1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic RegisterCoalescer interface which 11 // is used as the common interface used by all clients and 12 // implementations of register coalescing. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "RegisterCoalescer.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/LiveRangeEdit.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineLoopInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/CodeGen/RegisterClassInfo.h" 29 #include "llvm/CodeGen/VirtRegMap.h" 30 #include "llvm/IR/Value.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetSubtargetInfo.h" 40 #include <algorithm> 41 #include <cmath> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "regalloc" 45 46 STATISTIC(numJoins , "Number of interval joins performed"); 47 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 48 STATISTIC(numCommutes , "Number of instruction commuting performed"); 49 STATISTIC(numExtends , "Number of copies extended"); 50 STATISTIC(NumReMats , "Number of instructions re-materialized"); 51 STATISTIC(NumInflated , "Number of register classes inflated"); 52 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 53 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 54 55 static cl::opt<bool> 56 EnableJoining("join-liveintervals", 57 cl::desc("Coalesce copies (default=true)"), 58 cl::init(true)); 59 60 static cl::opt<bool> UseTerminalRule("terminal-rule", 61 cl::desc("Apply the terminal rule"), 62 cl::init(false), cl::Hidden); 63 64 /// Temporary flag to test critical edge unsplitting. 65 static cl::opt<bool> 66 EnableJoinSplits("join-splitedges", 67 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 68 69 /// Temporary flag to test global copy optimization. 70 static cl::opt<cl::boolOrDefault> 71 EnableGlobalCopies("join-globalcopies", 72 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 73 cl::init(cl::BOU_UNSET), cl::Hidden); 74 75 static cl::opt<bool> 76 VerifyCoalescing("verify-coalescing", 77 cl::desc("Verify machine instrs before and after register coalescing"), 78 cl::Hidden); 79 80 namespace { 81 class RegisterCoalescer : public MachineFunctionPass, 82 private LiveRangeEdit::Delegate { 83 MachineFunction* MF; 84 MachineRegisterInfo* MRI; 85 const TargetMachine* TM; 86 const TargetRegisterInfo* TRI; 87 const TargetInstrInfo* TII; 88 LiveIntervals *LIS; 89 const MachineLoopInfo* Loops; 90 AliasAnalysis *AA; 91 RegisterClassInfo RegClassInfo; 92 93 /// A LaneMask to remember on which subregister live ranges we need to call 94 /// shrinkToUses() later. 95 LaneBitmask ShrinkMask; 96 97 /// True if the main range of the currently coalesced intervals should be 98 /// checked for smaller live intervals. 99 bool ShrinkMainRange; 100 101 /// \brief True if the coalescer should aggressively coalesce global copies 102 /// in favor of keeping local copies. 103 bool JoinGlobalCopies; 104 105 /// \brief True if the coalescer should aggressively coalesce fall-thru 106 /// blocks exclusively containing copies. 107 bool JoinSplitEdges; 108 109 /// Copy instructions yet to be coalesced. 110 SmallVector<MachineInstr*, 8> WorkList; 111 SmallVector<MachineInstr*, 8> LocalWorkList; 112 113 /// Set of instruction pointers that have been erased, and 114 /// that may be present in WorkList. 115 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 116 117 /// Dead instructions that are about to be deleted. 118 SmallVector<MachineInstr*, 8> DeadDefs; 119 120 /// Virtual registers to be considered for register class inflation. 121 SmallVector<unsigned, 8> InflateRegs; 122 123 /// Recursively eliminate dead defs in DeadDefs. 124 void eliminateDeadDefs(); 125 126 /// LiveRangeEdit callback for eliminateDeadDefs(). 127 void LRE_WillEraseInstruction(MachineInstr *MI) override; 128 129 /// Coalesce the LocalWorkList. 130 void coalesceLocals(); 131 132 /// Join compatible live intervals 133 void joinAllIntervals(); 134 135 /// Coalesce copies in the specified MBB, putting 136 /// copies that cannot yet be coalesced into WorkList. 137 void copyCoalesceInMBB(MachineBasicBlock *MBB); 138 139 /// Tries to coalesce all copies in CurrList. Returns true if any progress 140 /// was made. 141 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 142 143 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 144 /// src/dst of the copy instruction CopyMI. This returns true if the copy 145 /// was successfully coalesced away. If it is not currently possible to 146 /// coalesce this interval, but it may be possible if other things get 147 /// coalesced, then it returns true by reference in 'Again'. 148 bool joinCopy(MachineInstr *TheCopy, bool &Again); 149 150 /// Attempt to join these two intervals. On failure, this 151 /// returns false. The output "SrcInt" will not have been modified, so we 152 /// can use this information below to update aliases. 153 bool joinIntervals(CoalescerPair &CP); 154 155 /// Attempt joining two virtual registers. Return true on success. 156 bool joinVirtRegs(CoalescerPair &CP); 157 158 /// Attempt joining with a reserved physreg. 159 bool joinReservedPhysReg(CoalescerPair &CP); 160 161 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 162 /// Subranges in @p LI which only partially interfere with the desired 163 /// LaneMask are split as necessary. @p LaneMask are the lanes that 164 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 165 /// lanemasks already adjusted to the coalesced register. 166 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 167 LaneBitmask LaneMask, CoalescerPair &CP); 168 169 /// Join the liveranges of two subregisters. Joins @p RRange into 170 /// @p LRange, @p RRange may be invalid afterwards. 171 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 172 LaneBitmask LaneMask, const CoalescerPair &CP); 173 174 /// We found a non-trivially-coalescable copy. If the source value number is 175 /// defined by a copy from the destination reg see if we can merge these two 176 /// destination reg valno# into a single value number, eliminating a copy. 177 /// This returns true if an interval was modified. 178 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 179 180 /// Return true if there are definitions of IntB 181 /// other than BValNo val# that can reach uses of AValno val# of IntA. 182 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 183 VNInfo *AValNo, VNInfo *BValNo); 184 185 /// We found a non-trivially-coalescable copy. 186 /// If the source value number is defined by a commutable instruction and 187 /// its other operand is coalesced to the copy dest register, see if we 188 /// can transform the copy into a noop by commuting the definition. 189 /// This returns true if an interval was modified. 190 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); 191 192 /// If the source of a copy is defined by a 193 /// trivial computation, replace the copy by rematerialize the definition. 194 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 195 bool &IsDefCopy); 196 197 /// Return true if a copy involving a physreg should be joined. 198 bool canJoinPhys(const CoalescerPair &CP); 199 200 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 201 /// number if it is not zero. If DstReg is a physical register and the 202 /// existing subregister number of the def / use being updated is not zero, 203 /// make sure to set it to the correct physical subregister. 204 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 205 206 /// If the given machine operand reads only undefined lanes add an undef 207 /// flag. 208 /// This can happen when undef uses were previously concealed by a copy 209 /// which we coalesced. Example: 210 /// %vreg0:sub0<def,read-undef> = ... 211 /// %vreg1 = COPY %vreg0 <-- Coalescing COPY reveals undef 212 /// = use %vreg1:sub1 <-- hidden undef use 213 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 214 MachineOperand &MO, unsigned SubRegIdx); 215 216 /// Handle copies of undef values. 217 /// Returns true if @p CopyMI was a copy of an undef value and eliminated. 218 bool eliminateUndefCopy(MachineInstr *CopyMI); 219 220 /// Check whether or not we should apply the terminal rule on the 221 /// destination (Dst) of \p Copy. 222 /// When the terminal rule applies, Copy is not profitable to 223 /// coalesce. 224 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 225 /// at least one interference (Dst, Dst2). If Dst is terminal, the 226 /// terminal rule consists in checking that at least one of 227 /// interfering node, say Dst2, has an affinity of equal or greater 228 /// weight with Src. 229 /// In that case, Dst2 and Dst will not be able to be both coalesced 230 /// with Src. Since Dst2 exposes more coalescing opportunities than 231 /// Dst, we can drop \p Copy. 232 bool applyTerminalRule(const MachineInstr &Copy) const; 233 234 /// Wrapper method for \see LiveIntervals::shrinkToUses. 235 /// This method does the proper fixing of the live-ranges when the afore 236 /// mentioned method returns true. 237 void shrinkToUses(LiveInterval *LI, 238 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 239 if (LIS->shrinkToUses(LI, Dead)) { 240 /// Check whether or not \p LI is composed by multiple connected 241 /// components and if that is the case, fix that. 242 SmallVector<LiveInterval*, 8> SplitLIs; 243 LIS->splitSeparateComponents(*LI, SplitLIs); 244 } 245 } 246 247 public: 248 static char ID; ///< Class identification, replacement for typeinfo 249 RegisterCoalescer() : MachineFunctionPass(ID) { 250 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 251 } 252 253 void getAnalysisUsage(AnalysisUsage &AU) const override; 254 255 void releaseMemory() override; 256 257 /// This is the pass entry point. 258 bool runOnMachineFunction(MachineFunction&) override; 259 260 /// Implement the dump method. 261 void print(raw_ostream &O, const Module* = nullptr) const override; 262 }; 263 } // end anonymous namespace 264 265 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 266 267 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 268 "Simple Register Coalescing", false, false) 269 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 270 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 271 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 272 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 273 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 274 "Simple Register Coalescing", false, false) 275 276 char RegisterCoalescer::ID = 0; 277 278 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 279 unsigned &Src, unsigned &Dst, 280 unsigned &SrcSub, unsigned &DstSub) { 281 if (MI->isCopy()) { 282 Dst = MI->getOperand(0).getReg(); 283 DstSub = MI->getOperand(0).getSubReg(); 284 Src = MI->getOperand(1).getReg(); 285 SrcSub = MI->getOperand(1).getSubReg(); 286 } else if (MI->isSubregToReg()) { 287 Dst = MI->getOperand(0).getReg(); 288 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 289 MI->getOperand(3).getImm()); 290 Src = MI->getOperand(2).getReg(); 291 SrcSub = MI->getOperand(2).getSubReg(); 292 } else 293 return false; 294 return true; 295 } 296 297 /// Return true if this block should be vacated by the coalescer to eliminate 298 /// branches. The important cases to handle in the coalescer are critical edges 299 /// split during phi elimination which contain only copies. Simple blocks that 300 /// contain non-branches should also be vacated, but this can be handled by an 301 /// earlier pass similar to early if-conversion. 302 static bool isSplitEdge(const MachineBasicBlock *MBB) { 303 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 304 return false; 305 306 for (const auto &MI : *MBB) { 307 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 308 return false; 309 } 310 return true; 311 } 312 313 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 314 SrcReg = DstReg = 0; 315 SrcIdx = DstIdx = 0; 316 NewRC = nullptr; 317 Flipped = CrossClass = false; 318 319 unsigned Src, Dst, SrcSub, DstSub; 320 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 321 return false; 322 Partial = SrcSub || DstSub; 323 324 // If one register is a physreg, it must be Dst. 325 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 326 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 327 return false; 328 std::swap(Src, Dst); 329 std::swap(SrcSub, DstSub); 330 Flipped = true; 331 } 332 333 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 334 335 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 336 // Eliminate DstSub on a physreg. 337 if (DstSub) { 338 Dst = TRI.getSubReg(Dst, DstSub); 339 if (!Dst) return false; 340 DstSub = 0; 341 } 342 343 // Eliminate SrcSub by picking a corresponding Dst superregister. 344 if (SrcSub) { 345 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 346 if (!Dst) return false; 347 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 348 return false; 349 } 350 } else { 351 // Both registers are virtual. 352 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 353 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 354 355 // Both registers have subreg indices. 356 if (SrcSub && DstSub) { 357 // Copies between different sub-registers are never coalescable. 358 if (Src == Dst && SrcSub != DstSub) 359 return false; 360 361 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 362 SrcIdx, DstIdx); 363 if (!NewRC) 364 return false; 365 } else if (DstSub) { 366 // SrcReg will be merged with a sub-register of DstReg. 367 SrcIdx = DstSub; 368 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 369 } else if (SrcSub) { 370 // DstReg will be merged with a sub-register of SrcReg. 371 DstIdx = SrcSub; 372 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 373 } else { 374 // This is a straight copy without sub-registers. 375 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 376 } 377 378 // The combined constraint may be impossible to satisfy. 379 if (!NewRC) 380 return false; 381 382 // Prefer SrcReg to be a sub-register of DstReg. 383 // FIXME: Coalescer should support subregs symmetrically. 384 if (DstIdx && !SrcIdx) { 385 std::swap(Src, Dst); 386 std::swap(SrcIdx, DstIdx); 387 Flipped = !Flipped; 388 } 389 390 CrossClass = NewRC != DstRC || NewRC != SrcRC; 391 } 392 // Check our invariants 393 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 394 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 395 "Cannot have a physical SubIdx"); 396 SrcReg = Src; 397 DstReg = Dst; 398 return true; 399 } 400 401 bool CoalescerPair::flip() { 402 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 403 return false; 404 std::swap(SrcReg, DstReg); 405 std::swap(SrcIdx, DstIdx); 406 Flipped = !Flipped; 407 return true; 408 } 409 410 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 411 if (!MI) 412 return false; 413 unsigned Src, Dst, SrcSub, DstSub; 414 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 415 return false; 416 417 // Find the virtual register that is SrcReg. 