1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic RegisterCoalescer interface which 10 // is used as the common interface used by all clients and 11 // implementations of register coalescing. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "RegisterCoalescer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetOpcodes.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/MC/LaneBitmask.h" 44 #include "llvm/MC/MCInstrDesc.h" 45 #include "llvm/MC/MCRegisterInfo.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <iterator> 55 #include <limits> 56 #include <tuple> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "regalloc" 63 64 STATISTIC(numJoins , "Number of interval joins performed"); 65 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 66 STATISTIC(numCommutes , "Number of instruction commuting performed"); 67 STATISTIC(numExtends , "Number of copies extended"); 68 STATISTIC(NumReMats , "Number of instructions re-materialized"); 69 STATISTIC(NumInflated , "Number of register classes inflated"); 70 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 71 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 72 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called"); 73 74 static cl::opt<bool> EnableJoining("join-liveintervals", 75 cl::desc("Coalesce copies (default=true)"), 76 cl::init(true), cl::Hidden); 77 78 static cl::opt<bool> UseTerminalRule("terminal-rule", 79 cl::desc("Apply the terminal rule"), 80 cl::init(false), cl::Hidden); 81 82 /// Temporary flag to test critical edge unsplitting. 83 static cl::opt<bool> 84 EnableJoinSplits("join-splitedges", 85 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 86 87 /// Temporary flag to test global copy optimization. 88 static cl::opt<cl::boolOrDefault> 89 EnableGlobalCopies("join-globalcopies", 90 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 91 cl::init(cl::BOU_UNSET), cl::Hidden); 92 93 static cl::opt<bool> 94 VerifyCoalescing("verify-coalescing", 95 cl::desc("Verify machine instrs before and after register coalescing"), 96 cl::Hidden); 97 98 static cl::opt<unsigned> LateRematUpdateThreshold( 99 "late-remat-update-threshold", cl::Hidden, 100 cl::desc("During rematerialization for a copy, if the def instruction has " 101 "many other copy uses to be rematerialized, delay the multiple " 102 "separate live interval update work and do them all at once after " 103 "all those rematerialization are done. It will save a lot of " 104 "repeated work. "), 105 cl::init(100)); 106 107 static cl::opt<unsigned> LargeIntervalSizeThreshold( 108 "large-interval-size-threshold", cl::Hidden, 109 cl::desc("If the valnos size of an interval is larger than the threshold, " 110 "it is regarded as a large interval. "), 111 cl::init(100)); 112 113 static cl::opt<unsigned> LargeIntervalFreqThreshold( 114 "large-interval-freq-threshold", cl::Hidden, 115 cl::desc("For a large interval, if it is coalesed with other live " 116 "intervals many times more than the threshold, stop its " 117 "coalescing to control the compile time. "), 118 cl::init(100)); 119 120 namespace { 121 122 class RegisterCoalescer : public MachineFunctionPass, 123 private LiveRangeEdit::Delegate { 124 MachineFunction* MF; 125 MachineRegisterInfo* MRI; 126 const TargetRegisterInfo* TRI; 127 const TargetInstrInfo* TII; 128 LiveIntervals *LIS; 129 const MachineLoopInfo* Loops; 130 AliasAnalysis *AA; 131 RegisterClassInfo RegClassInfo; 132 133 /// A LaneMask to remember on which subregister live ranges we need to call 134 /// shrinkToUses() later. 135 LaneBitmask ShrinkMask; 136 137 /// True if the main range of the currently coalesced intervals should be 138 /// checked for smaller live intervals. 139 bool ShrinkMainRange; 140 141 /// True if the coalescer should aggressively coalesce global copies 142 /// in favor of keeping local copies. 143 bool JoinGlobalCopies; 144 145 /// True if the coalescer should aggressively coalesce fall-thru 146 /// blocks exclusively containing copies. 147 bool JoinSplitEdges; 148 149 /// Copy instructions yet to be coalesced. 150 SmallVector<MachineInstr*, 8> WorkList; 151 SmallVector<MachineInstr*, 8> LocalWorkList; 152 153 /// Set of instruction pointers that have been erased, and 154 /// that may be present in WorkList. 155 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 156 157 /// Dead instructions that are about to be deleted. 158 SmallVector<MachineInstr*, 8> DeadDefs; 159 160 /// Virtual registers to be considered for register class inflation. 161 SmallVector<unsigned, 8> InflateRegs; 162 163 /// The collection of live intervals which should have been updated 164 /// immediately after rematerialiation but delayed until 165 /// lateLiveIntervalUpdate is called. 166 DenseSet<unsigned> ToBeUpdated; 167 168 /// Record how many times the large live interval with many valnos 169 /// has been tried to join with other live interval. 170 DenseMap<unsigned, unsigned long> LargeLIVisitCounter; 171 172 /// Recursively eliminate dead defs in DeadDefs. 173 void eliminateDeadDefs(); 174 175 /// LiveRangeEdit callback for eliminateDeadDefs(). 176 void LRE_WillEraseInstruction(MachineInstr *MI) override; 177 178 /// Coalesce the LocalWorkList. 179 void coalesceLocals(); 180 181 /// Join compatible live intervals 182 void joinAllIntervals(); 183 184 /// Coalesce copies in the specified MBB, putting 185 /// copies that cannot yet be coalesced into WorkList. 186 void copyCoalesceInMBB(MachineBasicBlock *MBB); 187 188 /// Tries to coalesce all copies in CurrList. Returns true if any progress 189 /// was made. 190 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 191 192 /// If one def has many copy like uses, and those copy uses are all 193 /// rematerialized, the live interval update needed for those 194 /// rematerializations will be delayed and done all at once instead 195 /// of being done multiple times. This is to save compile cost because 196 /// live interval update is costly. 197 void lateLiveIntervalUpdate(); 198 199 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 200 /// src/dst of the copy instruction CopyMI. This returns true if the copy 201 /// was successfully coalesced away. If it is not currently possible to 202 /// coalesce this interval, but it may be possible if other things get 203 /// coalesced, then it returns true by reference in 'Again'. 204 bool joinCopy(MachineInstr *CopyMI, bool &Again); 205 206 /// Attempt to join these two intervals. On failure, this 207 /// returns false. The output "SrcInt" will not have been modified, so we 208 /// can use this information below to update aliases. 209 bool joinIntervals(CoalescerPair &CP); 210 211 /// Attempt joining two virtual registers. Return true on success. 212 bool joinVirtRegs(CoalescerPair &CP); 213 214 /// If a live interval has many valnos and is coalesced with other 215 /// live intervals many times, we regard such live interval as having 216 /// high compile time cost. 217 bool isHighCostLiveInterval(LiveInterval &LI); 218 219 /// Attempt joining with a reserved physreg. 220 bool joinReservedPhysReg(CoalescerPair &CP); 221 222 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 223 /// Subranges in @p LI which only partially interfere with the desired 224 /// LaneMask are split as necessary. @p LaneMask are the lanes that 225 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 226 /// lanemasks already adjusted to the coalesced register. 227 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 228 LaneBitmask LaneMask, CoalescerPair &CP); 229 230 /// Join the liveranges of two subregisters. Joins @p RRange into 231 /// @p LRange, @p RRange may be invalid afterwards. 232 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 233 LaneBitmask LaneMask, const CoalescerPair &CP); 234 235 /// We found a non-trivially-coalescable copy. If the source value number is 236 /// defined by a copy from the destination reg see if we can merge these two 237 /// destination reg valno# into a single value number, eliminating a copy. 238 /// This returns true if an interval was modified. 239 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 240 241 /// Return true if there are definitions of IntB 242 /// other than BValNo val# that can reach uses of AValno val# of IntA. 243 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 244 VNInfo *AValNo, VNInfo *BValNo); 245 246 /// We found a non-trivially-coalescable copy. 247 /// If the source value number is defined by a commutable instruction and 248 /// its other operand is coalesced to the copy dest register, see if we 249 /// can transform the copy into a noop by commuting the definition. 250 /// This returns a pair of two flags: 251 /// - the first element is true if an interval was modified, 252 /// - the second element is true if the destination interval needs 253 /// to be shrunk after deleting the copy. 254 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP, 255 MachineInstr *CopyMI); 256 257 /// We found a copy which can be moved to its less frequent predecessor. 258 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 259 260 /// If the source of a copy is defined by a 261 /// trivial computation, replace the copy by rematerialize the definition. 262 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 263 bool &IsDefCopy); 264 265 /// Return true if a copy involving a physreg should be joined. 266 bool canJoinPhys(const CoalescerPair &CP); 267 268 /// When merging SrcReg and DstReg together, and the operand of the 269 /// specified DBG_VALUE refers to one of them, would the def that a 270 /// DBG_VALUE refers to change? This can happen when the DBG_VALUEs 271 /// operand is dead and it's merged into a different live value, 272 /// meaning the DBG_VALUE operands must be updated. 273 bool mergingChangesDbgValue(MachineInstr *DbgV, unsigned SrcReg, 274 unsigned DstReg) const; 275 276 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 277 /// number if it is not zero. If DstReg is a physical register and the 278 /// existing subregister number of the def / use being updated is not zero, 279 /// make sure to set it to the correct physical subregister. 280 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 281 282 /// If the given machine operand reads only undefined lanes add an undef 283 /// flag. 284 /// This can happen when undef uses were previously concealed by a copy 285 /// which we coalesced. Example: 286 /// %0:sub0<def,read-undef> = ... 287 /// %1 = COPY %0 <-- Coalescing COPY reveals undef 288 /// = use %1:sub1 <-- hidden undef use 289 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 290 MachineOperand &MO, unsigned SubRegIdx); 291 292 /// Handle copies of undef values. If the undef value is an incoming 293 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF. 294 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise, 295 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point). 296 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI); 297 298 /// Check whether or not we should apply the terminal rule on the 299 /// destination (Dst) of \p Copy. 300 /// When the terminal rule applies, Copy is not profitable to 301 /// coalesce. 302 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 303 /// at least one interference (Dst, Dst2). If Dst is terminal, the 304 /// terminal rule consists in checking that at least one of 305 /// interfering node, say Dst2, has an affinity of equal or greater 306 /// weight with Src. 307 /// In that case, Dst2 and Dst will not be able to be both coalesced 308 /// with Src. Since Dst2 exposes more coalescing opportunities than 309 /// Dst, we can drop \p Copy. 310 bool applyTerminalRule(const MachineInstr &Copy) const; 311 312 /// Wrapper method for \see LiveIntervals::shrinkToUses. 313 /// This method does the proper fixing of the live-ranges when the afore 314 /// mentioned method returns true. 315 void shrinkToUses(LiveInterval *LI, 316 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 317 NumShrinkToUses++; 318 if (LIS->shrinkToUses(LI, Dead)) { 319 /// Check whether or not \p LI is composed by multiple connected 320 /// components and if that is the case, fix that. 321 SmallVector<LiveInterval*, 8> SplitLIs; 322 LIS->splitSeparateComponents(*LI, SplitLIs); 323 } 324 } 325 326 /// Wrapper Method to do all the necessary work when an Instruction is 327 /// deleted. 328 /// Optimizations should use this to make sure that deleted instructions 329 /// are always accounted for. 330 void deleteInstr(MachineInstr* MI) { 331 ErasedInstrs.insert(MI); 332 LIS->RemoveMachineInstrFromMaps(*MI); 333 MI->eraseFromParent(); 334 } 335 336 public: 337 static char ID; ///< Class identification, replacement for typeinfo 338 339 RegisterCoalescer() : MachineFunctionPass(ID) { 340 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 341 } 342 343 void getAnalysisUsage(AnalysisUsage &AU) const override; 344 345 void releaseMemory() override; 346 347 /// This is the pass entry point. 348 bool runOnMachineFunction(MachineFunction&) override; 349 350 /// Implement the dump method. 351 void print(raw_ostream &O, const Module* = nullptr) const override; 352 }; 353 354 } // end anonymous namespace 355 356 char RegisterCoalescer::ID = 0; 357 358 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 359 360 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 361 "Simple Register Coalescing", false, false) 362 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 363 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 364 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 365 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 366 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 367 "Simple Register Coalescing", false, false) 368 369 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri, 370 const MachineInstr *MI, unsigned &Src, 371 unsigned &Dst, unsigned &SrcSub, 372 unsigned &DstSub) { 373 if (MI->isCopy()) { 374 Dst = MI->getOperand(0).getReg(); 375 DstSub = MI->getOperand(0).getSubReg(); 376 Src = MI->getOperand(1).getReg(); 377 SrcSub = MI->getOperand(1).getSubReg(); 378 } else if (MI->isSubregToReg()) { 379 Dst = MI->getOperand(0).getReg(); 380 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 381 MI->getOperand(3).getImm()); 382 Src = MI->getOperand(2).getReg(); 383 SrcSub = MI->getOperand(2).getSubReg(); 384 } else 385 return false; 386 return true; 387 } 388 389 /// Return true if this block should be vacated by the coalescer to eliminate 390 /// branches. The important cases to handle in the coalescer are critical edges 391 /// split during phi elimination which contain only copies. Simple blocks that 392 /// contain non-branches should also be vacated, but this can be handled by an 393 /// earlier pass similar to early if-conversion. 394 static bool isSplitEdge(const MachineBasicBlock *MBB) { 395 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 396 return false; 397 398 for (const auto &MI : *MBB) { 399 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 400 return false; 401 } 402 return true; 403 } 404 405 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 406 SrcReg = DstReg = 0; 407 SrcIdx = DstIdx = 0; 408 NewRC = nullptr; 409 Flipped = CrossClass = false; 410 411 unsigned Src, Dst, SrcSub, DstSub; 412 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 413 return false; 414 Partial = SrcSub || DstSub; 415 416 // If one register is a physreg, it must be Dst. 417 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 418 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 419 return false; 420 std::swap(Src, Dst); 421 std::swap(SrcSub, DstSub); 422 Flipped = true; 423 } 424 425 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 426 427 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 428 // Eliminate DstSub on a physreg. 429 if (DstSub) { 430 Dst = TRI.getSubReg(Dst, DstSub); 431 if (!Dst) return false; 432 DstSub = 0; 433 } 434 435 // Eliminate SrcSub by picking a corresponding Dst superregister. 436 if (SrcSub) { 437 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 438 if (!Dst) return false; 439 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 440 return false; 441 } 442 } else { 443 // Both registers are virtual. 444 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 445 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 446 447 // Both registers have subreg indices. 448 if (SrcSub && DstSub) { 449 // Copies between different sub-registers are never coalescable. 450 if (Src == Dst && SrcSub != DstSub) 451 return false; 452 453 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 454 SrcIdx, DstIdx); 455 if (!NewRC) 456 return false; 457 } else if (DstSub) { 458 // SrcReg will be merged with a sub-register of DstReg. 459 SrcIdx = DstSub; 460 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 461 } else if (SrcSub) { 462 // DstReg will be merged with a sub-register of SrcReg. 463 DstIdx = SrcSub; 464 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 465 } else { 466 // This is a straight copy without sub-registers. 467 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 468 } 469 470 // The combined constraint may be impossible to satisfy. 471 if (!NewRC) 472 return false; 473 474 // Prefer SrcReg to be a sub-register of DstReg. 475 // FIXME: Coalescer should support subregs symmetrically. 476 if (DstIdx && !SrcIdx) { 477 std::swap(Src, Dst); 478 std::swap(SrcIdx, DstIdx); 479 Flipped = !Flipped; 480 } 481 482 CrossClass = NewRC != DstRC || NewRC != SrcRC; 483 } 484 // Check our invariants 485 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 486 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 487 "Cannot have a physical SubIdx"); 488 SrcReg = Src; 489 DstReg = Dst; 490 return true; 491 } 492 493 bool CoalescerPair::flip() { 494 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 495 return false; 496 std::swap(SrcReg, DstReg); 497 std::swap(SrcIdx, DstIdx); 498 Flipped = !Flipped; 499 return true; 500 } 501 502 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 503 if (!MI) 504 return false; 505 unsigned Src, Dst, SrcSub, DstSub; 506 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 507 return false; 508 509 // Find the virtual register that is SrcReg. 