1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic RegisterCoalescer interface which 11 // is used as the common interface used by all clients and 12 // implementations of register coalescing. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "RegisterCoalescer.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/LiveRangeEdit.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineLoopInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/CodeGen/RegisterClassInfo.h" 29 #include "llvm/CodeGen/VirtRegMap.h" 30 #include "llvm/IR/Value.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetSubtargetInfo.h" 40 #include <algorithm> 41 #include <cmath> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "regalloc" 45 46 STATISTIC(numJoins , "Number of interval joins performed"); 47 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 48 STATISTIC(numCommutes , "Number of instruction commuting performed"); 49 STATISTIC(numExtends , "Number of copies extended"); 50 STATISTIC(NumReMats , "Number of instructions re-materialized"); 51 STATISTIC(NumInflated , "Number of register classes inflated"); 52 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 53 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 54 55 static cl::opt<bool> 56 EnableJoining("join-liveintervals", 57 cl::desc("Coalesce copies (default=true)"), 58 cl::init(true)); 59 60 static cl::opt<bool> UseTerminalRule("terminal-rule", 61 cl::desc("Apply the terminal rule"), 62 cl::init(false), cl::Hidden); 63 64 /// Temporary flag to test critical edge unsplitting. 65 static cl::opt<bool> 66 EnableJoinSplits("join-splitedges", 67 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 68 69 /// Temporary flag to test global copy optimization. 70 static cl::opt<cl::boolOrDefault> 71 EnableGlobalCopies("join-globalcopies", 72 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 73 cl::init(cl::BOU_UNSET), cl::Hidden); 74 75 static cl::opt<bool> 76 VerifyCoalescing("verify-coalescing", 77 cl::desc("Verify machine instrs before and after register coalescing"), 78 cl::Hidden); 79 80 namespace { 81 class RegisterCoalescer : public MachineFunctionPass, 82 private LiveRangeEdit::Delegate { 83 MachineFunction* MF; 84 MachineRegisterInfo* MRI; 85 const TargetMachine* TM; 86 const TargetRegisterInfo* TRI; 87 const TargetInstrInfo* TII; 88 LiveIntervals *LIS; 89 const MachineLoopInfo* Loops; 90 AliasAnalysis *AA; 91 RegisterClassInfo RegClassInfo; 92 93 /// A LaneMask to remember on which subregister live ranges we need to call 94 /// shrinkToUses() later. 95 LaneBitmask ShrinkMask; 96 97 /// True if the main range of the currently coalesced intervals should be 98 /// checked for smaller live intervals. 99 bool ShrinkMainRange; 100 101 /// \brief True if the coalescer should aggressively coalesce global copies 102 /// in favor of keeping local copies. 103 bool JoinGlobalCopies; 104 105 /// \brief True if the coalescer should aggressively coalesce fall-thru 106 /// blocks exclusively containing copies. 107 bool JoinSplitEdges; 108 109 /// Copy instructions yet to be coalesced. 110 SmallVector<MachineInstr*, 8> WorkList; 111 SmallVector<MachineInstr*, 8> LocalWorkList; 112 113 /// Set of instruction pointers that have been erased, and 114 /// that may be present in WorkList. 115 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 116 117 /// Dead instructions that are about to be deleted. 118 SmallVector<MachineInstr*, 8> DeadDefs; 119 120 /// Virtual registers to be considered for register class inflation. 121 SmallVector<unsigned, 8> InflateRegs; 122 123 /// Recursively eliminate dead defs in DeadDefs. 124 void eliminateDeadDefs(); 125 126 /// LiveRangeEdit callback for eliminateDeadDefs(). 127 void LRE_WillEraseInstruction(MachineInstr *MI) override; 128 129 /// Coalesce the LocalWorkList. 130 void coalesceLocals(); 131 132 /// Join compatible live intervals 133 void joinAllIntervals(); 134 135 /// Coalesce copies in the specified MBB, putting 136 /// copies that cannot yet be coalesced into WorkList. 137 void copyCoalesceInMBB(MachineBasicBlock *MBB); 138 139 /// Tries to coalesce all copies in CurrList. Returns true if any progress 140 /// was made. 141 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 142 143 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 144 /// src/dst of the copy instruction CopyMI. This returns true if the copy 145 /// was successfully coalesced away. If it is not currently possible to 146 /// coalesce this interval, but it may be possible if other things get 147 /// coalesced, then it returns true by reference in 'Again'. 148 bool joinCopy(MachineInstr *TheCopy, bool &Again); 149 150 /// Attempt to join these two intervals. On failure, this 151 /// returns false. The output "SrcInt" will not have been modified, so we 152 /// can use this information below to update aliases. 153 bool joinIntervals(CoalescerPair &CP); 154 155 /// Attempt joining two virtual registers. Return true on success. 156 bool joinVirtRegs(CoalescerPair &CP); 157 158 /// Attempt joining with a reserved physreg. 159 bool joinReservedPhysReg(CoalescerPair &CP); 160 161 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 162 /// Subranges in @p LI which only partially interfere with the desired 163 /// LaneMask are split as necessary. @p LaneMask are the lanes that 164 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 165 /// lanemasks already adjusted to the coalesced register. 166 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 167 LaneBitmask LaneMask, CoalescerPair &CP); 168 169 /// Join the liveranges of two subregisters. Joins @p RRange into 170 /// @p LRange, @p RRange may be invalid afterwards. 171 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 172 LaneBitmask LaneMask, const CoalescerPair &CP); 173 174 /// We found a non-trivially-coalescable copy. If the source value number is 175 /// defined by a copy from the destination reg see if we can merge these two 176 /// destination reg valno# into a single value number, eliminating a copy. 177 /// This returns true if an interval was modified. 178 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 179 180 /// Return true if there are definitions of IntB 181 /// other than BValNo val# that can reach uses of AValno val# of IntA. 182 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 183 VNInfo *AValNo, VNInfo *BValNo); 184 185 /// We found a non-trivially-coalescable copy. 186 /// If the source value number is defined by a commutable instruction and 187 /// its other operand is coalesced to the copy dest register, see if we 188 /// can transform the copy into a noop by commuting the definition. 189 /// This returns true if an interval was modified. 190 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); 191 192 /// If the source of a copy is defined by a 193 /// trivial computation, replace the copy by rematerialize the definition. 194 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 195 bool &IsDefCopy); 196 197 /// Return true if a copy involving a physreg should be joined. 198 bool canJoinPhys(const CoalescerPair &CP); 199 200 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 201 /// number if it is not zero. If DstReg is a physical register and the 202 /// existing subregister number of the def / use being updated is not zero, 203 /// make sure to set it to the correct physical subregister. 204 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 205 206 /// Handle copies of undef values. 207 /// Returns true if @p CopyMI was a copy of an undef value and eliminated. 208 bool eliminateUndefCopy(MachineInstr *CopyMI); 209 210 /// Check whether or not we should apply the terminal rule on the 211 /// destination (Dst) of \p Copy. 212 /// When the terminal rule applies, Copy is not profitable to 213 /// coalesce. 214 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 215 /// at least one interference (Dst, Dst2). If Dst is terminal, the 216 /// terminal rule consists in checking that at least one of 217 /// interfering node, say Dst2, has an affinity of equal or greater 218 /// weight with Src. 219 /// In that case, Dst2 and Dst will not be able to be both coalesced 220 /// with Src. Since Dst2 exposes more coalescing opportunities than 221 /// Dst, we can drop \p Copy. 222 bool applyTerminalRule(const MachineInstr &Copy) const; 223 224 /// Wrapper method for \see LiveIntervals::shrinkToUses. 225 /// This method does the proper fixing of the live-ranges when the afore 226 /// mentioned method returns true. 227 void shrinkToUses(LiveInterval *LI, 228 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 229 if (LIS->shrinkToUses(LI, Dead)) { 230 /// Check whether or not \p LI is composed by multiple connected 231 /// components and if that is the case, fix that. 232 SmallVector<LiveInterval*, 8> SplitLIs; 233 LIS->splitSeparateComponents(*LI, SplitLIs); 234 } 235 } 236 237 public: 238 static char ID; ///< Class identification, replacement for typeinfo 239 RegisterCoalescer() : MachineFunctionPass(ID) { 240 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 241 } 242 243 void getAnalysisUsage(AnalysisUsage &AU) const override; 244 245 void releaseMemory() override; 246 247 /// This is the pass entry point. 248 bool runOnMachineFunction(MachineFunction&) override; 249 250 /// Implement the dump method. 251 void print(raw_ostream &O, const Module* = nullptr) const override; 252 }; 253 } // end anonymous namespace 254 255 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 256 257 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 258 "Simple Register Coalescing", false, false) 259 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 260 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 261 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 262 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 263 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 264 "Simple Register Coalescing", false, false) 265 266 char RegisterCoalescer::ID = 0; 267 268 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 269 unsigned &Src, unsigned &Dst, 270 unsigned &SrcSub, unsigned &DstSub) { 271 if (MI->isCopy()) { 272 Dst = MI->getOperand(0).getReg(); 273 DstSub = MI->getOperand(0).getSubReg(); 274 Src = MI->getOperand(1).getReg(); 275 SrcSub = MI->getOperand(1).getSubReg(); 276 } else if (MI->isSubregToReg()) { 277 Dst = MI->getOperand(0).getReg(); 278 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 279 MI->getOperand(3).getImm()); 280 Src = MI->getOperand(2).getReg(); 281 SrcSub = MI->getOperand(2).getSubReg(); 282 } else 283 return false; 284 return true; 285 } 286 287 /// Return true if this block should be vacated by the coalescer to eliminate 288 /// branches. The important cases to handle in the coalescer are critical edges 289 /// split during phi elimination which contain only copies. Simple blocks that 290 /// contain non-branches should also be vacated, but this can be handled by an 291 /// earlier pass similar to early if-conversion. 292 static bool isSplitEdge(const MachineBasicBlock *MBB) { 293 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 294 return false; 295 296 for (const auto &MI : *MBB) { 297 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 298 return false; 299 } 300 return true; 301 } 302 303 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 304 SrcReg = DstReg = 0; 305 SrcIdx = DstIdx = 0; 306 NewRC = nullptr; 307 Flipped = CrossClass = false; 308 309 unsigned Src, Dst, SrcSub, DstSub; 310 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 311 return false; 312 Partial = SrcSub || DstSub; 313 314 // If one register is a physreg, it must be Dst. 315 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 316 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 317 return false; 318 std::swap(Src, Dst); 319 std::swap(SrcSub, DstSub); 320 Flipped = true; 321 } 322 323 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 324 325 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 326 // Eliminate DstSub on a physreg. 327 if (DstSub) { 328 Dst = TRI.getSubReg(Dst, DstSub); 329 if (!Dst) return false; 330 DstSub = 0; 331 } 332 333 // Eliminate SrcSub by picking a corresponding Dst superregister. 334 if (SrcSub) { 335 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 336 if (!Dst) return false; 337 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 338 return false; 339 } 340 } else { 341 // Both registers are virtual. 342 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 343 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 344 345 // Both registers have subreg indices. 346 if (SrcSub && DstSub) { 347 // Copies between different sub-registers are never coalescable. 348 if (Src == Dst && SrcSub != DstSub) 349 return false; 350 351 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 352 SrcIdx, DstIdx); 353 if (!NewRC) 354 return false; 355 } else if (DstSub) { 356 // SrcReg will be merged with a sub-register of DstReg. 357 SrcIdx = DstSub; 358 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 359 } else if (SrcSub) { 360 // DstReg will be merged with a sub-register of SrcReg. 361 DstIdx = SrcSub; 362 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 363 } else { 364 // This is a straight copy without sub-registers. 365 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 366 } 367 368 // The combined constraint may be impossible to satisfy. 369 if (!NewRC) 370 return false; 371 372 // Prefer SrcReg to be a sub-register of DstReg. 373 // FIXME: Coalescer should support subregs symmetrically. 374 if (DstIdx && !SrcIdx) { 375 std::swap(Src, Dst); 376 std::swap(SrcIdx, DstIdx); 377 Flipped = !Flipped; 378 } 379 380 CrossClass = NewRC != DstRC || NewRC != SrcRC; 381 } 382 // Check our invariants 383 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 384 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 385 "Cannot have a physical SubIdx"); 386 SrcReg = Src; 387 DstReg = Dst; 388 return true; 389 } 390 391 bool CoalescerPair::flip() { 392 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 393 return false; 394 std::swap(SrcReg, DstReg); 395 std::swap(SrcIdx, DstIdx); 396 Flipped = !Flipped; 397 return true; 398 } 399 400 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 401 if (!MI) 402 return false; 403 unsigned Src, Dst, SrcSub, DstSub; 404 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 405 return false; 406 407 // Find the virtual register that is SrcReg. 