1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic RegisterCoalescer interface which 10 // is used as the common interface used by all clients and 11 // implementations of register coalescing. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "RegisterCoalescer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetOpcodes.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/LaneBitmask.h" 45 #include "llvm/MC/MCInstrDesc.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <iterator> 56 #include <limits> 57 #include <tuple> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "regalloc" 64 65 STATISTIC(numJoins , "Number of interval joins performed"); 66 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 67 STATISTIC(numCommutes , "Number of instruction commuting performed"); 68 STATISTIC(numExtends , "Number of copies extended"); 69 STATISTIC(NumReMats , "Number of instructions re-materialized"); 70 STATISTIC(NumInflated , "Number of register classes inflated"); 71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 72 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 73 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called"); 74 75 static cl::opt<bool> EnableJoining("join-liveintervals", 76 cl::desc("Coalesce copies (default=true)"), 77 cl::init(true), cl::Hidden); 78 79 static cl::opt<bool> UseTerminalRule("terminal-rule", 80 cl::desc("Apply the terminal rule"), 81 cl::init(false), cl::Hidden); 82 83 /// Temporary flag to test critical edge unsplitting. 84 static cl::opt<bool> 85 EnableJoinSplits("join-splitedges", 86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 87 88 /// Temporary flag to test global copy optimization. 89 static cl::opt<cl::boolOrDefault> 90 EnableGlobalCopies("join-globalcopies", 91 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 92 cl::init(cl::BOU_UNSET), cl::Hidden); 93 94 static cl::opt<bool> 95 VerifyCoalescing("verify-coalescing", 96 cl::desc("Verify machine instrs before and after register coalescing"), 97 cl::Hidden); 98 99 static cl::opt<unsigned> LateRematUpdateThreshold( 100 "late-remat-update-threshold", cl::Hidden, 101 cl::desc("During rematerialization for a copy, if the def instruction has " 102 "many other copy uses to be rematerialized, delay the multiple " 103 "separate live interval update work and do them all at once after " 104 "all those rematerialization are done. It will save a lot of " 105 "repeated work. "), 106 cl::init(100)); 107 108 static cl::opt<unsigned> LargeIntervalSizeThreshold( 109 "large-interval-size-threshold", cl::Hidden, 110 cl::desc("If the valnos size of an interval is larger than the threshold, " 111 "it is regarded as a large interval. "), 112 cl::init(100)); 113 114 static cl::opt<unsigned> LargeIntervalFreqThreshold( 115 "large-interval-freq-threshold", cl::Hidden, 116 cl::desc("For a large interval, if it is coalesed with other live " 117 "intervals many times more than the threshold, stop its " 118 "coalescing to control the compile time. "), 119 cl::init(100)); 120 121 namespace { 122 123 class JoinVals; 124 125 class RegisterCoalescer : public MachineFunctionPass, 126 private LiveRangeEdit::Delegate { 127 MachineFunction* MF = nullptr; 128 MachineRegisterInfo* MRI = nullptr; 129 const TargetRegisterInfo* TRI = nullptr; 130 const TargetInstrInfo* TII = nullptr; 131 LiveIntervals *LIS = nullptr; 132 const MachineLoopInfo* Loops = nullptr; 133 AliasAnalysis *AA = nullptr; 134 RegisterClassInfo RegClassInfo; 135 136 /// Debug variable location tracking -- for each VReg, maintain an 137 /// ordered-by-slot-index set of DBG_VALUEs, to help quick 138 /// identification of whether coalescing may change location validity. 139 using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>; 140 DenseMap<unsigned, std::vector<DbgValueLoc>> DbgVRegToValues; 141 142 /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached. 143 /// To avoid repeatedly merging sets of DbgValueLocs, instead record 144 /// which vregs have been coalesced, and where to. This map is from 145 /// vreg => {set of vregs merged in}. 146 DenseMap<unsigned, SmallVector<unsigned, 4>> DbgMergedVRegNums; 147 148 /// A LaneMask to remember on which subregister live ranges we need to call 149 /// shrinkToUses() later. 150 LaneBitmask ShrinkMask; 151 152 /// True if the main range of the currently coalesced intervals should be 153 /// checked for smaller live intervals. 154 bool ShrinkMainRange = false; 155 156 /// True if the coalescer should aggressively coalesce global copies 157 /// in favor of keeping local copies. 158 bool JoinGlobalCopies = false; 159 160 /// True if the coalescer should aggressively coalesce fall-thru 161 /// blocks exclusively containing copies. 162 bool JoinSplitEdges = false; 163 164 /// Copy instructions yet to be coalesced. 165 SmallVector<MachineInstr*, 8> WorkList; 166 SmallVector<MachineInstr*, 8> LocalWorkList; 167 168 /// Set of instruction pointers that have been erased, and 169 /// that may be present in WorkList. 170 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 171 172 /// Dead instructions that are about to be deleted. 173 SmallVector<MachineInstr*, 8> DeadDefs; 174 175 /// Virtual registers to be considered for register class inflation. 176 SmallVector<unsigned, 8> InflateRegs; 177 178 /// The collection of live intervals which should have been updated 179 /// immediately after rematerialiation but delayed until 180 /// lateLiveIntervalUpdate is called. 181 DenseSet<unsigned> ToBeUpdated; 182 183 /// Record how many times the large live interval with many valnos 184 /// has been tried to join with other live interval. 185 DenseMap<unsigned, unsigned long> LargeLIVisitCounter; 186 187 /// Recursively eliminate dead defs in DeadDefs. 188 void eliminateDeadDefs(); 189 190 /// LiveRangeEdit callback for eliminateDeadDefs(). 191 void LRE_WillEraseInstruction(MachineInstr *MI) override; 192 193 /// Coalesce the LocalWorkList. 194 void coalesceLocals(); 195 196 /// Join compatible live intervals 197 void joinAllIntervals(); 198 199 /// Coalesce copies in the specified MBB, putting 200 /// copies that cannot yet be coalesced into WorkList. 201 void copyCoalesceInMBB(MachineBasicBlock *MBB); 202 203 /// Tries to coalesce all copies in CurrList. Returns true if any progress 204 /// was made. 205 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 206 207 /// If one def has many copy like uses, and those copy uses are all 208 /// rematerialized, the live interval update needed for those 209 /// rematerializations will be delayed and done all at once instead 210 /// of being done multiple times. This is to save compile cost because 211 /// live interval update is costly. 212 void lateLiveIntervalUpdate(); 213 214 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 215 /// src/dst of the copy instruction CopyMI. This returns true if the copy 216 /// was successfully coalesced away. If it is not currently possible to 217 /// coalesce this interval, but it may be possible if other things get 218 /// coalesced, then it returns true by reference in 'Again'. 219 bool joinCopy(MachineInstr *CopyMI, bool &Again); 220 221 /// Attempt to join these two intervals. On failure, this 222 /// returns false. The output "SrcInt" will not have been modified, so we 223 /// can use this information below to update aliases. 224 bool joinIntervals(CoalescerPair &CP); 225 226 /// Attempt joining two virtual registers. Return true on success. 227 bool joinVirtRegs(CoalescerPair &CP); 228 229 /// If a live interval has many valnos and is coalesced with other 230 /// live intervals many times, we regard such live interval as having 231 /// high compile time cost. 232 bool isHighCostLiveInterval(LiveInterval &LI); 233 234 /// Attempt joining with a reserved physreg. 235 bool joinReservedPhysReg(CoalescerPair &CP); 236 237 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 238 /// Subranges in @p LI which only partially interfere with the desired 239 /// LaneMask are split as necessary. @p LaneMask are the lanes that 240 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 241 /// lanemasks already adjusted to the coalesced register. 242 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 243 LaneBitmask LaneMask, CoalescerPair &CP, 244 unsigned DstIdx); 245 246 /// Join the liveranges of two subregisters. Joins @p RRange into 247 /// @p LRange, @p RRange may be invalid afterwards. 248 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 249 LaneBitmask LaneMask, const CoalescerPair &CP); 250 251 /// We found a non-trivially-coalescable copy. If the source value number is 252 /// defined by a copy from the destination reg see if we can merge these two 253 /// destination reg valno# into a single value number, eliminating a copy. 254 /// This returns true if an interval was modified. 255 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 256 257 /// Return true if there are definitions of IntB 258 /// other than BValNo val# that can reach uses of AValno val# of IntA. 259 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 260 VNInfo *AValNo, VNInfo *BValNo); 261 262 /// We found a non-trivially-coalescable copy. 263 /// If the source value number is defined by a commutable instruction and 264 /// its other operand is coalesced to the copy dest register, see if we 265 /// can transform the copy into a noop by commuting the definition. 266 /// This returns a pair of two flags: 267 /// - the first element is true if an interval was modified, 268 /// - the second element is true if the destination interval needs 269 /// to be shrunk after deleting the copy. 270 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP, 271 MachineInstr *CopyMI); 272 273 /// We found a copy which can be moved to its less frequent predecessor. 274 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 275 276 /// If the source of a copy is defined by a 277 /// trivial computation, replace the copy by rematerialize the definition. 278 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 279 bool &IsDefCopy); 280 281 /// Return true if a copy involving a physreg should be joined. 282 bool canJoinPhys(const CoalescerPair &CP); 283 284 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 285 /// number if it is not zero. If DstReg is a physical register and the 286 /// existing subregister number of the def / use being updated is not zero, 287 /// make sure to set it to the correct physical subregister. 288 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 289 290 /// If the given machine operand reads only undefined lanes add an undef 291 /// flag. 292 /// This can happen when undef uses were previously concealed by a copy 293 /// which we coalesced. Example: 294 /// %0:sub0<def,read-undef> = ... 295 /// %1 = COPY %0 <-- Coalescing COPY reveals undef 296 /// = use %1:sub1 <-- hidden undef use 297 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 298 MachineOperand &MO, unsigned SubRegIdx); 299 300 /// Handle copies of undef values. If the undef value is an incoming 301 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF. 302 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise, 303 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point). 304 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI); 305 306 /// Check whether or not we should apply the terminal rule on the 307 /// destination (Dst) of \p Copy. 308 /// When the terminal rule applies, Copy is not profitable to 309 /// coalesce. 310 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 311 /// at least one interference (Dst, Dst2). If Dst is terminal, the 312 /// terminal rule consists in checking that at least one of 313 /// interfering node, say Dst2, has an affinity of equal or greater 314 /// weight with Src. 315 /// In that case, Dst2 and Dst will not be able to be both coalesced 316 /// with Src. Since Dst2 exposes more coalescing opportunities than 317 /// Dst, we can drop \p Copy. 318 bool applyTerminalRule(const MachineInstr &Copy) const; 319 320 /// Wrapper method for \see LiveIntervals::shrinkToUses. 321 /// This method does the proper fixing of the live-ranges when the afore 322 /// mentioned method returns true. 323 void shrinkToUses(LiveInterval *LI, 324 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 325 NumShrinkToUses++; 326 if (LIS->shrinkToUses(LI, Dead)) { 327 /// Check whether or not \p LI is composed by multiple connected 328 /// components and if that is the case, fix that. 329 SmallVector<LiveInterval*, 8> SplitLIs; 330 LIS->splitSeparateComponents(*LI, SplitLIs); 331 } 332 } 333 334 /// Wrapper Method to do all the necessary work when an Instruction is 335 /// deleted. 336 /// Optimizations should use this to make sure that deleted instructions 337 /// are always accounted for. 338 void deleteInstr(MachineInstr* MI) { 339 ErasedInstrs.insert(MI); 340 LIS->RemoveMachineInstrFromMaps(*MI); 341 MI->eraseFromParent(); 342 } 343 344 /// Walk over function and initialize the DbgVRegToValues map. 345 void buildVRegToDbgValueMap(MachineFunction &MF); 346 347 /// Test whether, after merging, any DBG_VALUEs would refer to a 348 /// different value number than before merging, and whether this can 349 /// be resolved. If not, mark the DBG_VALUE as being undef. 350 void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS, 351 JoinVals &LHSVals, LiveRange &RHS, 352 JoinVals &RHSVals); 353 354 void checkMergingChangesDbgValuesImpl(unsigned Reg, LiveRange &OtherRange, 355 LiveRange &RegRange, JoinVals &Vals2); 356 357 public: 358 static char ID; ///< Class identification, replacement for typeinfo 359 360 RegisterCoalescer() : MachineFunctionPass(ID) { 361 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 362 } 363 364 void getAnalysisUsage(AnalysisUsage &AU) const override; 365 366 void releaseMemory() override; 367 368 /// This is the pass entry point. 369 bool runOnMachineFunction(MachineFunction&) override; 370 371 /// Implement the dump method. 372 void print(raw_ostream &O, const Module* = nullptr) const override; 373 }; 374 375 } // end anonymous namespace 376 377 char RegisterCoalescer::ID = 0; 378 379 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 380 381 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 382 "Simple Register Coalescing", false, false) 383 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 384 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 385 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 386 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 387 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 388 "Simple Register Coalescing", false, false) 389 390 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri, 391 const MachineInstr *MI, unsigned &Src, 392 unsigned &Dst, unsigned &SrcSub, 393 unsigned &DstSub) { 394 if (MI->isCopy()) { 395 Dst = MI->getOperand(0).getReg(); 396 DstSub = MI->getOperand(0).getSubReg(); 397 Src = MI->getOperand(1).getReg(); 398 SrcSub = MI->getOperand(1).getSubReg(); 399 } else if (MI->isSubregToReg()) { 400 Dst = MI->getOperand(0).getReg(); 401 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 402 MI->getOperand(3).getImm()); 403 Src = MI->getOperand(2).getReg(); 404 SrcSub = MI->getOperand(2).getSubReg(); 405 } else 406 return false; 407 return true; 408 } 409 410 /// Return true if this block should be vacated by the coalescer to eliminate 411 /// branches. The important cases to handle in the coalescer are critical edges 412 /// split during phi elimination which contain only copies. Simple blocks that 413 /// contain non-branches should also be vacated, but this can be handled by an 414 /// earlier pass similar to early if-conversion. 415 static bool isSplitEdge(const MachineBasicBlock *MBB) { 416 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 417 return false; 418 419 for (const auto &MI : *MBB) { 420 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 421 return false; 422 } 423 return true; 424 } 425 426 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 427 SrcReg = DstReg = 0; 428 SrcIdx = DstIdx = 0; 429 NewRC = nullptr; 430 Flipped = CrossClass = false; 431 432 unsigned Src, Dst, SrcSub, DstSub; 433 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 434 return false; 435 Partial = SrcSub || DstSub; 436 437 // If one register is a physreg, it must be Dst. 438 if (Register::isPhysicalRegister(Src)) { 439 if (Register::isPhysicalRegister(Dst)) 440 return false; 441 std::swap(Src, Dst); 442 std::swap(SrcSub, DstSub); 443 Flipped = true; 444 } 445 446 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 447 448 if (Register::isPhysicalRegister(Dst)) { 449 // Eliminate DstSub on a physreg. 450 if (DstSub) { 451 Dst = TRI.getSubReg(Dst, DstSub); 452 if (!Dst) return false; 453 DstSub = 0; 454 } 455 456 // Eliminate SrcSub by picking a corresponding Dst superregister. 457 if (SrcSub) { 458 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 459 if (!Dst) return false; 460 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 461 return false; 462 } 463 } else { 464 // Both registers are virtual. 465 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 466 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 467 468 // Both registers have subreg indices. 469 if (SrcSub && DstSub) { 470 // Copies between different sub-registers are never coalescable. 471 if (Src == Dst && SrcSub != DstSub) 472 return false; 473 474 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 475 SrcIdx, DstIdx); 476 if (!NewRC) 477 return false; 478 } else if (DstSub) { 479 // SrcReg will be merged with a sub-register of DstReg. 480 SrcIdx = DstSub; 481 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 482 } else if (SrcSub) { 483 // DstReg will be merged with a sub-register of SrcReg. 484 DstIdx = SrcSub; 485 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 486 } else { 487 // This is a straight copy without sub-registers. 488 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 489 } 490 491 // The combined constraint may be impossible to satisfy. 492 if (!NewRC) 493 return false; 494 495 // Prefer SrcReg to be a sub-register of DstReg. 496 // FIXME: Coalescer should support subregs symmetrically. 497 if (DstIdx && !SrcIdx) { 498 std::swap(Src, Dst); 499 std::swap(SrcIdx, DstIdx); 500 Flipped = !Flipped; 501 } 502 503 CrossClass = NewRC != DstRC || NewRC != SrcRC; 504 } 505 // Check our invariants 506 assert(Register::isVirtualRegister(Src) && "Src must be virtual"); 507 assert(!