1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic RegisterCoalescer interface which 11 // is used as the common interface used by all clients and 12 // implementations of register coalescing. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "RegisterCoalescer.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/MC/LaneBitmask.h" 41 #include "llvm/MC/MCInstrDesc.h" 42 #include "llvm/MC/MCRegisterInfo.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetOpcodes.h" 50 #include "llvm/Target/TargetRegisterInfo.h" 51 #include "llvm/Target/TargetSubtargetInfo.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <iterator> 55 #include <limits> 56 #include <tuple> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "regalloc" 63 64 STATISTIC(numJoins , "Number of interval joins performed"); 65 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 66 STATISTIC(numCommutes , "Number of instruction commuting performed"); 67 STATISTIC(numExtends , "Number of copies extended"); 68 STATISTIC(NumReMats , "Number of instructions re-materialized"); 69 STATISTIC(NumInflated , "Number of register classes inflated"); 70 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 71 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 72 73 static cl::opt<bool> 74 EnableJoining("join-liveintervals", 75 cl::desc("Coalesce copies (default=true)"), 76 cl::init(true)); 77 78 static cl::opt<bool> UseTerminalRule("terminal-rule", 79 cl::desc("Apply the terminal rule"), 80 cl::init(false), cl::Hidden); 81 82 /// Temporary flag to test critical edge unsplitting. 83 static cl::opt<bool> 84 EnableJoinSplits("join-splitedges", 85 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 86 87 /// Temporary flag to test global copy optimization. 88 static cl::opt<cl::boolOrDefault> 89 EnableGlobalCopies("join-globalcopies", 90 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 91 cl::init(cl::BOU_UNSET), cl::Hidden); 92 93 static cl::opt<bool> 94 VerifyCoalescing("verify-coalescing", 95 cl::desc("Verify machine instrs before and after register coalescing"), 96 cl::Hidden); 97 98 namespace { 99 100 class RegisterCoalescer : public MachineFunctionPass, 101 private LiveRangeEdit::Delegate { 102 MachineFunction* MF; 103 MachineRegisterInfo* MRI; 104 const TargetRegisterInfo* TRI; 105 const TargetInstrInfo* TII; 106 LiveIntervals *LIS; 107 const MachineLoopInfo* Loops; 108 AliasAnalysis *AA; 109 RegisterClassInfo RegClassInfo; 110 111 /// A LaneMask to remember on which subregister live ranges we need to call 112 /// shrinkToUses() later. 113 LaneBitmask ShrinkMask; 114 115 /// True if the main range of the currently coalesced intervals should be 116 /// checked for smaller live intervals. 117 bool ShrinkMainRange; 118 119 /// \brief True if the coalescer should aggressively coalesce global copies 120 /// in favor of keeping local copies. 121 bool JoinGlobalCopies; 122 123 /// \brief True if the coalescer should aggressively coalesce fall-thru 124 /// blocks exclusively containing copies. 125 bool JoinSplitEdges; 126 127 /// Copy instructions yet to be coalesced. 128 SmallVector<MachineInstr*, 8> WorkList; 129 SmallVector<MachineInstr*, 8> LocalWorkList; 130 131 /// Set of instruction pointers that have been erased, and 132 /// that may be present in WorkList. 133 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 134 135 /// Dead instructions that are about to be deleted. 136 SmallVector<MachineInstr*, 8> DeadDefs; 137 138 /// Virtual registers to be considered for register class inflation. 139 SmallVector<unsigned, 8> InflateRegs; 140 141 /// Recursively eliminate dead defs in DeadDefs. 142 void eliminateDeadDefs(); 143 144 /// LiveRangeEdit callback for eliminateDeadDefs(). 145 void LRE_WillEraseInstruction(MachineInstr *MI) override; 146 147 /// Coalesce the LocalWorkList. 148 void coalesceLocals(); 149 150 /// Join compatible live intervals 151 void joinAllIntervals(); 152 153 /// Coalesce copies in the specified MBB, putting 154 /// copies that cannot yet be coalesced into WorkList. 155 void copyCoalesceInMBB(MachineBasicBlock *MBB); 156 157 /// Tries to coalesce all copies in CurrList. Returns true if any progress 158 /// was made. 159 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 160 161 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 162 /// src/dst of the copy instruction CopyMI. This returns true if the copy 163 /// was successfully coalesced away. If it is not currently possible to 164 /// coalesce this interval, but it may be possible if other things get 165 /// coalesced, then it returns true by reference in 'Again'. 166 bool joinCopy(MachineInstr *TheCopy, bool &Again); 167 168 /// Attempt to join these two intervals. On failure, this 169 /// returns false. The output "SrcInt" will not have been modified, so we 170 /// can use this information below to update aliases. 171 bool joinIntervals(CoalescerPair &CP); 172 173 /// Attempt joining two virtual registers. Return true on success. 174 bool joinVirtRegs(CoalescerPair &CP); 175 176 /// Attempt joining with a reserved physreg. 177 bool joinReservedPhysReg(CoalescerPair &CP); 178 179 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 180 /// Subranges in @p LI which only partially interfere with the desired 181 /// LaneMask are split as necessary. @p LaneMask are the lanes that 182 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 183 /// lanemasks already adjusted to the coalesced register. 184 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 185 LaneBitmask LaneMask, CoalescerPair &CP); 186 187 /// Join the liveranges of two subregisters. Joins @p RRange into 188 /// @p LRange, @p RRange may be invalid afterwards. 189 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 190 LaneBitmask LaneMask, const CoalescerPair &CP); 191 192 /// We found a non-trivially-coalescable copy. If the source value number is 193 /// defined by a copy from the destination reg see if we can merge these two 194 /// destination reg valno# into a single value number, eliminating a copy. 195 /// This returns true if an interval was modified. 196 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 197 198 /// Return true if there are definitions of IntB 199 /// other than BValNo val# that can reach uses of AValno val# of IntA. 200 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 201 VNInfo *AValNo, VNInfo *BValNo); 202 203 /// We found a non-trivially-coalescable copy. 204 /// If the source value number is defined by a commutable instruction and 205 /// its other operand is coalesced to the copy dest register, see if we 206 /// can transform the copy into a noop by commuting the definition. 207 /// This returns true if an interval was modified. 208 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); 209 210 /// We found a copy which can be moved to its less frequent predecessor. 211 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 212 213 /// If the source of a copy is defined by a 214 /// trivial computation, replace the copy by rematerialize the definition. 215 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 216 bool &IsDefCopy); 217 218 /// Return true if a copy involving a physreg should be joined. 219 bool canJoinPhys(const CoalescerPair &CP); 220 221 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 222 /// number if it is not zero. If DstReg is a physical register and the 223 /// existing subregister number of the def / use being updated is not zero, 224 /// make sure to set it to the correct physical subregister. 225 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 226 227 /// If the given machine operand reads only undefined lanes add an undef 228 /// flag. 229 /// This can happen when undef uses were previously concealed by a copy 230 /// which we coalesced. Example: 231 /// %vreg0:sub0<def,read-undef> = ... 232 /// %vreg1 = COPY %vreg0 <-- Coalescing COPY reveals undef 233 /// = use %vreg1:sub1 <-- hidden undef use 234 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 235 MachineOperand &MO, unsigned SubRegIdx); 236 237 /// Handle copies of undef values. 238 /// Returns true if @p CopyMI was a copy of an undef value and eliminated. 239 bool eliminateUndefCopy(MachineInstr *CopyMI); 240 241 /// Check whether or not we should apply the terminal rule on the 242 /// destination (Dst) of \p Copy. 243 /// When the terminal rule applies, Copy is not profitable to 244 /// coalesce. 245 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 246 /// at least one interference (Dst, Dst2). If Dst is terminal, the 247 /// terminal rule consists in checking that at least one of 248 /// interfering node, say Dst2, has an affinity of equal or greater 249 /// weight with Src. 250 /// In that case, Dst2 and Dst will not be able to be both coalesced 251 /// with Src. Since Dst2 exposes more coalescing opportunities than 252 /// Dst, we can drop \p Copy. 253 bool applyTerminalRule(const MachineInstr &Copy) const; 254 255 /// Wrapper method for \see LiveIntervals::shrinkToUses. 256 /// This method does the proper fixing of the live-ranges when the afore 257 /// mentioned method returns true. 258 void shrinkToUses(LiveInterval *LI, 259 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 260 if (LIS->shrinkToUses(LI, Dead)) { 261 /// Check whether or not \p LI is composed by multiple connected 262 /// components and if that is the case, fix that. 263 SmallVector<LiveInterval*, 8> SplitLIs; 264 LIS->splitSeparateComponents(*LI, SplitLIs); 265 } 266 } 267 268 /// Wrapper Method to do all the necessary work when an Instruction is 269 /// deleted. 270 /// Optimizations should use this to make sure that deleted instructions 271 /// are always accounted for. 272 void deleteInstr(MachineInstr* MI) { 273 ErasedInstrs.insert(MI); 274 LIS->RemoveMachineInstrFromMaps(*MI); 275 MI->eraseFromParent(); 276 } 277 278 public: 279 static char ID; ///< Class identification, replacement for typeinfo 280 281 RegisterCoalescer() : MachineFunctionPass(ID) { 282 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 283 } 284 285 void getAnalysisUsage(AnalysisUsage &AU) const override; 286 287 void releaseMemory() override; 288 289 /// This is the pass entry point. 290 bool runOnMachineFunction(MachineFunction&) override; 291 292 /// Implement the dump method. 293 void print(raw_ostream &O, const Module* = nullptr) const override; 294 }; 295 296 } // end anonymous namespace 297 298 char RegisterCoalescer::ID = 0; 299 300 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 301 302 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 303 "Simple Register Coalescing", false, false) 304 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 305 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 306 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 307 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 308 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 309 "Simple Register Coalescing", false, false) 310 311 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 312 unsigned &Src, unsigned &Dst, 313 unsigned &SrcSub, unsigned &DstSub) { 314 if (MI->isCopy()) { 315 Dst = MI->getOperand(0).getReg(); 316 DstSub = MI->getOperand(0).getSubReg(); 317 Src = MI->getOperand(1).getReg(); 318 SrcSub = MI->getOperand(1).getSubReg(); 319 } else if (MI->isSubregToReg()) { 320 Dst = MI->getOperand(0).getReg(); 321 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 322 MI->getOperand(3).getImm()); 323 Src = MI->getOperand(2).getReg(); 324 SrcSub = MI->getOperand(2).getSubReg(); 325 } else 326 return false; 327 return true; 328 } 329 330 /// Return true if this block should be vacated by the coalescer to eliminate 331 /// branches. The important cases to handle in the coalescer are critical edges 332 /// split during phi elimination which contain only copies. Simple blocks that 333 /// contain non-branches should also be vacated, but this can be handled by an 334 /// earlier pass similar to early if-conversion. 335 static bool isSplitEdge(const MachineBasicBlock *MBB) { 336 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 337 return false; 338 339 for (const auto &MI : *MBB) { 340 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 341 return false; 342 } 343 return true; 344 } 345 346 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 347 SrcReg = DstReg = 0; 348 SrcIdx = DstIdx = 0; 349 NewRC = nullptr; 350 Flipped = CrossClass = false; 351 352 unsigned Src, Dst, SrcSub, DstSub; 353 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 354 return false; 355 Partial = SrcSub || DstSub; 356 357 // If one register is a physreg, it must be Dst. 358 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 359 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 360 return false; 361 std::swap(Src, Dst); 362 std::swap(SrcSub, DstSub); 363 Flipped = true; 364 } 365 366 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 367 368 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 369 // Eliminate DstSub on a physreg. 370 if (DstSub) { 371 Dst = TRI.getSubReg(Dst, DstSub); 372 if (!Dst) return false; 373 DstSub = 0; 374 } 375 376 // Eliminate SrcSub by picking a corresponding Dst superregister. 377 if (SrcSub) { 378 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 379 if (!Dst) return false; 380 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 381 return false; 382 } 383 } else { 384 // Both registers are virtual. 385 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 386 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 387 388 // Both registers have subreg indices. 389 if (SrcSub && DstSub) { 390 // Copies between different sub-registers are never coalescable. 391 if (Src == Dst && SrcSub != DstSub) 392 return false; 393 394 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 395 SrcIdx, DstIdx); 396 if (!NewRC) 397 return false; 398 } else if (DstSub) { 399 // SrcReg will be merged with a sub-register of DstReg. 400 SrcIdx = DstSub; 401 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 402 } else if (SrcSub) { 403 // DstReg will be merged with a sub-register of SrcReg. 404 DstIdx = SrcSub; 405 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 406 } else { 407 // This is a straight copy without sub-registers. 408 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 409 } 410 411 // The combined constraint may be impossible to satisfy. 412 if (!NewRC) 413 return false; 414 415 // Prefer SrcReg to be a sub-register of DstReg. 416 // FIXME: Coalescer should support subregs symmetrically. 417 if (DstIdx && !SrcIdx) { 418 std::swap(Src, Dst); 419 std::swap(SrcIdx, DstIdx); 420 Flipped = !Flipped; 421 } 422 423 CrossClass = NewRC != DstRC || NewRC != SrcRC; 424 } 425 // Check our invariants 426 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 427 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 428 "Cannot have a physical SubIdx"); 429 SrcReg = Src; 430 DstReg = Dst; 431 return true; 432 } 433 434 bool CoalescerPair::flip() { 435 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 436 return false; 437 std::swap(SrcReg, DstReg); 438 std::swap(SrcIdx, DstIdx); 439 Flipped = !Flipped; 440 return true; 441 } 442 443 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 444 if (!MI) 445 return false; 446 unsigned Src, Dst, SrcSub, DstSub; 447 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 448 return false; 449 450 // Find the virtual register that is SrcReg. 451 if (Dst == SrcReg) { 452 std::swap(Src, Dst); 453 std::swap(SrcSub, DstSub); 454 } else if (Src != SrcReg) { 455 return false; 456 } 457 458 // Now check that Dst matches DstReg. 