1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic RegisterCoalescer interface which 10 // is used as the common interface used by all clients and 11 // implementations of register coalescing. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "RegisterCoalescer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetOpcodes.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/MC/LaneBitmask.h" 44 #include "llvm/MC/MCInstrDesc.h" 45 #include "llvm/MC/MCRegisterInfo.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <iterator> 55 #include <limits> 56 #include <tuple> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "regalloc" 63 64 STATISTIC(numJoins , "Number of interval joins performed"); 65 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 66 STATISTIC(numCommutes , "Number of instruction commuting performed"); 67 STATISTIC(numExtends , "Number of copies extended"); 68 STATISTIC(NumReMats , "Number of instructions re-materialized"); 69 STATISTIC(NumInflated , "Number of register classes inflated"); 70 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 71 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 72 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called"); 73 74 static cl::opt<bool> EnableJoining("join-liveintervals", 75 cl::desc("Coalesce copies (default=true)"), 76 cl::init(true), cl::Hidden); 77 78 static cl::opt<bool> UseTerminalRule("terminal-rule", 79 cl::desc("Apply the terminal rule"), 80 cl::init(false), cl::Hidden); 81 82 /// Temporary flag to test critical edge unsplitting. 83 static cl::opt<bool> 84 EnableJoinSplits("join-splitedges", 85 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 86 87 /// Temporary flag to test global copy optimization. 88 static cl::opt<cl::boolOrDefault> 89 EnableGlobalCopies("join-globalcopies", 90 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 91 cl::init(cl::BOU_UNSET), cl::Hidden); 92 93 static cl::opt<bool> 94 VerifyCoalescing("verify-coalescing", 95 cl::desc("Verify machine instrs before and after register coalescing"), 96 cl::Hidden); 97 98 static cl::opt<unsigned> LateRematUpdateThreshold( 99 "late-remat-update-threshold", cl::Hidden, 100 cl::desc("During rematerialization for a copy, if the def instruction has " 101 "many other copy uses to be rematerialized, delay the multiple " 102 "separate live interval update work and do them all at once after " 103 "all those rematerialization are done. It will save a lot of " 104 "repeated work. "), 105 cl::init(100)); 106 107 namespace { 108 109 class RegisterCoalescer : public MachineFunctionPass, 110 private LiveRangeEdit::Delegate { 111 MachineFunction* MF; 112 MachineRegisterInfo* MRI; 113 const TargetRegisterInfo* TRI; 114 const TargetInstrInfo* TII; 115 LiveIntervals *LIS; 116 const MachineLoopInfo* Loops; 117 AliasAnalysis *AA; 118 RegisterClassInfo RegClassInfo; 119 120 /// A LaneMask to remember on which subregister live ranges we need to call 121 /// shrinkToUses() later. 122 LaneBitmask ShrinkMask; 123 124 /// True if the main range of the currently coalesced intervals should be 125 /// checked for smaller live intervals. 126 bool ShrinkMainRange; 127 128 /// True if the coalescer should aggressively coalesce global copies 129 /// in favor of keeping local copies. 130 bool JoinGlobalCopies; 131 132 /// True if the coalescer should aggressively coalesce fall-thru 133 /// blocks exclusively containing copies. 134 bool JoinSplitEdges; 135 136 /// Copy instructions yet to be coalesced. 137 SmallVector<MachineInstr*, 8> WorkList; 138 SmallVector<MachineInstr*, 8> LocalWorkList; 139 140 /// Set of instruction pointers that have been erased, and 141 /// that may be present in WorkList. 142 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 143 144 /// Dead instructions that are about to be deleted. 145 SmallVector<MachineInstr*, 8> DeadDefs; 146 147 /// Virtual registers to be considered for register class inflation. 148 SmallVector<unsigned, 8> InflateRegs; 149 150 /// The collection of live intervals which should have been updated 151 /// immediately after rematerialiation but delayed until 152 /// lateLiveIntervalUpdate is called. 153 DenseSet<unsigned> ToBeUpdated; 154 155 /// Recursively eliminate dead defs in DeadDefs. 156 void eliminateDeadDefs(); 157 158 /// LiveRangeEdit callback for eliminateDeadDefs(). 159 void LRE_WillEraseInstruction(MachineInstr *MI) override; 160 161 /// Coalesce the LocalWorkList. 162 void coalesceLocals(); 163 164 /// Join compatible live intervals 165 void joinAllIntervals(); 166 167 /// Coalesce copies in the specified MBB, putting 168 /// copies that cannot yet be coalesced into WorkList. 169 void copyCoalesceInMBB(MachineBasicBlock *MBB); 170 171 /// Tries to coalesce all copies in CurrList. Returns true if any progress 172 /// was made. 173 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 174 175 /// If one def has many copy like uses, and those copy uses are all 176 /// rematerialized, the live interval update needed for those 177 /// rematerializations will be delayed and done all at once instead 178 /// of being done multiple times. This is to save compile cost because 179 /// live interval update is costly. 180 void lateLiveIntervalUpdate(); 181 182 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 183 /// src/dst of the copy instruction CopyMI. This returns true if the copy 184 /// was successfully coalesced away. If it is not currently possible to 185 /// coalesce this interval, but it may be possible if other things get 186 /// coalesced, then it returns true by reference in 'Again'. 187 bool joinCopy(MachineInstr *CopyMI, bool &Again); 188 189 /// Attempt to join these two intervals. On failure, this 190 /// returns false. The output "SrcInt" will not have been modified, so we 191 /// can use this information below to update aliases. 192 bool joinIntervals(CoalescerPair &CP); 193 194 /// Attempt joining two virtual registers. Return true on success. 195 bool joinVirtRegs(CoalescerPair &CP); 196 197 /// Attempt joining with a reserved physreg. 198 bool joinReservedPhysReg(CoalescerPair &CP); 199 200 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 201 /// Subranges in @p LI which only partially interfere with the desired 202 /// LaneMask are split as necessary. @p LaneMask are the lanes that 203 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 204 /// lanemasks already adjusted to the coalesced register. 205 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 206 LaneBitmask LaneMask, CoalescerPair &CP); 207 208 /// Join the liveranges of two subregisters. Joins @p RRange into 209 /// @p LRange, @p RRange may be invalid afterwards. 210 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 211 LaneBitmask LaneMask, const CoalescerPair &CP); 212 213 /// We found a non-trivially-coalescable copy. If the source value number is 214 /// defined by a copy from the destination reg see if we can merge these two 215 /// destination reg valno# into a single value number, eliminating a copy. 216 /// This returns true if an interval was modified. 217 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 218 219 /// Return true if there are definitions of IntB 220 /// other than BValNo val# that can reach uses of AValno val# of IntA. 221 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 222 VNInfo *AValNo, VNInfo *BValNo); 223 224 /// We found a non-trivially-coalescable copy. 225 /// If the source value number is defined by a commutable instruction and 226 /// its other operand is coalesced to the copy dest register, see if we 227 /// can transform the copy into a noop by commuting the definition. 228 /// This returns a pair of two flags: 229 /// - the first element is true if an interval was modified, 230 /// - the second element is true if the destination interval needs 231 /// to be shrunk after deleting the copy. 232 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP, 233 MachineInstr *CopyMI); 234 235 /// We found a copy which can be moved to its less frequent predecessor. 236 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 237 238 /// If the source of a copy is defined by a 239 /// trivial computation, replace the copy by rematerialize the definition. 240 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 241 bool &IsDefCopy); 242 243 /// Return true if a copy involving a physreg should be joined. 244 bool canJoinPhys(const CoalescerPair &CP); 245 246 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 247 /// number if it is not zero. If DstReg is a physical register and the 248 /// existing subregister number of the def / use being updated is not zero, 249 /// make sure to set it to the correct physical subregister. 250 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 251 252 /// If the given machine operand reads only undefined lanes add an undef 253 /// flag. 254 /// This can happen when undef uses were previously concealed by a copy 255 /// which we coalesced. Example: 256 /// %0:sub0<def,read-undef> = ... 257 /// %1 = COPY %0 <-- Coalescing COPY reveals undef 258 /// = use %1:sub1 <-- hidden undef use 259 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 260 MachineOperand &MO, unsigned SubRegIdx); 261 262 /// Handle copies of undef values. If the undef value is an incoming 263 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF. 264 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise, 265 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point). 266 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI); 267 268 /// Check whether or not we should apply the terminal rule on the 269 /// destination (Dst) of \p Copy. 270 /// When the terminal rule applies, Copy is not profitable to 271 /// coalesce. 272 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 273 /// at least one interference (Dst, Dst2). If Dst is terminal, the 274 /// terminal rule consists in checking that at least one of 275 /// interfering node, say Dst2, has an affinity of equal or greater 276 /// weight with Src. 277 /// In that case, Dst2 and Dst will not be able to be both coalesced 278 /// with Src. Since Dst2 exposes more coalescing opportunities than 279 /// Dst, we can drop \p Copy. 280 bool applyTerminalRule(const MachineInstr &Copy) const; 281 282 /// Wrapper method for \see LiveIntervals::shrinkToUses. 283 /// This method does the proper fixing of the live-ranges when the afore 284 /// mentioned method returns true. 285 void shrinkToUses(LiveInterval *LI, 286 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 287 NumShrinkToUses++; 288 if (LIS->shrinkToUses(LI, Dead)) { 289 /// Check whether or not \p LI is composed by multiple connected 290 /// components and if that is the case, fix that. 291 SmallVector<LiveInterval*, 8> SplitLIs; 292 LIS->splitSeparateComponents(*LI, SplitLIs); 293 } 294 } 295 296 /// Wrapper Method to do all the necessary work when an Instruction is 297 /// deleted. 298 /// Optimizations should use this to make sure that deleted instructions 299 /// are always accounted for. 300 void deleteInstr(MachineInstr* MI) { 301 ErasedInstrs.insert(MI); 302 LIS->RemoveMachineInstrFromMaps(*MI); 303 MI->eraseFromParent(); 304 } 305 306 public: 307 static char ID; ///< Class identification, replacement for typeinfo 308 309 RegisterCoalescer() : MachineFunctionPass(ID) { 310 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 311 } 312 313 void getAnalysisUsage(AnalysisUsage &AU) const override; 314 315 void releaseMemory() override; 316 317 /// This is the pass entry point. 318 bool runOnMachineFunction(MachineFunction&) override; 319 320 /// Implement the dump method. 321 void print(raw_ostream &O, const Module* = nullptr) const override; 322 }; 323 324 } // end anonymous namespace 325 326 char RegisterCoalescer::ID = 0; 327 328 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 329 330 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 331 "Simple Register Coalescing", false, false) 332 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 333 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 334 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 335 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 336 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 337 "Simple Register Coalescing", false, false) 338 339 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 340 unsigned &Src, unsigned &Dst, 341 unsigned &SrcSub, unsigned &DstSub) { 342 if (MI->isCopy()) { 343 Dst = MI->getOperand(0).getReg(); 344 DstSub = MI->getOperand(0).getSubReg(); 345 Src = MI->getOperand(1).getReg(); 346 SrcSub = MI->getOperand(1).getSubReg(); 347 } else if (MI->isSubregToReg()) { 348 Dst = MI->getOperand(0).getReg(); 349 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 350 MI->getOperand(3).getImm()); 351 Src = MI->getOperand(2).getReg(); 352 SrcSub = MI->getOperand(2).getSubReg(); 353 } else 354 return false; 355 return true; 356 } 357 358 /// Return true if this block should be vacated by the coalescer to eliminate 359 /// branches. The important cases to handle in the coalescer are critical edges 360 /// split during phi elimination which contain only copies. Simple blocks that 361 /// contain non-branches should also be vacated, but this can be handled by an 362 /// earlier pass similar to early if-conversion. 363 static bool isSplitEdge(const MachineBasicBlock *MBB) { 364 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 365 return false; 366 367 for (const auto &MI : *MBB) { 368 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 369 return false; 370 } 371 return true; 372 } 373 374 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 375 SrcReg = DstReg = 0; 376 SrcIdx = DstIdx = 0; 377 NewRC = nullptr; 378 Flipped = CrossClass = false; 379 380 unsigned Src, Dst, SrcSub, DstSub; 381 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 382 return false; 383 Partial = SrcSub || DstSub; 384 385 // If one register is a physreg, it must be Dst. 386 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 387 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 388 return false; 389 std::swap(Src, Dst); 390 std::swap(SrcSub, DstSub); 391 Flipped = true; 392 } 393 394 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 395 396 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 397 // Eliminate DstSub on a physreg. 398 if (DstSub) { 399 Dst = TRI.getSubReg(Dst, DstSub); 400 if (!Dst) return false; 401 DstSub = 0; 402 } 403 404 // Eliminate SrcSub by picking a corresponding Dst superregister. 405 if (SrcSub) { 406 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 407 if (!Dst) return false; 408 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 409 return false; 410 } 411 } else { 412 // Both registers are virtual. 413 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 414 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 415 416 // Both registers have subreg indices. 417 if (SrcSub && DstSub) { 418 // Copies between different sub-registers are never coalescable. 419 if (Src == Dst && SrcSub != DstSub) 420 return false; 421 422 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 423 SrcIdx, DstIdx); 424 if (!NewRC) 425 return false; 426 } else if (DstSub) { 427 // SrcReg will be merged with a sub-register of DstReg. 428 SrcIdx = DstSub; 429 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 430 } else if (SrcSub) { 431 // DstReg will be merged with a sub-register of SrcReg. 432 DstIdx = SrcSub; 433 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 434 } else { 435 // This is a straight copy without sub-registers. 436 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 437 } 438 439 // The combined constraint may be impossible to satisfy. 440 if (!NewRC) 441 return false; 442 443 // Prefer SrcReg to be a sub-register of DstReg. 444 // FIXME: Coalescer should support subregs symmetrically. 445 if (DstIdx && !SrcIdx) { 446 std::swap(Src, Dst); 447 std::swap(SrcIdx, DstIdx); 448 Flipped = !Flipped; 449 } 450 451 CrossClass = NewRC != DstRC || NewRC != SrcRC; 452 } 453 // Check our invariants 454 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 455 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 456 "Cannot have a physical SubIdx"); 457 SrcReg = Src; 458 DstReg = Dst; 459 return true; 460 } 461 462 bool CoalescerPair::flip() { 463 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 464 return false; 465 std::swap(SrcReg, DstReg); 466 std::swap(SrcIdx, DstIdx); 467 Flipped = !Flipped; 468 return true; 469 } 470 471 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 472 if (!MI) 473 return false; 474 unsigned Src, Dst, SrcSub, DstSub; 475 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 476 return false; 477 478 // Find the virtual register that is SrcReg. 479 if (Dst == SrcReg) { 480 std::swap(Src, Dst); 481 std::swap(SrcSub, DstSub); 482 } else if (Src != SrcReg) { 483 return false; 484 } 485 486 // Now check that Dst matches DstReg. 487 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 488 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 489 return false; 490 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 491 // DstSub could be set for a physreg from INSERT_SUBREG. 