1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic RegisterCoalescer interface which 11 // is used as the common interface used by all clients and 12 // implementations of register coalescing. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "RegisterCoalescer.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/LiveRangeEdit.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/RegisterClassInfo.h" 30 #include "llvm/CodeGen/VirtRegMap.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 #include <algorithm> 42 #include <cmath> 43 using namespace llvm; 44 45 #define DEBUG_TYPE "regalloc" 46 47 STATISTIC(numJoins , "Number of interval joins performed"); 48 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 49 STATISTIC(numCommutes , "Number of instruction commuting performed"); 50 STATISTIC(numExtends , "Number of copies extended"); 51 STATISTIC(NumReMats , "Number of instructions re-materialized"); 52 STATISTIC(NumInflated , "Number of register classes inflated"); 53 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 54 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 55 56 static cl::opt<bool> 57 EnableJoining("join-liveintervals", 58 cl::desc("Coalesce copies (default=true)"), 59 cl::init(true)); 60 61 static cl::opt<bool> UseTerminalRule("terminal-rule", 62 cl::desc("Apply the terminal rule"), 63 cl::init(false), cl::Hidden); 64 65 /// Temporary flag to test critical edge unsplitting. 66 static cl::opt<bool> 67 EnableJoinSplits("join-splitedges", 68 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 69 70 /// Temporary flag to test global copy optimization. 71 static cl::opt<cl::boolOrDefault> 72 EnableGlobalCopies("join-globalcopies", 73 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 74 cl::init(cl::BOU_UNSET), cl::Hidden); 75 76 static cl::opt<bool> 77 VerifyCoalescing("verify-coalescing", 78 cl::desc("Verify machine instrs before and after register coalescing"), 79 cl::Hidden); 80 81 namespace { 82 class RegisterCoalescer : public MachineFunctionPass, 83 private LiveRangeEdit::Delegate { 84 MachineFunction* MF; 85 MachineRegisterInfo* MRI; 86 const TargetMachine* TM; 87 const TargetRegisterInfo* TRI; 88 const TargetInstrInfo* TII; 89 LiveIntervals *LIS; 90 const MachineLoopInfo* Loops; 91 AliasAnalysis *AA; 92 RegisterClassInfo RegClassInfo; 93 94 /// A LaneMask to remember on which subregister live ranges we need to call 95 /// shrinkToUses() later. 96 LaneBitmask ShrinkMask; 97 98 /// True if the main range of the currently coalesced intervals should be 99 /// checked for smaller live intervals. 100 bool ShrinkMainRange; 101 102 /// \brief True if the coalescer should aggressively coalesce global copies 103 /// in favor of keeping local copies. 104 bool JoinGlobalCopies; 105 106 /// \brief True if the coalescer should aggressively coalesce fall-thru 107 /// blocks exclusively containing copies. 108 bool JoinSplitEdges; 109 110 /// Copy instructions yet to be coalesced. 111 SmallVector<MachineInstr*, 8> WorkList; 112 SmallVector<MachineInstr*, 8> LocalWorkList; 113 114 /// Set of instruction pointers that have been erased, and 115 /// that may be present in WorkList. 116 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 117 118 /// Dead instructions that are about to be deleted. 119 SmallVector<MachineInstr*, 8> DeadDefs; 120 121 /// Virtual registers to be considered for register class inflation. 122 SmallVector<unsigned, 8> InflateRegs; 123 124 /// Recursively eliminate dead defs in DeadDefs. 125 void eliminateDeadDefs(); 126 127 /// LiveRangeEdit callback for eliminateDeadDefs(). 128 void LRE_WillEraseInstruction(MachineInstr *MI) override; 129 130 /// Coalesce the LocalWorkList. 131 void coalesceLocals(); 132 133 /// Join compatible live intervals 134 void joinAllIntervals(); 135 136 /// Coalesce copies in the specified MBB, putting 137 /// copies that cannot yet be coalesced into WorkList. 138 void copyCoalesceInMBB(MachineBasicBlock *MBB); 139 140 /// Tries to coalesce all copies in CurrList. Returns true if any progress 141 /// was made. 142 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 143 144 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 145 /// src/dst of the copy instruction CopyMI. This returns true if the copy 146 /// was successfully coalesced away. If it is not currently possible to 147 /// coalesce this interval, but it may be possible if other things get 148 /// coalesced, then it returns true by reference in 'Again'. 149 bool joinCopy(MachineInstr *TheCopy, bool &Again); 150 151 /// Attempt to join these two intervals. On failure, this 152 /// returns false. The output "SrcInt" will not have been modified, so we 153 /// can use this information below to update aliases. 154 bool joinIntervals(CoalescerPair &CP); 155 156 /// Attempt joining two virtual registers. Return true on success. 157 bool joinVirtRegs(CoalescerPair &CP); 158 159 /// Attempt joining with a reserved physreg. 160 bool joinReservedPhysReg(CoalescerPair &CP); 161 162 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 163 /// Subranges in @p LI which only partially interfere with the desired 164 /// LaneMask are split as necessary. @p LaneMask are the lanes that 165 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 166 /// lanemasks already adjusted to the coalesced register. 167 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 168 LaneBitmask LaneMask, CoalescerPair &CP); 169 170 /// Join the liveranges of two subregisters. Joins @p RRange into 171 /// @p LRange, @p RRange may be invalid afterwards. 172 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 173 LaneBitmask LaneMask, const CoalescerPair &CP); 174 175 /// We found a non-trivially-coalescable copy. If the source value number is 176 /// defined by a copy from the destination reg see if we can merge these two 177 /// destination reg valno# into a single value number, eliminating a copy. 178 /// This returns true if an interval was modified. 179 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 180 181 /// Return true if there are definitions of IntB 182 /// other than BValNo val# that can reach uses of AValno val# of IntA. 183 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 184 VNInfo *AValNo, VNInfo *BValNo); 185 186 /// We found a non-trivially-coalescable copy. 187 /// If the source value number is defined by a commutable instruction and 188 /// its other operand is coalesced to the copy dest register, see if we 189 /// can transform the copy into a noop by commuting the definition. 190 /// This returns true if an interval was modified. 191 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); 192 193 /// We found a copy which can be moved to its less frequent predecessor. 194 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 195 196 /// If the source of a copy is defined by a 197 /// trivial computation, replace the copy by rematerialize the definition. 198 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 199 bool &IsDefCopy); 200 201 /// Return true if a copy involving a physreg should be joined. 202 bool canJoinPhys(const CoalescerPair &CP); 203 204 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 205 /// number if it is not zero. If DstReg is a physical register and the 206 /// existing subregister number of the def / use being updated is not zero, 207 /// make sure to set it to the correct physical subregister. 208 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 209 210 /// If the given machine operand reads only undefined lanes add an undef 211 /// flag. 212 /// This can happen when undef uses were previously concealed by a copy 213 /// which we coalesced. Example: 214 /// %vreg0:sub0<def,read-undef> = ... 215 /// %vreg1 = COPY %vreg0 <-- Coalescing COPY reveals undef 216 /// = use %vreg1:sub1 <-- hidden undef use 217 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 218 MachineOperand &MO, unsigned SubRegIdx); 219 220 /// Handle copies of undef values. 221 /// Returns true if @p CopyMI was a copy of an undef value and eliminated. 222 bool eliminateUndefCopy(MachineInstr *CopyMI); 223 224 /// Check whether or not we should apply the terminal rule on the 225 /// destination (Dst) of \p Copy. 226 /// When the terminal rule applies, Copy is not profitable to 227 /// coalesce. 228 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 229 /// at least one interference (Dst, Dst2). If Dst is terminal, the 230 /// terminal rule consists in checking that at least one of 231 /// interfering node, say Dst2, has an affinity of equal or greater 232 /// weight with Src. 233 /// In that case, Dst2 and Dst will not be able to be both coalesced 234 /// with Src. Since Dst2 exposes more coalescing opportunities than 235 /// Dst, we can drop \p Copy. 236 bool applyTerminalRule(const MachineInstr &Copy) const; 237 238 /// Wrapper method for \see LiveIntervals::shrinkToUses. 239 /// This method does the proper fixing of the live-ranges when the afore 240 /// mentioned method returns true. 241 void shrinkToUses(LiveInterval *LI, 242 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 243 if (LIS->shrinkToUses(LI, Dead)) { 244 /// Check whether or not \p LI is composed by multiple connected 245 /// components and if that is the case, fix that. 246 SmallVector<LiveInterval*, 8> SplitLIs; 247 LIS->splitSeparateComponents(*LI, SplitLIs); 248 } 249 } 250 251 public: 252 static char ID; ///< Class identification, replacement for typeinfo 253 RegisterCoalescer() : MachineFunctionPass(ID) { 254 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 255 } 256 257 void getAnalysisUsage(AnalysisUsage &AU) const override; 258 259 void releaseMemory() override; 260 261 /// This is the pass entry point. 262 bool runOnMachineFunction(MachineFunction&) override; 263 264 /// Implement the dump method. 265 void print(raw_ostream &O, const Module* = nullptr) const override; 266 }; 267 } // end anonymous namespace 268 269 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 270 271 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 272 "Simple Register Coalescing", false, false) 273 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 274 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 275 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 276 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 277 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 278 "Simple Register Coalescing", false, false) 279 280 char RegisterCoalescer::ID = 0; 281 282 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 283 unsigned &Src, unsigned &Dst, 284 unsigned &SrcSub, unsigned &DstSub) { 285 if (MI->isCopy()) { 286 Dst = MI->getOperand(0).getReg(); 287 DstSub = MI->getOperand(0).getSubReg(); 288 Src = MI->getOperand(1).getReg(); 289 SrcSub = MI->getOperand(1).getSubReg(); 290 } else if (MI->isSubregToReg()) { 291 Dst = MI->getOperand(0).getReg(); 292 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 293 MI->getOperand(3).getImm()); 294 Src = MI->getOperand(2).getReg(); 295 SrcSub = MI->getOperand(2).getSubReg(); 296 } else 297 return false; 298 return true; 299 } 300 301 /// Return true if this block should be vacated by the coalescer to eliminate 302 /// branches. The important cases to handle in the coalescer are critical edges 303 /// split during phi elimination which contain only copies. Simple blocks that 304 /// contain non-branches should also be vacated, but this can be handled by an 305 /// earlier pass similar to early if-conversion. 306 static bool isSplitEdge(const MachineBasicBlock *MBB) { 307 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 308 return false; 309 310 for (const auto &MI : *MBB) { 311 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 312 return false; 313 } 314 return true; 315 } 316 317 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 318 SrcReg = DstReg = 0; 319 SrcIdx = DstIdx = 0; 320 NewRC = nullptr; 321 Flipped = CrossClass = false; 322 323 unsigned Src, Dst, SrcSub, DstSub; 324 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 325 return false; 326 Partial = SrcSub || DstSub; 327 328 // If one register is a physreg, it must be Dst. 329 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 330 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 331 return false; 332 std::swap(Src, Dst); 333 std::swap(SrcSub, DstSub); 334 Flipped = true; 335 } 336 337 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 338 339 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 340 // Eliminate DstSub on a physreg. 341 if (DstSub) { 342 Dst = TRI.getSubReg(Dst, DstSub); 343 if (!Dst) return false; 344 DstSub = 0; 345 } 346 347 // Eliminate SrcSub by picking a corresponding Dst superregister. 348 if (SrcSub) { 349 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 350 if (!Dst) return false; 351 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 352 return false; 353 } 354 } else { 355 // Both registers are virtual. 356 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 357 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 358 359 // Both registers have subreg indices. 360 if (SrcSub && DstSub) { 361 // Copies between different sub-registers are never coalescable. 362 if (Src == Dst && SrcSub != DstSub) 363 return false; 364 365 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 366 SrcIdx, DstIdx); 367 if (!NewRC) 368 return false; 369 } else if (DstSub) { 370 // SrcReg will be merged with a sub-register of DstReg. 371 SrcIdx = DstSub; 372 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 373 } else if (SrcSub) { 374 // DstReg will be merged with a sub-register of SrcReg. 375 DstIdx = SrcSub; 376 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 377 } else { 378 // This is a straight copy without sub-registers. 379 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 380 } 381 382 // The combined constraint may be impossible to satisfy. 383 if (!NewRC) 384 return false; 385 386 // Prefer SrcReg to be a sub-register of DstReg. 387 // FIXME: Coalescer should support subregs symmetrically. 388 if (DstIdx && !SrcIdx) { 389 std::swap(Src, Dst); 390 std::swap(SrcIdx, DstIdx); 391 Flipped = !Flipped; 392 } 393 394 CrossClass = NewRC != DstRC || NewRC != SrcRC; 395 } 396 // Check our invariants 397 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 398 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 399 "Cannot have a physical SubIdx"); 400 SrcReg = Src; 401 DstReg = Dst; 402 return true; 403 } 404 405 bool CoalescerPair::flip() { 406 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 407 return false; 408 std::swap(SrcReg, DstReg); 409 std::swap(SrcIdx, DstIdx); 410 Flipped = !Flipped; 411 return true; 412 } 413 414 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 415 if (!MI) 416 return false; 417 unsigned Src, Dst, SrcSub, DstSub; 418 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 419 return false; 420 421 // Find the virtual register that is SrcReg. 422 if (Dst == SrcReg) { 423 std::swap(Src, Dst); 424 std::swap(SrcSub, DstSub); 425 } else if (Src != SrcReg) { 426 return false; 427 } 428 429 // Now check that Dst matches DstReg. 430 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 431 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 432 return false; 433 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 434 // DstSub could be set for a physreg from INSERT_SUBREG. 435 if (DstSub) 436 Dst = TRI.getSubReg(Dst, DstSub); 437 // Full copy of Src. 438 if (!SrcSub) 439 return DstReg == Dst; 440 // This is a partial register copy. Check that the parts match. 