1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/MC/LaneBitmask.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <iterator>
55 #include <limits>
56 #include <tuple>
57 #include <utility>
58 #include <vector>
59 
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "regalloc"
63 
64 STATISTIC(numJoins    , "Number of interval joins performed");
65 STATISTIC(numCrossRCs , "Number of cross class joins performed");
66 STATISTIC(numCommutes , "Number of instruction commuting performed");
67 STATISTIC(numExtends  , "Number of copies extended");
68 STATISTIC(NumReMats   , "Number of instructions re-materialized");
69 STATISTIC(NumInflated , "Number of register classes inflated");
70 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
71 STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
72 STATISTIC(NumShrinkToUses,  "Number of shrinkToUses called");
73 
74 static cl::opt<bool> EnableJoining("join-liveintervals",
75                                    cl::desc("Coalesce copies (default=true)"),
76                                    cl::init(true), cl::Hidden);
77 
78 static cl::opt<bool> UseTerminalRule("terminal-rule",
79                                      cl::desc("Apply the terminal rule"),
80                                      cl::init(false), cl::Hidden);
81 
82 /// Temporary flag to test critical edge unsplitting.
83 static cl::opt<bool>
84 EnableJoinSplits("join-splitedges",
85   cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
86 
87 /// Temporary flag to test global copy optimization.
88 static cl::opt<cl::boolOrDefault>
89 EnableGlobalCopies("join-globalcopies",
90   cl::desc("Coalesce copies that span blocks (default=subtarget)"),
91   cl::init(cl::BOU_UNSET), cl::Hidden);
92 
93 static cl::opt<bool>
94 VerifyCoalescing("verify-coalescing",
95          cl::desc("Verify machine instrs before and after register coalescing"),
96          cl::Hidden);
97 
98 static cl::opt<unsigned> LateRematUpdateThreshold(
99     "late-remat-update-threshold", cl::Hidden,
100     cl::desc("During rematerialization for a copy, if the def instruction has "
101              "many other copy uses to be rematerialized, delay the multiple "
102              "separate live interval update work and do them all at once after "
103              "all those rematerialization are done. It will save a lot of "
104              "repeated work. "),
105     cl::init(100));
106 
107 namespace {
108 
109   class RegisterCoalescer : public MachineFunctionPass,
110                             private LiveRangeEdit::Delegate {
111     MachineFunction* MF;
112     MachineRegisterInfo* MRI;
113     const TargetRegisterInfo* TRI;
114     const TargetInstrInfo* TII;
115     LiveIntervals *LIS;
116     const MachineLoopInfo* Loops;
117     AliasAnalysis *AA;
118     RegisterClassInfo RegClassInfo;
119 
120     /// A LaneMask to remember on which subregister live ranges we need to call
121     /// shrinkToUses() later.
122     LaneBitmask ShrinkMask;
123 
124     /// True if the main range of the currently coalesced intervals should be
125     /// checked for smaller live intervals.
126     bool ShrinkMainRange;
127 
128     /// True if the coalescer should aggressively coalesce global copies
129     /// in favor of keeping local copies.
130     bool JoinGlobalCopies;
131 
132     /// True if the coalescer should aggressively coalesce fall-thru
133     /// blocks exclusively containing copies.
134     bool JoinSplitEdges;
135 
136     /// Copy instructions yet to be coalesced.
137     SmallVector<MachineInstr*, 8> WorkList;
138     SmallVector<MachineInstr*, 8> LocalWorkList;
139 
140     /// Set of instruction pointers that have been erased, and
141     /// that may be present in WorkList.
142     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
143 
144     /// Dead instructions that are about to be deleted.
145     SmallVector<MachineInstr*, 8> DeadDefs;
146 
147     /// Virtual registers to be considered for register class inflation.
148     SmallVector<unsigned, 8> InflateRegs;
149 
150     /// The collection of live intervals which should have been updated
151     /// immediately after rematerialiation but delayed until
152     /// lateLiveIntervalUpdate is called.
153     DenseSet<unsigned> ToBeUpdated;
154 
155     /// Recursively eliminate dead defs in DeadDefs.
156     void eliminateDeadDefs();
157 
158     /// LiveRangeEdit callback for eliminateDeadDefs().
159     void LRE_WillEraseInstruction(MachineInstr *MI) override;
160 
161     /// Coalesce the LocalWorkList.
162     void coalesceLocals();
163 
164     /// Join compatible live intervals
165     void joinAllIntervals();
166 
167     /// Coalesce copies in the specified MBB, putting
168     /// copies that cannot yet be coalesced into WorkList.
169     void copyCoalesceInMBB(MachineBasicBlock *MBB);
170 
171     /// Tries to coalesce all copies in CurrList. Returns true if any progress
172     /// was made.
173     bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
174 
175     /// If one def has many copy like uses, and those copy uses are all
176     /// rematerialized, the live interval update needed for those
177     /// rematerializations will be delayed and done all at once instead
178     /// of being done multiple times. This is to save compile cost because
179     /// live interval update is costly.
180     void lateLiveIntervalUpdate();
181 
182     /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
183     /// src/dst of the copy instruction CopyMI.  This returns true if the copy
184     /// was successfully coalesced away. If it is not currently possible to
185     /// coalesce this interval, but it may be possible if other things get
186     /// coalesced, then it returns true by reference in 'Again'.
187     bool joinCopy(MachineInstr *CopyMI, bool &Again);
188 
189     /// Attempt to join these two intervals.  On failure, this
190     /// returns false.  The output "SrcInt" will not have been modified, so we
191     /// can use this information below to update aliases.
192     bool joinIntervals(CoalescerPair &CP);
193 
194     /// Attempt joining two virtual registers. Return true on success.
195     bool joinVirtRegs(CoalescerPair &CP);
196 
197     /// Attempt joining with a reserved physreg.
198     bool joinReservedPhysReg(CoalescerPair &CP);
199 
200     /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
201     /// Subranges in @p LI which only partially interfere with the desired
202     /// LaneMask are split as necessary. @p LaneMask are the lanes that
203     /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
204     /// lanemasks already adjusted to the coalesced register.
205     void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
206                            LaneBitmask LaneMask, CoalescerPair &CP);
207 
208     /// Join the liveranges of two subregisters. Joins @p RRange into
209     /// @p LRange, @p RRange may be invalid afterwards.
210     void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
211                           LaneBitmask LaneMask, const CoalescerPair &CP);
212 
213     /// We found a non-trivially-coalescable copy. If the source value number is
214     /// defined by a copy from the destination reg see if we can merge these two
215     /// destination reg valno# into a single value number, eliminating a copy.
216     /// This returns true if an interval was modified.
217     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
218 
219     /// Return true if there are definitions of IntB
220     /// other than BValNo val# that can reach uses of AValno val# of IntA.
221     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
222                               VNInfo *AValNo, VNInfo *BValNo);
223 
224     /// We found a non-trivially-coalescable copy.
225     /// If the source value number is defined by a commutable instruction and
226     /// its other operand is coalesced to the copy dest register, see if we
227     /// can transform the copy into a noop by commuting the definition.
228     /// This returns a pair of two flags:
229     /// - the first element is true if an interval was modified,
230     /// - the second element is true if the destination interval needs
231     ///   to be shrunk after deleting the copy.
232     std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
233                                                   MachineInstr *CopyMI);
234 
235     /// We found a copy which can be moved to its less frequent predecessor.
236     bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
237 
238     /// If the source of a copy is defined by a
239     /// trivial computation, replace the copy by rematerialize the definition.
240     bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
241                                  bool &IsDefCopy);
242 
243     /// Return true if a copy involving a physreg should be joined.
244     bool canJoinPhys(const CoalescerPair &CP);
245 
246     /// Replace all defs and uses of SrcReg to DstReg and update the subregister
247     /// number if it is not zero. If DstReg is a physical register and the
248     /// existing subregister number of the def / use being updated is not zero,
249     /// make sure to set it to the correct physical subregister.
250     void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
251 
252     /// If the given machine operand reads only undefined lanes add an undef
253     /// flag.
254     /// This can happen when undef uses were previously concealed by a copy
255     /// which we coalesced. Example:
256     ///    %0:sub0<def,read-undef> = ...
257     ///    %1 = COPY %0           <-- Coalescing COPY reveals undef
258     ///       = use %1:sub1       <-- hidden undef use
259     void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
260                       MachineOperand &MO, unsigned SubRegIdx);
261 
262     /// Handle copies of undef values. If the undef value is an incoming
263     /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
264     /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
265     /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
266     MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
267 
268     /// Check whether or not we should apply the terminal rule on the
269     /// destination (Dst) of \p Copy.
270     /// When the terminal rule applies, Copy is not profitable to
271     /// coalesce.
272     /// Dst is terminal if it has exactly one affinity (Dst, Src) and
273     /// at least one interference (Dst, Dst2). If Dst is terminal, the
274     /// terminal rule consists in checking that at least one of
275     /// interfering node, say Dst2, has an affinity of equal or greater
276     /// weight with Src.
277     /// In that case, Dst2 and Dst will not be able to be both coalesced
278     /// with Src. Since Dst2 exposes more coalescing opportunities than
279     /// Dst, we can drop \p Copy.
280     bool applyTerminalRule(const MachineInstr &Copy) const;
281 
282     /// Wrapper method for \see LiveIntervals::shrinkToUses.
283     /// This method does the proper fixing of the live-ranges when the afore
284     /// mentioned method returns true.
285     void shrinkToUses(LiveInterval *LI,
286                       SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
287       NumShrinkToUses++;
288       if (LIS->shrinkToUses(LI, Dead)) {
289         /// Check whether or not \p LI is composed by multiple connected
290         /// components and if that is the case, fix that.
291         SmallVector<LiveInterval*, 8> SplitLIs;
292         LIS->splitSeparateComponents(*LI, SplitLIs);
293       }
294     }
295 
296     /// Wrapper Method to do all the necessary work when an Instruction is
297     /// deleted.
298     /// Optimizations should use this to make sure that deleted instructions
299     /// are always accounted for.
300     void deleteInstr(MachineInstr* MI) {
301       ErasedInstrs.insert(MI);
302       LIS->RemoveMachineInstrFromMaps(*MI);
303       MI->eraseFromParent();
304     }
305 
306   public:
307     static char ID; ///< Class identification, replacement for typeinfo
308 
309     RegisterCoalescer() : MachineFunctionPass(ID) {
310       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
311     }
312 
313     void getAnalysisUsage(AnalysisUsage &AU) const override;
314 
315     void releaseMemory() override;
316 
317     /// This is the pass entry point.
318     bool runOnMachineFunction(MachineFunction&) override;
319 
320     /// Implement the dump method.
321     void print(raw_ostream &O, const Module* = nullptr) const override;
322   };
323 
324 } // end anonymous namespace
325 
326 char RegisterCoalescer::ID = 0;
327 
328 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
329 
330 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
331                       "Simple Register Coalescing", false, false)
332 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
333 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
334 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
335 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
336 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
337                     "Simple Register Coalescing", false, false)
338 
339 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
340                         unsigned &Src, unsigned &Dst,
341                         unsigned &SrcSub, unsigned &DstSub) {
342   if (MI->isCopy()) {
343     Dst = MI->getOperand(0).getReg();
344     DstSub = MI->getOperand(0).getSubReg();
345     Src = MI->getOperand(1).getReg();
346     SrcSub = MI->getOperand(1).getSubReg();
347   } else if (MI->isSubregToReg()) {
348     Dst = MI->getOperand(0).getReg();
349     DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
350                                       MI->getOperand(3).getImm());
351     Src = MI->getOperand(2).getReg();
352     SrcSub = MI->getOperand(2).getSubReg();
353   } else
354     return false;
355   return true;
356 }
357 
358 /// Return true if this block should be vacated by the coalescer to eliminate
359 /// branches. The important cases to handle in the coalescer are critical edges
360 /// split during phi elimination which contain only copies. Simple blocks that
361 /// contain non-branches should also be vacated, but this can be handled by an
362 /// earlier pass similar to early if-conversion.
363 static bool isSplitEdge(const MachineBasicBlock *MBB) {
364   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
365     return false;
366 
367   for (const auto &MI : *MBB) {
368     if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
369       return false;
370   }
371   return true;
372 }
373 
374 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
375   SrcReg = DstReg = 0;
376   SrcIdx = DstIdx = 0;
377   NewRC = nullptr;
378   Flipped = CrossClass = false;
379 
380   unsigned Src, Dst, SrcSub, DstSub;
381   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
382     return false;
383   Partial = SrcSub || DstSub;
384 
385   // If one register is a physreg, it must be Dst.
386   if (TargetRegisterInfo::isPhysicalRegister(Src)) {
387     if (TargetRegisterInfo::isPhysicalRegister(Dst))
388       return false;
389     std::swap(Src, Dst);
390     std::swap(SrcSub, DstSub);
391     Flipped = true;
392   }
393 
394   const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
395 
396   if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
397     // Eliminate DstSub on a physreg.
398     if (DstSub) {
399       Dst = TRI.getSubReg(Dst, DstSub);
400       if (!Dst) return false;
401       DstSub = 0;
402     }
403 
404     // Eliminate SrcSub by picking a corresponding Dst superregister.
405     if (SrcSub) {
406       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
407       if (!Dst) return false;
408     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
409       return false;
410     }
411   } else {
412     // Both registers are virtual.
413     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
414     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
415 
416     // Both registers have subreg indices.
417     if (SrcSub && DstSub) {
418       // Copies between different sub-registers are never coalescable.
419       if (Src == Dst && SrcSub != DstSub)
420         return false;
421 
422       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
423                                          SrcIdx, DstIdx);
424       if (!NewRC)
425         return false;
426     } else if (DstSub) {
427       // SrcReg will be merged with a sub-register of DstReg.
428       SrcIdx = DstSub;
429       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
430     } else if (SrcSub) {
431       // DstReg will be merged with a sub-register of SrcReg.
432       DstIdx = SrcSub;
433       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
434     } else {
435       // This is a straight copy without sub-registers.
436       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
437     }
438 
439     // The combined constraint may be impossible to satisfy.
440     if (!NewRC)
441       return false;
442 
443     // Prefer SrcReg to be a sub-register of DstReg.
444     // FIXME: Coalescer should support subregs symmetrically.
445     if (DstIdx && !SrcIdx) {
446       std::swap(Src, Dst);
447       std::swap(SrcIdx, DstIdx);
448       Flipped = !Flipped;
449     }
450 
451     CrossClass = NewRC != DstRC || NewRC != SrcRC;
452   }
453   // Check our invariants
454   assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
455   assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
456          "Cannot have a physical SubIdx");
457   SrcReg = Src;
458   DstReg = Dst;
459   return true;
460 }
461 
462 bool CoalescerPair::flip() {
463   if (TargetRegisterInfo::isPhysicalRegister(DstReg))
464     return false;
465   std::swap(SrcReg, DstReg);
466   std::swap(SrcIdx, DstIdx);
467   Flipped = !Flipped;
468   return true;
469 }
470 
471 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
472   if (!MI)
473     return false;
474   unsigned Src, Dst, SrcSub, DstSub;
475   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
476     return false;
477 
478   // Find the virtual register that is SrcReg.
479   if (Dst == SrcReg) {
480     std::swap(Src, Dst);
481     std::swap(SrcSub, DstSub);
482   } else if (Src != SrcReg) {
483     return false;
484   }
485 
486   // Now check that Dst matches DstReg.
487   if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
488     if (!TargetRegisterInfo::isPhysicalRegister(Dst))
489       return false;
490     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
491     // DstSub could be set for a physreg from INSERT_SUBREG.