510 if (Dst == SrcReg) { 511 std::swap(Src, Dst); 512 std::swap(SrcSub, DstSub); 513 } else if (Src != SrcReg) { 514 return false; 515 } 516 517 // Now check that Dst matches DstReg. 518 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 519 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 520 return false; 521 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 522 // DstSub could be set for a physreg from INSERT_SUBREG. 523 if (DstSub) 524 Dst = TRI.getSubReg(Dst, DstSub); 525 // Full copy of Src. 526 if (!SrcSub) 527 return DstReg == Dst; 528 // This is a partial register copy. Check that the parts match. 529 return TRI.getSubReg(DstReg, SrcSub) == Dst; 530 } else { 531 // DstReg is virtual. 532 if (DstReg != Dst) 533 return false; 534 // Registers match, do the subregisters line up? 535 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 536 TRI.composeSubRegIndices(DstIdx, DstSub); 537 } 538 } 539 540 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 541 AU.setPreservesCFG(); 542 AU.addRequired<AAResultsWrapperPass>(); 543 AU.addRequired<LiveIntervals>(); 544 AU.addPreserved<LiveIntervals>(); 545 AU.addPreserved<SlotIndexes>(); 546 AU.addRequired<MachineLoopInfo>(); 547 AU.addPreserved<MachineLoopInfo>(); 548 AU.addPreservedID(MachineDominatorsID); 549 MachineFunctionPass::getAnalysisUsage(AU); 550 } 551 552 void RegisterCoalescer::eliminateDeadDefs() { 553 SmallVector<unsigned, 8> NewRegs; 554 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 555 nullptr, this).eliminateDeadDefs(DeadDefs); 556 } 557 558 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 559 // MI may be in WorkList. Make sure we don't visit it. 560 ErasedInstrs.insert(MI); 561 } 562 563 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 564 MachineInstr *CopyMI) { 565 assert(!CP.isPartial() && "This doesn't work for partial copies."); 566 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 567 568 LiveInterval &IntA = 569 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 570 LiveInterval &IntB = 571 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 572 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 573 574 // We have a non-trivially-coalescable copy with IntA being the source and 575 // IntB being the dest, thus this defines a value number in IntB. If the 576 // source value number (in IntA) is defined by a copy from B, see if we can 577 // merge these two pieces of B into a single value number, eliminating a copy. 578 // For example: 579 // 580 // A3 = B0 581 // ... 582 // B1 = A3 <- this copy 583 // 584 // In this case, B0 can be extended to where the B1 copy lives, allowing the 585 // B1 value number to be replaced with B0 (which simplifies the B 586 // liveinterval). 587 588 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 589 // the example above. 590 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 591 if (BS == IntB.end()) return false; 592 VNInfo *BValNo = BS->valno; 593 594 // Get the location that B is defined at. Two options: either this value has 595 // an unknown definition point or it is defined at CopyIdx. If unknown, we 596 // can't process it. 597 if (BValNo->def != CopyIdx) return false; 598 599 // AValNo is the value number in A that defines the copy, A3 in the example. 600 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 601 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 602 // The live segment might not exist after fun with physreg coalescing. 603 if (AS == IntA.end()) return false; 604 VNInfo *AValNo = AS->valno; 605 606 // If AValNo is defined as a copy from IntB, we can potentially process this. 607 // Get the instruction that defines this value number. 608 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 609 // Don't allow any partial copies, even if isCoalescable() allows them. 610 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 611 return false; 612 613 // Get the Segment in IntB that this value number starts with. 614 LiveInterval::iterator ValS = 615 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 616 if (ValS == IntB.end()) 617 return false; 618 619 // Make sure that the end of the live segment is inside the same block as 620 // CopyMI. 621 MachineInstr *ValSEndInst = 622 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 623 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 624 return false; 625 626 // Okay, we now know that ValS ends in the same block that the CopyMI 627 // live-range starts. If there are no intervening live segments between them 628 // in IntB, we can merge them. 629 if (ValS+1 != BS) return false; 630 631 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI)); 632 633 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 634 // We are about to delete CopyMI, so need to remove it as the 'instruction 635 // that defines this value #'. Update the valnum with the new defining 636 // instruction #. 637 BValNo->def = FillerStart; 638 639 // Okay, we can merge them. We need to insert a new liverange: 640 // [ValS.end, BS.begin) of either value number, then we merge the 641 // two value numbers. 642 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 643 644 // Okay, merge "B1" into the same value number as "B0". 645 if (BValNo != ValS->valno) 646 IntB.MergeValueNumberInto(BValNo, ValS->valno); 647 648 // Do the same for the subregister segments. 649 for (LiveInterval::SubRange &S : IntB.subranges()) { 650 // Check for SubRange Segments of the form [1234r,1234d:0) which can be 651 // removed to prevent creating bogus SubRange Segments. 652 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx); 653 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) { 654 S.removeSegment(*SS, true); 655 continue; 656 } 657 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 658 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 659 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 660 if (SubBValNo != SubValSNo) 661 S.MergeValueNumberInto(SubBValNo, SubValSNo); 662 } 663 664 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n'); 665 666 // If the source instruction was killing the source register before the 667 // merge, unset the isKill marker given the live range has been extended. 668 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 669 if (UIdx != -1) { 670 ValSEndInst->getOperand(UIdx).setIsKill(false); 671 } 672 673 // Rewrite the copy. 674 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 675 // If the copy instruction was killing the destination register or any 676 // subrange before the merge trim the live range. 677 bool RecomputeLiveRange = AS->end == CopyIdx; 678 if (!RecomputeLiveRange) { 679 for (LiveInterval::SubRange &S : IntA.subranges()) { 680 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx); 681 if (SS != S.end() && SS->end == CopyIdx) { 682 RecomputeLiveRange = true; 683 break; 684 } 685 } 686 } 687 if (RecomputeLiveRange) 688 shrinkToUses(&IntA); 689 690 ++numExtends; 691 return true; 692 } 693 694 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 695 LiveInterval &IntB, 696 VNInfo *AValNo, 697 VNInfo *BValNo) { 698 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 699 // the PHI values. 700 if (LIS->hasPHIKill(IntA, AValNo)) 701 return true; 702 703 for (LiveRange::Segment &ASeg : IntA.segments) { 704 if (ASeg.valno != AValNo) continue; 705 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start); 706 if (BI != IntB.begin()) 707 --BI; 708 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 709 if (BI->valno == BValNo) 710 continue; 711 if (BI->start <= ASeg.start && BI->end > ASeg.start) 712 return true; 713 if (BI->start > ASeg.start && BI->start < ASeg.end) 714 return true; 715 } 716 } 717 return false; 718 } 719 720 /// Copy segments with value number @p SrcValNo from liverange @p Src to live 721 /// range @Dst and use value number @p DstValNo there. 722 static std::pair<bool,bool> 723 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src, 724 const VNInfo *SrcValNo) { 725 bool Changed = false; 726 bool MergedWithDead = false; 727 for (const LiveRange::Segment &S : Src.segments) { 728 if (S.valno != SrcValNo) 729 continue; 730 // This is adding a segment from Src that ends in a copy that is about 731 // to be removed. This segment is going to be merged with a pre-existing 732 // segment in Dst. This works, except in cases when the corresponding 733 // segment in Dst is dead. For example: adding [192r,208r:1) from Src 734 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst. 735 // Recognized such cases, so that the segments can be shrunk. 736 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo); 737 LiveRange::Segment &Merged = *Dst.addSegment(Added); 738 if (Merged.end.isDead()) 739 MergedWithDead = true; 740 Changed = true; 741 } 742 return std::make_pair(Changed, MergedWithDead); 743 } 744 745 std::pair<bool,bool> 746 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 747 MachineInstr *CopyMI) { 748 assert(!CP.isPhys()); 749 750 LiveInterval &IntA = 751 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 752 LiveInterval &IntB = 753 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 754 755 // We found a non-trivially-coalescable copy with IntA being the source and 756 // IntB being the dest, thus this defines a value number in IntB. If the 757 // source value number (in IntA) is defined by a commutable instruction and 758 // its other operand is coalesced to the copy dest register, see if we can 759 // transform the copy into a noop by commuting the definition. For example, 760 // 761 // A3 = op A2 killed B0 762 // ... 763 // B1 = A3 <- this copy 764 // ... 765 // = op A3 <- more uses 766 // 767 // ==> 768 // 769 // B2 = op B0 killed A2 770 // ... 771 // B1 = B2 <- now an identity copy 772 // ... 773 // = op B2 <- more uses 774 775 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 776 // the example above. 777 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 778 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 779 assert(BValNo != nullptr && BValNo->def == CopyIdx); 780 781 // AValNo is the value number in A that defines the copy, A3 in the example. 782 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 783 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 784 if (AValNo->isPHIDef()) 785 return { false, false }; 786 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 787 if (!DefMI) 788 return { false, false }; 789 if (!DefMI->isCommutable()) 790 return { false, false }; 791 // If DefMI is a two-address instruction then commuting it will change the 792 // destination register. 793 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 794 assert(DefIdx != -1); 795 unsigned UseOpIdx; 796 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 797 return { false, false }; 798 799 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 800 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 801 // passed to the method. That _other_ operand is chosen by 802 // the findCommutedOpIndices() method. 803 // 804 // That is obviously an area for improvement in case of instructions having 805 // more than 2 operands. For example, if some instruction has 3 commutable 806 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 807 // op#2<->op#3) of commute transformation should be considered/tried here. 808 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 809 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 810 return { false, false }; 811 812 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 813 unsigned NewReg = NewDstMO.getReg(); 814 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 815 return { false, false }; 816 817 // Make sure there are no other definitions of IntB that would reach the 818 // uses which the new definition can reach. 819 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 820 return { false, false }; 821 822 // If some of the uses of IntA.reg is already coalesced away, return false. 823 // It's not possible to determine whether it's safe to perform the coalescing. 824 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 825 MachineInstr *UseMI = MO.getParent(); 826 unsigned OpNo = &MO - &UseMI->getOperand(0); 827 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 828 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 829 if (US == IntA.end() || US->valno != AValNo) 830 continue; 831 // If this use is tied to a def, we can't rewrite the register. 832 if (UseMI->isRegTiedToDefOperand(OpNo)) 833 return { false, false }; 834 } 835 836 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 837 << *DefMI); 838 839 // At this point we have decided that it is legal to do this 840 // transformation. Start by commuting the instruction. 841 MachineBasicBlock *MBB = DefMI->getParent(); 842 MachineInstr *NewMI = 843 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 844 if (!NewMI) 845 return { false, false }; 846 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 847 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 848 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 849 return { false, false }; 850 if (NewMI != DefMI) { 851 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 852 MachineBasicBlock::iterator Pos = DefMI; 853 MBB->insert(Pos, NewMI); 854 MBB->erase(DefMI); 855 } 856 857 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 858 // A = or A, B 859 // ... 860 // B = A 861 // ... 862 // C = killed A 863 // ... 864 // = B 865 866 // Update uses of IntA of the specific Val# with IntB. 867 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 868 UE = MRI->use_end(); 869 UI != UE; /* ++UI is below because of possible MI removal */) { 870 MachineOperand &UseMO = *UI; 871 ++UI; 872 if (UseMO.isUndef()) 873 continue; 874 MachineInstr *UseMI = UseMO.getParent(); 875 if (UseMI->isDebugValue()) { 876 // FIXME These don't have an instruction index. Not clear we have enough 877 // info to decide whether to do this replacement or not. For now do it. 878 UseMO.setReg(NewReg); 879 continue; 880 } 881 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 882 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 883 assert(US != IntA.end() && "Use must be live"); 884 if (US->valno != AValNo) 885 continue; 886 // Kill flags are no longer accurate. They are recomputed after RA. 887 UseMO.setIsKill(false); 888 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 889 UseMO.substPhysReg(NewReg, *TRI); 890 else 891 UseMO.setReg(NewReg); 892 if (UseMI == CopyMI) 893 continue; 894 if (!UseMI->isCopy()) 895 continue; 896 if (UseMI->getOperand(0).getReg() != IntB.reg || 897 UseMI->getOperand(0).getSubReg()) 898 continue; 899 900 // This copy will become a noop. If it's defining a new val#, merge it into 901 // BValNo. 902 SlotIndex DefIdx = UseIdx.getRegSlot(); 903 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 904 if (!DVNI) 905 continue; 906 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 907 assert(DVNI->def == DefIdx); 908 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 909 for (LiveInterval::SubRange &S : IntB.subranges()) { 910 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 911 if (!SubDVNI) 912 continue; 913 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 914 assert(SubBValNo->def == CopyIdx); 915 S.MergeValueNumberInto(SubDVNI, SubBValNo); 916 } 917 918 deleteInstr(UseMI); 919 } 920 921 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 922 // is updated. 923 bool ShrinkB = false; 924 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 925 if (IntA.hasSubRanges() || IntB.hasSubRanges()) { 926 if (!IntA.hasSubRanges()) { 927 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 928 IntA.createSubRangeFrom(Allocator, Mask, IntA); 929 } else if (!IntB.hasSubRanges()) { 930 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg); 931 IntB.createSubRangeFrom(Allocator, Mask, IntB); 932 } 933 SlotIndex AIdx = CopyIdx.getRegSlot(true); 934 LaneBitmask MaskA; 935 const SlotIndexes &Indexes = *LIS->getSlotIndexes(); 936 for (LiveInterval::SubRange &SA : IntA.subranges()) { 937 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 938 assert(ASubValNo != nullptr); 939 MaskA |= SA.LaneMask; 940 941 IntB.refineSubRanges( 942 Allocator, SA.LaneMask, 943 [&Allocator, &SA, CopyIdx, ASubValNo, 944 &ShrinkB](LiveInterval::SubRange &SR) { 945 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator) 946 : SR.getVNInfoAt(CopyIdx); 947 assert(BSubValNo != nullptr); 948 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 949 ShrinkB |= P.second; 950 if (P.first) 951 BSubValNo->def = ASubValNo->def; 952 }, 953 Indexes, *TRI); 954 } 955 // Go over all subranges of IntB that have not been covered by IntA, 956 // and delete the segments starting at CopyIdx. This can happen if 957 // IntA has undef lanes that are defined in IntB. 958 for (LiveInterval::SubRange &SB : IntB.subranges()) { 959 if ((SB.LaneMask & MaskA).any()) 960 continue; 961 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx)) 962 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex()) 963 SB.removeSegment(*S, true); 964 } 965 } 966 967 BValNo->def = AValNo->def; 968 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 969 ShrinkB |= P.second; 970 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 971 972 LIS->removeVRegDefAt(IntA, AValNo->def); 973 974 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 975 ++numCommutes; 976 return { true, ShrinkB }; 977 } 978 979 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 980 /// predecessor of BB2, and if B is not redefined on the way from A = B 981 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the 982 /// execution goes through the path from BB0 to BB2. We may move B = A 983 /// to the predecessor without such reversed copy. 984 /// So we will transform the program from: 985 /// BB0: 986 /// A = B; BB1: 987 /// ... ... 