441 return TRI.getSubReg(DstReg, SrcSub) == Dst; 442 } else { 443 // DstReg is virtual. 444 if (DstReg != Dst) 445 return false; 446 // Registers match, do the subregisters line up? 447 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 448 TRI.composeSubRegIndices(DstIdx, DstSub); 449 } 450 } 451 452 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 453 AU.setPreservesCFG(); 454 AU.addRequired<AAResultsWrapperPass>(); 455 AU.addRequired<LiveIntervals>(); 456 AU.addPreserved<LiveIntervals>(); 457 AU.addPreserved<SlotIndexes>(); 458 AU.addRequired<MachineLoopInfo>(); 459 AU.addPreserved<MachineLoopInfo>(); 460 AU.addPreservedID(MachineDominatorsID); 461 MachineFunctionPass::getAnalysisUsage(AU); 462 } 463 464 void RegisterCoalescer::eliminateDeadDefs() { 465 SmallVector<unsigned, 8> NewRegs; 466 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 467 nullptr, this).eliminateDeadDefs(DeadDefs); 468 } 469 470 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 471 // MI may be in WorkList. Make sure we don't visit it. 472 ErasedInstrs.insert(MI); 473 } 474 475 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 476 MachineInstr *CopyMI) { 477 assert(!CP.isPartial() && "This doesn't work for partial copies."); 478 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 479 480 LiveInterval &IntA = 481 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 482 LiveInterval &IntB = 483 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 484 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 485 486 // We have a non-trivially-coalescable copy with IntA being the source and 487 // IntB being the dest, thus this defines a value number in IntB. If the 488 // source value number (in IntA) is defined by a copy from B, see if we can 489 // merge these two pieces of B into a single value number, eliminating a copy. 490 // For example: 491 // 492 // A3 = B0 493 // ... 494 // B1 = A3 <- this copy 495 // 496 // In this case, B0 can be extended to where the B1 copy lives, allowing the 497 // B1 value number to be replaced with B0 (which simplifies the B 498 // liveinterval). 499 500 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 501 // the example above. 502 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 503 if (BS == IntB.end()) return false; 504 VNInfo *BValNo = BS->valno; 505 506 // Get the location that B is defined at. Two options: either this value has 507 // an unknown definition point or it is defined at CopyIdx. If unknown, we 508 // can't process it. 509 if (BValNo->def != CopyIdx) return false; 510 511 // AValNo is the value number in A that defines the copy, A3 in the example. 512 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 513 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 514 // The live segment might not exist after fun with physreg coalescing. 515 if (AS == IntA.end()) return false; 516 VNInfo *AValNo = AS->valno; 517 518 // If AValNo is defined as a copy from IntB, we can potentially process this. 519 // Get the instruction that defines this value number. 520 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 521 // Don't allow any partial copies, even if isCoalescable() allows them. 522 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 523 return false; 524 525 // Get the Segment in IntB that this value number starts with. 526 LiveInterval::iterator ValS = 527 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 528 if (ValS == IntB.end()) 529 return false; 530 531 // Make sure that the end of the live segment is inside the same block as 532 // CopyMI. 533 MachineInstr *ValSEndInst = 534 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 535 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 536 return false; 537 538 // Okay, we now know that ValS ends in the same block that the CopyMI 539 // live-range starts. If there are no intervening live segments between them 540 // in IntB, we can merge them. 541 if (ValS+1 != BS) return false; 542 543 DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI)); 544 545 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 546 // We are about to delete CopyMI, so need to remove it as the 'instruction 547 // that defines this value #'. Update the valnum with the new defining 548 // instruction #. 549 BValNo->def = FillerStart; 550 551 // Okay, we can merge them. We need to insert a new liverange: 552 // [ValS.end, BS.begin) of either value number, then we merge the 553 // two value numbers. 554 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 555 556 // Okay, merge "B1" into the same value number as "B0". 557 if (BValNo != ValS->valno) 558 IntB.MergeValueNumberInto(BValNo, ValS->valno); 559 560 // Do the same for the subregister segments. 561 for (LiveInterval::SubRange &S : IntB.subranges()) { 562 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 563 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 564 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 565 if (SubBValNo != SubValSNo) 566 S.MergeValueNumberInto(SubBValNo, SubValSNo); 567 } 568 569 DEBUG(dbgs() << " result = " << IntB << '\n'); 570 571 // If the source instruction was killing the source register before the 572 // merge, unset the isKill marker given the live range has been extended. 573 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 574 if (UIdx != -1) { 575 ValSEndInst->getOperand(UIdx).setIsKill(false); 576 } 577 578 // Rewrite the copy. If the copy instruction was killing the destination 579 // register before the merge, find the last use and trim the live range. That 580 // will also add the isKill marker. 581 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 582 if (AS->end == CopyIdx) 583 shrinkToUses(&IntA); 584 585 ++numExtends; 586 return true; 587 } 588 589 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 590 LiveInterval &IntB, 591 VNInfo *AValNo, 592 VNInfo *BValNo) { 593 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 594 // the PHI values. 595 if (LIS->hasPHIKill(IntA, AValNo)) 596 return true; 597 598 for (LiveRange::Segment &ASeg : IntA.segments) { 599 if (ASeg.valno != AValNo) continue; 600 LiveInterval::iterator BI = 601 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start); 602 if (BI != IntB.begin()) 603 --BI; 604 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 605 if (BI->valno == BValNo) 606 continue; 607 if (BI->start <= ASeg.start && BI->end > ASeg.start) 608 return true; 609 if (BI->start > ASeg.start && BI->start < ASeg.end) 610 return true; 611 } 612 } 613 return false; 614 } 615 616 /// Copy segements with value number @p SrcValNo from liverange @p Src to live 617 /// range @Dst and use value number @p DstValNo there. 618 static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, 619 const LiveRange &Src, const VNInfo *SrcValNo) 620 { 621 for (const LiveRange::Segment &S : Src.segments) { 622 if (S.valno != SrcValNo) 623 continue; 624 Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo)); 625 } 626 } 627 628 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 629 MachineInstr *CopyMI) { 630 assert(!CP.isPhys()); 631 632 LiveInterval &IntA = 633 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 634 LiveInterval &IntB = 635 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 636 637 // We found a non-trivially-coalescable copy with IntA being the source and 638 // IntB being the dest, thus this defines a value number in IntB. If the 639 // source value number (in IntA) is defined by a commutable instruction and 640 // its other operand is coalesced to the copy dest register, see if we can 641 // transform the copy into a noop by commuting the definition. For example, 642 // 643 // A3 = op A2 B0<kill> 644 // ... 645 // B1 = A3 <- this copy 646 // ... 647 // = op A3 <- more uses 648 // 649 // ==> 650 // 651 // B2 = op B0 A2<kill> 652 // ... 653 // B1 = B2 <- now an identity copy 654 // ... 655 // = op B2 <- more uses 656 657 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 658 // the example above. 659 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 660 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 661 assert(BValNo != nullptr && BValNo->def == CopyIdx); 662 663 // AValNo is the value number in A that defines the copy, A3 in the example. 664 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 665 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 666 if (AValNo->isPHIDef()) 667 return false; 668 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 669 if (!DefMI) 670 return false; 671 if (!DefMI->isCommutable()) 672 return false; 673 // If DefMI is a two-address instruction then commuting it will change the 674 // destination register. 675 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 676 assert(DefIdx != -1); 677 unsigned UseOpIdx; 678 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 679 return false; 680 681 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 682 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 683 // passed to the method. That _other_ operand is chosen by 684 // the findCommutedOpIndices() method. 685 // 686 // That is obviously an area for improvement in case of instructions having 687 // more than 2 operands. For example, if some instruction has 3 commutable 688 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 689 // op#2<->op#3) of commute transformation should be considered/tried here. 690 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 691 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 692 return false; 693 694 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 695 unsigned NewReg = NewDstMO.getReg(); 696 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 697 return false; 698 699 // Make sure there are no other definitions of IntB that would reach the 700 // uses which the new definition can reach. 701 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 702 return false; 703 704 // If some of the uses of IntA.reg is already coalesced away, return false. 705 // It's not possible to determine whether it's safe to perform the coalescing. 706 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 707 MachineInstr *UseMI = MO.getParent(); 708 unsigned OpNo = &MO - &UseMI->getOperand(0); 709 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 710 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 711 if (US == IntA.end() || US->valno != AValNo) 712 continue; 713 // If this use is tied to a def, we can't rewrite the register. 714 if (UseMI->isRegTiedToDefOperand(OpNo)) 715 return false; 716 } 717 718 DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 719 << *DefMI); 720 721 // At this point we have decided that it is legal to do this 722 // transformation. Start by commuting the instruction. 723 MachineBasicBlock *MBB = DefMI->getParent(); 724 MachineInstr *NewMI = 725 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 726 if (!NewMI) 727 return false; 728 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 729 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 730 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 731 return false; 732 if (NewMI != DefMI) { 733 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 734 MachineBasicBlock::iterator Pos = DefMI; 735 MBB->insert(Pos, NewMI); 736 MBB->erase(DefMI); 737 } 738 739 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 740 // A = or A, B 741 // ... 742 // B = A 743 // ... 744 // C = A<kill> 745 // ... 746 // = B 747 748 // Update uses of IntA of the specific Val# with IntB. 749 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 750 UE = MRI->use_end(); 751 UI != UE; /* ++UI is below because of possible MI removal */) { 752 MachineOperand &UseMO = *UI; 753 ++UI; 754 if (UseMO.isUndef()) 755 continue; 756 MachineInstr *UseMI = UseMO.getParent(); 757 if (UseMI->isDebugValue()) { 758 // FIXME These don't have an instruction index. Not clear we have enough 759 // info to decide whether to do this replacement or not. For now do it. 760 UseMO.setReg(NewReg); 761 continue; 762 } 763 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 764 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 765 assert(US != IntA.end() && "Use must be live"); 766 if (US->valno != AValNo) 767 continue; 768 // Kill flags are no longer accurate. They are recomputed after RA. 769 UseMO.setIsKill(false); 770 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 771 UseMO.substPhysReg(NewReg, *TRI); 772 else 773 UseMO.setReg(NewReg); 774 if (UseMI == CopyMI) 775 continue; 776 if (!UseMI->isCopy()) 777 continue; 778 if (UseMI->getOperand(0).getReg() != IntB.reg || 779 UseMI->getOperand(0).getSubReg()) 780 continue; 781 782 // This copy will become a noop. If it's defining a new val#, merge it into 783 // BValNo. 784 SlotIndex DefIdx = UseIdx.getRegSlot(); 785 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 786 if (!DVNI) 787 continue; 788 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 789 assert(DVNI->def == DefIdx); 790 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 791 for (LiveInterval::SubRange &S : IntB.subranges()) { 792 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 793 if (!SubDVNI) 794 continue; 795 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 796 assert(SubBValNo->def == CopyIdx); 797 S.MergeValueNumberInto(SubDVNI, SubBValNo); 798 } 799 800 ErasedInstrs.insert(UseMI); 801 LIS->RemoveMachineInstrFromMaps(*UseMI); 802 UseMI->eraseFromParent(); 803 } 804 805 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 806 // is updated. 807 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 808 if (IntB.hasSubRanges()) { 809 if (!IntA.hasSubRanges()) { 810 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 811 IntA.createSubRangeFrom(Allocator, Mask, IntA); 812 } 813 SlotIndex AIdx = CopyIdx.getRegSlot(true); 814 for (LiveInterval::SubRange &SA : IntA.subranges()) { 815 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 816 assert(ASubValNo != nullptr); 817 818 IntB.refineSubRanges(Allocator, SA.LaneMask, 819 [&Allocator,&SA,CopyIdx,ASubValNo](LiveInterval::SubRange &SR) { 820 VNInfo *BSubValNo = SR.empty() 821 ? SR.getNextValue(CopyIdx, Allocator) 822 : SR.getVNInfoAt(CopyIdx); 823 assert(BSubValNo != nullptr); 824 addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 825 }); 826 } 827 } 828 829 BValNo->def = AValNo->def; 830 addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 831 DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 832 833 LIS->removeVRegDefAt(IntA, AValNo->def); 834 835 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 836 ++numCommutes; 837 return true; 838 } 839 840 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 841 /// predecessor of BB2, and if B is not redefined on the way from A = B 842 /// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the 843 /// execution goes through the path from BB0 to BB2. We may move B = A 844 /// to the predecessor without such reversed copy. 845 /// So we will transform the program from: 846 /// BB0: 847 /// A = B; BB1: 848 /// ... ... 849 /// / \ / 850 /// BB2: 851 /// ... 852 /// B = A; 853 /// 854 /// to: 855 /// 856 /// BB0: BB1: 857 /// A = B; ... 858 /// ... B = A; 859 /// / \ / 860 /// BB2: 861 /// ... 862 /// 863 /// A special case is when BB0 and BB2 are the same BB which is the only 864 /// BB in a loop: 865 /// BB1: 866 /// ... 867 /// BB0/BB2: ---- 868 /// B = A; | 869 /// ... | 870 /// A = B; | 871 /// |------- 872 /// | 873 /// We may hoist B = A from BB0/BB2 to BB1. 