492     if (DstSub)
493       Dst = TRI.getSubReg(Dst, DstSub);
494     // Full copy of Src.
495     if (!SrcSub)
496       return DstReg == Dst;
497     // This is a partial register copy. Check that the parts match.
498     return TRI.getSubReg(DstReg, SrcSub) == Dst;
499   } else {
500     // DstReg is virtual.
501     if (DstReg != Dst)
502       return false;
503     // Registers match, do the subregisters line up?
504     return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
505            TRI.composeSubRegIndices(DstIdx, DstSub);
506   }
507 }
508 
509 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
510   AU.setPreservesCFG();
511   AU.addRequired<AAResultsWrapperPass>();
512   AU.addRequired<LiveIntervals>();
513   AU.addPreserved<LiveIntervals>();
514   AU.addPreserved<SlotIndexes>();
515   AU.addRequired<MachineLoopInfo>();
516   AU.addPreserved<MachineLoopInfo>();
517   AU.addPreservedID(MachineDominatorsID);
518   MachineFunctionPass::getAnalysisUsage(AU);
519 }
520 
521 void RegisterCoalescer::eliminateDeadDefs() {
522   SmallVector<unsigned, 8> NewRegs;
523   LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
524                 nullptr, this).eliminateDeadDefs(DeadDefs);
525 }
526 
527 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
528   // MI may be in WorkList. Make sure we don't visit it.
529   ErasedInstrs.insert(MI);
530 }
531 
532 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
533                                              MachineInstr *CopyMI) {
534   assert(!CP.isPartial() && "This doesn't work for partial copies.");
535   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
536 
537   LiveInterval &IntA =
538     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
539   LiveInterval &IntB =
540     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
541   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
542 
543   // We have a non-trivially-coalescable copy with IntA being the source and
544   // IntB being the dest, thus this defines a value number in IntB.  If the
545   // source value number (in IntA) is defined by a copy from B, see if we can
546   // merge these two pieces of B into a single value number, eliminating a copy.
547   // For example:
548   //
549   //  A3 = B0
550   //    ...
551   //  B1 = A3      <- this copy
552   //
553   // In this case, B0 can be extended to where the B1 copy lives, allowing the
554   // B1 value number to be replaced with B0 (which simplifies the B
555   // liveinterval).
556 
557   // BValNo is a value number in B that is defined by a copy from A.  'B1' in
558   // the example above.
559   LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
560   if (BS == IntB.end()) return false;
561   VNInfo *BValNo = BS->valno;
562 
563   // Get the location that B is defined at.  Two options: either this value has
564   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
565   // can't process it.
566   if (BValNo->def != CopyIdx) return false;
567 
568   // AValNo is the value number in A that defines the copy, A3 in the example.
569   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
570   LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
571   // The live segment might not exist after fun with physreg coalescing.
572   if (AS == IntA.end()) return false;
573   VNInfo *AValNo = AS->valno;
574 
575   // If AValNo is defined as a copy from IntB, we can potentially process this.
576   // Get the instruction that defines this value number.
577   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
578   // Don't allow any partial copies, even if isCoalescable() allows them.
579   if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
580     return false;
581 
582   // Get the Segment in IntB that this value number starts with.
583   LiveInterval::iterator ValS =
584     IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
585   if (ValS == IntB.end())
586     return false;
587 
588   // Make sure that the end of the live segment is inside the same block as
589   // CopyMI.
590   MachineInstr *ValSEndInst =
591     LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
592   if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
593     return false;
594 
595   // Okay, we now know that ValS ends in the same block that the CopyMI
596   // live-range starts.  If there are no intervening live segments between them
597   // in IntB, we can merge them.
598   if (ValS+1 != BS) return false;
599 
600   LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI));
601 
602   SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
603   // We are about to delete CopyMI, so need to remove it as the 'instruction
604   // that defines this value #'. Update the valnum with the new defining
605   // instruction #.
606   BValNo->def = FillerStart;
607 
608   // Okay, we can merge them.  We need to insert a new liverange:
609   // [ValS.end, BS.begin) of either value number, then we merge the
610   // two value numbers.
611   IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
612 
613   // Okay, merge "B1" into the same value number as "B0".
614   if (BValNo != ValS->valno)
615     IntB.MergeValueNumberInto(BValNo, ValS->valno);
616 
617   // Do the same for the subregister segments.
618   for (LiveInterval::SubRange &S : IntB.subranges()) {
619     // Check for SubRange Segments of the form [1234r,1234d:0) which can be
620     // removed to prevent creating bogus SubRange Segments.
621     LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
622     if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
623       S.removeSegment(*SS, true);
624       continue;
625     }
626     VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
627     S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
628     VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
629     if (SubBValNo != SubValSNo)
630       S.MergeValueNumberInto(SubBValNo, SubValSNo);
631   }
632 
633   LLVM_DEBUG(dbgs() << "   result = " << IntB << '\n');
634 
635   // If the source instruction was killing the source register before the
636   // merge, unset the isKill marker given the live range has been extended.
637   int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
638   if (UIdx != -1) {
639     ValSEndInst->getOperand(UIdx).setIsKill(false);
640   }
641 
642   // Rewrite the copy.
643   CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
644   // If the copy instruction was killing the destination register or any
645   // subrange before the merge trim the live range.
646   bool RecomputeLiveRange = AS->end == CopyIdx;
647   if (!RecomputeLiveRange) {
648     for (LiveInterval::SubRange &S : IntA.subranges()) {
649       LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
650       if (SS != S.end() && SS->end == CopyIdx) {
651         RecomputeLiveRange = true;
652         break;
653       }
654     }
655   }
656   if (RecomputeLiveRange)
657     shrinkToUses(&IntA);
658 
659   ++numExtends;
660   return true;
661 }
662 
663 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
664                                              LiveInterval &IntB,
665                                              VNInfo *AValNo,
666                                              VNInfo *BValNo) {
667   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
668   // the PHI values.
669   if (LIS->hasPHIKill(IntA, AValNo))
670     return true;
671 
672   for (LiveRange::Segment &ASeg : IntA.segments) {
673     if (ASeg.valno != AValNo) continue;
674     LiveInterval::iterator BI =
675       std::upper_bound(IntB.begin(), IntB.end(), ASeg.start);
676     if (BI != IntB.begin())
677       --BI;
678     for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
679       if (BI->valno == BValNo)
680         continue;
681       if (BI->start <= ASeg.start && BI->end > ASeg.start)
682         return true;
683       if (BI->start > ASeg.start && BI->start < ASeg.end)
684         return true;
685     }
686   }
687   return false;
688 }
689 
690 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
691 /// range @Dst and use value number @p DstValNo there.
692 static std::pair<bool,bool>
693 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
694                      const VNInfo *SrcValNo) {
695   bool Changed = false;
696   bool MergedWithDead = false;
697   for (const LiveRange::Segment &S : Src.segments) {
698     if (S.valno != SrcValNo)
699       continue;
700     // This is adding a segment from Src that ends in a copy that is about
701     // to be removed. This segment is going to be merged with a pre-existing
702     // segment in Dst. This works, except in cases when the corresponding
703     // segment in Dst is dead. For example: adding [192r,208r:1) from Src
704     // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
705     // Recognized such cases, so that the segments can be shrunk.
706     LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
707     LiveRange::Segment &Merged = *Dst.addSegment(Added);
708     if (Merged.end.isDead())
709       MergedWithDead = true;
710     Changed = true;
711   }
712   return std::make_pair(Changed, MergedWithDead);
713 }
714 
715 std::pair<bool,bool>
716 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
717                                             MachineInstr *CopyMI) {
718   assert(!CP.isPhys());
719 
720   LiveInterval &IntA =
721       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
722   LiveInterval &IntB =
723       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
724 
725   // We found a non-trivially-coalescable copy with IntA being the source and
726   // IntB being the dest, thus this defines a value number in IntB.  If the
727   // source value number (in IntA) is defined by a commutable instruction and
728   // its other operand is coalesced to the copy dest register, see if we can
729   // transform the copy into a noop by commuting the definition. For example,
730   //
731   //  A3 = op A2 killed B0
732   //    ...
733   //  B1 = A3      <- this copy
734   //    ...
735   //     = op A3   <- more uses
736   //
737   // ==>
738   //
739   //  B2 = op B0 killed A2
740   //    ...
741   //  B1 = B2      <- now an identity copy
742   //    ...
743   //     = op B2   <- more uses
744 
745   // BValNo is a value number in B that is defined by a copy from A. 'B1' in
746   // the example above.
747   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
748   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
749   assert(BValNo != nullptr && BValNo->def == CopyIdx);
750 
751   // AValNo is the value number in A that defines the copy, A3 in the example.
752   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
753   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
754   if (AValNo->isPHIDef())
755     return { false, false };
756   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
757   if (!DefMI)
758     return { false, false };
759   if (!DefMI->isCommutable())
760     return { false, false };
761   // If DefMI is a two-address instruction then commuting it will change the
762   // destination register.
763   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
764   assert(DefIdx != -1);
765   unsigned UseOpIdx;
766   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
767     return { false, false };
768 
769   // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
770   // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
771   // passed to the method. That _other_ operand is chosen by
772   // the findCommutedOpIndices() method.
773   //
774   // That is obviously an area for improvement in case of instructions having
775   // more than 2 operands. For example, if some instruction has 3 commutable
776   // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
777   // op#2<->op#3) of commute transformation should be considered/tried here.
778   unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
779   if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
780     return { false, false };
781 
782   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
783   unsigned NewReg = NewDstMO.getReg();
784   if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
785     return { false, false };
786 
787   // Make sure there are no other definitions of IntB that would reach the
788   // uses which the new definition can reach.
789   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
790     return { false, false };
791 
792   // If some of the uses of IntA.reg is already coalesced away, return false.
793   // It's not possible to determine whether it's safe to perform the coalescing.
794   for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
795     MachineInstr *UseMI = MO.getParent();
796     unsigned OpNo = &MO - &UseMI->getOperand(0);
797     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
798     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
799     if (US == IntA.end() || US->valno != AValNo)
800       continue;
801     // If this use is tied to a def, we can't rewrite the register.
802     if (UseMI->isRegTiedToDefOperand(OpNo))
803       return { false, false };
804   }
805 
806   LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
807                     << *DefMI);
808 
809   // At this point we have decided that it is legal to do this
810   // transformation.  Start by commuting the instruction.
811   MachineBasicBlock *MBB = DefMI->getParent();
812   MachineInstr *NewMI =
813       TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
814   if (!NewMI)
815     return { false, false };
816   if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
817       TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
818       !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
819     return { false, false };
820   if (NewMI != DefMI) {
821     LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
822     MachineBasicBlock::iterator Pos = DefMI;
823     MBB->insert(Pos, NewMI);
824     MBB->erase(DefMI);
825   }
826 
827   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
828   // A = or A, B
829   // ...
830   // B = A
831   // ...
832   // C = killed A
833   // ...
834   //   = B
835 
836   // Update uses of IntA of the specific Val# with IntB.
837   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
838                                          UE = MRI->use_end();
839        UI != UE; /* ++UI is below because of possible MI removal */) {
840     MachineOperand &UseMO = *UI;
841     ++UI;
842     if (UseMO.isUndef())
843       continue;
844     MachineInstr *UseMI = UseMO.getParent();
845     if (UseMI->isDebugValue()) {
846       // FIXME These don't have an instruction index.  Not clear we have enough
847       // info to decide whether to do this replacement or not.  For now do it.
848       UseMO.setReg(NewReg);
849       continue;
850     }
851     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
852     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
853     assert(US != IntA.end() && "Use must be live");
854     if (US->valno != AValNo)
855       continue;
856     // Kill flags are no longer accurate. They are recomputed after RA.
857     UseMO.setIsKill(false);
858     if (TargetRegisterInfo::isPhysicalRegister(NewReg))
859       UseMO.substPhysReg(NewReg, *TRI);
860     else
861       UseMO.setReg(NewReg);
862     if (UseMI == CopyMI)
863       continue;
864     if (!UseMI->isCopy())
865       continue;
866     if (UseMI->getOperand(0).getReg() != IntB.reg ||
867         UseMI->getOperand(0).getSubReg())
868       continue;
869 
870     // This copy will become a noop. If it's defining a new val#, merge it into
871     // BValNo.
872     SlotIndex DefIdx = UseIdx.getRegSlot();
873     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
874     if (!DVNI)
875       continue;
876     LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
877     assert(DVNI->def == DefIdx);
878     BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
879     for (LiveInterval::SubRange &S : IntB.subranges()) {
880       VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
881       if (!SubDVNI)
882         continue;
883       VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
884       assert(SubBValNo->def == CopyIdx);
885       S.MergeValueNumberInto(SubDVNI, SubBValNo);
886     }
887 
888     deleteInstr(UseMI);
889   }
890 
891   // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
892   // is updated.
893   bool ShrinkB = false;
894   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
895   if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
896     if (!IntA.hasSubRanges()) {
897       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
898       IntA.createSubRangeFrom(Allocator, Mask, IntA);
899     } else if (!IntB.hasSubRanges()) {
900       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg);
901       IntB.createSubRangeFrom(Allocator, Mask, IntB);
902     }
903     SlotIndex AIdx = CopyIdx.getRegSlot(true);
904     LaneBitmask MaskA;
905     for (LiveInterval::SubRange &SA : IntA.subranges()) {
906       VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
907       assert(ASubValNo != nullptr);
908       MaskA |= SA.LaneMask;
909 
910       IntB.refineSubRanges(Allocator, SA.LaneMask,
911           [&Allocator,&SA,CopyIdx,ASubValNo,&ShrinkB]
912             (LiveInterval::SubRange &SR) {
913         VNInfo *BSubValNo = SR.empty()
914           ? SR.getNextValue(CopyIdx, Allocator)
915           : SR.getVNInfoAt(CopyIdx);
916         assert(BSubValNo != nullptr);
917         auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
918         ShrinkB |= P.second;
919         if (P.first)
920           BSubValNo->def = ASubValNo->def;
921       });
922     }
923     // Go over all subranges of IntB that have not been covered by IntA,
924     // and delete the segments starting at CopyIdx. This can happen if
925     // IntA has undef lanes that are defined in IntB.
926     for (LiveInterval::SubRange &SB : IntB.subranges()) {
927       if ((SB.LaneMask & MaskA).any())
928         continue;
929       if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
930         if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
931           SB.removeSegment(*S, true);
932     }
933   }
934 
935   BValNo->def = AValNo->def;
936   auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
937   ShrinkB |= P.second;
938   LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
939 
940   LIS->removeVRegDefAt(IntA, AValNo->def);
941 
942   LLVM_DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
943   ++numCommutes;
944   return { true, ShrinkB };
945 }
946 
947 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
948 /// predecessor of BB2, and if B is not redefined on the way from A = B
949 /// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the
950 /// execution goes through the path from BB0 to BB2. We may move B = A
951 /// to the predecessor without such reversed copy.
952 /// So we will transform the program from:
953 ///   BB0:
954 ///      A = B;    BB1:
955 ///       ...         ...
956 ///     /     \      /
957 ///             BB2:
958 ///               ...
959 ///               B = A;
960 ///
961 /// to:
962 ///
963 ///   BB0:         BB1:
964 ///      A = B;        ...
965 ///       ...          B = A;
966 ///     /     \       /
967 ///             BB2:
968 ///               ...
969 ///
970 /// A special case is when BB0 and BB2 are the same BB which is the only
971 /// BB in a loop:
972 ///   BB1:
973 ///        ...
974 ///   BB0/BB2:  ----
975 ///        B = A;   |
976 ///        ...      |
977 ///        A = B;   |
978 ///          |-------
979 ///          |
980 /// We may hoist B = A from BB0/BB2 to BB1.
