1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic RegisterCoalescer interface which 11 // is used as the common interface used by all clients and 12 // implementations of register coalescing. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "RegisterCoalescer.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/LiveRangeEdit.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/RegisterClassInfo.h" 30 #include "llvm/CodeGen/VirtRegMap.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 #include <algorithm> 42 #include <cmath> 43 using namespace llvm; 44 45 #define DEBUG_TYPE "regalloc" 46 47 STATISTIC(numJoins , "Number of interval joins performed"); 48 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 49 STATISTIC(numCommutes , "Number of instruction commuting performed"); 50 STATISTIC(numExtends , "Number of copies extended"); 51 STATISTIC(NumReMats , "Number of instructions re-materialized"); 52 STATISTIC(NumInflated , "Number of register classes inflated"); 53 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 54 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 55 56 static cl::opt<bool> 57 EnableJoining("join-liveintervals", 58 cl::desc("Coalesce copies (default=true)"), 59 cl::init(true)); 60 61 static cl::opt<bool> UseTerminalRule("terminal-rule", 62 cl::desc("Apply the terminal rule"), 63 cl::init(false), cl::Hidden); 64 65 /// Temporary flag to test critical edge unsplitting. 66 static cl::opt<bool> 67 EnableJoinSplits("join-splitedges", 68 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 69 70 /// Temporary flag to test global copy optimization. 71 static cl::opt<cl::boolOrDefault> 72 EnableGlobalCopies("join-globalcopies", 73 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 74 cl::init(cl::BOU_UNSET), cl::Hidden); 75 76 static cl::opt<bool> 77 VerifyCoalescing("verify-coalescing", 78 cl::desc("Verify machine instrs before and after register coalescing"), 79 cl::Hidden); 80 81 namespace { 82 class RegisterCoalescer : public MachineFunctionPass, 83 private LiveRangeEdit::Delegate { 84 MachineFunction* MF; 85 MachineRegisterInfo* MRI; 86 const TargetMachine* TM; 87 const TargetRegisterInfo* TRI; 88 const TargetInstrInfo* TII; 89 LiveIntervals *LIS; 90 const MachineLoopInfo* Loops; 91 AliasAnalysis *AA; 92 RegisterClassInfo RegClassInfo; 93 94 /// A LaneMask to remember on which subregister live ranges we need to call 95 /// shrinkToUses() later. 96 LaneBitmask ShrinkMask; 97 98 /// True if the main range of the currently coalesced intervals should be 99 /// checked for smaller live intervals. 100 bool ShrinkMainRange; 101 102 /// \brief True if the coalescer should aggressively coalesce global copies 103 /// in favor of keeping local copies. 104 bool JoinGlobalCopies; 105 106 /// \brief True if the coalescer should aggressively coalesce fall-thru 107 /// blocks exclusively containing copies. 108 bool JoinSplitEdges; 109 110 /// Copy instructions yet to be coalesced. 111 SmallVector<MachineInstr*, 8> WorkList; 112 SmallVector<MachineInstr*, 8> LocalWorkList; 113 114 /// Set of instruction pointers that have been erased, and 115 /// that may be present in WorkList. 116 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 117 118 /// Dead instructions that are about to be deleted. 119 SmallVector<MachineInstr*, 8> DeadDefs; 120 121 /// Virtual registers to be considered for register class inflation. 122 SmallVector<unsigned, 8> InflateRegs; 123 124 /// Recursively eliminate dead defs in DeadDefs. 125 void eliminateDeadDefs(); 126 127 /// LiveRangeEdit callback for eliminateDeadDefs(). 128 void LRE_WillEraseInstruction(MachineInstr *MI) override; 129 130 /// Coalesce the LocalWorkList. 131 void coalesceLocals(); 132 133 /// Join compatible live intervals 134 void joinAllIntervals(); 135 136 /// Coalesce copies in the specified MBB, putting 137 /// copies that cannot yet be coalesced into WorkList. 138 void copyCoalesceInMBB(MachineBasicBlock *MBB); 139 140 /// Tries to coalesce all copies in CurrList. Returns true if any progress 141 /// was made. 142 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 143 144 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 145 /// src/dst of the copy instruction CopyMI. This returns true if the copy 146 /// was successfully coalesced away. If it is not currently possible to 147 /// coalesce this interval, but it may be possible if other things get 148 /// coalesced, then it returns true by reference in 'Again'. 149 bool joinCopy(MachineInstr *TheCopy, bool &Again); 150 151 /// Attempt to join these two intervals. On failure, this 152 /// returns false. The output "SrcInt" will not have been modified, so we 153 /// can use this information below to update aliases. 154 bool joinIntervals(CoalescerPair &CP); 155 156 /// Attempt joining two virtual registers. Return true on success. 157 bool joinVirtRegs(CoalescerPair &CP); 158 159 /// Attempt joining with a reserved physreg. 160 bool joinReservedPhysReg(CoalescerPair &CP); 161 162 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 163 /// Subranges in @p LI which only partially interfere with the desired 164 /// LaneMask are split as necessary. @p LaneMask are the lanes that 165 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 166 /// lanemasks already adjusted to the coalesced register. 167 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 168 LaneBitmask LaneMask, CoalescerPair &CP); 169 170 /// Join the liveranges of two subregisters. Joins @p RRange into 171 /// @p LRange, @p RRange may be invalid afterwards. 172 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 173 LaneBitmask LaneMask, const CoalescerPair &CP); 174 175 /// We found a non-trivially-coalescable copy. If the source value number is 176 /// defined by a copy from the destination reg see if we can merge these two 177 /// destination reg valno# into a single value number, eliminating a copy. 178 /// This returns true if an interval was modified. 179 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 180 181 /// Return true if there are definitions of IntB 182 /// other than BValNo val# that can reach uses of AValno val# of IntA. 183 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 184 VNInfo *AValNo, VNInfo *BValNo); 185 186 /// We found a non-trivially-coalescable copy. 187 /// If the source value number is defined by a commutable instruction and 188 /// its other operand is coalesced to the copy dest register, see if we 189 /// can transform the copy into a noop by commuting the definition. 190 /// This returns true if an interval was modified. 191 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); 192 193 /// We found a copy which can be moved to its less frequent predecessor. 194 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 195 196 /// If the source of a copy is defined by a 197 /// trivial computation, replace the copy by rematerialize the definition. 198 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 199 bool &IsDefCopy); 200 201 /// Return true if a copy involving a physreg should be joined. 202 bool canJoinPhys(const CoalescerPair &CP); 203 204 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 205 /// number if it is not zero. If DstReg is a physical register and the 206 /// existing subregister number of the def / use being updated is not zero, 207 /// make sure to set it to the correct physical subregister. 208 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 209 210 /// If the given machine operand reads only undefined lanes add an undef 211 /// flag. 212 /// This can happen when undef uses were previously concealed by a copy 213 /// which we coalesced. Example: 214 /// %vreg0:sub0<def,read-undef> = ... 215 /// %vreg1 = COPY %vreg0 <-- Coalescing COPY reveals undef 216 /// = use %vreg1:sub1 <-- hidden undef use 217 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 218 MachineOperand &MO, unsigned SubRegIdx); 219 220 /// Handle copies of undef values. 221 /// Returns true if @p CopyMI was a copy of an undef value and eliminated. 222 bool eliminateUndefCopy(MachineInstr *CopyMI); 223 224 /// Check whether or not we should apply the terminal rule on the 225 /// destination (Dst) of \p Copy. 226 /// When the terminal rule applies, Copy is not profitable to 227 /// coalesce. 228 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 229 /// at least one interference (Dst, Dst2). If Dst is terminal, the 230 /// terminal rule consists in checking that at least one of 231 /// interfering node, say Dst2, has an affinity of equal or greater 232 /// weight with Src. 233 /// In that case, Dst2 and Dst will not be able to be both coalesced 234 /// with Src. Since Dst2 exposes more coalescing opportunities than 235 /// Dst, we can drop \p Copy. 236 bool applyTerminalRule(const MachineInstr &Copy) const; 237 238 /// Wrapper method for \see LiveIntervals::shrinkToUses. 239 /// This method does the proper fixing of the live-ranges when the afore 240 /// mentioned method returns true. 241 void shrinkToUses(LiveInterval *LI, 242 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 243 if (LIS->shrinkToUses(LI, Dead)) { 244 /// Check whether or not \p LI is composed by multiple connected 245 /// components and if that is the case, fix that. 246 SmallVector<LiveInterval*, 8> SplitLIs; 247 LIS->splitSeparateComponents(*LI, SplitLIs); 248 } 249 } 250 251 public: 252 static char ID; ///< Class identification, replacement for typeinfo 253 RegisterCoalescer() : MachineFunctionPass(ID) { 254 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 255 } 256 257 void getAnalysisUsage(AnalysisUsage &AU) const override; 258 259 void releaseMemory() override; 260 261 /// This is the pass entry point. 262 bool runOnMachineFunction(MachineFunction&) override; 263 264 /// Implement the dump method. 265 void print(raw_ostream &O, const Module* = nullptr) const override; 266 }; 267 } // end anonymous namespace 268 269 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 270 271 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 272 "Simple Register Coalescing", false, false) 273 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 274 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 275 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 276 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 277 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 278 "Simple Register Coalescing", false, false) 279 280 char RegisterCoalescer::ID = 0; 281 282 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 283 unsigned &Src, unsigned &Dst, 284 unsigned &SrcSub, unsigned &DstSub) { 285 if (MI->isCopy()) { 286 Dst = MI->getOperand(0).getReg(); 287 DstSub = MI->getOperand(0).getSubReg(); 288 Src = MI->getOperand(1).getReg(); 289 SrcSub = MI->getOperand(1).getSubReg(); 290 } else if (MI->isSubregToReg()) { 291 Dst = MI->getOperand(0).getReg(); 292 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 293 MI->getOperand(3).getImm()); 294 Src = MI->getOperand(2).getReg(); 295 SrcSub = MI->getOperand(2).getSubReg(); 296 } else 297 return false; 298 return true; 299 } 300 301 /// Return true if this block should be vacated by the coalescer to eliminate 302 /// branches. The important cases to handle in the coalescer are critical edges 303 /// split during phi elimination which contain only copies. Simple blocks that 304 /// contain non-branches should also be vacated, but this can be handled by an 305 /// earlier pass similar to early if-conversion. 306 static bool isSplitEdge(const MachineBasicBlock *MBB) { 307 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 308 return false; 309 310 for (const auto &MI : *MBB) { 311 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 312 return false; 313 } 314 return true; 315 } 316 317 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 318 SrcReg = DstReg = 0; 319 SrcIdx = DstIdx = 0; 320 NewRC = nullptr; 321 Flipped = CrossClass = false; 322 323 unsigned Src, Dst, SrcSub, DstSub; 324 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 325 return false; 326 Partial = SrcSub || DstSub; 327 328 // If one register is a physreg, it must be Dst. 329 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 330 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 331 return false; 332 std::swap(Src, Dst); 333 std::swap(SrcSub, DstSub); 334 Flipped = true; 335 } 336 337 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 338 339 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 340 // Eliminate DstSub on a physreg. 341 if (DstSub) { 342 Dst = TRI.getSubReg(Dst, DstSub); 343 if (!Dst) return false; 344 DstSub = 0; 345 } 346 347 // Eliminate SrcSub by picking a corresponding Dst superregister. 348 if (SrcSub) { 349 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 350 if (!Dst) return false; 351 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 352 return false; 353 } 354 } else { 355 // Both registers are virtual. 356 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 357 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 358 359 // Both registers have subreg indices. 360 if (SrcSub && DstSub) { 361 // Copies between different sub-registers are never coalescable. 362 if (Src == Dst && SrcSub != DstSub) 363 return false; 364 365 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 366 SrcIdx, DstIdx); 367 if (!NewRC) 368 return false; 369 } else if (DstSub) { 370 // SrcReg will be merged with a sub-register of DstReg. 371 SrcIdx = DstSub; 372 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 373 } else if (SrcSub) { 374 // DstReg will be merged with a sub-register of SrcReg. 375 DstIdx = SrcSub; 376 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 377 } else { 378 // This is a straight copy without sub-registers. 379 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 380 } 381 382 // The combined constraint may be impossible to satisfy. 383 if (!NewRC) 384 return false; 385 386 // Prefer SrcReg to be a sub-register of DstReg. 387 // FIXME: Coalescer should support subregs symmetrically. 388 if (DstIdx && !SrcIdx) { 389 std::swap(Src, Dst); 390 std::swap(SrcIdx, DstIdx); 391 Flipped = !Flipped; 392 } 393 394 CrossClass = NewRC != DstRC || NewRC != SrcRC; 395 } 396 // Check our invariants 397 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 398 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 399 "Cannot have a physical SubIdx"); 400 SrcReg = Src; 401 DstReg = Dst; 402 return true; 403 } 404 405 bool CoalescerPair::flip() { 406 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 407 return false; 408 std::swap(SrcReg, DstReg); 409 std::swap(SrcIdx, DstIdx); 410 Flipped = !Flipped; 411 return true; 412 } 413 414 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 415 if (!MI) 416 return false; 417 unsigned Src, Dst, SrcSub, DstSub; 418 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 419 return false; 420 421 // Find the virtual register that is SrcReg. 422 if (Dst == SrcReg) { 423 std::swap(Src, Dst); 424 std::swap(SrcSub, DstSub); 425 } else if (Src != SrcReg) { 426 return false; 427 } 428 429 // Now check that Dst matches DstReg. 430 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 431 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 432 return false; 433 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 434 // DstSub could be set for a physreg from INSERT_SUBREG. 435 if (DstSub) 436 Dst = TRI.getSubReg(Dst, DstSub); 437 // Full copy of Src. 438 if (!SrcSub) 439 return DstReg == Dst; 440 // This is a partial register copy. Check that the parts match. 