(Register::isPhysicalRegister(Dst) && DstSub) && 508 "Cannot have a physical SubIdx"); 509 SrcReg = Src; 510 DstReg = Dst; 511 return true; 512 } 513 514 bool CoalescerPair::flip() { 515 if (Register::isPhysicalRegister(DstReg)) 516 return false; 517 std::swap(SrcReg, DstReg); 518 std::swap(SrcIdx, DstIdx); 519 Flipped = !Flipped; 520 return true; 521 } 522 523 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 524 if (!MI) 525 return false; 526 unsigned Src, Dst, SrcSub, DstSub; 527 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 528 return false; 529 530 // Find the virtual register that is SrcReg. 531 if (Dst == SrcReg) { 532 std::swap(Src, Dst); 533 std::swap(SrcSub, DstSub); 534 } else if (Src != SrcReg) { 535 return false; 536 } 537 538 // Now check that Dst matches DstReg. 539 if (Register::isPhysicalRegister(DstReg)) { 540 if (!Register::isPhysicalRegister(Dst)) 541 return false; 542 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 543 // DstSub could be set for a physreg from INSERT_SUBREG. 544 if (DstSub) 545 Dst = TRI.getSubReg(Dst, DstSub); 546 // Full copy of Src. 547 if (!SrcSub) 548 return DstReg == Dst; 549 // This is a partial register copy. Check that the parts match. 550 return TRI.getSubReg(DstReg, SrcSub) == Dst; 551 } else { 552 // DstReg is virtual. 553 if (DstReg != Dst) 554 return false; 555 // Registers match, do the subregisters line up? 556 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 557 TRI.composeSubRegIndices(DstIdx, DstSub); 558 } 559 } 560 561 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 562 AU.setPreservesCFG(); 563 AU.addRequired<AAResultsWrapperPass>(); 564 AU.addRequired<LiveIntervals>(); 565 AU.addPreserved<LiveIntervals>(); 566 AU.addPreserved<SlotIndexes>(); 567 AU.addRequired<MachineLoopInfo>(); 568 AU.addPreserved<MachineLoopInfo>(); 569 AU.addPreservedID(MachineDominatorsID); 570 MachineFunctionPass::getAnalysisUsage(AU); 571 } 572 573 void RegisterCoalescer::eliminateDeadDefs() { 574 SmallVector<unsigned, 8> NewRegs; 575 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 576 nullptr, this).eliminateDeadDefs(DeadDefs); 577 } 578 579 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 580 // MI may be in WorkList. Make sure we don't visit it. 581 ErasedInstrs.insert(MI); 582 } 583 584 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 585 MachineInstr *CopyMI) { 586 assert(!CP.isPartial() && "This doesn't work for partial copies."); 587 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 588 589 LiveInterval &IntA = 590 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 591 LiveInterval &IntB = 592 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 593 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 594 595 // We have a non-trivially-coalescable copy with IntA being the source and 596 // IntB being the dest, thus this defines a value number in IntB. If the 597 // source value number (in IntA) is defined by a copy from B, see if we can 598 // merge these two pieces of B into a single value number, eliminating a copy. 599 // For example: 600 // 601 // A3 = B0 602 // ... 603 // B1 = A3 <- this copy 604 // 605 // In this case, B0 can be extended to where the B1 copy lives, allowing the 606 // B1 value number to be replaced with B0 (which simplifies the B 607 // liveinterval). 608 609 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 610 // the example above. 611 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 612 if (BS == IntB.end()) return false; 613 VNInfo *BValNo = BS->valno; 614 615 // Get the location that B is defined at. Two options: either this value has 616 // an unknown definition point or it is defined at CopyIdx. If unknown, we 617 // can't process it. 618 if (BValNo->def != CopyIdx) return false; 619 620 // AValNo is the value number in A that defines the copy, A3 in the example. 621 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 622 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 623 // The live segment might not exist after fun with physreg coalescing. 624 if (AS == IntA.end()) return false; 625 VNInfo *AValNo = AS->valno; 626 627 // If AValNo is defined as a copy from IntB, we can potentially process this. 628 // Get the instruction that defines this value number. 629 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 630 // Don't allow any partial copies, even if isCoalescable() allows them. 631 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 632 return false; 633 634 // Get the Segment in IntB that this value number starts with. 635 LiveInterval::iterator ValS = 636 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 637 if (ValS == IntB.end()) 638 return false; 639 640 // Make sure that the end of the live segment is inside the same block as 641 // CopyMI. 642 MachineInstr *ValSEndInst = 643 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 644 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 645 return false; 646 647 // Okay, we now know that ValS ends in the same block that the CopyMI 648 // live-range starts. If there are no intervening live segments between them 649 // in IntB, we can merge them. 650 if (ValS+1 != BS) return false; 651 652 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI)); 653 654 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 655 // We are about to delete CopyMI, so need to remove it as the 'instruction 656 // that defines this value #'. Update the valnum with the new defining 657 // instruction #. 658 BValNo->def = FillerStart; 659 660 // Okay, we can merge them. We need to insert a new liverange: 661 // [ValS.end, BS.begin) of either value number, then we merge the 662 // two value numbers. 663 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 664 665 // Okay, merge "B1" into the same value number as "B0". 666 if (BValNo != ValS->valno) 667 IntB.MergeValueNumberInto(BValNo, ValS->valno); 668 669 // Do the same for the subregister segments. 670 for (LiveInterval::SubRange &S : IntB.subranges()) { 671 // Check for SubRange Segments of the form [1234r,1234d:0) which can be 672 // removed to prevent creating bogus SubRange Segments. 673 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx); 674 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) { 675 S.removeSegment(*SS, true); 676 continue; 677 } 678 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 679 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 680 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 681 if (SubBValNo != SubValSNo) 682 S.MergeValueNumberInto(SubBValNo, SubValSNo); 683 } 684 685 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n'); 686 687 // If the source instruction was killing the source register before the 688 // merge, unset the isKill marker given the live range has been extended. 689 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 690 if (UIdx != -1) { 691 ValSEndInst->getOperand(UIdx).setIsKill(false); 692 } 693 694 // Rewrite the copy. 695 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 696 // If the copy instruction was killing the destination register or any 697 // subrange before the merge trim the live range. 698 bool RecomputeLiveRange = AS->end == CopyIdx; 699 if (!RecomputeLiveRange) { 700 for (LiveInterval::SubRange &S : IntA.subranges()) { 701 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx); 702 if (SS != S.end() && SS->end == CopyIdx) { 703 RecomputeLiveRange = true; 704 break; 705 } 706 } 707 } 708 if (RecomputeLiveRange) 709 shrinkToUses(&IntA); 710 711 ++numExtends; 712 return true; 713 } 714 715 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 716 LiveInterval &IntB, 717 VNInfo *AValNo, 718 VNInfo *BValNo) { 719 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 720 // the PHI values. 721 if (LIS->hasPHIKill(IntA, AValNo)) 722 return true; 723 724 for (LiveRange::Segment &ASeg : IntA.segments) { 725 if (ASeg.valno != AValNo) continue; 726 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start); 727 if (BI != IntB.begin()) 728 --BI; 729 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 730 if (BI->valno == BValNo) 731 continue; 732 if (BI->start <= ASeg.start && BI->end > ASeg.start) 733 return true; 734 if (BI->start > ASeg.start && BI->start < ASeg.end) 735 return true; 736 } 737 } 738 return false; 739 } 740 741 /// Copy segments with value number @p SrcValNo from liverange @p Src to live 742 /// range @Dst and use value number @p DstValNo there. 743 static std::pair<bool,bool> 744 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src, 745 const VNInfo *SrcValNo) { 746 bool Changed = false; 747 bool MergedWithDead = false; 748 for (const LiveRange::Segment &S : Src.segments) { 749 if (S.valno != SrcValNo) 750 continue; 751 // This is adding a segment from Src that ends in a copy that is about 752 // to be removed. This segment is going to be merged with a pre-existing 753 // segment in Dst. This works, except in cases when the corresponding 754 // segment in Dst is dead. For example: adding [192r,208r:1) from Src 755 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst. 756 // Recognized such cases, so that the segments can be shrunk. 757 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo); 758 LiveRange::Segment &Merged = *Dst.addSegment(Added); 759 if (Merged.end.isDead()) 760 MergedWithDead = true; 761 Changed = true; 762 } 763 return std::make_pair(Changed, MergedWithDead); 764 } 765 766 std::pair<bool,bool> 767 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 768 MachineInstr *CopyMI) { 769 assert(!CP.isPhys()); 770 771 LiveInterval &IntA = 772 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 773 LiveInterval &IntB = 774 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 775 776 // We found a non-trivially-coalescable copy with IntA being the source and 777 // IntB being the dest, thus this defines a value number in IntB. If the 778 // source value number (in IntA) is defined by a commutable instruction and 779 // its other operand is coalesced to the copy dest register, see if we can 780 // transform the copy into a noop by commuting the definition. For example, 781 // 782 // A3 = op A2 killed B0 783 // ... 784 // B1 = A3 <- this copy 785 // ... 786 // = op A3 <- more uses 787 // 788 // ==> 789 // 790 // B2 = op B0 killed A2 791 // ... 792 // B1 = B2 <- now an identity copy 793 // ... 794 // = op B2 <- more uses 795 796 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 797 // the example above. 798 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 799 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 800 assert(BValNo != nullptr && BValNo->def == CopyIdx); 801 802 // AValNo is the value number in A that defines the copy, A3 in the example. 803 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 804 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 805 if (AValNo->isPHIDef()) 806 return { false, false }; 807 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 808 if (!DefMI) 809 return { false, false }; 810 if (!DefMI->isCommutable()) 811 return { false, false }; 812 // If DefMI is a two-address instruction then commuting it will change the 813 // destination register. 814 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 815 assert(DefIdx != -1); 816 unsigned UseOpIdx; 817 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 818 return { false, false }; 819 820 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 821 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 822 // passed to the method. That _other_ operand is chosen by 823 // the findCommutedOpIndices() method. 824 // 825 // That is obviously an area for improvement in case of instructions having 826 // more than 2 operands. For example, if some instruction has 3 commutable 827 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 828 // op#2<->op#3) of commute transformation should be considered/tried here. 829 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 830 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 831 return { false, false }; 832 833 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 834 Register NewReg = NewDstMO.getReg(); 835 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 836 return { false, false }; 837 838 // Make sure there are no other definitions of IntB that would reach the 839 // uses which the new definition can reach. 840 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 841 return { false, false }; 842 843 // If some of the uses of IntA.reg is already coalesced away, return false. 844 // It's not possible to determine whether it's safe to perform the coalescing. 845 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 846 MachineInstr *UseMI = MO.getParent(); 847 unsigned OpNo = &MO - &UseMI->getOperand(0); 848 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 849 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 850 if (US == IntA.end() || US->valno != AValNo) 851 continue; 852 // If this use is tied to a def, we can't rewrite the register. 853 if (UseMI->isRegTiedToDefOperand(OpNo)) 854 return { false, false }; 855 } 856 857 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 858 << *DefMI); 859 860 // At this point we have decided that it is legal to do this 861 // transformation. Start by commuting the instruction. 862 MachineBasicBlock *MBB = DefMI->getParent(); 863 MachineInstr *NewMI = 864 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 865 if (!NewMI) 866 return { false, false }; 867 if (Register::isVirtualRegister(IntA.reg) && 868 Register::isVirtualRegister(IntB.reg) && 869 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 870 return { false, false }; 871 if (NewMI != DefMI) { 872 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 873 MachineBasicBlock::iterator Pos = DefMI; 874 MBB->insert(Pos, NewMI); 875 MBB->erase(DefMI); 876 } 877 878 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 879 // A = or A, B 880 // ... 881 // B = A 882 // ... 883 // C = killed A 884 // ... 885 // = B 886 887 // Update uses of IntA of the specific Val# with IntB. 888 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 889 UE = MRI->use_end(); 890 UI != UE; /* ++UI is below because of possible MI removal */) { 891 MachineOperand &UseMO = *UI; 892 ++UI; 893 if (UseMO.isUndef()) 894 continue; 895 MachineInstr *UseMI = UseMO.getParent(); 896 if (UseMI->isDebugValue()) { 897 // FIXME These don't have an instruction index. Not clear we have enough 898 // info to decide whether to do this replacement or not. For now do it. 899 UseMO.setReg(NewReg); 900 continue; 901 } 902 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 903 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 904 assert(US != IntA.end() && "Use must be live"); 905 if (US->valno != AValNo) 906 continue; 907 // Kill flags are no longer accurate. They are recomputed after RA. 908 UseMO.setIsKill(false); 909 if (Register::isPhysicalRegister(NewReg)) 910 UseMO.substPhysReg(NewReg, *TRI); 911 else 912 UseMO.setReg(NewReg); 913 if (UseMI == CopyMI) 914 continue; 915 if (!UseMI->isCopy()) 916 continue; 917 if (UseMI->getOperand(0).getReg() != IntB.reg || 918 UseMI->getOperand(0).getSubReg()) 919 continue; 920 921 // This copy will become a noop. If it's defining a new val#, merge it into 922 // BValNo. 923 SlotIndex DefIdx = UseIdx.getRegSlot(); 924 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 925 if (!DVNI) 926 continue; 927 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 928 assert(DVNI->def == DefIdx); 929 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 930 for (LiveInterval::SubRange &S : IntB.subranges()) { 931 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 932 if (!SubDVNI) 933 continue; 934 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 935 assert(SubBValNo->def == CopyIdx); 936 S.MergeValueNumberInto(SubDVNI, SubBValNo); 937 } 938 939 deleteInstr(UseMI); 940 } 941 942 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 943 // is updated. 944 bool ShrinkB = false; 945 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 946 if (IntA.hasSubRanges() || IntB.hasSubRanges()) { 947 if (!IntA.hasSubRanges()) { 948 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 949 IntA.createSubRangeFrom(Allocator, Mask, IntA); 950 } else if (!IntB.hasSubRanges()) { 951 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg); 952 IntB.createSubRangeFrom(Allocator, Mask, IntB); 953 } 954 SlotIndex AIdx = CopyIdx.getRegSlot(true); 955 LaneBitmask MaskA; 956 const SlotIndexes &Indexes = *LIS->getSlotIndexes(); 957 for (LiveInterval::SubRange &SA : IntA.subranges()) { 958 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 959 // Even if we are dealing with a full copy, some lanes can 960 // still be undefined. 961 // E.g., 962 // undef A.subLow = ... 963 // B = COPY A <== A.subHigh is undefined here and does 964 // not have a value number. 965 if (!ASubValNo) 966 continue; 967 MaskA |= SA.LaneMask; 968 969 IntB.refineSubRanges( 970 Allocator, SA.LaneMask, 971 [&Allocator, &SA, CopyIdx, ASubValNo, 972 &ShrinkB](LiveInterval::SubRange &SR) { 973 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator) 974 : SR.getVNInfoAt(CopyIdx); 975 assert(BSubValNo != nullptr); 976 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 977 ShrinkB |= P.second; 978 if (P.first) 979 BSubValNo->def = ASubValNo->def; 980 }, 981 Indexes, *TRI); 982 } 983 // Go over all subranges of IntB that have not been covered by IntA, 984 // and delete the segments starting at CopyIdx. This can happen if 985 // IntA has undef lanes that are defined in IntB. 986 for (LiveInterval::SubRange &SB : IntB.subranges()) { 987 if ((SB.LaneMask & MaskA).any()) 988 continue; 989 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx)) 990 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex()) 991 SB.removeSegment(*S, true); 992 } 993 } 994 995 BValNo->def = AValNo->def; 996 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 997 ShrinkB |= P.second; 998 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 999 1000 LIS->removeVRegDefAt(IntA, AValNo->def); 1001 1002 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 1003 ++numCommutes; 1004 return { true, ShrinkB }; 1005 } 1006 1007 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 1008 /// predecessor of BB2, and if B is not redefined on the way from A = B 1009 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the 1010 /// execution goes through the path from BB0 to BB2. We may move B = A 1011 /// to the predecessor without such reversed copy. 1012 /// So we will transform the program from: 1013 /// BB0: 1014 /// A = B; BB1: 1015 /// ... ... 