459 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 460 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 461 return false; 462 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 463 // DstSub could be set for a physreg from INSERT_SUBREG. 464 if (DstSub) 465 Dst = TRI.getSubReg(Dst, DstSub); 466 // Full copy of Src. 467 if (!SrcSub) 468 return DstReg == Dst; 469 // This is a partial register copy. Check that the parts match. 470 return TRI.getSubReg(DstReg, SrcSub) == Dst; 471 } else { 472 // DstReg is virtual. 473 if (DstReg != Dst) 474 return false; 475 // Registers match, do the subregisters line up? 476 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 477 TRI.composeSubRegIndices(DstIdx, DstSub); 478 } 479 } 480 481 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 482 AU.setPreservesCFG(); 483 AU.addRequired<AAResultsWrapperPass>(); 484 AU.addRequired<LiveIntervals>(); 485 AU.addPreserved<LiveIntervals>(); 486 AU.addPreserved<SlotIndexes>(); 487 AU.addRequired<MachineLoopInfo>(); 488 AU.addPreserved<MachineLoopInfo>(); 489 AU.addPreservedID(MachineDominatorsID); 490 MachineFunctionPass::getAnalysisUsage(AU); 491 } 492 493 void RegisterCoalescer::eliminateDeadDefs() { 494 SmallVector<unsigned, 8> NewRegs; 495 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 496 nullptr, this).eliminateDeadDefs(DeadDefs); 497 } 498 499 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 500 // MI may be in WorkList. Make sure we don't visit it. 501 ErasedInstrs.insert(MI); 502 } 503 504 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 505 MachineInstr *CopyMI) { 506 assert(!CP.isPartial() && "This doesn't work for partial copies."); 507 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 508 509 LiveInterval &IntA = 510 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 511 LiveInterval &IntB = 512 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 513 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 514 515 // We have a non-trivially-coalescable copy with IntA being the source and 516 // IntB being the dest, thus this defines a value number in IntB. If the 517 // source value number (in IntA) is defined by a copy from B, see if we can 518 // merge these two pieces of B into a single value number, eliminating a copy. 519 // For example: 520 // 521 // A3 = B0 522 // ... 523 // B1 = A3 <- this copy 524 // 525 // In this case, B0 can be extended to where the B1 copy lives, allowing the 526 // B1 value number to be replaced with B0 (which simplifies the B 527 // liveinterval). 528 529 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 530 // the example above. 531 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 532 if (BS == IntB.end()) return false; 533 VNInfo *BValNo = BS->valno; 534 535 // Get the location that B is defined at. Two options: either this value has 536 // an unknown definition point or it is defined at CopyIdx. If unknown, we 537 // can't process it. 538 if (BValNo->def != CopyIdx) return false; 539 540 // AValNo is the value number in A that defines the copy, A3 in the example. 541 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 542 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 543 // The live segment might not exist after fun with physreg coalescing. 544 if (AS == IntA.end()) return false; 545 VNInfo *AValNo = AS->valno; 546 547 // If AValNo is defined as a copy from IntB, we can potentially process this. 548 // Get the instruction that defines this value number. 549 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 550 // Don't allow any partial copies, even if isCoalescable() allows them. 551 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 552 return false; 553 554 // Get the Segment in IntB that this value number starts with. 555 LiveInterval::iterator ValS = 556 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 557 if (ValS == IntB.end()) 558 return false; 559 560 // Make sure that the end of the live segment is inside the same block as 561 // CopyMI. 562 MachineInstr *ValSEndInst = 563 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 564 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 565 return false; 566 567 // Okay, we now know that ValS ends in the same block that the CopyMI 568 // live-range starts. If there are no intervening live segments between them 569 // in IntB, we can merge them. 570 if (ValS+1 != BS) return false; 571 572 DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI)); 573 574 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 575 // We are about to delete CopyMI, so need to remove it as the 'instruction 576 // that defines this value #'. Update the valnum with the new defining 577 // instruction #. 578 BValNo->def = FillerStart; 579 580 // Okay, we can merge them. We need to insert a new liverange: 581 // [ValS.end, BS.begin) of either value number, then we merge the 582 // two value numbers. 583 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 584 585 // Okay, merge "B1" into the same value number as "B0". 586 if (BValNo != ValS->valno) 587 IntB.MergeValueNumberInto(BValNo, ValS->valno); 588 589 // Do the same for the subregister segments. 590 for (LiveInterval::SubRange &S : IntB.subranges()) { 591 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 592 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 593 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 594 if (SubBValNo != SubValSNo) 595 S.MergeValueNumberInto(SubBValNo, SubValSNo); 596 } 597 598 DEBUG(dbgs() << " result = " << IntB << '\n'); 599 600 // If the source instruction was killing the source register before the 601 // merge, unset the isKill marker given the live range has been extended. 602 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 603 if (UIdx != -1) { 604 ValSEndInst->getOperand(UIdx).setIsKill(false); 605 } 606 607 // Rewrite the copy. If the copy instruction was killing the destination 608 // register before the merge, find the last use and trim the live range. That 609 // will also add the isKill marker. 610 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 611 if (AS->end == CopyIdx) 612 shrinkToUses(&IntA); 613 614 ++numExtends; 615 return true; 616 } 617 618 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 619 LiveInterval &IntB, 620 VNInfo *AValNo, 621 VNInfo *BValNo) { 622 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 623 // the PHI values. 624 if (LIS->hasPHIKill(IntA, AValNo)) 625 return true; 626 627 for (LiveRange::Segment &ASeg : IntA.segments) { 628 if (ASeg.valno != AValNo) continue; 629 LiveInterval::iterator BI = 630 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start); 631 if (BI != IntB.begin()) 632 --BI; 633 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 634 if (BI->valno == BValNo) 635 continue; 636 if (BI->start <= ASeg.start && BI->end > ASeg.start) 637 return true; 638 if (BI->start > ASeg.start && BI->start < ASeg.end) 639 return true; 640 } 641 } 642 return false; 643 } 644 645 /// Copy segements with value number @p SrcValNo from liverange @p Src to live 646 /// range @Dst and use value number @p DstValNo there. 647 static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, 648 const LiveRange &Src, const VNInfo *SrcValNo) { 649 for (const LiveRange::Segment &S : Src.segments) { 650 if (S.valno != SrcValNo) 651 continue; 652 Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo)); 653 } 654 } 655 656 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 657 MachineInstr *CopyMI) { 658 assert(!CP.isPhys()); 659 660 LiveInterval &IntA = 661 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 662 LiveInterval &IntB = 663 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 664 665 // We found a non-trivially-coalescable copy with IntA being the source and 666 // IntB being the dest, thus this defines a value number in IntB. If the 667 // source value number (in IntA) is defined by a commutable instruction and 668 // its other operand is coalesced to the copy dest register, see if we can 669 // transform the copy into a noop by commuting the definition. For example, 670 // 671 // A3 = op A2 B0<kill> 672 // ... 673 // B1 = A3 <- this copy 674 // ... 675 // = op A3 <- more uses 676 // 677 // ==> 678 // 679 // B2 = op B0 A2<kill> 680 // ... 681 // B1 = B2 <- now an identity copy 682 // ... 683 // = op B2 <- more uses 684 685 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 686 // the example above. 687 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 688 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 689 assert(BValNo != nullptr && BValNo->def == CopyIdx); 690 691 // AValNo is the value number in A that defines the copy, A3 in the example. 692 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 693 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 694 if (AValNo->isPHIDef()) 695 return false; 696 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 697 if (!DefMI) 698 return false; 699 if (!DefMI->isCommutable()) 700 return false; 701 // If DefMI is a two-address instruction then commuting it will change the 702 // destination register. 703 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 704 assert(DefIdx != -1); 705 unsigned UseOpIdx; 706 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 707 return false; 708 709 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 710 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 711 // passed to the method. That _other_ operand is chosen by 712 // the findCommutedOpIndices() method. 713 // 714 // That is obviously an area for improvement in case of instructions having 715 // more than 2 operands. For example, if some instruction has 3 commutable 716 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 717 // op#2<->op#3) of commute transformation should be considered/tried here. 718 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 719 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 720 return false; 721 722 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 723 unsigned NewReg = NewDstMO.getReg(); 724 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 725 return false; 726 727 // Make sure there are no other definitions of IntB that would reach the 728 // uses which the new definition can reach. 729 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 730 return false; 731 732 // If some of the uses of IntA.reg is already coalesced away, return false. 733 // It's not possible to determine whether it's safe to perform the coalescing. 734 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 735 MachineInstr *UseMI = MO.getParent(); 736 unsigned OpNo = &MO - &UseMI->getOperand(0); 737 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 738 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 739 if (US == IntA.end() || US->valno != AValNo) 740 continue; 741 // If this use is tied to a def, we can't rewrite the register. 742 if (UseMI->isRegTiedToDefOperand(OpNo)) 743 return false; 744 } 745 746 DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 747 << *DefMI); 748 749 // At this point we have decided that it is legal to do this 750 // transformation. Start by commuting the instruction. 751 MachineBasicBlock *MBB = DefMI->getParent(); 752 MachineInstr *NewMI = 753 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 754 if (!NewMI) 755 return false; 756 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 757 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 758 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 759 return false; 760 if (NewMI != DefMI) { 761 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 762 MachineBasicBlock::iterator Pos = DefMI; 763 MBB->insert(Pos, NewMI); 764 MBB->erase(DefMI); 765 } 766 767 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 768 // A = or A, B 769 // ... 770 // B = A 771 // ... 772 // C = A<kill> 773 // ... 774 // = B 775 776 // Update uses of IntA of the specific Val# with IntB. 777 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 778 UE = MRI->use_end(); 779 UI != UE; /* ++UI is below because of possible MI removal */) { 780 MachineOperand &UseMO = *UI; 781 ++UI; 782 if (UseMO.isUndef()) 783 continue; 784 MachineInstr *UseMI = UseMO.getParent(); 785 if (UseMI->isDebugValue()) { 786 // FIXME These don't have an instruction index. Not clear we have enough 787 // info to decide whether to do this replacement or not. For now do it. 788 UseMO.setReg(NewReg); 789 continue; 790 } 791 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 792 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 793 assert(US != IntA.end() && "Use must be live"); 794 if (US->valno != AValNo) 795 continue; 796 // Kill flags are no longer accurate. They are recomputed after RA. 797 UseMO.setIsKill(false); 798 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 799 UseMO.substPhysReg(NewReg, *TRI); 800 else 801 UseMO.setReg(NewReg); 802 if (UseMI == CopyMI) 803 continue; 804 if (!UseMI->isCopy()) 805 continue; 806 if (UseMI->getOperand(0).getReg() != IntB.reg || 807 UseMI->getOperand(0).getSubReg()) 808 continue; 809 810 // This copy will become a noop. If it's defining a new val#, merge it into 811 // BValNo. 812 SlotIndex DefIdx = UseIdx.getRegSlot(); 813 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 814 if (!DVNI) 815 continue; 816 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 817 assert(DVNI->def == DefIdx); 818 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 819 for (LiveInterval::SubRange &S : IntB.subranges()) { 820 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 821 if (!SubDVNI) 822 continue; 823 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 824 assert(SubBValNo->def == CopyIdx); 825 S.MergeValueNumberInto(SubDVNI, SubBValNo); 826 } 827 828 deleteInstr(UseMI); 829 } 830 831 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 832 // is updated. 833 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 834 if (IntB.hasSubRanges()) { 835 if (!IntA.hasSubRanges()) { 836 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 837 IntA.createSubRangeFrom(Allocator, Mask, IntA); 838 } 839 SlotIndex AIdx = CopyIdx.getRegSlot(true); 840 for (LiveInterval::SubRange &SA : IntA.subranges()) { 841 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 842 assert(ASubValNo != nullptr); 843 844 IntB.refineSubRanges(Allocator, SA.LaneMask, 845 [&Allocator,&SA,CopyIdx,ASubValNo](LiveInterval::SubRange &SR) { 846 VNInfo *BSubValNo = SR.empty() 847 ? SR.getNextValue(CopyIdx, Allocator) 848 : SR.getVNInfoAt(CopyIdx); 849 assert(BSubValNo != nullptr); 850 addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 851 }); 852 } 853 } 854 855 BValNo->def = AValNo->def; 856 addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 857 DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 858 859 LIS->removeVRegDefAt(IntA, AValNo->def); 860 861 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 862 ++numCommutes; 863 return true; 864 } 865 866 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 867 /// predecessor of BB2, and if B is not redefined on the way from A = B 868 /// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the 869 /// execution goes through the path from BB0 to BB2. We may move B = A 870 /// to the predecessor without such reversed copy. 871 /// So we will transform the program from: 872 /// BB0: 873 /// A = B; BB1: 874 /// ... ... 875 /// / \ / 876 /// BB2: 877 /// ... 878 /// B = A; 879 /// 880 /// to: 881 /// 882 /// BB0: BB1: 883 /// A = B; ... 884 /// ... B = A; 885 /// / \ / 886 /// BB2: 887 /// ... 888 /// 889 /// A special case is when BB0 and BB2 are the same BB which is the only 890 /// BB in a loop: 891 /// BB1: 892 /// ... 893 /// BB0/BB2: ---- 894 /// B = A; | 895 /// ... | 896 /// A = B; | 897 /// |------- 898 /// | 899 /// We may hoist B = A from BB0/BB2 to BB1. 