418 if (Dst == SrcReg) { 419 std::swap(Src, Dst); 420 std::swap(SrcSub, DstSub); 421 } else if (Src != SrcReg) { 422 return false; 423 } 424 425 // Now check that Dst matches DstReg. 426 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 427 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 428 return false; 429 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 430 // DstSub could be set for a physreg from INSERT_SUBREG. 431 if (DstSub) 432 Dst = TRI.getSubReg(Dst, DstSub); 433 // Full copy of Src. 434 if (!SrcSub) 435 return DstReg == Dst; 436 // This is a partial register copy. Check that the parts match. 437 return TRI.getSubReg(DstReg, SrcSub) == Dst; 438 } else { 439 // DstReg is virtual. 440 if (DstReg != Dst) 441 return false; 442 // Registers match, do the subregisters line up? 443 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 444 TRI.composeSubRegIndices(DstIdx, DstSub); 445 } 446 } 447 448 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 449 AU.setPreservesCFG(); 450 AU.addRequired<AAResultsWrapperPass>(); 451 AU.addRequired<LiveIntervals>(); 452 AU.addPreserved<LiveIntervals>(); 453 AU.addPreserved<SlotIndexes>(); 454 AU.addRequired<MachineLoopInfo>(); 455 AU.addPreserved<MachineLoopInfo>(); 456 AU.addPreservedID(MachineDominatorsID); 457 MachineFunctionPass::getAnalysisUsage(AU); 458 } 459 460 void RegisterCoalescer::eliminateDeadDefs() { 461 SmallVector<unsigned, 8> NewRegs; 462 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 463 nullptr, this).eliminateDeadDefs(DeadDefs); 464 } 465 466 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 467 // MI may be in WorkList. Make sure we don't visit it. 468 ErasedInstrs.insert(MI); 469 } 470 471 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 472 MachineInstr *CopyMI) { 473 assert(!CP.isPartial() && "This doesn't work for partial copies."); 474 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 475 476 LiveInterval &IntA = 477 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 478 LiveInterval &IntB = 479 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 480 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 481 482 // We have a non-trivially-coalescable copy with IntA being the source and 483 // IntB being the dest, thus this defines a value number in IntB. If the 484 // source value number (in IntA) is defined by a copy from B, see if we can 485 // merge these two pieces of B into a single value number, eliminating a copy. 486 // For example: 487 // 488 // A3 = B0 489 // ... 490 // B1 = A3 <- this copy 491 // 492 // In this case, B0 can be extended to where the B1 copy lives, allowing the 493 // B1 value number to be replaced with B0 (which simplifies the B 494 // liveinterval). 495 496 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 497 // the example above. 498 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 499 if (BS == IntB.end()) return false; 500 VNInfo *BValNo = BS->valno; 501 502 // Get the location that B is defined at. Two options: either this value has 503 // an unknown definition point or it is defined at CopyIdx. If unknown, we 504 // can't process it. 505 if (BValNo->def != CopyIdx) return false; 506 507 // AValNo is the value number in A that defines the copy, A3 in the example. 508 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 509 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 510 // The live segment might not exist after fun with physreg coalescing. 511 if (AS == IntA.end()) return false; 512 VNInfo *AValNo = AS->valno; 513 514 // If AValNo is defined as a copy from IntB, we can potentially process this. 515 // Get the instruction that defines this value number. 516 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 517 // Don't allow any partial copies, even if isCoalescable() allows them. 518 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 519 return false; 520 521 // Get the Segment in IntB that this value number starts with. 522 LiveInterval::iterator ValS = 523 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 524 if (ValS == IntB.end()) 525 return false; 526 527 // Make sure that the end of the live segment is inside the same block as 528 // CopyMI. 529 MachineInstr *ValSEndInst = 530 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 531 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 532 return false; 533 534 // Okay, we now know that ValS ends in the same block that the CopyMI 535 // live-range starts. If there are no intervening live segments between them 536 // in IntB, we can merge them. 537 if (ValS+1 != BS) return false; 538 539 DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI)); 540 541 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 542 // We are about to delete CopyMI, so need to remove it as the 'instruction 543 // that defines this value #'. Update the valnum with the new defining 544 // instruction #. 545 BValNo->def = FillerStart; 546 547 // Okay, we can merge them. We need to insert a new liverange: 548 // [ValS.end, BS.begin) of either value number, then we merge the 549 // two value numbers. 550 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 551 552 // Okay, merge "B1" into the same value number as "B0". 553 if (BValNo != ValS->valno) 554 IntB.MergeValueNumberInto(BValNo, ValS->valno); 555 556 // Do the same for the subregister segments. 557 for (LiveInterval::SubRange &S : IntB.subranges()) { 558 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 559 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 560 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 561 if (SubBValNo != SubValSNo) 562 S.MergeValueNumberInto(SubBValNo, SubValSNo); 563 } 564 565 DEBUG(dbgs() << " result = " << IntB << '\n'); 566 567 // If the source instruction was killing the source register before the 568 // merge, unset the isKill marker given the live range has been extended. 569 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 570 if (UIdx != -1) { 571 ValSEndInst->getOperand(UIdx).setIsKill(false); 572 } 573 574 // Rewrite the copy. If the copy instruction was killing the destination 575 // register before the merge, find the last use and trim the live range. That 576 // will also add the isKill marker. 577 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 578 if (AS->end == CopyIdx) 579 shrinkToUses(&IntA); 580 581 ++numExtends; 582 return true; 583 } 584 585 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 586 LiveInterval &IntB, 587 VNInfo *AValNo, 588 VNInfo *BValNo) { 589 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 590 // the PHI values. 591 if (LIS->hasPHIKill(IntA, AValNo)) 592 return true; 593 594 for (LiveRange::Segment &ASeg : IntA.segments) { 595 if (ASeg.valno != AValNo) continue; 596 LiveInterval::iterator BI = 597 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start); 598 if (BI != IntB.begin()) 599 --BI; 600 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 601 if (BI->valno == BValNo) 602 continue; 603 if (BI->start <= ASeg.start && BI->end > ASeg.start) 604 return true; 605 if (BI->start > ASeg.start && BI->start < ASeg.end) 606 return true; 607 } 608 } 609 return false; 610 } 611 612 /// Copy segements with value number @p SrcValNo from liverange @p Src to live 613 /// range @Dst and use value number @p DstValNo there. 614 static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, 615 const LiveRange &Src, const VNInfo *SrcValNo) 616 { 617 for (const LiveRange::Segment &S : Src.segments) { 618 if (S.valno != SrcValNo) 619 continue; 620 Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo)); 621 } 622 } 623 624 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 625 MachineInstr *CopyMI) { 626 assert(!CP.isPhys()); 627 628 LiveInterval &IntA = 629 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 630 LiveInterval &IntB = 631 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 632 633 // We found a non-trivially-coalescable copy with IntA being the source and 634 // IntB being the dest, thus this defines a value number in IntB. If the 635 // source value number (in IntA) is defined by a commutable instruction and 636 // its other operand is coalesced to the copy dest register, see if we can 637 // transform the copy into a noop by commuting the definition. For example, 638 // 639 // A3 = op A2 B0<kill> 640 // ... 641 // B1 = A3 <- this copy 642 // ... 643 // = op A3 <- more uses 644 // 645 // ==> 646 // 647 // B2 = op B0 A2<kill> 648 // ... 649 // B1 = B2 <- now an identity copy 650 // ... 651 // = op B2 <- more uses 652 653 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 654 // the example above. 655 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 656 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 657 assert(BValNo != nullptr && BValNo->def == CopyIdx); 658 659 // AValNo is the value number in A that defines the copy, A3 in the example. 660 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 661 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 662 if (AValNo->isPHIDef()) 663 return false; 664 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 665 if (!DefMI) 666 return false; 667 if (!DefMI->isCommutable()) 668 return false; 669 // If DefMI is a two-address instruction then commuting it will change the 670 // destination register. 671 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 672 assert(DefIdx != -1); 673 unsigned UseOpIdx; 674 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 675 return false; 676 677 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 678 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 679 // passed to the method. That _other_ operand is chosen by 680 // the findCommutedOpIndices() method. 681 // 682 // That is obviously an area for improvement in case of instructions having 683 // more than 2 operands. For example, if some instruction has 3 commutable 684 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 685 // op#2<->op#3) of commute transformation should be considered/tried here. 686 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 687 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 688 return false; 689 690 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 691 unsigned NewReg = NewDstMO.getReg(); 692 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 693 return false; 694 695 // Make sure there are no other definitions of IntB that would reach the 696 // uses which the new definition can reach. 697 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 698 return false; 699 700 // If some of the uses of IntA.reg is already coalesced away, return false. 701 // It's not possible to determine whether it's safe to perform the coalescing. 702 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 703 MachineInstr *UseMI = MO.getParent(); 704 unsigned OpNo = &MO - &UseMI->getOperand(0); 705 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 706 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 707 if (US == IntA.end() || US->valno != AValNo) 708 continue; 709 // If this use is tied to a def, we can't rewrite the register. 710 if (UseMI->isRegTiedToDefOperand(OpNo)) 711 return false; 712 } 713 714 DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 715 << *DefMI); 716 717 // At this point we have decided that it is legal to do this 718 // transformation. Start by commuting the instruction. 719 MachineBasicBlock *MBB = DefMI->getParent(); 720 MachineInstr *NewMI = 721 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 722 if (!NewMI) 723 return false; 724 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 725 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 726 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 727 return false; 728 if (NewMI != DefMI) { 729 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 730 MachineBasicBlock::iterator Pos = DefMI; 731 MBB->insert(Pos, NewMI); 732 MBB->erase(DefMI); 733 } 734 735 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 736 // A = or A, B 737 // ... 738 // B = A 739 // ... 740 // C = A<kill> 741 // ... 742 // = B 743 744 // Update uses of IntA of the specific Val# with IntB. 745 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 746 UE = MRI->use_end(); 747 UI != UE; /* ++UI is below because of possible MI removal */) { 748 MachineOperand &UseMO = *UI; 749 ++UI; 750 if (UseMO.isUndef()) 751 continue; 752 MachineInstr *UseMI = UseMO.getParent(); 753 if (UseMI->isDebugValue()) { 754 // FIXME These don't have an instruction index. Not clear we have enough 755 // info to decide whether to do this replacement or not. For now do it. 756 UseMO.setReg(NewReg); 757 continue; 758 } 759 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 760 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 761 assert(US != IntA.end() && "Use must be live"); 762 if (US->valno != AValNo) 763 continue; 764 // Kill flags are no longer accurate. They are recomputed after RA. 765 UseMO.setIsKill(false); 766 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 767 UseMO.substPhysReg(NewReg, *TRI); 768 else 769 UseMO.setReg(NewReg); 770 if (UseMI == CopyMI) 771 continue; 772 if (!UseMI->isCopy()) 773 continue; 774 if (UseMI->getOperand(0).getReg() != IntB.reg || 775 UseMI->getOperand(0).getSubReg()) 776 continue; 777 778 // This copy will become a noop. If it's defining a new val#, merge it into 779 // BValNo. 780 SlotIndex DefIdx = UseIdx.getRegSlot(); 781 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 782 if (!DVNI) 783 continue; 784 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 785 assert(DVNI->def == DefIdx); 786 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 787 for (LiveInterval::SubRange &S : IntB.subranges()) { 788 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 789 if (!SubDVNI) 790 continue; 791 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 792 assert(SubBValNo->def == CopyIdx); 793 S.MergeValueNumberInto(SubDVNI, SubBValNo); 794 } 795 796 ErasedInstrs.insert(UseMI); 797 LIS->RemoveMachineInstrFromMaps(*UseMI); 798 UseMI->eraseFromParent(); 799 } 800 801 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 802 // is updated. 803 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 804 if (IntB.hasSubRanges()) { 805 if (!IntA.hasSubRanges()) { 806 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 807 IntA.createSubRangeFrom(Allocator, Mask, IntA); 808 } 809 SlotIndex AIdx = CopyIdx.getRegSlot(true); 810 for (LiveInterval::SubRange &SA : IntA.subranges()) { 811 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 812 assert(ASubValNo != nullptr); 813 814 LaneBitmask AMask = SA.LaneMask; 815 for (LiveInterval::SubRange &SB : IntB.subranges()) { 816 LaneBitmask BMask = SB.LaneMask; 817 LaneBitmask Common = BMask & AMask; 818 if (Common == 0) 819 continue; 820 821 DEBUG( dbgs() << "\t\tCopy_Merge " << PrintLaneMask(BMask) 822 << " into " << PrintLaneMask(Common) << '\n'); 823 LaneBitmask BRest = BMask & ~AMask; 824 LiveInterval::SubRange *CommonRange; 825 if (BRest != 0) { 826 SB.LaneMask = BRest; 827 DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(BRest) 828 << '\n'); 829 // Duplicate SubRange for newly merged common stuff. 