492 if (DstSub) 493 Dst = TRI.getSubReg(Dst, DstSub); 494 // Full copy of Src. 495 if (!SrcSub) 496 return DstReg == Dst; 497 // This is a partial register copy. Check that the parts match. 498 return TRI.getSubReg(DstReg, SrcSub) == Dst; 499 } else { 500 // DstReg is virtual. 501 if (DstReg != Dst) 502 return false; 503 // Registers match, do the subregisters line up? 504 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 505 TRI.composeSubRegIndices(DstIdx, DstSub); 506 } 507 } 508 509 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 510 AU.setPreservesCFG(); 511 AU.addRequired<AAResultsWrapperPass>(); 512 AU.addRequired<LiveIntervals>(); 513 AU.addPreserved<LiveIntervals>(); 514 AU.addPreserved<SlotIndexes>(); 515 AU.addRequired<MachineLoopInfo>(); 516 AU.addPreserved<MachineLoopInfo>(); 517 AU.addPreservedID(MachineDominatorsID); 518 MachineFunctionPass::getAnalysisUsage(AU); 519 } 520 521 void RegisterCoalescer::eliminateDeadDefs() { 522 SmallVector<unsigned, 8> NewRegs; 523 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 524 nullptr, this).eliminateDeadDefs(DeadDefs); 525 } 526 527 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 528 // MI may be in WorkList. Make sure we don't visit it. 529 ErasedInstrs.insert(MI); 530 } 531 532 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 533 MachineInstr *CopyMI) { 534 assert(!CP.isPartial() && "This doesn't work for partial copies."); 535 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 536 537 LiveInterval &IntA = 538 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 539 LiveInterval &IntB = 540 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 541 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 542 543 // We have a non-trivially-coalescable copy with IntA being the source and 544 // IntB being the dest, thus this defines a value number in IntB. If the 545 // source value number (in IntA) is defined by a copy from B, see if we can 546 // merge these two pieces of B into a single value number, eliminating a copy. 547 // For example: 548 // 549 // A3 = B0 550 // ... 551 // B1 = A3 <- this copy 552 // 553 // In this case, B0 can be extended to where the B1 copy lives, allowing the 554 // B1 value number to be replaced with B0 (which simplifies the B 555 // liveinterval). 556 557 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 558 // the example above. 559 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 560 if (BS == IntB.end()) return false; 561 VNInfo *BValNo = BS->valno; 562 563 // Get the location that B is defined at. Two options: either this value has 564 // an unknown definition point or it is defined at CopyIdx. If unknown, we 565 // can't process it. 566 if (BValNo->def != CopyIdx) return false; 567 568 // AValNo is the value number in A that defines the copy, A3 in the example. 569 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 570 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 571 // The live segment might not exist after fun with physreg coalescing. 572 if (AS == IntA.end()) return false; 573 VNInfo *AValNo = AS->valno; 574 575 // If AValNo is defined as a copy from IntB, we can potentially process this. 576 // Get the instruction that defines this value number. 577 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 578 // Don't allow any partial copies, even if isCoalescable() allows them. 579 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 580 return false; 581 582 // Get the Segment in IntB that this value number starts with. 583 LiveInterval::iterator ValS = 584 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 585 if (ValS == IntB.end()) 586 return false; 587 588 // Make sure that the end of the live segment is inside the same block as 589 // CopyMI. 590 MachineInstr *ValSEndInst = 591 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 592 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 593 return false; 594 595 // Okay, we now know that ValS ends in the same block that the CopyMI 596 // live-range starts. If there are no intervening live segments between them 597 // in IntB, we can merge them. 598 if (ValS+1 != BS) return false; 599 600 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI)); 601 602 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 603 // We are about to delete CopyMI, so need to remove it as the 'instruction 604 // that defines this value #'. Update the valnum with the new defining 605 // instruction #. 606 BValNo->def = FillerStart; 607 608 // Okay, we can merge them. We need to insert a new liverange: 609 // [ValS.end, BS.begin) of either value number, then we merge the 610 // two value numbers. 611 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 612 613 // Okay, merge "B1" into the same value number as "B0". 614 if (BValNo != ValS->valno) 615 IntB.MergeValueNumberInto(BValNo, ValS->valno); 616 617 // Do the same for the subregister segments. 618 for (LiveInterval::SubRange &S : IntB.subranges()) { 619 // Check for SubRange Segments of the form [1234r,1234d:0) which can be 620 // removed to prevent creating bogus SubRange Segments. 621 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx); 622 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) { 623 S.removeSegment(*SS, true); 624 continue; 625 } 626 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 627 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 628 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 629 if (SubBValNo != SubValSNo) 630 S.MergeValueNumberInto(SubBValNo, SubValSNo); 631 } 632 633 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n'); 634 635 // If the source instruction was killing the source register before the 636 // merge, unset the isKill marker given the live range has been extended. 637 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 638 if (UIdx != -1) { 639 ValSEndInst->getOperand(UIdx).setIsKill(false); 640 } 641 642 // Rewrite the copy. 643 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 644 // If the copy instruction was killing the destination register or any 645 // subrange before the merge trim the live range. 646 bool RecomputeLiveRange = AS->end == CopyIdx; 647 if (!RecomputeLiveRange) { 648 for (LiveInterval::SubRange &S : IntA.subranges()) { 649 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx); 650 if (SS != S.end() && SS->end == CopyIdx) { 651 RecomputeLiveRange = true; 652 break; 653 } 654 } 655 } 656 if (RecomputeLiveRange) 657 shrinkToUses(&IntA); 658 659 ++numExtends; 660 return true; 661 } 662 663 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 664 LiveInterval &IntB, 665 VNInfo *AValNo, 666 VNInfo *BValNo) { 667 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 668 // the PHI values. 669 if (LIS->hasPHIKill(IntA, AValNo)) 670 return true; 671 672 for (LiveRange::Segment &ASeg : IntA.segments) { 673 if (ASeg.valno != AValNo) continue; 674 LiveInterval::iterator BI = 675 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start); 676 if (BI != IntB.begin()) 677 --BI; 678 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 679 if (BI->valno == BValNo) 680 continue; 681 if (BI->start <= ASeg.start && BI->end > ASeg.start) 682 return true; 683 if (BI->start > ASeg.start && BI->start < ASeg.end) 684 return true; 685 } 686 } 687 return false; 688 } 689 690 /// Copy segments with value number @p SrcValNo from liverange @p Src to live 691 /// range @Dst and use value number @p DstValNo there. 692 static std::pair<bool,bool> 693 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src, 694 const VNInfo *SrcValNo) { 695 bool Changed = false; 696 bool MergedWithDead = false; 697 for (const LiveRange::Segment &S : Src.segments) { 698 if (S.valno != SrcValNo) 699 continue; 700 // This is adding a segment from Src that ends in a copy that is about 701 // to be removed. This segment is going to be merged with a pre-existing 702 // segment in Dst. This works, except in cases when the corresponding 703 // segment in Dst is dead. For example: adding [192r,208r:1) from Src 704 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst. 705 // Recognized such cases, so that the segments can be shrunk. 706 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo); 707 LiveRange::Segment &Merged = *Dst.addSegment(Added); 708 if (Merged.end.isDead()) 709 MergedWithDead = true; 710 Changed = true; 711 } 712 return std::make_pair(Changed, MergedWithDead); 713 } 714 715 std::pair<bool,bool> 716 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 717 MachineInstr *CopyMI) { 718 assert(!CP.isPhys()); 719 720 LiveInterval &IntA = 721 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 722 LiveInterval &IntB = 723 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 724 725 // We found a non-trivially-coalescable copy with IntA being the source and 726 // IntB being the dest, thus this defines a value number in IntB. If the 727 // source value number (in IntA) is defined by a commutable instruction and 728 // its other operand is coalesced to the copy dest register, see if we can 729 // transform the copy into a noop by commuting the definition. For example, 730 // 731 // A3 = op A2 killed B0 732 // ... 733 // B1 = A3 <- this copy 734 // ... 735 // = op A3 <- more uses 736 // 737 // ==> 738 // 739 // B2 = op B0 killed A2 740 // ... 741 // B1 = B2 <- now an identity copy 742 // ... 743 // = op B2 <- more uses 744 745 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 746 // the example above. 747 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 748 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 749 assert(BValNo != nullptr && BValNo->def == CopyIdx); 750 751 // AValNo is the value number in A that defines the copy, A3 in the example. 752 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 753 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 754 if (AValNo->isPHIDef()) 755 return { false, false }; 756 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 757 if (!DefMI) 758 return { false, false }; 759 if (!DefMI->isCommutable()) 760 return { false, false }; 761 // If DefMI is a two-address instruction then commuting it will change the 762 // destination register. 763 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 764 assert(DefIdx != -1); 765 unsigned UseOpIdx; 766 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 767 return { false, false }; 768 769 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 770 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 771 // passed to the method. That _other_ operand is chosen by 772 // the findCommutedOpIndices() method. 773 // 774 // That is obviously an area for improvement in case of instructions having 775 // more than 2 operands. For example, if some instruction has 3 commutable 776 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 777 // op#2<->op#3) of commute transformation should be considered/tried here. 778 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 779 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 780 return { false, false }; 781 782 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 783 unsigned NewReg = NewDstMO.getReg(); 784 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 785 return { false, false }; 786 787 // Make sure there are no other definitions of IntB that would reach the 788 // uses which the new definition can reach. 789 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 790 return { false, false }; 791 792 // If some of the uses of IntA.reg is already coalesced away, return false. 793 // It's not possible to determine whether it's safe to perform the coalescing. 794 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 795 MachineInstr *UseMI = MO.getParent(); 796 unsigned OpNo = &MO - &UseMI->getOperand(0); 797 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 798 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 799 if (US == IntA.end() || US->valno != AValNo) 800 continue; 801 // If this use is tied to a def, we can't rewrite the register. 802 if (UseMI->isRegTiedToDefOperand(OpNo)) 803 return { false, false }; 804 } 805 806 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 807 << *DefMI); 808 809 // At this point we have decided that it is legal to do this 810 // transformation. Start by commuting the instruction. 811 MachineBasicBlock *MBB = DefMI->getParent(); 812 MachineInstr *NewMI = 813 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 814 if (!NewMI) 815 return { false, false }; 816 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 817 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 818 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 819 return { false, false }; 820 if (NewMI != DefMI) { 821 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 822 MachineBasicBlock::iterator Pos = DefMI; 823 MBB->insert(Pos, NewMI); 824 MBB->erase(DefMI); 825 } 826 827 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 828 // A = or A, B 829 // ... 830 // B = A 831 // ... 832 // C = killed A 833 // ... 834 // = B 835 836 // Update uses of IntA of the specific Val# with IntB. 837 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 838 UE = MRI->use_end(); 839 UI != UE; /* ++UI is below because of possible MI removal */) { 840 MachineOperand &UseMO = *UI; 841 ++UI; 842 if (UseMO.isUndef()) 843 continue; 844 MachineInstr *UseMI = UseMO.getParent(); 845 if (UseMI->isDebugValue()) { 846 // FIXME These don't have an instruction index. Not clear we have enough 847 // info to decide whether to do this replacement or not. For now do it. 848 UseMO.setReg(NewReg); 849 continue; 850 } 851 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 852 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 853 assert(US != IntA.end() && "Use must be live"); 854 if (US->valno != AValNo) 855 continue; 856 // Kill flags are no longer accurate. They are recomputed after RA. 857 UseMO.setIsKill(false); 858 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 859 UseMO.substPhysReg(NewReg, *TRI); 860 else 861 UseMO.setReg(NewReg); 862 if (UseMI == CopyMI) 863 continue; 864 if (!UseMI->isCopy()) 865 continue; 866 if (UseMI->getOperand(0).getReg() != IntB.reg || 867 UseMI->getOperand(0).getSubReg()) 868 continue; 869 870 // This copy will become a noop. If it's defining a new val#, merge it into 871 // BValNo. 872 SlotIndex DefIdx = UseIdx.getRegSlot(); 873 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 874 if (!DVNI) 875 continue; 876 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 877 assert(DVNI->def == DefIdx); 878 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 879 for (LiveInterval::SubRange &S : IntB.subranges()) { 880 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 881 if (!SubDVNI) 882 continue; 883 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 884 assert(SubBValNo->def == CopyIdx); 885 S.MergeValueNumberInto(SubDVNI, SubBValNo); 886 } 887 888 deleteInstr(UseMI); 889 } 890 891 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 892 // is updated. 893 bool ShrinkB = false; 894 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 895 if (IntA.hasSubRanges() || IntB.hasSubRanges()) { 896 if (!IntA.hasSubRanges()) { 897 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 898 IntA.createSubRangeFrom(Allocator, Mask, IntA); 899 } else if (!IntB.hasSubRanges()) { 900 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg); 901 IntB.createSubRangeFrom(Allocator, Mask, IntB); 902 } 903 SlotIndex AIdx = CopyIdx.getRegSlot(true); 904 LaneBitmask MaskA; 905 for (LiveInterval::SubRange &SA : IntA.subranges()) { 906 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 907 assert(ASubValNo != nullptr); 908 MaskA |= SA.LaneMask; 909 910 IntB.refineSubRanges(Allocator, SA.LaneMask, 911 [&Allocator,&SA,CopyIdx,ASubValNo,&ShrinkB] 912 (LiveInterval::SubRange &SR) { 913 VNInfo *BSubValNo = SR.empty() 914 ? SR.getNextValue(CopyIdx, Allocator) 915 : SR.getVNInfoAt(CopyIdx); 916 assert(BSubValNo != nullptr); 917 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 918 ShrinkB |= P.second; 919 if (P.first) 920 BSubValNo->def = ASubValNo->def; 921 }); 922 } 923 // Go over all subranges of IntB that have not been covered by IntA, 924 // and delete the segments starting at CopyIdx. This can happen if 925 // IntA has undef lanes that are defined in IntB. 926 for (LiveInterval::SubRange &SB : IntB.subranges()) { 927 if ((SB.LaneMask & MaskA).any()) 928 continue; 929 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx)) 930 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex()) 931 SB.removeSegment(*S, true); 932 } 933 } 934 935 BValNo->def = AValNo->def; 936 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 937 ShrinkB |= P.second; 938 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 939 940 LIS->removeVRegDefAt(IntA, AValNo->def); 941 942 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 943 ++numCommutes; 944 return { true, ShrinkB }; 945 } 946 947 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 948 /// predecessor of BB2, and if B is not redefined on the way from A = B 949 /// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the 950 /// execution goes through the path from BB0 to BB2. We may move B = A 951 /// to the predecessor without such reversed copy. 952 /// So we will transform the program from: 953 /// BB0: 954 /// A = B; BB1: 955 /// ... ... 