1016 /// / \ / 1017 /// BB2: 1018 /// ... 1019 /// B = A; 1020 /// 1021 /// to: 1022 /// 1023 /// BB0: BB1: 1024 /// A = B; ... 1025 /// ... B = A; 1026 /// / \ / 1027 /// BB2: 1028 /// ... 1029 /// 1030 /// A special case is when BB0 and BB2 are the same BB which is the only 1031 /// BB in a loop: 1032 /// BB1: 1033 /// ... 1034 /// BB0/BB2: ---- 1035 /// B = A; | 1036 /// ... | 1037 /// A = B; | 1038 /// |------- 1039 /// | 1040 /// We may hoist B = A from BB0/BB2 to BB1. 1041 /// 1042 /// The major preconditions for correctness to remove such partial 1043 /// redundancy include: 1044 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 1045 /// the PHI is defined by the reversed copy A = B in BB0. 1046 /// 2. No B is referenced from the start of BB2 to B = A. 1047 /// 3. No B is defined from A = B to the end of BB0. 1048 /// 4. BB1 has only one successor. 1049 /// 1050 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 1051 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 1052 /// colder place, which not only prevent endless loop, but also make sure 1053 /// the movement of copy is beneficial. 1054 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 1055 MachineInstr &CopyMI) { 1056 assert(!CP.isPhys()); 1057 if (!CopyMI.isFullCopy()) 1058 return false; 1059 1060 MachineBasicBlock &MBB = *CopyMI.getParent(); 1061 if (MBB.isEHPad()) 1062 return false; 1063 1064 if (MBB.pred_size() != 2) 1065 return false; 1066 1067 LiveInterval &IntA = 1068 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 1069 LiveInterval &IntB = 1070 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 1071 1072 // A is defined by PHI at the entry of MBB. 1073 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 1074 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 1075 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 1076 if (!AValNo->isPHIDef()) 1077 return false; 1078 1079 // No B is referenced before CopyMI in MBB. 1080 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 1081 return false; 1082 1083 // MBB has two predecessors: one contains A = B so no copy will be inserted 1084 // for it. The other one will have a copy moved from MBB. 1085 bool FoundReverseCopy = false; 1086 MachineBasicBlock *CopyLeftBB = nullptr; 1087 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1088 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 1089 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 1090 if (!DefMI || !DefMI->isFullCopy()) { 1091 CopyLeftBB = Pred; 1092 continue; 1093 } 1094 // Check DefMI is a reverse copy and it is in BB Pred. 1095 if (DefMI->getOperand(0).getReg() != IntA.reg || 1096 DefMI->getOperand(1).getReg() != IntB.reg || 1097 DefMI->getParent() != Pred) { 1098 CopyLeftBB = Pred; 1099 continue; 1100 } 1101 // If there is any other def of B after DefMI and before the end of Pred, 1102 // we need to keep the copy of B = A at the end of Pred if we remove 1103 // B = A from MBB. 1104 bool ValB_Changed = false; 1105 for (auto VNI : IntB.valnos) { 1106 if (VNI->isUnused()) 1107 continue; 1108 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 1109 ValB_Changed = true; 1110 break; 1111 } 1112 } 1113 if (ValB_Changed) { 1114 CopyLeftBB = Pred; 1115 continue; 1116 } 1117 FoundReverseCopy = true; 1118 } 1119 1120 // If no reverse copy is found in predecessors, nothing to do. 1121 if (!FoundReverseCopy) 1122 return false; 1123 1124 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 1125 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 1126 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 1127 // update IntA/IntB. 1128 // 1129 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 1130 // MBB is hotter than CopyLeftBB. 1131 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 1132 return false; 1133 1134 // Now (almost sure it's) ok to move copy. 1135 if (CopyLeftBB) { 1136 // Position in CopyLeftBB where we should insert new copy. 1137 auto InsPos = CopyLeftBB->getFirstTerminator(); 1138 1139 // Make sure that B isn't referenced in the terminators (if any) at the end 1140 // of the predecessor since we're about to insert a new definition of B 1141 // before them. 1142 if (InsPos != CopyLeftBB->end()) { 1143 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true); 1144 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB))) 1145 return false; 1146 } 1147 1148 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to " 1149 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI); 1150 1151 // Insert new copy to CopyLeftBB. 1152 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1153 TII->get(TargetOpcode::COPY), IntB.reg) 1154 .addReg(IntA.reg); 1155 SlotIndex NewCopyIdx = 1156 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1157 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1158 for (LiveInterval::SubRange &SR : IntB.subranges()) 1159 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1160 1161 // If the newly created Instruction has an address of an instruction that was 1162 // deleted before (object recycled by the allocator) it needs to be removed from 1163 // the deleted list. 1164 ErasedInstrs.erase(NewCopyMI); 1165 } else { 1166 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from " 1167 << printMBBReference(MBB) << '\t' << CopyMI); 1168 } 1169 1170 // Remove CopyMI. 1171 // Note: This is fine to remove the copy before updating the live-ranges. 1172 // While updating the live-ranges, we only look at slot indices and 1173 // never go back to the instruction. 1174 // Mark instructions as deleted. 1175 deleteInstr(&CopyMI); 1176 1177 // Update the liveness. 1178 SmallVector<SlotIndex, 8> EndPoints; 1179 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1180 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1181 &EndPoints); 1182 BValNo->markUnused(); 1183 // Extend IntB to the EndPoints of its original live interval. 1184 LIS->extendToIndices(IntB, EndPoints); 1185 1186 // Now, do the same for its subranges. 1187 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1188 EndPoints.clear(); 1189 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1190 assert(BValNo && "All sublanes should be live"); 1191 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1192 BValNo->markUnused(); 1193 // We can have a situation where the result of the original copy is live, 1194 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes 1195 // the copy appear as an endpoint from pruneValue(), but we don't want it 1196 // to because the copy has been removed. We can go ahead and remove that 1197 // endpoint; there is no other situation here that there could be a use at 1198 // the same place as we know that the copy is a full copy. 1199 for (unsigned I = 0; I != EndPoints.size(); ) { 1200 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) { 1201 EndPoints[I] = EndPoints.back(); 1202 EndPoints.pop_back(); 1203 continue; 1204 } 1205 ++I; 1206 } 1207 LIS->extendToIndices(SR, EndPoints); 1208 } 1209 // If any dead defs were extended, truncate them. 1210 shrinkToUses(&IntB); 1211 1212 // Finally, update the live-range of IntA. 1213 shrinkToUses(&IntA); 1214 return true; 1215 } 1216 1217 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1218 /// defining a subregister. 1219 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 1220 assert(!Register::isPhysicalRegister(Reg) && 1221 "This code cannot handle physreg aliasing"); 1222 for (const MachineOperand &Op : MI.operands()) { 1223 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1224 continue; 1225 // Return true if we define the full register or don't care about the value 1226 // inside other subregisters. 1227 if (Op.getSubReg() == 0 || Op.isUndef()) 1228 return true; 1229 } 1230 return false; 1231 } 1232 1233 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1234 MachineInstr *CopyMI, 1235 bool &IsDefCopy) { 1236 IsDefCopy = false; 1237 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1238 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1239 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1240 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1241 if (Register::isPhysicalRegister(SrcReg)) 1242 return false; 1243 1244 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1245 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1246 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1247 if (!ValNo) 1248 return false; 1249 if (ValNo->isPHIDef() || ValNo->isUnused()) 1250 return false; 1251 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1252 if (!DefMI) 1253 return false; 1254 if (DefMI->isCopyLike()) { 1255 IsDefCopy = true; 1256 return false; 1257 } 1258 if (!TII->isAsCheapAsAMove(*DefMI)) 1259 return false; 1260 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1261 return false; 1262 if (!definesFullReg(*DefMI, SrcReg)) 1263 return false; 1264 bool SawStore = false; 1265 if (!DefMI->isSafeToMove(AA, SawStore)) 1266 return false; 1267 const MCInstrDesc &MCID = DefMI->getDesc(); 1268 if (MCID.getNumDefs() != 1) 1269 return false; 1270 // Only support subregister destinations when the def is read-undef. 1271 MachineOperand &DstOperand = CopyMI->getOperand(0); 1272 Register CopyDstReg = DstOperand.getReg(); 1273 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1274 return false; 1275 1276 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1277 // the register substantially (beyond both source and dest size). This is bad 1278 // for performance since it can cascade through a function, introducing many 1279 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1280 // around after a few subreg copies). 1281 if (SrcIdx && DstIdx) 1282 return false; 1283 1284 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1285 if (!DefMI->isImplicitDef()) { 1286 if (Register::isPhysicalRegister(DstReg)) { 1287 unsigned NewDstReg = DstReg; 1288 1289 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1290 DefMI->getOperand(0).getSubReg()); 1291 if (NewDstIdx) 1292 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1293 1294 // Finally, make sure that the physical subregister that will be 1295 // constructed later is permitted for the instruction. 1296 if (!DefRC->contains(NewDstReg)) 1297 return false; 1298 } else { 1299 // Theoretically, some stack frame reference could exist. Just make sure 1300 // it hasn't actually happened. 1301 assert(Register::isVirtualRegister(DstReg) && 1302 "Only expect to deal with virtual or physical registers"); 1303 } 1304 } 1305 1306 DebugLoc DL = CopyMI->getDebugLoc(); 1307 MachineBasicBlock *MBB = CopyMI->getParent(); 1308 MachineBasicBlock::iterator MII = 1309 std::next(MachineBasicBlock::iterator(CopyMI)); 1310 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1311 MachineInstr &NewMI = *std::prev(MII); 1312 NewMI.setDebugLoc(DL); 1313 1314 // In a situation like the following: 1315 // %0:subreg = instr ; DefMI, subreg = DstIdx 1316 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0 1317 // instead of widening %1 to the register class of %0 simply do: 1318 // %1 = instr 1319 const TargetRegisterClass *NewRC = CP.getNewRC(); 1320 if (DstIdx != 0) { 1321 MachineOperand &DefMO = NewMI.getOperand(0); 1322 if (DefMO.getSubReg() == DstIdx) { 1323 assert(SrcIdx == 0 && CP.isFlipped() 1324 && "Shouldn't have SrcIdx+DstIdx at this point"); 1325 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1326 const TargetRegisterClass *CommonRC = 1327 TRI->getCommonSubClass(DefRC, DstRC); 1328 if (CommonRC != nullptr) { 1329 NewRC = CommonRC; 1330 DstIdx = 0; 1331 DefMO.setSubReg(0); 1332 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1333 } 1334 } 1335 } 1336 1337 // CopyMI may have implicit operands, save them so that we can transfer them 1338 // over to the newly materialized instruction after CopyMI is removed. 1339 SmallVector<MachineOperand, 4> ImplicitOps; 1340 ImplicitOps.reserve(CopyMI->getNumOperands() - 1341 CopyMI->getDesc().getNumOperands()); 1342 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1343 E = CopyMI->getNumOperands(); 1344 I != E; ++I) { 1345 MachineOperand &MO = CopyMI->getOperand(I); 1346 if (MO.isReg()) { 1347 assert(MO.isImplicit() && "No explicit operands after implicit operands."); 1348 // Discard VReg implicit defs. 1349 if (Register::isPhysicalRegister(MO.getReg())) 1350 ImplicitOps.push_back(MO); 1351 } 1352 } 1353 1354 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1355 CopyMI->eraseFromParent(); 1356 ErasedInstrs.insert(CopyMI); 1357 1358 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1359 // We need to remember these so we can add intervals once we insert 1360 // NewMI into SlotIndexes. 1361 SmallVector<unsigned, 4> NewMIImplDefs; 1362 for (unsigned i = NewMI.getDesc().getNumOperands(), 1363 e = NewMI.getNumOperands(); 1364 i != e; ++i) { 1365 MachineOperand &MO = NewMI.getOperand(i); 1366 if (MO.isReg() && MO.isDef()) { 1367 assert(MO.isImplicit() && MO.isDead() && 1368 Register::isPhysicalRegister(MO.getReg())); 1369 NewMIImplDefs.push_back(MO.getReg()); 1370 } 1371 } 1372 1373 if (Register::isVirtualRegister(DstReg)) { 1374 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1375 1376 if (DefRC != nullptr) { 1377 if (NewIdx) 1378 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1379 else 1380 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1381 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1382 } 1383 // Remap subranges to new lanemask and change register class. 1384 LiveInterval &DstInt = LIS->getInterval(DstReg); 1385 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1386 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1387 } 1388 MRI->setRegClass(DstReg, NewRC); 1389 1390 // Update machine operands and add flags. 1391 updateRegDefsUses(DstReg, DstReg, DstIdx); 1392 NewMI.getOperand(0).setSubReg(NewIdx); 1393 // updateRegDefUses can add an "undef" flag to the definition, since 1394 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make 1395 // sure that "undef" is not set. 1396 if (NewIdx == 0) 1397 NewMI.getOperand(0).setIsUndef(false); 1398 // Add dead subregister definitions if we are defining the whole register 1399 // but only part of it is live. 1400 // This could happen if the rematerialization instruction is rematerializing 1401 // more than actually is used in the register. 1402 // An example would be: 1403 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1404 // ; Copying only part of the register here, but the rest is undef. 1405 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit 1406 // ==> 1407 // ; Materialize all the constants but only using one 1408 // %2 = LOAD_CONSTANTS 5, 8 1409 // 1410 // at this point for the part that wasn't defined before we could have 1411 // subranges missing the definition. 1412 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1413 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1414 SlotIndex DefIndex = 1415 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1416 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1417 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1418 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1419 if (!SR.liveAt(DefIndex)) 1420 SR.createDeadDef(DefIndex, Alloc); 1421 MaxMask &= ~SR.LaneMask; 1422 } 1423 if (MaxMask.any()) { 1424 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1425 SR->createDeadDef(DefIndex, Alloc); 1426 } 1427 } 1428 1429 // Make sure that the subrange for resultant undef is removed 1430 // For example: 1431 // %1:sub1<def,read-undef> = LOAD CONSTANT 1 1432 // %2 = COPY %1 1433 // ==> 1434 // %2:sub1<def, read-undef> = LOAD CONSTANT 1 1435 // ; Correct but need to remove the subrange for %2:sub0 1436 // ; as it is now undef 1437 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1438 // The affected subregister segments can be removed. 1439 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1440 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1441 bool UpdatedSubRanges = false; 1442 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1443 if ((SR.LaneMask & DstMask).none()) { 1444 LLVM_DEBUG(dbgs() 1445 << "Removing undefined SubRange " 1446 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1447 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1448 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1449 SR.removeValNo(RmValNo); 1450 UpdatedSubRanges = true; 1451 } 1452 } 1453 } 1454 if (UpdatedSubRanges) 1455 DstInt.removeEmptySubRanges(); 1456 } 1457 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1458 // The New instruction may be defining a sub-register of what's actually 1459 // been asked for. If so it must implicitly define the whole thing. 1460 assert(Register::isPhysicalRegister(DstReg) && 1461 "Only expect virtual or physical registers in remat"); 1462 NewMI.getOperand(0).setIsDead(true); 1463 NewMI.addOperand(MachineOperand::CreateReg( 1464 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1465 // Record small dead def live-ranges for all the subregisters 1466 // of the destination register. 1467 // Otherwise, variables that live through may miss some 1468 // interferences, thus creating invalid allocation. 1469 // E.g., i386 code: 1470 // %1 = somedef ; %1 GR8 1471 // %2 = remat ; %2 GR32 1472 // CL = COPY %2.sub_8bit 1473 // = somedef %1 ; %1 GR8 1474 // => 1475 // %1 = somedef ; %1 GR8 1476 // dead ECX = remat ; implicit-def CL 1477 // = somedef %1 ; %1 GR8 1478 // %1 will see the interferences with CL but not with CH since 1479 // no live-ranges would have been created for ECX. 1480 // Fix that! 1481 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1482 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1483 Units.isValid(); ++Units) 1484 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1485 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1486 } 1487 1488 if (NewMI.getOperand(0).getSubReg()) 1489 NewMI.getOperand(0).setIsUndef(); 1490 1491 // Transfer over implicit operands to the rematerialized instruction. 