1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/MC/MCInstrDesc.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <iterator>
56 #include <limits>
57 #include <tuple>
58 #include <utility>
59 #include <vector>
60 
61 using namespace llvm;
62 
63 #define DEBUG_TYPE "regalloc"
64 
65 STATISTIC(numJoins    , "Number of interval joins performed");
66 STATISTIC(numCrossRCs , "Number of cross class joins performed");
67 STATISTIC(numCommutes , "Number of instruction commuting performed");
68 STATISTIC(numExtends  , "Number of copies extended");
69 STATISTIC(NumReMats   , "Number of instructions re-materialized");
70 STATISTIC(NumInflated , "Number of register classes inflated");
71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
72 STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
73 STATISTIC(NumShrinkToUses,  "Number of shrinkToUses called");
74 
75 static cl::opt<bool> EnableJoining("join-liveintervals",
76                                    cl::desc("Coalesce copies (default=true)"),
77                                    cl::init(true), cl::Hidden);
78 
79 static cl::opt<bool> UseTerminalRule("terminal-rule",
80                                      cl::desc("Apply the terminal rule"),
81                                      cl::init(false), cl::Hidden);
82 
83 /// Temporary flag to test critical edge unsplitting.
84 static cl::opt<bool>
85 EnableJoinSplits("join-splitedges",
86   cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87 
88 /// Temporary flag to test global copy optimization.
89 static cl::opt<cl::boolOrDefault>
90 EnableGlobalCopies("join-globalcopies",
91   cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92   cl::init(cl::BOU_UNSET), cl::Hidden);
93 
94 static cl::opt<bool>
95 VerifyCoalescing("verify-coalescing",
96          cl::desc("Verify machine instrs before and after register coalescing"),
97          cl::Hidden);
98 
99 static cl::opt<unsigned> LateRematUpdateThreshold(
100     "late-remat-update-threshold", cl::Hidden,
101     cl::desc("During rematerialization for a copy, if the def instruction has "
102              "many other copy uses to be rematerialized, delay the multiple "
103              "separate live interval update work and do them all at once after "
104              "all those rematerialization are done. It will save a lot of "
105              "repeated work. "),
106     cl::init(100));
107 
108 static cl::opt<unsigned> LargeIntervalSizeThreshold(
109     "large-interval-size-threshold", cl::Hidden,
110     cl::desc("If the valnos size of an interval is larger than the threshold, "
111              "it is regarded as a large interval. "),
112     cl::init(100));
113 
114 static cl::opt<unsigned> LargeIntervalFreqThreshold(
115     "large-interval-freq-threshold", cl::Hidden,
116     cl::desc("For a large interval, if it is coalesed with other live "
117              "intervals many times more than the threshold, stop its "
118              "coalescing to control the compile time. "),
119     cl::init(100));
120 
121 namespace {
122 
123   class JoinVals;
124 
125   class RegisterCoalescer : public MachineFunctionPass,
126                             private LiveRangeEdit::Delegate {
127     MachineFunction* MF = nullptr;
128     MachineRegisterInfo* MRI = nullptr;
129     const TargetRegisterInfo* TRI = nullptr;
130     const TargetInstrInfo* TII = nullptr;
131     LiveIntervals *LIS = nullptr;
132     const MachineLoopInfo* Loops = nullptr;
133     AliasAnalysis *AA = nullptr;
134     RegisterClassInfo RegClassInfo;
135 
136     /// Position and VReg of a PHI instruction during coalescing.
137     struct PHIValPos {
138       SlotIndex SI;    ///< Slot where this PHI occurs.
139       Register Reg;    ///< VReg the PHI occurs in.
140       unsigned SubReg; ///< Qualifying subregister for Reg.
141     };
142 
143     /// Map from debug instruction number to PHI position during coalescing.
144     DenseMap<unsigned, PHIValPos> PHIValToPos;
145     /// Index of, for each VReg, which debug instruction numbers and
146     /// corresponding PHIs are sensitive to coalescing. Each VReg may have
147     /// multiple PHI defs, at different positions.
148     DenseMap<Register, SmallVector<unsigned, 2>> RegToPHIIdx;
149 
150     /// Debug variable location tracking -- for each VReg, maintain an
151     /// ordered-by-slot-index set of DBG_VALUEs, to help quick
152     /// identification of whether coalescing may change location validity.
153     using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>;
154     DenseMap<Register, std::vector<DbgValueLoc>> DbgVRegToValues;
155 
156     /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached.
157     /// To avoid repeatedly merging sets of DbgValueLocs, instead record
158     /// which vregs have been coalesced, and where to. This map is from
159     /// vreg => {set of vregs merged in}.
160     DenseMap<Register, SmallVector<Register, 4>> DbgMergedVRegNums;
161 
162     /// A LaneMask to remember on which subregister live ranges we need to call
163     /// shrinkToUses() later.
164     LaneBitmask ShrinkMask;
165 
166     /// True if the main range of the currently coalesced intervals should be
167     /// checked for smaller live intervals.
168     bool ShrinkMainRange = false;
169 
170     /// True if the coalescer should aggressively coalesce global copies
171     /// in favor of keeping local copies.
172     bool JoinGlobalCopies = false;
173 
174     /// True if the coalescer should aggressively coalesce fall-thru
175     /// blocks exclusively containing copies.
176     bool JoinSplitEdges = false;
177 
178     /// Copy instructions yet to be coalesced.
179     SmallVector<MachineInstr*, 8> WorkList;
180     SmallVector<MachineInstr*, 8> LocalWorkList;
181 
182     /// Set of instruction pointers that have been erased, and
183     /// that may be present in WorkList.
184     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
185 
186     /// Dead instructions that are about to be deleted.
187     SmallVector<MachineInstr*, 8> DeadDefs;
188 
189     /// Virtual registers to be considered for register class inflation.
190     SmallVector<Register, 8> InflateRegs;
191 
192     /// The collection of live intervals which should have been updated
193     /// immediately after rematerialiation but delayed until
194     /// lateLiveIntervalUpdate is called.
195     DenseSet<Register> ToBeUpdated;
196 
197     /// Record how many times the large live interval with many valnos
198     /// has been tried to join with other live interval.
199     DenseMap<Register, unsigned long> LargeLIVisitCounter;
200 
201     /// Recursively eliminate dead defs in DeadDefs.
202     void eliminateDeadDefs();
203 
204     /// LiveRangeEdit callback for eliminateDeadDefs().
205     void LRE_WillEraseInstruction(MachineInstr *MI) override;
206 
207     /// Coalesce the LocalWorkList.
208     void coalesceLocals();
209 
210     /// Join compatible live intervals
211     void joinAllIntervals();
212 
213     /// Coalesce copies in the specified MBB, putting
214     /// copies that cannot yet be coalesced into WorkList.
215     void copyCoalesceInMBB(MachineBasicBlock *MBB);
216 
217     /// Tries to coalesce all copies in CurrList. Returns true if any progress
218     /// was made.
219     bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
220 
221     /// If one def has many copy like uses, and those copy uses are all
222     /// rematerialized, the live interval update needed for those
223     /// rematerializations will be delayed and done all at once instead
224     /// of being done multiple times. This is to save compile cost because
225     /// live interval update is costly.
226     void lateLiveIntervalUpdate();
227 
228     /// Check if the incoming value defined by a COPY at \p SLRQ in the subrange
229     /// has no value defined in the predecessors. If the incoming value is the
230     /// same as defined by the copy itself, the value is considered undefined.
231     bool copyValueUndefInPredecessors(LiveRange &S,
232                                       const MachineBasicBlock *MBB,
233                                       LiveQueryResult SLRQ);
234 
235     /// Set necessary undef flags on subregister uses after pruning out undef
236     /// lane segments from the subrange.
237     void setUndefOnPrunedSubRegUses(LiveInterval &LI, Register Reg,
238                                     LaneBitmask PrunedLanes);
239 
240     /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
241     /// src/dst of the copy instruction CopyMI.  This returns true if the copy
242     /// was successfully coalesced away. If it is not currently possible to
243     /// coalesce this interval, but it may be possible if other things get
244     /// coalesced, then it returns true by reference in 'Again'.
245     bool joinCopy(MachineInstr *CopyMI, bool &Again);
246 
247     /// Attempt to join these two intervals.  On failure, this
248     /// returns false.  The output "SrcInt" will not have been modified, so we
249     /// can use this information below to update aliases.
250     bool joinIntervals(CoalescerPair &CP);
251 
252     /// Attempt joining two virtual registers. Return true on success.
253     bool joinVirtRegs(CoalescerPair &CP);
254 
255     /// If a live interval has many valnos and is coalesced with other
256     /// live intervals many times, we regard such live interval as having
257     /// high compile time cost.
258     bool isHighCostLiveInterval(LiveInterval &LI);
259 
260     /// Attempt joining with a reserved physreg.
261     bool joinReservedPhysReg(CoalescerPair &CP);
262 
263     /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
264     /// Subranges in @p LI which only partially interfere with the desired
265     /// LaneMask are split as necessary. @p LaneMask are the lanes that
266     /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
267     /// lanemasks already adjusted to the coalesced register.
268     void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
269                            LaneBitmask LaneMask, CoalescerPair &CP,
270                            unsigned DstIdx);
271 
272     /// Join the liveranges of two subregisters. Joins @p RRange into
273     /// @p LRange, @p RRange may be invalid afterwards.
274     void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
275                           LaneBitmask LaneMask, const CoalescerPair &CP);
276 
277     /// We found a non-trivially-coalescable copy. If the source value number is
278     /// defined by a copy from the destination reg see if we can merge these two
279     /// destination reg valno# into a single value number, eliminating a copy.
280     /// This returns true if an interval was modified.
281     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
282 
283     /// Return true if there are definitions of IntB
284     /// other than BValNo val# that can reach uses of AValno val# of IntA.
285     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
286                               VNInfo *AValNo, VNInfo *BValNo);
287 
288     /// We found a non-trivially-coalescable copy.
289     /// If the source value number is defined by a commutable instruction and
290     /// its other operand is coalesced to the copy dest register, see if we
291     /// can transform the copy into a noop by commuting the definition.
292     /// This returns a pair of two flags:
293     /// - the first element is true if an interval was modified,
294     /// - the second element is true if the destination interval needs
295     ///   to be shrunk after deleting the copy.
296     std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
297                                                   MachineInstr *CopyMI);
298 
299     /// We found a copy which can be moved to its less frequent predecessor.
300     bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
301 
302     /// If the source of a copy is defined by a
303     /// trivial computation, replace the copy by rematerialize the definition.
304     bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
305                                  bool &IsDefCopy);
306 
307     /// Return true if a copy involving a physreg should be joined.
308     bool canJoinPhys(const CoalescerPair &CP);
309 
310     /// Replace all defs and uses of SrcReg to DstReg and update the subregister
311     /// number if it is not zero. If DstReg is a physical register and the
312     /// existing subregister number of the def / use being updated is not zero,
313     /// make sure to set it to the correct physical subregister.
314     void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx);
315 
316     /// If the given machine operand reads only undefined lanes add an undef
317     /// flag.
318     /// This can happen when undef uses were previously concealed by a copy
319     /// which we coalesced. Example:
320     ///    %0:sub0<def,read-undef> = ...
321     ///    %1 = COPY %0           <-- Coalescing COPY reveals undef
322     ///       = use %1:sub1       <-- hidden undef use
323     void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
324                       MachineOperand &MO, unsigned SubRegIdx);
325 
326     /// Handle copies of undef values. If the undef value is an incoming
327     /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
328     /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
329     /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
330     MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
331 
332     /// Check whether or not we should apply the terminal rule on the
333     /// destination (Dst) of \p Copy.
334     /// When the terminal rule applies, Copy is not profitable to
335     /// coalesce.
336     /// Dst is terminal if it has exactly one affinity (Dst, Src) and
337     /// at least one interference (Dst, Dst2). If Dst is terminal, the
338     /// terminal rule consists in checking that at least one of
339     /// interfering node, say Dst2, has an affinity of equal or greater
340     /// weight with Src.
341     /// In that case, Dst2 and Dst will not be able to be both coalesced
342     /// with Src. Since Dst2 exposes more coalescing opportunities than
343     /// Dst, we can drop \p Copy.
344     bool applyTerminalRule(const MachineInstr &Copy) const;
345 
346     /// Wrapper method for \see LiveIntervals::shrinkToUses.
347     /// This method does the proper fixing of the live-ranges when the afore
348     /// mentioned method returns true.
349     void shrinkToUses(LiveInterval *LI,
350                       SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
351       NumShrinkToUses++;
352       if (LIS->shrinkToUses(LI, Dead)) {
353         /// Check whether or not \p LI is composed by multiple connected
354         /// components and if that is the case, fix that.
355         SmallVector<LiveInterval*, 8> SplitLIs;
356         LIS->splitSeparateComponents(*LI, SplitLIs);
357       }
358     }
359 
360     /// Wrapper Method to do all the necessary work when an Instruction is
361     /// deleted.
362     /// Optimizations should use this to make sure that deleted instructions
363     /// are always accounted for.
364     void deleteInstr(MachineInstr* MI) {
365       ErasedInstrs.insert(MI);
366       LIS->RemoveMachineInstrFromMaps(*MI);
367       MI->eraseFromParent();
368     }
369 
370     /// Walk over function and initialize the DbgVRegToValues map.
371     void buildVRegToDbgValueMap(MachineFunction &MF);
372 
373     /// Test whether, after merging, any DBG_VALUEs would refer to a
374     /// different value number than before merging, and whether this can
375     /// be resolved. If not, mark the DBG_VALUE as being undef.
376     void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
377                                       JoinVals &LHSVals, LiveRange &RHS,
378                                       JoinVals &RHSVals);
379 
380     void checkMergingChangesDbgValuesImpl(Register Reg, LiveRange &OtherRange,
381                                           LiveRange &RegRange, JoinVals &Vals2);
382 
383   public:
384     static char ID; ///< Class identification, replacement for typeinfo
385 
386     RegisterCoalescer() : MachineFunctionPass(ID) {
387       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
388     }
389 
390     void getAnalysisUsage(AnalysisUsage &AU) const override;
391 
392     void releaseMemory() override;
393 
394     /// This is the pass entry point.
395     bool runOnMachineFunction(MachineFunction&) override;
396 
397     /// Implement the dump method.
398     void print(raw_ostream &O, const Module* = nullptr) const override;
399   };
400 
401 } // end anonymous namespace
402 
403 char RegisterCoalescer::ID = 0;
404 
405 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
406 
407 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
408                       "Simple Register Coalescing", false, false)
409 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
410 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
411 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
412 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
413 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
414                     "Simple Register Coalescing", false, false)
415 
416 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri,
417                                        const MachineInstr *MI, Register &Src,
418                                        Register &Dst, unsigned &SrcSub,
419                                        unsigned &DstSub) {
420   if (MI->isCopy()) {
421     Dst = MI->getOperand(0).getReg();
422     DstSub = MI->getOperand(0).getSubReg();
423     Src = MI->getOperand(1).getReg();
424     SrcSub = MI->getOperand(1).getSubReg();
425   } else if (MI->isSubregToReg()) {
426     Dst = MI->getOperand(0).getReg();
427     DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
428                                       MI->getOperand(3).getImm());
429     Src = MI->getOperand(2).getReg();
430     SrcSub = MI->getOperand(2).getSubReg();
431   } else
432     return false;
433   return true;
434 }
435 
436 /// Return true if this block should be vacated by the coalescer to eliminate
437 /// branches. The important cases to handle in the coalescer are critical edges
438 /// split during phi elimination which contain only copies. Simple blocks that
439 /// contain non-branches should also be vacated, but this can be handled by an
440 /// earlier pass similar to early if-conversion.
441 static bool isSplitEdge(const MachineBasicBlock *MBB) {
442   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
443     return false;
444 
445   for (const auto &MI : *MBB) {
446     if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
447       return false;
448   }
449   return true;
450 }
451 
452 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
453   SrcReg = DstReg = Register();
454   SrcIdx = DstIdx = 0;
455   NewRC = nullptr;
456   Flipped = CrossClass = false;
457 
458   Register Src, Dst;
459   unsigned SrcSub = 0, DstSub = 0;
460   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
461     return false;
462   Partial = SrcSub || DstSub;
463 
464   // If one register is a physreg, it must be Dst.
465   if (Register::isPhysicalRegister(Src)) {
466     if (Register::isPhysicalRegister(Dst))
467       return false;
468     std::swap(Src, Dst);
469     std::swap(SrcSub, DstSub);
470     Flipped = true;
471   }
472 
473   const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
474 
475   if (Register::isPhysicalRegister(Dst)) {
476     // Eliminate DstSub on a physreg.
477     if (DstSub) {
478       Dst = TRI.getSubReg(Dst, DstSub);
479       if (!Dst) return false;
480       DstSub = 0;
481     }
482 
483     // Eliminate SrcSub by picking a corresponding Dst superregister.
484     if (SrcSub) {
485       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
486       if (!Dst) return false;
487     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
488       return false;
489     }
490   } else {
491     // Both registers are virtual.
492     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
493     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
494 
495     // Both registers have subreg indices.
496     if (SrcSub && DstSub) {
497       // Copies between different sub-registers are never coalescable.
498       if (Src == Dst && SrcSub != DstSub)
499         return false;
500 
501       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
502                                          SrcIdx, DstIdx);
503       if (!NewRC)
504         return false;
505     } else if (DstSub) {
506       // SrcReg will be merged with a sub-register of DstReg.
507       SrcIdx = DstSub;
508       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
509     } else if (SrcSub) {
510       // DstReg will be merged with a sub-register of SrcReg.
511       DstIdx = SrcSub;
512       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
513     } else {
514       // This is a straight copy without sub-registers.
515       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
516     }
517 
518     // The combined constraint may be impossible to satisfy.
519     if (!NewRC)
520       return false;
521 
522     // Prefer SrcReg to be a sub-register of DstReg.
523     // FIXME: Coalescer should support subregs symmetrically.