956 /// / \ / 957 /// BB2: 958 /// ... 959 /// B = A; 960 /// 961 /// to: 962 /// 963 /// BB0: BB1: 964 /// A = B; ... 965 /// ... B = A; 966 /// / \ / 967 /// BB2: 968 /// ... 969 /// 970 /// A special case is when BB0 and BB2 are the same BB which is the only 971 /// BB in a loop: 972 /// BB1: 973 /// ... 974 /// BB0/BB2: ---- 975 /// B = A; | 976 /// ... | 977 /// A = B; | 978 /// |------- 979 /// | 980 /// We may hoist B = A from BB0/BB2 to BB1. 981 /// 982 /// The major preconditions for correctness to remove such partial 983 /// redundancy include: 984 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 985 /// the PHI is defined by the reversed copy A = B in BB0. 986 /// 2. No B is referenced from the start of BB2 to B = A. 987 /// 3. No B is defined from A = B to the end of BB0. 988 /// 4. BB1 has only one successor. 989 /// 990 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 991 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 992 /// colder place, which not only prevent endless loop, but also make sure 993 /// the movement of copy is beneficial. 994 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 995 MachineInstr &CopyMI) { 996 assert(!CP.isPhys()); 997 if (!CopyMI.isFullCopy()) 998 return false; 999 1000 MachineBasicBlock &MBB = *CopyMI.getParent(); 1001 if (MBB.isEHPad()) 1002 return false; 1003 1004 if (MBB.pred_size() != 2) 1005 return false; 1006 1007 LiveInterval &IntA = 1008 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 1009 LiveInterval &IntB = 1010 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 1011 1012 // A is defined by PHI at the entry of MBB. 1013 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 1014 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 1015 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 1016 if (!AValNo->isPHIDef()) 1017 return false; 1018 1019 // No B is referenced before CopyMI in MBB. 1020 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 1021 return false; 1022 1023 // MBB has two predecessors: one contains A = B so no copy will be inserted 1024 // for it. The other one will have a copy moved from MBB. 1025 bool FoundReverseCopy = false; 1026 MachineBasicBlock *CopyLeftBB = nullptr; 1027 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1028 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 1029 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 1030 if (!DefMI || !DefMI->isFullCopy()) { 1031 CopyLeftBB = Pred; 1032 continue; 1033 } 1034 // Check DefMI is a reverse copy and it is in BB Pred. 1035 if (DefMI->getOperand(0).getReg() != IntA.reg || 1036 DefMI->getOperand(1).getReg() != IntB.reg || 1037 DefMI->getParent() != Pred) { 1038 CopyLeftBB = Pred; 1039 continue; 1040 } 1041 // If there is any other def of B after DefMI and before the end of Pred, 1042 // we need to keep the copy of B = A at the end of Pred if we remove 1043 // B = A from MBB. 1044 bool ValB_Changed = false; 1045 for (auto VNI : IntB.valnos) { 1046 if (VNI->isUnused()) 1047 continue; 1048 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 1049 ValB_Changed = true; 1050 break; 1051 } 1052 } 1053 if (ValB_Changed) { 1054 CopyLeftBB = Pred; 1055 continue; 1056 } 1057 FoundReverseCopy = true; 1058 } 1059 1060 // If no reverse copy is found in predecessors, nothing to do. 1061 if (!FoundReverseCopy) 1062 return false; 1063 1064 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 1065 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 1066 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 1067 // update IntA/IntB. 1068 // 1069 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 1070 // MBB is hotter than CopyLeftBB. 1071 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 1072 return false; 1073 1074 // Now (almost sure it's) ok to move copy. 1075 if (CopyLeftBB) { 1076 // Position in CopyLeftBB where we should insert new copy. 1077 auto InsPos = CopyLeftBB->getFirstTerminator(); 1078 1079 // Make sure that B isn't referenced in the terminators (if any) at the end 1080 // of the predecessor since we're about to insert a new definition of B 1081 // before them. 1082 if (InsPos != CopyLeftBB->end()) { 1083 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true); 1084 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB))) 1085 return false; 1086 } 1087 1088 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to " 1089 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI); 1090 1091 // Insert new copy to CopyLeftBB. 1092 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1093 TII->get(TargetOpcode::COPY), IntB.reg) 1094 .addReg(IntA.reg); 1095 SlotIndex NewCopyIdx = 1096 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1097 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1098 for (LiveInterval::SubRange &SR : IntB.subranges()) 1099 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1100 1101 // If the newly created Instruction has an address of an instruction that was 1102 // deleted before (object recycled by the allocator) it needs to be removed from 1103 // the deleted list. 1104 ErasedInstrs.erase(NewCopyMI); 1105 } else { 1106 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from " 1107 << printMBBReference(MBB) << '\t' << CopyMI); 1108 } 1109 1110 // Remove CopyMI. 1111 // Note: This is fine to remove the copy before updating the live-ranges. 1112 // While updating the live-ranges, we only look at slot indices and 1113 // never go back to the instruction. 1114 // Mark instructions as deleted. 1115 deleteInstr(&CopyMI); 1116 1117 // Update the liveness. 1118 SmallVector<SlotIndex, 8> EndPoints; 1119 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1120 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1121 &EndPoints); 1122 BValNo->markUnused(); 1123 // Extend IntB to the EndPoints of its original live interval. 1124 LIS->extendToIndices(IntB, EndPoints); 1125 1126 // Now, do the same for its subranges. 1127 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1128 EndPoints.clear(); 1129 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1130 assert(BValNo && "All sublanes should be live"); 1131 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1132 BValNo->markUnused(); 1133 // We can have a situation where the result of the original copy is live, 1134 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes 1135 // the copy appear as an endpoint from pruneValue(), but we don't want it 1136 // to because the copy has been removed. We can go ahead and remove that 1137 // endpoint; there is no other situation here that there could be a use at 1138 // the same place as we know that the copy is a full copy. 1139 for (unsigned I = 0; I != EndPoints.size(); ) { 1140 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) { 1141 EndPoints[I] = EndPoints.back(); 1142 EndPoints.pop_back(); 1143 continue; 1144 } 1145 ++I; 1146 } 1147 LIS->extendToIndices(SR, EndPoints); 1148 } 1149 // If any dead defs were extended, truncate them. 1150 shrinkToUses(&IntB); 1151 1152 // Finally, update the live-range of IntA. 1153 shrinkToUses(&IntA); 1154 return true; 1155 } 1156 1157 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1158 /// defining a subregister. 1159 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 1160 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && 1161 "This code cannot handle physreg aliasing"); 1162 for (const MachineOperand &Op : MI.operands()) { 1163 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1164 continue; 1165 // Return true if we define the full register or don't care about the value 1166 // inside other subregisters. 1167 if (Op.getSubReg() == 0 || Op.isUndef()) 1168 return true; 1169 } 1170 return false; 1171 } 1172 1173 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1174 MachineInstr *CopyMI, 1175 bool &IsDefCopy) { 1176 IsDefCopy = false; 1177 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1178 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1179 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1180 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1181 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1182 return false; 1183 1184 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1185 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1186 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1187 if (!ValNo) 1188 return false; 1189 if (ValNo->isPHIDef() || ValNo->isUnused()) 1190 return false; 1191 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1192 if (!DefMI) 1193 return false; 1194 if (DefMI->isCopyLike()) { 1195 IsDefCopy = true; 1196 return false; 1197 } 1198 if (!TII->isAsCheapAsAMove(*DefMI)) 1199 return false; 1200 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1201 return false; 1202 if (!definesFullReg(*DefMI, SrcReg)) 1203 return false; 1204 bool SawStore = false; 1205 if (!DefMI->isSafeToMove(AA, SawStore)) 1206 return false; 1207 const MCInstrDesc &MCID = DefMI->getDesc(); 1208 if (MCID.getNumDefs() != 1) 1209 return false; 1210 // Only support subregister destinations when the def is read-undef. 1211 MachineOperand &DstOperand = CopyMI->getOperand(0); 1212 unsigned CopyDstReg = DstOperand.getReg(); 1213 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1214 return false; 1215 1216 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1217 // the register substantially (beyond both source and dest size). This is bad 1218 // for performance since it can cascade through a function, introducing many 1219 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1220 // around after a few subreg copies). 1221 if (SrcIdx && DstIdx) 1222 return false; 1223 1224 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1225 if (!DefMI->isImplicitDef()) { 1226 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 1227 unsigned NewDstReg = DstReg; 1228 1229 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1230 DefMI->getOperand(0).getSubReg()); 1231 if (NewDstIdx) 1232 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1233 1234 // Finally, make sure that the physical subregister that will be 1235 // constructed later is permitted for the instruction. 1236 if (!DefRC->contains(NewDstReg)) 1237 return false; 1238 } else { 1239 // Theoretically, some stack frame reference could exist. Just make sure 1240 // it hasn't actually happened. 1241 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 1242 "Only expect to deal with virtual or physical registers"); 1243 } 1244 } 1245 1246 DebugLoc DL = CopyMI->getDebugLoc(); 1247 MachineBasicBlock *MBB = CopyMI->getParent(); 1248 MachineBasicBlock::iterator MII = 1249 std::next(MachineBasicBlock::iterator(CopyMI)); 1250 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1251 MachineInstr &NewMI = *std::prev(MII); 1252 NewMI.setDebugLoc(DL); 1253 1254 // In a situation like the following: 1255 // %0:subreg = instr ; DefMI, subreg = DstIdx 1256 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0 1257 // instead of widening %1 to the register class of %0 simply do: 1258 // %1 = instr 1259 const TargetRegisterClass *NewRC = CP.getNewRC(); 1260 if (DstIdx != 0) { 1261 MachineOperand &DefMO = NewMI.getOperand(0); 1262 if (DefMO.getSubReg() == DstIdx) { 1263 assert(SrcIdx == 0 && CP.isFlipped() 1264 && "Shouldn't have SrcIdx+DstIdx at this point"); 1265 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1266 const TargetRegisterClass *CommonRC = 1267 TRI->getCommonSubClass(DefRC, DstRC); 1268 if (CommonRC != nullptr) { 1269 NewRC = CommonRC; 1270 DstIdx = 0; 1271 DefMO.setSubReg(0); 1272 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1273 } 1274 } 1275 } 1276 1277 // CopyMI may have implicit operands, save them so that we can transfer them 1278 // over to the newly materialized instruction after CopyMI is removed. 1279 SmallVector<MachineOperand, 4> ImplicitOps; 1280 ImplicitOps.reserve(CopyMI->getNumOperands() - 1281 CopyMI->getDesc().getNumOperands()); 1282 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1283 E = CopyMI->getNumOperands(); 1284 I != E; ++I) { 1285 MachineOperand &MO = CopyMI->getOperand(I); 1286 if (MO.isReg()) { 1287 assert(MO.isImplicit() && "No explicit operands after implicit operands."); 1288 // Discard VReg implicit defs. 1289 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1290 ImplicitOps.push_back(MO); 1291 } 1292 } 1293 1294 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1295 CopyMI->eraseFromParent(); 1296 ErasedInstrs.insert(CopyMI); 1297 1298 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1299 // We need to remember these so we can add intervals once we insert 1300 // NewMI into SlotIndexes. 1301 SmallVector<unsigned, 4> NewMIImplDefs; 1302 for (unsigned i = NewMI.getDesc().getNumOperands(), 1303 e = NewMI.getNumOperands(); 1304 i != e; ++i) { 1305 MachineOperand &MO = NewMI.getOperand(i); 1306 if (MO.isReg() && MO.isDef()) { 1307 assert(MO.isImplicit() && MO.isDead() && 1308 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 1309 NewMIImplDefs.push_back(MO.getReg()); 1310 } 1311 } 1312 1313 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 1314 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1315 1316 if (DefRC != nullptr) { 1317 if (NewIdx) 1318 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1319 else 1320 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1321 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1322 } 1323 // Remap subranges to new lanemask and change register class. 1324 LiveInterval &DstInt = LIS->getInterval(DstReg); 1325 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1326 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1327 } 1328 MRI->setRegClass(DstReg, NewRC); 1329 1330 // Update machine operands and add flags. 1331 updateRegDefsUses(DstReg, DstReg, DstIdx); 1332 NewMI.getOperand(0).setSubReg(NewIdx); 1333 // updateRegDefUses can add an "undef" flag to the definition, since 1334 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make 1335 // sure that "undef" is not set. 1336 if (NewIdx == 0) 1337 NewMI.getOperand(0).setIsUndef(false); 1338 // Add dead subregister definitions if we are defining the whole register 1339 // but only part of it is live. 1340 // This could happen if the rematerialization instruction is rematerializing 1341 // more than actually is used in the register. 1342 // An example would be: 1343 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1344 // ; Copying only part of the register here, but the rest is undef. 1345 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit 1346 // ==> 1347 // ; Materialize all the constants but only using one 1348 // %2 = LOAD_CONSTANTS 5, 8 1349 // 1350 // at this point for the part that wasn't defined before we could have 1351 // subranges missing the definition. 1352 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1353 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1354 SlotIndex DefIndex = 1355 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1356 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1357 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1358 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1359 if (!SR.liveAt(DefIndex)) 1360 SR.createDeadDef(DefIndex, Alloc); 1361 MaxMask &= ~SR.LaneMask; 1362 } 1363 if (MaxMask.any()) { 1364 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1365 SR->createDeadDef(DefIndex, Alloc); 1366 } 1367 } 1368 1369 // Make sure that the subrange for resultant undef is removed 1370 // For example: 1371 // %1:sub1<def,read-undef> = LOAD CONSTANT 1 1372 // %2 = COPY %1 1373 // ==> 1374 // %2:sub1<def, read-undef> = LOAD CONSTANT 1 1375 // ; Correct but need to remove the subrange for %2:sub0 1376 // ; as it is now undef 1377 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1378 // The affected subregister segments can be removed. 1379 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1380 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1381 bool UpdatedSubRanges = false; 1382 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1383 if ((SR.LaneMask & DstMask).none()) { 1384 LLVM_DEBUG(dbgs() 1385 << "Removing undefined SubRange " 1386 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1387 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1388 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1389 SR.removeValNo(RmValNo); 1390 UpdatedSubRanges = true; 1391 } 1392 } 1393 } 1394 if (UpdatedSubRanges) 1395 DstInt.removeEmptySubRanges(); 1396 } 1397 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1398 // The New instruction may be defining a sub-register of what's actually 1399 // been asked for. If so it must implicitly define the whole thing. 1400 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 1401 "Only expect virtual or physical registers in remat"); 1402 NewMI.getOperand(0).setIsDead(true); 1403 NewMI.addOperand(MachineOperand::CreateReg( 1404 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1405 // Record small dead def live-ranges for all the subregisters 1406 // of the destination register. 