408 if (Dst == SrcReg) { 409 std::swap(Src, Dst); 410 std::swap(SrcSub, DstSub); 411 } else if (Src != SrcReg) { 412 return false; 413 } 414 415 // Now check that Dst matches DstReg. 416 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 417 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 418 return false; 419 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 420 // DstSub could be set for a physreg from INSERT_SUBREG. 421 if (DstSub) 422 Dst = TRI.getSubReg(Dst, DstSub); 423 // Full copy of Src. 424 if (!SrcSub) 425 return DstReg == Dst; 426 // This is a partial register copy. Check that the parts match. 427 return TRI.getSubReg(DstReg, SrcSub) == Dst; 428 } else { 429 // DstReg is virtual. 430 if (DstReg != Dst) 431 return false; 432 // Registers match, do the subregisters line up? 433 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 434 TRI.composeSubRegIndices(DstIdx, DstSub); 435 } 436 } 437 438 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 439 AU.setPreservesCFG(); 440 AU.addRequired<AAResultsWrapperPass>(); 441 AU.addRequired<LiveIntervals>(); 442 AU.addPreserved<LiveIntervals>(); 443 AU.addPreserved<SlotIndexes>(); 444 AU.addRequired<MachineLoopInfo>(); 445 AU.addPreserved<MachineLoopInfo>(); 446 AU.addPreservedID(MachineDominatorsID); 447 MachineFunctionPass::getAnalysisUsage(AU); 448 } 449 450 void RegisterCoalescer::eliminateDeadDefs() { 451 SmallVector<unsigned, 8> NewRegs; 452 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 453 nullptr, this).eliminateDeadDefs(DeadDefs); 454 } 455 456 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 457 // MI may be in WorkList. Make sure we don't visit it. 458 ErasedInstrs.insert(MI); 459 } 460 461 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 462 MachineInstr *CopyMI) { 463 assert(!CP.isPartial() && "This doesn't work for partial copies."); 464 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 465 466 LiveInterval &IntA = 467 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 468 LiveInterval &IntB = 469 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 470 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 471 472 // We have a non-trivially-coalescable copy with IntA being the source and 473 // IntB being the dest, thus this defines a value number in IntB. If the 474 // source value number (in IntA) is defined by a copy from B, see if we can 475 // merge these two pieces of B into a single value number, eliminating a copy. 476 // For example: 477 // 478 // A3 = B0 479 // ... 480 // B1 = A3 <- this copy 481 // 482 // In this case, B0 can be extended to where the B1 copy lives, allowing the 483 // B1 value number to be replaced with B0 (which simplifies the B 484 // liveinterval). 485 486 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 487 // the example above. 488 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 489 if (BS == IntB.end()) return false; 490 VNInfo *BValNo = BS->valno; 491 492 // Get the location that B is defined at. Two options: either this value has 493 // an unknown definition point or it is defined at CopyIdx. If unknown, we 494 // can't process it. 495 if (BValNo->def != CopyIdx) return false; 496 497 // AValNo is the value number in A that defines the copy, A3 in the example. 498 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 499 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 500 // The live segment might not exist after fun with physreg coalescing. 501 if (AS == IntA.end()) return false; 502 VNInfo *AValNo = AS->valno; 503 504 // If AValNo is defined as a copy from IntB, we can potentially process this. 505 // Get the instruction that defines this value number. 506 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 507 // Don't allow any partial copies, even if isCoalescable() allows them. 508 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 509 return false; 510 511 // Get the Segment in IntB that this value number starts with. 512 LiveInterval::iterator ValS = 513 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 514 if (ValS == IntB.end()) 515 return false; 516 517 // Make sure that the end of the live segment is inside the same block as 518 // CopyMI. 519 MachineInstr *ValSEndInst = 520 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 521 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 522 return false; 523 524 // Okay, we now know that ValS ends in the same block that the CopyMI 525 // live-range starts. If there are no intervening live segments between them 526 // in IntB, we can merge them. 527 if (ValS+1 != BS) return false; 528 529 DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI)); 530 531 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 532 // We are about to delete CopyMI, so need to remove it as the 'instruction 533 // that defines this value #'. Update the valnum with the new defining 534 // instruction #. 535 BValNo->def = FillerStart; 536 537 // Okay, we can merge them. We need to insert a new liverange: 538 // [ValS.end, BS.begin) of either value number, then we merge the 539 // two value numbers. 540 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 541 542 // Okay, merge "B1" into the same value number as "B0". 543 if (BValNo != ValS->valno) 544 IntB.MergeValueNumberInto(BValNo, ValS->valno); 545 546 // Do the same for the subregister segments. 547 for (LiveInterval::SubRange &S : IntB.subranges()) { 548 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 549 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 550 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 551 if (SubBValNo != SubValSNo) 552 S.MergeValueNumberInto(SubBValNo, SubValSNo); 553 } 554 555 DEBUG(dbgs() << " result = " << IntB << '\n'); 556 557 // If the source instruction was killing the source register before the 558 // merge, unset the isKill marker given the live range has been extended. 559 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 560 if (UIdx != -1) { 561 ValSEndInst->getOperand(UIdx).setIsKill(false); 562 } 563 564 // Rewrite the copy. If the copy instruction was killing the destination 565 // register before the merge, find the last use and trim the live range. That 566 // will also add the isKill marker. 567 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 568 if (AS->end == CopyIdx) 569 shrinkToUses(&IntA); 570 571 ++numExtends; 572 return true; 573 } 574 575 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 576 LiveInterval &IntB, 577 VNInfo *AValNo, 578 VNInfo *BValNo) { 579 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 580 // the PHI values. 581 if (LIS->hasPHIKill(IntA, AValNo)) 582 return true; 583 584 for (LiveRange::Segment &ASeg : IntA.segments) { 585 if (ASeg.valno != AValNo) continue; 586 LiveInterval::iterator BI = 587 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start); 588 if (BI != IntB.begin()) 589 --BI; 590 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 591 if (BI->valno == BValNo) 592 continue; 593 if (BI->start <= ASeg.start && BI->end > ASeg.start) 594 return true; 595 if (BI->start > ASeg.start && BI->start < ASeg.end) 596 return true; 597 } 598 } 599 return false; 600 } 601 602 /// Copy segements with value number @p SrcValNo from liverange @p Src to live 603 /// range @Dst and use value number @p DstValNo there. 604 static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, 605 const LiveRange &Src, const VNInfo *SrcValNo) 606 { 607 for (const LiveRange::Segment &S : Src.segments) { 608 if (S.valno != SrcValNo) 609 continue; 610 Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo)); 611 } 612 } 613 614 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 615 MachineInstr *CopyMI) { 616 assert(!CP.isPhys()); 617 618 LiveInterval &IntA = 619 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 620 LiveInterval &IntB = 621 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 622 623 // We found a non-trivially-coalescable copy with IntA being the source and 624 // IntB being the dest, thus this defines a value number in IntB. If the 625 // source value number (in IntA) is defined by a commutable instruction and 626 // its other operand is coalesced to the copy dest register, see if we can 627 // transform the copy into a noop by commuting the definition. For example, 628 // 629 // A3 = op A2 B0<kill> 630 // ... 631 // B1 = A3 <- this copy 632 // ... 633 // = op A3 <- more uses 634 // 635 // ==> 636 // 637 // B2 = op B0 A2<kill> 638 // ... 639 // B1 = B2 <- now an identity copy 640 // ... 641 // = op B2 <- more uses 642 643 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 644 // the example above. 645 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 646 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 647 assert(BValNo != nullptr && BValNo->def == CopyIdx); 648 649 // AValNo is the value number in A that defines the copy, A3 in the example. 650 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 651 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 652 if (AValNo->isPHIDef()) 653 return false; 654 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 655 if (!DefMI) 656 return false; 657 if (!DefMI->isCommutable()) 658 return false; 659 // If DefMI is a two-address instruction then commuting it will change the 660 // destination register. 661 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 662 assert(DefIdx != -1); 663 unsigned UseOpIdx; 664 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 665 return false; 666 667 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 668 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 669 // passed to the method. That _other_ operand is chosen by 670 // the findCommutedOpIndices() method. 671 // 672 // That is obviously an area for improvement in case of instructions having 673 // more than 2 operands. For example, if some instruction has 3 commutable 674 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 675 // op#2<->op#3) of commute transformation should be considered/tried here. 676 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 677 if (!TII->findCommutedOpIndices(DefMI, UseOpIdx, NewDstIdx)) 678 return false; 679 680 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 681 unsigned NewReg = NewDstMO.getReg(); 682 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 683 return false; 684 685 // Make sure there are no other definitions of IntB that would reach the 686 // uses which the new definition can reach. 687 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 688 return false; 689 690 // If some of the uses of IntA.reg is already coalesced away, return false. 691 // It's not possible to determine whether it's safe to perform the coalescing. 692 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 693 MachineInstr *UseMI = MO.getParent(); 694 unsigned OpNo = &MO - &UseMI->getOperand(0); 695 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI); 696 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 697 if (US == IntA.end() || US->valno != AValNo) 698 continue; 699 // If this use is tied to a def, we can't rewrite the register. 700 if (UseMI->isRegTiedToDefOperand(OpNo)) 701 return false; 702 } 703 704 DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 705 << *DefMI); 706 707 // At this point we have decided that it is legal to do this 708 // transformation. Start by commuting the instruction. 709 MachineBasicBlock *MBB = DefMI->getParent(); 710 MachineInstr *NewMI = 711 TII->commuteInstruction(DefMI, false, UseOpIdx, NewDstIdx); 712 if (!NewMI) 713 return false; 714 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 715 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 716 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 717 return false; 718 if (NewMI != DefMI) { 719 LIS->ReplaceMachineInstrInMaps(DefMI, NewMI); 720 MachineBasicBlock::iterator Pos = DefMI; 721 MBB->insert(Pos, NewMI); 722 MBB->erase(DefMI); 723 } 724 725 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 726 // A = or A, B 727 // ... 728 // B = A 729 // ... 730 // C = A<kill> 731 // ... 732 // = B 733 734 // Update uses of IntA of the specific Val# with IntB. 735 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 736 UE = MRI->use_end(); 737 UI != UE; /* ++UI is below because of possible MI removal */) { 738 MachineOperand &UseMO = *UI; 739 ++UI; 740 if (UseMO.isUndef()) 741 continue; 742 MachineInstr *UseMI = UseMO.getParent(); 743 if (UseMI->isDebugValue()) { 744 // FIXME These don't have an instruction index. Not clear we have enough 745 // info to decide whether to do this replacement or not. For now do it. 746 UseMO.setReg(NewReg); 747 continue; 748 } 749 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true); 750 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 751 assert(US != IntA.end() && "Use must be live"); 752 if (US->valno != AValNo) 753 continue; 754 // Kill flags are no longer accurate. They are recomputed after RA. 755 UseMO.setIsKill(false); 756 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 757 UseMO.substPhysReg(NewReg, *TRI); 758 else 759 UseMO.setReg(NewReg); 760 if (UseMI == CopyMI) 761 continue; 762 if (!UseMI->isCopy()) 763 continue; 764 if (UseMI->getOperand(0).getReg() != IntB.reg || 765 UseMI->getOperand(0).getSubReg()) 766 continue; 767 768 // This copy will become a noop. If it's defining a new val#, merge it into 769 // BValNo. 