524     if (DstIdx && !SrcIdx) {
525       std::swap(Src, Dst);
526       std::swap(SrcIdx, DstIdx);
527       Flipped = !Flipped;
528     }
529 
530     CrossClass = NewRC != DstRC || NewRC != SrcRC;
531   }
532   // Check our invariants
533   assert(Register::isVirtualRegister(Src) && "Src must be virtual");
534   assert(!(Register::isPhysicalRegister(Dst) && DstSub) &&
535          "Cannot have a physical SubIdx");
536   SrcReg = Src;
537   DstReg = Dst;
538   return true;
539 }
540 
541 bool CoalescerPair::flip() {
542   if (Register::isPhysicalRegister(DstReg))
543     return false;
544   std::swap(SrcReg, DstReg);
545   std::swap(SrcIdx, DstIdx);
546   Flipped = !Flipped;
547   return true;
548 }
549 
550 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
551   if (!MI)
552     return false;
553   Register Src, Dst;
554   unsigned SrcSub = 0, DstSub = 0;
555   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
556     return false;
557 
558   // Find the virtual register that is SrcReg.
559   if (Dst == SrcReg) {
560     std::swap(Src, Dst);
561     std::swap(SrcSub, DstSub);
562   } else if (Src != SrcReg) {
563     return false;
564   }
565 
566   // Now check that Dst matches DstReg.
567   if (DstReg.isPhysical()) {
568     if (!Dst.isPhysical())
569       return false;
570     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
571     // DstSub could be set for a physreg from INSERT_SUBREG.
572     if (DstSub)
573       Dst = TRI.getSubReg(Dst, DstSub);
574     // Full copy of Src.
575     if (!SrcSub)
576       return DstReg == Dst;
577     // This is a partial register copy. Check that the parts match.
578     return Register(TRI.getSubReg(DstReg, SrcSub)) == Dst;
579   } else {
580     // DstReg is virtual.
581     if (DstReg != Dst)
582       return false;
583     // Registers match, do the subregisters line up?
584     return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
585            TRI.composeSubRegIndices(DstIdx, DstSub);
586   }
587 }
588 
589 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
590   AU.setPreservesCFG();
591   AU.addRequired<AAResultsWrapperPass>();
592   AU.addRequired<LiveIntervals>();
593   AU.addPreserved<LiveIntervals>();
594   AU.addPreserved<SlotIndexes>();
595   AU.addRequired<MachineLoopInfo>();
596   AU.addPreserved<MachineLoopInfo>();
597   AU.addPreservedID(MachineDominatorsID);
598   MachineFunctionPass::getAnalysisUsage(AU);
599 }
600 
601 void RegisterCoalescer::eliminateDeadDefs() {
602   SmallVector<Register, 8> NewRegs;
603   LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
604                 nullptr, this).eliminateDeadDefs(DeadDefs);
605 }
606 
607 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
608   // MI may be in WorkList. Make sure we don't visit it.
609   ErasedInstrs.insert(MI);
610 }
611 
612 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
613                                              MachineInstr *CopyMI) {
614   assert(!CP.isPartial() && "This doesn't work for partial copies.");
615   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
616 
617   LiveInterval &IntA =
618     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
619   LiveInterval &IntB =
620     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
621   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
622 
623   // We have a non-trivially-coalescable copy with IntA being the source and
624   // IntB being the dest, thus this defines a value number in IntB.  If the
625   // source value number (in IntA) is defined by a copy from B, see if we can
626   // merge these two pieces of B into a single value number, eliminating a copy.
627   // For example:
628   //
629   //  A3 = B0
630   //    ...
631   //  B1 = A3      <- this copy
632   //
633   // In this case, B0 can be extended to where the B1 copy lives, allowing the
634   // B1 value number to be replaced with B0 (which simplifies the B
635   // liveinterval).
636 
637   // BValNo is a value number in B that is defined by a copy from A.  'B1' in
638   // the example above.
639   LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
640   if (BS == IntB.end()) return false;
641   VNInfo *BValNo = BS->valno;
642 
643   // Get the location that B is defined at.  Two options: either this value has
644   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
645   // can't process it.
646   if (BValNo->def != CopyIdx) return false;
647 
648   // AValNo is the value number in A that defines the copy, A3 in the example.
649   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
650   LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
651   // The live segment might not exist after fun with physreg coalescing.
652   if (AS == IntA.end()) return false;
653   VNInfo *AValNo = AS->valno;
654 
655   // If AValNo is defined as a copy from IntB, we can potentially process this.
656   // Get the instruction that defines this value number.
657   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
658   // Don't allow any partial copies, even if isCoalescable() allows them.
659   if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
660     return false;
661 
662   // Get the Segment in IntB that this value number starts with.
663   LiveInterval::iterator ValS =
664     IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
665   if (ValS == IntB.end())
666     return false;
667 
668   // Make sure that the end of the live segment is inside the same block as
669   // CopyMI.
670   MachineInstr *ValSEndInst =
671     LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
672   if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
673     return false;
674 
675   // Okay, we now know that ValS ends in the same block that the CopyMI
676   // live-range starts.  If there are no intervening live segments between them
677   // in IntB, we can merge them.
678   if (ValS+1 != BS) return false;
679 
680   LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI));
681 
682   SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
683   // We are about to delete CopyMI, so need to remove it as the 'instruction
684   // that defines this value #'. Update the valnum with the new defining
685   // instruction #.
686   BValNo->def = FillerStart;
687 
688   // Okay, we can merge them.  We need to insert a new liverange:
689   // [ValS.end, BS.begin) of either value number, then we merge the
690   // two value numbers.
691   IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
692 
693   // Okay, merge "B1" into the same value number as "B0".
694   if (BValNo != ValS->valno)
695     IntB.MergeValueNumberInto(BValNo, ValS->valno);
696 
697   // Do the same for the subregister segments.
698   for (LiveInterval::SubRange &S : IntB.subranges()) {
699     // Check for SubRange Segments of the form [1234r,1234d:0) which can be
700     // removed to prevent creating bogus SubRange Segments.
701     LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
702     if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
703       S.removeSegment(*SS, true);
704       continue;
705     }
706     // The subrange may have ended before FillerStart. If so, extend it.
707     if (!S.getVNInfoAt(FillerStart)) {
708       SlotIndex BBStart =
709           LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart));
710       S.extendInBlock(BBStart, FillerStart);
711     }
712     VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
713     S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
714     VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
715     if (SubBValNo != SubValSNo)
716       S.MergeValueNumberInto(SubBValNo, SubValSNo);
717   }
718 
719   LLVM_DEBUG(dbgs() << "   result = " << IntB << '\n');
720 
721   // If the source instruction was killing the source register before the
722   // merge, unset the isKill marker given the live range has been extended.
723   int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true);
724   if (UIdx != -1) {
725     ValSEndInst->getOperand(UIdx).setIsKill(false);
726   }
727 
728   // Rewrite the copy.
729   CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI);
730   // If the copy instruction was killing the destination register or any
731   // subrange before the merge trim the live range.
732   bool RecomputeLiveRange = AS->end == CopyIdx;
733   if (!RecomputeLiveRange) {
734     for (LiveInterval::SubRange &S : IntA.subranges()) {
735       LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
736       if (SS != S.end() && SS->end == CopyIdx) {
737         RecomputeLiveRange = true;
738         break;
739       }
740     }
741   }
742   if (RecomputeLiveRange)
743     shrinkToUses(&IntA);
744 
745   ++numExtends;
746   return true;
747 }
748 
749 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
750                                              LiveInterval &IntB,
751                                              VNInfo *AValNo,
752                                              VNInfo *BValNo) {
753   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
754   // the PHI values.
755   if (LIS->hasPHIKill(IntA, AValNo))
756     return true;
757 
758   for (LiveRange::Segment &ASeg : IntA.segments) {
759     if (ASeg.valno != AValNo) continue;
760     LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
761     if (BI != IntB.begin())
762       --BI;
763     for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
764       if (BI->valno == BValNo)
765         continue;
766       if (BI->start <= ASeg.start && BI->end > ASeg.start)
767         return true;
768       if (BI->start > ASeg.start && BI->start < ASeg.end)
769         return true;
770     }
771   }
772   return false;
773 }
774 
775 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
776 /// range @Dst and use value number @p DstValNo there.
777 static std::pair<bool,bool>
778 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
779                      const VNInfo *SrcValNo) {
780   bool Changed = false;
781   bool MergedWithDead = false;
782   for (const LiveRange::Segment &S : Src.segments) {
783     if (S.valno != SrcValNo)
784       continue;
785     // This is adding a segment from Src that ends in a copy that is about
786     // to be removed. This segment is going to be merged with a pre-existing
787     // segment in Dst. This works, except in cases when the corresponding
788     // segment in Dst is dead. For example: adding [192r,208r:1) from Src
789     // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
790     // Recognized such cases, so that the segments can be shrunk.
791     LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
792     LiveRange::Segment &Merged = *Dst.addSegment(Added);
793     if (Merged.end.isDead())
794       MergedWithDead = true;
795     Changed = true;
796   }
797   return std::make_pair(Changed, MergedWithDead);
798 }
799 
800 std::pair<bool,bool>
801 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
802                                             MachineInstr *CopyMI) {
803   assert(!CP.isPhys());
804 
805   LiveInterval &IntA =
806       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
807   LiveInterval &IntB =
808       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
809 
810   // We found a non-trivially-coalescable copy with IntA being the source and
811   // IntB being the dest, thus this defines a value number in IntB.  If the
812   // source value number (in IntA) is defined by a commutable instruction and
813   // its other operand is coalesced to the copy dest register, see if we can
814   // transform the copy into a noop by commuting the definition. For example,
815   //
816   //  A3 = op A2 killed B0
817   //    ...
818   //  B1 = A3      <- this copy
819   //    ...
820   //     = op A3   <- more uses
821   //
822   // ==>
823   //
824   //  B2 = op B0 killed A2
825   //    ...
826   //  B1 = B2      <- now an identity copy
827   //    ...
828   //     = op B2   <- more uses
829 
830   // BValNo is a value number in B that is defined by a copy from A. 'B1' in
831   // the example above.
832   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
833   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
834   assert(BValNo != nullptr && BValNo->def == CopyIdx);
835 
836   // AValNo is the value number in A that defines the copy, A3 in the example.
837   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
838   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
839   if (AValNo->isPHIDef())
840     return { false, false };
841   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
842   if (!DefMI)
843     return { false, false };
844   if (!DefMI->isCommutable())
845     return { false, false };
846   // If DefMI is a two-address instruction then commuting it will change the
847   // destination register.
848   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg());
849   assert(DefIdx != -1);
850   unsigned UseOpIdx;
851   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
852     return { false, false };
853 
854   // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
855   // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
856   // passed to the method. That _other_ operand is chosen by
857   // the findCommutedOpIndices() method.
858   //
859   // That is obviously an area for improvement in case of instructions having
860   // more than 2 operands. For example, if some instruction has 3 commutable
861   // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
862   // op#2<->op#3) of commute transformation should be considered/tried here.
863   unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
864   if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
865     return { false, false };
866 
867   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
868   Register NewReg = NewDstMO.getReg();
869   if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill())
870     return { false, false };
871 
872   // Make sure there are no other definitions of IntB that would reach the
873   // uses which the new definition can reach.
874   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
875     return { false, false };
876 
877   // If some of the uses of IntA.reg is already coalesced away, return false.
878   // It's not possible to determine whether it's safe to perform the coalescing.
879   for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) {
880     MachineInstr *UseMI = MO.getParent();
881     unsigned OpNo = &MO - &UseMI->getOperand(0);
882     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
883     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
884     if (US == IntA.end() || US->valno != AValNo)
885       continue;
886     // If this use is tied to a def, we can't rewrite the register.
887     if (UseMI->isRegTiedToDefOperand(OpNo))
888       return { false, false };
889   }
890 
891   LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
892                     << *DefMI);
893 
894   // At this point we have decided that it is legal to do this
895   // transformation.  Start by commuting the instruction.
896   MachineBasicBlock *MBB = DefMI->getParent();
897   MachineInstr *NewMI =
898       TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
899   if (!NewMI)
900     return { false, false };
901   if (Register::isVirtualRegister(IntA.reg()) &&
902       Register::isVirtualRegister(IntB.reg()) &&
903       !MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg())))
904     return { false, false };
905   if (NewMI != DefMI) {
906     LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
907     MachineBasicBlock::iterator Pos = DefMI;
908     MBB->insert(Pos, NewMI);
909     MBB->erase(DefMI);
910   }
911 
912   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
913   // A = or A, B
914   // ...
915   // B = A
916   // ...
917   // C = killed A
918   // ...
919   //   = B
920 
921   // Update uses of IntA of the specific Val# with IntB.
922   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg()),
923                                          UE = MRI->use_end();
924        UI != UE;
925        /* ++UI is below because of possible MI removal */) {
926     MachineOperand &UseMO = *UI;
927     ++UI;
928     if (UseMO.isUndef())
929       continue;
930     MachineInstr *UseMI = UseMO.getParent();
931     if (UseMI->isDebugValue()) {
932       // FIXME These don't have an instruction index.  Not clear we have enough
933       // info to decide whether to do this replacement or not.  For now do it.
934       UseMO.setReg(NewReg);
935       continue;
936     }
937     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
938     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
939     assert(US != IntA.end() && "Use must be live");
940     if (US->valno != AValNo)
941       continue;
942     // Kill flags are no longer accurate. They are recomputed after RA.
943     UseMO.setIsKill(false);
944     if (Register::isPhysicalRegister(NewReg))
945       UseMO.substPhysReg(NewReg, *TRI);
946     else
947       UseMO.setReg(NewReg);
948     if (UseMI == CopyMI)
949       continue;
950     if (!UseMI->isCopy())
951       continue;
952     if (UseMI->getOperand(0).getReg() != IntB.reg() ||
953         UseMI->getOperand(0).getSubReg())
954       continue;
955 
956     // This copy will become a noop. If it's defining a new val#, merge it into
957     // BValNo.
958     SlotIndex DefIdx = UseIdx.getRegSlot();
959     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
960     if (!DVNI)
961       continue;
962     LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
963     assert(DVNI->def == DefIdx);
964     BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
965     for (LiveInterval::SubRange &S : IntB.subranges()) {
966       VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
967       if (!SubDVNI)
968         continue;
969       VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
970       assert(SubBValNo->def == CopyIdx);
971       S.MergeValueNumberInto(SubDVNI, SubBValNo);
972     }
973 
974     deleteInstr(UseMI);
975   }
976 
977   // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
978   // is updated.
979   bool ShrinkB = false;
980   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
981   if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
982     if (!IntA.hasSubRanges()) {
983       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg());
984       IntA.createSubRangeFrom(Allocator, Mask, IntA);
985     } else if (!IntB.hasSubRanges()) {
986       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg());
987       IntB.createSubRangeFrom(Allocator, Mask, IntB);
988     }
989     SlotIndex AIdx = CopyIdx.getRegSlot(true);
990     LaneBitmask MaskA;
991     const SlotIndexes &Indexes = *LIS->getSlotIndexes();
992     for (LiveInterval::SubRange &SA : IntA.subranges()) {
993       VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
994       // Even if we are dealing with a full copy, some lanes can
995       // still be undefined.
996       // E.g.,
997       // undef A.subLow = ...
998       // B = COPY A <== A.subHigh is undefined here and does
999       //                not have a value number.
1000       if (!ASubValNo)
1001         continue;
1002       MaskA |= SA.LaneMask;
1003 
1004       IntB.refineSubRanges(
1005           Allocator, SA.LaneMask,
1006           [&Allocator, &SA, CopyIdx, ASubValNo,
1007            &ShrinkB](LiveInterval::SubRange &SR) {
1008             VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
1009                                            : SR.getVNInfoAt(CopyIdx);
1010             assert(BSubValNo != nullptr);
1011             auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
1012             ShrinkB |= P.second;
1013             if (P.first)
1014               BSubValNo->def = ASubValNo->def;
1015           },
1016           Indexes, *TRI);
1017     }
1018     // Go over all subranges of IntB that have not been covered by IntA,
1019     // and delete the segments starting at CopyIdx. This can happen if
1020     // IntA has undef lanes that are defined in IntB.
1021     for (LiveInterval::SubRange &SB : IntB.subranges()) {
1022       if ((SB.LaneMask & MaskA).any())
1023         continue;
1024       if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
1025         if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
1026           SB.removeSegment(*S, true);
1027     }
1028   }
1029 
1030   BValNo->def = AValNo->def;
1031   auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
1032   ShrinkB |= P.second;
1033   LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
1034 
1035   LIS->removeVRegDefAt(IntA, AValNo->def);
1036 
1037   LLVM_DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
1038   ++numCommutes;
1039   return { true, ShrinkB };
1040 }
1041 
1042 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1043 /// predecessor of BB2, and if B is not redefined on the way from A = B
1044 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1045 /// execution goes through the path from BB0 to BB2. We may move B = A
1046 /// to the predecessor without such reversed copy.
1047 /// So we will transform the program from:
1048 ///   BB0:
1049 ///      A = B;    BB1:
1050 ///       ...         ...
1051 ///     /     \      /
1052 ///             BB2:
1053 ///               ...
1054 ///               B = A;
1055 ///
1056 /// to:
1057 ///
1058 ///   BB0:         BB1:
1059 ///      A = B;        ...
1060 ///       ...          B = A;
1061 ///     /     \       /
1062 ///             BB2:
1063 ///               ...
1064 ///
1065 /// A special case is when BB0 and BB2 are the same BB which is the only
1066 /// BB in a loop:
1067 ///   BB1:
1068 ///        ...
1069 ///   BB0/BB2:  ----
1070 ///        B = A;   |
1071 ///        ...      |
1072 ///        A = B;   |
1073 ///          |-------
1074 ///          |
1075 /// We may hoist B = A from BB0/BB2 to BB1.
1076 ///
1077 /// The major preconditions for correctness to remove such partial
1078 /// redundancy include:
1079 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1080 ///    the PHI is defined by the reversed copy A = B in BB0.
1081 /// 2. No B is referenced from the start of BB2 to B = A.
1082 /// 3. No B is defined from A = B to the end of BB0.
1083 /// 4. BB1 has only one successor.
1084 ///
1085 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1086 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1087 /// colder place, which not only prevent endless loop, but also make sure
1088 /// the movement of copy is beneficial.
1089 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1090                                                 MachineInstr &CopyMI) {
1091   assert(!CP.isPhys());
1092   if (!CopyMI.isFullCopy())
1093     return false;
1094 
1095   MachineBasicBlock &MBB = *CopyMI.getParent();
1096   // If this block is the target of an invoke/inlineasm_br, moving the copy into
1097   // the predecessor is tricker, and we don't handle it.
