297 /// interfering node, say Dst2, has an affinity of equal or greater 298 /// weight with Src. 299 /// In that case, Dst2 and Dst will not be able to be both coalesced 300 /// with Src. Since Dst2 exposes more coalescing opportunities than 301 /// Dst, we can drop \p Copy. 302 bool applyTerminalRule(const MachineInstr &Copy) const; 303 304 /// Wrapper method for \see LiveIntervals::shrinkToUses. 305 /// This method does the proper fixing of the live-ranges when the afore 306 /// mentioned method returns true. 307 void shrinkToUses(LiveInterval *LI, 308 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 309 NumShrinkToUses++; 310 if (LIS->shrinkToUses(LI, Dead)) { 311 /// Check whether or not \p LI is composed by multiple connected 312 /// components and if that is the case, fix that. 313 SmallVector<LiveInterval*, 8> SplitLIs; 314 LIS->splitSeparateComponents(*LI, SplitLIs); 315 } 316 } 317 318 /// Wrapper Method to do all the necessary work when an Instruction is 319 /// deleted. 320 /// Optimizations should use this to make sure that deleted instructions 321 /// are always accounted for. 322 void deleteInstr(MachineInstr* MI) { 323 ErasedInstrs.insert(MI); 324 LIS->RemoveMachineInstrFromMaps(*MI); 325 MI->eraseFromParent(); 326 } 327 328 public: 329 static char ID; ///< Class identification, replacement for typeinfo 330 331 RegisterCoalescer() : MachineFunctionPass(ID) { 332 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 333 } 334 335 void getAnalysisUsage(AnalysisUsage &AU) const override; 336 337 void releaseMemory() override; 338 339 /// This is the pass entry point. 340 bool runOnMachineFunction(MachineFunction&) override; 341 342 /// Implement the dump method. 343 void print(raw_ostream &O, const Module* = nullptr) const override; 344 }; 345 346 } // end anonymous namespace 347 348 char RegisterCoalescer::ID = 0; 349 350 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 351 352 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 353 "Simple Register Coalescing", false, false) 354 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 355 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 356 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 357 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 358 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 359 "Simple Register Coalescing", false, false) 360 361 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 362 unsigned &Src, unsigned &Dst, 363 unsigned &SrcSub, unsigned &DstSub) { 364 if (MI->isCopy()) { 365 Dst = MI->getOperand(0).getReg(); 366 DstSub = MI->getOperand(0).getSubReg(); 367 Src = MI->getOperand(1).getReg(); 368 SrcSub = MI->getOperand(1).getSubReg(); 369 } else if (MI->isSubregToReg()) { 370 Dst = MI->getOperand(0).getReg(); 371 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 372 MI->getOperand(3).getImm()); 373 Src = MI->getOperand(2).getReg(); 374 SrcSub = MI->getOperand(2).getSubReg(); 375 } else 376 return false; 377 return true; 378 } 379 380 /// Return true if this block should be vacated by the coalescer to eliminate 381 /// branches. The important cases to handle in the coalescer are critical edges 382 /// split during phi elimination which contain only copies. Simple blocks that 383 /// contain non-branches should also be vacated, but this can be handled by an 384 /// earlier pass similar to early if-conversion. 385 static bool isSplitEdge(const MachineBasicBlock *MBB) { 386 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 387 return false; 388 389 for (const auto &MI : *MBB) { 390 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 391 return false; 392 } 393 return true; 394 } 395 396 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 397 SrcReg = DstReg = 0; 398 SrcIdx = DstIdx = 0; 399 NewRC = nullptr; 400 Flipped = CrossClass = false; 401 402 unsigned Src, Dst, SrcSub, DstSub; 403 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 404 return false; 405 Partial = SrcSub || DstSub; 406 407 // If one register is a physreg, it must be Dst. 408 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 409 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 410 return false; 411 std::swap(Src, Dst); 412 std::swap(SrcSub, DstSub); 413 Flipped = true; 414 } 415 416 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 417 418 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 419 // Eliminate DstSub on a physreg. 420 if (DstSub) { 421 Dst = TRI.getSubReg(Dst, DstSub); 422 if (!Dst) return false; 423 DstSub = 0; 424 } 425 426 // Eliminate SrcSub by picking a corresponding Dst superregister. 427 if (SrcSub) { 428 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 429 if (!Dst) return false; 430 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 431 return false; 432 } 433 } else { 434 // Both registers are virtual. 435 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 436 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 437 438 // Both registers have subreg indices. 439 if (SrcSub && DstSub) { 440 // Copies between different sub-registers are never coalescable. 441 if (Src == Dst && SrcSub != DstSub) 442 return false; 443 444 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 445 SrcIdx, DstIdx); 446 if (!NewRC) 447 return false; 448 } else if (DstSub) { 449 // SrcReg will be merged with a sub-register of DstReg. 450 SrcIdx = DstSub; 451 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 452 } else if (SrcSub) { 453 // DstReg will be merged with a sub-register of SrcReg. 454 DstIdx = SrcSub; 455 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 456 } else { 457 // This is a straight copy without sub-registers. 458 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 459 } 460 461 // The combined constraint may be impossible to satisfy. 462 if (!NewRC) 463 return false; 464 465 // Prefer SrcReg to be a sub-register of DstReg. 466 // FIXME: Coalescer should support subregs symmetrically. 467 if (DstIdx && !SrcIdx) { 468 std::swap(Src, Dst); 469 std::swap(SrcIdx, DstIdx); 470 Flipped = !Flipped; 471 } 472 473 CrossClass = NewRC != DstRC || NewRC != SrcRC; 474 } 475 // Check our invariants 476 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 477 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 478 "Cannot have a physical SubIdx"); 479 SrcReg = Src; 480 DstReg = Dst; 481 return true; 482 } 483 484 bool CoalescerPair::flip() { 485 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 486 return false; 487 std::swap(SrcReg, DstReg); 488 std::swap(SrcIdx, DstIdx); 489 Flipped = !Flipped; 490 return true; 491 } 492 493 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 494 if (!MI) 495 return false; 496 unsigned Src, Dst, SrcSub, DstSub; 497 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 498 return false; 499 500 // Find the virtual register that is SrcReg. 501 if (Dst == SrcReg) { 502 std::swap(Src, Dst); 503 std::swap(SrcSub, DstSub); 504 } else if (Src != SrcReg) { 505 return false; 506 } 507 508 // Now check that Dst matches DstReg. 509 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 510 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 511 return false; 512 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 513 // DstSub could be set for a physreg from INSERT_SUBREG. 514 if (DstSub) 515 Dst = TRI.getSubReg(Dst, DstSub); 516 // Full copy of Src. 517 if (!SrcSub) 518 return DstReg == Dst; 519 // This is a partial register copy. Check that the parts match. 520 return TRI.getSubReg(DstReg, SrcSub) == Dst; 521 } else { 522 // DstReg is virtual. 523 if (DstReg != Dst) 524 return false; 525 // Registers match, do the subregisters line up? 526 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 527 TRI.composeSubRegIndices(DstIdx, DstSub); 528 } 529 } 530 531 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 532 AU.setPreservesCFG(); 533 AU.addRequired<AAResultsWrapperPass>(); 534 AU.addRequired<LiveIntervals>(); 535 AU.addPreserved<LiveIntervals>(); 536 AU.addPreserved<SlotIndexes>(); 537 AU.addRequired<MachineLoopInfo>(); 538 AU.addPreserved<MachineLoopInfo>(); 539 AU.addPreservedID(MachineDominatorsID); 540 MachineFunctionPass::getAnalysisUsage(AU); 541 } 542 543 void RegisterCoalescer::eliminateDeadDefs() { 544 SmallVector<unsigned, 8> NewRegs; 545 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 546 nullptr, this).eliminateDeadDefs(DeadDefs); 547 } 548 549 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 550 // MI may be in WorkList. Make sure we don't visit it. 551 ErasedInstrs.insert(MI); 552 } 553 554 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 555 MachineInstr *CopyMI) { 556 assert(!CP.isPartial() && "This doesn't work for partial copies."); 557 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 558 559 LiveInterval &IntA = 560 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 561 LiveInterval &IntB = 562 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 563 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 564 565 // We have a non-trivially-coalescable copy with IntA being the source and 566 // IntB being the dest, thus this defines a value number in IntB. If the 567 // source value number (in IntA) is defined by a copy from B, see if we can 568 // merge these two pieces of B into a single value number, eliminating a copy. 569 // For example: 570 // 571 // A3 = B0 572 // ... 573 // B1 = A3 <- this copy 574 // 575 // In this case, B0 can be extended to where the B1 copy lives, allowing the 576 // B1 value number to be replaced with B0 (which simplifies the B 577 // liveinterval). 578 579 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 580 // the example above. 581 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 582 if (BS == IntB.end()) return false; 583 VNInfo *BValNo = BS->valno; 584 585 // Get the location that B is defined at. Two options: either this value has 586 // an unknown definition point or it is defined at CopyIdx. If unknown, we 587 // can't process it. 588 if (BValNo->def != CopyIdx) return false; 589 590 // AValNo is the value number in A that defines the copy, A3 in the example. 591 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 592 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 593 // The live segment might not exist after fun with physreg coalescing. 594 if (AS == IntA.end()) return false; 595 VNInfo *AValNo = AS->valno; 596 597 // If AValNo is defined as a copy from IntB, we can potentially process this. 598 // Get the instruction that defines this value number. 599 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 600 // Don't allow any partial copies, even if isCoalescable() allows them. 601 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 602 return false; 603 604 // Get the Segment in IntB that this value number starts with. 605 LiveInterval::iterator ValS = 606 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 607 if (ValS == IntB.end()) 608 return false; 609 610 // Make sure that the end of the live segment is inside the same block as 611 // CopyMI. 612 MachineInstr *ValSEndInst = 613 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 614 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 615 return false; 616 617 // Okay, we now know that ValS ends in the same block that the CopyMI 618 // live-range starts. If there are no intervening live segments between them 619 // in IntB, we can merge them. 620 if (ValS+1 != BS) return false; 621 622 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI)); 623 624 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 625 // We are about to delete CopyMI, so need to remove it as the 'instruction 626 // that defines this value #'. Update the valnum with the new defining 627 // instruction #. 628 BValNo->def = FillerStart; 629 630 // Okay, we can merge them. We need to insert a new liverange: 631 // [ValS.end, BS.begin) of either value number, then we merge the 632 // two value numbers. 633 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 634 635 // Okay, merge "B1" into the same value number as "B0". 636 if (BValNo != ValS->valno) 637 IntB.MergeValueNumberInto(BValNo, ValS->valno); 638 639 // Do the same for the subregister segments. 640 for (LiveInterval::SubRange &S : IntB.subranges()) { 641 // Check for SubRange Segments of the form [1234r,1234d:0) which can be 642 // removed to prevent creating bogus SubRange Segments. 643 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx); 644 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) { 645 S.removeSegment(*SS, true); 646 continue; 647 } 648 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 649 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 650 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 651 if (SubBValNo != SubValSNo) 652 S.MergeValueNumberInto(SubBValNo, SubValSNo); 653 } 654 655 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n'); 656 657 // If the source instruction was killing the source register before the 658 // merge, unset the isKill marker given the live range has been extended. 659 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 660 if (UIdx != -1) { 661 ValSEndInst->getOperand(UIdx).setIsKill(false); 662 } 663 664 // Rewrite the copy. 665 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 666 // If the copy instruction was killing the destination register or any 667 // subrange before the merge trim the live range. 668 bool RecomputeLiveRange = AS->end == CopyIdx; 669 if (!RecomputeLiveRange) { 670 for (LiveInterval::SubRange &S : IntA.subranges()) { 671 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx); 672 if (SS != S.end() && SS->end == CopyIdx) { 673 RecomputeLiveRange = true; 674 break; 675 } 676 } 677 } 678 if (RecomputeLiveRange) 679 shrinkToUses(&IntA); 680 681 ++numExtends; 682 return true; 683 } 684 685 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 686 LiveInterval &IntB, 687 VNInfo *AValNo, 688 VNInfo *BValNo) { 689 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 690 // the PHI values. 691 if (LIS->hasPHIKill(IntA, AValNo)) 692 return true; 693 694 for (LiveRange::Segment &ASeg : IntA.segments) { 695 if (ASeg.valno != AValNo) continue; 696 LiveInterval::iterator BI = 697 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start); 698 if (BI != IntB.begin()) 699 --BI; 700 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 701 if (BI->valno == BValNo) 702 continue; 703 if (BI->start <= ASeg.start && BI->end > ASeg.start) 704 return true; 705 if (BI->start > ASeg.start && BI->start < ASeg.end) 706 return true; 707 } 708 } 709 return false; 710 } 711 712 /// Copy segments with value number @p SrcValNo from liverange @p Src to live 713 /// range @Dst and use value number @p DstValNo there. 714 static std::pair<bool,bool> 715 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src, 716 const VNInfo *SrcValNo) { 717 bool Changed = false; 718 bool MergedWithDead = false; 719 for (const LiveRange::Segment &S : Src.segments) { 720 if (S.valno != SrcValNo) 721 continue; 722 // This is adding a segment from Src that ends in a copy that is about 723 // to be removed. This segment is going to be merged with a pre-existing 724 // segment in Dst. This works, except in cases when the corresponding 725 // segment in Dst is dead. For example: adding [192r,208r:1) from Src 726 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst. 727 // Recognized such cases, so that the segments can be shrunk. 728 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo); 729 LiveRange::Segment &Merged = *Dst.addSegment(Added); 730 if (Merged.end.isDead()) 731 MergedWithDead = true; 732 Changed = true; 733 } 734 return std::make_pair(Changed, MergedWithDead); 735 } 736 737 std::pair<bool,bool> 738 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 739 MachineInstr *CopyMI) { 740 assert(!CP.isPhys()); 741 742 LiveInterval &IntA = 743 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 744 LiveInterval &IntB = 745 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 746 747 // We found a non-trivially-coalescable copy with IntA being the source and 748 // IntB being the dest, thus this defines a value number in IntB. If the 749 // source value number (in IntA) is defined by a commutable instruction and 750 // its other operand is coalesced to the copy dest register, see if we can 751 // transform the copy into a noop by commuting the definition. For example, 752 // 753 // A3 = op A2 killed B0 754 // ... 