981 ///
982 /// The major preconditions for correctness to remove such partial
983 /// redundancy include:
984 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
985 ///    the PHI is defined by the reversed copy A = B in BB0.
986 /// 2. No B is referenced from the start of BB2 to B = A.
987 /// 3. No B is defined from A = B to the end of BB0.
988 /// 4. BB1 has only one successor.
989 ///
990 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
991 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
992 /// colder place, which not only prevent endless loop, but also make sure
993 /// the movement of copy is beneficial.
994 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
995                                                 MachineInstr &CopyMI) {
996   assert(!CP.isPhys());
997   if (!CopyMI.isFullCopy())
998     return false;
999 
1000   MachineBasicBlock &MBB = *CopyMI.getParent();
1001   if (MBB.isEHPad())
1002     return false;
1003 
1004   if (MBB.pred_size() != 2)
1005     return false;
1006 
1007   LiveInterval &IntA =
1008       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1009   LiveInterval &IntB =
1010       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1011 
1012   // A is defined by PHI at the entry of MBB.
1013   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1014   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1015   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1016   if (!AValNo->isPHIDef())
1017     return false;
1018 
1019   // No B is referenced before CopyMI in MBB.
1020   if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1021     return false;
1022 
1023   // MBB has two predecessors: one contains A = B so no copy will be inserted
1024   // for it. The other one will have a copy moved from MBB.
1025   bool FoundReverseCopy = false;
1026   MachineBasicBlock *CopyLeftBB = nullptr;
1027   for (MachineBasicBlock *Pred : MBB.predecessors()) {
1028     VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1029     MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1030     if (!DefMI || !DefMI->isFullCopy()) {
1031       CopyLeftBB = Pred;
1032       continue;
1033     }
1034     // Check DefMI is a reverse copy and it is in BB Pred.
1035     if (DefMI->getOperand(0).getReg() != IntA.reg ||
1036         DefMI->getOperand(1).getReg() != IntB.reg ||
1037         DefMI->getParent() != Pred) {
1038       CopyLeftBB = Pred;
1039       continue;
1040     }
1041     // If there is any other def of B after DefMI and before the end of Pred,
1042     // we need to keep the copy of B = A at the end of Pred if we remove
1043     // B = A from MBB.
1044     bool ValB_Changed = false;
1045     for (auto VNI : IntB.valnos) {
1046       if (VNI->isUnused())
1047         continue;
1048       if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1049         ValB_Changed = true;
1050         break;
1051       }
1052     }
1053     if (ValB_Changed) {
1054       CopyLeftBB = Pred;
1055       continue;
1056     }
1057     FoundReverseCopy = true;
1058   }
1059 
1060   // If no reverse copy is found in predecessors, nothing to do.
1061   if (!FoundReverseCopy)
1062     return false;
1063 
1064   // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1065   // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1066   // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1067   // update IntA/IntB.
1068   //
1069   // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1070   // MBB is hotter than CopyLeftBB.
1071   if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1072     return false;
1073 
1074   // Now (almost sure it's) ok to move copy.
1075   if (CopyLeftBB) {
1076     // Position in CopyLeftBB where we should insert new copy.
1077     auto InsPos = CopyLeftBB->getFirstTerminator();
1078 
1079     // Make sure that B isn't referenced in the terminators (if any) at the end
1080     // of the predecessor since we're about to insert a new definition of B
1081     // before them.
1082     if (InsPos != CopyLeftBB->end()) {
1083       SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1084       if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1085         return false;
1086     }
1087 
1088     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1089                       << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1090 
1091     // Insert new copy to CopyLeftBB.
1092     MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1093                                       TII->get(TargetOpcode::COPY), IntB.reg)
1094                                   .addReg(IntA.reg);
1095     SlotIndex NewCopyIdx =
1096         LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1097     IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1098     for (LiveInterval::SubRange &SR : IntB.subranges())
1099       SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1100 
1101     // If the newly created Instruction has an address of an instruction that was
1102     // deleted before (object recycled by the allocator) it needs to be removed from
1103     // the deleted list.
1104     ErasedInstrs.erase(NewCopyMI);
1105   } else {
1106     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1107                       << printMBBReference(MBB) << '\t' << CopyMI);
1108   }
1109 
1110   // Remove CopyMI.
1111   // Note: This is fine to remove the copy before updating the live-ranges.
1112   // While updating the live-ranges, we only look at slot indices and
1113   // never go back to the instruction.
1114   // Mark instructions as deleted.
1115   deleteInstr(&CopyMI);
1116 
1117   // Update the liveness.
1118   SmallVector<SlotIndex, 8> EndPoints;
1119   VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1120   LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1121                   &EndPoints);
1122   BValNo->markUnused();
1123   // Extend IntB to the EndPoints of its original live interval.
1124   LIS->extendToIndices(IntB, EndPoints);
1125 
1126   // Now, do the same for its subranges.
1127   for (LiveInterval::SubRange &SR : IntB.subranges()) {
1128     EndPoints.clear();
1129     VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1130     assert(BValNo && "All sublanes should be live");
1131     LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1132     BValNo->markUnused();
1133     // We can have a situation where the result of the original copy is live,
1134     // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1135     // the copy appear as an endpoint from pruneValue(), but we don't want it
1136     // to because the copy has been removed.  We can go ahead and remove that
1137     // endpoint; there is no other situation here that there could be a use at
1138     // the same place as we know that the copy is a full copy.
1139     for (unsigned I = 0; I != EndPoints.size(); ) {
1140       if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1141         EndPoints[I] = EndPoints.back();
1142         EndPoints.pop_back();
1143         continue;
1144       }
1145       ++I;
1146     }
1147     LIS->extendToIndices(SR, EndPoints);
1148   }
1149   // If any dead defs were extended, truncate them.
1150   shrinkToUses(&IntB);
1151 
1152   // Finally, update the live-range of IntA.
1153   shrinkToUses(&IntA);
1154   return true;
1155 }
1156 
1157 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1158 /// defining a subregister.
1159 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
1160   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
1161          "This code cannot handle physreg aliasing");
1162   for (const MachineOperand &Op : MI.operands()) {
1163     if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1164       continue;
1165     // Return true if we define the full register or don't care about the value
1166     // inside other subregisters.
1167     if (Op.getSubReg() == 0 || Op.isUndef())
1168       return true;
1169   }
1170   return false;
1171 }
1172 
1173 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1174                                                 MachineInstr *CopyMI,
1175                                                 bool &IsDefCopy) {
1176   IsDefCopy = false;
1177   unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1178   unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1179   unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1180   unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1181   if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
1182     return false;
1183 
1184   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1185   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1186   VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1187   if (!ValNo)
1188     return false;
1189   if (ValNo->isPHIDef() || ValNo->isUnused())
1190     return false;
1191   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1192   if (!DefMI)
1193     return false;
1194   if (DefMI->isCopyLike()) {
1195     IsDefCopy = true;
1196     return false;
1197   }
1198   if (!TII->isAsCheapAsAMove(*DefMI))
1199     return false;
1200   if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1201     return false;
1202   if (!definesFullReg(*DefMI, SrcReg))
1203     return false;
1204   bool SawStore = false;
1205   if (!DefMI->isSafeToMove(AA, SawStore))
1206     return false;
1207   const MCInstrDesc &MCID = DefMI->getDesc();
1208   if (MCID.getNumDefs() != 1)
1209     return false;
1210   // Only support subregister destinations when the def is read-undef.
1211   MachineOperand &DstOperand = CopyMI->getOperand(0);
1212   unsigned CopyDstReg = DstOperand.getReg();
1213   if (DstOperand.getSubReg() && !DstOperand.isUndef())
1214     return false;
1215 
1216   // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1217   // the register substantially (beyond both source and dest size). This is bad
1218   // for performance since it can cascade through a function, introducing many
1219   // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1220   // around after a few subreg copies).
1221   if (SrcIdx && DstIdx)
1222     return false;
1223 
1224   const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1225   if (!DefMI->isImplicitDef()) {
1226     if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
1227       unsigned NewDstReg = DstReg;
1228 
1229       unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1230                                               DefMI->getOperand(0).getSubReg());
1231       if (NewDstIdx)
1232         NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1233 
1234       // Finally, make sure that the physical subregister that will be
1235       // constructed later is permitted for the instruction.
1236       if (!DefRC->contains(NewDstReg))
1237         return false;
1238     } else {
1239       // Theoretically, some stack frame reference could exist. Just make sure
1240       // it hasn't actually happened.
1241       assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
1242              "Only expect to deal with virtual or physical registers");
1243     }
1244   }
1245 
1246   DebugLoc DL = CopyMI->getDebugLoc();
1247   MachineBasicBlock *MBB = CopyMI->getParent();
1248   MachineBasicBlock::iterator MII =
1249     std::next(MachineBasicBlock::iterator(CopyMI));
1250   TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1251   MachineInstr &NewMI = *std::prev(MII);
1252   NewMI.setDebugLoc(DL);
1253 
1254   // In a situation like the following:
1255   //     %0:subreg = instr              ; DefMI, subreg = DstIdx
1256   //     %1        = copy %0:subreg ; CopyMI, SrcIdx = 0
1257   // instead of widening %1 to the register class of %0 simply do:
1258   //     %1 = instr
1259   const TargetRegisterClass *NewRC = CP.getNewRC();
1260   if (DstIdx != 0) {
1261     MachineOperand &DefMO = NewMI.getOperand(0);
1262     if (DefMO.getSubReg() == DstIdx) {
1263       assert(SrcIdx == 0 && CP.isFlipped()
1264              && "Shouldn't have SrcIdx+DstIdx at this point");
1265       const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1266       const TargetRegisterClass *CommonRC =
1267         TRI->getCommonSubClass(DefRC, DstRC);
1268       if (CommonRC != nullptr) {
1269         NewRC = CommonRC;
1270         DstIdx = 0;
1271         DefMO.setSubReg(0);
1272         DefMO.setIsUndef(false); // Only subregs can have def+undef.
1273       }
1274     }
1275   }
1276 
1277   // CopyMI may have implicit operands, save them so that we can transfer them
1278   // over to the newly materialized instruction after CopyMI is removed.
1279   SmallVector<MachineOperand, 4> ImplicitOps;
1280   ImplicitOps.reserve(CopyMI->getNumOperands() -
1281                       CopyMI->getDesc().getNumOperands());
1282   for (unsigned I = CopyMI->getDesc().getNumOperands(),
1283                 E = CopyMI->getNumOperands();
1284        I != E; ++I) {
1285     MachineOperand &MO = CopyMI->getOperand(I);
1286     if (MO.isReg()) {
1287       assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1288       // Discard VReg implicit defs.
1289       if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1290         ImplicitOps.push_back(MO);
1291     }
1292   }
1293 
1294   LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1295   CopyMI->eraseFromParent();
1296   ErasedInstrs.insert(CopyMI);
1297 
1298   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1299   // We need to remember these so we can add intervals once we insert
1300   // NewMI into SlotIndexes.
1301   SmallVector<unsigned, 4> NewMIImplDefs;
1302   for (unsigned i = NewMI.getDesc().getNumOperands(),
1303                 e = NewMI.getNumOperands();
1304        i != e; ++i) {
1305     MachineOperand &MO = NewMI.getOperand(i);
1306     if (MO.isReg() && MO.isDef()) {
1307       assert(MO.isImplicit() && MO.isDead() &&
1308              TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
1309       NewMIImplDefs.push_back(MO.getReg());
1310     }
1311   }
1312 
1313   if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
1314     unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1315 
1316     if (DefRC != nullptr) {
1317       if (NewIdx)
1318         NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1319       else
1320         NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1321       assert(NewRC && "subreg chosen for remat incompatible with instruction");
1322     }
1323     // Remap subranges to new lanemask and change register class.
1324     LiveInterval &DstInt = LIS->getInterval(DstReg);
1325     for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1326       SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1327     }
1328     MRI->setRegClass(DstReg, NewRC);
1329 
1330     // Update machine operands and add flags.
1331     updateRegDefsUses(DstReg, DstReg, DstIdx);
1332     NewMI.getOperand(0).setSubReg(NewIdx);
1333     // updateRegDefUses can add an "undef" flag to the definition, since
1334     // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1335     // sure that "undef" is not set.
1336     if (NewIdx == 0)
1337       NewMI.getOperand(0).setIsUndef(false);
1338     // Add dead subregister definitions if we are defining the whole register
1339     // but only part of it is live.
1340     // This could happen if the rematerialization instruction is rematerializing
1341     // more than actually is used in the register.
1342     // An example would be:
1343     // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1344     // ; Copying only part of the register here, but the rest is undef.
1345     // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1346     // ==>
1347     // ; Materialize all the constants but only using one
1348     // %2 = LOAD_CONSTANTS 5, 8
1349     //
1350     // at this point for the part that wasn't defined before we could have
1351     // subranges missing the definition.
1352     if (NewIdx == 0 && DstInt.hasSubRanges()) {
1353       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1354       SlotIndex DefIndex =
1355           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1356       LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1357       VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1358       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1359         if (!SR.liveAt(DefIndex))
1360           SR.createDeadDef(DefIndex, Alloc);
1361         MaxMask &= ~SR.LaneMask;
1362       }
1363       if (MaxMask.any()) {
1364         LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1365         SR->createDeadDef(DefIndex, Alloc);
1366       }
1367     }
1368 
1369     // Make sure that the subrange for resultant undef is removed
1370     // For example:
1371     //   %1:sub1<def,read-undef> = LOAD CONSTANT 1
1372     //   %2 = COPY %1
1373     // ==>
1374     //   %2:sub1<def, read-undef> = LOAD CONSTANT 1
1375     //     ; Correct but need to remove the subrange for %2:sub0
1376     //     ; as it is now undef
1377     if (NewIdx != 0 && DstInt.hasSubRanges()) {
1378       // The affected subregister segments can be removed.
1379       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1380       LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1381       bool UpdatedSubRanges = false;
1382       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1383         if ((SR.LaneMask & DstMask).none()) {
1384           LLVM_DEBUG(dbgs()
1385                      << "Removing undefined SubRange "
1386                      << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1387           // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1388           if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1389             SR.removeValNo(RmValNo);
1390             UpdatedSubRanges = true;
1391           }
1392         }
1393       }
1394       if (UpdatedSubRanges)
1395         DstInt.removeEmptySubRanges();
1396     }
1397   } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1398     // The New instruction may be defining a sub-register of what's actually
1399     // been asked for. If so it must implicitly define the whole thing.
1400     assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
1401            "Only expect virtual or physical registers in remat");
1402     NewMI.getOperand(0).setIsDead(true);
1403     NewMI.addOperand(MachineOperand::CreateReg(
1404         CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1405     // Record small dead def live-ranges for all the subregisters
1406     // of the destination register.
1407     // Otherwise, variables that live through may miss some
1408     // interferences, thus creating invalid allocation.
1409     // E.g., i386 code:
1410     // %1 = somedef ; %1 GR8
1411     // %2 = remat ; %2 GR32
1412     // CL = COPY %2.sub_8bit
1413     // = somedef %1 ; %1 GR8
1414     // =>
1415     // %1 = somedef ; %1 GR8
1416     // dead ECX = remat ; implicit-def CL
1417     // = somedef %1 ; %1 GR8
1418     // %1 will see the interferences with CL but not with CH since
1419     // no live-ranges would have been created for ECX.
1420     // Fix that!