900 /// 901 /// The major preconditions for correctness to remove such partial 902 /// redundancy include: 903 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 904 /// the PHI is defined by the reversed copy A = B in BB0. 905 /// 2. No B is referenced from the start of BB2 to B = A. 906 /// 3. No B is defined from A = B to the end of BB0. 907 /// 4. BB1 has only one successor. 908 /// 909 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 910 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 911 /// colder place, which not only prevent endless loop, but also make sure 912 /// the movement of copy is beneficial. 913 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 914 MachineInstr &CopyMI) { 915 assert(!CP.isPhys()); 916 if (!CopyMI.isFullCopy()) 917 return false; 918 919 MachineBasicBlock &MBB = *CopyMI.getParent(); 920 if (MBB.isEHPad()) 921 return false; 922 923 if (MBB.pred_size() != 2) 924 return false; 925 926 LiveInterval &IntA = 927 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 928 LiveInterval &IntB = 929 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 930 931 // A is defined by PHI at the entry of MBB. 932 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 933 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 934 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 935 if (!AValNo->isPHIDef()) 936 return false; 937 938 // No B is referenced before CopyMI in MBB. 939 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 940 return false; 941 942 // MBB has two predecessors: one contains A = B so no copy will be inserted 943 // for it. The other one will have a copy moved from MBB. 944 bool FoundReverseCopy = false; 945 MachineBasicBlock *CopyLeftBB = nullptr; 946 for (MachineBasicBlock *Pred : MBB.predecessors()) { 947 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 948 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 949 if (!DefMI || !DefMI->isFullCopy()) { 950 CopyLeftBB = Pred; 951 continue; 952 } 953 // Check DefMI is a reverse copy and it is in BB Pred. 954 if (DefMI->getOperand(0).getReg() != IntA.reg || 955 DefMI->getOperand(1).getReg() != IntB.reg || 956 DefMI->getParent() != Pred) { 957 CopyLeftBB = Pred; 958 continue; 959 } 960 // If there is any other def of B after DefMI and before the end of Pred, 961 // we need to keep the copy of B = A at the end of Pred if we remove 962 // B = A from MBB. 963 bool ValB_Changed = false; 964 for (auto VNI : IntB.valnos) { 965 if (VNI->isUnused()) 966 continue; 967 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 968 ValB_Changed = true; 969 break; 970 } 971 } 972 if (ValB_Changed) { 973 CopyLeftBB = Pred; 974 continue; 975 } 976 FoundReverseCopy = true; 977 } 978 979 // If no reverse copy is found in predecessors, nothing to do. 980 if (!FoundReverseCopy) 981 return false; 982 983 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 984 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 985 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 986 // update IntA/IntB. 987 // 988 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 989 // MBB is hotter than CopyLeftBB. 990 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 991 return false; 992 993 // Now ok to move copy. 994 if (CopyLeftBB) { 995 DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to BB#" 996 << CopyLeftBB->getNumber() << '\t' << CopyMI); 997 998 // Insert new copy to CopyLeftBB. 999 auto InsPos = CopyLeftBB->getFirstTerminator(); 1000 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1001 TII->get(TargetOpcode::COPY), IntB.reg) 1002 .addReg(IntA.reg); 1003 SlotIndex NewCopyIdx = 1004 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1005 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1006 for (LiveInterval::SubRange &SR : IntB.subranges()) 1007 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1008 1009 // If the newly created Instruction has an address of an instruction that was 1010 // deleted before (object recycled by the allocator) it needs to be removed from 1011 // the deleted list. 1012 ErasedInstrs.erase(NewCopyMI); 1013 } else { 1014 DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from BB#" 1015 << MBB.getNumber() << '\t' << CopyMI); 1016 } 1017 1018 // Remove CopyMI. 1019 // Note: This is fine to remove the copy before updating the live-ranges. 1020 // While updating the live-ranges, we only look at slot indices and 1021 // never go back to the instruction. 1022 // Mark instructions as deleted. 1023 deleteInstr(&CopyMI); 1024 1025 // Update the liveness. 1026 SmallVector<SlotIndex, 8> EndPoints; 1027 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1028 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1029 &EndPoints); 1030 BValNo->markUnused(); 1031 // Extend IntB to the EndPoints of its original live interval. 1032 LIS->extendToIndices(IntB, EndPoints); 1033 1034 // Now, do the same for its subranges. 1035 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1036 EndPoints.clear(); 1037 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1038 assert(BValNo && "All sublanes should be live"); 1039 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1040 BValNo->markUnused(); 1041 LIS->extendToIndices(SR, EndPoints); 1042 } 1043 1044 // Finally, update the live-range of IntA. 1045 shrinkToUses(&IntA); 1046 return true; 1047 } 1048 1049 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1050 /// defining a subregister. 1051 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 1052 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && 1053 "This code cannot handle physreg aliasing"); 1054 for (const MachineOperand &Op : MI.operands()) { 1055 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1056 continue; 1057 // Return true if we define the full register or don't care about the value 1058 // inside other subregisters. 1059 if (Op.getSubReg() == 0 || Op.isUndef()) 1060 return true; 1061 } 1062 return false; 1063 } 1064 1065 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1066 MachineInstr *CopyMI, 1067 bool &IsDefCopy) { 1068 IsDefCopy = false; 1069 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1070 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1071 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1072 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1073 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1074 return false; 1075 1076 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1077 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1078 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1079 assert(ValNo && "CopyMI input register not live"); 1080 if (ValNo->isPHIDef() || ValNo->isUnused()) 1081 return false; 1082 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1083 if (!DefMI) 1084 return false; 1085 if (DefMI->isCopyLike()) { 1086 IsDefCopy = true; 1087 return false; 1088 } 1089 if (!TII->isAsCheapAsAMove(*DefMI)) 1090 return false; 1091 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1092 return false; 1093 if (!definesFullReg(*DefMI, SrcReg)) 1094 return false; 1095 bool SawStore = false; 1096 if (!DefMI->isSafeToMove(AA, SawStore)) 1097 return false; 1098 const MCInstrDesc &MCID = DefMI->getDesc(); 1099 if (MCID.getNumDefs() != 1) 1100 return false; 1101 // Only support subregister destinations when the def is read-undef. 1102 MachineOperand &DstOperand = CopyMI->getOperand(0); 1103 unsigned CopyDstReg = DstOperand.getReg(); 1104 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1105 return false; 1106 1107 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1108 // the register substantially (beyond both source and dest size). This is bad 1109 // for performance since it can cascade through a function, introducing many 1110 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1111 // around after a few subreg copies). 1112 if (SrcIdx && DstIdx) 1113 return false; 1114 1115 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1116 if (!DefMI->isImplicitDef()) { 1117 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 1118 unsigned NewDstReg = DstReg; 1119 1120 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1121 DefMI->getOperand(0).getSubReg()); 1122 if (NewDstIdx) 1123 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1124 1125 // Finally, make sure that the physical subregister that will be 1126 // constructed later is permitted for the instruction. 1127 if (!DefRC->contains(NewDstReg)) 1128 return false; 1129 } else { 1130 // Theoretically, some stack frame reference could exist. Just make sure 1131 // it hasn't actually happened. 1132 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 1133 "Only expect to deal with virtual or physical registers"); 1134 } 1135 } 1136 1137 DebugLoc DL = CopyMI->getDebugLoc(); 1138 MachineBasicBlock *MBB = CopyMI->getParent(); 1139 MachineBasicBlock::iterator MII = 1140 std::next(MachineBasicBlock::iterator(CopyMI)); 1141 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1142 MachineInstr &NewMI = *std::prev(MII); 1143 NewMI.setDebugLoc(DL); 1144 1145 // In a situation like the following: 1146 // %vreg0:subreg = instr ; DefMI, subreg = DstIdx 1147 // %vreg1 = copy %vreg0:subreg ; CopyMI, SrcIdx = 0 1148 // instead of widening %vreg1 to the register class of %vreg0 simply do: 1149 // %vreg1 = instr 1150 const TargetRegisterClass *NewRC = CP.getNewRC(); 1151 if (DstIdx != 0) { 1152 MachineOperand &DefMO = NewMI.getOperand(0); 1153 if (DefMO.getSubReg() == DstIdx) { 1154 assert(SrcIdx == 0 && CP.isFlipped() 1155 && "Shouldn't have SrcIdx+DstIdx at this point"); 1156 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1157 const TargetRegisterClass *CommonRC = 1158 TRI->getCommonSubClass(DefRC, DstRC); 1159 if (CommonRC != nullptr) { 1160 NewRC = CommonRC; 1161 DstIdx = 0; 1162 DefMO.setSubReg(0); 1163 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1164 } 1165 } 1166 } 1167 1168 // CopyMI may have implicit operands, save them so that we can transfer them 1169 // over to the newly materialized instruction after CopyMI is removed. 1170 SmallVector<MachineOperand, 4> ImplicitOps; 1171 ImplicitOps.reserve(CopyMI->getNumOperands() - 1172 CopyMI->getDesc().getNumOperands()); 1173 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1174 E = CopyMI->getNumOperands(); 1175 I != E; ++I) { 1176 MachineOperand &MO = CopyMI->getOperand(I); 1177 if (MO.isReg()) { 1178 assert(MO.isImplicit() && "No explicit operands after implict operands."); 1179 // Discard VReg implicit defs. 1180 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1181 ImplicitOps.push_back(MO); 1182 } 1183 } 1184 1185 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1186 CopyMI->eraseFromParent(); 1187 ErasedInstrs.insert(CopyMI); 1188 1189 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1190 // We need to remember these so we can add intervals once we insert 1191 // NewMI into SlotIndexes. 1192 SmallVector<unsigned, 4> NewMIImplDefs; 1193 for (unsigned i = NewMI.getDesc().getNumOperands(), 1194 e = NewMI.getNumOperands(); 1195 i != e; ++i) { 1196 MachineOperand &MO = NewMI.getOperand(i); 1197 if (MO.isReg() && MO.isDef()) { 1198 assert(MO.isImplicit() && MO.isDead() && 1199 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 1200 NewMIImplDefs.push_back(MO.getReg()); 1201 } 1202 } 1203 1204 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 1205 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1206 1207 if (DefRC != nullptr) { 1208 if (NewIdx) 1209 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1210 else 1211 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1212 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1213 } 1214 // Remap subranges to new lanemask and change register class. 1215 LiveInterval &DstInt = LIS->getInterval(DstReg); 1216 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1217 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1218 } 1219 MRI->setRegClass(DstReg, NewRC); 1220 1221 // Update machine operands and add flags. 1222 updateRegDefsUses(DstReg, DstReg, DstIdx); 1223 NewMI.getOperand(0).setSubReg(NewIdx); 1224 // Add dead subregister definitions if we are defining the whole register 1225 // but only part of it is live. 1226 // This could happen if the rematerialization instruction is rematerializing 1227 // more than actually is used in the register. 1228 // An example would be: 1229 // vreg1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1230 // ; Copying only part of the register here, but the rest is undef. 1231 // vreg2:sub_16bit<def, read-undef> = COPY vreg1:sub_16bit 1232 // ==> 1233 // ; Materialize all the constants but only using one 1234 // vreg2 = LOAD_CONSTANTS 5, 8 1235 // 1236 // at this point for the part that wasn't defined before we could have 1237 // subranges missing the definition. 1238 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1239 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1240 SlotIndex DefIndex = 1241 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1242 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1243 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1244 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1245 if (!SR.liveAt(DefIndex)) 1246 SR.createDeadDef(DefIndex, Alloc); 1247 MaxMask &= ~SR.LaneMask; 1248 } 1249 if (MaxMask.any()) { 1250 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1251 SR->createDeadDef(DefIndex, Alloc); 1252 } 1253 } 1254 1255 // Make sure that the subrange for resultant undef is removed 1256 // For example: 1257 // vreg1:sub1<def,read-undef> = LOAD CONSTANT 1 1258 // vreg2<def> = COPY vreg1 1259 // ==> 1260 // vreg2:sub1<def, read-undef> = LOAD CONSTANT 1 1261 // ; Correct but need to remove the subrange for vreg2:sub0 1262 // ; as it is now undef 1263 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1264 // The affected subregister segments can be removed. 1265 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1266 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1267 bool UpdatedSubRanges = false; 1268 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1269 if ((SR.LaneMask & DstMask).none()) { 1270 DEBUG(dbgs() << "Removing undefined SubRange " 1271 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1272 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1273 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1274 SR.removeValNo(RmValNo); 1275 UpdatedSubRanges = true; 1276 } 1277 } 1278 } 1279 if (UpdatedSubRanges) 1280 DstInt.removeEmptySubRanges(); 1281 } 1282 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1283 // The New instruction may be defining a sub-register of what's actually 1284 // been asked for. If so it must implicitly define the whole thing. 1285 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 1286 "Only expect virtual or physical registers in remat"); 1287 NewMI.getOperand(0).setIsDead(true); 1288 NewMI.addOperand(MachineOperand::CreateReg( 1289 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1290 // Record small dead def live-ranges for all the subregisters 1291 // of the destination register. 1292 // Otherwise, variables that live through may miss some 1293 // interferences, thus creating invalid allocation. 1294 // E.g., i386 code: 1295 // vreg1 = somedef ; vreg1 GR8 1296 // vreg2 = remat ; vreg2 GR32 1297 // CL = COPY vreg2.sub_8bit 1298 // = somedef vreg1 ; vreg1 GR8 1299 // => 1300 // vreg1 = somedef ; vreg1 GR8 1301 // ECX<def, dead> = remat ; CL<imp-def> 1302 // = somedef vreg1 ; vreg1 GR8 1303 // vreg1 will see the inteferences with CL but not with CH since 1304 // no live-ranges would have been created for ECX. 1305 // Fix that! 1306 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1307 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1308 Units.isValid(); ++Units) 1309 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1310 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1311 } 1312 1313 if (NewMI.getOperand(0).getSubReg()) 1314 NewMI.getOperand(0).setIsUndef(); 1315 1316 // Transfer over implicit operands to the rematerialized instruction. 