1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic RegisterCoalescer interface which 10 // is used as the common interface used by all clients and 11 // implementations of register coalescing. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "RegisterCoalescer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetOpcodes.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/LaneBitmask.h" 45 #include "llvm/MC/MCInstrDesc.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <iterator> 56 #include <limits> 57 #include <tuple> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "regalloc" 64 65 STATISTIC(numJoins , "Number of interval joins performed"); 66 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 67 STATISTIC(numCommutes , "Number of instruction commuting performed"); 68 STATISTIC(numExtends , "Number of copies extended"); 69 STATISTIC(NumReMats , "Number of instructions re-materialized"); 70 STATISTIC(NumInflated , "Number of register classes inflated"); 71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 72 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 73 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called"); 74 75 static cl::opt<bool> EnableJoining("join-liveintervals", 76 cl::desc("Coalesce copies (default=true)"), 77 cl::init(true), cl::Hidden); 78 79 static cl::opt<bool> UseTerminalRule("terminal-rule", 80 cl::desc("Apply the terminal rule"), 81 cl::init(false), cl::Hidden); 82 83 /// Temporary flag to test critical edge unsplitting. 84 static cl::opt<bool> 85 EnableJoinSplits("join-splitedges", 86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 87 88 /// Temporary flag to test global copy optimization. 89 static cl::opt<cl::boolOrDefault> 90 EnableGlobalCopies("join-globalcopies", 91 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 92 cl::init(cl::BOU_UNSET), cl::Hidden); 93 94 static cl::opt<bool> 95 VerifyCoalescing("verify-coalescing", 96 cl::desc("Verify machine instrs before and after register coalescing"), 97 cl::Hidden); 98 99 static cl::opt<unsigned> LateRematUpdateThreshold( 100 "late-remat-update-threshold", cl::Hidden, 101 cl::desc("During rematerialization for a copy, if the def instruction has " 102 "many other copy uses to be rematerialized, delay the multiple " 103 "separate live interval update work and do them all at once after " 104 "all those rematerialization are done. It will save a lot of " 105 "repeated work. "), 106 cl::init(100)); 107 108 static cl::opt<unsigned> LargeIntervalSizeThreshold( 109 "large-interval-size-threshold", cl::Hidden, 110 cl::desc("If the valnos size of an interval is larger than the threshold, " 111 "it is regarded as a large interval. "), 112 cl::init(100)); 113 114 static cl::opt<unsigned> LargeIntervalFreqThreshold( 115 "large-interval-freq-threshold", cl::Hidden, 116 cl::desc("For a large interval, if it is coalesed with other live " 117 "intervals many times more than the threshold, stop its " 118 "coalescing to control the compile time. "), 119 cl::init(100)); 120 121 namespace { 122 123 class JoinVals; 124 125 class RegisterCoalescer : public MachineFunctionPass, 126 private LiveRangeEdit::Delegate { 127 MachineFunction* MF = nullptr; 128 MachineRegisterInfo* MRI = nullptr; 129 const TargetRegisterInfo* TRI = nullptr; 130 const TargetInstrInfo* TII = nullptr; 131 LiveIntervals *LIS = nullptr; 132 const MachineLoopInfo* Loops = nullptr; 133 AliasAnalysis *AA = nullptr; 134 RegisterClassInfo RegClassInfo; 135 136 /// Debug variable location tracking -- for each VReg, maintain an 137 /// ordered-by-slot-index set of DBG_VALUEs, to help quick 138 /// identification of whether coalescing may change location validity. 139 using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>; 140 DenseMap<unsigned, std::vector<DbgValueLoc>> DbgVRegToValues; 141 142 /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached. 143 /// To avoid repeatedly merging sets of DbgValueLocs, instead record 144 /// which vregs have been coalesced, and where to. This map is from 145 /// vreg => {set of vregs merged in}. 146 DenseMap<unsigned, SmallVector<unsigned, 4>> DbgMergedVRegNums; 147 148 /// A LaneMask to remember on which subregister live ranges we need to call 149 /// shrinkToUses() later. 150 LaneBitmask ShrinkMask; 151 152 /// True if the main range of the currently coalesced intervals should be 153 /// checked for smaller live intervals. 154 bool ShrinkMainRange = false; 155 156 /// True if the coalescer should aggressively coalesce global copies 157 /// in favor of keeping local copies. 158 bool JoinGlobalCopies = false; 159 160 /// True if the coalescer should aggressively coalesce fall-thru 161 /// blocks exclusively containing copies. 162 bool JoinSplitEdges = false; 163 164 /// Copy instructions yet to be coalesced. 165 SmallVector<MachineInstr*, 8> WorkList; 166 SmallVector<MachineInstr*, 8> LocalWorkList; 167 168 /// Set of instruction pointers that have been erased, and 169 /// that may be present in WorkList. 170 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 171 172 /// Dead instructions that are about to be deleted. 173 SmallVector<MachineInstr*, 8> DeadDefs; 174 175 /// Virtual registers to be considered for register class inflation. 176 SmallVector<unsigned, 8> InflateRegs; 177 178 /// The collection of live intervals which should have been updated 179 /// immediately after rematerialiation but delayed until 180 /// lateLiveIntervalUpdate is called. 181 DenseSet<unsigned> ToBeUpdated; 182 183 /// Record how many times the large live interval with many valnos 184 /// has been tried to join with other live interval. 185 DenseMap<unsigned, unsigned long> LargeLIVisitCounter; 186 187 /// Recursively eliminate dead defs in DeadDefs. 188 void eliminateDeadDefs(); 189 190 /// LiveRangeEdit callback for eliminateDeadDefs(). 191 void LRE_WillEraseInstruction(MachineInstr *MI) override; 192 193 /// Coalesce the LocalWorkList. 194 void coalesceLocals(); 195 196 /// Join compatible live intervals 197 void joinAllIntervals(); 198 199 /// Coalesce copies in the specified MBB, putting 200 /// copies that cannot yet be coalesced into WorkList. 201 void copyCoalesceInMBB(MachineBasicBlock *MBB); 202 203 /// Tries to coalesce all copies in CurrList. Returns true if any progress 204 /// was made. 205 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 206 207 /// If one def has many copy like uses, and those copy uses are all 208 /// rematerialized, the live interval update needed for those 209 /// rematerializations will be delayed and done all at once instead 210 /// of being done multiple times. This is to save compile cost because 211 /// live interval update is costly. 212 void lateLiveIntervalUpdate(); 213 214 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 215 /// src/dst of the copy instruction CopyMI. This returns true if the copy 216 /// was successfully coalesced away. If it is not currently possible to 217 /// coalesce this interval, but it may be possible if other things get 218 /// coalesced, then it returns true by reference in 'Again'. 219 bool joinCopy(MachineInstr *CopyMI, bool &Again); 220 221 /// Attempt to join these two intervals. On failure, this 222 /// returns false. The output "SrcInt" will not have been modified, so we 223 /// can use this information below to update aliases. 224 bool joinIntervals(CoalescerPair &CP); 225 226 /// Attempt joining two virtual registers. Return true on success. 227 bool joinVirtRegs(CoalescerPair &CP); 228 229 /// If a live interval has many valnos and is coalesced with other 230 /// live intervals many times, we regard such live interval as having 231 /// high compile time cost. 232 bool isHighCostLiveInterval(LiveInterval &LI); 233 234 /// Attempt joining with a reserved physreg. 235 bool joinReservedPhysReg(CoalescerPair &CP); 236 237 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 238 /// Subranges in @p LI which only partially interfere with the desired 239 /// LaneMask are split as necessary. @p LaneMask are the lanes that 240 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 241 /// lanemasks already adjusted to the coalesced register. 242 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 243 LaneBitmask LaneMask, CoalescerPair &CP, 244 unsigned DstIdx); 245 246 /// Join the liveranges of two subregisters. Joins @p RRange into 247 /// @p LRange, @p RRange may be invalid afterwards. 248 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 249 LaneBitmask LaneMask, const CoalescerPair &CP); 250 251 /// We found a non-trivially-coalescable copy. If the source value number is 252 /// defined by a copy from the destination reg see if we can merge these two 253 /// destination reg valno# into a single value number, eliminating a copy. 254 /// This returns true if an interval was modified. 255 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 256 257 /// Return true if there are definitions of IntB 258 /// other than BValNo val# that can reach uses of AValno val# of IntA. 259 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 260 VNInfo *AValNo, VNInfo *BValNo); 261 262 /// We found a non-trivially-coalescable copy. 263 /// If the source value number is defined by a commutable instruction and 264 /// its other operand is coalesced to the copy dest register, see if we 265 /// can transform the copy into a noop by commuting the definition. 266 /// This returns a pair of two flags: 267 /// - the first element is true if an interval was modified, 268 /// - the second element is true if the destination interval needs 269 /// to be shrunk after deleting the copy. 270 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP, 271 MachineInstr *CopyMI); 272 273 /// We found a copy which can be moved to its less frequent predecessor. 274 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 275 276 /// If the source of a copy is defined by a 277 /// trivial computation, replace the copy by rematerialize the definition. 278 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 279 bool &IsDefCopy); 280 281 /// Return true if a copy involving a physreg should be joined. 282 bool canJoinPhys(const CoalescerPair &CP); 283 284 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 285 /// number if it is not zero. If DstReg is a physical register and the 286 /// existing subregister number of the def / use being updated is not zero, 287 /// make sure to set it to the correct physical subregister. 288 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 289 290 /// If the given machine operand reads only undefined lanes add an undef 291 /// flag. 292 /// This can happen when undef uses were previously concealed by a copy 293 /// which we coalesced. Example: 294 /// %0:sub0<def,read-undef> = ... 295 /// %1 = COPY %0 <-- Coalescing COPY reveals undef 296 /// = use %1:sub1 <-- hidden undef use 297 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 298 MachineOperand &MO, unsigned SubRegIdx); 299 300 /// Handle copies of undef values. If the undef value is an incoming 301 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF. 302 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise, 303 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point). 304 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI); 305 306 /// Check whether or not we should apply the terminal rule on the 307 /// destination (Dst) of \p Copy. 308 /// When the terminal rule applies, Copy is not profitable to 309 /// coalesce. 