441 return TRI.getSubReg(DstReg, SrcSub) == Dst; 442 } else { 443 // DstReg is virtual. 444 if (DstReg != Dst) 445 return false; 446 // Registers match, do the subregisters line up? 447 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 448 TRI.composeSubRegIndices(DstIdx, DstSub); 449 } 450 } 451 452 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 453 AU.setPreservesCFG(); 454 AU.addRequired<AAResultsWrapperPass>(); 455 AU.addRequired<LiveIntervals>(); 456 AU.addPreserved<LiveIntervals>(); 457 AU.addPreserved<SlotIndexes>(); 458 AU.addRequired<MachineLoopInfo>(); 459 AU.addPreserved<MachineLoopInfo>(); 460 AU.addPreservedID(MachineDominatorsID); 461 MachineFunctionPass::getAnalysisUsage(AU); 462 } 463 464 void RegisterCoalescer::eliminateDeadDefs() { 465 SmallVector<unsigned, 8> NewRegs; 466 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 467 nullptr, this).eliminateDeadDefs(DeadDefs); 468 } 469 470 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 471 // MI may be in WorkList. Make sure we don't visit it. 472 ErasedInstrs.insert(MI); 473 } 474 475 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 476 MachineInstr *CopyMI) { 477 assert(!CP.isPartial() && "This doesn't work for partial copies."); 478 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 479 480 LiveInterval &IntA = 481 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 482 LiveInterval &IntB = 483 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 484 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 485 486 // We have a non-trivially-coalescable copy with IntA being the source and 487 // IntB being the dest, thus this defines a value number in IntB. If the 488 // source value number (in IntA) is defined by a copy from B, see if we can 489 // merge these two pieces of B into a single value number, eliminating a copy. 490 // For example: 491 // 492 // A3 = B0 493 // ... 494 // B1 = A3 <- this copy 495 // 496 // In this case, B0 can be extended to where the B1 copy lives, allowing the 497 // B1 value number to be replaced with B0 (which simplifies the B 498 // liveinterval). 499 500 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 501 // the example above. 502 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 503 if (BS == IntB.end()) return false; 504 VNInfo *BValNo = BS->valno; 505 506 // Get the location that B is defined at. Two options: either this value has 507 // an unknown definition point or it is defined at CopyIdx. If unknown, we 508 // can't process it. 509 if (BValNo->def != CopyIdx) return false; 510 511 // AValNo is the value number in A that defines the copy, A3 in the example. 512 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 513 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 514 // The live segment might not exist after fun with physreg coalescing. 515 if (AS == IntA.end()) return false; 516 VNInfo *AValNo = AS->valno; 517 518 // If AValNo is defined as a copy from IntB, we can potentially process this. 519 // Get the instruction that defines this value number. 520 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 521 // Don't allow any partial copies, even if isCoalescable() allows them. 522 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 523 return false; 524 525 // Get the Segment in IntB that this value number starts with. 526 LiveInterval::iterator ValS = 527 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 528 if (ValS == IntB.end()) 529 return false; 530 531 // Make sure that the end of the live segment is inside the same block as 532 // CopyMI. 533 MachineInstr *ValSEndInst = 534 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 535 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 536 return false; 537 538 // Okay, we now know that ValS ends in the same block that the CopyMI 539 // live-range starts. If there are no intervening live segments between them 540 // in IntB, we can merge them. 541 if (ValS+1 != BS) return false; 542 543 DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI)); 544 545 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 546 // We are about to delete CopyMI, so need to remove it as the 'instruction 547 // that defines this value #'. Update the valnum with the new defining 548 // instruction #. 549 BValNo->def = FillerStart; 550 551 // Okay, we can merge them. We need to insert a new liverange: 552 // [ValS.end, BS.begin) of either value number, then we merge the 553 // two value numbers. 554 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 555 556 // Okay, merge "B1" into the same value number as "B0". 557 if (BValNo != ValS->valno) 558 IntB.MergeValueNumberInto(BValNo, ValS->valno); 559 560 // Do the same for the subregister segments. 561 for (LiveInterval::SubRange &S : IntB.subranges()) { 562 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 563 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 564 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 565 if (SubBValNo != SubValSNo) 566 S.MergeValueNumberInto(SubBValNo, SubValSNo); 567 } 568 569 DEBUG(dbgs() << " result = " << IntB << '\n'); 570 571 // If the source instruction was killing the source register before the 572 // merge, unset the isKill marker given the live range has been extended. 573 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 574 if (UIdx != -1) { 575 ValSEndInst->getOperand(UIdx).setIsKill(false); 576 } 577 578 // Rewrite the copy. If the copy instruction was killing the destination 579 // register before the merge, find the last use and trim the live range. That 580 // will also add the isKill marker. 581 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 582 if (AS->end == CopyIdx) 583 shrinkToUses(&IntA); 584 585 ++numExtends; 586 return true; 587 } 588 589 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 590 LiveInterval &IntB, 591 VNInfo *AValNo, 592 VNInfo *BValNo) { 593 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 594 // the PHI values. 595 if (LIS->hasPHIKill(IntA, AValNo)) 596 return true; 597 598 for (LiveRange::Segment &ASeg : IntA.segments) { 599 if (ASeg.valno != AValNo) continue; 600 LiveInterval::iterator BI = 601 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start); 602 if (BI != IntB.begin()) 603 --BI; 604 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 605 if (BI->valno == BValNo) 606 continue; 607 if (BI->start <= ASeg.start && BI->end > ASeg.start) 608 return true; 609 if (BI->start > ASeg.start && BI->start < ASeg.end) 610 return true; 611 } 612 } 613 return false; 614 } 615 616 /// Copy segements with value number @p SrcValNo from liverange @p Src to live 617 /// range @Dst and use value number @p DstValNo there. 618 static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, 619 const LiveRange &Src, const VNInfo *SrcValNo) 620 { 621 for (const LiveRange::Segment &S : Src.segments) { 622 if (S.valno != SrcValNo) 623 continue; 624 Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo)); 625 } 626 } 627 628 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 629 MachineInstr *CopyMI) { 630 assert(!CP.isPhys()); 631 632 LiveInterval &IntA = 633 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 634 LiveInterval &IntB = 635 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 636 637 // We found a non-trivially-coalescable copy with IntA being the source and 638 // IntB being the dest, thus this defines a value number in IntB. If the 639 // source value number (in IntA) is defined by a commutable instruction and 640 // its other operand is coalesced to the copy dest register, see if we can 641 // transform the copy into a noop by commuting the definition. For example, 642 // 643 // A3 = op A2 B0<kill> 644 // ... 645 // B1 = A3 <- this copy 646 // ... 647 // = op A3 <- more uses 648 // 649 // ==> 650 // 651 // B2 = op B0 A2<kill> 652 // ... 653 // B1 = B2 <- now an identity copy 654 // ... 655 // = op B2 <- more uses 656 657 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 658 // the example above. 659 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 660 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 661 assert(BValNo != nullptr && BValNo->def == CopyIdx); 662 663 // AValNo is the value number in A that defines the copy, A3 in the example. 664 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 665 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 666 if (AValNo->isPHIDef()) 667 return false; 668 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 669 if (!DefMI) 670 return false; 671 if (!DefMI->isCommutable()) 672 return false; 673 // If DefMI is a two-address instruction then commuting it will change the 674 // destination register. 675 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 676 assert(DefIdx != -1); 677 unsigned UseOpIdx; 678 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 679 return false; 680 681 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 682 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 683 // passed to the method. That _other_ operand is chosen by 684 // the findCommutedOpIndices() method. 685 // 686 // That is obviously an area for improvement in case of instructions having 687 // more than 2 operands. For example, if some instruction has 3 commutable 688 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 689 // op#2<->op#3) of commute transformation should be considered/tried here. 690 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 691 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 692 return false; 693 694 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 695 unsigned NewReg = NewDstMO.getReg(); 696 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 697 return false; 698 699 // Make sure there are no other definitions of IntB that would reach the 700 // uses which the new definition can reach. 701 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 702 return false; 703 704 // If some of the uses of IntA.reg is already coalesced away, return false. 705 // It's not possible to determine whether it's safe to perform the coalescing. 706 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 707 MachineInstr *UseMI = MO.getParent(); 708 unsigned OpNo = &MO - &UseMI->getOperand(0); 709 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 710 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 711 if (US == IntA.end() || US->valno != AValNo) 712 continue; 713 // If this use is tied to a def, we can't rewrite the register. 714 if (UseMI->isRegTiedToDefOperand(OpNo)) 715 return false; 716 } 717 718 DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 719 << *DefMI); 720 721 // At this point we have decided that it is legal to do this 722 // transformation. Start by commuting the instruction. 723 MachineBasicBlock *MBB = DefMI->getParent(); 724 MachineInstr *NewMI = 725 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 726 if (!NewMI) 727 return false; 728 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 729 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 730 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 731 return false; 732 if (NewMI != DefMI) { 733 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 734 MachineBasicBlock::iterator Pos = DefMI; 735 MBB->insert(Pos, NewMI); 736 MBB->erase(DefMI); 737 } 738 739 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 740 // A = or A, B 741 // ... 742 // B = A 743 // ... 744 // C = A<kill> 745 // ... 746 // = B 747 748 // Update uses of IntA of the specific Val# with IntB. 749 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 750 UE = MRI->use_end(); 751 UI != UE; /* ++UI is below because of possible MI removal */) { 752 MachineOperand &UseMO = *UI; 753 ++UI; 754 if (UseMO.isUndef()) 755 continue; 756 MachineInstr *UseMI = UseMO.getParent(); 757 if (UseMI->isDebugValue()) { 758 // FIXME These don't have an instruction index. Not clear we have enough 759 // info to decide whether to do this replacement or not. For now do it. 760 UseMO.setReg(NewReg); 761 continue; 762 } 763 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 764 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 765 assert(US != IntA.end() && "Use must be live"); 766 if (US->valno != AValNo) 767 continue; 768 // Kill flags are no longer accurate. They are recomputed after RA. 769 UseMO.setIsKill(false); 770 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 771 UseMO.substPhysReg(NewReg, *TRI); 772 else 773 UseMO.setReg(NewReg); 774 if (UseMI == CopyMI) 775 continue; 776 if (!UseMI->isCopy()) 777 continue; 778 if (UseMI->getOperand(0).getReg() != IntB.reg || 779 UseMI->getOperand(0).getSubReg()) 780 continue; 781 782 // This copy will become a noop. If it's defining a new val#, merge it into 783 // BValNo. 784 SlotIndex DefIdx = UseIdx.getRegSlot(); 785 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 786 if (!DVNI) 787 continue; 788 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 789 assert(DVNI->def == DefIdx); 790 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 791 for (LiveInterval::SubRange &S : IntB.subranges()) { 792 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 793 if (!SubDVNI) 794 continue; 795 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 796 assert(SubBValNo->def == CopyIdx); 797 S.MergeValueNumberInto(SubDVNI, SubBValNo); 798 } 799 800 ErasedInstrs.insert(UseMI); 801 LIS->RemoveMachineInstrFromMaps(*UseMI); 802 UseMI->eraseFromParent(); 803 } 804 805 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 806 // is updated. 807 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 808 if (IntB.hasSubRanges()) { 809 if (!IntA.hasSubRanges()) { 810 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 811 IntA.createSubRangeFrom(Allocator, Mask, IntA); 812 } 813 SlotIndex AIdx = CopyIdx.getRegSlot(true); 814 for (LiveInterval::SubRange &SA : IntA.subranges()) { 815 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 816 assert(ASubValNo != nullptr); 817 818 LaneBitmask AMask = SA.LaneMask; 819 for (LiveInterval::SubRange &SB : IntB.subranges()) { 820 LaneBitmask BMask = SB.LaneMask; 821 LaneBitmask Common = BMask & AMask; 822 if (Common.none()) 823 continue; 824 825 DEBUG( dbgs() << "\t\tCopy_Merge " << PrintLaneMask(BMask) 826 << " into " << PrintLaneMask(Common) << '\n'); 827 LaneBitmask BRest = BMask & ~AMask; 828 LiveInterval::SubRange *CommonRange; 829 if (BRest.any()) { 830 SB.LaneMask = BRest; 831 DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(BRest) 832 << '\n'); 833 // Duplicate SubRange for newly merged common stuff. 834 CommonRange = IntB.createSubRangeFrom(Allocator, Common, SB); 835 } else { 836 // We van reuse the L SubRange. 837 SB.LaneMask = Common; 838 CommonRange = &SB; 839 } 840 LiveRange RangeCopy(SB, Allocator); 841 842 VNInfo *BSubValNo = CommonRange->getVNInfoAt(CopyIdx); 843 assert(BSubValNo->def == CopyIdx); 844 BSubValNo->def = ASubValNo->def; 845 addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo); 846 AMask &= ~BMask; 847 } 848 if (AMask.any()) { 849 DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(AMask) << '\n'); 850 LiveRange *NewRange = IntB.createSubRange(Allocator, AMask); 851 VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator); 852 addSegmentsWithValNo(*NewRange, BSubValNo, SA, ASubValNo); 853 } 854 } 855 } 856 857 BValNo->def = AValNo->def; 858 addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 859 DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 860 861 LIS->removeVRegDefAt(IntA, AValNo->def); 862 863 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 864 ++numCommutes; 865 return true; 866 } 867 868 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 869 /// predecessor of BB2, and if B is not redefined on the way from A = B 870 /// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the 871 /// execution goes through the path from BB0 to BB2. We may move B = A 872 /// to the predecessor without such reversed copy. 873 /// So we will transform the program from: 874 /// BB0: 875 /// A = B; BB1: 876 /// ... ... 