830 CommonRange = IntB.createSubRangeFrom(Allocator, Common, SB); 831 } else { 832 // We van reuse the L SubRange. 833 SB.LaneMask = Common; 834 CommonRange = &SB; 835 } 836 LiveRange RangeCopy(SB, Allocator); 837 838 VNInfo *BSubValNo = CommonRange->getVNInfoAt(CopyIdx); 839 assert(BSubValNo->def == CopyIdx); 840 BSubValNo->def = ASubValNo->def; 841 addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo); 842 AMask &= ~BMask; 843 } 844 if (AMask != 0) { 845 DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(AMask) << '\n'); 846 LiveRange *NewRange = IntB.createSubRange(Allocator, AMask); 847 VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator); 848 addSegmentsWithValNo(*NewRange, BSubValNo, SA, ASubValNo); 849 } 850 } 851 } 852 853 BValNo->def = AValNo->def; 854 addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 855 DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 856 857 LIS->removeVRegDefAt(IntA, AValNo->def); 858 859 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 860 ++numCommutes; 861 return true; 862 } 863 864 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 865 /// defining a subregister. 866 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 867 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && 868 "This code cannot handle physreg aliasing"); 869 for (const MachineOperand &Op : MI.operands()) { 870 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 871 continue; 872 // Return true if we define the full register or don't care about the value 873 // inside other subregisters. 874 if (Op.getSubReg() == 0 || Op.isUndef()) 875 return true; 876 } 877 return false; 878 } 879 880 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 881 MachineInstr *CopyMI, 882 bool &IsDefCopy) { 883 IsDefCopy = false; 884 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 885 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 886 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 887 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 888 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 889 return false; 890 891 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 892 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 893 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 894 assert(ValNo && "CopyMI input register not live"); 895 if (ValNo->isPHIDef() || ValNo->isUnused()) 896 return false; 897 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 898 if (!DefMI) 899 return false; 900 if (DefMI->isCopyLike()) { 901 IsDefCopy = true; 902 return false; 903 } 904 if (!TII->isAsCheapAsAMove(*DefMI)) 905 return false; 906 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 907 return false; 908 if (!definesFullReg(*DefMI, SrcReg)) 909 return false; 910 bool SawStore = false; 911 if (!DefMI->isSafeToMove(AA, SawStore)) 912 return false; 913 const MCInstrDesc &MCID = DefMI->getDesc(); 914 if (MCID.getNumDefs() != 1) 915 return false; 916 // Only support subregister destinations when the def is read-undef. 917 MachineOperand &DstOperand = CopyMI->getOperand(0); 918 unsigned CopyDstReg = DstOperand.getReg(); 919 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 920 return false; 921 922 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 923 // the register substantially (beyond both source and dest size). This is bad 924 // for performance since it can cascade through a function, introducing many 925 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 926 // around after a few subreg copies). 927 if (SrcIdx && DstIdx) 928 return false; 929 930 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 931 if (!DefMI->isImplicitDef()) { 932 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 933 unsigned NewDstReg = DstReg; 934 935 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 936 DefMI->getOperand(0).getSubReg()); 937 if (NewDstIdx) 938 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 939 940 // Finally, make sure that the physical subregister that will be 941 // constructed later is permitted for the instruction. 942 if (!DefRC->contains(NewDstReg)) 943 return false; 944 } else { 945 // Theoretically, some stack frame reference could exist. Just make sure 946 // it hasn't actually happened. 947 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 948 "Only expect to deal with virtual or physical registers"); 949 } 950 } 951 952 DebugLoc DL = CopyMI->getDebugLoc(); 953 MachineBasicBlock *MBB = CopyMI->getParent(); 954 MachineBasicBlock::iterator MII = 955 std::next(MachineBasicBlock::iterator(CopyMI)); 956 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 957 MachineInstr &NewMI = *std::prev(MII); 958 NewMI.setDebugLoc(DL); 959 960 // In a situation like the following: 961 // %vreg0:subreg = instr ; DefMI, subreg = DstIdx 962 // %vreg1 = copy %vreg0:subreg ; CopyMI, SrcIdx = 0 963 // instead of widening %vreg1 to the register class of %vreg0 simply do: 964 // %vreg1 = instr 965 const TargetRegisterClass *NewRC = CP.getNewRC(); 966 if (DstIdx != 0) { 967 MachineOperand &DefMO = NewMI.getOperand(0); 968 if (DefMO.getSubReg() == DstIdx) { 969 assert(SrcIdx == 0 && CP.isFlipped() 970 && "Shouldn't have SrcIdx+DstIdx at this point"); 971 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 972 const TargetRegisterClass *CommonRC = 973 TRI->getCommonSubClass(DefRC, DstRC); 974 if (CommonRC != nullptr) { 975 NewRC = CommonRC; 976 DstIdx = 0; 977 DefMO.setSubReg(0); 978 DefMO.setIsUndef(false); // Only subregs can have def+undef. 979 } 980 } 981 } 982 983 // CopyMI may have implicit operands, save them so that we can transfer them 984 // over to the newly materialized instruction after CopyMI is removed. 985 SmallVector<MachineOperand, 4> ImplicitOps; 986 ImplicitOps.reserve(CopyMI->getNumOperands() - 987 CopyMI->getDesc().getNumOperands()); 988 for (unsigned I = CopyMI->getDesc().getNumOperands(), 989 E = CopyMI->getNumOperands(); 990 I != E; ++I) { 991 MachineOperand &MO = CopyMI->getOperand(I); 992 if (MO.isReg()) { 993 assert(MO.isImplicit() && "No explicit operands after implict operands."); 994 // Discard VReg implicit defs. 995 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 996 ImplicitOps.push_back(MO); 997 } 998 } 999 1000 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1001 CopyMI->eraseFromParent(); 1002 ErasedInstrs.insert(CopyMI); 1003 1004 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1005 // We need to remember these so we can add intervals once we insert 1006 // NewMI into SlotIndexes. 1007 SmallVector<unsigned, 4> NewMIImplDefs; 1008 for (unsigned i = NewMI.getDesc().getNumOperands(), 1009 e = NewMI.getNumOperands(); 1010 i != e; ++i) { 1011 MachineOperand &MO = NewMI.getOperand(i); 1012 if (MO.isReg() && MO.isDef()) { 1013 assert(MO.isImplicit() && MO.isDead() && 1014 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 1015 NewMIImplDefs.push_back(MO.getReg()); 1016 } 1017 } 1018 1019 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 1020 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1021 1022 if (DefRC != nullptr) { 1023 if (NewIdx) 1024 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1025 else 1026 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1027 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1028 } 1029 // Remap subranges to new lanemask and change register class. 1030 LiveInterval &DstInt = LIS->getInterval(DstReg); 1031 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1032 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1033 } 1034 MRI->setRegClass(DstReg, NewRC); 1035 1036 // Update machine operands and add flags. 1037 updateRegDefsUses(DstReg, DstReg, DstIdx); 1038 NewMI.getOperand(0).setSubReg(NewIdx); 1039 // Add dead subregister definitions if we are defining the whole register 1040 // but only part of it is live. 1041 // This could happen if the rematerialization instruction is rematerializing 1042 // more than actually is used in the register. 1043 // An example would be: 1044 // vreg1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1045 // ; Copying only part of the register here, but the rest is undef. 1046 // vreg2:sub_16bit<def, read-undef> = COPY vreg1:sub_16bit 1047 // ==> 1048 // ; Materialize all the constants but only using one 1049 // vreg2 = LOAD_CONSTANTS 5, 8 1050 // 1051 // at this point for the part that wasn't defined before we could have 1052 // subranges missing the definition. 1053 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1054 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1055 SlotIndex DefIndex = 1056 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1057 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1058 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1059 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1060 if (!SR.liveAt(DefIndex)) 1061 SR.createDeadDef(DefIndex, Alloc); 1062 MaxMask &= ~SR.LaneMask; 1063 } 1064 if (MaxMask != 0) { 1065 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1066 SR->createDeadDef(DefIndex, Alloc); 1067 } 1068 } 1069 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1070 // The New instruction may be defining a sub-register of what's actually 1071 // been asked for. If so it must implicitly define the whole thing. 1072 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 1073 "Only expect virtual or physical registers in remat"); 1074 NewMI.getOperand(0).setIsDead(true); 1075 NewMI.addOperand(MachineOperand::CreateReg( 1076 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1077 // Record small dead def live-ranges for all the subregisters 1078 // of the destination register. 1079 // Otherwise, variables that live through may miss some 1080 // interferences, thus creating invalid allocation. 1081 // E.g., i386 code: 1082 // vreg1 = somedef ; vreg1 GR8 1083 // vreg2 = remat ; vreg2 GR32 1084 // CL = COPY vreg2.sub_8bit 1085 // = somedef vreg1 ; vreg1 GR8 1086 // => 1087 // vreg1 = somedef ; vreg1 GR8 1088 // ECX<def, dead> = remat ; CL<imp-def> 1089 // = somedef vreg1 ; vreg1 GR8 1090 // vreg1 will see the inteferences with CL but not with CH since 1091 // no live-ranges would have been created for ECX. 1092 // Fix that! 1093 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1094 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1095 Units.isValid(); ++Units) 1096 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1097 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1098 } 1099 1100 if (NewMI.getOperand(0).getSubReg()) 1101 NewMI.getOperand(0).setIsUndef(); 1102 1103 // Transfer over implicit operands to the rematerialized instruction. 1104 for (MachineOperand &MO : ImplicitOps) 1105 NewMI.addOperand(MO); 1106 1107 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1108 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1109 unsigned Reg = NewMIImplDefs[i]; 1110 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1111 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1112 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1113 } 1114 1115 DEBUG(dbgs() << "Remat: " << NewMI); 1116 ++NumReMats; 1117 1118 // The source interval can become smaller because we removed a use. 1119 shrinkToUses(&SrcInt, &DeadDefs); 1120 if (!DeadDefs.empty()) { 1121 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1122 // to describe DstReg instead. 1123 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1124 MachineInstr *UseMI = UseMO.getParent(); 1125 if (UseMI->isDebugValue()) { 1126 UseMO.setReg(DstReg); 1127 DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1128 } 1129 } 1130 eliminateDeadDefs(); 1131 } 1132 1133 return true; 1134 } 1135 1136 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1137 // ProcessImpicitDefs may leave some copies of <undef> values, it only removes 1138 // local variables. When we have a copy like: 1139 // 1140 // %vreg1 = COPY %vreg2<undef> 1141 // 1142 // We delete the copy and remove the corresponding value number from %vreg1. 1143 // Any uses of that value number are marked as <undef>. 1144 1145 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1146 // CoalescerPair may have a new register class with adjusted subreg indices 1147 // at this point. 1148 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1149 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx); 1150 1151 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1152 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1153 // CopyMI is undef iff SrcReg is not live before the instruction. 1154 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1155 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1156 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1157 if ((SR.LaneMask & SrcMask) == 0) 1158 continue; 1159 if (SR.liveAt(Idx)) 1160 return false; 1161 } 1162 } else if (SrcLI.liveAt(Idx)) 1163 return false; 1164 1165 DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1166 1167 // Remove any DstReg segments starting at the instruction. 1168 LiveInterval &DstLI = LIS->getInterval(DstReg); 1169 SlotIndex RegIndex = Idx.getRegSlot(); 1170 // Remove value or merge with previous one in case of a subregister def. 1171 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1172 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1173 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1174 1175 // The affected subregister segments can be removed. 1176 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1177 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1178 if ((SR.LaneMask & DstMask) == 0) 1179 continue; 1180 1181 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1182 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1183 SR.removeValNo(SVNI); 1184 } 1185 DstLI.removeEmptySubRanges(); 1186 } else 1187 LIS->removeVRegDefAt(DstLI, RegIndex); 1188 1189 // Mark uses as undef. 