755 // B1 = A3 <- this copy 756 // ... 757 // = op A3 <- more uses 758 // 759 // ==> 760 // 761 // B2 = op B0 killed A2 762 // ... 763 // B1 = B2 <- now an identity copy 764 // ... 765 // = op B2 <- more uses 766 767 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 768 // the example above. 769 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 770 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 771 assert(BValNo != nullptr && BValNo->def == CopyIdx); 772 773 // AValNo is the value number in A that defines the copy, A3 in the example. 774 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 775 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 776 if (AValNo->isPHIDef()) 777 return { false, false }; 778 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 779 if (!DefMI) 780 return { false, false }; 781 if (!DefMI->isCommutable()) 782 return { false, false }; 783 // If DefMI is a two-address instruction then commuting it will change the 784 // destination register. 785 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 786 assert(DefIdx != -1); 787 unsigned UseOpIdx; 788 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 789 return { false, false }; 790 791 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 792 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 793 // passed to the method. That _other_ operand is chosen by 794 // the findCommutedOpIndices() method. 795 // 796 // That is obviously an area for improvement in case of instructions having 797 // more than 2 operands. For example, if some instruction has 3 commutable 798 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 799 // op#2<->op#3) of commute transformation should be considered/tried here. 800 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 801 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 802 return { false, false }; 803 804 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 805 unsigned NewReg = NewDstMO.getReg(); 806 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 807 return { false, false }; 808 809 // Make sure there are no other definitions of IntB that would reach the 810 // uses which the new definition can reach. 811 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 812 return { false, false }; 813 814 // If some of the uses of IntA.reg is already coalesced away, return false. 815 // It's not possible to determine whether it's safe to perform the coalescing. 816 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 817 MachineInstr *UseMI = MO.getParent(); 818 unsigned OpNo = &MO - &UseMI->getOperand(0); 819 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 820 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 821 if (US == IntA.end() || US->valno != AValNo) 822 continue; 823 // If this use is tied to a def, we can't rewrite the register. 824 if (UseMI->isRegTiedToDefOperand(OpNo)) 825 return { false, false }; 826 } 827 828 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 829 << *DefMI); 830 831 // At this point we have decided that it is legal to do this 832 // transformation. Start by commuting the instruction. 833 MachineBasicBlock *MBB = DefMI->getParent(); 834 MachineInstr *NewMI = 835 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 836 if (!NewMI) 837 return { false, false }; 838 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 839 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 840 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 841 return { false, false }; 842 if (NewMI != DefMI) { 843 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 844 MachineBasicBlock::iterator Pos = DefMI; 845 MBB->insert(Pos, NewMI); 846 MBB->erase(DefMI); 847 } 848 849 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 850 // A = or A, B 851 // ... 852 // B = A 853 // ... 854 // C = killed A 855 // ... 856 // = B 857 858 // Update uses of IntA of the specific Val# with IntB. 859 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 860 UE = MRI->use_end(); 861 UI != UE; /* ++UI is below because of possible MI removal */) { 862 MachineOperand &UseMO = *UI; 863 ++UI; 864 if (UseMO.isUndef()) 865 continue; 866 MachineInstr *UseMI = UseMO.getParent(); 867 if (UseMI->isDebugValue()) { 868 // FIXME These don't have an instruction index. Not clear we have enough 869 // info to decide whether to do this replacement or not. For now do it. 870 UseMO.setReg(NewReg); 871 continue; 872 } 873 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 874 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 875 assert(US != IntA.end() && "Use must be live"); 876 if (US->valno != AValNo) 877 continue; 878 // Kill flags are no longer accurate. They are recomputed after RA. 879 UseMO.setIsKill(false); 880 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 881 UseMO.substPhysReg(NewReg, *TRI); 882 else 883 UseMO.setReg(NewReg); 884 if (UseMI == CopyMI) 885 continue; 886 if (!UseMI->isCopy()) 887 continue; 888 if (UseMI->getOperand(0).getReg() != IntB.reg || 889 UseMI->getOperand(0).getSubReg()) 890 continue; 891 892 // This copy will become a noop. If it's defining a new val#, merge it into 893 // BValNo. 894 SlotIndex DefIdx = UseIdx.getRegSlot(); 895 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 896 if (!DVNI) 897 continue; 898 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 899 assert(DVNI->def == DefIdx); 900 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 901 for (LiveInterval::SubRange &S : IntB.subranges()) { 902 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 903 if (!SubDVNI) 904 continue; 905 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 906 assert(SubBValNo->def == CopyIdx); 907 S.MergeValueNumberInto(SubDVNI, SubBValNo); 908 } 909 910 deleteInstr(UseMI); 911 } 912 913 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 914 // is updated. 915 bool ShrinkB = false; 916 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 917 if (IntA.hasSubRanges() || IntB.hasSubRanges()) { 918 if (!IntA.hasSubRanges()) { 919 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 920 IntA.createSubRangeFrom(Allocator, Mask, IntA); 921 } else if (!IntB.hasSubRanges()) { 922 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg); 923 IntB.createSubRangeFrom(Allocator, Mask, IntB); 924 } 925 SlotIndex AIdx = CopyIdx.getRegSlot(true); 926 LaneBitmask MaskA; 927 const SlotIndexes &Indexes = *LIS->getSlotIndexes(); 928 for (LiveInterval::SubRange &SA : IntA.subranges()) { 929 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 930 assert(ASubValNo != nullptr); 931 MaskA |= SA.LaneMask; 932 933 IntB.refineSubRanges( 934 Allocator, SA.LaneMask, 935 [&Allocator, &SA, CopyIdx, ASubValNo, 936 &ShrinkB](LiveInterval::SubRange &SR) { 937 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator) 938 : SR.getVNInfoAt(CopyIdx); 939 assert(BSubValNo != nullptr); 940 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 941 ShrinkB |= P.second; 942 if (P.first) 943 BSubValNo->def = ASubValNo->def; 944 }, 945 Indexes, *TRI); 946 } 947 // Go over all subranges of IntB that have not been covered by IntA, 948 // and delete the segments starting at CopyIdx. This can happen if 949 // IntA has undef lanes that are defined in IntB. 950 for (LiveInterval::SubRange &SB : IntB.subranges()) { 951 if ((SB.LaneMask & MaskA).any()) 952 continue; 953 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx)) 954 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex()) 955 SB.removeSegment(*S, true); 956 } 957 } 958 959 BValNo->def = AValNo->def; 960 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 961 ShrinkB |= P.second; 962 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 963 964 LIS->removeVRegDefAt(IntA, AValNo->def); 965 966 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 967 ++numCommutes; 968 return { true, ShrinkB }; 969 } 970 971 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 972 /// predecessor of BB2, and if B is not redefined on the way from A = B 973 /// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the 974 /// execution goes through the path from BB0 to BB2. We may move B = A 975 /// to the predecessor without such reversed copy. 976 /// So we will transform the program from: 977 /// BB0: 978 /// A = B; BB1: 979 /// ... ... 980 /// / \ / 981 /// BB2: 982 /// ... 983 /// B = A; 984 /// 985 /// to: 986 /// 987 /// BB0: BB1: 988 /// A = B; ... 989 /// ... B = A; 990 /// / \ / 991 /// BB2: 992 /// ... 993 /// 994 /// A special case is when BB0 and BB2 are the same BB which is the only 995 /// BB in a loop: 996 /// BB1: 997 /// ... 998 /// BB0/BB2: ---- 999 /// B = A; | 1000 /// ... | 1001 /// A = B; | 1002 /// |------- 1003 /// | 1004 /// We may hoist B = A from BB0/BB2 to BB1. 1005 /// 1006 /// The major preconditions for correctness to remove such partial 1007 /// redundancy include: 1008 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 1009 /// the PHI is defined by the reversed copy A = B in BB0. 1010 /// 2. No B is referenced from the start of BB2 to B = A. 1011 /// 3. No B is defined from A = B to the end of BB0. 1012 /// 4. BB1 has only one successor. 1013 /// 1014 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 1015 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 1016 /// colder place, which not only prevent endless loop, but also make sure 1017 /// the movement of copy is beneficial. 1018 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 1019 MachineInstr &CopyMI) { 1020 assert(!CP.isPhys()); 1021 if (!CopyMI.isFullCopy()) 1022 return false; 1023 1024 MachineBasicBlock &MBB = *CopyMI.getParent(); 1025 if (MBB.isEHPad()) 1026 return false; 1027 1028 if (MBB.pred_size() != 2) 1029 return false; 1030 1031 LiveInterval &IntA = 1032 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 1033 LiveInterval &IntB = 1034 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 1035 1036 // A is defined by PHI at the entry of MBB. 1037 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 1038 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 1039 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 1040 if (!AValNo->isPHIDef()) 1041 return false; 1042 1043 // No B is referenced before CopyMI in MBB. 1044 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 1045 return false; 1046 1047 // MBB has two predecessors: one contains A = B so no copy will be inserted 1048 // for it. The other one will have a copy moved from MBB. 1049 bool FoundReverseCopy = false; 1050 MachineBasicBlock *CopyLeftBB = nullptr; 1051 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1052 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 1053 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 1054 if (!DefMI || !DefMI->isFullCopy()) { 1055 CopyLeftBB = Pred; 1056 continue; 1057 } 1058 // Check DefMI is a reverse copy and it is in BB Pred. 1059 if (DefMI->getOperand(0).getReg() != IntA.reg || 1060 DefMI->getOperand(1).getReg() != IntB.reg || 1061 DefMI->getParent() != Pred) { 1062 CopyLeftBB = Pred; 1063 continue; 1064 } 1065 // If there is any other def of B after DefMI and before the end of Pred, 1066 // we need to keep the copy of B = A at the end of Pred if we remove 1067 // B = A from MBB. 1068 bool ValB_Changed = false; 1069 for (auto VNI : IntB.valnos) { 1070 if (VNI->isUnused()) 1071 continue; 1072 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 1073 ValB_Changed = true; 1074 break; 1075 } 1076 } 1077 if (ValB_Changed) { 1078 CopyLeftBB = Pred; 1079 continue; 1080 } 1081 FoundReverseCopy = true; 1082 } 1083 1084 // If no reverse copy is found in predecessors, nothing to do. 1085 if (!FoundReverseCopy) 1086 return false; 1087 1088 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 1089 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 1090 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 1091 // update IntA/IntB. 1092 // 1093 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 1094 // MBB is hotter than CopyLeftBB. 1095 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 1096 return false; 1097 1098 // Now (almost sure it's) ok to move copy. 1099 if (CopyLeftBB) { 1100 // Position in CopyLeftBB where we should insert new copy. 1101 auto InsPos = CopyLeftBB->getFirstTerminator(); 1102 1103 // Make sure that B isn't referenced in the terminators (if any) at the end 1104 // of the predecessor since we're about to insert a new definition of B 1105 // before them. 1106 if (InsPos != CopyLeftBB->end()) { 1107 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true); 1108 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB))) 1109 return false; 1110 } 1111 1112 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to " 1113 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI); 1114 1115 // Insert new copy to CopyLeftBB. 1116 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1117 TII->get(TargetOpcode::COPY), IntB.reg) 1118 .addReg(IntA.reg); 1119 SlotIndex NewCopyIdx = 1120 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1121 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1122 for (LiveInterval::SubRange &SR : IntB.subranges()) 1123 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1124 1125 // If the newly created Instruction has an address of an instruction that was 1126 // deleted before (object recycled by the allocator) it needs to be removed from 1127 // the deleted list. 1128 ErasedInstrs.erase(NewCopyMI); 1129 } else { 1130 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from " 1131 << printMBBReference(MBB) << '\t' << CopyMI); 1132 } 1133 1134 // Remove CopyMI. 1135 // Note: This is fine to remove the copy before updating the live-ranges. 1136 // While updating the live-ranges, we only look at slot indices and 1137 // never go back to the instruction. 1138 // Mark instructions as deleted. 1139 deleteInstr(&CopyMI); 1140 1141 // Update the liveness. 1142 SmallVector<SlotIndex, 8> EndPoints; 1143 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1144 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1145 &EndPoints); 1146 BValNo->markUnused(); 1147 // Extend IntB to the EndPoints of its original live interval. 1148 LIS->extendToIndices(IntB, EndPoints); 1149 1150 // Now, do the same for its subranges. 1151 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1152 EndPoints.clear(); 1153 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1154 assert(BValNo && "All sublanes should be live"); 1155 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1156 BValNo->markUnused(); 1157 // We can have a situation where the result of the original copy is live, 1158 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes 1159 // the copy appear as an endpoint from pruneValue(), but we don't want it 1160 // to because the copy has been removed. We can go ahead and remove that 1161 // endpoint; there is no other situation here that there could be a use at 1162 // the same place as we know that the copy is a full copy. 1163 for (unsigned I = 0; I != EndPoints.size(); ) { 1164 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) { 1165 EndPoints[I] = EndPoints.back(); 1166 EndPoints.pop_back(); 1167 continue; 1168 } 1169 ++I; 1170 } 1171 LIS->extendToIndices(SR, EndPoints); 1172 } 1173 // If any dead defs were extended, truncate them. 1174 shrinkToUses(&IntB); 1175 1176 // Finally, update the live-range of IntA. 1177 shrinkToUses(&IntA); 1178 return true; 1179 } 1180 1181 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1182 /// defining a subregister. 