1421     SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1422     for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1423          Units.isValid(); ++Units)
1424       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1425         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1426   }
1427 
1428   if (NewMI.getOperand(0).getSubReg())
1429     NewMI.getOperand(0).setIsUndef();
1430 
1431   // Transfer over implicit operands to the rematerialized instruction.
1432   for (MachineOperand &MO : ImplicitOps)
1433     NewMI.addOperand(MO);
1434 
1435   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1436   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1437     unsigned Reg = NewMIImplDefs[i];
1438     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1439       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1440         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1441   }
1442 
1443   LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1444   ++NumReMats;
1445 
1446   // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1447   // to describe DstReg instead.
1448   if (MRI->use_nodbg_empty(SrcReg)) {
1449     for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1450       MachineInstr *UseMI = UseMO.getParent();
1451       if (UseMI->isDebugValue()) {
1452         if (TargetRegisterInfo::isPhysicalRegister(DstReg))
1453           UseMO.substPhysReg(DstReg, *TRI);
1454         else
1455           UseMO.setReg(DstReg);
1456         // Move the debug value directly after the def of the rematerialized
1457         // value in DstReg.
1458         MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1459         LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1460       }
1461     }
1462   }
1463 
1464   if (ToBeUpdated.count(SrcReg))
1465     return true;
1466 
1467   unsigned NumCopyUses = 0;
1468   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1469     if (UseMO.getParent()->isCopyLike())
1470       NumCopyUses++;
1471   }
1472   if (NumCopyUses < LateRematUpdateThreshold) {
1473     // The source interval can become smaller because we removed a use.
1474     shrinkToUses(&SrcInt, &DeadDefs);
1475     if (!DeadDefs.empty())
1476       eliminateDeadDefs();
1477   } else {
1478     ToBeUpdated.insert(SrcReg);
1479   }
1480   return true;
1481 }
1482 
1483 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1484   // ProcessImplicitDefs may leave some copies of <undef> values, it only
1485   // removes local variables. When we have a copy like:
1486   //
1487   //   %1 = COPY undef %2
1488   //
1489   // We delete the copy and remove the corresponding value number from %1.
1490   // Any uses of that value number are marked as <undef>.
1491 
1492   // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1493   // CoalescerPair may have a new register class with adjusted subreg indices
1494   // at this point.
1495   unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1496   isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
1497 
1498   SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1499   const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1500   // CopyMI is undef iff SrcReg is not live before the instruction.
1501   if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1502     LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1503     for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1504       if ((SR.LaneMask & SrcMask).none())
1505         continue;
1506       if (SR.liveAt(Idx))
1507         return nullptr;
1508     }
1509   } else if (SrcLI.liveAt(Idx))
1510     return nullptr;
1511 
1512   // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1513   // then replace it with an IMPLICIT_DEF.
1514   LiveInterval &DstLI = LIS->getInterval(DstReg);
1515   SlotIndex RegIndex = Idx.getRegSlot();
1516   LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1517   assert(Seg != nullptr && "No segment for defining instruction");
1518   if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1519     if (V->isPHIDef()) {
1520       CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1521       for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1522         MachineOperand &MO = CopyMI->getOperand(i-1);
1523         if (MO.isReg() && MO.isUse())
1524           CopyMI->RemoveOperand(i-1);
1525       }
1526       LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1527                            "implicit def\n");
1528       return CopyMI;
1529     }
1530   }
1531 
1532   // Remove any DstReg segments starting at the instruction.
1533   LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1534 
1535   // Remove value or merge with previous one in case of a subregister def.
1536   if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1537     VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1538     DstLI.MergeValueNumberInto(VNI, PrevVNI);
1539 
1540     // The affected subregister segments can be removed.
1541     LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1542     for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1543       if ((SR.LaneMask & DstMask).none())
1544         continue;
1545 
1546       VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1547       assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1548       SR.removeValNo(SVNI);
1549     }
1550     DstLI.removeEmptySubRanges();
1551   } else
1552     LIS->removeVRegDefAt(DstLI, RegIndex);
1553 
1554   // Mark uses as undef.
1555   for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1556     if (MO.isDef() /*|| MO.isUndef()*/)
1557       continue;
1558     const MachineInstr &MI = *MO.getParent();
1559     SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1560     LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1561     bool isLive;
1562     if (!UseMask.all() && DstLI.hasSubRanges()) {
1563       isLive = false;
1564       for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1565         if ((SR.LaneMask & UseMask).none())
1566           continue;
1567         if (SR.liveAt(UseIdx)) {
1568           isLive = true;
1569           break;
1570         }
1571       }
1572     } else
1573       isLive = DstLI.liveAt(UseIdx);
1574     if (isLive)
1575       continue;
1576     MO.setIsUndef(true);
1577     LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1578   }
1579 
1580   // A def of a subregister may be a use of the other subregisters, so
1581   // deleting a def of a subregister may also remove uses. Since CopyMI
1582   // is still part of the function (but about to be erased), mark all
1583   // defs of DstReg in it as <undef>, so that shrinkToUses would
1584   // ignore them.
1585   for (MachineOperand &MO : CopyMI->operands())
1586     if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1587       MO.setIsUndef(true);
1588   LIS->shrinkToUses(&DstLI);
1589 
1590   return CopyMI;
1591 }
1592 
1593 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1594                                      MachineOperand &MO, unsigned SubRegIdx) {
1595   LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1596   if (MO.isDef())
1597     Mask = ~Mask;
1598   bool IsUndef = true;
1599   for (const LiveInterval::SubRange &S : Int.subranges()) {
1600     if ((S.LaneMask & Mask).none())
1601       continue;
1602     if (S.liveAt(UseIdx)) {
1603       IsUndef = false;
1604       break;
1605     }
1606   }
1607   if (IsUndef) {
1608     MO.setIsUndef(true);
1609     // We found out some subregister use is actually reading an undefined
1610     // value. In some cases the whole vreg has become undefined at this
1611     // point so we have to potentially shrink the main range if the
1612     // use was ending a live segment there.
1613     LiveQueryResult Q = Int.Query(UseIdx);
1614     if (Q.valueOut() == nullptr)
1615       ShrinkMainRange = true;
1616   }
1617 }
1618 
1619 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
1620                                           unsigned DstReg,
1621                                           unsigned SubIdx) {
1622   bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1623   LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1624 
1625   if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1626     for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1627       unsigned SubReg = MO.getSubReg();
1628       if (SubReg == 0 || MO.isUndef())
1629         continue;
1630       MachineInstr &MI = *MO.getParent();
1631       if (MI.isDebugValue())
1632         continue;
1633       SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1634       addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1635     }
1636   }
1637 
1638   SmallPtrSet<MachineInstr*, 8> Visited;
1639   for (MachineRegisterInfo::reg_instr_iterator
1640        I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1641        I != E; ) {
1642     MachineInstr *UseMI = &*(I++);
1643 
1644     // Each instruction can only be rewritten once because sub-register
1645     // composition is not always idempotent. When SrcReg != DstReg, rewriting
1646     // the UseMI operands removes them from the SrcReg use-def chain, but when
1647     // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1648     // operands mentioning the virtual register.
1649     if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1650       continue;
1651 
1652     SmallVector<unsigned,8> Ops;
1653     bool Reads, Writes;
1654     std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1655 
1656     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1657     // because SrcReg is a sub-register.
1658     if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
1659       Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1660 
1661     // Replace SrcReg with DstReg in all UseMI operands.
1662     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1663       MachineOperand &MO = UseMI->getOperand(Ops[i]);
1664 
1665       // Adjust <undef> flags in case of sub-register joins. We don't want to
1666       // turn a full def into a read-modify-write sub-register def and vice
1667       // versa.
1668       if (SubIdx && MO.isDef())
1669         MO.setIsUndef(!Reads);
1670 
1671       // A subreg use of a partially undef (super) register may be a complete
1672       // undef use now and then has to be marked that way.
1673       if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1674         if (!DstInt->hasSubRanges()) {
1675           BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1676           LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
1677           DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
1678         }
1679         SlotIndex MIIdx = UseMI->isDebugValue()
1680                               ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1681                               : LIS->getInstructionIndex(*UseMI);
1682         SlotIndex UseIdx = MIIdx.getRegSlot(true);
1683         addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
1684       }
1685 
1686       if (DstIsPhys)
1687         MO.substPhysReg(DstReg, *TRI);
1688       else
1689         MO.substVirtReg(DstReg, SubIdx, *TRI);
1690     }
1691 
1692     LLVM_DEBUG({
1693       dbgs() << "\t\tupdated: ";
1694       if (!UseMI->isDebugValue())
1695         dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1696       dbgs() << *UseMI;
1697     });
1698   }
1699 }
1700 
1701 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1702   // Always join simple intervals that are defined by a single copy from a
1703   // reserved register. This doesn't increase register pressure, so it is
1704   // always beneficial.
1705   if (!MRI->isReserved(CP.getDstReg())) {
1706     LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1707     return false;
1708   }
1709 
1710   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1711   if (JoinVInt.containsOneValue())
1712     return true;
1713 
1714   LLVM_DEBUG(
1715       dbgs() << "\tCannot join complex intervals into reserved register.\n");
1716   return false;
1717 }
1718 
1719 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1720   Again = false;
1721   LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1722 
1723   CoalescerPair CP(*TRI);
1724   if (!CP.setRegisters(CopyMI)) {
1725     LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1726     return false;
1727   }
1728 
1729   if (CP.getNewRC()) {
1730     auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1731     auto DstRC = MRI->getRegClass(CP.getDstReg());
1732     unsigned SrcIdx = CP.getSrcIdx();
1733     unsigned DstIdx = CP.getDstIdx();
1734     if (CP.isFlipped()) {
1735       std::swap(SrcIdx, DstIdx);
1736       std::swap(SrcRC, DstRC);
1737     }
1738     if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1739                              CP.getNewRC(), *LIS)) {
1740       LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1741       return false;
1742     }
1743   }
1744 
1745   // Dead code elimination. This really should be handled by MachineDCE, but
1746   // sometimes dead copies slip through, and we can't generate invalid live
1747   // ranges.
1748   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1749     LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1750     DeadDefs.push_back(CopyMI);
1751     eliminateDeadDefs();
1752     return true;
1753   }
1754 
1755   // Eliminate undefs.
1756   if (!CP.isPhys()) {
1757     // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1758     if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1759       if (UndefMI->isImplicitDef())
1760         return false;
1761       deleteInstr(CopyMI);
1762       return false;  // Not coalescable.
1763     }
1764   }
1765 
1766   // Coalesced copies are normally removed immediately, but transformations
1767   // like removeCopyByCommutingDef() can inadvertently create identity copies.
1768   // When that happens, just join the values and remove the copy.
1769   if (CP.getSrcReg() == CP.getDstReg()) {
1770     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1771     LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1772     const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1773     LiveQueryResult LRQ = LI.Query(CopyIdx);
1774     if (VNInfo *DefVNI = LRQ.valueDefined()) {
1775       VNInfo *ReadVNI = LRQ.valueIn();
1776       assert(ReadVNI && "No value before copy and no <undef> flag.");
1777       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1778       LI.MergeValueNumberInto(DefVNI, ReadVNI);
1779 
1780       // Process subregister liveranges.
1781       for (LiveInterval::SubRange &S : LI.subranges()) {
1782         LiveQueryResult SLRQ = S.Query(CopyIdx);
1783         if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1784           VNInfo *SReadVNI = SLRQ.valueIn();
1785           S.MergeValueNumberInto(SDefVNI, SReadVNI);
1786         }
1787       }
1788       LLVM_DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1789     }
1790     deleteInstr(CopyMI);
1791     return true;
1792   }
1793 
1794   // Enforce policies.
1795   if (CP.isPhys()) {
1796     LLVM_DEBUG(dbgs() << "\tConsidering merging "
1797                       << printReg(CP.getSrcReg(), TRI) << " with "
1798                       << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1799     if (!canJoinPhys(CP)) {
1800       // Before giving up coalescing, if definition of source is defined by
1801       // trivial computation, try rematerializing it.
1802       bool IsDefCopy;
1803       if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1804         return true;
1805       if (IsDefCopy)
1806         Again = true;  // May be possible to coalesce later.
1807       return false;
1808     }
1809   } else {
1810     // When possible, let DstReg be the larger interval.
1811     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1812                            LIS->getInterval(CP.getDstReg()).size())
1813       CP.flip();
1814 
1815     LLVM_DEBUG({
1816       dbgs() << "\tConsidering merging to "
1817              << TRI->getRegClassName(CP.getNewRC()) << " with ";
1818       if (CP.getDstIdx() && CP.getSrcIdx())
1819         dbgs() << printReg(CP.getDstReg()) << " in "
1820                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1821                << printReg(CP.getSrcReg()) << " in "
1822                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1823       else
1824         dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
1825                << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1826     });
1827   }
1828 
1829   ShrinkMask = LaneBitmask::getNone();
1830   ShrinkMainRange = false;
1831 
1832   // Okay, attempt to join these two intervals.  On failure, this returns false.
1833   // Otherwise, if one of the intervals being joined is a physreg, this method
1834   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1835   // been modified, so we can use this information below to update aliases.
1836   if (!joinIntervals(CP)) {
1837     // Coalescing failed.
1838 
1839     // If definition of source is defined by trivial computation, try
1840     // rematerializing it.
1841     bool IsDefCopy;
1842     if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1843       return true;
1844 
1845     // If we can eliminate the copy without merging the live segments, do so
1846     // now.
1847     if (!CP.isPartial() && !CP.isPhys()) {
1848       bool Changed = adjustCopiesBackFrom(CP, CopyMI);
1849       bool Shrink = false;
1850       if (!Changed)
1851         std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
1852       if (Changed) {
1853         deleteInstr(CopyMI);
1854         if (Shrink) {
1855           unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1856           LiveInterval &DstLI = LIS->getInterval(DstReg);
1857           shrinkToUses(&DstLI);
1858           LLVM_DEBUG(dbgs() << "\t\tshrunk:   " << DstLI << '\n');
1859         }
1860         LLVM_DEBUG(dbgs() << "\tTrivial!\n");
1861         return true;
1862       }
1863     }
1864 
1865     // Try and see if we can partially eliminate the copy by moving the copy to
1866     // its predecessor.
1867     if (!CP.isPartial() && !CP.isPhys())
1868       if (removePartialRedundancy(CP, *CopyMI))
1869         return true;
1870 
1871     // Otherwise, we are unable to join the intervals.
1872     LLVM_DEBUG(dbgs() << "\tInterference!\n");
1873     Again = true;  // May be possible to coalesce later.
1874     return false;
1875   }
1876 
1877   // Coalescing to a virtual register that is of a sub-register class of the
1878   // other. Make sure the resulting register is set to the right register class.
1879   if (CP.isCrossClass()) {
1880     ++numCrossRCs;
1881     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1882   }
1883 
1884   // Removing sub-register copies can ease the register class constraints.
1885   // Make sure we attempt to inflate the register class of DstReg.
1886   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1887     InflateRegs.push_back(CP.getDstReg());
1888 
1889   // CopyMI has been erased by joinIntervals at this point. Remove it from
1890   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1891   // to the work list. This keeps ErasedInstrs from growing needlessly.
1892   ErasedInstrs.erase(CopyMI);
1893 
1894   // Rewrite all SrcReg operands to DstReg.
1895   // Also update DstReg operands to include DstIdx if it is set.
1896   if (CP.getDstIdx())
1897     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1898   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1899 
1900   // Shrink subregister ranges if necessary.