874 /// 875 /// The major preconditions for correctness to remove such partial 876 /// redundancy include: 877 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 878 /// the PHI is defined by the reversed copy A = B in BB0. 879 /// 2. No B is referenced from the start of BB2 to B = A. 880 /// 3. No B is defined from A = B to the end of BB0. 881 /// 4. BB1 has only one successor. 882 /// 883 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 884 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 885 /// colder place, which not only prevent endless loop, but also make sure 886 /// the movement of copy is beneficial. 887 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 888 MachineInstr &CopyMI) { 889 assert(!CP.isPhys()); 890 if (!CopyMI.isFullCopy()) 891 return false; 892 893 MachineBasicBlock &MBB = *CopyMI.getParent(); 894 if (MBB.isEHPad()) 895 return false; 896 897 if (MBB.pred_size() != 2) 898 return false; 899 900 LiveInterval &IntA = 901 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 902 LiveInterval &IntB = 903 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 904 905 // A is defined by PHI at the entry of MBB. 906 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 907 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 908 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 909 if (!AValNo->isPHIDef()) 910 return false; 911 912 // No B is referenced before CopyMI in MBB. 913 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 914 return false; 915 916 // MBB has two predecessors: one contains A = B so no copy will be inserted 917 // for it. The other one will have a copy moved from MBB. 918 bool FoundReverseCopy = false; 919 MachineBasicBlock *CopyLeftBB = nullptr; 920 for (MachineBasicBlock *Pred : MBB.predecessors()) { 921 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 922 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 923 if (!DefMI || !DefMI->isFullCopy()) { 924 CopyLeftBB = Pred; 925 continue; 926 } 927 // Check DefMI is a reverse copy and it is in BB Pred. 928 if (DefMI->getOperand(0).getReg() != IntA.reg || 929 DefMI->getOperand(1).getReg() != IntB.reg || 930 DefMI->getParent() != Pred) { 931 CopyLeftBB = Pred; 932 continue; 933 } 934 // If there is any other def of B after DefMI and before the end of Pred, 935 // we need to keep the copy of B = A at the end of Pred if we remove 936 // B = A from MBB. 937 bool ValB_Changed = false; 938 for (auto VNI : IntB.valnos) { 939 if (VNI->isUnused()) 940 continue; 941 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 942 ValB_Changed = true; 943 break; 944 } 945 } 946 if (ValB_Changed) { 947 CopyLeftBB = Pred; 948 continue; 949 } 950 FoundReverseCopy = true; 951 } 952 953 // If no reverse copy is found in predecessors, nothing to do. 954 if (!FoundReverseCopy) 955 return false; 956 957 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 958 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 959 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 960 // update IntA/IntB. 961 // 962 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 963 // MBB is hotter than CopyLeftBB. 964 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 965 return false; 966 967 // Now ok to move copy. 968 if (CopyLeftBB) { 969 DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to BB#" 970 << CopyLeftBB->getNumber() << '\t' << CopyMI); 971 972 // Insert new copy to CopyLeftBB. 973 auto InsPos = CopyLeftBB->getFirstTerminator(); 974 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 975 TII->get(TargetOpcode::COPY), IntB.reg) 976 .addReg(IntA.reg); 977 SlotIndex NewCopyIdx = 978 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 979 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 980 for (LiveInterval::SubRange &SR : IntB.subranges()) 981 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 982 } else { 983 DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from BB#" 984 << MBB.getNumber() << '\t' << CopyMI); 985 } 986 987 // Remove CopyMI. 988 // Note: This is fine to remove the copy before updating the live-ranges. 989 // While updating the live-ranges, we only look at slot indices and 990 // never go back to the instruction. 991 LIS->RemoveMachineInstrFromMaps(CopyMI); 992 CopyMI.eraseFromParent(); 993 994 // Update the liveness. 995 SmallVector<SlotIndex, 8> EndPoints; 996 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 997 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 998 &EndPoints); 999 BValNo->markUnused(); 1000 // Extend IntB to the EndPoints of its original live interval. 1001 LIS->extendToIndices(IntB, EndPoints); 1002 1003 // Now, do the same for its subranges. 1004 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1005 EndPoints.clear(); 1006 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1007 assert(BValNo && "All sublanes should be live"); 1008 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1009 BValNo->markUnused(); 1010 LIS->extendToIndices(SR, EndPoints); 1011 } 1012 1013 // Finally, update the live-range of IntA. 1014 shrinkToUses(&IntA); 1015 return true; 1016 } 1017 1018 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1019 /// defining a subregister. 1020 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 1021 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && 1022 "This code cannot handle physreg aliasing"); 1023 for (const MachineOperand &Op : MI.operands()) { 1024 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1025 continue; 1026 // Return true if we define the full register or don't care about the value 1027 // inside other subregisters. 1028 if (Op.getSubReg() == 0 || Op.isUndef()) 1029 return true; 1030 } 1031 return false; 1032 } 1033 1034 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1035 MachineInstr *CopyMI, 1036 bool &IsDefCopy) { 1037 IsDefCopy = false; 1038 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1039 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1040 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1041 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1042 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1043 return false; 1044 1045 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1046 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1047 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1048 assert(ValNo && "CopyMI input register not live"); 1049 if (ValNo->isPHIDef() || ValNo->isUnused()) 1050 return false; 1051 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1052 if (!DefMI) 1053 return false; 1054 if (DefMI->isCopyLike()) { 1055 IsDefCopy = true; 1056 return false; 1057 } 1058 if (!TII->isAsCheapAsAMove(*DefMI)) 1059 return false; 1060 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1061 return false; 1062 if (!definesFullReg(*DefMI, SrcReg)) 1063 return false; 1064 bool SawStore = false; 1065 if (!DefMI->isSafeToMove(AA, SawStore)) 1066 return false; 1067 const MCInstrDesc &MCID = DefMI->getDesc(); 1068 if (MCID.getNumDefs() != 1) 1069 return false; 1070 // Only support subregister destinations when the def is read-undef. 1071 MachineOperand &DstOperand = CopyMI->getOperand(0); 1072 unsigned CopyDstReg = DstOperand.getReg(); 1073 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1074 return false; 1075 1076 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1077 // the register substantially (beyond both source and dest size). This is bad 1078 // for performance since it can cascade through a function, introducing many 1079 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1080 // around after a few subreg copies). 1081 if (SrcIdx && DstIdx) 1082 return false; 1083 1084 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1085 if (!DefMI->isImplicitDef()) { 1086 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 1087 unsigned NewDstReg = DstReg; 1088 1089 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1090 DefMI->getOperand(0).getSubReg()); 1091 if (NewDstIdx) 1092 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1093 1094 // Finally, make sure that the physical subregister that will be 1095 // constructed later is permitted for the instruction. 1096 if (!DefRC->contains(NewDstReg)) 1097 return false; 1098 } else { 1099 // Theoretically, some stack frame reference could exist. Just make sure 1100 // it hasn't actually happened. 1101 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 1102 "Only expect to deal with virtual or physical registers"); 1103 } 1104 } 1105 1106 DebugLoc DL = CopyMI->getDebugLoc(); 1107 MachineBasicBlock *MBB = CopyMI->getParent(); 1108 MachineBasicBlock::iterator MII = 1109 std::next(MachineBasicBlock::iterator(CopyMI)); 1110 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1111 MachineInstr &NewMI = *std::prev(MII); 1112 NewMI.setDebugLoc(DL); 1113 1114 // In a situation like the following: 1115 // %vreg0:subreg = instr ; DefMI, subreg = DstIdx 1116 // %vreg1 = copy %vreg0:subreg ; CopyMI, SrcIdx = 0 1117 // instead of widening %vreg1 to the register class of %vreg0 simply do: 1118 // %vreg1 = instr 1119 const TargetRegisterClass *NewRC = CP.getNewRC(); 1120 if (DstIdx != 0) { 1121 MachineOperand &DefMO = NewMI.getOperand(0); 1122 if (DefMO.getSubReg() == DstIdx) { 1123 assert(SrcIdx == 0 && CP.isFlipped() 1124 && "Shouldn't have SrcIdx+DstIdx at this point"); 1125 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1126 const TargetRegisterClass *CommonRC = 1127 TRI->getCommonSubClass(DefRC, DstRC); 1128 if (CommonRC != nullptr) { 1129 NewRC = CommonRC; 1130 DstIdx = 0; 1131 DefMO.setSubReg(0); 1132 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1133 } 1134 } 1135 } 1136 1137 // CopyMI may have implicit operands, save them so that we can transfer them 1138 // over to the newly materialized instruction after CopyMI is removed. 1139 SmallVector<MachineOperand, 4> ImplicitOps; 1140 ImplicitOps.reserve(CopyMI->getNumOperands() - 1141 CopyMI->getDesc().getNumOperands()); 1142 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1143 E = CopyMI->getNumOperands(); 1144 I != E; ++I) { 1145 MachineOperand &MO = CopyMI->getOperand(I); 1146 if (MO.isReg()) { 1147 assert(MO.isImplicit() && "No explicit operands after implict operands."); 1148 // Discard VReg implicit defs. 1149 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1150 ImplicitOps.push_back(MO); 1151 } 1152 } 1153 1154 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1155 CopyMI->eraseFromParent(); 1156 ErasedInstrs.insert(CopyMI); 1157 1158 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1159 // We need to remember these so we can add intervals once we insert 1160 // NewMI into SlotIndexes. 1161 SmallVector<unsigned, 4> NewMIImplDefs; 1162 for (unsigned i = NewMI.getDesc().getNumOperands(), 1163 e = NewMI.getNumOperands(); 1164 i != e; ++i) { 1165 MachineOperand &MO = NewMI.getOperand(i); 1166 if (MO.isReg() && MO.isDef()) { 1167 assert(MO.isImplicit() && MO.isDead() && 1168 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 1169 NewMIImplDefs.push_back(MO.getReg()); 1170 } 1171 } 1172 1173 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 1174 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1175 1176 if (DefRC != nullptr) { 1177 if (NewIdx) 1178 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1179 else 1180 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1181 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1182 } 1183 // Remap subranges to new lanemask and change register class. 1184 LiveInterval &DstInt = LIS->getInterval(DstReg); 1185 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1186 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1187 } 1188 MRI->setRegClass(DstReg, NewRC); 1189 1190 // Update machine operands and add flags. 1191 updateRegDefsUses(DstReg, DstReg, DstIdx); 1192 NewMI.getOperand(0).setSubReg(NewIdx); 1193 // Add dead subregister definitions if we are defining the whole register 1194 // but only part of it is live. 1195 // This could happen if the rematerialization instruction is rematerializing 1196 // more than actually is used in the register. 1197 // An example would be: 1198 // vreg1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1199 // ; Copying only part of the register here, but the rest is undef. 1200 // vreg2:sub_16bit<def, read-undef> = COPY vreg1:sub_16bit 1201 // ==> 1202 // ; Materialize all the constants but only using one 1203 // vreg2 = LOAD_CONSTANTS 5, 8 1204 // 1205 // at this point for the part that wasn't defined before we could have 1206 // subranges missing the definition. 1207 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1208 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1209 SlotIndex DefIndex = 1210 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1211 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1212 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1213 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1214 if (!SR.liveAt(DefIndex)) 1215 SR.createDeadDef(DefIndex, Alloc); 1216 MaxMask &= ~SR.LaneMask; 1217 } 1218 if (MaxMask.any()) { 1219 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1220 SR->createDeadDef(DefIndex, Alloc); 1221 } 1222 } 1223 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1224 // The New instruction may be defining a sub-register of what's actually 1225 // been asked for. If so it must implicitly define the whole thing. 1226 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 1227 "Only expect virtual or physical registers in remat"); 1228 NewMI.getOperand(0).setIsDead(true); 1229 NewMI.addOperand(MachineOperand::CreateReg( 1230 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1231 // Record small dead def live-ranges for all the subregisters 1232 // of the destination register. 1233 // Otherwise, variables that live through may miss some 1234 // interferences, thus creating invalid allocation. 1235 // E.g., i386 code: 1236 // vreg1 = somedef ; vreg1 GR8 1237 // vreg2 = remat ; vreg2 GR32 1238 // CL = COPY vreg2.sub_8bit 1239 // = somedef vreg1 ; vreg1 GR8 1240 // => 1241 // vreg1 = somedef ; vreg1 GR8 1242 // ECX<def, dead> = remat ; CL<imp-def> 1243 // = somedef vreg1 ; vreg1 GR8 1244 // vreg1 will see the inteferences with CL but not with CH since 1245 // no live-ranges would have been created for ECX. 1246 // Fix that! 1247 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1248 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1249 Units.isValid(); ++Units) 1250 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1251 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1252 } 1253 1254 if (NewMI.getOperand(0).getSubReg()) 1255 NewMI.getOperand(0).setIsUndef(); 1256 1257 // Transfer over implicit operands to the rematerialized instruction. 1258 for (MachineOperand &MO : ImplicitOps) 1259 NewMI.addOperand(MO); 1260 1261 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1262 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1263 unsigned Reg = NewMIImplDefs[i]; 1264 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1265 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1266 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1267 } 1268 1269 DEBUG(dbgs() << "Remat: " << NewMI); 1270 ++NumReMats; 1271 1272 // The source interval can become smaller because we removed a use. 1273 shrinkToUses(&SrcInt, &DeadDefs); 1274 if (!DeadDefs.empty()) { 1275 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1276 // to describe DstReg instead. 