1317 for (MachineOperand &MO : ImplicitOps) 1318 NewMI.addOperand(MO); 1319 1320 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1321 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1322 unsigned Reg = NewMIImplDefs[i]; 1323 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1324 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1325 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1326 } 1327 1328 DEBUG(dbgs() << "Remat: " << NewMI); 1329 ++NumReMats; 1330 1331 // The source interval can become smaller because we removed a use. 1332 shrinkToUses(&SrcInt, &DeadDefs); 1333 if (!DeadDefs.empty()) { 1334 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1335 // to describe DstReg instead. 1336 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1337 MachineInstr *UseMI = UseMO.getParent(); 1338 if (UseMI->isDebugValue()) { 1339 UseMO.setReg(DstReg); 1340 // Move the debug value directly after the def of the rematerialized 1341 // value in DstReg. 1342 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); 1343 DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1344 } 1345 } 1346 eliminateDeadDefs(); 1347 } 1348 1349 return true; 1350 } 1351 1352 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1353 // ProcessImpicitDefs may leave some copies of <undef> values, it only removes 1354 // local variables. When we have a copy like: 1355 // 1356 // %vreg1 = COPY %vreg2<undef> 1357 // 1358 // We delete the copy and remove the corresponding value number from %vreg1. 1359 // Any uses of that value number are marked as <undef>. 1360 1361 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1362 // CoalescerPair may have a new register class with adjusted subreg indices 1363 // at this point. 1364 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1365 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx); 1366 1367 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1368 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1369 // CopyMI is undef iff SrcReg is not live before the instruction. 1370 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1371 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1372 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1373 if ((SR.LaneMask & SrcMask).none()) 1374 continue; 1375 if (SR.liveAt(Idx)) 1376 return false; 1377 } 1378 } else if (SrcLI.liveAt(Idx)) 1379 return false; 1380 1381 DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1382 1383 // Remove any DstReg segments starting at the instruction. 1384 LiveInterval &DstLI = LIS->getInterval(DstReg); 1385 SlotIndex RegIndex = Idx.getRegSlot(); 1386 // Remove value or merge with previous one in case of a subregister def. 1387 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1388 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1389 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1390 1391 // The affected subregister segments can be removed. 1392 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1393 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1394 if ((SR.LaneMask & DstMask).none()) 1395 continue; 1396 1397 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1398 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1399 SR.removeValNo(SVNI); 1400 } 1401 DstLI.removeEmptySubRanges(); 1402 } else 1403 LIS->removeVRegDefAt(DstLI, RegIndex); 1404 1405 // Mark uses as undef. 1406 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1407 if (MO.isDef() /*|| MO.isUndef()*/) 1408 continue; 1409 const MachineInstr &MI = *MO.getParent(); 1410 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1411 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1412 bool isLive; 1413 if (!UseMask.all() && DstLI.hasSubRanges()) { 1414 isLive = false; 1415 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1416 if ((SR.LaneMask & UseMask).none()) 1417 continue; 1418 if (SR.liveAt(UseIdx)) { 1419 isLive = true; 1420 break; 1421 } 1422 } 1423 } else 1424 isLive = DstLI.liveAt(UseIdx); 1425 if (isLive) 1426 continue; 1427 MO.setIsUndef(true); 1428 DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1429 } 1430 1431 // A def of a subregister may be a use of the other subregisters, so 1432 // deleting a def of a subregister may also remove uses. Since CopyMI 1433 // is still part of the function (but about to be erased), mark all 1434 // defs of DstReg in it as <undef>, so that shrinkToUses would 1435 // ignore them. 1436 for (MachineOperand &MO : CopyMI->operands()) 1437 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1438 MO.setIsUndef(true); 1439 LIS->shrinkToUses(&DstLI); 1440 1441 return true; 1442 } 1443 1444 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1445 MachineOperand &MO, unsigned SubRegIdx) { 1446 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1447 if (MO.isDef()) 1448 Mask = ~Mask; 1449 bool IsUndef = true; 1450 for (const LiveInterval::SubRange &S : Int.subranges()) { 1451 if ((S.LaneMask & Mask).none()) 1452 continue; 1453 if (S.liveAt(UseIdx)) { 1454 IsUndef = false; 1455 break; 1456 } 1457 } 1458 if (IsUndef) { 1459 MO.setIsUndef(true); 1460 // We found out some subregister use is actually reading an undefined 1461 // value. In some cases the whole vreg has become undefined at this 1462 // point so we have to potentially shrink the main range if the 1463 // use was ending a live segment there. 1464 LiveQueryResult Q = Int.Query(UseIdx); 1465 if (Q.valueOut() == nullptr) 1466 ShrinkMainRange = true; 1467 } 1468 } 1469 1470 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 1471 unsigned DstReg, 1472 unsigned SubIdx) { 1473 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 1474 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1475 1476 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1477 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1478 unsigned SubReg = MO.getSubReg(); 1479 if (SubReg == 0 || MO.isUndef()) 1480 continue; 1481 MachineInstr &MI = *MO.getParent(); 1482 if (MI.isDebugValue()) 1483 continue; 1484 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1485 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1486 } 1487 } 1488 1489 SmallPtrSet<MachineInstr*, 8> Visited; 1490 for (MachineRegisterInfo::reg_instr_iterator 1491 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1492 I != E; ) { 1493 MachineInstr *UseMI = &*(I++); 1494 1495 // Each instruction can only be rewritten once because sub-register 1496 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1497 // the UseMI operands removes them from the SrcReg use-def chain, but when 1498 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1499 // operands mentioning the virtual register. 1500 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1501 continue; 1502 1503 SmallVector<unsigned,8> Ops; 1504 bool Reads, Writes; 1505 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1506 1507 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1508 // because SrcReg is a sub-register. 1509 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) 1510 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1511 1512 // Replace SrcReg with DstReg in all UseMI operands. 1513 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1514 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1515 1516 // Adjust <undef> flags in case of sub-register joins. We don't want to 1517 // turn a full def into a read-modify-write sub-register def and vice 1518 // versa. 1519 if (SubIdx && MO.isDef()) 1520 MO.setIsUndef(!Reads); 1521 1522 // A subreg use of a partially undef (super) register may be a complete 1523 // undef use now and then has to be marked that way. 1524 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1525 if (!DstInt->hasSubRanges()) { 1526 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1527 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1528 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1529 } 1530 SlotIndex MIIdx = UseMI->isDebugValue() 1531 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1532 : LIS->getInstructionIndex(*UseMI); 1533 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1534 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1535 } 1536 1537 if (DstIsPhys) 1538 MO.substPhysReg(DstReg, *TRI); 1539 else 1540 MO.substVirtReg(DstReg, SubIdx, *TRI); 1541 } 1542 1543 DEBUG({ 1544 dbgs() << "\t\tupdated: "; 1545 if (!UseMI->isDebugValue()) 1546 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1547 dbgs() << *UseMI; 1548 }); 1549 } 1550 } 1551 1552 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1553 // Always join simple intervals that are defined by a single copy from a 1554 // reserved register. This doesn't increase register pressure, so it is 1555 // always beneficial. 1556 if (!MRI->isReserved(CP.getDstReg())) { 1557 DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1558 return false; 1559 } 1560 1561 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1562 if (JoinVInt.containsOneValue()) 1563 return true; 1564 1565 DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1566 return false; 1567 } 1568 1569 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1570 Again = false; 1571 DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1572 1573 CoalescerPair CP(*TRI); 1574 if (!CP.setRegisters(CopyMI)) { 1575 DEBUG(dbgs() << "\tNot coalescable.\n"); 1576 return false; 1577 } 1578 1579 if (CP.getNewRC()) { 1580 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1581 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1582 unsigned SrcIdx = CP.getSrcIdx(); 1583 unsigned DstIdx = CP.getDstIdx(); 1584 if (CP.isFlipped()) { 1585 std::swap(SrcIdx, DstIdx); 1586 std::swap(SrcRC, DstRC); 1587 } 1588 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1589 CP.getNewRC(), *LIS)) { 1590 DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1591 return false; 1592 } 1593 } 1594 1595 // Dead code elimination. This really should be handled by MachineDCE, but 1596 // sometimes dead copies slip through, and we can't generate invalid live 1597 // ranges. 1598 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1599 DEBUG(dbgs() << "\tCopy is dead.\n"); 1600 DeadDefs.push_back(CopyMI); 1601 eliminateDeadDefs(); 1602 return true; 1603 } 1604 1605 // Eliminate undefs. 1606 if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) { 1607 deleteInstr(CopyMI); 1608 return false; // Not coalescable. 1609 } 1610 1611 // Coalesced copies are normally removed immediately, but transformations 1612 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1613 // When that happens, just join the values and remove the copy. 1614 if (CP.getSrcReg() == CP.getDstReg()) { 1615 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1616 DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1617 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1618 LiveQueryResult LRQ = LI.Query(CopyIdx); 1619 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1620 VNInfo *ReadVNI = LRQ.valueIn(); 1621 assert(ReadVNI && "No value before copy and no <undef> flag."); 1622 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1623 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1624 1625 // Process subregister liveranges. 1626 for (LiveInterval::SubRange &S : LI.subranges()) { 1627 LiveQueryResult SLRQ = S.Query(CopyIdx); 1628 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1629 VNInfo *SReadVNI = SLRQ.valueIn(); 1630 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1631 } 1632 } 1633 DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1634 } 1635 deleteInstr(CopyMI); 1636 return true; 1637 } 1638 1639 // Enforce policies. 1640 if (CP.isPhys()) { 1641 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI) 1642 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) 1643 << '\n'); 1644 if (!canJoinPhys(CP)) { 1645 // Before giving up coalescing, if definition of source is defined by 1646 // trivial computation, try rematerializing it. 1647 bool IsDefCopy; 1648 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1649 return true; 1650 if (IsDefCopy) 1651 Again = true; // May be possible to coalesce later. 1652 return false; 1653 } 1654 } else { 1655 // When possible, let DstReg be the larger interval. 1656 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1657 LIS->getInterval(CP.getDstReg()).size()) 1658 CP.flip(); 1659 1660 DEBUG({ 1661 dbgs() << "\tConsidering merging to " 1662 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1663 if (CP.getDstIdx() && CP.getSrcIdx()) 1664 dbgs() << PrintReg(CP.getDstReg()) << " in " 1665 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1666 << PrintReg(CP.getSrcReg()) << " in " 1667 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1668 else 1669 dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in " 1670 << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1671 }); 1672 } 1673 1674 ShrinkMask = LaneBitmask::getNone(); 1675 ShrinkMainRange = false; 1676 1677 // Okay, attempt to join these two intervals. On failure, this returns false. 1678 // Otherwise, if one of the intervals being joined is a physreg, this method 1679 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1680 // been modified, so we can use this information below to update aliases. 1681 if (!joinIntervals(CP)) { 1682 // Coalescing failed. 1683 1684 // If definition of source is defined by trivial computation, try 1685 // rematerializing it. 1686 bool IsDefCopy; 1687 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1688 return true; 1689 1690 // If we can eliminate the copy without merging the live segments, do so 1691 // now. 1692 if (!CP.isPartial() && !CP.isPhys()) { 1693 if (adjustCopiesBackFrom(CP, CopyMI) || 1694 removeCopyByCommutingDef(CP, CopyMI)) { 1695 deleteInstr(CopyMI); 1696 DEBUG(dbgs() << "\tTrivial!\n"); 1697 return true; 1698 } 1699 } 1700 1701 // Try and see if we can partially eliminate the copy by moving the copy to 1702 // its predecessor. 1703 if (!CP.isPartial() && !CP.isPhys()) 1704 if (removePartialRedundancy(CP, *CopyMI)) 1705 return true; 1706 1707 // Otherwise, we are unable to join the intervals. 1708 DEBUG(dbgs() << "\tInterference!\n"); 1709 Again = true; // May be possible to coalesce later. 1710 return false; 1711 } 1712 1713 // Coalescing to a virtual register that is of a sub-register class of the 1714 // other. Make sure the resulting register is set to the right register class. 1715 if (CP.isCrossClass()) { 1716 ++numCrossRCs; 1717 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1718 } 1719 1720 // Removing sub-register copies can ease the register class constraints. 1721 // Make sure we attempt to inflate the register class of DstReg. 1722 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1723 InflateRegs.push_back(CP.getDstReg()); 1724 1725 // CopyMI has been erased by joinIntervals at this point. Remove it from 1726 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1727 // to the work list. This keeps ErasedInstrs from growing needlessly. 1728 ErasedInstrs.erase(CopyMI); 1729 1730 // Rewrite all SrcReg operands to DstReg. 1731 // Also update DstReg operands to include DstIdx if it is set. 1732 if (CP.getDstIdx()) 1733 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1734 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1735 1736 // Shrink subregister ranges if necessary. 