1407 // Otherwise, variables that live through may miss some 1408 // interferences, thus creating invalid allocation. 1409 // E.g., i386 code: 1410 // %1 = somedef ; %1 GR8 1411 // %2 = remat ; %2 GR32 1412 // CL = COPY %2.sub_8bit 1413 // = somedef %1 ; %1 GR8 1414 // => 1415 // %1 = somedef ; %1 GR8 1416 // dead ECX = remat ; implicit-def CL 1417 // = somedef %1 ; %1 GR8 1418 // %1 will see the interferences with CL but not with CH since 1419 // no live-ranges would have been created for ECX. 1420 // Fix that! 1421 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1422 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1423 Units.isValid(); ++Units) 1424 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1425 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1426 } 1427 1428 if (NewMI.getOperand(0).getSubReg()) 1429 NewMI.getOperand(0).setIsUndef(); 1430 1431 // Transfer over implicit operands to the rematerialized instruction. 1432 for (MachineOperand &MO : ImplicitOps) 1433 NewMI.addOperand(MO); 1434 1435 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1436 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1437 unsigned Reg = NewMIImplDefs[i]; 1438 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1439 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1440 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1441 } 1442 1443 LLVM_DEBUG(dbgs() << "Remat: " << NewMI); 1444 ++NumReMats; 1445 1446 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1447 // to describe DstReg instead. 1448 if (MRI->use_nodbg_empty(SrcReg)) { 1449 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1450 MachineInstr *UseMI = UseMO.getParent(); 1451 if (UseMI->isDebugValue()) { 1452 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 1453 UseMO.substPhysReg(DstReg, *TRI); 1454 else 1455 UseMO.setReg(DstReg); 1456 // Move the debug value directly after the def of the rematerialized 1457 // value in DstReg. 1458 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); 1459 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1460 } 1461 } 1462 } 1463 1464 if (ToBeUpdated.count(SrcReg)) 1465 return true; 1466 1467 unsigned NumCopyUses = 0; 1468 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 1469 if (UseMO.getParent()->isCopyLike()) 1470 NumCopyUses++; 1471 } 1472 if (NumCopyUses < LateRematUpdateThreshold) { 1473 // The source interval can become smaller because we removed a use. 1474 shrinkToUses(&SrcInt, &DeadDefs); 1475 if (!DeadDefs.empty()) 1476 eliminateDeadDefs(); 1477 } else { 1478 ToBeUpdated.insert(SrcReg); 1479 } 1480 return true; 1481 } 1482 1483 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1484 // ProcessImplicitDefs may leave some copies of <undef> values, it only 1485 // removes local variables. When we have a copy like: 1486 // 1487 // %1 = COPY undef %2 1488 // 1489 // We delete the copy and remove the corresponding value number from %1. 1490 // Any uses of that value number are marked as <undef>. 1491 1492 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1493 // CoalescerPair may have a new register class with adjusted subreg indices 1494 // at this point. 1495 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1496 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx); 1497 1498 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1499 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1500 // CopyMI is undef iff SrcReg is not live before the instruction. 1501 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1502 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1503 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1504 if ((SR.LaneMask & SrcMask).none()) 1505 continue; 1506 if (SR.liveAt(Idx)) 1507 return nullptr; 1508 } 1509 } else if (SrcLI.liveAt(Idx)) 1510 return nullptr; 1511 1512 // If the undef copy defines a live-out value (i.e. an input to a PHI def), 1513 // then replace it with an IMPLICIT_DEF. 1514 LiveInterval &DstLI = LIS->getInterval(DstReg); 1515 SlotIndex RegIndex = Idx.getRegSlot(); 1516 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex); 1517 assert(Seg != nullptr && "No segment for defining instruction"); 1518 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) { 1519 if (V->isPHIDef()) { 1520 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1521 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) { 1522 MachineOperand &MO = CopyMI->getOperand(i-1); 1523 if (MO.isReg() && MO.isUse()) 1524 CopyMI->RemoveOperand(i-1); 1525 } 1526 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an " 1527 "implicit def\n"); 1528 return CopyMI; 1529 } 1530 } 1531 1532 // Remove any DstReg segments starting at the instruction. 1533 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1534 1535 // Remove value or merge with previous one in case of a subregister def. 1536 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1537 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1538 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1539 1540 // The affected subregister segments can be removed. 1541 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1542 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1543 if ((SR.LaneMask & DstMask).none()) 1544 continue; 1545 1546 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1547 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1548 SR.removeValNo(SVNI); 1549 } 1550 DstLI.removeEmptySubRanges(); 1551 } else 1552 LIS->removeVRegDefAt(DstLI, RegIndex); 1553 1554 // Mark uses as undef. 1555 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1556 if (MO.isDef() /*|| MO.isUndef()*/) 1557 continue; 1558 const MachineInstr &MI = *MO.getParent(); 1559 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1560 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1561 bool isLive; 1562 if (!UseMask.all() && DstLI.hasSubRanges()) { 1563 isLive = false; 1564 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1565 if ((SR.LaneMask & UseMask).none()) 1566 continue; 1567 if (SR.liveAt(UseIdx)) { 1568 isLive = true; 1569 break; 1570 } 1571 } 1572 } else 1573 isLive = DstLI.liveAt(UseIdx); 1574 if (isLive) 1575 continue; 1576 MO.setIsUndef(true); 1577 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1578 } 1579 1580 // A def of a subregister may be a use of the other subregisters, so 1581 // deleting a def of a subregister may also remove uses. Since CopyMI 1582 // is still part of the function (but about to be erased), mark all 1583 // defs of DstReg in it as <undef>, so that shrinkToUses would 1584 // ignore them. 1585 for (MachineOperand &MO : CopyMI->operands()) 1586 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1587 MO.setIsUndef(true); 1588 LIS->shrinkToUses(&DstLI); 1589 1590 return CopyMI; 1591 } 1592 1593 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1594 MachineOperand &MO, unsigned SubRegIdx) { 1595 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1596 if (MO.isDef()) 1597 Mask = ~Mask; 1598 bool IsUndef = true; 1599 for (const LiveInterval::SubRange &S : Int.subranges()) { 1600 if ((S.LaneMask & Mask).none()) 1601 continue; 1602 if (S.liveAt(UseIdx)) { 1603 IsUndef = false; 1604 break; 1605 } 1606 } 1607 if (IsUndef) { 1608 MO.setIsUndef(true); 1609 // We found out some subregister use is actually reading an undefined 1610 // value. In some cases the whole vreg has become undefined at this 1611 // point so we have to potentially shrink the main range if the 1612 // use was ending a live segment there. 1613 LiveQueryResult Q = Int.Query(UseIdx); 1614 if (Q.valueOut() == nullptr) 1615 ShrinkMainRange = true; 1616 } 1617 } 1618 1619 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 1620 unsigned DstReg, 1621 unsigned SubIdx) { 1622 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 1623 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1624 1625 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1626 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1627 unsigned SubReg = MO.getSubReg(); 1628 if (SubReg == 0 || MO.isUndef()) 1629 continue; 1630 MachineInstr &MI = *MO.getParent(); 1631 if (MI.isDebugValue()) 1632 continue; 1633 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1634 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1635 } 1636 } 1637 1638 SmallPtrSet<MachineInstr*, 8> Visited; 1639 for (MachineRegisterInfo::reg_instr_iterator 1640 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1641 I != E; ) { 1642 MachineInstr *UseMI = &*(I++); 1643 1644 // Each instruction can only be rewritten once because sub-register 1645 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1646 // the UseMI operands removes them from the SrcReg use-def chain, but when 1647 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1648 // operands mentioning the virtual register. 1649 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1650 continue; 1651 1652 SmallVector<unsigned,8> Ops; 1653 bool Reads, Writes; 1654 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1655 1656 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1657 // because SrcReg is a sub-register. 1658 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) 1659 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1660 1661 // Replace SrcReg with DstReg in all UseMI operands. 1662 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1663 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1664 1665 // Adjust <undef> flags in case of sub-register joins. We don't want to 1666 // turn a full def into a read-modify-write sub-register def and vice 1667 // versa. 1668 if (SubIdx && MO.isDef()) 1669 MO.setIsUndef(!Reads); 1670 1671 // A subreg use of a partially undef (super) register may be a complete 1672 // undef use now and then has to be marked that way. 1673 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1674 if (!DstInt->hasSubRanges()) { 1675 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1676 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1677 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1678 } 1679 SlotIndex MIIdx = UseMI->isDebugValue() 1680 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1681 : LIS->getInstructionIndex(*UseMI); 1682 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1683 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1684 } 1685 1686 if (DstIsPhys) 1687 MO.substPhysReg(DstReg, *TRI); 1688 else 1689 MO.substVirtReg(DstReg, SubIdx, *TRI); 1690 } 1691 1692 LLVM_DEBUG({ 1693 dbgs() << "\t\tupdated: "; 1694 if (!UseMI->isDebugValue()) 1695 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1696 dbgs() << *UseMI; 1697 }); 1698 } 1699 } 1700 1701 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1702 // Always join simple intervals that are defined by a single copy from a 1703 // reserved register. This doesn't increase register pressure, so it is 1704 // always beneficial. 1705 if (!MRI->isReserved(CP.getDstReg())) { 1706 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1707 return false; 1708 } 1709 1710 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1711 if (JoinVInt.containsOneValue()) 1712 return true; 1713 1714 LLVM_DEBUG( 1715 dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1716 return false; 1717 } 1718 1719 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1720 Again = false; 1721 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1722 1723 CoalescerPair CP(*TRI); 1724 if (!CP.setRegisters(CopyMI)) { 1725 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n"); 1726 return false; 1727 } 1728 1729 if (CP.getNewRC()) { 1730 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1731 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1732 unsigned SrcIdx = CP.getSrcIdx(); 1733 unsigned DstIdx = CP.getDstIdx(); 1734 if (CP.isFlipped()) { 1735 std::swap(SrcIdx, DstIdx); 1736 std::swap(SrcRC, DstRC); 1737 } 1738 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1739 CP.getNewRC(), *LIS)) { 1740 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1741 return false; 1742 } 1743 } 1744 1745 // Dead code elimination. This really should be handled by MachineDCE, but 1746 // sometimes dead copies slip through, and we can't generate invalid live 1747 // ranges. 1748 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1749 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n"); 1750 DeadDefs.push_back(CopyMI); 1751 eliminateDeadDefs(); 1752 return true; 1753 } 1754 1755 // Eliminate undefs. 1756 if (!CP.isPhys()) { 1757 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce. 1758 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) { 1759 if (UndefMI->isImplicitDef()) 1760 return false; 1761 deleteInstr(CopyMI); 1762 return false; // Not coalescable. 1763 } 1764 } 1765 1766 // Coalesced copies are normally removed immediately, but transformations 1767 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1768 // When that happens, just join the values and remove the copy. 1769 if (CP.getSrcReg() == CP.getDstReg()) { 1770 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1771 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1772 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1773 LiveQueryResult LRQ = LI.Query(CopyIdx); 1774 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1775 VNInfo *ReadVNI = LRQ.valueIn(); 1776 assert(ReadVNI && "No value before copy and no <undef> flag."); 1777 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1778 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1779 1780 // Process subregister liveranges. 1781 for (LiveInterval::SubRange &S : LI.subranges()) { 1782 LiveQueryResult SLRQ = S.Query(CopyIdx); 1783 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1784 VNInfo *SReadVNI = SLRQ.valueIn(); 1785 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1786 } 1787 } 1788 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1789 } 1790 deleteInstr(CopyMI); 1791 return true; 1792 } 1793 1794 // Enforce policies. 1795 if (CP.isPhys()) { 1796 LLVM_DEBUG(dbgs() << "\tConsidering merging " 1797 << printReg(CP.getSrcReg(), TRI) << " with " 1798 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'); 1799 if (!canJoinPhys(CP)) { 1800 // Before giving up coalescing, if definition of source is defined by 1801 // trivial computation, try rematerializing it. 1802 bool IsDefCopy; 1803 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1804 return true; 1805 if (IsDefCopy) 1806 Again = true; // May be possible to coalesce later. 1807 return false; 1808 } 1809 } else { 1810 // When possible, let DstReg be the larger interval. 1811 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1812 LIS->getInterval(CP.getDstReg()).size()) 1813 CP.flip(); 1814 1815 LLVM_DEBUG({ 1816 dbgs() << "\tConsidering merging to " 1817 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1818 if (CP.getDstIdx() && CP.getSrcIdx()) 1819 dbgs() << printReg(CP.getDstReg()) << " in " 1820 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1821 << printReg(CP.getSrcReg()) << " in " 1822 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1823 else 1824 dbgs() << printReg(CP.getSrcReg(), TRI) << " in " 1825 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1826 }); 1827 } 1828 1829 ShrinkMask = LaneBitmask::getNone(); 1830 ShrinkMainRange = false; 1831 1832 // Okay, attempt to join these two intervals. On failure, this returns false. 1833 // Otherwise, if one of the intervals being joined is a physreg, this method 1834 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1835 // been modified, so we can use this information below to update aliases. 1836 if (!joinIntervals(CP)) { 1837 // Coalescing failed. 1838 1839 // If definition of source is defined by trivial computation, try 1840 // rematerializing it. 1841 bool IsDefCopy; 1842 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1843 return true; 1844 1845 // If we can eliminate the copy without merging the live segments, do so 1846 // now. 1847 if (!CP.isPartial() && !CP.isPhys()) { 1848 bool Changed = adjustCopiesBackFrom(CP, CopyMI); 1849 bool Shrink = false; 1850 if (!Changed) 1851 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI); 1852 if (Changed) { 1853 deleteInstr(CopyMI); 1854 if (Shrink) { 1855 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1856 LiveInterval &DstLI = LIS->getInterval(DstReg); 1857 shrinkToUses(&DstLI); 1858 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n'); 1859 } 1860 LLVM_DEBUG(dbgs() << "\tTrivial!\n"); 1861 return true; 1862 } 1863 } 1864 1865 // Try and see if we can partially eliminate the copy by moving the copy to 1866 // its predecessor. 1867 if (!CP.isPartial() && !CP.isPhys()) 1868 if (removePartialRedundancy(CP, *CopyMI)) 1869 return true; 1870 1871 // Otherwise, we are unable to join the intervals. 1872 LLVM_DEBUG(dbgs() << "\tInterference!\n"); 1873 Again = true; // May be possible to coalesce later. 1874 return false; 1875 } 1876 1877 // Coalescing to a virtual register that is of a sub-register class of the 1878 // other. Make sure the resulting register is set to the right register class. 1879 if (CP.isCrossClass()) { 1880 ++numCrossRCs; 1881 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1882 } 1883 1884 // Removing sub-register copies can ease the register class constraints. 