988 /// / \ / 989 /// BB2: 990 /// ... 991 /// B = A; 992 /// 993 /// to: 994 /// 995 /// BB0: BB1: 996 /// A = B; ... 997 /// ... B = A; 998 /// / \ / 999 /// BB2: 1000 /// ... 1001 /// 1002 /// A special case is when BB0 and BB2 are the same BB which is the only 1003 /// BB in a loop: 1004 /// BB1: 1005 /// ... 1006 /// BB0/BB2: ---- 1007 /// B = A; | 1008 /// ... | 1009 /// A = B; | 1010 /// |------- 1011 /// | 1012 /// We may hoist B = A from BB0/BB2 to BB1. 1013 /// 1014 /// The major preconditions for correctness to remove such partial 1015 /// redundancy include: 1016 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 1017 /// the PHI is defined by the reversed copy A = B in BB0. 1018 /// 2. No B is referenced from the start of BB2 to B = A. 1019 /// 3. No B is defined from A = B to the end of BB0. 1020 /// 4. BB1 has only one successor. 1021 /// 1022 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 1023 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 1024 /// colder place, which not only prevent endless loop, but also make sure 1025 /// the movement of copy is beneficial. 1026 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 1027 MachineInstr &CopyMI) { 1028 assert(!CP.isPhys()); 1029 if (!CopyMI.isFullCopy()) 1030 return false; 1031 1032 MachineBasicBlock &MBB = *CopyMI.getParent(); 1033 if (MBB.isEHPad()) 1034 return false; 1035 1036 if (MBB.pred_size() != 2) 1037 return false; 1038 1039 LiveInterval &IntA = 1040 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 1041 LiveInterval &IntB = 1042 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 1043 1044 // A is defined by PHI at the entry of MBB. 1045 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 1046 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 1047 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 1048 if (!AValNo->isPHIDef()) 1049 return false; 1050 1051 // No B is referenced before CopyMI in MBB. 1052 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 1053 return false; 1054 1055 // MBB has two predecessors: one contains A = B so no copy will be inserted 1056 // for it. The other one will have a copy moved from MBB. 1057 bool FoundReverseCopy = false; 1058 MachineBasicBlock *CopyLeftBB = nullptr; 1059 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1060 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 1061 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 1062 if (!DefMI || !DefMI->isFullCopy()) { 1063 CopyLeftBB = Pred; 1064 continue; 1065 } 1066 // Check DefMI is a reverse copy and it is in BB Pred. 1067 if (DefMI->getOperand(0).getReg() != IntA.reg || 1068 DefMI->getOperand(1).getReg() != IntB.reg || 1069 DefMI->getParent() != Pred) { 1070 CopyLeftBB = Pred; 1071 continue; 1072 } 1073 // If there is any other def of B after DefMI and before the end of Pred, 1074 // we need to keep the copy of B = A at the end of Pred if we remove 1075 // B = A from MBB. 1076 bool ValB_Changed = false; 1077 for (auto VNI : IntB.valnos) { 1078 if (VNI->isUnused()) 1079 continue; 1080 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 1081 ValB_Changed = true; 1082 break; 1083 } 1084 } 1085 if (ValB_Changed) { 1086 CopyLeftBB = Pred; 1087 continue; 1088 } 1089 FoundReverseCopy = true; 1090 } 1091 1092 // If no reverse copy is found in predecessors, nothing to do. 1093 if (!FoundReverseCopy) 1094 return false; 1095 1096 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 1097 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 1098 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 1099 // update IntA/IntB. 1100 // 1101 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 1102 // MBB is hotter than CopyLeftBB. 1103 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 1104 return false; 1105 1106 // Now (almost sure it's) ok to move copy. 1107 if (CopyLeftBB) { 1108 // Position in CopyLeftBB where we should insert new copy. 1109 auto InsPos = CopyLeftBB->getFirstTerminator(); 1110 1111 // Make sure that B isn't referenced in the terminators (if any) at the end 1112 // of the predecessor since we're about to insert a new definition of B 1113 // before them. 1114 if (InsPos != CopyLeftBB->end()) { 1115 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true); 1116 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB))) 1117 return false; 1118 } 1119 1120 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to " 1121 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI); 1122 1123 // Insert new copy to CopyLeftBB. 1124 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1125 TII->get(TargetOpcode::COPY), IntB.reg) 1126 .addReg(IntA.reg); 1127 SlotIndex NewCopyIdx = 1128 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1129 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1130 for (LiveInterval::SubRange &SR : IntB.subranges()) 1131 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1132 1133 // If the newly created Instruction has an address of an instruction that was 1134 // deleted before (object recycled by the allocator) it needs to be removed from 1135 // the deleted list. 1136 ErasedInstrs.erase(NewCopyMI); 1137 } else { 1138 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from " 1139 << printMBBReference(MBB) << '\t' << CopyMI); 1140 } 1141 1142 // Remove CopyMI. 1143 // Note: This is fine to remove the copy before updating the live-ranges. 1144 // While updating the live-ranges, we only look at slot indices and 1145 // never go back to the instruction. 1146 // Mark instructions as deleted. 1147 deleteInstr(&CopyMI); 1148 1149 // Update the liveness. 1150 SmallVector<SlotIndex, 8> EndPoints; 1151 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1152 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1153 &EndPoints); 1154 BValNo->markUnused(); 1155 // Extend IntB to the EndPoints of its original live interval. 1156 LIS->extendToIndices(IntB, EndPoints); 1157 1158 // Now, do the same for its subranges. 1159 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1160 EndPoints.clear(); 1161 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1162 assert(BValNo && "All sublanes should be live"); 1163 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1164 BValNo->markUnused(); 1165 // We can have a situation where the result of the original copy is live, 1166 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes 1167 // the copy appear as an endpoint from pruneValue(), but we don't want it 1168 // to because the copy has been removed. We can go ahead and remove that 1169 // endpoint; there is no other situation here that there could be a use at 1170 // the same place as we know that the copy is a full copy. 1171 for (unsigned I = 0; I != EndPoints.size(); ) { 1172 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) { 1173 EndPoints[I] = EndPoints.back(); 1174 EndPoints.pop_back(); 1175 continue; 1176 } 1177 ++I; 1178 } 1179 LIS->extendToIndices(SR, EndPoints); 1180 } 1181 // If any dead defs were extended, truncate them. 1182 shrinkToUses(&IntB); 1183 1184 // Finally, update the live-range of IntA. 1185 shrinkToUses(&IntA); 1186 return true; 1187 } 1188 1189 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1190 /// defining a subregister. 1191 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 1192 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && 1193 "This code cannot handle physreg aliasing"); 1194 for (const MachineOperand &Op : MI.operands()) { 1195 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1196 continue; 1197 // Return true if we define the full register or don't care about the value 1198 // inside other subregisters. 1199 if (Op.getSubReg() == 0 || Op.isUndef()) 1200 return true; 1201 } 1202 return false; 1203 } 1204 1205 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1206 MachineInstr *CopyMI, 1207 bool &IsDefCopy) { 1208 IsDefCopy = false; 1209 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1210 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1211 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1212 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1213 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1214 return false; 1215 1216 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1217 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1218 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1219 if (!ValNo) 1220 return false; 1221 if (ValNo->isPHIDef() || ValNo->isUnused()) 1222 return false; 1223 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1224 if (!DefMI) 1225 return false; 1226 if (DefMI->isCopyLike()) { 1227 IsDefCopy = true; 1228 return false; 1229 } 1230 if (!TII->isAsCheapAsAMove(*DefMI)) 1231 return false; 1232 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1233 return false; 1234 if (!definesFullReg(*DefMI, SrcReg)) 1235 return false; 1236 bool SawStore = false; 1237 if (!DefMI->isSafeToMove(AA, SawStore)) 1238 return false; 1239 const MCInstrDesc &MCID = DefMI->getDesc(); 1240 if (MCID.getNumDefs() != 1) 1241 return false; 1242 // Only support subregister destinations when the def is read-undef. 1243 MachineOperand &DstOperand = CopyMI->getOperand(0); 1244 unsigned CopyDstReg = DstOperand.getReg(); 1245 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1246 return false; 1247 1248 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1249 // the register substantially (beyond both source and dest size). This is bad 1250 // for performance since it can cascade through a function, introducing many 1251 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1252 // around after a few subreg copies). 1253 if (SrcIdx && DstIdx) 1254 return false; 1255 1256 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1257 if (!DefMI->isImplicitDef()) { 1258 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 1259 unsigned NewDstReg = DstReg; 1260 1261 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1262 DefMI->getOperand(0).getSubReg()); 1263 if (NewDstIdx) 1264 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1265 1266 // Finally, make sure that the physical subregister that will be 1267 // constructed later is permitted for the instruction. 1268 if (!DefRC->contains(NewDstReg)) 1269 return false; 1270 } else { 1271 // Theoretically, some stack frame reference could exist. Just make sure 1272 // it hasn't actually happened. 1273 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 1274 "Only expect to deal with virtual or physical registers"); 1275 } 1276 } 1277 1278 DebugLoc DL = CopyMI->getDebugLoc(); 1279 MachineBasicBlock *MBB = CopyMI->getParent(); 1280 MachineBasicBlock::iterator MII = 1281 std::next(MachineBasicBlock::iterator(CopyMI)); 1282 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1283 MachineInstr &NewMI = *std::prev(MII); 1284 NewMI.setDebugLoc(DL); 1285 1286 // In a situation like the following: 1287 // %0:subreg = instr ; DefMI, subreg = DstIdx 1288 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0 1289 // instead of widening %1 to the register class of %0 simply do: 1290 // %1 = instr 1291 const TargetRegisterClass *NewRC = CP.getNewRC(); 1292 if (DstIdx != 0) { 1293 MachineOperand &DefMO = NewMI.getOperand(0); 1294 if (DefMO.getSubReg() == DstIdx) { 1295 assert(SrcIdx == 0 && CP.isFlipped() 1296 && "Shouldn't have SrcIdx+DstIdx at this point"); 1297 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1298 const TargetRegisterClass *CommonRC = 1299 TRI->getCommonSubClass(DefRC, DstRC); 1300 if (CommonRC != nullptr) { 1301 NewRC = CommonRC; 1302 DstIdx = 0; 1303 DefMO.setSubReg(0); 1304 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1305 } 1306 } 1307 } 1308 1309 // CopyMI may have implicit operands, save them so that we can transfer them 1310 // over to the newly materialized instruction after CopyMI is removed. 1311 SmallVector<MachineOperand, 4> ImplicitOps; 1312 ImplicitOps.reserve(CopyMI->getNumOperands() - 1313 CopyMI->getDesc().getNumOperands()); 1314 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1315 E = CopyMI->getNumOperands(); 1316 I != E; ++I) { 1317 MachineOperand &MO = CopyMI->getOperand(I); 1318 if (MO.isReg()) { 1319 assert(MO.isImplicit() && "No explicit operands after implicit operands."); 1320 // Discard VReg implicit defs. 1321 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1322 ImplicitOps.push_back(MO); 1323 } 1324 } 1325 1326 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1327 CopyMI->eraseFromParent(); 1328 ErasedInstrs.insert(CopyMI); 1329 1330 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1331 // We need to remember these so we can add intervals once we insert 1332 // NewMI into SlotIndexes. 1333 SmallVector<unsigned, 4> NewMIImplDefs; 1334 for (unsigned i = NewMI.getDesc().getNumOperands(), 1335 e = NewMI.getNumOperands(); 1336 i != e; ++i) { 1337 MachineOperand &MO = NewMI.getOperand(i); 1338 if (MO.isReg() && MO.isDef()) { 1339 assert(MO.isImplicit() && MO.isDead() && 1340 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 1341 NewMIImplDefs.push_back(MO.getReg()); 1342 } 1343 } 1344 1345 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 1346 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1347 1348 if (DefRC != nullptr) { 1349 if (NewIdx) 1350 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1351 else 1352 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1353 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1354 } 1355 // Remap subranges to new lanemask and change register class. 1356 LiveInterval &DstInt = LIS->getInterval(DstReg); 1357 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1358 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1359 } 1360 MRI->setRegClass(DstReg, NewRC); 1361 1362 // Update machine operands and add flags. 1363 updateRegDefsUses(DstReg, DstReg, DstIdx); 1364 NewMI.getOperand(0).setSubReg(NewIdx); 1365 // updateRegDefUses can add an "undef" flag to the definition, since 1366 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make 1367 // sure that "undef" is not set. 1368 if (NewIdx == 0) 1369 NewMI.getOperand(0).setIsUndef(false); 1370 // Add dead subregister definitions if we are defining the whole register 1371 // but only part of it is live. 1372 // This could happen if the rematerialization instruction is rematerializing 1373 // more than actually is used in the register. 1374 // An example would be: 1375 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1376 // ; Copying only part of the register here, but the rest is undef. 1377 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit 1378 // ==> 1379 // ; Materialize all the constants but only using one 1380 // %2 = LOAD_CONSTANTS 5, 8 1381 // 1382 // at this point for the part that wasn't defined before we could have 1383 // subranges missing the definition. 1384 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1385 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1386 SlotIndex DefIndex = 1387 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1388 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1389 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1390 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1391 if (!SR.liveAt(DefIndex)) 1392 SR.createDeadDef(DefIndex, Alloc); 1393 MaxMask &= ~SR.LaneMask; 1394 } 1395 if (MaxMask.any()) { 1396 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1397 SR->createDeadDef(DefIndex, Alloc); 1398 } 1399 } 1400 1401 // Make sure that the subrange for resultant undef is removed 1402 // For example: 1403 // %1:sub1<def,read-undef> = LOAD CONSTANT 1 1404 // %2 = COPY %1 1405 // ==> 1406 // %2:sub1<def, read-undef> = LOAD CONSTANT 1 1407 // ; Correct but need to remove the subrange for %2:sub0 1408 // ; as it is now undef 1409 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1410 // The affected subregister segments can be removed. 1411 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1412 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1413 bool UpdatedSubRanges = false; 1414 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1415 if ((SR.LaneMask & DstMask).none()) { 1416 LLVM_DEBUG(dbgs() 1417 << "Removing undefined SubRange " 1418 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1419 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1420 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1421 SR.removeValNo(RmValNo); 1422 UpdatedSubRanges = true; 1423 } 1424 } 1425 } 1426 if (UpdatedSubRanges) 1427 DstInt.removeEmptySubRanges(); 1428 } 1429 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1430 // The New instruction may be defining a sub-register of what's actually 1431 // been asked for. If so it must implicitly define the whole thing. 1432 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 1433 "Only expect virtual or physical registers in remat"); 1434 NewMI.getOperand(0).setIsDead(true); 1435 NewMI.addOperand(MachineOperand::CreateReg( 1436 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1437 // Record small dead def live-ranges for all the subregisters 1438 // of the destination register. 1439 // Otherwise, variables that live through may miss some 1440 // interferences, thus creating invalid allocation. 