877 /// / \ / 878 /// BB2: 879 /// ... 880 /// B = A; 881 /// 882 /// to: 883 /// 884 /// BB0: BB1: 885 /// A = B; ... 886 /// ... B = A; 887 /// / \ / 888 /// BB2: 889 /// ... 890 /// 891 /// A special case is when BB0 and BB2 are the same BB which is the only 892 /// BB in a loop: 893 /// BB1: 894 /// ... 895 /// BB0/BB2: ---- 896 /// B = A; | 897 /// ... | 898 /// A = B; | 899 /// |------- 900 /// | 901 /// We may hoist B = A from BB0/BB2 to BB1. 902 /// 903 /// The major preconditions for correctness to remove such partial 904 /// redundancy include: 905 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 906 /// the PHI is defined by the reversed copy A = B in BB0. 907 /// 2. No B is referenced from the start of BB2 to B = A. 908 /// 3. No B is defined from A = B to the end of BB0. 909 /// 4. BB1 has only one successor. 910 /// 911 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 912 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 913 /// colder place, which not only prevent endless loop, but also make sure 914 /// the movement of copy is beneficial. 915 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 916 MachineInstr &CopyMI) { 917 assert(!CP.isPhys()); 918 if (!CopyMI.isFullCopy()) 919 return false; 920 921 MachineBasicBlock &MBB = *CopyMI.getParent(); 922 if (MBB.isEHPad()) 923 return false; 924 925 if (MBB.pred_size() != 2) 926 return false; 927 928 LiveInterval &IntA = 929 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 930 LiveInterval &IntB = 931 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 932 933 // A is defined by PHI at the entry of MBB. 934 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 935 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 936 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 937 if (!AValNo->isPHIDef()) 938 return false; 939 940 // No B is referenced before CopyMI in MBB. 941 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 942 return false; 943 944 // MBB has two predecessors: one contains A = B so no copy will be inserted 945 // for it. The other one will have a copy moved from MBB. 946 bool FoundReverseCopy = false; 947 MachineBasicBlock *CopyLeftBB = nullptr; 948 for (MachineBasicBlock *Pred : MBB.predecessors()) { 949 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 950 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 951 if (!DefMI || !DefMI->isFullCopy()) { 952 CopyLeftBB = Pred; 953 continue; 954 } 955 // Check DefMI is a reverse copy and it is in BB Pred. 956 if (DefMI->getOperand(0).getReg() != IntA.reg || 957 DefMI->getOperand(1).getReg() != IntB.reg || 958 DefMI->getParent() != Pred) { 959 CopyLeftBB = Pred; 960 continue; 961 } 962 // If there is any other def of B after DefMI and before the end of Pred, 963 // we need to keep the copy of B = A at the end of Pred if we remove 964 // B = A from MBB. 965 bool ValB_Changed = false; 966 for (auto VNI : IntB.valnos) { 967 if (VNI->isUnused()) 968 continue; 969 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 970 ValB_Changed = true; 971 break; 972 } 973 } 974 if (ValB_Changed) { 975 CopyLeftBB = Pred; 976 continue; 977 } 978 FoundReverseCopy = true; 979 } 980 981 // If no reverse copy is found in predecessors, nothing to do. 982 if (!FoundReverseCopy) 983 return false; 984 985 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 986 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 987 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 988 // update IntA/IntB. 989 // 990 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 991 // MBB is hotter than CopyLeftBB. 992 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 993 return false; 994 995 // Now ok to move copy. 996 if (CopyLeftBB) { 997 DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to BB#" 998 << CopyLeftBB->getNumber() << '\t' << CopyMI); 999 1000 // Insert new copy to CopyLeftBB. 1001 auto InsPos = CopyLeftBB->getFirstTerminator(); 1002 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1003 TII->get(TargetOpcode::COPY), IntB.reg) 1004 .addReg(IntA.reg); 1005 SlotIndex NewCopyIdx = 1006 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1007 VNInfo *VNI = IntB.getNextValue(NewCopyIdx, LIS->getVNInfoAllocator()); 1008 IntB.createDeadDef(VNI); 1009 } else { 1010 DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from BB#" 1011 << MBB.getNumber() << '\t' << CopyMI); 1012 } 1013 1014 // Remove CopyMI. 1015 SmallVector<SlotIndex, 8> EndPoints; 1016 VNInfo *BValNo = IntB.Query(CopyIdx.getRegSlot()).valueOutOrDead(); 1017 LIS->pruneValue(IntB, CopyIdx.getRegSlot(), &EndPoints); 1018 BValNo->markUnused(); 1019 LIS->RemoveMachineInstrFromMaps(CopyMI); 1020 CopyMI.eraseFromParent(); 1021 1022 // Extend IntB to the EndPoints of its original live interval. 1023 LIS->extendToIndices(IntB, EndPoints); 1024 1025 shrinkToUses(&IntA); 1026 return true; 1027 } 1028 1029 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1030 /// defining a subregister. 1031 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 1032 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && 1033 "This code cannot handle physreg aliasing"); 1034 for (const MachineOperand &Op : MI.operands()) { 1035 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1036 continue; 1037 // Return true if we define the full register or don't care about the value 1038 // inside other subregisters. 1039 if (Op.getSubReg() == 0 || Op.isUndef()) 1040 return true; 1041 } 1042 return false; 1043 } 1044 1045 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1046 MachineInstr *CopyMI, 1047 bool &IsDefCopy) { 1048 IsDefCopy = false; 1049 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1050 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1051 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1052 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1053 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1054 return false; 1055 1056 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1057 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1058 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1059 assert(ValNo && "CopyMI input register not live"); 1060 if (ValNo->isPHIDef() || ValNo->isUnused()) 1061 return false; 1062 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1063 if (!DefMI) 1064 return false; 1065 if (DefMI->isCopyLike()) { 1066 IsDefCopy = true; 1067 return false; 1068 } 1069 if (!TII->isAsCheapAsAMove(*DefMI)) 1070 return false; 1071 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1072 return false; 1073 if (!definesFullReg(*DefMI, SrcReg)) 1074 return false; 1075 bool SawStore = false; 1076 if (!DefMI->isSafeToMove(AA, SawStore)) 1077 return false; 1078 const MCInstrDesc &MCID = DefMI->getDesc(); 1079 if (MCID.getNumDefs() != 1) 1080 return false; 1081 // Only support subregister destinations when the def is read-undef. 1082 MachineOperand &DstOperand = CopyMI->getOperand(0); 1083 unsigned CopyDstReg = DstOperand.getReg(); 1084 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1085 return false; 1086 1087 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1088 // the register substantially (beyond both source and dest size). This is bad 1089 // for performance since it can cascade through a function, introducing many 1090 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1091 // around after a few subreg copies). 1092 if (SrcIdx && DstIdx) 1093 return false; 1094 1095 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1096 if (!DefMI->isImplicitDef()) { 1097 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 1098 unsigned NewDstReg = DstReg; 1099 1100 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1101 DefMI->getOperand(0).getSubReg()); 1102 if (NewDstIdx) 1103 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1104 1105 // Finally, make sure that the physical subregister that will be 1106 // constructed later is permitted for the instruction. 1107 if (!DefRC->contains(NewDstReg)) 1108 return false; 1109 } else { 1110 // Theoretically, some stack frame reference could exist. Just make sure 1111 // it hasn't actually happened. 1112 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 1113 "Only expect to deal with virtual or physical registers"); 1114 } 1115 } 1116 1117 DebugLoc DL = CopyMI->getDebugLoc(); 1118 MachineBasicBlock *MBB = CopyMI->getParent(); 1119 MachineBasicBlock::iterator MII = 1120 std::next(MachineBasicBlock::iterator(CopyMI)); 1121 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1122 MachineInstr &NewMI = *std::prev(MII); 1123 NewMI.setDebugLoc(DL); 1124 1125 // In a situation like the following: 1126 // %vreg0:subreg = instr ; DefMI, subreg = DstIdx 1127 // %vreg1 = copy %vreg0:subreg ; CopyMI, SrcIdx = 0 1128 // instead of widening %vreg1 to the register class of %vreg0 simply do: 1129 // %vreg1 = instr 1130 const TargetRegisterClass *NewRC = CP.getNewRC(); 1131 if (DstIdx != 0) { 1132 MachineOperand &DefMO = NewMI.getOperand(0); 1133 if (DefMO.getSubReg() == DstIdx) { 1134 assert(SrcIdx == 0 && CP.isFlipped() 1135 && "Shouldn't have SrcIdx+DstIdx at this point"); 1136 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1137 const TargetRegisterClass *CommonRC = 1138 TRI->getCommonSubClass(DefRC, DstRC); 1139 if (CommonRC != nullptr) { 1140 NewRC = CommonRC; 1141 DstIdx = 0; 1142 DefMO.setSubReg(0); 1143 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1144 } 1145 } 1146 } 1147 1148 // CopyMI may have implicit operands, save them so that we can transfer them 1149 // over to the newly materialized instruction after CopyMI is removed. 1150 SmallVector<MachineOperand, 4> ImplicitOps; 1151 ImplicitOps.reserve(CopyMI->getNumOperands() - 1152 CopyMI->getDesc().getNumOperands()); 1153 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1154 E = CopyMI->getNumOperands(); 1155 I != E; ++I) { 1156 MachineOperand &MO = CopyMI->getOperand(I); 1157 if (MO.isReg()) { 1158 assert(MO.isImplicit() && "No explicit operands after implict operands."); 1159 // Discard VReg implicit defs. 1160 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1161 ImplicitOps.push_back(MO); 1162 } 1163 } 1164 1165 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1166 CopyMI->eraseFromParent(); 1167 ErasedInstrs.insert(CopyMI); 1168 1169 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1170 // We need to remember these so we can add intervals once we insert 1171 // NewMI into SlotIndexes. 1172 SmallVector<unsigned, 4> NewMIImplDefs; 1173 for (unsigned i = NewMI.getDesc().getNumOperands(), 1174 e = NewMI.getNumOperands(); 1175 i != e; ++i) { 1176 MachineOperand &MO = NewMI.getOperand(i); 1177 if (MO.isReg() && MO.isDef()) { 1178 assert(MO.isImplicit() && MO.isDead() && 1179 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 1180 NewMIImplDefs.push_back(MO.getReg()); 1181 } 1182 } 1183 1184 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 1185 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1186 1187 if (DefRC != nullptr) { 1188 if (NewIdx) 1189 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1190 else 1191 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1192 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1193 } 1194 // Remap subranges to new lanemask and change register class. 1195 LiveInterval &DstInt = LIS->getInterval(DstReg); 1196 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1197 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1198 } 1199 MRI->setRegClass(DstReg, NewRC); 1200 1201 // Update machine operands and add flags. 1202 updateRegDefsUses(DstReg, DstReg, DstIdx); 1203 NewMI.getOperand(0).setSubReg(NewIdx); 1204 // Add dead subregister definitions if we are defining the whole register 1205 // but only part of it is live. 1206 // This could happen if the rematerialization instruction is rematerializing 1207 // more than actually is used in the register. 1208 // An example would be: 1209 // vreg1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1210 // ; Copying only part of the register here, but the rest is undef. 1211 // vreg2:sub_16bit<def, read-undef> = COPY vreg1:sub_16bit 1212 // ==> 1213 // ; Materialize all the constants but only using one 1214 // vreg2 = LOAD_CONSTANTS 5, 8 1215 // 1216 // at this point for the part that wasn't defined before we could have 1217 // subranges missing the definition. 1218 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1219 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1220 SlotIndex DefIndex = 1221 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1222 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1223 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1224 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1225 if (!SR.liveAt(DefIndex)) 1226 SR.createDeadDef(DefIndex, Alloc); 1227 MaxMask &= ~SR.LaneMask; 1228 } 1229 if (MaxMask.any()) { 1230 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1231 SR->createDeadDef(DefIndex, Alloc); 1232 } 1233 } 1234 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1235 // The New instruction may be defining a sub-register of what's actually 1236 // been asked for. If so it must implicitly define the whole thing. 1237 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 1238 "Only expect virtual or physical registers in remat"); 1239 NewMI.getOperand(0).setIsDead(true); 1240 NewMI.addOperand(MachineOperand::CreateReg( 1241 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1242 // Record small dead def live-ranges for all the subregisters 1243 // of the destination register. 1244 // Otherwise, variables that live through may miss some 1245 // interferences, thus creating invalid allocation. 1246 // E.g., i386 code: 1247 // vreg1 = somedef ; vreg1 GR8 1248 // vreg2 = remat ; vreg2 GR32 1249 // CL = COPY vreg2.sub_8bit 1250 // = somedef vreg1 ; vreg1 GR8 1251 // => 1252 // vreg1 = somedef ; vreg1 GR8 1253 // ECX<def, dead> = remat ; CL<imp-def> 1254 // = somedef vreg1 ; vreg1 GR8 1255 // vreg1 will see the inteferences with CL but not with CH since 1256 // no live-ranges would have been created for ECX. 1257 // Fix that! 1258 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1259 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1260 Units.isValid(); ++Units) 1261 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1262 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1263 } 1264 1265 if (NewMI.getOperand(0).getSubReg()) 1266 NewMI.getOperand(0).setIsUndef(); 1267 1268 // Transfer over implicit operands to the rematerialized instruction. 1269 for (MachineOperand &MO : ImplicitOps) 1270 NewMI.addOperand(MO); 1271 1272 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1273 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1274 unsigned Reg = NewMIImplDefs[i]; 1275 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1276 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1277 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1278 } 1279 1280 DEBUG(dbgs() << "Remat: " << NewMI); 1281 ++NumReMats; 1282 1283 // The source interval can become smaller because we removed a use. 1284 shrinkToUses(&SrcInt, &DeadDefs); 1285 if (!DeadDefs.empty()) { 1286 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1287 // to describe DstReg instead. 