310 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 311 /// at least one interference (Dst, Dst2). If Dst is terminal, the 312 /// terminal rule consists in checking that at least one of 313 /// interfering node, say Dst2, has an affinity of equal or greater 314 /// weight with Src. 315 /// In that case, Dst2 and Dst will not be able to be both coalesced 316 /// with Src. Since Dst2 exposes more coalescing opportunities than 317 /// Dst, we can drop \p Copy. 318 bool applyTerminalRule(const MachineInstr &Copy) const; 319 320 /// Wrapper method for \see LiveIntervals::shrinkToUses. 321 /// This method does the proper fixing of the live-ranges when the afore 322 /// mentioned method returns true. 323 void shrinkToUses(LiveInterval *LI, 324 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 325 NumShrinkToUses++; 326 if (LIS->shrinkToUses(LI, Dead)) { 327 /// Check whether or not \p LI is composed by multiple connected 328 /// components and if that is the case, fix that. 329 SmallVector<LiveInterval*, 8> SplitLIs; 330 LIS->splitSeparateComponents(*LI, SplitLIs); 331 } 332 } 333 334 /// Wrapper Method to do all the necessary work when an Instruction is 335 /// deleted. 336 /// Optimizations should use this to make sure that deleted instructions 337 /// are always accounted for. 338 void deleteInstr(MachineInstr* MI) { 339 ErasedInstrs.insert(MI); 340 LIS->RemoveMachineInstrFromMaps(*MI); 341 MI->eraseFromParent(); 342 } 343 344 /// Walk over function and initialize the DbgVRegToValues map. 345 void buildVRegToDbgValueMap(MachineFunction &MF); 346 347 /// Test whether, after merging, any DBG_VALUEs would refer to a 348 /// different value number than before merging, and whether this can 349 /// be resolved. If not, mark the DBG_VALUE as being undef. 350 void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS, 351 JoinVals &LHSVals, LiveRange &RHS, 352 JoinVals &RHSVals); 353 354 void checkMergingChangesDbgValuesImpl(unsigned Reg, LiveRange &OtherRange, 355 LiveRange &RegRange, JoinVals &Vals2); 356 357 public: 358 static char ID; ///< Class identification, replacement for typeinfo 359 360 RegisterCoalescer() : MachineFunctionPass(ID) { 361 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 362 } 363 364 void getAnalysisUsage(AnalysisUsage &AU) const override; 365 366 void releaseMemory() override; 367 368 /// This is the pass entry point. 369 bool runOnMachineFunction(MachineFunction&) override; 370 371 /// Implement the dump method. 372 void print(raw_ostream &O, const Module* = nullptr) const override; 373 }; 374 375 } // end anonymous namespace 376 377 char RegisterCoalescer::ID = 0; 378 379 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 380 381 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 382 "Simple Register Coalescing", false, false) 383 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 384 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 385 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 386 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 387 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 388 "Simple Register Coalescing", false, false) 389 390 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri, 391 const MachineInstr *MI, unsigned &Src, 392 unsigned &Dst, unsigned &SrcSub, 393 unsigned &DstSub) { 394 if (MI->isCopy()) { 395 Dst = MI->getOperand(0).getReg(); 396 DstSub = MI->getOperand(0).getSubReg(); 397 Src = MI->getOperand(1).getReg(); 398 SrcSub = MI->getOperand(1).getSubReg(); 399 } else if (MI->isSubregToReg()) { 400 Dst = MI->getOperand(0).getReg(); 401 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 402 MI->getOperand(3).getImm()); 403 Src = MI->getOperand(2).getReg(); 404 SrcSub = MI->getOperand(2).getSubReg(); 405 } else 406 return false; 407 return true; 408 } 409 410 /// Return true if this block should be vacated by the coalescer to eliminate 411 /// branches. The important cases to handle in the coalescer are critical edges 412 /// split during phi elimination which contain only copies. Simple blocks that 413 /// contain non-branches should also be vacated, but this can be handled by an 414 /// earlier pass similar to early if-conversion. 415 static bool isSplitEdge(const MachineBasicBlock *MBB) { 416 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 417 return false; 418 419 for (const auto &MI : *MBB) { 420 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 421 return false; 422 } 423 return true; 424 } 425 426 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 427 SrcReg = DstReg = 0; 428 SrcIdx = DstIdx = 0; 429 NewRC = nullptr; 430 Flipped = CrossClass = false; 431 432 unsigned Src, Dst, SrcSub, DstSub; 433 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 434 return false; 435 Partial = SrcSub || DstSub; 436 437 // If one register is a physreg, it must be Dst. 438 if (Register::isPhysicalRegister(Src)) { 439 if (Register::isPhysicalRegister(Dst)) 440 return false; 441 std::swap(Src, Dst); 442 std::swap(SrcSub, DstSub); 443 Flipped = true; 444 } 445 446 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 447 448 if (Register::isPhysicalRegister(Dst)) { 449 // Eliminate DstSub on a physreg. 450 if (DstSub) { 451 Dst = TRI.getSubReg(Dst, DstSub); 452 if (!Dst) return false; 453 DstSub = 0; 454 } 455 456 // Eliminate SrcSub by picking a corresponding Dst superregister. 457 if (SrcSub) { 458 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 459 if (!Dst) return false; 460 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 461 return false; 462 } 463 } else { 464 // Both registers are virtual. 465 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 466 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 467 468 // Both registers have subreg indices. 469 if (SrcSub && DstSub) { 470 // Copies between different sub-registers are never coalescable. 471 if (Src == Dst && SrcSub != DstSub) 472 return false; 473 474 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 475 SrcIdx, DstIdx); 476 if (!NewRC) 477 return false; 478 } else if (DstSub) { 479 // SrcReg will be merged with a sub-register of DstReg. 480 SrcIdx = DstSub; 481 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 482 } else if (SrcSub) { 483 // DstReg will be merged with a sub-register of SrcReg. 484 DstIdx = SrcSub; 485 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 486 } else { 487 // This is a straight copy without sub-registers. 488 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 489 } 490 491 // The combined constraint may be impossible to satisfy. 492 if (!NewRC) 493 return false; 494 495 // Prefer SrcReg to be a sub-register of DstReg. 496 // FIXME: Coalescer should support subregs symmetrically. 497 if (DstIdx && !SrcIdx) { 498 std::swap(Src, Dst); 499 std::swap(SrcIdx, DstIdx); 500 Flipped = !Flipped; 501 } 502 503 CrossClass = NewRC != DstRC || NewRC != SrcRC; 504 } 505 // Check our invariants 506 assert(Register::isVirtualRegister(Src) && "Src must be virtual"); 507 assert(!(Register::isPhysicalRegister(Dst) && DstSub) && 508 "Cannot have a physical SubIdx"); 509 SrcReg = Src; 510 DstReg = Dst; 511 return true; 512 } 513 514 bool CoalescerPair::flip() { 515 if (Register::isPhysicalRegister(DstReg)) 516 return false; 517 std::swap(SrcReg, DstReg); 518 std::swap(SrcIdx, DstIdx); 519 Flipped = !Flipped; 520 return true; 521 } 522 523 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 524 if (!MI) 525 return false; 526 unsigned Src, Dst, SrcSub, DstSub; 527 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 528 return false; 529 530 // Find the virtual register that is SrcReg. 531 if (Dst == SrcReg) { 532 std::swap(Src, Dst); 533 std::swap(SrcSub, DstSub); 534 } else if (Src != SrcReg) { 535 return false; 536 } 537 538 // Now check that Dst matches DstReg. 539 if (Register::isPhysicalRegister(DstReg)) { 540 if (!Register::isPhysicalRegister(Dst)) 541 return false; 542 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 543 // DstSub could be set for a physreg from INSERT_SUBREG. 544 if (DstSub) 545 Dst = TRI.getSubReg(Dst, DstSub); 546 // Full copy of Src. 547 if (!SrcSub) 548 return DstReg == Dst; 549 // This is a partial register copy. Check that the parts match. 550 return TRI.getSubReg(DstReg, SrcSub) == Dst; 551 } else { 552 // DstReg is virtual. 553 if (DstReg != Dst) 554 return false; 555 // Registers match, do the subregisters line up? 556 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 557 TRI.composeSubRegIndices(DstIdx, DstSub); 558 } 559 } 560 561 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 562 AU.setPreservesCFG(); 563 AU.addRequired<AAResultsWrapperPass>(); 564 AU.addRequired<LiveIntervals>(); 565 AU.addPreserved<LiveIntervals>(); 566 AU.addPreserved<SlotIndexes>(); 567 AU.addRequired<MachineLoopInfo>(); 568 AU.addPreserved<MachineLoopInfo>(); 569 AU.addPreservedID(MachineDominatorsID); 570 MachineFunctionPass::getAnalysisUsage(AU); 571 } 572 573 void RegisterCoalescer::eliminateDeadDefs() { 574 SmallVector<unsigned, 8> NewRegs; 575 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 576 nullptr, this).eliminateDeadDefs(DeadDefs); 577 } 578 579 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 580 // MI may be in WorkList. Make sure we don't visit it. 581 ErasedInstrs.insert(MI); 582 } 583 584 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 585 MachineInstr *CopyMI) { 586 assert(!CP.isPartial() && "This doesn't work for partial copies."); 587 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 588 589 LiveInterval &IntA = 590 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 591 LiveInterval &IntB = 592 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 593 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 594 595 // We have a non-trivially-coalescable copy with IntA being the source and 596 // IntB being the dest, thus this defines a value number in IntB. If the 597 // source value number (in IntA) is defined by a copy from B, see if we can 598 // merge these two pieces of B into a single value number, eliminating a copy. 599 // For example: 600 // 601 // A3 = B0 602 // ... 603 // B1 = A3 <- this copy 604 // 605 // In this case, B0 can be extended to where the B1 copy lives, allowing the 606 // B1 value number to be replaced with B0 (which simplifies the B 607 // liveinterval). 608 609 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 610 // the example above. 611 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 612 if (BS == IntB.end()) return false; 613 VNInfo *BValNo = BS->valno; 614 615 // Get the location that B is defined at. Two options: either this value has 616 // an unknown definition point or it is defined at CopyIdx. If unknown, we 617 // can't process it. 618 if (BValNo->def != CopyIdx) return false; 619 620 // AValNo is the value number in A that defines the copy, A3 in the example. 621 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 622 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 623 // The live segment might not exist after fun with physreg coalescing. 624 if (AS == IntA.end()) return false; 625 VNInfo *AValNo = AS->valno; 626 627 // If AValNo is defined as a copy from IntB, we can potentially process this. 628 // Get the instruction that defines this value number. 629 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 630 // Don't allow any partial copies, even if isCoalescable() allows them. 631 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 632 return false; 633 634 // Get the Segment in IntB that this value number starts with. 635 LiveInterval::iterator ValS = 636 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 637 if (ValS == IntB.end()) 638 return false; 639 640 // Make sure that the end of the live segment is inside the same block as 641 // CopyMI. 