1183 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 1184 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && 1185 "This code cannot handle physreg aliasing"); 1186 for (const MachineOperand &Op : MI.operands()) { 1187 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1188 continue; 1189 // Return true if we define the full register or don't care about the value 1190 // inside other subregisters. 1191 if (Op.getSubReg() == 0 || Op.isUndef()) 1192 return true; 1193 } 1194 return false; 1195 } 1196 1197 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1198 MachineInstr *CopyMI, 1199 bool &IsDefCopy) { 1200 IsDefCopy = false; 1201 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1202 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1203 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1204 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1205 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1206 return false; 1207 1208 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1209 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1210 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1211 if (!ValNo) 1212 return false; 1213 if (ValNo->isPHIDef() || ValNo->isUnused()) 1214 return false; 1215 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1216 if (!DefMI) 1217 return false; 1218 if (DefMI->isCopyLike()) { 1219 IsDefCopy = true; 1220 return false; 1221 } 1222 if (!TII->isAsCheapAsAMove(*DefMI)) 1223 return false; 1224 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1225 return false; 1226 if (!definesFullReg(*DefMI, SrcReg)) 1227 return false; 1228 bool SawStore = false; 1229 if (!DefMI->isSafeToMove(AA, SawStore)) 1230 return false; 1231 const MCInstrDesc &MCID = DefMI->getDesc(); 1232 if (MCID.getNumDefs() != 1) 1233 return false; 1234 // Only support subregister destinations when the def is read-undef. 1235 MachineOperand &DstOperand = CopyMI->getOperand(0); 1236 unsigned CopyDstReg = DstOperand.getReg(); 1237 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1238 return false; 1239 1240 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1241 // the register substantially (beyond both source and dest size). This is bad 1242 // for performance since it can cascade through a function, introducing many 1243 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1244 // around after a few subreg copies). 1245 if (SrcIdx && DstIdx) 1246 return false; 1247 1248 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1249 if (!DefMI->isImplicitDef()) { 1250 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 1251 unsigned NewDstReg = DstReg; 1252 1253 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1254 DefMI->getOperand(0).getSubReg()); 1255 if (NewDstIdx) 1256 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1257 1258 // Finally, make sure that the physical subregister that will be 1259 // constructed later is permitted for the instruction. 1260 if (!DefRC->contains(NewDstReg)) 1261 return false; 1262 } else { 1263 // Theoretically, some stack frame reference could exist. Just make sure 1264 // it hasn't actually happened. 1265 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 1266 "Only expect to deal with virtual or physical registers"); 1267 } 1268 } 1269 1270 DebugLoc DL = CopyMI->getDebugLoc(); 1271 MachineBasicBlock *MBB = CopyMI->getParent(); 1272 MachineBasicBlock::iterator MII = 1273 std::next(MachineBasicBlock::iterator(CopyMI)); 1274 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1275 MachineInstr &NewMI = *std::prev(MII); 1276 NewMI.setDebugLoc(DL); 1277 1278 // In a situation like the following: 1279 // %0:subreg = instr ; DefMI, subreg = DstIdx 1280 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0 1281 // instead of widening %1 to the register class of %0 simply do: 1282 // %1 = instr 1283 const TargetRegisterClass *NewRC = CP.getNewRC(); 1284 if (DstIdx != 0) { 1285 MachineOperand &DefMO = NewMI.getOperand(0); 1286 if (DefMO.getSubReg() == DstIdx) { 1287 assert(SrcIdx == 0 && CP.isFlipped() 1288 && "Shouldn't have SrcIdx+DstIdx at this point"); 1289 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1290 const TargetRegisterClass *CommonRC = 1291 TRI->getCommonSubClass(DefRC, DstRC); 1292 if (CommonRC != nullptr) { 1293 NewRC = CommonRC; 1294 DstIdx = 0; 1295 DefMO.setSubReg(0); 1296 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1297 } 1298 } 1299 } 1300 1301 // CopyMI may have implicit operands, save them so that we can transfer them 1302 // over to the newly materialized instruction after CopyMI is removed. 1303 SmallVector<MachineOperand, 4> ImplicitOps; 1304 ImplicitOps.reserve(CopyMI->getNumOperands() - 1305 CopyMI->getDesc().getNumOperands()); 1306 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1307 E = CopyMI->getNumOperands(); 1308 I != E; ++I) { 1309 MachineOperand &MO = CopyMI->getOperand(I); 1310 if (MO.isReg()) { 1311 assert(MO.isImplicit() && "No explicit operands after implicit operands."); 1312 // Discard VReg implicit defs. 1313 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1314 ImplicitOps.push_back(MO); 1315 } 1316 } 1317 1318 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1319 CopyMI->eraseFromParent(); 1320 ErasedInstrs.insert(CopyMI); 1321 1322 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1323 // We need to remember these so we can add intervals once we insert 1324 // NewMI into SlotIndexes. 1325 SmallVector<unsigned, 4> NewMIImplDefs; 1326 for (unsigned i = NewMI.getDesc().getNumOperands(), 1327 e = NewMI.getNumOperands(); 1328 i != e; ++i) { 1329 MachineOperand &MO = NewMI.getOperand(i); 1330 if (MO.isReg() && MO.isDef()) { 1331 assert(MO.isImplicit() && MO.isDead() && 1332 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 1333 NewMIImplDefs.push_back(MO.getReg()); 1334 } 1335 } 1336 1337 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 1338 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1339 1340 if (DefRC != nullptr) { 1341 if (NewIdx) 1342 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1343 else 1344 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1345 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1346 } 1347 // Remap subranges to new lanemask and change register class. 1348 LiveInterval &DstInt = LIS->getInterval(DstReg); 1349 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1350 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1351 } 1352 MRI->setRegClass(DstReg, NewRC); 1353 1354 // Update machine operands and add flags. 1355 updateRegDefsUses(DstReg, DstReg, DstIdx); 1356 NewMI.getOperand(0).setSubReg(NewIdx); 1357 // updateRegDefUses can add an "undef" flag to the definition, since 1358 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make 1359 // sure that "undef" is not set. 1360 if (NewIdx == 0) 1361 NewMI.getOperand(0).setIsUndef(false); 1362 // Add dead subregister definitions if we are defining the whole register 1363 // but only part of it is live. 1364 // This could happen if the rematerialization instruction is rematerializing 1365 // more than actually is used in the register. 1366 // An example would be: 1367 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1368 // ; Copying only part of the register here, but the rest is undef. 1369 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit 1370 // ==> 1371 // ; Materialize all the constants but only using one 1372 // %2 = LOAD_CONSTANTS 5, 8 1373 // 1374 // at this point for the part that wasn't defined before we could have 1375 // subranges missing the definition. 1376 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1377 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1378 SlotIndex DefIndex = 1379 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1380 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1381 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1382 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1383 if (!SR.liveAt(DefIndex)) 1384 SR.createDeadDef(DefIndex, Alloc); 1385 MaxMask &= ~SR.LaneMask; 1386 } 1387 if (MaxMask.any()) { 1388 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1389 SR->createDeadDef(DefIndex, Alloc); 1390 } 1391 } 1392 1393 // Make sure that the subrange for resultant undef is removed 1394 // For example: 1395 // %1:sub1<def,read-undef> = LOAD CONSTANT 1 1396 // %2 = COPY %1 1397 // ==> 1398 // %2:sub1<def, read-undef> = LOAD CONSTANT 1 1399 // ; Correct but need to remove the subrange for %2:sub0 1400 // ; as it is now undef 1401 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1402 // The affected subregister segments can be removed. 1403 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1404 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1405 bool UpdatedSubRanges = false; 1406 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1407 if ((SR.LaneMask & DstMask).none()) { 1408 LLVM_DEBUG(dbgs() 1409 << "Removing undefined SubRange " 1410 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1411 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1412 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1413 SR.removeValNo(RmValNo); 1414 UpdatedSubRanges = true; 1415 } 1416 } 1417 } 1418 if (UpdatedSubRanges) 1419 DstInt.removeEmptySubRanges(); 1420 } 1421 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1422 // The New instruction may be defining a sub-register of what's actually 1423 // been asked for. If so it must implicitly define the whole thing. 1424 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 1425 "Only expect virtual or physical registers in remat"); 1426 NewMI.getOperand(0).setIsDead(true); 1427 NewMI.addOperand(MachineOperand::CreateReg( 1428 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1429 // Record small dead def live-ranges for all the subregisters 1430 // of the destination register. 1431 // Otherwise, variables that live through may miss some 1432 // interferences, thus creating invalid allocation. 1433 // E.g., i386 code: 1434 // %1 = somedef ; %1 GR8 1435 // %2 = remat ; %2 GR32 1436 // CL = COPY %2.sub_8bit 1437 // = somedef %1 ; %1 GR8 1438 // => 1439 // %1 = somedef ; %1 GR8 1440 // dead ECX = remat ; implicit-def CL 1441 // = somedef %1 ; %1 GR8 1442 // %1 will see the interferences with CL but not with CH since 1443 // no live-ranges would have been created for ECX. 1444 // Fix that! 1445 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1446 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1447 Units.isValid(); ++Units) 1448 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1449 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1450 } 1451 1452 if (NewMI.getOperand(0).getSubReg()) 1453 NewMI.getOperand(0).setIsUndef(); 1454 1455 // Transfer over implicit operands to the rematerialized instruction. 1456 for (MachineOperand &MO : ImplicitOps) 1457 NewMI.addOperand(MO); 1458 1459 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1460 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1461 unsigned Reg = NewMIImplDefs[i]; 1462 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1463 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1464 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1465 } 1466 1467 LLVM_DEBUG(dbgs() << "Remat: " << NewMI); 1468 ++NumReMats; 1469 1470 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1471 // to describe DstReg instead. 1472 if (MRI->use_nodbg_empty(SrcReg)) { 1473 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1474 MachineInstr *UseMI = UseMO.getParent(); 1475 if (UseMI->isDebugValue()) { 1476 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 1477 UseMO.substPhysReg(DstReg, *TRI); 1478 else 1479 UseMO.setReg(DstReg); 1480 // Move the debug value directly after the def of the rematerialized 1481 // value in DstReg. 1482 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); 1483 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1484 } 1485 } 1486 } 1487 1488 if (ToBeUpdated.count(SrcReg)) 1489 return true; 1490 1491 unsigned NumCopyUses = 0; 1492 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 1493 if (UseMO.getParent()->isCopyLike()) 1494 NumCopyUses++; 1495 } 1496 if (NumCopyUses < LateRematUpdateThreshold) { 1497 // The source interval can become smaller because we removed a use. 1498 shrinkToUses(&SrcInt, &DeadDefs); 1499 if (!DeadDefs.empty()) 1500 eliminateDeadDefs(); 1501 } else { 1502 ToBeUpdated.insert(SrcReg); 1503 } 1504 return true; 1505 } 1506 1507 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1508 // ProcessImplicitDefs may leave some copies of <undef> values, it only 1509 // removes local variables. When we have a copy like: 1510 // 1511 // %1 = COPY undef %2 1512 // 1513 // We delete the copy and remove the corresponding value number from %1. 1514 // Any uses of that value number are marked as <undef>. 1515 1516 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1517 // CoalescerPair may have a new register class with adjusted subreg indices 1518 // at this point. 1519 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1520 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx); 1521 1522 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1523 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1524 // CopyMI is undef iff SrcReg is not live before the instruction. 1525 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1526 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1527 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1528 if ((SR.LaneMask & SrcMask).none()) 1529 continue; 1530 if (SR.liveAt(Idx)) 1531 return nullptr; 1532 } 1533 } else if (SrcLI.liveAt(Idx)) 1534 return nullptr; 1535 1536 // If the undef copy defines a live-out value (i.e. an input to a PHI def), 1537 // then replace it with an IMPLICIT_DEF. 1538 LiveInterval &DstLI = LIS->getInterval(DstReg); 1539 SlotIndex RegIndex = Idx.getRegSlot(); 1540 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex); 1541 assert(Seg != nullptr && "No segment for defining instruction"); 1542 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) { 1543 if (V->isPHIDef()) { 1544 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1545 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) { 1546 MachineOperand &MO = CopyMI->getOperand(i-1); 1547 if (MO.isReg() && MO.isUse()) 1548 CopyMI->RemoveOperand(i-1); 1549 } 1550 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an " 1551 "implicit def\n"); 1552 return CopyMI; 1553 } 1554 } 1555 1556 // Remove any DstReg segments starting at the instruction. 1557 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1558 1559 // Remove value or merge with previous one in case of a subregister def. 1560 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1561 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1562 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1563 1564 // The affected subregister segments can be removed. 1565 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1566 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1567 if ((SR.LaneMask & DstMask).none()) 1568 continue; 1569 1570 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1571 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1572 SR.removeValNo(SVNI); 1573 } 1574 DstLI.removeEmptySubRanges(); 1575 } else 1576 LIS->removeVRegDefAt(DstLI, RegIndex); 1577 1578 // Mark uses as undef. 