1441 // E.g., i386 code: 1442 // %1 = somedef ; %1 GR8 1443 // %2 = remat ; %2 GR32 1444 // CL = COPY %2.sub_8bit 1445 // = somedef %1 ; %1 GR8 1446 // => 1447 // %1 = somedef ; %1 GR8 1448 // dead ECX = remat ; implicit-def CL 1449 // = somedef %1 ; %1 GR8 1450 // %1 will see the interferences with CL but not with CH since 1451 // no live-ranges would have been created for ECX. 1452 // Fix that! 1453 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1454 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1455 Units.isValid(); ++Units) 1456 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1457 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1458 } 1459 1460 if (NewMI.getOperand(0).getSubReg()) 1461 NewMI.getOperand(0).setIsUndef(); 1462 1463 // Transfer over implicit operands to the rematerialized instruction. 1464 for (MachineOperand &MO : ImplicitOps) 1465 NewMI.addOperand(MO); 1466 1467 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1468 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1469 unsigned Reg = NewMIImplDefs[i]; 1470 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1471 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1472 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1473 } 1474 1475 LLVM_DEBUG(dbgs() << "Remat: " << NewMI); 1476 ++NumReMats; 1477 1478 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1479 // to describe DstReg instead. 1480 if (MRI->use_nodbg_empty(SrcReg)) { 1481 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1482 MachineInstr *UseMI = UseMO.getParent(); 1483 if (UseMI->isDebugValue()) { 1484 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 1485 UseMO.substPhysReg(DstReg, *TRI); 1486 else 1487 UseMO.setReg(DstReg); 1488 // Move the debug value directly after the def of the rematerialized 1489 // value in DstReg. 1490 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); 1491 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1492 } 1493 } 1494 } 1495 1496 if (ToBeUpdated.count(SrcReg)) 1497 return true; 1498 1499 unsigned NumCopyUses = 0; 1500 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 1501 if (UseMO.getParent()->isCopyLike()) 1502 NumCopyUses++; 1503 } 1504 if (NumCopyUses < LateRematUpdateThreshold) { 1505 // The source interval can become smaller because we removed a use. 1506 shrinkToUses(&SrcInt, &DeadDefs); 1507 if (!DeadDefs.empty()) 1508 eliminateDeadDefs(); 1509 } else { 1510 ToBeUpdated.insert(SrcReg); 1511 } 1512 return true; 1513 } 1514 1515 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1516 // ProcessImplicitDefs may leave some copies of <undef> values, it only 1517 // removes local variables. When we have a copy like: 1518 // 1519 // %1 = COPY undef %2 1520 // 1521 // We delete the copy and remove the corresponding value number from %1. 1522 // Any uses of that value number are marked as <undef>. 1523 1524 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1525 // CoalescerPair may have a new register class with adjusted subreg indices 1526 // at this point. 1527 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1528 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) 1529 return nullptr; 1530 1531 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1532 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1533 // CopyMI is undef iff SrcReg is not live before the instruction. 1534 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1535 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1536 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1537 if ((SR.LaneMask & SrcMask).none()) 1538 continue; 1539 if (SR.liveAt(Idx)) 1540 return nullptr; 1541 } 1542 } else if (SrcLI.liveAt(Idx)) 1543 return nullptr; 1544 1545 // If the undef copy defines a live-out value (i.e. an input to a PHI def), 1546 // then replace it with an IMPLICIT_DEF. 1547 LiveInterval &DstLI = LIS->getInterval(DstReg); 1548 SlotIndex RegIndex = Idx.getRegSlot(); 1549 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex); 1550 assert(Seg != nullptr && "No segment for defining instruction"); 1551 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) { 1552 if (V->isPHIDef()) { 1553 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1554 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) { 1555 MachineOperand &MO = CopyMI->getOperand(i-1); 1556 if (MO.isReg() && MO.isUse()) 1557 CopyMI->RemoveOperand(i-1); 1558 } 1559 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an " 1560 "implicit def\n"); 1561 return CopyMI; 1562 } 1563 } 1564 1565 // Remove any DstReg segments starting at the instruction. 1566 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1567 1568 // Remove value or merge with previous one in case of a subregister def. 1569 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1570 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1571 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1572 1573 // The affected subregister segments can be removed. 1574 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1575 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1576 if ((SR.LaneMask & DstMask).none()) 1577 continue; 1578 1579 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1580 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1581 SR.removeValNo(SVNI); 1582 } 1583 DstLI.removeEmptySubRanges(); 1584 } else 1585 LIS->removeVRegDefAt(DstLI, RegIndex); 1586 1587 // Mark uses as undef. 1588 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1589 if (MO.isDef() /*|| MO.isUndef()*/) 1590 continue; 1591 const MachineInstr &MI = *MO.getParent(); 1592 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1593 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1594 bool isLive; 1595 if (!UseMask.all() && DstLI.hasSubRanges()) { 1596 isLive = false; 1597 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1598 if ((SR.LaneMask & UseMask).none()) 1599 continue; 1600 if (SR.liveAt(UseIdx)) { 1601 isLive = true; 1602 break; 1603 } 1604 } 1605 } else 1606 isLive = DstLI.liveAt(UseIdx); 1607 if (isLive) 1608 continue; 1609 MO.setIsUndef(true); 1610 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1611 } 1612 1613 // A def of a subregister may be a use of the other subregisters, so 1614 // deleting a def of a subregister may also remove uses. Since CopyMI 1615 // is still part of the function (but about to be erased), mark all 1616 // defs of DstReg in it as <undef>, so that shrinkToUses would 1617 // ignore them. 1618 for (MachineOperand &MO : CopyMI->operands()) 1619 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1620 MO.setIsUndef(true); 1621 LIS->shrinkToUses(&DstLI); 1622 1623 return CopyMI; 1624 } 1625 1626 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1627 MachineOperand &MO, unsigned SubRegIdx) { 1628 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1629 if (MO.isDef()) 1630 Mask = ~Mask; 1631 bool IsUndef = true; 1632 for (const LiveInterval::SubRange &S : Int.subranges()) { 1633 if ((S.LaneMask & Mask).none()) 1634 continue; 1635 if (S.liveAt(UseIdx)) { 1636 IsUndef = false; 1637 break; 1638 } 1639 } 1640 if (IsUndef) { 1641 MO.setIsUndef(true); 1642 // We found out some subregister use is actually reading an undefined 1643 // value. In some cases the whole vreg has become undefined at this 1644 // point so we have to potentially shrink the main range if the 1645 // use was ending a live segment there. 1646 LiveQueryResult Q = Int.Query(UseIdx); 1647 if (Q.valueOut() == nullptr) 1648 ShrinkMainRange = true; 1649 } 1650 } 1651 1652 bool RegisterCoalescer::mergingChangesDbgValue(MachineInstr *DbgV, 1653 unsigned SrcReg, 1654 unsigned DstReg) const { 1655 assert(DbgV->isDebugValue()); 1656 assert(DbgV->getParent() && "DbgValue with no parent"); 1657 assert(DbgV->getOperand(0).isReg()); 1658 unsigned DbgReg = DbgV->getOperand(0).getReg(); 1659 1660 SlotIndex MIIdx = LIS->getSlotIndexes()->getIndexAfter(*DbgV); 1661 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1662 1663 // Is the source register live across the DBG_VALUE? 1664 bool SrcLive = false; 1665 auto LII = SrcLI.find(MIIdx); 1666 if (LII != SrcLI.end() && LII->contains(MIIdx)) 1667 SrcLive = true; 1668 1669 bool DstLive = false; 1670 // Destination register can be physical or virtual. 1671 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 1672 // Is DstReg live across the DBG_VALUE? 1673 const LiveInterval &DstLI = LIS->getInterval(DstReg); 1674 LII = DstLI.find(MIIdx); 1675 DstLive = (LII != DstLI.end() && LII->contains(MIIdx)); 1676 } else if (MRI->isConstantPhysReg(DstReg)) { 1677 // Constant physical registers are always live. 1678 DstLive = true; 1679 } else { 1680 // For physical registers, see if any register unit containing DstReg 1681 // is live across the DBG_VALUE. 1682 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1683 const LiveRange &DstLI = LIS->getRegUnit(*UI); 1684 auto DstLII = DstLI.find(MIIdx); 1685 if (DstLII != DstLI.end() && DstLII->contains(MIIdx)) { 1686 DstLive = true; 1687 break; 1688 } 1689 } 1690 } 1691 1692 // We now know whether src and dst are live. Best case: we have a DBG_VALUE 1693 // of a live register, coalesing won't change its value. 1694 if ((DstLive && DbgReg == DstReg) || (SrcLive && DbgReg == SrcReg)) 1695 return false; 1696 // If neither register are live, no damage done. 1697 if (!DstLive && !SrcLive) 1698 return false; 1699 // Otherwise, we will end up resurrecting the DBG_VALUE with a different 1700 // register, which is unsafe. 1701 return true; 1702 } 1703 1704 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, unsigned DstReg, 1705 unsigned SubIdx) { 1706 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 1707 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1708 1709 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1710 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1711 unsigned SubReg = MO.getSubReg(); 1712 if (SubReg == 0 || MO.isUndef()) 1713 continue; 1714 MachineInstr &MI = *MO.getParent(); 1715 if (MI.isDebugValue()) 1716 continue; 1717 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1718 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1719 } 1720 } 1721 1722 SmallPtrSet<MachineInstr*, 8> Visited; 1723 for (MachineRegisterInfo::reg_instr_iterator 1724 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1725 I != E; ) { 1726 MachineInstr *UseMI = &*(I++); 1727 1728 // Each instruction can only be rewritten once because sub-register 1729 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1730 // the UseMI operands removes them from the SrcReg use-def chain, but when 1731 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1732 // operands mentioning the virtual register. 1733 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1734 continue; 1735 1736 SmallVector<unsigned,8> Ops; 1737 bool Reads, Writes; 1738 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1739 1740 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1741 // because SrcReg is a sub-register. 1742 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) 1743 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1744 1745 // Replace SrcReg with DstReg in all UseMI operands. 1746 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1747 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1748 1749 // Adjust <undef> flags in case of sub-register joins. We don't want to 1750 // turn a full def into a read-modify-write sub-register def and vice 1751 // versa. 1752 if (SubIdx && MO.isDef()) 1753 MO.setIsUndef(!Reads); 1754 1755 // A subreg use of a partially undef (super) register may be a complete 1756 // undef use now and then has to be marked that way. 1757 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1758 if (!DstInt->hasSubRanges()) { 1759 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1760 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1761 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1762 } 1763 SlotIndex MIIdx = UseMI->isDebugValue() 1764 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1765 : LIS->getInstructionIndex(*UseMI); 1766 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1767 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1768 } 1769 1770 if (DstIsPhys) 1771 MO.substPhysReg(DstReg, *TRI); 1772 else 1773 MO.substVirtReg(DstReg, SubIdx, *TRI); 1774 } 1775 1776 LLVM_DEBUG({ 1777 dbgs() << "\t\tupdated: "; 1778 if (!UseMI->isDebugValue()) 1779 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1780 dbgs() << *UseMI; 1781 }); 1782 } 1783 } 1784 1785 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1786 // Always join simple intervals that are defined by a single copy from a 1787 // reserved register. This doesn't increase register pressure, so it is 1788 // always beneficial. 1789 if (!MRI->isReserved(CP.getDstReg())) { 1790 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1791 return false; 1792 } 1793 1794 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1795 if (JoinVInt.containsOneValue()) 1796 return true; 1797 1798 LLVM_DEBUG( 1799 dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1800 return false; 1801 } 1802 1803 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1804 Again = false; 1805 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1806 1807 CoalescerPair CP(*TRI); 1808 if (!CP.setRegisters(CopyMI)) { 1809 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n"); 1810 return false; 1811 } 1812 1813 if (CP.getNewRC()) { 1814 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1815 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1816 unsigned SrcIdx = CP.getSrcIdx(); 1817 unsigned DstIdx = CP.getDstIdx(); 1818 if (CP.isFlipped()) { 1819 std::swap(SrcIdx, DstIdx); 1820 std::swap(SrcRC, DstRC); 1821 } 1822 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1823 CP.getNewRC(), *LIS)) { 1824 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1825 return false; 1826 } 1827 } 1828 1829 // Dead code elimination. This really should be handled by MachineDCE, but 1830 // sometimes dead copies slip through, and we can't generate invalid live 1831 // ranges. 1832 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1833 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n"); 1834 DeadDefs.push_back(CopyMI); 1835 eliminateDeadDefs(); 1836 return true; 1837 } 1838 1839 // Eliminate undefs. 1840 if (!CP.isPhys()) { 1841 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce. 1842 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) { 1843 if (UndefMI->isImplicitDef()) 1844 return false; 1845 deleteInstr(CopyMI); 1846 return false; // Not coalescable. 1847 } 1848 } 1849 1850 // Coalesced copies are normally removed immediately, but transformations 1851 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1852 // When that happens, just join the values and remove the copy. 1853 if (CP.getSrcReg() == CP.getDstReg()) { 1854 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1855 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1856 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1857 LiveQueryResult LRQ = LI.Query(CopyIdx); 1858 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1859 VNInfo *ReadVNI = LRQ.valueIn(); 1860 assert(ReadVNI && "No value before copy and no <undef> flag."); 1861 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1862 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1863 1864 // Process subregister liveranges. 1865 for (LiveInterval::SubRange &S : LI.subranges()) { 1866 LiveQueryResult SLRQ = S.Query(CopyIdx); 1867 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1868 VNInfo *SReadVNI = SLRQ.valueIn(); 1869 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1870 } 1871 } 1872 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1873 } 1874 deleteInstr(CopyMI); 1875 return true; 1876 } 1877 1878 // Enforce policies. 1879 if (CP.isPhys()) { 1880 LLVM_DEBUG(dbgs() << "\tConsidering merging " 1881 << printReg(CP.getSrcReg(), TRI) << " with " 1882 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'); 1883 if (!canJoinPhys(CP)) { 1884 // Before giving up coalescing, if definition of source is defined by 1885 // trivial computation, try rematerializing it. 1886 bool IsDefCopy; 1887 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1888 return true; 1889 if (IsDefCopy) 1890 Again = true; // May be possible to coalesce later. 1891 return false; 1892 } 1893 } else { 1894 // When possible, let DstReg be the larger interval. 1895 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1896 LIS->getInterval(CP.getDstReg()).size()) 1897 CP.flip(); 1898 1899 LLVM_DEBUG({ 1900 dbgs() << "\tConsidering merging to " 1901 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1902 if (CP.getDstIdx() && CP.getSrcIdx()) 1903 dbgs() << printReg(CP.getDstReg()) << " in " 1904 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1905 << printReg(CP.getSrcReg()) << " in " 1906 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1907 else 1908 dbgs() << printReg(CP.getSrcReg(), TRI) << " in " 1909 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1910 }); 1911 } 1912 1913 ShrinkMask = LaneBitmask::getNone(); 1914 ShrinkMainRange = false; 1915 1916 // Although we can update the DBG_VALUEs to the merged register, as debug uses 1917 // do not contribute to liveness it might not be a sound update. Collect 1918 // DBG_VALUEs that would change value were this interval merging to succeed. 1919 SmallVector<MachineInstr *, 4> DbgValuesToChange; 1920 auto CheckForDbgUser = [this, &CP, &DbgValuesToChange](MachineInstr &MI) { 1921 if (MI.isDebugValue() && MI.getOperand(0).isReg() && 1922 mergingChangesDbgValue(&MI, CP.getSrcReg(), CP.getDstReg())) 1923 DbgValuesToChange.push_back(&MI); 1924 }; 1925 for (auto &RegIt : MRI->reg_instructions(CP.getSrcReg())) 1926 CheckForDbgUser(RegIt); 1927 for (auto &RegIt : MRI->reg_instructions(CP.getDstReg())) 1928 CheckForDbgUser(RegIt); 1929 1930 // Okay, attempt to join these two intervals. On failure, this returns false. 1931 // Otherwise, if one of the intervals being joined is a physreg, this method 1932 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1933 // been modified, so we can use this information below to update aliases. 1934 if (!joinIntervals(CP)) { 1935 // Coalescing failed. 