1288 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1289 MachineInstr *UseMI = UseMO.getParent(); 1290 if (UseMI->isDebugValue()) { 1291 UseMO.setReg(DstReg); 1292 DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1293 } 1294 } 1295 eliminateDeadDefs(); 1296 } 1297 1298 return true; 1299 } 1300 1301 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1302 // ProcessImpicitDefs may leave some copies of <undef> values, it only removes 1303 // local variables. When we have a copy like: 1304 // 1305 // %vreg1 = COPY %vreg2<undef> 1306 // 1307 // We delete the copy and remove the corresponding value number from %vreg1. 1308 // Any uses of that value number are marked as <undef>. 1309 1310 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1311 // CoalescerPair may have a new register class with adjusted subreg indices 1312 // at this point. 1313 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1314 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx); 1315 1316 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1317 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1318 // CopyMI is undef iff SrcReg is not live before the instruction. 1319 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1320 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1321 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1322 if ((SR.LaneMask & SrcMask).none()) 1323 continue; 1324 if (SR.liveAt(Idx)) 1325 return false; 1326 } 1327 } else if (SrcLI.liveAt(Idx)) 1328 return false; 1329 1330 DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1331 1332 // Remove any DstReg segments starting at the instruction. 1333 LiveInterval &DstLI = LIS->getInterval(DstReg); 1334 SlotIndex RegIndex = Idx.getRegSlot(); 1335 // Remove value or merge with previous one in case of a subregister def. 1336 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1337 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1338 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1339 1340 // The affected subregister segments can be removed. 1341 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1342 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1343 if ((SR.LaneMask & DstMask).none()) 1344 continue; 1345 1346 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1347 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1348 SR.removeValNo(SVNI); 1349 } 1350 DstLI.removeEmptySubRanges(); 1351 } else 1352 LIS->removeVRegDefAt(DstLI, RegIndex); 1353 1354 // Mark uses as undef. 1355 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1356 if (MO.isDef() /*|| MO.isUndef()*/) 1357 continue; 1358 const MachineInstr &MI = *MO.getParent(); 1359 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1360 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1361 bool isLive; 1362 if (!UseMask.all() && DstLI.hasSubRanges()) { 1363 isLive = false; 1364 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1365 if ((SR.LaneMask & UseMask).none()) 1366 continue; 1367 if (SR.liveAt(UseIdx)) { 1368 isLive = true; 1369 break; 1370 } 1371 } 1372 } else 1373 isLive = DstLI.liveAt(UseIdx); 1374 if (isLive) 1375 continue; 1376 MO.setIsUndef(true); 1377 DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1378 } 1379 1380 // A def of a subregister may be a use of the other subregisters, so 1381 // deleting a def of a subregister may also remove uses. Since CopyMI 1382 // is still part of the function (but about to be erased), mark all 1383 // defs of DstReg in it as <undef>, so that shrinkToUses would 1384 // ignore them. 1385 for (MachineOperand &MO : CopyMI->operands()) 1386 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1387 MO.setIsUndef(true); 1388 LIS->shrinkToUses(&DstLI); 1389 1390 return true; 1391 } 1392 1393 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1394 MachineOperand &MO, unsigned SubRegIdx) { 1395 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1396 if (MO.isDef()) 1397 Mask = ~Mask; 1398 bool IsUndef = true; 1399 for (const LiveInterval::SubRange &S : Int.subranges()) { 1400 if ((S.LaneMask & Mask).none()) 1401 continue; 1402 if (S.liveAt(UseIdx)) { 1403 IsUndef = false; 1404 break; 1405 } 1406 } 1407 if (IsUndef) { 1408 MO.setIsUndef(true); 1409 // We found out some subregister use is actually reading an undefined 1410 // value. In some cases the whole vreg has become undefined at this 1411 // point so we have to potentially shrink the main range if the 1412 // use was ending a live segment there. 1413 LiveQueryResult Q = Int.Query(UseIdx); 1414 if (Q.valueOut() == nullptr) 1415 ShrinkMainRange = true; 1416 } 1417 } 1418 1419 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 1420 unsigned DstReg, 1421 unsigned SubIdx) { 1422 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 1423 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1424 1425 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1426 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1427 unsigned SubReg = MO.getSubReg(); 1428 if (SubReg == 0 || MO.isUndef()) 1429 continue; 1430 MachineInstr &MI = *MO.getParent(); 1431 if (MI.isDebugValue()) 1432 continue; 1433 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1434 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1435 } 1436 } 1437 1438 SmallPtrSet<MachineInstr*, 8> Visited; 1439 for (MachineRegisterInfo::reg_instr_iterator 1440 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1441 I != E; ) { 1442 MachineInstr *UseMI = &*(I++); 1443 1444 // Each instruction can only be rewritten once because sub-register 1445 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1446 // the UseMI operands removes them from the SrcReg use-def chain, but when 1447 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1448 // operands mentioning the virtual register. 1449 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1450 continue; 1451 1452 SmallVector<unsigned,8> Ops; 1453 bool Reads, Writes; 1454 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1455 1456 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1457 // because SrcReg is a sub-register. 1458 if (DstInt && !Reads && SubIdx) 1459 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1460 1461 // Replace SrcReg with DstReg in all UseMI operands. 1462 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1463 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1464 1465 // Adjust <undef> flags in case of sub-register joins. We don't want to 1466 // turn a full def into a read-modify-write sub-register def and vice 1467 // versa. 1468 if (SubIdx && MO.isDef()) 1469 MO.setIsUndef(!Reads); 1470 1471 // A subreg use of a partially undef (super) register may be a complete 1472 // undef use now and then has to be marked that way. 1473 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1474 if (!DstInt->hasSubRanges()) { 1475 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1476 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1477 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1478 } 1479 SlotIndex MIIdx = UseMI->isDebugValue() 1480 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1481 : LIS->getInstructionIndex(*UseMI); 1482 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1483 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1484 } 1485 1486 if (DstIsPhys) 1487 MO.substPhysReg(DstReg, *TRI); 1488 else 1489 MO.substVirtReg(DstReg, SubIdx, *TRI); 1490 } 1491 1492 DEBUG({ 1493 dbgs() << "\t\tupdated: "; 1494 if (!UseMI->isDebugValue()) 1495 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1496 dbgs() << *UseMI; 1497 }); 1498 } 1499 } 1500 1501 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1502 // Always join simple intervals that are defined by a single copy from a 1503 // reserved register. This doesn't increase register pressure, so it is 1504 // always beneficial. 1505 if (!MRI->isReserved(CP.getDstReg())) { 1506 DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1507 return false; 1508 } 1509 1510 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1511 if (JoinVInt.containsOneValue()) 1512 return true; 1513 1514 DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1515 return false; 1516 } 1517 1518 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1519 1520 Again = false; 1521 DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1522 1523 CoalescerPair CP(*TRI); 1524 if (!CP.setRegisters(CopyMI)) { 1525 DEBUG(dbgs() << "\tNot coalescable.\n"); 1526 return false; 1527 } 1528 1529 if (CP.getNewRC()) { 1530 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1531 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1532 unsigned SrcIdx = CP.getSrcIdx(); 1533 unsigned DstIdx = CP.getDstIdx(); 1534 if (CP.isFlipped()) { 1535 std::swap(SrcIdx, DstIdx); 1536 std::swap(SrcRC, DstRC); 1537 } 1538 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1539 CP.getNewRC())) { 1540 DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1541 return false; 1542 } 1543 } 1544 1545 // Dead code elimination. This really should be handled by MachineDCE, but 1546 // sometimes dead copies slip through, and we can't generate invalid live 1547 // ranges. 1548 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1549 DEBUG(dbgs() << "\tCopy is dead.\n"); 1550 DeadDefs.push_back(CopyMI); 1551 eliminateDeadDefs(); 1552 return true; 1553 } 1554 1555 // Eliminate undefs. 1556 if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) { 1557 LIS->RemoveMachineInstrFromMaps(*CopyMI); 1558 CopyMI->eraseFromParent(); 1559 return false; // Not coalescable. 1560 } 1561 1562 // Coalesced copies are normally removed immediately, but transformations 1563 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1564 // When that happens, just join the values and remove the copy. 1565 if (CP.getSrcReg() == CP.getDstReg()) { 1566 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1567 DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1568 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1569 LiveQueryResult LRQ = LI.Query(CopyIdx); 1570 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1571 VNInfo *ReadVNI = LRQ.valueIn(); 1572 assert(ReadVNI && "No value before copy and no <undef> flag."); 1573 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1574 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1575 1576 // Process subregister liveranges. 1577 for (LiveInterval::SubRange &S : LI.subranges()) { 1578 LiveQueryResult SLRQ = S.Query(CopyIdx); 1579 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1580 VNInfo *SReadVNI = SLRQ.valueIn(); 1581 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1582 } 1583 } 1584 DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1585 } 1586 LIS->RemoveMachineInstrFromMaps(*CopyMI); 1587 CopyMI->eraseFromParent(); 1588 return true; 1589 } 1590 1591 // Enforce policies. 1592 if (CP.isPhys()) { 1593 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI) 1594 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) 1595 << '\n'); 1596 if (!canJoinPhys(CP)) { 1597 // Before giving up coalescing, if definition of source is defined by 1598 // trivial computation, try rematerializing it. 1599 bool IsDefCopy; 1600 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1601 return true; 1602 if (IsDefCopy) 1603 Again = true; // May be possible to coalesce later. 1604 return false; 1605 } 1606 } else { 1607 // When possible, let DstReg be the larger interval. 1608 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1609 LIS->getInterval(CP.getDstReg()).size()) 1610 CP.flip(); 1611 1612 DEBUG({ 1613 dbgs() << "\tConsidering merging to " 1614 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1615 if (CP.getDstIdx() && CP.getSrcIdx()) 1616 dbgs() << PrintReg(CP.getDstReg()) << " in " 1617 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1618 << PrintReg(CP.getSrcReg()) << " in " 1619 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1620 else 1621 dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in " 1622 << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1623 }); 1624 } 1625 1626 ShrinkMask = LaneBitmask::getNone(); 1627 ShrinkMainRange = false; 1628 1629 // Okay, attempt to join these two intervals. On failure, this returns false. 1630 // Otherwise, if one of the intervals being joined is a physreg, this method 1631 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1632 // been modified, so we can use this information below to update aliases. 1633 if (!joinIntervals(CP)) { 1634 // Coalescing failed. 1635 1636 // If definition of source is defined by trivial computation, try 1637 // rematerializing it. 1638 bool IsDefCopy; 1639 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1640 return true; 1641 1642 // If we can eliminate the copy without merging the live segments, do so 1643 // now. 1644 if (!CP.isPartial() && !CP.isPhys()) { 1645 if (adjustCopiesBackFrom(CP, CopyMI) || 1646 removeCopyByCommutingDef(CP, CopyMI)) { 1647 LIS->RemoveMachineInstrFromMaps(*CopyMI); 1648 CopyMI->eraseFromParent(); 1649 DEBUG(dbgs() << "\tTrivial!\n"); 1650 return true; 1651 } 1652 } 1653 1654 // Try and see if we can partially eliminate the copy by moving the copy to 1655 // its predecessor. 1656 if (!CP.isPartial() && !CP.isPhys()) 1657 if (removePartialRedundancy(CP, *CopyMI)) 1658 return true; 1659 1660 // Otherwise, we are unable to join the intervals. 1661 DEBUG(dbgs() << "\tInterference!\n"); 1662 Again = true; // May be possible to coalesce later. 1663 return false; 1664 } 1665 1666 // Coalescing to a virtual register that is of a sub-register class of the 1667 // other. Make sure the resulting register is set to the right register class. 1668 if (CP.isCrossClass()) { 1669 ++numCrossRCs; 1670 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1671 } 1672 1673 // Removing sub-register copies can ease the register class constraints. 1674 // Make sure we attempt to inflate the register class of DstReg. 1675 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1676 InflateRegs.push_back(CP.getDstReg()); 1677 1678 // CopyMI has been erased by joinIntervals at this point. Remove it from 1679 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1680 // to the work list. This keeps ErasedInstrs from growing needlessly. 1681 ErasedInstrs.erase(CopyMI); 1682 1683 // Rewrite all SrcReg operands to DstReg. 1684 // Also update DstReg operands to include DstIdx if it is set. 1685 if (CP.getDstIdx()) 1686 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1687 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1688 1689 // Shrink subregister ranges if necessary. 1690 if (ShrinkMask.any()) { 1691 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1692 for (LiveInterval::SubRange &S : LI.subranges()) { 1693 if ((S.LaneMask & ShrinkMask).none()) 1694 continue; 1695 DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1696 << ")\n"); 1697 LIS->shrinkToUses(S, LI.reg); 1698 } 1699 LI.removeEmptySubRanges(); 1700 } 1701 if (ShrinkMainRange) { 1702 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1703 shrinkToUses(&LI); 1704 } 1705 1706 // SrcReg is guaranteed to be the register whose live interval that is 1707 // being merged. 