642 MachineInstr *ValSEndInst = 643 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 644 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 645 return false; 646 647 // Okay, we now know that ValS ends in the same block that the CopyMI 648 // live-range starts. If there are no intervening live segments between them 649 // in IntB, we can merge them. 650 if (ValS+1 != BS) return false; 651 652 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI)); 653 654 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 655 // We are about to delete CopyMI, so need to remove it as the 'instruction 656 // that defines this value #'. Update the valnum with the new defining 657 // instruction #. 658 BValNo->def = FillerStart; 659 660 // Okay, we can merge them. We need to insert a new liverange: 661 // [ValS.end, BS.begin) of either value number, then we merge the 662 // two value numbers. 663 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 664 665 // Okay, merge "B1" into the same value number as "B0". 666 if (BValNo != ValS->valno) 667 IntB.MergeValueNumberInto(BValNo, ValS->valno); 668 669 // Do the same for the subregister segments. 670 for (LiveInterval::SubRange &S : IntB.subranges()) { 671 // Check for SubRange Segments of the form [1234r,1234d:0) which can be 672 // removed to prevent creating bogus SubRange Segments. 673 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx); 674 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) { 675 S.removeSegment(*SS, true); 676 continue; 677 } 678 // The subrange may have ended before FillerStart. If so, extend it. 679 if (!S.getVNInfoAt(FillerStart)) { 680 SlotIndex BBStart = 681 LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart)); 682 S.extendInBlock(BBStart, FillerStart); 683 } 684 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 685 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 686 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 687 if (SubBValNo != SubValSNo) 688 S.MergeValueNumberInto(SubBValNo, SubValSNo); 689 } 690 691 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n'); 692 693 // If the source instruction was killing the source register before the 694 // merge, unset the isKill marker given the live range has been extended. 695 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 696 if (UIdx != -1) { 697 ValSEndInst->getOperand(UIdx).setIsKill(false); 698 } 699 700 // Rewrite the copy. 701 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 702 // If the copy instruction was killing the destination register or any 703 // subrange before the merge trim the live range. 704 bool RecomputeLiveRange = AS->end == CopyIdx; 705 if (!RecomputeLiveRange) { 706 for (LiveInterval::SubRange &S : IntA.subranges()) { 707 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx); 708 if (SS != S.end() && SS->end == CopyIdx) { 709 RecomputeLiveRange = true; 710 break; 711 } 712 } 713 } 714 if (RecomputeLiveRange) 715 shrinkToUses(&IntA); 716 717 ++numExtends; 718 return true; 719 } 720 721 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 722 LiveInterval &IntB, 723 VNInfo *AValNo, 724 VNInfo *BValNo) { 725 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 726 // the PHI values. 727 if (LIS->hasPHIKill(IntA, AValNo)) 728 return true; 729 730 for (LiveRange::Segment &ASeg : IntA.segments) { 731 if (ASeg.valno != AValNo) continue; 732 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start); 733 if (BI != IntB.begin()) 734 --BI; 735 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 736 if (BI->valno == BValNo) 737 continue; 738 if (BI->start <= ASeg.start && BI->end > ASeg.start) 739 return true; 740 if (BI->start > ASeg.start && BI->start < ASeg.end) 741 return true; 742 } 743 } 744 return false; 745 } 746 747 /// Copy segments with value number @p SrcValNo from liverange @p Src to live 748 /// range @Dst and use value number @p DstValNo there. 749 static std::pair<bool,bool> 750 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src, 751 const VNInfo *SrcValNo) { 752 bool Changed = false; 753 bool MergedWithDead = false; 754 for (const LiveRange::Segment &S : Src.segments) { 755 if (S.valno != SrcValNo) 756 continue; 757 // This is adding a segment from Src that ends in a copy that is about 758 // to be removed. This segment is going to be merged with a pre-existing 759 // segment in Dst. This works, except in cases when the corresponding 760 // segment in Dst is dead. For example: adding [192r,208r:1) from Src 761 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst. 762 // Recognized such cases, so that the segments can be shrunk. 763 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo); 764 LiveRange::Segment &Merged = *Dst.addSegment(Added); 765 if (Merged.end.isDead()) 766 MergedWithDead = true; 767 Changed = true; 768 } 769 return std::make_pair(Changed, MergedWithDead); 770 } 771 772 std::pair<bool,bool> 773 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 774 MachineInstr *CopyMI) { 775 assert(!CP.isPhys()); 776 777 LiveInterval &IntA = 778 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 779 LiveInterval &IntB = 780 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 781 782 // We found a non-trivially-coalescable copy with IntA being the source and 783 // IntB being the dest, thus this defines a value number in IntB. If the 784 // source value number (in IntA) is defined by a commutable instruction and 785 // its other operand is coalesced to the copy dest register, see if we can 786 // transform the copy into a noop by commuting the definition. For example, 787 // 788 // A3 = op A2 killed B0 789 // ... 790 // B1 = A3 <- this copy 791 // ... 792 // = op A3 <- more uses 793 // 794 // ==> 795 // 796 // B2 = op B0 killed A2 797 // ... 798 // B1 = B2 <- now an identity copy 799 // ... 800 // = op B2 <- more uses 801 802 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 803 // the example above. 804 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 805 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 806 assert(BValNo != nullptr && BValNo->def == CopyIdx); 807 808 // AValNo is the value number in A that defines the copy, A3 in the example. 809 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 810 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 811 if (AValNo->isPHIDef()) 812 return { false, false }; 813 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 814 if (!DefMI) 815 return { false, false }; 816 if (!DefMI->isCommutable()) 817 return { false, false }; 818 // If DefMI is a two-address instruction then commuting it will change the 819 // destination register. 820 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 821 assert(DefIdx != -1); 822 unsigned UseOpIdx; 823 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 824 return { false, false }; 825 826 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 827 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 828 // passed to the method. That _other_ operand is chosen by 829 // the findCommutedOpIndices() method. 830 // 831 // That is obviously an area for improvement in case of instructions having 832 // more than 2 operands. For example, if some instruction has 3 commutable 833 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 834 // op#2<->op#3) of commute transformation should be considered/tried here. 835 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 836 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 837 return { false, false }; 838 839 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 840 Register NewReg = NewDstMO.getReg(); 841 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 842 return { false, false }; 843 844 // Make sure there are no other definitions of IntB that would reach the 845 // uses which the new definition can reach. 846 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 847 return { false, false }; 848 849 // If some of the uses of IntA.reg is already coalesced away, return false. 850 // It's not possible to determine whether it's safe to perform the coalescing. 851 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 852 MachineInstr *UseMI = MO.getParent(); 853 unsigned OpNo = &MO - &UseMI->getOperand(0); 854 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 855 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 856 if (US == IntA.end() || US->valno != AValNo) 857 continue; 858 // If this use is tied to a def, we can't rewrite the register. 859 if (UseMI->isRegTiedToDefOperand(OpNo)) 860 return { false, false }; 861 } 862 863 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 864 << *DefMI); 865 866 // At this point we have decided that it is legal to do this 867 // transformation. Start by commuting the instruction. 868 MachineBasicBlock *MBB = DefMI->getParent(); 869 MachineInstr *NewMI = 870 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 871 if (!NewMI) 872 return { false, false }; 873 if (Register::isVirtualRegister(IntA.reg) && 874 Register::isVirtualRegister(IntB.reg) && 875 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 876 return { false, false }; 877 if (NewMI != DefMI) { 878 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 879 MachineBasicBlock::iterator Pos = DefMI; 880 MBB->insert(Pos, NewMI); 881 MBB->erase(DefMI); 882 } 883 884 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 885 // A = or A, B 886 // ... 887 // B = A 888 // ... 889 // C = killed A 890 // ... 891 // = B 892 893 // Update uses of IntA of the specific Val# with IntB. 894 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 895 UE = MRI->use_end(); 896 UI != UE; /* ++UI is below because of possible MI removal */) { 897 MachineOperand &UseMO = *UI; 898 ++UI; 899 if (UseMO.isUndef()) 900 continue; 901 MachineInstr *UseMI = UseMO.getParent(); 902 if (UseMI->isDebugValue()) { 903 // FIXME These don't have an instruction index. Not clear we have enough 904 // info to decide whether to do this replacement or not. For now do it. 905 UseMO.setReg(NewReg); 906 continue; 907 } 908 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 909 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 910 assert(US != IntA.end() && "Use must be live"); 911 if (US->valno != AValNo) 912 continue; 913 // Kill flags are no longer accurate. They are recomputed after RA. 914 UseMO.setIsKill(false); 915 if (Register::isPhysicalRegister(NewReg)) 916 UseMO.substPhysReg(NewReg, *TRI); 917 else 918 UseMO.setReg(NewReg); 919 if (UseMI == CopyMI) 920 continue; 921 if (!UseMI->isCopy()) 922 continue; 923 if (UseMI->getOperand(0).getReg() != IntB.reg || 924 UseMI->getOperand(0).getSubReg()) 925 continue; 926 927 // This copy will become a noop. If it's defining a new val#, merge it into 928 // BValNo. 929 SlotIndex DefIdx = UseIdx.getRegSlot(); 930 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 931 if (!DVNI) 932 continue; 933 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 934 assert(DVNI->def == DefIdx); 935 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 936 for (LiveInterval::SubRange &S : IntB.subranges()) { 937 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 938 if (!SubDVNI) 939 continue; 940 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 941 assert(SubBValNo->def == CopyIdx); 942 S.MergeValueNumberInto(SubDVNI, SubBValNo); 943 } 944 945 deleteInstr(UseMI); 946 } 947 948 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 949 // is updated. 