1492 for (MachineOperand &MO : ImplicitOps) 1493 NewMI.addOperand(MO); 1494 1495 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1496 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1497 unsigned Reg = NewMIImplDefs[i]; 1498 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1499 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1500 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1501 } 1502 1503 LLVM_DEBUG(dbgs() << "Remat: " << NewMI); 1504 ++NumReMats; 1505 1506 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1507 // to describe DstReg instead. 1508 if (MRI->use_nodbg_empty(SrcReg)) { 1509 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1510 MachineInstr *UseMI = UseMO.getParent(); 1511 if (UseMI->isDebugValue()) { 1512 if (Register::isPhysicalRegister(DstReg)) 1513 UseMO.substPhysReg(DstReg, *TRI); 1514 else 1515 UseMO.setReg(DstReg); 1516 // Move the debug value directly after the def of the rematerialized 1517 // value in DstReg. 1518 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); 1519 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1520 } 1521 } 1522 } 1523 1524 if (ToBeUpdated.count(SrcReg)) 1525 return true; 1526 1527 unsigned NumCopyUses = 0; 1528 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 1529 if (UseMO.getParent()->isCopyLike()) 1530 NumCopyUses++; 1531 } 1532 if (NumCopyUses < LateRematUpdateThreshold) { 1533 // The source interval can become smaller because we removed a use. 1534 shrinkToUses(&SrcInt, &DeadDefs); 1535 if (!DeadDefs.empty()) 1536 eliminateDeadDefs(); 1537 } else { 1538 ToBeUpdated.insert(SrcReg); 1539 } 1540 return true; 1541 } 1542 1543 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1544 // ProcessImplicitDefs may leave some copies of <undef> values, it only 1545 // removes local variables. When we have a copy like: 1546 // 1547 // %1 = COPY undef %2 1548 // 1549 // We delete the copy and remove the corresponding value number from %1. 1550 // Any uses of that value number are marked as <undef>. 1551 1552 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1553 // CoalescerPair may have a new register class with adjusted subreg indices 1554 // at this point. 1555 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1556 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) 1557 return nullptr; 1558 1559 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1560 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1561 // CopyMI is undef iff SrcReg is not live before the instruction. 1562 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1563 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1564 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1565 if ((SR.LaneMask & SrcMask).none()) 1566 continue; 1567 if (SR.liveAt(Idx)) 1568 return nullptr; 1569 } 1570 } else if (SrcLI.liveAt(Idx)) 1571 return nullptr; 1572 1573 // If the undef copy defines a live-out value (i.e. an input to a PHI def), 1574 // then replace it with an IMPLICIT_DEF. 1575 LiveInterval &DstLI = LIS->getInterval(DstReg); 1576 SlotIndex RegIndex = Idx.getRegSlot(); 1577 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex); 1578 assert(Seg != nullptr && "No segment for defining instruction"); 1579 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) { 1580 if (V->isPHIDef()) { 1581 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1582 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) { 1583 MachineOperand &MO = CopyMI->getOperand(i-1); 1584 if (MO.isReg() && MO.isUse()) 1585 CopyMI->RemoveOperand(i-1); 1586 } 1587 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an " 1588 "implicit def\n"); 1589 return CopyMI; 1590 } 1591 } 1592 1593 // Remove any DstReg segments starting at the instruction. 1594 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1595 1596 // Remove value or merge with previous one in case of a subregister def. 1597 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1598 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1599 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1600 1601 // The affected subregister segments can be removed. 1602 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1603 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1604 if ((SR.LaneMask & DstMask).none()) 1605 continue; 1606 1607 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1608 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1609 SR.removeValNo(SVNI); 1610 } 1611 DstLI.removeEmptySubRanges(); 1612 } else 1613 LIS->removeVRegDefAt(DstLI, RegIndex); 1614 1615 // Mark uses as undef. 1616 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1617 if (MO.isDef() /*|| MO.isUndef()*/) 1618 continue; 1619 const MachineInstr &MI = *MO.getParent(); 1620 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1621 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1622 bool isLive; 1623 if (!UseMask.all() && DstLI.hasSubRanges()) { 1624 isLive = false; 1625 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1626 if ((SR.LaneMask & UseMask).none()) 1627 continue; 1628 if (SR.liveAt(UseIdx)) { 1629 isLive = true; 1630 break; 1631 } 1632 } 1633 } else 1634 isLive = DstLI.liveAt(UseIdx); 1635 if (isLive) 1636 continue; 1637 MO.setIsUndef(true); 1638 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1639 } 1640 1641 // A def of a subregister may be a use of the other subregisters, so 1642 // deleting a def of a subregister may also remove uses. Since CopyMI 1643 // is still part of the function (but about to be erased), mark all 1644 // defs of DstReg in it as <undef>, so that shrinkToUses would 1645 // ignore them. 1646 for (MachineOperand &MO : CopyMI->operands()) 1647 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1648 MO.setIsUndef(true); 1649 LIS->shrinkToUses(&DstLI); 1650 1651 return CopyMI; 1652 } 1653 1654 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1655 MachineOperand &MO, unsigned SubRegIdx) { 1656 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1657 if (MO.isDef()) 1658 Mask = ~Mask; 1659 bool IsUndef = true; 1660 for (const LiveInterval::SubRange &S : Int.subranges()) { 1661 if ((S.LaneMask & Mask).none()) 1662 continue; 1663 if (S.liveAt(UseIdx)) { 1664 IsUndef = false; 1665 break; 1666 } 1667 } 1668 if (IsUndef) { 1669 MO.setIsUndef(true); 1670 // We found out some subregister use is actually reading an undefined 1671 // value. In some cases the whole vreg has become undefined at this 1672 // point so we have to potentially shrink the main range if the 1673 // use was ending a live segment there. 1674 LiveQueryResult Q = Int.Query(UseIdx); 1675 if (Q.valueOut() == nullptr) 1676 ShrinkMainRange = true; 1677 } 1678 } 1679 1680 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, unsigned DstReg, 1681 unsigned SubIdx) { 1682 bool DstIsPhys = Register::isPhysicalRegister(DstReg); 1683 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1684 1685 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1686 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1687 unsigned SubReg = MO.getSubReg(); 1688 if (SubReg == 0 || MO.isUndef()) 1689 continue; 1690 MachineInstr &MI = *MO.getParent(); 1691 if (MI.isDebugValue()) 1692 continue; 1693 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1694 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1695 } 1696 } 1697 1698 SmallPtrSet<MachineInstr*, 8> Visited; 1699 for (MachineRegisterInfo::reg_instr_iterator 1700 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1701 I != E; ) { 1702 MachineInstr *UseMI = &*(I++); 1703 1704 // Each instruction can only be rewritten once because sub-register 1705 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1706 // the UseMI operands removes them from the SrcReg use-def chain, but when 1707 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1708 // operands mentioning the virtual register. 1709 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1710 continue; 1711 1712 SmallVector<unsigned,8> Ops; 1713 bool Reads, Writes; 1714 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1715 1716 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1717 // because SrcReg is a sub-register. 1718 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) 1719 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1720 1721 // Replace SrcReg with DstReg in all UseMI operands. 1722 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1723 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1724 1725 // Adjust <undef> flags in case of sub-register joins. We don't want to 1726 // turn a full def into a read-modify-write sub-register def and vice 1727 // versa. 1728 if (SubIdx && MO.isDef()) 1729 MO.setIsUndef(!Reads); 1730 1731 // A subreg use of a partially undef (super) register may be a complete 1732 // undef use now and then has to be marked that way. 1733 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1734 if (!DstInt->hasSubRanges()) { 1735 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1736 LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1737 LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx); 1738 LaneBitmask UnusedLanes = FullMask & ~UsedLanes; 1739 DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt); 1740 // The unused lanes are just empty live-ranges at this point. 1741 // It is the caller responsibility to set the proper 1742 // dead segments if there is an actual dead def of the 1743 // unused lanes. This may happen with rematerialization. 1744 DstInt->createSubRange(Allocator, UnusedLanes); 1745 } 1746 SlotIndex MIIdx = UseMI->isDebugValue() 1747 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1748 : LIS->getInstructionIndex(*UseMI); 1749 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1750 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1751 } 1752 1753 if (DstIsPhys) 1754 MO.substPhysReg(DstReg, *TRI); 1755 else 1756 MO.substVirtReg(DstReg, SubIdx, *TRI); 1757 } 1758 1759 LLVM_DEBUG({ 1760 dbgs() << "\t\tupdated: "; 1761 if (!UseMI->isDebugValue()) 1762 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1763 dbgs() << *UseMI; 1764 }); 1765 } 1766 } 1767 1768 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1769 // Always join simple intervals that are defined by a single copy from a 1770 // reserved register. This doesn't increase register pressure, so it is 1771 // always beneficial. 1772 if (!MRI->isReserved(CP.getDstReg())) { 1773 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1774 return false; 1775 } 1776 1777 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1778 if (JoinVInt.containsOneValue()) 1779 return true; 1780 1781 LLVM_DEBUG( 1782 dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1783 return false; 1784 } 1785 1786 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1787 Again = false; 1788 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1789 1790 CoalescerPair CP(*TRI); 1791 if (!CP.setRegisters(CopyMI)) { 1792 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n"); 1793 return false; 1794 } 1795 1796 if (CP.getNewRC()) { 1797 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1798 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1799 unsigned SrcIdx = CP.getSrcIdx(); 1800 unsigned DstIdx = CP.getDstIdx(); 1801 if (CP.isFlipped()) { 1802 std::swap(SrcIdx, DstIdx); 1803 std::swap(SrcRC, DstRC); 1804 } 1805 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1806 CP.getNewRC(), *LIS)) { 1807 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1808 return false; 1809 } 1810 } 1811 1812 // Dead code elimination. This really should be handled by MachineDCE, but 1813 // sometimes dead copies slip through, and we can't generate invalid live 1814 // ranges. 1815 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1816 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n"); 1817 DeadDefs.push_back(CopyMI); 1818 eliminateDeadDefs(); 1819 return true; 1820 } 1821 1822 // Eliminate undefs. 1823 if (!CP.isPhys()) { 1824 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce. 1825 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) { 1826 if (UndefMI->isImplicitDef()) 1827 return false; 1828 deleteInstr(CopyMI); 1829 return false; // Not coalescable. 1830 } 1831 } 1832 1833 // Coalesced copies are normally removed immediately, but transformations 1834 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1835 // When that happens, just join the values and remove the copy. 1836 if (CP.getSrcReg() == CP.getDstReg()) { 1837 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1838 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1839 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1840 LiveQueryResult LRQ = LI.Query(CopyIdx); 1841 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1842 VNInfo *ReadVNI = LRQ.valueIn(); 1843 assert(ReadVNI && "No value before copy and no <undef> flag."); 1844 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1845 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1846 1847 // Process subregister liveranges. 1848 for (LiveInterval::SubRange &S : LI.subranges()) { 1849 LiveQueryResult SLRQ = S.Query(CopyIdx); 1850 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1851 VNInfo *SReadVNI = SLRQ.valueIn(); 1852 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1853 } 1854 } 1855 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1856 } 1857 deleteInstr(CopyMI); 1858 return true; 1859 } 1860 1861 // Enforce policies. 1862 if (CP.isPhys()) { 1863 LLVM_DEBUG(dbgs() << "\tConsidering merging " 1864 << printReg(CP.getSrcReg(), TRI) << " with " 1865 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'); 1866 if (!canJoinPhys(CP)) { 1867 // Before giving up coalescing, if definition of source is defined by 1868 // trivial computation, try rematerializing it. 1869 bool IsDefCopy; 1870 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1871 return true; 1872 if (IsDefCopy) 1873 Again = true; // May be possible to coalesce later. 1874 return false; 1875 } 1876 } else { 1877 // When possible, let DstReg be the larger interval. 1878 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1879 LIS->getInterval(CP.getDstReg()).size()) 1880 CP.flip(); 1881 1882 LLVM_DEBUG({ 1883 dbgs() << "\tConsidering merging to " 1884 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1885 if (CP.getDstIdx() && CP.getSrcIdx()) 1886 dbgs() << printReg(CP.getDstReg()) << " in " 1887 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1888 << printReg(CP.getSrcReg()) << " in " 1889 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1890 else 1891 dbgs() << printReg(CP.getSrcReg(), TRI) << " in " 1892 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1893 }); 1894 } 1895 1896 ShrinkMask = LaneBitmask::getNone(); 1897 ShrinkMainRange = false; 1898 1899 // Okay, attempt to join these two intervals. On failure, this returns false. 1900 // Otherwise, if one of the intervals being joined is a physreg, this method 1901 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1902 // been modified, so we can use this information below to update aliases. 1903 if (!joinIntervals(CP)) { 1904 // Coalescing failed. 1905 1906 // If definition of source is defined by trivial computation, try 1907 // rematerializing it. 1908 bool IsDefCopy; 1909 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1910 return true; 1911 1912 // If we can eliminate the copy without merging the live segments, do so 1913 // now. 1914 if (!CP.isPartial() && !CP.isPhys()) { 1915 bool Changed = adjustCopiesBackFrom(CP, CopyMI); 1916 bool Shrink = false; 1917 if (!Changed) 1918 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI); 1919 if (Changed) { 1920 deleteInstr(CopyMI); 1921 if (Shrink) { 1922 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1923 LiveInterval &DstLI = LIS->getInterval(DstReg); 1924 shrinkToUses(&DstLI); 1925 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n'); 1926 } 1927 LLVM_DEBUG(dbgs() << "\tTrivial!\n"); 1928 return true; 1929 } 1930 } 1931 1932 // Try and see if we can partially eliminate the copy by moving the copy to 1933 // its predecessor. 1934 if (!CP.isPartial() && !CP.isPhys()) 1935 if (removePartialRedundancy(CP, *CopyMI)) 1936 return true; 1937 1938 // Otherwise, we are unable to join the intervals. 1939 LLVM_DEBUG(dbgs() << "\tInterference!\n"); 1940 Again = true; // May be possible to coalesce later. 1941 return false; 1942 } 1943 1944 // Coalescing to a virtual register that is of a sub-register class of the 1945 // other. Make sure the resulting register is set to the right register class. 1946 if (CP.isCrossClass()) { 1947 ++numCrossRCs; 1948 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1949 } 1950 1951 // Removing sub-register copies can ease the register class constraints. 1952 // Make sure we attempt to inflate the register class of DstReg. 1953 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1954 InflateRegs.push_back(CP.getDstReg()); 1955 1956 // CopyMI has been erased by joinIntervals at this point. Remove it from 1957 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1958 // to the work list. This keeps ErasedInstrs from growing needlessly. 1959 ErasedInstrs.erase(CopyMI); 1960 1961 // Rewrite all SrcReg operands to DstReg. 1962 // Also update DstReg operands to include DstIdx if it is set. 1963 if (CP.getDstIdx()) 1964 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1965 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1966 1967 // Shrink subregister ranges if necessary. 1968 if (ShrinkMask.any()) { 1969 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1970 for (LiveInterval::SubRange &S : LI.subranges()) { 1971 if ((S.LaneMask & ShrinkMask).none()) 1972 continue; 1973 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1974 << ")\n"); 1975 LIS->shrinkToUses(S, LI.reg); 1976 } 1977 LI.removeEmptySubRanges(); 1978 } 1979 1980 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live 1981 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval 1982 // is not up-to-date, need to update the merged live interval here. 1983 if (ToBeUpdated.count(CP.getSrcReg())) 1984 ShrinkMainRange = true; 1985 1986 if (ShrinkMainRange) { 1987 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1988 shrinkToUses(&LI); 1989 } 1990 1991 // SrcReg is guaranteed to be the register whose live interval that is 1992 // being merged. 