1885 // Make sure we attempt to inflate the register class of DstReg. 1886 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1887 InflateRegs.push_back(CP.getDstReg()); 1888 1889 // CopyMI has been erased by joinIntervals at this point. Remove it from 1890 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1891 // to the work list. This keeps ErasedInstrs from growing needlessly. 1892 ErasedInstrs.erase(CopyMI); 1893 1894 // Rewrite all SrcReg operands to DstReg. 1895 // Also update DstReg operands to include DstIdx if it is set. 1896 if (CP.getDstIdx()) 1897 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1898 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1899 1900 // Shrink subregister ranges if necessary. 1901 if (ShrinkMask.any()) { 1902 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1903 for (LiveInterval::SubRange &S : LI.subranges()) { 1904 if ((S.LaneMask & ShrinkMask).none()) 1905 continue; 1906 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1907 << ")\n"); 1908 LIS->shrinkToUses(S, LI.reg); 1909 } 1910 LI.removeEmptySubRanges(); 1911 } 1912 1913 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live 1914 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval 1915 // is not up-to-date, need to update the merged live interval here. 1916 if (ToBeUpdated.count(CP.getSrcReg())) 1917 ShrinkMainRange = true; 1918 1919 if (ShrinkMainRange) { 1920 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1921 shrinkToUses(&LI); 1922 } 1923 1924 // SrcReg is guaranteed to be the register whose live interval that is 1925 // being merged. 1926 LIS->removeInterval(CP.getSrcReg()); 1927 1928 // Update regalloc hint. 1929 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1930 1931 LLVM_DEBUG({ 1932 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 1933 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 1934 dbgs() << "\tResult = "; 1935 if (CP.isPhys()) 1936 dbgs() << printReg(CP.getDstReg(), TRI); 1937 else 1938 dbgs() << LIS->getInterval(CP.getDstReg()); 1939 dbgs() << '\n'; 1940 }); 1941 1942 ++numJoins; 1943 return true; 1944 } 1945 1946 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1947 unsigned DstReg = CP.getDstReg(); 1948 unsigned SrcReg = CP.getSrcReg(); 1949 assert(CP.isPhys() && "Must be a physreg copy"); 1950 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 1951 LiveInterval &RHS = LIS->getInterval(SrcReg); 1952 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1953 1954 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 1955 1956 // Optimization for reserved registers like ESP. We can only merge with a 1957 // reserved physreg if RHS has a single value that is a copy of DstReg. 1958 // The live range of the reserved register will look like a set of dead defs 1959 // - we don't properly track the live range of reserved registers. 1960 1961 // Deny any overlapping intervals. This depends on all the reserved 1962 // register live ranges to look like dead defs. 1963 if (!MRI->isConstantPhysReg(DstReg)) { 1964 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1965 // Abort if not all the regunits are reserved. 1966 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 1967 if (!MRI->isReserved(*RI)) 1968 return false; 1969 } 1970 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1971 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) 1972 << '\n'); 1973 return false; 1974 } 1975 } 1976 1977 // We must also check for overlaps with regmask clobbers. 1978 BitVector RegMaskUsable; 1979 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 1980 !RegMaskUsable.test(DstReg)) { 1981 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n"); 1982 return false; 1983 } 1984 } 1985 1986 // Skip any value computations, we are not adding new values to the 1987 // reserved register. Also skip merging the live ranges, the reserved 1988 // register live range doesn't need to be accurate as long as all the 1989 // defs are there. 1990 1991 // Delete the identity copy. 1992 MachineInstr *CopyMI; 1993 if (CP.isFlipped()) { 1994 // Physreg is copied into vreg 1995 // %y = COPY %physreg_x 1996 // ... //< no other def of %x here 1997 // use %y 1998 // => 1999 // ... 2000 // use %x 2001 CopyMI = MRI->getVRegDef(SrcReg); 2002 } else { 2003 // VReg is copied into physreg: 2004 // %y = def 2005 // ... //< no other def or use of %y here 2006 // %y = COPY %physreg_x 2007 // => 2008 // %y = def 2009 // ... 2010 if (!MRI->hasOneNonDBGUse(SrcReg)) { 2011 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 2012 return false; 2013 } 2014 2015 if (!LIS->intervalIsInOneMBB(RHS)) { 2016 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n"); 2017 return false; 2018 } 2019 2020 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 2021 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 2022 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 2023 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 2024 2025 if (!MRI->isConstantPhysReg(DstReg)) { 2026 // We checked above that there are no interfering defs of the physical 2027 // register. However, for this case, where we intend to move up the def of 2028 // the physical register, we also need to check for interfering uses. 2029 SlotIndexes *Indexes = LIS->getSlotIndexes(); 2030 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 2031 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 2032 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 2033 if (MI->readsRegister(DstReg, TRI)) { 2034 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 2035 return false; 2036 } 2037 } 2038 } 2039 2040 // We're going to remove the copy which defines a physical reserved 2041 // register, so remove its valno, etc. 2042 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of " 2043 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n"); 2044 2045 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 2046 // Create a new dead def at the new def location. 2047 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2048 LiveRange &LR = LIS->getRegUnit(*UI); 2049 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 2050 } 2051 } 2052 2053 deleteInstr(CopyMI); 2054 2055 // We don't track kills for reserved registers. 2056 MRI->clearKillFlags(CP.getSrcReg()); 2057 2058 return true; 2059 } 2060 2061 //===----------------------------------------------------------------------===// 2062 // Interference checking and interval joining 2063 //===----------------------------------------------------------------------===// 2064 // 2065 // In the easiest case, the two live ranges being joined are disjoint, and 2066 // there is no interference to consider. It is quite common, though, to have 2067 // overlapping live ranges, and we need to check if the interference can be 2068 // resolved. 2069 // 2070 // The live range of a single SSA value forms a sub-tree of the dominator tree. 2071 // This means that two SSA values overlap if and only if the def of one value 2072 // is contained in the live range of the other value. As a special case, the 2073 // overlapping values can be defined at the same index. 2074 // 2075 // The interference from an overlapping def can be resolved in these cases: 2076 // 2077 // 1. Coalescable copies. The value is defined by a copy that would become an 2078 // identity copy after joining SrcReg and DstReg. The copy instruction will 2079 // be removed, and the value will be merged with the source value. 2080 // 2081 // There can be several copies back and forth, causing many values to be 2082 // merged into one. We compute a list of ultimate values in the joined live 2083 // range as well as a mappings from the old value numbers. 2084 // 2085 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 2086 // predecessors have a live out value. It doesn't cause real interference, 2087 // and can be merged into the value it overlaps. Like a coalescable copy, it 2088 // can be erased after joining. 2089 // 2090 // 3. Copy of external value. The overlapping def may be a copy of a value that 2091 // is already in the other register. This is like a coalescable copy, but 2092 // the live range of the source register must be trimmed after erasing the 2093 // copy instruction: 2094 // 2095 // %src = COPY %ext 2096 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 2097 // 2098 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 2099 // defining one lane at a time: 2100 // 2101 // %dst:ssub0<def,read-undef> = FOO 2102 // %src = BAR 2103 // %dst:ssub1 = COPY %src 2104 // 2105 // The live range of %src overlaps the %dst value defined by FOO, but 2106 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 2107 // which was undef anyway. 2108 // 2109 // The value mapping is more complicated in this case. The final live range 2110 // will have different value numbers for both FOO and BAR, but there is no 2111 // simple mapping from old to new values. It may even be necessary to add 2112 // new PHI values. 2113 // 2114 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 2115 // is live, but never read. This can happen because we don't compute 2116 // individual live ranges per lane. 2117 // 2118 // %dst = FOO 2119 // %src = BAR 2120 // %dst:ssub1 = COPY %src 2121 // 2122 // This kind of interference is only resolved locally. If the clobbered 2123 // lane value escapes the block, the join is aborted. 2124 2125 namespace { 2126 2127 /// Track information about values in a single virtual register about to be 2128 /// joined. Objects of this class are always created in pairs - one for each 2129 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 2130 /// pair) 2131 class JoinVals { 2132 /// Live range we work on. 2133 LiveRange &LR; 2134 2135 /// (Main) register we work on. 2136 const unsigned Reg; 2137 2138 /// Reg (and therefore the values in this liverange) will end up as 2139 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 2140 /// CP.SrcIdx. 2141 const unsigned SubIdx; 2142 2143 /// The LaneMask that this liverange will occupy the coalesced register. May 2144 /// be smaller than the lanemask produced by SubIdx when merging subranges. 2145 const LaneBitmask LaneMask; 2146 2147 /// This is true when joining sub register ranges, false when joining main 2148 /// ranges. 2149 const bool SubRangeJoin; 2150 2151 /// Whether the current LiveInterval tracks subregister liveness. 2152 const bool TrackSubRegLiveness; 2153 2154 /// Values that will be present in the final live range. 2155 SmallVectorImpl<VNInfo*> &NewVNInfo; 2156 2157 const CoalescerPair &CP; 2158 LiveIntervals *LIS; 2159 SlotIndexes *Indexes; 2160 const TargetRegisterInfo *TRI; 2161 2162 /// Value number assignments. Maps value numbers in LI to entries in 2163 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 2164 SmallVector<int, 8> Assignments; 2165 2166 /// Conflict resolution for overlapping values. 2167 enum ConflictResolution { 2168 /// No overlap, simply keep this value. 2169 CR_Keep, 2170 2171 /// Merge this value into OtherVNI and erase the defining instruction. 2172 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 2173 /// values. 2174 CR_Erase, 2175 2176 /// Merge this value into OtherVNI but keep the defining instruction. 2177 /// This is for the special case where OtherVNI is defined by the same 2178 /// instruction. 2179 CR_Merge, 2180 2181 /// Keep this value, and have it replace OtherVNI where possible. This 2182 /// complicates value mapping since OtherVNI maps to two different values 2183 /// before and after this def. 2184 /// Used when clobbering undefined or dead lanes. 2185 CR_Replace, 2186 2187 /// Unresolved conflict. Visit later when all values have been mapped. 2188 CR_Unresolved, 2189 2190 /// Unresolvable conflict. Abort the join. 2191 CR_Impossible 2192 }; 2193 2194 /// Per-value info for LI. The lane bit masks are all relative to the final 2195 /// joined register, so they can be compared directly between SrcReg and 2196 /// DstReg. 2197 struct Val { 2198 ConflictResolution Resolution = CR_Keep; 2199 2200 /// Lanes written by this def, 0 for unanalyzed values. 2201 LaneBitmask WriteLanes; 2202 2203 /// Lanes with defined values in this register. Other lanes are undef and 2204 /// safe to clobber. 2205 LaneBitmask ValidLanes; 2206 2207 /// Value in LI being redefined by this def. 2208 VNInfo *RedefVNI = nullptr; 2209 2210 /// Value in the other live range that overlaps this def, if any. 2211 VNInfo *OtherVNI = nullptr; 2212 2213 /// Is this value an IMPLICIT_DEF that can be erased? 2214 /// 2215 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2216 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2217 /// safely erased if they are overlapping a live value in the other live 2218 /// interval. 2219 /// 2220 /// Weird control flow graphs and incomplete PHI handling in 2221 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2222 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2223 /// normal values. 2224 bool ErasableImplicitDef = false; 2225 2226 /// True when the live range of this value will be pruned because of an 2227 /// overlapping CR_Replace value in the other live range. 2228 bool Pruned = false; 2229 2230 /// True once Pruned above has been computed. 2231 bool PrunedComputed = false; 2232 2233 /// True if this value is determined to be identical to OtherVNI 2234 /// (in valuesIdentical). This is used with CR_Erase where the erased 2235 /// copy is redundant, i.e. the source value is already the same as 2236 /// the destination. In such cases the subranges need to be updated 2237 /// properly. See comment at pruneSubRegValues for more info. 2238 bool Identical = false; 2239 2240 Val() = default; 2241 2242 bool isAnalyzed() const { return WriteLanes.any(); } 2243 }; 2244 2245 /// One entry per value number in LI. 2246 SmallVector<Val, 8> Vals; 2247 2248 /// Compute the bitmask of lanes actually written by DefMI. 2249 /// Set Redef if there are any partial register definitions that depend on the 2250 /// previous value of the register. 2251 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2252 2253 /// Find the ultimate value that VNI was copied from. 2254 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 2255 2256 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const; 2257 2258 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2259 /// Return a conflict resolution when possible, but leave the hard cases as 2260 /// CR_Unresolved. 2261 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2262 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2263 /// The recursion always goes upwards in the dominator tree, making loops 2264 /// impossible. 2265 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2266 2267 /// Compute the value assignment for ValNo in RI. 2268 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2269 /// the stack. 2270 void computeAssignment(unsigned ValNo, JoinVals &Other); 2271 2272 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2273 /// the extent of the tainted lanes in the block. 2274 /// 2275 /// Multiple values in Other.LR can be affected since partial redefinitions 2276 /// can preserve previously tainted lanes. 2277 /// 2278 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2279 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2280 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2281 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2282 /// 2283 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2284 /// entry to TaintedVals. 2285 /// 2286 /// Returns false if the tainted lanes extend beyond the basic block. 2287 bool 2288 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2289 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); 2290 2291 /// Return true if MI uses any of the given Lanes from Reg. 2292 /// This does not include partial redefinitions of Reg. 2293 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; 2294 2295 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2296 /// be pruned: 2297 /// 2298 /// %dst = COPY %src 2299 /// %src = COPY %dst <-- This value to be pruned. 2300 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2301 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2302 2303 public: 2304 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 2305 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 2306 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2307 bool TrackSubRegLiveness) 2308 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2309 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2310 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2311 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {} 2312 2313 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2314 /// Returns false if any conflicts were impossible to resolve. 2315 bool mapValues(JoinVals &Other); 2316 2317 /// Try to resolve conflicts that require all values to be mapped. 2318 /// Returns false if any conflicts were impossible to resolve. 2319 bool resolveConflicts(JoinVals &Other); 2320 2321 /// Prune the live range of values in Other.LR where they would conflict with 2322 /// CR_Replace values in LR. Collect end points for restoring the live range 2323 /// after joining. 