1277 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1278 MachineInstr *UseMI = UseMO.getParent(); 1279 if (UseMI->isDebugValue()) { 1280 UseMO.setReg(DstReg); 1281 DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1282 } 1283 } 1284 eliminateDeadDefs(); 1285 } 1286 1287 return true; 1288 } 1289 1290 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1291 // ProcessImpicitDefs may leave some copies of <undef> values, it only removes 1292 // local variables. When we have a copy like: 1293 // 1294 // %vreg1 = COPY %vreg2<undef> 1295 // 1296 // We delete the copy and remove the corresponding value number from %vreg1. 1297 // Any uses of that value number are marked as <undef>. 1298 1299 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1300 // CoalescerPair may have a new register class with adjusted subreg indices 1301 // at this point. 1302 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1303 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx); 1304 1305 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1306 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1307 // CopyMI is undef iff SrcReg is not live before the instruction. 1308 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1309 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1310 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1311 if ((SR.LaneMask & SrcMask).none()) 1312 continue; 1313 if (SR.liveAt(Idx)) 1314 return false; 1315 } 1316 } else if (SrcLI.liveAt(Idx)) 1317 return false; 1318 1319 DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1320 1321 // Remove any DstReg segments starting at the instruction. 1322 LiveInterval &DstLI = LIS->getInterval(DstReg); 1323 SlotIndex RegIndex = Idx.getRegSlot(); 1324 // Remove value or merge with previous one in case of a subregister def. 1325 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1326 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1327 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1328 1329 // The affected subregister segments can be removed. 1330 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1331 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1332 if ((SR.LaneMask & DstMask).none()) 1333 continue; 1334 1335 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1336 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1337 SR.removeValNo(SVNI); 1338 } 1339 DstLI.removeEmptySubRanges(); 1340 } else 1341 LIS->removeVRegDefAt(DstLI, RegIndex); 1342 1343 // Mark uses as undef. 1344 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1345 if (MO.isDef() /*|| MO.isUndef()*/) 1346 continue; 1347 const MachineInstr &MI = *MO.getParent(); 1348 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1349 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1350 bool isLive; 1351 if (!UseMask.all() && DstLI.hasSubRanges()) { 1352 isLive = false; 1353 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1354 if ((SR.LaneMask & UseMask).none()) 1355 continue; 1356 if (SR.liveAt(UseIdx)) { 1357 isLive = true; 1358 break; 1359 } 1360 } 1361 } else 1362 isLive = DstLI.liveAt(UseIdx); 1363 if (isLive) 1364 continue; 1365 MO.setIsUndef(true); 1366 DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1367 } 1368 1369 // A def of a subregister may be a use of the other subregisters, so 1370 // deleting a def of a subregister may also remove uses. Since CopyMI 1371 // is still part of the function (but about to be erased), mark all 1372 // defs of DstReg in it as <undef>, so that shrinkToUses would 1373 // ignore them. 1374 for (MachineOperand &MO : CopyMI->operands()) 1375 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1376 MO.setIsUndef(true); 1377 LIS->shrinkToUses(&DstLI); 1378 1379 return true; 1380 } 1381 1382 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1383 MachineOperand &MO, unsigned SubRegIdx) { 1384 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1385 if (MO.isDef()) 1386 Mask = ~Mask; 1387 bool IsUndef = true; 1388 for (const LiveInterval::SubRange &S : Int.subranges()) { 1389 if ((S.LaneMask & Mask).none()) 1390 continue; 1391 if (S.liveAt(UseIdx)) { 1392 IsUndef = false; 1393 break; 1394 } 1395 } 1396 if (IsUndef) { 1397 MO.setIsUndef(true); 1398 // We found out some subregister use is actually reading an undefined 1399 // value. In some cases the whole vreg has become undefined at this 1400 // point so we have to potentially shrink the main range if the 1401 // use was ending a live segment there. 1402 LiveQueryResult Q = Int.Query(UseIdx); 1403 if (Q.valueOut() == nullptr) 1404 ShrinkMainRange = true; 1405 } 1406 } 1407 1408 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 1409 unsigned DstReg, 1410 unsigned SubIdx) { 1411 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 1412 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1413 1414 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1415 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1416 unsigned SubReg = MO.getSubReg(); 1417 if (SubReg == 0 || MO.isUndef()) 1418 continue; 1419 MachineInstr &MI = *MO.getParent(); 1420 if (MI.isDebugValue()) 1421 continue; 1422 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1423 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1424 } 1425 } 1426 1427 SmallPtrSet<MachineInstr*, 8> Visited; 1428 for (MachineRegisterInfo::reg_instr_iterator 1429 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1430 I != E; ) { 1431 MachineInstr *UseMI = &*(I++); 1432 1433 // Each instruction can only be rewritten once because sub-register 1434 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1435 // the UseMI operands removes them from the SrcReg use-def chain, but when 1436 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1437 // operands mentioning the virtual register. 1438 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1439 continue; 1440 1441 SmallVector<unsigned,8> Ops; 1442 bool Reads, Writes; 1443 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1444 1445 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1446 // because SrcReg is a sub-register. 1447 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) 1448 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1449 1450 // Replace SrcReg with DstReg in all UseMI operands. 1451 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1452 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1453 1454 // Adjust <undef> flags in case of sub-register joins. We don't want to 1455 // turn a full def into a read-modify-write sub-register def and vice 1456 // versa. 1457 if (SubIdx && MO.isDef()) 1458 MO.setIsUndef(!Reads); 1459 1460 // A subreg use of a partially undef (super) register may be a complete 1461 // undef use now and then has to be marked that way. 1462 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1463 if (!DstInt->hasSubRanges()) { 1464 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1465 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1466 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1467 } 1468 SlotIndex MIIdx = UseMI->isDebugValue() 1469 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1470 : LIS->getInstructionIndex(*UseMI); 1471 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1472 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1473 } 1474 1475 if (DstIsPhys) 1476 MO.substPhysReg(DstReg, *TRI); 1477 else 1478 MO.substVirtReg(DstReg, SubIdx, *TRI); 1479 } 1480 1481 DEBUG({ 1482 dbgs() << "\t\tupdated: "; 1483 if (!UseMI->isDebugValue()) 1484 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1485 dbgs() << *UseMI; 1486 }); 1487 } 1488 } 1489 1490 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1491 // Always join simple intervals that are defined by a single copy from a 1492 // reserved register. This doesn't increase register pressure, so it is 1493 // always beneficial. 1494 if (!MRI->isReserved(CP.getDstReg())) { 1495 DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1496 return false; 1497 } 1498 1499 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1500 if (JoinVInt.containsOneValue()) 1501 return true; 1502 1503 DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1504 return false; 1505 } 1506 1507 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1508 1509 Again = false; 1510 DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1511 1512 CoalescerPair CP(*TRI); 1513 if (!CP.setRegisters(CopyMI)) { 1514 DEBUG(dbgs() << "\tNot coalescable.\n"); 1515 return false; 1516 } 1517 1518 if (CP.getNewRC()) { 1519 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1520 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1521 unsigned SrcIdx = CP.getSrcIdx(); 1522 unsigned DstIdx = CP.getDstIdx(); 1523 if (CP.isFlipped()) { 1524 std::swap(SrcIdx, DstIdx); 1525 std::swap(SrcRC, DstRC); 1526 } 1527 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1528 CP.getNewRC())) { 1529 DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1530 return false; 1531 } 1532 } 1533 1534 // Dead code elimination. This really should be handled by MachineDCE, but 1535 // sometimes dead copies slip through, and we can't generate invalid live 1536 // ranges. 1537 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1538 DEBUG(dbgs() << "\tCopy is dead.\n"); 1539 DeadDefs.push_back(CopyMI); 1540 eliminateDeadDefs(); 1541 return true; 1542 } 1543 1544 // Eliminate undefs. 1545 if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) { 1546 LIS->RemoveMachineInstrFromMaps(*CopyMI); 1547 CopyMI->eraseFromParent(); 1548 return false; // Not coalescable. 1549 } 1550 1551 // Coalesced copies are normally removed immediately, but transformations 1552 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1553 // When that happens, just join the values and remove the copy. 1554 if (CP.getSrcReg() == CP.getDstReg()) { 1555 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1556 DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1557 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1558 LiveQueryResult LRQ = LI.Query(CopyIdx); 1559 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1560 VNInfo *ReadVNI = LRQ.valueIn(); 1561 assert(ReadVNI && "No value before copy and no <undef> flag."); 1562 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1563 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1564 1565 // Process subregister liveranges. 1566 for (LiveInterval::SubRange &S : LI.subranges()) { 1567 LiveQueryResult SLRQ = S.Query(CopyIdx); 1568 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1569 VNInfo *SReadVNI = SLRQ.valueIn(); 1570 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1571 } 1572 } 1573 DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1574 } 1575 LIS->RemoveMachineInstrFromMaps(*CopyMI); 1576 CopyMI->eraseFromParent(); 1577 return true; 1578 } 1579 1580 // Enforce policies. 1581 if (CP.isPhys()) { 1582 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI) 1583 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) 1584 << '\n'); 1585 if (!canJoinPhys(CP)) { 1586 // Before giving up coalescing, if definition of source is defined by 1587 // trivial computation, try rematerializing it. 1588 bool IsDefCopy; 1589 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1590 return true; 1591 if (IsDefCopy) 1592 Again = true; // May be possible to coalesce later. 1593 return false; 1594 } 1595 } else { 1596 // When possible, let DstReg be the larger interval. 1597 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1598 LIS->getInterval(CP.getDstReg()).size()) 1599 CP.flip(); 1600 1601 DEBUG({ 1602 dbgs() << "\tConsidering merging to " 1603 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1604 if (CP.getDstIdx() && CP.getSrcIdx()) 1605 dbgs() << PrintReg(CP.getDstReg()) << " in " 1606 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1607 << PrintReg(CP.getSrcReg()) << " in " 1608 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1609 else 1610 dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in " 1611 << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1612 }); 1613 } 1614 1615 ShrinkMask = LaneBitmask::getNone(); 1616 ShrinkMainRange = false; 1617 1618 // Okay, attempt to join these two intervals. On failure, this returns false. 1619 // Otherwise, if one of the intervals being joined is a physreg, this method 1620 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1621 // been modified, so we can use this information below to update aliases. 1622 if (!joinIntervals(CP)) { 1623 // Coalescing failed. 1624 1625 // If definition of source is defined by trivial computation, try 1626 // rematerializing it. 1627 bool IsDefCopy; 1628 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1629 return true; 1630 1631 // If we can eliminate the copy without merging the live segments, do so 1632 // now. 1633 if (!CP.isPartial() && !CP.isPhys()) { 1634 if (adjustCopiesBackFrom(CP, CopyMI) || 1635 removeCopyByCommutingDef(CP, CopyMI)) { 1636 LIS->RemoveMachineInstrFromMaps(*CopyMI); 1637 CopyMI->eraseFromParent(); 1638 DEBUG(dbgs() << "\tTrivial!\n"); 1639 return true; 1640 } 1641 } 1642 1643 // Try and see if we can partially eliminate the copy by moving the copy to 1644 // its predecessor. 1645 if (!CP.isPartial() && !CP.isPhys()) 1646 if (removePartialRedundancy(CP, *CopyMI)) 1647 return true; 1648 1649 // Otherwise, we are unable to join the intervals. 1650 DEBUG(dbgs() << "\tInterference!\n"); 1651 Again = true; // May be possible to coalesce later. 1652 return false; 1653 } 1654 1655 // Coalescing to a virtual register that is of a sub-register class of the 1656 // other. Make sure the resulting register is set to the right register class. 1657 if (CP.isCrossClass()) { 1658 ++numCrossRCs; 1659 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1660 } 1661 1662 // Removing sub-register copies can ease the register class constraints. 1663 // Make sure we attempt to inflate the register class of DstReg. 1664 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1665 InflateRegs.push_back(CP.getDstReg()); 1666 1667 // CopyMI has been erased by joinIntervals at this point. Remove it from 1668 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1669 // to the work list. This keeps ErasedInstrs from growing needlessly. 1670 ErasedInstrs.erase(CopyMI); 1671 1672 // Rewrite all SrcReg operands to DstReg. 1673 // Also update DstReg operands to include DstIdx if it is set. 1674 if (CP.getDstIdx()) 1675 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1676 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1677 1678 // Shrink subregister ranges if necessary. 1679 if (ShrinkMask.any()) { 1680 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1681 for (LiveInterval::SubRange &S : LI.subranges()) { 1682 if ((S.LaneMask & ShrinkMask).none()) 1683 continue; 1684 DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1685 << ")\n"); 1686 LIS->shrinkToUses(S, LI.reg); 1687 } 1688 LI.removeEmptySubRanges(); 1689 } 1690 if (ShrinkMainRange) { 1691 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1692 shrinkToUses(&LI); 1693 } 1694 1695 // SrcReg is guaranteed to be the register whose live interval that is 1696 // being merged. 