950 bool ShrinkB = false; 951 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 952 if (IntA.hasSubRanges() || IntB.hasSubRanges()) { 953 if (!IntA.hasSubRanges()) { 954 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 955 IntA.createSubRangeFrom(Allocator, Mask, IntA); 956 } else if (!IntB.hasSubRanges()) { 957 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg); 958 IntB.createSubRangeFrom(Allocator, Mask, IntB); 959 } 960 SlotIndex AIdx = CopyIdx.getRegSlot(true); 961 LaneBitmask MaskA; 962 const SlotIndexes &Indexes = *LIS->getSlotIndexes(); 963 for (LiveInterval::SubRange &SA : IntA.subranges()) { 964 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 965 // Even if we are dealing with a full copy, some lanes can 966 // still be undefined. 967 // E.g., 968 // undef A.subLow = ... 969 // B = COPY A <== A.subHigh is undefined here and does 970 // not have a value number. 971 if (!ASubValNo) 972 continue; 973 MaskA |= SA.LaneMask; 974 975 IntB.refineSubRanges( 976 Allocator, SA.LaneMask, 977 [&Allocator, &SA, CopyIdx, ASubValNo, 978 &ShrinkB](LiveInterval::SubRange &SR) { 979 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator) 980 : SR.getVNInfoAt(CopyIdx); 981 assert(BSubValNo != nullptr); 982 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 983 ShrinkB |= P.second; 984 if (P.first) 985 BSubValNo->def = ASubValNo->def; 986 }, 987 Indexes, *TRI); 988 } 989 // Go over all subranges of IntB that have not been covered by IntA, 990 // and delete the segments starting at CopyIdx. This can happen if 991 // IntA has undef lanes that are defined in IntB. 992 for (LiveInterval::SubRange &SB : IntB.subranges()) { 993 if ((SB.LaneMask & MaskA).any()) 994 continue; 995 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx)) 996 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex()) 997 SB.removeSegment(*S, true); 998 } 999 } 1000 1001 BValNo->def = AValNo->def; 1002 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 1003 ShrinkB |= P.second; 1004 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 1005 1006 LIS->removeVRegDefAt(IntA, AValNo->def); 1007 1008 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 1009 ++numCommutes; 1010 return { true, ShrinkB }; 1011 } 1012 1013 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 1014 /// predecessor of BB2, and if B is not redefined on the way from A = B 1015 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the 1016 /// execution goes through the path from BB0 to BB2. We may move B = A 1017 /// to the predecessor without such reversed copy. 1018 /// So we will transform the program from: 1019 /// BB0: 1020 /// A = B; BB1: 1021 /// ... ... 1022 /// / \ / 1023 /// BB2: 1024 /// ... 1025 /// B = A; 1026 /// 1027 /// to: 1028 /// 1029 /// BB0: BB1: 1030 /// A = B; ... 1031 /// ... B = A; 1032 /// / \ / 1033 /// BB2: 1034 /// ... 1035 /// 1036 /// A special case is when BB0 and BB2 are the same BB which is the only 1037 /// BB in a loop: 1038 /// BB1: 1039 /// ... 1040 /// BB0/BB2: ---- 1041 /// B = A; | 1042 /// ... | 1043 /// A = B; | 1044 /// |------- 1045 /// | 1046 /// We may hoist B = A from BB0/BB2 to BB1. 1047 /// 1048 /// The major preconditions for correctness to remove such partial 1049 /// redundancy include: 1050 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 1051 /// the PHI is defined by the reversed copy A = B in BB0. 1052 /// 2. No B is referenced from the start of BB2 to B = A. 1053 /// 3. No B is defined from A = B to the end of BB0. 1054 /// 4. BB1 has only one successor. 1055 /// 1056 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 1057 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 1058 /// colder place, which not only prevent endless loop, but also make sure 1059 /// the movement of copy is beneficial. 1060 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 1061 MachineInstr &CopyMI) { 1062 assert(!CP.isPhys()); 1063 if (!CopyMI.isFullCopy()) 1064 return false; 1065 1066 MachineBasicBlock &MBB = *CopyMI.getParent(); 1067 if (MBB.isEHPad()) 1068 return false; 1069 1070 if (MBB.pred_size() != 2) 1071 return false; 1072 1073 LiveInterval &IntA = 1074 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 1075 LiveInterval &IntB = 1076 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 1077 1078 // A is defined by PHI at the entry of MBB. 1079 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 1080 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 1081 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 1082 if (!AValNo->isPHIDef()) 1083 return false; 1084 1085 // No B is referenced before CopyMI in MBB. 1086 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 1087 return false; 1088 1089 // MBB has two predecessors: one contains A = B so no copy will be inserted 1090 // for it. The other one will have a copy moved from MBB. 1091 bool FoundReverseCopy = false; 1092 MachineBasicBlock *CopyLeftBB = nullptr; 1093 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1094 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 1095 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 1096 if (!DefMI || !DefMI->isFullCopy()) { 1097 CopyLeftBB = Pred; 1098 continue; 1099 } 1100 // Check DefMI is a reverse copy and it is in BB Pred. 1101 if (DefMI->getOperand(0).getReg() != IntA.reg || 1102 DefMI->getOperand(1).getReg() != IntB.reg || 1103 DefMI->getParent() != Pred) { 1104 CopyLeftBB = Pred; 1105 continue; 1106 } 1107 // If there is any other def of B after DefMI and before the end of Pred, 1108 // we need to keep the copy of B = A at the end of Pred if we remove 1109 // B = A from MBB. 1110 bool ValB_Changed = false; 1111 for (auto VNI : IntB.valnos) { 1112 if (VNI->isUnused()) 1113 continue; 1114 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 1115 ValB_Changed = true; 1116 break; 1117 } 1118 } 1119 if (ValB_Changed) { 1120 CopyLeftBB = Pred; 1121 continue; 1122 } 1123 FoundReverseCopy = true; 1124 } 1125 1126 // If no reverse copy is found in predecessors, nothing to do. 1127 if (!FoundReverseCopy) 1128 return false; 1129 1130 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 1131 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 1132 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 1133 // update IntA/IntB. 1134 // 1135 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 1136 // MBB is hotter than CopyLeftBB. 1137 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 1138 return false; 1139 1140 // Now (almost sure it's) ok to move copy. 1141 if (CopyLeftBB) { 1142 // Position in CopyLeftBB where we should insert new copy. 1143 auto InsPos = CopyLeftBB->getFirstTerminator(); 1144 1145 // Make sure that B isn't referenced in the terminators (if any) at the end 1146 // of the predecessor since we're about to insert a new definition of B 1147 // before them. 1148 if (InsPos != CopyLeftBB->end()) { 1149 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true); 1150 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB))) 1151 return false; 1152 } 1153 1154 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to " 1155 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI); 1156 1157 // Insert new copy to CopyLeftBB. 1158 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1159 TII->get(TargetOpcode::COPY), IntB.reg) 1160 .addReg(IntA.reg); 1161 SlotIndex NewCopyIdx = 1162 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1163 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1164 for (LiveInterval::SubRange &SR : IntB.subranges()) 1165 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1166 1167 // If the newly created Instruction has an address of an instruction that was 1168 // deleted before (object recycled by the allocator) it needs to be removed from 1169 // the deleted list. 1170 ErasedInstrs.erase(NewCopyMI); 1171 } else { 1172 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from " 1173 << printMBBReference(MBB) << '\t' << CopyMI); 1174 } 1175 1176 // Remove CopyMI. 1177 // Note: This is fine to remove the copy before updating the live-ranges. 1178 // While updating the live-ranges, we only look at slot indices and 1179 // never go back to the instruction. 1180 // Mark instructions as deleted. 1181 deleteInstr(&CopyMI); 1182 1183 // Update the liveness. 1184 SmallVector<SlotIndex, 8> EndPoints; 1185 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1186 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1187 &EndPoints); 1188 BValNo->markUnused(); 1189 // Extend IntB to the EndPoints of its original live interval. 1190 LIS->extendToIndices(IntB, EndPoints); 1191 1192 // Now, do the same for its subranges. 1193 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1194 EndPoints.clear(); 1195 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1196 assert(BValNo && "All sublanes should be live"); 1197 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1198 BValNo->markUnused(); 1199 // We can have a situation where the result of the original copy is live, 1200 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes 1201 // the copy appear as an endpoint from pruneValue(), but we don't want it 1202 // to because the copy has been removed. We can go ahead and remove that 1203 // endpoint; there is no other situation here that there could be a use at 1204 // the same place as we know that the copy is a full copy. 1205 for (unsigned I = 0; I != EndPoints.size(); ) { 1206 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) { 1207 EndPoints[I] = EndPoints.back(); 1208 EndPoints.pop_back(); 1209 continue; 1210 } 1211 ++I; 1212 } 1213 LIS->extendToIndices(SR, EndPoints); 1214 } 1215 // If any dead defs were extended, truncate them. 1216 shrinkToUses(&IntB); 1217 1218 // Finally, update the live-range of IntA. 1219 shrinkToUses(&IntA); 1220 return true; 1221 } 1222 1223 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1224 /// defining a subregister. 1225 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 1226 assert(!Register::isPhysicalRegister(Reg) && 1227 "This code cannot handle physreg aliasing"); 1228 for (const MachineOperand &Op : MI.operands()) { 1229 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1230 continue; 1231 // Return true if we define the full register or don't care about the value 1232 // inside other subregisters. 1233 if (Op.getSubReg() == 0 || Op.isUndef()) 1234 return true; 1235 } 1236 return false; 1237 } 1238 1239 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1240 MachineInstr *CopyMI, 1241 bool &IsDefCopy) { 1242 IsDefCopy = false; 1243 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1244 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1245 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1246 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1247 if (Register::isPhysicalRegister(SrcReg)) 1248 return false; 1249 1250 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1251 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1252 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1253 if (!ValNo) 1254 return false; 1255 if (ValNo->isPHIDef() || ValNo->isUnused()) 1256 return false; 1257 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1258 if (!DefMI) 1259 return false; 1260 if (DefMI->isCopyLike()) { 1261 IsDefCopy = true; 1262 return false; 1263 } 1264 if (!TII->isAsCheapAsAMove(*DefMI)) 1265 return false; 1266 if (!TII->isTriviallyReMaterializable(*DefMI, AA)) 1267 return false; 1268 if (!definesFullReg(*DefMI, SrcReg)) 1269 return false; 1270 bool SawStore = false; 1271 if (!DefMI->isSafeToMove(AA, SawStore)) 1272 return false; 1273 const MCInstrDesc &MCID = DefMI->getDesc(); 1274 if (MCID.getNumDefs() != 1) 1275 return false; 1276 // Only support subregister destinations when the def is read-undef. 