2324 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2325 bool changeInstrs); 2326 2327 /// Removes subranges starting at copies that get removed. This sometimes 2328 /// happens when undefined subranges are copied around. These ranges contain 2329 /// no useful information and can be removed. 2330 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2331 2332 /// Pruning values in subranges can lead to removing segments in these 2333 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2334 /// the main range also need to be removed. This function will mark 2335 /// the corresponding values in the main range as pruned, so that 2336 /// eraseInstrs can do the final cleanup. 2337 /// The parameter @p LI must be the interval whose main range is the 2338 /// live range LR. 2339 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2340 2341 /// Erase any machine instructions that have been coalesced away. 2342 /// Add erased instructions to ErasedInstrs. 2343 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2344 /// the erased instrs. 2345 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2346 SmallVectorImpl<unsigned> &ShrinkRegs, 2347 LiveInterval *LI = nullptr); 2348 2349 /// Remove liverange defs at places where implicit defs will be removed. 2350 void removeImplicitDefs(); 2351 2352 /// Get the value assignments suitable for passing to LiveInterval::join. 2353 const int *getAssignments() const { return Assignments.data(); } 2354 }; 2355 2356 } // end anonymous namespace 2357 2358 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2359 const { 2360 LaneBitmask L; 2361 for (const MachineOperand &MO : DefMI->operands()) { 2362 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2363 continue; 2364 L |= TRI->getSubRegIndexLaneMask( 2365 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2366 if (MO.readsReg()) 2367 Redef = true; 2368 } 2369 return L; 2370 } 2371 2372 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 2373 const VNInfo *VNI) const { 2374 unsigned TrackReg = Reg; 2375 2376 while (!VNI->isPHIDef()) { 2377 SlotIndex Def = VNI->def; 2378 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2379 assert(MI && "No defining instruction"); 2380 if (!MI->isFullCopy()) 2381 return std::make_pair(VNI, TrackReg); 2382 unsigned SrcReg = MI->getOperand(1).getReg(); 2383 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 2384 return std::make_pair(VNI, TrackReg); 2385 2386 const LiveInterval &LI = LIS->getInterval(SrcReg); 2387 const VNInfo *ValueIn; 2388 // No subrange involved. 2389 if (!SubRangeJoin || !LI.hasSubRanges()) { 2390 LiveQueryResult LRQ = LI.Query(Def); 2391 ValueIn = LRQ.valueIn(); 2392 } else { 2393 // Query subranges. Ensure that all matching ones take us to the same def 2394 // (allowing some of them to be undef). 2395 ValueIn = nullptr; 2396 for (const LiveInterval::SubRange &S : LI.subranges()) { 2397 // Transform lanemask to a mask in the joined live interval. 2398 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2399 if ((SMask & LaneMask).none()) 2400 continue; 2401 LiveQueryResult LRQ = S.Query(Def); 2402 if (!ValueIn) { 2403 ValueIn = LRQ.valueIn(); 2404 continue; 2405 } 2406 if (LRQ.valueIn() && ValueIn != LRQ.valueIn()) 2407 return std::make_pair(VNI, TrackReg); 2408 } 2409 } 2410 if (ValueIn == nullptr) { 2411 // Reaching an undefined value is legitimate, for example: 2412 // 2413 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef 2414 // 2 %1 = COPY %0 ;; %1 is defined here. 2415 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition, 2416 // ;; but it's equivalent to "undef". 2417 return std::make_pair(nullptr, SrcReg); 2418 } 2419 VNI = ValueIn; 2420 TrackReg = SrcReg; 2421 } 2422 return std::make_pair(VNI, TrackReg); 2423 } 2424 2425 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2426 const JoinVals &Other) const { 2427 const VNInfo *Orig0; 2428 unsigned Reg0; 2429 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2430 if (Orig0 == Value1 && Reg0 == Other.Reg) 2431 return true; 2432 2433 const VNInfo *Orig1; 2434 unsigned Reg1; 2435 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2436 // If both values are undefined, and the source registers are the same 2437 // register, the values are identical. Filter out cases where only one 2438 // value is defined. 2439 if (Orig0 == nullptr || Orig1 == nullptr) 2440 return Orig0 == Orig1 && Reg0 == Reg1; 2441 2442 // The values are equal if they are defined at the same place and use the 2443 // same register. Note that we cannot compare VNInfos directly as some of 2444 // them might be from a copy created in mergeSubRangeInto() while the other 2445 // is from the original LiveInterval. 2446 return Orig0->def == Orig1->def && Reg0 == Reg1; 2447 } 2448 2449 JoinVals::ConflictResolution 2450 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2451 Val &V = Vals[ValNo]; 2452 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2453 VNInfo *VNI = LR.getValNumInfo(ValNo); 2454 if (VNI->isUnused()) { 2455 V.WriteLanes = LaneBitmask::getAll(); 2456 return CR_Keep; 2457 } 2458 2459 // Get the instruction defining this value, compute the lanes written. 2460 const MachineInstr *DefMI = nullptr; 2461 if (VNI->isPHIDef()) { 2462 // Conservatively assume that all lanes in a PHI are valid. 2463 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2464 : TRI->getSubRegIndexLaneMask(SubIdx); 2465 V.ValidLanes = V.WriteLanes = Lanes; 2466 } else { 2467 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2468 assert(DefMI != nullptr); 2469 if (SubRangeJoin) { 2470 // We don't care about the lanes when joining subregister ranges. 2471 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2472 if (DefMI->isImplicitDef()) { 2473 V.ValidLanes = LaneBitmask::getNone(); 2474 V.ErasableImplicitDef = true; 2475 } 2476 } else { 2477 bool Redef = false; 2478 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2479 2480 // If this is a read-modify-write instruction, there may be more valid 2481 // lanes than the ones written by this instruction. 2482 // This only covers partial redef operands. DefMI may have normal use 2483 // operands reading the register. They don't contribute valid lanes. 2484 // 2485 // This adds ssub1 to the set of valid lanes in %src: 2486 // 2487 // %src:ssub1 = FOO 2488 // 2489 // This leaves only ssub1 valid, making any other lanes undef: 2490 // 2491 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2492 // 2493 // The <read-undef> flag on the def operand means that old lane values are 2494 // not important. 2495 if (Redef) { 2496 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2497 assert((TrackSubRegLiveness || V.RedefVNI) && 2498 "Instruction is reading nonexistent value"); 2499 if (V.RedefVNI != nullptr) { 2500 computeAssignment(V.RedefVNI->id, Other); 2501 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2502 } 2503 } 2504 2505 // An IMPLICIT_DEF writes undef values. 2506 if (DefMI->isImplicitDef()) { 2507 // We normally expect IMPLICIT_DEF values to be live only until the end 2508 // of their block. If the value is really live longer and gets pruned in 2509 // another block, this flag is cleared again. 2510 // 2511 // Clearing the valid lanes is deferred until it is sure this can be 2512 // erased. 2513 V.ErasableImplicitDef = true; 2514 } 2515 } 2516 } 2517 2518 // Find the value in Other that overlaps VNI->def, if any. 2519 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2520 2521 // It is possible that both values are defined by the same instruction, or 2522 // the values are PHIs defined in the same block. When that happens, the two 2523 // values should be merged into one, but not into any preceding value. 2524 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2525 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2526 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2527 2528 // One value stays, the other is merged. Keep the earlier one, or the first 2529 // one we see. 2530 if (OtherVNI->def < VNI->def) 2531 Other.computeAssignment(OtherVNI->id, *this); 2532 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2533 // This is an early-clobber def overlapping a live-in value in the other 2534 // register. Not mergeable. 2535 V.OtherVNI = OtherLRQ.valueIn(); 2536 return CR_Impossible; 2537 } 2538 V.OtherVNI = OtherVNI; 2539 Val &OtherV = Other.Vals[OtherVNI->id]; 2540 // Keep this value, check for conflicts when analyzing OtherVNI. 2541 if (!OtherV.isAnalyzed()) 2542 return CR_Keep; 2543 // Both sides have been analyzed now. 2544 // Allow overlapping PHI values. Any real interference would show up in a 2545 // predecessor, the PHI itself can't introduce any conflicts. 2546 if (VNI->isPHIDef()) 2547 return CR_Merge; 2548 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2549 // Overlapping lanes can't be resolved. 2550 return CR_Impossible; 2551 else 2552 return CR_Merge; 2553 } 2554 2555 // No simultaneous def. Is Other live at the def? 2556 V.OtherVNI = OtherLRQ.valueIn(); 2557 if (!V.OtherVNI) 2558 // No overlap, no conflict. 2559 return CR_Keep; 2560 2561 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2562 2563 // We have overlapping values, or possibly a kill of Other. 2564 // Recursively compute assignments up the dominator tree. 2565 Other.computeAssignment(V.OtherVNI->id, *this); 2566 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2567 2568 if (OtherV.ErasableImplicitDef) { 2569 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2570 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2571 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2572 // technically. 2573 // 2574 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2575 // to erase the IMPLICIT_DEF instruction. 2576 if (DefMI && 2577 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2578 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2579 << " extends into " 2580 << printMBBReference(*DefMI->getParent()) 2581 << ", keeping it.\n"); 2582 OtherV.ErasableImplicitDef = false; 2583 } else { 2584 // We deferred clearing these lanes in case we needed to save them 2585 OtherV.ValidLanes &= ~OtherV.WriteLanes; 2586 } 2587 } 2588 2589 // Allow overlapping PHI values. Any real interference would show up in a 2590 // predecessor, the PHI itself can't introduce any conflicts. 2591 if (VNI->isPHIDef()) 2592 return CR_Replace; 2593 2594 // Check for simple erasable conflicts. 2595 if (DefMI->isImplicitDef()) { 2596 // We need the def for the subregister if there is nothing else live at the 2597 // subrange at this point. 2598 if (TrackSubRegLiveness 2599 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none()) 2600 return CR_Replace; 2601 return CR_Erase; 2602 } 2603 2604 // Include the non-conflict where DefMI is a coalescable copy that kills 2605 // OtherVNI. We still want the copy erased and value numbers merged. 2606 if (CP.isCoalescable(DefMI)) { 2607 // Some of the lanes copied from OtherVNI may be undef, making them undef 2608 // here too. 2609 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2610 return CR_Erase; 2611 } 2612 2613 // This may not be a real conflict if DefMI simply kills Other and defines 2614 // VNI. 2615 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2616 return CR_Keep; 2617 2618 // Handle the case where VNI and OtherVNI can be proven to be identical: 2619 // 2620 // %other = COPY %ext 2621 // %this = COPY %ext <-- Erase this copy 2622 // 2623 if (DefMI->isFullCopy() && !CP.isPartial() && 2624 valuesIdentical(VNI, V.OtherVNI, Other)) { 2625 V.Identical = true; 2626 return CR_Erase; 2627 } 2628 2629 // The remaining checks apply to the lanes, which aren't tracked here. This 2630 // was already decided to be OK via the following CR_Replace condition. 2631 // CR_Replace. 2632 if (SubRangeJoin) 2633 return CR_Replace; 2634 2635 // If the lanes written by this instruction were all undef in OtherVNI, it is 2636 // still safe to join the live ranges. This can't be done with a simple value 2637 // mapping, though - OtherVNI will map to multiple values: 2638 // 2639 // 1 %dst:ssub0 = FOO <-- OtherVNI 2640 // 2 %src = BAR <-- VNI 2641 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy. 2642 // 4 BAZ killed %dst 2643 // 5 QUUX killed %src 2644 // 2645 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2646 // handles this complex value mapping. 2647 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2648 return CR_Replace; 2649 2650 // If the other live range is killed by DefMI and the live ranges are still 2651 // overlapping, it must be because we're looking at an early clobber def: 2652 // 2653 // %dst<def,early-clobber> = ASM killed %src 2654 // 2655 // In this case, it is illegal to merge the two live ranges since the early 2656 // clobber def would clobber %src before it was read. 2657 if (OtherLRQ.isKill()) { 2658 // This case where the def doesn't overlap the kill is handled above. 2659 assert(VNI->def.isEarlyClobber() && 2660 "Only early clobber defs can overlap a kill"); 2661 return CR_Impossible; 2662 } 2663 2664 // VNI is clobbering live lanes in OtherVNI, but there is still the 2665 // possibility that no instructions actually read the clobbered lanes. 2666 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2667 // Otherwise Other.RI wouldn't be live here. 2668 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2669 return CR_Impossible; 2670 2671 // We need to verify that no instructions are reading the clobbered lanes. To 2672 // save compile time, we'll only check that locally. Don't allow the tainted 2673 // value to escape the basic block. 2674 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2675 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2676 return CR_Impossible; 2677 2678 // There are still some things that could go wrong besides clobbered lanes 2679 // being read, for example OtherVNI may be only partially redefined in MBB, 2680 // and some clobbered lanes could escape the block. Save this analysis for 2681 // resolveConflicts() when all values have been mapped. We need to know 2682 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2683 // that now - the recursive analyzeValue() calls must go upwards in the 2684 // dominator tree. 2685 return CR_Unresolved; 2686 } 2687 2688 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2689 Val &V = Vals[ValNo]; 2690 if (V.isAnalyzed()) { 2691 // Recursion should always move up the dominator tree, so ValNo is not 2692 // supposed to reappear before it has been assigned. 2693 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2694 return; 2695 } 2696 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2697 case CR_Erase: 2698 case CR_Merge: 2699 // Merge this ValNo into OtherVNI. 2700 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2701 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2702 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2703 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@' 2704 << LR.getValNumInfo(ValNo)->def << " into " 2705 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2706 << V.OtherVNI->def << " --> @" 2707 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2708 break; 2709 case CR_Replace: 2710 case CR_Unresolved: { 2711 // The other value is going to be pruned if this join is successful. 2712 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2713 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2714 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2715 // its lanes. 2716 if (OtherV.ErasableImplicitDef && 2717 TrackSubRegLiveness && 2718 (OtherV.WriteLanes & ~V.ValidLanes).any()) { 2719 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n"); 2720 2721 OtherV.ErasableImplicitDef = false; 2722 // The valid lanes written by the implicit_def were speculatively cleared 2723 // before, so make this more conservative. It may be better to track this, 2724 // I haven't found a testcase where it matters. 2725 OtherV.ValidLanes = LaneBitmask::getAll(); 2726 } 2727 2728 OtherV.Pruned = true; 2729 LLVM_FALLTHROUGH; 2730 } 2731 default: 2732 // This value number needs to go in the final joined live range. 2733 Assignments[ValNo] = NewVNInfo.size(); 2734 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2735 break; 2736 } 2737 } 2738 2739 bool JoinVals::mapValues(JoinVals &Other) { 2740 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2741 computeAssignment(i, Other); 2742 if (Vals[i].Resolution == CR_Impossible) { 2743 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i 2744 << '@' << LR.getValNumInfo(i)->def << '\n'); 2745 return false; 2746 } 2747 } 2748 return true; 2749 } 2750 2751 bool JoinVals:: 2752 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2753 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { 2754 VNInfo *VNI = LR.getValNumInfo(ValNo); 2755 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2756 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2757 2758 // Scan Other.LR from VNI.def to MBBEnd. 2759 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2760 assert(OtherI != Other.LR.end() && "No conflict?"); 2761 do { 2762 // OtherI is pointing to a tainted value. Abort the join if the tainted 2763 // lanes escape the block. 