1936 1937 // If definition of source is defined by trivial computation, try 1938 // rematerializing it. 1939 bool IsDefCopy; 1940 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1941 return true; 1942 1943 // If we can eliminate the copy without merging the live segments, do so 1944 // now. 1945 if (!CP.isPartial() && !CP.isPhys()) { 1946 bool Changed = adjustCopiesBackFrom(CP, CopyMI); 1947 bool Shrink = false; 1948 if (!Changed) 1949 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI); 1950 if (Changed) { 1951 deleteInstr(CopyMI); 1952 if (Shrink) { 1953 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1954 LiveInterval &DstLI = LIS->getInterval(DstReg); 1955 shrinkToUses(&DstLI); 1956 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n'); 1957 } 1958 LLVM_DEBUG(dbgs() << "\tTrivial!\n"); 1959 return true; 1960 } 1961 } 1962 1963 // Try and see if we can partially eliminate the copy by moving the copy to 1964 // its predecessor. 1965 if (!CP.isPartial() && !CP.isPhys()) 1966 if (removePartialRedundancy(CP, *CopyMI)) 1967 return true; 1968 1969 // Otherwise, we are unable to join the intervals. 1970 LLVM_DEBUG(dbgs() << "\tInterference!\n"); 1971 Again = true; // May be possible to coalesce later. 1972 return false; 1973 } 1974 1975 // Coalescing to a virtual register that is of a sub-register class of the 1976 // other. Make sure the resulting register is set to the right register class. 1977 if (CP.isCrossClass()) { 1978 ++numCrossRCs; 1979 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1980 } 1981 1982 // Removing sub-register copies can ease the register class constraints. 1983 // Make sure we attempt to inflate the register class of DstReg. 1984 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1985 InflateRegs.push_back(CP.getDstReg()); 1986 1987 // CopyMI has been erased by joinIntervals at this point. Remove it from 1988 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1989 // to the work list. This keeps ErasedInstrs from growing needlessly. 1990 ErasedInstrs.erase(CopyMI); 1991 1992 // Rewrite all SrcReg operands to DstReg. 1993 // Also update DstReg operands to include DstIdx if it is set. 1994 if (CP.getDstIdx()) 1995 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1996 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1997 1998 // The updates to these DBG_VALUEs are not sound -- mark them undef. 1999 // FIXME: further analysis might recover them, this is the minimal sound 2000 // solution. 2001 for (MachineInstr *MI : DbgValuesToChange) { 2002 assert(MI->getOperand(0).isReg()); 2003 LLVM_DEBUG(dbgs() << "Update of " << MI->getOperand(0) << " would be " 2004 << "unsound, setting undef\n"); 2005 MI->getOperand(0).setReg(0); 2006 } 2007 2008 // Shrink subregister ranges if necessary. 2009 if (ShrinkMask.any()) { 2010 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 2011 for (LiveInterval::SubRange &S : LI.subranges()) { 2012 if ((S.LaneMask & ShrinkMask).none()) 2013 continue; 2014 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 2015 << ")\n"); 2016 LIS->shrinkToUses(S, LI.reg); 2017 } 2018 LI.removeEmptySubRanges(); 2019 } 2020 2021 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live 2022 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval 2023 // is not up-to-date, need to update the merged live interval here. 2024 if (ToBeUpdated.count(CP.getSrcReg())) 2025 ShrinkMainRange = true; 2026 2027 if (ShrinkMainRange) { 2028 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 2029 shrinkToUses(&LI); 2030 } 2031 2032 // SrcReg is guaranteed to be the register whose live interval that is 2033 // being merged. 2034 LIS->removeInterval(CP.getSrcReg()); 2035 2036 // Update regalloc hint. 2037 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 2038 2039 LLVM_DEBUG({ 2040 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 2041 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 2042 dbgs() << "\tResult = "; 2043 if (CP.isPhys()) 2044 dbgs() << printReg(CP.getDstReg(), TRI); 2045 else 2046 dbgs() << LIS->getInterval(CP.getDstReg()); 2047 dbgs() << '\n'; 2048 }); 2049 2050 ++numJoins; 2051 return true; 2052 } 2053 2054 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 2055 unsigned DstReg = CP.getDstReg(); 2056 unsigned SrcReg = CP.getSrcReg(); 2057 assert(CP.isPhys() && "Must be a physreg copy"); 2058 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 2059 LiveInterval &RHS = LIS->getInterval(SrcReg); 2060 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 2061 2062 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 2063 2064 // Optimization for reserved registers like ESP. We can only merge with a 2065 // reserved physreg if RHS has a single value that is a copy of DstReg. 2066 // The live range of the reserved register will look like a set of dead defs 2067 // - we don't properly track the live range of reserved registers. 2068 2069 // Deny any overlapping intervals. This depends on all the reserved 2070 // register live ranges to look like dead defs. 2071 if (!MRI->isConstantPhysReg(DstReg)) { 2072 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2073 // Abort if not all the regunits are reserved. 2074 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 2075 if (!MRI->isReserved(*RI)) 2076 return false; 2077 } 2078 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 2079 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) 2080 << '\n'); 2081 return false; 2082 } 2083 } 2084 2085 // We must also check for overlaps with regmask clobbers. 2086 BitVector RegMaskUsable; 2087 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 2088 !RegMaskUsable.test(DstReg)) { 2089 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n"); 2090 return false; 2091 } 2092 } 2093 2094 // Skip any value computations, we are not adding new values to the 2095 // reserved register. Also skip merging the live ranges, the reserved 2096 // register live range doesn't need to be accurate as long as all the 2097 // defs are there. 2098 2099 // Delete the identity copy. 2100 MachineInstr *CopyMI; 2101 if (CP.isFlipped()) { 2102 // Physreg is copied into vreg 2103 // %y = COPY %physreg_x 2104 // ... //< no other def of %physreg_x here 2105 // use %y 2106 // => 2107 // ... 2108 // use %physreg_x 2109 CopyMI = MRI->getVRegDef(SrcReg); 2110 } else { 2111 // VReg is copied into physreg: 2112 // %y = def 2113 // ... //< no other def or use of %physreg_x here 2114 // %physreg_x = COPY %y 2115 // => 2116 // %physreg_x = def 2117 // ... 2118 if (!MRI->hasOneNonDBGUse(SrcReg)) { 2119 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 2120 return false; 2121 } 2122 2123 if (!LIS->intervalIsInOneMBB(RHS)) { 2124 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n"); 2125 return false; 2126 } 2127 2128 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 2129 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 2130 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 2131 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 2132 2133 if (!MRI->isConstantPhysReg(DstReg)) { 2134 // We checked above that there are no interfering defs of the physical 2135 // register. However, for this case, where we intend to move up the def of 2136 // the physical register, we also need to check for interfering uses. 2137 SlotIndexes *Indexes = LIS->getSlotIndexes(); 2138 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 2139 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 2140 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 2141 if (MI->readsRegister(DstReg, TRI)) { 2142 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 2143 return false; 2144 } 2145 } 2146 } 2147 2148 // We're going to remove the copy which defines a physical reserved 2149 // register, so remove its valno, etc. 2150 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of " 2151 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n"); 2152 2153 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 2154 // Create a new dead def at the new def location. 2155 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2156 LiveRange &LR = LIS->getRegUnit(*UI); 2157 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 2158 } 2159 } 2160 2161 deleteInstr(CopyMI); 2162 2163 // We don't track kills for reserved registers. 2164 MRI->clearKillFlags(CP.getSrcReg()); 2165 2166 return true; 2167 } 2168 2169 //===----------------------------------------------------------------------===// 2170 // Interference checking and interval joining 2171 //===----------------------------------------------------------------------===// 2172 // 2173 // In the easiest case, the two live ranges being joined are disjoint, and 2174 // there is no interference to consider. It is quite common, though, to have 2175 // overlapping live ranges, and we need to check if the interference can be 2176 // resolved. 2177 // 2178 // The live range of a single SSA value forms a sub-tree of the dominator tree. 2179 // This means that two SSA values overlap if and only if the def of one value 2180 // is contained in the live range of the other value. As a special case, the 2181 // overlapping values can be defined at the same index. 2182 // 2183 // The interference from an overlapping def can be resolved in these cases: 2184 // 2185 // 1. Coalescable copies. The value is defined by a copy that would become an 2186 // identity copy after joining SrcReg and DstReg. The copy instruction will 2187 // be removed, and the value will be merged with the source value. 2188 // 2189 // There can be several copies back and forth, causing many values to be 2190 // merged into one. We compute a list of ultimate values in the joined live 2191 // range as well as a mappings from the old value numbers. 2192 // 2193 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 2194 // predecessors have a live out value. It doesn't cause real interference, 2195 // and can be merged into the value it overlaps. Like a coalescable copy, it 2196 // can be erased after joining. 2197 // 2198 // 3. Copy of external value. The overlapping def may be a copy of a value that 2199 // is already in the other register. This is like a coalescable copy, but 2200 // the live range of the source register must be trimmed after erasing the 2201 // copy instruction: 2202 // 2203 // %src = COPY %ext 2204 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 2205 // 2206 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 2207 // defining one lane at a time: 2208 // 2209 // %dst:ssub0<def,read-undef> = FOO 2210 // %src = BAR 2211 // %dst:ssub1 = COPY %src 2212 // 2213 // The live range of %src overlaps the %dst value defined by FOO, but 2214 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 2215 // which was undef anyway. 2216 // 2217 // The value mapping is more complicated in this case. The final live range 2218 // will have different value numbers for both FOO and BAR, but there is no 2219 // simple mapping from old to new values. It may even be necessary to add 2220 // new PHI values. 2221 // 2222 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 2223 // is live, but never read. This can happen because we don't compute 2224 // individual live ranges per lane. 2225 // 2226 // %dst = FOO 2227 // %src = BAR 2228 // %dst:ssub1 = COPY %src 2229 // 2230 // This kind of interference is only resolved locally. If the clobbered 2231 // lane value escapes the block, the join is aborted. 2232 2233 namespace { 2234 2235 /// Track information about values in a single virtual register about to be 2236 /// joined. Objects of this class are always created in pairs - one for each 2237 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 2238 /// pair) 2239 class JoinVals { 2240 /// Live range we work on. 2241 LiveRange &LR; 2242 2243 /// (Main) register we work on. 2244 const unsigned Reg; 2245 2246 /// Reg (and therefore the values in this liverange) will end up as 2247 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 2248 /// CP.SrcIdx. 2249 const unsigned SubIdx; 2250 2251 /// The LaneMask that this liverange will occupy the coalesced register. May 2252 /// be smaller than the lanemask produced by SubIdx when merging subranges. 2253 const LaneBitmask LaneMask; 2254 2255 /// This is true when joining sub register ranges, false when joining main 2256 /// ranges. 2257 const bool SubRangeJoin; 2258 2259 /// Whether the current LiveInterval tracks subregister liveness. 2260 const bool TrackSubRegLiveness; 2261 2262 /// Values that will be present in the final live range. 2263 SmallVectorImpl<VNInfo*> &NewVNInfo; 2264 2265 const CoalescerPair &CP; 2266 LiveIntervals *LIS; 2267 SlotIndexes *Indexes; 2268 const TargetRegisterInfo *TRI; 2269 2270 /// Value number assignments. Maps value numbers in LI to entries in 2271 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 2272 SmallVector<int, 8> Assignments; 2273 2274 /// Conflict resolution for overlapping values. 2275 enum ConflictResolution { 2276 /// No overlap, simply keep this value. 2277 CR_Keep, 2278 2279 /// Merge this value into OtherVNI and erase the defining instruction. 2280 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 2281 /// values. 2282 CR_Erase, 2283 2284 /// Merge this value into OtherVNI but keep the defining instruction. 2285 /// This is for the special case where OtherVNI is defined by the same 2286 /// instruction. 2287 CR_Merge, 2288 2289 /// Keep this value, and have it replace OtherVNI where possible. This 2290 /// complicates value mapping since OtherVNI maps to two different values 2291 /// before and after this def. 2292 /// Used when clobbering undefined or dead lanes. 2293 CR_Replace, 2294 2295 /// Unresolved conflict. Visit later when all values have been mapped. 2296 CR_Unresolved, 2297 2298 /// Unresolvable conflict. Abort the join. 2299 CR_Impossible 2300 }; 2301 2302 /// Per-value info for LI. The lane bit masks are all relative to the final 2303 /// joined register, so they can be compared directly between SrcReg and 2304 /// DstReg. 2305 struct Val { 2306 ConflictResolution Resolution = CR_Keep; 2307 2308 /// Lanes written by this def, 0 for unanalyzed values. 2309 LaneBitmask WriteLanes; 2310 2311 /// Lanes with defined values in this register. Other lanes are undef and 2312 /// safe to clobber. 2313 LaneBitmask ValidLanes; 2314 2315 /// Value in LI being redefined by this def. 2316 VNInfo *RedefVNI = nullptr; 2317 2318 /// Value in the other live range that overlaps this def, if any. 2319 VNInfo *OtherVNI = nullptr; 2320 2321 /// Is this value an IMPLICIT_DEF that can be erased? 2322 /// 2323 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2324 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2325 /// safely erased if they are overlapping a live value in the other live 2326 /// interval. 2327 /// 2328 /// Weird control flow graphs and incomplete PHI handling in 2329 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2330 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2331 /// normal values. 2332 bool ErasableImplicitDef = false; 2333 2334 /// True when the live range of this value will be pruned because of an 2335 /// overlapping CR_Replace value in the other live range. 2336 bool Pruned = false; 2337 2338 /// True once Pruned above has been computed. 2339 bool PrunedComputed = false; 2340 2341 /// True if this value is determined to be identical to OtherVNI 2342 /// (in valuesIdentical). This is used with CR_Erase where the erased 2343 /// copy is redundant, i.e. the source value is already the same as 2344 /// the destination. In such cases the subranges need to be updated 2345 /// properly. See comment at pruneSubRegValues for more info. 2346 bool Identical = false; 2347 2348 Val() = default; 2349 2350 bool isAnalyzed() const { return WriteLanes.any(); } 2351 }; 2352 2353 /// One entry per value number in LI. 2354 SmallVector<Val, 8> Vals; 2355 2356 /// Compute the bitmask of lanes actually written by DefMI. 2357 /// Set Redef if there are any partial register definitions that depend on the 2358 /// previous value of the register. 2359 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2360 2361 /// Find the ultimate value that VNI was copied from. 2362 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 2363 2364 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const; 2365 2366 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2367 /// Return a conflict resolution when possible, but leave the hard cases as 2368 /// CR_Unresolved. 2369 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2370 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2371 /// The recursion always goes upwards in the dominator tree, making loops 2372 /// impossible. 2373 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2374 2375 /// Compute the value assignment for ValNo in RI. 2376 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2377 /// the stack. 2378 void computeAssignment(unsigned ValNo, JoinVals &Other); 2379 2380 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2381 /// the extent of the tainted lanes in the block. 2382 /// 2383 /// Multiple values in Other.LR can be affected since partial redefinitions 2384 /// can preserve previously tainted lanes. 2385 /// 2386 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2387 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2388 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2389 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2390 /// 2391 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2392 /// entry to TaintedVals. 2393 /// 2394 /// Returns false if the tainted lanes extend beyond the basic block. 