1190 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1191 if (MO.isDef() /*|| MO.isUndef()*/) 1192 continue; 1193 const MachineInstr &MI = *MO.getParent(); 1194 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1195 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1196 bool isLive; 1197 if (UseMask != ~0u && DstLI.hasSubRanges()) { 1198 isLive = false; 1199 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1200 if ((SR.LaneMask & UseMask) == 0) 1201 continue; 1202 if (SR.liveAt(UseIdx)) { 1203 isLive = true; 1204 break; 1205 } 1206 } 1207 } else 1208 isLive = DstLI.liveAt(UseIdx); 1209 if (isLive) 1210 continue; 1211 MO.setIsUndef(true); 1212 DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1213 } 1214 1215 // A def of a subregister may be a use of the other subregisters, so 1216 // deleting a def of a subregister may also remove uses. Since CopyMI 1217 // is still part of the function (but about to be erased), mark all 1218 // defs of DstReg in it as <undef>, so that shrinkToUses would 1219 // ignore them. 1220 for (MachineOperand &MO : CopyMI->operands()) 1221 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1222 MO.setIsUndef(true); 1223 LIS->shrinkToUses(&DstLI); 1224 1225 return true; 1226 } 1227 1228 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1229 MachineOperand &MO, unsigned SubRegIdx) { 1230 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1231 if (MO.isDef()) 1232 Mask = ~Mask; 1233 bool IsUndef = true; 1234 for (const LiveInterval::SubRange &S : Int.subranges()) { 1235 if ((S.LaneMask & Mask) == 0) 1236 continue; 1237 if (S.liveAt(UseIdx)) { 1238 IsUndef = false; 1239 break; 1240 } 1241 } 1242 if (IsUndef) { 1243 MO.setIsUndef(true); 1244 // We found out some subregister use is actually reading an undefined 1245 // value. In some cases the whole vreg has become undefined at this 1246 // point so we have to potentially shrink the main range if the 1247 // use was ending a live segment there. 1248 LiveQueryResult Q = Int.Query(UseIdx); 1249 if (Q.valueOut() == nullptr) 1250 ShrinkMainRange = true; 1251 } 1252 } 1253 1254 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 1255 unsigned DstReg, 1256 unsigned SubIdx) { 1257 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 1258 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1259 1260 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1261 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1262 unsigned SubReg = MO.getSubReg(); 1263 if (SubReg == 0 || MO.isUndef()) 1264 continue; 1265 MachineInstr &MI = *MO.getParent(); 1266 if (MI.isDebugValue()) 1267 continue; 1268 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1269 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1270 } 1271 } 1272 1273 SmallPtrSet<MachineInstr*, 8> Visited; 1274 for (MachineRegisterInfo::reg_instr_iterator 1275 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1276 I != E; ) { 1277 MachineInstr *UseMI = &*(I++); 1278 1279 // Each instruction can only be rewritten once because sub-register 1280 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1281 // the UseMI operands removes them from the SrcReg use-def chain, but when 1282 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1283 // operands mentioning the virtual register. 1284 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1285 continue; 1286 1287 SmallVector<unsigned,8> Ops; 1288 bool Reads, Writes; 1289 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1290 1291 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1292 // because SrcReg is a sub-register. 1293 if (DstInt && !Reads && SubIdx) 1294 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1295 1296 // Replace SrcReg with DstReg in all UseMI operands. 1297 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1298 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1299 1300 // Adjust <undef> flags in case of sub-register joins. We don't want to 1301 // turn a full def into a read-modify-write sub-register def and vice 1302 // versa. 1303 if (SubIdx && MO.isDef()) 1304 MO.setIsUndef(!Reads); 1305 1306 // A subreg use of a partially undef (super) register may be a complete 1307 // undef use now and then has to be marked that way. 1308 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1309 if (!DstInt->hasSubRanges()) { 1310 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1311 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1312 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1313 } 1314 SlotIndex MIIdx = UseMI->isDebugValue() 1315 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1316 : LIS->getInstructionIndex(*UseMI); 1317 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1318 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1319 } 1320 1321 if (DstIsPhys) 1322 MO.substPhysReg(DstReg, *TRI); 1323 else 1324 MO.substVirtReg(DstReg, SubIdx, *TRI); 1325 } 1326 1327 DEBUG({ 1328 dbgs() << "\t\tupdated: "; 1329 if (!UseMI->isDebugValue()) 1330 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1331 dbgs() << *UseMI; 1332 }); 1333 } 1334 } 1335 1336 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1337 // Always join simple intervals that are defined by a single copy from a 1338 // reserved register. This doesn't increase register pressure, so it is 1339 // always beneficial. 1340 if (!MRI->isReserved(CP.getDstReg())) { 1341 DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1342 return false; 1343 } 1344 1345 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1346 if (JoinVInt.containsOneValue()) 1347 return true; 1348 1349 DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1350 return false; 1351 } 1352 1353 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1354 1355 Again = false; 1356 DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1357 1358 CoalescerPair CP(*TRI); 1359 if (!CP.setRegisters(CopyMI)) { 1360 DEBUG(dbgs() << "\tNot coalescable.\n"); 1361 return false; 1362 } 1363 1364 if (CP.getNewRC()) { 1365 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1366 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1367 unsigned SrcIdx = CP.getSrcIdx(); 1368 unsigned DstIdx = CP.getDstIdx(); 1369 if (CP.isFlipped()) { 1370 std::swap(SrcIdx, DstIdx); 1371 std::swap(SrcRC, DstRC); 1372 } 1373 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1374 CP.getNewRC())) { 1375 DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1376 return false; 1377 } 1378 } 1379 1380 // Dead code elimination. This really should be handled by MachineDCE, but 1381 // sometimes dead copies slip through, and we can't generate invalid live 1382 // ranges. 1383 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1384 DEBUG(dbgs() << "\tCopy is dead.\n"); 1385 DeadDefs.push_back(CopyMI); 1386 eliminateDeadDefs(); 1387 return true; 1388 } 1389 1390 // Eliminate undefs. 1391 if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) { 1392 LIS->RemoveMachineInstrFromMaps(*CopyMI); 1393 CopyMI->eraseFromParent(); 1394 return false; // Not coalescable. 1395 } 1396 1397 // Coalesced copies are normally removed immediately, but transformations 1398 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1399 // When that happens, just join the values and remove the copy. 1400 if (CP.getSrcReg() == CP.getDstReg()) { 1401 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1402 DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1403 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1404 LiveQueryResult LRQ = LI.Query(CopyIdx); 1405 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1406 VNInfo *ReadVNI = LRQ.valueIn(); 1407 assert(ReadVNI && "No value before copy and no <undef> flag."); 1408 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1409 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1410 1411 // Process subregister liveranges. 1412 for (LiveInterval::SubRange &S : LI.subranges()) { 1413 LiveQueryResult SLRQ = S.Query(CopyIdx); 1414 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1415 VNInfo *SReadVNI = SLRQ.valueIn(); 1416 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1417 } 1418 } 1419 DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1420 } 1421 LIS->RemoveMachineInstrFromMaps(*CopyMI); 1422 CopyMI->eraseFromParent(); 1423 return true; 1424 } 1425 1426 // Enforce policies. 1427 if (CP.isPhys()) { 1428 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI) 1429 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) 1430 << '\n'); 1431 if (!canJoinPhys(CP)) { 1432 // Before giving up coalescing, if definition of source is defined by 1433 // trivial computation, try rematerializing it. 1434 bool IsDefCopy; 1435 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1436 return true; 1437 if (IsDefCopy) 1438 Again = true; // May be possible to coalesce later. 1439 return false; 1440 } 1441 } else { 1442 // When possible, let DstReg be the larger interval. 1443 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1444 LIS->getInterval(CP.getDstReg()).size()) 1445 CP.flip(); 1446 1447 DEBUG({ 1448 dbgs() << "\tConsidering merging to " 1449 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1450 if (CP.getDstIdx() && CP.getSrcIdx()) 1451 dbgs() << PrintReg(CP.getDstReg()) << " in " 1452 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1453 << PrintReg(CP.getSrcReg()) << " in " 1454 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1455 else 1456 dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in " 1457 << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1458 }); 1459 } 1460 1461 ShrinkMask = 0; 1462 ShrinkMainRange = false; 1463 1464 // Okay, attempt to join these two intervals. On failure, this returns false. 1465 // Otherwise, if one of the intervals being joined is a physreg, this method 1466 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1467 // been modified, so we can use this information below to update aliases. 1468 if (!joinIntervals(CP)) { 1469 // Coalescing failed. 1470 1471 // If definition of source is defined by trivial computation, try 1472 // rematerializing it. 1473 bool IsDefCopy; 1474 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1475 return true; 1476 1477 // If we can eliminate the copy without merging the live segments, do so 1478 // now. 1479 if (!CP.isPartial() && !CP.isPhys()) { 1480 if (adjustCopiesBackFrom(CP, CopyMI) || 1481 removeCopyByCommutingDef(CP, CopyMI)) { 1482 LIS->RemoveMachineInstrFromMaps(*CopyMI); 1483 CopyMI->eraseFromParent(); 1484 DEBUG(dbgs() << "\tTrivial!\n"); 1485 return true; 1486 } 1487 } 1488 1489 // Otherwise, we are unable to join the intervals. 1490 DEBUG(dbgs() << "\tInterference!\n"); 1491 Again = true; // May be possible to coalesce later. 1492 return false; 1493 } 1494 1495 // Coalescing to a virtual register that is of a sub-register class of the 1496 // other. Make sure the resulting register is set to the right register class. 1497 if (CP.isCrossClass()) { 1498 ++numCrossRCs; 1499 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1500 } 1501 1502 // Removing sub-register copies can ease the register class constraints. 1503 // Make sure we attempt to inflate the register class of DstReg. 1504 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1505 InflateRegs.push_back(CP.getDstReg()); 1506 1507 // CopyMI has been erased by joinIntervals at this point. Remove it from 1508 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1509 // to the work list. This keeps ErasedInstrs from growing needlessly. 1510 ErasedInstrs.erase(CopyMI); 1511 1512 // Rewrite all SrcReg operands to DstReg. 1513 // Also update DstReg operands to include DstIdx if it is set. 1514 if (CP.getDstIdx()) 1515 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1516 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1517 1518 // Shrink subregister ranges if necessary. 1519 if (ShrinkMask != 0) { 1520 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1521 for (LiveInterval::SubRange &S : LI.subranges()) { 1522 if ((S.LaneMask & ShrinkMask) == 0) 1523 continue; 1524 DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1525 << ")\n"); 1526 LIS->shrinkToUses(S, LI.reg); 1527 } 1528 LI.removeEmptySubRanges(); 1529 } 1530 if (ShrinkMainRange) { 1531 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1532 shrinkToUses(&LI); 1533 } 1534 1535 // SrcReg is guaranteed to be the register whose live interval that is 1536 // being merged. 1537 LIS->removeInterval(CP.getSrcReg()); 1538 1539 // Update regalloc hint. 1540 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1541 1542 DEBUG({ 1543 dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 1544 << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 1545 dbgs() << "\tResult = "; 1546 if (CP.isPhys()) 1547 dbgs() << PrintReg(CP.getDstReg(), TRI); 1548 else 1549 dbgs() << LIS->getInterval(CP.getDstReg()); 1550 dbgs() << '\n'; 1551 }); 1552 1553 ++numJoins; 1554 return true; 1555 } 1556 1557 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1558 unsigned DstReg = CP.getDstReg(); 1559 assert(CP.isPhys() && "Must be a physreg copy"); 1560 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 1561 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 1562 DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1563 1564 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 1565 1566 // Optimization for reserved registers like ESP. We can only merge with a 1567 // reserved physreg if RHS has a single value that is a copy of DstReg. 1568 // The live range of the reserved register will look like a set of dead defs 1569 // - we don't properly track the live range of reserved registers. 1570 1571 // Deny any overlapping intervals. This depends on all the reserved 1572 // register live ranges to look like dead defs. 1573 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) 1574 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1575 DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n'); 1576 return false; 1577 } 1578 1579 // Skip any value computations, we are not adding new values to the 1580 // reserved register. Also skip merging the live ranges, the reserved 1581 // register live range doesn't need to be accurate as long as all the 1582 // defs are there. 1583 1584 // Delete the identity copy. 1585 MachineInstr *CopyMI; 1586 if (CP.isFlipped()) { 1587 CopyMI = MRI->getVRegDef(RHS.reg); 1588 } else { 1589 if (!MRI->hasOneNonDBGUse(RHS.reg)) { 1590 DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 1591 return false; 1592 } 1593 1594 MachineInstr *DestMI = MRI->getVRegDef(RHS.reg); 1595 CopyMI = &*MRI->use_instr_nodbg_begin(RHS.reg); 1596 const SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 1597 const SlotIndex DestRegIdx = LIS->getInstructionIndex(*DestMI).getRegSlot(); 1598 1599 // We checked above that there are no interfering defs of the physical 1600 // register. However, for this case, where we intent to move up the def of 1601 // the physical register, we also need to check for interfering uses. 1602 SlotIndexes *Indexes = LIS->getSlotIndexes(); 1603 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 1604 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 1605 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 1606 if (MI->readsRegister(DstReg, TRI)) { 1607 DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 1608 return false; 1609 } 1610 1611 // We must also check for clobbers caused by regmasks. 