2764 SlotIndex End = OtherI->end; 2765 if (End >= MBBEnd) { 2766 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':' 2767 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2768 return false; 2769 } 2770 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':' 2771 << OtherI->valno->id << '@' << OtherI->start << " to " 2772 << End << '\n'); 2773 // A dead def is not a problem. 2774 if (End.isDead()) 2775 break; 2776 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2777 2778 // Check for another def in the MBB. 2779 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2780 break; 2781 2782 // Lanes written by the new def are no longer tainted. 2783 const Val &OV = Other.Vals[OtherI->valno->id]; 2784 TaintedLanes &= ~OV.WriteLanes; 2785 if (!OV.RedefVNI) 2786 break; 2787 } while (TaintedLanes.any()); 2788 return true; 2789 } 2790 2791 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, 2792 LaneBitmask Lanes) const { 2793 if (MI.isDebugInstr()) 2794 return false; 2795 for (const MachineOperand &MO : MI.operands()) { 2796 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2797 continue; 2798 if (!MO.readsReg()) 2799 continue; 2800 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2801 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2802 return true; 2803 } 2804 return false; 2805 } 2806 2807 bool JoinVals::resolveConflicts(JoinVals &Other) { 2808 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2809 Val &V = Vals[i]; 2810 assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); 2811 if (V.Resolution != CR_Unresolved) 2812 continue; 2813 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@' 2814 << LR.getValNumInfo(i)->def << '\n'); 2815 if (SubRangeJoin) 2816 return false; 2817 2818 ++NumLaneConflicts; 2819 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2820 VNInfo *VNI = LR.getValNumInfo(i); 2821 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2822 2823 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2824 // join, those lanes will be tainted with a wrong value. Get the extent of 2825 // the tainted lanes. 2826 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2827 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2828 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2829 // Tainted lanes would extend beyond the basic block. 2830 return false; 2831 2832 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2833 2834 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2835 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2836 MachineBasicBlock::iterator MI = MBB->begin(); 2837 if (!VNI->isPHIDef()) { 2838 MI = Indexes->getInstructionFromIndex(VNI->def); 2839 // No need to check the instruction defining VNI for reads. 2840 ++MI; 2841 } 2842 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2843 "Interference ends on VNI->def. Should have been handled earlier"); 2844 MachineInstr *LastMI = 2845 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2846 assert(LastMI && "Range must end at a proper instruction"); 2847 unsigned TaintNum = 0; 2848 while (true) { 2849 assert(MI != MBB->end() && "Bad LastMI"); 2850 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2851 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2852 return false; 2853 } 2854 // LastMI is the last instruction to use the current value. 2855 if (&*MI == LastMI) { 2856 if (++TaintNum == TaintExtent.size()) 2857 break; 2858 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2859 assert(LastMI && "Range must end at a proper instruction"); 2860 TaintedLanes = TaintExtent[TaintNum].second; 2861 } 2862 ++MI; 2863 } 2864 2865 // The tainted lanes are unused. 2866 V.Resolution = CR_Replace; 2867 ++NumLaneResolves; 2868 } 2869 return true; 2870 } 2871 2872 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2873 Val &V = Vals[ValNo]; 2874 if (V.Pruned || V.PrunedComputed) 2875 return V.Pruned; 2876 2877 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2878 return V.Pruned; 2879 2880 // Follow copies up the dominator tree and check if any intermediate value 2881 // has been pruned. 2882 V.PrunedComputed = true; 2883 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2884 return V.Pruned; 2885 } 2886 2887 void JoinVals::pruneValues(JoinVals &Other, 2888 SmallVectorImpl<SlotIndex> &EndPoints, 2889 bool changeInstrs) { 2890 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2891 SlotIndex Def = LR.getValNumInfo(i)->def; 2892 switch (Vals[i].Resolution) { 2893 case CR_Keep: 2894 break; 2895 case CR_Replace: { 2896 // This value takes precedence over the value in Other.LR. 2897 LIS->pruneValue(Other.LR, Def, &EndPoints); 2898 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2899 // instructions are only inserted to provide a live-out value for PHI 2900 // predecessors, so the instruction should simply go away once its value 2901 // has been replaced. 2902 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2903 bool EraseImpDef = OtherV.ErasableImplicitDef && 2904 OtherV.Resolution == CR_Keep; 2905 if (!Def.isBlock()) { 2906 if (changeInstrs) { 2907 // Remove <def,read-undef> flags. This def is now a partial redef. 2908 // Also remove dead flags since the joined live range will 2909 // continue past this instruction. 2910 for (MachineOperand &MO : 2911 Indexes->getInstructionFromIndex(Def)->operands()) { 2912 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 2913 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) 2914 MO.setIsUndef(false); 2915 MO.setIsDead(false); 2916 } 2917 } 2918 } 2919 // This value will reach instructions below, but we need to make sure 2920 // the live range also reaches the instruction at Def. 2921 if (!EraseImpDef) 2922 EndPoints.push_back(Def); 2923 } 2924 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def 2925 << ": " << Other.LR << '\n'); 2926 break; 2927 } 2928 case CR_Erase: 2929 case CR_Merge: 2930 if (isPrunedValue(i, Other)) { 2931 // This value is ultimately a copy of a pruned value in LR or Other.LR. 2932 // We can no longer trust the value mapping computed by 2933 // computeAssignment(), the value that was originally copied could have 2934 // been replaced. 2935 LIS->pruneValue(LR, Def, &EndPoints); 2936 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at " 2937 << Def << ": " << LR << '\n'); 2938 } 2939 break; 2940 case CR_Unresolved: 2941 case CR_Impossible: 2942 llvm_unreachable("Unresolved conflicts"); 2943 } 2944 } 2945 } 2946 2947 /// Consider the following situation when coalescing the copy between 2948 /// %31 and %45 at 800. (The vertical lines represent live range segments.) 2949 /// 2950 /// Main range Subrange 0004 (sub2) 2951 /// %31 %45 %31 %45 2952 /// 544 %45 = COPY %28 + + 2953 /// | v1 | v1 2954 /// 560B bb.1: + + 2955 /// 624 = %45.sub2 | v2 | v2 2956 /// 800 %31 = COPY %45 + + + + 2957 /// | v0 | v0 2958 /// 816 %31.sub1 = ... + | 2959 /// 880 %30 = COPY %31 | v1 + 2960 /// 928 %45 = COPY %30 | + + 2961 /// | | v0 | v0 <--+ 2962 /// 992B ; backedge -> bb.1 | + + | 2963 /// 1040 = %31.sub0 + | 2964 /// This value must remain 2965 /// live-out! 2966 /// 2967 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes 2968 /// redundant, since it copies the value from %45 back into it. The 2969 /// conflict resolution for the main range determines that %45.v0 is 2970 /// to be erased, which is ok since %31.v1 is identical to it. 2971 /// The problem happens with the subrange for sub2: it has to be live 2972 /// on exit from the block, but since 928 was actually a point of 2973 /// definition of %45.sub2, %45.sub2 was not live immediately prior 2974 /// to that definition. As a result, when 928 was erased, the value v0 2975 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an 2976 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2, 2977 /// providing an incorrect value to the use at 624. 2978 /// 2979 /// Since the main-range values %31.v1 and %45.v0 were proved to be 2980 /// identical, the corresponding values in subranges must also be the 2981 /// same. A redundant copy is removed because it's not needed, and not 2982 /// because it copied an undefined value, so any liveness that originated 2983 /// from that copy cannot disappear. When pruning a value that started 2984 /// at the removed copy, the corresponding identical value must be 2985 /// extended to replace it. 2986 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 2987 // Look for values being erased. 2988 bool DidPrune = false; 2989 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2990 Val &V = Vals[i]; 2991 // We should trigger in all cases in which eraseInstrs() does something. 2992 // match what eraseInstrs() is doing, print a message so 2993 if (V.Resolution != CR_Erase && 2994 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)) 2995 continue; 2996 2997 // Check subranges at the point where the copy will be removed. 2998 SlotIndex Def = LR.getValNumInfo(i)->def; 2999 SlotIndex OtherDef; 3000 if (V.Identical) 3001 OtherDef = V.OtherVNI->def; 3002 3003 // Print message so mismatches with eraseInstrs() can be diagnosed. 3004 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def 3005 << '\n'); 3006 for (LiveInterval::SubRange &S : LI.subranges()) { 3007 LiveQueryResult Q = S.Query(Def); 3008 3009 // If a subrange starts at the copy then an undefined value has been 3010 // copied and we must remove that subrange value as well. 3011 VNInfo *ValueOut = Q.valueOutOrDead(); 3012 if (ValueOut != nullptr && Q.valueIn() == nullptr) { 3013 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 3014 << " at " << Def << "\n"); 3015 SmallVector<SlotIndex,8> EndPoints; 3016 LIS->pruneValue(S, Def, &EndPoints); 3017 DidPrune = true; 3018 // Mark value number as unused. 3019 ValueOut->markUnused(); 3020 3021 if (V.Identical && S.Query(OtherDef).valueOut()) { 3022 // If V is identical to V.OtherVNI (and S was live at OtherDef), 3023 // then we can't simply prune V from S. V needs to be replaced 3024 // with V.OtherVNI. 3025 LIS->extendToIndices(S, EndPoints); 3026 } 3027 continue; 3028 } 3029 // If a subrange ends at the copy, then a value was copied but only 3030 // partially used later. Shrink the subregister range appropriately. 3031 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 3032 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane " 3033 << PrintLaneMask(S.LaneMask) << " at " << Def 3034 << "\n"); 3035 ShrinkMask |= S.LaneMask; 3036 } 3037 } 3038 } 3039 if (DidPrune) 3040 LI.removeEmptySubRanges(); 3041 } 3042 3043 /// Check if any of the subranges of @p LI contain a definition at @p Def. 3044 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 3045 for (LiveInterval::SubRange &SR : LI.subranges()) { 3046 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 3047 if (VNI->def == Def) 3048 return true; 3049 } 3050 return false; 3051 } 3052 3053 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 3054 assert(&static_cast<LiveRange&>(LI) == &LR); 3055 3056 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3057 if (Vals[i].Resolution != CR_Keep) 3058 continue; 3059 VNInfo *VNI = LR.getValNumInfo(i); 3060 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 3061 continue; 3062 Vals[i].Pruned = true; 3063 ShrinkMainRange = true; 3064 } 3065 } 3066 3067 void JoinVals::removeImplicitDefs() { 3068 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3069 Val &V = Vals[i]; 3070 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 3071 continue; 3072 3073 VNInfo *VNI = LR.getValNumInfo(i); 3074 VNI->markUnused(); 3075 LR.removeValNo(VNI); 3076 } 3077 } 3078 3079 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 3080 SmallVectorImpl<unsigned> &ShrinkRegs, 3081 LiveInterval *LI) { 3082 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3083 // Get the def location before markUnused() below invalidates it. 3084 SlotIndex Def = LR.getValNumInfo(i)->def; 3085 switch (Vals[i].Resolution) { 3086 case CR_Keep: { 3087 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 3088 // longer. The IMPLICIT_DEF instructions are only inserted by 3089 // PHIElimination to guarantee that all PHI predecessors have a value. 3090 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 3091 break; 3092 // Remove value number i from LR. 3093 // For intervals with subranges, removing a segment from the main range 3094 // may require extending the previous segment: for each definition of 3095 // a subregister, there will be a corresponding def in the main range. 3096 // That def may fall in the middle of a segment from another subrange. 3097 // In such cases, removing this def from the main range must be 3098 // complemented by extending the main range to account for the liveness 3099 // of the other subrange. 3100 VNInfo *VNI = LR.getValNumInfo(i); 3101 SlotIndex Def = VNI->def; 3102 // The new end point of the main range segment to be extended. 3103 SlotIndex NewEnd; 3104 if (LI != nullptr) { 3105 LiveRange::iterator I = LR.FindSegmentContaining(Def); 3106 assert(I != LR.end()); 3107 // Do not extend beyond the end of the segment being removed. 3108 // The segment may have been pruned in preparation for joining 3109 // live ranges. 3110 NewEnd = I->end; 3111 } 3112 3113 LR.removeValNo(VNI); 3114 // Note that this VNInfo is reused and still referenced in NewVNInfo, 3115 // make it appear like an unused value number. 3116 VNI->markUnused(); 3117 3118 if (LI != nullptr && LI->hasSubRanges()) { 3119 assert(static_cast<LiveRange*>(LI) == &LR); 3120 // Determine the end point based on the subrange information: 3121 // minimum of (earliest def of next segment, 3122 // latest end point of containing segment) 3123 SlotIndex ED, LE; 3124 for (LiveInterval::SubRange &SR : LI->subranges()) { 3125 LiveRange::iterator I = SR.find(Def); 3126 if (I == SR.end()) 3127 continue; 3128 if (I->start > Def) 3129 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 3130 else 3131 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 3132 } 3133 if (LE.isValid()) 3134 NewEnd = std::min(NewEnd, LE); 3135 if (ED.isValid()) 3136 NewEnd = std::min(NewEnd, ED); 3137 3138 // We only want to do the extension if there was a subrange that 3139 // was live across Def. 3140 if (LE.isValid()) { 3141 LiveRange::iterator S = LR.find(Def); 3142 if (S != LR.begin()) 3143 std::prev(S)->end = NewEnd; 3144 } 3145 } 3146 LLVM_DEBUG({ 3147 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 3148 if (LI != nullptr) 3149 dbgs() << "\t\t LHS = " << *LI << '\n'; 3150 }); 3151 LLVM_FALLTHROUGH; 3152 } 3153 3154 case CR_Erase: { 3155 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 3156 assert(MI && "No instruction to erase"); 3157 if (MI->isCopy()) { 3158 unsigned Reg = MI->getOperand(1).getReg(); 3159 if (TargetRegisterInfo::isVirtualRegister(Reg) && 3160 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 3161 ShrinkRegs.push_back(Reg); 3162 } 3163 ErasedInstrs.insert(MI); 3164 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 3165 LIS->RemoveMachineInstrFromMaps(*MI); 3166 MI->eraseFromParent(); 3167 break; 3168 } 3169 default: 3170 break; 3171 } 3172 } 3173 } 3174 3175 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 3176 LaneBitmask LaneMask, 3177 const CoalescerPair &CP) { 3178 SmallVector<VNInfo*, 16> NewVNInfo; 3179 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 3180 NewVNInfo, CP, LIS, TRI, true, true); 3181 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 3182 NewVNInfo, CP, LIS, TRI, true, true); 3183 3184 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 3185 // We should be able to resolve all conflicts here as we could successfully do 3186 // it on the mainrange already. There is however a problem when multiple 3187 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 3188 // interferences. 3189 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 3190 // We already determined that it is legal to merge the intervals, so this 3191 // should never fail. 3192 llvm_unreachable("*** Couldn't join subrange!\n"); 3193 } 3194 if (!LHSVals.resolveConflicts(RHSVals) || 3195 !RHSVals.resolveConflicts(LHSVals)) { 3196 // We already determined that it is legal to merge the intervals, so this 3197 // should never fail. 3198 llvm_unreachable("*** Couldn't join subrange!\n"); 3199 } 3200 3201 // The merging algorithm in LiveInterval::join() can't handle conflicting 3202 // value mappings, so we need to remove any live ranges that overlap a 3203 // CR_Replace resolution. Collect a set of end points that can be used to 3204 // restore the live range after joining. 3205 SmallVector<SlotIndex, 8> EndPoints; 3206 LHSVals.pruneValues(RHSVals, EndPoints, false); 3207 RHSVals.pruneValues(LHSVals, EndPoints, false); 3208 3209 LHSVals.removeImplicitDefs(); 3210 RHSVals.removeImplicitDefs(); 3211 3212 LRange.verify(); 3213 RRange.verify(); 3214 3215 // Join RRange into LHS. 3216 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 3217 NewVNInfo); 3218 3219 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask) 3220 << ' ' << LRange << "\n"); 3221 if (EndPoints.empty()) 3222 return; 3223 3224 // Recompute the parts of the live range we had to remove because of 3225 // CR_Replace conflicts. 