1708 LIS->removeInterval(CP.getSrcReg()); 1709 1710 // Update regalloc hint. 1711 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1712 1713 DEBUG({ 1714 dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 1715 << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 1716 dbgs() << "\tResult = "; 1717 if (CP.isPhys()) 1718 dbgs() << PrintReg(CP.getDstReg(), TRI); 1719 else 1720 dbgs() << LIS->getInterval(CP.getDstReg()); 1721 dbgs() << '\n'; 1722 }); 1723 1724 ++numJoins; 1725 return true; 1726 } 1727 1728 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1729 unsigned DstReg = CP.getDstReg(); 1730 assert(CP.isPhys() && "Must be a physreg copy"); 1731 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 1732 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 1733 DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1734 1735 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 1736 1737 // Optimization for reserved registers like ESP. We can only merge with a 1738 // reserved physreg if RHS has a single value that is a copy of DstReg. 1739 // The live range of the reserved register will look like a set of dead defs 1740 // - we don't properly track the live range of reserved registers. 1741 1742 // Deny any overlapping intervals. This depends on all the reserved 1743 // register live ranges to look like dead defs. 1744 if (!MRI->isConstantPhysReg(DstReg)) { 1745 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1746 // Abort if not all the regunits are reserved. 1747 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 1748 if (!MRI->isReserved(*RI)) 1749 return false; 1750 } 1751 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1752 DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n'); 1753 return false; 1754 } 1755 } 1756 1757 // We must also check for overlaps with regmask clobbers. 1758 BitVector RegMaskUsable; 1759 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 1760 !RegMaskUsable.test(DstReg)) { 1761 DEBUG(dbgs() << "\t\tRegMask interference\n"); 1762 return false; 1763 } 1764 } 1765 1766 // Skip any value computations, we are not adding new values to the 1767 // reserved register. Also skip merging the live ranges, the reserved 1768 // register live range doesn't need to be accurate as long as all the 1769 // defs are there. 1770 1771 // Delete the identity copy. 1772 MachineInstr *CopyMI; 1773 if (CP.isFlipped()) { 1774 CopyMI = MRI->getVRegDef(RHS.reg); 1775 } else { 1776 if (!MRI->hasOneNonDBGUse(RHS.reg)) { 1777 DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 1778 return false; 1779 } 1780 1781 MachineInstr *DestMI = MRI->getVRegDef(RHS.reg); 1782 CopyMI = &*MRI->use_instr_nodbg_begin(RHS.reg); 1783 const SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 1784 const SlotIndex DestRegIdx = LIS->getInstructionIndex(*DestMI).getRegSlot(); 1785 1786 if (!MRI->isConstantPhysReg(DstReg)) { 1787 // We checked above that there are no interfering defs of the physical 1788 // register. However, for this case, where we intent to move up the def of 1789 // the physical register, we also need to check for interfering uses. 1790 SlotIndexes *Indexes = LIS->getSlotIndexes(); 1791 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 1792 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 1793 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 1794 if (MI->readsRegister(DstReg, TRI)) { 1795 DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 1796 return false; 1797 } 1798 } 1799 } 1800 1801 // We're going to remove the copy which defines a physical reserved 1802 // register, so remove its valno, etc. 1803 DEBUG(dbgs() << "\t\tRemoving phys reg def of " << DstReg << " at " 1804 << CopyRegIdx << "\n"); 1805 1806 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 1807 // Create a new dead def at the new def location. 1808 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1809 LiveRange &LR = LIS->getRegUnit(*UI); 1810 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 1811 } 1812 } 1813 1814 LIS->RemoveMachineInstrFromMaps(*CopyMI); 1815 CopyMI->eraseFromParent(); 1816 1817 // We don't track kills for reserved registers. 1818 MRI->clearKillFlags(CP.getSrcReg()); 1819 1820 return true; 1821 } 1822 1823 //===----------------------------------------------------------------------===// 1824 // Interference checking and interval joining 1825 //===----------------------------------------------------------------------===// 1826 // 1827 // In the easiest case, the two live ranges being joined are disjoint, and 1828 // there is no interference to consider. It is quite common, though, to have 1829 // overlapping live ranges, and we need to check if the interference can be 1830 // resolved. 1831 // 1832 // The live range of a single SSA value forms a sub-tree of the dominator tree. 1833 // This means that two SSA values overlap if and only if the def of one value 1834 // is contained in the live range of the other value. As a special case, the 1835 // overlapping values can be defined at the same index. 1836 // 1837 // The interference from an overlapping def can be resolved in these cases: 1838 // 1839 // 1. Coalescable copies. The value is defined by a copy that would become an 1840 // identity copy after joining SrcReg and DstReg. The copy instruction will 1841 // be removed, and the value will be merged with the source value. 1842 // 1843 // There can be several copies back and forth, causing many values to be 1844 // merged into one. We compute a list of ultimate values in the joined live 1845 // range as well as a mappings from the old value numbers. 1846 // 1847 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 1848 // predecessors have a live out value. It doesn't cause real interference, 1849 // and can be merged into the value it overlaps. Like a coalescable copy, it 1850 // can be erased after joining. 1851 // 1852 // 3. Copy of external value. The overlapping def may be a copy of a value that 1853 // is already in the other register. This is like a coalescable copy, but 1854 // the live range of the source register must be trimmed after erasing the 1855 // copy instruction: 1856 // 1857 // %src = COPY %ext 1858 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 1859 // 1860 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 1861 // defining one lane at a time: 1862 // 1863 // %dst:ssub0<def,read-undef> = FOO 1864 // %src = BAR 1865 // %dst:ssub1<def> = COPY %src 1866 // 1867 // The live range of %src overlaps the %dst value defined by FOO, but 1868 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 1869 // which was undef anyway. 1870 // 1871 // The value mapping is more complicated in this case. The final live range 1872 // will have different value numbers for both FOO and BAR, but there is no 1873 // simple mapping from old to new values. It may even be necessary to add 1874 // new PHI values. 1875 // 1876 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 1877 // is live, but never read. This can happen because we don't compute 1878 // individual live ranges per lane. 1879 // 1880 // %dst<def> = FOO 1881 // %src = BAR 1882 // %dst:ssub1<def> = COPY %src 1883 // 1884 // This kind of interference is only resolved locally. If the clobbered 1885 // lane value escapes the block, the join is aborted. 1886 1887 namespace { 1888 /// Track information about values in a single virtual register about to be 1889 /// joined. Objects of this class are always created in pairs - one for each 1890 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 1891 /// pair) 1892 class JoinVals { 1893 /// Live range we work on. 1894 LiveRange &LR; 1895 /// (Main) register we work on. 1896 const unsigned Reg; 1897 1898 /// Reg (and therefore the values in this liverange) will end up as 1899 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 1900 /// CP.SrcIdx. 1901 const unsigned SubIdx; 1902 /// The LaneMask that this liverange will occupy the coalesced register. May 1903 /// be smaller than the lanemask produced by SubIdx when merging subranges. 1904 const LaneBitmask LaneMask; 1905 1906 /// This is true when joining sub register ranges, false when joining main 1907 /// ranges. 1908 const bool SubRangeJoin; 1909 /// Whether the current LiveInterval tracks subregister liveness. 1910 const bool TrackSubRegLiveness; 1911 1912 /// Values that will be present in the final live range. 1913 SmallVectorImpl<VNInfo*> &NewVNInfo; 1914 1915 const CoalescerPair &CP; 1916 LiveIntervals *LIS; 1917 SlotIndexes *Indexes; 1918 const TargetRegisterInfo *TRI; 1919 1920 /// Value number assignments. Maps value numbers in LI to entries in 1921 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 1922 SmallVector<int, 8> Assignments; 1923 1924 /// Conflict resolution for overlapping values. 1925 enum ConflictResolution { 1926 /// No overlap, simply keep this value. 1927 CR_Keep, 1928 1929 /// Merge this value into OtherVNI and erase the defining instruction. 1930 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 1931 /// values. 1932 CR_Erase, 1933 1934 /// Merge this value into OtherVNI but keep the defining instruction. 1935 /// This is for the special case where OtherVNI is defined by the same 1936 /// instruction. 1937 CR_Merge, 1938 1939 /// Keep this value, and have it replace OtherVNI where possible. This 1940 /// complicates value mapping since OtherVNI maps to two different values 1941 /// before and after this def. 1942 /// Used when clobbering undefined or dead lanes. 1943 CR_Replace, 1944 1945 /// Unresolved conflict. Visit later when all values have been mapped. 1946 CR_Unresolved, 1947 1948 /// Unresolvable conflict. Abort the join. 1949 CR_Impossible 1950 }; 1951 1952 /// Per-value info for LI. The lane bit masks are all relative to the final 1953 /// joined register, so they can be compared directly between SrcReg and 1954 /// DstReg. 1955 struct Val { 1956 ConflictResolution Resolution; 1957 1958 /// Lanes written by this def, 0 for unanalyzed values. 1959 LaneBitmask WriteLanes; 1960 1961 /// Lanes with defined values in this register. Other lanes are undef and 1962 /// safe to clobber. 1963 LaneBitmask ValidLanes; 1964 1965 /// Value in LI being redefined by this def. 1966 VNInfo *RedefVNI; 1967 1968 /// Value in the other live range that overlaps this def, if any. 1969 VNInfo *OtherVNI; 1970 1971 /// Is this value an IMPLICIT_DEF that can be erased? 1972 /// 1973 /// IMPLICIT_DEF values should only exist at the end of a basic block that 1974 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 1975 /// safely erased if they are overlapping a live value in the other live 1976 /// interval. 1977 /// 1978 /// Weird control flow graphs and incomplete PHI handling in 1979 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 1980 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 1981 /// normal values. 1982 bool ErasableImplicitDef; 1983 1984 /// True when the live range of this value will be pruned because of an 1985 /// overlapping CR_Replace value in the other live range. 1986 bool Pruned; 1987 1988 /// True once Pruned above has been computed. 1989 bool PrunedComputed; 1990 1991 Val() : Resolution(CR_Keep), WriteLanes(), ValidLanes(), 1992 RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false), 1993 Pruned(false), PrunedComputed(false) {} 1994 1995 bool isAnalyzed() const { return WriteLanes.any(); } 1996 }; 1997 1998 /// One entry per value number in LI. 1999 SmallVector<Val, 8> Vals; 2000 2001 /// Compute the bitmask of lanes actually written by DefMI. 2002 /// Set Redef if there are any partial register definitions that depend on the 2003 /// previous value of the register. 2004 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2005 2006 /// Find the ultimate value that VNI was copied from. 2007 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 2008 2009 bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const; 2010 2011 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2012 /// Return a conflict resolution when possible, but leave the hard cases as 2013 /// CR_Unresolved. 2014 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2015 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2016 /// The recursion always goes upwards in the dominator tree, making loops 2017 /// impossible. 2018 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2019 2020 /// Compute the value assignment for ValNo in RI. 2021 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2022 /// the stack. 2023 void computeAssignment(unsigned ValNo, JoinVals &Other); 2024 2025 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2026 /// the extent of the tainted lanes in the block. 2027 /// 2028 /// Multiple values in Other.LR can be affected since partial redefinitions 2029 /// can preserve previously tainted lanes. 2030 /// 2031 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2032 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2033 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2034 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2035 /// 2036 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2037 /// entry to TaintedVals. 2038 /// 2039 /// Returns false if the tainted lanes extend beyond the basic block. 2040 bool taintExtent(unsigned, LaneBitmask, JoinVals&, 2041 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> >&); 2042 2043 /// Return true if MI uses any of the given Lanes from Reg. 2044 /// This does not include partial redefinitions of Reg. 2045 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; 2046 2047 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2048 /// be pruned: 2049 /// 2050 /// %dst = COPY %src 2051 /// %src = COPY %dst <-- This value to be pruned. 2052 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2053 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2054 2055 public: 2056 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 2057 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 2058 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2059 bool TrackSubRegLiveness) 2060 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2061 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2062 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2063 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) 2064 {} 2065 2066 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2067 /// Returns false if any conflicts were impossible to resolve. 2068 bool mapValues(JoinVals &Other); 2069 2070 /// Try to resolve conflicts that require all values to be mapped. 2071 /// Returns false if any conflicts were impossible to resolve. 2072 bool resolveConflicts(JoinVals &Other); 2073 2074 /// Prune the live range of values in Other.LR where they would conflict with 2075 /// CR_Replace values in LR. Collect end points for restoring the live range 2076 /// after joining. 2077 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2078 bool changeInstrs); 2079 2080 /// Removes subranges starting at copies that get removed. This sometimes 2081 /// happens when undefined subranges are copied around. These ranges contain 2082 /// no useful information and can be removed. 2083 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2084 2085 /// Pruning values in subranges can lead to removing segments in these 2086 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2087 /// the main range also need to be removed. This function will mark 2088 /// the corresponding values in the main range as pruned, so that 2089 /// eraseInstrs can do the final cleanup. 2090 /// The parameter @p LI must be the interval whose main range is the 2091 /// live range LR. 2092 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2093 2094 /// Erase any machine instructions that have been coalesced away. 2095 /// Add erased instructions to ErasedInstrs. 2096 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2097 /// the erased instrs. 