1901   if (ShrinkMask.any()) {
1902     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1903     for (LiveInterval::SubRange &S : LI.subranges()) {
1904       if ((S.LaneMask & ShrinkMask).none())
1905         continue;
1906       LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
1907                         << ")\n");
1908       LIS->shrinkToUses(S, LI.reg);
1909     }
1910     LI.removeEmptySubRanges();
1911   }
1912 
1913   // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
1914   // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
1915   // is not up-to-date, need to update the merged live interval here.
1916   if (ToBeUpdated.count(CP.getSrcReg()))
1917     ShrinkMainRange = true;
1918 
1919   if (ShrinkMainRange) {
1920     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1921     shrinkToUses(&LI);
1922   }
1923 
1924   // SrcReg is guaranteed to be the register whose live interval that is
1925   // being merged.
1926   LIS->removeInterval(CP.getSrcReg());
1927 
1928   // Update regalloc hint.
1929   TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1930 
1931   LLVM_DEBUG({
1932     dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
1933            << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
1934     dbgs() << "\tResult = ";
1935     if (CP.isPhys())
1936       dbgs() << printReg(CP.getDstReg(), TRI);
1937     else
1938       dbgs() << LIS->getInterval(CP.getDstReg());
1939     dbgs() << '\n';
1940   });
1941 
1942   ++numJoins;
1943   return true;
1944 }
1945 
1946 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1947   unsigned DstReg = CP.getDstReg();
1948   unsigned SrcReg = CP.getSrcReg();
1949   assert(CP.isPhys() && "Must be a physreg copy");
1950   assert(MRI->isReserved(DstReg) && "Not a reserved register");
1951   LiveInterval &RHS = LIS->getInterval(SrcReg);
1952   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
1953 
1954   assert(RHS.containsOneValue() && "Invalid join with reserved register");
1955 
1956   // Optimization for reserved registers like ESP. We can only merge with a
1957   // reserved physreg if RHS has a single value that is a copy of DstReg.
1958   // The live range of the reserved register will look like a set of dead defs
1959   // - we don't properly track the live range of reserved registers.
1960 
1961   // Deny any overlapping intervals.  This depends on all the reserved
1962   // register live ranges to look like dead defs.
1963   if (!MRI->isConstantPhysReg(DstReg)) {
1964     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
1965       // Abort if not all the regunits are reserved.
1966       for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
1967         if (!MRI->isReserved(*RI))
1968           return false;
1969       }
1970       if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1971         LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
1972                           << '\n');
1973         return false;
1974       }
1975     }
1976 
1977     // We must also check for overlaps with regmask clobbers.
1978     BitVector RegMaskUsable;
1979     if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
1980         !RegMaskUsable.test(DstReg)) {
1981       LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
1982       return false;
1983     }
1984   }
1985 
1986   // Skip any value computations, we are not adding new values to the
1987   // reserved register.  Also skip merging the live ranges, the reserved
1988   // register live range doesn't need to be accurate as long as all the
1989   // defs are there.
1990 
1991   // Delete the identity copy.
1992   MachineInstr *CopyMI;
1993   if (CP.isFlipped()) {
1994     // Physreg is copied into vreg
1995     //   %y = COPY %physreg_x
1996     //   ...  //< no other def of %x here
1997     //   use %y
1998     // =>
1999     //   ...
2000     //   use %x
2001     CopyMI = MRI->getVRegDef(SrcReg);
2002   } else {
2003     // VReg is copied into physreg:
2004     //   %y = def
2005     //   ... //< no other def or use of %y here
2006     //   %y = COPY %physreg_x
2007     // =>
2008     //   %y = def
2009     //   ...
2010     if (!MRI->hasOneNonDBGUse(SrcReg)) {
2011       LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2012       return false;
2013     }
2014 
2015     if (!LIS->intervalIsInOneMBB(RHS)) {
2016       LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2017       return false;
2018     }
2019 
2020     MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2021     CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2022     SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2023     SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2024 
2025     if (!MRI->isConstantPhysReg(DstReg)) {
2026       // We checked above that there are no interfering defs of the physical
2027       // register. However, for this case, where we intend to move up the def of
2028       // the physical register, we also need to check for interfering uses.
2029       SlotIndexes *Indexes = LIS->getSlotIndexes();
2030       for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2031            SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2032         MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2033         if (MI->readsRegister(DstReg, TRI)) {
2034           LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2035           return false;
2036         }
2037       }
2038     }
2039 
2040     // We're going to remove the copy which defines a physical reserved
2041     // register, so remove its valno, etc.
2042     LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2043                       << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2044 
2045     LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
2046     // Create a new dead def at the new def location.
2047     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2048       LiveRange &LR = LIS->getRegUnit(*UI);
2049       LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2050     }
2051   }
2052 
2053   deleteInstr(CopyMI);
2054 
2055   // We don't track kills for reserved registers.
2056   MRI->clearKillFlags(CP.getSrcReg());
2057 
2058   return true;
2059 }
2060 
2061 //===----------------------------------------------------------------------===//
2062 //                 Interference checking and interval joining
2063 //===----------------------------------------------------------------------===//
2064 //
2065 // In the easiest case, the two live ranges being joined are disjoint, and
2066 // there is no interference to consider. It is quite common, though, to have
2067 // overlapping live ranges, and we need to check if the interference can be
2068 // resolved.
2069 //
2070 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2071 // This means that two SSA values overlap if and only if the def of one value
2072 // is contained in the live range of the other value. As a special case, the
2073 // overlapping values can be defined at the same index.
2074 //
2075 // The interference from an overlapping def can be resolved in these cases:
2076 //
2077 // 1. Coalescable copies. The value is defined by a copy that would become an
2078 //    identity copy after joining SrcReg and DstReg. The copy instruction will
2079 //    be removed, and the value will be merged with the source value.
2080 //
2081 //    There can be several copies back and forth, causing many values to be
2082 //    merged into one. We compute a list of ultimate values in the joined live
2083 //    range as well as a mappings from the old value numbers.
2084 //
2085 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2086 //    predecessors have a live out value. It doesn't cause real interference,
2087 //    and can be merged into the value it overlaps. Like a coalescable copy, it
2088 //    can be erased after joining.
2089 //
2090 // 3. Copy of external value. The overlapping def may be a copy of a value that
2091 //    is already in the other register. This is like a coalescable copy, but
2092 //    the live range of the source register must be trimmed after erasing the
2093 //    copy instruction:
2094 //
2095 //      %src = COPY %ext
2096 //      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
2097 //
2098 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2099 //    defining one lane at a time:
2100 //
2101 //      %dst:ssub0<def,read-undef> = FOO
2102 //      %src = BAR
2103 //      %dst:ssub1 = COPY %src
2104 //
2105 //    The live range of %src overlaps the %dst value defined by FOO, but
2106 //    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2107 //    which was undef anyway.
2108 //
2109 //    The value mapping is more complicated in this case. The final live range
2110 //    will have different value numbers for both FOO and BAR, but there is no
2111 //    simple mapping from old to new values. It may even be necessary to add
2112 //    new PHI values.
2113 //
2114 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2115 //    is live, but never read. This can happen because we don't compute
2116 //    individual live ranges per lane.
2117 //
2118 //      %dst = FOO
2119 //      %src = BAR
2120 //      %dst:ssub1 = COPY %src
2121 //
2122 //    This kind of interference is only resolved locally. If the clobbered
2123 //    lane value escapes the block, the join is aborted.
2124 
2125 namespace {
2126 
2127 /// Track information about values in a single virtual register about to be
2128 /// joined. Objects of this class are always created in pairs - one for each
2129 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2130 /// pair)
2131 class JoinVals {
2132   /// Live range we work on.
2133   LiveRange &LR;
2134 
2135   /// (Main) register we work on.
2136   const unsigned Reg;
2137 
2138   /// Reg (and therefore the values in this liverange) will end up as
2139   /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2140   /// CP.SrcIdx.
2141   const unsigned SubIdx;
2142 
2143   /// The LaneMask that this liverange will occupy the coalesced register. May
2144   /// be smaller than the lanemask produced by SubIdx when merging subranges.
2145   const LaneBitmask LaneMask;
2146 
2147   /// This is true when joining sub register ranges, false when joining main
2148   /// ranges.
2149   const bool SubRangeJoin;
2150 
2151   /// Whether the current LiveInterval tracks subregister liveness.
2152   const bool TrackSubRegLiveness;
2153 
2154   /// Values that will be present in the final live range.
2155   SmallVectorImpl<VNInfo*> &NewVNInfo;
2156 
2157   const CoalescerPair &CP;
2158   LiveIntervals *LIS;
2159   SlotIndexes *Indexes;
2160   const TargetRegisterInfo *TRI;
2161 
2162   /// Value number assignments. Maps value numbers in LI to entries in
2163   /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2164   SmallVector<int, 8> Assignments;
2165 
2166   /// Conflict resolution for overlapping values.
2167   enum ConflictResolution {
2168     /// No overlap, simply keep this value.
2169     CR_Keep,
2170 
2171     /// Merge this value into OtherVNI and erase the defining instruction.
2172     /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2173     /// values.
2174     CR_Erase,
2175 
2176     /// Merge this value into OtherVNI but keep the defining instruction.
2177     /// This is for the special case where OtherVNI is defined by the same
2178     /// instruction.
2179     CR_Merge,
2180 
2181     /// Keep this value, and have it replace OtherVNI where possible. This
2182     /// complicates value mapping since OtherVNI maps to two different values
2183     /// before and after this def.
2184     /// Used when clobbering undefined or dead lanes.
2185     CR_Replace,
2186 
2187     /// Unresolved conflict. Visit later when all values have been mapped.
2188     CR_Unresolved,
2189 
2190     /// Unresolvable conflict. Abort the join.
2191     CR_Impossible
2192   };
2193 
2194   /// Per-value info for LI. The lane bit masks are all relative to the final
2195   /// joined register, so they can be compared directly between SrcReg and
2196   /// DstReg.
2197   struct Val {
2198     ConflictResolution Resolution = CR_Keep;
2199 
2200     /// Lanes written by this def, 0 for unanalyzed values.
2201     LaneBitmask WriteLanes;
2202 
2203     /// Lanes with defined values in this register. Other lanes are undef and
2204     /// safe to clobber.
2205     LaneBitmask ValidLanes;
2206 
2207     /// Value in LI being redefined by this def.
2208     VNInfo *RedefVNI = nullptr;
2209 
2210     /// Value in the other live range that overlaps this def, if any.
2211     VNInfo *OtherVNI = nullptr;
2212 
2213     /// Is this value an IMPLICIT_DEF that can be erased?
2214     ///
2215     /// IMPLICIT_DEF values should only exist at the end of a basic block that
2216     /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2217     /// safely erased if they are overlapping a live value in the other live
2218     /// interval.
2219     ///
2220     /// Weird control flow graphs and incomplete PHI handling in
2221     /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2222     /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2223     /// normal values.
2224     bool ErasableImplicitDef = false;
2225 
2226     /// True when the live range of this value will be pruned because of an
2227     /// overlapping CR_Replace value in the other live range.
2228     bool Pruned = false;
2229 
2230     /// True once Pruned above has been computed.
2231     bool PrunedComputed = false;
2232 
2233     /// True if this value is determined to be identical to OtherVNI
2234     /// (in valuesIdentical). This is used with CR_Erase where the erased
2235     /// copy is redundant, i.e. the source value is already the same as
2236     /// the destination. In such cases the subranges need to be updated
2237     /// properly. See comment at pruneSubRegValues for more info.
2238     bool Identical = false;
2239 
2240     Val() = default;
2241 
2242     bool isAnalyzed() const { return WriteLanes.any(); }
2243   };
2244 
2245   /// One entry per value number in LI.
2246   SmallVector<Val, 8> Vals;
2247 
2248   /// Compute the bitmask of lanes actually written by DefMI.
2249   /// Set Redef if there are any partial register definitions that depend on the
2250   /// previous value of the register.
2251   LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2252 
2253   /// Find the ultimate value that VNI was copied from.
2254   std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
2255 
2256   bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2257 
2258   /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2259   /// Return a conflict resolution when possible, but leave the hard cases as
2260   /// CR_Unresolved.
2261   /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2262   /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2263   /// The recursion always goes upwards in the dominator tree, making loops
2264   /// impossible.
2265   ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2266 
2267   /// Compute the value assignment for ValNo in RI.
2268   /// This may be called recursively by analyzeValue(), but never for a ValNo on
2269   /// the stack.
2270   void computeAssignment(unsigned ValNo, JoinVals &Other);
2271 
2272   /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2273   /// the extent of the tainted lanes in the block.
2274   ///
2275   /// Multiple values in Other.LR can be affected since partial redefinitions
2276   /// can preserve previously tainted lanes.
2277   ///
2278   ///   1 %dst = VLOAD           <-- Define all lanes in %dst
2279   ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
2280   ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
2281   ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2282   ///
2283   /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2284   /// entry to TaintedVals.
2285   ///
2286   /// Returns false if the tainted lanes extend beyond the basic block.
2287   bool
2288   taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2289               SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2290 
2291   /// Return true if MI uses any of the given Lanes from Reg.
2292   /// This does not include partial redefinitions of Reg.
2293   bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
2294 
2295   /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2296   /// be pruned:
2297   ///
2298   ///   %dst = COPY %src
2299   ///   %src = COPY %dst  <-- This value to be pruned.
2300   ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
2301   bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2302 
2303 public:
2304   JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
2305            SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
2306            LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2307            bool TrackSubRegLiveness)
2308     : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2309       SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2310       NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2311       TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {}
2312 
2313   /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2314   /// Returns false if any conflicts were impossible to resolve.
2315   bool mapValues(JoinVals &Other);
2316 
2317   /// Try to resolve conflicts that require all values to be mapped.
2318   /// Returns false if any conflicts were impossible to resolve.
2319   bool resolveConflicts(JoinVals &Other);
2320 
2321   /// Prune the live range of values in Other.LR where they would conflict with
2322   /// CR_Replace values in LR. Collect end points for restoring the live range
2323   /// after joining.
2324   void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2325                    bool changeInstrs);
2326 
2327   /// Removes subranges starting at copies that get removed. This sometimes
2328   /// happens when undefined subranges are copied around. These ranges contain
2329   /// no useful information and can be removed.
2330   void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2331 
2332   /// Pruning values in subranges can lead to removing segments in these
2333   /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2334   /// the main range also need to be removed. This function will mark
2335   /// the corresponding values in the main range as pruned, so that
2336   /// eraseInstrs can do the final cleanup.
2337   /// The parameter @p LI must be the interval whose main range is the
2338   /// live range LR.
2339   void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2340 
2341   /// Erase any machine instructions that have been coalesced away.
2342   /// Add erased instructions to ErasedInstrs.
2343   /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2344   /// the erased instrs.
2345   void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2346                    SmallVectorImpl<unsigned> &ShrinkRegs,
2347                    LiveInterval *LI = nullptr);
2348 
2349   /// Remove liverange defs at places where implicit defs will be removed.
2350   void removeImplicitDefs();
2351 
2352   /// Get the value assignments suitable for passing to LiveInterval::join.
2353   const int *getAssignments() const { return Assignments.data(); }
2354 };
2355 
2356 } // end anonymous namespace
2357 
2358 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2359   const {
2360   LaneBitmask L;
2361   for (const MachineOperand &MO : DefMI->operands()) {
2362     if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2363       continue;
2364     L |= TRI->getSubRegIndexLaneMask(
2365            TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2366     if (MO.readsReg())
2367       Redef = true;
2368   }
2369   return L;
2370 }
2371 
2372 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
2373     const VNInfo *VNI) const {
2374   unsigned TrackReg = Reg;
2375 
2376   while (!VNI->isPHIDef()) {
2377     SlotIndex Def = VNI->def;
2378     MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2379     assert(MI && "No defining instruction");
2380     if (!MI->isFullCopy())
2381       return std::make_pair(VNI, TrackReg);
2382     unsigned SrcReg = MI->getOperand(1).getReg();
2383     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
2384       return std::make_pair(VNI, TrackReg);
2385 
2386     const LiveInterval &LI = LIS->getInterval(SrcReg);
2387     const VNInfo *ValueIn;
2388     // No subrange involved.