1993 LIS->removeInterval(CP.getSrcReg()); 1994 1995 // Update regalloc hint. 1996 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1997 1998 LLVM_DEBUG({ 1999 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 2000 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 2001 dbgs() << "\tResult = "; 2002 if (CP.isPhys()) 2003 dbgs() << printReg(CP.getDstReg(), TRI); 2004 else 2005 dbgs() << LIS->getInterval(CP.getDstReg()); 2006 dbgs() << '\n'; 2007 }); 2008 2009 ++numJoins; 2010 return true; 2011 } 2012 2013 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 2014 unsigned DstReg = CP.getDstReg(); 2015 unsigned SrcReg = CP.getSrcReg(); 2016 assert(CP.isPhys() && "Must be a physreg copy"); 2017 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 2018 LiveInterval &RHS = LIS->getInterval(SrcReg); 2019 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 2020 2021 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 2022 2023 // Optimization for reserved registers like ESP. We can only merge with a 2024 // reserved physreg if RHS has a single value that is a copy of DstReg. 2025 // The live range of the reserved register will look like a set of dead defs 2026 // - we don't properly track the live range of reserved registers. 2027 2028 // Deny any overlapping intervals. This depends on all the reserved 2029 // register live ranges to look like dead defs. 2030 if (!MRI->isConstantPhysReg(DstReg)) { 2031 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2032 // Abort if not all the regunits are reserved. 2033 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 2034 if (!MRI->isReserved(*RI)) 2035 return false; 2036 } 2037 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 2038 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) 2039 << '\n'); 2040 return false; 2041 } 2042 } 2043 2044 // We must also check for overlaps with regmask clobbers. 2045 BitVector RegMaskUsable; 2046 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 2047 !RegMaskUsable.test(DstReg)) { 2048 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n"); 2049 return false; 2050 } 2051 } 2052 2053 // Skip any value computations, we are not adding new values to the 2054 // reserved register. Also skip merging the live ranges, the reserved 2055 // register live range doesn't need to be accurate as long as all the 2056 // defs are there. 2057 2058 // Delete the identity copy. 2059 MachineInstr *CopyMI; 2060 if (CP.isFlipped()) { 2061 // Physreg is copied into vreg 2062 // %y = COPY %physreg_x 2063 // ... //< no other def of %physreg_x here 2064 // use %y 2065 // => 2066 // ... 2067 // use %physreg_x 2068 CopyMI = MRI->getVRegDef(SrcReg); 2069 } else { 2070 // VReg is copied into physreg: 2071 // %y = def 2072 // ... //< no other def or use of %physreg_x here 2073 // %physreg_x = COPY %y 2074 // => 2075 // %physreg_x = def 2076 // ... 2077 if (!MRI->hasOneNonDBGUse(SrcReg)) { 2078 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 2079 return false; 2080 } 2081 2082 if (!LIS->intervalIsInOneMBB(RHS)) { 2083 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n"); 2084 return false; 2085 } 2086 2087 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 2088 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 2089 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 2090 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 2091 2092 if (!MRI->isConstantPhysReg(DstReg)) { 2093 // We checked above that there are no interfering defs of the physical 2094 // register. However, for this case, where we intend to move up the def of 2095 // the physical register, we also need to check for interfering uses. 2096 SlotIndexes *Indexes = LIS->getSlotIndexes(); 2097 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 2098 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 2099 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 2100 if (MI->readsRegister(DstReg, TRI)) { 2101 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 2102 return false; 2103 } 2104 } 2105 } 2106 2107 // We're going to remove the copy which defines a physical reserved 2108 // register, so remove its valno, etc. 2109 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of " 2110 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n"); 2111 2112 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 2113 // Create a new dead def at the new def location. 2114 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2115 LiveRange &LR = LIS->getRegUnit(*UI); 2116 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 2117 } 2118 } 2119 2120 deleteInstr(CopyMI); 2121 2122 // We don't track kills for reserved registers. 2123 MRI->clearKillFlags(CP.getSrcReg()); 2124 2125 return true; 2126 } 2127 2128 //===----------------------------------------------------------------------===// 2129 // Interference checking and interval joining 2130 //===----------------------------------------------------------------------===// 2131 // 2132 // In the easiest case, the two live ranges being joined are disjoint, and 2133 // there is no interference to consider. It is quite common, though, to have 2134 // overlapping live ranges, and we need to check if the interference can be 2135 // resolved. 2136 // 2137 // The live range of a single SSA value forms a sub-tree of the dominator tree. 2138 // This means that two SSA values overlap if and only if the def of one value 2139 // is contained in the live range of the other value. As a special case, the 2140 // overlapping values can be defined at the same index. 2141 // 2142 // The interference from an overlapping def can be resolved in these cases: 2143 // 2144 // 1. Coalescable copies. The value is defined by a copy that would become an 2145 // identity copy after joining SrcReg and DstReg. The copy instruction will 2146 // be removed, and the value will be merged with the source value. 2147 // 2148 // There can be several copies back and forth, causing many values to be 2149 // merged into one. We compute a list of ultimate values in the joined live 2150 // range as well as a mappings from the old value numbers. 2151 // 2152 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 2153 // predecessors have a live out value. It doesn't cause real interference, 2154 // and can be merged into the value it overlaps. Like a coalescable copy, it 2155 // can be erased after joining. 2156 // 2157 // 3. Copy of external value. The overlapping def may be a copy of a value that 2158 // is already in the other register. This is like a coalescable copy, but 2159 // the live range of the source register must be trimmed after erasing the 2160 // copy instruction: 2161 // 2162 // %src = COPY %ext 2163 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 2164 // 2165 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 2166 // defining one lane at a time: 2167 // 2168 // %dst:ssub0<def,read-undef> = FOO 2169 // %src = BAR 2170 // %dst:ssub1 = COPY %src 2171 // 2172 // The live range of %src overlaps the %dst value defined by FOO, but 2173 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 2174 // which was undef anyway. 2175 // 2176 // The value mapping is more complicated in this case. The final live range 2177 // will have different value numbers for both FOO and BAR, but there is no 2178 // simple mapping from old to new values. It may even be necessary to add 2179 // new PHI values. 2180 // 2181 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 2182 // is live, but never read. This can happen because we don't compute 2183 // individual live ranges per lane. 2184 // 2185 // %dst = FOO 2186 // %src = BAR 2187 // %dst:ssub1 = COPY %src 2188 // 2189 // This kind of interference is only resolved locally. If the clobbered 2190 // lane value escapes the block, the join is aborted. 2191 2192 namespace { 2193 2194 /// Track information about values in a single virtual register about to be 2195 /// joined. Objects of this class are always created in pairs - one for each 2196 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 2197 /// pair) 2198 class JoinVals { 2199 /// Live range we work on. 2200 LiveRange &LR; 2201 2202 /// (Main) register we work on. 2203 const unsigned Reg; 2204 2205 /// Reg (and therefore the values in this liverange) will end up as 2206 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 2207 /// CP.SrcIdx. 2208 const unsigned SubIdx; 2209 2210 /// The LaneMask that this liverange will occupy the coalesced register. May 2211 /// be smaller than the lanemask produced by SubIdx when merging subranges. 2212 const LaneBitmask LaneMask; 2213 2214 /// This is true when joining sub register ranges, false when joining main 2215 /// ranges. 2216 const bool SubRangeJoin; 2217 2218 /// Whether the current LiveInterval tracks subregister liveness. 2219 const bool TrackSubRegLiveness; 2220 2221 /// Values that will be present in the final live range. 2222 SmallVectorImpl<VNInfo*> &NewVNInfo; 2223 2224 const CoalescerPair &CP; 2225 LiveIntervals *LIS; 2226 SlotIndexes *Indexes; 2227 const TargetRegisterInfo *TRI; 2228 2229 /// Value number assignments. Maps value numbers in LI to entries in 2230 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 2231 SmallVector<int, 8> Assignments; 2232 2233 public: 2234 /// Conflict resolution for overlapping values. 2235 enum ConflictResolution { 2236 /// No overlap, simply keep this value. 2237 CR_Keep, 2238 2239 /// Merge this value into OtherVNI and erase the defining instruction. 2240 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 2241 /// values. 2242 CR_Erase, 2243 2244 /// Merge this value into OtherVNI but keep the defining instruction. 2245 /// This is for the special case where OtherVNI is defined by the same 2246 /// instruction. 2247 CR_Merge, 2248 2249 /// Keep this value, and have it replace OtherVNI where possible. This 2250 /// complicates value mapping since OtherVNI maps to two different values 2251 /// before and after this def. 2252 /// Used when clobbering undefined or dead lanes. 2253 CR_Replace, 2254 2255 /// Unresolved conflict. Visit later when all values have been mapped. 2256 CR_Unresolved, 2257 2258 /// Unresolvable conflict. Abort the join. 2259 CR_Impossible 2260 }; 2261 2262 private: 2263 /// Per-value info for LI. The lane bit masks are all relative to the final 2264 /// joined register, so they can be compared directly between SrcReg and 2265 /// DstReg. 2266 struct Val { 2267 ConflictResolution Resolution = CR_Keep; 2268 2269 /// Lanes written by this def, 0 for unanalyzed values. 2270 LaneBitmask WriteLanes; 2271 2272 /// Lanes with defined values in this register. Other lanes are undef and 2273 /// safe to clobber. 2274 LaneBitmask ValidLanes; 2275 2276 /// Value in LI being redefined by this def. 2277 VNInfo *RedefVNI = nullptr; 2278 2279 /// Value in the other live range that overlaps this def, if any. 2280 VNInfo *OtherVNI = nullptr; 2281 2282 /// Is this value an IMPLICIT_DEF that can be erased? 2283 /// 2284 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2285 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2286 /// safely erased if they are overlapping a live value in the other live 2287 /// interval. 2288 /// 2289 /// Weird control flow graphs and incomplete PHI handling in 2290 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2291 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2292 /// normal values. 2293 bool ErasableImplicitDef = false; 2294 2295 /// True when the live range of this value will be pruned because of an 2296 /// overlapping CR_Replace value in the other live range. 2297 bool Pruned = false; 2298 2299 /// True once Pruned above has been computed. 2300 bool PrunedComputed = false; 2301 2302 /// True if this value is determined to be identical to OtherVNI 2303 /// (in valuesIdentical). This is used with CR_Erase where the erased 2304 /// copy is redundant, i.e. the source value is already the same as 2305 /// the destination. In such cases the subranges need to be updated 2306 /// properly. See comment at pruneSubRegValues for more info. 2307 bool Identical = false; 2308 2309 Val() = default; 2310 2311 bool isAnalyzed() const { return WriteLanes.any(); } 2312 }; 2313 2314 /// One entry per value number in LI. 2315 SmallVector<Val, 8> Vals; 2316 2317 /// Compute the bitmask of lanes actually written by DefMI. 2318 /// Set Redef if there are any partial register definitions that depend on the 2319 /// previous value of the register. 2320 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2321 2322 /// Find the ultimate value that VNI was copied from. 2323 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 2324 2325 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const; 2326 2327 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2328 /// Return a conflict resolution when possible, but leave the hard cases as 2329 /// CR_Unresolved. 2330 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2331 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2332 /// The recursion always goes upwards in the dominator tree, making loops 2333 /// impossible. 2334 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2335 2336 /// Compute the value assignment for ValNo in RI. 2337 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2338 /// the stack. 2339 void computeAssignment(unsigned ValNo, JoinVals &Other); 2340 2341 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2342 /// the extent of the tainted lanes in the block. 2343 /// 2344 /// Multiple values in Other.LR can be affected since partial redefinitions 2345 /// can preserve previously tainted lanes. 2346 /// 2347 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2348 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2349 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2350 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2351 /// 2352 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2353 /// entry to TaintedVals. 2354 /// 2355 /// Returns false if the tainted lanes extend beyond the basic block. 2356 bool 2357 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2358 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); 2359 2360 /// Return true if MI uses any of the given Lanes from Reg. 2361 /// This does not include partial redefinitions of Reg. 2362 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; 2363 2364 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2365 /// be pruned: 2366 /// 2367 /// %dst = COPY %src 2368 /// %src = COPY %dst <-- This value to be pruned. 2369 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2370 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2371 2372 public: 2373 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 2374 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 2375 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2376 bool TrackSubRegLiveness) 2377 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2378 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2379 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2380 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {} 2381 2382 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2383 /// Returns false if any conflicts were impossible to resolve. 2384 bool mapValues(JoinVals &Other); 2385 2386 /// Try to resolve conflicts that require all values to be mapped. 2387 /// Returns false if any conflicts were impossible to resolve. 2388 bool resolveConflicts(JoinVals &Other); 2389 2390 /// Prune the live range of values in Other.LR where they would conflict with 2391 /// CR_Replace values in LR. Collect end points for restoring the live range 2392 /// after joining. 2393 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2394 bool changeInstrs); 2395 2396 /// Removes subranges starting at copies that get removed. This sometimes 2397 /// happens when undefined subranges are copied around. These ranges contain 2398 /// no useful information and can be removed. 2399 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2400 2401 /// Pruning values in subranges can lead to removing segments in these 2402 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2403 /// the main range also need to be removed. This function will mark 2404 /// the corresponding values in the main range as pruned, so that 2405 /// eraseInstrs can do the final cleanup. 2406 /// The parameter @p LI must be the interval whose main range is the 2407 /// live range LR. 2408 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2409 2410 /// Erase any machine instructions that have been coalesced away. 2411 /// Add erased instructions to ErasedInstrs. 2412 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2413 /// the erased instrs. 2414 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2415 SmallVectorImpl<unsigned> &ShrinkRegs, 2416 LiveInterval *LI = nullptr); 2417 2418 /// Remove liverange defs at places where implicit defs will be removed. 2419 void removeImplicitDefs(); 2420 2421 /// Get the value assignments suitable for passing to LiveInterval::join. 2422 const int *getAssignments() const { return Assignments.data(); } 2423 2424 /// Get the conflict resolution for a value number. 2425 ConflictResolution getResolution(unsigned Num) const { 2426 return Vals[Num].Resolution; 2427 } 2428 }; 2429 2430 } // end anonymous namespace 2431 2432 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2433 const { 2434 LaneBitmask L; 2435 for (const MachineOperand &MO : DefMI->operands()) { 2436 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2437 continue; 2438 L |= TRI->getSubRegIndexLaneMask( 2439 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2440 if (MO.readsReg()) 2441 Redef = true; 2442 } 2443 return L; 2444 } 2445 2446 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 2447 const VNInfo *VNI) const { 2448 unsigned TrackReg = Reg; 2449 2450 while (!VNI->isPHIDef()) { 2451 SlotIndex Def = VNI->def; 2452 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2453 assert(MI && "No defining instruction"); 2454 if (!MI->isFullCopy()) 2455 return std::make_pair(VNI, TrackReg); 2456 Register SrcReg = MI->getOperand(1).getReg(); 2457 if (!Register::isVirtualRegister(SrcReg)) 2458 return std::make_pair(VNI, TrackReg); 2459 2460 const LiveInterval &LI = LIS->getInterval(SrcReg); 2461 const VNInfo *ValueIn; 2462 // No subrange involved. 