2098 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2099 SmallVectorImpl<unsigned> &ShrinkRegs, 2100 LiveInterval *LI = nullptr); 2101 2102 /// Remove liverange defs at places where implicit defs will be removed. 2103 void removeImplicitDefs(); 2104 2105 /// Get the value assignments suitable for passing to LiveInterval::join. 2106 const int *getAssignments() const { return Assignments.data(); } 2107 }; 2108 } // end anonymous namespace 2109 2110 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2111 const { 2112 LaneBitmask L; 2113 for (const MachineOperand &MO : DefMI->operands()) { 2114 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2115 continue; 2116 L |= TRI->getSubRegIndexLaneMask( 2117 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2118 if (MO.readsReg()) 2119 Redef = true; 2120 } 2121 return L; 2122 } 2123 2124 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 2125 const VNInfo *VNI) const { 2126 unsigned Reg = this->Reg; 2127 2128 while (!VNI->isPHIDef()) { 2129 SlotIndex Def = VNI->def; 2130 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2131 assert(MI && "No defining instruction"); 2132 if (!MI->isFullCopy()) 2133 return std::make_pair(VNI, Reg); 2134 unsigned SrcReg = MI->getOperand(1).getReg(); 2135 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 2136 return std::make_pair(VNI, Reg); 2137 2138 const LiveInterval &LI = LIS->getInterval(SrcReg); 2139 const VNInfo *ValueIn; 2140 // No subrange involved. 2141 if (!SubRangeJoin || !LI.hasSubRanges()) { 2142 LiveQueryResult LRQ = LI.Query(Def); 2143 ValueIn = LRQ.valueIn(); 2144 } else { 2145 // Query subranges. Pick the first matching one. 2146 ValueIn = nullptr; 2147 for (const LiveInterval::SubRange &S : LI.subranges()) { 2148 // Transform lanemask to a mask in the joined live interval. 2149 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2150 if ((SMask & LaneMask).none()) 2151 continue; 2152 LiveQueryResult LRQ = S.Query(Def); 2153 ValueIn = LRQ.valueIn(); 2154 break; 2155 } 2156 } 2157 if (ValueIn == nullptr) 2158 break; 2159 VNI = ValueIn; 2160 Reg = SrcReg; 2161 } 2162 return std::make_pair(VNI, Reg); 2163 } 2164 2165 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2166 const JoinVals &Other) const { 2167 const VNInfo *Orig0; 2168 unsigned Reg0; 2169 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2170 if (Orig0 == Value1) 2171 return true; 2172 2173 const VNInfo *Orig1; 2174 unsigned Reg1; 2175 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2176 2177 // The values are equal if they are defined at the same place and use the 2178 // same register. Note that we cannot compare VNInfos directly as some of 2179 // them might be from a copy created in mergeSubRangeInto() while the other 2180 // is from the original LiveInterval. 2181 return Orig0->def == Orig1->def && Reg0 == Reg1; 2182 } 2183 2184 JoinVals::ConflictResolution 2185 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2186 Val &V = Vals[ValNo]; 2187 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2188 VNInfo *VNI = LR.getValNumInfo(ValNo); 2189 if (VNI->isUnused()) { 2190 V.WriteLanes = LaneBitmask::getAll(); 2191 return CR_Keep; 2192 } 2193 2194 // Get the instruction defining this value, compute the lanes written. 2195 const MachineInstr *DefMI = nullptr; 2196 if (VNI->isPHIDef()) { 2197 // Conservatively assume that all lanes in a PHI are valid. 2198 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask(1) 2199 : TRI->getSubRegIndexLaneMask(SubIdx); 2200 V.ValidLanes = V.WriteLanes = Lanes; 2201 } else { 2202 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2203 assert(DefMI != nullptr); 2204 if (SubRangeJoin) { 2205 // We don't care about the lanes when joining subregister ranges. 2206 V.WriteLanes = V.ValidLanes = LaneBitmask(1); 2207 if (DefMI->isImplicitDef()) { 2208 V.ValidLanes = LaneBitmask::getNone(); 2209 V.ErasableImplicitDef = true; 2210 } 2211 } else { 2212 bool Redef = false; 2213 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2214 2215 // If this is a read-modify-write instruction, there may be more valid 2216 // lanes than the ones written by this instruction. 2217 // This only covers partial redef operands. DefMI may have normal use 2218 // operands reading the register. They don't contribute valid lanes. 2219 // 2220 // This adds ssub1 to the set of valid lanes in %src: 2221 // 2222 // %src:ssub1<def> = FOO 2223 // 2224 // This leaves only ssub1 valid, making any other lanes undef: 2225 // 2226 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2227 // 2228 // The <read-undef> flag on the def operand means that old lane values are 2229 // not important. 2230 if (Redef) { 2231 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2232 assert((TrackSubRegLiveness || V.RedefVNI) && 2233 "Instruction is reading nonexistent value"); 2234 if (V.RedefVNI != nullptr) { 2235 computeAssignment(V.RedefVNI->id, Other); 2236 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2237 } 2238 } 2239 2240 // An IMPLICIT_DEF writes undef values. 2241 if (DefMI->isImplicitDef()) { 2242 // We normally expect IMPLICIT_DEF values to be live only until the end 2243 // of their block. If the value is really live longer and gets pruned in 2244 // another block, this flag is cleared again. 2245 V.ErasableImplicitDef = true; 2246 V.ValidLanes &= ~V.WriteLanes; 2247 } 2248 } 2249 } 2250 2251 // Find the value in Other that overlaps VNI->def, if any. 2252 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2253 2254 // It is possible that both values are defined by the same instruction, or 2255 // the values are PHIs defined in the same block. When that happens, the two 2256 // values should be merged into one, but not into any preceding value. 2257 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2258 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2259 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2260 2261 // One value stays, the other is merged. Keep the earlier one, or the first 2262 // one we see. 2263 if (OtherVNI->def < VNI->def) 2264 Other.computeAssignment(OtherVNI->id, *this); 2265 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2266 // This is an early-clobber def overlapping a live-in value in the other 2267 // register. Not mergeable. 2268 V.OtherVNI = OtherLRQ.valueIn(); 2269 return CR_Impossible; 2270 } 2271 V.OtherVNI = OtherVNI; 2272 Val &OtherV = Other.Vals[OtherVNI->id]; 2273 // Keep this value, check for conflicts when analyzing OtherVNI. 2274 if (!OtherV.isAnalyzed()) 2275 return CR_Keep; 2276 // Both sides have been analyzed now. 2277 // Allow overlapping PHI values. Any real interference would show up in a 2278 // predecessor, the PHI itself can't introduce any conflicts. 2279 if (VNI->isPHIDef()) 2280 return CR_Merge; 2281 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2282 // Overlapping lanes can't be resolved. 2283 return CR_Impossible; 2284 else 2285 return CR_Merge; 2286 } 2287 2288 // No simultaneous def. Is Other live at the def? 2289 V.OtherVNI = OtherLRQ.valueIn(); 2290 if (!V.OtherVNI) 2291 // No overlap, no conflict. 2292 return CR_Keep; 2293 2294 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2295 2296 // We have overlapping values, or possibly a kill of Other. 2297 // Recursively compute assignments up the dominator tree. 2298 Other.computeAssignment(V.OtherVNI->id, *this); 2299 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2300 2301 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2302 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2303 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2304 // technically. 2305 // 2306 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2307 // to erase the IMPLICIT_DEF instruction. 2308 if (OtherV.ErasableImplicitDef && DefMI && 2309 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2310 DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2311 << " extends into BB#" << DefMI->getParent()->getNumber() 2312 << ", keeping it.\n"); 2313 OtherV.ErasableImplicitDef = false; 2314 } 2315 2316 // Allow overlapping PHI values. Any real interference would show up in a 2317 // predecessor, the PHI itself can't introduce any conflicts. 2318 if (VNI->isPHIDef()) 2319 return CR_Replace; 2320 2321 // Check for simple erasable conflicts. 2322 if (DefMI->isImplicitDef()) { 2323 // We need the def for the subregister if there is nothing else live at the 2324 // subrange at this point. 2325 if (TrackSubRegLiveness 2326 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none()) 2327 return CR_Replace; 2328 return CR_Erase; 2329 } 2330 2331 // Include the non-conflict where DefMI is a coalescable copy that kills 2332 // OtherVNI. We still want the copy erased and value numbers merged. 2333 if (CP.isCoalescable(DefMI)) { 2334 // Some of the lanes copied from OtherVNI may be undef, making them undef 2335 // here too. 2336 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2337 return CR_Erase; 2338 } 2339 2340 // This may not be a real conflict if DefMI simply kills Other and defines 2341 // VNI. 2342 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2343 return CR_Keep; 2344 2345 // Handle the case where VNI and OtherVNI can be proven to be identical: 2346 // 2347 // %other = COPY %ext 2348 // %this = COPY %ext <-- Erase this copy 2349 // 2350 if (DefMI->isFullCopy() && !CP.isPartial() 2351 && valuesIdentical(VNI, V.OtherVNI, Other)) 2352 return CR_Erase; 2353 2354 // If the lanes written by this instruction were all undef in OtherVNI, it is 2355 // still safe to join the live ranges. This can't be done with a simple value 2356 // mapping, though - OtherVNI will map to multiple values: 2357 // 2358 // 1 %dst:ssub0 = FOO <-- OtherVNI 2359 // 2 %src = BAR <-- VNI 2360 // 3 %dst:ssub1 = COPY %src<kill> <-- Eliminate this copy. 2361 // 4 BAZ %dst<kill> 2362 // 5 QUUX %src<kill> 2363 // 2364 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2365 // handles this complex value mapping. 2366 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2367 return CR_Replace; 2368 2369 // If the other live range is killed by DefMI and the live ranges are still 2370 // overlapping, it must be because we're looking at an early clobber def: 2371 // 2372 // %dst<def,early-clobber> = ASM %src<kill> 2373 // 2374 // In this case, it is illegal to merge the two live ranges since the early 2375 // clobber def would clobber %src before it was read. 2376 if (OtherLRQ.isKill()) { 2377 // This case where the def doesn't overlap the kill is handled above. 2378 assert(VNI->def.isEarlyClobber() && 2379 "Only early clobber defs can overlap a kill"); 2380 return CR_Impossible; 2381 } 2382 2383 // VNI is clobbering live lanes in OtherVNI, but there is still the 2384 // possibility that no instructions actually read the clobbered lanes. 2385 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2386 // Otherwise Other.RI wouldn't be live here. 2387 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2388 return CR_Impossible; 2389 2390 // We need to verify that no instructions are reading the clobbered lanes. To 2391 // save compile time, we'll only check that locally. Don't allow the tainted 2392 // value to escape the basic block. 2393 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2394 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2395 return CR_Impossible; 2396 2397 // There are still some things that could go wrong besides clobbered lanes 2398 // being read, for example OtherVNI may be only partially redefined in MBB, 2399 // and some clobbered lanes could escape the block. Save this analysis for 2400 // resolveConflicts() when all values have been mapped. We need to know 2401 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2402 // that now - the recursive analyzeValue() calls must go upwards in the 2403 // dominator tree. 2404 return CR_Unresolved; 2405 } 2406 2407 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2408 Val &V = Vals[ValNo]; 2409 if (V.isAnalyzed()) { 2410 // Recursion should always move up the dominator tree, so ValNo is not 2411 // supposed to reappear before it has been assigned. 2412 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2413 return; 2414 } 2415 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2416 case CR_Erase: 2417 case CR_Merge: 2418 // Merge this ValNo into OtherVNI. 2419 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2420 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2421 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2422 DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@' 2423 << LR.getValNumInfo(ValNo)->def << " into " 2424 << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2425 << V.OtherVNI->def << " --> @" 2426 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2427 break; 2428 case CR_Replace: 2429 case CR_Unresolved: { 2430 // The other value is going to be pruned if this join is successful. 2431 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2432 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2433 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2434 // its lanes. 2435 if ((OtherV.WriteLanes & ~V.ValidLanes).any() && TrackSubRegLiveness) 2436 OtherV.ErasableImplicitDef = false; 2437 OtherV.Pruned = true; 2438 LLVM_FALLTHROUGH; 2439 } 2440 default: 2441 // This value number needs to go in the final joined live range. 2442 Assignments[ValNo] = NewVNInfo.size(); 2443 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2444 break; 2445 } 2446 } 2447 2448 bool JoinVals::mapValues(JoinVals &Other) { 2449 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2450 computeAssignment(i, Other); 2451 if (Vals[i].Resolution == CR_Impossible) { 2452 DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i 2453 << '@' << LR.getValNumInfo(i)->def << '\n'); 2454 return false; 2455 } 2456 } 2457 return true; 2458 } 2459 2460 bool JoinVals:: 2461 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2462 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> > &TaintExtent) { 2463 VNInfo *VNI = LR.getValNumInfo(ValNo); 2464 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2465 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2466 2467 // Scan Other.LR from VNI.def to MBBEnd. 2468 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2469 assert(OtherI != Other.LR.end() && "No conflict?"); 2470 do { 2471 // OtherI is pointing to a tainted value. Abort the join if the tainted 2472 // lanes escape the block. 2473 SlotIndex End = OtherI->end; 2474 if (End >= MBBEnd) { 2475 DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':' 2476 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2477 return false; 2478 } 2479 DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':' 2480 << OtherI->valno->id << '@' << OtherI->start 2481 << " to " << End << '\n'); 2482 // A dead def is not a problem. 2483 if (End.isDead()) 2484 break; 2485 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2486 2487 // Check for another def in the MBB. 2488 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2489 break; 2490 2491 // Lanes written by the new def are no longer tainted. 