1697 LIS->removeInterval(CP.getSrcReg()); 1698 1699 // Update regalloc hint. 1700 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1701 1702 DEBUG({ 1703 dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 1704 << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 1705 dbgs() << "\tResult = "; 1706 if (CP.isPhys()) 1707 dbgs() << PrintReg(CP.getDstReg(), TRI); 1708 else 1709 dbgs() << LIS->getInterval(CP.getDstReg()); 1710 dbgs() << '\n'; 1711 }); 1712 1713 ++numJoins; 1714 return true; 1715 } 1716 1717 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1718 unsigned DstReg = CP.getDstReg(); 1719 unsigned SrcReg = CP.getSrcReg(); 1720 assert(CP.isPhys() && "Must be a physreg copy"); 1721 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 1722 LiveInterval &RHS = LIS->getInterval(SrcReg); 1723 DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1724 1725 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 1726 1727 // Optimization for reserved registers like ESP. We can only merge with a 1728 // reserved physreg if RHS has a single value that is a copy of DstReg. 1729 // The live range of the reserved register will look like a set of dead defs 1730 // - we don't properly track the live range of reserved registers. 1731 1732 // Deny any overlapping intervals. This depends on all the reserved 1733 // register live ranges to look like dead defs. 1734 if (!MRI->isConstantPhysReg(DstReg)) { 1735 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1736 // Abort if not all the regunits are reserved. 1737 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 1738 if (!MRI->isReserved(*RI)) 1739 return false; 1740 } 1741 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1742 DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n'); 1743 return false; 1744 } 1745 } 1746 1747 // We must also check for overlaps with regmask clobbers. 1748 BitVector RegMaskUsable; 1749 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 1750 !RegMaskUsable.test(DstReg)) { 1751 DEBUG(dbgs() << "\t\tRegMask interference\n"); 1752 return false; 1753 } 1754 } 1755 1756 // Skip any value computations, we are not adding new values to the 1757 // reserved register. Also skip merging the live ranges, the reserved 1758 // register live range doesn't need to be accurate as long as all the 1759 // defs are there. 1760 1761 // Delete the identity copy. 1762 MachineInstr *CopyMI; 1763 if (CP.isFlipped()) { 1764 // Physreg is copied into vreg 1765 // %vregY = COPY %X 1766 // ... //< no other def of %X here 1767 // use %vregY 1768 // => 1769 // ... 1770 // use %X 1771 CopyMI = MRI->getVRegDef(SrcReg); 1772 } else { 1773 // VReg is copied into physreg: 1774 // %vregX = def 1775 // ... //< no other def or use of %Y here 1776 // %Y = COPY %vregX 1777 // => 1778 // %Y = def 1779 // ... 1780 if (!MRI->hasOneNonDBGUse(SrcReg)) { 1781 DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 1782 return false; 1783 } 1784 1785 if (!LIS->intervalIsInOneMBB(RHS)) { 1786 DEBUG(dbgs() << "\t\tComplex control flow!\n"); 1787 return false; 1788 } 1789 1790 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 1791 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 1792 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 1793 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 1794 1795 if (!MRI->isConstantPhysReg(DstReg)) { 1796 // We checked above that there are no interfering defs of the physical 1797 // register. However, for this case, where we intent to move up the def of 1798 // the physical register, we also need to check for interfering uses. 1799 SlotIndexes *Indexes = LIS->getSlotIndexes(); 1800 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 1801 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 1802 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 1803 if (MI->readsRegister(DstReg, TRI)) { 1804 DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 1805 return false; 1806 } 1807 } 1808 } 1809 1810 // We're going to remove the copy which defines a physical reserved 1811 // register, so remove its valno, etc. 1812 DEBUG(dbgs() << "\t\tRemoving phys reg def of " << PrintReg(DstReg, TRI) 1813 << " at " << CopyRegIdx << "\n"); 1814 1815 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 1816 // Create a new dead def at the new def location. 1817 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1818 LiveRange &LR = LIS->getRegUnit(*UI); 1819 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 1820 } 1821 } 1822 1823 LIS->RemoveMachineInstrFromMaps(*CopyMI); 1824 CopyMI->eraseFromParent(); 1825 1826 // We don't track kills for reserved registers. 1827 MRI->clearKillFlags(CP.getSrcReg()); 1828 1829 return true; 1830 } 1831 1832 //===----------------------------------------------------------------------===// 1833 // Interference checking and interval joining 1834 //===----------------------------------------------------------------------===// 1835 // 1836 // In the easiest case, the two live ranges being joined are disjoint, and 1837 // there is no interference to consider. It is quite common, though, to have 1838 // overlapping live ranges, and we need to check if the interference can be 1839 // resolved. 1840 // 1841 // The live range of a single SSA value forms a sub-tree of the dominator tree. 1842 // This means that two SSA values overlap if and only if the def of one value 1843 // is contained in the live range of the other value. As a special case, the 1844 // overlapping values can be defined at the same index. 1845 // 1846 // The interference from an overlapping def can be resolved in these cases: 1847 // 1848 // 1. Coalescable copies. The value is defined by a copy that would become an 1849 // identity copy after joining SrcReg and DstReg. The copy instruction will 1850 // be removed, and the value will be merged with the source value. 1851 // 1852 // There can be several copies back and forth, causing many values to be 1853 // merged into one. We compute a list of ultimate values in the joined live 1854 // range as well as a mappings from the old value numbers. 1855 // 1856 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 1857 // predecessors have a live out value. It doesn't cause real interference, 1858 // and can be merged into the value it overlaps. Like a coalescable copy, it 1859 // can be erased after joining. 1860 // 1861 // 3. Copy of external value. The overlapping def may be a copy of a value that 1862 // is already in the other register. This is like a coalescable copy, but 1863 // the live range of the source register must be trimmed after erasing the 1864 // copy instruction: 1865 // 1866 // %src = COPY %ext 1867 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 1868 // 1869 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 1870 // defining one lane at a time: 1871 // 1872 // %dst:ssub0<def,read-undef> = FOO 1873 // %src = BAR 1874 // %dst:ssub1<def> = COPY %src 1875 // 1876 // The live range of %src overlaps the %dst value defined by FOO, but 1877 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 1878 // which was undef anyway. 1879 // 1880 // The value mapping is more complicated in this case. The final live range 1881 // will have different value numbers for both FOO and BAR, but there is no 1882 // simple mapping from old to new values. It may even be necessary to add 1883 // new PHI values. 1884 // 1885 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 1886 // is live, but never read. This can happen because we don't compute 1887 // individual live ranges per lane. 1888 // 1889 // %dst<def> = FOO 1890 // %src = BAR 1891 // %dst:ssub1<def> = COPY %src 1892 // 1893 // This kind of interference is only resolved locally. If the clobbered 1894 // lane value escapes the block, the join is aborted. 1895 1896 namespace { 1897 /// Track information about values in a single virtual register about to be 1898 /// joined. Objects of this class are always created in pairs - one for each 1899 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 1900 /// pair) 1901 class JoinVals { 1902 /// Live range we work on. 1903 LiveRange &LR; 1904 /// (Main) register we work on. 1905 const unsigned Reg; 1906 1907 /// Reg (and therefore the values in this liverange) will end up as 1908 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 1909 /// CP.SrcIdx. 1910 const unsigned SubIdx; 1911 /// The LaneMask that this liverange will occupy the coalesced register. May 1912 /// be smaller than the lanemask produced by SubIdx when merging subranges. 1913 const LaneBitmask LaneMask; 1914 1915 /// This is true when joining sub register ranges, false when joining main 1916 /// ranges. 1917 const bool SubRangeJoin; 1918 /// Whether the current LiveInterval tracks subregister liveness. 1919 const bool TrackSubRegLiveness; 1920 1921 /// Values that will be present in the final live range. 1922 SmallVectorImpl<VNInfo*> &NewVNInfo; 1923 1924 const CoalescerPair &CP; 1925 LiveIntervals *LIS; 1926 SlotIndexes *Indexes; 1927 const TargetRegisterInfo *TRI; 1928 1929 /// Value number assignments. Maps value numbers in LI to entries in 1930 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 1931 SmallVector<int, 8> Assignments; 1932 1933 /// Conflict resolution for overlapping values. 1934 enum ConflictResolution { 1935 /// No overlap, simply keep this value. 1936 CR_Keep, 1937 1938 /// Merge this value into OtherVNI and erase the defining instruction. 1939 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 1940 /// values. 1941 CR_Erase, 1942 1943 /// Merge this value into OtherVNI but keep the defining instruction. 1944 /// This is for the special case where OtherVNI is defined by the same 1945 /// instruction. 1946 CR_Merge, 1947 1948 /// Keep this value, and have it replace OtherVNI where possible. This 1949 /// complicates value mapping since OtherVNI maps to two different values 1950 /// before and after this def. 1951 /// Used when clobbering undefined or dead lanes. 1952 CR_Replace, 1953 1954 /// Unresolved conflict. Visit later when all values have been mapped. 1955 CR_Unresolved, 1956 1957 /// Unresolvable conflict. Abort the join. 1958 CR_Impossible 1959 }; 1960 1961 /// Per-value info for LI. The lane bit masks are all relative to the final 1962 /// joined register, so they can be compared directly between SrcReg and 1963 /// DstReg. 1964 struct Val { 1965 ConflictResolution Resolution; 1966 1967 /// Lanes written by this def, 0 for unanalyzed values. 1968 LaneBitmask WriteLanes; 1969 1970 /// Lanes with defined values in this register. Other lanes are undef and 1971 /// safe to clobber. 1972 LaneBitmask ValidLanes; 1973 1974 /// Value in LI being redefined by this def. 1975 VNInfo *RedefVNI; 1976 1977 /// Value in the other live range that overlaps this def, if any. 1978 VNInfo *OtherVNI; 1979 1980 /// Is this value an IMPLICIT_DEF that can be erased? 1981 /// 1982 /// IMPLICIT_DEF values should only exist at the end of a basic block that 1983 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 1984 /// safely erased if they are overlapping a live value in the other live 1985 /// interval. 1986 /// 1987 /// Weird control flow graphs and incomplete PHI handling in 1988 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 1989 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 1990 /// normal values. 1991 bool ErasableImplicitDef; 1992 1993 /// True when the live range of this value will be pruned because of an 1994 /// overlapping CR_Replace value in the other live range. 1995 bool Pruned; 1996 1997 /// True once Pruned above has been computed. 1998 bool PrunedComputed; 1999 2000 Val() : Resolution(CR_Keep), WriteLanes(), ValidLanes(), 2001 RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false), 2002 Pruned(false), PrunedComputed(false) {} 2003 2004 bool isAnalyzed() const { return WriteLanes.any(); } 2005 }; 2006 2007 /// One entry per value number in LI. 2008 SmallVector<Val, 8> Vals; 2009 2010 /// Compute the bitmask of lanes actually written by DefMI. 2011 /// Set Redef if there are any partial register definitions that depend on the 2012 /// previous value of the register. 2013 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2014 2015 /// Find the ultimate value that VNI was copied from. 2016 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 2017 2018 bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const; 2019 2020 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2021 /// Return a conflict resolution when possible, but leave the hard cases as 2022 /// CR_Unresolved. 2023 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2024 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2025 /// The recursion always goes upwards in the dominator tree, making loops 2026 /// impossible. 2027 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2028 2029 /// Compute the value assignment for ValNo in RI. 2030 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2031 /// the stack. 2032 void computeAssignment(unsigned ValNo, JoinVals &Other); 2033 2034 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2035 /// the extent of the tainted lanes in the block. 2036 /// 2037 /// Multiple values in Other.LR can be affected since partial redefinitions 2038 /// can preserve previously tainted lanes. 2039 /// 2040 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2041 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2042 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2043 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2044 /// 2045 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2046 /// entry to TaintedVals. 2047 /// 2048 /// Returns false if the tainted lanes extend beyond the basic block. 2049 bool taintExtent(unsigned, LaneBitmask, JoinVals&, 2050 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> >&); 2051 2052 /// Return true if MI uses any of the given Lanes from Reg. 2053 /// This does not include partial redefinitions of Reg. 2054 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; 2055 2056 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2057 /// be pruned: 2058 /// 2059 /// %dst = COPY %src 2060 /// %src = COPY %dst <-- This value to be pruned. 2061 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2062 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2063 2064 public: 2065 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 2066 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 2067 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2068 bool TrackSubRegLiveness) 2069 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2070 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2071 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2072 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) 2073 {} 2074 2075 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2076 /// Returns false if any conflicts were impossible to resolve. 2077 bool mapValues(JoinVals &Other); 2078 2079 /// Try to resolve conflicts that require all values to be mapped. 2080 /// Returns false if any conflicts were impossible to resolve. 2081 bool resolveConflicts(JoinVals &Other); 2082 2083 /// Prune the live range of values in Other.LR where they would conflict with 2084 /// CR_Replace values in LR. Collect end points for restoring the live range 2085 /// after joining. 2086 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2087 bool changeInstrs); 2088 2089 /// Removes subranges starting at copies that get removed. This sometimes 2090 /// happens when undefined subranges are copied around. These ranges contain 2091 /// no useful information and can be removed. 2092 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2093 2094 /// Pruning values in subranges can lead to removing segments in these 2095 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2096 /// the main range also need to be removed. This function will mark 2097 /// the corresponding values in the main range as pruned, so that 2098 /// eraseInstrs can do the final cleanup. 