1277 MachineOperand &DstOperand = CopyMI->getOperand(0); 1278 Register CopyDstReg = DstOperand.getReg(); 1279 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1280 return false; 1281 1282 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1283 // the register substantially (beyond both source and dest size). This is bad 1284 // for performance since it can cascade through a function, introducing many 1285 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1286 // around after a few subreg copies). 1287 if (SrcIdx && DstIdx) 1288 return false; 1289 1290 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1291 if (!DefMI->isImplicitDef()) { 1292 if (Register::isPhysicalRegister(DstReg)) { 1293 unsigned NewDstReg = DstReg; 1294 1295 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1296 DefMI->getOperand(0).getSubReg()); 1297 if (NewDstIdx) 1298 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1299 1300 // Finally, make sure that the physical subregister that will be 1301 // constructed later is permitted for the instruction. 1302 if (!DefRC->contains(NewDstReg)) 1303 return false; 1304 } else { 1305 // Theoretically, some stack frame reference could exist. Just make sure 1306 // it hasn't actually happened. 1307 assert(Register::isVirtualRegister(DstReg) && 1308 "Only expect to deal with virtual or physical registers"); 1309 } 1310 } 1311 1312 DebugLoc DL = CopyMI->getDebugLoc(); 1313 MachineBasicBlock *MBB = CopyMI->getParent(); 1314 MachineBasicBlock::iterator MII = 1315 std::next(MachineBasicBlock::iterator(CopyMI)); 1316 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); 1317 MachineInstr &NewMI = *std::prev(MII); 1318 NewMI.setDebugLoc(DL); 1319 1320 // In a situation like the following: 1321 // %0:subreg = instr ; DefMI, subreg = DstIdx 1322 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0 1323 // instead of widening %1 to the register class of %0 simply do: 1324 // %1 = instr 1325 const TargetRegisterClass *NewRC = CP.getNewRC(); 1326 if (DstIdx != 0) { 1327 MachineOperand &DefMO = NewMI.getOperand(0); 1328 if (DefMO.getSubReg() == DstIdx) { 1329 assert(SrcIdx == 0 && CP.isFlipped() 1330 && "Shouldn't have SrcIdx+DstIdx at this point"); 1331 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1332 const TargetRegisterClass *CommonRC = 1333 TRI->getCommonSubClass(DefRC, DstRC); 1334 if (CommonRC != nullptr) { 1335 NewRC = CommonRC; 1336 DstIdx = 0; 1337 DefMO.setSubReg(0); 1338 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1339 } 1340 } 1341 } 1342 1343 // CopyMI may have implicit operands, save them so that we can transfer them 1344 // over to the newly materialized instruction after CopyMI is removed. 1345 SmallVector<MachineOperand, 4> ImplicitOps; 1346 ImplicitOps.reserve(CopyMI->getNumOperands() - 1347 CopyMI->getDesc().getNumOperands()); 1348 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1349 E = CopyMI->getNumOperands(); 1350 I != E; ++I) { 1351 MachineOperand &MO = CopyMI->getOperand(I); 1352 if (MO.isReg()) { 1353 assert(MO.isImplicit() && "No explicit operands after implicit operands."); 1354 // Discard VReg implicit defs. 1355 if (Register::isPhysicalRegister(MO.getReg())) 1356 ImplicitOps.push_back(MO); 1357 } 1358 } 1359 1360 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); 1361 CopyMI->eraseFromParent(); 1362 ErasedInstrs.insert(CopyMI); 1363 1364 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1365 // We need to remember these so we can add intervals once we insert 1366 // NewMI into SlotIndexes. 1367 SmallVector<unsigned, 4> NewMIImplDefs; 1368 for (unsigned i = NewMI.getDesc().getNumOperands(), 1369 e = NewMI.getNumOperands(); 1370 i != e; ++i) { 1371 MachineOperand &MO = NewMI.getOperand(i); 1372 if (MO.isReg() && MO.isDef()) { 1373 assert(MO.isImplicit() && MO.isDead() && 1374 Register::isPhysicalRegister(MO.getReg())); 1375 NewMIImplDefs.push_back(MO.getReg()); 1376 } 1377 } 1378 1379 if (Register::isVirtualRegister(DstReg)) { 1380 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1381 1382 if (DefRC != nullptr) { 1383 if (NewIdx) 1384 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1385 else 1386 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1387 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1388 } 1389 // Remap subranges to new lanemask and change register class. 1390 LiveInterval &DstInt = LIS->getInterval(DstReg); 1391 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1392 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1393 } 1394 MRI->setRegClass(DstReg, NewRC); 1395 1396 // Update machine operands and add flags. 1397 updateRegDefsUses(DstReg, DstReg, DstIdx); 1398 NewMI.getOperand(0).setSubReg(NewIdx); 1399 // updateRegDefUses can add an "undef" flag to the definition, since 1400 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make 1401 // sure that "undef" is not set. 1402 if (NewIdx == 0) 1403 NewMI.getOperand(0).setIsUndef(false); 1404 // Add dead subregister definitions if we are defining the whole register 1405 // but only part of it is live. 1406 // This could happen if the rematerialization instruction is rematerializing 1407 // more than actually is used in the register. 1408 // An example would be: 1409 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1410 // ; Copying only part of the register here, but the rest is undef. 1411 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit 1412 // ==> 1413 // ; Materialize all the constants but only using one 1414 // %2 = LOAD_CONSTANTS 5, 8 1415 // 1416 // at this point for the part that wasn't defined before we could have 1417 // subranges missing the definition. 1418 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1419 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1420 SlotIndex DefIndex = 1421 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1422 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1423 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1424 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1425 if (!SR.liveAt(DefIndex)) 1426 SR.createDeadDef(DefIndex, Alloc); 1427 MaxMask &= ~SR.LaneMask; 1428 } 1429 if (MaxMask.any()) { 1430 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1431 SR->createDeadDef(DefIndex, Alloc); 1432 } 1433 } 1434 1435 // Make sure that the subrange for resultant undef is removed 1436 // For example: 1437 // %1:sub1<def,read-undef> = LOAD CONSTANT 1 1438 // %2 = COPY %1 1439 // ==> 1440 // %2:sub1<def, read-undef> = LOAD CONSTANT 1 1441 // ; Correct but need to remove the subrange for %2:sub0 1442 // ; as it is now undef 1443 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1444 // The affected subregister segments can be removed. 1445 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1446 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1447 bool UpdatedSubRanges = false; 1448 SlotIndex DefIndex = 1449 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1450 VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator(); 1451 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1452 if ((SR.LaneMask & DstMask).none()) { 1453 LLVM_DEBUG(dbgs() 1454 << "Removing undefined SubRange " 1455 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1456 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1457 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1458 SR.removeValNo(RmValNo); 1459 UpdatedSubRanges = true; 1460 } 1461 } else { 1462 // We know that this lane is defined by this instruction, 1463 // but at this point it may be empty because it is not used by 1464 // anything. This happens when updateRegDefUses adds the missing 1465 // lanes. Assign that lane a dead def so that the interferences 1466 // are properly modeled. 1467 if (SR.empty()) 1468 SR.createDeadDef(DefIndex, Alloc); 1469 } 1470 } 1471 if (UpdatedSubRanges) 1472 DstInt.removeEmptySubRanges(); 1473 } 1474 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1475 // The New instruction may be defining a sub-register of what's actually 1476 // been asked for. If so it must implicitly define the whole thing. 1477 assert(Register::isPhysicalRegister(DstReg) && 1478 "Only expect virtual or physical registers in remat"); 1479 NewMI.getOperand(0).setIsDead(true); 1480 NewMI.addOperand(MachineOperand::CreateReg( 1481 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1482 // Record small dead def live-ranges for all the subregisters 1483 // of the destination register. 1484 // Otherwise, variables that live through may miss some 1485 // interferences, thus creating invalid allocation. 1486 // E.g., i386 code: 1487 // %1 = somedef ; %1 GR8 1488 // %2 = remat ; %2 GR32 1489 // CL = COPY %2.sub_8bit 1490 // = somedef %1 ; %1 GR8 1491 // => 1492 // %1 = somedef ; %1 GR8 1493 // dead ECX = remat ; implicit-def CL 1494 // = somedef %1 ; %1 GR8 1495 // %1 will see the interferences with CL but not with CH since 1496 // no live-ranges would have been created for ECX. 1497 // Fix that! 1498 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1499 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1500 Units.isValid(); ++Units) 1501 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1502 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1503 } 1504 1505 if (NewMI.getOperand(0).getSubReg()) 1506 NewMI.getOperand(0).setIsUndef(); 1507 1508 // Transfer over implicit operands to the rematerialized instruction. 1509 for (MachineOperand &MO : ImplicitOps) 1510 NewMI.addOperand(MO); 1511 1512 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1513 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1514 unsigned Reg = NewMIImplDefs[i]; 1515 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1516 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1517 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1518 } 1519 1520 LLVM_DEBUG(dbgs() << "Remat: " << NewMI); 1521 ++NumReMats; 1522 1523 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1524 // to describe DstReg instead. 1525 if (MRI->use_nodbg_empty(SrcReg)) { 1526 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1527 MachineInstr *UseMI = UseMO.getParent(); 1528 if (UseMI->isDebugValue()) { 1529 if (Register::isPhysicalRegister(DstReg)) 1530 UseMO.substPhysReg(DstReg, *TRI); 1531 else 1532 UseMO.setReg(DstReg); 1533 // Move the debug value directly after the def of the rematerialized 1534 // value in DstReg. 1535 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); 1536 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1537 } 1538 } 1539 } 1540 1541 if (ToBeUpdated.count(SrcReg)) 1542 return true; 1543 1544 unsigned NumCopyUses = 0; 1545 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 1546 if (UseMO.getParent()->isCopyLike()) 1547 NumCopyUses++; 1548 } 1549 if (NumCopyUses < LateRematUpdateThreshold) { 1550 // The source interval can become smaller because we removed a use. 1551 shrinkToUses(&SrcInt, &DeadDefs); 1552 if (!DeadDefs.empty()) 1553 eliminateDeadDefs(); 1554 } else { 1555 ToBeUpdated.insert(SrcReg); 1556 } 1557 return true; 1558 } 1559 1560 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1561 // ProcessImplicitDefs may leave some copies of <undef> values, it only 1562 // removes local variables. When we have a copy like: 1563 // 1564 // %1 = COPY undef %2 1565 // 1566 // We delete the copy and remove the corresponding value number from %1. 1567 // Any uses of that value number are marked as <undef>. 1568 1569 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1570 // CoalescerPair may have a new register class with adjusted subreg indices 1571 // at this point. 1572 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1573 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) 1574 return nullptr; 1575 1576 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1577 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1578 // CopyMI is undef iff SrcReg is not live before the instruction. 