1098   if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget())
1099     return false;
1100 
1101   if (MBB.pred_size() != 2)
1102     return false;
1103 
1104   LiveInterval &IntA =
1105       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1106   LiveInterval &IntB =
1107       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1108 
1109   // A is defined by PHI at the entry of MBB.
1110   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1111   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1112   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1113   if (!AValNo->isPHIDef())
1114     return false;
1115 
1116   // No B is referenced before CopyMI in MBB.
1117   if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1118     return false;
1119 
1120   // MBB has two predecessors: one contains A = B so no copy will be inserted
1121   // for it. The other one will have a copy moved from MBB.
1122   bool FoundReverseCopy = false;
1123   MachineBasicBlock *CopyLeftBB = nullptr;
1124   for (MachineBasicBlock *Pred : MBB.predecessors()) {
1125     VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1126     MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1127     if (!DefMI || !DefMI->isFullCopy()) {
1128       CopyLeftBB = Pred;
1129       continue;
1130     }
1131     // Check DefMI is a reverse copy and it is in BB Pred.
1132     if (DefMI->getOperand(0).getReg() != IntA.reg() ||
1133         DefMI->getOperand(1).getReg() != IntB.reg() ||
1134         DefMI->getParent() != Pred) {
1135       CopyLeftBB = Pred;
1136       continue;
1137     }
1138     // If there is any other def of B after DefMI and before the end of Pred,
1139     // we need to keep the copy of B = A at the end of Pred if we remove
1140     // B = A from MBB.
1141     bool ValB_Changed = false;
1142     for (auto VNI : IntB.valnos) {
1143       if (VNI->isUnused())
1144         continue;
1145       if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1146         ValB_Changed = true;
1147         break;
1148       }
1149     }
1150     if (ValB_Changed) {
1151       CopyLeftBB = Pred;
1152       continue;
1153     }
1154     FoundReverseCopy = true;
1155   }
1156 
1157   // If no reverse copy is found in predecessors, nothing to do.
1158   if (!FoundReverseCopy)
1159     return false;
1160 
1161   // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1162   // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1163   // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1164   // update IntA/IntB.
1165   //
1166   // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1167   // MBB is hotter than CopyLeftBB.
1168   if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1169     return false;
1170 
1171   // Now (almost sure it's) ok to move copy.
1172   if (CopyLeftBB) {
1173     // Position in CopyLeftBB where we should insert new copy.
1174     auto InsPos = CopyLeftBB->getFirstTerminator();
1175 
1176     // Make sure that B isn't referenced in the terminators (if any) at the end
1177     // of the predecessor since we're about to insert a new definition of B
1178     // before them.
1179     if (InsPos != CopyLeftBB->end()) {
1180       SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1181       if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1182         return false;
1183     }
1184 
1185     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1186                       << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1187 
1188     // Insert new copy to CopyLeftBB.
1189     MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1190                                       TII->get(TargetOpcode::COPY), IntB.reg())
1191                                   .addReg(IntA.reg());
1192     SlotIndex NewCopyIdx =
1193         LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1194     IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1195     for (LiveInterval::SubRange &SR : IntB.subranges())
1196       SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1197 
1198     // If the newly created Instruction has an address of an instruction that was
1199     // deleted before (object recycled by the allocator) it needs to be removed from
1200     // the deleted list.
1201     ErasedInstrs.erase(NewCopyMI);
1202   } else {
1203     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1204                       << printMBBReference(MBB) << '\t' << CopyMI);
1205   }
1206 
1207   // Remove CopyMI.
1208   // Note: This is fine to remove the copy before updating the live-ranges.
1209   // While updating the live-ranges, we only look at slot indices and
1210   // never go back to the instruction.
1211   // Mark instructions as deleted.
1212   deleteInstr(&CopyMI);
1213 
1214   // Update the liveness.
1215   SmallVector<SlotIndex, 8> EndPoints;
1216   VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1217   LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1218                   &EndPoints);
1219   BValNo->markUnused();
1220   // Extend IntB to the EndPoints of its original live interval.
1221   LIS->extendToIndices(IntB, EndPoints);
1222 
1223   // Now, do the same for its subranges.
1224   for (LiveInterval::SubRange &SR : IntB.subranges()) {
1225     EndPoints.clear();
1226     VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1227     assert(BValNo && "All sublanes should be live");
1228     LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1229     BValNo->markUnused();
1230     // We can have a situation where the result of the original copy is live,
1231     // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1232     // the copy appear as an endpoint from pruneValue(), but we don't want it
1233     // to because the copy has been removed.  We can go ahead and remove that
1234     // endpoint; there is no other situation here that there could be a use at
1235     // the same place as we know that the copy is a full copy.
1236     for (unsigned I = 0; I != EndPoints.size(); ) {
1237       if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1238         EndPoints[I] = EndPoints.back();
1239         EndPoints.pop_back();
1240         continue;
1241       }
1242       ++I;
1243     }
1244     SmallVector<SlotIndex, 8> Undefs;
1245     IntB.computeSubRangeUndefs(Undefs, SR.LaneMask, *MRI,
1246                                *LIS->getSlotIndexes());
1247     LIS->extendToIndices(SR, EndPoints, Undefs);
1248   }
1249   // If any dead defs were extended, truncate them.
1250   shrinkToUses(&IntB);
1251 
1252   // Finally, update the live-range of IntA.
1253   shrinkToUses(&IntA);
1254   return true;
1255 }
1256 
1257 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1258 /// defining a subregister.
1259 static bool definesFullReg(const MachineInstr &MI, Register Reg) {
1260   assert(!Reg.isPhysical() && "This code cannot handle physreg aliasing");
1261 
1262   for (const MachineOperand &Op : MI.operands()) {
1263     if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1264       continue;
1265     // Return true if we define the full register or don't care about the value
1266     // inside other subregisters.
1267     if (Op.getSubReg() == 0 || Op.isUndef())
1268       return true;
1269   }
1270   return false;
1271 }
1272 
1273 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1274                                                 MachineInstr *CopyMI,
1275                                                 bool &IsDefCopy) {
1276   IsDefCopy = false;
1277   Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1278   unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1279   Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1280   unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1281   if (Register::isPhysicalRegister(SrcReg))
1282     return false;
1283 
1284   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1285   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1286   VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1287   if (!ValNo)
1288     return false;
1289   if (ValNo->isPHIDef() || ValNo->isUnused())
1290     return false;
1291   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1292   if (!DefMI)
1293     return false;
1294   if (DefMI->isCopyLike()) {
1295     IsDefCopy = true;
1296     return false;
1297   }
1298   if (!TII->isAsCheapAsAMove(*DefMI))
1299     return false;
1300   if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1301     return false;
1302   if (!definesFullReg(*DefMI, SrcReg))
1303     return false;
1304   bool SawStore = false;
1305   if (!DefMI->isSafeToMove(AA, SawStore))
1306     return false;
1307   const MCInstrDesc &MCID = DefMI->getDesc();
1308   if (MCID.getNumDefs() != 1)
1309     return false;
1310   // Only support subregister destinations when the def is read-undef.
1311   MachineOperand &DstOperand = CopyMI->getOperand(0);
1312   Register CopyDstReg = DstOperand.getReg();
1313   if (DstOperand.getSubReg() && !DstOperand.isUndef())
1314     return false;
1315 
1316   // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1317   // the register substantially (beyond both source and dest size). This is bad
1318   // for performance since it can cascade through a function, introducing many
1319   // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1320   // around after a few subreg copies).
1321   if (SrcIdx && DstIdx)
1322     return false;
1323 
1324   const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1325   if (!DefMI->isImplicitDef()) {
1326     if (DstReg.isPhysical()) {
1327       Register NewDstReg = DstReg;
1328 
1329       unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1330                                               DefMI->getOperand(0).getSubReg());
1331       if (NewDstIdx)
1332         NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1333 
1334       // Finally, make sure that the physical subregister that will be
1335       // constructed later is permitted for the instruction.
1336       if (!DefRC->contains(NewDstReg))
1337         return false;
1338     } else {
1339       // Theoretically, some stack frame reference could exist. Just make sure
1340       // it hasn't actually happened.
1341       assert(Register::isVirtualRegister(DstReg) &&
1342              "Only expect to deal with virtual or physical registers");
1343     }
1344   }
1345 
1346   DebugLoc DL = CopyMI->getDebugLoc();
1347   MachineBasicBlock *MBB = CopyMI->getParent();
1348   MachineBasicBlock::iterator MII =
1349     std::next(MachineBasicBlock::iterator(CopyMI));
1350   TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1351   MachineInstr &NewMI = *std::prev(MII);
1352   NewMI.setDebugLoc(DL);
1353 
1354   // In a situation like the following:
1355   //     %0:subreg = instr              ; DefMI, subreg = DstIdx
1356   //     %1        = copy %0:subreg ; CopyMI, SrcIdx = 0
1357   // instead of widening %1 to the register class of %0 simply do:
1358   //     %1 = instr
1359   const TargetRegisterClass *NewRC = CP.getNewRC();
1360   if (DstIdx != 0) {
1361     MachineOperand &DefMO = NewMI.getOperand(0);
1362     if (DefMO.getSubReg() == DstIdx) {
1363       assert(SrcIdx == 0 && CP.isFlipped()
1364              && "Shouldn't have SrcIdx+DstIdx at this point");
1365       const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1366       const TargetRegisterClass *CommonRC =
1367         TRI->getCommonSubClass(DefRC, DstRC);
1368       if (CommonRC != nullptr) {
1369         NewRC = CommonRC;
1370         DstIdx = 0;
1371         DefMO.setSubReg(0);
1372         DefMO.setIsUndef(false); // Only subregs can have def+undef.
1373       }
1374     }
1375   }
1376 
1377   // CopyMI may have implicit operands, save them so that we can transfer them
1378   // over to the newly materialized instruction after CopyMI is removed.
1379   SmallVector<MachineOperand, 4> ImplicitOps;
1380   ImplicitOps.reserve(CopyMI->getNumOperands() -
1381                       CopyMI->getDesc().getNumOperands());
1382   for (unsigned I = CopyMI->getDesc().getNumOperands(),
1383                 E = CopyMI->getNumOperands();
1384        I != E; ++I) {
1385     MachineOperand &MO = CopyMI->getOperand(I);
1386     if (MO.isReg()) {
1387       assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1388       // Discard VReg implicit defs.
1389       if (Register::isPhysicalRegister(MO.getReg()))
1390         ImplicitOps.push_back(MO);
1391     }
1392   }
1393 
1394   LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1395   CopyMI->eraseFromParent();
1396   ErasedInstrs.insert(CopyMI);
1397 
1398   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1399   // We need to remember these so we can add intervals once we insert
1400   // NewMI into SlotIndexes.
1401   SmallVector<MCRegister, 4> NewMIImplDefs;
1402   for (unsigned i = NewMI.getDesc().getNumOperands(),
1403                 e = NewMI.getNumOperands();
1404        i != e; ++i) {
1405     MachineOperand &MO = NewMI.getOperand(i);
1406     if (MO.isReg() && MO.isDef()) {
1407       assert(MO.isImplicit() && MO.isDead() &&
1408              Register::isPhysicalRegister(MO.getReg()));
1409       NewMIImplDefs.push_back(MO.getReg().asMCReg());
1410     }
1411   }
1412 
1413   if (DstReg.isVirtual()) {
1414     unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1415 
1416     if (DefRC != nullptr) {
1417       if (NewIdx)
1418         NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1419       else
1420         NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1421       assert(NewRC && "subreg chosen for remat incompatible with instruction");
1422     }
1423     // Remap subranges to new lanemask and change register class.
1424     LiveInterval &DstInt = LIS->getInterval(DstReg);
1425     for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1426       SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1427     }
1428     MRI->setRegClass(DstReg, NewRC);
1429 
1430     // Update machine operands and add flags.
1431     updateRegDefsUses(DstReg, DstReg, DstIdx);
1432     NewMI.getOperand(0).setSubReg(NewIdx);
1433     // updateRegDefUses can add an "undef" flag to the definition, since
1434     // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1435     // sure that "undef" is not set.
1436     if (NewIdx == 0)
1437       NewMI.getOperand(0).setIsUndef(false);
1438     // Add dead subregister definitions if we are defining the whole register
1439     // but only part of it is live.
1440     // This could happen if the rematerialization instruction is rematerializing
1441     // more than actually is used in the register.
1442     // An example would be:
1443     // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1444     // ; Copying only part of the register here, but the rest is undef.
1445     // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1446     // ==>
1447     // ; Materialize all the constants but only using one
1448     // %2 = LOAD_CONSTANTS 5, 8
1449     //
1450     // at this point for the part that wasn't defined before we could have
1451     // subranges missing the definition.
1452     if (NewIdx == 0 && DstInt.hasSubRanges()) {
1453       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1454       SlotIndex DefIndex =
1455           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1456       LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1457       VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1458       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1459         if (!SR.liveAt(DefIndex))
1460           SR.createDeadDef(DefIndex, Alloc);
1461         MaxMask &= ~SR.LaneMask;
1462       }
1463       if (MaxMask.any()) {
1464         LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1465         SR->createDeadDef(DefIndex, Alloc);
1466       }
1467     }
1468 
1469     // Make sure that the subrange for resultant undef is removed
1470     // For example:
1471     //   %1:sub1<def,read-undef> = LOAD CONSTANT 1
1472     //   %2 = COPY %1
1473     // ==>
1474     //   %2:sub1<def, read-undef> = LOAD CONSTANT 1
1475     //     ; Correct but need to remove the subrange for %2:sub0
1476     //     ; as it is now undef
1477     if (NewIdx != 0 && DstInt.hasSubRanges()) {
1478       // The affected subregister segments can be removed.
1479       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1480       LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1481       bool UpdatedSubRanges = false;
1482       SlotIndex DefIndex =
1483           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1484       VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator();
1485       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1486         if ((SR.LaneMask & DstMask).none()) {
1487           LLVM_DEBUG(dbgs()
1488                      << "Removing undefined SubRange "
1489                      << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1490           // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1491           if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1492             SR.removeValNo(RmValNo);
1493             UpdatedSubRanges = true;
1494           }
1495         } else {
1496           // We know that this lane is defined by this instruction,
1497           // but at this point it may be empty because it is not used by
1498           // anything. This happens when updateRegDefUses adds the missing
1499           // lanes. Assign that lane a dead def so that the interferences
1500           // are properly modeled.
1501           if (SR.empty())
1502             SR.createDeadDef(DefIndex, Alloc);
1503         }
1504       }
1505       if (UpdatedSubRanges)
1506         DstInt.removeEmptySubRanges();
1507     }
1508   } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1509     // The New instruction may be defining a sub-register of what's actually
1510     // been asked for. If so it must implicitly define the whole thing.
1511     assert(Register::isPhysicalRegister(DstReg) &&
1512            "Only expect virtual or physical registers in remat");
1513     NewMI.getOperand(0).setIsDead(true);
1514     NewMI.addOperand(MachineOperand::CreateReg(
1515         CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1516     // Record small dead def live-ranges for all the subregisters
1517     // of the destination register.
1518     // Otherwise, variables that live through may miss some
1519     // interferences, thus creating invalid allocation.
1520     // E.g., i386 code:
1521     // %1 = somedef ; %1 GR8
1522     // %2 = remat ; %2 GR32
1523     // CL = COPY %2.sub_8bit
1524     // = somedef %1 ; %1 GR8
1525     // =>
1526     // %1 = somedef ; %1 GR8
1527     // dead ECX = remat ; implicit-def CL
1528     // = somedef %1 ; %1 GR8
1529     // %1 will see the interferences with CL but not with CH since
1530     // no live-ranges would have been created for ECX.
1531     // Fix that!
1532     SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1533     for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1534          Units.isValid(); ++Units)
1535       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1536         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1537   }
1538 
1539   if (NewMI.getOperand(0).getSubReg())
1540     NewMI.getOperand(0).setIsUndef();
1541 
1542   // Transfer over implicit operands to the rematerialized instruction.
1543   for (MachineOperand &MO : ImplicitOps)
1544     NewMI.addOperand(MO);
1545 
1546   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1547   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1548     MCRegister Reg = NewMIImplDefs[i];
1549     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1550       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1551         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1552   }
1553 
1554   LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1555   ++NumReMats;
1556 
1557   // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1558   // to describe DstReg instead.
1559   if (MRI->use_nodbg_empty(SrcReg)) {
1560     for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg);
1561          UI != MRI->use_end();) {
1562       MachineOperand &UseMO = *UI++;
1563       MachineInstr *UseMI = UseMO.getParent();
1564       if (UseMI->isDebugValue()) {
1565         if (Register::isPhysicalRegister(DstReg))
1566           UseMO.substPhysReg(DstReg, *TRI);
1567         else
1568           UseMO.setReg(DstReg);
1569         // Move the debug value directly after the def of the rematerialized
1570         // value in DstReg.
1571         MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1572         LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1573       }
1574     }
1575   }
1576 
1577   if (ToBeUpdated.count(SrcReg))
1578     return true;
1579 
1580   unsigned NumCopyUses = 0;
1581   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1582     if (UseMO.getParent()->isCopyLike())
1583       NumCopyUses++;
1584   }
1585   if (NumCopyUses < LateRematUpdateThreshold) {
1586     // The source interval can become smaller because we removed a use.
1587     shrinkToUses(&SrcInt, &DeadDefs);
1588     if (!DeadDefs.empty())
1589       eliminateDeadDefs();
1590   } else {
1591     ToBeUpdated.insert(SrcReg);
1592   }
1593   return true;
1594 }
1595 
1596 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1597   // ProcessImplicitDefs may leave some copies of <undef> values, it only
1598   // removes local variables. When we have a copy like:
1599   //
1600   //   %1 = COPY undef %2
1601   //
1602   // We delete the copy and remove the corresponding value number from %1.
1603   // Any uses of that value number are marked as <undef>.
1604 
1605   // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1606   // CoalescerPair may have a new register class with adjusted subreg indices
1607   // at this point.
1608   Register SrcReg, DstReg;
1609   unsigned SrcSubIdx = 0, DstSubIdx = 0;
1610   if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
1611     return nullptr;
1612 
1613   SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1614   const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1615   // CopyMI is undef iff SrcReg is not live before the instruction.