2395 bool 2396 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2397 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); 2398 2399 /// Return true if MI uses any of the given Lanes from Reg. 2400 /// This does not include partial redefinitions of Reg. 2401 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; 2402 2403 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2404 /// be pruned: 2405 /// 2406 /// %dst = COPY %src 2407 /// %src = COPY %dst <-- This value to be pruned. 2408 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2409 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2410 2411 public: 2412 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 2413 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 2414 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2415 bool TrackSubRegLiveness) 2416 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2417 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2418 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2419 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {} 2420 2421 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2422 /// Returns false if any conflicts were impossible to resolve. 2423 bool mapValues(JoinVals &Other); 2424 2425 /// Try to resolve conflicts that require all values to be mapped. 2426 /// Returns false if any conflicts were impossible to resolve. 2427 bool resolveConflicts(JoinVals &Other); 2428 2429 /// Prune the live range of values in Other.LR where they would conflict with 2430 /// CR_Replace values in LR. Collect end points for restoring the live range 2431 /// after joining. 2432 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2433 bool changeInstrs); 2434 2435 /// Removes subranges starting at copies that get removed. This sometimes 2436 /// happens when undefined subranges are copied around. These ranges contain 2437 /// no useful information and can be removed. 2438 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2439 2440 /// Pruning values in subranges can lead to removing segments in these 2441 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2442 /// the main range also need to be removed. This function will mark 2443 /// the corresponding values in the main range as pruned, so that 2444 /// eraseInstrs can do the final cleanup. 2445 /// The parameter @p LI must be the interval whose main range is the 2446 /// live range LR. 2447 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2448 2449 /// Erase any machine instructions that have been coalesced away. 2450 /// Add erased instructions to ErasedInstrs. 2451 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2452 /// the erased instrs. 2453 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2454 SmallVectorImpl<unsigned> &ShrinkRegs, 2455 LiveInterval *LI = nullptr); 2456 2457 /// Remove liverange defs at places where implicit defs will be removed. 2458 void removeImplicitDefs(); 2459 2460 /// Get the value assignments suitable for passing to LiveInterval::join. 2461 const int *getAssignments() const { return Assignments.data(); } 2462 }; 2463 2464 } // end anonymous namespace 2465 2466 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2467 const { 2468 LaneBitmask L; 2469 for (const MachineOperand &MO : DefMI->operands()) { 2470 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2471 continue; 2472 L |= TRI->getSubRegIndexLaneMask( 2473 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2474 if (MO.readsReg()) 2475 Redef = true; 2476 } 2477 return L; 2478 } 2479 2480 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 2481 const VNInfo *VNI) const { 2482 unsigned TrackReg = Reg; 2483 2484 while (!VNI->isPHIDef()) { 2485 SlotIndex Def = VNI->def; 2486 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2487 assert(MI && "No defining instruction"); 2488 if (!MI->isFullCopy()) 2489 return std::make_pair(VNI, TrackReg); 2490 unsigned SrcReg = MI->getOperand(1).getReg(); 2491 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 2492 return std::make_pair(VNI, TrackReg); 2493 2494 const LiveInterval &LI = LIS->getInterval(SrcReg); 2495 const VNInfo *ValueIn; 2496 // No subrange involved. 2497 if (!SubRangeJoin || !LI.hasSubRanges()) { 2498 LiveQueryResult LRQ = LI.Query(Def); 2499 ValueIn = LRQ.valueIn(); 2500 } else { 2501 // Query subranges. Ensure that all matching ones take us to the same def 2502 // (allowing some of them to be undef). 2503 ValueIn = nullptr; 2504 for (const LiveInterval::SubRange &S : LI.subranges()) { 2505 // Transform lanemask to a mask in the joined live interval. 2506 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2507 if ((SMask & LaneMask).none()) 2508 continue; 2509 LiveQueryResult LRQ = S.Query(Def); 2510 if (!ValueIn) { 2511 ValueIn = LRQ.valueIn(); 2512 continue; 2513 } 2514 if (LRQ.valueIn() && ValueIn != LRQ.valueIn()) 2515 return std::make_pair(VNI, TrackReg); 2516 } 2517 } 2518 if (ValueIn == nullptr) { 2519 // Reaching an undefined value is legitimate, for example: 2520 // 2521 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef 2522 // 2 %1 = COPY %0 ;; %1 is defined here. 2523 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition, 2524 // ;; but it's equivalent to "undef". 2525 return std::make_pair(nullptr, SrcReg); 2526 } 2527 VNI = ValueIn; 2528 TrackReg = SrcReg; 2529 } 2530 return std::make_pair(VNI, TrackReg); 2531 } 2532 2533 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2534 const JoinVals &Other) const { 2535 const VNInfo *Orig0; 2536 unsigned Reg0; 2537 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2538 if (Orig0 == Value1 && Reg0 == Other.Reg) 2539 return true; 2540 2541 const VNInfo *Orig1; 2542 unsigned Reg1; 2543 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2544 // If both values are undefined, and the source registers are the same 2545 // register, the values are identical. Filter out cases where only one 2546 // value is defined. 2547 if (Orig0 == nullptr || Orig1 == nullptr) 2548 return Orig0 == Orig1 && Reg0 == Reg1; 2549 2550 // The values are equal if they are defined at the same place and use the 2551 // same register. Note that we cannot compare VNInfos directly as some of 2552 // them might be from a copy created in mergeSubRangeInto() while the other 2553 // is from the original LiveInterval. 2554 return Orig0->def == Orig1->def && Reg0 == Reg1; 2555 } 2556 2557 JoinVals::ConflictResolution 2558 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2559 Val &V = Vals[ValNo]; 2560 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2561 VNInfo *VNI = LR.getValNumInfo(ValNo); 2562 if (VNI->isUnused()) { 2563 V.WriteLanes = LaneBitmask::getAll(); 2564 return CR_Keep; 2565 } 2566 2567 // Get the instruction defining this value, compute the lanes written. 2568 const MachineInstr *DefMI = nullptr; 2569 if (VNI->isPHIDef()) { 2570 // Conservatively assume that all lanes in a PHI are valid. 2571 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2572 : TRI->getSubRegIndexLaneMask(SubIdx); 2573 V.ValidLanes = V.WriteLanes = Lanes; 2574 } else { 2575 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2576 assert(DefMI != nullptr); 2577 if (SubRangeJoin) { 2578 // We don't care about the lanes when joining subregister ranges. 2579 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2580 if (DefMI->isImplicitDef()) { 2581 V.ValidLanes = LaneBitmask::getNone(); 2582 V.ErasableImplicitDef = true; 2583 } 2584 } else { 2585 bool Redef = false; 2586 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2587 2588 // If this is a read-modify-write instruction, there may be more valid 2589 // lanes than the ones written by this instruction. 2590 // This only covers partial redef operands. DefMI may have normal use 2591 // operands reading the register. They don't contribute valid lanes. 2592 // 2593 // This adds ssub1 to the set of valid lanes in %src: 2594 // 2595 // %src:ssub1 = FOO 2596 // 2597 // This leaves only ssub1 valid, making any other lanes undef: 2598 // 2599 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2600 // 2601 // The <read-undef> flag on the def operand means that old lane values are 2602 // not important. 2603 if (Redef) { 2604 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2605 assert((TrackSubRegLiveness || V.RedefVNI) && 2606 "Instruction is reading nonexistent value"); 2607 if (V.RedefVNI != nullptr) { 2608 computeAssignment(V.RedefVNI->id, Other); 2609 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2610 } 2611 } 2612 2613 // An IMPLICIT_DEF writes undef values. 2614 if (DefMI->isImplicitDef()) { 2615 // We normally expect IMPLICIT_DEF values to be live only until the end 2616 // of their block. If the value is really live longer and gets pruned in 2617 // another block, this flag is cleared again. 2618 // 2619 // Clearing the valid lanes is deferred until it is sure this can be 2620 // erased. 2621 V.ErasableImplicitDef = true; 2622 } 2623 } 2624 } 2625 2626 // Find the value in Other that overlaps VNI->def, if any. 2627 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2628 2629 // It is possible that both values are defined by the same instruction, or 2630 // the values are PHIs defined in the same block. When that happens, the two 2631 // values should be merged into one, but not into any preceding value. 2632 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2633 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2634 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2635 2636 // One value stays, the other is merged. Keep the earlier one, or the first 2637 // one we see. 2638 if (OtherVNI->def < VNI->def) 2639 Other.computeAssignment(OtherVNI->id, *this); 2640 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2641 // This is an early-clobber def overlapping a live-in value in the other 2642 // register. Not mergeable. 2643 V.OtherVNI = OtherLRQ.valueIn(); 2644 return CR_Impossible; 2645 } 2646 V.OtherVNI = OtherVNI; 2647 Val &OtherV = Other.Vals[OtherVNI->id]; 2648 // Keep this value, check for conflicts when analyzing OtherVNI. 2649 if (!OtherV.isAnalyzed()) 2650 return CR_Keep; 2651 // Both sides have been analyzed now. 2652 // Allow overlapping PHI values. Any real interference would show up in a 2653 // predecessor, the PHI itself can't introduce any conflicts. 2654 if (VNI->isPHIDef()) 2655 return CR_Merge; 2656 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2657 // Overlapping lanes can't be resolved. 2658 return CR_Impossible; 2659 else 2660 return CR_Merge; 2661 } 2662 2663 // No simultaneous def. Is Other live at the def? 2664 V.OtherVNI = OtherLRQ.valueIn(); 2665 if (!V.OtherVNI) 2666 // No overlap, no conflict. 2667 return CR_Keep; 2668 2669 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2670 2671 // We have overlapping values, or possibly a kill of Other. 2672 // Recursively compute assignments up the dominator tree. 2673 Other.computeAssignment(V.OtherVNI->id, *this); 2674 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2675 2676 if (OtherV.ErasableImplicitDef) { 2677 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2678 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2679 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2680 // technically. 2681 // 2682 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2683 // to erase the IMPLICIT_DEF instruction. 2684 if (DefMI && 2685 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2686 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2687 << " extends into " 2688 << printMBBReference(*DefMI->getParent()) 2689 << ", keeping it.\n"); 2690 OtherV.ErasableImplicitDef = false; 2691 } else { 2692 // We deferred clearing these lanes in case we needed to save them 2693 OtherV.ValidLanes &= ~OtherV.WriteLanes; 2694 } 2695 } 2696 2697 // Allow overlapping PHI values. Any real interference would show up in a 2698 // predecessor, the PHI itself can't introduce any conflicts. 2699 if (VNI->isPHIDef()) 2700 return CR_Replace; 2701 2702 // Check for simple erasable conflicts. 2703 if (DefMI->isImplicitDef()) { 2704 // We need the def for the subregister if there is nothing else live at the 2705 // subrange at this point. 2706 if (TrackSubRegLiveness 2707 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none()) 2708 return CR_Replace; 2709 return CR_Erase; 2710 } 2711 2712 // Include the non-conflict where DefMI is a coalescable copy that kills 2713 // OtherVNI. We still want the copy erased and value numbers merged. 2714 if (CP.isCoalescable(DefMI)) { 2715 // Some of the lanes copied from OtherVNI may be undef, making them undef 2716 // here too. 2717 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2718 return CR_Erase; 2719 } 2720 2721 // This may not be a real conflict if DefMI simply kills Other and defines 2722 // VNI. 2723 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2724 return CR_Keep; 2725 2726 // Handle the case where VNI and OtherVNI can be proven to be identical: 2727 // 2728 // %other = COPY %ext 2729 // %this = COPY %ext <-- Erase this copy 2730 // 2731 if (DefMI->isFullCopy() && !CP.isPartial() && 2732 valuesIdentical(VNI, V.OtherVNI, Other)) { 2733 V.Identical = true; 2734 return CR_Erase; 2735 } 2736 2737 // The remaining checks apply to the lanes, which aren't tracked here. This 2738 // was already decided to be OK via the following CR_Replace condition. 2739 // CR_Replace. 2740 if (SubRangeJoin) 2741 return CR_Replace; 2742 2743 // If the lanes written by this instruction were all undef in OtherVNI, it is 2744 // still safe to join the live ranges. This can't be done with a simple value 2745 // mapping, though - OtherVNI will map to multiple values: 2746 // 2747 // 1 %dst:ssub0 = FOO <-- OtherVNI 2748 // 2 %src = BAR <-- VNI 2749 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy. 2750 // 4 BAZ killed %dst 2751 // 5 QUUX killed %src 2752 // 2753 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2754 // handles this complex value mapping. 2755 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2756 return CR_Replace; 2757 2758 // If the other live range is killed by DefMI and the live ranges are still 2759 // overlapping, it must be because we're looking at an early clobber def: 2760 // 2761 // %dst<def,early-clobber> = ASM killed %src 2762 // 2763 // In this case, it is illegal to merge the two live ranges since the early 2764 // clobber def would clobber %src before it was read. 2765 if (OtherLRQ.isKill()) { 2766 // This case where the def doesn't overlap the kill is handled above. 2767 assert(VNI->def.isEarlyClobber() && 2768 "Only early clobber defs can overlap a kill"); 2769 return CR_Impossible; 2770 } 2771 2772 // VNI is clobbering live lanes in OtherVNI, but there is still the 2773 // possibility that no instructions actually read the clobbered lanes. 2774 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2775 // Otherwise Other.RI wouldn't be live here. 2776 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2777 return CR_Impossible; 2778 2779 // We need to verify that no instructions are reading the clobbered lanes. To 2780 // save compile time, we'll only check that locally. Don't allow the tainted 2781 // value to escape the basic block. 2782 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2783 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2784 return CR_Impossible; 2785 2786 // There are still some things that could go wrong besides clobbered lanes 2787 // being read, for example OtherVNI may be only partially redefined in MBB, 2788 // and some clobbered lanes could escape the block. Save this analysis for 2789 // resolveConflicts() when all values have been mapped. We need to know 2790 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2791 // that now - the recursive analyzeValue() calls must go upwards in the 2792 // dominator tree. 2793 return CR_Unresolved; 2794 } 2795 2796 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2797 Val &V = Vals[ValNo]; 2798 if (V.isAnalyzed()) { 2799 // Recursion should always move up the dominator tree, so ValNo is not 2800 // supposed to reappear before it has been assigned. 2801 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2802 return; 2803 } 2804 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2805 case CR_Erase: 2806 case CR_Merge: 2807 // Merge this ValNo into OtherVNI. 2808 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2809 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2810 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2811 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@' 2812 << LR.getValNumInfo(ValNo)->def << " into " 2813 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2814 << V.OtherVNI->def << " --> @" 2815 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2816 break; 2817 case CR_Replace: 2818 case CR_Unresolved: { 2819 // The other value is going to be pruned if this join is successful. 2820 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2821 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2822 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2823 // its lanes. 2824 if (OtherV.ErasableImplicitDef && 2825 TrackSubRegLiveness && 2826 (OtherV.WriteLanes & ~V.ValidLanes).any()) { 2827 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n"); 2828 2829 OtherV.ErasableImplicitDef = false; 2830 // The valid lanes written by the implicit_def were speculatively cleared 2831 // before, so make this more conservative. It may be better to track this, 2832 // I haven't found a testcase where it matters. 2833 OtherV.ValidLanes = LaneBitmask::getAll(); 2834 } 2835 2836 OtherV.Pruned = true; 2837 LLVM_FALLTHROUGH; 2838 } 2839 default: 2840 // This value number needs to go in the final joined live range. 