770 SlotIndex DefIdx = UseIdx.getRegSlot(); 771 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 772 if (!DVNI) 773 continue; 774 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 775 assert(DVNI->def == DefIdx); 776 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 777 for (LiveInterval::SubRange &S : IntB.subranges()) { 778 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 779 if (!SubDVNI) 780 continue; 781 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 782 assert(SubBValNo->def == CopyIdx); 783 S.MergeValueNumberInto(SubDVNI, SubBValNo); 784 } 785 786 ErasedInstrs.insert(UseMI); 787 LIS->RemoveMachineInstrFromMaps(UseMI); 788 UseMI->eraseFromParent(); 789 } 790 791 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 792 // is updated. 793 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 794 if (IntB.hasSubRanges()) { 795 if (!IntA.hasSubRanges()) { 796 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 797 IntA.createSubRangeFrom(Allocator, Mask, IntA); 798 } 799 SlotIndex AIdx = CopyIdx.getRegSlot(true); 800 for (LiveInterval::SubRange &SA : IntA.subranges()) { 801 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 802 assert(ASubValNo != nullptr); 803 804 LaneBitmask AMask = SA.LaneMask; 805 for (LiveInterval::SubRange &SB : IntB.subranges()) { 806 LaneBitmask BMask = SB.LaneMask; 807 LaneBitmask Common = BMask & AMask; 808 if (Common == 0) 809 continue; 810 811 DEBUG( dbgs() << "\t\tCopy_Merge " << PrintLaneMask(BMask) 812 << " into " << PrintLaneMask(Common) << '\n'); 813 LaneBitmask BRest = BMask & ~AMask; 814 LiveInterval::SubRange *CommonRange; 815 if (BRest != 0) { 816 SB.LaneMask = BRest; 817 DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(BRest) 818 << '\n'); 819 // Duplicate SubRange for newly merged common stuff. 820 CommonRange = IntB.createSubRangeFrom(Allocator, Common, SB); 821 } else { 822 // We van reuse the L SubRange. 823 SB.LaneMask = Common; 824 CommonRange = &SB; 825 } 826 LiveRange RangeCopy(SB, Allocator); 827 828 VNInfo *BSubValNo = CommonRange->getVNInfoAt(CopyIdx); 829 assert(BSubValNo->def == CopyIdx); 830 BSubValNo->def = ASubValNo->def; 831 addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo); 832 AMask &= ~BMask; 833 } 834 if (AMask != 0) { 835 DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(AMask) << '\n'); 836 LiveRange *NewRange = IntB.createSubRange(Allocator, AMask); 837 VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator); 838 addSegmentsWithValNo(*NewRange, BSubValNo, SA, ASubValNo); 839 } 840 } 841 } 842 843 BValNo->def = AValNo->def; 844 addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 845 DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 846 847 LIS->removeVRegDefAt(IntA, AValNo->def); 848 849 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 850 ++numCommutes; 851 return true; 852 } 853 854 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 855 /// defining a subregister. 856 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 857 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && 858 "This code cannot handle physreg aliasing"); 859 for (const MachineOperand &Op : MI.operands()) { 860 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 861 continue; 862 // Return true if we define the full register or don't care about the value 863 // inside other subregisters. 864 if (Op.getSubReg() == 0 || Op.isUndef()) 865 return true; 866 } 867 return false; 868 } 869 870 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 871 MachineInstr *CopyMI, 872 bool &IsDefCopy) { 873 IsDefCopy = false; 874 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 875 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 876 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 877 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 878 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 879 return false; 880 881 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 882 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI); 883 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 884 assert(ValNo && "CopyMI input register not live"); 885 if (ValNo->isPHIDef() || ValNo->isUnused()) 886 return false; 887 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 888 if (!DefMI) 889 return false; 890 if (DefMI->isCopyLike()) { 891 IsDefCopy = true; 892 return false; 893 } 894 if (!TII->isAsCheapAsAMove(DefMI)) 895 return false; 896 if (!TII->isTriviallyReMaterializable(DefMI, AA)) 897 return false; 898 if (!definesFullReg(*DefMI, SrcReg)) 899 return false; 900 bool SawStore = false; 901 if (!DefMI->isSafeToMove(AA, SawStore)) 902 return false; 903 const MCInstrDesc &MCID = DefMI->getDesc(); 904 if (MCID.getNumDefs() != 1) 905 return false; 906 // Only support subregister destinations when the def is read-undef. 907 MachineOperand &DstOperand = CopyMI->getOperand(0); 908 unsigned CopyDstReg = DstOperand.getReg(); 909 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 910 return false; 911 912 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 913 // the register substantially (beyond both source and dest size). This is bad 914 // for performance since it can cascade through a function, introducing many 915 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 916 // around after a few subreg copies). 917 if (SrcIdx && DstIdx) 918 return false; 919 920 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 921 if (!DefMI->isImplicitDef()) { 922 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 923 unsigned NewDstReg = DstReg; 924 925 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 926 DefMI->getOperand(0).getSubReg()); 927 if (NewDstIdx) 928 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 929 930 // Finally, make sure that the physical subregister that will be 931 // constructed later is permitted for the instruction. 932 if (!DefRC->contains(NewDstReg)) 933 return false; 934 } else { 935 // Theoretically, some stack frame reference could exist. Just make sure 936 // it hasn't actually happened. 937 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 938 "Only expect to deal with virtual or physical registers"); 939 } 940 } 941 942 DebugLoc DL = CopyMI->getDebugLoc(); 943 MachineBasicBlock *MBB = CopyMI->getParent(); 944 MachineBasicBlock::iterator MII = 945 std::next(MachineBasicBlock::iterator(CopyMI)); 946 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI); 947 MachineInstr *NewMI = std::prev(MII); 948 NewMI->setDebugLoc(DL); 949 950 // In a situation like the following: 951 // %vreg0:subreg = instr ; DefMI, subreg = DstIdx 952 // %vreg1 = copy %vreg0:subreg ; CopyMI, SrcIdx = 0 953 // instead of widening %vreg1 to the register class of %vreg0 simply do: 954 // %vreg1 = instr 955 const TargetRegisterClass *NewRC = CP.getNewRC(); 956 if (DstIdx != 0) { 957 MachineOperand &DefMO = NewMI->getOperand(0); 958 if (DefMO.getSubReg() == DstIdx) { 959 assert(SrcIdx == 0 && CP.isFlipped() 960 && "Shouldn't have SrcIdx+DstIdx at this point"); 961 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 962 const TargetRegisterClass *CommonRC = 963 TRI->getCommonSubClass(DefRC, DstRC); 964 if (CommonRC != nullptr) { 965 NewRC = CommonRC; 966 DstIdx = 0; 967 DefMO.setSubReg(0); 968 } 969 } 970 } 971 972 LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI); 973 CopyMI->eraseFromParent(); 974 ErasedInstrs.insert(CopyMI); 975 976 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 977 // We need to remember these so we can add intervals once we insert 978 // NewMI into SlotIndexes. 979 SmallVector<unsigned, 4> NewMIImplDefs; 980 for (unsigned i = NewMI->getDesc().getNumOperands(), 981 e = NewMI->getNumOperands(); i != e; ++i) { 982 MachineOperand &MO = NewMI->getOperand(i); 983 if (MO.isReg() && MO.isDef()) { 984 assert(MO.isImplicit() && MO.isDead() && 985 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 986 NewMIImplDefs.push_back(MO.getReg()); 987 } 988 } 989 990 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 991 unsigned NewIdx = NewMI->getOperand(0).getSubReg(); 992 993 if (DefRC != nullptr) { 994 if (NewIdx) 995 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 996 else 997 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 998 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 999 } 1000 MRI->setRegClass(DstReg, NewRC); 1001 1002 updateRegDefsUses(DstReg, DstReg, DstIdx); 1003 NewMI->getOperand(0).setSubReg(NewIdx); 1004 // Add dead subregister definitions if we are defining the whole register 1005 // but only part of it is live. 1006 // This could happen if the rematerialization instruction is rematerializing 1007 // more than actually is used in the register. 1008 // An example would be: 1009 // vreg1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1010 // ; Copying only part of the register here, but the rest is undef. 1011 // vreg2:sub_16bit<def, read-undef> = COPY vreg1:sub_16bit 1012 // ==> 1013 // ; Materialize all the constants but only using one 1014 // vreg2 = LOAD_CONSTANTS 5, 8 1015 // 1016 // at this point for the part that wasn't defined before we could have 1017 // subranges missing the definition. 1018 LiveInterval &DstInt = LIS->getInterval(DstReg); 1019 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1020 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1021 SlotIndex DefIndex = CurrIdx.getRegSlot(NewMI->getOperand(0).isEarlyClobber()); 1022 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1023 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1024 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1025 if (!SR.liveAt(DefIndex)) 1026 SR.createDeadDef(DefIndex, Alloc); 1027 MaxMask &= ~SR.LaneMask; 1028 } 1029 if (MaxMask != 0) { 1030 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1031 SR->createDeadDef(DefIndex, Alloc); 1032 } 1033 } 1034 } else if (NewMI->getOperand(0).getReg() != CopyDstReg) { 1035 // The New instruction may be defining a sub-register of what's actually 1036 // been asked for. If so it must implicitly define the whole thing. 1037 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 1038 "Only expect virtual or physical registers in remat"); 1039 NewMI->getOperand(0).setIsDead(true); 1040 NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg, 1041 true /*IsDef*/, 1042 true /*IsImp*/, 1043 false /*IsKill*/)); 1044 // Record small dead def live-ranges for all the subregisters 1045 // of the destination register. 1046 // Otherwise, variables that live through may miss some 1047 // interferences, thus creating invalid allocation. 1048 // E.g., i386 code: 1049 // vreg1 = somedef ; vreg1 GR8 1050 // vreg2 = remat ; vreg2 GR32 1051 // CL = COPY vreg2.sub_8bit 1052 // = somedef vreg1 ; vreg1 GR8 1053 // => 1054 // vreg1 = somedef ; vreg1 GR8 1055 // ECX<def, dead> = remat ; CL<imp-def> 1056 // = somedef vreg1 ; vreg1 GR8 1057 // vreg1 will see the inteferences with CL but not with CH since 1058 // no live-ranges would have been created for ECX. 1059 // Fix that! 1060 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1061 for (MCRegUnitIterator Units(NewMI->getOperand(0).getReg(), TRI); 1062 Units.isValid(); ++Units) 1063 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1064 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1065 } 1066 1067 if (NewMI->getOperand(0).getSubReg()) 1068 NewMI->getOperand(0).setIsUndef(); 1069 1070 // CopyMI may have implicit operands, transfer them over to the newly 1071 // rematerialized instruction. And update implicit def interval valnos. 1072 for (unsigned i = CopyMI->getDesc().getNumOperands(), 1073 e = CopyMI->getNumOperands(); i != e; ++i) { 1074 MachineOperand &MO = CopyMI->getOperand(i); 1075 if (MO.isReg()) { 1076 assert(MO.isImplicit() && "No explicit operands after implict operands."); 1077 // Discard VReg implicit defs. 1078 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 1079 NewMI->addOperand(MO); 1080 } 1081 } 1082 } 1083 1084 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1085 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1086 unsigned Reg = NewMIImplDefs[i]; 1087 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1088 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1089 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1090 } 1091 1092 DEBUG(dbgs() << "Remat: " << *NewMI); 1093 ++NumReMats; 1094 1095 // The source interval can become smaller because we removed a use. 1096 shrinkToUses(&SrcInt, &DeadDefs); 1097 if (!DeadDefs.empty()) { 1098 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1099 // to describe DstReg instead. 1100 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1101 MachineInstr *UseMI = UseMO.getParent(); 1102 if (UseMI->isDebugValue()) { 1103 UseMO.setReg(DstReg); 1104 DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1105 } 1106 } 1107 eliminateDeadDefs(); 1108 } 1109 1110 return true; 1111 } 1112 1113 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1114 // ProcessImpicitDefs may leave some copies of <undef> values, it only removes 1115 // local variables. When we have a copy like: 1116 // 1117 // %vreg1 = COPY %vreg2<undef> 1118 // 1119 // We delete the copy and remove the corresponding value number from %vreg1. 1120 // Any uses of that value number are marked as <undef>. 1121 1122 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1123 // CoalescerPair may have a new register class with adjusted subreg indices 1124 // at this point. 1125 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1126 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx); 1127 1128 SlotIndex Idx = LIS->getInstructionIndex(CopyMI); 1129 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1130 // CopyMI is undef iff SrcReg is not live before the instruction. 1131 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1132 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1133 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1134 if ((SR.LaneMask & SrcMask) == 0) 1135 continue; 1136 if (SR.liveAt(Idx)) 1137 return false; 1138 } 1139 } else if (SrcLI.liveAt(Idx)) 1140 return false; 1141 1142 DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1143 1144 // Remove any DstReg segments starting at the instruction. 1145 LiveInterval &DstLI = LIS->getInterval(DstReg); 1146 SlotIndex RegIndex = Idx.getRegSlot(); 1147 // Remove value or merge with previous one in case of a subregister def. 1148 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1149 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1150 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1151 1152 // The affected subregister segments can be removed. 