1616   if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1617     LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1618     for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1619       if ((SR.LaneMask & SrcMask).none())
1620         continue;
1621       if (SR.liveAt(Idx))
1622         return nullptr;
1623     }
1624   } else if (SrcLI.liveAt(Idx))
1625     return nullptr;
1626 
1627   // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1628   // then replace it with an IMPLICIT_DEF.
1629   LiveInterval &DstLI = LIS->getInterval(DstReg);
1630   SlotIndex RegIndex = Idx.getRegSlot();
1631   LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1632   assert(Seg != nullptr && "No segment for defining instruction");
1633   if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1634     if (V->isPHIDef()) {
1635       CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1636       for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1637         MachineOperand &MO = CopyMI->getOperand(i-1);
1638         if (MO.isReg() && MO.isUse())
1639           CopyMI->RemoveOperand(i-1);
1640       }
1641       LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1642                            "implicit def\n");
1643       return CopyMI;
1644     }
1645   }
1646 
1647   // Remove any DstReg segments starting at the instruction.
1648   LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1649 
1650   // Remove value or merge with previous one in case of a subregister def.
1651   if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1652     VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1653     DstLI.MergeValueNumberInto(VNI, PrevVNI);
1654 
1655     // The affected subregister segments can be removed.
1656     LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1657     for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1658       if ((SR.LaneMask & DstMask).none())
1659         continue;
1660 
1661       VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1662       assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1663       SR.removeValNo(SVNI);
1664     }
1665     DstLI.removeEmptySubRanges();
1666   } else
1667     LIS->removeVRegDefAt(DstLI, RegIndex);
1668 
1669   // Mark uses as undef.
1670   for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1671     if (MO.isDef() /*|| MO.isUndef()*/)
1672       continue;
1673     const MachineInstr &MI = *MO.getParent();
1674     SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1675     LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1676     bool isLive;
1677     if (!UseMask.all() && DstLI.hasSubRanges()) {
1678       isLive = false;
1679       for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1680         if ((SR.LaneMask & UseMask).none())
1681           continue;
1682         if (SR.liveAt(UseIdx)) {
1683           isLive = true;
1684           break;
1685         }
1686       }
1687     } else
1688       isLive = DstLI.liveAt(UseIdx);
1689     if (isLive)
1690       continue;
1691     MO.setIsUndef(true);
1692     LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1693   }
1694 
1695   // A def of a subregister may be a use of the other subregisters, so
1696   // deleting a def of a subregister may also remove uses. Since CopyMI
1697   // is still part of the function (but about to be erased), mark all
1698   // defs of DstReg in it as <undef>, so that shrinkToUses would
1699   // ignore them.
1700   for (MachineOperand &MO : CopyMI->operands())
1701     if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1702       MO.setIsUndef(true);
1703   LIS->shrinkToUses(&DstLI);
1704 
1705   return CopyMI;
1706 }
1707 
1708 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1709                                      MachineOperand &MO, unsigned SubRegIdx) {
1710   LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1711   if (MO.isDef())
1712     Mask = ~Mask;
1713   bool IsUndef = true;
1714   for (const LiveInterval::SubRange &S : Int.subranges()) {
1715     if ((S.LaneMask & Mask).none())
1716       continue;
1717     if (S.liveAt(UseIdx)) {
1718       IsUndef = false;
1719       break;
1720     }
1721   }
1722   if (IsUndef) {
1723     MO.setIsUndef(true);
1724     // We found out some subregister use is actually reading an undefined
1725     // value. In some cases the whole vreg has become undefined at this
1726     // point so we have to potentially shrink the main range if the
1727     // use was ending a live segment there.
1728     LiveQueryResult Q = Int.Query(UseIdx);
1729     if (Q.valueOut() == nullptr)
1730       ShrinkMainRange = true;
1731   }
1732 }
1733 
1734 void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg,
1735                                           unsigned SubIdx) {
1736   bool DstIsPhys = Register::isPhysicalRegister(DstReg);
1737   LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1738 
1739   if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1740     for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1741       unsigned SubReg = MO.getSubReg();
1742       if (SubReg == 0 || MO.isUndef())
1743         continue;
1744       MachineInstr &MI = *MO.getParent();
1745       if (MI.isDebugValue())
1746         continue;
1747       SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1748       addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1749     }
1750   }
1751 
1752   SmallPtrSet<MachineInstr*, 8> Visited;
1753   for (MachineRegisterInfo::reg_instr_iterator
1754        I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1755        I != E; ) {
1756     MachineInstr *UseMI = &*(I++);
1757 
1758     // Each instruction can only be rewritten once because sub-register
1759     // composition is not always idempotent. When SrcReg != DstReg, rewriting
1760     // the UseMI operands removes them from the SrcReg use-def chain, but when
1761     // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1762     // operands mentioning the virtual register.
1763     if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1764       continue;
1765 
1766     SmallVector<unsigned,8> Ops;
1767     bool Reads, Writes;
1768     std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1769 
1770     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1771     // because SrcReg is a sub-register.
1772     if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
1773       Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1774 
1775     // Replace SrcReg with DstReg in all UseMI operands.
1776     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1777       MachineOperand &MO = UseMI->getOperand(Ops[i]);
1778 
1779       // Adjust <undef> flags in case of sub-register joins. We don't want to
1780       // turn a full def into a read-modify-write sub-register def and vice
1781       // versa.
1782       if (SubIdx && MO.isDef())
1783         MO.setIsUndef(!Reads);
1784 
1785       // A subreg use of a partially undef (super) register may be a complete
1786       // undef use now and then has to be marked that way.
1787       if (MO.isUse() && !DstIsPhys) {
1788         unsigned SubUseIdx = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
1789         if (SubUseIdx != 0 && MRI->shouldTrackSubRegLiveness(DstReg)) {
1790           if (!DstInt->hasSubRanges()) {
1791             BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1792             LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg());
1793             LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1794             LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
1795             DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt);
1796             // The unused lanes are just empty live-ranges at this point.
1797             // It is the caller responsibility to set the proper
1798             // dead segments if there is an actual dead def of the
1799             // unused lanes. This may happen with rematerialization.
1800             DstInt->createSubRange(Allocator, UnusedLanes);
1801           }
1802           SlotIndex MIIdx = UseMI->isDebugValue()
1803             ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1804             : LIS->getInstructionIndex(*UseMI);
1805           SlotIndex UseIdx = MIIdx.getRegSlot(true);
1806           addUndefFlag(*DstInt, UseIdx, MO, SubUseIdx);
1807         }
1808       }
1809 
1810       if (DstIsPhys)
1811         MO.substPhysReg(DstReg, *TRI);
1812       else
1813         MO.substVirtReg(DstReg, SubIdx, *TRI);
1814     }
1815 
1816     LLVM_DEBUG({
1817       dbgs() << "\t\tupdated: ";
1818       if (!UseMI->isDebugValue())
1819         dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1820       dbgs() << *UseMI;
1821     });
1822   }
1823 }
1824 
1825 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1826   // Always join simple intervals that are defined by a single copy from a
1827   // reserved register. This doesn't increase register pressure, so it is
1828   // always beneficial.
1829   if (!MRI->isReserved(CP.getDstReg())) {
1830     LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1831     return false;
1832   }
1833 
1834   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1835   if (JoinVInt.containsOneValue())
1836     return true;
1837 
1838   LLVM_DEBUG(
1839       dbgs() << "\tCannot join complex intervals into reserved register.\n");
1840   return false;
1841 }
1842 
1843 bool RegisterCoalescer::copyValueUndefInPredecessors(
1844     LiveRange &S, const MachineBasicBlock *MBB, LiveQueryResult SLRQ) {
1845   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
1846     SlotIndex PredEnd = LIS->getMBBEndIdx(Pred);
1847     if (VNInfo *V = S.getVNInfoAt(PredEnd.getPrevSlot())) {
1848       // If this is a self loop, we may be reading the same value.
1849       if (V->id != SLRQ.valueOutOrDead()->id)
1850         return false;
1851     }
1852   }
1853 
1854   return true;
1855 }
1856 
1857 void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval &LI,
1858                                                    Register Reg,
1859                                                    LaneBitmask PrunedLanes) {
1860   // If we had other instructions in the segment reading the undef sublane
1861   // value, we need to mark them with undef.
1862   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
1863     unsigned SubRegIdx = MO.getSubReg();
1864     if (SubRegIdx == 0 || MO.isUndef())
1865       continue;
1866 
1867     LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1868     SlotIndex Pos = LIS->getInstructionIndex(*MO.getParent());
1869     for (LiveInterval::SubRange &S : LI.subranges()) {
1870       if (!S.liveAt(Pos) && (PrunedLanes & SubRegMask).any()) {
1871         MO.setIsUndef();
1872         break;
1873       }
1874     }
1875   }
1876 
1877   LI.removeEmptySubRanges();
1878 
1879   // A def of a subregister may be a use of other register lanes. Replacing
1880   // such a def with a def of a different register will eliminate the use,
1881   // and may cause the recorded live range to be larger than the actual
1882   // liveness in the program IR.
1883   LIS->shrinkToUses(&LI);
1884 }
1885 
1886 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1887   Again = false;
1888   LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1889 
1890   CoalescerPair CP(*TRI);
1891   if (!CP.setRegisters(CopyMI)) {
1892     LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1893     return false;
1894   }
1895 
1896   if (CP.getNewRC()) {
1897     auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1898     auto DstRC = MRI->getRegClass(CP.getDstReg());
1899     unsigned SrcIdx = CP.getSrcIdx();
1900     unsigned DstIdx = CP.getDstIdx();
1901     if (CP.isFlipped()) {
1902       std::swap(SrcIdx, DstIdx);
1903       std::swap(SrcRC, DstRC);
1904     }
1905     if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1906                              CP.getNewRC(), *LIS)) {
1907       LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1908       return false;
1909     }
1910   }
1911 
1912   // Dead code elimination. This really should be handled by MachineDCE, but
1913   // sometimes dead copies slip through, and we can't generate invalid live
1914   // ranges.
1915   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1916     LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1917     DeadDefs.push_back(CopyMI);
1918     eliminateDeadDefs();
1919     return true;
1920   }
1921 
1922   // Eliminate undefs.
1923   if (!CP.isPhys()) {
1924     // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1925     if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1926       if (UndefMI->isImplicitDef())
1927         return false;
1928       deleteInstr(CopyMI);
1929       return false;  // Not coalescable.
1930     }
1931   }
1932 
1933   // Coalesced copies are normally removed immediately, but transformations
1934   // like removeCopyByCommutingDef() can inadvertently create identity copies.
1935   // When that happens, just join the values and remove the copy.
1936   if (CP.getSrcReg() == CP.getDstReg()) {
1937     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1938     LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1939     const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1940     LiveQueryResult LRQ = LI.Query(CopyIdx);
1941     if (VNInfo *DefVNI = LRQ.valueDefined()) {
1942       VNInfo *ReadVNI = LRQ.valueIn();
1943       assert(ReadVNI && "No value before copy and no <undef> flag.");
1944       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1945 
1946       // Track incoming undef lanes we need to eliminate from the subrange.
1947       LaneBitmask PrunedLanes;
1948       MachineBasicBlock *MBB = CopyMI->getParent();
1949 
1950       // Process subregister liveranges.
1951       for (LiveInterval::SubRange &S : LI.subranges()) {
1952         LiveQueryResult SLRQ = S.Query(CopyIdx);
1953         if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1954           if (VNInfo *SReadVNI = SLRQ.valueIn())
1955             SDefVNI = S.MergeValueNumberInto(SDefVNI, SReadVNI);
1956 
1957           // If this copy introduced an undef subrange from an incoming value,
1958           // we need to eliminate the undef live in values from the subrange.
1959           if (copyValueUndefInPredecessors(S, MBB, SLRQ)) {
1960             LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n");
1961             PrunedLanes |= S.LaneMask;
1962             S.removeValNo(SDefVNI);
1963           }
1964         }
1965       }
1966 
1967       LI.MergeValueNumberInto(DefVNI, ReadVNI);
1968       if (PrunedLanes.any()) {
1969         LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: "
1970                           << PrunedLanes << '\n');
1971         setUndefOnPrunedSubRegUses(LI, CP.getSrcReg(), PrunedLanes);
1972       }
1973 
1974       LLVM_DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1975     }
1976     deleteInstr(CopyMI);
1977     return true;
1978   }
1979 
1980   // Enforce policies.
1981   if (CP.isPhys()) {
1982     LLVM_DEBUG(dbgs() << "\tConsidering merging "
1983                       << printReg(CP.getSrcReg(), TRI) << " with "
1984                       << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1985     if (!canJoinPhys(CP)) {
1986       // Before giving up coalescing, if definition of source is defined by
1987       // trivial computation, try rematerializing it.
1988       bool IsDefCopy = false;
1989       if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1990         return true;
1991       if (IsDefCopy)
1992         Again = true;  // May be possible to coalesce later.
1993       return false;
1994     }
1995   } else {
1996     // When possible, let DstReg be the larger interval.
1997     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1998                            LIS->getInterval(CP.getDstReg()).size())
1999       CP.flip();
2000 
2001     LLVM_DEBUG({
2002       dbgs() << "\tConsidering merging to "
2003              << TRI->getRegClassName(CP.getNewRC()) << " with ";
2004       if (CP.getDstIdx() && CP.getSrcIdx())
2005         dbgs() << printReg(CP.getDstReg()) << " in "
2006                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
2007                << printReg(CP.getSrcReg()) << " in "
2008                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
2009       else
2010         dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
2011                << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
2012     });
2013   }
2014 
2015   ShrinkMask = LaneBitmask::getNone();
2016   ShrinkMainRange = false;
2017 
2018   // Okay, attempt to join these two intervals.  On failure, this returns false.
2019   // Otherwise, if one of the intervals being joined is a physreg, this method
2020   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
2021   // been modified, so we can use this information below to update aliases.
2022   if (!joinIntervals(CP)) {
2023     // Coalescing failed.
2024 
2025     // If definition of source is defined by trivial computation, try
2026     // rematerializing it.
2027     bool IsDefCopy = false;
2028     if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2029       return true;
2030 
2031     // If we can eliminate the copy without merging the live segments, do so
2032     // now.
2033     if (!CP.isPartial() && !CP.isPhys()) {
2034       bool Changed = adjustCopiesBackFrom(CP, CopyMI);
2035       bool Shrink = false;
2036       if (!Changed)
2037         std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
2038       if (Changed) {
2039         deleteInstr(CopyMI);
2040         if (Shrink) {
2041           Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
2042           LiveInterval &DstLI = LIS->getInterval(DstReg);
2043           shrinkToUses(&DstLI);
2044           LLVM_DEBUG(dbgs() << "\t\tshrunk:   " << DstLI << '\n');
2045         }
2046         LLVM_DEBUG(dbgs() << "\tTrivial!\n");
2047         return true;
2048       }
2049     }
2050 
2051     // Try and see if we can partially eliminate the copy by moving the copy to
2052     // its predecessor.
2053     if (!CP.isPartial() && !CP.isPhys())
2054       if (removePartialRedundancy(CP, *CopyMI))
2055         return true;
2056 
2057     // Otherwise, we are unable to join the intervals.
2058     LLVM_DEBUG(dbgs() << "\tInterference!\n");
2059     Again = true;  // May be possible to coalesce later.
2060     return false;
2061   }
2062 
2063   // Coalescing to a virtual register that is of a sub-register class of the
2064   // other. Make sure the resulting register is set to the right register class.
2065   if (CP.isCrossClass()) {
2066     ++numCrossRCs;
2067     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
2068   }
2069 
2070   // Removing sub-register copies can ease the register class constraints.
2071   // Make sure we attempt to inflate the register class of DstReg.
2072   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
2073     InflateRegs.push_back(CP.getDstReg());
2074 
2075   // CopyMI has been erased by joinIntervals at this point. Remove it from
2076   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
2077   // to the work list. This keeps ErasedInstrs from growing needlessly.
2078   ErasedInstrs.erase(CopyMI);
2079 
2080   // Rewrite all SrcReg operands to DstReg.
2081   // Also update DstReg operands to include DstIdx if it is set.
2082   if (CP.getDstIdx())
2083     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
2084   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
2085 
2086   // Shrink subregister ranges if necessary.
2087   if (ShrinkMask.any()) {
2088     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2089     for (LiveInterval::SubRange &S : LI.subranges()) {
2090       if ((S.LaneMask & ShrinkMask).none())
2091         continue;
2092       LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
2093                         << ")\n");
2094       LIS->shrinkToUses(S, LI.reg());
2095     }
2096     LI.removeEmptySubRanges();
2097   }
2098 
2099   // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
2100   // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
2101   // is not up-to-date, need to update the merged live interval here.
2102   if (ToBeUpdated.count(CP.getSrcReg()))
2103     ShrinkMainRange = true;
2104 
2105   if (ShrinkMainRange) {
2106     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2107     shrinkToUses(&LI);
2108   }
2109 
2110   // SrcReg is guaranteed to be the register whose live interval that is
2111   // being merged.
2112   LIS->removeInterval(CP.getSrcReg());
2113 
2114   // Update regalloc hint.
2115   TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
2116 
2117   LLVM_DEBUG({
2118     dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
2119            << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
2120     dbgs() << "\tResult = ";
2121     if (CP.isPhys())
2122       dbgs() << printReg(CP.getDstReg(), TRI);
2123     else
2124       dbgs() << LIS->getInterval(CP.getDstReg());
2125     dbgs() << '\n';
2126   });
2127 
2128   ++numJoins;
2129   return true;
2130 }
2131 
2132 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
2133   Register DstReg = CP.getDstReg();
2134   Register SrcReg = CP.getSrcReg();
2135   assert(CP.isPhys() && "Must be a physreg copy");
2136   assert(MRI->isReserved(DstReg) && "Not a reserved register");
2137   LiveInterval &RHS = LIS->getInterval(SrcReg);
2138   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
2139 
2140   assert(RHS.containsOneValue() && "Invalid join with reserved register");
2141 
2142   // Optimization for reserved registers like ESP. We can only merge with a
2143   // reserved physreg if RHS has a single value that is a copy of DstReg.
2144   // The live range of the reserved register will look like a set of dead defs
2145   // - we don't properly track the live range of reserved registers.