2492 const Val &OV = Other.Vals[OtherI->valno->id]; 2493 TaintedLanes &= ~OV.WriteLanes; 2494 if (!OV.RedefVNI) 2495 break; 2496 } while (TaintedLanes.any()); 2497 return true; 2498 } 2499 2500 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, 2501 LaneBitmask Lanes) const { 2502 if (MI.isDebugValue()) 2503 return false; 2504 for (const MachineOperand &MO : MI.operands()) { 2505 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2506 continue; 2507 if (!MO.readsReg()) 2508 continue; 2509 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2510 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2511 return true; 2512 } 2513 return false; 2514 } 2515 2516 bool JoinVals::resolveConflicts(JoinVals &Other) { 2517 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2518 Val &V = Vals[i]; 2519 assert (V.Resolution != CR_Impossible && "Unresolvable conflict"); 2520 if (V.Resolution != CR_Unresolved) 2521 continue; 2522 DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i 2523 << '@' << LR.getValNumInfo(i)->def << '\n'); 2524 if (SubRangeJoin) 2525 return false; 2526 2527 ++NumLaneConflicts; 2528 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2529 VNInfo *VNI = LR.getValNumInfo(i); 2530 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2531 2532 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2533 // join, those lanes will be tainted with a wrong value. Get the extent of 2534 // the tainted lanes. 2535 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2536 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2537 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2538 // Tainted lanes would extend beyond the basic block. 2539 return false; 2540 2541 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2542 2543 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2544 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2545 MachineBasicBlock::iterator MI = MBB->begin(); 2546 if (!VNI->isPHIDef()) { 2547 MI = Indexes->getInstructionFromIndex(VNI->def); 2548 // No need to check the instruction defining VNI for reads. 2549 ++MI; 2550 } 2551 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2552 "Interference ends on VNI->def. Should have been handled earlier"); 2553 MachineInstr *LastMI = 2554 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2555 assert(LastMI && "Range must end at a proper instruction"); 2556 unsigned TaintNum = 0; 2557 for (;;) { 2558 assert(MI != MBB->end() && "Bad LastMI"); 2559 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2560 DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2561 return false; 2562 } 2563 // LastMI is the last instruction to use the current value. 2564 if (&*MI == LastMI) { 2565 if (++TaintNum == TaintExtent.size()) 2566 break; 2567 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2568 assert(LastMI && "Range must end at a proper instruction"); 2569 TaintedLanes = TaintExtent[TaintNum].second; 2570 } 2571 ++MI; 2572 } 2573 2574 // The tainted lanes are unused. 2575 V.Resolution = CR_Replace; 2576 ++NumLaneResolves; 2577 } 2578 return true; 2579 } 2580 2581 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2582 Val &V = Vals[ValNo]; 2583 if (V.Pruned || V.PrunedComputed) 2584 return V.Pruned; 2585 2586 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2587 return V.Pruned; 2588 2589 // Follow copies up the dominator tree and check if any intermediate value 2590 // has been pruned. 2591 V.PrunedComputed = true; 2592 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2593 return V.Pruned; 2594 } 2595 2596 void JoinVals::pruneValues(JoinVals &Other, 2597 SmallVectorImpl<SlotIndex> &EndPoints, 2598 bool changeInstrs) { 2599 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2600 SlotIndex Def = LR.getValNumInfo(i)->def; 2601 switch (Vals[i].Resolution) { 2602 case CR_Keep: 2603 break; 2604 case CR_Replace: { 2605 // This value takes precedence over the value in Other.LR. 2606 LIS->pruneValue(Other.LR, Def, &EndPoints); 2607 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2608 // instructions are only inserted to provide a live-out value for PHI 2609 // predecessors, so the instruction should simply go away once its value 2610 // has been replaced. 2611 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2612 bool EraseImpDef = OtherV.ErasableImplicitDef && 2613 OtherV.Resolution == CR_Keep; 2614 if (!Def.isBlock()) { 2615 if (changeInstrs) { 2616 // Remove <def,read-undef> flags. This def is now a partial redef. 2617 // Also remove <def,dead> flags since the joined live range will 2618 // continue past this instruction. 2619 for (MachineOperand &MO : 2620 Indexes->getInstructionFromIndex(Def)->operands()) { 2621 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 2622 if (MO.getSubReg() != 0) 2623 MO.setIsUndef(EraseImpDef); 2624 MO.setIsDead(false); 2625 } 2626 } 2627 } 2628 // This value will reach instructions below, but we need to make sure 2629 // the live range also reaches the instruction at Def. 2630 if (!EraseImpDef) 2631 EndPoints.push_back(Def); 2632 } 2633 DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def 2634 << ": " << Other.LR << '\n'); 2635 break; 2636 } 2637 case CR_Erase: 2638 case CR_Merge: 2639 if (isPrunedValue(i, Other)) { 2640 // This value is ultimately a copy of a pruned value in LR or Other.LR. 2641 // We can no longer trust the value mapping computed by 2642 // computeAssignment(), the value that was originally copied could have 2643 // been replaced. 2644 LIS->pruneValue(LR, Def, &EndPoints); 2645 DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at " 2646 << Def << ": " << LR << '\n'); 2647 } 2648 break; 2649 case CR_Unresolved: 2650 case CR_Impossible: 2651 llvm_unreachable("Unresolved conflicts"); 2652 } 2653 } 2654 } 2655 2656 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 2657 // Look for values being erased. 2658 bool DidPrune = false; 2659 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2660 if (Vals[i].Resolution != CR_Erase) 2661 continue; 2662 2663 // Check subranges at the point where the copy will be removed. 2664 SlotIndex Def = LR.getValNumInfo(i)->def; 2665 for (LiveInterval::SubRange &S : LI.subranges()) { 2666 LiveQueryResult Q = S.Query(Def); 2667 2668 // If a subrange starts at the copy then an undefined value has been 2669 // copied and we must remove that subrange value as well. 2670 VNInfo *ValueOut = Q.valueOutOrDead(); 2671 if (ValueOut != nullptr && Q.valueIn() == nullptr) { 2672 DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 2673 << " at " << Def << "\n"); 2674 LIS->pruneValue(S, Def, nullptr); 2675 DidPrune = true; 2676 // Mark value number as unused. 2677 ValueOut->markUnused(); 2678 continue; 2679 } 2680 // If a subrange ends at the copy, then a value was copied but only 2681 // partially used later. Shrink the subregister range appropriately. 2682 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 2683 DEBUG(dbgs() << "\t\tDead uses at sublane " << PrintLaneMask(S.LaneMask) 2684 << " at " << Def << "\n"); 2685 ShrinkMask |= S.LaneMask; 2686 } 2687 } 2688 } 2689 if (DidPrune) 2690 LI.removeEmptySubRanges(); 2691 } 2692 2693 /// Check if any of the subranges of @p LI contain a definition at @p Def. 2694 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 2695 for (LiveInterval::SubRange &SR : LI.subranges()) { 2696 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 2697 if (VNI->def == Def) 2698 return true; 2699 } 2700 return false; 2701 } 2702 2703 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 2704 assert(&static_cast<LiveRange&>(LI) == &LR); 2705 2706 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2707 if (Vals[i].Resolution != CR_Keep) 2708 continue; 2709 VNInfo *VNI = LR.getValNumInfo(i); 2710 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 2711 continue; 2712 Vals[i].Pruned = true; 2713 ShrinkMainRange = true; 2714 } 2715 } 2716 2717 void JoinVals::removeImplicitDefs() { 2718 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2719 Val &V = Vals[i]; 2720 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 2721 continue; 2722 2723 VNInfo *VNI = LR.getValNumInfo(i); 2724 VNI->markUnused(); 2725 LR.removeValNo(VNI); 2726 } 2727 } 2728 2729 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2730 SmallVectorImpl<unsigned> &ShrinkRegs, 2731 LiveInterval *LI) { 2732 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2733 // Get the def location before markUnused() below invalidates it. 2734 SlotIndex Def = LR.getValNumInfo(i)->def; 2735 switch (Vals[i].Resolution) { 2736 case CR_Keep: { 2737 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 2738 // longer. The IMPLICIT_DEF instructions are only inserted by 2739 // PHIElimination to guarantee that all PHI predecessors have a value. 2740 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 2741 break; 2742 // Remove value number i from LR. 2743 // For intervals with subranges, removing a segment from the main range 2744 // may require extending the previous segment: for each definition of 2745 // a subregister, there will be a corresponding def in the main range. 2746 // That def may fall in the middle of a segment from another subrange. 2747 // In such cases, removing this def from the main range must be 2748 // complemented by extending the main range to account for the liveness 2749 // of the other subrange. 2750 VNInfo *VNI = LR.getValNumInfo(i); 2751 SlotIndex Def = VNI->def; 2752 // The new end point of the main range segment to be extended. 2753 SlotIndex NewEnd; 2754 if (LI != nullptr) { 2755 LiveRange::iterator I = LR.FindSegmentContaining(Def); 2756 assert(I != LR.end()); 2757 // Do not extend beyond the end of the segment being removed. 2758 // The segment may have been pruned in preparation for joining 2759 // live ranges. 2760 NewEnd = I->end; 2761 } 2762 2763 LR.removeValNo(VNI); 2764 // Note that this VNInfo is reused and still referenced in NewVNInfo, 2765 // make it appear like an unused value number. 2766 VNI->markUnused(); 2767 2768 if (LI != nullptr && LI->hasSubRanges()) { 2769 assert(static_cast<LiveRange*>(LI) == &LR); 2770 // Determine the end point based on the subrange information: 2771 // minimum of (earliest def of next segment, 2772 // latest end point of containing segment) 2773 SlotIndex ED, LE; 2774 for (LiveInterval::SubRange &SR : LI->subranges()) { 2775 LiveRange::iterator I = SR.find(Def); 2776 if (I == SR.end()) 2777 continue; 2778 if (I->start > Def) 2779 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 2780 else 2781 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 2782 } 2783 if (LE.isValid()) 2784 NewEnd = std::min(NewEnd, LE); 2785 if (ED.isValid()) 2786 NewEnd = std::min(NewEnd, ED); 2787 2788 // We only want to do the extension if there was a subrange that 2789 // was live across Def. 2790 if (LE.isValid()) { 2791 LiveRange::iterator S = LR.find(Def); 2792 if (S != LR.begin()) 2793 std::prev(S)->end = NewEnd; 2794 } 2795 } 2796 DEBUG({ 2797 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 2798 if (LI != nullptr) 2799 dbgs() << "\t\t LHS = " << *LI << '\n'; 2800 }); 2801 LLVM_FALLTHROUGH; 2802 } 2803 2804 case CR_Erase: { 2805 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2806 assert(MI && "No instruction to erase"); 2807 if (MI->isCopy()) { 2808 unsigned Reg = MI->getOperand(1).getReg(); 2809 if (TargetRegisterInfo::isVirtualRegister(Reg) && 2810 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 2811 ShrinkRegs.push_back(Reg); 2812 } 2813 ErasedInstrs.insert(MI); 2814 DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 2815 LIS->RemoveMachineInstrFromMaps(*MI); 2816 MI->eraseFromParent(); 2817 break; 2818 } 2819 default: 2820 break; 2821 } 2822 } 2823 } 2824 2825 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 2826 LaneBitmask LaneMask, 2827 const CoalescerPair &CP) { 2828 SmallVector<VNInfo*, 16> NewVNInfo; 2829 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 2830 NewVNInfo, CP, LIS, TRI, true, true); 2831 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 2832 NewVNInfo, CP, LIS, TRI, true, true); 2833 2834 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 2835 // We should be able to resolve all conflicts here as we could successfully do 2836 // it on the mainrange already. There is however a problem when multiple 2837 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 2838 // interferences. 2839 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 2840 // We already determined that it is legal to merge the intervals, so this 2841 // should never fail. 2842 llvm_unreachable("*** Couldn't join subrange!\n"); 2843 } 2844 if (!LHSVals.resolveConflicts(RHSVals) || 2845 !RHSVals.resolveConflicts(LHSVals)) { 2846 // We already determined that it is legal to merge the intervals, so this 2847 // should never fail. 2848 llvm_unreachable("*** Couldn't join subrange!\n"); 2849 } 2850 2851 // The merging algorithm in LiveInterval::join() can't handle conflicting 2852 // value mappings, so we need to remove any live ranges that overlap a 2853 // CR_Replace resolution. Collect a set of end points that can be used to 2854 // restore the live range after joining. 2855 SmallVector<SlotIndex, 8> EndPoints; 2856 LHSVals.pruneValues(RHSVals, EndPoints, false); 2857 RHSVals.pruneValues(LHSVals, EndPoints, false); 2858 2859 LHSVals.removeImplicitDefs(); 2860 RHSVals.removeImplicitDefs(); 2861 2862 LRange.verify(); 2863 RRange.verify(); 2864 2865 // Join RRange into LHS. 2866 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 2867 NewVNInfo); 2868 2869 DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n"); 2870 if (EndPoints.empty()) 2871 return; 2872 2873 // Recompute the parts of the live range we had to remove because of 2874 // CR_Replace conflicts. 2875 DEBUG({ 2876 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 2877 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 2878 dbgs() << EndPoints[i]; 2879 if (i != n-1) 2880 dbgs() << ','; 2881 } 2882 dbgs() << ": " << LRange << '\n'; 2883 }); 2884 LIS->extendToIndices(LRange, EndPoints); 2885 } 2886 2887 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 2888 const LiveRange &ToMerge, 2889 LaneBitmask LaneMask, 2890 CoalescerPair &CP) { 2891 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2892 for (LiveInterval::SubRange &R : LI.subranges()) { 2893 LaneBitmask RMask = R.LaneMask; 2894 // LaneMask of subregisters common to subrange R and ToMerge. 2895 LaneBitmask Common = RMask & LaneMask; 2896 // There is nothing to do without common subregs. 2897 if (Common.none()) 2898 continue; 2899 2900 DEBUG(dbgs() << "\t\tCopy+Merge " << PrintLaneMask(RMask) << " into " 2901 << PrintLaneMask(Common) << '\n'); 2902 // LaneMask of subregisters contained in the R range but not in ToMerge, 2903 // they have to split into their own subrange. 2904 LaneBitmask LRest = RMask & ~LaneMask; 2905 LiveInterval::SubRange *CommonRange; 2906 if (LRest.any()) { 2907 R.LaneMask = LRest; 2908 DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(LRest) << '\n'); 2909 // Duplicate SubRange for newly merged common stuff. 2910 CommonRange = LI.createSubRangeFrom(Allocator, Common, R); 2911 } else { 2912 // Reuse the existing range. 2913 R.LaneMask = Common; 2914 CommonRange = &R; 2915 } 2916 LiveRange RangeCopy(ToMerge, Allocator); 2917 joinSubRegRanges(*CommonRange, RangeCopy, Common, CP); 2918 LaneMask &= ~RMask; 2919 } 2920 2921 if (LaneMask.any()) { 2922 DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(LaneMask) << '\n'); 2923 LI.createSubRangeFrom(Allocator, LaneMask, ToMerge); 2924 } 2925 } 2926 2927 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 2928 SmallVector<VNInfo*, 16> NewVNInfo; 2929 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 2930 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 2931 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 2932 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 2933 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 2934 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 2935 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 2936 2937 DEBUG(dbgs() << "\t\tRHS = " << RHS 2938 << "\n\t\tLHS = " << LHS 2939 << '\n'); 2940 2941 // First compute NewVNInfo and the simple value mappings. 