1612 for (const auto &MO : MI->operands()) { 1613 if (MO.isRegMask() && MO.clobbersPhysReg(DstReg)) { 1614 DEBUG(dbgs() << "\t\tInterference (regmask clobber): " << *MI); 1615 return false; 1616 } 1617 } 1618 } 1619 1620 // We're going to remove the copy which defines a physical reserved 1621 // register, so remove its valno, etc. 1622 DEBUG(dbgs() << "\t\tRemoving phys reg def of " << DstReg << " at " 1623 << CopyRegIdx << "\n"); 1624 1625 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 1626 // Create a new dead def at the new def location. 1627 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1628 LiveRange &LR = LIS->getRegUnit(*UI); 1629 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 1630 } 1631 } 1632 1633 LIS->RemoveMachineInstrFromMaps(*CopyMI); 1634 CopyMI->eraseFromParent(); 1635 1636 // We don't track kills for reserved registers. 1637 MRI->clearKillFlags(CP.getSrcReg()); 1638 1639 return true; 1640 } 1641 1642 //===----------------------------------------------------------------------===// 1643 // Interference checking and interval joining 1644 //===----------------------------------------------------------------------===// 1645 // 1646 // In the easiest case, the two live ranges being joined are disjoint, and 1647 // there is no interference to consider. It is quite common, though, to have 1648 // overlapping live ranges, and we need to check if the interference can be 1649 // resolved. 1650 // 1651 // The live range of a single SSA value forms a sub-tree of the dominator tree. 1652 // This means that two SSA values overlap if and only if the def of one value 1653 // is contained in the live range of the other value. As a special case, the 1654 // overlapping values can be defined at the same index. 1655 // 1656 // The interference from an overlapping def can be resolved in these cases: 1657 // 1658 // 1. Coalescable copies. The value is defined by a copy that would become an 1659 // identity copy after joining SrcReg and DstReg. The copy instruction will 1660 // be removed, and the value will be merged with the source value. 1661 // 1662 // There can be several copies back and forth, causing many values to be 1663 // merged into one. We compute a list of ultimate values in the joined live 1664 // range as well as a mappings from the old value numbers. 1665 // 1666 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 1667 // predecessors have a live out value. It doesn't cause real interference, 1668 // and can be merged into the value it overlaps. Like a coalescable copy, it 1669 // can be erased after joining. 1670 // 1671 // 3. Copy of external value. The overlapping def may be a copy of a value that 1672 // is already in the other register. This is like a coalescable copy, but 1673 // the live range of the source register must be trimmed after erasing the 1674 // copy instruction: 1675 // 1676 // %src = COPY %ext 1677 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 1678 // 1679 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 1680 // defining one lane at a time: 1681 // 1682 // %dst:ssub0<def,read-undef> = FOO 1683 // %src = BAR 1684 // %dst:ssub1<def> = COPY %src 1685 // 1686 // The live range of %src overlaps the %dst value defined by FOO, but 1687 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 1688 // which was undef anyway. 1689 // 1690 // The value mapping is more complicated in this case. The final live range 1691 // will have different value numbers for both FOO and BAR, but there is no 1692 // simple mapping from old to new values. It may even be necessary to add 1693 // new PHI values. 1694 // 1695 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 1696 // is live, but never read. This can happen because we don't compute 1697 // individual live ranges per lane. 1698 // 1699 // %dst<def> = FOO 1700 // %src = BAR 1701 // %dst:ssub1<def> = COPY %src 1702 // 1703 // This kind of interference is only resolved locally. If the clobbered 1704 // lane value escapes the block, the join is aborted. 1705 1706 namespace { 1707 /// Track information about values in a single virtual register about to be 1708 /// joined. Objects of this class are always created in pairs - one for each 1709 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 1710 /// pair) 1711 class JoinVals { 1712 /// Live range we work on. 1713 LiveRange &LR; 1714 /// (Main) register we work on. 1715 const unsigned Reg; 1716 1717 /// Reg (and therefore the values in this liverange) will end up as 1718 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 1719 /// CP.SrcIdx. 1720 const unsigned SubIdx; 1721 /// The LaneMask that this liverange will occupy the coalesced register. May 1722 /// be smaller than the lanemask produced by SubIdx when merging subranges. 1723 const LaneBitmask LaneMask; 1724 1725 /// This is true when joining sub register ranges, false when joining main 1726 /// ranges. 1727 const bool SubRangeJoin; 1728 /// Whether the current LiveInterval tracks subregister liveness. 1729 const bool TrackSubRegLiveness; 1730 1731 /// Values that will be present in the final live range. 1732 SmallVectorImpl<VNInfo*> &NewVNInfo; 1733 1734 const CoalescerPair &CP; 1735 LiveIntervals *LIS; 1736 SlotIndexes *Indexes; 1737 const TargetRegisterInfo *TRI; 1738 1739 /// Value number assignments. Maps value numbers in LI to entries in 1740 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 1741 SmallVector<int, 8> Assignments; 1742 1743 /// Conflict resolution for overlapping values. 1744 enum ConflictResolution { 1745 /// No overlap, simply keep this value. 1746 CR_Keep, 1747 1748 /// Merge this value into OtherVNI and erase the defining instruction. 1749 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 1750 /// values. 1751 CR_Erase, 1752 1753 /// Merge this value into OtherVNI but keep the defining instruction. 1754 /// This is for the special case where OtherVNI is defined by the same 1755 /// instruction. 1756 CR_Merge, 1757 1758 /// Keep this value, and have it replace OtherVNI where possible. This 1759 /// complicates value mapping since OtherVNI maps to two different values 1760 /// before and after this def. 1761 /// Used when clobbering undefined or dead lanes. 1762 CR_Replace, 1763 1764 /// Unresolved conflict. Visit later when all values have been mapped. 1765 CR_Unresolved, 1766 1767 /// Unresolvable conflict. Abort the join. 1768 CR_Impossible 1769 }; 1770 1771 /// Per-value info for LI. The lane bit masks are all relative to the final 1772 /// joined register, so they can be compared directly between SrcReg and 1773 /// DstReg. 1774 struct Val { 1775 ConflictResolution Resolution; 1776 1777 /// Lanes written by this def, 0 for unanalyzed values. 1778 LaneBitmask WriteLanes; 1779 1780 /// Lanes with defined values in this register. Other lanes are undef and 1781 /// safe to clobber. 1782 LaneBitmask ValidLanes; 1783 1784 /// Value in LI being redefined by this def. 1785 VNInfo *RedefVNI; 1786 1787 /// Value in the other live range that overlaps this def, if any. 1788 VNInfo *OtherVNI; 1789 1790 /// Is this value an IMPLICIT_DEF that can be erased? 1791 /// 1792 /// IMPLICIT_DEF values should only exist at the end of a basic block that 1793 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 1794 /// safely erased if they are overlapping a live value in the other live 1795 /// interval. 1796 /// 1797 /// Weird control flow graphs and incomplete PHI handling in 1798 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 1799 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 1800 /// normal values. 1801 bool ErasableImplicitDef; 1802 1803 /// True when the live range of this value will be pruned because of an 1804 /// overlapping CR_Replace value in the other live range. 1805 bool Pruned; 1806 1807 /// True once Pruned above has been computed. 1808 bool PrunedComputed; 1809 1810 Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0), 1811 RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false), 1812 Pruned(false), PrunedComputed(false) {} 1813 1814 bool isAnalyzed() const { return WriteLanes != 0; } 1815 }; 1816 1817 /// One entry per value number in LI. 1818 SmallVector<Val, 8> Vals; 1819 1820 /// Compute the bitmask of lanes actually written by DefMI. 1821 /// Set Redef if there are any partial register definitions that depend on the 1822 /// previous value of the register. 1823 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 1824 1825 /// Find the ultimate value that VNI was copied from. 1826 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 1827 1828 bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const; 1829 1830 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 1831 /// Return a conflict resolution when possible, but leave the hard cases as 1832 /// CR_Unresolved. 1833 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 1834 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 1835 /// The recursion always goes upwards in the dominator tree, making loops 1836 /// impossible. 1837 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 1838 1839 /// Compute the value assignment for ValNo in RI. 1840 /// This may be called recursively by analyzeValue(), but never for a ValNo on 1841 /// the stack. 1842 void computeAssignment(unsigned ValNo, JoinVals &Other); 1843 1844 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 1845 /// the extent of the tainted lanes in the block. 1846 /// 1847 /// Multiple values in Other.LR can be affected since partial redefinitions 1848 /// can preserve previously tainted lanes. 1849 /// 1850 /// 1 %dst = VLOAD <-- Define all lanes in %dst 1851 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 1852 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 1853 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 1854 /// 1855 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 1856 /// entry to TaintedVals. 1857 /// 1858 /// Returns false if the tainted lanes extend beyond the basic block. 1859 bool taintExtent(unsigned, LaneBitmask, JoinVals&, 1860 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> >&); 1861 1862 /// Return true if MI uses any of the given Lanes from Reg. 1863 /// This does not include partial redefinitions of Reg. 1864 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; 1865 1866 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 1867 /// be pruned: 1868 /// 1869 /// %dst = COPY %src 1870 /// %src = COPY %dst <-- This value to be pruned. 1871 /// %dst = COPY %src <-- This value is a copy of a pruned value. 1872 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 1873 1874 public: 1875 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 1876 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 1877 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 1878 bool TrackSubRegLiveness) 1879 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 1880 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 1881 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 1882 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) 1883 {} 1884 1885 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 1886 /// Returns false if any conflicts were impossible to resolve. 1887 bool mapValues(JoinVals &Other); 1888 1889 /// Try to resolve conflicts that require all values to be mapped. 1890 /// Returns false if any conflicts were impossible to resolve. 1891 bool resolveConflicts(JoinVals &Other); 1892 1893 /// Prune the live range of values in Other.LR where they would conflict with 1894 /// CR_Replace values in LR. Collect end points for restoring the live range 1895 /// after joining. 1896 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 1897 bool changeInstrs); 1898 1899 /// Removes subranges starting at copies that get removed. This sometimes 1900 /// happens when undefined subranges are copied around. These ranges contain 1901 /// no useful information and can be removed. 1902 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 1903 1904 /// Pruning values in subranges can lead to removing segments in these 1905 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 1906 /// the main range also need to be removed. This function will mark 1907 /// the corresponding values in the main range as pruned, so that 1908 /// eraseInstrs can do the final cleanup. 1909 /// The parameter @p LI must be the interval whose main range is the 1910 /// live range LR. 1911 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 1912 1913 /// Erase any machine instructions that have been coalesced away. 1914 /// Add erased instructions to ErasedInstrs. 1915 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 1916 /// the erased instrs. 1917 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 1918 SmallVectorImpl<unsigned> &ShrinkRegs, 1919 LiveInterval *LI = nullptr); 1920 1921 /// Remove liverange defs at places where implicit defs will be removed. 1922 void removeImplicitDefs(); 1923 1924 /// Get the value assignments suitable for passing to LiveInterval::join. 1925 const int *getAssignments() const { return Assignments.data(); } 1926 }; 1927 } // end anonymous namespace 1928 1929 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 1930 const { 1931 LaneBitmask L = 0; 1932 for (const MachineOperand &MO : DefMI->operands()) { 1933 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 1934 continue; 1935 L |= TRI->getSubRegIndexLaneMask( 1936 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 1937 if (MO.readsReg()) 1938 Redef = true; 1939 } 1940 return L; 1941 } 1942 1943 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 1944 const VNInfo *VNI) const { 1945 unsigned Reg = this->Reg; 1946 1947 while (!VNI->isPHIDef()) { 1948 SlotIndex Def = VNI->def; 1949 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 1950 assert(MI && "No defining instruction"); 1951 if (!MI->isFullCopy()) 1952 return std::make_pair(VNI, Reg); 1953 unsigned SrcReg = MI->getOperand(1).getReg(); 1954 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1955 return std::make_pair(VNI, Reg); 1956 1957 const LiveInterval &LI = LIS->getInterval(SrcReg); 1958 const VNInfo *ValueIn; 1959 // No subrange involved. 1960 if (!SubRangeJoin || !LI.hasSubRanges()) { 1961 LiveQueryResult LRQ = LI.Query(Def); 1962 ValueIn = LRQ.valueIn(); 1963 } else { 1964 // Query subranges. Pick the first matching one. 1965 ValueIn = nullptr; 1966 for (const LiveInterval::SubRange &S : LI.subranges()) { 1967 // Transform lanemask to a mask in the joined live interval. 