2146 
2147   // Deny any overlapping intervals.  This depends on all the reserved
2148   // register live ranges to look like dead defs.
2149   if (!MRI->isConstantPhysReg(DstReg)) {
2150     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2151       // Abort if not all the regunits are reserved.
2152       for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
2153         if (!MRI->isReserved(*RI))
2154           return false;
2155       }
2156       if (RHS.overlaps(LIS->getRegUnit(*UI))) {
2157         LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
2158                           << '\n');
2159         return false;
2160       }
2161     }
2162 
2163     // We must also check for overlaps with regmask clobbers.
2164     BitVector RegMaskUsable;
2165     if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2166         !RegMaskUsable.test(DstReg)) {
2167       LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2168       return false;
2169     }
2170   }
2171 
2172   // Skip any value computations, we are not adding new values to the
2173   // reserved register.  Also skip merging the live ranges, the reserved
2174   // register live range doesn't need to be accurate as long as all the
2175   // defs are there.
2176 
2177   // Delete the identity copy.
2178   MachineInstr *CopyMI;
2179   if (CP.isFlipped()) {
2180     // Physreg is copied into vreg
2181     //   %y = COPY %physreg_x
2182     //   ...  //< no other def of %physreg_x here
2183     //   use %y
2184     // =>
2185     //   ...
2186     //   use %physreg_x
2187     CopyMI = MRI->getVRegDef(SrcReg);
2188   } else {
2189     // VReg is copied into physreg:
2190     //   %y = def
2191     //   ... //< no other def or use of %physreg_x here
2192     //   %physreg_x = COPY %y
2193     // =>
2194     //   %physreg_x = def
2195     //   ...
2196     if (!MRI->hasOneNonDBGUse(SrcReg)) {
2197       LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2198       return false;
2199     }
2200 
2201     if (!LIS->intervalIsInOneMBB(RHS)) {
2202       LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2203       return false;
2204     }
2205 
2206     MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2207     CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2208     SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2209     SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2210 
2211     if (!MRI->isConstantPhysReg(DstReg)) {
2212       // We checked above that there are no interfering defs of the physical
2213       // register. However, for this case, where we intend to move up the def of
2214       // the physical register, we also need to check for interfering uses.
2215       SlotIndexes *Indexes = LIS->getSlotIndexes();
2216       for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2217            SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2218         MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2219         if (MI->readsRegister(DstReg, TRI)) {
2220           LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2221           return false;
2222         }
2223       }
2224     }
2225 
2226     // We're going to remove the copy which defines a physical reserved
2227     // register, so remove its valno, etc.
2228     LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2229                       << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2230 
2231     LIS->removePhysRegDefAt(DstReg.asMCReg(), CopyRegIdx);
2232     // Create a new dead def at the new def location.
2233     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2234       LiveRange &LR = LIS->getRegUnit(*UI);
2235       LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2236     }
2237   }
2238 
2239   deleteInstr(CopyMI);
2240 
2241   // We don't track kills for reserved registers.
2242   MRI->clearKillFlags(CP.getSrcReg());
2243 
2244   return true;
2245 }
2246 
2247 //===----------------------------------------------------------------------===//
2248 //                 Interference checking and interval joining
2249 //===----------------------------------------------------------------------===//
2250 //
2251 // In the easiest case, the two live ranges being joined are disjoint, and
2252 // there is no interference to consider. It is quite common, though, to have
2253 // overlapping live ranges, and we need to check if the interference can be
2254 // resolved.
2255 //
2256 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2257 // This means that two SSA values overlap if and only if the def of one value
2258 // is contained in the live range of the other value. As a special case, the
2259 // overlapping values can be defined at the same index.
2260 //
2261 // The interference from an overlapping def can be resolved in these cases:
2262 //
2263 // 1. Coalescable copies. The value is defined by a copy that would become an
2264 //    identity copy after joining SrcReg and DstReg. The copy instruction will
2265 //    be removed, and the value will be merged with the source value.
2266 //
2267 //    There can be several copies back and forth, causing many values to be
2268 //    merged into one. We compute a list of ultimate values in the joined live
2269 //    range as well as a mappings from the old value numbers.
2270 //
2271 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2272 //    predecessors have a live out value. It doesn't cause real interference,
2273 //    and can be merged into the value it overlaps. Like a coalescable copy, it
2274 //    can be erased after joining.
2275 //
2276 // 3. Copy of external value. The overlapping def may be a copy of a value that
2277 //    is already in the other register. This is like a coalescable copy, but
2278 //    the live range of the source register must be trimmed after erasing the
2279 //    copy instruction:
2280 //
2281 //      %src = COPY %ext
2282 //      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
2283 //
2284 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2285 //    defining one lane at a time:
2286 //
2287 //      %dst:ssub0<def,read-undef> = FOO
2288 //      %src = BAR
2289 //      %dst:ssub1 = COPY %src
2290 //
2291 //    The live range of %src overlaps the %dst value defined by FOO, but
2292 //    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2293 //    which was undef anyway.
2294 //
2295 //    The value mapping is more complicated in this case. The final live range
2296 //    will have different value numbers for both FOO and BAR, but there is no
2297 //    simple mapping from old to new values. It may even be necessary to add
2298 //    new PHI values.
2299 //
2300 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2301 //    is live, but never read. This can happen because we don't compute
2302 //    individual live ranges per lane.
2303 //
2304 //      %dst = FOO
2305 //      %src = BAR
2306 //      %dst:ssub1 = COPY %src
2307 //
2308 //    This kind of interference is only resolved locally. If the clobbered
2309 //    lane value escapes the block, the join is aborted.
2310 
2311 namespace {
2312 
2313 /// Track information about values in a single virtual register about to be
2314 /// joined. Objects of this class are always created in pairs - one for each
2315 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2316 /// pair)
2317 class JoinVals {
2318   /// Live range we work on.
2319   LiveRange &LR;
2320 
2321   /// (Main) register we work on.
2322   const Register Reg;
2323 
2324   /// Reg (and therefore the values in this liverange) will end up as
2325   /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2326   /// CP.SrcIdx.
2327   const unsigned SubIdx;
2328 
2329   /// The LaneMask that this liverange will occupy the coalesced register. May
2330   /// be smaller than the lanemask produced by SubIdx when merging subranges.
2331   const LaneBitmask LaneMask;
2332 
2333   /// This is true when joining sub register ranges, false when joining main
2334   /// ranges.
2335   const bool SubRangeJoin;
2336 
2337   /// Whether the current LiveInterval tracks subregister liveness.
2338   const bool TrackSubRegLiveness;
2339 
2340   /// Values that will be present in the final live range.
2341   SmallVectorImpl<VNInfo*> &NewVNInfo;
2342 
2343   const CoalescerPair &CP;
2344   LiveIntervals *LIS;
2345   SlotIndexes *Indexes;
2346   const TargetRegisterInfo *TRI;
2347 
2348   /// Value number assignments. Maps value numbers in LI to entries in
2349   /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2350   SmallVector<int, 8> Assignments;
2351 
2352   public:
2353   /// Conflict resolution for overlapping values.
2354   enum ConflictResolution {
2355     /// No overlap, simply keep this value.
2356     CR_Keep,
2357 
2358     /// Merge this value into OtherVNI and erase the defining instruction.
2359     /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2360     /// values.
2361     CR_Erase,
2362 
2363     /// Merge this value into OtherVNI but keep the defining instruction.
2364     /// This is for the special case where OtherVNI is defined by the same
2365     /// instruction.
2366     CR_Merge,
2367 
2368     /// Keep this value, and have it replace OtherVNI where possible. This
2369     /// complicates value mapping since OtherVNI maps to two different values
2370     /// before and after this def.
2371     /// Used when clobbering undefined or dead lanes.
2372     CR_Replace,
2373 
2374     /// Unresolved conflict. Visit later when all values have been mapped.
2375     CR_Unresolved,
2376 
2377     /// Unresolvable conflict. Abort the join.
2378     CR_Impossible
2379   };
2380 
2381   private:
2382   /// Per-value info for LI. The lane bit masks are all relative to the final
2383   /// joined register, so they can be compared directly between SrcReg and
2384   /// DstReg.
2385   struct Val {
2386     ConflictResolution Resolution = CR_Keep;
2387 
2388     /// Lanes written by this def, 0 for unanalyzed values.
2389     LaneBitmask WriteLanes;
2390 
2391     /// Lanes with defined values in this register. Other lanes are undef and
2392     /// safe to clobber.
2393     LaneBitmask ValidLanes;
2394 
2395     /// Value in LI being redefined by this def.
2396     VNInfo *RedefVNI = nullptr;
2397 
2398     /// Value in the other live range that overlaps this def, if any.
2399     VNInfo *OtherVNI = nullptr;
2400 
2401     /// Is this value an IMPLICIT_DEF that can be erased?
2402     ///
2403     /// IMPLICIT_DEF values should only exist at the end of a basic block that
2404     /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2405     /// safely erased if they are overlapping a live value in the other live
2406     /// interval.
2407     ///
2408     /// Weird control flow graphs and incomplete PHI handling in
2409     /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2410     /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2411     /// normal values.
2412     bool ErasableImplicitDef = false;
2413 
2414     /// True when the live range of this value will be pruned because of an
2415     /// overlapping CR_Replace value in the other live range.
2416     bool Pruned = false;
2417 
2418     /// True once Pruned above has been computed.
2419     bool PrunedComputed = false;
2420 
2421     /// True if this value is determined to be identical to OtherVNI
2422     /// (in valuesIdentical). This is used with CR_Erase where the erased
2423     /// copy is redundant, i.e. the source value is already the same as
2424     /// the destination. In such cases the subranges need to be updated
2425     /// properly. See comment at pruneSubRegValues for more info.
2426     bool Identical = false;
2427 
2428     Val() = default;
2429 
2430     bool isAnalyzed() const { return WriteLanes.any(); }
2431   };
2432 
2433   /// One entry per value number in LI.
2434   SmallVector<Val, 8> Vals;
2435 
2436   /// Compute the bitmask of lanes actually written by DefMI.
2437   /// Set Redef if there are any partial register definitions that depend on the
2438   /// previous value of the register.
2439   LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2440 
2441   /// Find the ultimate value that VNI was copied from.
2442   std::pair<const VNInfo *, Register> followCopyChain(const VNInfo *VNI) const;
2443 
2444   bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2445 
2446   /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2447   /// Return a conflict resolution when possible, but leave the hard cases as
2448   /// CR_Unresolved.
2449   /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2450   /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2451   /// The recursion always goes upwards in the dominator tree, making loops
2452   /// impossible.
2453   ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2454 
2455   /// Compute the value assignment for ValNo in RI.
2456   /// This may be called recursively by analyzeValue(), but never for a ValNo on
2457   /// the stack.
2458   void computeAssignment(unsigned ValNo, JoinVals &Other);
2459 
2460   /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2461   /// the extent of the tainted lanes in the block.
2462   ///
2463   /// Multiple values in Other.LR can be affected since partial redefinitions
2464   /// can preserve previously tainted lanes.
2465   ///
2466   ///   1 %dst = VLOAD           <-- Define all lanes in %dst
2467   ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
2468   ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
2469   ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2470   ///
2471   /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2472   /// entry to TaintedVals.
2473   ///
2474   /// Returns false if the tainted lanes extend beyond the basic block.
2475   bool
2476   taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2477               SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2478 
2479   /// Return true if MI uses any of the given Lanes from Reg.
2480   /// This does not include partial redefinitions of Reg.
2481   bool usesLanes(const MachineInstr &MI, Register, unsigned, LaneBitmask) const;
2482 
2483   /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2484   /// be pruned:
2485   ///
2486   ///   %dst = COPY %src
2487   ///   %src = COPY %dst  <-- This value to be pruned.
2488   ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
2489   bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2490 
2491 public:
2492   JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask,
2493            SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp,
2494            LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2495            bool TrackSubRegLiveness)
2496       : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2497         SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2498         NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2499         TRI(TRI), Assignments(LR.getNumValNums(), -1),
2500         Vals(LR.getNumValNums()) {}
2501 
2502   /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2503   /// Returns false if any conflicts were impossible to resolve.
2504   bool mapValues(JoinVals &Other);
2505 
2506   /// Try to resolve conflicts that require all values to be mapped.
2507   /// Returns false if any conflicts were impossible to resolve.
2508   bool resolveConflicts(JoinVals &Other);
2509 
2510   /// Prune the live range of values in Other.LR where they would conflict with
2511   /// CR_Replace values in LR. Collect end points for restoring the live range
2512   /// after joining.
2513   void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2514                    bool changeInstrs);
2515 
2516   /// Removes subranges starting at copies that get removed. This sometimes
2517   /// happens when undefined subranges are copied around. These ranges contain
2518   /// no useful information and can be removed.
2519   void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2520 
2521   /// Pruning values in subranges can lead to removing segments in these
2522   /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2523   /// the main range also need to be removed. This function will mark
2524   /// the corresponding values in the main range as pruned, so that
2525   /// eraseInstrs can do the final cleanup.
2526   /// The parameter @p LI must be the interval whose main range is the
2527   /// live range LR.
2528   void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2529 
2530   /// Erase any machine instructions that have been coalesced away.
2531   /// Add erased instructions to ErasedInstrs.
2532   /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2533   /// the erased instrs.
2534   void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2535                    SmallVectorImpl<Register> &ShrinkRegs,
2536                    LiveInterval *LI = nullptr);
2537 
2538   /// Remove liverange defs at places where implicit defs will be removed.
2539   void removeImplicitDefs();
2540 
2541   /// Get the value assignments suitable for passing to LiveInterval::join.
2542   const int *getAssignments() const { return Assignments.data(); }
2543 
2544   /// Get the conflict resolution for a value number.
2545   ConflictResolution getResolution(unsigned Num) const {
2546     return Vals[Num].Resolution;
2547   }
2548 };
2549 
2550 } // end anonymous namespace
2551 
2552 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2553   const {
2554   LaneBitmask L;
2555   for (const MachineOperand &MO : DefMI->operands()) {
2556     if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2557       continue;
2558     L |= TRI->getSubRegIndexLaneMask(
2559            TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2560     if (MO.readsReg())
2561       Redef = true;
2562   }
2563   return L;
2564 }
2565 
2566 std::pair<const VNInfo *, Register>
2567 JoinVals::followCopyChain(const VNInfo *VNI) const {
2568   Register TrackReg = Reg;
2569 
2570   while (!VNI->isPHIDef()) {
2571     SlotIndex Def = VNI->def;
2572     MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2573     assert(MI && "No defining instruction");
2574     if (!MI->isFullCopy())
2575       return std::make_pair(VNI, TrackReg);
2576     Register SrcReg = MI->getOperand(1).getReg();
2577     if (!SrcReg.isVirtual())
2578       return std::make_pair(VNI, TrackReg);
2579 
2580     const LiveInterval &LI = LIS->getInterval(SrcReg);
2581     const VNInfo *ValueIn;
2582     // No subrange involved.
2583     if (!SubRangeJoin || !LI.hasSubRanges()) {
2584       LiveQueryResult LRQ = LI.Query(Def);
2585       ValueIn = LRQ.valueIn();
2586     } else {
2587       // Query subranges. Ensure that all matching ones take us to the same def
2588       // (allowing some of them to be undef).
2589       ValueIn = nullptr;
2590       for (const LiveInterval::SubRange &S : LI.subranges()) {
2591         // Transform lanemask to a mask in the joined live interval.
2592         LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2593         if ((SMask & LaneMask).none())
2594           continue;
2595         LiveQueryResult LRQ = S.Query(Def);
2596         if (!ValueIn) {
2597           ValueIn = LRQ.valueIn();
2598           continue;
2599         }
2600         if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2601           return std::make_pair(VNI, TrackReg);
2602       }
2603     }
2604     if (ValueIn == nullptr) {
2605       // Reaching an undefined value is legitimate, for example:
2606       //
2607       // 1   undef %0.sub1 = ...  ;; %0.sub0 == undef
2608       // 2   %1 = COPY %0         ;; %1 is defined here.
2609       // 3   %0 = COPY %1         ;; Now %0.sub0 has a definition,
2610       //                          ;; but it's equivalent to "undef".
2611       return std::make_pair(nullptr, SrcReg);
2612     }
2613     VNI = ValueIn;
2614     TrackReg = SrcReg;
2615   }
2616   return std::make_pair(VNI, TrackReg);
2617 }
2618 
2619 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2620                                const JoinVals &Other) const {
2621   const VNInfo *Orig0;
2622   Register Reg0;
2623   std::tie(Orig0, Reg0) = followCopyChain(Value0);
2624   if (Orig0 == Value1 && Reg0 == Other.Reg)
2625     return true;
2626 
2627   const VNInfo *Orig1;
2628   Register Reg1;
2629   std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2630   // If both values are undefined, and the source registers are the same
2631   // register, the values are identical. Filter out cases where only one
2632   // value is defined.
2633   if (Orig0 == nullptr || Orig1 == nullptr)
2634     return Orig0 == Orig1 && Reg0 == Reg1;
2635 
2636   // The values are equal if they are defined at the same place and use the
2637   // same register. Note that we cannot compare VNInfos directly as some of
2638   // them might be from a copy created in mergeSubRangeInto()  while the other
2639   // is from the original LiveInterval.
2640   return Orig0->def == Orig1->def && Reg0 == Reg1;
2641 }
2642 
2643 JoinVals::ConflictResolution
2644 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2645   Val &V = Vals[ValNo];
2646   assert(!V.isAnalyzed() && "Value has already been analyzed!");
2647   VNInfo *VNI = LR.getValNumInfo(ValNo);
2648   if (VNI->isUnused()) {
2649     V.WriteLanes = LaneBitmask::getAll();
2650     return CR_Keep;
2651   }
2652 
2653   // Get the instruction defining this value, compute the lanes written.
2654   const MachineInstr *DefMI = nullptr;
2655   if (VNI->isPHIDef()) {
2656     // Conservatively assume that all lanes in a PHI are valid.
2657     LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2658                                      : TRI->getSubRegIndexLaneMask(SubIdx);
2659     V.ValidLanes = V.WriteLanes = Lanes;
2660   } else {
2661     DefMI = Indexes->getInstructionFromIndex(VNI->def);
2662     assert(DefMI != nullptr);
2663     if (SubRangeJoin) {
2664       // We don't care about the lanes when joining subregister ranges.