1579 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1580 if (MO.isDef() /*|| MO.isUndef()*/) 1581 continue; 1582 const MachineInstr &MI = *MO.getParent(); 1583 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1584 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1585 bool isLive; 1586 if (!UseMask.all() && DstLI.hasSubRanges()) { 1587 isLive = false; 1588 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1589 if ((SR.LaneMask & UseMask).none()) 1590 continue; 1591 if (SR.liveAt(UseIdx)) { 1592 isLive = true; 1593 break; 1594 } 1595 } 1596 } else 1597 isLive = DstLI.liveAt(UseIdx); 1598 if (isLive) 1599 continue; 1600 MO.setIsUndef(true); 1601 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1602 } 1603 1604 // A def of a subregister may be a use of the other subregisters, so 1605 // deleting a def of a subregister may also remove uses. Since CopyMI 1606 // is still part of the function (but about to be erased), mark all 1607 // defs of DstReg in it as <undef>, so that shrinkToUses would 1608 // ignore them. 1609 for (MachineOperand &MO : CopyMI->operands()) 1610 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1611 MO.setIsUndef(true); 1612 LIS->shrinkToUses(&DstLI); 1613 1614 return CopyMI; 1615 } 1616 1617 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1618 MachineOperand &MO, unsigned SubRegIdx) { 1619 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1620 if (MO.isDef()) 1621 Mask = ~Mask; 1622 bool IsUndef = true; 1623 for (const LiveInterval::SubRange &S : Int.subranges()) { 1624 if ((S.LaneMask & Mask).none()) 1625 continue; 1626 if (S.liveAt(UseIdx)) { 1627 IsUndef = false; 1628 break; 1629 } 1630 } 1631 if (IsUndef) { 1632 MO.setIsUndef(true); 1633 // We found out some subregister use is actually reading an undefined 1634 // value. In some cases the whole vreg has become undefined at this 1635 // point so we have to potentially shrink the main range if the 1636 // use was ending a live segment there. 1637 LiveQueryResult Q = Int.Query(UseIdx); 1638 if (Q.valueOut() == nullptr) 1639 ShrinkMainRange = true; 1640 } 1641 } 1642 1643 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 1644 unsigned DstReg, 1645 unsigned SubIdx) { 1646 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 1647 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1648 1649 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1650 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1651 unsigned SubReg = MO.getSubReg(); 1652 if (SubReg == 0 || MO.isUndef()) 1653 continue; 1654 MachineInstr &MI = *MO.getParent(); 1655 if (MI.isDebugValue()) 1656 continue; 1657 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1658 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1659 } 1660 } 1661 1662 SmallPtrSet<MachineInstr*, 8> Visited; 1663 for (MachineRegisterInfo::reg_instr_iterator 1664 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1665 I != E; ) { 1666 MachineInstr *UseMI = &*(I++); 1667 1668 // Each instruction can only be rewritten once because sub-register 1669 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1670 // the UseMI operands removes them from the SrcReg use-def chain, but when 1671 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1672 // operands mentioning the virtual register. 1673 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1674 continue; 1675 1676 SmallVector<unsigned,8> Ops; 1677 bool Reads, Writes; 1678 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1679 1680 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1681 // because SrcReg is a sub-register. 1682 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) 1683 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1684 1685 // Replace SrcReg with DstReg in all UseMI operands. 1686 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1687 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1688 1689 // Adjust <undef> flags in case of sub-register joins. We don't want to 1690 // turn a full def into a read-modify-write sub-register def and vice 1691 // versa. 1692 if (SubIdx && MO.isDef()) 1693 MO.setIsUndef(!Reads); 1694 1695 // A subreg use of a partially undef (super) register may be a complete 1696 // undef use now and then has to be marked that way. 1697 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1698 if (!DstInt->hasSubRanges()) { 1699 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1700 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1701 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1702 } 1703 SlotIndex MIIdx = UseMI->isDebugValue() 1704 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1705 : LIS->getInstructionIndex(*UseMI); 1706 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1707 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1708 } 1709 1710 if (DstIsPhys) 1711 MO.substPhysReg(DstReg, *TRI); 1712 else 1713 MO.substVirtReg(DstReg, SubIdx, *TRI); 1714 } 1715 1716 LLVM_DEBUG({ 1717 dbgs() << "\t\tupdated: "; 1718 if (!UseMI->isDebugValue()) 1719 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1720 dbgs() << *UseMI; 1721 }); 1722 } 1723 } 1724 1725 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1726 // Always join simple intervals that are defined by a single copy from a 1727 // reserved register. This doesn't increase register pressure, so it is 1728 // always beneficial. 1729 if (!MRI->isReserved(CP.getDstReg())) { 1730 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1731 return false; 1732 } 1733 1734 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1735 if (JoinVInt.containsOneValue()) 1736 return true; 1737 1738 LLVM_DEBUG( 1739 dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1740 return false; 1741 } 1742 1743 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1744 Again = false; 1745 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1746 1747 CoalescerPair CP(*TRI); 1748 if (!CP.setRegisters(CopyMI)) { 1749 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n"); 1750 return false; 1751 } 1752 1753 if (CP.getNewRC()) { 1754 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1755 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1756 unsigned SrcIdx = CP.getSrcIdx(); 1757 unsigned DstIdx = CP.getDstIdx(); 1758 if (CP.isFlipped()) { 1759 std::swap(SrcIdx, DstIdx); 1760 std::swap(SrcRC, DstRC); 1761 } 1762 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1763 CP.getNewRC(), *LIS)) { 1764 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1765 return false; 1766 } 1767 } 1768 1769 // Dead code elimination. This really should be handled by MachineDCE, but 1770 // sometimes dead copies slip through, and we can't generate invalid live 1771 // ranges. 1772 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1773 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n"); 1774 DeadDefs.push_back(CopyMI); 1775 eliminateDeadDefs(); 1776 return true; 1777 } 1778 1779 // Eliminate undefs. 1780 if (!CP.isPhys()) { 1781 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce. 1782 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) { 1783 if (UndefMI->isImplicitDef()) 1784 return false; 1785 deleteInstr(CopyMI); 1786 return false; // Not coalescable. 1787 } 1788 } 1789 1790 // Coalesced copies are normally removed immediately, but transformations 1791 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1792 // When that happens, just join the values and remove the copy. 1793 if (CP.getSrcReg() == CP.getDstReg()) { 1794 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1795 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1796 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1797 LiveQueryResult LRQ = LI.Query(CopyIdx); 1798 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1799 VNInfo *ReadVNI = LRQ.valueIn(); 1800 assert(ReadVNI && "No value before copy and no <undef> flag."); 1801 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1802 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1803 1804 // Process subregister liveranges. 1805 for (LiveInterval::SubRange &S : LI.subranges()) { 1806 LiveQueryResult SLRQ = S.Query(CopyIdx); 1807 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1808 VNInfo *SReadVNI = SLRQ.valueIn(); 1809 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1810 } 1811 } 1812 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1813 } 1814 deleteInstr(CopyMI); 1815 return true; 1816 } 1817 1818 // Enforce policies. 1819 if (CP.isPhys()) { 1820 LLVM_DEBUG(dbgs() << "\tConsidering merging " 1821 << printReg(CP.getSrcReg(), TRI) << " with " 1822 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'); 1823 if (!canJoinPhys(CP)) { 1824 // Before giving up coalescing, if definition of source is defined by 1825 // trivial computation, try rematerializing it. 1826 bool IsDefCopy; 1827 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1828 return true; 1829 if (IsDefCopy) 1830 Again = true; // May be possible to coalesce later. 1831 return false; 1832 } 1833 } else { 1834 // When possible, let DstReg be the larger interval. 1835 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1836 LIS->getInterval(CP.getDstReg()).size()) 1837 CP.flip(); 1838 1839 LLVM_DEBUG({ 1840 dbgs() << "\tConsidering merging to " 1841 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1842 if (CP.getDstIdx() && CP.getSrcIdx()) 1843 dbgs() << printReg(CP.getDstReg()) << " in " 1844 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1845 << printReg(CP.getSrcReg()) << " in " 1846 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1847 else 1848 dbgs() << printReg(CP.getSrcReg(), TRI) << " in " 1849 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1850 }); 1851 } 1852 1853 ShrinkMask = LaneBitmask::getNone(); 1854 ShrinkMainRange = false; 1855 1856 // Okay, attempt to join these two intervals. On failure, this returns false. 1857 // Otherwise, if one of the intervals being joined is a physreg, this method 1858 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1859 // been modified, so we can use this information below to update aliases. 1860 if (!joinIntervals(CP)) { 1861 // Coalescing failed. 1862 1863 // If definition of source is defined by trivial computation, try 1864 // rematerializing it. 1865 bool IsDefCopy; 1866 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1867 return true; 1868 1869 // If we can eliminate the copy without merging the live segments, do so 1870 // now. 1871 if (!CP.isPartial() && !CP.isPhys()) { 1872 bool Changed = adjustCopiesBackFrom(CP, CopyMI); 1873 bool Shrink = false; 1874 if (!Changed) 1875 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI); 1876 if (Changed) { 1877 deleteInstr(CopyMI); 1878 if (Shrink) { 1879 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1880 LiveInterval &DstLI = LIS->getInterval(DstReg); 1881 shrinkToUses(&DstLI); 1882 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n'); 1883 } 1884 LLVM_DEBUG(dbgs() << "\tTrivial!\n"); 1885 return true; 1886 } 1887 } 1888 1889 // Try and see if we can partially eliminate the copy by moving the copy to 1890 // its predecessor. 1891 if (!CP.isPartial() && !CP.isPhys()) 1892 if (removePartialRedundancy(CP, *CopyMI)) 1893 return true; 1894 1895 // Otherwise, we are unable to join the intervals. 1896 LLVM_DEBUG(dbgs() << "\tInterference!\n"); 1897 Again = true; // May be possible to coalesce later. 1898 return false; 1899 } 1900 1901 // Coalescing to a virtual register that is of a sub-register class of the 1902 // other. Make sure the resulting register is set to the right register class. 1903 if (CP.isCrossClass()) { 1904 ++numCrossRCs; 1905 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1906 } 1907 1908 // Removing sub-register copies can ease the register class constraints. 1909 // Make sure we attempt to inflate the register class of DstReg. 1910 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1911 InflateRegs.push_back(CP.getDstReg()); 1912 1913 // CopyMI has been erased by joinIntervals at this point. Remove it from 1914 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1915 // to the work list. This keeps ErasedInstrs from growing needlessly. 1916 ErasedInstrs.erase(CopyMI); 1917 1918 // Rewrite all SrcReg operands to DstReg. 1919 // Also update DstReg operands to include DstIdx if it is set. 1920 if (CP.getDstIdx()) 1921 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1922 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1923 1924 // Shrink subregister ranges if necessary. 1925 if (ShrinkMask.any()) { 1926 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1927 for (LiveInterval::SubRange &S : LI.subranges()) { 1928 if ((S.LaneMask & ShrinkMask).none()) 1929 continue; 1930 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1931 << ")\n"); 1932 LIS->shrinkToUses(S, LI.reg); 1933 } 1934 LI.removeEmptySubRanges(); 1935 } 1936 1937 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live 1938 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval 1939 // is not up-to-date, need to update the merged live interval here. 1940 if (ToBeUpdated.count(CP.getSrcReg())) 1941 ShrinkMainRange = true; 1942 1943 if (ShrinkMainRange) { 1944 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1945 shrinkToUses(&LI); 1946 } 1947 1948 // SrcReg is guaranteed to be the register whose live interval that is 1949 // being merged. 1950 LIS->removeInterval(CP.getSrcReg()); 1951 1952 // Update regalloc hint. 1953 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1954 1955 LLVM_DEBUG({ 1956 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 1957 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 1958 dbgs() << "\tResult = "; 1959 if (CP.isPhys()) 1960 dbgs() << printReg(CP.getDstReg(), TRI); 1961 else 1962 dbgs() << LIS->getInterval(CP.getDstReg()); 1963 dbgs() << '\n'; 1964 }); 1965 1966 ++numJoins; 1967 return true; 1968 } 1969 1970 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1971 unsigned DstReg = CP.getDstReg(); 1972 unsigned SrcReg = CP.getSrcReg(); 1973 assert(CP.isPhys() && "Must be a physreg copy"); 1974 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 1975 LiveInterval &RHS = LIS->getInterval(SrcReg); 1976 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1977 1978 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 1979 1980 // Optimization for reserved registers like ESP. We can only merge with a 1981 // reserved physreg if RHS has a single value that is a copy of DstReg. 1982 // The live range of the reserved register will look like a set of dead defs 1983 // - we don't properly track the live range of reserved registers. 1984 1985 // Deny any overlapping intervals. This depends on all the reserved 1986 // register live ranges to look like dead defs. 1987 if (!MRI->isConstantPhysReg(DstReg)) { 1988 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1989 // Abort if not all the regunits are reserved. 1990 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 1991 if (!MRI->isReserved(*RI)) 1992 return false; 1993 } 1994 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1995 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) 1996 << '\n'); 1997 return false; 1998 } 1999 } 2000 2001 // We must also check for overlaps with regmask clobbers. 2002 BitVector RegMaskUsable; 2003 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 2004 !RegMaskUsable.test(DstReg)) { 2005 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n"); 2006 return false; 2007 } 2008 } 2009 2010 // Skip any value computations, we are not adding new values to the 2011 // reserved register. Also skip merging the live ranges, the reserved 2012 // register live range doesn't need to be accurate as long as all the 2013 // defs are there. 2014 2015 // Delete the identity copy. 2016 MachineInstr *CopyMI; 2017 if (CP.isFlipped()) { 2018 // Physreg is copied into vreg 2019 // %y = COPY %physreg_x 2020 // ... //< no other def of %x here 2021 // use %y 2022 // => 2023 // ... 2024 // use %x 2025 CopyMI = MRI->getVRegDef(SrcReg); 2026 } else { 2027 // VReg is copied into physreg: 2028 // %y = def 2029 // ... //< no other def or use of %y here 2030 // %y = COPY %physreg_x 2031 // => 2032 // %y = def 2033 // ... 