1968 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 1969 if ((SMask & LaneMask) == 0) 1970 continue; 1971 LiveQueryResult LRQ = S.Query(Def); 1972 ValueIn = LRQ.valueIn(); 1973 break; 1974 } 1975 } 1976 if (ValueIn == nullptr) 1977 break; 1978 VNI = ValueIn; 1979 Reg = SrcReg; 1980 } 1981 return std::make_pair(VNI, Reg); 1982 } 1983 1984 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 1985 const JoinVals &Other) const { 1986 const VNInfo *Orig0; 1987 unsigned Reg0; 1988 std::tie(Orig0, Reg0) = followCopyChain(Value0); 1989 if (Orig0 == Value1) 1990 return true; 1991 1992 const VNInfo *Orig1; 1993 unsigned Reg1; 1994 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 1995 1996 // The values are equal if they are defined at the same place and use the 1997 // same register. Note that we cannot compare VNInfos directly as some of 1998 // them might be from a copy created in mergeSubRangeInto() while the other 1999 // is from the original LiveInterval. 2000 return Orig0->def == Orig1->def && Reg0 == Reg1; 2001 } 2002 2003 JoinVals::ConflictResolution 2004 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2005 Val &V = Vals[ValNo]; 2006 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2007 VNInfo *VNI = LR.getValNumInfo(ValNo); 2008 if (VNI->isUnused()) { 2009 V.WriteLanes = ~0u; 2010 return CR_Keep; 2011 } 2012 2013 // Get the instruction defining this value, compute the lanes written. 2014 const MachineInstr *DefMI = nullptr; 2015 if (VNI->isPHIDef()) { 2016 // Conservatively assume that all lanes in a PHI are valid. 2017 LaneBitmask Lanes = SubRangeJoin ? 1 : TRI->getSubRegIndexLaneMask(SubIdx); 2018 V.ValidLanes = V.WriteLanes = Lanes; 2019 } else { 2020 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2021 assert(DefMI != nullptr); 2022 if (SubRangeJoin) { 2023 // We don't care about the lanes when joining subregister ranges. 2024 V.WriteLanes = V.ValidLanes = 1; 2025 if (DefMI->isImplicitDef()) { 2026 V.ValidLanes = 0; 2027 V.ErasableImplicitDef = true; 2028 } 2029 } else { 2030 bool Redef = false; 2031 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2032 2033 // If this is a read-modify-write instruction, there may be more valid 2034 // lanes than the ones written by this instruction. 2035 // This only covers partial redef operands. DefMI may have normal use 2036 // operands reading the register. They don't contribute valid lanes. 2037 // 2038 // This adds ssub1 to the set of valid lanes in %src: 2039 // 2040 // %src:ssub1<def> = FOO 2041 // 2042 // This leaves only ssub1 valid, making any other lanes undef: 2043 // 2044 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2045 // 2046 // The <read-undef> flag on the def operand means that old lane values are 2047 // not important. 2048 if (Redef) { 2049 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2050 assert((TrackSubRegLiveness || V.RedefVNI) && 2051 "Instruction is reading nonexistent value"); 2052 if (V.RedefVNI != nullptr) { 2053 computeAssignment(V.RedefVNI->id, Other); 2054 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2055 } 2056 } 2057 2058 // An IMPLICIT_DEF writes undef values. 2059 if (DefMI->isImplicitDef()) { 2060 // We normally expect IMPLICIT_DEF values to be live only until the end 2061 // of their block. If the value is really live longer and gets pruned in 2062 // another block, this flag is cleared again. 2063 V.ErasableImplicitDef = true; 2064 V.ValidLanes &= ~V.WriteLanes; 2065 } 2066 } 2067 } 2068 2069 // Find the value in Other that overlaps VNI->def, if any. 2070 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2071 2072 // It is possible that both values are defined by the same instruction, or 2073 // the values are PHIs defined in the same block. When that happens, the two 2074 // values should be merged into one, but not into any preceding value. 2075 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2076 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2077 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2078 2079 // One value stays, the other is merged. Keep the earlier one, or the first 2080 // one we see. 2081 if (OtherVNI->def < VNI->def) 2082 Other.computeAssignment(OtherVNI->id, *this); 2083 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2084 // This is an early-clobber def overlapping a live-in value in the other 2085 // register. Not mergeable. 2086 V.OtherVNI = OtherLRQ.valueIn(); 2087 return CR_Impossible; 2088 } 2089 V.OtherVNI = OtherVNI; 2090 Val &OtherV = Other.Vals[OtherVNI->id]; 2091 // Keep this value, check for conflicts when analyzing OtherVNI. 2092 if (!OtherV.isAnalyzed()) 2093 return CR_Keep; 2094 // Both sides have been analyzed now. 2095 // Allow overlapping PHI values. Any real interference would show up in a 2096 // predecessor, the PHI itself can't introduce any conflicts. 2097 if (VNI->isPHIDef()) 2098 return CR_Merge; 2099 if (V.ValidLanes & OtherV.ValidLanes) 2100 // Overlapping lanes can't be resolved. 2101 return CR_Impossible; 2102 else 2103 return CR_Merge; 2104 } 2105 2106 // No simultaneous def. Is Other live at the def? 2107 V.OtherVNI = OtherLRQ.valueIn(); 2108 if (!V.OtherVNI) 2109 // No overlap, no conflict. 2110 return CR_Keep; 2111 2112 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2113 2114 // We have overlapping values, or possibly a kill of Other. 2115 // Recursively compute assignments up the dominator tree. 2116 Other.computeAssignment(V.OtherVNI->id, *this); 2117 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2118 2119 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2120 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2121 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2122 // technically. 2123 // 2124 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2125 // to erase the IMPLICIT_DEF instruction. 2126 if (OtherV.ErasableImplicitDef && DefMI && 2127 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2128 DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2129 << " extends into BB#" << DefMI->getParent()->getNumber() 2130 << ", keeping it.\n"); 2131 OtherV.ErasableImplicitDef = false; 2132 } 2133 2134 // Allow overlapping PHI values. Any real interference would show up in a 2135 // predecessor, the PHI itself can't introduce any conflicts. 2136 if (VNI->isPHIDef()) 2137 return CR_Replace; 2138 2139 // Check for simple erasable conflicts. 2140 if (DefMI->isImplicitDef()) { 2141 // We need the def for the subregister if there is nothing else live at the 2142 // subrange at this point. 2143 if (TrackSubRegLiveness 2144 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)) == 0) 2145 return CR_Replace; 2146 return CR_Erase; 2147 } 2148 2149 // Include the non-conflict where DefMI is a coalescable copy that kills 2150 // OtherVNI. We still want the copy erased and value numbers merged. 2151 if (CP.isCoalescable(DefMI)) { 2152 // Some of the lanes copied from OtherVNI may be undef, making them undef 2153 // here too. 2154 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2155 return CR_Erase; 2156 } 2157 2158 // This may not be a real conflict if DefMI simply kills Other and defines 2159 // VNI. 2160 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2161 return CR_Keep; 2162 2163 // Handle the case where VNI and OtherVNI can be proven to be identical: 2164 // 2165 // %other = COPY %ext 2166 // %this = COPY %ext <-- Erase this copy 2167 // 2168 if (DefMI->isFullCopy() && !CP.isPartial() 2169 && valuesIdentical(VNI, V.OtherVNI, Other)) 2170 return CR_Erase; 2171 2172 // If the lanes written by this instruction were all undef in OtherVNI, it is 2173 // still safe to join the live ranges. This can't be done with a simple value 2174 // mapping, though - OtherVNI will map to multiple values: 2175 // 2176 // 1 %dst:ssub0 = FOO <-- OtherVNI 2177 // 2 %src = BAR <-- VNI 2178 // 3 %dst:ssub1 = COPY %src<kill> <-- Eliminate this copy. 2179 // 4 BAZ %dst<kill> 2180 // 5 QUUX %src<kill> 2181 // 2182 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2183 // handles this complex value mapping. 2184 if ((V.WriteLanes & OtherV.ValidLanes) == 0) 2185 return CR_Replace; 2186 2187 // If the other live range is killed by DefMI and the live ranges are still 2188 // overlapping, it must be because we're looking at an early clobber def: 2189 // 2190 // %dst<def,early-clobber> = ASM %src<kill> 2191 // 2192 // In this case, it is illegal to merge the two live ranges since the early 2193 // clobber def would clobber %src before it was read. 2194 if (OtherLRQ.isKill()) { 2195 // This case where the def doesn't overlap the kill is handled above. 2196 assert(VNI->def.isEarlyClobber() && 2197 "Only early clobber defs can overlap a kill"); 2198 return CR_Impossible; 2199 } 2200 2201 // VNI is clobbering live lanes in OtherVNI, but there is still the 2202 // possibility that no instructions actually read the clobbered lanes. 2203 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2204 // Otherwise Other.RI wouldn't be live here. 2205 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0) 2206 return CR_Impossible; 2207 2208 // We need to verify that no instructions are reading the clobbered lanes. To 2209 // save compile time, we'll only check that locally. Don't allow the tainted 2210 // value to escape the basic block. 2211 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2212 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2213 return CR_Impossible; 2214 2215 // There are still some things that could go wrong besides clobbered lanes 2216 // being read, for example OtherVNI may be only partially redefined in MBB, 2217 // and some clobbered lanes could escape the block. Save this analysis for 2218 // resolveConflicts() when all values have been mapped. We need to know 2219 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2220 // that now - the recursive analyzeValue() calls must go upwards in the 2221 // dominator tree. 2222 return CR_Unresolved; 2223 } 2224 2225 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2226 Val &V = Vals[ValNo]; 2227 if (V.isAnalyzed()) { 2228 // Recursion should always move up the dominator tree, so ValNo is not 2229 // supposed to reappear before it has been assigned. 2230 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2231 return; 2232 } 2233 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2234 case CR_Erase: 2235 case CR_Merge: 2236 // Merge this ValNo into OtherVNI. 2237 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2238 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2239 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2240 DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@' 2241 << LR.getValNumInfo(ValNo)->def << " into " 2242 << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2243 << V.OtherVNI->def << " --> @" 2244 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2245 break; 2246 case CR_Replace: 2247 case CR_Unresolved: { 2248 // The other value is going to be pruned if this join is successful. 2249 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2250 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2251 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2252 // its lanes. 2253 if ((OtherV.WriteLanes & ~V.ValidLanes) != 0 && TrackSubRegLiveness) 2254 OtherV.ErasableImplicitDef = false; 2255 OtherV.Pruned = true; 2256 LLVM_FALLTHROUGH; 2257 } 2258 default: 2259 // This value number needs to go in the final joined live range. 2260 Assignments[ValNo] = NewVNInfo.size(); 2261 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2262 break; 2263 } 2264 } 2265 2266 bool JoinVals::mapValues(JoinVals &Other) { 2267 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2268 computeAssignment(i, Other); 2269 if (Vals[i].Resolution == CR_Impossible) { 2270 DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i 2271 << '@' << LR.getValNumInfo(i)->def << '\n'); 2272 return false; 2273 } 2274 } 2275 return true; 2276 } 2277 2278 bool JoinVals:: 2279 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2280 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> > &TaintExtent) { 2281 VNInfo *VNI = LR.getValNumInfo(ValNo); 2282 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2283 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2284 2285 // Scan Other.LR from VNI.def to MBBEnd. 2286 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2287 assert(OtherI != Other.LR.end() && "No conflict?"); 2288 do { 2289 // OtherI is pointing to a tainted value. Abort the join if the tainted 2290 // lanes escape the block. 2291 SlotIndex End = OtherI->end; 2292 if (End >= MBBEnd) { 2293 DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':' 2294 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2295 return false; 2296 } 2297 DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':' 2298 << OtherI->valno->id << '@' << OtherI->start 2299 << " to " << End << '\n'); 2300 // A dead def is not a problem. 2301 if (End.isDead()) 2302 break; 2303 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2304 2305 // Check for another def in the MBB. 2306 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2307 break; 2308 2309 // Lanes written by the new def are no longer tainted. 2310 const Val &OV = Other.Vals[OtherI->valno->id]; 2311 TaintedLanes &= ~OV.WriteLanes; 2312 if (!OV.RedefVNI) 2313 break; 2314 } while (TaintedLanes); 2315 return true; 2316 } 2317 2318 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, 2319 LaneBitmask Lanes) const { 2320 if (MI.isDebugValue()) 2321 return false; 2322 for (const MachineOperand &MO : MI.operands()) { 2323 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2324 continue; 2325 if (!MO.readsReg()) 2326 continue; 2327 if (Lanes & TRI->getSubRegIndexLaneMask( 2328 TRI->composeSubRegIndices(SubIdx, MO.getSubReg()))) 2329 return true; 2330 } 2331 return false; 2332 } 2333 2334 bool JoinVals::resolveConflicts(JoinVals &Other) { 2335 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2336 Val &V = Vals[i]; 2337 assert (V.Resolution != CR_Impossible && "Unresolvable conflict"); 2338 if (V.Resolution != CR_Unresolved) 2339 continue; 2340 DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i 2341 << '@' << LR.getValNumInfo(i)->def << '\n'); 2342 if (SubRangeJoin) 2343 return false; 2344 2345 ++NumLaneConflicts; 2346 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2347 VNInfo *VNI = LR.getValNumInfo(i); 2348 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2349 2350 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2351 // join, those lanes will be tainted with a wrong value. Get the extent of 2352 // the tainted lanes. 2353 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2354 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2355 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2356 // Tainted lanes would extend beyond the basic block. 2357 return false; 2358 2359 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2360 2361 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2362 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2363 MachineBasicBlock::iterator MI = MBB->begin(); 2364 if (!VNI->isPHIDef()) { 2365 MI = Indexes->getInstructionFromIndex(VNI->def); 2366 // No need to check the instruction defining VNI for reads. 