2665       V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2666       if (DefMI->isImplicitDef()) {
2667         V.ValidLanes = LaneBitmask::getNone();
2668         V.ErasableImplicitDef = true;
2669       }
2670     } else {
2671       bool Redef = false;
2672       V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2673 
2674       // If this is a read-modify-write instruction, there may be more valid
2675       // lanes than the ones written by this instruction.
2676       // This only covers partial redef operands. DefMI may have normal use
2677       // operands reading the register. They don't contribute valid lanes.
2678       //
2679       // This adds ssub1 to the set of valid lanes in %src:
2680       //
2681       //   %src:ssub1 = FOO
2682       //
2683       // This leaves only ssub1 valid, making any other lanes undef:
2684       //
2685       //   %src:ssub1<def,read-undef> = FOO %src:ssub2
2686       //
2687       // The <read-undef> flag on the def operand means that old lane values are
2688       // not important.
2689       if (Redef) {
2690         V.RedefVNI = LR.Query(VNI->def).valueIn();
2691         assert((TrackSubRegLiveness || V.RedefVNI) &&
2692                "Instruction is reading nonexistent value");
2693         if (V.RedefVNI != nullptr) {
2694           computeAssignment(V.RedefVNI->id, Other);
2695           V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2696         }
2697       }
2698 
2699       // An IMPLICIT_DEF writes undef values.
2700       if (DefMI->isImplicitDef()) {
2701         // We normally expect IMPLICIT_DEF values to be live only until the end
2702         // of their block. If the value is really live longer and gets pruned in
2703         // another block, this flag is cleared again.
2704         //
2705         // Clearing the valid lanes is deferred until it is sure this can be
2706         // erased.
2707         V.ErasableImplicitDef = true;
2708       }
2709     }
2710   }
2711 
2712   // Find the value in Other that overlaps VNI->def, if any.
2713   LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2714 
2715   // It is possible that both values are defined by the same instruction, or
2716   // the values are PHIs defined in the same block. When that happens, the two
2717   // values should be merged into one, but not into any preceding value.
2718   // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2719   if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2720     assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2721 
2722     // One value stays, the other is merged. Keep the earlier one, or the first
2723     // one we see.
2724     if (OtherVNI->def < VNI->def)
2725       Other.computeAssignment(OtherVNI->id, *this);
2726     else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2727       // This is an early-clobber def overlapping a live-in value in the other
2728       // register. Not mergeable.
2729       V.OtherVNI = OtherLRQ.valueIn();
2730       return CR_Impossible;
2731     }
2732     V.OtherVNI = OtherVNI;
2733     Val &OtherV = Other.Vals[OtherVNI->id];
2734     // Keep this value, check for conflicts when analyzing OtherVNI.
2735     if (!OtherV.isAnalyzed())
2736       return CR_Keep;
2737     // Both sides have been analyzed now.
2738     // Allow overlapping PHI values. Any real interference would show up in a
2739     // predecessor, the PHI itself can't introduce any conflicts.
2740     if (VNI->isPHIDef())
2741       return CR_Merge;
2742     if ((V.ValidLanes & OtherV.ValidLanes).any())
2743       // Overlapping lanes can't be resolved.
2744       return CR_Impossible;
2745     else
2746       return CR_Merge;
2747   }
2748 
2749   // No simultaneous def. Is Other live at the def?
2750   V.OtherVNI = OtherLRQ.valueIn();
2751   if (!V.OtherVNI)
2752     // No overlap, no conflict.
2753     return CR_Keep;
2754 
2755   assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2756 
2757   // We have overlapping values, or possibly a kill of Other.
2758   // Recursively compute assignments up the dominator tree.
2759   Other.computeAssignment(V.OtherVNI->id, *this);
2760   Val &OtherV = Other.Vals[V.OtherVNI->id];
2761 
2762   if (OtherV.ErasableImplicitDef) {
2763     // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2764     // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2765     // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2766     // technically.
2767     //
2768     // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2769     // to erase the IMPLICIT_DEF instruction.
2770     if (DefMI &&
2771         DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2772       LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2773                  << " extends into "
2774                  << printMBBReference(*DefMI->getParent())
2775                  << ", keeping it.\n");
2776       OtherV.ErasableImplicitDef = false;
2777     } else {
2778       // We deferred clearing these lanes in case we needed to save them
2779       OtherV.ValidLanes &= ~OtherV.WriteLanes;
2780     }
2781   }
2782 
2783   // Allow overlapping PHI values. Any real interference would show up in a
2784   // predecessor, the PHI itself can't introduce any conflicts.
2785   if (VNI->isPHIDef())
2786     return CR_Replace;
2787 
2788   // Check for simple erasable conflicts.
2789   if (DefMI->isImplicitDef())
2790     return CR_Erase;
2791 
2792   // Include the non-conflict where DefMI is a coalescable copy that kills
2793   // OtherVNI. We still want the copy erased and value numbers merged.
2794   if (CP.isCoalescable(DefMI)) {
2795     // Some of the lanes copied from OtherVNI may be undef, making them undef
2796     // here too.
2797     V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2798     return CR_Erase;
2799   }
2800 
2801   // This may not be a real conflict if DefMI simply kills Other and defines
2802   // VNI.
2803   if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2804     return CR_Keep;
2805 
2806   // Handle the case where VNI and OtherVNI can be proven to be identical:
2807   //
2808   //   %other = COPY %ext
2809   //   %this  = COPY %ext <-- Erase this copy
2810   //
2811   if (DefMI->isFullCopy() && !CP.isPartial() &&
2812       valuesIdentical(VNI, V.OtherVNI, Other)) {
2813     V.Identical = true;
2814     return CR_Erase;
2815   }
2816 
2817   // The remaining checks apply to the lanes, which aren't tracked here.  This
2818   // was already decided to be OK via the following CR_Replace condition.
2819   // CR_Replace.
2820   if (SubRangeJoin)
2821     return CR_Replace;
2822 
2823   // If the lanes written by this instruction were all undef in OtherVNI, it is
2824   // still safe to join the live ranges. This can't be done with a simple value
2825   // mapping, though - OtherVNI will map to multiple values:
2826   //
2827   //   1 %dst:ssub0 = FOO                <-- OtherVNI
2828   //   2 %src = BAR                      <-- VNI
2829   //   3 %dst:ssub1 = COPY killed %src    <-- Eliminate this copy.
2830   //   4 BAZ killed %dst
2831   //   5 QUUX killed %src
2832   //
2833   // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2834   // handles this complex value mapping.
2835   if ((V.WriteLanes & OtherV.ValidLanes).none())
2836     return CR_Replace;
2837 
2838   // If the other live range is killed by DefMI and the live ranges are still
2839   // overlapping, it must be because we're looking at an early clobber def:
2840   //
2841   //   %dst<def,early-clobber> = ASM killed %src
2842   //
2843   // In this case, it is illegal to merge the two live ranges since the early
2844   // clobber def would clobber %src before it was read.
2845   if (OtherLRQ.isKill()) {
2846     // This case where the def doesn't overlap the kill is handled above.
2847     assert(VNI->def.isEarlyClobber() &&
2848            "Only early clobber defs can overlap a kill");
2849     return CR_Impossible;
2850   }
2851 
2852   // VNI is clobbering live lanes in OtherVNI, but there is still the
2853   // possibility that no instructions actually read the clobbered lanes.
2854   // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2855   // Otherwise Other.RI wouldn't be live here.
2856   if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2857     return CR_Impossible;
2858 
2859   // We need to verify that no instructions are reading the clobbered lanes. To
2860   // save compile time, we'll only check that locally. Don't allow the tainted
2861   // value to escape the basic block.
2862   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2863   if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2864     return CR_Impossible;
2865 
2866   // There are still some things that could go wrong besides clobbered lanes
2867   // being read, for example OtherVNI may be only partially redefined in MBB,
2868   // and some clobbered lanes could escape the block. Save this analysis for
2869   // resolveConflicts() when all values have been mapped. We need to know
2870   // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2871   // that now - the recursive analyzeValue() calls must go upwards in the
2872   // dominator tree.
2873   return CR_Unresolved;
2874 }
2875 
2876 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2877   Val &V = Vals[ValNo];
2878   if (V.isAnalyzed()) {
2879     // Recursion should always move up the dominator tree, so ValNo is not
2880     // supposed to reappear before it has been assigned.
2881     assert(Assignments[ValNo] != -1 && "Bad recursion?");
2882     return;
2883   }
2884   switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2885   case CR_Erase:
2886   case CR_Merge:
2887     // Merge this ValNo into OtherVNI.
2888     assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2889     assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2890     Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2891     LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2892                       << LR.getValNumInfo(ValNo)->def << " into "
2893                       << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2894                       << V.OtherVNI->def << " --> @"
2895                       << NewVNInfo[Assignments[ValNo]]->def << '\n');
2896     break;
2897   case CR_Replace:
2898   case CR_Unresolved: {
2899     // The other value is going to be pruned if this join is successful.
2900     assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2901     Val &OtherV = Other.Vals[V.OtherVNI->id];
2902     // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2903     // its lanes.
2904     if (OtherV.ErasableImplicitDef &&
2905         TrackSubRegLiveness &&
2906         (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2907       LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2908 
2909       OtherV.ErasableImplicitDef = false;
2910       // The valid lanes written by the implicit_def were speculatively cleared
2911       // before, so make this more conservative. It may be better to track this,
2912       // I haven't found a testcase where it matters.
2913       OtherV.ValidLanes = LaneBitmask::getAll();
2914     }
2915 
2916     OtherV.Pruned = true;
2917     LLVM_FALLTHROUGH;
2918   }
2919   default:
2920     // This value number needs to go in the final joined live range.
2921     Assignments[ValNo] = NewVNInfo.size();
2922     NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2923     break;
2924   }
2925 }
2926 
2927 bool JoinVals::mapValues(JoinVals &Other) {
2928   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2929     computeAssignment(i, Other);
2930     if (Vals[i].Resolution == CR_Impossible) {
2931       LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2932                         << '@' << LR.getValNumInfo(i)->def << '\n');
2933       return false;
2934     }
2935   }
2936   return true;
2937 }
2938 
2939 bool JoinVals::
2940 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2941             SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2942   VNInfo *VNI = LR.getValNumInfo(ValNo);
2943   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2944   SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2945 
2946   // Scan Other.LR from VNI.def to MBBEnd.
2947   LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2948   assert(OtherI != Other.LR.end() && "No conflict?");
2949   do {
2950     // OtherI is pointing to a tainted value. Abort the join if the tainted
2951     // lanes escape the block.
2952     SlotIndex End = OtherI->end;
2953     if (End >= MBBEnd) {
2954       LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2955                         << OtherI->valno->id << '@' << OtherI->start << '\n');
2956       return false;
2957     }
2958     LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
2959                       << OtherI->valno->id << '@' << OtherI->start << " to "
2960                       << End << '\n');
2961     // A dead def is not a problem.
2962     if (End.isDead())
2963       break;
2964     TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2965 
2966     // Check for another def in the MBB.
2967     if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2968       break;
2969 
2970     // Lanes written by the new def are no longer tainted.
2971     const Val &OV = Other.Vals[OtherI->valno->id];
2972     TaintedLanes &= ~OV.WriteLanes;
2973     if (!OV.RedefVNI)
2974       break;
2975   } while (TaintedLanes.any());
2976   return true;
2977 }
2978 
2979 bool JoinVals::usesLanes(const MachineInstr &MI, Register Reg, unsigned SubIdx,
2980                          LaneBitmask Lanes) const {
2981   if (MI.isDebugOrPseudoInstr())
2982     return false;
2983   for (const MachineOperand &MO : MI.operands()) {
2984     if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2985       continue;
2986     if (!MO.readsReg())
2987       continue;
2988     unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
2989     if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
2990       return true;
2991   }
2992   return false;
2993 }
2994 
2995 bool JoinVals::resolveConflicts(JoinVals &Other) {
2996   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2997     Val &V = Vals[i];
2998     assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
2999     if (V.Resolution != CR_Unresolved)
3000       continue;
3001     LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
3002                       << LR.getValNumInfo(i)->def
3003                       << ' ' << PrintLaneMask(LaneMask) << '\n');
3004     if (SubRangeJoin)
3005       return false;
3006 
3007     ++NumLaneConflicts;
3008     assert(V.OtherVNI && "Inconsistent conflict resolution.");
3009     VNInfo *VNI = LR.getValNumInfo(i);
3010     const Val &OtherV = Other.Vals[V.OtherVNI->id];
3011 
3012     // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
3013     // join, those lanes will be tainted with a wrong value. Get the extent of
3014     // the tainted lanes.
3015     LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
3016     SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
3017     if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
3018       // Tainted lanes would extend beyond the basic block.
3019       return false;
3020 
3021     assert(!TaintExtent.empty() && "There should be at least one conflict.");
3022 
3023     // Now look at the instructions from VNI->def to TaintExtent (inclusive).
3024     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
3025     MachineBasicBlock::iterator MI = MBB->begin();
3026     if (!VNI->isPHIDef()) {
3027       MI = Indexes->getInstructionFromIndex(VNI->def);
3028       // No need to check the instruction defining VNI for reads.
3029       ++MI;
3030     }
3031     assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
3032            "Interference ends on VNI->def. Should have been handled earlier");
3033     MachineInstr *LastMI =
3034       Indexes->getInstructionFromIndex(TaintExtent.front().first);
3035     assert(LastMI && "Range must end at a proper instruction");
3036     unsigned TaintNum = 0;
3037     while (true) {
3038       assert(MI != MBB->end() && "Bad LastMI");
3039       if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
3040         LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
3041         return false;
3042       }
3043       // LastMI is the last instruction to use the current value.
3044       if (&*MI == LastMI) {
3045         if (++TaintNum == TaintExtent.size())
3046           break;
3047         LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
3048         assert(LastMI && "Range must end at a proper instruction");
3049         TaintedLanes = TaintExtent[TaintNum].second;
3050       }
3051       ++MI;
3052     }
3053 
3054     // The tainted lanes are unused.
3055     V.Resolution = CR_Replace;
3056     ++NumLaneResolves;
3057   }
3058   return true;
3059 }
3060 
3061 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
3062   Val &V = Vals[ValNo];
3063   if (V.Pruned || V.PrunedComputed)
3064     return V.Pruned;
3065 
3066   if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
3067     return V.Pruned;
3068 
3069   // Follow copies up the dominator tree and check if any intermediate value
3070   // has been pruned.
3071   V.PrunedComputed = true;
3072   V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
3073   return V.Pruned;
3074 }
3075 
3076 void JoinVals::pruneValues(JoinVals &Other,
3077                            SmallVectorImpl<SlotIndex> &EndPoints,
3078                            bool changeInstrs) {
3079   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3080     SlotIndex Def = LR.getValNumInfo(i)->def;
3081     switch (Vals[i].Resolution) {
3082     case CR_Keep:
3083       break;
3084     case CR_Replace: {
3085       // This value takes precedence over the value in Other.LR.
3086       LIS->pruneValue(Other.LR, Def, &EndPoints);
3087       // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
3088       // instructions are only inserted to provide a live-out value for PHI
3089       // predecessors, so the instruction should simply go away once its value
3090       // has been replaced.
3091       Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
3092       bool EraseImpDef = OtherV.ErasableImplicitDef &&
3093                          OtherV.Resolution == CR_Keep;
3094       if (!Def.isBlock()) {
3095         if (changeInstrs) {
3096           // Remove <def,read-undef> flags. This def is now a partial redef.
3097           // Also remove dead flags since the joined live range will
3098           // continue past this instruction.
3099           for (MachineOperand &MO :
3100                Indexes->getInstructionFromIndex(Def)->operands()) {
3101             if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
3102               if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
3103                 MO.setIsUndef(false);
3104               MO.setIsDead(false);
3105             }
3106           }
3107         }
3108         // This value will reach instructions below, but we need to make sure
3109         // the live range also reaches the instruction at Def.
3110         if (!EraseImpDef)
3111           EndPoints.push_back(Def);
3112       }
3113       LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
3114                         << ": " << Other.LR << '\n');
3115       break;
3116     }
3117     case CR_Erase:
3118     case CR_Merge:
3119       if (isPrunedValue(i, Other)) {
3120         // This value is ultimately a copy of a pruned value in LR or Other.LR.
3121         // We can no longer trust the value mapping computed by
3122         // computeAssignment(), the value that was originally copied could have
3123         // been replaced.
3124         LIS->pruneValue(LR, Def, &EndPoints);
3125         LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
3126                           << Def << ": " << LR << '\n');
3127       }
3128       break;
3129     case CR_Unresolved:
3130     case CR_Impossible:
3131       llvm_unreachable("Unresolved conflicts");
3132     }
3133   }
3134 }
3135 
3136 // Check if the segment consists of a copied live-through value (i.e. the copy
3137 // in the block only extended the liveness, of an undef value which we may need
3138 // to handle).
3139 static bool isLiveThrough(const LiveQueryResult Q) {
3140   return Q.valueIn() && Q.valueIn()->isPHIDef() && Q.valueIn() == Q.valueOut();
3141 }
3142 
3143 /// Consider the following situation when coalescing the copy between
3144 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
3145 ///
3146 ///                              Main range         Subrange 0004 (sub2)
3147 ///                              %31    %45           %31    %45
3148 ///  544    %45 = COPY %28               +                    +
3149 ///                                      | v1                 | v1
3150 ///  560B bb.1:                          +                    +
3151 ///  624        = %45.sub2               | v2                 | v2
3152 ///  800    %31 = COPY %45        +      +             +      +
3153 ///                               | v0                 | v0
3154 ///  816    %31.sub1 = ...        +                    |
3155 ///  880    %30 = COPY %31        | v1                 +
3156 ///  928    %45 = COPY %30        |      +                    +
3157 ///                               |      | v0                 | v0  <--+
3158 ///  992B   ; backedge -> bb.1    |      +                    +        |
3159 /// 1040        = %31.sub0        +                                    |
3160 ///                                                 This value must remain
3161 ///                                                 live-out!
3162 ///
3163 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3164 /// redundant, since it copies the value from %45 back into it. The
3165 /// conflict resolution for the main range determines that %45.v0 is
3166 /// to be erased, which is ok since %31.v1 is identical to it.