1737 if (ShrinkMask.any()) { 1738 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1739 for (LiveInterval::SubRange &S : LI.subranges()) { 1740 if ((S.LaneMask & ShrinkMask).none()) 1741 continue; 1742 DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1743 << ")\n"); 1744 LIS->shrinkToUses(S, LI.reg); 1745 } 1746 LI.removeEmptySubRanges(); 1747 } 1748 if (ShrinkMainRange) { 1749 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1750 shrinkToUses(&LI); 1751 } 1752 1753 // SrcReg is guaranteed to be the register whose live interval that is 1754 // being merged. 1755 LIS->removeInterval(CP.getSrcReg()); 1756 1757 // Update regalloc hint. 1758 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1759 1760 DEBUG({ 1761 dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 1762 << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 1763 dbgs() << "\tResult = "; 1764 if (CP.isPhys()) 1765 dbgs() << PrintReg(CP.getDstReg(), TRI); 1766 else 1767 dbgs() << LIS->getInterval(CP.getDstReg()); 1768 dbgs() << '\n'; 1769 }); 1770 1771 ++numJoins; 1772 return true; 1773 } 1774 1775 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1776 unsigned DstReg = CP.getDstReg(); 1777 unsigned SrcReg = CP.getSrcReg(); 1778 assert(CP.isPhys() && "Must be a physreg copy"); 1779 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 1780 LiveInterval &RHS = LIS->getInterval(SrcReg); 1781 DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1782 1783 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 1784 1785 // Optimization for reserved registers like ESP. We can only merge with a 1786 // reserved physreg if RHS has a single value that is a copy of DstReg. 1787 // The live range of the reserved register will look like a set of dead defs 1788 // - we don't properly track the live range of reserved registers. 1789 1790 // Deny any overlapping intervals. This depends on all the reserved 1791 // register live ranges to look like dead defs. 1792 if (!MRI->isConstantPhysReg(DstReg)) { 1793 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1794 // Abort if not all the regunits are reserved. 1795 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 1796 if (!MRI->isReserved(*RI)) 1797 return false; 1798 } 1799 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1800 DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n'); 1801 return false; 1802 } 1803 } 1804 1805 // We must also check for overlaps with regmask clobbers. 1806 BitVector RegMaskUsable; 1807 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 1808 !RegMaskUsable.test(DstReg)) { 1809 DEBUG(dbgs() << "\t\tRegMask interference\n"); 1810 return false; 1811 } 1812 } 1813 1814 // Skip any value computations, we are not adding new values to the 1815 // reserved register. Also skip merging the live ranges, the reserved 1816 // register live range doesn't need to be accurate as long as all the 1817 // defs are there. 1818 1819 // Delete the identity copy. 1820 MachineInstr *CopyMI; 1821 if (CP.isFlipped()) { 1822 // Physreg is copied into vreg 1823 // %vregY = COPY %X 1824 // ... //< no other def of %X here 1825 // use %vregY 1826 // => 1827 // ... 1828 // use %X 1829 CopyMI = MRI->getVRegDef(SrcReg); 1830 } else { 1831 // VReg is copied into physreg: 1832 // %vregX = def 1833 // ... //< no other def or use of %Y here 1834 // %Y = COPY %vregX 1835 // => 1836 // %Y = def 1837 // ... 1838 if (!MRI->hasOneNonDBGUse(SrcReg)) { 1839 DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 1840 return false; 1841 } 1842 1843 if (!LIS->intervalIsInOneMBB(RHS)) { 1844 DEBUG(dbgs() << "\t\tComplex control flow!\n"); 1845 return false; 1846 } 1847 1848 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 1849 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 1850 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 1851 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 1852 1853 if (!MRI->isConstantPhysReg(DstReg)) { 1854 // We checked above that there are no interfering defs of the physical 1855 // register. However, for this case, where we intend to move up the def of 1856 // the physical register, we also need to check for interfering uses. 1857 SlotIndexes *Indexes = LIS->getSlotIndexes(); 1858 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 1859 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 1860 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 1861 if (MI->readsRegister(DstReg, TRI)) { 1862 DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 1863 return false; 1864 } 1865 } 1866 } 1867 1868 // We're going to remove the copy which defines a physical reserved 1869 // register, so remove its valno, etc. 1870 DEBUG(dbgs() << "\t\tRemoving phys reg def of " << PrintReg(DstReg, TRI) 1871 << " at " << CopyRegIdx << "\n"); 1872 1873 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 1874 // Create a new dead def at the new def location. 1875 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1876 LiveRange &LR = LIS->getRegUnit(*UI); 1877 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 1878 } 1879 } 1880 1881 deleteInstr(CopyMI); 1882 1883 // We don't track kills for reserved registers. 1884 MRI->clearKillFlags(CP.getSrcReg()); 1885 1886 return true; 1887 } 1888 1889 //===----------------------------------------------------------------------===// 1890 // Interference checking and interval joining 1891 //===----------------------------------------------------------------------===// 1892 // 1893 // In the easiest case, the two live ranges being joined are disjoint, and 1894 // there is no interference to consider. It is quite common, though, to have 1895 // overlapping live ranges, and we need to check if the interference can be 1896 // resolved. 1897 // 1898 // The live range of a single SSA value forms a sub-tree of the dominator tree. 1899 // This means that two SSA values overlap if and only if the def of one value 1900 // is contained in the live range of the other value. As a special case, the 1901 // overlapping values can be defined at the same index. 1902 // 1903 // The interference from an overlapping def can be resolved in these cases: 1904 // 1905 // 1. Coalescable copies. The value is defined by a copy that would become an 1906 // identity copy after joining SrcReg and DstReg. The copy instruction will 1907 // be removed, and the value will be merged with the source value. 1908 // 1909 // There can be several copies back and forth, causing many values to be 1910 // merged into one. We compute a list of ultimate values in the joined live 1911 // range as well as a mappings from the old value numbers. 1912 // 1913 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 1914 // predecessors have a live out value. It doesn't cause real interference, 1915 // and can be merged into the value it overlaps. Like a coalescable copy, it 1916 // can be erased after joining. 1917 // 1918 // 3. Copy of external value. The overlapping def may be a copy of a value that 1919 // is already in the other register. This is like a coalescable copy, but 1920 // the live range of the source register must be trimmed after erasing the 1921 // copy instruction: 1922 // 1923 // %src = COPY %ext 1924 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 1925 // 1926 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 1927 // defining one lane at a time: 1928 // 1929 // %dst:ssub0<def,read-undef> = FOO 1930 // %src = BAR 1931 // %dst:ssub1<def> = COPY %src 1932 // 1933 // The live range of %src overlaps the %dst value defined by FOO, but 1934 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 1935 // which was undef anyway. 1936 // 1937 // The value mapping is more complicated in this case. The final live range 1938 // will have different value numbers for both FOO and BAR, but there is no 1939 // simple mapping from old to new values. It may even be necessary to add 1940 // new PHI values. 1941 // 1942 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 1943 // is live, but never read. This can happen because we don't compute 1944 // individual live ranges per lane. 1945 // 1946 // %dst<def> = FOO 1947 // %src = BAR 1948 // %dst:ssub1<def> = COPY %src 1949 // 1950 // This kind of interference is only resolved locally. If the clobbered 1951 // lane value escapes the block, the join is aborted. 1952 1953 namespace { 1954 1955 /// Track information about values in a single virtual register about to be 1956 /// joined. Objects of this class are always created in pairs - one for each 1957 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 1958 /// pair) 1959 class JoinVals { 1960 /// Live range we work on. 1961 LiveRange &LR; 1962 1963 /// (Main) register we work on. 1964 const unsigned Reg; 1965 1966 /// Reg (and therefore the values in this liverange) will end up as 1967 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 1968 /// CP.SrcIdx. 1969 const unsigned SubIdx; 1970 1971 /// The LaneMask that this liverange will occupy the coalesced register. May 1972 /// be smaller than the lanemask produced by SubIdx when merging subranges. 1973 const LaneBitmask LaneMask; 1974 1975 /// This is true when joining sub register ranges, false when joining main 1976 /// ranges. 1977 const bool SubRangeJoin; 1978 1979 /// Whether the current LiveInterval tracks subregister liveness. 1980 const bool TrackSubRegLiveness; 1981 1982 /// Values that will be present in the final live range. 1983 SmallVectorImpl<VNInfo*> &NewVNInfo; 1984 1985 const CoalescerPair &CP; 1986 LiveIntervals *LIS; 1987 SlotIndexes *Indexes; 1988 const TargetRegisterInfo *TRI; 1989 1990 /// Value number assignments. Maps value numbers in LI to entries in 1991 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 1992 SmallVector<int, 8> Assignments; 1993 1994 /// Conflict resolution for overlapping values. 1995 enum ConflictResolution { 1996 /// No overlap, simply keep this value. 1997 CR_Keep, 1998 1999 /// Merge this value into OtherVNI and erase the defining instruction. 2000 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 2001 /// values. 2002 CR_Erase, 2003 2004 /// Merge this value into OtherVNI but keep the defining instruction. 2005 /// This is for the special case where OtherVNI is defined by the same 2006 /// instruction. 2007 CR_Merge, 2008 2009 /// Keep this value, and have it replace OtherVNI where possible. This 2010 /// complicates value mapping since OtherVNI maps to two different values 2011 /// before and after this def. 2012 /// Used when clobbering undefined or dead lanes. 2013 CR_Replace, 2014 2015 /// Unresolved conflict. Visit later when all values have been mapped. 2016 CR_Unresolved, 2017 2018 /// Unresolvable conflict. Abort the join. 2019 CR_Impossible 2020 }; 2021 2022 /// Per-value info for LI. The lane bit masks are all relative to the final 2023 /// joined register, so they can be compared directly between SrcReg and 2024 /// DstReg. 2025 struct Val { 2026 ConflictResolution Resolution = CR_Keep; 2027 2028 /// Lanes written by this def, 0 for unanalyzed values. 2029 LaneBitmask WriteLanes; 2030 2031 /// Lanes with defined values in this register. Other lanes are undef and 2032 /// safe to clobber. 2033 LaneBitmask ValidLanes; 2034 2035 /// Value in LI being redefined by this def. 2036 VNInfo *RedefVNI = nullptr; 2037 2038 /// Value in the other live range that overlaps this def, if any. 2039 VNInfo *OtherVNI = nullptr; 2040 2041 /// Is this value an IMPLICIT_DEF that can be erased? 2042 /// 2043 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2044 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2045 /// safely erased if they are overlapping a live value in the other live 2046 /// interval. 2047 /// 2048 /// Weird control flow graphs and incomplete PHI handling in 2049 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2050 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2051 /// normal values. 2052 bool ErasableImplicitDef = false; 2053 2054 /// True when the live range of this value will be pruned because of an 2055 /// overlapping CR_Replace value in the other live range. 2056 bool Pruned = false; 2057 2058 /// True once Pruned above has been computed. 2059 bool PrunedComputed = false; 2060 2061 Val() = default; 2062 2063 bool isAnalyzed() const { return WriteLanes.any(); } 2064 }; 2065 2066 /// One entry per value number in LI. 2067 SmallVector<Val, 8> Vals; 2068 2069 /// Compute the bitmask of lanes actually written by DefMI. 2070 /// Set Redef if there are any partial register definitions that depend on the 2071 /// previous value of the register. 2072 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2073 2074 /// Find the ultimate value that VNI was copied from. 2075 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 2076 2077 bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const; 2078 2079 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2080 /// Return a conflict resolution when possible, but leave the hard cases as 2081 /// CR_Unresolved. 2082 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2083 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2084 /// The recursion always goes upwards in the dominator tree, making loops 2085 /// impossible. 2086 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2087 2088 /// Compute the value assignment for ValNo in RI. 2089 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2090 /// the stack. 2091 void computeAssignment(unsigned ValNo, JoinVals &Other); 2092 2093 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2094 /// the extent of the tainted lanes in the block. 2095 /// 2096 /// Multiple values in Other.LR can be affected since partial redefinitions 2097 /// can preserve previously tainted lanes. 2098 /// 2099 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2100 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2101 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2102 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2103 /// 2104 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2105 /// entry to TaintedVals. 2106 /// 2107 /// Returns false if the tainted lanes extend beyond the basic block. 2108 bool 2109 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2110 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); 2111 2112 /// Return true if MI uses any of the given Lanes from Reg. 2113 /// This does not include partial redefinitions of Reg. 2114 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; 2115 2116 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2117 /// be pruned: 2118 /// 2119 /// %dst = COPY %src 2120 /// %src = COPY %dst <-- This value to be pruned. 2121 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2122 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2123 2124 public: 2125 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 2126 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 2127 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2128 bool TrackSubRegLiveness) 2129 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2130 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2131 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2132 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {} 2133 2134 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2135 /// Returns false if any conflicts were impossible to resolve. 2136 bool mapValues(JoinVals &Other); 2137 2138 /// Try to resolve conflicts that require all values to be mapped. 2139 /// Returns false if any conflicts were impossible to resolve. 2140 bool resolveConflicts(JoinVals &Other); 2141 2142 /// Prune the live range of values in Other.LR where they would conflict with 2143 /// CR_Replace values in LR. Collect end points for restoring the live range 2144 /// after joining. 