1579 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1580 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1581 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1582 if ((SR.LaneMask & SrcMask).none()) 1583 continue; 1584 if (SR.liveAt(Idx)) 1585 return nullptr; 1586 } 1587 } else if (SrcLI.liveAt(Idx)) 1588 return nullptr; 1589 1590 // If the undef copy defines a live-out value (i.e. an input to a PHI def), 1591 // then replace it with an IMPLICIT_DEF. 1592 LiveInterval &DstLI = LIS->getInterval(DstReg); 1593 SlotIndex RegIndex = Idx.getRegSlot(); 1594 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex); 1595 assert(Seg != nullptr && "No segment for defining instruction"); 1596 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) { 1597 if (V->isPHIDef()) { 1598 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1599 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) { 1600 MachineOperand &MO = CopyMI->getOperand(i-1); 1601 if (MO.isReg() && MO.isUse()) 1602 CopyMI->RemoveOperand(i-1); 1603 } 1604 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an " 1605 "implicit def\n"); 1606 return CopyMI; 1607 } 1608 } 1609 1610 // Remove any DstReg segments starting at the instruction. 1611 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1612 1613 // Remove value or merge with previous one in case of a subregister def. 1614 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1615 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1616 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1617 1618 // The affected subregister segments can be removed. 1619 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1620 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1621 if ((SR.LaneMask & DstMask).none()) 1622 continue; 1623 1624 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1625 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1626 SR.removeValNo(SVNI); 1627 } 1628 DstLI.removeEmptySubRanges(); 1629 } else 1630 LIS->removeVRegDefAt(DstLI, RegIndex); 1631 1632 // Mark uses as undef. 1633 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1634 if (MO.isDef() /*|| MO.isUndef()*/) 1635 continue; 1636 const MachineInstr &MI = *MO.getParent(); 1637 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1638 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1639 bool isLive; 1640 if (!UseMask.all() && DstLI.hasSubRanges()) { 1641 isLive = false; 1642 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1643 if ((SR.LaneMask & UseMask).none()) 1644 continue; 1645 if (SR.liveAt(UseIdx)) { 1646 isLive = true; 1647 break; 1648 } 1649 } 1650 } else 1651 isLive = DstLI.liveAt(UseIdx); 1652 if (isLive) 1653 continue; 1654 MO.setIsUndef(true); 1655 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1656 } 1657 1658 // A def of a subregister may be a use of the other subregisters, so 1659 // deleting a def of a subregister may also remove uses. Since CopyMI 1660 // is still part of the function (but about to be erased), mark all 1661 // defs of DstReg in it as <undef>, so that shrinkToUses would 1662 // ignore them. 1663 for (MachineOperand &MO : CopyMI->operands()) 1664 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1665 MO.setIsUndef(true); 1666 LIS->shrinkToUses(&DstLI); 1667 1668 return CopyMI; 1669 } 1670 1671 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1672 MachineOperand &MO, unsigned SubRegIdx) { 1673 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1674 if (MO.isDef()) 1675 Mask = ~Mask; 1676 bool IsUndef = true; 1677 for (const LiveInterval::SubRange &S : Int.subranges()) { 1678 if ((S.LaneMask & Mask).none()) 1679 continue; 1680 if (S.liveAt(UseIdx)) { 1681 IsUndef = false; 1682 break; 1683 } 1684 } 1685 if (IsUndef) { 1686 MO.setIsUndef(true); 1687 // We found out some subregister use is actually reading an undefined 1688 // value. In some cases the whole vreg has become undefined at this 1689 // point so we have to potentially shrink the main range if the 1690 // use was ending a live segment there. 1691 LiveQueryResult Q = Int.Query(UseIdx); 1692 if (Q.valueOut() == nullptr) 1693 ShrinkMainRange = true; 1694 } 1695 } 1696 1697 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, unsigned DstReg, 1698 unsigned SubIdx) { 1699 bool DstIsPhys = Register::isPhysicalRegister(DstReg); 1700 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1701 1702 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1703 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1704 unsigned SubReg = MO.getSubReg(); 1705 if (SubReg == 0 || MO.isUndef()) 1706 continue; 1707 MachineInstr &MI = *MO.getParent(); 1708 if (MI.isDebugValue()) 1709 continue; 1710 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1711 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1712 } 1713 } 1714 1715 SmallPtrSet<MachineInstr*, 8> Visited; 1716 for (MachineRegisterInfo::reg_instr_iterator 1717 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1718 I != E; ) { 1719 MachineInstr *UseMI = &*(I++); 1720 1721 // Each instruction can only be rewritten once because sub-register 1722 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1723 // the UseMI operands removes them from the SrcReg use-def chain, but when 1724 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1725 // operands mentioning the virtual register. 1726 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1727 continue; 1728 1729 SmallVector<unsigned,8> Ops; 1730 bool Reads, Writes; 1731 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1732 1733 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1734 // because SrcReg is a sub-register. 1735 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) 1736 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1737 1738 // Replace SrcReg with DstReg in all UseMI operands. 1739 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1740 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1741 1742 // Adjust <undef> flags in case of sub-register joins. We don't want to 1743 // turn a full def into a read-modify-write sub-register def and vice 1744 // versa. 1745 if (SubIdx && MO.isDef()) 1746 MO.setIsUndef(!Reads); 1747 1748 // A subreg use of a partially undef (super) register may be a complete 1749 // undef use now and then has to be marked that way. 1750 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1751 if (!DstInt->hasSubRanges()) { 1752 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1753 LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1754 LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx); 1755 LaneBitmask UnusedLanes = FullMask & ~UsedLanes; 1756 DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt); 1757 // The unused lanes are just empty live-ranges at this point. 1758 // It is the caller responsibility to set the proper 1759 // dead segments if there is an actual dead def of the 1760 // unused lanes. This may happen with rematerialization. 1761 DstInt->createSubRange(Allocator, UnusedLanes); 1762 } 1763 SlotIndex MIIdx = UseMI->isDebugValue() 1764 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1765 : LIS->getInstructionIndex(*UseMI); 1766 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1767 addUndefFlag(*DstInt, UseIdx, MO, SubIdx); 1768 } 1769 1770 if (DstIsPhys) 1771 MO.substPhysReg(DstReg, *TRI); 1772 else 1773 MO.substVirtReg(DstReg, SubIdx, *TRI); 1774 } 1775 1776 LLVM_DEBUG({ 1777 dbgs() << "\t\tupdated: "; 1778 if (!UseMI->isDebugValue()) 1779 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1780 dbgs() << *UseMI; 1781 }); 1782 } 1783 } 1784 1785 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1786 // Always join simple intervals that are defined by a single copy from a 1787 // reserved register. This doesn't increase register pressure, so it is 1788 // always beneficial. 1789 if (!MRI->isReserved(CP.getDstReg())) { 1790 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1791 return false; 1792 } 1793 1794 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1795 if (JoinVInt.containsOneValue()) 1796 return true; 1797 1798 LLVM_DEBUG( 1799 dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1800 return false; 1801 } 1802 1803 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1804 Again = false; 1805 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1806 1807 CoalescerPair CP(*TRI); 1808 if (!CP.setRegisters(CopyMI)) { 1809 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n"); 1810 return false; 1811 } 1812 1813 if (CP.getNewRC()) { 1814 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1815 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1816 unsigned SrcIdx = CP.getSrcIdx(); 1817 unsigned DstIdx = CP.getDstIdx(); 1818 if (CP.isFlipped()) { 1819 std::swap(SrcIdx, DstIdx); 1820 std::swap(SrcRC, DstRC); 1821 } 1822 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1823 CP.getNewRC(), *LIS)) { 1824 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1825 return false; 1826 } 1827 } 1828 1829 // Dead code elimination. This really should be handled by MachineDCE, but 1830 // sometimes dead copies slip through, and we can't generate invalid live 1831 // ranges. 1832 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1833 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n"); 1834 DeadDefs.push_back(CopyMI); 1835 eliminateDeadDefs(); 1836 return true; 1837 } 1838 1839 // Eliminate undefs. 1840 if (!CP.isPhys()) { 1841 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce. 1842 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) { 1843 if (UndefMI->isImplicitDef()) 1844 return false; 1845 deleteInstr(CopyMI); 1846 return false; // Not coalescable. 1847 } 1848 } 1849 1850 // Coalesced copies are normally removed immediately, but transformations 1851 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1852 // When that happens, just join the values and remove the copy. 1853 if (CP.getSrcReg() == CP.getDstReg()) { 1854 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1855 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1856 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1857 LiveQueryResult LRQ = LI.Query(CopyIdx); 1858 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1859 VNInfo *ReadVNI = LRQ.valueIn(); 1860 assert(ReadVNI && "No value before copy and no <undef> flag."); 1861 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1862 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1863 1864 // Process subregister liveranges. 1865 for (LiveInterval::SubRange &S : LI.subranges()) { 1866 LiveQueryResult SLRQ = S.Query(CopyIdx); 1867 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1868 VNInfo *SReadVNI = SLRQ.valueIn(); 1869 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1870 } 1871 } 1872 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1873 } 1874 deleteInstr(CopyMI); 1875 return true; 1876 } 1877 1878 // Enforce policies. 1879 if (CP.isPhys()) { 1880 LLVM_DEBUG(dbgs() << "\tConsidering merging " 1881 << printReg(CP.getSrcReg(), TRI) << " with " 1882 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'); 1883 if (!canJoinPhys(CP)) { 1884 // Before giving up coalescing, if definition of source is defined by 1885 // trivial computation, try rematerializing it. 1886 bool IsDefCopy; 1887 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1888 return true; 1889 if (IsDefCopy) 1890 Again = true; // May be possible to coalesce later. 1891 return false; 1892 } 1893 } else { 1894 // When possible, let DstReg be the larger interval. 