2034 if (!MRI->hasOneNonDBGUse(SrcReg)) { 2035 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 2036 return false; 2037 } 2038 2039 if (!LIS->intervalIsInOneMBB(RHS)) { 2040 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n"); 2041 return false; 2042 } 2043 2044 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 2045 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 2046 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 2047 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 2048 2049 if (!MRI->isConstantPhysReg(DstReg)) { 2050 // We checked above that there are no interfering defs of the physical 2051 // register. However, for this case, where we intend to move up the def of 2052 // the physical register, we also need to check for interfering uses. 2053 SlotIndexes *Indexes = LIS->getSlotIndexes(); 2054 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 2055 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 2056 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 2057 if (MI->readsRegister(DstReg, TRI)) { 2058 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 2059 return false; 2060 } 2061 } 2062 } 2063 2064 // We're going to remove the copy which defines a physical reserved 2065 // register, so remove its valno, etc. 2066 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of " 2067 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n"); 2068 2069 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 2070 // Create a new dead def at the new def location. 2071 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2072 LiveRange &LR = LIS->getRegUnit(*UI); 2073 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 2074 } 2075 } 2076 2077 deleteInstr(CopyMI); 2078 2079 // We don't track kills for reserved registers. 2080 MRI->clearKillFlags(CP.getSrcReg()); 2081 2082 return true; 2083 } 2084 2085 //===----------------------------------------------------------------------===// 2086 // Interference checking and interval joining 2087 //===----------------------------------------------------------------------===// 2088 // 2089 // In the easiest case, the two live ranges being joined are disjoint, and 2090 // there is no interference to consider. It is quite common, though, to have 2091 // overlapping live ranges, and we need to check if the interference can be 2092 // resolved. 2093 // 2094 // The live range of a single SSA value forms a sub-tree of the dominator tree. 2095 // This means that two SSA values overlap if and only if the def of one value 2096 // is contained in the live range of the other value. As a special case, the 2097 // overlapping values can be defined at the same index. 2098 // 2099 // The interference from an overlapping def can be resolved in these cases: 2100 // 2101 // 1. Coalescable copies. The value is defined by a copy that would become an 2102 // identity copy after joining SrcReg and DstReg. The copy instruction will 2103 // be removed, and the value will be merged with the source value. 2104 // 2105 // There can be several copies back and forth, causing many values to be 2106 // merged into one. We compute a list of ultimate values in the joined live 2107 // range as well as a mappings from the old value numbers. 2108 // 2109 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 2110 // predecessors have a live out value. It doesn't cause real interference, 2111 // and can be merged into the value it overlaps. Like a coalescable copy, it 2112 // can be erased after joining. 2113 // 2114 // 3. Copy of external value. The overlapping def may be a copy of a value that 2115 // is already in the other register. This is like a coalescable copy, but 2116 // the live range of the source register must be trimmed after erasing the 2117 // copy instruction: 2118 // 2119 // %src = COPY %ext 2120 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 2121 // 2122 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 2123 // defining one lane at a time: 2124 // 2125 // %dst:ssub0<def,read-undef> = FOO 2126 // %src = BAR 2127 // %dst:ssub1 = COPY %src 2128 // 2129 // The live range of %src overlaps the %dst value defined by FOO, but 2130 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 2131 // which was undef anyway. 2132 // 2133 // The value mapping is more complicated in this case. The final live range 2134 // will have different value numbers for both FOO and BAR, but there is no 2135 // simple mapping from old to new values. It may even be necessary to add 2136 // new PHI values. 2137 // 2138 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 2139 // is live, but never read. This can happen because we don't compute 2140 // individual live ranges per lane. 2141 // 2142 // %dst = FOO 2143 // %src = BAR 2144 // %dst:ssub1 = COPY %src 2145 // 2146 // This kind of interference is only resolved locally. If the clobbered 2147 // lane value escapes the block, the join is aborted. 2148 2149 namespace { 2150 2151 /// Track information about values in a single virtual register about to be 2152 /// joined. Objects of this class are always created in pairs - one for each 2153 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 2154 /// pair) 2155 class JoinVals { 2156 /// Live range we work on. 2157 LiveRange &LR; 2158 2159 /// (Main) register we work on. 2160 const unsigned Reg; 2161 2162 /// Reg (and therefore the values in this liverange) will end up as 2163 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 2164 /// CP.SrcIdx. 2165 const unsigned SubIdx; 2166 2167 /// The LaneMask that this liverange will occupy the coalesced register. May 2168 /// be smaller than the lanemask produced by SubIdx when merging subranges. 2169 const LaneBitmask LaneMask; 2170 2171 /// This is true when joining sub register ranges, false when joining main 2172 /// ranges. 2173 const bool SubRangeJoin; 2174 2175 /// Whether the current LiveInterval tracks subregister liveness. 2176 const bool TrackSubRegLiveness; 2177 2178 /// Values that will be present in the final live range. 2179 SmallVectorImpl<VNInfo*> &NewVNInfo; 2180 2181 const CoalescerPair &CP; 2182 LiveIntervals *LIS; 2183 SlotIndexes *Indexes; 2184 const TargetRegisterInfo *TRI; 2185 2186 /// Value number assignments. Maps value numbers in LI to entries in 2187 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 2188 SmallVector<int, 8> Assignments; 2189 2190 /// Conflict resolution for overlapping values. 2191 enum ConflictResolution { 2192 /// No overlap, simply keep this value. 2193 CR_Keep, 2194 2195 /// Merge this value into OtherVNI and erase the defining instruction. 2196 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 2197 /// values. 2198 CR_Erase, 2199 2200 /// Merge this value into OtherVNI but keep the defining instruction. 2201 /// This is for the special case where OtherVNI is defined by the same 2202 /// instruction. 2203 CR_Merge, 2204 2205 /// Keep this value, and have it replace OtherVNI where possible. This 2206 /// complicates value mapping since OtherVNI maps to two different values 2207 /// before and after this def. 2208 /// Used when clobbering undefined or dead lanes. 2209 CR_Replace, 2210 2211 /// Unresolved conflict. Visit later when all values have been mapped. 2212 CR_Unresolved, 2213 2214 /// Unresolvable conflict. Abort the join. 2215 CR_Impossible 2216 }; 2217 2218 /// Per-value info for LI. The lane bit masks are all relative to the final 2219 /// joined register, so they can be compared directly between SrcReg and 2220 /// DstReg. 2221 struct Val { 2222 ConflictResolution Resolution = CR_Keep; 2223 2224 /// Lanes written by this def, 0 for unanalyzed values. 2225 LaneBitmask WriteLanes; 2226 2227 /// Lanes with defined values in this register. Other lanes are undef and 2228 /// safe to clobber. 2229 LaneBitmask ValidLanes; 2230 2231 /// Value in LI being redefined by this def. 2232 VNInfo *RedefVNI = nullptr; 2233 2234 /// Value in the other live range that overlaps this def, if any. 2235 VNInfo *OtherVNI = nullptr; 2236 2237 /// Is this value an IMPLICIT_DEF that can be erased? 2238 /// 2239 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2240 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2241 /// safely erased if they are overlapping a live value in the other live 2242 /// interval. 2243 /// 2244 /// Weird control flow graphs and incomplete PHI handling in 2245 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2246 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2247 /// normal values. 2248 bool ErasableImplicitDef = false; 2249 2250 /// True when the live range of this value will be pruned because of an 2251 /// overlapping CR_Replace value in the other live range. 2252 bool Pruned = false; 2253 2254 /// True once Pruned above has been computed. 2255 bool PrunedComputed = false; 2256 2257 /// True if this value is determined to be identical to OtherVNI 2258 /// (in valuesIdentical). This is used with CR_Erase where the erased 2259 /// copy is redundant, i.e. the source value is already the same as 2260 /// the destination. In such cases the subranges need to be updated 2261 /// properly. See comment at pruneSubRegValues for more info. 2262 bool Identical = false; 2263 2264 Val() = default; 2265 2266 bool isAnalyzed() const { return WriteLanes.any(); } 2267 }; 2268 2269 /// One entry per value number in LI. 2270 SmallVector<Val, 8> Vals; 2271 2272 /// Compute the bitmask of lanes actually written by DefMI. 2273 /// Set Redef if there are any partial register definitions that depend on the 2274 /// previous value of the register. 2275 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2276 2277 /// Find the ultimate value that VNI was copied from. 2278 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 2279 2280 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const; 2281 2282 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2283 /// Return a conflict resolution when possible, but leave the hard cases as 2284 /// CR_Unresolved. 2285 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2286 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2287 /// The recursion always goes upwards in the dominator tree, making loops 2288 /// impossible. 2289 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2290 2291 /// Compute the value assignment for ValNo in RI. 2292 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2293 /// the stack. 2294 void computeAssignment(unsigned ValNo, JoinVals &Other); 2295 2296 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2297 /// the extent of the tainted lanes in the block. 2298 /// 2299 /// Multiple values in Other.LR can be affected since partial redefinitions 2300 /// can preserve previously tainted lanes. 2301 /// 2302 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2303 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2304 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2305 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2306 /// 2307 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2308 /// entry to TaintedVals. 2309 /// 2310 /// Returns false if the tainted lanes extend beyond the basic block. 2311 bool 2312 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2313 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); 2314 2315 /// Return true if MI uses any of the given Lanes from Reg. 2316 /// This does not include partial redefinitions of Reg. 2317 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; 2318 2319 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2320 /// be pruned: 2321 /// 2322 /// %dst = COPY %src 2323 /// %src = COPY %dst <-- This value to be pruned. 2324 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2325 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2326 2327 public: 2328 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 2329 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 2330 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2331 bool TrackSubRegLiveness) 2332 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2333 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2334 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2335 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {} 2336 2337 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2338 /// Returns false if any conflicts were impossible to resolve. 2339 bool mapValues(JoinVals &Other); 2340 2341 /// Try to resolve conflicts that require all values to be mapped. 2342 /// Returns false if any conflicts were impossible to resolve. 2343 bool resolveConflicts(JoinVals &Other); 2344 2345 /// Prune the live range of values in Other.LR where they would conflict with 2346 /// CR_Replace values in LR. Collect end points for restoring the live range 2347 /// after joining. 2348 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2349 bool changeInstrs); 2350 2351 /// Removes subranges starting at copies that get removed. This sometimes 2352 /// happens when undefined subranges are copied around. These ranges contain 2353 /// no useful information and can be removed. 2354 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2355 2356 /// Pruning values in subranges can lead to removing segments in these 2357 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2358 /// the main range also need to be removed. This function will mark 2359 /// the corresponding values in the main range as pruned, so that 2360 /// eraseInstrs can do the final cleanup. 2361 /// The parameter @p LI must be the interval whose main range is the 2362 /// live range LR. 2363 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2364 2365 /// Erase any machine instructions that have been coalesced away. 2366 /// Add erased instructions to ErasedInstrs. 2367 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2368 /// the erased instrs. 2369 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2370 SmallVectorImpl<unsigned> &ShrinkRegs, 2371 LiveInterval *LI = nullptr); 2372 2373 /// Remove liverange defs at places where implicit defs will be removed. 2374 void removeImplicitDefs(); 2375 2376 /// Get the value assignments suitable for passing to LiveInterval::join. 2377 const int *getAssignments() const { return Assignments.data(); } 2378 }; 2379 2380 } // end anonymous namespace 2381 2382 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2383 const { 2384 LaneBitmask L; 2385 for (const MachineOperand &MO : DefMI->operands()) { 2386 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2387 continue; 2388 L |= TRI->getSubRegIndexLaneMask( 2389 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2390 if (MO.readsReg()) 2391 Redef = true; 2392 } 2393 return L; 2394 } 2395 2396 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 2397 const VNInfo *VNI) const { 2398 unsigned TrackReg = Reg; 2399 2400 while (!VNI->isPHIDef()) { 2401 SlotIndex Def = VNI->def; 2402 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2403 assert(MI && "No defining instruction"); 2404 if (!MI->isFullCopy()) 2405 return std::make_pair(VNI, TrackReg); 2406 unsigned SrcReg = MI->getOperand(1).getReg(); 2407 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 2408 return std::make_pair(VNI, TrackReg); 2409 2410 const LiveInterval &LI = LIS->getInterval(SrcReg); 2411 const VNInfo *ValueIn; 2412 // No subrange involved. 2413 if (!SubRangeJoin || !LI.hasSubRanges()) { 2414 LiveQueryResult LRQ = LI.Query(Def); 2415 ValueIn = LRQ.valueIn(); 2416 } else { 2417 // Query subranges. Ensure that all matching ones take us to the same def 2418 // (allowing some of them to be undef). 2419 ValueIn = nullptr; 2420 for (const LiveInterval::SubRange &S : LI.subranges()) { 2421 // Transform lanemask to a mask in the joined live interval. 2422 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2423 if ((SMask & LaneMask).none()) 2424 continue; 2425 LiveQueryResult LRQ = S.Query(Def); 2426 if (!ValueIn) { 2427 ValueIn = LRQ.valueIn(); 2428 continue; 2429 } 2430 if (LRQ.valueIn() && ValueIn != LRQ.valueIn()) 2431 return std::make_pair(VNI, TrackReg); 2432 } 2433 } 2434 if (ValueIn == nullptr) { 2435 // Reaching an undefined value is legitimate, for example: 2436 // 2437 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef 2438 // 2 %1 = COPY %0 ;; %1 is defined here. 2439 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition, 2440 // ;; but it's equivalent to "undef". 2441 return std::make_pair(nullptr, SrcReg); 2442 } 2443 VNI = ValueIn; 2444 TrackReg = SrcReg; 2445 } 2446 return std::make_pair(VNI, TrackReg); 2447 } 2448 2449 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2450 const JoinVals &Other) const { 2451 const VNInfo *Orig0; 2452 unsigned Reg0; 2453 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2454 if (Orig0 == Value1 && Reg0 == Other.Reg) 2455 return true; 2456 2457 const VNInfo *Orig1; 2458 unsigned Reg1; 2459 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2460 // If both values are undefined, and the source registers are the same 2461 // register, the values are identical. Filter out cases where only one 2462 // value is defined. 