2841 Assignments[ValNo] = NewVNInfo.size(); 2842 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2843 break; 2844 } 2845 } 2846 2847 bool JoinVals::mapValues(JoinVals &Other) { 2848 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2849 computeAssignment(i, Other); 2850 if (Vals[i].Resolution == CR_Impossible) { 2851 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i 2852 << '@' << LR.getValNumInfo(i)->def << '\n'); 2853 return false; 2854 } 2855 } 2856 return true; 2857 } 2858 2859 bool JoinVals:: 2860 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2861 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { 2862 VNInfo *VNI = LR.getValNumInfo(ValNo); 2863 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2864 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2865 2866 // Scan Other.LR from VNI.def to MBBEnd. 2867 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2868 assert(OtherI != Other.LR.end() && "No conflict?"); 2869 do { 2870 // OtherI is pointing to a tainted value. Abort the join if the tainted 2871 // lanes escape the block. 2872 SlotIndex End = OtherI->end; 2873 if (End >= MBBEnd) { 2874 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':' 2875 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2876 return false; 2877 } 2878 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':' 2879 << OtherI->valno->id << '@' << OtherI->start << " to " 2880 << End << '\n'); 2881 // A dead def is not a problem. 2882 if (End.isDead()) 2883 break; 2884 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2885 2886 // Check for another def in the MBB. 2887 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2888 break; 2889 2890 // Lanes written by the new def are no longer tainted. 2891 const Val &OV = Other.Vals[OtherI->valno->id]; 2892 TaintedLanes &= ~OV.WriteLanes; 2893 if (!OV.RedefVNI) 2894 break; 2895 } while (TaintedLanes.any()); 2896 return true; 2897 } 2898 2899 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, 2900 LaneBitmask Lanes) const { 2901 if (MI.isDebugInstr()) 2902 return false; 2903 for (const MachineOperand &MO : MI.operands()) { 2904 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2905 continue; 2906 if (!MO.readsReg()) 2907 continue; 2908 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2909 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2910 return true; 2911 } 2912 return false; 2913 } 2914 2915 bool JoinVals::resolveConflicts(JoinVals &Other) { 2916 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2917 Val &V = Vals[i]; 2918 assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); 2919 if (V.Resolution != CR_Unresolved) 2920 continue; 2921 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@' 2922 << LR.getValNumInfo(i)->def << '\n'); 2923 if (SubRangeJoin) 2924 return false; 2925 2926 ++NumLaneConflicts; 2927 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2928 VNInfo *VNI = LR.getValNumInfo(i); 2929 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2930 2931 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2932 // join, those lanes will be tainted with a wrong value. Get the extent of 2933 // the tainted lanes. 2934 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2935 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2936 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2937 // Tainted lanes would extend beyond the basic block. 2938 return false; 2939 2940 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2941 2942 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2943 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2944 MachineBasicBlock::iterator MI = MBB->begin(); 2945 if (!VNI->isPHIDef()) { 2946 MI = Indexes->getInstructionFromIndex(VNI->def); 2947 // No need to check the instruction defining VNI for reads. 2948 ++MI; 2949 } 2950 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2951 "Interference ends on VNI->def. Should have been handled earlier"); 2952 MachineInstr *LastMI = 2953 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2954 assert(LastMI && "Range must end at a proper instruction"); 2955 unsigned TaintNum = 0; 2956 while (true) { 2957 assert(MI != MBB->end() && "Bad LastMI"); 2958 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2959 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2960 return false; 2961 } 2962 // LastMI is the last instruction to use the current value. 2963 if (&*MI == LastMI) { 2964 if (++TaintNum == TaintExtent.size()) 2965 break; 2966 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2967 assert(LastMI && "Range must end at a proper instruction"); 2968 TaintedLanes = TaintExtent[TaintNum].second; 2969 } 2970 ++MI; 2971 } 2972 2973 // The tainted lanes are unused. 2974 V.Resolution = CR_Replace; 2975 ++NumLaneResolves; 2976 } 2977 return true; 2978 } 2979 2980 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2981 Val &V = Vals[ValNo]; 2982 if (V.Pruned || V.PrunedComputed) 2983 return V.Pruned; 2984 2985 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2986 return V.Pruned; 2987 2988 // Follow copies up the dominator tree and check if any intermediate value 2989 // has been pruned. 2990 V.PrunedComputed = true; 2991 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2992 return V.Pruned; 2993 } 2994 2995 void JoinVals::pruneValues(JoinVals &Other, 2996 SmallVectorImpl<SlotIndex> &EndPoints, 2997 bool changeInstrs) { 2998 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2999 SlotIndex Def = LR.getValNumInfo(i)->def; 3000 switch (Vals[i].Resolution) { 3001 case CR_Keep: 3002 break; 3003 case CR_Replace: { 3004 // This value takes precedence over the value in Other.LR. 3005 LIS->pruneValue(Other.LR, Def, &EndPoints); 3006 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 3007 // instructions are only inserted to provide a live-out value for PHI 3008 // predecessors, so the instruction should simply go away once its value 3009 // has been replaced. 3010 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 3011 bool EraseImpDef = OtherV.ErasableImplicitDef && 3012 OtherV.Resolution == CR_Keep; 3013 if (!Def.isBlock()) { 3014 if (changeInstrs) { 3015 // Remove <def,read-undef> flags. This def is now a partial redef. 3016 // Also remove dead flags since the joined live range will 3017 // continue past this instruction. 3018 for (MachineOperand &MO : 3019 Indexes->getInstructionFromIndex(Def)->operands()) { 3020 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 3021 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) 3022 MO.setIsUndef(false); 3023 MO.setIsDead(false); 3024 } 3025 } 3026 } 3027 // This value will reach instructions below, but we need to make sure 3028 // the live range also reaches the instruction at Def. 3029 if (!EraseImpDef) 3030 EndPoints.push_back(Def); 3031 } 3032 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def 3033 << ": " << Other.LR << '\n'); 3034 break; 3035 } 3036 case CR_Erase: 3037 case CR_Merge: 3038 if (isPrunedValue(i, Other)) { 3039 // This value is ultimately a copy of a pruned value in LR or Other.LR. 3040 // We can no longer trust the value mapping computed by 3041 // computeAssignment(), the value that was originally copied could have 3042 // been replaced. 3043 LIS->pruneValue(LR, Def, &EndPoints); 3044 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at " 3045 << Def << ": " << LR << '\n'); 3046 } 3047 break; 3048 case CR_Unresolved: 3049 case CR_Impossible: 3050 llvm_unreachable("Unresolved conflicts"); 3051 } 3052 } 3053 } 3054 3055 /// Consider the following situation when coalescing the copy between 3056 /// %31 and %45 at 800. (The vertical lines represent live range segments.) 3057 /// 3058 /// Main range Subrange 0004 (sub2) 3059 /// %31 %45 %31 %45 3060 /// 544 %45 = COPY %28 + + 3061 /// | v1 | v1 3062 /// 560B bb.1: + + 3063 /// 624 = %45.sub2 | v2 | v2 3064 /// 800 %31 = COPY %45 + + + + 3065 /// | v0 | v0 3066 /// 816 %31.sub1 = ... + | 3067 /// 880 %30 = COPY %31 | v1 + 3068 /// 928 %45 = COPY %30 | + + 3069 /// | | v0 | v0 <--+ 3070 /// 992B ; backedge -> bb.1 | + + | 3071 /// 1040 = %31.sub0 + | 3072 /// This value must remain 3073 /// live-out! 3074 /// 3075 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes 3076 /// redundant, since it copies the value from %45 back into it. The 3077 /// conflict resolution for the main range determines that %45.v0 is 3078 /// to be erased, which is ok since %31.v1 is identical to it. 3079 /// The problem happens with the subrange for sub2: it has to be live 3080 /// on exit from the block, but since 928 was actually a point of 3081 /// definition of %45.sub2, %45.sub2 was not live immediately prior 3082 /// to that definition. As a result, when 928 was erased, the value v0 3083 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an 3084 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2, 3085 /// providing an incorrect value to the use at 624. 3086 /// 3087 /// Since the main-range values %31.v1 and %45.v0 were proved to be 3088 /// identical, the corresponding values in subranges must also be the 3089 /// same. A redundant copy is removed because it's not needed, and not 3090 /// because it copied an undefined value, so any liveness that originated 3091 /// from that copy cannot disappear. When pruning a value that started 3092 /// at the removed copy, the corresponding identical value must be 3093 /// extended to replace it. 3094 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 3095 // Look for values being erased. 3096 bool DidPrune = false; 3097 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3098 Val &V = Vals[i]; 3099 // We should trigger in all cases in which eraseInstrs() does something. 3100 // match what eraseInstrs() is doing, print a message so 3101 if (V.Resolution != CR_Erase && 3102 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)) 3103 continue; 3104 3105 // Check subranges at the point where the copy will be removed. 3106 SlotIndex Def = LR.getValNumInfo(i)->def; 3107 SlotIndex OtherDef; 3108 if (V.Identical) 3109 OtherDef = V.OtherVNI->def; 3110 3111 // Print message so mismatches with eraseInstrs() can be diagnosed. 3112 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def 3113 << '\n'); 3114 for (LiveInterval::SubRange &S : LI.subranges()) { 3115 LiveQueryResult Q = S.Query(Def); 3116 3117 // If a subrange starts at the copy then an undefined value has been 3118 // copied and we must remove that subrange value as well. 3119 VNInfo *ValueOut = Q.valueOutOrDead(); 3120 if (ValueOut != nullptr && (Q.valueIn() == nullptr || 3121 (V.Identical && V.Resolution == CR_Erase && 3122 ValueOut->def == Def))) { 3123 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 3124 << " at " << Def << "\n"); 3125 SmallVector<SlotIndex,8> EndPoints; 3126 LIS->pruneValue(S, Def, &EndPoints); 3127 DidPrune = true; 3128 // Mark value number as unused. 3129 ValueOut->markUnused(); 3130 3131 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) { 3132 // If V is identical to V.OtherVNI (and S was live at OtherDef), 3133 // then we can't simply prune V from S. V needs to be replaced 3134 // with V.OtherVNI. 3135 LIS->extendToIndices(S, EndPoints); 3136 } 3137 continue; 3138 } 3139 // If a subrange ends at the copy, then a value was copied but only 3140 // partially used later. Shrink the subregister range appropriately. 3141 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 3142 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane " 3143 << PrintLaneMask(S.LaneMask) << " at " << Def 3144 << "\n"); 3145 ShrinkMask |= S.LaneMask; 3146 } 3147 } 3148 } 3149 if (DidPrune) 3150 LI.removeEmptySubRanges(); 3151 } 3152 3153 /// Check if any of the subranges of @p LI contain a definition at @p Def. 3154 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 3155 for (LiveInterval::SubRange &SR : LI.subranges()) { 3156 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 3157 if (VNI->def == Def) 3158 return true; 3159 } 3160 return false; 3161 } 3162 3163 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 3164 assert(&static_cast<LiveRange&>(LI) == &LR); 3165 3166 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3167 if (Vals[i].Resolution != CR_Keep) 3168 continue; 3169 VNInfo *VNI = LR.getValNumInfo(i); 3170 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 3171 continue; 3172 Vals[i].Pruned = true; 3173 ShrinkMainRange = true; 3174 } 3175 } 3176 3177 void JoinVals::removeImplicitDefs() { 3178 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3179 Val &V = Vals[i]; 3180 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 3181 continue; 3182 3183 VNInfo *VNI = LR.getValNumInfo(i); 3184 VNI->markUnused(); 3185 LR.removeValNo(VNI); 3186 } 3187 } 3188 3189 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 3190 SmallVectorImpl<unsigned> &ShrinkRegs, 3191 LiveInterval *LI) { 3192 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3193 // Get the def location before markUnused() below invalidates it. 3194 SlotIndex Def = LR.getValNumInfo(i)->def; 3195 switch (Vals[i].Resolution) { 3196 case CR_Keep: { 3197 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 3198 // longer. The IMPLICIT_DEF instructions are only inserted by 3199 // PHIElimination to guarantee that all PHI predecessors have a value. 3200 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 3201 break; 3202 // Remove value number i from LR. 3203 // For intervals with subranges, removing a segment from the main range 3204 // may require extending the previous segment: for each definition of 3205 // a subregister, there will be a corresponding def in the main range. 3206 // That def may fall in the middle of a segment from another subrange. 3207 // In such cases, removing this def from the main range must be 3208 // complemented by extending the main range to account for the liveness 3209 // of the other subrange. 3210 VNInfo *VNI = LR.getValNumInfo(i); 3211 SlotIndex Def = VNI->def; 3212 // The new end point of the main range segment to be extended. 3213 SlotIndex NewEnd; 3214 if (LI != nullptr) { 3215 LiveRange::iterator I = LR.FindSegmentContaining(Def); 3216 assert(I != LR.end()); 3217 // Do not extend beyond the end of the segment being removed. 3218 // The segment may have been pruned in preparation for joining 3219 // live ranges. 3220 NewEnd = I->end; 3221 } 3222 3223 LR.removeValNo(VNI); 3224 // Note that this VNInfo is reused and still referenced in NewVNInfo, 3225 // make it appear like an unused value number. 3226 VNI->markUnused(); 3227 3228 if (LI != nullptr && LI->hasSubRanges()) { 3229 assert(static_cast<LiveRange*>(LI) == &LR); 3230 // Determine the end point based on the subrange information: 3231 // minimum of (earliest def of next segment, 3232 // latest end point of containing segment) 3233 SlotIndex ED, LE; 3234 for (LiveInterval::SubRange &SR : LI->subranges()) { 3235 LiveRange::iterator I = SR.find(Def); 3236 if (I == SR.end()) 3237 continue; 3238 if (I->start > Def) 3239 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 3240 else 3241 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 3242 } 3243 if (LE.isValid()) 3244 NewEnd = std::min(NewEnd, LE); 3245 if (ED.isValid()) 3246 NewEnd = std::min(NewEnd, ED); 3247 3248 // We only want to do the extension if there was a subrange that 3249 // was live across Def. 3250 if (LE.isValid()) { 3251 LiveRange::iterator S = LR.find(Def); 3252 if (S != LR.begin()) 3253 std::prev(S)->end = NewEnd; 3254 } 3255 } 3256 LLVM_DEBUG({ 3257 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 3258 if (LI != nullptr) 3259 dbgs() << "\t\t LHS = " << *LI << '\n'; 3260 }); 3261 LLVM_FALLTHROUGH; 3262 } 3263 3264 case CR_Erase: { 3265 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 3266 assert(MI && "No instruction to erase"); 3267 if (MI->isCopy()) { 3268 unsigned Reg = MI->getOperand(1).getReg(); 3269 if (TargetRegisterInfo::isVirtualRegister(Reg) && 3270 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 3271 ShrinkRegs.push_back(Reg); 3272 } 3273 ErasedInstrs.insert(MI); 3274 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 3275 LIS->RemoveMachineInstrFromMaps(*MI); 3276 MI->eraseFromParent(); 3277 break; 3278 } 3279 default: 3280 break; 3281 } 3282 } 3283 } 3284 3285 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 3286 LaneBitmask LaneMask, 3287 const CoalescerPair &CP) { 3288 SmallVector<VNInfo*, 16> NewVNInfo; 3289 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 3290 NewVNInfo, CP, LIS, TRI, true, true); 3291 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 3292 NewVNInfo, CP, LIS, TRI, true, true); 3293 3294 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 3295 // We should be able to resolve all conflicts here as we could successfully do 3296 // it on the mainrange already. There is however a problem when multiple 3297 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 3298 // interferences. 3299 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 3300 // We already determined that it is legal to merge the intervals, so this 3301 // should never fail. 3302 llvm_unreachable("*** Couldn't join subrange!\n"); 3303 } 3304 if (!LHSVals.resolveConflicts(RHSVals) || 3305 !RHSVals.resolveConflicts(LHSVals)) { 3306 // We already determined that it is legal to merge the intervals, so this 3307 // should never fail. 3308 llvm_unreachable("*** Couldn't join subrange!\n"); 3309 } 3310 3311 // The merging algorithm in LiveInterval::join() can't handle conflicting 3312 // value mappings, so we need to remove any live ranges that overlap a 3313 // CR_Replace resolution. Collect a set of end points that can be used to 3314 // restore the live range after joining. 3315 SmallVector<SlotIndex, 8> EndPoints; 3316 LHSVals.pruneValues(RHSVals, EndPoints, false); 3317 RHSVals.pruneValues(LHSVals, EndPoints, false); 3318 3319 LHSVals.removeImplicitDefs(); 3320 RHSVals.removeImplicitDefs(); 3321 3322 LRange.verify(); 3323 RRange.verify(); 3324 3325 // Join RRange into LHS. 3326 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 3327 NewVNInfo); 3328 3329 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask) 3330 << ' ' << LRange << "\n"); 3331 if (EndPoints.empty()) 3332 return; 3333 3334 // Recompute the parts of the live range we had to remove because of 3335 // CR_Replace conflicts. 