1153 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1154 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1155 if ((SR.LaneMask & DstMask) == 0) 1156 continue; 1157 1158 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1159 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1160 SR.removeValNo(SVNI); 1161 } 1162 DstLI.removeEmptySubRanges(); 1163 } else 1164 LIS->removeVRegDefAt(DstLI, RegIndex); 1165 1166 // Mark uses as undef. 1167 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1168 if (MO.isDef() /*|| MO.isUndef()*/) 1169 continue; 1170 const MachineInstr &MI = *MO.getParent(); 1171 SlotIndex UseIdx = LIS->getInstructionIndex(&MI); 1172 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1173 bool isLive; 1174 if (UseMask != ~0u && DstLI.hasSubRanges()) { 1175 isLive = false; 1176 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1177 if ((SR.LaneMask & UseMask) == 0) 1178 continue; 1179 if (SR.liveAt(UseIdx)) { 1180 isLive = true; 1181 break; 1182 } 1183 } 1184 } else 1185 isLive = DstLI.liveAt(UseIdx); 1186 if (isLive) 1187 continue; 1188 MO.setIsUndef(true); 1189 DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1190 } 1191 return true; 1192 } 1193 1194 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 1195 unsigned DstReg, 1196 unsigned SubIdx) { 1197 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 1198 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1199 1200 SmallPtrSet<MachineInstr*, 8> Visited; 1201 for (MachineRegisterInfo::reg_instr_iterator 1202 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1203 I != E; ) { 1204 MachineInstr *UseMI = &*(I++); 1205 1206 // Each instruction can only be rewritten once because sub-register 1207 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1208 // the UseMI operands removes them from the SrcReg use-def chain, but when 1209 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1210 // operands mentioning the virtual register. 1211 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1212 continue; 1213 1214 SmallVector<unsigned,8> Ops; 1215 bool Reads, Writes; 1216 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1217 1218 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1219 // because SrcReg is a sub-register. 1220 if (DstInt && !Reads && SubIdx) 1221 Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI)); 1222 1223 // Replace SrcReg with DstReg in all UseMI operands. 1224 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1225 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1226 1227 // Adjust <undef> flags in case of sub-register joins. We don't want to 1228 // turn a full def into a read-modify-write sub-register def and vice 1229 // versa. 1230 if (SubIdx && MO.isDef()) 1231 MO.setIsUndef(!Reads); 1232 1233 // A subreg use of a partially undef (super) register may be a complete 1234 // undef use now and then has to be marked that way. 1235 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1236 if (!DstInt->hasSubRanges()) { 1237 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1238 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1239 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1240 } 1241 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubIdx); 1242 bool IsUndef = true; 1243 SlotIndex MIIdx = UseMI->isDebugValue() 1244 ? LIS->getSlotIndexes()->getIndexBefore(UseMI) 1245 : LIS->getInstructionIndex(UseMI); 1246 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1247 for (LiveInterval::SubRange &S : DstInt->subranges()) { 1248 if ((S.LaneMask & Mask) == 0) 1249 continue; 1250 if (S.liveAt(UseIdx)) { 1251 IsUndef = false; 1252 break; 1253 } 1254 } 1255 if (IsUndef) { 1256 MO.setIsUndef(true); 1257 // We found out some subregister use is actually reading an undefined 1258 // value. In some cases the whole vreg has become undefined at this 1259 // point so we have to potentially shrink the main range if the 1260 // use was ending a live segment there. 1261 LiveQueryResult Q = DstInt->Query(MIIdx); 1262 if (Q.valueOut() == nullptr) 1263 ShrinkMainRange = true; 1264 } 1265 } 1266 1267 if (DstIsPhys) 1268 MO.substPhysReg(DstReg, *TRI); 1269 else 1270 MO.substVirtReg(DstReg, SubIdx, *TRI); 1271 } 1272 1273 DEBUG({ 1274 dbgs() << "\t\tupdated: "; 1275 if (!UseMI->isDebugValue()) 1276 dbgs() << LIS->getInstructionIndex(UseMI) << "\t"; 1277 dbgs() << *UseMI; 1278 }); 1279 } 1280 } 1281 1282 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1283 // Always join simple intervals that are defined by a single copy from a 1284 // reserved register. This doesn't increase register pressure, so it is 1285 // always beneficial. 1286 if (!MRI->isReserved(CP.getDstReg())) { 1287 DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1288 return false; 1289 } 1290 1291 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1292 if (JoinVInt.containsOneValue()) 1293 return true; 1294 1295 DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1296 return false; 1297 } 1298 1299 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1300 1301 Again = false; 1302 DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI); 1303 1304 CoalescerPair CP(*TRI); 1305 if (!CP.setRegisters(CopyMI)) { 1306 DEBUG(dbgs() << "\tNot coalescable.\n"); 1307 return false; 1308 } 1309 1310 if (CP.getNewRC()) { 1311 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1312 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1313 unsigned SrcIdx = CP.getSrcIdx(); 1314 unsigned DstIdx = CP.getDstIdx(); 1315 if (CP.isFlipped()) { 1316 std::swap(SrcIdx, DstIdx); 1317 std::swap(SrcRC, DstRC); 1318 } 1319 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1320 CP.getNewRC())) { 1321 DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1322 return false; 1323 } 1324 } 1325 1326 // Dead code elimination. This really should be handled by MachineDCE, but 1327 // sometimes dead copies slip through, and we can't generate invalid live 1328 // ranges. 1329 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1330 DEBUG(dbgs() << "\tCopy is dead.\n"); 1331 DeadDefs.push_back(CopyMI); 1332 eliminateDeadDefs(); 1333 return true; 1334 } 1335 1336 // Eliminate undefs. 1337 if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) { 1338 LIS->RemoveMachineInstrFromMaps(CopyMI); 1339 CopyMI->eraseFromParent(); 1340 return false; // Not coalescable. 1341 } 1342 1343 // Coalesced copies are normally removed immediately, but transformations 1344 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1345 // When that happens, just join the values and remove the copy. 1346 if (CP.getSrcReg() == CP.getDstReg()) { 1347 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1348 DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1349 const SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI); 1350 LiveQueryResult LRQ = LI.Query(CopyIdx); 1351 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1352 VNInfo *ReadVNI = LRQ.valueIn(); 1353 assert(ReadVNI && "No value before copy and no <undef> flag."); 1354 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1355 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1356 1357 // Process subregister liveranges. 1358 for (LiveInterval::SubRange &S : LI.subranges()) { 1359 LiveQueryResult SLRQ = S.Query(CopyIdx); 1360 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1361 VNInfo *SReadVNI = SLRQ.valueIn(); 1362 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1363 } 1364 } 1365 DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1366 } 1367 LIS->RemoveMachineInstrFromMaps(CopyMI); 1368 CopyMI->eraseFromParent(); 1369 return true; 1370 } 1371 1372 // Enforce policies. 1373 if (CP.isPhys()) { 1374 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI) 1375 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) 1376 << '\n'); 1377 if (!canJoinPhys(CP)) { 1378 // Before giving up coalescing, if definition of source is defined by 1379 // trivial computation, try rematerializing it. 1380 bool IsDefCopy; 1381 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1382 return true; 1383 if (IsDefCopy) 1384 Again = true; // May be possible to coalesce later. 1385 return false; 1386 } 1387 } else { 1388 // When possible, let DstReg be the larger interval. 1389 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1390 LIS->getInterval(CP.getDstReg()).size()) 1391 CP.flip(); 1392 1393 DEBUG({ 1394 dbgs() << "\tConsidering merging to " 1395 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1396 if (CP.getDstIdx() && CP.getSrcIdx()) 1397 dbgs() << PrintReg(CP.getDstReg()) << " in " 1398 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1399 << PrintReg(CP.getSrcReg()) << " in " 1400 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1401 else 1402 dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in " 1403 << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1404 }); 1405 } 1406 1407 ShrinkMask = 0; 1408 ShrinkMainRange = false; 1409 1410 // Okay, attempt to join these two intervals. On failure, this returns false. 1411 // Otherwise, if one of the intervals being joined is a physreg, this method 1412 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1413 // been modified, so we can use this information below to update aliases. 1414 if (!joinIntervals(CP)) { 1415 // Coalescing failed. 1416 1417 // If definition of source is defined by trivial computation, try 1418 // rematerializing it. 1419 bool IsDefCopy; 1420 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1421 return true; 1422 1423 // If we can eliminate the copy without merging the live segments, do so 1424 // now. 1425 if (!CP.isPartial() && !CP.isPhys()) { 1426 if (adjustCopiesBackFrom(CP, CopyMI) || 1427 removeCopyByCommutingDef(CP, CopyMI)) { 1428 LIS->RemoveMachineInstrFromMaps(CopyMI); 1429 CopyMI->eraseFromParent(); 1430 DEBUG(dbgs() << "\tTrivial!\n"); 1431 return true; 1432 } 1433 } 1434 1435 // Otherwise, we are unable to join the intervals. 1436 DEBUG(dbgs() << "\tInterference!\n"); 1437 Again = true; // May be possible to coalesce later. 1438 return false; 1439 } 1440 1441 // Coalescing to a virtual register that is of a sub-register class of the 1442 // other. Make sure the resulting register is set to the right register class. 1443 if (CP.isCrossClass()) { 1444 ++numCrossRCs; 1445 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1446 } 1447 1448 // Removing sub-register copies can ease the register class constraints. 1449 // Make sure we attempt to inflate the register class of DstReg. 1450 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1451 InflateRegs.push_back(CP.getDstReg()); 1452 1453 // CopyMI has been erased by joinIntervals at this point. Remove it from 1454 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1455 // to the work list. This keeps ErasedInstrs from growing needlessly. 1456 ErasedInstrs.erase(CopyMI); 1457 1458 // Rewrite all SrcReg operands to DstReg. 1459 // Also update DstReg operands to include DstIdx if it is set. 1460 if (CP.getDstIdx()) 1461 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1462 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1463 1464 // Shrink subregister ranges if necessary. 1465 if (ShrinkMask != 0) { 1466 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1467 for (LiveInterval::SubRange &S : LI.subranges()) { 1468 if ((S.LaneMask & ShrinkMask) == 0) 1469 continue; 1470 DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1471 << ")\n"); 1472 LIS->shrinkToUses(S, LI.reg); 1473 } 1474 LI.removeEmptySubRanges(); 1475 } 1476 if (ShrinkMainRange) { 1477 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1478 shrinkToUses(&LI); 1479 } 1480 1481 // SrcReg is guaranteed to be the register whose live interval that is 1482 // being merged. 1483 LIS->removeInterval(CP.getSrcReg()); 1484 1485 // Update regalloc hint. 1486 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1487 1488 DEBUG({ 1489 dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 1490 << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 1491 dbgs() << "\tResult = "; 1492 if (CP.isPhys()) 1493 dbgs() << PrintReg(CP.getDstReg(), TRI); 1494 else 1495 dbgs() << LIS->getInterval(CP.getDstReg()); 1496 dbgs() << '\n'; 1497 }); 1498 1499 ++numJoins; 1500 return true; 1501 } 1502 1503 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1504 unsigned DstReg = CP.getDstReg(); 1505 assert(CP.isPhys() && "Must be a physreg copy"); 1506 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 1507 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 1508 DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1509 1510 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 1511 1512 // Optimization for reserved registers like ESP. We can only merge with a 1513 // reserved physreg if RHS has a single value that is a copy of DstReg. 1514 // The live range of the reserved register will look like a set of dead defs 1515 // - we don't properly track the live range of reserved registers. 1516 1517 // Deny any overlapping intervals. This depends on all the reserved 1518 // register live ranges to look like dead defs. 1519 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) 1520 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1521 DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n'); 1522 return false; 1523 } 1524 1525 // Skip any value computations, we are not adding new values to the 1526 // reserved register. Also skip merging the live ranges, the reserved 1527 // register live range doesn't need to be accurate as long as all the 1528 // defs are there. 