2942 // Detect impossible conflicts early. 2943 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 2944 return false; 2945 2946 // Some conflicts can only be resolved after all values have been mapped. 2947 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 2948 return false; 2949 2950 // All clear, the live ranges can be merged. 2951 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 2952 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2953 2954 // Transform lanemasks from the LHS to masks in the coalesced register and 2955 // create initial subranges if necessary. 2956 unsigned DstIdx = CP.getDstIdx(); 2957 if (!LHS.hasSubRanges()) { 2958 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 2959 : TRI->getSubRegIndexLaneMask(DstIdx); 2960 // LHS must support subregs or we wouldn't be in this codepath. 2961 assert(Mask.any()); 2962 LHS.createSubRangeFrom(Allocator, Mask, LHS); 2963 } else if (DstIdx != 0) { 2964 // Transform LHS lanemasks to new register class if necessary. 2965 for (LiveInterval::SubRange &R : LHS.subranges()) { 2966 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 2967 R.LaneMask = Mask; 2968 } 2969 } 2970 DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg()) 2971 << ' ' << LHS << '\n'); 2972 2973 // Determine lanemasks of RHS in the coalesced register and merge subranges. 2974 unsigned SrcIdx = CP.getSrcIdx(); 2975 if (!RHS.hasSubRanges()) { 2976 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 2977 : TRI->getSubRegIndexLaneMask(SrcIdx); 2978 mergeSubRangeInto(LHS, RHS, Mask, CP); 2979 } else { 2980 // Pair up subranges and merge. 2981 for (LiveInterval::SubRange &R : RHS.subranges()) { 2982 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 2983 mergeSubRangeInto(LHS, R, Mask, CP); 2984 } 2985 } 2986 DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 2987 2988 // Pruning implicit defs from subranges may result in the main range 2989 // having stale segments. 2990 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 2991 2992 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 2993 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 2994 } 2995 2996 // The merging algorithm in LiveInterval::join() can't handle conflicting 2997 // value mappings, so we need to remove any live ranges that overlap a 2998 // CR_Replace resolution. Collect a set of end points that can be used to 2999 // restore the live range after joining. 3000 SmallVector<SlotIndex, 8> EndPoints; 3001 LHSVals.pruneValues(RHSVals, EndPoints, true); 3002 RHSVals.pruneValues(LHSVals, EndPoints, true); 3003 3004 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3005 // registers to require trimming. 3006 SmallVector<unsigned, 8> ShrinkRegs; 3007 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3008 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3009 while (!ShrinkRegs.empty()) 3010 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3011 3012 // Join RHS into LHS. 3013 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3014 3015 // Kill flags are going to be wrong if the live ranges were overlapping. 3016 // Eventually, we should simply clear all kill flags when computing live 3017 // ranges. They are reinserted after register allocation. 3018 MRI->clearKillFlags(LHS.reg); 3019 MRI->clearKillFlags(RHS.reg); 3020 3021 if (!EndPoints.empty()) { 3022 // Recompute the parts of the live range we had to remove because of 3023 // CR_Replace conflicts. 3024 DEBUG({ 3025 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3026 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3027 dbgs() << EndPoints[i]; 3028 if (i != n-1) 3029 dbgs() << ','; 3030 } 3031 dbgs() << ": " << LHS << '\n'; 3032 }); 3033 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3034 } 3035 3036 return true; 3037 } 3038 3039 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3040 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3041 } 3042 3043 namespace { 3044 /// Information concerning MBB coalescing priority. 3045 struct MBBPriorityInfo { 3046 MachineBasicBlock *MBB; 3047 unsigned Depth; 3048 bool IsSplit; 3049 3050 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3051 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3052 }; 3053 } 3054 3055 /// C-style comparator that sorts first based on the loop depth of the basic 3056 /// block (the unsigned), and then on the MBB number. 3057 /// 3058 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3059 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3060 const MBBPriorityInfo *RHS) { 3061 // Deeper loops first 3062 if (LHS->Depth != RHS->Depth) 3063 return LHS->Depth > RHS->Depth ? -1 : 1; 3064 3065 // Try to unsplit critical edges next. 3066 if (LHS->IsSplit != RHS->IsSplit) 3067 return LHS->IsSplit ? -1 : 1; 3068 3069 // Prefer blocks that are more connected in the CFG. This takes care of 3070 // the most difficult copies first while intervals are short. 3071 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3072 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3073 if (cl != cr) 3074 return cl > cr ? -1 : 1; 3075 3076 // As a last resort, sort by block number. 3077 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3078 } 3079 3080 /// \returns true if the given copy uses or defines a local live range. 3081 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3082 if (!Copy->isCopy()) 3083 return false; 3084 3085 if (Copy->getOperand(1).isUndef()) 3086 return false; 3087 3088 unsigned SrcReg = Copy->getOperand(1).getReg(); 3089 unsigned DstReg = Copy->getOperand(0).getReg(); 3090 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 3091 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 3092 return false; 3093 3094 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3095 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3096 } 3097 3098 bool RegisterCoalescer:: 3099 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3100 bool Progress = false; 3101 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3102 if (!CurrList[i]) 3103 continue; 3104 // Skip instruction pointers that have already been erased, for example by 3105 // dead code elimination. 3106 if (ErasedInstrs.erase(CurrList[i])) { 3107 CurrList[i] = nullptr; 3108 continue; 3109 } 3110 bool Again = false; 3111 bool Success = joinCopy(CurrList[i], Again); 3112 Progress |= Success; 3113 if (Success || !Again) 3114 CurrList[i] = nullptr; 3115 } 3116 return Progress; 3117 } 3118 3119 /// Check if DstReg is a terminal node. 3120 /// I.e., it does not have any affinity other than \p Copy. 3121 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 3122 const MachineRegisterInfo *MRI) { 3123 assert(Copy.isCopyLike()); 3124 // Check if the destination of this copy as any other affinity. 3125 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3126 if (&MI != &Copy && MI.isCopyLike()) 3127 return false; 3128 return true; 3129 } 3130 3131 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3132 assert(Copy.isCopyLike()); 3133 if (!UseTerminalRule) 3134 return false; 3135 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 3136 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg); 3137 // Check if the destination of this copy has any other affinity. 3138 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 3139 // If SrcReg is a physical register, the copy won't be coalesced. 3140 // Ignoring it may have other side effect (like missing 3141 // rematerialization). So keep it. 3142 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 3143 !isTerminalReg(DstReg, Copy, MRI)) 3144 return false; 3145 3146 // DstReg is a terminal node. Check if it interferes with any other 3147 // copy involving SrcReg. 3148 const MachineBasicBlock *OrigBB = Copy.getParent(); 3149 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3150 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3151 // Technically we should check if the weight of the new copy is 3152 // interesting compared to the other one and update the weight 3153 // of the copies accordingly. However, this would only work if 3154 // we would gather all the copies first then coalesce, whereas 3155 // right now we interleave both actions. 3156 // For now, just consider the copies that are in the same block. 3157 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3158 continue; 3159 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 3160 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3161 OtherSubReg); 3162 if (OtherReg == SrcReg) 3163 OtherReg = OtherSrcReg; 3164 // Check if OtherReg is a non-terminal. 3165 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) || 3166 isTerminalReg(OtherReg, MI, MRI)) 3167 continue; 3168 // Check that OtherReg interfere with DstReg. 3169 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3170 DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n'); 3171 return true; 3172 } 3173 } 3174 return false; 3175 } 3176 3177 void 3178 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3179 DEBUG(dbgs() << MBB->getName() << ":\n"); 3180 3181 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3182 // yet, it might invalidate the iterator. 3183 const unsigned PrevSize = WorkList.size(); 3184 if (JoinGlobalCopies) { 3185 SmallVector<MachineInstr*, 2> LocalTerminals; 3186 SmallVector<MachineInstr*, 2> GlobalTerminals; 3187 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3188 // are not inherently easier to resolve, but slightly preferable until we 3189 // have local live range splitting. In particular this is required by 3190 // cmp+jmp macro fusion. 3191 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3192 MII != E; ++MII) { 3193 if (!MII->isCopyLike()) 3194 continue; 3195 bool ApplyTerminalRule = applyTerminalRule(*MII); 3196 if (isLocalCopy(&(*MII), LIS)) { 3197 if (ApplyTerminalRule) 3198 LocalTerminals.push_back(&(*MII)); 3199 else 3200 LocalWorkList.push_back(&(*MII)); 3201 } else { 3202 if (ApplyTerminalRule) 3203 GlobalTerminals.push_back(&(*MII)); 3204 else 3205 WorkList.push_back(&(*MII)); 3206 } 3207 } 3208 // Append the copies evicted by the terminal rule at the end of the list. 3209 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3210 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3211 } 3212 else { 3213 SmallVector<MachineInstr*, 2> Terminals; 3214 for (MachineInstr &MII : *MBB) 3215 if (MII.isCopyLike()) { 3216 if (applyTerminalRule(MII)) 3217 Terminals.push_back(&MII); 3218 else 3219 WorkList.push_back(&MII); 3220 } 3221 // Append the copies evicted by the terminal rule at the end of the list. 3222 WorkList.append(Terminals.begin(), Terminals.end()); 3223 } 3224 // Try coalescing the collected copies immediately, and remove the nulls. 3225 // This prevents the WorkList from getting too large since most copies are 3226 // joinable on the first attempt. 3227 MutableArrayRef<MachineInstr*> 3228 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3229 if (copyCoalesceWorkList(CurrList)) 3230 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3231 (MachineInstr*)nullptr), WorkList.end()); 3232 } 3233 3234 void RegisterCoalescer::coalesceLocals() { 3235 copyCoalesceWorkList(LocalWorkList); 3236 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3237 if (LocalWorkList[j]) 3238 WorkList.push_back(LocalWorkList[j]); 3239 } 3240 LocalWorkList.clear(); 3241 } 3242 3243 void RegisterCoalescer::joinAllIntervals() { 3244 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3245 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3246 3247 std::vector<MBBPriorityInfo> MBBs; 3248 MBBs.reserve(MF->size()); 3249 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3250 MachineBasicBlock *MBB = &*I; 3251 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3252 JoinSplitEdges && isSplitEdge(MBB))); 3253 } 3254 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3255 3256 // Coalesce intervals in MBB priority order. 3257 unsigned CurrDepth = UINT_MAX; 3258 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3259 // Try coalescing the collected local copies for deeper loops. 3260 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3261 coalesceLocals(); 3262 CurrDepth = MBBs[i].Depth; 3263 } 3264 copyCoalesceInMBB(MBBs[i].MBB); 3265 } 3266 coalesceLocals(); 3267 3268 // Joining intervals can allow other intervals to be joined. Iteratively join 3269 // until we make no progress. 3270 while (copyCoalesceWorkList(WorkList)) 3271 /* empty */ ; 3272 } 3273 3274 void RegisterCoalescer::releaseMemory() { 3275 ErasedInstrs.clear(); 3276 WorkList.clear(); 3277 DeadDefs.clear(); 3278 InflateRegs.clear(); 3279 } 3280 3281 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3282 MF = &fn; 3283 MRI = &fn.getRegInfo(); 3284 TM = &fn.getTarget(); 3285 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3286 TRI = STI.getRegisterInfo(); 3287 TII = STI.getInstrInfo(); 3288 LIS = &getAnalysis<LiveIntervals>(); 3289 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3290 Loops = &getAnalysis<MachineLoopInfo>(); 3291 if (EnableGlobalCopies == cl::BOU_UNSET) 3292 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3293 else 3294 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3295 3296 // The MachineScheduler does not currently require JoinSplitEdges. This will 3297 // either be enabled unconditionally or replaced by a more general live range 3298 // splitting optimization. 3299 JoinSplitEdges = EnableJoinSplits; 3300 3301 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3302 << "********** Function: " << MF->getName() << '\n'); 3303 3304 if (VerifyCoalescing) 3305 MF->verify(this, "Before register coalescing"); 3306 3307 RegClassInfo.runOnMachineFunction(fn); 3308 3309 // Join (coalesce) intervals if requested. 3310 if (EnableJoining) 3311 joinAllIntervals(); 3312 3313 // After deleting a lot of copies, register classes may be less constrained. 3314 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3315 // DPR inflation. 3316 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3317 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3318 InflateRegs.end()); 3319 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n"); 3320 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3321 unsigned Reg = InflateRegs[i]; 3322 if (MRI->reg_nodbg_empty(Reg)) 3323 continue; 3324 if (MRI->recomputeRegClass(Reg)) { 3325 DEBUG(dbgs() << PrintReg(Reg) << " inflated to " 3326 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3327 ++NumInflated; 3328 3329 LiveInterval &LI = LIS->getInterval(Reg); 3330 if (LI.hasSubRanges()) { 3331 // If the inflated register class does not support subregisters anymore 3332 // remove the subranges. 3333 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3334 LI.clearSubRanges(); 3335 } else { 3336 #ifndef NDEBUG 3337 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3338 // If subranges are still supported, then the same subregs 3339 // should still be supported. 3340 for (LiveInterval::SubRange &S : LI.subranges()) { 3341 assert((S.LaneMask & ~MaxMask).none()); 3342 } 3343 #endif 3344 } 3345 } 3346 } 3347 } 3348 3349 DEBUG(dump()); 3350 if (VerifyCoalescing) 3351 MF->verify(this, "After register coalescing"); 3352 return true; 3353 } 3354 3355 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3356 LIS->print(O, m); 3357 } 3358