2367 ++MI; 2368 } 2369 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2370 "Interference ends on VNI->def. Should have been handled earlier"); 2371 MachineInstr *LastMI = 2372 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2373 assert(LastMI && "Range must end at a proper instruction"); 2374 unsigned TaintNum = 0; 2375 for (;;) { 2376 assert(MI != MBB->end() && "Bad LastMI"); 2377 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2378 DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2379 return false; 2380 } 2381 // LastMI is the last instruction to use the current value. 2382 if (&*MI == LastMI) { 2383 if (++TaintNum == TaintExtent.size()) 2384 break; 2385 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2386 assert(LastMI && "Range must end at a proper instruction"); 2387 TaintedLanes = TaintExtent[TaintNum].second; 2388 } 2389 ++MI; 2390 } 2391 2392 // The tainted lanes are unused. 2393 V.Resolution = CR_Replace; 2394 ++NumLaneResolves; 2395 } 2396 return true; 2397 } 2398 2399 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2400 Val &V = Vals[ValNo]; 2401 if (V.Pruned || V.PrunedComputed) 2402 return V.Pruned; 2403 2404 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2405 return V.Pruned; 2406 2407 // Follow copies up the dominator tree and check if any intermediate value 2408 // has been pruned. 2409 V.PrunedComputed = true; 2410 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2411 return V.Pruned; 2412 } 2413 2414 void JoinVals::pruneValues(JoinVals &Other, 2415 SmallVectorImpl<SlotIndex> &EndPoints, 2416 bool changeInstrs) { 2417 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2418 SlotIndex Def = LR.getValNumInfo(i)->def; 2419 switch (Vals[i].Resolution) { 2420 case CR_Keep: 2421 break; 2422 case CR_Replace: { 2423 // This value takes precedence over the value in Other.LR. 2424 LIS->pruneValue(Other.LR, Def, &EndPoints); 2425 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2426 // instructions are only inserted to provide a live-out value for PHI 2427 // predecessors, so the instruction should simply go away once its value 2428 // has been replaced. 2429 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2430 bool EraseImpDef = OtherV.ErasableImplicitDef && 2431 OtherV.Resolution == CR_Keep; 2432 if (!Def.isBlock()) { 2433 if (changeInstrs) { 2434 // Remove <def,read-undef> flags. This def is now a partial redef. 2435 // Also remove <def,dead> flags since the joined live range will 2436 // continue past this instruction. 2437 for (MachineOperand &MO : 2438 Indexes->getInstructionFromIndex(Def)->operands()) { 2439 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 2440 if (MO.getSubReg() != 0) 2441 MO.setIsUndef(EraseImpDef); 2442 MO.setIsDead(false); 2443 } 2444 } 2445 } 2446 // This value will reach instructions below, but we need to make sure 2447 // the live range also reaches the instruction at Def. 2448 if (!EraseImpDef) 2449 EndPoints.push_back(Def); 2450 } 2451 DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def 2452 << ": " << Other.LR << '\n'); 2453 break; 2454 } 2455 case CR_Erase: 2456 case CR_Merge: 2457 if (isPrunedValue(i, Other)) { 2458 // This value is ultimately a copy of a pruned value in LR or Other.LR. 2459 // We can no longer trust the value mapping computed by 2460 // computeAssignment(), the value that was originally copied could have 2461 // been replaced. 2462 LIS->pruneValue(LR, Def, &EndPoints); 2463 DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at " 2464 << Def << ": " << LR << '\n'); 2465 } 2466 break; 2467 case CR_Unresolved: 2468 case CR_Impossible: 2469 llvm_unreachable("Unresolved conflicts"); 2470 } 2471 } 2472 } 2473 2474 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 2475 // Look for values being erased. 2476 bool DidPrune = false; 2477 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2478 if (Vals[i].Resolution != CR_Erase) 2479 continue; 2480 2481 // Check subranges at the point where the copy will be removed. 2482 SlotIndex Def = LR.getValNumInfo(i)->def; 2483 for (LiveInterval::SubRange &S : LI.subranges()) { 2484 LiveQueryResult Q = S.Query(Def); 2485 2486 // If a subrange starts at the copy then an undefined value has been 2487 // copied and we must remove that subrange value as well. 2488 VNInfo *ValueOut = Q.valueOutOrDead(); 2489 if (ValueOut != nullptr && Q.valueIn() == nullptr) { 2490 DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 2491 << " at " << Def << "\n"); 2492 LIS->pruneValue(S, Def, nullptr); 2493 DidPrune = true; 2494 // Mark value number as unused. 2495 ValueOut->markUnused(); 2496 continue; 2497 } 2498 // If a subrange ends at the copy, then a value was copied but only 2499 // partially used later. Shrink the subregister range appropriately. 2500 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 2501 DEBUG(dbgs() << "\t\tDead uses at sublane " << PrintLaneMask(S.LaneMask) 2502 << " at " << Def << "\n"); 2503 ShrinkMask |= S.LaneMask; 2504 } 2505 } 2506 } 2507 if (DidPrune) 2508 LI.removeEmptySubRanges(); 2509 } 2510 2511 /// Check if any of the subranges of @p LI contain a definition at @p Def. 2512 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 2513 for (LiveInterval::SubRange &SR : LI.subranges()) { 2514 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 2515 if (VNI->def == Def) 2516 return true; 2517 } 2518 return false; 2519 } 2520 2521 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 2522 assert(&static_cast<LiveRange&>(LI) == &LR); 2523 2524 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2525 if (Vals[i].Resolution != CR_Keep) 2526 continue; 2527 VNInfo *VNI = LR.getValNumInfo(i); 2528 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 2529 continue; 2530 Vals[i].Pruned = true; 2531 ShrinkMainRange = true; 2532 } 2533 } 2534 2535 void JoinVals::removeImplicitDefs() { 2536 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2537 Val &V = Vals[i]; 2538 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 2539 continue; 2540 2541 VNInfo *VNI = LR.getValNumInfo(i); 2542 VNI->markUnused(); 2543 LR.removeValNo(VNI); 2544 } 2545 } 2546 2547 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2548 SmallVectorImpl<unsigned> &ShrinkRegs, 2549 LiveInterval *LI) { 2550 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2551 // Get the def location before markUnused() below invalidates it. 2552 SlotIndex Def = LR.getValNumInfo(i)->def; 2553 switch (Vals[i].Resolution) { 2554 case CR_Keep: { 2555 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 2556 // longer. The IMPLICIT_DEF instructions are only inserted by 2557 // PHIElimination to guarantee that all PHI predecessors have a value. 2558 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 2559 break; 2560 // Remove value number i from LR. 2561 // For intervals with subranges, removing a segment from the main range 2562 // may require extending the previous segment: for each definition of 2563 // a subregister, there will be a corresponding def in the main range. 2564 // That def may fall in the middle of a segment from another subrange. 2565 // In such cases, removing this def from the main range must be 2566 // complemented by extending the main range to account for the liveness 2567 // of the other subrange. 2568 VNInfo *VNI = LR.getValNumInfo(i); 2569 SlotIndex Def = VNI->def; 2570 // The new end point of the main range segment to be extended. 2571 SlotIndex NewEnd; 2572 if (LI != nullptr) { 2573 LiveRange::iterator I = LR.FindSegmentContaining(Def); 2574 assert(I != LR.end()); 2575 // Do not extend beyond the end of the segment being removed. 2576 // The segment may have been pruned in preparation for joining 2577 // live ranges. 2578 NewEnd = I->end; 2579 } 2580 2581 LR.removeValNo(VNI); 2582 // Note that this VNInfo is reused and still referenced in NewVNInfo, 2583 // make it appear like an unused value number. 2584 VNI->markUnused(); 2585 2586 if (LI != nullptr && LI->hasSubRanges()) { 2587 assert(static_cast<LiveRange*>(LI) == &LR); 2588 // Determine the end point based on the subrange information: 2589 // minimum of (earliest def of next segment, 2590 // latest end point of containing segment) 2591 SlotIndex ED, LE; 2592 for (LiveInterval::SubRange &SR : LI->subranges()) { 2593 LiveRange::iterator I = SR.find(Def); 2594 if (I == SR.end()) 2595 continue; 2596 if (I->start > Def) 2597 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 2598 else 2599 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 2600 } 2601 if (LE.isValid()) 2602 NewEnd = std::min(NewEnd, LE); 2603 if (ED.isValid()) 2604 NewEnd = std::min(NewEnd, ED); 2605 2606 // We only want to do the extension if there was a subrange that 2607 // was live across Def. 2608 if (LE.isValid()) { 2609 LiveRange::iterator S = LR.find(Def); 2610 if (S != LR.begin()) 2611 std::prev(S)->end = NewEnd; 2612 } 2613 } 2614 DEBUG({ 2615 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 2616 if (LI != nullptr) 2617 dbgs() << "\t\t LHS = " << *LI << '\n'; 2618 }); 2619 LLVM_FALLTHROUGH; 2620 } 2621 2622 case CR_Erase: { 2623 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2624 assert(MI && "No instruction to erase"); 2625 if (MI->isCopy()) { 2626 unsigned Reg = MI->getOperand(1).getReg(); 2627 if (TargetRegisterInfo::isVirtualRegister(Reg) && 2628 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 2629 ShrinkRegs.push_back(Reg); 2630 } 2631 ErasedInstrs.insert(MI); 2632 DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 2633 LIS->RemoveMachineInstrFromMaps(*MI); 2634 MI->eraseFromParent(); 2635 break; 2636 } 2637 default: 2638 break; 2639 } 2640 } 2641 } 2642 2643 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 2644 LaneBitmask LaneMask, 2645 const CoalescerPair &CP) { 2646 SmallVector<VNInfo*, 16> NewVNInfo; 2647 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 2648 NewVNInfo, CP, LIS, TRI, true, true); 2649 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 2650 NewVNInfo, CP, LIS, TRI, true, true); 2651 2652 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 2653 // We should be able to resolve all conflicts here as we could successfully do 2654 // it on the mainrange already. There is however a problem when multiple 2655 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 2656 // interferences. 2657 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 2658 // We already determined that it is legal to merge the intervals, so this 2659 // should never fail. 2660 llvm_unreachable("*** Couldn't join subrange!\n"); 2661 } 2662 if (!LHSVals.resolveConflicts(RHSVals) || 2663 !RHSVals.resolveConflicts(LHSVals)) { 2664 // We already determined that it is legal to merge the intervals, so this 2665 // should never fail. 2666 llvm_unreachable("*** Couldn't join subrange!\n"); 2667 } 2668 2669 // The merging algorithm in LiveInterval::join() can't handle conflicting 2670 // value mappings, so we need to remove any live ranges that overlap a 2671 // CR_Replace resolution. Collect a set of end points that can be used to 2672 // restore the live range after joining. 2673 SmallVector<SlotIndex, 8> EndPoints; 2674 LHSVals.pruneValues(RHSVals, EndPoints, false); 2675 RHSVals.pruneValues(LHSVals, EndPoints, false); 2676 2677 LHSVals.removeImplicitDefs(); 2678 RHSVals.removeImplicitDefs(); 2679 2680 LRange.verify(); 2681 RRange.verify(); 2682 2683 // Join RRange into LHS. 2684 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 2685 NewVNInfo); 2686 2687 DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n"); 2688 if (EndPoints.empty()) 2689 return; 2690 2691 // Recompute the parts of the live range we had to remove because of 2692 // CR_Replace conflicts. 2693 DEBUG({ 2694 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 2695 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 2696 dbgs() << EndPoints[i]; 2697 if (i != n-1) 2698 dbgs() << ','; 2699 } 2700 dbgs() << ": " << LRange << '\n'; 2701 }); 2702 LIS->extendToIndices(LRange, EndPoints); 2703 } 2704 2705 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 2706 const LiveRange &ToMerge, 2707 LaneBitmask LaneMask, 2708 CoalescerPair &CP) { 2709 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2710 for (LiveInterval::SubRange &R : LI.subranges()) { 2711 LaneBitmask RMask = R.LaneMask; 2712 // LaneMask of subregisters common to subrange R and ToMerge. 2713 LaneBitmask Common = RMask & LaneMask; 2714 // There is nothing to do without common subregs. 2715 if (Common == 0) 2716 continue; 2717 2718 DEBUG(dbgs() << "\t\tCopy+Merge " << PrintLaneMask(RMask) << " into " 2719 << PrintLaneMask(Common) << '\n'); 2720 // LaneMask of subregisters contained in the R range but not in ToMerge, 2721 // they have to split into their own subrange. 2722 LaneBitmask LRest = RMask & ~LaneMask; 2723 LiveInterval::SubRange *CommonRange; 2724 if (LRest != 0) { 2725 R.LaneMask = LRest; 2726 DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(LRest) << '\n'); 2727 // Duplicate SubRange for newly merged common stuff. 2728 CommonRange = LI.createSubRangeFrom(Allocator, Common, R); 2729 } else { 2730 // Reuse the existing range. 2731 R.LaneMask = Common; 2732 CommonRange = &R; 2733 } 2734 LiveRange RangeCopy(ToMerge, Allocator); 2735 joinSubRegRanges(*CommonRange, RangeCopy, Common, CP); 2736 LaneMask &= ~RMask; 2737 } 2738 2739 if (LaneMask != 0) { 2740 DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(LaneMask) << '\n'); 2741 LI.createSubRangeFrom(Allocator, LaneMask, ToMerge); 2742 } 2743 } 2744 2745 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 2746 SmallVector<VNInfo*, 16> NewVNInfo; 2747 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 2748 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 2749 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 2750 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), 0, NewVNInfo, CP, LIS, 2751 TRI, false, TrackSubRegLiveness); 2752 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), 0, NewVNInfo, CP, LIS, 2753 TRI, false, TrackSubRegLiveness); 2754 2755 DEBUG(dbgs() << "\t\tRHS = " << RHS 2756 << "\n\t\tLHS = " << LHS 2757 << '\n'); 2758 2759 // First compute NewVNInfo and the simple value mappings. 2760 // Detect impossible conflicts early. 2761 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 2762 return false; 2763 2764 // Some conflicts can only be resolved after all values have been mapped. 2765 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 2766 return false; 2767 2768 // All clear, the live ranges can be merged. 2769 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 2770 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2771 2772 // Transform lanemasks from the LHS to masks in the coalesced register and 2773 // create initial subranges if necessary. 