2145 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2146 bool changeInstrs); 2147 2148 /// Removes subranges starting at copies that get removed. This sometimes 2149 /// happens when undefined subranges are copied around. These ranges contain 2150 /// no useful information and can be removed. 2151 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2152 2153 /// Pruning values in subranges can lead to removing segments in these 2154 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2155 /// the main range also need to be removed. This function will mark 2156 /// the corresponding values in the main range as pruned, so that 2157 /// eraseInstrs can do the final cleanup. 2158 /// The parameter @p LI must be the interval whose main range is the 2159 /// live range LR. 2160 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2161 2162 /// Erase any machine instructions that have been coalesced away. 2163 /// Add erased instructions to ErasedInstrs. 2164 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2165 /// the erased instrs. 2166 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2167 SmallVectorImpl<unsigned> &ShrinkRegs, 2168 LiveInterval *LI = nullptr); 2169 2170 /// Remove liverange defs at places where implicit defs will be removed. 2171 void removeImplicitDefs(); 2172 2173 /// Get the value assignments suitable for passing to LiveInterval::join. 2174 const int *getAssignments() const { return Assignments.data(); } 2175 }; 2176 2177 } // end anonymous namespace 2178 2179 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2180 const { 2181 LaneBitmask L; 2182 for (const MachineOperand &MO : DefMI->operands()) { 2183 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2184 continue; 2185 L |= TRI->getSubRegIndexLaneMask( 2186 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2187 if (MO.readsReg()) 2188 Redef = true; 2189 } 2190 return L; 2191 } 2192 2193 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 2194 const VNInfo *VNI) const { 2195 unsigned Reg = this->Reg; 2196 2197 while (!VNI->isPHIDef()) { 2198 SlotIndex Def = VNI->def; 2199 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2200 assert(MI && "No defining instruction"); 2201 if (!MI->isFullCopy()) 2202 return std::make_pair(VNI, Reg); 2203 unsigned SrcReg = MI->getOperand(1).getReg(); 2204 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 2205 return std::make_pair(VNI, Reg); 2206 2207 const LiveInterval &LI = LIS->getInterval(SrcReg); 2208 const VNInfo *ValueIn; 2209 // No subrange involved. 2210 if (!SubRangeJoin || !LI.hasSubRanges()) { 2211 LiveQueryResult LRQ = LI.Query(Def); 2212 ValueIn = LRQ.valueIn(); 2213 } else { 2214 // Query subranges. Pick the first matching one. 2215 ValueIn = nullptr; 2216 for (const LiveInterval::SubRange &S : LI.subranges()) { 2217 // Transform lanemask to a mask in the joined live interval. 2218 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2219 if ((SMask & LaneMask).none()) 2220 continue; 2221 LiveQueryResult LRQ = S.Query(Def); 2222 ValueIn = LRQ.valueIn(); 2223 break; 2224 } 2225 } 2226 if (ValueIn == nullptr) 2227 break; 2228 VNI = ValueIn; 2229 Reg = SrcReg; 2230 } 2231 return std::make_pair(VNI, Reg); 2232 } 2233 2234 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2235 const JoinVals &Other) const { 2236 const VNInfo *Orig0; 2237 unsigned Reg0; 2238 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2239 if (Orig0 == Value1) 2240 return true; 2241 2242 const VNInfo *Orig1; 2243 unsigned Reg1; 2244 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2245 2246 // The values are equal if they are defined at the same place and use the 2247 // same register. Note that we cannot compare VNInfos directly as some of 2248 // them might be from a copy created in mergeSubRangeInto() while the other 2249 // is from the original LiveInterval. 2250 return Orig0->def == Orig1->def && Reg0 == Reg1; 2251 } 2252 2253 JoinVals::ConflictResolution 2254 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2255 Val &V = Vals[ValNo]; 2256 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2257 VNInfo *VNI = LR.getValNumInfo(ValNo); 2258 if (VNI->isUnused()) { 2259 V.WriteLanes = LaneBitmask::getAll(); 2260 return CR_Keep; 2261 } 2262 2263 // Get the instruction defining this value, compute the lanes written. 2264 const MachineInstr *DefMI = nullptr; 2265 if (VNI->isPHIDef()) { 2266 // Conservatively assume that all lanes in a PHI are valid. 2267 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2268 : TRI->getSubRegIndexLaneMask(SubIdx); 2269 V.ValidLanes = V.WriteLanes = Lanes; 2270 } else { 2271 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2272 assert(DefMI != nullptr); 2273 if (SubRangeJoin) { 2274 // We don't care about the lanes when joining subregister ranges. 2275 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2276 if (DefMI->isImplicitDef()) { 2277 V.ValidLanes = LaneBitmask::getNone(); 2278 V.ErasableImplicitDef = true; 2279 } 2280 } else { 2281 bool Redef = false; 2282 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2283 2284 // If this is a read-modify-write instruction, there may be more valid 2285 // lanes than the ones written by this instruction. 2286 // This only covers partial redef operands. DefMI may have normal use 2287 // operands reading the register. They don't contribute valid lanes. 2288 // 2289 // This adds ssub1 to the set of valid lanes in %src: 2290 // 2291 // %src:ssub1<def> = FOO 2292 // 2293 // This leaves only ssub1 valid, making any other lanes undef: 2294 // 2295 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2296 // 2297 // The <read-undef> flag on the def operand means that old lane values are 2298 // not important. 2299 if (Redef) { 2300 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2301 assert((TrackSubRegLiveness || V.RedefVNI) && 2302 "Instruction is reading nonexistent value"); 2303 if (V.RedefVNI != nullptr) { 2304 computeAssignment(V.RedefVNI->id, Other); 2305 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2306 } 2307 } 2308 2309 // An IMPLICIT_DEF writes undef values. 2310 if (DefMI->isImplicitDef()) { 2311 // We normally expect IMPLICIT_DEF values to be live only until the end 2312 // of their block. If the value is really live longer and gets pruned in 2313 // another block, this flag is cleared again. 2314 V.ErasableImplicitDef = true; 2315 V.ValidLanes &= ~V.WriteLanes; 2316 } 2317 } 2318 } 2319 2320 // Find the value in Other that overlaps VNI->def, if any. 2321 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2322 2323 // It is possible that both values are defined by the same instruction, or 2324 // the values are PHIs defined in the same block. When that happens, the two 2325 // values should be merged into one, but not into any preceding value. 2326 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2327 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2328 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2329 2330 // One value stays, the other is merged. Keep the earlier one, or the first 2331 // one we see. 2332 if (OtherVNI->def < VNI->def) 2333 Other.computeAssignment(OtherVNI->id, *this); 2334 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2335 // This is an early-clobber def overlapping a live-in value in the other 2336 // register. Not mergeable. 2337 V.OtherVNI = OtherLRQ.valueIn(); 2338 return CR_Impossible; 2339 } 2340 V.OtherVNI = OtherVNI; 2341 Val &OtherV = Other.Vals[OtherVNI->id]; 2342 // Keep this value, check for conflicts when analyzing OtherVNI. 2343 if (!OtherV.isAnalyzed()) 2344 return CR_Keep; 2345 // Both sides have been analyzed now. 2346 // Allow overlapping PHI values. Any real interference would show up in a 2347 // predecessor, the PHI itself can't introduce any conflicts. 2348 if (VNI->isPHIDef()) 2349 return CR_Merge; 2350 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2351 // Overlapping lanes can't be resolved. 2352 return CR_Impossible; 2353 else 2354 return CR_Merge; 2355 } 2356 2357 // No simultaneous def. Is Other live at the def? 2358 V.OtherVNI = OtherLRQ.valueIn(); 2359 if (!V.OtherVNI) 2360 // No overlap, no conflict. 2361 return CR_Keep; 2362 2363 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2364 2365 // We have overlapping values, or possibly a kill of Other. 2366 // Recursively compute assignments up the dominator tree. 2367 Other.computeAssignment(V.OtherVNI->id, *this); 2368 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2369 2370 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2371 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2372 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2373 // technically. 2374 // 2375 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2376 // to erase the IMPLICIT_DEF instruction. 2377 if (OtherV.ErasableImplicitDef && DefMI && 2378 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2379 DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2380 << " extends into BB#" << DefMI->getParent()->getNumber() 2381 << ", keeping it.\n"); 2382 OtherV.ErasableImplicitDef = false; 2383 } 2384 2385 // Allow overlapping PHI values. Any real interference would show up in a 2386 // predecessor, the PHI itself can't introduce any conflicts. 2387 if (VNI->isPHIDef()) 2388 return CR_Replace; 2389 2390 // Check for simple erasable conflicts. 2391 if (DefMI->isImplicitDef()) { 2392 // We need the def for the subregister if there is nothing else live at the 2393 // subrange at this point. 2394 if (TrackSubRegLiveness 2395 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none()) 2396 return CR_Replace; 2397 return CR_Erase; 2398 } 2399 2400 // Include the non-conflict where DefMI is a coalescable copy that kills 2401 // OtherVNI. We still want the copy erased and value numbers merged. 2402 if (CP.isCoalescable(DefMI)) { 2403 // Some of the lanes copied from OtherVNI may be undef, making them undef 2404 // here too. 2405 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2406 return CR_Erase; 2407 } 2408 2409 // This may not be a real conflict if DefMI simply kills Other and defines 2410 // VNI. 2411 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2412 return CR_Keep; 2413 2414 // Handle the case where VNI and OtherVNI can be proven to be identical: 2415 // 2416 // %other = COPY %ext 2417 // %this = COPY %ext <-- Erase this copy 2418 // 2419 if (DefMI->isFullCopy() && !CP.isPartial() 2420 && valuesIdentical(VNI, V.OtherVNI, Other)) 2421 return CR_Erase; 2422 2423 // If the lanes written by this instruction were all undef in OtherVNI, it is 2424 // still safe to join the live ranges. This can't be done with a simple value 2425 // mapping, though - OtherVNI will map to multiple values: 2426 // 2427 // 1 %dst:ssub0 = FOO <-- OtherVNI 2428 // 2 %src = BAR <-- VNI 2429 // 3 %dst:ssub1 = COPY %src<kill> <-- Eliminate this copy. 2430 // 4 BAZ %dst<kill> 2431 // 5 QUUX %src<kill> 2432 // 2433 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2434 // handles this complex value mapping. 2435 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2436 return CR_Replace; 2437 2438 // If the other live range is killed by DefMI and the live ranges are still 2439 // overlapping, it must be because we're looking at an early clobber def: 2440 // 2441 // %dst<def,early-clobber> = ASM %src<kill> 2442 // 2443 // In this case, it is illegal to merge the two live ranges since the early 2444 // clobber def would clobber %src before it was read. 2445 if (OtherLRQ.isKill()) { 2446 // This case where the def doesn't overlap the kill is handled above. 2447 assert(VNI->def.isEarlyClobber() && 2448 "Only early clobber defs can overlap a kill"); 2449 return CR_Impossible; 2450 } 2451 2452 // VNI is clobbering live lanes in OtherVNI, but there is still the 2453 // possibility that no instructions actually read the clobbered lanes. 2454 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2455 // Otherwise Other.RI wouldn't be live here. 2456 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2457 return CR_Impossible; 2458 2459 // We need to verify that no instructions are reading the clobbered lanes. To 2460 // save compile time, we'll only check that locally. Don't allow the tainted 2461 // value to escape the basic block. 2462 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2463 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2464 return CR_Impossible; 2465 2466 // There are still some things that could go wrong besides clobbered lanes 2467 // being read, for example OtherVNI may be only partially redefined in MBB, 2468 // and some clobbered lanes could escape the block. Save this analysis for 2469 // resolveConflicts() when all values have been mapped. We need to know 2470 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2471 // that now - the recursive analyzeValue() calls must go upwards in the 2472 // dominator tree. 2473 return CR_Unresolved; 2474 } 2475 2476 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2477 Val &V = Vals[ValNo]; 2478 if (V.isAnalyzed()) { 2479 // Recursion should always move up the dominator tree, so ValNo is not 2480 // supposed to reappear before it has been assigned. 2481 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2482 return; 2483 } 2484 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2485 case CR_Erase: 2486 case CR_Merge: 2487 // Merge this ValNo into OtherVNI. 2488 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2489 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2490 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2491 DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@' 2492 << LR.getValNumInfo(ValNo)->def << " into " 2493 << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2494 << V.OtherVNI->def << " --> @" 2495 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2496 break; 2497 case CR_Replace: 2498 case CR_Unresolved: { 2499 // The other value is going to be pruned if this join is successful. 2500 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2501 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2502 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2503 // its lanes. 2504 if ((OtherV.WriteLanes & ~V.ValidLanes).any() && TrackSubRegLiveness) 2505 OtherV.ErasableImplicitDef = false; 2506 OtherV.Pruned = true; 2507 LLVM_FALLTHROUGH; 2508 } 2509 default: 2510 // This value number needs to go in the final joined live range. 2511 Assignments[ValNo] = NewVNInfo.size(); 2512 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2513 break; 2514 } 2515 } 2516 2517 bool JoinVals::mapValues(JoinVals &Other) { 2518 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2519 computeAssignment(i, Other); 2520 if (Vals[i].Resolution == CR_Impossible) { 2521 DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i 2522 << '@' << LR.getValNumInfo(i)->def << '\n'); 2523 return false; 2524 } 2525 } 2526 return true; 2527 } 2528 2529 bool JoinVals:: 2530 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2531 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { 2532 VNInfo *VNI = LR.getValNumInfo(ValNo); 2533 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2534 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2535 2536 // Scan Other.LR from VNI.def to MBBEnd. 2537 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2538 assert(OtherI != Other.LR.end() && "No conflict?"); 2539 do { 2540 // OtherI is pointing to a tainted value. Abort the join if the tainted 2541 // lanes escape the block. 2542 SlotIndex End = OtherI->end; 2543 if (End >= MBBEnd) { 2544 DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':' 2545 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2546 return false; 2547 } 2548 DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':' 2549 << OtherI->valno->id << '@' << OtherI->start 2550 << " to " << End << '\n'); 2551 // A dead def is not a problem. 