2389     if (!SubRangeJoin || !LI.hasSubRanges()) {
2390       LiveQueryResult LRQ = LI.Query(Def);
2391       ValueIn = LRQ.valueIn();
2392     } else {
2393       // Query subranges. Ensure that all matching ones take us to the same def
2394       // (allowing some of them to be undef).
2395       ValueIn = nullptr;
2396       for (const LiveInterval::SubRange &S : LI.subranges()) {
2397         // Transform lanemask to a mask in the joined live interval.
2398         LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2399         if ((SMask & LaneMask).none())
2400           continue;
2401         LiveQueryResult LRQ = S.Query(Def);
2402         if (!ValueIn) {
2403           ValueIn = LRQ.valueIn();
2404           continue;
2405         }
2406         if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2407           return std::make_pair(VNI, TrackReg);
2408       }
2409     }
2410     if (ValueIn == nullptr) {
2411       // Reaching an undefined value is legitimate, for example:
2412       //
2413       // 1   undef %0.sub1 = ...  ;; %0.sub0 == undef
2414       // 2   %1 = COPY %0         ;; %1 is defined here.
2415       // 3   %0 = COPY %1         ;; Now %0.sub0 has a definition,
2416       //                          ;; but it's equivalent to "undef".
2417       return std::make_pair(nullptr, SrcReg);
2418     }
2419     VNI = ValueIn;
2420     TrackReg = SrcReg;
2421   }
2422   return std::make_pair(VNI, TrackReg);
2423 }
2424 
2425 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2426                                const JoinVals &Other) const {
2427   const VNInfo *Orig0;
2428   unsigned Reg0;
2429   std::tie(Orig0, Reg0) = followCopyChain(Value0);
2430   if (Orig0 == Value1 && Reg0 == Other.Reg)
2431     return true;
2432 
2433   const VNInfo *Orig1;
2434   unsigned Reg1;
2435   std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2436   // If both values are undefined, and the source registers are the same
2437   // register, the values are identical. Filter out cases where only one
2438   // value is defined.
2439   if (Orig0 == nullptr || Orig1 == nullptr)
2440     return Orig0 == Orig1 && Reg0 == Reg1;
2441 
2442   // The values are equal if they are defined at the same place and use the
2443   // same register. Note that we cannot compare VNInfos directly as some of
2444   // them might be from a copy created in mergeSubRangeInto()  while the other
2445   // is from the original LiveInterval.
2446   return Orig0->def == Orig1->def && Reg0 == Reg1;
2447 }
2448 
2449 JoinVals::ConflictResolution
2450 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2451   Val &V = Vals[ValNo];
2452   assert(!V.isAnalyzed() && "Value has already been analyzed!");
2453   VNInfo *VNI = LR.getValNumInfo(ValNo);
2454   if (VNI->isUnused()) {
2455     V.WriteLanes = LaneBitmask::getAll();
2456     return CR_Keep;
2457   }
2458 
2459   // Get the instruction defining this value, compute the lanes written.
2460   const MachineInstr *DefMI = nullptr;
2461   if (VNI->isPHIDef()) {
2462     // Conservatively assume that all lanes in a PHI are valid.
2463     LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2464                                      : TRI->getSubRegIndexLaneMask(SubIdx);
2465     V.ValidLanes = V.WriteLanes = Lanes;
2466   } else {
2467     DefMI = Indexes->getInstructionFromIndex(VNI->def);
2468     assert(DefMI != nullptr);
2469     if (SubRangeJoin) {
2470       // We don't care about the lanes when joining subregister ranges.
2471       V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2472       if (DefMI->isImplicitDef()) {
2473         V.ValidLanes = LaneBitmask::getNone();
2474         V.ErasableImplicitDef = true;
2475       }
2476     } else {
2477       bool Redef = false;
2478       V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2479 
2480       // If this is a read-modify-write instruction, there may be more valid
2481       // lanes than the ones written by this instruction.
2482       // This only covers partial redef operands. DefMI may have normal use
2483       // operands reading the register. They don't contribute valid lanes.
2484       //
2485       // This adds ssub1 to the set of valid lanes in %src:
2486       //
2487       //   %src:ssub1 = FOO
2488       //
2489       // This leaves only ssub1 valid, making any other lanes undef:
2490       //
2491       //   %src:ssub1<def,read-undef> = FOO %src:ssub2
2492       //
2493       // The <read-undef> flag on the def operand means that old lane values are
2494       // not important.
2495       if (Redef) {
2496         V.RedefVNI = LR.Query(VNI->def).valueIn();
2497         assert((TrackSubRegLiveness || V.RedefVNI) &&
2498                "Instruction is reading nonexistent value");
2499         if (V.RedefVNI != nullptr) {
2500           computeAssignment(V.RedefVNI->id, Other);
2501           V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2502         }
2503       }
2504 
2505       // An IMPLICIT_DEF writes undef values.
2506       if (DefMI->isImplicitDef()) {
2507         // We normally expect IMPLICIT_DEF values to be live only until the end
2508         // of their block. If the value is really live longer and gets pruned in
2509         // another block, this flag is cleared again.
2510         //
2511         // Clearing the valid lanes is deferred until it is sure this can be
2512         // erased.
2513         V.ErasableImplicitDef = true;
2514       }
2515     }
2516   }
2517 
2518   // Find the value in Other that overlaps VNI->def, if any.
2519   LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2520 
2521   // It is possible that both values are defined by the same instruction, or
2522   // the values are PHIs defined in the same block. When that happens, the two
2523   // values should be merged into one, but not into any preceding value.
2524   // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2525   if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2526     assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2527 
2528     // One value stays, the other is merged. Keep the earlier one, or the first
2529     // one we see.
2530     if (OtherVNI->def < VNI->def)
2531       Other.computeAssignment(OtherVNI->id, *this);
2532     else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2533       // This is an early-clobber def overlapping a live-in value in the other
2534       // register. Not mergeable.
2535       V.OtherVNI = OtherLRQ.valueIn();
2536       return CR_Impossible;
2537     }
2538     V.OtherVNI = OtherVNI;
2539     Val &OtherV = Other.Vals[OtherVNI->id];
2540     // Keep this value, check for conflicts when analyzing OtherVNI.
2541     if (!OtherV.isAnalyzed())
2542       return CR_Keep;
2543     // Both sides have been analyzed now.
2544     // Allow overlapping PHI values. Any real interference would show up in a
2545     // predecessor, the PHI itself can't introduce any conflicts.
2546     if (VNI->isPHIDef())
2547       return CR_Merge;
2548     if ((V.ValidLanes & OtherV.ValidLanes).any())
2549       // Overlapping lanes can't be resolved.
2550       return CR_Impossible;
2551     else
2552       return CR_Merge;
2553   }
2554 
2555   // No simultaneous def. Is Other live at the def?
2556   V.OtherVNI = OtherLRQ.valueIn();
2557   if (!V.OtherVNI)
2558     // No overlap, no conflict.
2559     return CR_Keep;
2560 
2561   assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2562 
2563   // We have overlapping values, or possibly a kill of Other.
2564   // Recursively compute assignments up the dominator tree.
2565   Other.computeAssignment(V.OtherVNI->id, *this);
2566   Val &OtherV = Other.Vals[V.OtherVNI->id];
2567 
2568   if (OtherV.ErasableImplicitDef) {
2569     // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2570     // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2571     // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2572     // technically.
2573     //
2574     // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2575     // to erase the IMPLICIT_DEF instruction.
2576     if (DefMI &&
2577         DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2578       LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2579                  << " extends into "
2580                  << printMBBReference(*DefMI->getParent())
2581                  << ", keeping it.\n");
2582       OtherV.ErasableImplicitDef = false;
2583     } else {
2584       // We deferred clearing these lanes in case we needed to save them
2585       OtherV.ValidLanes &= ~OtherV.WriteLanes;
2586     }
2587   }
2588 
2589   // Allow overlapping PHI values. Any real interference would show up in a
2590   // predecessor, the PHI itself can't introduce any conflicts.
2591   if (VNI->isPHIDef())
2592     return CR_Replace;
2593 
2594   // Check for simple erasable conflicts.
2595   if (DefMI->isImplicitDef()) {
2596     // We need the def for the subregister if there is nothing else live at the
2597     // subrange at this point.
2598     if (TrackSubRegLiveness
2599         && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none())
2600       return CR_Replace;
2601     return CR_Erase;
2602   }
2603 
2604   // Include the non-conflict where DefMI is a coalescable copy that kills
2605   // OtherVNI. We still want the copy erased and value numbers merged.
2606   if (CP.isCoalescable(DefMI)) {
2607     // Some of the lanes copied from OtherVNI may be undef, making them undef
2608     // here too.
2609     V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2610     return CR_Erase;
2611   }
2612 
2613   // This may not be a real conflict if DefMI simply kills Other and defines
2614   // VNI.
2615   if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2616     return CR_Keep;
2617 
2618   // Handle the case where VNI and OtherVNI can be proven to be identical:
2619   //
2620   //   %other = COPY %ext
2621   //   %this  = COPY %ext <-- Erase this copy
2622   //
2623   if (DefMI->isFullCopy() && !CP.isPartial() &&
2624       valuesIdentical(VNI, V.OtherVNI, Other)) {
2625     V.Identical = true;
2626     return CR_Erase;
2627   }
2628 
2629   // The remaining checks apply to the lanes, which aren't tracked here.  This
2630   // was already decided to be OK via the following CR_Replace condition.
2631   // CR_Replace.
2632   if (SubRangeJoin)
2633     return CR_Replace;
2634 
2635   // If the lanes written by this instruction were all undef in OtherVNI, it is
2636   // still safe to join the live ranges. This can't be done with a simple value
2637   // mapping, though - OtherVNI will map to multiple values:
2638   //
2639   //   1 %dst:ssub0 = FOO                <-- OtherVNI
2640   //   2 %src = BAR                      <-- VNI
2641   //   3 %dst:ssub1 = COPY killed %src    <-- Eliminate this copy.
2642   //   4 BAZ killed %dst
2643   //   5 QUUX killed %src
2644   //
2645   // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2646   // handles this complex value mapping.
2647   if ((V.WriteLanes & OtherV.ValidLanes).none())
2648     return CR_Replace;
2649 
2650   // If the other live range is killed by DefMI and the live ranges are still
2651   // overlapping, it must be because we're looking at an early clobber def:
2652   //
2653   //   %dst<def,early-clobber> = ASM killed %src
2654   //
2655   // In this case, it is illegal to merge the two live ranges since the early
2656   // clobber def would clobber %src before it was read.
2657   if (OtherLRQ.isKill()) {
2658     // This case where the def doesn't overlap the kill is handled above.
2659     assert(VNI->def.isEarlyClobber() &&
2660            "Only early clobber defs can overlap a kill");
2661     return CR_Impossible;
2662   }
2663 
2664   // VNI is clobbering live lanes in OtherVNI, but there is still the
2665   // possibility that no instructions actually read the clobbered lanes.
2666   // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2667   // Otherwise Other.RI wouldn't be live here.
2668   if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2669     return CR_Impossible;
2670 
2671   // We need to verify that no instructions are reading the clobbered lanes. To
2672   // save compile time, we'll only check that locally. Don't allow the tainted
2673   // value to escape the basic block.
2674   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2675   if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2676     return CR_Impossible;
2677 
2678   // There are still some things that could go wrong besides clobbered lanes
2679   // being read, for example OtherVNI may be only partially redefined in MBB,
2680   // and some clobbered lanes could escape the block. Save this analysis for
2681   // resolveConflicts() when all values have been mapped. We need to know
2682   // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2683   // that now - the recursive analyzeValue() calls must go upwards in the
2684   // dominator tree.
2685   return CR_Unresolved;
2686 }
2687 
2688 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2689   Val &V = Vals[ValNo];
2690   if (V.isAnalyzed()) {
2691     // Recursion should always move up the dominator tree, so ValNo is not
2692     // supposed to reappear before it has been assigned.
2693     assert(Assignments[ValNo] != -1 && "Bad recursion?");
2694     return;
2695   }
2696   switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2697   case CR_Erase:
2698   case CR_Merge:
2699     // Merge this ValNo into OtherVNI.
2700     assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2701     assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2702     Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2703     LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2704                       << LR.getValNumInfo(ValNo)->def << " into "
2705                       << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2706                       << V.OtherVNI->def << " --> @"
2707                       << NewVNInfo[Assignments[ValNo]]->def << '\n');
2708     break;
2709   case CR_Replace:
2710   case CR_Unresolved: {
2711     // The other value is going to be pruned if this join is successful.
2712     assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2713     Val &OtherV = Other.Vals[V.OtherVNI->id];
2714     // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2715     // its lanes.
2716     if (OtherV.ErasableImplicitDef &&
2717         TrackSubRegLiveness &&
2718         (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2719       LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2720 
2721       OtherV.ErasableImplicitDef = false;
2722       // The valid lanes written by the implicit_def were speculatively cleared
2723       // before, so make this more conservative. It may be better to track this,
2724       // I haven't found a testcase where it matters.
2725       OtherV.ValidLanes = LaneBitmask::getAll();
2726     }
2727 
2728     OtherV.Pruned = true;
2729     LLVM_FALLTHROUGH;
2730   }
2731   default:
2732     // This value number needs to go in the final joined live range.
2733     Assignments[ValNo] = NewVNInfo.size();
2734     NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2735     break;
2736   }
2737 }
2738 
2739 bool JoinVals::mapValues(JoinVals &Other) {
2740   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2741     computeAssignment(i, Other);
2742     if (Vals[i].Resolution == CR_Impossible) {
2743       LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2744                         << '@' << LR.getValNumInfo(i)->def << '\n');
2745       return false;
2746     }
2747   }
2748   return true;
2749 }
2750 
2751 bool JoinVals::
2752 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2753             SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2754   VNInfo *VNI = LR.getValNumInfo(ValNo);
2755   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2756   SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2757 
2758   // Scan Other.LR from VNI.def to MBBEnd.
2759   LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2760   assert(OtherI != Other.LR.end() && "No conflict?");
2761   do {
2762     // OtherI is pointing to a tainted value. Abort the join if the tainted
2763     // lanes escape the block.
2764     SlotIndex End = OtherI->end;
2765     if (End >= MBBEnd) {
2766       LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2767                         << OtherI->valno->id << '@' << OtherI->start << '\n');
2768       return false;
2769     }
2770     LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
2771                       << OtherI->valno->id << '@' << OtherI->start << " to "
2772                       << End << '\n');
2773     // A dead def is not a problem.
2774     if (End.isDead())
2775       break;
2776     TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2777 
2778     // Check for another def in the MBB.
2779     if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2780       break;
2781 
2782     // Lanes written by the new def are no longer tainted.