1895 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1896 LIS->getInterval(CP.getDstReg()).size()) 1897 CP.flip(); 1898 1899 LLVM_DEBUG({ 1900 dbgs() << "\tConsidering merging to " 1901 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1902 if (CP.getDstIdx() && CP.getSrcIdx()) 1903 dbgs() << printReg(CP.getDstReg()) << " in " 1904 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1905 << printReg(CP.getSrcReg()) << " in " 1906 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1907 else 1908 dbgs() << printReg(CP.getSrcReg(), TRI) << " in " 1909 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1910 }); 1911 } 1912 1913 ShrinkMask = LaneBitmask::getNone(); 1914 ShrinkMainRange = false; 1915 1916 // Okay, attempt to join these two intervals. On failure, this returns false. 1917 // Otherwise, if one of the intervals being joined is a physreg, this method 1918 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1919 // been modified, so we can use this information below to update aliases. 1920 if (!joinIntervals(CP)) { 1921 // Coalescing failed. 1922 1923 // If definition of source is defined by trivial computation, try 1924 // rematerializing it. 1925 bool IsDefCopy; 1926 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1927 return true; 1928 1929 // If we can eliminate the copy without merging the live segments, do so 1930 // now. 1931 if (!CP.isPartial() && !CP.isPhys()) { 1932 bool Changed = adjustCopiesBackFrom(CP, CopyMI); 1933 bool Shrink = false; 1934 if (!Changed) 1935 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI); 1936 if (Changed) { 1937 deleteInstr(CopyMI); 1938 if (Shrink) { 1939 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1940 LiveInterval &DstLI = LIS->getInterval(DstReg); 1941 shrinkToUses(&DstLI); 1942 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n'); 1943 } 1944 LLVM_DEBUG(dbgs() << "\tTrivial!\n"); 1945 return true; 1946 } 1947 } 1948 1949 // Try and see if we can partially eliminate the copy by moving the copy to 1950 // its predecessor. 1951 if (!CP.isPartial() && !CP.isPhys()) 1952 if (removePartialRedundancy(CP, *CopyMI)) 1953 return true; 1954 1955 // Otherwise, we are unable to join the intervals. 1956 LLVM_DEBUG(dbgs() << "\tInterference!\n"); 1957 Again = true; // May be possible to coalesce later. 1958 return false; 1959 } 1960 1961 // Coalescing to a virtual register that is of a sub-register class of the 1962 // other. Make sure the resulting register is set to the right register class. 1963 if (CP.isCrossClass()) { 1964 ++numCrossRCs; 1965 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1966 } 1967 1968 // Removing sub-register copies can ease the register class constraints. 1969 // Make sure we attempt to inflate the register class of DstReg. 1970 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1971 InflateRegs.push_back(CP.getDstReg()); 1972 1973 // CopyMI has been erased by joinIntervals at this point. Remove it from 1974 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1975 // to the work list. This keeps ErasedInstrs from growing needlessly. 1976 ErasedInstrs.erase(CopyMI); 1977 1978 // Rewrite all SrcReg operands to DstReg. 1979 // Also update DstReg operands to include DstIdx if it is set. 1980 if (CP.getDstIdx()) 1981 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1982 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1983 1984 // Shrink subregister ranges if necessary. 1985 if (ShrinkMask.any()) { 1986 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1987 for (LiveInterval::SubRange &S : LI.subranges()) { 1988 if ((S.LaneMask & ShrinkMask).none()) 1989 continue; 1990 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1991 << ")\n"); 1992 LIS->shrinkToUses(S, LI.reg); 1993 } 1994 LI.removeEmptySubRanges(); 1995 } 1996 1997 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live 1998 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval 1999 // is not up-to-date, need to update the merged live interval here. 2000 if (ToBeUpdated.count(CP.getSrcReg())) 2001 ShrinkMainRange = true; 2002 2003 if (ShrinkMainRange) { 2004 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 2005 shrinkToUses(&LI); 2006 } 2007 2008 // SrcReg is guaranteed to be the register whose live interval that is 2009 // being merged. 2010 LIS->removeInterval(CP.getSrcReg()); 2011 2012 // Update regalloc hint. 2013 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 2014 2015 LLVM_DEBUG({ 2016 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 2017 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 2018 dbgs() << "\tResult = "; 2019 if (CP.isPhys()) 2020 dbgs() << printReg(CP.getDstReg(), TRI); 2021 else 2022 dbgs() << LIS->getInterval(CP.getDstReg()); 2023 dbgs() << '\n'; 2024 }); 2025 2026 ++numJoins; 2027 return true; 2028 } 2029 2030 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 2031 unsigned DstReg = CP.getDstReg(); 2032 unsigned SrcReg = CP.getSrcReg(); 2033 assert(CP.isPhys() && "Must be a physreg copy"); 2034 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 2035 LiveInterval &RHS = LIS->getInterval(SrcReg); 2036 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 2037 2038 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 2039 2040 // Optimization for reserved registers like ESP. We can only merge with a 2041 // reserved physreg if RHS has a single value that is a copy of DstReg. 2042 // The live range of the reserved register will look like a set of dead defs 2043 // - we don't properly track the live range of reserved registers. 2044 2045 // Deny any overlapping intervals. This depends on all the reserved 2046 // register live ranges to look like dead defs. 2047 if (!MRI->isConstantPhysReg(DstReg)) { 2048 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2049 // Abort if not all the regunits are reserved. 2050 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 2051 if (!MRI->isReserved(*RI)) 2052 return false; 2053 } 2054 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 2055 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) 2056 << '\n'); 2057 return false; 2058 } 2059 } 2060 2061 // We must also check for overlaps with regmask clobbers. 2062 BitVector RegMaskUsable; 2063 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 2064 !RegMaskUsable.test(DstReg)) { 2065 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n"); 2066 return false; 2067 } 2068 } 2069 2070 // Skip any value computations, we are not adding new values to the 2071 // reserved register. Also skip merging the live ranges, the reserved 2072 // register live range doesn't need to be accurate as long as all the 2073 // defs are there. 2074 2075 // Delete the identity copy. 2076 MachineInstr *CopyMI; 2077 if (CP.isFlipped()) { 2078 // Physreg is copied into vreg 2079 // %y = COPY %physreg_x 2080 // ... //< no other def of %physreg_x here 2081 // use %y 2082 // => 2083 // ... 2084 // use %physreg_x 2085 CopyMI = MRI->getVRegDef(SrcReg); 2086 } else { 2087 // VReg is copied into physreg: 2088 // %y = def 2089 // ... //< no other def or use of %physreg_x here 2090 // %physreg_x = COPY %y 2091 // => 2092 // %physreg_x = def 2093 // ... 2094 if (!MRI->hasOneNonDBGUse(SrcReg)) { 2095 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 2096 return false; 2097 } 2098 2099 if (!LIS->intervalIsInOneMBB(RHS)) { 2100 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n"); 2101 return false; 2102 } 2103 2104 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 2105 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 2106 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 2107 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 2108 2109 if (!MRI->isConstantPhysReg(DstReg)) { 2110 // We checked above that there are no interfering defs of the physical 2111 // register. However, for this case, where we intend to move up the def of 2112 // the physical register, we also need to check for interfering uses. 2113 SlotIndexes *Indexes = LIS->getSlotIndexes(); 2114 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 2115 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 2116 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 2117 if (MI->readsRegister(DstReg, TRI)) { 2118 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 2119 return false; 2120 } 2121 } 2122 } 2123 2124 // We're going to remove the copy which defines a physical reserved 2125 // register, so remove its valno, etc. 2126 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of " 2127 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n"); 2128 2129 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 2130 // Create a new dead def at the new def location. 2131 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2132 LiveRange &LR = LIS->getRegUnit(*UI); 2133 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 2134 } 2135 } 2136 2137 deleteInstr(CopyMI); 2138 2139 // We don't track kills for reserved registers. 2140 MRI->clearKillFlags(CP.getSrcReg()); 2141 2142 return true; 2143 } 2144 2145 //===----------------------------------------------------------------------===// 2146 // Interference checking and interval joining 2147 //===----------------------------------------------------------------------===// 2148 // 2149 // In the easiest case, the two live ranges being joined are disjoint, and 2150 // there is no interference to consider. It is quite common, though, to have 2151 // overlapping live ranges, and we need to check if the interference can be 2152 // resolved. 2153 // 2154 // The live range of a single SSA value forms a sub-tree of the dominator tree. 2155 // This means that two SSA values overlap if and only if the def of one value 2156 // is contained in the live range of the other value. As a special case, the 2157 // overlapping values can be defined at the same index. 2158 // 2159 // The interference from an overlapping def can be resolved in these cases: 2160 // 2161 // 1. Coalescable copies. The value is defined by a copy that would become an 2162 // identity copy after joining SrcReg and DstReg. The copy instruction will 2163 // be removed, and the value will be merged with the source value. 2164 // 2165 // There can be several copies back and forth, causing many values to be 2166 // merged into one. We compute a list of ultimate values in the joined live 2167 // range as well as a mappings from the old value numbers. 2168 // 2169 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 2170 // predecessors have a live out value. It doesn't cause real interference, 2171 // and can be merged into the value it overlaps. Like a coalescable copy, it 2172 // can be erased after joining. 2173 // 2174 // 3. Copy of external value. The overlapping def may be a copy of a value that 2175 // is already in the other register. This is like a coalescable copy, but 2176 // the live range of the source register must be trimmed after erasing the 2177 // copy instruction: 2178 // 2179 // %src = COPY %ext 2180 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 2181 // 2182 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 2183 // defining one lane at a time: 2184 // 2185 // %dst:ssub0<def,read-undef> = FOO 2186 // %src = BAR 2187 // %dst:ssub1 = COPY %src 2188 // 2189 // The live range of %src overlaps the %dst value defined by FOO, but 2190 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 2191 // which was undef anyway. 2192 // 2193 // The value mapping is more complicated in this case. The final live range 2194 // will have different value numbers for both FOO and BAR, but there is no 2195 // simple mapping from old to new values. It may even be necessary to add 2196 // new PHI values. 