2099 /// The parameter @p LI must be the interval whose main range is the 2100 /// live range LR. 2101 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2102 2103 /// Erase any machine instructions that have been coalesced away. 2104 /// Add erased instructions to ErasedInstrs. 2105 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2106 /// the erased instrs. 2107 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2108 SmallVectorImpl<unsigned> &ShrinkRegs, 2109 LiveInterval *LI = nullptr); 2110 2111 /// Remove liverange defs at places where implicit defs will be removed. 2112 void removeImplicitDefs(); 2113 2114 /// Get the value assignments suitable for passing to LiveInterval::join. 2115 const int *getAssignments() const { return Assignments.data(); } 2116 }; 2117 } // end anonymous namespace 2118 2119 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2120 const { 2121 LaneBitmask L; 2122 for (const MachineOperand &MO : DefMI->operands()) { 2123 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2124 continue; 2125 L |= TRI->getSubRegIndexLaneMask( 2126 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2127 if (MO.readsReg()) 2128 Redef = true; 2129 } 2130 return L; 2131 } 2132 2133 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 2134 const VNInfo *VNI) const { 2135 unsigned Reg = this->Reg; 2136 2137 while (!VNI->isPHIDef()) { 2138 SlotIndex Def = VNI->def; 2139 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2140 assert(MI && "No defining instruction"); 2141 if (!MI->isFullCopy()) 2142 return std::make_pair(VNI, Reg); 2143 unsigned SrcReg = MI->getOperand(1).getReg(); 2144 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 2145 return std::make_pair(VNI, Reg); 2146 2147 const LiveInterval &LI = LIS->getInterval(SrcReg); 2148 const VNInfo *ValueIn; 2149 // No subrange involved. 2150 if (!SubRangeJoin || !LI.hasSubRanges()) { 2151 LiveQueryResult LRQ = LI.Query(Def); 2152 ValueIn = LRQ.valueIn(); 2153 } else { 2154 // Query subranges. Pick the first matching one. 2155 ValueIn = nullptr; 2156 for (const LiveInterval::SubRange &S : LI.subranges()) { 2157 // Transform lanemask to a mask in the joined live interval. 2158 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2159 if ((SMask & LaneMask).none()) 2160 continue; 2161 LiveQueryResult LRQ = S.Query(Def); 2162 ValueIn = LRQ.valueIn(); 2163 break; 2164 } 2165 } 2166 if (ValueIn == nullptr) 2167 break; 2168 VNI = ValueIn; 2169 Reg = SrcReg; 2170 } 2171 return std::make_pair(VNI, Reg); 2172 } 2173 2174 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2175 const JoinVals &Other) const { 2176 const VNInfo *Orig0; 2177 unsigned Reg0; 2178 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2179 if (Orig0 == Value1) 2180 return true; 2181 2182 const VNInfo *Orig1; 2183 unsigned Reg1; 2184 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2185 2186 // The values are equal if they are defined at the same place and use the 2187 // same register. Note that we cannot compare VNInfos directly as some of 2188 // them might be from a copy created in mergeSubRangeInto() while the other 2189 // is from the original LiveInterval. 2190 return Orig0->def == Orig1->def && Reg0 == Reg1; 2191 } 2192 2193 JoinVals::ConflictResolution 2194 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2195 Val &V = Vals[ValNo]; 2196 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2197 VNInfo *VNI = LR.getValNumInfo(ValNo); 2198 if (VNI->isUnused()) { 2199 V.WriteLanes = LaneBitmask::getAll(); 2200 return CR_Keep; 2201 } 2202 2203 // Get the instruction defining this value, compute the lanes written. 2204 const MachineInstr *DefMI = nullptr; 2205 if (VNI->isPHIDef()) { 2206 // Conservatively assume that all lanes in a PHI are valid. 2207 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask(1) 2208 : TRI->getSubRegIndexLaneMask(SubIdx); 2209 V.ValidLanes = V.WriteLanes = Lanes; 2210 } else { 2211 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2212 assert(DefMI != nullptr); 2213 if (SubRangeJoin) { 2214 // We don't care about the lanes when joining subregister ranges. 2215 V.WriteLanes = V.ValidLanes = LaneBitmask(1); 2216 if (DefMI->isImplicitDef()) { 2217 V.ValidLanes = LaneBitmask::getNone(); 2218 V.ErasableImplicitDef = true; 2219 } 2220 } else { 2221 bool Redef = false; 2222 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2223 2224 // If this is a read-modify-write instruction, there may be more valid 2225 // lanes than the ones written by this instruction. 2226 // This only covers partial redef operands. DefMI may have normal use 2227 // operands reading the register. They don't contribute valid lanes. 2228 // 2229 // This adds ssub1 to the set of valid lanes in %src: 2230 // 2231 // %src:ssub1<def> = FOO 2232 // 2233 // This leaves only ssub1 valid, making any other lanes undef: 2234 // 2235 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2236 // 2237 // The <read-undef> flag on the def operand means that old lane values are 2238 // not important. 2239 if (Redef) { 2240 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2241 assert((TrackSubRegLiveness || V.RedefVNI) && 2242 "Instruction is reading nonexistent value"); 2243 if (V.RedefVNI != nullptr) { 2244 computeAssignment(V.RedefVNI->id, Other); 2245 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2246 } 2247 } 2248 2249 // An IMPLICIT_DEF writes undef values. 2250 if (DefMI->isImplicitDef()) { 2251 // We normally expect IMPLICIT_DEF values to be live only until the end 2252 // of their block. If the value is really live longer and gets pruned in 2253 // another block, this flag is cleared again. 2254 V.ErasableImplicitDef = true; 2255 V.ValidLanes &= ~V.WriteLanes; 2256 } 2257 } 2258 } 2259 2260 // Find the value in Other that overlaps VNI->def, if any. 2261 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2262 2263 // It is possible that both values are defined by the same instruction, or 2264 // the values are PHIs defined in the same block. When that happens, the two 2265 // values should be merged into one, but not into any preceding value. 2266 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2267 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2268 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2269 2270 // One value stays, the other is merged. Keep the earlier one, or the first 2271 // one we see. 2272 if (OtherVNI->def < VNI->def) 2273 Other.computeAssignment(OtherVNI->id, *this); 2274 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2275 // This is an early-clobber def overlapping a live-in value in the other 2276 // register. Not mergeable. 2277 V.OtherVNI = OtherLRQ.valueIn(); 2278 return CR_Impossible; 2279 } 2280 V.OtherVNI = OtherVNI; 2281 Val &OtherV = Other.Vals[OtherVNI->id]; 2282 // Keep this value, check for conflicts when analyzing OtherVNI. 2283 if (!OtherV.isAnalyzed()) 2284 return CR_Keep; 2285 // Both sides have been analyzed now. 2286 // Allow overlapping PHI values. Any real interference would show up in a 2287 // predecessor, the PHI itself can't introduce any conflicts. 2288 if (VNI->isPHIDef()) 2289 return CR_Merge; 2290 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2291 // Overlapping lanes can't be resolved. 2292 return CR_Impossible; 2293 else 2294 return CR_Merge; 2295 } 2296 2297 // No simultaneous def. Is Other live at the def? 2298 V.OtherVNI = OtherLRQ.valueIn(); 2299 if (!V.OtherVNI) 2300 // No overlap, no conflict. 2301 return CR_Keep; 2302 2303 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2304 2305 // We have overlapping values, or possibly a kill of Other. 2306 // Recursively compute assignments up the dominator tree. 2307 Other.computeAssignment(V.OtherVNI->id, *this); 2308 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2309 2310 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2311 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2312 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2313 // technically. 2314 // 2315 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2316 // to erase the IMPLICIT_DEF instruction. 2317 if (OtherV.ErasableImplicitDef && DefMI && 2318 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2319 DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2320 << " extends into BB#" << DefMI->getParent()->getNumber() 2321 << ", keeping it.\n"); 2322 OtherV.ErasableImplicitDef = false; 2323 } 2324 2325 // Allow overlapping PHI values. Any real interference would show up in a 2326 // predecessor, the PHI itself can't introduce any conflicts. 2327 if (VNI->isPHIDef()) 2328 return CR_Replace; 2329 2330 // Check for simple erasable conflicts. 2331 if (DefMI->isImplicitDef()) { 2332 // We need the def for the subregister if there is nothing else live at the 2333 // subrange at this point. 2334 if (TrackSubRegLiveness 2335 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none()) 2336 return CR_Replace; 2337 return CR_Erase; 2338 } 2339 2340 // Include the non-conflict where DefMI is a coalescable copy that kills 2341 // OtherVNI. We still want the copy erased and value numbers merged. 2342 if (CP.isCoalescable(DefMI)) { 2343 // Some of the lanes copied from OtherVNI may be undef, making them undef 2344 // here too. 2345 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2346 return CR_Erase; 2347 } 2348 2349 // This may not be a real conflict if DefMI simply kills Other and defines 2350 // VNI. 2351 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2352 return CR_Keep; 2353 2354 // Handle the case where VNI and OtherVNI can be proven to be identical: 2355 // 2356 // %other = COPY %ext 2357 // %this = COPY %ext <-- Erase this copy 2358 // 2359 if (DefMI->isFullCopy() && !CP.isPartial() 2360 && valuesIdentical(VNI, V.OtherVNI, Other)) 2361 return CR_Erase; 2362 2363 // If the lanes written by this instruction were all undef in OtherVNI, it is 2364 // still safe to join the live ranges. This can't be done with a simple value 2365 // mapping, though - OtherVNI will map to multiple values: 2366 // 2367 // 1 %dst:ssub0 = FOO <-- OtherVNI 2368 // 2 %src = BAR <-- VNI 2369 // 3 %dst:ssub1 = COPY %src<kill> <-- Eliminate this copy. 2370 // 4 BAZ %dst<kill> 2371 // 5 QUUX %src<kill> 2372 // 2373 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2374 // handles this complex value mapping. 2375 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2376 return CR_Replace; 2377 2378 // If the other live range is killed by DefMI and the live ranges are still 2379 // overlapping, it must be because we're looking at an early clobber def: 2380 // 2381 // %dst<def,early-clobber> = ASM %src<kill> 2382 // 2383 // In this case, it is illegal to merge the two live ranges since the early 2384 // clobber def would clobber %src before it was read. 2385 if (OtherLRQ.isKill()) { 2386 // This case where the def doesn't overlap the kill is handled above. 2387 assert(VNI->def.isEarlyClobber() && 2388 "Only early clobber defs can overlap a kill"); 2389 return CR_Impossible; 2390 } 2391 2392 // VNI is clobbering live lanes in OtherVNI, but there is still the 2393 // possibility that no instructions actually read the clobbered lanes. 2394 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2395 // Otherwise Other.RI wouldn't be live here. 2396 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2397 return CR_Impossible; 2398 2399 // We need to verify that no instructions are reading the clobbered lanes. To 2400 // save compile time, we'll only check that locally. Don't allow the tainted 2401 // value to escape the basic block. 2402 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2403 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2404 return CR_Impossible; 2405 2406 // There are still some things that could go wrong besides clobbered lanes 2407 // being read, for example OtherVNI may be only partially redefined in MBB, 2408 // and some clobbered lanes could escape the block. Save this analysis for 2409 // resolveConflicts() when all values have been mapped. We need to know 2410 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2411 // that now - the recursive analyzeValue() calls must go upwards in the 2412 // dominator tree. 2413 return CR_Unresolved; 2414 } 2415 2416 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2417 Val &V = Vals[ValNo]; 2418 if (V.isAnalyzed()) { 2419 // Recursion should always move up the dominator tree, so ValNo is not 2420 // supposed to reappear before it has been assigned. 2421 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2422 return; 2423 } 2424 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2425 case CR_Erase: 2426 case CR_Merge: 2427 // Merge this ValNo into OtherVNI. 2428 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2429 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2430 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2431 DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@' 2432 << LR.getValNumInfo(ValNo)->def << " into " 2433 << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2434 << V.OtherVNI->def << " --> @" 2435 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2436 break; 2437 case CR_Replace: 2438 case CR_Unresolved: { 2439 // The other value is going to be pruned if this join is successful. 2440 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2441 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2442 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2443 // its lanes. 2444 if ((OtherV.WriteLanes & ~V.ValidLanes).any() && TrackSubRegLiveness) 2445 OtherV.ErasableImplicitDef = false; 2446 OtherV.Pruned = true; 2447 LLVM_FALLTHROUGH; 2448 } 2449 default: 2450 // This value number needs to go in the final joined live range. 2451 Assignments[ValNo] = NewVNInfo.size(); 2452 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2453 break; 2454 } 2455 } 2456 2457 bool JoinVals::mapValues(JoinVals &Other) { 2458 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2459 computeAssignment(i, Other); 2460 if (Vals[i].Resolution == CR_Impossible) { 2461 DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i 2462 << '@' << LR.getValNumInfo(i)->def << '\n'); 2463 return false; 2464 } 2465 } 2466 return true; 2467 } 2468 2469 bool JoinVals:: 2470 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2471 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> > &TaintExtent) { 2472 VNInfo *VNI = LR.getValNumInfo(ValNo); 2473 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2474 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2475 2476 // Scan Other.LR from VNI.def to MBBEnd. 2477 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2478 assert(OtherI != Other.LR.end() && "No conflict?"); 2479 do { 2480 // OtherI is pointing to a tainted value. Abort the join if the tainted 2481 // lanes escape the block. 2482 SlotIndex End = OtherI->end; 2483 if (End >= MBBEnd) { 2484 DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':' 2485 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2486 return false; 2487 } 2488 DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':' 2489 << OtherI->valno->id << '@' << OtherI->start 2490 << " to " << End << '\n'); 2491 // A dead def is not a problem. 2492 if (End.isDead()) 2493 break; 2494 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2495 2496 // Check for another def in the MBB. 2497 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2498 break; 2499 2500 // Lanes written by the new def are no longer tainted. 