1529 1530 // Delete the identity copy. 1531 MachineInstr *CopyMI; 1532 if (CP.isFlipped()) { 1533 CopyMI = MRI->getVRegDef(RHS.reg); 1534 } else { 1535 if (!MRI->hasOneNonDBGUse(RHS.reg)) { 1536 DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 1537 return false; 1538 } 1539 1540 MachineInstr *DestMI = MRI->getVRegDef(RHS.reg); 1541 CopyMI = &*MRI->use_instr_nodbg_begin(RHS.reg); 1542 const SlotIndex CopyRegIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 1543 const SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 1544 1545 // We checked above that there are no interfering defs of the physical 1546 // register. However, for this case, where we intent to move up the def of 1547 // the physical register, we also need to check for interfering uses. 1548 SlotIndexes *Indexes = LIS->getSlotIndexes(); 1549 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 1550 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 1551 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 1552 if (MI->readsRegister(DstReg, TRI)) { 1553 DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 1554 return false; 1555 } 1556 1557 // We must also check for clobbers caused by regmasks. 1558 for (const auto &MO : MI->operands()) { 1559 if (MO.isRegMask() && MO.clobbersPhysReg(DstReg)) { 1560 DEBUG(dbgs() << "\t\tInterference (regmask clobber): " << *MI); 1561 return false; 1562 } 1563 } 1564 } 1565 1566 // We're going to remove the copy which defines a physical reserved 1567 // register, so remove its valno, etc. 1568 DEBUG(dbgs() << "\t\tRemoving phys reg def of " << DstReg << " at " 1569 << CopyRegIdx << "\n"); 1570 1571 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 1572 // Create a new dead def at the new def location. 1573 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1574 LiveRange &LR = LIS->getRegUnit(*UI); 1575 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 1576 } 1577 } 1578 1579 LIS->RemoveMachineInstrFromMaps(CopyMI); 1580 CopyMI->eraseFromParent(); 1581 1582 // We don't track kills for reserved registers. 1583 MRI->clearKillFlags(CP.getSrcReg()); 1584 1585 return true; 1586 } 1587 1588 //===----------------------------------------------------------------------===// 1589 // Interference checking and interval joining 1590 //===----------------------------------------------------------------------===// 1591 // 1592 // In the easiest case, the two live ranges being joined are disjoint, and 1593 // there is no interference to consider. It is quite common, though, to have 1594 // overlapping live ranges, and we need to check if the interference can be 1595 // resolved. 1596 // 1597 // The live range of a single SSA value forms a sub-tree of the dominator tree. 1598 // This means that two SSA values overlap if and only if the def of one value 1599 // is contained in the live range of the other value. As a special case, the 1600 // overlapping values can be defined at the same index. 1601 // 1602 // The interference from an overlapping def can be resolved in these cases: 1603 // 1604 // 1. Coalescable copies. The value is defined by a copy that would become an 1605 // identity copy after joining SrcReg and DstReg. The copy instruction will 1606 // be removed, and the value will be merged with the source value. 1607 // 1608 // There can be several copies back and forth, causing many values to be 1609 // merged into one. We compute a list of ultimate values in the joined live 1610 // range as well as a mappings from the old value numbers. 1611 // 1612 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 1613 // predecessors have a live out value. It doesn't cause real interference, 1614 // and can be merged into the value it overlaps. Like a coalescable copy, it 1615 // can be erased after joining. 1616 // 1617 // 3. Copy of external value. The overlapping def may be a copy of a value that 1618 // is already in the other register. This is like a coalescable copy, but 1619 // the live range of the source register must be trimmed after erasing the 1620 // copy instruction: 1621 // 1622 // %src = COPY %ext 1623 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 1624 // 1625 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 1626 // defining one lane at a time: 1627 // 1628 // %dst:ssub0<def,read-undef> = FOO 1629 // %src = BAR 1630 // %dst:ssub1<def> = COPY %src 1631 // 1632 // The live range of %src overlaps the %dst value defined by FOO, but 1633 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 1634 // which was undef anyway. 1635 // 1636 // The value mapping is more complicated in this case. The final live range 1637 // will have different value numbers for both FOO and BAR, but there is no 1638 // simple mapping from old to new values. It may even be necessary to add 1639 // new PHI values. 1640 // 1641 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 1642 // is live, but never read. This can happen because we don't compute 1643 // individual live ranges per lane. 1644 // 1645 // %dst<def> = FOO 1646 // %src = BAR 1647 // %dst:ssub1<def> = COPY %src 1648 // 1649 // This kind of interference is only resolved locally. If the clobbered 1650 // lane value escapes the block, the join is aborted. 1651 1652 namespace { 1653 /// Track information about values in a single virtual register about to be 1654 /// joined. Objects of this class are always created in pairs - one for each 1655 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 1656 /// pair) 1657 class JoinVals { 1658 /// Live range we work on. 1659 LiveRange &LR; 1660 /// (Main) register we work on. 1661 const unsigned Reg; 1662 1663 /// Reg (and therefore the values in this liverange) will end up as 1664 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 1665 /// CP.SrcIdx. 1666 const unsigned SubIdx; 1667 /// The LaneMask that this liverange will occupy the coalesced register. May 1668 /// be smaller than the lanemask produced by SubIdx when merging subranges. 1669 const LaneBitmask LaneMask; 1670 1671 /// This is true when joining sub register ranges, false when joining main 1672 /// ranges. 1673 const bool SubRangeJoin; 1674 /// Whether the current LiveInterval tracks subregister liveness. 1675 const bool TrackSubRegLiveness; 1676 1677 /// Values that will be present in the final live range. 1678 SmallVectorImpl<VNInfo*> &NewVNInfo; 1679 1680 const CoalescerPair &CP; 1681 LiveIntervals *LIS; 1682 SlotIndexes *Indexes; 1683 const TargetRegisterInfo *TRI; 1684 1685 /// Value number assignments. Maps value numbers in LI to entries in 1686 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 1687 SmallVector<int, 8> Assignments; 1688 1689 /// Conflict resolution for overlapping values. 1690 enum ConflictResolution { 1691 /// No overlap, simply keep this value. 1692 CR_Keep, 1693 1694 /// Merge this value into OtherVNI and erase the defining instruction. 1695 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 1696 /// values. 1697 CR_Erase, 1698 1699 /// Merge this value into OtherVNI but keep the defining instruction. 1700 /// This is for the special case where OtherVNI is defined by the same 1701 /// instruction. 1702 CR_Merge, 1703 1704 /// Keep this value, and have it replace OtherVNI where possible. This 1705 /// complicates value mapping since OtherVNI maps to two different values 1706 /// before and after this def. 1707 /// Used when clobbering undefined or dead lanes. 1708 CR_Replace, 1709 1710 /// Unresolved conflict. Visit later when all values have been mapped. 1711 CR_Unresolved, 1712 1713 /// Unresolvable conflict. Abort the join. 1714 CR_Impossible 1715 }; 1716 1717 /// Per-value info for LI. The lane bit masks are all relative to the final 1718 /// joined register, so they can be compared directly between SrcReg and 1719 /// DstReg. 1720 struct Val { 1721 ConflictResolution Resolution; 1722 1723 /// Lanes written by this def, 0 for unanalyzed values. 1724 LaneBitmask WriteLanes; 1725 1726 /// Lanes with defined values in this register. Other lanes are undef and 1727 /// safe to clobber. 1728 LaneBitmask ValidLanes; 1729 1730 /// Value in LI being redefined by this def. 1731 VNInfo *RedefVNI; 1732 1733 /// Value in the other live range that overlaps this def, if any. 1734 VNInfo *OtherVNI; 1735 1736 /// Is this value an IMPLICIT_DEF that can be erased? 1737 /// 1738 /// IMPLICIT_DEF values should only exist at the end of a basic block that 1739 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 1740 /// safely erased if they are overlapping a live value in the other live 1741 /// interval. 1742 /// 1743 /// Weird control flow graphs and incomplete PHI handling in 1744 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 1745 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 1746 /// normal values. 1747 bool ErasableImplicitDef; 1748 1749 /// True when the live range of this value will be pruned because of an 1750 /// overlapping CR_Replace value in the other live range. 1751 bool Pruned; 1752 1753 /// True once Pruned above has been computed. 1754 bool PrunedComputed; 1755 1756 Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0), 1757 RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false), 1758 Pruned(false), PrunedComputed(false) {} 1759 1760 bool isAnalyzed() const { return WriteLanes != 0; } 1761 }; 1762 1763 /// One entry per value number in LI. 1764 SmallVector<Val, 8> Vals; 1765 1766 /// Compute the bitmask of lanes actually written by DefMI. 1767 /// Set Redef if there are any partial register definitions that depend on the 1768 /// previous value of the register. 1769 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 1770 1771 /// Find the ultimate value that VNI was copied from. 1772 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 1773 1774 bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const; 1775 1776 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 1777 /// Return a conflict resolution when possible, but leave the hard cases as 1778 /// CR_Unresolved. 1779 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 1780 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 1781 /// The recursion always goes upwards in the dominator tree, making loops 1782 /// impossible. 1783 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 1784 1785 /// Compute the value assignment for ValNo in RI. 1786 /// This may be called recursively by analyzeValue(), but never for a ValNo on 1787 /// the stack. 1788 void computeAssignment(unsigned ValNo, JoinVals &Other); 1789 1790 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 1791 /// the extent of the tainted lanes in the block. 1792 /// 1793 /// Multiple values in Other.LR can be affected since partial redefinitions 1794 /// can preserve previously tainted lanes. 1795 /// 1796 /// 1 %dst = VLOAD <-- Define all lanes in %dst 1797 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 1798 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 1799 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 1800 /// 1801 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 1802 /// entry to TaintedVals. 1803 /// 1804 /// Returns false if the tainted lanes extend beyond the basic block. 1805 bool taintExtent(unsigned, LaneBitmask, JoinVals&, 1806 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> >&); 1807 1808 /// Return true if MI uses any of the given Lanes from Reg. 1809 /// This does not include partial redefinitions of Reg. 1810 bool usesLanes(const MachineInstr *MI, unsigned, unsigned, LaneBitmask) const; 1811 1812 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 1813 /// be pruned: 1814 /// 1815 /// %dst = COPY %src 1816 /// %src = COPY %dst <-- This value to be pruned. 1817 /// %dst = COPY %src <-- This value is a copy of a pruned value. 1818 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 1819 1820 public: 1821 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 1822 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 1823 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 1824 bool TrackSubRegLiveness) 1825 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 1826 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 1827 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 1828 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) 1829 {} 1830 1831 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 1832 /// Returns false if any conflicts were impossible to resolve. 1833 bool mapValues(JoinVals &Other); 1834 1835 /// Try to resolve conflicts that require all values to be mapped. 1836 /// Returns false if any conflicts were impossible to resolve. 1837 bool resolveConflicts(JoinVals &Other); 1838 1839 /// Prune the live range of values in Other.LR where they would conflict with 1840 /// CR_Replace values in LR. Collect end points for restoring the live range 1841 /// after joining. 1842 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 1843 bool changeInstrs); 1844 1845 /// Removes subranges starting at copies that get removed. This sometimes 1846 /// happens when undefined subranges are copied around. These ranges contain 1847 /// no useful information and can be removed. 1848 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 1849 1850 /// Erase any machine instructions that have been coalesced away. 1851 /// Add erased instructions to ErasedInstrs. 1852 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 1853 /// the erased instrs. 1854 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 1855 SmallVectorImpl<unsigned> &ShrinkRegs); 1856 1857 /// Remove liverange defs at places where implicit defs will be removed. 1858 void removeImplicitDefs(); 1859 1860 /// Get the value assignments suitable for passing to LiveInterval::join. 1861 const int *getAssignments() const { return Assignments.data(); } 1862 }; 1863 } // end anonymous namespace 1864 1865 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 1866 const { 1867 LaneBitmask L = 0; 1868 for (const MachineOperand &MO : DefMI->operands()) { 1869 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 1870 continue; 1871 L |= TRI->getSubRegIndexLaneMask( 1872 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 1873 if (MO.readsReg()) 1874 Redef = true; 1875 } 1876 return L; 1877 } 1878 1879 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 1880 const VNInfo *VNI) const { 1881 unsigned Reg = this->Reg; 1882 1883 while (!VNI->isPHIDef()) { 1884 SlotIndex Def = VNI->def; 1885 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 1886 assert(MI && "No defining instruction"); 1887 if (!MI->isFullCopy()) 1888 return std::make_pair(VNI, Reg); 1889 unsigned SrcReg = MI->getOperand(1).getReg(); 1890 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1891 return std::make_pair(VNI, Reg); 1892 1893 const LiveInterval &LI = LIS->getInterval(SrcReg); 1894 const VNInfo *ValueIn; 1895 // No subrange involved. 