2774 unsigned DstIdx = CP.getDstIdx(); 2775 if (!LHS.hasSubRanges()) { 2776 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 2777 : TRI->getSubRegIndexLaneMask(DstIdx); 2778 // LHS must support subregs or we wouldn't be in this codepath. 2779 assert(Mask != 0); 2780 LHS.createSubRangeFrom(Allocator, Mask, LHS); 2781 } else if (DstIdx != 0) { 2782 // Transform LHS lanemasks to new register class if necessary. 2783 for (LiveInterval::SubRange &R : LHS.subranges()) { 2784 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 2785 R.LaneMask = Mask; 2786 } 2787 } 2788 DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg()) 2789 << ' ' << LHS << '\n'); 2790 2791 // Determine lanemasks of RHS in the coalesced register and merge subranges. 2792 unsigned SrcIdx = CP.getSrcIdx(); 2793 if (!RHS.hasSubRanges()) { 2794 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 2795 : TRI->getSubRegIndexLaneMask(SrcIdx); 2796 mergeSubRangeInto(LHS, RHS, Mask, CP); 2797 } else { 2798 // Pair up subranges and merge. 2799 for (LiveInterval::SubRange &R : RHS.subranges()) { 2800 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 2801 mergeSubRangeInto(LHS, R, Mask, CP); 2802 } 2803 } 2804 DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 2805 2806 // Pruning implicit defs from subranges may result in the main range 2807 // having stale segments. 2808 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 2809 2810 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 2811 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 2812 } 2813 2814 // The merging algorithm in LiveInterval::join() can't handle conflicting 2815 // value mappings, so we need to remove any live ranges that overlap a 2816 // CR_Replace resolution. Collect a set of end points that can be used to 2817 // restore the live range after joining. 2818 SmallVector<SlotIndex, 8> EndPoints; 2819 LHSVals.pruneValues(RHSVals, EndPoints, true); 2820 RHSVals.pruneValues(LHSVals, EndPoints, true); 2821 2822 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 2823 // registers to require trimming. 2824 SmallVector<unsigned, 8> ShrinkRegs; 2825 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 2826 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 2827 while (!ShrinkRegs.empty()) 2828 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 2829 2830 // Join RHS into LHS. 2831 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 2832 2833 // Kill flags are going to be wrong if the live ranges were overlapping. 2834 // Eventually, we should simply clear all kill flags when computing live 2835 // ranges. They are reinserted after register allocation. 2836 MRI->clearKillFlags(LHS.reg); 2837 MRI->clearKillFlags(RHS.reg); 2838 2839 if (!EndPoints.empty()) { 2840 // Recompute the parts of the live range we had to remove because of 2841 // CR_Replace conflicts. 2842 DEBUG({ 2843 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 2844 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 2845 dbgs() << EndPoints[i]; 2846 if (i != n-1) 2847 dbgs() << ','; 2848 } 2849 dbgs() << ": " << LHS << '\n'; 2850 }); 2851 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 2852 } 2853 2854 return true; 2855 } 2856 2857 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 2858 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 2859 } 2860 2861 namespace { 2862 /// Information concerning MBB coalescing priority. 2863 struct MBBPriorityInfo { 2864 MachineBasicBlock *MBB; 2865 unsigned Depth; 2866 bool IsSplit; 2867 2868 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 2869 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 2870 }; 2871 } 2872 2873 /// C-style comparator that sorts first based on the loop depth of the basic 2874 /// block (the unsigned), and then on the MBB number. 2875 /// 2876 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 2877 static int compareMBBPriority(const MBBPriorityInfo *LHS, 2878 const MBBPriorityInfo *RHS) { 2879 // Deeper loops first 2880 if (LHS->Depth != RHS->Depth) 2881 return LHS->Depth > RHS->Depth ? -1 : 1; 2882 2883 // Try to unsplit critical edges next. 2884 if (LHS->IsSplit != RHS->IsSplit) 2885 return LHS->IsSplit ? -1 : 1; 2886 2887 // Prefer blocks that are more connected in the CFG. This takes care of 2888 // the most difficult copies first while intervals are short. 2889 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 2890 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 2891 if (cl != cr) 2892 return cl > cr ? -1 : 1; 2893 2894 // As a last resort, sort by block number. 2895 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 2896 } 2897 2898 /// \returns true if the given copy uses or defines a local live range. 2899 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 2900 if (!Copy->isCopy()) 2901 return false; 2902 2903 if (Copy->getOperand(1).isUndef()) 2904 return false; 2905 2906 unsigned SrcReg = Copy->getOperand(1).getReg(); 2907 unsigned DstReg = Copy->getOperand(0).getReg(); 2908 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 2909 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 2910 return false; 2911 2912 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 2913 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 2914 } 2915 2916 bool RegisterCoalescer:: 2917 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 2918 bool Progress = false; 2919 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 2920 if (!CurrList[i]) 2921 continue; 2922 // Skip instruction pointers that have already been erased, for example by 2923 // dead code elimination. 2924 if (ErasedInstrs.erase(CurrList[i])) { 2925 CurrList[i] = nullptr; 2926 continue; 2927 } 2928 bool Again = false; 2929 bool Success = joinCopy(CurrList[i], Again); 2930 Progress |= Success; 2931 if (Success || !Again) 2932 CurrList[i] = nullptr; 2933 } 2934 return Progress; 2935 } 2936 2937 /// Check if DstReg is a terminal node. 2938 /// I.e., it does not have any affinity other than \p Copy. 2939 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 2940 const MachineRegisterInfo *MRI) { 2941 assert(Copy.isCopyLike()); 2942 // Check if the destination of this copy as any other affinity. 2943 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 2944 if (&MI != &Copy && MI.isCopyLike()) 2945 return false; 2946 return true; 2947 } 2948 2949 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 2950 assert(Copy.isCopyLike()); 2951 if (!UseTerminalRule) 2952 return false; 2953 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 2954 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg); 2955 // Check if the destination of this copy has any other affinity. 2956 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 2957 // If SrcReg is a physical register, the copy won't be coalesced. 2958 // Ignoring it may have other side effect (like missing 2959 // rematerialization). So keep it. 2960 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 2961 !isTerminalReg(DstReg, Copy, MRI)) 2962 return false; 2963 2964 // DstReg is a terminal node. Check if it interferes with any other 2965 // copy involving SrcReg. 2966 const MachineBasicBlock *OrigBB = Copy.getParent(); 2967 const LiveInterval &DstLI = LIS->getInterval(DstReg); 2968 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 2969 // Technically we should check if the weight of the new copy is 2970 // interesting compared to the other one and update the weight 2971 // of the copies accordingly. However, this would only work if 2972 // we would gather all the copies first then coalesce, whereas 2973 // right now we interleave both actions. 2974 // For now, just consider the copies that are in the same block. 2975 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 2976 continue; 2977 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 2978 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 2979 OtherSubReg); 2980 if (OtherReg == SrcReg) 2981 OtherReg = OtherSrcReg; 2982 // Check if OtherReg is a non-terminal. 2983 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) || 2984 isTerminalReg(OtherReg, MI, MRI)) 2985 continue; 2986 // Check that OtherReg interfere with DstReg. 2987 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 2988 DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n'); 2989 return true; 2990 } 2991 } 2992 return false; 2993 } 2994 2995 void 2996 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 2997 DEBUG(dbgs() << MBB->getName() << ":\n"); 2998 2999 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3000 // yet, it might invalidate the iterator. 3001 const unsigned PrevSize = WorkList.size(); 3002 if (JoinGlobalCopies) { 3003 SmallVector<MachineInstr*, 2> LocalTerminals; 3004 SmallVector<MachineInstr*, 2> GlobalTerminals; 3005 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3006 // are not inherently easier to resolve, but slightly preferable until we 3007 // have local live range splitting. In particular this is required by 3008 // cmp+jmp macro fusion. 3009 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3010 MII != E; ++MII) { 3011 if (!MII->isCopyLike()) 3012 continue; 3013 bool ApplyTerminalRule = applyTerminalRule(*MII); 3014 if (isLocalCopy(&(*MII), LIS)) { 3015 if (ApplyTerminalRule) 3016 LocalTerminals.push_back(&(*MII)); 3017 else 3018 LocalWorkList.push_back(&(*MII)); 3019 } else { 3020 if (ApplyTerminalRule) 3021 GlobalTerminals.push_back(&(*MII)); 3022 else 3023 WorkList.push_back(&(*MII)); 3024 } 3025 } 3026 // Append the copies evicted by the terminal rule at the end of the list. 3027 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3028 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3029 } 3030 else { 3031 SmallVector<MachineInstr*, 2> Terminals; 3032 for (MachineInstr &MII : *MBB) 3033 if (MII.isCopyLike()) { 3034 if (applyTerminalRule(MII)) 3035 Terminals.push_back(&MII); 3036 else 3037 WorkList.push_back(&MII); 3038 } 3039 // Append the copies evicted by the terminal rule at the end of the list. 3040 WorkList.append(Terminals.begin(), Terminals.end()); 3041 } 3042 // Try coalescing the collected copies immediately, and remove the nulls. 3043 // This prevents the WorkList from getting too large since most copies are 3044 // joinable on the first attempt. 3045 MutableArrayRef<MachineInstr*> 3046 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3047 if (copyCoalesceWorkList(CurrList)) 3048 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3049 (MachineInstr*)nullptr), WorkList.end()); 3050 } 3051 3052 void RegisterCoalescer::coalesceLocals() { 3053 copyCoalesceWorkList(LocalWorkList); 3054 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3055 if (LocalWorkList[j]) 3056 WorkList.push_back(LocalWorkList[j]); 3057 } 3058 LocalWorkList.clear(); 3059 } 3060 3061 void RegisterCoalescer::joinAllIntervals() { 3062 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3063 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3064 3065 std::vector<MBBPriorityInfo> MBBs; 3066 MBBs.reserve(MF->size()); 3067 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3068 MachineBasicBlock *MBB = &*I; 3069 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3070 JoinSplitEdges && isSplitEdge(MBB))); 3071 } 3072 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3073 3074 // Coalesce intervals in MBB priority order. 3075 unsigned CurrDepth = UINT_MAX; 3076 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3077 // Try coalescing the collected local copies for deeper loops. 3078 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3079 coalesceLocals(); 3080 CurrDepth = MBBs[i].Depth; 3081 } 3082 copyCoalesceInMBB(MBBs[i].MBB); 3083 } 3084 coalesceLocals(); 3085 3086 // Joining intervals can allow other intervals to be joined. Iteratively join 3087 // until we make no progress. 3088 while (copyCoalesceWorkList(WorkList)) 3089 /* empty */ ; 3090 } 3091 3092 void RegisterCoalescer::releaseMemory() { 3093 ErasedInstrs.clear(); 3094 WorkList.clear(); 3095 DeadDefs.clear(); 3096 InflateRegs.clear(); 3097 } 3098 3099 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3100 MF = &fn; 3101 MRI = &fn.getRegInfo(); 3102 TM = &fn.getTarget(); 3103 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3104 TRI = STI.getRegisterInfo(); 3105 TII = STI.getInstrInfo(); 3106 LIS = &getAnalysis<LiveIntervals>(); 3107 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3108 Loops = &getAnalysis<MachineLoopInfo>(); 3109 if (EnableGlobalCopies == cl::BOU_UNSET) 3110 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3111 else 3112 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3113 3114 // The MachineScheduler does not currently require JoinSplitEdges. This will 3115 // either be enabled unconditionally or replaced by a more general live range 3116 // splitting optimization. 3117 JoinSplitEdges = EnableJoinSplits; 3118 3119 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3120 << "********** Function: " << MF->getName() << '\n'); 3121 3122 if (VerifyCoalescing) 3123 MF->verify(this, "Before register coalescing"); 3124 3125 RegClassInfo.runOnMachineFunction(fn); 3126 3127 // Join (coalesce) intervals if requested. 3128 if (EnableJoining) 3129 joinAllIntervals(); 3130 3131 // After deleting a lot of copies, register classes may be less constrained. 3132 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3133 // DPR inflation. 3134 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3135 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3136 InflateRegs.end()); 3137 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n"); 3138 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3139 unsigned Reg = InflateRegs[i]; 3140 if (MRI->reg_nodbg_empty(Reg)) 3141 continue; 3142 if (MRI->recomputeRegClass(Reg)) { 3143 DEBUG(dbgs() << PrintReg(Reg) << " inflated to " 3144 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3145 ++NumInflated; 3146 3147 LiveInterval &LI = LIS->getInterval(Reg); 3148 if (LI.hasSubRanges()) { 3149 // If the inflated register class does not support subregisters anymore 3150 // remove the subranges. 3151 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3152 LI.clearSubRanges(); 3153 } else { 3154 #ifndef NDEBUG 3155 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3156 // If subranges are still supported, then the same subregs 3157 // should still be supported. 3158 for (LiveInterval::SubRange &S : LI.subranges()) { 3159 assert((S.LaneMask & ~MaxMask) == 0); 3160 } 3161 #endif 3162 } 3163 } 3164 } 3165 } 3166 3167 DEBUG(dump()); 3168 if (VerifyCoalescing) 3169 MF->verify(this, "After register coalescing"); 3170 return true; 3171 } 3172 3173 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3174 LIS->print(O, m); 3175 } 3176