2463 if (!SubRangeJoin || !LI.hasSubRanges()) { 2464 LiveQueryResult LRQ = LI.Query(Def); 2465 ValueIn = LRQ.valueIn(); 2466 } else { 2467 // Query subranges. Ensure that all matching ones take us to the same def 2468 // (allowing some of them to be undef). 2469 ValueIn = nullptr; 2470 for (const LiveInterval::SubRange &S : LI.subranges()) { 2471 // Transform lanemask to a mask in the joined live interval. 2472 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2473 if ((SMask & LaneMask).none()) 2474 continue; 2475 LiveQueryResult LRQ = S.Query(Def); 2476 if (!ValueIn) { 2477 ValueIn = LRQ.valueIn(); 2478 continue; 2479 } 2480 if (LRQ.valueIn() && ValueIn != LRQ.valueIn()) 2481 return std::make_pair(VNI, TrackReg); 2482 } 2483 } 2484 if (ValueIn == nullptr) { 2485 // Reaching an undefined value is legitimate, for example: 2486 // 2487 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef 2488 // 2 %1 = COPY %0 ;; %1 is defined here. 2489 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition, 2490 // ;; but it's equivalent to "undef". 2491 return std::make_pair(nullptr, SrcReg); 2492 } 2493 VNI = ValueIn; 2494 TrackReg = SrcReg; 2495 } 2496 return std::make_pair(VNI, TrackReg); 2497 } 2498 2499 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2500 const JoinVals &Other) const { 2501 const VNInfo *Orig0; 2502 unsigned Reg0; 2503 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2504 if (Orig0 == Value1 && Reg0 == Other.Reg) 2505 return true; 2506 2507 const VNInfo *Orig1; 2508 unsigned Reg1; 2509 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2510 // If both values are undefined, and the source registers are the same 2511 // register, the values are identical. Filter out cases where only one 2512 // value is defined. 2513 if (Orig0 == nullptr || Orig1 == nullptr) 2514 return Orig0 == Orig1 && Reg0 == Reg1; 2515 2516 // The values are equal if they are defined at the same place and use the 2517 // same register. Note that we cannot compare VNInfos directly as some of 2518 // them might be from a copy created in mergeSubRangeInto() while the other 2519 // is from the original LiveInterval. 2520 return Orig0->def == Orig1->def && Reg0 == Reg1; 2521 } 2522 2523 JoinVals::ConflictResolution 2524 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2525 Val &V = Vals[ValNo]; 2526 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2527 VNInfo *VNI = LR.getValNumInfo(ValNo); 2528 if (VNI->isUnused()) { 2529 V.WriteLanes = LaneBitmask::getAll(); 2530 return CR_Keep; 2531 } 2532 2533 // Get the instruction defining this value, compute the lanes written. 2534 const MachineInstr *DefMI = nullptr; 2535 if (VNI->isPHIDef()) { 2536 // Conservatively assume that all lanes in a PHI are valid. 2537 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2538 : TRI->getSubRegIndexLaneMask(SubIdx); 2539 V.ValidLanes = V.WriteLanes = Lanes; 2540 } else { 2541 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2542 assert(DefMI != nullptr); 2543 if (SubRangeJoin) { 2544 // We don't care about the lanes when joining subregister ranges. 2545 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2546 if (DefMI->isImplicitDef()) { 2547 V.ValidLanes = LaneBitmask::getNone(); 2548 V.ErasableImplicitDef = true; 2549 } 2550 } else { 2551 bool Redef = false; 2552 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2553 2554 // If this is a read-modify-write instruction, there may be more valid 2555 // lanes than the ones written by this instruction. 2556 // This only covers partial redef operands. DefMI may have normal use 2557 // operands reading the register. They don't contribute valid lanes. 2558 // 2559 // This adds ssub1 to the set of valid lanes in %src: 2560 // 2561 // %src:ssub1 = FOO 2562 // 2563 // This leaves only ssub1 valid, making any other lanes undef: 2564 // 2565 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2566 // 2567 // The <read-undef> flag on the def operand means that old lane values are 2568 // not important. 2569 if (Redef) { 2570 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2571 assert((TrackSubRegLiveness || V.RedefVNI) && 2572 "Instruction is reading nonexistent value"); 2573 if (V.RedefVNI != nullptr) { 2574 computeAssignment(V.RedefVNI->id, Other); 2575 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2576 } 2577 } 2578 2579 // An IMPLICIT_DEF writes undef values. 2580 if (DefMI->isImplicitDef()) { 2581 // We normally expect IMPLICIT_DEF values to be live only until the end 2582 // of their block. If the value is really live longer and gets pruned in 2583 // another block, this flag is cleared again. 2584 // 2585 // Clearing the valid lanes is deferred until it is sure this can be 2586 // erased. 2587 V.ErasableImplicitDef = true; 2588 } 2589 } 2590 } 2591 2592 // Find the value in Other that overlaps VNI->def, if any. 2593 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2594 2595 // It is possible that both values are defined by the same instruction, or 2596 // the values are PHIs defined in the same block. When that happens, the two 2597 // values should be merged into one, but not into any preceding value. 2598 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2599 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2600 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2601 2602 // One value stays, the other is merged. Keep the earlier one, or the first 2603 // one we see. 2604 if (OtherVNI->def < VNI->def) 2605 Other.computeAssignment(OtherVNI->id, *this); 2606 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2607 // This is an early-clobber def overlapping a live-in value in the other 2608 // register. Not mergeable. 2609 V.OtherVNI = OtherLRQ.valueIn(); 2610 return CR_Impossible; 2611 } 2612 V.OtherVNI = OtherVNI; 2613 Val &OtherV = Other.Vals[OtherVNI->id]; 2614 // Keep this value, check for conflicts when analyzing OtherVNI. 2615 if (!OtherV.isAnalyzed()) 2616 return CR_Keep; 2617 // Both sides have been analyzed now. 2618 // Allow overlapping PHI values. Any real interference would show up in a 2619 // predecessor, the PHI itself can't introduce any conflicts. 2620 if (VNI->isPHIDef()) 2621 return CR_Merge; 2622 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2623 // Overlapping lanes can't be resolved. 2624 return CR_Impossible; 2625 else 2626 return CR_Merge; 2627 } 2628 2629 // No simultaneous def. Is Other live at the def? 2630 V.OtherVNI = OtherLRQ.valueIn(); 2631 if (!V.OtherVNI) 2632 // No overlap, no conflict. 2633 return CR_Keep; 2634 2635 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2636 2637 // We have overlapping values, or possibly a kill of Other. 2638 // Recursively compute assignments up the dominator tree. 2639 Other.computeAssignment(V.OtherVNI->id, *this); 2640 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2641 2642 if (OtherV.ErasableImplicitDef) { 2643 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2644 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2645 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2646 // technically. 2647 // 2648 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2649 // to erase the IMPLICIT_DEF instruction. 2650 if (DefMI && 2651 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2652 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2653 << " extends into " 2654 << printMBBReference(*DefMI->getParent()) 2655 << ", keeping it.\n"); 2656 OtherV.ErasableImplicitDef = false; 2657 } else { 2658 // We deferred clearing these lanes in case we needed to save them 2659 OtherV.ValidLanes &= ~OtherV.WriteLanes; 2660 } 2661 } 2662 2663 // Allow overlapping PHI values. Any real interference would show up in a 2664 // predecessor, the PHI itself can't introduce any conflicts. 2665 if (VNI->isPHIDef()) 2666 return CR_Replace; 2667 2668 // Check for simple erasable conflicts. 2669 if (DefMI->isImplicitDef()) { 2670 // We need the def for the subregister if there is nothing else live at the 2671 // subrange at this point. 2672 if (TrackSubRegLiveness 2673 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none()) 2674 return CR_Replace; 2675 return CR_Erase; 2676 } 2677 2678 // Include the non-conflict where DefMI is a coalescable copy that kills 2679 // OtherVNI. We still want the copy erased and value numbers merged. 2680 if (CP.isCoalescable(DefMI)) { 2681 // Some of the lanes copied from OtherVNI may be undef, making them undef 2682 // here too. 2683 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2684 return CR_Erase; 2685 } 2686 2687 // This may not be a real conflict if DefMI simply kills Other and defines 2688 // VNI. 2689 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2690 return CR_Keep; 2691 2692 // Handle the case where VNI and OtherVNI can be proven to be identical: 2693 // 2694 // %other = COPY %ext 2695 // %this = COPY %ext <-- Erase this copy 2696 // 2697 if (DefMI->isFullCopy() && !CP.isPartial() && 2698 valuesIdentical(VNI, V.OtherVNI, Other)) { 2699 V.Identical = true; 2700 return CR_Erase; 2701 } 2702 2703 // The remaining checks apply to the lanes, which aren't tracked here. This 2704 // was already decided to be OK via the following CR_Replace condition. 2705 // CR_Replace. 2706 if (SubRangeJoin) 2707 return CR_Replace; 2708 2709 // If the lanes written by this instruction were all undef in OtherVNI, it is 2710 // still safe to join the live ranges. This can't be done with a simple value 2711 // mapping, though - OtherVNI will map to multiple values: 2712 // 2713 // 1 %dst:ssub0 = FOO <-- OtherVNI 2714 // 2 %src = BAR <-- VNI 2715 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy. 2716 // 4 BAZ killed %dst 2717 // 5 QUUX killed %src 2718 // 2719 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2720 // handles this complex value mapping. 2721 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2722 return CR_Replace; 2723 2724 // If the other live range is killed by DefMI and the live ranges are still 2725 // overlapping, it must be because we're looking at an early clobber def: 2726 // 2727 // %dst<def,early-clobber> = ASM killed %src 2728 // 2729 // In this case, it is illegal to merge the two live ranges since the early 2730 // clobber def would clobber %src before it was read. 2731 if (OtherLRQ.isKill()) { 2732 // This case where the def doesn't overlap the kill is handled above. 2733 assert(VNI->def.isEarlyClobber() && 2734 "Only early clobber defs can overlap a kill"); 2735 return CR_Impossible; 2736 } 2737 2738 // VNI is clobbering live lanes in OtherVNI, but there is still the 2739 // possibility that no instructions actually read the clobbered lanes. 2740 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2741 // Otherwise Other.RI wouldn't be live here. 2742 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2743 return CR_Impossible; 2744 2745 // We need to verify that no instructions are reading the clobbered lanes. To 2746 // save compile time, we'll only check that locally. Don't allow the tainted 2747 // value to escape the basic block. 2748 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2749 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2750 return CR_Impossible; 2751 2752 // There are still some things that could go wrong besides clobbered lanes 2753 // being read, for example OtherVNI may be only partially redefined in MBB, 2754 // and some clobbered lanes could escape the block. Save this analysis for 2755 // resolveConflicts() when all values have been mapped. We need to know 2756 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2757 // that now - the recursive analyzeValue() calls must go upwards in the 2758 // dominator tree. 2759 return CR_Unresolved; 2760 } 2761 2762 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2763 Val &V = Vals[ValNo]; 2764 if (V.isAnalyzed()) { 2765 // Recursion should always move up the dominator tree, so ValNo is not 2766 // supposed to reappear before it has been assigned. 2767 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2768 return; 2769 } 2770 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2771 case CR_Erase: 2772 case CR_Merge: 2773 // Merge this ValNo into OtherVNI. 2774 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2775 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2776 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2777 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@' 2778 << LR.getValNumInfo(ValNo)->def << " into " 2779 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2780 << V.OtherVNI->def << " --> @" 2781 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2782 break; 2783 case CR_Replace: 2784 case CR_Unresolved: { 2785 // The other value is going to be pruned if this join is successful. 2786 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2787 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2788 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2789 // its lanes. 2790 if (OtherV.ErasableImplicitDef && 2791 TrackSubRegLiveness && 2792 (OtherV.WriteLanes & ~V.ValidLanes).any()) { 2793 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n"); 2794 2795 OtherV.ErasableImplicitDef = false; 2796 // The valid lanes written by the implicit_def were speculatively cleared 2797 // before, so make this more conservative. It may be better to track this, 2798 // I haven't found a testcase where it matters. 2799 OtherV.ValidLanes = LaneBitmask::getAll(); 2800 } 2801 2802 OtherV.Pruned = true; 2803 LLVM_FALLTHROUGH; 2804 } 2805 default: 2806 // This value number needs to go in the final joined live range. 2807 Assignments[ValNo] = NewVNInfo.size(); 2808 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2809 break; 2810 } 2811 } 2812 2813 bool JoinVals::mapValues(JoinVals &Other) { 2814 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2815 computeAssignment(i, Other); 2816 if (Vals[i].Resolution == CR_Impossible) { 2817 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i 2818 << '@' << LR.getValNumInfo(i)->def << '\n'); 2819 return false; 2820 } 2821 } 2822 return true; 2823 } 2824 2825 bool JoinVals:: 2826 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2827 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { 2828 VNInfo *VNI = LR.getValNumInfo(ValNo); 2829 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2830 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2831 2832 // Scan Other.LR from VNI.def to MBBEnd. 2833 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2834 assert(OtherI != Other.LR.end() && "No conflict?"); 2835 do { 2836 // OtherI is pointing to a tainted value. Abort the join if the tainted 2837 // lanes escape the block. 2838 SlotIndex End = OtherI->end; 2839 if (End >= MBBEnd) { 2840 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':' 2841 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2842 return false; 2843 } 2844 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':' 2845 << OtherI->valno->id << '@' << OtherI->start << " to " 2846 << End << '\n'); 2847 // A dead def is not a problem. 2848 if (End.isDead()) 2849 break; 2850 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2851 2852 // Check for another def in the MBB. 2853 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2854 break; 2855 2856 // Lanes written by the new def are no longer tainted. 2857 const Val &OV = Other.Vals[OtherI->valno->id]; 2858 TaintedLanes &= ~OV.WriteLanes; 2859 if (!OV.RedefVNI) 2860 break; 2861 } while (TaintedLanes.any()); 2862 return true; 2863 } 2864 2865 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, 2866 LaneBitmask Lanes) const { 2867 if (MI.isDebugInstr()) 2868 return false; 2869 for (const MachineOperand &MO : MI.operands()) { 2870 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2871 continue; 2872 if (!MO.readsReg()) 2873 continue; 2874 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2875 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2876 return true; 2877 } 2878 return false; 2879 } 2880 2881 bool JoinVals::resolveConflicts(JoinVals &Other) { 2882 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2883 Val &V = Vals[i]; 2884 assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); 2885 if (V.Resolution != CR_Unresolved) 2886 continue; 2887 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@' 2888 << LR.getValNumInfo(i)->def 2889 << ' ' << PrintLaneMask(LaneMask) << '\n'); 2890 if (SubRangeJoin) 2891 return false; 2892 2893 ++NumLaneConflicts; 2894 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2895 VNInfo *VNI = LR.getValNumInfo(i); 2896 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2897 2898 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2899 // join, those lanes will be tainted with a wrong value. Get the extent of 2900 // the tainted lanes. 2901 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2902 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2903 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2904 // Tainted lanes would extend beyond the basic block. 2905 return false; 2906 2907 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2908 2909 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2910 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2911 MachineBasicBlock::iterator MI = MBB->begin(); 2912 if (!VNI->isPHIDef()) { 2913 MI = Indexes->getInstructionFromIndex(VNI->def); 2914 // No need to check the instruction defining VNI for reads. 2915 ++MI; 2916 } 2917 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2918 "Interference ends on VNI->def. Should have been handled earlier"); 2919 MachineInstr *LastMI = 2920 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2921 assert(LastMI && "Range must end at a proper instruction"); 2922 unsigned TaintNum = 0; 2923 while (true) { 2924 assert(MI != MBB->end() && "Bad LastMI"); 2925 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2926 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2927 return false; 2928 } 2929 // LastMI is the last instruction to use the current value. 2930 if (&*MI == LastMI) { 2931 if (++TaintNum == TaintExtent.size()) 2932 break; 2933 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2934 assert(LastMI && "Range must end at a proper instruction"); 2935 TaintedLanes = TaintExtent[TaintNum].second; 2936 } 2937 ++MI; 2938 } 2939 2940 // The tainted lanes are unused. 