1896 if (!SubRangeJoin || !LI.hasSubRanges()) { 1897 LiveQueryResult LRQ = LI.Query(Def); 1898 ValueIn = LRQ.valueIn(); 1899 } else { 1900 // Query subranges. Pick the first matching one. 1901 ValueIn = nullptr; 1902 for (const LiveInterval::SubRange &S : LI.subranges()) { 1903 // Transform lanemask to a mask in the joined live interval. 1904 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 1905 if ((SMask & LaneMask) == 0) 1906 continue; 1907 LiveQueryResult LRQ = S.Query(Def); 1908 ValueIn = LRQ.valueIn(); 1909 break; 1910 } 1911 } 1912 if (ValueIn == nullptr) 1913 break; 1914 VNI = ValueIn; 1915 Reg = SrcReg; 1916 } 1917 return std::make_pair(VNI, Reg); 1918 } 1919 1920 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 1921 const JoinVals &Other) const { 1922 const VNInfo *Orig0; 1923 unsigned Reg0; 1924 std::tie(Orig0, Reg0) = followCopyChain(Value0); 1925 if (Orig0 == Value1) 1926 return true; 1927 1928 const VNInfo *Orig1; 1929 unsigned Reg1; 1930 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 1931 1932 // The values are equal if they are defined at the same place and use the 1933 // same register. Note that we cannot compare VNInfos directly as some of 1934 // them might be from a copy created in mergeSubRangeInto() while the other 1935 // is from the original LiveInterval. 1936 return Orig0->def == Orig1->def && Reg0 == Reg1; 1937 } 1938 1939 JoinVals::ConflictResolution 1940 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 1941 Val &V = Vals[ValNo]; 1942 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 1943 VNInfo *VNI = LR.getValNumInfo(ValNo); 1944 if (VNI->isUnused()) { 1945 V.WriteLanes = ~0u; 1946 return CR_Keep; 1947 } 1948 1949 // Get the instruction defining this value, compute the lanes written. 1950 const MachineInstr *DefMI = nullptr; 1951 if (VNI->isPHIDef()) { 1952 // Conservatively assume that all lanes in a PHI are valid. 1953 LaneBitmask Lanes = SubRangeJoin ? 1 : TRI->getSubRegIndexLaneMask(SubIdx); 1954 V.ValidLanes = V.WriteLanes = Lanes; 1955 } else { 1956 DefMI = Indexes->getInstructionFromIndex(VNI->def); 1957 assert(DefMI != nullptr); 1958 if (SubRangeJoin) { 1959 // We don't care about the lanes when joining subregister ranges. 1960 V.WriteLanes = V.ValidLanes = 1; 1961 if (DefMI->isImplicitDef()) { 1962 V.ValidLanes = 0; 1963 V.ErasableImplicitDef = true; 1964 } 1965 } else { 1966 bool Redef = false; 1967 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 1968 1969 // If this is a read-modify-write instruction, there may be more valid 1970 // lanes than the ones written by this instruction. 1971 // This only covers partial redef operands. DefMI may have normal use 1972 // operands reading the register. They don't contribute valid lanes. 1973 // 1974 // This adds ssub1 to the set of valid lanes in %src: 1975 // 1976 // %src:ssub1<def> = FOO 1977 // 1978 // This leaves only ssub1 valid, making any other lanes undef: 1979 // 1980 // %src:ssub1<def,read-undef> = FOO %src:ssub2 1981 // 1982 // The <read-undef> flag on the def operand means that old lane values are 1983 // not important. 1984 if (Redef) { 1985 V.RedefVNI = LR.Query(VNI->def).valueIn(); 1986 assert((TrackSubRegLiveness || V.RedefVNI) && 1987 "Instruction is reading nonexistent value"); 1988 if (V.RedefVNI != nullptr) { 1989 computeAssignment(V.RedefVNI->id, Other); 1990 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 1991 } 1992 } 1993 1994 // An IMPLICIT_DEF writes undef values. 1995 if (DefMI->isImplicitDef()) { 1996 // We normally expect IMPLICIT_DEF values to be live only until the end 1997 // of their block. If the value is really live longer and gets pruned in 1998 // another block, this flag is cleared again. 1999 V.ErasableImplicitDef = true; 2000 V.ValidLanes &= ~V.WriteLanes; 2001 } 2002 } 2003 } 2004 2005 // Find the value in Other that overlaps VNI->def, if any. 2006 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2007 2008 // It is possible that both values are defined by the same instruction, or 2009 // the values are PHIs defined in the same block. When that happens, the two 2010 // values should be merged into one, but not into any preceding value. 2011 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2012 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2013 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2014 2015 // One value stays, the other is merged. Keep the earlier one, or the first 2016 // one we see. 2017 if (OtherVNI->def < VNI->def) 2018 Other.computeAssignment(OtherVNI->id, *this); 2019 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2020 // This is an early-clobber def overlapping a live-in value in the other 2021 // register. Not mergeable. 2022 V.OtherVNI = OtherLRQ.valueIn(); 2023 return CR_Impossible; 2024 } 2025 V.OtherVNI = OtherVNI; 2026 Val &OtherV = Other.Vals[OtherVNI->id]; 2027 // Keep this value, check for conflicts when analyzing OtherVNI. 2028 if (!OtherV.isAnalyzed()) 2029 return CR_Keep; 2030 // Both sides have been analyzed now. 2031 // Allow overlapping PHI values. Any real interference would show up in a 2032 // predecessor, the PHI itself can't introduce any conflicts. 2033 if (VNI->isPHIDef()) 2034 return CR_Merge; 2035 if (V.ValidLanes & OtherV.ValidLanes) 2036 // Overlapping lanes can't be resolved. 2037 return CR_Impossible; 2038 else 2039 return CR_Merge; 2040 } 2041 2042 // No simultaneous def. Is Other live at the def? 2043 V.OtherVNI = OtherLRQ.valueIn(); 2044 if (!V.OtherVNI) 2045 // No overlap, no conflict. 2046 return CR_Keep; 2047 2048 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2049 2050 // We have overlapping values, or possibly a kill of Other. 2051 // Recursively compute assignments up the dominator tree. 2052 Other.computeAssignment(V.OtherVNI->id, *this); 2053 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2054 2055 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2056 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2057 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2058 // technically. 2059 // 2060 // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2061 // to erase the IMPLICIT_DEF instruction. 2062 if (OtherV.ErasableImplicitDef && DefMI && 2063 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2064 DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2065 << " extends into BB#" << DefMI->getParent()->getNumber() 2066 << ", keeping it.\n"); 2067 OtherV.ErasableImplicitDef = false; 2068 } 2069 2070 // Allow overlapping PHI values. Any real interference would show up in a 2071 // predecessor, the PHI itself can't introduce any conflicts. 2072 if (VNI->isPHIDef()) 2073 return CR_Replace; 2074 2075 // Check for simple erasable conflicts. 2076 if (DefMI->isImplicitDef()) { 2077 // We need the def for the subregister if there is nothing else live at the 2078 // subrange at this point. 2079 if (TrackSubRegLiveness 2080 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)) == 0) 2081 return CR_Replace; 2082 return CR_Erase; 2083 } 2084 2085 // Include the non-conflict where DefMI is a coalescable copy that kills 2086 // OtherVNI. We still want the copy erased and value numbers merged. 2087 if (CP.isCoalescable(DefMI)) { 2088 // Some of the lanes copied from OtherVNI may be undef, making them undef 2089 // here too. 2090 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2091 return CR_Erase; 2092 } 2093 2094 // This may not be a real conflict if DefMI simply kills Other and defines 2095 // VNI. 2096 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2097 return CR_Keep; 2098 2099 // Handle the case where VNI and OtherVNI can be proven to be identical: 2100 // 2101 // %other = COPY %ext 2102 // %this = COPY %ext <-- Erase this copy 2103 // 2104 if (DefMI->isFullCopy() && !CP.isPartial() 2105 && valuesIdentical(VNI, V.OtherVNI, Other)) 2106 return CR_Erase; 2107 2108 // If the lanes written by this instruction were all undef in OtherVNI, it is 2109 // still safe to join the live ranges. This can't be done with a simple value 2110 // mapping, though - OtherVNI will map to multiple values: 2111 // 2112 // 1 %dst:ssub0 = FOO <-- OtherVNI 2113 // 2 %src = BAR <-- VNI 2114 // 3 %dst:ssub1 = COPY %src<kill> <-- Eliminate this copy. 2115 // 4 BAZ %dst<kill> 2116 // 5 QUUX %src<kill> 2117 // 2118 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2119 // handles this complex value mapping. 2120 if ((V.WriteLanes & OtherV.ValidLanes) == 0) 2121 return CR_Replace; 2122 2123 // If the other live range is killed by DefMI and the live ranges are still 2124 // overlapping, it must be because we're looking at an early clobber def: 2125 // 2126 // %dst<def,early-clobber> = ASM %src<kill> 2127 // 2128 // In this case, it is illegal to merge the two live ranges since the early 2129 // clobber def would clobber %src before it was read. 2130 if (OtherLRQ.isKill()) { 2131 // This case where the def doesn't overlap the kill is handled above. 2132 assert(VNI->def.isEarlyClobber() && 2133 "Only early clobber defs can overlap a kill"); 2134 return CR_Impossible; 2135 } 2136 2137 // VNI is clobbering live lanes in OtherVNI, but there is still the 2138 // possibility that no instructions actually read the clobbered lanes. 2139 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2140 // Otherwise Other.RI wouldn't be live here. 2141 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0) 2142 return CR_Impossible; 2143 2144 // We need to verify that no instructions are reading the clobbered lanes. To 2145 // save compile time, we'll only check that locally. Don't allow the tainted 2146 // value to escape the basic block. 2147 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2148 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2149 return CR_Impossible; 2150 2151 // There are still some things that could go wrong besides clobbered lanes 2152 // being read, for example OtherVNI may be only partially redefined in MBB, 2153 // and some clobbered lanes could escape the block. Save this analysis for 2154 // resolveConflicts() when all values have been mapped. We need to know 2155 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2156 // that now - the recursive analyzeValue() calls must go upwards in the 2157 // dominator tree. 2158 return CR_Unresolved; 2159 } 2160 2161 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2162 Val &V = Vals[ValNo]; 2163 if (V.isAnalyzed()) { 2164 // Recursion should always move up the dominator tree, so ValNo is not 2165 // supposed to reappear before it has been assigned. 2166 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2167 return; 2168 } 2169 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2170 case CR_Erase: 2171 case CR_Merge: 2172 // Merge this ValNo into OtherVNI. 2173 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2174 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2175 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2176 DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@' 2177 << LR.getValNumInfo(ValNo)->def << " into " 2178 << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2179 << V.OtherVNI->def << " --> @" 2180 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2181 break; 2182 case CR_Replace: 2183 case CR_Unresolved: { 2184 // The other value is going to be pruned if this join is successful. 2185 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2186 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2187 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2188 // its lanes. 2189 if ((OtherV.WriteLanes & ~V.ValidLanes) != 0 && TrackSubRegLiveness) 2190 OtherV.ErasableImplicitDef = false; 2191 OtherV.Pruned = true; 2192 } 2193 // Fall through. 2194 default: 2195 // This value number needs to go in the final joined live range. 2196 Assignments[ValNo] = NewVNInfo.size(); 2197 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2198 break; 2199 } 2200 } 2201 2202 bool JoinVals::mapValues(JoinVals &Other) { 2203 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2204 computeAssignment(i, Other); 2205 if (Vals[i].Resolution == CR_Impossible) { 2206 DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i 2207 << '@' << LR.getValNumInfo(i)->def << '\n'); 2208 return false; 2209 } 2210 } 2211 return true; 2212 } 2213 2214 bool JoinVals:: 2215 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2216 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> > &TaintExtent) { 2217 VNInfo *VNI = LR.getValNumInfo(ValNo); 2218 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2219 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2220 2221 // Scan Other.LR from VNI.def to MBBEnd. 2222 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2223 assert(OtherI != Other.LR.end() && "No conflict?"); 2224 do { 2225 // OtherI is pointing to a tainted value. Abort the join if the tainted 2226 // lanes escape the block. 2227 SlotIndex End = OtherI->end; 2228 if (End >= MBBEnd) { 2229 DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':' 2230 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2231 return false; 2232 } 2233 DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':' 2234 << OtherI->valno->id << '@' << OtherI->start 2235 << " to " << End << '\n'); 2236 // A dead def is not a problem. 2237 if (End.isDead()) 2238 break; 2239 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2240 2241 // Check for another def in the MBB. 2242 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2243 break; 2244 2245 // Lanes written by the new def are no longer tainted. 