2463 if (Orig0 == nullptr || Orig1 == nullptr) 2464 return Orig0 == Orig1 && Reg0 == Reg1; 2465 2466 // The values are equal if they are defined at the same place and use the 2467 // same register. Note that we cannot compare VNInfos directly as some of 2468 // them might be from a copy created in mergeSubRangeInto() while the other 2469 // is from the original LiveInterval. 2470 return Orig0->def == Orig1->def && Reg0 == Reg1; 2471 } 2472 2473 JoinVals::ConflictResolution 2474 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2475 Val &V = Vals[ValNo]; 2476 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2477 VNInfo *VNI = LR.getValNumInfo(ValNo); 2478 if (VNI->isUnused()) { 2479 V.WriteLanes = LaneBitmask::getAll(); 2480 return CR_Keep; 2481 } 2482 2483 // Get the instruction defining this value, compute the lanes written. 2484 const MachineInstr *DefMI = nullptr; 2485 if (VNI->isPHIDef()) { 2486 // Conservatively assume that all lanes in a PHI are valid. 2487 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2488 : TRI->getSubRegIndexLaneMask(SubIdx); 2489 V.ValidLanes = V.WriteLanes = Lanes; 2490 } else { 2491 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2492 assert(DefMI != nullptr); 2493 if (SubRangeJoin) { 2494 // We don't care about the lanes when joining subregister ranges. 2495 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2496 if (DefMI->isImplicitDef()) { 2497 V.ValidLanes = LaneBitmask::getNone(); 2498 V.ErasableImplicitDef = true; 2499 } 2500 } else { 2501 bool Redef = false; 2502 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2503 2504 // If this is a read-modify-write instruction, there may be more valid 2505 // lanes than the ones written by this instruction. 2506 // This only covers partial redef operands. DefMI may have normal use 2507 // operands reading the register. They don't contribute valid lanes. 2508 // 2509 // This adds ssub1 to the set of valid lanes in %src: 2510 // 2511 // %src:ssub1 = FOO 2512 // 2513 // This leaves only ssub1 valid, making any other lanes undef: 2514 // 2515 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2516 // 2517 // The <read-undef> flag on the def operand means that old lane values are 2518 // not important. 2519 if (Redef) { 2520 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2521 assert((TrackSubRegLiveness || V.RedefVNI) && 2522 "Instruction is reading nonexistent value"); 2523 if (V.RedefVNI != nullptr) { 2524 computeAssignment(V.RedefVNI->id, Other); 2525 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2526 } 2527 } 2528 2529 // An IMPLICIT_DEF writes undef values. 2530 if (DefMI->isImplicitDef()) { 2531 // We normally expect IMPLICIT_DEF values to be live only until the end 2532 // of their block. If the value is really live longer and gets pruned in 2533 // another block, this flag is cleared again. 2534 // 2535 // Clearing the valid lanes is deferred until it is sure this can be 2536 // erased. 2537 V.ErasableImplicitDef = true; 2538 } 2539 } 2540 } 2541 2542 // Find the value in Other that overlaps VNI->def, if any. 2543 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2544 2545 // It is possible that both values are defined by the same instruction, or 2546 // the values are PHIs defined in the same block. When that happens, the two 2547 // values should be merged into one, but not into any preceding value. 2548 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2549 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2550 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2551 2552 // One value stays, the other is merged. Keep the earlier one, or the first 2553 // one we see. 2554 if (OtherVNI->def < VNI->def) 2555 Other.computeAssignment(OtherVNI->id, *this); 2556 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2557 // This is an early-clobber def overlapping a live-in value in the other 2558 // register. Not mergeable. 2559 V.OtherVNI = OtherLRQ.valueIn(); 2560 return CR_Impossible; 2561 } 2562 V.OtherVNI = OtherVNI; 2563 Val &OtherV = Other.Vals[OtherVNI->id]; 2564 // Keep this value, check for conflicts when analyzing OtherVNI. 2565 if (!OtherV.isAnalyzed()) 2566 return CR_Keep; 2567 // Both sides have been analyzed now. 2568 // Allow overlapping PHI values. Any real interference would show up in a 2569 // predecessor, the PHI itself can't introduce any conflicts. 2570 if (VNI->isPHIDef()) 2571 return CR_Merge; 2572 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2573 // Overlapping lanes can't be resolved. 2574 return CR_Impossible; 2575 else 2576 return CR_Merge; 2577 } 2578 2579 // No simultaneous def. Is Other live at the def? 2580 V.OtherVNI = OtherLRQ.valueIn(); 2581 if (!V.OtherVNI) 2582 // No overlap, no conflict. 2583 return CR_Keep; 2584 2585 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2586 2587 // We have overlapping values, or possibly a kill of Other. 2588 // Recursively compute assignments up the dominator tree. 2589 Other.computeAssignment(V.OtherVNI->id, *this); 2590 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2591 2592 if (OtherV.ErasableImplicitDef) { 2593 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2594 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2595 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2596 // technically. 2597 // 2598 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2599 // to erase the IMPLICIT_DEF instruction. 2600 if (DefMI && 2601 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2602 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2603 << " extends into " 2604 << printMBBReference(*DefMI->getParent()) 2605 << ", keeping it.\n"); 2606 OtherV.ErasableImplicitDef = false; 2607 } else { 2608 // We deferred clearing these lanes in case we needed to save them 2609 OtherV.ValidLanes &= ~OtherV.WriteLanes; 2610 } 2611 } 2612 2613 // Allow overlapping PHI values. Any real interference would show up in a 2614 // predecessor, the PHI itself can't introduce any conflicts. 2615 if (VNI->isPHIDef()) 2616 return CR_Replace; 2617 2618 // Check for simple erasable conflicts. 2619 if (DefMI->isImplicitDef()) { 2620 // We need the def for the subregister if there is nothing else live at the 2621 // subrange at this point. 2622 if (TrackSubRegLiveness 2623 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none()) 2624 return CR_Replace; 2625 return CR_Erase; 2626 } 2627 2628 // Include the non-conflict where DefMI is a coalescable copy that kills 2629 // OtherVNI. We still want the copy erased and value numbers merged. 2630 if (CP.isCoalescable(DefMI)) { 2631 // Some of the lanes copied from OtherVNI may be undef, making them undef 2632 // here too. 2633 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2634 return CR_Erase; 2635 } 2636 2637 // This may not be a real conflict if DefMI simply kills Other and defines 2638 // VNI. 2639 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2640 return CR_Keep; 2641 2642 // Handle the case where VNI and OtherVNI can be proven to be identical: 2643 // 2644 // %other = COPY %ext 2645 // %this = COPY %ext <-- Erase this copy 2646 // 2647 if (DefMI->isFullCopy() && !CP.isPartial() && 2648 valuesIdentical(VNI, V.OtherVNI, Other)) { 2649 V.Identical = true; 2650 return CR_Erase; 2651 } 2652 2653 // The remaining checks apply to the lanes, which aren't tracked here. This 2654 // was already decided to be OK via the following CR_Replace condition. 2655 // CR_Replace. 2656 if (SubRangeJoin) 2657 return CR_Replace; 2658 2659 // If the lanes written by this instruction were all undef in OtherVNI, it is 2660 // still safe to join the live ranges. This can't be done with a simple value 2661 // mapping, though - OtherVNI will map to multiple values: 2662 // 2663 // 1 %dst:ssub0 = FOO <-- OtherVNI 2664 // 2 %src = BAR <-- VNI 2665 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy. 2666 // 4 BAZ killed %dst 2667 // 5 QUUX killed %src 2668 // 2669 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2670 // handles this complex value mapping. 2671 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2672 return CR_Replace; 2673 2674 // If the other live range is killed by DefMI and the live ranges are still 2675 // overlapping, it must be because we're looking at an early clobber def: 2676 // 2677 // %dst<def,early-clobber> = ASM killed %src 2678 // 2679 // In this case, it is illegal to merge the two live ranges since the early 2680 // clobber def would clobber %src before it was read. 2681 if (OtherLRQ.isKill()) { 2682 // This case where the def doesn't overlap the kill is handled above. 2683 assert(VNI->def.isEarlyClobber() && 2684 "Only early clobber defs can overlap a kill"); 2685 return CR_Impossible; 2686 } 2687 2688 // VNI is clobbering live lanes in OtherVNI, but there is still the 2689 // possibility that no instructions actually read the clobbered lanes. 2690 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2691 // Otherwise Other.RI wouldn't be live here. 2692 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2693 return CR_Impossible; 2694 2695 // We need to verify that no instructions are reading the clobbered lanes. To 2696 // save compile time, we'll only check that locally. Don't allow the tainted 2697 // value to escape the basic block. 2698 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2699 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2700 return CR_Impossible; 2701 2702 // There are still some things that could go wrong besides clobbered lanes 2703 // being read, for example OtherVNI may be only partially redefined in MBB, 2704 // and some clobbered lanes could escape the block. Save this analysis for 2705 // resolveConflicts() when all values have been mapped. We need to know 2706 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2707 // that now - the recursive analyzeValue() calls must go upwards in the 2708 // dominator tree. 2709 return CR_Unresolved; 2710 } 2711 2712 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2713 Val &V = Vals[ValNo]; 2714 if (V.isAnalyzed()) { 2715 // Recursion should always move up the dominator tree, so ValNo is not 2716 // supposed to reappear before it has been assigned. 2717 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2718 return; 2719 } 2720 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2721 case CR_Erase: 2722 case CR_Merge: 2723 // Merge this ValNo into OtherVNI. 2724 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2725 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2726 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2727 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@' 2728 << LR.getValNumInfo(ValNo)->def << " into " 2729 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2730 << V.OtherVNI->def << " --> @" 2731 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2732 break; 2733 case CR_Replace: 2734 case CR_Unresolved: { 2735 // The other value is going to be pruned if this join is successful. 2736 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2737 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2738 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2739 // its lanes. 2740 if (OtherV.ErasableImplicitDef && 2741 TrackSubRegLiveness && 2742 (OtherV.WriteLanes & ~V.ValidLanes).any()) { 2743 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n"); 2744 2745 OtherV.ErasableImplicitDef = false; 2746 // The valid lanes written by the implicit_def were speculatively cleared 2747 // before, so make this more conservative. It may be better to track this, 2748 // I haven't found a testcase where it matters. 2749 OtherV.ValidLanes = LaneBitmask::getAll(); 2750 } 2751 2752 OtherV.Pruned = true; 2753 LLVM_FALLTHROUGH; 2754 } 2755 default: 2756 // This value number needs to go in the final joined live range. 2757 Assignments[ValNo] = NewVNInfo.size(); 2758 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2759 break; 2760 } 2761 } 2762 2763 bool JoinVals::mapValues(JoinVals &Other) { 2764 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2765 computeAssignment(i, Other); 2766 if (Vals[i].Resolution == CR_Impossible) { 2767 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i 2768 << '@' << LR.getValNumInfo(i)->def << '\n'); 2769 return false; 2770 } 2771 } 2772 return true; 2773 } 2774 2775 bool JoinVals:: 2776 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2777 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { 2778 VNInfo *VNI = LR.getValNumInfo(ValNo); 2779 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2780 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2781 2782 // Scan Other.LR from VNI.def to MBBEnd. 2783 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2784 assert(OtherI != Other.LR.end() && "No conflict?"); 2785 do { 2786 // OtherI is pointing to a tainted value. Abort the join if the tainted 2787 // lanes escape the block. 2788 SlotIndex End = OtherI->end; 2789 if (End >= MBBEnd) { 2790 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':' 2791 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2792 return false; 2793 } 2794 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':' 2795 << OtherI->valno->id << '@' << OtherI->start << " to " 2796 << End << '\n'); 2797 // A dead def is not a problem. 2798 if (End.isDead()) 2799 break; 2800 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2801 2802 // Check for another def in the MBB. 2803 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2804 break; 2805 2806 // Lanes written by the new def are no longer tainted. 2807 const Val &OV = Other.Vals[OtherI->valno->id]; 2808 TaintedLanes &= ~OV.WriteLanes; 2809 if (!OV.RedefVNI) 2810 break; 2811 } while (TaintedLanes.any()); 2812 return true; 2813 } 2814 2815 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, 2816 LaneBitmask Lanes) const { 2817 if (MI.isDebugInstr()) 2818 return false; 2819 for (const MachineOperand &MO : MI.operands()) { 2820 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2821 continue; 2822 if (!MO.readsReg()) 2823 continue; 2824 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2825 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2826 return true; 2827 } 2828 return false; 2829 } 2830 2831 bool JoinVals::resolveConflicts(JoinVals &Other) { 2832 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2833 Val &V = Vals[i]; 2834 assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); 2835 if (V.Resolution != CR_Unresolved) 2836 continue; 2837 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@' 2838 << LR.getValNumInfo(i)->def << '\n'); 2839 if (SubRangeJoin) 2840 return false; 2841 2842 ++NumLaneConflicts; 2843 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2844 VNInfo *VNI = LR.getValNumInfo(i); 2845 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2846 2847 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2848 // join, those lanes will be tainted with a wrong value. Get the extent of 2849 // the tainted lanes. 2850 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2851 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2852 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2853 // Tainted lanes would extend beyond the basic block. 2854 return false; 2855 2856 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2857 2858 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2859 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2860 MachineBasicBlock::iterator MI = MBB->begin(); 2861 if (!VNI->isPHIDef()) { 2862 MI = Indexes->getInstructionFromIndex(VNI->def); 2863 // No need to check the instruction defining VNI for reads. 