2552 if (End.isDead()) 2553 break; 2554 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2555 2556 // Check for another def in the MBB. 2557 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2558 break; 2559 2560 // Lanes written by the new def are no longer tainted. 2561 const Val &OV = Other.Vals[OtherI->valno->id]; 2562 TaintedLanes &= ~OV.WriteLanes; 2563 if (!OV.RedefVNI) 2564 break; 2565 } while (TaintedLanes.any()); 2566 return true; 2567 } 2568 2569 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, 2570 LaneBitmask Lanes) const { 2571 if (MI.isDebugValue()) 2572 return false; 2573 for (const MachineOperand &MO : MI.operands()) { 2574 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2575 continue; 2576 if (!MO.readsReg()) 2577 continue; 2578 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2579 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2580 return true; 2581 } 2582 return false; 2583 } 2584 2585 bool JoinVals::resolveConflicts(JoinVals &Other) { 2586 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2587 Val &V = Vals[i]; 2588 assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); 2589 if (V.Resolution != CR_Unresolved) 2590 continue; 2591 DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i 2592 << '@' << LR.getValNumInfo(i)->def << '\n'); 2593 if (SubRangeJoin) 2594 return false; 2595 2596 ++NumLaneConflicts; 2597 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2598 VNInfo *VNI = LR.getValNumInfo(i); 2599 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2600 2601 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2602 // join, those lanes will be tainted with a wrong value. Get the extent of 2603 // the tainted lanes. 2604 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2605 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2606 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2607 // Tainted lanes would extend beyond the basic block. 2608 return false; 2609 2610 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2611 2612 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2613 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2614 MachineBasicBlock::iterator MI = MBB->begin(); 2615 if (!VNI->isPHIDef()) { 2616 MI = Indexes->getInstructionFromIndex(VNI->def); 2617 // No need to check the instruction defining VNI for reads. 2618 ++MI; 2619 } 2620 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2621 "Interference ends on VNI->def. Should have been handled earlier"); 2622 MachineInstr *LastMI = 2623 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2624 assert(LastMI && "Range must end at a proper instruction"); 2625 unsigned TaintNum = 0; 2626 while (true) { 2627 assert(MI != MBB->end() && "Bad LastMI"); 2628 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2629 DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2630 return false; 2631 } 2632 // LastMI is the last instruction to use the current value. 2633 if (&*MI == LastMI) { 2634 if (++TaintNum == TaintExtent.size()) 2635 break; 2636 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2637 assert(LastMI && "Range must end at a proper instruction"); 2638 TaintedLanes = TaintExtent[TaintNum].second; 2639 } 2640 ++MI; 2641 } 2642 2643 // The tainted lanes are unused. 2644 V.Resolution = CR_Replace; 2645 ++NumLaneResolves; 2646 } 2647 return true; 2648 } 2649 2650 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2651 Val &V = Vals[ValNo]; 2652 if (V.Pruned || V.PrunedComputed) 2653 return V.Pruned; 2654 2655 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2656 return V.Pruned; 2657 2658 // Follow copies up the dominator tree and check if any intermediate value 2659 // has been pruned. 2660 V.PrunedComputed = true; 2661 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2662 return V.Pruned; 2663 } 2664 2665 void JoinVals::pruneValues(JoinVals &Other, 2666 SmallVectorImpl<SlotIndex> &EndPoints, 2667 bool changeInstrs) { 2668 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2669 SlotIndex Def = LR.getValNumInfo(i)->def; 2670 switch (Vals[i].Resolution) { 2671 case CR_Keep: 2672 break; 2673 case CR_Replace: { 2674 // This value takes precedence over the value in Other.LR. 2675 LIS->pruneValue(Other.LR, Def, &EndPoints); 2676 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2677 // instructions are only inserted to provide a live-out value for PHI 2678 // predecessors, so the instruction should simply go away once its value 2679 // has been replaced. 2680 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2681 bool EraseImpDef = OtherV.ErasableImplicitDef && 2682 OtherV.Resolution == CR_Keep; 2683 if (!Def.isBlock()) { 2684 if (changeInstrs) { 2685 // Remove <def,read-undef> flags. This def is now a partial redef. 2686 // Also remove <def,dead> flags since the joined live range will 2687 // continue past this instruction. 2688 for (MachineOperand &MO : 2689 Indexes->getInstructionFromIndex(Def)->operands()) { 2690 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 2691 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) 2692 MO.setIsUndef(false); 2693 MO.setIsDead(false); 2694 } 2695 } 2696 } 2697 // This value will reach instructions below, but we need to make sure 2698 // the live range also reaches the instruction at Def. 2699 if (!EraseImpDef) 2700 EndPoints.push_back(Def); 2701 } 2702 DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def 2703 << ": " << Other.LR << '\n'); 2704 break; 2705 } 2706 case CR_Erase: 2707 case CR_Merge: 2708 if (isPrunedValue(i, Other)) { 2709 // This value is ultimately a copy of a pruned value in LR or Other.LR. 2710 // We can no longer trust the value mapping computed by 2711 // computeAssignment(), the value that was originally copied could have 2712 // been replaced. 2713 LIS->pruneValue(LR, Def, &EndPoints); 2714 DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at " 2715 << Def << ": " << LR << '\n'); 2716 } 2717 break; 2718 case CR_Unresolved: 2719 case CR_Impossible: 2720 llvm_unreachable("Unresolved conflicts"); 2721 } 2722 } 2723 } 2724 2725 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 2726 // Look for values being erased. 2727 bool DidPrune = false; 2728 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2729 // We should trigger in all cases in which eraseInstrs() does something. 2730 // match what eraseInstrs() is doing, print a message so 2731 if (Vals[i].Resolution != CR_Erase && 2732 (Vals[i].Resolution != CR_Keep || !Vals[i].ErasableImplicitDef || 2733 !Vals[i].Pruned)) 2734 continue; 2735 2736 // Check subranges at the point where the copy will be removed. 2737 SlotIndex Def = LR.getValNumInfo(i)->def; 2738 // Print message so mismatches with eraseInstrs() can be diagnosed. 2739 DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def << '\n'); 2740 for (LiveInterval::SubRange &S : LI.subranges()) { 2741 LiveQueryResult Q = S.Query(Def); 2742 2743 // If a subrange starts at the copy then an undefined value has been 2744 // copied and we must remove that subrange value as well. 2745 VNInfo *ValueOut = Q.valueOutOrDead(); 2746 if (ValueOut != nullptr && Q.valueIn() == nullptr) { 2747 DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 2748 << " at " << Def << "\n"); 2749 LIS->pruneValue(S, Def, nullptr); 2750 DidPrune = true; 2751 // Mark value number as unused. 2752 ValueOut->markUnused(); 2753 continue; 2754 } 2755 // If a subrange ends at the copy, then a value was copied but only 2756 // partially used later. Shrink the subregister range appropriately. 2757 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 2758 DEBUG(dbgs() << "\t\tDead uses at sublane " << PrintLaneMask(S.LaneMask) 2759 << " at " << Def << "\n"); 2760 ShrinkMask |= S.LaneMask; 2761 } 2762 } 2763 } 2764 if (DidPrune) 2765 LI.removeEmptySubRanges(); 2766 } 2767 2768 /// Check if any of the subranges of @p LI contain a definition at @p Def. 2769 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 2770 for (LiveInterval::SubRange &SR : LI.subranges()) { 2771 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 2772 if (VNI->def == Def) 2773 return true; 2774 } 2775 return false; 2776 } 2777 2778 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 2779 assert(&static_cast<LiveRange&>(LI) == &LR); 2780 2781 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2782 if (Vals[i].Resolution != CR_Keep) 2783 continue; 2784 VNInfo *VNI = LR.getValNumInfo(i); 2785 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 2786 continue; 2787 Vals[i].Pruned = true; 2788 ShrinkMainRange = true; 2789 } 2790 } 2791 2792 void JoinVals::removeImplicitDefs() { 2793 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2794 Val &V = Vals[i]; 2795 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 2796 continue; 2797 2798 VNInfo *VNI = LR.getValNumInfo(i); 2799 VNI->markUnused(); 2800 LR.removeValNo(VNI); 2801 } 2802 } 2803 2804 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2805 SmallVectorImpl<unsigned> &ShrinkRegs, 2806 LiveInterval *LI) { 2807 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2808 // Get the def location before markUnused() below invalidates it. 2809 SlotIndex Def = LR.getValNumInfo(i)->def; 2810 switch (Vals[i].Resolution) { 2811 case CR_Keep: { 2812 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 2813 // longer. The IMPLICIT_DEF instructions are only inserted by 2814 // PHIElimination to guarantee that all PHI predecessors have a value. 2815 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 2816 break; 2817 // Remove value number i from LR. 2818 // For intervals with subranges, removing a segment from the main range 2819 // may require extending the previous segment: for each definition of 2820 // a subregister, there will be a corresponding def in the main range. 2821 // That def may fall in the middle of a segment from another subrange. 2822 // In such cases, removing this def from the main range must be 2823 // complemented by extending the main range to account for the liveness 2824 // of the other subrange. 2825 VNInfo *VNI = LR.getValNumInfo(i); 2826 SlotIndex Def = VNI->def; 2827 // The new end point of the main range segment to be extended. 2828 SlotIndex NewEnd; 2829 if (LI != nullptr) { 2830 LiveRange::iterator I = LR.FindSegmentContaining(Def); 2831 assert(I != LR.end()); 2832 // Do not extend beyond the end of the segment being removed. 2833 // The segment may have been pruned in preparation for joining 2834 // live ranges. 2835 NewEnd = I->end; 2836 } 2837 2838 LR.removeValNo(VNI); 2839 // Note that this VNInfo is reused and still referenced in NewVNInfo, 2840 // make it appear like an unused value number. 2841 VNI->markUnused(); 2842 2843 if (LI != nullptr && LI->hasSubRanges()) { 2844 assert(static_cast<LiveRange*>(LI) == &LR); 2845 // Determine the end point based on the subrange information: 2846 // minimum of (earliest def of next segment, 2847 // latest end point of containing segment) 2848 SlotIndex ED, LE; 2849 for (LiveInterval::SubRange &SR : LI->subranges()) { 2850 LiveRange::iterator I = SR.find(Def); 2851 if (I == SR.end()) 2852 continue; 2853 if (I->start > Def) 2854 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 2855 else 2856 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 2857 } 2858 if (LE.isValid()) 2859 NewEnd = std::min(NewEnd, LE); 2860 if (ED.isValid()) 2861 NewEnd = std::min(NewEnd, ED); 2862 2863 // We only want to do the extension if there was a subrange that 2864 // was live across Def. 2865 if (LE.isValid()) { 2866 LiveRange::iterator S = LR.find(Def); 2867 if (S != LR.begin()) 2868 std::prev(S)->end = NewEnd; 2869 } 2870 } 2871 DEBUG({ 2872 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 2873 if (LI != nullptr) 2874 dbgs() << "\t\t LHS = " << *LI << '\n'; 2875 }); 2876 LLVM_FALLTHROUGH; 2877 } 2878 2879 case CR_Erase: { 2880 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2881 assert(MI && "No instruction to erase"); 2882 if (MI->isCopy()) { 2883 unsigned Reg = MI->getOperand(1).getReg(); 2884 if (TargetRegisterInfo::isVirtualRegister(Reg) && 2885 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 2886 ShrinkRegs.push_back(Reg); 2887 } 2888 ErasedInstrs.insert(MI); 2889 DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 2890 LIS->RemoveMachineInstrFromMaps(*MI); 2891 MI->eraseFromParent(); 2892 break; 2893 } 2894 default: 2895 break; 2896 } 2897 } 2898 } 2899 2900 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 2901 LaneBitmask LaneMask, 2902 const CoalescerPair &CP) { 2903 SmallVector<VNInfo*, 16> NewVNInfo; 2904 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 2905 NewVNInfo, CP, LIS, TRI, true, true); 2906 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 2907 NewVNInfo, CP, LIS, TRI, true, true); 2908 2909 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 2910 // We should be able to resolve all conflicts here as we could successfully do 2911 // it on the mainrange already. There is however a problem when multiple 2912 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 2913 // interferences. 2914 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 2915 // We already determined that it is legal to merge the intervals, so this 2916 // should never fail. 2917 llvm_unreachable("*** Couldn't join subrange!\n"); 2918 } 2919 if (!LHSVals.resolveConflicts(RHSVals) || 2920 !RHSVals.resolveConflicts(LHSVals)) { 2921 // We already determined that it is legal to merge the intervals, so this 2922 // should never fail. 2923 llvm_unreachable("*** Couldn't join subrange!\n"); 2924 } 2925 2926 // The merging algorithm in LiveInterval::join() can't handle conflicting 2927 // value mappings, so we need to remove any live ranges that overlap a 2928 // CR_Replace resolution. Collect a set of end points that can be used to 2929 // restore the live range after joining. 2930 SmallVector<SlotIndex, 8> EndPoints; 2931 LHSVals.pruneValues(RHSVals, EndPoints, false); 2932 RHSVals.pruneValues(LHSVals, EndPoints, false); 2933 2934 LHSVals.removeImplicitDefs(); 2935 RHSVals.removeImplicitDefs(); 2936 2937 LRange.verify(); 2938 RRange.verify(); 2939 2940 // Join RRange into LHS. 2941 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 2942 NewVNInfo); 2943 2944 DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n"); 2945 if (EndPoints.empty()) 2946 return; 2947 2948 // Recompute the parts of the live range we had to remove because of 2949 // CR_Replace conflicts. 2950 DEBUG({ 2951 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 2952 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 2953 dbgs() << EndPoints[i]; 2954 if (i != n-1) 2955 dbgs() << ','; 2956 } 2957 dbgs() << ": " << LRange << '\n'; 2958 }); 2959 LIS->extendToIndices(LRange, EndPoints); 2960 } 2961 2962 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 2963 const LiveRange &ToMerge, 2964 LaneBitmask LaneMask, 2965 CoalescerPair &CP) { 2966 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2967 LI.refineSubRanges(Allocator, LaneMask, 2968 [this,&Allocator,&ToMerge,&CP](LiveInterval::SubRange &SR) { 2969 if (SR.empty()) { 2970 SR.assign(ToMerge, Allocator); 2971 } else { 2972 // joinSubRegRange() destroys the merged range, so we need a copy. 2973 LiveRange RangeCopy(ToMerge, Allocator); 2974 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 2975 } 2976 }); 2977 } 2978 2979 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 2980 SmallVector<VNInfo*, 16> NewVNInfo; 2981 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 2982 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 2983 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 2984 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 2985 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 2986 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 2987 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 2988 2989 DEBUG(dbgs() << "\t\tRHS = " << RHS 2990 << "\n\t\tLHS = " << LHS 2991 << '\n'); 2992 2993 // First compute NewVNInfo and the simple value mappings. 