2246 const Val &OV = Other.Vals[OtherI->valno->id]; 2247 TaintedLanes &= ~OV.WriteLanes; 2248 if (!OV.RedefVNI) 2249 break; 2250 } while (TaintedLanes); 2251 return true; 2252 } 2253 2254 bool JoinVals::usesLanes(const MachineInstr *MI, unsigned Reg, unsigned SubIdx, 2255 LaneBitmask Lanes) const { 2256 if (MI->isDebugValue()) 2257 return false; 2258 for (const MachineOperand &MO : MI->operands()) { 2259 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2260 continue; 2261 if (!MO.readsReg()) 2262 continue; 2263 if (Lanes & TRI->getSubRegIndexLaneMask( 2264 TRI->composeSubRegIndices(SubIdx, MO.getSubReg()))) 2265 return true; 2266 } 2267 return false; 2268 } 2269 2270 bool JoinVals::resolveConflicts(JoinVals &Other) { 2271 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2272 Val &V = Vals[i]; 2273 assert (V.Resolution != CR_Impossible && "Unresolvable conflict"); 2274 if (V.Resolution != CR_Unresolved) 2275 continue; 2276 DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i 2277 << '@' << LR.getValNumInfo(i)->def << '\n'); 2278 if (SubRangeJoin) 2279 return false; 2280 2281 ++NumLaneConflicts; 2282 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2283 VNInfo *VNI = LR.getValNumInfo(i); 2284 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2285 2286 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2287 // join, those lanes will be tainted with a wrong value. Get the extent of 2288 // the tainted lanes. 2289 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2290 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2291 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2292 // Tainted lanes would extend beyond the basic block. 2293 return false; 2294 2295 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2296 2297 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2298 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2299 MachineBasicBlock::iterator MI = MBB->begin(); 2300 if (!VNI->isPHIDef()) { 2301 MI = Indexes->getInstructionFromIndex(VNI->def); 2302 // No need to check the instruction defining VNI for reads. 2303 ++MI; 2304 } 2305 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2306 "Interference ends on VNI->def. Should have been handled earlier"); 2307 MachineInstr *LastMI = 2308 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2309 assert(LastMI && "Range must end at a proper instruction"); 2310 unsigned TaintNum = 0; 2311 for(;;) { 2312 assert(MI != MBB->end() && "Bad LastMI"); 2313 if (usesLanes(MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2314 DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2315 return false; 2316 } 2317 // LastMI is the last instruction to use the current value. 2318 if (&*MI == LastMI) { 2319 if (++TaintNum == TaintExtent.size()) 2320 break; 2321 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2322 assert(LastMI && "Range must end at a proper instruction"); 2323 TaintedLanes = TaintExtent[TaintNum].second; 2324 } 2325 ++MI; 2326 } 2327 2328 // The tainted lanes are unused. 2329 V.Resolution = CR_Replace; 2330 ++NumLaneResolves; 2331 } 2332 return true; 2333 } 2334 2335 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2336 Val &V = Vals[ValNo]; 2337 if (V.Pruned || V.PrunedComputed) 2338 return V.Pruned; 2339 2340 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2341 return V.Pruned; 2342 2343 // Follow copies up the dominator tree and check if any intermediate value 2344 // has been pruned. 2345 V.PrunedComputed = true; 2346 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2347 return V.Pruned; 2348 } 2349 2350 void JoinVals::pruneValues(JoinVals &Other, 2351 SmallVectorImpl<SlotIndex> &EndPoints, 2352 bool changeInstrs) { 2353 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2354 SlotIndex Def = LR.getValNumInfo(i)->def; 2355 switch (Vals[i].Resolution) { 2356 case CR_Keep: 2357 break; 2358 case CR_Replace: { 2359 // This value takes precedence over the value in Other.LR. 2360 LIS->pruneValue(Other.LR, Def, &EndPoints); 2361 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2362 // instructions are only inserted to provide a live-out value for PHI 2363 // predecessors, so the instruction should simply go away once its value 2364 // has been replaced. 2365 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2366 bool EraseImpDef = OtherV.ErasableImplicitDef && 2367 OtherV.Resolution == CR_Keep; 2368 if (!Def.isBlock()) { 2369 if (changeInstrs) { 2370 // Remove <def,read-undef> flags. This def is now a partial redef. 2371 // Also remove <def,dead> flags since the joined live range will 2372 // continue past this instruction. 2373 for (MachineOperand &MO : 2374 Indexes->getInstructionFromIndex(Def)->operands()) { 2375 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 2376 MO.setIsUndef(EraseImpDef); 2377 MO.setIsDead(false); 2378 } 2379 } 2380 } 2381 // This value will reach instructions below, but we need to make sure 2382 // the live range also reaches the instruction at Def. 2383 if (!EraseImpDef) 2384 EndPoints.push_back(Def); 2385 } 2386 DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def 2387 << ": " << Other.LR << '\n'); 2388 break; 2389 } 2390 case CR_Erase: 2391 case CR_Merge: 2392 if (isPrunedValue(i, Other)) { 2393 // This value is ultimately a copy of a pruned value in LR or Other.LR. 2394 // We can no longer trust the value mapping computed by 2395 // computeAssignment(), the value that was originally copied could have 2396 // been replaced. 2397 LIS->pruneValue(LR, Def, &EndPoints); 2398 DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at " 2399 << Def << ": " << LR << '\n'); 2400 } 2401 break; 2402 case CR_Unresolved: 2403 case CR_Impossible: 2404 llvm_unreachable("Unresolved conflicts"); 2405 } 2406 } 2407 } 2408 2409 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) 2410 { 2411 // Look for values being erased. 2412 bool DidPrune = false; 2413 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2414 if (Vals[i].Resolution != CR_Erase) 2415 continue; 2416 2417 // Check subranges at the point where the copy will be removed. 2418 SlotIndex Def = LR.getValNumInfo(i)->def; 2419 for (LiveInterval::SubRange &S : LI.subranges()) { 2420 LiveQueryResult Q = S.Query(Def); 2421 2422 // If a subrange starts at the copy then an undefined value has been 2423 // copied and we must remove that subrange value as well. 2424 VNInfo *ValueOut = Q.valueOutOrDead(); 2425 if (ValueOut != nullptr && Q.valueIn() == nullptr) { 2426 DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 2427 << " at " << Def << "\n"); 2428 LIS->pruneValue(S, Def, nullptr); 2429 DidPrune = true; 2430 // Mark value number as unused. 2431 ValueOut->markUnused(); 2432 continue; 2433 } 2434 // If a subrange ends at the copy, then a value was copied but only 2435 // partially used later. Shrink the subregister range appropriately. 2436 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 2437 DEBUG(dbgs() << "\t\tDead uses at sublane " << PrintLaneMask(S.LaneMask) 2438 << " at " << Def << "\n"); 2439 ShrinkMask |= S.LaneMask; 2440 } 2441 } 2442 } 2443 if (DidPrune) 2444 LI.removeEmptySubRanges(); 2445 } 2446 2447 void JoinVals::removeImplicitDefs() { 2448 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2449 Val &V = Vals[i]; 2450 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 2451 continue; 2452 2453 VNInfo *VNI = LR.getValNumInfo(i); 2454 VNI->markUnused(); 2455 LR.removeValNo(VNI); 2456 } 2457 } 2458 2459 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2460 SmallVectorImpl<unsigned> &ShrinkRegs) { 2461 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2462 // Get the def location before markUnused() below invalidates it. 2463 SlotIndex Def = LR.getValNumInfo(i)->def; 2464 switch (Vals[i].Resolution) { 2465 case CR_Keep: { 2466 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 2467 // longer. The IMPLICIT_DEF instructions are only inserted by 2468 // PHIElimination to guarantee that all PHI predecessors have a value. 2469 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 2470 break; 2471 // Remove value number i from LR. 2472 VNInfo *VNI = LR.getValNumInfo(i); 2473 LR.removeValNo(VNI); 2474 // Note that this VNInfo is reused and still referenced in NewVNInfo, 2475 // make it appear like an unused value number. 2476 VNI->markUnused(); 2477 DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'); 2478 // FALL THROUGH. 2479 } 2480 2481 case CR_Erase: { 2482 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2483 assert(MI && "No instruction to erase"); 2484 if (MI->isCopy()) { 2485 unsigned Reg = MI->getOperand(1).getReg(); 2486 if (TargetRegisterInfo::isVirtualRegister(Reg) && 2487 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 2488 ShrinkRegs.push_back(Reg); 2489 } 2490 ErasedInstrs.insert(MI); 2491 DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 2492 LIS->RemoveMachineInstrFromMaps(MI); 2493 MI->eraseFromParent(); 2494 break; 2495 } 2496 default: 2497 break; 2498 } 2499 } 2500 } 2501 2502 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 2503 LaneBitmask LaneMask, 2504 const CoalescerPair &CP) { 2505 SmallVector<VNInfo*, 16> NewVNInfo; 2506 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 2507 NewVNInfo, CP, LIS, TRI, true, true); 2508 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 2509 NewVNInfo, CP, LIS, TRI, true, true); 2510 2511 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 2512 // We should be able to resolve all conflicts here as we could successfully do 2513 // it on the mainrange already. There is however a problem when multiple 2514 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 2515 // interferences. 2516 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 2517 // We already determined that it is legal to merge the intervals, so this 2518 // should never fail. 2519 llvm_unreachable("*** Couldn't join subrange!\n"); 2520 } 2521 if (!LHSVals.resolveConflicts(RHSVals) || 2522 !RHSVals.resolveConflicts(LHSVals)) { 2523 // We already determined that it is legal to merge the intervals, so this 2524 // should never fail. 2525 llvm_unreachable("*** Couldn't join subrange!\n"); 2526 } 2527 2528 // The merging algorithm in LiveInterval::join() can't handle conflicting 2529 // value mappings, so we need to remove any live ranges that overlap a 2530 // CR_Replace resolution. Collect a set of end points that can be used to 2531 // restore the live range after joining. 2532 SmallVector<SlotIndex, 8> EndPoints; 2533 LHSVals.pruneValues(RHSVals, EndPoints, false); 2534 RHSVals.pruneValues(LHSVals, EndPoints, false); 2535 2536 LHSVals.removeImplicitDefs(); 2537 RHSVals.removeImplicitDefs(); 2538 2539 LRange.verify(); 2540 RRange.verify(); 2541 2542 // Join RRange into LHS. 2543 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 2544 NewVNInfo); 2545 2546 DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n"); 2547 if (EndPoints.empty()) 2548 return; 2549 2550 // Recompute the parts of the live range we had to remove because of 2551 // CR_Replace conflicts. 2552 DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size() 2553 << " points: " << LRange << '\n'); 2554 LIS->extendToIndices(LRange, EndPoints); 2555 } 2556 2557 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 2558 const LiveRange &ToMerge, 2559 LaneBitmask LaneMask, 2560 CoalescerPair &CP) { 2561 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2562 for (LiveInterval::SubRange &R : LI.subranges()) { 2563 LaneBitmask RMask = R.LaneMask; 2564 // LaneMask of subregisters common to subrange R and ToMerge. 2565 LaneBitmask Common = RMask & LaneMask; 2566 // There is nothing to do without common subregs. 2567 if (Common == 0) 2568 continue; 2569 2570 DEBUG(dbgs() << "\t\tCopy+Merge " << PrintLaneMask(RMask) << " into " 2571 << PrintLaneMask(Common) << '\n'); 2572 // LaneMask of subregisters contained in the R range but not in ToMerge, 2573 // they have to split into their own subrange. 2574 LaneBitmask LRest = RMask & ~LaneMask; 2575 LiveInterval::SubRange *CommonRange; 2576 if (LRest != 0) { 2577 R.LaneMask = LRest; 2578 DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(LRest) << '\n'); 2579 // Duplicate SubRange for newly merged common stuff. 2580 CommonRange = LI.createSubRangeFrom(Allocator, Common, R); 2581 } else { 2582 // Reuse the existing range. 2583 R.LaneMask = Common; 2584 CommonRange = &R; 2585 } 2586 LiveRange RangeCopy(ToMerge, Allocator); 2587 joinSubRegRanges(*CommonRange, RangeCopy, Common, CP); 2588 LaneMask &= ~RMask; 2589 } 2590 2591 if (LaneMask != 0) { 2592 DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(LaneMask) << '\n'); 2593 LI.createSubRangeFrom(Allocator, LaneMask, ToMerge); 2594 } 2595 } 2596 2597 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 2598 SmallVector<VNInfo*, 16> NewVNInfo; 2599 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 2600 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 2601 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 2602 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), 0, NewVNInfo, CP, LIS, 2603 TRI, false, TrackSubRegLiveness); 2604 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), 0, NewVNInfo, CP, LIS, 2605 TRI, false, TrackSubRegLiveness); 2606 2607 DEBUG(dbgs() << "\t\tRHS = " << RHS 2608 << "\n\t\tLHS = " << LHS 2609 << '\n'); 2610 2611 // First compute NewVNInfo and the simple value mappings. 2612 // Detect impossible conflicts early. 2613 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 2614 return false; 2615 2616 // Some conflicts can only be resolved after all values have been mapped. 2617 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 2618 return false; 2619 2620 // All clear, the live ranges can be merged. 2621 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 2622 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2623 2624 // Transform lanemasks from the LHS to masks in the coalesced register and 2625 // create initial subranges if necessary. 2626 unsigned DstIdx = CP.getDstIdx(); 2627 if (!LHS.hasSubRanges()) { 2628 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 2629 : TRI->getSubRegIndexLaneMask(DstIdx); 2630 // LHS must support subregs or we wouldn't be in this codepath. 2631 assert(Mask != 0); 2632 LHS.createSubRangeFrom(Allocator, Mask, LHS); 2633 } else if (DstIdx != 0) { 2634 // Transform LHS lanemasks to new register class if necessary. 