2864 ++MI; 2865 } 2866 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2867 "Interference ends on VNI->def. Should have been handled earlier"); 2868 MachineInstr *LastMI = 2869 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2870 assert(LastMI && "Range must end at a proper instruction"); 2871 unsigned TaintNum = 0; 2872 while (true) { 2873 assert(MI != MBB->end() && "Bad LastMI"); 2874 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2875 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2876 return false; 2877 } 2878 // LastMI is the last instruction to use the current value. 2879 if (&*MI == LastMI) { 2880 if (++TaintNum == TaintExtent.size()) 2881 break; 2882 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2883 assert(LastMI && "Range must end at a proper instruction"); 2884 TaintedLanes = TaintExtent[TaintNum].second; 2885 } 2886 ++MI; 2887 } 2888 2889 // The tainted lanes are unused. 2890 V.Resolution = CR_Replace; 2891 ++NumLaneResolves; 2892 } 2893 return true; 2894 } 2895 2896 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2897 Val &V = Vals[ValNo]; 2898 if (V.Pruned || V.PrunedComputed) 2899 return V.Pruned; 2900 2901 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2902 return V.Pruned; 2903 2904 // Follow copies up the dominator tree and check if any intermediate value 2905 // has been pruned. 2906 V.PrunedComputed = true; 2907 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2908 return V.Pruned; 2909 } 2910 2911 void JoinVals::pruneValues(JoinVals &Other, 2912 SmallVectorImpl<SlotIndex> &EndPoints, 2913 bool changeInstrs) { 2914 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2915 SlotIndex Def = LR.getValNumInfo(i)->def; 2916 switch (Vals[i].Resolution) { 2917 case CR_Keep: 2918 break; 2919 case CR_Replace: { 2920 // This value takes precedence over the value in Other.LR. 2921 LIS->pruneValue(Other.LR, Def, &EndPoints); 2922 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2923 // instructions are only inserted to provide a live-out value for PHI 2924 // predecessors, so the instruction should simply go away once its value 2925 // has been replaced. 2926 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2927 bool EraseImpDef = OtherV.ErasableImplicitDef && 2928 OtherV.Resolution == CR_Keep; 2929 if (!Def.isBlock()) { 2930 if (changeInstrs) { 2931 // Remove <def,read-undef> flags. This def is now a partial redef. 2932 // Also remove dead flags since the joined live range will 2933 // continue past this instruction. 2934 for (MachineOperand &MO : 2935 Indexes->getInstructionFromIndex(Def)->operands()) { 2936 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 2937 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) 2938 MO.setIsUndef(false); 2939 MO.setIsDead(false); 2940 } 2941 } 2942 } 2943 // This value will reach instructions below, but we need to make sure 2944 // the live range also reaches the instruction at Def. 2945 if (!EraseImpDef) 2946 EndPoints.push_back(Def); 2947 } 2948 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def 2949 << ": " << Other.LR << '\n'); 2950 break; 2951 } 2952 case CR_Erase: 2953 case CR_Merge: 2954 if (isPrunedValue(i, Other)) { 2955 // This value is ultimately a copy of a pruned value in LR or Other.LR. 2956 // We can no longer trust the value mapping computed by 2957 // computeAssignment(), the value that was originally copied could have 2958 // been replaced. 2959 LIS->pruneValue(LR, Def, &EndPoints); 2960 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at " 2961 << Def << ": " << LR << '\n'); 2962 } 2963 break; 2964 case CR_Unresolved: 2965 case CR_Impossible: 2966 llvm_unreachable("Unresolved conflicts"); 2967 } 2968 } 2969 } 2970 2971 /// Consider the following situation when coalescing the copy between 2972 /// %31 and %45 at 800. (The vertical lines represent live range segments.) 2973 /// 2974 /// Main range Subrange 0004 (sub2) 2975 /// %31 %45 %31 %45 2976 /// 544 %45 = COPY %28 + + 2977 /// | v1 | v1 2978 /// 560B bb.1: + + 2979 /// 624 = %45.sub2 | v2 | v2 2980 /// 800 %31 = COPY %45 + + + + 2981 /// | v0 | v0 2982 /// 816 %31.sub1 = ... + | 2983 /// 880 %30 = COPY %31 | v1 + 2984 /// 928 %45 = COPY %30 | + + 2985 /// | | v0 | v0 <--+ 2986 /// 992B ; backedge -> bb.1 | + + | 2987 /// 1040 = %31.sub0 + | 2988 /// This value must remain 2989 /// live-out! 2990 /// 2991 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes 2992 /// redundant, since it copies the value from %45 back into it. The 2993 /// conflict resolution for the main range determines that %45.v0 is 2994 /// to be erased, which is ok since %31.v1 is identical to it. 2995 /// The problem happens with the subrange for sub2: it has to be live 2996 /// on exit from the block, but since 928 was actually a point of 2997 /// definition of %45.sub2, %45.sub2 was not live immediately prior 2998 /// to that definition. As a result, when 928 was erased, the value v0 2999 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an 3000 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2, 3001 /// providing an incorrect value to the use at 624. 3002 /// 3003 /// Since the main-range values %31.v1 and %45.v0 were proved to be 3004 /// identical, the corresponding values in subranges must also be the 3005 /// same. A redundant copy is removed because it's not needed, and not 3006 /// because it copied an undefined value, so any liveness that originated 3007 /// from that copy cannot disappear. When pruning a value that started 3008 /// at the removed copy, the corresponding identical value must be 3009 /// extended to replace it. 3010 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 3011 // Look for values being erased. 3012 bool DidPrune = false; 3013 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3014 Val &V = Vals[i]; 3015 // We should trigger in all cases in which eraseInstrs() does something. 3016 // match what eraseInstrs() is doing, print a message so 3017 if (V.Resolution != CR_Erase && 3018 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)) 3019 continue; 3020 3021 // Check subranges at the point where the copy will be removed. 3022 SlotIndex Def = LR.getValNumInfo(i)->def; 3023 SlotIndex OtherDef; 3024 if (V.Identical) 3025 OtherDef = V.OtherVNI->def; 3026 3027 // Print message so mismatches with eraseInstrs() can be diagnosed. 3028 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def 3029 << '\n'); 3030 for (LiveInterval::SubRange &S : LI.subranges()) { 3031 LiveQueryResult Q = S.Query(Def); 3032 3033 // If a subrange starts at the copy then an undefined value has been 3034 // copied and we must remove that subrange value as well. 3035 VNInfo *ValueOut = Q.valueOutOrDead(); 3036 if (ValueOut != nullptr && Q.valueIn() == nullptr) { 3037 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 3038 << " at " << Def << "\n"); 3039 SmallVector<SlotIndex,8> EndPoints; 3040 LIS->pruneValue(S, Def, &EndPoints); 3041 DidPrune = true; 3042 // Mark value number as unused. 3043 ValueOut->markUnused(); 3044 3045 if (V.Identical && S.Query(OtherDef).valueOut()) { 3046 // If V is identical to V.OtherVNI (and S was live at OtherDef), 3047 // then we can't simply prune V from S. V needs to be replaced 3048 // with V.OtherVNI. 3049 LIS->extendToIndices(S, EndPoints); 3050 } 3051 continue; 3052 } 3053 // If a subrange ends at the copy, then a value was copied but only 3054 // partially used later. Shrink the subregister range appropriately. 3055 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 3056 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane " 3057 << PrintLaneMask(S.LaneMask) << " at " << Def 3058 << "\n"); 3059 ShrinkMask |= S.LaneMask; 3060 } 3061 } 3062 } 3063 if (DidPrune) 3064 LI.removeEmptySubRanges(); 3065 } 3066 3067 /// Check if any of the subranges of @p LI contain a definition at @p Def. 3068 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 3069 for (LiveInterval::SubRange &SR : LI.subranges()) { 3070 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 3071 if (VNI->def == Def) 3072 return true; 3073 } 3074 return false; 3075 } 3076 3077 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 3078 assert(&static_cast<LiveRange&>(LI) == &LR); 3079 3080 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3081 if (Vals[i].Resolution != CR_Keep) 3082 continue; 3083 VNInfo *VNI = LR.getValNumInfo(i); 3084 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 3085 continue; 3086 Vals[i].Pruned = true; 3087 ShrinkMainRange = true; 3088 } 3089 } 3090 3091 void JoinVals::removeImplicitDefs() { 3092 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3093 Val &V = Vals[i]; 3094 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 3095 continue; 3096 3097 VNInfo *VNI = LR.getValNumInfo(i); 3098 VNI->markUnused(); 3099 LR.removeValNo(VNI); 3100 } 3101 } 3102 3103 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 3104 SmallVectorImpl<unsigned> &ShrinkRegs, 3105 LiveInterval *LI) { 3106 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3107 // Get the def location before markUnused() below invalidates it. 3108 SlotIndex Def = LR.getValNumInfo(i)->def; 3109 switch (Vals[i].Resolution) { 3110 case CR_Keep: { 3111 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 3112 // longer. The IMPLICIT_DEF instructions are only inserted by 3113 // PHIElimination to guarantee that all PHI predecessors have a value. 3114 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 3115 break; 3116 // Remove value number i from LR. 3117 // For intervals with subranges, removing a segment from the main range 3118 // may require extending the previous segment: for each definition of 3119 // a subregister, there will be a corresponding def in the main range. 3120 // That def may fall in the middle of a segment from another subrange. 3121 // In such cases, removing this def from the main range must be 3122 // complemented by extending the main range to account for the liveness 3123 // of the other subrange. 3124 VNInfo *VNI = LR.getValNumInfo(i); 3125 SlotIndex Def = VNI->def; 3126 // The new end point of the main range segment to be extended. 3127 SlotIndex NewEnd; 3128 if (LI != nullptr) { 3129 LiveRange::iterator I = LR.FindSegmentContaining(Def); 3130 assert(I != LR.end()); 3131 // Do not extend beyond the end of the segment being removed. 3132 // The segment may have been pruned in preparation for joining 3133 // live ranges. 3134 NewEnd = I->end; 3135 } 3136 3137 LR.removeValNo(VNI); 3138 // Note that this VNInfo is reused and still referenced in NewVNInfo, 3139 // make it appear like an unused value number. 3140 VNI->markUnused(); 3141 3142 if (LI != nullptr && LI->hasSubRanges()) { 3143 assert(static_cast<LiveRange*>(LI) == &LR); 3144 // Determine the end point based on the subrange information: 3145 // minimum of (earliest def of next segment, 3146 // latest end point of containing segment) 3147 SlotIndex ED, LE; 3148 for (LiveInterval::SubRange &SR : LI->subranges()) { 3149 LiveRange::iterator I = SR.find(Def); 3150 if (I == SR.end()) 3151 continue; 3152 if (I->start > Def) 3153 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 3154 else 3155 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 3156 } 3157 if (LE.isValid()) 3158 NewEnd = std::min(NewEnd, LE); 3159 if (ED.isValid()) 3160 NewEnd = std::min(NewEnd, ED); 3161 3162 // We only want to do the extension if there was a subrange that 3163 // was live across Def. 3164 if (LE.isValid()) { 3165 LiveRange::iterator S = LR.find(Def); 3166 if (S != LR.begin()) 3167 std::prev(S)->end = NewEnd; 3168 } 3169 } 3170 LLVM_DEBUG({ 3171 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 3172 if (LI != nullptr) 3173 dbgs() << "\t\t LHS = " << *LI << '\n'; 3174 }); 3175 LLVM_FALLTHROUGH; 3176 } 3177 3178 case CR_Erase: { 3179 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 3180 assert(MI && "No instruction to erase"); 3181 if (MI->isCopy()) { 3182 unsigned Reg = MI->getOperand(1).getReg(); 3183 if (TargetRegisterInfo::isVirtualRegister(Reg) && 3184 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 3185 ShrinkRegs.push_back(Reg); 3186 } 3187 ErasedInstrs.insert(MI); 3188 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 3189 LIS->RemoveMachineInstrFromMaps(*MI); 3190 MI->eraseFromParent(); 3191 break; 3192 } 3193 default: 3194 break; 3195 } 3196 } 3197 } 3198 3199 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 3200 LaneBitmask LaneMask, 3201 const CoalescerPair &CP) { 3202 SmallVector<VNInfo*, 16> NewVNInfo; 3203 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 3204 NewVNInfo, CP, LIS, TRI, true, true); 3205 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 3206 NewVNInfo, CP, LIS, TRI, true, true); 3207 3208 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 3209 // We should be able to resolve all conflicts here as we could successfully do 3210 // it on the mainrange already. There is however a problem when multiple 3211 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 3212 // interferences. 3213 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 3214 // We already determined that it is legal to merge the intervals, so this 3215 // should never fail. 3216 llvm_unreachable("*** Couldn't join subrange!\n"); 3217 } 3218 if (!LHSVals.resolveConflicts(RHSVals) || 3219 !RHSVals.resolveConflicts(LHSVals)) { 3220 // We already determined that it is legal to merge the intervals, so this 3221 // should never fail. 3222 llvm_unreachable("*** Couldn't join subrange!\n"); 3223 } 3224 3225 // The merging algorithm in LiveInterval::join() can't handle conflicting 3226 // value mappings, so we need to remove any live ranges that overlap a 3227 // CR_Replace resolution. Collect a set of end points that can be used to 3228 // restore the live range after joining. 3229 SmallVector<SlotIndex, 8> EndPoints; 3230 LHSVals.pruneValues(RHSVals, EndPoints, false); 3231 RHSVals.pruneValues(LHSVals, EndPoints, false); 3232 3233 LHSVals.removeImplicitDefs(); 3234 RHSVals.removeImplicitDefs(); 3235 3236 LRange.verify(); 3237 RRange.verify(); 3238 3239 // Join RRange into LHS. 3240 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 3241 NewVNInfo); 3242 3243 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask) 3244 << ' ' << LRange << "\n"); 3245 if (EndPoints.empty()) 3246 return; 3247 3248 // Recompute the parts of the live range we had to remove because of 3249 // CR_Replace conflicts. 3250 LLVM_DEBUG({ 3251 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3252 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3253 dbgs() << EndPoints[i]; 3254 if (i != n-1) 3255 dbgs() << ','; 3256 } 3257 dbgs() << ": " << LRange << '\n'; 3258 }); 3259 LIS->extendToIndices(LRange, EndPoints); 3260 } 3261 3262 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 3263 const LiveRange &ToMerge, 3264 LaneBitmask LaneMask, 3265 CoalescerPair &CP) { 3266 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3267 LI.refineSubRanges( 3268 Allocator, LaneMask, 3269 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) { 3270 if (SR.empty()) { 3271 SR.assign(ToMerge, Allocator); 3272 } else { 3273 // joinSubRegRange() destroys the merged range, so we need a copy. 3274 LiveRange RangeCopy(ToMerge, Allocator); 3275 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 3276 } 3277 }, 3278 *LIS->getSlotIndexes(), *TRI); 3279 } 3280 3281 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) { 3282 if (LI.valnos.size() < LargeIntervalSizeThreshold) 3283 return false; 3284 auto &Counter = LargeLIVisitCounter[LI.reg]; 3285 if (Counter < LargeIntervalFreqThreshold) { 3286 Counter++; 3287 return false; 3288 } 3289 return true; 3290 } 3291 3292 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 3293 SmallVector<VNInfo*, 16> NewVNInfo; 3294 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 3295 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 3296 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 3297 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 3298 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3299 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 3300 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3301 3302 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n'); 3303 3304 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS)) 3305 return false; 3306 3307 // First compute NewVNInfo and the simple value mappings. 