2994 // Detect impossible conflicts early. 2995 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 2996 return false; 2997 2998 // Some conflicts can only be resolved after all values have been mapped. 2999 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 3000 return false; 3001 3002 // All clear, the live ranges can be merged. 3003 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 3004 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3005 3006 // Transform lanemasks from the LHS to masks in the coalesced register and 3007 // create initial subranges if necessary. 3008 unsigned DstIdx = CP.getDstIdx(); 3009 if (!LHS.hasSubRanges()) { 3010 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 3011 : TRI->getSubRegIndexLaneMask(DstIdx); 3012 // LHS must support subregs or we wouldn't be in this codepath. 3013 assert(Mask.any()); 3014 LHS.createSubRangeFrom(Allocator, Mask, LHS); 3015 } else if (DstIdx != 0) { 3016 // Transform LHS lanemasks to new register class if necessary. 3017 for (LiveInterval::SubRange &R : LHS.subranges()) { 3018 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 3019 R.LaneMask = Mask; 3020 } 3021 } 3022 DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg()) 3023 << ' ' << LHS << '\n'); 3024 3025 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3026 unsigned SrcIdx = CP.getSrcIdx(); 3027 if (!RHS.hasSubRanges()) { 3028 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3029 : TRI->getSubRegIndexLaneMask(SrcIdx); 3030 mergeSubRangeInto(LHS, RHS, Mask, CP); 3031 } else { 3032 // Pair up subranges and merge. 3033 for (LiveInterval::SubRange &R : RHS.subranges()) { 3034 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3035 mergeSubRangeInto(LHS, R, Mask, CP); 3036 } 3037 } 3038 DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3039 3040 // Pruning implicit defs from subranges may result in the main range 3041 // having stale segments. 3042 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3043 3044 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3045 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3046 } 3047 3048 // The merging algorithm in LiveInterval::join() can't handle conflicting 3049 // value mappings, so we need to remove any live ranges that overlap a 3050 // CR_Replace resolution. Collect a set of end points that can be used to 3051 // restore the live range after joining. 3052 SmallVector<SlotIndex, 8> EndPoints; 3053 LHSVals.pruneValues(RHSVals, EndPoints, true); 3054 RHSVals.pruneValues(LHSVals, EndPoints, true); 3055 3056 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3057 // registers to require trimming. 3058 SmallVector<unsigned, 8> ShrinkRegs; 3059 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3060 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3061 while (!ShrinkRegs.empty()) 3062 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3063 3064 // Join RHS into LHS. 3065 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3066 3067 // Kill flags are going to be wrong if the live ranges were overlapping. 3068 // Eventually, we should simply clear all kill flags when computing live 3069 // ranges. They are reinserted after register allocation. 3070 MRI->clearKillFlags(LHS.reg); 3071 MRI->clearKillFlags(RHS.reg); 3072 3073 if (!EndPoints.empty()) { 3074 // Recompute the parts of the live range we had to remove because of 3075 // CR_Replace conflicts. 3076 DEBUG({ 3077 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3078 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3079 dbgs() << EndPoints[i]; 3080 if (i != n-1) 3081 dbgs() << ','; 3082 } 3083 dbgs() << ": " << LHS << '\n'; 3084 }); 3085 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3086 } 3087 3088 return true; 3089 } 3090 3091 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3092 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3093 } 3094 3095 namespace { 3096 3097 /// Information concerning MBB coalescing priority. 3098 struct MBBPriorityInfo { 3099 MachineBasicBlock *MBB; 3100 unsigned Depth; 3101 bool IsSplit; 3102 3103 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3104 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3105 }; 3106 3107 } // end anonymous namespace 3108 3109 /// C-style comparator that sorts first based on the loop depth of the basic 3110 /// block (the unsigned), and then on the MBB number. 3111 /// 3112 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3113 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3114 const MBBPriorityInfo *RHS) { 3115 // Deeper loops first 3116 if (LHS->Depth != RHS->Depth) 3117 return LHS->Depth > RHS->Depth ? -1 : 1; 3118 3119 // Try to unsplit critical edges next. 3120 if (LHS->IsSplit != RHS->IsSplit) 3121 return LHS->IsSplit ? -1 : 1; 3122 3123 // Prefer blocks that are more connected in the CFG. This takes care of 3124 // the most difficult copies first while intervals are short. 3125 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3126 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3127 if (cl != cr) 3128 return cl > cr ? -1 : 1; 3129 3130 // As a last resort, sort by block number. 3131 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3132 } 3133 3134 /// \returns true if the given copy uses or defines a local live range. 3135 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3136 if (!Copy->isCopy()) 3137 return false; 3138 3139 if (Copy->getOperand(1).isUndef()) 3140 return false; 3141 3142 unsigned SrcReg = Copy->getOperand(1).getReg(); 3143 unsigned DstReg = Copy->getOperand(0).getReg(); 3144 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 3145 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 3146 return false; 3147 3148 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3149 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3150 } 3151 3152 bool RegisterCoalescer:: 3153 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3154 bool Progress = false; 3155 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3156 if (!CurrList[i]) 3157 continue; 3158 // Skip instruction pointers that have already been erased, for example by 3159 // dead code elimination. 3160 if (ErasedInstrs.count(CurrList[i])) { 3161 CurrList[i] = nullptr; 3162 continue; 3163 } 3164 bool Again = false; 3165 bool Success = joinCopy(CurrList[i], Again); 3166 Progress |= Success; 3167 if (Success || !Again) 3168 CurrList[i] = nullptr; 3169 } 3170 return Progress; 3171 } 3172 3173 /// Check if DstReg is a terminal node. 3174 /// I.e., it does not have any affinity other than \p Copy. 3175 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 3176 const MachineRegisterInfo *MRI) { 3177 assert(Copy.isCopyLike()); 3178 // Check if the destination of this copy as any other affinity. 3179 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3180 if (&MI != &Copy && MI.isCopyLike()) 3181 return false; 3182 return true; 3183 } 3184 3185 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3186 assert(Copy.isCopyLike()); 3187 if (!UseTerminalRule) 3188 return false; 3189 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 3190 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg); 3191 // Check if the destination of this copy has any other affinity. 3192 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 3193 // If SrcReg is a physical register, the copy won't be coalesced. 3194 // Ignoring it may have other side effect (like missing 3195 // rematerialization). So keep it. 3196 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 3197 !isTerminalReg(DstReg, Copy, MRI)) 3198 return false; 3199 3200 // DstReg is a terminal node. Check if it interferes with any other 3201 // copy involving SrcReg. 3202 const MachineBasicBlock *OrigBB = Copy.getParent(); 3203 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3204 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3205 // Technically we should check if the weight of the new copy is 3206 // interesting compared to the other one and update the weight 3207 // of the copies accordingly. However, this would only work if 3208 // we would gather all the copies first then coalesce, whereas 3209 // right now we interleave both actions. 3210 // For now, just consider the copies that are in the same block. 3211 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3212 continue; 3213 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 3214 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3215 OtherSubReg); 3216 if (OtherReg == SrcReg) 3217 OtherReg = OtherSrcReg; 3218 // Check if OtherReg is a non-terminal. 3219 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) || 3220 isTerminalReg(OtherReg, MI, MRI)) 3221 continue; 3222 // Check that OtherReg interfere with DstReg. 3223 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3224 DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n'); 3225 return true; 3226 } 3227 } 3228 return false; 3229 } 3230 3231 void 3232 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3233 DEBUG(dbgs() << MBB->getName() << ":\n"); 3234 3235 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3236 // yet, it might invalidate the iterator. 3237 const unsigned PrevSize = WorkList.size(); 3238 if (JoinGlobalCopies) { 3239 SmallVector<MachineInstr*, 2> LocalTerminals; 3240 SmallVector<MachineInstr*, 2> GlobalTerminals; 3241 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3242 // are not inherently easier to resolve, but slightly preferable until we 3243 // have local live range splitting. In particular this is required by 3244 // cmp+jmp macro fusion. 3245 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3246 MII != E; ++MII) { 3247 if (!MII->isCopyLike()) 3248 continue; 3249 bool ApplyTerminalRule = applyTerminalRule(*MII); 3250 if (isLocalCopy(&(*MII), LIS)) { 3251 if (ApplyTerminalRule) 3252 LocalTerminals.push_back(&(*MII)); 3253 else 3254 LocalWorkList.push_back(&(*MII)); 3255 } else { 3256 if (ApplyTerminalRule) 3257 GlobalTerminals.push_back(&(*MII)); 3258 else 3259 WorkList.push_back(&(*MII)); 3260 } 3261 } 3262 // Append the copies evicted by the terminal rule at the end of the list. 3263 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3264 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3265 } 3266 else { 3267 SmallVector<MachineInstr*, 2> Terminals; 3268 for (MachineInstr &MII : *MBB) 3269 if (MII.isCopyLike()) { 3270 if (applyTerminalRule(MII)) 3271 Terminals.push_back(&MII); 3272 else 3273 WorkList.push_back(&MII); 3274 } 3275 // Append the copies evicted by the terminal rule at the end of the list. 3276 WorkList.append(Terminals.begin(), Terminals.end()); 3277 } 3278 // Try coalescing the collected copies immediately, and remove the nulls. 3279 // This prevents the WorkList from getting too large since most copies are 3280 // joinable on the first attempt. 3281 MutableArrayRef<MachineInstr*> 3282 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3283 if (copyCoalesceWorkList(CurrList)) 3284 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3285 nullptr), WorkList.end()); 3286 } 3287 3288 void RegisterCoalescer::coalesceLocals() { 3289 copyCoalesceWorkList(LocalWorkList); 3290 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3291 if (LocalWorkList[j]) 3292 WorkList.push_back(LocalWorkList[j]); 3293 } 3294 LocalWorkList.clear(); 3295 } 3296 3297 void RegisterCoalescer::joinAllIntervals() { 3298 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3299 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3300 3301 std::vector<MBBPriorityInfo> MBBs; 3302 MBBs.reserve(MF->size()); 3303 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3304 MachineBasicBlock *MBB = &*I; 3305 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3306 JoinSplitEdges && isSplitEdge(MBB))); 3307 } 3308 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3309 3310 // Coalesce intervals in MBB priority order. 3311 unsigned CurrDepth = std::numeric_limits<unsigned>::max(); 3312 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3313 // Try coalescing the collected local copies for deeper loops. 3314 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3315 coalesceLocals(); 3316 CurrDepth = MBBs[i].Depth; 3317 } 3318 copyCoalesceInMBB(MBBs[i].MBB); 3319 } 3320 coalesceLocals(); 3321 3322 // Joining intervals can allow other intervals to be joined. Iteratively join 3323 // until we make no progress. 3324 while (copyCoalesceWorkList(WorkList)) 3325 /* empty */ ; 3326 } 3327 3328 void RegisterCoalescer::releaseMemory() { 3329 ErasedInstrs.clear(); 3330 WorkList.clear(); 3331 DeadDefs.clear(); 3332 InflateRegs.clear(); 3333 } 3334 3335 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3336 MF = &fn; 3337 MRI = &fn.getRegInfo(); 3338 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3339 TRI = STI.getRegisterInfo(); 3340 TII = STI.getInstrInfo(); 3341 LIS = &getAnalysis<LiveIntervals>(); 3342 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3343 Loops = &getAnalysis<MachineLoopInfo>(); 3344 if (EnableGlobalCopies == cl::BOU_UNSET) 3345 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3346 else 3347 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3348 3349 // The MachineScheduler does not currently require JoinSplitEdges. This will 3350 // either be enabled unconditionally or replaced by a more general live range 3351 // splitting optimization. 3352 JoinSplitEdges = EnableJoinSplits; 3353 3354 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3355 << "********** Function: " << MF->getName() << '\n'); 3356 3357 if (VerifyCoalescing) 3358 MF->verify(this, "Before register coalescing"); 3359 3360 RegClassInfo.runOnMachineFunction(fn); 3361 3362 // Join (coalesce) intervals if requested. 3363 if (EnableJoining) 3364 joinAllIntervals(); 3365 3366 // After deleting a lot of copies, register classes may be less constrained. 3367 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3368 // DPR inflation. 3369 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3370 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3371 InflateRegs.end()); 3372 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n"); 3373 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3374 unsigned Reg = InflateRegs[i]; 3375 if (MRI->reg_nodbg_empty(Reg)) 3376 continue; 3377 if (MRI->recomputeRegClass(Reg)) { 3378 DEBUG(dbgs() << PrintReg(Reg) << " inflated to " 3379 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3380 ++NumInflated; 3381 3382 LiveInterval &LI = LIS->getInterval(Reg); 3383 if (LI.hasSubRanges()) { 3384 // If the inflated register class does not support subregisters anymore 3385 // remove the subranges. 3386 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3387 LI.clearSubRanges(); 3388 } else { 3389 #ifndef NDEBUG 3390 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3391 // If subranges are still supported, then the same subregs 3392 // should still be supported. 3393 for (LiveInterval::SubRange &S : LI.subranges()) { 3394 assert((S.LaneMask & ~MaxMask).none()); 3395 } 3396 #endif 3397 } 3398 } 3399 } 3400 } 3401 3402 DEBUG(dump()); 3403 if (VerifyCoalescing) 3404 MF->verify(this, "After register coalescing"); 3405 return true; 3406 } 3407 3408 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3409 LIS->print(O, m); 3410 } 3411