2501 const Val &OV = Other.Vals[OtherI->valno->id]; 2502 TaintedLanes &= ~OV.WriteLanes; 2503 if (!OV.RedefVNI) 2504 break; 2505 } while (TaintedLanes.any()); 2506 return true; 2507 } 2508 2509 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, 2510 LaneBitmask Lanes) const { 2511 if (MI.isDebugValue()) 2512 return false; 2513 for (const MachineOperand &MO : MI.operands()) { 2514 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2515 continue; 2516 if (!MO.readsReg()) 2517 continue; 2518 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2519 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2520 return true; 2521 } 2522 return false; 2523 } 2524 2525 bool JoinVals::resolveConflicts(JoinVals &Other) { 2526 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2527 Val &V = Vals[i]; 2528 assert (V.Resolution != CR_Impossible && "Unresolvable conflict"); 2529 if (V.Resolution != CR_Unresolved) 2530 continue; 2531 DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i 2532 << '@' << LR.getValNumInfo(i)->def << '\n'); 2533 if (SubRangeJoin) 2534 return false; 2535 2536 ++NumLaneConflicts; 2537 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2538 VNInfo *VNI = LR.getValNumInfo(i); 2539 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2540 2541 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2542 // join, those lanes will be tainted with a wrong value. Get the extent of 2543 // the tainted lanes. 2544 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2545 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2546 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2547 // Tainted lanes would extend beyond the basic block. 2548 return false; 2549 2550 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2551 2552 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2553 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2554 MachineBasicBlock::iterator MI = MBB->begin(); 2555 if (!VNI->isPHIDef()) { 2556 MI = Indexes->getInstructionFromIndex(VNI->def); 2557 // No need to check the instruction defining VNI for reads. 2558 ++MI; 2559 } 2560 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2561 "Interference ends on VNI->def. Should have been handled earlier"); 2562 MachineInstr *LastMI = 2563 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2564 assert(LastMI && "Range must end at a proper instruction"); 2565 unsigned TaintNum = 0; 2566 for (;;) { 2567 assert(MI != MBB->end() && "Bad LastMI"); 2568 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2569 DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2570 return false; 2571 } 2572 // LastMI is the last instruction to use the current value. 2573 if (&*MI == LastMI) { 2574 if (++TaintNum == TaintExtent.size()) 2575 break; 2576 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2577 assert(LastMI && "Range must end at a proper instruction"); 2578 TaintedLanes = TaintExtent[TaintNum].second; 2579 } 2580 ++MI; 2581 } 2582 2583 // The tainted lanes are unused. 2584 V.Resolution = CR_Replace; 2585 ++NumLaneResolves; 2586 } 2587 return true; 2588 } 2589 2590 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2591 Val &V = Vals[ValNo]; 2592 if (V.Pruned || V.PrunedComputed) 2593 return V.Pruned; 2594 2595 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2596 return V.Pruned; 2597 2598 // Follow copies up the dominator tree and check if any intermediate value 2599 // has been pruned. 2600 V.PrunedComputed = true; 2601 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2602 return V.Pruned; 2603 } 2604 2605 void JoinVals::pruneValues(JoinVals &Other, 2606 SmallVectorImpl<SlotIndex> &EndPoints, 2607 bool changeInstrs) { 2608 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2609 SlotIndex Def = LR.getValNumInfo(i)->def; 2610 switch (Vals[i].Resolution) { 2611 case CR_Keep: 2612 break; 2613 case CR_Replace: { 2614 // This value takes precedence over the value in Other.LR. 2615 LIS->pruneValue(Other.LR, Def, &EndPoints); 2616 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2617 // instructions are only inserted to provide a live-out value for PHI 2618 // predecessors, so the instruction should simply go away once its value 2619 // has been replaced. 2620 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2621 bool EraseImpDef = OtherV.ErasableImplicitDef && 2622 OtherV.Resolution == CR_Keep; 2623 if (!Def.isBlock()) { 2624 if (changeInstrs) { 2625 // Remove <def,read-undef> flags. This def is now a partial redef. 2626 // Also remove <def,dead> flags since the joined live range will 2627 // continue past this instruction. 2628 for (MachineOperand &MO : 2629 Indexes->getInstructionFromIndex(Def)->operands()) { 2630 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 2631 if (MO.getSubReg() != 0) 2632 MO.setIsUndef(EraseImpDef); 2633 MO.setIsDead(false); 2634 } 2635 } 2636 } 2637 // This value will reach instructions below, but we need to make sure 2638 // the live range also reaches the instruction at Def. 2639 if (!EraseImpDef) 2640 EndPoints.push_back(Def); 2641 } 2642 DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def 2643 << ": " << Other.LR << '\n'); 2644 break; 2645 } 2646 case CR_Erase: 2647 case CR_Merge: 2648 if (isPrunedValue(i, Other)) { 2649 // This value is ultimately a copy of a pruned value in LR or Other.LR. 2650 // We can no longer trust the value mapping computed by 2651 // computeAssignment(), the value that was originally copied could have 2652 // been replaced. 2653 LIS->pruneValue(LR, Def, &EndPoints); 2654 DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at " 2655 << Def << ": " << LR << '\n'); 2656 } 2657 break; 2658 case CR_Unresolved: 2659 case CR_Impossible: 2660 llvm_unreachable("Unresolved conflicts"); 2661 } 2662 } 2663 } 2664 2665 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 2666 // Look for values being erased. 2667 bool DidPrune = false; 2668 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2669 // We should trigger in all cases in which eraseInstrs() does something. 2670 // match what eraseInstrs() is doing, print a message so 2671 if (Vals[i].Resolution != CR_Erase && 2672 (Vals[i].Resolution != CR_Keep || !Vals[i].ErasableImplicitDef || 2673 !Vals[i].Pruned)) 2674 continue; 2675 2676 // Check subranges at the point where the copy will be removed. 2677 SlotIndex Def = LR.getValNumInfo(i)->def; 2678 // Print message so mismatches with eraseInstrs() can be diagnosed. 2679 DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def << '\n'); 2680 for (LiveInterval::SubRange &S : LI.subranges()) { 2681 LiveQueryResult Q = S.Query(Def); 2682 2683 // If a subrange starts at the copy then an undefined value has been 2684 // copied and we must remove that subrange value as well. 2685 VNInfo *ValueOut = Q.valueOutOrDead(); 2686 if (ValueOut != nullptr && Q.valueIn() == nullptr) { 2687 DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 2688 << " at " << Def << "\n"); 2689 LIS->pruneValue(S, Def, nullptr); 2690 DidPrune = true; 2691 // Mark value number as unused. 2692 ValueOut->markUnused(); 2693 continue; 2694 } 2695 // If a subrange ends at the copy, then a value was copied but only 2696 // partially used later. Shrink the subregister range appropriately. 2697 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 2698 DEBUG(dbgs() << "\t\tDead uses at sublane " << PrintLaneMask(S.LaneMask) 2699 << " at " << Def << "\n"); 2700 ShrinkMask |= S.LaneMask; 2701 } 2702 } 2703 } 2704 if (DidPrune) 2705 LI.removeEmptySubRanges(); 2706 } 2707 2708 /// Check if any of the subranges of @p LI contain a definition at @p Def. 2709 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 2710 for (LiveInterval::SubRange &SR : LI.subranges()) { 2711 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 2712 if (VNI->def == Def) 2713 return true; 2714 } 2715 return false; 2716 } 2717 2718 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 2719 assert(&static_cast<LiveRange&>(LI) == &LR); 2720 2721 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2722 if (Vals[i].Resolution != CR_Keep) 2723 continue; 2724 VNInfo *VNI = LR.getValNumInfo(i); 2725 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 2726 continue; 2727 Vals[i].Pruned = true; 2728 ShrinkMainRange = true; 2729 } 2730 } 2731 2732 void JoinVals::removeImplicitDefs() { 2733 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2734 Val &V = Vals[i]; 2735 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 2736 continue; 2737 2738 VNInfo *VNI = LR.getValNumInfo(i); 2739 VNI->markUnused(); 2740 LR.removeValNo(VNI); 2741 } 2742 } 2743 2744 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2745 SmallVectorImpl<unsigned> &ShrinkRegs, 2746 LiveInterval *LI) { 2747 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2748 // Get the def location before markUnused() below invalidates it. 2749 SlotIndex Def = LR.getValNumInfo(i)->def; 2750 switch (Vals[i].Resolution) { 2751 case CR_Keep: { 2752 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 2753 // longer. The IMPLICIT_DEF instructions are only inserted by 2754 // PHIElimination to guarantee that all PHI predecessors have a value. 2755 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 2756 break; 2757 // Remove value number i from LR. 2758 // For intervals with subranges, removing a segment from the main range 2759 // may require extending the previous segment: for each definition of 2760 // a subregister, there will be a corresponding def in the main range. 2761 // That def may fall in the middle of a segment from another subrange. 2762 // In such cases, removing this def from the main range must be 2763 // complemented by extending the main range to account for the liveness 2764 // of the other subrange. 2765 VNInfo *VNI = LR.getValNumInfo(i); 2766 SlotIndex Def = VNI->def; 2767 // The new end point of the main range segment to be extended. 2768 SlotIndex NewEnd; 2769 if (LI != nullptr) { 2770 LiveRange::iterator I = LR.FindSegmentContaining(Def); 2771 assert(I != LR.end()); 2772 // Do not extend beyond the end of the segment being removed. 2773 // The segment may have been pruned in preparation for joining 2774 // live ranges. 2775 NewEnd = I->end; 2776 } 2777 2778 LR.removeValNo(VNI); 2779 // Note that this VNInfo is reused and still referenced in NewVNInfo, 2780 // make it appear like an unused value number. 2781 VNI->markUnused(); 2782 2783 if (LI != nullptr && LI->hasSubRanges()) { 2784 assert(static_cast<LiveRange*>(LI) == &LR); 2785 // Determine the end point based on the subrange information: 2786 // minimum of (earliest def of next segment, 2787 // latest end point of containing segment) 2788 SlotIndex ED, LE; 2789 for (LiveInterval::SubRange &SR : LI->subranges()) { 2790 LiveRange::iterator I = SR.find(Def); 2791 if (I == SR.end()) 2792 continue; 2793 if (I->start > Def) 2794 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 2795 else 2796 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 2797 } 2798 if (LE.isValid()) 2799 NewEnd = std::min(NewEnd, LE); 2800 if (ED.isValid()) 2801 NewEnd = std::min(NewEnd, ED); 2802 2803 // We only want to do the extension if there was a subrange that 2804 // was live across Def. 2805 if (LE.isValid()) { 2806 LiveRange::iterator S = LR.find(Def); 2807 if (S != LR.begin()) 2808 std::prev(S)->end = NewEnd; 2809 } 2810 } 2811 DEBUG({ 2812 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 2813 if (LI != nullptr) 2814 dbgs() << "\t\t LHS = " << *LI << '\n'; 2815 }); 2816 LLVM_FALLTHROUGH; 2817 } 2818 2819 case CR_Erase: { 2820 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2821 assert(MI && "No instruction to erase"); 2822 if (MI->isCopy()) { 2823 unsigned Reg = MI->getOperand(1).getReg(); 2824 if (TargetRegisterInfo::isVirtualRegister(Reg) && 2825 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 2826 ShrinkRegs.push_back(Reg); 2827 } 2828 ErasedInstrs.insert(MI); 2829 DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 2830 LIS->RemoveMachineInstrFromMaps(*MI); 2831 MI->eraseFromParent(); 2832 break; 2833 } 2834 default: 2835 break; 2836 } 2837 } 2838 } 2839 2840 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 2841 LaneBitmask LaneMask, 2842 const CoalescerPair &CP) { 2843 SmallVector<VNInfo*, 16> NewVNInfo; 2844 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 2845 NewVNInfo, CP, LIS, TRI, true, true); 2846 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 2847 NewVNInfo, CP, LIS, TRI, true, true); 2848 2849 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 2850 // We should be able to resolve all conflicts here as we could successfully do 2851 // it on the mainrange already. There is however a problem when multiple 2852 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 2853 // interferences. 2854 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 2855 // We already determined that it is legal to merge the intervals, so this 2856 // should never fail. 2857 llvm_unreachable("*** Couldn't join subrange!\n"); 2858 } 2859 if (!LHSVals.resolveConflicts(RHSVals) || 2860 !RHSVals.resolveConflicts(LHSVals)) { 2861 // We already determined that it is legal to merge the intervals, so this 2862 // should never fail. 2863 llvm_unreachable("*** Couldn't join subrange!\n"); 2864 } 2865 2866 // The merging algorithm in LiveInterval::join() can't handle conflicting 2867 // value mappings, so we need to remove any live ranges that overlap a 2868 // CR_Replace resolution. Collect a set of end points that can be used to 2869 // restore the live range after joining. 2870 SmallVector<SlotIndex, 8> EndPoints; 2871 LHSVals.pruneValues(RHSVals, EndPoints, false); 2872 RHSVals.pruneValues(LHSVals, EndPoints, false); 2873 2874 LHSVals.removeImplicitDefs(); 2875 RHSVals.removeImplicitDefs(); 2876 2877 LRange.verify(); 2878 RRange.verify(); 2879 2880 // Join RRange into LHS. 2881 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 2882 NewVNInfo); 2883 2884 DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n"); 2885 if (EndPoints.empty()) 2886 return; 2887 2888 // Recompute the parts of the live range we had to remove because of 2889 // CR_Replace conflicts. 2890 DEBUG({ 2891 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 2892 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 2893 dbgs() << EndPoints[i]; 2894 if (i != n-1) 2895 dbgs() << ','; 2896 } 2897 dbgs() << ": " << LRange << '\n'; 2898 }); 2899 LIS->extendToIndices(LRange, EndPoints); 2900 } 2901 2902 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 2903 const LiveRange &ToMerge, 2904 LaneBitmask LaneMask, 2905 CoalescerPair &CP) { 2906 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2907 LI.refineSubRanges(Allocator, LaneMask, 2908 [this,&Allocator,&ToMerge,&CP](LiveInterval::SubRange &SR) { 2909 if (SR.empty()) { 2910 SR.assign(ToMerge, Allocator); 2911 } else { 2912 // joinSubRegRange() destroys the merged range, so we need a copy. 2913 LiveRange RangeCopy(ToMerge, Allocator); 2914 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 2915 } 2916 }); 2917 } 2918 2919 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 2920 SmallVector<VNInfo*, 16> NewVNInfo; 2921 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 2922 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 2923 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 2924 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 2925 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 2926 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 2927 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 2928 2929 DEBUG(dbgs() << "\t\tRHS = " << RHS 2930 << "\n\t\tLHS = " << LHS 2931 << '\n'); 2932 2933 // First compute NewVNInfo and the simple value mappings. 