2941 V.Resolution = CR_Replace; 2942 ++NumLaneResolves; 2943 } 2944 return true; 2945 } 2946 2947 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2948 Val &V = Vals[ValNo]; 2949 if (V.Pruned || V.PrunedComputed) 2950 return V.Pruned; 2951 2952 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2953 return V.Pruned; 2954 2955 // Follow copies up the dominator tree and check if any intermediate value 2956 // has been pruned. 2957 V.PrunedComputed = true; 2958 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2959 return V.Pruned; 2960 } 2961 2962 void JoinVals::pruneValues(JoinVals &Other, 2963 SmallVectorImpl<SlotIndex> &EndPoints, 2964 bool changeInstrs) { 2965 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2966 SlotIndex Def = LR.getValNumInfo(i)->def; 2967 switch (Vals[i].Resolution) { 2968 case CR_Keep: 2969 break; 2970 case CR_Replace: { 2971 // This value takes precedence over the value in Other.LR. 2972 LIS->pruneValue(Other.LR, Def, &EndPoints); 2973 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2974 // instructions are only inserted to provide a live-out value for PHI 2975 // predecessors, so the instruction should simply go away once its value 2976 // has been replaced. 2977 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2978 bool EraseImpDef = OtherV.ErasableImplicitDef && 2979 OtherV.Resolution == CR_Keep; 2980 if (!Def.isBlock()) { 2981 if (changeInstrs) { 2982 // Remove <def,read-undef> flags. This def is now a partial redef. 2983 // Also remove dead flags since the joined live range will 2984 // continue past this instruction. 2985 for (MachineOperand &MO : 2986 Indexes->getInstructionFromIndex(Def)->operands()) { 2987 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 2988 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) 2989 MO.setIsUndef(false); 2990 MO.setIsDead(false); 2991 } 2992 } 2993 } 2994 // This value will reach instructions below, but we need to make sure 2995 // the live range also reaches the instruction at Def. 2996 if (!EraseImpDef) 2997 EndPoints.push_back(Def); 2998 } 2999 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def 3000 << ": " << Other.LR << '\n'); 3001 break; 3002 } 3003 case CR_Erase: 3004 case CR_Merge: 3005 if (isPrunedValue(i, Other)) { 3006 // This value is ultimately a copy of a pruned value in LR or Other.LR. 3007 // We can no longer trust the value mapping computed by 3008 // computeAssignment(), the value that was originally copied could have 3009 // been replaced. 3010 LIS->pruneValue(LR, Def, &EndPoints); 3011 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at " 3012 << Def << ": " << LR << '\n'); 3013 } 3014 break; 3015 case CR_Unresolved: 3016 case CR_Impossible: 3017 llvm_unreachable("Unresolved conflicts"); 3018 } 3019 } 3020 } 3021 3022 /// Consider the following situation when coalescing the copy between 3023 /// %31 and %45 at 800. (The vertical lines represent live range segments.) 3024 /// 3025 /// Main range Subrange 0004 (sub2) 3026 /// %31 %45 %31 %45 3027 /// 544 %45 = COPY %28 + + 3028 /// | v1 | v1 3029 /// 560B bb.1: + + 3030 /// 624 = %45.sub2 | v2 | v2 3031 /// 800 %31 = COPY %45 + + + + 3032 /// | v0 | v0 3033 /// 816 %31.sub1 = ... + | 3034 /// 880 %30 = COPY %31 | v1 + 3035 /// 928 %45 = COPY %30 | + + 3036 /// | | v0 | v0 <--+ 3037 /// 992B ; backedge -> bb.1 | + + | 3038 /// 1040 = %31.sub0 + | 3039 /// This value must remain 3040 /// live-out! 3041 /// 3042 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes 3043 /// redundant, since it copies the value from %45 back into it. The 3044 /// conflict resolution for the main range determines that %45.v0 is 3045 /// to be erased, which is ok since %31.v1 is identical to it. 3046 /// The problem happens with the subrange for sub2: it has to be live 3047 /// on exit from the block, but since 928 was actually a point of 3048 /// definition of %45.sub2, %45.sub2 was not live immediately prior 3049 /// to that definition. As a result, when 928 was erased, the value v0 3050 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an 3051 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2, 3052 /// providing an incorrect value to the use at 624. 3053 /// 3054 /// Since the main-range values %31.v1 and %45.v0 were proved to be 3055 /// identical, the corresponding values in subranges must also be the 3056 /// same. A redundant copy is removed because it's not needed, and not 3057 /// because it copied an undefined value, so any liveness that originated 3058 /// from that copy cannot disappear. When pruning a value that started 3059 /// at the removed copy, the corresponding identical value must be 3060 /// extended to replace it. 3061 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 3062 // Look for values being erased. 3063 bool DidPrune = false; 3064 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3065 Val &V = Vals[i]; 3066 // We should trigger in all cases in which eraseInstrs() does something. 3067 // match what eraseInstrs() is doing, print a message so 3068 if (V.Resolution != CR_Erase && 3069 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)) 3070 continue; 3071 3072 // Check subranges at the point where the copy will be removed. 3073 SlotIndex Def = LR.getValNumInfo(i)->def; 3074 SlotIndex OtherDef; 3075 if (V.Identical) 3076 OtherDef = V.OtherVNI->def; 3077 3078 // Print message so mismatches with eraseInstrs() can be diagnosed. 3079 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def 3080 << '\n'); 3081 for (LiveInterval::SubRange &S : LI.subranges()) { 3082 LiveQueryResult Q = S.Query(Def); 3083 3084 // If a subrange starts at the copy then an undefined value has been 3085 // copied and we must remove that subrange value as well. 3086 VNInfo *ValueOut = Q.valueOutOrDead(); 3087 if (ValueOut != nullptr && (Q.valueIn() == nullptr || 3088 (V.Identical && V.Resolution == CR_Erase && 3089 ValueOut->def == Def))) { 3090 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 3091 << " at " << Def << "\n"); 3092 SmallVector<SlotIndex,8> EndPoints; 3093 LIS->pruneValue(S, Def, &EndPoints); 3094 DidPrune = true; 3095 // Mark value number as unused. 3096 ValueOut->markUnused(); 3097 3098 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) { 3099 // If V is identical to V.OtherVNI (and S was live at OtherDef), 3100 // then we can't simply prune V from S. V needs to be replaced 3101 // with V.OtherVNI. 3102 LIS->extendToIndices(S, EndPoints); 3103 } 3104 continue; 3105 } 3106 // If a subrange ends at the copy, then a value was copied but only 3107 // partially used later. Shrink the subregister range appropriately. 3108 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 3109 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane " 3110 << PrintLaneMask(S.LaneMask) << " at " << Def 3111 << "\n"); 3112 ShrinkMask |= S.LaneMask; 3113 } 3114 } 3115 } 3116 if (DidPrune) 3117 LI.removeEmptySubRanges(); 3118 } 3119 3120 /// Check if any of the subranges of @p LI contain a definition at @p Def. 3121 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 3122 for (LiveInterval::SubRange &SR : LI.subranges()) { 3123 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 3124 if (VNI->def == Def) 3125 return true; 3126 } 3127 return false; 3128 } 3129 3130 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 3131 assert(&static_cast<LiveRange&>(LI) == &LR); 3132 3133 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3134 if (Vals[i].Resolution != CR_Keep) 3135 continue; 3136 VNInfo *VNI = LR.getValNumInfo(i); 3137 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 3138 continue; 3139 Vals[i].Pruned = true; 3140 ShrinkMainRange = true; 3141 } 3142 } 3143 3144 void JoinVals::removeImplicitDefs() { 3145 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3146 Val &V = Vals[i]; 3147 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 3148 continue; 3149 3150 VNInfo *VNI = LR.getValNumInfo(i); 3151 VNI->markUnused(); 3152 LR.removeValNo(VNI); 3153 } 3154 } 3155 3156 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 3157 SmallVectorImpl<unsigned> &ShrinkRegs, 3158 LiveInterval *LI) { 3159 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3160 // Get the def location before markUnused() below invalidates it. 3161 VNInfo *VNI = LR.getValNumInfo(i); 3162 SlotIndex Def = VNI->def; 3163 switch (Vals[i].Resolution) { 3164 case CR_Keep: { 3165 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 3166 // longer. The IMPLICIT_DEF instructions are only inserted by 3167 // PHIElimination to guarantee that all PHI predecessors have a value. 3168 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 3169 break; 3170 // Remove value number i from LR. 3171 // For intervals with subranges, removing a segment from the main range 3172 // may require extending the previous segment: for each definition of 3173 // a subregister, there will be a corresponding def in the main range. 3174 // That def may fall in the middle of a segment from another subrange. 3175 // In such cases, removing this def from the main range must be 3176 // complemented by extending the main range to account for the liveness 3177 // of the other subrange. 3178 // The new end point of the main range segment to be extended. 3179 SlotIndex NewEnd; 3180 if (LI != nullptr) { 3181 LiveRange::iterator I = LR.FindSegmentContaining(Def); 3182 assert(I != LR.end()); 3183 // Do not extend beyond the end of the segment being removed. 3184 // The segment may have been pruned in preparation for joining 3185 // live ranges. 3186 NewEnd = I->end; 3187 } 3188 3189 LR.removeValNo(VNI); 3190 // Note that this VNInfo is reused and still referenced in NewVNInfo, 3191 // make it appear like an unused value number. 3192 VNI->markUnused(); 3193 3194 if (LI != nullptr && LI->hasSubRanges()) { 3195 assert(static_cast<LiveRange*>(LI) == &LR); 3196 // Determine the end point based on the subrange information: 3197 // minimum of (earliest def of next segment, 3198 // latest end point of containing segment) 3199 SlotIndex ED, LE; 3200 for (LiveInterval::SubRange &SR : LI->subranges()) { 3201 LiveRange::iterator I = SR.find(Def); 3202 if (I == SR.end()) 3203 continue; 3204 if (I->start > Def) 3205 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 3206 else 3207 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 3208 } 3209 if (LE.isValid()) 3210 NewEnd = std::min(NewEnd, LE); 3211 if (ED.isValid()) 3212 NewEnd = std::min(NewEnd, ED); 3213 3214 // We only want to do the extension if there was a subrange that 3215 // was live across Def. 3216 if (LE.isValid()) { 3217 LiveRange::iterator S = LR.find(Def); 3218 if (S != LR.begin()) 3219 std::prev(S)->end = NewEnd; 3220 } 3221 } 3222 LLVM_DEBUG({ 3223 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 3224 if (LI != nullptr) 3225 dbgs() << "\t\t LHS = " << *LI << '\n'; 3226 }); 3227 LLVM_FALLTHROUGH; 3228 } 3229 3230 case CR_Erase: { 3231 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 3232 assert(MI && "No instruction to erase"); 3233 if (MI->isCopy()) { 3234 Register Reg = MI->getOperand(1).getReg(); 3235 if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() && 3236 Reg != CP.getDstReg()) 3237 ShrinkRegs.push_back(Reg); 3238 } 3239 ErasedInstrs.insert(MI); 3240 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 3241 LIS->RemoveMachineInstrFromMaps(*MI); 3242 MI->eraseFromParent(); 3243 break; 3244 } 3245 default: 3246 break; 3247 } 3248 } 3249 } 3250 3251 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 3252 LaneBitmask LaneMask, 3253 const CoalescerPair &CP) { 3254 SmallVector<VNInfo*, 16> NewVNInfo; 3255 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 3256 NewVNInfo, CP, LIS, TRI, true, true); 3257 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 3258 NewVNInfo, CP, LIS, TRI, true, true); 3259 3260 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 3261 // We should be able to resolve all conflicts here as we could successfully do 3262 // it on the mainrange already. There is however a problem when multiple 3263 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 3264 // interferences. 3265 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 3266 // We already determined that it is legal to merge the intervals, so this 3267 // should never fail. 3268 llvm_unreachable("*** Couldn't join subrange!\n"); 3269 } 3270 if (!LHSVals.resolveConflicts(RHSVals) || 3271 !RHSVals.resolveConflicts(LHSVals)) { 3272 // We already determined that it is legal to merge the intervals, so this 3273 // should never fail. 3274 llvm_unreachable("*** Couldn't join subrange!\n"); 3275 } 3276 3277 // The merging algorithm in LiveInterval::join() can't handle conflicting 3278 // value mappings, so we need to remove any live ranges that overlap a 3279 // CR_Replace resolution. Collect a set of end points that can be used to 3280 // restore the live range after joining. 3281 SmallVector<SlotIndex, 8> EndPoints; 3282 LHSVals.pruneValues(RHSVals, EndPoints, false); 3283 RHSVals.pruneValues(LHSVals, EndPoints, false); 3284 3285 LHSVals.removeImplicitDefs(); 3286 RHSVals.removeImplicitDefs(); 3287 3288 LRange.verify(); 3289 RRange.verify(); 3290 3291 // Join RRange into LHS. 3292 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 3293 NewVNInfo); 3294 3295 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask) 3296 << ' ' << LRange << "\n"); 3297 if (EndPoints.empty()) 3298 return; 3299 3300 // Recompute the parts of the live range we had to remove because of 3301 // CR_Replace conflicts. 3302 LLVM_DEBUG({ 3303 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3304 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3305 dbgs() << EndPoints[i]; 3306 if (i != n-1) 3307 dbgs() << ','; 3308 } 3309 dbgs() << ": " << LRange << '\n'; 3310 }); 3311 LIS->extendToIndices(LRange, EndPoints); 3312 } 3313 3314 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 3315 const LiveRange &ToMerge, 3316 LaneBitmask LaneMask, 3317 CoalescerPair &CP, 3318 unsigned ComposeSubRegIdx) { 3319 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3320 LI.refineSubRanges( 3321 Allocator, LaneMask, 3322 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) { 3323 if (SR.empty()) { 3324 SR.assign(ToMerge, Allocator); 3325 } else { 3326 // joinSubRegRange() destroys the merged range, so we need a copy. 3327 LiveRange RangeCopy(ToMerge, Allocator); 3328 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 3329 } 3330 }, 3331 *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx); 3332 } 3333 3334 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) { 3335 if (LI.valnos.size() < LargeIntervalSizeThreshold) 3336 return false; 3337 auto &Counter = LargeLIVisitCounter[LI.reg]; 3338 if (Counter < LargeIntervalFreqThreshold) { 3339 Counter++; 3340 return false; 3341 } 3342 return true; 3343 } 3344 3345 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 3346 SmallVector<VNInfo*, 16> NewVNInfo; 3347 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 3348 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 3349 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 3350 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 3351 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3352 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 3353 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3354 3355 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n'); 3356 3357 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS)) 3358 return false; 3359 3360 // First compute NewVNInfo and the simple value mappings. 3361 // Detect impossible conflicts early. 3362 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 3363 return false; 3364 3365 // Some conflicts can only be resolved after all values have been mapped. 3366 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 3367 return false; 3368 3369 // All clear, the live ranges can be merged. 3370 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 3371 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3372 3373 // Transform lanemasks from the LHS to masks in the coalesced register and 3374 // create initial subranges if necessary. 3375 unsigned DstIdx = CP.getDstIdx(); 3376 if (!LHS.hasSubRanges()) { 3377 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 3378 : TRI->getSubRegIndexLaneMask(DstIdx); 3379 // LHS must support subregs or we wouldn't be in this codepath. 3380 assert(Mask.any()); 3381 LHS.createSubRangeFrom(Allocator, Mask, LHS); 3382 } else if (DstIdx != 0) { 3383 // Transform LHS lanemasks to new register class if necessary. 3384 for (LiveInterval::SubRange &R : LHS.subranges()) { 3385 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 3386 R.LaneMask = Mask; 3387 } 3388 } 3389 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS 3390 << '\n'); 3391 3392 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3393 unsigned SrcIdx = CP.getSrcIdx(); 3394 if (!RHS.hasSubRanges()) { 3395 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3396 : TRI->getSubRegIndexLaneMask(SrcIdx); 3397 mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx); 3398 } else { 3399 // Pair up subranges and merge. 3400 for (LiveInterval::SubRange &R : RHS.subranges()) { 3401 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3402 mergeSubRangeInto(LHS, R, Mask, CP, DstIdx); 3403 } 3404 } 3405 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3406 3407 // Pruning implicit defs from subranges may result in the main range 3408 // having stale segments. 3409 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3410 3411 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3412 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3413 } 3414 3415 // The merging algorithm in LiveInterval::join() can't handle conflicting 3416 // value mappings, so we need to remove any live ranges that overlap a 3417 // CR_Replace resolution. Collect a set of end points that can be used to 3418 // restore the live range after joining. 3419 SmallVector<SlotIndex, 8> EndPoints; 3420 LHSVals.pruneValues(RHSVals, EndPoints, true); 3421 RHSVals.pruneValues(LHSVals, EndPoints, true); 3422 3423 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3424 // registers to require trimming. 