3167 /// The problem happens with the subrange for sub2: it has to be live
3168 /// on exit from the block, but since 928 was actually a point of
3169 /// definition of %45.sub2, %45.sub2 was not live immediately prior
3170 /// to that definition. As a result, when 928 was erased, the value v0
3171 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3172 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3173 /// providing an incorrect value to the use at 624.
3174 ///
3175 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3176 /// identical, the corresponding values in subranges must also be the
3177 /// same. A redundant copy is removed because it's not needed, and not
3178 /// because it copied an undefined value, so any liveness that originated
3179 /// from that copy cannot disappear. When pruning a value that started
3180 /// at the removed copy, the corresponding identical value must be
3181 /// extended to replace it.
3182 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3183   // Look for values being erased.
3184   bool DidPrune = false;
3185   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3186     Val &V = Vals[i];
3187     // We should trigger in all cases in which eraseInstrs() does something.
3188     // match what eraseInstrs() is doing, print a message so
3189     if (V.Resolution != CR_Erase &&
3190         (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3191       continue;
3192 
3193     // Check subranges at the point where the copy will be removed.
3194     SlotIndex Def = LR.getValNumInfo(i)->def;
3195     SlotIndex OtherDef;
3196     if (V.Identical)
3197       OtherDef = V.OtherVNI->def;
3198 
3199     // Print message so mismatches with eraseInstrs() can be diagnosed.
3200     LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3201                       << '\n');
3202     for (LiveInterval::SubRange &S : LI.subranges()) {
3203       LiveQueryResult Q = S.Query(Def);
3204 
3205       // If a subrange starts at the copy then an undefined value has been
3206       // copied and we must remove that subrange value as well.
3207       VNInfo *ValueOut = Q.valueOutOrDead();
3208       if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
3209                                   (V.Identical && V.Resolution == CR_Erase &&
3210                                    ValueOut->def == Def))) {
3211         LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3212                           << " at " << Def << "\n");
3213         SmallVector<SlotIndex,8> EndPoints;
3214         LIS->pruneValue(S, Def, &EndPoints);
3215         DidPrune = true;
3216         // Mark value number as unused.
3217         ValueOut->markUnused();
3218 
3219         if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
3220           // If V is identical to V.OtherVNI (and S was live at OtherDef),
3221           // then we can't simply prune V from S. V needs to be replaced
3222           // with V.OtherVNI.
3223           LIS->extendToIndices(S, EndPoints);
3224         }
3225 
3226         // We may need to eliminate the subrange if the copy introduced a live
3227         // out undef value.
3228         if (ValueOut->isPHIDef())
3229           ShrinkMask |= S.LaneMask;
3230         continue;
3231       }
3232 
3233       // If a subrange ends at the copy, then a value was copied but only
3234       // partially used later. Shrink the subregister range appropriately.
3235       //
3236       // Ultimately this calls shrinkToUses, so assuming ShrinkMask is
3237       // conservatively correct.
3238       if ((Q.valueIn() != nullptr && Q.valueOut() == nullptr) ||
3239           (V.Resolution == CR_Erase && isLiveThrough(Q))) {
3240         LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3241                           << PrintLaneMask(S.LaneMask) << " at " << Def
3242                           << "\n");
3243         ShrinkMask |= S.LaneMask;
3244       }
3245     }
3246   }
3247   if (DidPrune)
3248     LI.removeEmptySubRanges();
3249 }
3250 
3251 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3252 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3253   for (LiveInterval::SubRange &SR : LI.subranges()) {
3254     if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3255       if (VNI->def == Def)
3256         return true;
3257   }
3258   return false;
3259 }
3260 
3261 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3262   assert(&static_cast<LiveRange&>(LI) == &LR);
3263 
3264   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3265     if (Vals[i].Resolution != CR_Keep)
3266       continue;
3267     VNInfo *VNI = LR.getValNumInfo(i);
3268     if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3269       continue;
3270     Vals[i].Pruned = true;
3271     ShrinkMainRange = true;
3272   }
3273 }
3274 
3275 void JoinVals::removeImplicitDefs() {
3276   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3277     Val &V = Vals[i];
3278     if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3279       continue;
3280 
3281     VNInfo *VNI = LR.getValNumInfo(i);
3282     VNI->markUnused();
3283     LR.removeValNo(VNI);
3284   }
3285 }
3286 
3287 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3288                            SmallVectorImpl<Register> &ShrinkRegs,
3289                            LiveInterval *LI) {
3290   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3291     // Get the def location before markUnused() below invalidates it.
3292     VNInfo *VNI = LR.getValNumInfo(i);
3293     SlotIndex Def = VNI->def;
3294     switch (Vals[i].Resolution) {
3295     case CR_Keep: {
3296       // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3297       // longer. The IMPLICIT_DEF instructions are only inserted by
3298       // PHIElimination to guarantee that all PHI predecessors have a value.
3299       if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3300         break;
3301       // Remove value number i from LR.
3302       // For intervals with subranges, removing a segment from the main range
3303       // may require extending the previous segment: for each definition of
3304       // a subregister, there will be a corresponding def in the main range.
3305       // That def may fall in the middle of a segment from another subrange.
3306       // In such cases, removing this def from the main range must be
3307       // complemented by extending the main range to account for the liveness
3308       // of the other subrange.
3309       // The new end point of the main range segment to be extended.
3310       SlotIndex NewEnd;
3311       if (LI != nullptr) {
3312         LiveRange::iterator I = LR.FindSegmentContaining(Def);
3313         assert(I != LR.end());
3314         // Do not extend beyond the end of the segment being removed.
3315         // The segment may have been pruned in preparation for joining
3316         // live ranges.
3317         NewEnd = I->end;
3318       }
3319 
3320       LR.removeValNo(VNI);
3321       // Note that this VNInfo is reused and still referenced in NewVNInfo,
3322       // make it appear like an unused value number.
3323       VNI->markUnused();
3324 
3325       if (LI != nullptr && LI->hasSubRanges()) {
3326         assert(static_cast<LiveRange*>(LI) == &LR);
3327         // Determine the end point based on the subrange information:
3328         // minimum of (earliest def of next segment,
3329         //             latest end point of containing segment)
3330         SlotIndex ED, LE;
3331         for (LiveInterval::SubRange &SR : LI->subranges()) {
3332           LiveRange::iterator I = SR.find(Def);
3333           if (I == SR.end())
3334             continue;
3335           if (I->start > Def)
3336             ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3337           else
3338             LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3339         }
3340         if (LE.isValid())
3341           NewEnd = std::min(NewEnd, LE);
3342         if (ED.isValid())
3343           NewEnd = std::min(NewEnd, ED);
3344 
3345         // We only want to do the extension if there was a subrange that
3346         // was live across Def.
3347         if (LE.isValid()) {
3348           LiveRange::iterator S = LR.find(Def);
3349           if (S != LR.begin())
3350             std::prev(S)->end = NewEnd;
3351         }
3352       }
3353       LLVM_DEBUG({
3354         dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3355         if (LI != nullptr)
3356           dbgs() << "\t\t  LHS = " << *LI << '\n';
3357       });
3358       LLVM_FALLTHROUGH;
3359     }
3360 
3361     case CR_Erase: {
3362       MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3363       assert(MI && "No instruction to erase");
3364       if (MI->isCopy()) {
3365         Register Reg = MI->getOperand(1).getReg();
3366         if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() &&
3367             Reg != CP.getDstReg())
3368           ShrinkRegs.push_back(Reg);
3369       }
3370       ErasedInstrs.insert(MI);
3371       LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3372       LIS->RemoveMachineInstrFromMaps(*MI);
3373       MI->eraseFromParent();
3374       break;
3375     }
3376     default:
3377       break;
3378     }
3379   }
3380 }
3381 
3382 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3383                                          LaneBitmask LaneMask,
3384                                          const CoalescerPair &CP) {
3385   SmallVector<VNInfo*, 16> NewVNInfo;
3386   JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3387                    NewVNInfo, CP, LIS, TRI, true, true);
3388   JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3389                    NewVNInfo, CP, LIS, TRI, true, true);
3390 
3391   // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3392   // We should be able to resolve all conflicts here as we could successfully do
3393   // it on the mainrange already. There is however a problem when multiple
3394   // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3395   // interferences.
3396   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3397     // We already determined that it is legal to merge the intervals, so this
3398     // should never fail.
3399     llvm_unreachable("*** Couldn't join subrange!\n");
3400   }
3401   if (!LHSVals.resolveConflicts(RHSVals) ||
3402       !RHSVals.resolveConflicts(LHSVals)) {
3403     // We already determined that it is legal to merge the intervals, so this
3404     // should never fail.
3405     llvm_unreachable("*** Couldn't join subrange!\n");
3406   }
3407 
3408   // The merging algorithm in LiveInterval::join() can't handle conflicting
3409   // value mappings, so we need to remove any live ranges that overlap a
3410   // CR_Replace resolution. Collect a set of end points that can be used to
3411   // restore the live range after joining.
3412   SmallVector<SlotIndex, 8> EndPoints;
3413   LHSVals.pruneValues(RHSVals, EndPoints, false);
3414   RHSVals.pruneValues(LHSVals, EndPoints, false);
3415 
3416   LHSVals.removeImplicitDefs();
3417   RHSVals.removeImplicitDefs();
3418 
3419   LRange.verify();
3420   RRange.verify();
3421 
3422   // Join RRange into LHS.
3423   LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3424               NewVNInfo);
3425 
3426   LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3427                     << ' ' << LRange << "\n");
3428   if (EndPoints.empty())
3429     return;
3430 
3431   // Recompute the parts of the live range we had to remove because of
3432   // CR_Replace conflicts.
3433   LLVM_DEBUG({
3434     dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3435     for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3436       dbgs() << EndPoints[i];
3437       if (i != n-1)
3438         dbgs() << ',';
3439     }
3440     dbgs() << ":  " << LRange << '\n';
3441   });
3442   LIS->extendToIndices(LRange, EndPoints);
3443 }
3444 
3445 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3446                                           const LiveRange &ToMerge,
3447                                           LaneBitmask LaneMask,
3448                                           CoalescerPair &CP,
3449                                           unsigned ComposeSubRegIdx) {
3450   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3451   LI.refineSubRanges(
3452       Allocator, LaneMask,
3453       [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3454         if (SR.empty()) {
3455           SR.assign(ToMerge, Allocator);
3456         } else {
3457           // joinSubRegRange() destroys the merged range, so we need a copy.
3458           LiveRange RangeCopy(ToMerge, Allocator);
3459           joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3460         }
3461       },
3462       *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx);
3463 }
3464 
3465 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3466   if (LI.valnos.size() < LargeIntervalSizeThreshold)
3467     return false;
3468   auto &Counter = LargeLIVisitCounter[LI.reg()];
3469   if (Counter < LargeIntervalFreqThreshold) {
3470     Counter++;
3471     return false;
3472   }
3473   return true;
3474 }
3475 
3476 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3477   SmallVector<VNInfo*, 16> NewVNInfo;
3478   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3479   LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3480   bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3481   JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3482                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3483   JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3484                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3485 
3486   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3487 
3488   if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3489     return false;
3490 
3491   // First compute NewVNInfo and the simple value mappings.
3492   // Detect impossible conflicts early.
3493   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3494     return false;
3495 
3496   // Some conflicts can only be resolved after all values have been mapped.
3497   if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3498     return false;
3499 
3500   // All clear, the live ranges can be merged.
3501   if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3502     BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3503 
3504     // Transform lanemasks from the LHS to masks in the coalesced register and
3505     // create initial subranges if necessary.
3506     unsigned DstIdx = CP.getDstIdx();
3507     if (!LHS.hasSubRanges()) {
3508       LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3509                                      : TRI->getSubRegIndexLaneMask(DstIdx);
3510       // LHS must support subregs or we wouldn't be in this codepath.
3511       assert(Mask.any());
3512       LHS.createSubRangeFrom(Allocator, Mask, LHS);
3513     } else if (DstIdx != 0) {
3514       // Transform LHS lanemasks to new register class if necessary.
3515       for (LiveInterval::SubRange &R : LHS.subranges()) {
3516         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3517         R.LaneMask = Mask;
3518       }
3519     }
3520     LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3521                       << '\n');
3522 
3523     // Determine lanemasks of RHS in the coalesced register and merge subranges.
3524     unsigned SrcIdx = CP.getSrcIdx();
3525     if (!RHS.hasSubRanges()) {
3526       LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3527                                      : TRI->getSubRegIndexLaneMask(SrcIdx);
3528       mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx);
3529     } else {
3530       // Pair up subranges and merge.
3531       for (LiveInterval::SubRange &R : RHS.subranges()) {
3532         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3533         mergeSubRangeInto(LHS, R, Mask, CP, DstIdx);
3534       }
3535     }
3536     LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3537 
3538     // Pruning implicit defs from subranges may result in the main range
3539     // having stale segments.
3540     LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3541 
3542     LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3543     RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3544   }
3545 
3546   // The merging algorithm in LiveInterval::join() can't handle conflicting
3547   // value mappings, so we need to remove any live ranges that overlap a
3548   // CR_Replace resolution. Collect a set of end points that can be used to
3549   // restore the live range after joining.
3550   SmallVector<SlotIndex, 8> EndPoints;
3551   LHSVals.pruneValues(RHSVals, EndPoints, true);
3552   RHSVals.pruneValues(LHSVals, EndPoints, true);
3553 
3554   // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3555   // registers to require trimming.
3556   SmallVector<Register, 8> ShrinkRegs;
3557   LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3558   RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3559   while (!ShrinkRegs.empty())
3560     shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3561 
3562   // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3563   checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
3564 
3565   // If the RHS covers any PHI locations that were tracked for debug-info, we
3566   // must update tracking information to reflect the join.
3567   auto RegIt = RegToPHIIdx.find(CP.getSrcReg());
3568   if (RegIt != RegToPHIIdx.end()) {
3569     // Iterate over all the debug instruction numbers assigned this register.
3570     for (unsigned InstID : RegIt->second) {
3571       auto PHIIt = PHIValToPos.find(InstID);
3572       assert(PHIIt != PHIValToPos.end());
3573       const SlotIndex &SI = PHIIt->second.SI;
3574 
3575       // Does the RHS cover the position of this PHI?
3576       auto LII = RHS.find(SI);
3577       if (LII == RHS.end() || LII->start > SI)
3578         continue;
3579 
3580       // Accept two kinds of subregister movement:
3581       //  * When we merge from one register class into a larger register:
3582       //        %1:gr16 = some-inst
3583       //                ->
3584       //        %2:gr32.sub_16bit = some-inst
3585       //  * When the PHI is already in a subregister, and the larger class
3586       //    is coalesced:
3587       //        %2:gr32.sub_16bit = some-inst
3588       //        %3:gr32 = COPY %2
3589       //                ->
3590       //        %3:gr32.sub_16bit = some-inst
3591       // Test for subregister move:
3592       if (CP.getSrcIdx() != 0 || CP.getDstIdx() != 0)
3593         // If we're moving between different subregisters, ignore this join.
3594         // The PHI will not get a location, dropping variable locations.
3595         if (PHIIt->second.SubReg && PHIIt->second.SubReg != CP.getSrcIdx())
3596           continue;
3597 
3598       // Update our tracking of where the PHI is.
3599       PHIIt->second.Reg = CP.getDstReg();
3600 
3601       // If we merge into a sub-register of a larger class (test above),
3602       // update SubReg.
3603       if (CP.getSrcIdx() != 0)
3604         PHIIt->second.SubReg = CP.getSrcIdx();
3605     }
3606 
3607     // Rebuild the register index in RegToPHIIdx to account for PHIs tracking
3608     // different VRegs now. Copy old collection of debug instruction numbers and
3609     // erase the old one:
3610     auto InstrNums = RegIt->second;
3611     RegToPHIIdx.erase(RegIt);
3612 
3613     // There might already be PHIs being tracked in the destination VReg. Insert
3614     // into an existing tracking collection, or insert a new one.
3615     RegIt = RegToPHIIdx.find(CP.getDstReg());
3616     if (RegIt != RegToPHIIdx.end())
3617       RegIt->second.insert(RegIt->second.end(), InstrNums.begin(),
3618                            InstrNums.end());
3619     else
3620       RegToPHIIdx.insert({CP.getDstReg(), InstrNums});
3621   }
3622 
3623   // Join RHS into LHS.
3624   LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3625 
3626   // Kill flags are going to be wrong if the live ranges were overlapping.
3627   // Eventually, we should simply clear all kill flags when computing live
3628   // ranges. They are reinserted after register allocation.
3629   MRI->clearKillFlags(LHS.reg());
3630   MRI->clearKillFlags(RHS.reg());
3631 
3632   if (!EndPoints.empty()) {
3633     // Recompute the parts of the live range we had to remove because of
3634     // CR_Replace conflicts.
3635     LLVM_DEBUG({
3636       dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3637       for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3638         dbgs() << EndPoints[i];
3639         if (i != n-1)
3640           dbgs() << ',';
3641       }
3642       dbgs() << ":  " << LHS << '\n';
3643     });
3644     LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3645   }
3646 
3647   return true;
3648 }
3649 
3650 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3651   return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3652 }
3653 
3654 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF)
3655 {
3656   const SlotIndexes &Slots = *LIS->getSlotIndexes();
3657   SmallVector<MachineInstr *, 8> ToInsert;
3658 
3659   // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3660   // vreg => DbgValueLoc map.
3661   auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
3662     for (auto *X : ToInsert) {
3663       for (auto Op : X->debug_operands()) {
3664         if (Op.isReg() && Op.getReg().isVirtual())
3665           DbgVRegToValues[Op.getReg()].push_back({Slot, X});
3666       }
3667     }
3668 
3669     ToInsert.clear();
3670   };
3671 
3672   // Iterate over all instructions, collecting them into the ToInsert vector.
3673   // Once a non-debug instruction is found, record the slot index of the
3674   // collected DBG_VALUEs.
3675   for (auto &MBB : MF) {
3676     SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB);
3677 
3678     for (auto &MI : MBB) {
3679       if (MI.isDebugValue()) {
3680         if (any_of(MI.debug_operands(), [](const MachineOperand &MO) {
3681               return MO.isReg() && MO.getReg().isVirtual();
3682             }))
3683           ToInsert.push_back(&MI);
3684       } else if (!MI.isDebugOrPseudoInstr()) {
3685         CurrentSlot = Slots.getInstructionIndex(MI);
3686         CloseNewDVRange(CurrentSlot);
3687       }
3688     }
3689 
3690     // Close range of DBG_VALUEs at the end of blocks.