2635 for (LiveInterval::SubRange &R : LHS.subranges()) { 2636 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 2637 R.LaneMask = Mask; 2638 } 2639 } 2640 DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg()) 2641 << ' ' << LHS << '\n'); 2642 2643 // Determine lanemasks of RHS in the coalesced register and merge subranges. 2644 unsigned SrcIdx = CP.getSrcIdx(); 2645 if (!RHS.hasSubRanges()) { 2646 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 2647 : TRI->getSubRegIndexLaneMask(SrcIdx); 2648 mergeSubRangeInto(LHS, RHS, Mask, CP); 2649 } else { 2650 // Pair up subranges and merge. 2651 for (LiveInterval::SubRange &R : RHS.subranges()) { 2652 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 2653 mergeSubRangeInto(LHS, R, Mask, CP); 2654 } 2655 } 2656 DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 2657 2658 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 2659 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 2660 } 2661 2662 // The merging algorithm in LiveInterval::join() can't handle conflicting 2663 // value mappings, so we need to remove any live ranges that overlap a 2664 // CR_Replace resolution. Collect a set of end points that can be used to 2665 // restore the live range after joining. 2666 SmallVector<SlotIndex, 8> EndPoints; 2667 LHSVals.pruneValues(RHSVals, EndPoints, true); 2668 RHSVals.pruneValues(LHSVals, EndPoints, true); 2669 2670 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 2671 // registers to require trimming. 2672 SmallVector<unsigned, 8> ShrinkRegs; 2673 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 2674 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 2675 while (!ShrinkRegs.empty()) 2676 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 2677 2678 // Join RHS into LHS. 2679 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 2680 2681 // Kill flags are going to be wrong if the live ranges were overlapping. 2682 // Eventually, we should simply clear all kill flags when computing live 2683 // ranges. They are reinserted after register allocation. 2684 MRI->clearKillFlags(LHS.reg); 2685 MRI->clearKillFlags(RHS.reg); 2686 2687 if (!EndPoints.empty()) { 2688 // Recompute the parts of the live range we had to remove because of 2689 // CR_Replace conflicts. 2690 DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size() 2691 << " points: " << LHS << '\n'); 2692 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 2693 } 2694 2695 return true; 2696 } 2697 2698 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 2699 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 2700 } 2701 2702 namespace { 2703 /// Information concerning MBB coalescing priority. 2704 struct MBBPriorityInfo { 2705 MachineBasicBlock *MBB; 2706 unsigned Depth; 2707 bool IsSplit; 2708 2709 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 2710 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 2711 }; 2712 } 2713 2714 /// C-style comparator that sorts first based on the loop depth of the basic 2715 /// block (the unsigned), and then on the MBB number. 2716 /// 2717 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 2718 static int compareMBBPriority(const MBBPriorityInfo *LHS, 2719 const MBBPriorityInfo *RHS) { 2720 // Deeper loops first 2721 if (LHS->Depth != RHS->Depth) 2722 return LHS->Depth > RHS->Depth ? -1 : 1; 2723 2724 // Try to unsplit critical edges next. 2725 if (LHS->IsSplit != RHS->IsSplit) 2726 return LHS->IsSplit ? -1 : 1; 2727 2728 // Prefer blocks that are more connected in the CFG. This takes care of 2729 // the most difficult copies first while intervals are short. 2730 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 2731 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 2732 if (cl != cr) 2733 return cl > cr ? -1 : 1; 2734 2735 // As a last resort, sort by block number. 2736 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 2737 } 2738 2739 /// \returns true if the given copy uses or defines a local live range. 2740 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 2741 if (!Copy->isCopy()) 2742 return false; 2743 2744 if (Copy->getOperand(1).isUndef()) 2745 return false; 2746 2747 unsigned SrcReg = Copy->getOperand(1).getReg(); 2748 unsigned DstReg = Copy->getOperand(0).getReg(); 2749 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 2750 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 2751 return false; 2752 2753 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 2754 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 2755 } 2756 2757 bool RegisterCoalescer:: 2758 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 2759 bool Progress = false; 2760 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 2761 if (!CurrList[i]) 2762 continue; 2763 // Skip instruction pointers that have already been erased, for example by 2764 // dead code elimination. 2765 if (ErasedInstrs.erase(CurrList[i])) { 2766 CurrList[i] = nullptr; 2767 continue; 2768 } 2769 bool Again = false; 2770 bool Success = joinCopy(CurrList[i], Again); 2771 Progress |= Success; 2772 if (Success || !Again) 2773 CurrList[i] = nullptr; 2774 } 2775 return Progress; 2776 } 2777 2778 /// Check if DstReg is a terminal node. 2779 /// I.e., it does not have any affinity other than \p Copy. 2780 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 2781 const MachineRegisterInfo *MRI) { 2782 assert(Copy.isCopyLike()); 2783 // Check if the destination of this copy as any other affinity. 2784 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 2785 if (&MI != &Copy && MI.isCopyLike()) 2786 return false; 2787 return true; 2788 } 2789 2790 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 2791 assert(Copy.isCopyLike()); 2792 if (!UseTerminalRule) 2793 return false; 2794 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 2795 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg); 2796 // Check if the destination of this copy has any other affinity. 2797 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 2798 // If SrcReg is a physical register, the copy won't be coalesced. 2799 // Ignoring it may have other side effect (like missing 2800 // rematerialization). So keep it. 2801 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 2802 !isTerminalReg(DstReg, Copy, MRI)) 2803 return false; 2804 2805 // DstReg is a terminal node. Check if it interferes with any other 2806 // copy involving SrcReg. 2807 const MachineBasicBlock *OrigBB = Copy.getParent(); 2808 const LiveInterval &DstLI = LIS->getInterval(DstReg); 2809 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 2810 // Technically we should check if the weight of the new copy is 2811 // interesting compared to the other one and update the weight 2812 // of the copies accordingly. However, this would only work if 2813 // we would gather all the copies first then coalesce, whereas 2814 // right now we interleave both actions. 2815 // For now, just consider the copies that are in the same block. 2816 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 2817 continue; 2818 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 2819 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 2820 OtherSubReg); 2821 if (OtherReg == SrcReg) 2822 OtherReg = OtherSrcReg; 2823 // Check if OtherReg is a non-terminal. 2824 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) || 2825 isTerminalReg(OtherReg, MI, MRI)) 2826 continue; 2827 // Check that OtherReg interfere with DstReg. 2828 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 2829 DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n'); 2830 return true; 2831 } 2832 } 2833 return false; 2834 } 2835 2836 void 2837 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 2838 DEBUG(dbgs() << MBB->getName() << ":\n"); 2839 2840 // Collect all copy-like instructions in MBB. Don't start coalescing anything 2841 // yet, it might invalidate the iterator. 2842 const unsigned PrevSize = WorkList.size(); 2843 if (JoinGlobalCopies) { 2844 SmallVector<MachineInstr*, 2> LocalTerminals; 2845 SmallVector<MachineInstr*, 2> GlobalTerminals; 2846 // Coalesce copies bottom-up to coalesce local defs before local uses. They 2847 // are not inherently easier to resolve, but slightly preferable until we 2848 // have local live range splitting. In particular this is required by 2849 // cmp+jmp macro fusion. 2850 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 2851 MII != E; ++MII) { 2852 if (!MII->isCopyLike()) 2853 continue; 2854 bool ApplyTerminalRule = applyTerminalRule(*MII); 2855 if (isLocalCopy(&(*MII), LIS)) { 2856 if (ApplyTerminalRule) 2857 LocalTerminals.push_back(&(*MII)); 2858 else 2859 LocalWorkList.push_back(&(*MII)); 2860 } else { 2861 if (ApplyTerminalRule) 2862 GlobalTerminals.push_back(&(*MII)); 2863 else 2864 WorkList.push_back(&(*MII)); 2865 } 2866 } 2867 // Append the copies evicted by the terminal rule at the end of the list. 2868 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 2869 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 2870 } 2871 else { 2872 SmallVector<MachineInstr*, 2> Terminals; 2873 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 2874 MII != E; ++MII) 2875 if (MII->isCopyLike()) { 2876 if (applyTerminalRule(*MII)) 2877 Terminals.push_back(&(*MII)); 2878 else 2879 WorkList.push_back(MII); 2880 } 2881 // Append the copies evicted by the terminal rule at the end of the list. 2882 WorkList.append(Terminals.begin(), Terminals.end()); 2883 } 2884 // Try coalescing the collected copies immediately, and remove the nulls. 2885 // This prevents the WorkList from getting too large since most copies are 2886 // joinable on the first attempt. 2887 MutableArrayRef<MachineInstr*> 2888 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 2889 if (copyCoalesceWorkList(CurrList)) 2890 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 2891 (MachineInstr*)nullptr), WorkList.end()); 2892 } 2893 2894 void RegisterCoalescer::coalesceLocals() { 2895 copyCoalesceWorkList(LocalWorkList); 2896 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 2897 if (LocalWorkList[j]) 2898 WorkList.push_back(LocalWorkList[j]); 2899 } 2900 LocalWorkList.clear(); 2901 } 2902 2903 void RegisterCoalescer::joinAllIntervals() { 2904 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 2905 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 2906 2907 std::vector<MBBPriorityInfo> MBBs; 2908 MBBs.reserve(MF->size()); 2909 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 2910 MachineBasicBlock *MBB = &*I; 2911 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 2912 JoinSplitEdges && isSplitEdge(MBB))); 2913 } 2914 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 2915 2916 // Coalesce intervals in MBB priority order. 2917 unsigned CurrDepth = UINT_MAX; 2918 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 2919 // Try coalescing the collected local copies for deeper loops. 2920 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 2921 coalesceLocals(); 2922 CurrDepth = MBBs[i].Depth; 2923 } 2924 copyCoalesceInMBB(MBBs[i].MBB); 2925 } 2926 coalesceLocals(); 2927 2928 // Joining intervals can allow other intervals to be joined. Iteratively join 2929 // until we make no progress. 2930 while (copyCoalesceWorkList(WorkList)) 2931 /* empty */ ; 2932 } 2933 2934 void RegisterCoalescer::releaseMemory() { 2935 ErasedInstrs.clear(); 2936 WorkList.clear(); 2937 DeadDefs.clear(); 2938 InflateRegs.clear(); 2939 } 2940 2941 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 2942 MF = &fn; 2943 MRI = &fn.getRegInfo(); 2944 TM = &fn.getTarget(); 2945 const TargetSubtargetInfo &STI = fn.getSubtarget(); 2946 TRI = STI.getRegisterInfo(); 2947 TII = STI.getInstrInfo(); 2948 LIS = &getAnalysis<LiveIntervals>(); 2949 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2950 Loops = &getAnalysis<MachineLoopInfo>(); 2951 if (EnableGlobalCopies == cl::BOU_UNSET) 2952 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 2953 else 2954 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 2955 2956 // The MachineScheduler does not currently require JoinSplitEdges. This will 2957 // either be enabled unconditionally or replaced by a more general live range 2958 // splitting optimization. 2959 JoinSplitEdges = EnableJoinSplits; 2960 2961 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 2962 << "********** Function: " << MF->getName() << '\n'); 2963 2964 if (VerifyCoalescing) 2965 MF->verify(this, "Before register coalescing"); 2966 2967 RegClassInfo.runOnMachineFunction(fn); 2968 2969 // Join (coalesce) intervals if requested. 2970 if (EnableJoining) 2971 joinAllIntervals(); 2972 2973 // After deleting a lot of copies, register classes may be less constrained. 2974 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 2975 // DPR inflation. 2976 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 2977 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 2978 InflateRegs.end()); 2979 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n"); 2980 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 2981 unsigned Reg = InflateRegs[i]; 2982 if (MRI->reg_nodbg_empty(Reg)) 2983 continue; 2984 if (MRI->recomputeRegClass(Reg)) { 2985 DEBUG(dbgs() << PrintReg(Reg) << " inflated to " 2986 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 2987 ++NumInflated; 2988 2989 LiveInterval &LI = LIS->getInterval(Reg); 2990 if (LI.hasSubRanges()) { 2991 // If the inflated register class does not support subregisters anymore 2992 // remove the subranges. 2993 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 2994 LI.clearSubRanges(); 2995 } else { 2996 #ifndef NDEBUG 2997 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2998 // If subranges are still supported, then the same subregs 2999 // should still be supported. 3000 for (LiveInterval::SubRange &S : LI.subranges()) { 3001 assert((S.LaneMask & ~MaxMask) == 0); 3002 } 3003 #endif 3004 } 3005 } 3006 } 3007 } 3008 3009 DEBUG(dump()); 3010 if (VerifyCoalescing) 3011 MF->verify(this, "After register coalescing"); 3012 return true; 3013 } 3014 3015 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3016 LIS->print(O, m); 3017 } 3018