2934 // Detect impossible conflicts early. 2935 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 2936 return false; 2937 2938 // Some conflicts can only be resolved after all values have been mapped. 2939 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 2940 return false; 2941 2942 // All clear, the live ranges can be merged. 2943 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 2944 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2945 2946 // Transform lanemasks from the LHS to masks in the coalesced register and 2947 // create initial subranges if necessary. 2948 unsigned DstIdx = CP.getDstIdx(); 2949 if (!LHS.hasSubRanges()) { 2950 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 2951 : TRI->getSubRegIndexLaneMask(DstIdx); 2952 // LHS must support subregs or we wouldn't be in this codepath. 2953 assert(Mask.any()); 2954 LHS.createSubRangeFrom(Allocator, Mask, LHS); 2955 } else if (DstIdx != 0) { 2956 // Transform LHS lanemasks to new register class if necessary. 2957 for (LiveInterval::SubRange &R : LHS.subranges()) { 2958 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 2959 R.LaneMask = Mask; 2960 } 2961 } 2962 DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg()) 2963 << ' ' << LHS << '\n'); 2964 2965 // Determine lanemasks of RHS in the coalesced register and merge subranges. 2966 unsigned SrcIdx = CP.getSrcIdx(); 2967 if (!RHS.hasSubRanges()) { 2968 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 2969 : TRI->getSubRegIndexLaneMask(SrcIdx); 2970 mergeSubRangeInto(LHS, RHS, Mask, CP); 2971 } else { 2972 // Pair up subranges and merge. 2973 for (LiveInterval::SubRange &R : RHS.subranges()) { 2974 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 2975 mergeSubRangeInto(LHS, R, Mask, CP); 2976 } 2977 } 2978 DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 2979 2980 // Pruning implicit defs from subranges may result in the main range 2981 // having stale segments. 2982 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 2983 2984 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 2985 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 2986 } 2987 2988 // The merging algorithm in LiveInterval::join() can't handle conflicting 2989 // value mappings, so we need to remove any live ranges that overlap a 2990 // CR_Replace resolution. Collect a set of end points that can be used to 2991 // restore the live range after joining. 2992 SmallVector<SlotIndex, 8> EndPoints; 2993 LHSVals.pruneValues(RHSVals, EndPoints, true); 2994 RHSVals.pruneValues(LHSVals, EndPoints, true); 2995 2996 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 2997 // registers to require trimming. 2998 SmallVector<unsigned, 8> ShrinkRegs; 2999 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3000 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3001 while (!ShrinkRegs.empty()) 3002 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3003 3004 // Join RHS into LHS. 3005 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3006 3007 // Kill flags are going to be wrong if the live ranges were overlapping. 3008 // Eventually, we should simply clear all kill flags when computing live 3009 // ranges. They are reinserted after register allocation. 3010 MRI->clearKillFlags(LHS.reg); 3011 MRI->clearKillFlags(RHS.reg); 3012 3013 if (!EndPoints.empty()) { 3014 // Recompute the parts of the live range we had to remove because of 3015 // CR_Replace conflicts. 3016 DEBUG({ 3017 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3018 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3019 dbgs() << EndPoints[i]; 3020 if (i != n-1) 3021 dbgs() << ','; 3022 } 3023 dbgs() << ": " << LHS << '\n'; 3024 }); 3025 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3026 } 3027 3028 return true; 3029 } 3030 3031 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3032 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3033 } 3034 3035 namespace { 3036 /// Information concerning MBB coalescing priority. 3037 struct MBBPriorityInfo { 3038 MachineBasicBlock *MBB; 3039 unsigned Depth; 3040 bool IsSplit; 3041 3042 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3043 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3044 }; 3045 } 3046 3047 /// C-style comparator that sorts first based on the loop depth of the basic 3048 /// block (the unsigned), and then on the MBB number. 3049 /// 3050 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3051 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3052 const MBBPriorityInfo *RHS) { 3053 // Deeper loops first 3054 if (LHS->Depth != RHS->Depth) 3055 return LHS->Depth > RHS->Depth ? -1 : 1; 3056 3057 // Try to unsplit critical edges next. 3058 if (LHS->IsSplit != RHS->IsSplit) 3059 return LHS->IsSplit ? -1 : 1; 3060 3061 // Prefer blocks that are more connected in the CFG. This takes care of 3062 // the most difficult copies first while intervals are short. 3063 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3064 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3065 if (cl != cr) 3066 return cl > cr ? -1 : 1; 3067 3068 // As a last resort, sort by block number. 3069 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3070 } 3071 3072 /// \returns true if the given copy uses or defines a local live range. 3073 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3074 if (!Copy->isCopy()) 3075 return false; 3076 3077 if (Copy->getOperand(1).isUndef()) 3078 return false; 3079 3080 unsigned SrcReg = Copy->getOperand(1).getReg(); 3081 unsigned DstReg = Copy->getOperand(0).getReg(); 3082 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 3083 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 3084 return false; 3085 3086 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3087 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3088 } 3089 3090 bool RegisterCoalescer:: 3091 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3092 bool Progress = false; 3093 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3094 if (!CurrList[i]) 3095 continue; 3096 // Skip instruction pointers that have already been erased, for example by 3097 // dead code elimination. 3098 if (ErasedInstrs.erase(CurrList[i])) { 3099 CurrList[i] = nullptr; 3100 continue; 3101 } 3102 bool Again = false; 3103 bool Success = joinCopy(CurrList[i], Again); 3104 Progress |= Success; 3105 if (Success || !Again) 3106 CurrList[i] = nullptr; 3107 } 3108 return Progress; 3109 } 3110 3111 /// Check if DstReg is a terminal node. 3112 /// I.e., it does not have any affinity other than \p Copy. 3113 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 3114 const MachineRegisterInfo *MRI) { 3115 assert(Copy.isCopyLike()); 3116 // Check if the destination of this copy as any other affinity. 3117 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3118 if (&MI != &Copy && MI.isCopyLike()) 3119 return false; 3120 return true; 3121 } 3122 3123 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3124 assert(Copy.isCopyLike()); 3125 if (!UseTerminalRule) 3126 return false; 3127 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 3128 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg); 3129 // Check if the destination of this copy has any other affinity. 3130 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 3131 // If SrcReg is a physical register, the copy won't be coalesced. 3132 // Ignoring it may have other side effect (like missing 3133 // rematerialization). So keep it. 3134 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 3135 !isTerminalReg(DstReg, Copy, MRI)) 3136 return false; 3137 3138 // DstReg is a terminal node. Check if it interferes with any other 3139 // copy involving SrcReg. 3140 const MachineBasicBlock *OrigBB = Copy.getParent(); 3141 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3142 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3143 // Technically we should check if the weight of the new copy is 3144 // interesting compared to the other one and update the weight 3145 // of the copies accordingly. However, this would only work if 3146 // we would gather all the copies first then coalesce, whereas 3147 // right now we interleave both actions. 3148 // For now, just consider the copies that are in the same block. 3149 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3150 continue; 3151 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 3152 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3153 OtherSubReg); 3154 if (OtherReg == SrcReg) 3155 OtherReg = OtherSrcReg; 3156 // Check if OtherReg is a non-terminal. 3157 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) || 3158 isTerminalReg(OtherReg, MI, MRI)) 3159 continue; 3160 // Check that OtherReg interfere with DstReg. 3161 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3162 DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n'); 3163 return true; 3164 } 3165 } 3166 return false; 3167 } 3168 3169 void 3170 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3171 DEBUG(dbgs() << MBB->getName() << ":\n"); 3172 3173 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3174 // yet, it might invalidate the iterator. 3175 const unsigned PrevSize = WorkList.size(); 3176 if (JoinGlobalCopies) { 3177 SmallVector<MachineInstr*, 2> LocalTerminals; 3178 SmallVector<MachineInstr*, 2> GlobalTerminals; 3179 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3180 // are not inherently easier to resolve, but slightly preferable until we 3181 // have local live range splitting. In particular this is required by 3182 // cmp+jmp macro fusion. 3183 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3184 MII != E; ++MII) { 3185 if (!MII->isCopyLike()) 3186 continue; 3187 bool ApplyTerminalRule = applyTerminalRule(*MII); 3188 if (isLocalCopy(&(*MII), LIS)) { 3189 if (ApplyTerminalRule) 3190 LocalTerminals.push_back(&(*MII)); 3191 else 3192 LocalWorkList.push_back(&(*MII)); 3193 } else { 3194 if (ApplyTerminalRule) 3195 GlobalTerminals.push_back(&(*MII)); 3196 else 3197 WorkList.push_back(&(*MII)); 3198 } 3199 } 3200 // Append the copies evicted by the terminal rule at the end of the list. 3201 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3202 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3203 } 3204 else { 3205 SmallVector<MachineInstr*, 2> Terminals; 3206 for (MachineInstr &MII : *MBB) 3207 if (MII.isCopyLike()) { 3208 if (applyTerminalRule(MII)) 3209 Terminals.push_back(&MII); 3210 else 3211 WorkList.push_back(&MII); 3212 } 3213 // Append the copies evicted by the terminal rule at the end of the list. 3214 WorkList.append(Terminals.begin(), Terminals.end()); 3215 } 3216 // Try coalescing the collected copies immediately, and remove the nulls. 3217 // This prevents the WorkList from getting too large since most copies are 3218 // joinable on the first attempt. 3219 MutableArrayRef<MachineInstr*> 3220 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3221 if (copyCoalesceWorkList(CurrList)) 3222 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3223 nullptr), WorkList.end()); 3224 } 3225 3226 void RegisterCoalescer::coalesceLocals() { 3227 copyCoalesceWorkList(LocalWorkList); 3228 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3229 if (LocalWorkList[j]) 3230 WorkList.push_back(LocalWorkList[j]); 3231 } 3232 LocalWorkList.clear(); 3233 } 3234 3235 void RegisterCoalescer::joinAllIntervals() { 3236 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3237 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3238 3239 std::vector<MBBPriorityInfo> MBBs; 3240 MBBs.reserve(MF->size()); 3241 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3242 MachineBasicBlock *MBB = &*I; 3243 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3244 JoinSplitEdges && isSplitEdge(MBB))); 3245 } 3246 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3247 3248 // Coalesce intervals in MBB priority order. 3249 unsigned CurrDepth = UINT_MAX; 3250 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3251 // Try coalescing the collected local copies for deeper loops. 3252 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3253 coalesceLocals(); 3254 CurrDepth = MBBs[i].Depth; 3255 } 3256 copyCoalesceInMBB(MBBs[i].MBB); 3257 } 3258 coalesceLocals(); 3259 3260 // Joining intervals can allow other intervals to be joined. Iteratively join 3261 // until we make no progress. 3262 while (copyCoalesceWorkList(WorkList)) 3263 /* empty */ ; 3264 } 3265 3266 void RegisterCoalescer::releaseMemory() { 3267 ErasedInstrs.clear(); 3268 WorkList.clear(); 3269 DeadDefs.clear(); 3270 InflateRegs.clear(); 3271 } 3272 3273 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3274 MF = &fn; 3275 MRI = &fn.getRegInfo(); 3276 TM = &fn.getTarget(); 3277 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3278 TRI = STI.getRegisterInfo(); 3279 TII = STI.getInstrInfo(); 3280 LIS = &getAnalysis<LiveIntervals>(); 3281 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3282 Loops = &getAnalysis<MachineLoopInfo>(); 3283 if (EnableGlobalCopies == cl::BOU_UNSET) 3284 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3285 else 3286 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3287 3288 // The MachineScheduler does not currently require JoinSplitEdges. This will 3289 // either be enabled unconditionally or replaced by a more general live range 3290 // splitting optimization. 3291 JoinSplitEdges = EnableJoinSplits; 3292 3293 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3294 << "********** Function: " << MF->getName() << '\n'); 3295 3296 if (VerifyCoalescing) 3297 MF->verify(this, "Before register coalescing"); 3298 3299 RegClassInfo.runOnMachineFunction(fn); 3300 3301 // Join (coalesce) intervals if requested. 3302 if (EnableJoining) 3303 joinAllIntervals(); 3304 3305 // After deleting a lot of copies, register classes may be less constrained. 3306 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3307 // DPR inflation. 3308 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3309 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3310 InflateRegs.end()); 3311 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n"); 3312 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3313 unsigned Reg = InflateRegs[i]; 3314 if (MRI->reg_nodbg_empty(Reg)) 3315 continue; 3316 if (MRI->recomputeRegClass(Reg)) { 3317 DEBUG(dbgs() << PrintReg(Reg) << " inflated to " 3318 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3319 ++NumInflated; 3320 3321 LiveInterval &LI = LIS->getInterval(Reg); 3322 if (LI.hasSubRanges()) { 3323 // If the inflated register class does not support subregisters anymore 3324 // remove the subranges. 3325 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3326 LI.clearSubRanges(); 3327 } else { 3328 #ifndef NDEBUG 3329 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3330 // If subranges are still supported, then the same subregs 3331 // should still be supported. 3332 for (LiveInterval::SubRange &S : LI.subranges()) { 3333 assert((S.LaneMask & ~MaxMask).none()); 3334 } 3335 #endif 3336 } 3337 } 3338 } 3339 } 3340 3341 DEBUG(dump()); 3342 if (VerifyCoalescing) 3343 MF->verify(this, "After register coalescing"); 3344 return true; 3345 } 3346 3347 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3348 LIS->print(O, m); 3349 } 3350