2783     const Val &OV = Other.Vals[OtherI->valno->id];
2784     TaintedLanes &= ~OV.WriteLanes;
2785     if (!OV.RedefVNI)
2786       break;
2787   } while (TaintedLanes.any());
2788   return true;
2789 }
2790 
2791 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
2792                          LaneBitmask Lanes) const {
2793   if (MI.isDebugInstr())
2794     return false;
2795   for (const MachineOperand &MO : MI.operands()) {
2796     if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2797       continue;
2798     if (!MO.readsReg())
2799       continue;
2800     unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
2801     if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
2802       return true;
2803   }
2804   return false;
2805 }
2806 
2807 bool JoinVals::resolveConflicts(JoinVals &Other) {
2808   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2809     Val &V = Vals[i];
2810     assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
2811     if (V.Resolution != CR_Unresolved)
2812       continue;
2813     LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
2814                       << LR.getValNumInfo(i)->def << '\n');
2815     if (SubRangeJoin)
2816       return false;
2817 
2818     ++NumLaneConflicts;
2819     assert(V.OtherVNI && "Inconsistent conflict resolution.");
2820     VNInfo *VNI = LR.getValNumInfo(i);
2821     const Val &OtherV = Other.Vals[V.OtherVNI->id];
2822 
2823     // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2824     // join, those lanes will be tainted with a wrong value. Get the extent of
2825     // the tainted lanes.
2826     LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2827     SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2828     if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2829       // Tainted lanes would extend beyond the basic block.
2830       return false;
2831 
2832     assert(!TaintExtent.empty() && "There should be at least one conflict.");
2833 
2834     // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2835     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2836     MachineBasicBlock::iterator MI = MBB->begin();
2837     if (!VNI->isPHIDef()) {
2838       MI = Indexes->getInstructionFromIndex(VNI->def);
2839       // No need to check the instruction defining VNI for reads.
2840       ++MI;
2841     }
2842     assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2843            "Interference ends on VNI->def. Should have been handled earlier");
2844     MachineInstr *LastMI =
2845       Indexes->getInstructionFromIndex(TaintExtent.front().first);
2846     assert(LastMI && "Range must end at a proper instruction");
2847     unsigned TaintNum = 0;
2848     while (true) {
2849       assert(MI != MBB->end() && "Bad LastMI");
2850       if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2851         LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2852         return false;
2853       }
2854       // LastMI is the last instruction to use the current value.
2855       if (&*MI == LastMI) {
2856         if (++TaintNum == TaintExtent.size())
2857           break;
2858         LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2859         assert(LastMI && "Range must end at a proper instruction");
2860         TaintedLanes = TaintExtent[TaintNum].second;
2861       }
2862       ++MI;
2863     }
2864 
2865     // The tainted lanes are unused.
2866     V.Resolution = CR_Replace;
2867     ++NumLaneResolves;
2868   }
2869   return true;
2870 }
2871 
2872 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2873   Val &V = Vals[ValNo];
2874   if (V.Pruned || V.PrunedComputed)
2875     return V.Pruned;
2876 
2877   if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2878     return V.Pruned;
2879 
2880   // Follow copies up the dominator tree and check if any intermediate value
2881   // has been pruned.
2882   V.PrunedComputed = true;
2883   V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2884   return V.Pruned;
2885 }
2886 
2887 void JoinVals::pruneValues(JoinVals &Other,
2888                            SmallVectorImpl<SlotIndex> &EndPoints,
2889                            bool changeInstrs) {
2890   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2891     SlotIndex Def = LR.getValNumInfo(i)->def;
2892     switch (Vals[i].Resolution) {
2893     case CR_Keep:
2894       break;
2895     case CR_Replace: {
2896       // This value takes precedence over the value in Other.LR.
2897       LIS->pruneValue(Other.LR, Def, &EndPoints);
2898       // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2899       // instructions are only inserted to provide a live-out value for PHI
2900       // predecessors, so the instruction should simply go away once its value
2901       // has been replaced.
2902       Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2903       bool EraseImpDef = OtherV.ErasableImplicitDef &&
2904                          OtherV.Resolution == CR_Keep;
2905       if (!Def.isBlock()) {
2906         if (changeInstrs) {
2907           // Remove <def,read-undef> flags. This def is now a partial redef.
2908           // Also remove dead flags since the joined live range will
2909           // continue past this instruction.
2910           for (MachineOperand &MO :
2911                Indexes->getInstructionFromIndex(Def)->operands()) {
2912             if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
2913               if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
2914                 MO.setIsUndef(false);
2915               MO.setIsDead(false);
2916             }
2917           }
2918         }
2919         // This value will reach instructions below, but we need to make sure
2920         // the live range also reaches the instruction at Def.
2921         if (!EraseImpDef)
2922           EndPoints.push_back(Def);
2923       }
2924       LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
2925                         << ": " << Other.LR << '\n');
2926       break;
2927     }
2928     case CR_Erase:
2929     case CR_Merge:
2930       if (isPrunedValue(i, Other)) {
2931         // This value is ultimately a copy of a pruned value in LR or Other.LR.
2932         // We can no longer trust the value mapping computed by
2933         // computeAssignment(), the value that was originally copied could have
2934         // been replaced.
2935         LIS->pruneValue(LR, Def, &EndPoints);
2936         LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
2937                           << Def << ": " << LR << '\n');
2938       }
2939       break;
2940     case CR_Unresolved:
2941     case CR_Impossible:
2942       llvm_unreachable("Unresolved conflicts");
2943     }
2944   }
2945 }
2946 
2947 /// Consider the following situation when coalescing the copy between
2948 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
2949 ///
2950 ///                              Main range         Subrange 0004 (sub2)
2951 ///                              %31    %45           %31    %45
2952 ///  544    %45 = COPY %28               +                    +
2953 ///                                      | v1                 | v1
2954 ///  560B bb.1:                          +                    +
2955 ///  624        = %45.sub2               | v2                 | v2
2956 ///  800    %31 = COPY %45        +      +             +      +
2957 ///                               | v0                 | v0
2958 ///  816    %31.sub1 = ...        +                    |
2959 ///  880    %30 = COPY %31        | v1                 +
2960 ///  928    %45 = COPY %30        |      +                    +
2961 ///                               |      | v0                 | v0  <--+
2962 ///  992B   ; backedge -> bb.1    |      +                    +        |
2963 /// 1040        = %31.sub0        +                                    |
2964 ///                                                 This value must remain
2965 ///                                                 live-out!
2966 ///
2967 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
2968 /// redundant, since it copies the value from %45 back into it. The
2969 /// conflict resolution for the main range determines that %45.v0 is
2970 /// to be erased, which is ok since %31.v1 is identical to it.
2971 /// The problem happens with the subrange for sub2: it has to be live
2972 /// on exit from the block, but since 928 was actually a point of
2973 /// definition of %45.sub2, %45.sub2 was not live immediately prior
2974 /// to that definition. As a result, when 928 was erased, the value v0
2975 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
2976 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
2977 /// providing an incorrect value to the use at 624.
2978 ///
2979 /// Since the main-range values %31.v1 and %45.v0 were proved to be
2980 /// identical, the corresponding values in subranges must also be the
2981 /// same. A redundant copy is removed because it's not needed, and not
2982 /// because it copied an undefined value, so any liveness that originated
2983 /// from that copy cannot disappear. When pruning a value that started
2984 /// at the removed copy, the corresponding identical value must be
2985 /// extended to replace it.
2986 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
2987   // Look for values being erased.
2988   bool DidPrune = false;
2989   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2990     Val &V = Vals[i];
2991     // We should trigger in all cases in which eraseInstrs() does something.
2992     // match what eraseInstrs() is doing, print a message so
2993     if (V.Resolution != CR_Erase &&
2994         (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
2995       continue;
2996 
2997     // Check subranges at the point where the copy will be removed.
2998     SlotIndex Def = LR.getValNumInfo(i)->def;
2999     SlotIndex OtherDef;
3000     if (V.Identical)
3001       OtherDef = V.OtherVNI->def;
3002 
3003     // Print message so mismatches with eraseInstrs() can be diagnosed.
3004     LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3005                       << '\n');
3006     for (LiveInterval::SubRange &S : LI.subranges()) {
3007       LiveQueryResult Q = S.Query(Def);
3008 
3009       // If a subrange starts at the copy then an undefined value has been
3010       // copied and we must remove that subrange value as well.
3011       VNInfo *ValueOut = Q.valueOutOrDead();
3012       if (ValueOut != nullptr && Q.valueIn() == nullptr) {
3013         LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3014                           << " at " << Def << "\n");
3015         SmallVector<SlotIndex,8> EndPoints;
3016         LIS->pruneValue(S, Def, &EndPoints);
3017         DidPrune = true;
3018         // Mark value number as unused.
3019         ValueOut->markUnused();
3020 
3021         if (V.Identical && S.Query(OtherDef).valueOut()) {
3022           // If V is identical to V.OtherVNI (and S was live at OtherDef),
3023           // then we can't simply prune V from S. V needs to be replaced
3024           // with V.OtherVNI.
3025           LIS->extendToIndices(S, EndPoints);
3026         }
3027         continue;
3028       }
3029       // If a subrange ends at the copy, then a value was copied but only
3030       // partially used later. Shrink the subregister range appropriately.
3031       if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
3032         LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3033                           << PrintLaneMask(S.LaneMask) << " at " << Def
3034                           << "\n");
3035         ShrinkMask |= S.LaneMask;
3036       }
3037     }
3038   }
3039   if (DidPrune)
3040     LI.removeEmptySubRanges();
3041 }
3042 
3043 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3044 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3045   for (LiveInterval::SubRange &SR : LI.subranges()) {
3046     if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3047       if (VNI->def == Def)
3048         return true;
3049   }
3050   return false;
3051 }
3052 
3053 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3054   assert(&static_cast<LiveRange&>(LI) == &LR);
3055 
3056   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3057     if (Vals[i].Resolution != CR_Keep)
3058       continue;
3059     VNInfo *VNI = LR.getValNumInfo(i);
3060     if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3061       continue;
3062     Vals[i].Pruned = true;
3063     ShrinkMainRange = true;
3064   }
3065 }
3066 
3067 void JoinVals::removeImplicitDefs() {
3068   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3069     Val &V = Vals[i];
3070     if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3071       continue;
3072 
3073     VNInfo *VNI = LR.getValNumInfo(i);
3074     VNI->markUnused();
3075     LR.removeValNo(VNI);
3076   }
3077 }
3078 
3079 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3080                            SmallVectorImpl<unsigned> &ShrinkRegs,
3081                            LiveInterval *LI) {
3082   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3083     // Get the def location before markUnused() below invalidates it.
3084     SlotIndex Def = LR.getValNumInfo(i)->def;
3085     switch (Vals[i].Resolution) {
3086     case CR_Keep: {
3087       // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3088       // longer. The IMPLICIT_DEF instructions are only inserted by
3089       // PHIElimination to guarantee that all PHI predecessors have a value.
3090       if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3091         break;
3092       // Remove value number i from LR.
3093       // For intervals with subranges, removing a segment from the main range
3094       // may require extending the previous segment: for each definition of
3095       // a subregister, there will be a corresponding def in the main range.
3096       // That def may fall in the middle of a segment from another subrange.
3097       // In such cases, removing this def from the main range must be
3098       // complemented by extending the main range to account for the liveness
3099       // of the other subrange.
3100       VNInfo *VNI = LR.getValNumInfo(i);
3101       SlotIndex Def = VNI->def;
3102       // The new end point of the main range segment to be extended.
3103       SlotIndex NewEnd;
3104       if (LI != nullptr) {
3105         LiveRange::iterator I = LR.FindSegmentContaining(Def);
3106         assert(I != LR.end());
3107         // Do not extend beyond the end of the segment being removed.
3108         // The segment may have been pruned in preparation for joining
3109         // live ranges.
3110         NewEnd = I->end;
3111       }
3112 
3113       LR.removeValNo(VNI);
3114       // Note that this VNInfo is reused and still referenced in NewVNInfo,
3115       // make it appear like an unused value number.
3116       VNI->markUnused();
3117 
3118       if (LI != nullptr && LI->hasSubRanges()) {
3119         assert(static_cast<LiveRange*>(LI) == &LR);
3120         // Determine the end point based on the subrange information:
3121         // minimum of (earliest def of next segment,
3122         //             latest end point of containing segment)
3123         SlotIndex ED, LE;
3124         for (LiveInterval::SubRange &SR : LI->subranges()) {
3125           LiveRange::iterator I = SR.find(Def);
3126           if (I == SR.end())
3127             continue;
3128           if (I->start > Def)
3129             ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3130           else
3131             LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3132         }
3133         if (LE.isValid())
3134           NewEnd = std::min(NewEnd, LE);
3135         if (ED.isValid())
3136           NewEnd = std::min(NewEnd, ED);
3137 
3138         // We only want to do the extension if there was a subrange that
3139         // was live across Def.
3140         if (LE.isValid()) {
3141           LiveRange::iterator S = LR.find(Def);
3142           if (S != LR.begin())
3143             std::prev(S)->end = NewEnd;
3144         }
3145       }
3146       LLVM_DEBUG({
3147         dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3148         if (LI != nullptr)
3149           dbgs() << "\t\t  LHS = " << *LI << '\n';
3150       });
3151       LLVM_FALLTHROUGH;
3152     }
3153 
3154     case CR_Erase: {
3155       MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3156       assert(MI && "No instruction to erase");
3157       if (MI->isCopy()) {
3158         unsigned Reg = MI->getOperand(1).getReg();
3159         if (TargetRegisterInfo::isVirtualRegister(Reg) &&
3160             Reg != CP.getSrcReg() && Reg != CP.getDstReg())
3161           ShrinkRegs.push_back(Reg);
3162       }
3163       ErasedInstrs.insert(MI);
3164       LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3165       LIS->RemoveMachineInstrFromMaps(*MI);
3166       MI->eraseFromParent();
3167       break;
3168     }
3169     default:
3170       break;
3171     }
3172   }
3173 }
3174 
3175 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3176                                          LaneBitmask LaneMask,
3177                                          const CoalescerPair &CP) {
3178   SmallVector<VNInfo*, 16> NewVNInfo;
3179   JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3180                    NewVNInfo, CP, LIS, TRI, true, true);
3181   JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3182                    NewVNInfo, CP, LIS, TRI, true, true);
3183 
3184   // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3185   // We should be able to resolve all conflicts here as we could successfully do
3186   // it on the mainrange already. There is however a problem when multiple
3187   // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3188   // interferences.
3189   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3190     // We already determined that it is legal to merge the intervals, so this
3191     // should never fail.
3192     llvm_unreachable("*** Couldn't join subrange!\n");
3193   }
3194   if (!LHSVals.resolveConflicts(RHSVals) ||
3195       !RHSVals.resolveConflicts(LHSVals)) {
3196     // We already determined that it is legal to merge the intervals, so this
3197     // should never fail.
3198     llvm_unreachable("*** Couldn't join subrange!\n");
3199   }
3200 
3201   // The merging algorithm in LiveInterval::join() can't handle conflicting
3202   // value mappings, so we need to remove any live ranges that overlap a
3203   // CR_Replace resolution. Collect a set of end points that can be used to
3204   // restore the live range after joining.
3205   SmallVector<SlotIndex, 8> EndPoints;
3206   LHSVals.pruneValues(RHSVals, EndPoints, false);
3207   RHSVals.pruneValues(LHSVals, EndPoints, false);
3208 
3209   LHSVals.removeImplicitDefs();
3210   RHSVals.removeImplicitDefs();
3211 
3212   LRange.verify();
3213   RRange.verify();
3214 
3215   // Join RRange into LHS.
3216   LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3217               NewVNInfo);
3218 
3219   LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3220                     << ' ' << LRange << "\n");
3221   if (EndPoints.empty())
3222     return;
3223 
3224   // Recompute the parts of the live range we had to remove because of
3225   // CR_Replace conflicts.