3691     CloseNewDVRange(Slots.getMBBEndIdx(&MBB));
3692   }
3693 
3694   // Sort all DBG_VALUEs we've seen by slot number.
3695   for (auto &Pair : DbgVRegToValues)
3696     llvm::sort(Pair.second);
3697 }
3698 
3699 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
3700                                                      LiveRange &LHS,
3701                                                      JoinVals &LHSVals,
3702                                                      LiveRange &RHS,
3703                                                      JoinVals &RHSVals) {
3704   auto ScanForDstReg = [&](Register Reg) {
3705     checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals);
3706   };
3707 
3708   auto ScanForSrcReg = [&](Register Reg) {
3709     checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals);
3710   };
3711 
3712   // Scan for potentially unsound DBG_VALUEs: examine first the register number
3713   // Reg, and then any other vregs that may have been merged into  it.
3714   auto PerformScan = [this](Register Reg, std::function<void(Register)> Func) {
3715     Func(Reg);
3716     if (DbgMergedVRegNums.count(Reg))
3717       for (Register X : DbgMergedVRegNums[Reg])
3718         Func(X);
3719   };
3720 
3721   // Scan for unsound updates of both the source and destination register.
3722   PerformScan(CP.getSrcReg(), ScanForSrcReg);
3723   PerformScan(CP.getDstReg(), ScanForDstReg);
3724 }
3725 
3726 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg,
3727                                                          LiveRange &OtherLR,
3728                                                          LiveRange &RegLR,
3729                                                          JoinVals &RegVals) {
3730   // Are there any DBG_VALUEs to examine?
3731   auto VRegMapIt = DbgVRegToValues.find(Reg);
3732   if (VRegMapIt == DbgVRegToValues.end())
3733     return;
3734 
3735   auto &DbgValueSet = VRegMapIt->second;
3736   auto DbgValueSetIt = DbgValueSet.begin();
3737   auto SegmentIt = OtherLR.begin();
3738 
3739   bool LastUndefResult = false;
3740   SlotIndex LastUndefIdx;
3741 
3742   // If the "Other" register is live at a slot Idx, test whether Reg can
3743   // safely be merged with it, or should be marked undef.
3744   auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
3745                       &LastUndefIdx](SlotIndex Idx) -> bool {
3746     // Our worst-case performance typically happens with asan, causing very
3747     // many DBG_VALUEs of the same location. Cache a copy of the most recent
3748     // result for this edge-case.
3749     if (LastUndefIdx == Idx)
3750       return LastUndefResult;
3751 
3752     // If the other range was live, and Reg's was not, the register coalescer
3753     // will not have tried to resolve any conflicts. We don't know whether
3754     // the DBG_VALUE will refer to the same value number, so it must be made
3755     // undef.
3756     auto OtherIt = RegLR.find(Idx);
3757     if (OtherIt == RegLR.end())
3758       return true;
3759 
3760     // Both the registers were live: examine the conflict resolution record for
3761     // the value number Reg refers to. CR_Keep meant that this value number
3762     // "won" and the merged register definitely refers to that value. CR_Erase
3763     // means the value number was a redundant copy of the other value, which
3764     // was coalesced and Reg deleted. It's safe to refer to the other register
3765     // (which will be the source of the copy).
3766     auto Resolution = RegVals.getResolution(OtherIt->valno->id);
3767     LastUndefResult = Resolution != JoinVals::CR_Keep &&
3768                       Resolution != JoinVals::CR_Erase;
3769     LastUndefIdx = Idx;
3770     return LastUndefResult;
3771   };
3772 
3773   // Iterate over both the live-range of the "Other" register, and the set of
3774   // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3775   // slot index. This relies on the DbgValueSet being ordered.
3776   while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
3777     if (DbgValueSetIt->first < SegmentIt->end) {
3778       // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3779       // set it undef.
3780       if (DbgValueSetIt->first >= SegmentIt->start) {
3781         bool HasReg = DbgValueSetIt->second->hasDebugOperandForReg(Reg);
3782         bool ShouldUndefReg = ShouldUndef(DbgValueSetIt->first);
3783         if (HasReg && ShouldUndefReg) {
3784           // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3785           DbgValueSetIt->second->setDebugValueUndef();
3786           continue;
3787         }
3788       }
3789       ++DbgValueSetIt;
3790     } else {
3791       ++SegmentIt;
3792     }
3793   }
3794 }
3795 
3796 namespace {
3797 
3798 /// Information concerning MBB coalescing priority.
3799 struct MBBPriorityInfo {
3800   MachineBasicBlock *MBB;
3801   unsigned Depth;
3802   bool IsSplit;
3803 
3804   MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3805     : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3806 };
3807 
3808 } // end anonymous namespace
3809 
3810 /// C-style comparator that sorts first based on the loop depth of the basic
3811 /// block (the unsigned), and then on the MBB number.
3812 ///
3813 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3814 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3815                               const MBBPriorityInfo *RHS) {
3816   // Deeper loops first
3817   if (LHS->Depth != RHS->Depth)
3818     return LHS->Depth > RHS->Depth ? -1 : 1;
3819 
3820   // Try to unsplit critical edges next.
3821   if (LHS->IsSplit != RHS->IsSplit)
3822     return LHS->IsSplit ? -1 : 1;
3823 
3824   // Prefer blocks that are more connected in the CFG. This takes care of
3825   // the most difficult copies first while intervals are short.
3826   unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3827   unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3828   if (cl != cr)
3829     return cl > cr ? -1 : 1;
3830 
3831   // As a last resort, sort by block number.
3832   return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3833 }
3834 
3835 /// \returns true if the given copy uses or defines a local live range.
3836 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3837   if (!Copy->isCopy())
3838     return false;
3839 
3840   if (Copy->getOperand(1).isUndef())
3841     return false;
3842 
3843   Register SrcReg = Copy->getOperand(1).getReg();
3844   Register DstReg = Copy->getOperand(0).getReg();
3845   if (Register::isPhysicalRegister(SrcReg) ||
3846       Register::isPhysicalRegister(DstReg))
3847     return false;
3848 
3849   return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3850     || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3851 }
3852 
3853 void RegisterCoalescer::lateLiveIntervalUpdate() {
3854   for (Register reg : ToBeUpdated) {
3855     if (!LIS->hasInterval(reg))
3856       continue;
3857     LiveInterval &LI = LIS->getInterval(reg);
3858     shrinkToUses(&LI, &DeadDefs);
3859     if (!DeadDefs.empty())
3860       eliminateDeadDefs();
3861   }
3862   ToBeUpdated.clear();
3863 }
3864 
3865 bool RegisterCoalescer::
3866 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3867   bool Progress = false;
3868   for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3869     if (!CurrList[i])
3870       continue;
3871     // Skip instruction pointers that have already been erased, for example by
3872     // dead code elimination.
3873     if (ErasedInstrs.count(CurrList[i])) {
3874       CurrList[i] = nullptr;
3875       continue;
3876     }
3877     bool Again = false;
3878     bool Success = joinCopy(CurrList[i], Again);
3879     Progress |= Success;
3880     if (Success || !Again)
3881       CurrList[i] = nullptr;
3882   }
3883   return Progress;
3884 }
3885 
3886 /// Check if DstReg is a terminal node.
3887 /// I.e., it does not have any affinity other than \p Copy.
3888 static bool isTerminalReg(Register DstReg, const MachineInstr &Copy,
3889                           const MachineRegisterInfo *MRI) {
3890   assert(Copy.isCopyLike());
3891   // Check if the destination of this copy as any other affinity.
3892   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3893     if (&MI != &Copy && MI.isCopyLike())
3894       return false;
3895   return true;
3896 }
3897 
3898 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3899   assert(Copy.isCopyLike());
3900   if (!UseTerminalRule)
3901     return false;
3902   Register SrcReg, DstReg;
3903   unsigned SrcSubReg = 0, DstSubReg = 0;
3904   if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
3905     return false;
3906   // Check if the destination of this copy has any other affinity.
3907   if (DstReg.isPhysical() ||
3908       // If SrcReg is a physical register, the copy won't be coalesced.
3909       // Ignoring it may have other side effect (like missing
3910       // rematerialization). So keep it.
3911       SrcReg.isPhysical() || !isTerminalReg(DstReg, Copy, MRI))
3912     return false;
3913 
3914   // DstReg is a terminal node. Check if it interferes with any other
3915   // copy involving SrcReg.
3916   const MachineBasicBlock *OrigBB = Copy.getParent();
3917   const LiveInterval &DstLI = LIS->getInterval(DstReg);
3918   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3919     // Technically we should check if the weight of the new copy is
3920     // interesting compared to the other one and update the weight
3921     // of the copies accordingly. However, this would only work if
3922     // we would gather all the copies first then coalesce, whereas
3923     // right now we interleave both actions.
3924     // For now, just consider the copies that are in the same block.
3925     if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3926       continue;
3927     Register OtherSrcReg, OtherReg;
3928     unsigned OtherSrcSubReg = 0, OtherSubReg = 0;
3929     if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3930                 OtherSubReg))
3931       return false;
3932     if (OtherReg == SrcReg)
3933       OtherReg = OtherSrcReg;
3934     // Check if OtherReg is a non-terminal.
3935     if (Register::isPhysicalRegister(OtherReg) ||
3936         isTerminalReg(OtherReg, MI, MRI))
3937       continue;
3938     // Check that OtherReg interfere with DstReg.
3939     if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3940       LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3941                         << '\n');
3942       return true;
3943     }
3944   }
3945   return false;
3946 }
3947 
3948 void
3949 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3950   LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3951 
3952   // Collect all copy-like instructions in MBB. Don't start coalescing anything
3953   // yet, it might invalidate the iterator.
3954   const unsigned PrevSize = WorkList.size();
3955   if (JoinGlobalCopies) {
3956     SmallVector<MachineInstr*, 2> LocalTerminals;
3957     SmallVector<MachineInstr*, 2> GlobalTerminals;
3958     // Coalesce copies bottom-up to coalesce local defs before local uses. They
3959     // are not inherently easier to resolve, but slightly preferable until we
3960     // have local live range splitting. In particular this is required by
3961     // cmp+jmp macro fusion.
3962     for (MachineInstr &MI : *MBB) {
3963       if (!MI.isCopyLike())
3964         continue;
3965       bool ApplyTerminalRule = applyTerminalRule(MI);
3966       if (isLocalCopy(&MI, LIS)) {
3967         if (ApplyTerminalRule)
3968           LocalTerminals.push_back(&MI);
3969         else
3970           LocalWorkList.push_back(&MI);
3971       } else {
3972         if (ApplyTerminalRule)
3973           GlobalTerminals.push_back(&MI);
3974         else
3975           WorkList.push_back(&MI);
3976       }
3977     }
3978     // Append the copies evicted by the terminal rule at the end of the list.
3979     LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
3980     WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
3981   }
3982   else {
3983     SmallVector<MachineInstr*, 2> Terminals;
3984     for (MachineInstr &MII : *MBB)
3985       if (MII.isCopyLike()) {
3986         if (applyTerminalRule(MII))
3987           Terminals.push_back(&MII);
3988         else
3989           WorkList.push_back(&MII);
3990       }
3991     // Append the copies evicted by the terminal rule at the end of the list.
3992     WorkList.append(Terminals.begin(), Terminals.end());
3993   }
3994   // Try coalescing the collected copies immediately, and remove the nulls.
3995   // This prevents the WorkList from getting too large since most copies are
3996   // joinable on the first attempt.
3997   MutableArrayRef<MachineInstr*>
3998     CurrList(WorkList.begin() + PrevSize, WorkList.end());
3999   if (copyCoalesceWorkList(CurrList))
4000     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
4001                                nullptr), WorkList.end());
4002 }
4003 
4004 void RegisterCoalescer::coalesceLocals() {
4005   copyCoalesceWorkList(LocalWorkList);
4006   for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
4007     if (LocalWorkList[j])
4008       WorkList.push_back(LocalWorkList[j]);
4009   }
4010   LocalWorkList.clear();
4011 }
4012 
4013 void RegisterCoalescer::joinAllIntervals() {
4014   LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
4015   assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
4016 
4017   std::vector<MBBPriorityInfo> MBBs;
4018   MBBs.reserve(MF->size());
4019   for (MachineBasicBlock &MBB : *MF) {
4020     MBBs.push_back(MBBPriorityInfo(&MBB, Loops->getLoopDepth(&MBB),
4021                                    JoinSplitEdges && isSplitEdge(&MBB)));
4022   }
4023   array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
4024 
4025   // Coalesce intervals in MBB priority order.
4026   unsigned CurrDepth = std::numeric_limits<unsigned>::max();
4027   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
4028     // Try coalescing the collected local copies for deeper loops.
4029     if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
4030       coalesceLocals();
4031       CurrDepth = MBBs[i].Depth;
4032     }
4033     copyCoalesceInMBB(MBBs[i].MBB);
4034   }
4035   lateLiveIntervalUpdate();
4036   coalesceLocals();
4037 
4038   // Joining intervals can allow other intervals to be joined.  Iteratively join
4039   // until we make no progress.
4040   while (copyCoalesceWorkList(WorkList))
4041     /* empty */ ;
4042   lateLiveIntervalUpdate();
4043 }
4044 
4045 void RegisterCoalescer::releaseMemory() {
4046   ErasedInstrs.clear();
4047   WorkList.clear();
4048   DeadDefs.clear();
4049   InflateRegs.clear();
4050   LargeLIVisitCounter.clear();
4051 }
4052 
4053 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
4054   LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
4055                     << "********** Function: " << fn.getName() << '\n');
4056 
4057   // Variables changed between a setjmp and a longjump can have undefined value
4058   // after the longjmp. This behaviour can be observed if such a variable is
4059   // spilled, so longjmp won't restore the value in the spill slot.
4060   // RegisterCoalescer should not run in functions with a setjmp to avoid
4061   // merging such undefined variables with predictable ones.
4062   //
4063   // TODO: Could specifically disable coalescing registers live across setjmp
4064   // calls
4065   if (fn.exposesReturnsTwice()) {
4066     LLVM_DEBUG(
4067         dbgs() << "* Skipped as it exposes funcions that returns twice.\n");
4068     return false;
4069   }
4070 
4071   MF = &fn;
4072   MRI = &fn.getRegInfo();
4073   const TargetSubtargetInfo &STI = fn.getSubtarget();
4074   TRI = STI.getRegisterInfo();
4075   TII = STI.getInstrInfo();
4076   LIS = &getAnalysis<LiveIntervals>();
4077   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4078   Loops = &getAnalysis<MachineLoopInfo>();
4079   if (EnableGlobalCopies == cl::BOU_UNSET)
4080     JoinGlobalCopies = STI.enableJoinGlobalCopies();
4081   else
4082     JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
4083 
4084   // If there are PHIs tracked by debug-info, they will need updating during
4085   // coalescing. Build an index of those PHIs to ease updating.
4086   SlotIndexes *Slots = LIS->getSlotIndexes();
4087   for (const auto &DebugPHI : MF->DebugPHIPositions) {
4088     MachineBasicBlock *MBB = DebugPHI.second.MBB;
4089     Register Reg = DebugPHI.second.Reg;
4090     unsigned SubReg = DebugPHI.second.SubReg;
4091     SlotIndex SI = Slots->getMBBStartIdx(MBB);
4092     PHIValPos P = {SI, Reg, SubReg};
4093     PHIValToPos.insert(std::make_pair(DebugPHI.first, P));
4094     RegToPHIIdx[Reg].push_back(DebugPHI.first);
4095   }
4096 
4097   // The MachineScheduler does not currently require JoinSplitEdges. This will
4098   // either be enabled unconditionally or replaced by a more general live range
4099   // splitting optimization.
4100   JoinSplitEdges = EnableJoinSplits;
4101 
4102   if (VerifyCoalescing)
4103     MF->verify(this, "Before register coalescing");
4104 
4105   DbgVRegToValues.clear();
4106   DbgMergedVRegNums.clear();
4107   buildVRegToDbgValueMap(fn);
4108 
4109   RegClassInfo.runOnMachineFunction(fn);
4110 
4111   // Join (coalesce) intervals if requested.
4112   if (EnableJoining)
4113     joinAllIntervals();
4114 
4115   // After deleting a lot of copies, register classes may be less constrained.
4116   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
4117   // DPR inflation.
4118   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
4119   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
4120                     InflateRegs.end());
4121   LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
4122                     << " regs.\n");
4123   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
4124     Register Reg = InflateRegs[i];
4125     if (MRI->reg_nodbg_empty(Reg))
4126       continue;
4127     if (MRI->recomputeRegClass(Reg)) {
4128       LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
4129                         << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
4130       ++NumInflated;
4131 
4132       LiveInterval &LI = LIS->getInterval(Reg);
4133       if (LI.hasSubRanges()) {
4134         // If the inflated register class does not support subregisters anymore
4135         // remove the subranges.
4136         if (!MRI->shouldTrackSubRegLiveness(Reg)) {
4137           LI.clearSubRanges();
4138         } else {
4139 #ifndef NDEBUG
4140           LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
4141           // If subranges are still supported, then the same subregs
4142           // should still be supported.
4143           for (LiveInterval::SubRange &S : LI.subranges()) {
4144             assert((S.LaneMask & ~MaxMask).none());
4145           }
4146 #endif
4147         }
4148       }
4149     }
4150   }
4151 
4152   // After coalescing, update any PHIs that are being tracked by debug-info
4153   // with their new VReg locations.
4154   for (auto &p : MF->DebugPHIPositions) {
4155     auto it = PHIValToPos.find(p.first);
4156     assert(it != PHIValToPos.end());
4157     p.second.Reg = it->second.Reg;
4158     p.second.SubReg = it->second.SubReg;
4159   }
4160 
4161   PHIValToPos.clear();
4162   RegToPHIIdx.clear();
4163 
4164   LLVM_DEBUG(dump());
4165   if (VerifyCoalescing)
4166     MF->verify(this, "After register coalescing");
4167   return true;
4168 }
4169 
4170 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
4171    LIS->print(O, m);
4172 }
4173