3226 LLVM_DEBUG({ 3227 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3228 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3229 dbgs() << EndPoints[i]; 3230 if (i != n-1) 3231 dbgs() << ','; 3232 } 3233 dbgs() << ": " << LRange << '\n'; 3234 }); 3235 LIS->extendToIndices(LRange, EndPoints); 3236 } 3237 3238 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 3239 const LiveRange &ToMerge, 3240 LaneBitmask LaneMask, 3241 CoalescerPair &CP) { 3242 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3243 LI.refineSubRanges(Allocator, LaneMask, 3244 [this,&Allocator,&ToMerge,&CP](LiveInterval::SubRange &SR) { 3245 if (SR.empty()) { 3246 SR.assign(ToMerge, Allocator); 3247 } else { 3248 // joinSubRegRange() destroys the merged range, so we need a copy. 3249 LiveRange RangeCopy(ToMerge, Allocator); 3250 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 3251 } 3252 }); 3253 } 3254 3255 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 3256 SmallVector<VNInfo*, 16> NewVNInfo; 3257 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 3258 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 3259 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 3260 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 3261 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3262 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 3263 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3264 3265 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n'); 3266 3267 // First compute NewVNInfo and the simple value mappings. 3268 // Detect impossible conflicts early. 3269 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 3270 return false; 3271 3272 // Some conflicts can only be resolved after all values have been mapped. 3273 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 3274 return false; 3275 3276 // All clear, the live ranges can be merged. 3277 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 3278 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3279 3280 // Transform lanemasks from the LHS to masks in the coalesced register and 3281 // create initial subranges if necessary. 3282 unsigned DstIdx = CP.getDstIdx(); 3283 if (!LHS.hasSubRanges()) { 3284 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 3285 : TRI->getSubRegIndexLaneMask(DstIdx); 3286 // LHS must support subregs or we wouldn't be in this codepath. 3287 assert(Mask.any()); 3288 LHS.createSubRangeFrom(Allocator, Mask, LHS); 3289 } else if (DstIdx != 0) { 3290 // Transform LHS lanemasks to new register class if necessary. 3291 for (LiveInterval::SubRange &R : LHS.subranges()) { 3292 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 3293 R.LaneMask = Mask; 3294 } 3295 } 3296 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS 3297 << '\n'); 3298 3299 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3300 unsigned SrcIdx = CP.getSrcIdx(); 3301 if (!RHS.hasSubRanges()) { 3302 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3303 : TRI->getSubRegIndexLaneMask(SrcIdx); 3304 mergeSubRangeInto(LHS, RHS, Mask, CP); 3305 } else { 3306 // Pair up subranges and merge. 3307 for (LiveInterval::SubRange &R : RHS.subranges()) { 3308 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3309 mergeSubRangeInto(LHS, R, Mask, CP); 3310 } 3311 } 3312 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3313 3314 // Pruning implicit defs from subranges may result in the main range 3315 // having stale segments. 3316 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3317 3318 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3319 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3320 } 3321 3322 // The merging algorithm in LiveInterval::join() can't handle conflicting 3323 // value mappings, so we need to remove any live ranges that overlap a 3324 // CR_Replace resolution. Collect a set of end points that can be used to 3325 // restore the live range after joining. 3326 SmallVector<SlotIndex, 8> EndPoints; 3327 LHSVals.pruneValues(RHSVals, EndPoints, true); 3328 RHSVals.pruneValues(LHSVals, EndPoints, true); 3329 3330 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3331 // registers to require trimming. 3332 SmallVector<unsigned, 8> ShrinkRegs; 3333 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3334 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3335 while (!ShrinkRegs.empty()) 3336 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3337 3338 // Join RHS into LHS. 3339 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3340 3341 // Kill flags are going to be wrong if the live ranges were overlapping. 3342 // Eventually, we should simply clear all kill flags when computing live 3343 // ranges. They are reinserted after register allocation. 3344 MRI->clearKillFlags(LHS.reg); 3345 MRI->clearKillFlags(RHS.reg); 3346 3347 if (!EndPoints.empty()) { 3348 // Recompute the parts of the live range we had to remove because of 3349 // CR_Replace conflicts. 3350 LLVM_DEBUG({ 3351 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3352 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3353 dbgs() << EndPoints[i]; 3354 if (i != n-1) 3355 dbgs() << ','; 3356 } 3357 dbgs() << ": " << LHS << '\n'; 3358 }); 3359 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3360 } 3361 3362 return true; 3363 } 3364 3365 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3366 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3367 } 3368 3369 namespace { 3370 3371 /// Information concerning MBB coalescing priority. 3372 struct MBBPriorityInfo { 3373 MachineBasicBlock *MBB; 3374 unsigned Depth; 3375 bool IsSplit; 3376 3377 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3378 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3379 }; 3380 3381 } // end anonymous namespace 3382 3383 /// C-style comparator that sorts first based on the loop depth of the basic 3384 /// block (the unsigned), and then on the MBB number. 3385 /// 3386 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3387 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3388 const MBBPriorityInfo *RHS) { 3389 // Deeper loops first 3390 if (LHS->Depth != RHS->Depth) 3391 return LHS->Depth > RHS->Depth ? -1 : 1; 3392 3393 // Try to unsplit critical edges next. 3394 if (LHS->IsSplit != RHS->IsSplit) 3395 return LHS->IsSplit ? -1 : 1; 3396 3397 // Prefer blocks that are more connected in the CFG. This takes care of 3398 // the most difficult copies first while intervals are short. 3399 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3400 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3401 if (cl != cr) 3402 return cl > cr ? -1 : 1; 3403 3404 // As a last resort, sort by block number. 3405 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3406 } 3407 3408 /// \returns true if the given copy uses or defines a local live range. 3409 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3410 if (!Copy->isCopy()) 3411 return false; 3412 3413 if (Copy->getOperand(1).isUndef()) 3414 return false; 3415 3416 unsigned SrcReg = Copy->getOperand(1).getReg(); 3417 unsigned DstReg = Copy->getOperand(0).getReg(); 3418 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 3419 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 3420 return false; 3421 3422 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3423 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3424 } 3425 3426 void RegisterCoalescer::lateLiveIntervalUpdate() { 3427 for (unsigned reg : ToBeUpdated) { 3428 if (!LIS->hasInterval(reg)) 3429 continue; 3430 LiveInterval &LI = LIS->getInterval(reg); 3431 shrinkToUses(&LI, &DeadDefs); 3432 if (!DeadDefs.empty()) 3433 eliminateDeadDefs(); 3434 } 3435 ToBeUpdated.clear(); 3436 } 3437 3438 bool RegisterCoalescer:: 3439 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3440 bool Progress = false; 3441 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3442 if (!CurrList[i]) 3443 continue; 3444 // Skip instruction pointers that have already been erased, for example by 3445 // dead code elimination. 3446 if (ErasedInstrs.count(CurrList[i])) { 3447 CurrList[i] = nullptr; 3448 continue; 3449 } 3450 bool Again = false; 3451 bool Success = joinCopy(CurrList[i], Again); 3452 Progress |= Success; 3453 if (Success || !Again) 3454 CurrList[i] = nullptr; 3455 } 3456 return Progress; 3457 } 3458 3459 /// Check if DstReg is a terminal node. 3460 /// I.e., it does not have any affinity other than \p Copy. 3461 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 3462 const MachineRegisterInfo *MRI) { 3463 assert(Copy.isCopyLike()); 3464 // Check if the destination of this copy as any other affinity. 3465 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3466 if (&MI != &Copy && MI.isCopyLike()) 3467 return false; 3468 return true; 3469 } 3470 3471 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3472 assert(Copy.isCopyLike()); 3473 if (!UseTerminalRule) 3474 return false; 3475 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 3476 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg); 3477 // Check if the destination of this copy has any other affinity. 3478 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 3479 // If SrcReg is a physical register, the copy won't be coalesced. 3480 // Ignoring it may have other side effect (like missing 3481 // rematerialization). So keep it. 3482 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 3483 !isTerminalReg(DstReg, Copy, MRI)) 3484 return false; 3485 3486 // DstReg is a terminal node. Check if it interferes with any other 3487 // copy involving SrcReg. 3488 const MachineBasicBlock *OrigBB = Copy.getParent(); 3489 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3490 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3491 // Technically we should check if the weight of the new copy is 3492 // interesting compared to the other one and update the weight 3493 // of the copies accordingly. However, this would only work if 3494 // we would gather all the copies first then coalesce, whereas 3495 // right now we interleave both actions. 3496 // For now, just consider the copies that are in the same block. 3497 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3498 continue; 3499 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 3500 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3501 OtherSubReg); 3502 if (OtherReg == SrcReg) 3503 OtherReg = OtherSrcReg; 3504 // Check if OtherReg is a non-terminal. 3505 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) || 3506 isTerminalReg(OtherReg, MI, MRI)) 3507 continue; 3508 // Check that OtherReg interfere with DstReg. 3509 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3510 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) 3511 << '\n'); 3512 return true; 3513 } 3514 } 3515 return false; 3516 } 3517 3518 void 3519 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3520 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n"); 3521 3522 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3523 // yet, it might invalidate the iterator. 3524 const unsigned PrevSize = WorkList.size(); 3525 if (JoinGlobalCopies) { 3526 SmallVector<MachineInstr*, 2> LocalTerminals; 3527 SmallVector<MachineInstr*, 2> GlobalTerminals; 3528 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3529 // are not inherently easier to resolve, but slightly preferable until we 3530 // have local live range splitting. In particular this is required by 3531 // cmp+jmp macro fusion. 3532 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3533 MII != E; ++MII) { 3534 if (!MII->isCopyLike()) 3535 continue; 3536 bool ApplyTerminalRule = applyTerminalRule(*MII); 3537 if (isLocalCopy(&(*MII), LIS)) { 3538 if (ApplyTerminalRule) 3539 LocalTerminals.push_back(&(*MII)); 3540 else 3541 LocalWorkList.push_back(&(*MII)); 3542 } else { 3543 if (ApplyTerminalRule) 3544 GlobalTerminals.push_back(&(*MII)); 3545 else 3546 WorkList.push_back(&(*MII)); 3547 } 3548 } 3549 // Append the copies evicted by the terminal rule at the end of the list. 3550 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3551 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3552 } 3553 else { 3554 SmallVector<MachineInstr*, 2> Terminals; 3555 for (MachineInstr &MII : *MBB) 3556 if (MII.isCopyLike()) { 3557 if (applyTerminalRule(MII)) 3558 Terminals.push_back(&MII); 3559 else 3560 WorkList.push_back(&MII); 3561 } 3562 // Append the copies evicted by the terminal rule at the end of the list. 3563 WorkList.append(Terminals.begin(), Terminals.end()); 3564 } 3565 // Try coalescing the collected copies immediately, and remove the nulls. 3566 // This prevents the WorkList from getting too large since most copies are 3567 // joinable on the first attempt. 3568 MutableArrayRef<MachineInstr*> 3569 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3570 if (copyCoalesceWorkList(CurrList)) 3571 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3572 nullptr), WorkList.end()); 3573 } 3574 3575 void RegisterCoalescer::coalesceLocals() { 3576 copyCoalesceWorkList(LocalWorkList); 3577 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3578 if (LocalWorkList[j]) 3579 WorkList.push_back(LocalWorkList[j]); 3580 } 3581 LocalWorkList.clear(); 3582 } 3583 3584 void RegisterCoalescer::joinAllIntervals() { 3585 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3586 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3587 3588 std::vector<MBBPriorityInfo> MBBs; 3589 MBBs.reserve(MF->size()); 3590 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3591 MachineBasicBlock *MBB = &*I; 3592 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3593 JoinSplitEdges && isSplitEdge(MBB))); 3594 } 3595 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3596 3597 // Coalesce intervals in MBB priority order. 3598 unsigned CurrDepth = std::numeric_limits<unsigned>::max(); 3599 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3600 // Try coalescing the collected local copies for deeper loops. 3601 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3602 coalesceLocals(); 3603 CurrDepth = MBBs[i].Depth; 3604 } 3605 copyCoalesceInMBB(MBBs[i].MBB); 3606 } 3607 lateLiveIntervalUpdate(); 3608 coalesceLocals(); 3609 3610 // Joining intervals can allow other intervals to be joined. Iteratively join 3611 // until we make no progress. 3612 while (copyCoalesceWorkList(WorkList)) 3613 /* empty */ ; 3614 lateLiveIntervalUpdate(); 3615 } 3616 3617 void RegisterCoalescer::releaseMemory() { 3618 ErasedInstrs.clear(); 3619 WorkList.clear(); 3620 DeadDefs.clear(); 3621 InflateRegs.clear(); 3622 } 3623 3624 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3625 MF = &fn; 3626 MRI = &fn.getRegInfo(); 3627 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3628 TRI = STI.getRegisterInfo(); 3629 TII = STI.getInstrInfo(); 3630 LIS = &getAnalysis<LiveIntervals>(); 3631 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3632 Loops = &getAnalysis<MachineLoopInfo>(); 3633 if (EnableGlobalCopies == cl::BOU_UNSET) 3634 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3635 else 3636 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3637 3638 // The MachineScheduler does not currently require JoinSplitEdges. This will 3639 // either be enabled unconditionally or replaced by a more general live range 3640 // splitting optimization. 3641 JoinSplitEdges = EnableJoinSplits; 3642 3643 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3644 << "********** Function: " << MF->getName() << '\n'); 3645 3646 if (VerifyCoalescing) 3647 MF->verify(this, "Before register coalescing"); 3648 3649 RegClassInfo.runOnMachineFunction(fn); 3650 3651 // Join (coalesce) intervals if requested. 3652 if (EnableJoining) 3653 joinAllIntervals(); 3654 3655 // After deleting a lot of copies, register classes may be less constrained. 3656 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3657 // DPR inflation. 3658 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3659 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3660 InflateRegs.end()); 3661 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() 3662 << " regs.\n"); 3663 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3664 unsigned Reg = InflateRegs[i]; 3665 if (MRI->reg_nodbg_empty(Reg)) 3666 continue; 3667 if (MRI->recomputeRegClass(Reg)) { 3668 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to " 3669 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3670 ++NumInflated; 3671 3672 LiveInterval &LI = LIS->getInterval(Reg); 3673 if (LI.hasSubRanges()) { 3674 // If the inflated register class does not support subregisters anymore 3675 // remove the subranges. 3676 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3677 LI.clearSubRanges(); 3678 } else { 3679 #ifndef NDEBUG 3680 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3681 // If subranges are still supported, then the same subregs 3682 // should still be supported. 3683 for (LiveInterval::SubRange &S : LI.subranges()) { 3684 assert((S.LaneMask & ~MaxMask).none()); 3685 } 3686 #endif 3687 } 3688 } 3689 } 3690 } 3691 3692 LLVM_DEBUG(dump()); 3693 if (VerifyCoalescing) 3694 MF->verify(this, "After register coalescing"); 3695 return true; 3696 } 3697 3698 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3699 LIS->print(O, m); 3700 } 3701