3425 SmallVector<unsigned, 8> ShrinkRegs; 3426 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3427 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3428 while (!ShrinkRegs.empty()) 3429 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3430 3431 // Scan and mark undef any DBG_VALUEs that would refer to a different value. 3432 checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals); 3433 3434 // Join RHS into LHS. 3435 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3436 3437 // Kill flags are going to be wrong if the live ranges were overlapping. 3438 // Eventually, we should simply clear all kill flags when computing live 3439 // ranges. They are reinserted after register allocation. 3440 MRI->clearKillFlags(LHS.reg); 3441 MRI->clearKillFlags(RHS.reg); 3442 3443 if (!EndPoints.empty()) { 3444 // Recompute the parts of the live range we had to remove because of 3445 // CR_Replace conflicts. 3446 LLVM_DEBUG({ 3447 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3448 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3449 dbgs() << EndPoints[i]; 3450 if (i != n-1) 3451 dbgs() << ','; 3452 } 3453 dbgs() << ": " << LHS << '\n'; 3454 }); 3455 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3456 } 3457 3458 return true; 3459 } 3460 3461 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3462 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3463 } 3464 3465 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF) 3466 { 3467 const SlotIndexes &Slots = *LIS->getSlotIndexes(); 3468 SmallVector<MachineInstr *, 8> ToInsert; 3469 3470 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the 3471 // vreg => DbgValueLoc map. 3472 auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) { 3473 for (auto *X : ToInsert) 3474 DbgVRegToValues[X->getOperand(0).getReg()].push_back({Slot, X}); 3475 3476 ToInsert.clear(); 3477 }; 3478 3479 // Iterate over all instructions, collecting them into the ToInsert vector. 3480 // Once a non-debug instruction is found, record the slot index of the 3481 // collected DBG_VALUEs. 3482 for (auto &MBB : MF) { 3483 SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB); 3484 3485 for (auto &MI : MBB) { 3486 if (MI.isDebugValue() && MI.getOperand(0).isReg() && 3487 MI.getOperand(0).getReg().isVirtual()) { 3488 ToInsert.push_back(&MI); 3489 } else if (!MI.isDebugInstr()) { 3490 CurrentSlot = Slots.getInstructionIndex(MI); 3491 CloseNewDVRange(CurrentSlot); 3492 } 3493 } 3494 3495 // Close range of DBG_VALUEs at the end of blocks. 3496 CloseNewDVRange(Slots.getMBBEndIdx(&MBB)); 3497 } 3498 3499 // Sort all DBG_VALUEs we've seen by slot number. 3500 for (auto &Pair : DbgVRegToValues) 3501 llvm::sort(Pair.second); 3502 } 3503 3504 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP, 3505 LiveRange &LHS, 3506 JoinVals &LHSVals, 3507 LiveRange &RHS, 3508 JoinVals &RHSVals) { 3509 auto ScanForDstReg = [&](unsigned Reg) { 3510 checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals); 3511 }; 3512 3513 auto ScanForSrcReg = [&](unsigned Reg) { 3514 checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals); 3515 }; 3516 3517 // Scan for potentially unsound DBG_VALUEs: examine first the register number 3518 // Reg, and then any other vregs that may have been merged into it. 3519 auto PerformScan = [this](unsigned Reg, std::function<void(unsigned)> Func) { 3520 Func(Reg); 3521 if (DbgMergedVRegNums.count(Reg)) 3522 for (unsigned X : DbgMergedVRegNums[Reg]) 3523 Func(X); 3524 }; 3525 3526 // Scan for unsound updates of both the source and destination register. 3527 PerformScan(CP.getSrcReg(), ScanForSrcReg); 3528 PerformScan(CP.getDstReg(), ScanForDstReg); 3529 } 3530 3531 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(unsigned Reg, 3532 LiveRange &OtherLR, 3533 LiveRange &RegLR, 3534 JoinVals &RegVals) { 3535 // Are there any DBG_VALUEs to examine? 3536 auto VRegMapIt = DbgVRegToValues.find(Reg); 3537 if (VRegMapIt == DbgVRegToValues.end()) 3538 return; 3539 3540 auto &DbgValueSet = VRegMapIt->second; 3541 auto DbgValueSetIt = DbgValueSet.begin(); 3542 auto SegmentIt = OtherLR.begin(); 3543 3544 bool LastUndefResult = false; 3545 SlotIndex LastUndefIdx; 3546 3547 // If the "Other" register is live at a slot Idx, test whether Reg can 3548 // safely be merged with it, or should be marked undef. 3549 auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult, 3550 &LastUndefIdx](SlotIndex Idx) -> bool { 3551 // Our worst-case performance typically happens with asan, causing very 3552 // many DBG_VALUEs of the same location. Cache a copy of the most recent 3553 // result for this edge-case. 3554 if (LastUndefIdx == Idx) 3555 return LastUndefResult; 3556 3557 // If the other range was live, and Reg's was not, the register coalescer 3558 // will not have tried to resolve any conflicts. We don't know whether 3559 // the DBG_VALUE will refer to the same value number, so it must be made 3560 // undef. 3561 auto OtherIt = RegLR.find(Idx); 3562 if (OtherIt == RegLR.end()) 3563 return true; 3564 3565 // Both the registers were live: examine the conflict resolution record for 3566 // the value number Reg refers to. CR_Keep meant that this value number 3567 // "won" and the merged register definitely refers to that value. CR_Erase 3568 // means the value number was a redundant copy of the other value, which 3569 // was coalesced and Reg deleted. It's safe to refer to the other register 3570 // (which will be the source of the copy). 3571 auto Resolution = RegVals.getResolution(OtherIt->valno->id); 3572 LastUndefResult = Resolution != JoinVals::CR_Keep && 3573 Resolution != JoinVals::CR_Erase; 3574 LastUndefIdx = Idx; 3575 return LastUndefResult; 3576 }; 3577 3578 // Iterate over both the live-range of the "Other" register, and the set of 3579 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest 3580 // slot index. This relies on the DbgValueSet being ordered. 3581 while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) { 3582 if (DbgValueSetIt->first < SegmentIt->end) { 3583 // "Other" is live and there is a DBG_VALUE of Reg: test if we should 3584 // set it undef. 3585 if (DbgValueSetIt->first >= SegmentIt->start && 3586 DbgValueSetIt->second->getOperand(0).getReg() != 0 && 3587 ShouldUndef(DbgValueSetIt->first)) { 3588 // Mark undef, erase record of this DBG_VALUE to avoid revisiting. 3589 DbgValueSetIt->second->getOperand(0).setReg(0); 3590 continue; 3591 } 3592 ++DbgValueSetIt; 3593 } else { 3594 ++SegmentIt; 3595 } 3596 } 3597 } 3598 3599 namespace { 3600 3601 /// Information concerning MBB coalescing priority. 3602 struct MBBPriorityInfo { 3603 MachineBasicBlock *MBB; 3604 unsigned Depth; 3605 bool IsSplit; 3606 3607 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3608 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3609 }; 3610 3611 } // end anonymous namespace 3612 3613 /// C-style comparator that sorts first based on the loop depth of the basic 3614 /// block (the unsigned), and then on the MBB number. 3615 /// 3616 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3617 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3618 const MBBPriorityInfo *RHS) { 3619 // Deeper loops first 3620 if (LHS->Depth != RHS->Depth) 3621 return LHS->Depth > RHS->Depth ? -1 : 1; 3622 3623 // Try to unsplit critical edges next. 3624 if (LHS->IsSplit != RHS->IsSplit) 3625 return LHS->IsSplit ? -1 : 1; 3626 3627 // Prefer blocks that are more connected in the CFG. This takes care of 3628 // the most difficult copies first while intervals are short. 3629 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3630 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3631 if (cl != cr) 3632 return cl > cr ? -1 : 1; 3633 3634 // As a last resort, sort by block number. 3635 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3636 } 3637 3638 /// \returns true if the given copy uses or defines a local live range. 3639 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3640 if (!Copy->isCopy()) 3641 return false; 3642 3643 if (Copy->getOperand(1).isUndef()) 3644 return false; 3645 3646 Register SrcReg = Copy->getOperand(1).getReg(); 3647 Register DstReg = Copy->getOperand(0).getReg(); 3648 if (Register::isPhysicalRegister(SrcReg) || 3649 Register::isPhysicalRegister(DstReg)) 3650 return false; 3651 3652 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3653 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3654 } 3655 3656 void RegisterCoalescer::lateLiveIntervalUpdate() { 3657 for (unsigned reg : ToBeUpdated) { 3658 if (!LIS->hasInterval(reg)) 3659 continue; 3660 LiveInterval &LI = LIS->getInterval(reg); 3661 shrinkToUses(&LI, &DeadDefs); 3662 if (!DeadDefs.empty()) 3663 eliminateDeadDefs(); 3664 } 3665 ToBeUpdated.clear(); 3666 } 3667 3668 bool RegisterCoalescer:: 3669 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3670 bool Progress = false; 3671 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3672 if (!CurrList[i]) 3673 continue; 3674 // Skip instruction pointers that have already been erased, for example by 3675 // dead code elimination. 3676 if (ErasedInstrs.count(CurrList[i])) { 3677 CurrList[i] = nullptr; 3678 continue; 3679 } 3680 bool Again = false; 3681 bool Success = joinCopy(CurrList[i], Again); 3682 Progress |= Success; 3683 if (Success || !Again) 3684 CurrList[i] = nullptr; 3685 } 3686 return Progress; 3687 } 3688 3689 /// Check if DstReg is a terminal node. 3690 /// I.e., it does not have any affinity other than \p Copy. 3691 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 3692 const MachineRegisterInfo *MRI) { 3693 assert(Copy.isCopyLike()); 3694 // Check if the destination of this copy as any other affinity. 3695 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3696 if (&MI != &Copy && MI.isCopyLike()) 3697 return false; 3698 return true; 3699 } 3700 3701 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3702 assert(Copy.isCopyLike()); 3703 if (!UseTerminalRule) 3704 return false; 3705 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 3706 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg)) 3707 return false; 3708 // Check if the destination of this copy has any other affinity. 3709 if (Register::isPhysicalRegister(DstReg) || 3710 // If SrcReg is a physical register, the copy won't be coalesced. 3711 // Ignoring it may have other side effect (like missing 3712 // rematerialization). So keep it. 3713 Register::isPhysicalRegister(SrcReg) || !isTerminalReg(DstReg, Copy, MRI)) 3714 return false; 3715 3716 // DstReg is a terminal node. Check if it interferes with any other 3717 // copy involving SrcReg. 3718 const MachineBasicBlock *OrigBB = Copy.getParent(); 3719 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3720 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3721 // Technically we should check if the weight of the new copy is 3722 // interesting compared to the other one and update the weight 3723 // of the copies accordingly. However, this would only work if 3724 // we would gather all the copies first then coalesce, whereas 3725 // right now we interleave both actions. 3726 // For now, just consider the copies that are in the same block. 3727 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3728 continue; 3729 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 3730 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3731 OtherSubReg)) 3732 return false; 3733 if (OtherReg == SrcReg) 3734 OtherReg = OtherSrcReg; 3735 // Check if OtherReg is a non-terminal. 3736 if (Register::isPhysicalRegister(OtherReg) || 3737 isTerminalReg(OtherReg, MI, MRI)) 3738 continue; 3739 // Check that OtherReg interfere with DstReg. 3740 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3741 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) 3742 << '\n'); 3743 return true; 3744 } 3745 } 3746 return false; 3747 } 3748 3749 void 3750 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3751 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n"); 3752 3753 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3754 // yet, it might invalidate the iterator. 3755 const unsigned PrevSize = WorkList.size(); 3756 if (JoinGlobalCopies) { 3757 SmallVector<MachineInstr*, 2> LocalTerminals; 3758 SmallVector<MachineInstr*, 2> GlobalTerminals; 3759 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3760 // are not inherently easier to resolve, but slightly preferable until we 3761 // have local live range splitting. In particular this is required by 3762 // cmp+jmp macro fusion. 3763 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3764 MII != E; ++MII) { 3765 if (!MII->isCopyLike()) 3766 continue; 3767 bool ApplyTerminalRule = applyTerminalRule(*MII); 3768 if (isLocalCopy(&(*MII), LIS)) { 3769 if (ApplyTerminalRule) 3770 LocalTerminals.push_back(&(*MII)); 3771 else 3772 LocalWorkList.push_back(&(*MII)); 3773 } else { 3774 if (ApplyTerminalRule) 3775 GlobalTerminals.push_back(&(*MII)); 3776 else 3777 WorkList.push_back(&(*MII)); 3778 } 3779 } 3780 // Append the copies evicted by the terminal rule at the end of the list. 3781 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3782 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3783 } 3784 else { 3785 SmallVector<MachineInstr*, 2> Terminals; 3786 for (MachineInstr &MII : *MBB) 3787 if (MII.isCopyLike()) { 3788 if (applyTerminalRule(MII)) 3789 Terminals.push_back(&MII); 3790 else 3791 WorkList.push_back(&MII); 3792 } 3793 // Append the copies evicted by the terminal rule at the end of the list. 3794 WorkList.append(Terminals.begin(), Terminals.end()); 3795 } 3796 // Try coalescing the collected copies immediately, and remove the nulls. 3797 // This prevents the WorkList from getting too large since most copies are 3798 // joinable on the first attempt. 3799 MutableArrayRef<MachineInstr*> 3800 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3801 if (copyCoalesceWorkList(CurrList)) 3802 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3803 nullptr), WorkList.end()); 3804 } 3805 3806 void RegisterCoalescer::coalesceLocals() { 3807 copyCoalesceWorkList(LocalWorkList); 3808 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3809 if (LocalWorkList[j]) 3810 WorkList.push_back(LocalWorkList[j]); 3811 } 3812 LocalWorkList.clear(); 3813 } 3814 3815 void RegisterCoalescer::joinAllIntervals() { 3816 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3817 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3818 3819 std::vector<MBBPriorityInfo> MBBs; 3820 MBBs.reserve(MF->size()); 3821 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3822 MachineBasicBlock *MBB = &*I; 3823 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3824 JoinSplitEdges && isSplitEdge(MBB))); 3825 } 3826 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3827 3828 // Coalesce intervals in MBB priority order. 3829 unsigned CurrDepth = std::numeric_limits<unsigned>::max(); 3830 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3831 // Try coalescing the collected local copies for deeper loops. 3832 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3833 coalesceLocals(); 3834 CurrDepth = MBBs[i].Depth; 3835 } 3836 copyCoalesceInMBB(MBBs[i].MBB); 3837 } 3838 lateLiveIntervalUpdate(); 3839 coalesceLocals(); 3840 3841 // Joining intervals can allow other intervals to be joined. Iteratively join 3842 // until we make no progress. 3843 while (copyCoalesceWorkList(WorkList)) 3844 /* empty */ ; 3845 lateLiveIntervalUpdate(); 3846 } 3847 3848 void RegisterCoalescer::releaseMemory() { 3849 ErasedInstrs.clear(); 3850 WorkList.clear(); 3851 DeadDefs.clear(); 3852 InflateRegs.clear(); 3853 LargeLIVisitCounter.clear(); 3854 } 3855 3856 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3857 MF = &fn; 3858 MRI = &fn.getRegInfo(); 3859 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3860 TRI = STI.getRegisterInfo(); 3861 TII = STI.getInstrInfo(); 3862 LIS = &getAnalysis<LiveIntervals>(); 3863 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3864 Loops = &getAnalysis<MachineLoopInfo>(); 3865 if (EnableGlobalCopies == cl::BOU_UNSET) 3866 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3867 else 3868 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3869 3870 // The MachineScheduler does not currently require JoinSplitEdges. This will 3871 // either be enabled unconditionally or replaced by a more general live range 3872 // splitting optimization. 3873 JoinSplitEdges = EnableJoinSplits; 3874 3875 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3876 << "********** Function: " << MF->getName() << '\n'); 3877 3878 if (VerifyCoalescing) 3879 MF->verify(this, "Before register coalescing"); 3880 3881 DbgVRegToValues.clear(); 3882 DbgMergedVRegNums.clear(); 3883 buildVRegToDbgValueMap(fn); 3884 3885 RegClassInfo.runOnMachineFunction(fn); 3886 3887 // Join (coalesce) intervals if requested. 3888 if (EnableJoining) 3889 joinAllIntervals(); 3890 3891 // After deleting a lot of copies, register classes may be less constrained. 3892 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3893 // DPR inflation. 3894 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3895 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3896 InflateRegs.end()); 3897 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() 3898 << " regs.\n"); 3899 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3900 unsigned Reg = InflateRegs[i]; 3901 if (MRI->reg_nodbg_empty(Reg)) 3902 continue; 3903 if (MRI->recomputeRegClass(Reg)) { 3904 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to " 3905 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3906 ++NumInflated; 3907 3908 LiveInterval &LI = LIS->getInterval(Reg); 3909 if (LI.hasSubRanges()) { 3910 // If the inflated register class does not support subregisters anymore 3911 // remove the subranges. 3912 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3913 LI.clearSubRanges(); 3914 } else { 3915 #ifndef NDEBUG 3916 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3917 // If subranges are still supported, then the same subregs 3918 // should still be supported. 3919 for (LiveInterval::SubRange &S : LI.subranges()) { 3920 assert((S.LaneMask & ~MaxMask).none()); 3921 } 3922 #endif 3923 } 3924 } 3925 } 3926 } 3927 3928 LLVM_DEBUG(dump()); 3929 if (VerifyCoalescing) 3930 MF->verify(this, "After register coalescing"); 3931 return true; 3932 } 3933 3934 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3935 LIS->print(O, m); 3936 } 3937