3226   LLVM_DEBUG({
3227     dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3228     for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3229       dbgs() << EndPoints[i];
3230       if (i != n-1)
3231         dbgs() << ',';
3232     }
3233     dbgs() << ":  " << LRange << '\n';
3234   });
3235   LIS->extendToIndices(LRange, EndPoints);
3236 }
3237 
3238 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3239                                           const LiveRange &ToMerge,
3240                                           LaneBitmask LaneMask,
3241                                           CoalescerPair &CP) {
3242   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3243   LI.refineSubRanges(Allocator, LaneMask,
3244       [this,&Allocator,&ToMerge,&CP](LiveInterval::SubRange &SR) {
3245     if (SR.empty()) {
3246       SR.assign(ToMerge, Allocator);
3247     } else {
3248       // joinSubRegRange() destroys the merged range, so we need a copy.
3249       LiveRange RangeCopy(ToMerge, Allocator);
3250       joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3251     }
3252   });
3253 }
3254 
3255 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3256   SmallVector<VNInfo*, 16> NewVNInfo;
3257   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3258   LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3259   bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3260   JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3261                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3262   JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3263                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3264 
3265   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3266 
3267   // First compute NewVNInfo and the simple value mappings.
3268   // Detect impossible conflicts early.
3269   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3270     return false;
3271 
3272   // Some conflicts can only be resolved after all values have been mapped.
3273   if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3274     return false;
3275 
3276   // All clear, the live ranges can be merged.
3277   if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3278     BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3279 
3280     // Transform lanemasks from the LHS to masks in the coalesced register and
3281     // create initial subranges if necessary.
3282     unsigned DstIdx = CP.getDstIdx();
3283     if (!LHS.hasSubRanges()) {
3284       LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3285                                      : TRI->getSubRegIndexLaneMask(DstIdx);
3286       // LHS must support subregs or we wouldn't be in this codepath.
3287       assert(Mask.any());
3288       LHS.createSubRangeFrom(Allocator, Mask, LHS);
3289     } else if (DstIdx != 0) {
3290       // Transform LHS lanemasks to new register class if necessary.
3291       for (LiveInterval::SubRange &R : LHS.subranges()) {
3292         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3293         R.LaneMask = Mask;
3294       }
3295     }
3296     LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3297                       << '\n');
3298 
3299     // Determine lanemasks of RHS in the coalesced register and merge subranges.
3300     unsigned SrcIdx = CP.getSrcIdx();
3301     if (!RHS.hasSubRanges()) {
3302       LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3303                                      : TRI->getSubRegIndexLaneMask(SrcIdx);
3304       mergeSubRangeInto(LHS, RHS, Mask, CP);
3305     } else {
3306       // Pair up subranges and merge.
3307       for (LiveInterval::SubRange &R : RHS.subranges()) {
3308         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3309         mergeSubRangeInto(LHS, R, Mask, CP);
3310       }
3311     }
3312     LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3313 
3314     // Pruning implicit defs from subranges may result in the main range
3315     // having stale segments.
3316     LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3317 
3318     LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3319     RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3320   }
3321 
3322   // The merging algorithm in LiveInterval::join() can't handle conflicting
3323   // value mappings, so we need to remove any live ranges that overlap a
3324   // CR_Replace resolution. Collect a set of end points that can be used to
3325   // restore the live range after joining.
3326   SmallVector<SlotIndex, 8> EndPoints;
3327   LHSVals.pruneValues(RHSVals, EndPoints, true);
3328   RHSVals.pruneValues(LHSVals, EndPoints, true);
3329 
3330   // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3331   // registers to require trimming.
3332   SmallVector<unsigned, 8> ShrinkRegs;
3333   LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3334   RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3335   while (!ShrinkRegs.empty())
3336     shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3337 
3338   // Join RHS into LHS.
3339   LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3340 
3341   // Kill flags are going to be wrong if the live ranges were overlapping.
3342   // Eventually, we should simply clear all kill flags when computing live
3343   // ranges. They are reinserted after register allocation.
3344   MRI->clearKillFlags(LHS.reg);
3345   MRI->clearKillFlags(RHS.reg);
3346 
3347   if (!EndPoints.empty()) {
3348     // Recompute the parts of the live range we had to remove because of
3349     // CR_Replace conflicts.
3350     LLVM_DEBUG({
3351       dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3352       for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3353         dbgs() << EndPoints[i];
3354         if (i != n-1)
3355           dbgs() << ',';
3356       }
3357       dbgs() << ":  " << LHS << '\n';
3358     });
3359     LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3360   }
3361 
3362   return true;
3363 }
3364 
3365 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3366   return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3367 }
3368 
3369 namespace {
3370 
3371 /// Information concerning MBB coalescing priority.
3372 struct MBBPriorityInfo {
3373   MachineBasicBlock *MBB;
3374   unsigned Depth;
3375   bool IsSplit;
3376 
3377   MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3378     : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3379 };
3380 
3381 } // end anonymous namespace
3382 
3383 /// C-style comparator that sorts first based on the loop depth of the basic
3384 /// block (the unsigned), and then on the MBB number.
3385 ///
3386 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3387 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3388                               const MBBPriorityInfo *RHS) {
3389   // Deeper loops first
3390   if (LHS->Depth != RHS->Depth)
3391     return LHS->Depth > RHS->Depth ? -1 : 1;
3392 
3393   // Try to unsplit critical edges next.
3394   if (LHS->IsSplit != RHS->IsSplit)
3395     return LHS->IsSplit ? -1 : 1;
3396 
3397   // Prefer blocks that are more connected in the CFG. This takes care of
3398   // the most difficult copies first while intervals are short.
3399   unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3400   unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3401   if (cl != cr)
3402     return cl > cr ? -1 : 1;
3403 
3404   // As a last resort, sort by block number.
3405   return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3406 }
3407 
3408 /// \returns true if the given copy uses or defines a local live range.
3409 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3410   if (!Copy->isCopy())
3411     return false;
3412 
3413   if (Copy->getOperand(1).isUndef())
3414     return false;
3415 
3416   unsigned SrcReg = Copy->getOperand(1).getReg();
3417   unsigned DstReg = Copy->getOperand(0).getReg();
3418   if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
3419       || TargetRegisterInfo::isPhysicalRegister(DstReg))
3420     return false;
3421 
3422   return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3423     || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3424 }
3425 
3426 void RegisterCoalescer::lateLiveIntervalUpdate() {
3427   for (unsigned reg : ToBeUpdated) {
3428     if (!LIS->hasInterval(reg))
3429       continue;
3430     LiveInterval &LI = LIS->getInterval(reg);
3431     shrinkToUses(&LI, &DeadDefs);
3432     if (!DeadDefs.empty())
3433       eliminateDeadDefs();
3434   }
3435   ToBeUpdated.clear();
3436 }
3437 
3438 bool RegisterCoalescer::
3439 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3440   bool Progress = false;
3441   for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3442     if (!CurrList[i])
3443       continue;
3444     // Skip instruction pointers that have already been erased, for example by
3445     // dead code elimination.
3446     if (ErasedInstrs.count(CurrList[i])) {
3447       CurrList[i] = nullptr;
3448       continue;
3449     }
3450     bool Again = false;
3451     bool Success = joinCopy(CurrList[i], Again);
3452     Progress |= Success;
3453     if (Success || !Again)
3454       CurrList[i] = nullptr;
3455   }
3456   return Progress;
3457 }
3458 
3459 /// Check if DstReg is a terminal node.
3460 /// I.e., it does not have any affinity other than \p Copy.
3461 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
3462                           const MachineRegisterInfo *MRI) {
3463   assert(Copy.isCopyLike());
3464   // Check if the destination of this copy as any other affinity.
3465   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3466     if (&MI != &Copy && MI.isCopyLike())
3467       return false;
3468   return true;
3469 }
3470 
3471 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3472   assert(Copy.isCopyLike());
3473   if (!UseTerminalRule)
3474     return false;
3475   unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
3476   isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg);
3477   // Check if the destination of this copy has any other affinity.
3478   if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
3479       // If SrcReg is a physical register, the copy won't be coalesced.
3480       // Ignoring it may have other side effect (like missing
3481       // rematerialization). So keep it.
3482       TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
3483       !isTerminalReg(DstReg, Copy, MRI))
3484     return false;
3485 
3486   // DstReg is a terminal node. Check if it interferes with any other
3487   // copy involving SrcReg.
3488   const MachineBasicBlock *OrigBB = Copy.getParent();
3489   const LiveInterval &DstLI = LIS->getInterval(DstReg);
3490   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3491     // Technically we should check if the weight of the new copy is
3492     // interesting compared to the other one and update the weight
3493     // of the copies accordingly. However, this would only work if
3494     // we would gather all the copies first then coalesce, whereas
3495     // right now we interleave both actions.
3496     // For now, just consider the copies that are in the same block.
3497     if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3498       continue;
3499     unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
3500     isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3501                 OtherSubReg);
3502     if (OtherReg == SrcReg)
3503       OtherReg = OtherSrcReg;
3504     // Check if OtherReg is a non-terminal.
3505     if (TargetRegisterInfo::isPhysicalRegister(OtherReg) ||
3506         isTerminalReg(OtherReg, MI, MRI))
3507       continue;
3508     // Check that OtherReg interfere with DstReg.
3509     if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3510       LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3511                         << '\n');
3512       return true;
3513     }
3514   }
3515   return false;
3516 }
3517 
3518 void
3519 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3520   LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3521 
3522   // Collect all copy-like instructions in MBB. Don't start coalescing anything
3523   // yet, it might invalidate the iterator.
3524   const unsigned PrevSize = WorkList.size();
3525   if (JoinGlobalCopies) {
3526     SmallVector<MachineInstr*, 2> LocalTerminals;
3527     SmallVector<MachineInstr*, 2> GlobalTerminals;
3528     // Coalesce copies bottom-up to coalesce local defs before local uses. They
3529     // are not inherently easier to resolve, but slightly preferable until we
3530     // have local live range splitting. In particular this is required by
3531     // cmp+jmp macro fusion.
3532     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
3533          MII != E; ++MII) {
3534       if (!MII->isCopyLike())
3535         continue;
3536       bool ApplyTerminalRule = applyTerminalRule(*MII);
3537       if (isLocalCopy(&(*MII), LIS)) {
3538         if (ApplyTerminalRule)
3539           LocalTerminals.push_back(&(*MII));
3540         else
3541           LocalWorkList.push_back(&(*MII));
3542       } else {
3543         if (ApplyTerminalRule)
3544           GlobalTerminals.push_back(&(*MII));
3545         else
3546           WorkList.push_back(&(*MII));
3547       }
3548     }
3549     // Append the copies evicted by the terminal rule at the end of the list.
3550     LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
3551     WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
3552   }
3553   else {
3554     SmallVector<MachineInstr*, 2> Terminals;
3555     for (MachineInstr &MII : *MBB)
3556       if (MII.isCopyLike()) {
3557         if (applyTerminalRule(MII))
3558           Terminals.push_back(&MII);
3559         else
3560           WorkList.push_back(&MII);
3561       }
3562     // Append the copies evicted by the terminal rule at the end of the list.
3563     WorkList.append(Terminals.begin(), Terminals.end());
3564   }
3565   // Try coalescing the collected copies immediately, and remove the nulls.
3566   // This prevents the WorkList from getting too large since most copies are
3567   // joinable on the first attempt.
3568   MutableArrayRef<MachineInstr*>
3569     CurrList(WorkList.begin() + PrevSize, WorkList.end());
3570   if (copyCoalesceWorkList(CurrList))
3571     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
3572                                nullptr), WorkList.end());
3573 }
3574 
3575 void RegisterCoalescer::coalesceLocals() {
3576   copyCoalesceWorkList(LocalWorkList);
3577   for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
3578     if (LocalWorkList[j])
3579       WorkList.push_back(LocalWorkList[j]);
3580   }
3581   LocalWorkList.clear();
3582 }
3583 
3584 void RegisterCoalescer::joinAllIntervals() {
3585   LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
3586   assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
3587 
3588   std::vector<MBBPriorityInfo> MBBs;
3589   MBBs.reserve(MF->size());
3590   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
3591     MachineBasicBlock *MBB = &*I;
3592     MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
3593                                    JoinSplitEdges && isSplitEdge(MBB)));
3594   }
3595   array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
3596 
3597   // Coalesce intervals in MBB priority order.
3598   unsigned CurrDepth = std::numeric_limits<unsigned>::max();
3599   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
3600     // Try coalescing the collected local copies for deeper loops.
3601     if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
3602       coalesceLocals();
3603       CurrDepth = MBBs[i].Depth;
3604     }
3605     copyCoalesceInMBB(MBBs[i].MBB);
3606   }
3607   lateLiveIntervalUpdate();
3608   coalesceLocals();
3609 
3610   // Joining intervals can allow other intervals to be joined.  Iteratively join
3611   // until we make no progress.
3612   while (copyCoalesceWorkList(WorkList))
3613     /* empty */ ;
3614   lateLiveIntervalUpdate();
3615 }
3616 
3617 void RegisterCoalescer::releaseMemory() {
3618   ErasedInstrs.clear();
3619   WorkList.clear();
3620   DeadDefs.clear();
3621   InflateRegs.clear();
3622 }
3623 
3624 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
3625   MF = &fn;
3626   MRI = &fn.getRegInfo();
3627   const TargetSubtargetInfo &STI = fn.getSubtarget();
3628   TRI = STI.getRegisterInfo();
3629   TII = STI.getInstrInfo();
3630   LIS = &getAnalysis<LiveIntervals>();
3631   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3632   Loops = &getAnalysis<MachineLoopInfo>();
3633   if (EnableGlobalCopies == cl::BOU_UNSET)
3634     JoinGlobalCopies = STI.enableJoinGlobalCopies();
3635   else
3636     JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
3637 
3638   // The MachineScheduler does not currently require JoinSplitEdges. This will
3639   // either be enabled unconditionally or replaced by a more general live range
3640   // splitting optimization.
3641   JoinSplitEdges = EnableJoinSplits;
3642 
3643   LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3644                     << "********** Function: " << MF->getName() << '\n');
3645 
3646   if (VerifyCoalescing)
3647     MF->verify(this, "Before register coalescing");
3648 
3649   RegClassInfo.runOnMachineFunction(fn);
3650 
3651   // Join (coalesce) intervals if requested.
3652   if (EnableJoining)
3653     joinAllIntervals();
3654 
3655   // After deleting a lot of copies, register classes may be less constrained.
3656   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3657   // DPR inflation.
3658   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
3659   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
3660                     InflateRegs.end());
3661   LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
3662                     << " regs.\n");
3663   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
3664     unsigned Reg = InflateRegs[i];
3665     if (MRI->reg_nodbg_empty(Reg))
3666       continue;
3667     if (MRI->recomputeRegClass(Reg)) {
3668       LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
3669                         << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
3670       ++NumInflated;
3671 
3672       LiveInterval &LI = LIS->getInterval(Reg);
3673       if (LI.hasSubRanges()) {
3674         // If the inflated register class does not support subregisters anymore
3675         // remove the subranges.
3676         if (!MRI->shouldTrackSubRegLiveness(Reg)) {
3677           LI.clearSubRanges();
3678         } else {
3679 #ifndef NDEBUG
3680           LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3681           // If subranges are still supported, then the same subregs
3682           // should still be supported.
3683           for (LiveInterval::SubRange &S : LI.subranges()) {
3684             assert((S.LaneMask & ~MaxMask).none());
3685           }
3686 #endif
3687         }
3688       }
3689     }
3690   }
3691 
3692   LLVM_DEBUG(dump());
3693   if (VerifyCoalescing)
3694     MF->verify(this, "After register coalescing");
3695   return true;
3696 }
3697 
3698 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3699    LIS->print(O, m);
3700 }
3701