3308 // Detect impossible conflicts early. 3309 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 3310 return false; 3311 3312 // Some conflicts can only be resolved after all values have been mapped. 3313 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 3314 return false; 3315 3316 // All clear, the live ranges can be merged. 3317 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 3318 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3319 3320 // Transform lanemasks from the LHS to masks in the coalesced register and 3321 // create initial subranges if necessary. 3322 unsigned DstIdx = CP.getDstIdx(); 3323 if (!LHS.hasSubRanges()) { 3324 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 3325 : TRI->getSubRegIndexLaneMask(DstIdx); 3326 // LHS must support subregs or we wouldn't be in this codepath. 3327 assert(Mask.any()); 3328 LHS.createSubRangeFrom(Allocator, Mask, LHS); 3329 } else if (DstIdx != 0) { 3330 // Transform LHS lanemasks to new register class if necessary. 3331 for (LiveInterval::SubRange &R : LHS.subranges()) { 3332 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 3333 R.LaneMask = Mask; 3334 } 3335 } 3336 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS 3337 << '\n'); 3338 3339 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3340 unsigned SrcIdx = CP.getSrcIdx(); 3341 if (!RHS.hasSubRanges()) { 3342 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3343 : TRI->getSubRegIndexLaneMask(SrcIdx); 3344 mergeSubRangeInto(LHS, RHS, Mask, CP); 3345 } else { 3346 // Pair up subranges and merge. 3347 for (LiveInterval::SubRange &R : RHS.subranges()) { 3348 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3349 mergeSubRangeInto(LHS, R, Mask, CP); 3350 } 3351 } 3352 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3353 3354 // Pruning implicit defs from subranges may result in the main range 3355 // having stale segments. 3356 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3357 3358 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3359 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3360 } 3361 3362 // The merging algorithm in LiveInterval::join() can't handle conflicting 3363 // value mappings, so we need to remove any live ranges that overlap a 3364 // CR_Replace resolution. Collect a set of end points that can be used to 3365 // restore the live range after joining. 3366 SmallVector<SlotIndex, 8> EndPoints; 3367 LHSVals.pruneValues(RHSVals, EndPoints, true); 3368 RHSVals.pruneValues(LHSVals, EndPoints, true); 3369 3370 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3371 // registers to require trimming. 3372 SmallVector<unsigned, 8> ShrinkRegs; 3373 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3374 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3375 while (!ShrinkRegs.empty()) 3376 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3377 3378 // Join RHS into LHS. 3379 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3380 3381 // Kill flags are going to be wrong if the live ranges were overlapping. 3382 // Eventually, we should simply clear all kill flags when computing live 3383 // ranges. They are reinserted after register allocation. 3384 MRI->clearKillFlags(LHS.reg); 3385 MRI->clearKillFlags(RHS.reg); 3386 3387 if (!EndPoints.empty()) { 3388 // Recompute the parts of the live range we had to remove because of 3389 // CR_Replace conflicts. 3390 LLVM_DEBUG({ 3391 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3392 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3393 dbgs() << EndPoints[i]; 3394 if (i != n-1) 3395 dbgs() << ','; 3396 } 3397 dbgs() << ": " << LHS << '\n'; 3398 }); 3399 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3400 } 3401 3402 return true; 3403 } 3404 3405 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3406 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3407 } 3408 3409 namespace { 3410 3411 /// Information concerning MBB coalescing priority. 3412 struct MBBPriorityInfo { 3413 MachineBasicBlock *MBB; 3414 unsigned Depth; 3415 bool IsSplit; 3416 3417 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3418 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3419 }; 3420 3421 } // end anonymous namespace 3422 3423 /// C-style comparator that sorts first based on the loop depth of the basic 3424 /// block (the unsigned), and then on the MBB number. 3425 /// 3426 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3427 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3428 const MBBPriorityInfo *RHS) { 3429 // Deeper loops first 3430 if (LHS->Depth != RHS->Depth) 3431 return LHS->Depth > RHS->Depth ? -1 : 1; 3432 3433 // Try to unsplit critical edges next. 3434 if (LHS->IsSplit != RHS->IsSplit) 3435 return LHS->IsSplit ? -1 : 1; 3436 3437 // Prefer blocks that are more connected in the CFG. This takes care of 3438 // the most difficult copies first while intervals are short. 3439 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3440 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3441 if (cl != cr) 3442 return cl > cr ? -1 : 1; 3443 3444 // As a last resort, sort by block number. 3445 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3446 } 3447 3448 /// \returns true if the given copy uses or defines a local live range. 3449 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3450 if (!Copy->isCopy()) 3451 return false; 3452 3453 if (Copy->getOperand(1).isUndef()) 3454 return false; 3455 3456 unsigned SrcReg = Copy->getOperand(1).getReg(); 3457 unsigned DstReg = Copy->getOperand(0).getReg(); 3458 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 3459 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 3460 return false; 3461 3462 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3463 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3464 } 3465 3466 void RegisterCoalescer::lateLiveIntervalUpdate() { 3467 for (unsigned reg : ToBeUpdated) { 3468 if (!LIS->hasInterval(reg)) 3469 continue; 3470 LiveInterval &LI = LIS->getInterval(reg); 3471 shrinkToUses(&LI, &DeadDefs); 3472 if (!DeadDefs.empty()) 3473 eliminateDeadDefs(); 3474 } 3475 ToBeUpdated.clear(); 3476 } 3477 3478 bool RegisterCoalescer:: 3479 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3480 bool Progress = false; 3481 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3482 if (!CurrList[i]) 3483 continue; 3484 // Skip instruction pointers that have already been erased, for example by 3485 // dead code elimination. 3486 if (ErasedInstrs.count(CurrList[i])) { 3487 CurrList[i] = nullptr; 3488 continue; 3489 } 3490 bool Again = false; 3491 bool Success = joinCopy(CurrList[i], Again); 3492 Progress |= Success; 3493 if (Success || !Again) 3494 CurrList[i] = nullptr; 3495 } 3496 return Progress; 3497 } 3498 3499 /// Check if DstReg is a terminal node. 3500 /// I.e., it does not have any affinity other than \p Copy. 3501 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 3502 const MachineRegisterInfo *MRI) { 3503 assert(Copy.isCopyLike()); 3504 // Check if the destination of this copy as any other affinity. 3505 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3506 if (&MI != &Copy && MI.isCopyLike()) 3507 return false; 3508 return true; 3509 } 3510 3511 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3512 assert(Copy.isCopyLike()); 3513 if (!UseTerminalRule) 3514 return false; 3515 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 3516 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg); 3517 // Check if the destination of this copy has any other affinity. 3518 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 3519 // If SrcReg is a physical register, the copy won't be coalesced. 3520 // Ignoring it may have other side effect (like missing 3521 // rematerialization). So keep it. 3522 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 3523 !isTerminalReg(DstReg, Copy, MRI)) 3524 return false; 3525 3526 // DstReg is a terminal node. Check if it interferes with any other 3527 // copy involving SrcReg. 3528 const MachineBasicBlock *OrigBB = Copy.getParent(); 3529 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3530 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3531 // Technically we should check if the weight of the new copy is 3532 // interesting compared to the other one and update the weight 3533 // of the copies accordingly. However, this would only work if 3534 // we would gather all the copies first then coalesce, whereas 3535 // right now we interleave both actions. 3536 // For now, just consider the copies that are in the same block. 3537 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3538 continue; 3539 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 3540 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3541 OtherSubReg); 3542 if (OtherReg == SrcReg) 3543 OtherReg = OtherSrcReg; 3544 // Check if OtherReg is a non-terminal. 3545 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) || 3546 isTerminalReg(OtherReg, MI, MRI)) 3547 continue; 3548 // Check that OtherReg interfere with DstReg. 3549 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3550 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) 3551 << '\n'); 3552 return true; 3553 } 3554 } 3555 return false; 3556 } 3557 3558 void 3559 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3560 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n"); 3561 3562 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3563 // yet, it might invalidate the iterator. 3564 const unsigned PrevSize = WorkList.size(); 3565 if (JoinGlobalCopies) { 3566 SmallVector<MachineInstr*, 2> LocalTerminals; 3567 SmallVector<MachineInstr*, 2> GlobalTerminals; 3568 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3569 // are not inherently easier to resolve, but slightly preferable until we 3570 // have local live range splitting. In particular this is required by 3571 // cmp+jmp macro fusion. 3572 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3573 MII != E; ++MII) { 3574 if (!MII->isCopyLike()) 3575 continue; 3576 bool ApplyTerminalRule = applyTerminalRule(*MII); 3577 if (isLocalCopy(&(*MII), LIS)) { 3578 if (ApplyTerminalRule) 3579 LocalTerminals.push_back(&(*MII)); 3580 else 3581 LocalWorkList.push_back(&(*MII)); 3582 } else { 3583 if (ApplyTerminalRule) 3584 GlobalTerminals.push_back(&(*MII)); 3585 else 3586 WorkList.push_back(&(*MII)); 3587 } 3588 } 3589 // Append the copies evicted by the terminal rule at the end of the list. 3590 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3591 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3592 } 3593 else { 3594 SmallVector<MachineInstr*, 2> Terminals; 3595 for (MachineInstr &MII : *MBB) 3596 if (MII.isCopyLike()) { 3597 if (applyTerminalRule(MII)) 3598 Terminals.push_back(&MII); 3599 else 3600 WorkList.push_back(&MII); 3601 } 3602 // Append the copies evicted by the terminal rule at the end of the list. 3603 WorkList.append(Terminals.begin(), Terminals.end()); 3604 } 3605 // Try coalescing the collected copies immediately, and remove the nulls. 3606 // This prevents the WorkList from getting too large since most copies are 3607 // joinable on the first attempt. 3608 MutableArrayRef<MachineInstr*> 3609 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3610 if (copyCoalesceWorkList(CurrList)) 3611 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3612 nullptr), WorkList.end()); 3613 } 3614 3615 void RegisterCoalescer::coalesceLocals() { 3616 copyCoalesceWorkList(LocalWorkList); 3617 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3618 if (LocalWorkList[j]) 3619 WorkList.push_back(LocalWorkList[j]); 3620 } 3621 LocalWorkList.clear(); 3622 } 3623 3624 void RegisterCoalescer::joinAllIntervals() { 3625 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3626 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3627 3628 std::vector<MBBPriorityInfo> MBBs; 3629 MBBs.reserve(MF->size()); 3630 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3631 MachineBasicBlock *MBB = &*I; 3632 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3633 JoinSplitEdges && isSplitEdge(MBB))); 3634 } 3635 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3636 3637 // Coalesce intervals in MBB priority order. 3638 unsigned CurrDepth = std::numeric_limits<unsigned>::max(); 3639 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3640 // Try coalescing the collected local copies for deeper loops. 3641 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3642 coalesceLocals(); 3643 CurrDepth = MBBs[i].Depth; 3644 } 3645 copyCoalesceInMBB(MBBs[i].MBB); 3646 } 3647 lateLiveIntervalUpdate(); 3648 coalesceLocals(); 3649 3650 // Joining intervals can allow other intervals to be joined. Iteratively join 3651 // until we make no progress. 3652 while (copyCoalesceWorkList(WorkList)) 3653 /* empty */ ; 3654 lateLiveIntervalUpdate(); 3655 } 3656 3657 void RegisterCoalescer::releaseMemory() { 3658 ErasedInstrs.clear(); 3659 WorkList.clear(); 3660 DeadDefs.clear(); 3661 InflateRegs.clear(); 3662 LargeLIVisitCounter.clear(); 3663 } 3664 3665 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3666 MF = &fn; 3667 MRI = &fn.getRegInfo(); 3668 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3669 TRI = STI.getRegisterInfo(); 3670 TII = STI.getInstrInfo(); 3671 LIS = &getAnalysis<LiveIntervals>(); 3672 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3673 Loops = &getAnalysis<MachineLoopInfo>(); 3674 if (EnableGlobalCopies == cl::BOU_UNSET) 3675 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3676 else 3677 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3678 3679 // The MachineScheduler does not currently require JoinSplitEdges. This will 3680 // either be enabled unconditionally or replaced by a more general live range 3681 // splitting optimization. 3682 JoinSplitEdges = EnableJoinSplits; 3683 3684 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3685 << "********** Function: " << MF->getName() << '\n'); 3686 3687 if (VerifyCoalescing) 3688 MF->verify(this, "Before register coalescing"); 3689 3690 RegClassInfo.runOnMachineFunction(fn); 3691 3692 // Join (coalesce) intervals if requested. 3693 if (EnableJoining) 3694 joinAllIntervals(); 3695 3696 // After deleting a lot of copies, register classes may be less constrained. 3697 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3698 // DPR inflation. 3699 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3700 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3701 InflateRegs.end()); 3702 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() 3703 << " regs.\n"); 3704 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3705 unsigned Reg = InflateRegs[i]; 3706 if (MRI->reg_nodbg_empty(Reg)) 3707 continue; 3708 if (MRI->recomputeRegClass(Reg)) { 3709 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to " 3710 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3711 ++NumInflated; 3712 3713 LiveInterval &LI = LIS->getInterval(Reg); 3714 if (LI.hasSubRanges()) { 3715 // If the inflated register class does not support subregisters anymore 3716 // remove the subranges. 3717 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3718 LI.clearSubRanges(); 3719 } else { 3720 #ifndef NDEBUG 3721 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3722 // If subranges are still supported, then the same subregs 3723 // should still be supported. 3724 for (LiveInterval::SubRange &S : LI.subranges()) { 3725 assert((S.LaneMask & ~MaxMask).none()); 3726 } 3727 #endif 3728 } 3729 } 3730 } 3731 } 3732 3733 LLVM_DEBUG(dump()); 3734 if (VerifyCoalescing) 3735 MF->verify(this, "After register coalescing"); 3736 return true; 3737 } 3738 3739 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3740 LIS->print(O, m); 3741 } 3742