3336 LLVM_DEBUG({ 3337 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3338 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3339 dbgs() << EndPoints[i]; 3340 if (i != n-1) 3341 dbgs() << ','; 3342 } 3343 dbgs() << ": " << LRange << '\n'; 3344 }); 3345 LIS->extendToIndices(LRange, EndPoints); 3346 } 3347 3348 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 3349 const LiveRange &ToMerge, 3350 LaneBitmask LaneMask, 3351 CoalescerPair &CP) { 3352 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3353 LI.refineSubRanges( 3354 Allocator, LaneMask, 3355 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) { 3356 if (SR.empty()) { 3357 SR.assign(ToMerge, Allocator); 3358 } else { 3359 // joinSubRegRange() destroys the merged range, so we need a copy. 3360 LiveRange RangeCopy(ToMerge, Allocator); 3361 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 3362 } 3363 }, 3364 *LIS->getSlotIndexes(), *TRI); 3365 } 3366 3367 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) { 3368 if (LI.valnos.size() < LargeIntervalSizeThreshold) 3369 return false; 3370 auto &Counter = LargeLIVisitCounter[LI.reg]; 3371 if (Counter < LargeIntervalFreqThreshold) { 3372 Counter++; 3373 return false; 3374 } 3375 return true; 3376 } 3377 3378 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 3379 SmallVector<VNInfo*, 16> NewVNInfo; 3380 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 3381 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 3382 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 3383 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 3384 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3385 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 3386 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3387 3388 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n'); 3389 3390 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS)) 3391 return false; 3392 3393 // First compute NewVNInfo and the simple value mappings. 3394 // Detect impossible conflicts early. 3395 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 3396 return false; 3397 3398 // Some conflicts can only be resolved after all values have been mapped. 3399 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 3400 return false; 3401 3402 // All clear, the live ranges can be merged. 3403 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 3404 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3405 3406 // Transform lanemasks from the LHS to masks in the coalesced register and 3407 // create initial subranges if necessary. 3408 unsigned DstIdx = CP.getDstIdx(); 3409 if (!LHS.hasSubRanges()) { 3410 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 3411 : TRI->getSubRegIndexLaneMask(DstIdx); 3412 // LHS must support subregs or we wouldn't be in this codepath. 3413 assert(Mask.any()); 3414 LHS.createSubRangeFrom(Allocator, Mask, LHS); 3415 } else if (DstIdx != 0) { 3416 // Transform LHS lanemasks to new register class if necessary. 3417 for (LiveInterval::SubRange &R : LHS.subranges()) { 3418 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 3419 R.LaneMask = Mask; 3420 } 3421 } 3422 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS 3423 << '\n'); 3424 3425 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3426 unsigned SrcIdx = CP.getSrcIdx(); 3427 if (!RHS.hasSubRanges()) { 3428 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3429 : TRI->getSubRegIndexLaneMask(SrcIdx); 3430 mergeSubRangeInto(LHS, RHS, Mask, CP); 3431 } else { 3432 // Pair up subranges and merge. 3433 for (LiveInterval::SubRange &R : RHS.subranges()) { 3434 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3435 mergeSubRangeInto(LHS, R, Mask, CP); 3436 } 3437 } 3438 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3439 3440 // Pruning implicit defs from subranges may result in the main range 3441 // having stale segments. 3442 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3443 3444 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3445 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3446 } 3447 3448 // The merging algorithm in LiveInterval::join() can't handle conflicting 3449 // value mappings, so we need to remove any live ranges that overlap a 3450 // CR_Replace resolution. Collect a set of end points that can be used to 3451 // restore the live range after joining. 3452 SmallVector<SlotIndex, 8> EndPoints; 3453 LHSVals.pruneValues(RHSVals, EndPoints, true); 3454 RHSVals.pruneValues(LHSVals, EndPoints, true); 3455 3456 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3457 // registers to require trimming. 3458 SmallVector<unsigned, 8> ShrinkRegs; 3459 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3460 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3461 while (!ShrinkRegs.empty()) 3462 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3463 3464 // Join RHS into LHS. 3465 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3466 3467 // Kill flags are going to be wrong if the live ranges were overlapping. 3468 // Eventually, we should simply clear all kill flags when computing live 3469 // ranges. They are reinserted after register allocation. 3470 MRI->clearKillFlags(LHS.reg); 3471 MRI->clearKillFlags(RHS.reg); 3472 3473 if (!EndPoints.empty()) { 3474 // Recompute the parts of the live range we had to remove because of 3475 // CR_Replace conflicts. 3476 LLVM_DEBUG({ 3477 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3478 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3479 dbgs() << EndPoints[i]; 3480 if (i != n-1) 3481 dbgs() << ','; 3482 } 3483 dbgs() << ": " << LHS << '\n'; 3484 }); 3485 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3486 } 3487 3488 return true; 3489 } 3490 3491 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3492 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3493 } 3494 3495 namespace { 3496 3497 /// Information concerning MBB coalescing priority. 3498 struct MBBPriorityInfo { 3499 MachineBasicBlock *MBB; 3500 unsigned Depth; 3501 bool IsSplit; 3502 3503 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3504 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3505 }; 3506 3507 } // end anonymous namespace 3508 3509 /// C-style comparator that sorts first based on the loop depth of the basic 3510 /// block (the unsigned), and then on the MBB number. 3511 /// 3512 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3513 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3514 const MBBPriorityInfo *RHS) { 3515 // Deeper loops first 3516 if (LHS->Depth != RHS->Depth) 3517 return LHS->Depth > RHS->Depth ? -1 : 1; 3518 3519 // Try to unsplit critical edges next. 3520 if (LHS->IsSplit != RHS->IsSplit) 3521 return LHS->IsSplit ? -1 : 1; 3522 3523 // Prefer blocks that are more connected in the CFG. This takes care of 3524 // the most difficult copies first while intervals are short. 3525 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3526 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3527 if (cl != cr) 3528 return cl > cr ? -1 : 1; 3529 3530 // As a last resort, sort by block number. 3531 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3532 } 3533 3534 /// \returns true if the given copy uses or defines a local live range. 3535 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3536 if (!Copy->isCopy()) 3537 return false; 3538 3539 if (Copy->getOperand(1).isUndef()) 3540 return false; 3541 3542 unsigned SrcReg = Copy->getOperand(1).getReg(); 3543 unsigned DstReg = Copy->getOperand(0).getReg(); 3544 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 3545 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 3546 return false; 3547 3548 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3549 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3550 } 3551 3552 void RegisterCoalescer::lateLiveIntervalUpdate() { 3553 for (unsigned reg : ToBeUpdated) { 3554 if (!LIS->hasInterval(reg)) 3555 continue; 3556 LiveInterval &LI = LIS->getInterval(reg); 3557 shrinkToUses(&LI, &DeadDefs); 3558 if (!DeadDefs.empty()) 3559 eliminateDeadDefs(); 3560 } 3561 ToBeUpdated.clear(); 3562 } 3563 3564 bool RegisterCoalescer:: 3565 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3566 bool Progress = false; 3567 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3568 if (!CurrList[i]) 3569 continue; 3570 // Skip instruction pointers that have already been erased, for example by 3571 // dead code elimination. 3572 if (ErasedInstrs.count(CurrList[i])) { 3573 CurrList[i] = nullptr; 3574 continue; 3575 } 3576 bool Again = false; 3577 bool Success = joinCopy(CurrList[i], Again); 3578 Progress |= Success; 3579 if (Success || !Again) 3580 CurrList[i] = nullptr; 3581 } 3582 return Progress; 3583 } 3584 3585 /// Check if DstReg is a terminal node. 3586 /// I.e., it does not have any affinity other than \p Copy. 3587 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 3588 const MachineRegisterInfo *MRI) { 3589 assert(Copy.isCopyLike()); 3590 // Check if the destination of this copy as any other affinity. 3591 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3592 if (&MI != &Copy && MI.isCopyLike()) 3593 return false; 3594 return true; 3595 } 3596 3597 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3598 assert(Copy.isCopyLike()); 3599 if (!UseTerminalRule) 3600 return false; 3601 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 3602 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg)) 3603 return false; 3604 // Check if the destination of this copy has any other affinity. 3605 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 3606 // If SrcReg is a physical register, the copy won't be coalesced. 3607 // Ignoring it may have other side effect (like missing 3608 // rematerialization). So keep it. 3609 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 3610 !isTerminalReg(DstReg, Copy, MRI)) 3611 return false; 3612 3613 // DstReg is a terminal node. Check if it interferes with any other 3614 // copy involving SrcReg. 3615 const MachineBasicBlock *OrigBB = Copy.getParent(); 3616 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3617 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3618 // Technically we should check if the weight of the new copy is 3619 // interesting compared to the other one and update the weight 3620 // of the copies accordingly. However, this would only work if 3621 // we would gather all the copies first then coalesce, whereas 3622 // right now we interleave both actions. 3623 // For now, just consider the copies that are in the same block. 3624 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3625 continue; 3626 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 3627 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3628 OtherSubReg)) 3629 return false; 3630 if (OtherReg == SrcReg) 3631 OtherReg = OtherSrcReg; 3632 // Check if OtherReg is a non-terminal. 3633 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) || 3634 isTerminalReg(OtherReg, MI, MRI)) 3635 continue; 3636 // Check that OtherReg interfere with DstReg. 3637 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3638 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) 3639 << '\n'); 3640 return true; 3641 } 3642 } 3643 return false; 3644 } 3645 3646 void 3647 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3648 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n"); 3649 3650 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3651 // yet, it might invalidate the iterator. 3652 const unsigned PrevSize = WorkList.size(); 3653 if (JoinGlobalCopies) { 3654 SmallVector<MachineInstr*, 2> LocalTerminals; 3655 SmallVector<MachineInstr*, 2> GlobalTerminals; 3656 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3657 // are not inherently easier to resolve, but slightly preferable until we 3658 // have local live range splitting. In particular this is required by 3659 // cmp+jmp macro fusion. 3660 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3661 MII != E; ++MII) { 3662 if (!MII->isCopyLike()) 3663 continue; 3664 bool ApplyTerminalRule = applyTerminalRule(*MII); 3665 if (isLocalCopy(&(*MII), LIS)) { 3666 if (ApplyTerminalRule) 3667 LocalTerminals.push_back(&(*MII)); 3668 else 3669 LocalWorkList.push_back(&(*MII)); 3670 } else { 3671 if (ApplyTerminalRule) 3672 GlobalTerminals.push_back(&(*MII)); 3673 else 3674 WorkList.push_back(&(*MII)); 3675 } 3676 } 3677 // Append the copies evicted by the terminal rule at the end of the list. 3678 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3679 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3680 } 3681 else { 3682 SmallVector<MachineInstr*, 2> Terminals; 3683 for (MachineInstr &MII : *MBB) 3684 if (MII.isCopyLike()) { 3685 if (applyTerminalRule(MII)) 3686 Terminals.push_back(&MII); 3687 else 3688 WorkList.push_back(&MII); 3689 } 3690 // Append the copies evicted by the terminal rule at the end of the list. 3691 WorkList.append(Terminals.begin(), Terminals.end()); 3692 } 3693 // Try coalescing the collected copies immediately, and remove the nulls. 3694 // This prevents the WorkList from getting too large since most copies are 3695 // joinable on the first attempt. 3696 MutableArrayRef<MachineInstr*> 3697 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3698 if (copyCoalesceWorkList(CurrList)) 3699 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3700 nullptr), WorkList.end()); 3701 } 3702 3703 void RegisterCoalescer::coalesceLocals() { 3704 copyCoalesceWorkList(LocalWorkList); 3705 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3706 if (LocalWorkList[j]) 3707 WorkList.push_back(LocalWorkList[j]); 3708 } 3709 LocalWorkList.clear(); 3710 } 3711 3712 void RegisterCoalescer::joinAllIntervals() { 3713 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3714 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3715 3716 std::vector<MBBPriorityInfo> MBBs; 3717 MBBs.reserve(MF->size()); 3718 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3719 MachineBasicBlock *MBB = &*I; 3720 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3721 JoinSplitEdges && isSplitEdge(MBB))); 3722 } 3723 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3724 3725 // Coalesce intervals in MBB priority order. 3726 unsigned CurrDepth = std::numeric_limits<unsigned>::max(); 3727 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3728 // Try coalescing the collected local copies for deeper loops. 3729 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3730 coalesceLocals(); 3731 CurrDepth = MBBs[i].Depth; 3732 } 3733 copyCoalesceInMBB(MBBs[i].MBB); 3734 } 3735 lateLiveIntervalUpdate(); 3736 coalesceLocals(); 3737 3738 // Joining intervals can allow other intervals to be joined. Iteratively join 3739 // until we make no progress. 3740 while (copyCoalesceWorkList(WorkList)) 3741 /* empty */ ; 3742 lateLiveIntervalUpdate(); 3743 } 3744 3745 void RegisterCoalescer::releaseMemory() { 3746 ErasedInstrs.clear(); 3747 WorkList.clear(); 3748 DeadDefs.clear(); 3749 InflateRegs.clear(); 3750 LargeLIVisitCounter.clear(); 3751 } 3752 3753 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3754 MF = &fn; 3755 MRI = &fn.getRegInfo(); 3756 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3757 TRI = STI.getRegisterInfo(); 3758 TII = STI.getInstrInfo(); 3759 LIS = &getAnalysis<LiveIntervals>(); 3760 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3761 Loops = &getAnalysis<MachineLoopInfo>(); 3762 if (EnableGlobalCopies == cl::BOU_UNSET) 3763 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3764 else 3765 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3766 3767 // The MachineScheduler does not currently require JoinSplitEdges. This will 3768 // either be enabled unconditionally or replaced by a more general live range 3769 // splitting optimization. 3770 JoinSplitEdges = EnableJoinSplits; 3771 3772 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3773 << "********** Function: " << MF->getName() << '\n'); 3774 3775 if (VerifyCoalescing) 3776 MF->verify(this, "Before register coalescing"); 3777 3778 RegClassInfo.runOnMachineFunction(fn); 3779 3780 // Join (coalesce) intervals if requested. 3781 if (EnableJoining) 3782 joinAllIntervals(); 3783 3784 // After deleting a lot of copies, register classes may be less constrained. 3785 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3786 // DPR inflation. 3787 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3788 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3789 InflateRegs.end()); 3790 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() 3791 << " regs.\n"); 3792 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3793 unsigned Reg = InflateRegs[i]; 3794 if (MRI->reg_nodbg_empty(Reg)) 3795 continue; 3796 if (MRI->recomputeRegClass(Reg)) { 3797 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to " 3798 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3799 ++NumInflated; 3800 3801 LiveInterval &LI = LIS->getInterval(Reg); 3802 if (LI.hasSubRanges()) { 3803 // If the inflated register class does not support subregisters anymore 3804 // remove the subranges. 3805 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3806 LI.clearSubRanges(); 3807 } else { 3808 #ifndef NDEBUG 3809 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3810 // If subranges are still supported, then the same subregs 3811 // should still be supported. 3812 for (LiveInterval::SubRange &S : LI.subranges()) { 3813 assert((S.LaneMask & ~MaxMask).none()); 3814 } 3815 #endif 3816 } 3817 } 3818 } 3819 } 3820 3821 LLVM_DEBUG(dump()); 3822 if (VerifyCoalescing) 3823 MF->verify(this, "After register coalescing"); 3824 return true; 3825 } 3826 3827 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3828 LIS->print(O, m); 3829 } 3830