2197 // 2198 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 2199 // is live, but never read. This can happen because we don't compute 2200 // individual live ranges per lane. 2201 // 2202 // %dst = FOO 2203 // %src = BAR 2204 // %dst:ssub1 = COPY %src 2205 // 2206 // This kind of interference is only resolved locally. If the clobbered 2207 // lane value escapes the block, the join is aborted. 2208 2209 namespace { 2210 2211 /// Track information about values in a single virtual register about to be 2212 /// joined. Objects of this class are always created in pairs - one for each 2213 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 2214 /// pair) 2215 class JoinVals { 2216 /// Live range we work on. 2217 LiveRange &LR; 2218 2219 /// (Main) register we work on. 2220 const unsigned Reg; 2221 2222 /// Reg (and therefore the values in this liverange) will end up as 2223 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 2224 /// CP.SrcIdx. 2225 const unsigned SubIdx; 2226 2227 /// The LaneMask that this liverange will occupy the coalesced register. May 2228 /// be smaller than the lanemask produced by SubIdx when merging subranges. 2229 const LaneBitmask LaneMask; 2230 2231 /// This is true when joining sub register ranges, false when joining main 2232 /// ranges. 2233 const bool SubRangeJoin; 2234 2235 /// Whether the current LiveInterval tracks subregister liveness. 2236 const bool TrackSubRegLiveness; 2237 2238 /// Values that will be present in the final live range. 2239 SmallVectorImpl<VNInfo*> &NewVNInfo; 2240 2241 const CoalescerPair &CP; 2242 LiveIntervals *LIS; 2243 SlotIndexes *Indexes; 2244 const TargetRegisterInfo *TRI; 2245 2246 /// Value number assignments. Maps value numbers in LI to entries in 2247 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 2248 SmallVector<int, 8> Assignments; 2249 2250 public: 2251 /// Conflict resolution for overlapping values. 2252 enum ConflictResolution { 2253 /// No overlap, simply keep this value. 2254 CR_Keep, 2255 2256 /// Merge this value into OtherVNI and erase the defining instruction. 2257 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 2258 /// values. 2259 CR_Erase, 2260 2261 /// Merge this value into OtherVNI but keep the defining instruction. 2262 /// This is for the special case where OtherVNI is defined by the same 2263 /// instruction. 2264 CR_Merge, 2265 2266 /// Keep this value, and have it replace OtherVNI where possible. This 2267 /// complicates value mapping since OtherVNI maps to two different values 2268 /// before and after this def. 2269 /// Used when clobbering undefined or dead lanes. 2270 CR_Replace, 2271 2272 /// Unresolved conflict. Visit later when all values have been mapped. 2273 CR_Unresolved, 2274 2275 /// Unresolvable conflict. Abort the join. 2276 CR_Impossible 2277 }; 2278 2279 private: 2280 /// Per-value info for LI. The lane bit masks are all relative to the final 2281 /// joined register, so they can be compared directly between SrcReg and 2282 /// DstReg. 2283 struct Val { 2284 ConflictResolution Resolution = CR_Keep; 2285 2286 /// Lanes written by this def, 0 for unanalyzed values. 2287 LaneBitmask WriteLanes; 2288 2289 /// Lanes with defined values in this register. Other lanes are undef and 2290 /// safe to clobber. 2291 LaneBitmask ValidLanes; 2292 2293 /// Value in LI being redefined by this def. 2294 VNInfo *RedefVNI = nullptr; 2295 2296 /// Value in the other live range that overlaps this def, if any. 2297 VNInfo *OtherVNI = nullptr; 2298 2299 /// Is this value an IMPLICIT_DEF that can be erased? 2300 /// 2301 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2302 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2303 /// safely erased if they are overlapping a live value in the other live 2304 /// interval. 2305 /// 2306 /// Weird control flow graphs and incomplete PHI handling in 2307 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2308 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2309 /// normal values. 2310 bool ErasableImplicitDef = false; 2311 2312 /// True when the live range of this value will be pruned because of an 2313 /// overlapping CR_Replace value in the other live range. 2314 bool Pruned = false; 2315 2316 /// True once Pruned above has been computed. 2317 bool PrunedComputed = false; 2318 2319 /// True if this value is determined to be identical to OtherVNI 2320 /// (in valuesIdentical). This is used with CR_Erase where the erased 2321 /// copy is redundant, i.e. the source value is already the same as 2322 /// the destination. In such cases the subranges need to be updated 2323 /// properly. See comment at pruneSubRegValues for more info. 2324 bool Identical = false; 2325 2326 Val() = default; 2327 2328 bool isAnalyzed() const { return WriteLanes.any(); } 2329 }; 2330 2331 /// One entry per value number in LI. 2332 SmallVector<Val, 8> Vals; 2333 2334 /// Compute the bitmask of lanes actually written by DefMI. 2335 /// Set Redef if there are any partial register definitions that depend on the 2336 /// previous value of the register. 2337 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2338 2339 /// Find the ultimate value that VNI was copied from. 2340 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 2341 2342 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const; 2343 2344 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2345 /// Return a conflict resolution when possible, but leave the hard cases as 2346 /// CR_Unresolved. 2347 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2348 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2349 /// The recursion always goes upwards in the dominator tree, making loops 2350 /// impossible. 2351 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2352 2353 /// Compute the value assignment for ValNo in RI. 2354 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2355 /// the stack. 2356 void computeAssignment(unsigned ValNo, JoinVals &Other); 2357 2358 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2359 /// the extent of the tainted lanes in the block. 2360 /// 2361 /// Multiple values in Other.LR can be affected since partial redefinitions 2362 /// can preserve previously tainted lanes. 2363 /// 2364 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2365 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2366 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2367 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2368 /// 2369 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2370 /// entry to TaintedVals. 2371 /// 2372 /// Returns false if the tainted lanes extend beyond the basic block. 2373 bool 2374 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2375 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); 2376 2377 /// Return true if MI uses any of the given Lanes from Reg. 2378 /// This does not include partial redefinitions of Reg. 2379 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; 2380 2381 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2382 /// be pruned: 2383 /// 2384 /// %dst = COPY %src 2385 /// %src = COPY %dst <-- This value to be pruned. 2386 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2387 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2388 2389 public: 2390 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 2391 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 2392 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2393 bool TrackSubRegLiveness) 2394 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2395 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2396 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2397 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {} 2398 2399 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2400 /// Returns false if any conflicts were impossible to resolve. 2401 bool mapValues(JoinVals &Other); 2402 2403 /// Try to resolve conflicts that require all values to be mapped. 2404 /// Returns false if any conflicts were impossible to resolve. 2405 bool resolveConflicts(JoinVals &Other); 2406 2407 /// Prune the live range of values in Other.LR where they would conflict with 2408 /// CR_Replace values in LR. Collect end points for restoring the live range 2409 /// after joining. 2410 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2411 bool changeInstrs); 2412 2413 /// Removes subranges starting at copies that get removed. This sometimes 2414 /// happens when undefined subranges are copied around. These ranges contain 2415 /// no useful information and can be removed. 2416 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2417 2418 /// Pruning values in subranges can lead to removing segments in these 2419 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2420 /// the main range also need to be removed. This function will mark 2421 /// the corresponding values in the main range as pruned, so that 2422 /// eraseInstrs can do the final cleanup. 2423 /// The parameter @p LI must be the interval whose main range is the 2424 /// live range LR. 2425 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2426 2427 /// Erase any machine instructions that have been coalesced away. 2428 /// Add erased instructions to ErasedInstrs. 2429 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2430 /// the erased instrs. 2431 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2432 SmallVectorImpl<unsigned> &ShrinkRegs, 2433 LiveInterval *LI = nullptr); 2434 2435 /// Remove liverange defs at places where implicit defs will be removed. 2436 void removeImplicitDefs(); 2437 2438 /// Get the value assignments suitable for passing to LiveInterval::join. 2439 const int *getAssignments() const { return Assignments.data(); } 2440 2441 /// Get the conflict resolution for a value number. 2442 ConflictResolution getResolution(unsigned Num) const { 2443 return Vals[Num].Resolution; 2444 } 2445 }; 2446 2447 } // end anonymous namespace 2448 2449 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2450 const { 2451 LaneBitmask L; 2452 for (const MachineOperand &MO : DefMI->operands()) { 2453 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2454 continue; 2455 L |= TRI->getSubRegIndexLaneMask( 2456 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2457 if (MO.readsReg()) 2458 Redef = true; 2459 } 2460 return L; 2461 } 2462 2463 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 2464 const VNInfo *VNI) const { 2465 unsigned TrackReg = Reg; 2466 2467 while (!VNI->isPHIDef()) { 2468 SlotIndex Def = VNI->def; 2469 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2470 assert(MI && "No defining instruction"); 2471 if (!MI->isFullCopy()) 2472 return std::make_pair(VNI, TrackReg); 2473 Register SrcReg = MI->getOperand(1).getReg(); 2474 if (!Register::isVirtualRegister(SrcReg)) 2475 return std::make_pair(VNI, TrackReg); 2476 2477 const LiveInterval &LI = LIS->getInterval(SrcReg); 2478 const VNInfo *ValueIn; 2479 // No subrange involved. 2480 if (!SubRangeJoin || !LI.hasSubRanges()) { 2481 LiveQueryResult LRQ = LI.Query(Def); 2482 ValueIn = LRQ.valueIn(); 2483 } else { 2484 // Query subranges. Ensure that all matching ones take us to the same def 2485 // (allowing some of them to be undef). 2486 ValueIn = nullptr; 2487 for (const LiveInterval::SubRange &S : LI.subranges()) { 2488 // Transform lanemask to a mask in the joined live interval. 2489 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2490 if ((SMask & LaneMask).none()) 2491 continue; 2492 LiveQueryResult LRQ = S.Query(Def); 2493 if (!ValueIn) { 2494 ValueIn = LRQ.valueIn(); 2495 continue; 2496 } 2497 if (LRQ.valueIn() && ValueIn != LRQ.valueIn()) 2498 return std::make_pair(VNI, TrackReg); 2499 } 2500 } 2501 if (ValueIn == nullptr) { 2502 // Reaching an undefined value is legitimate, for example: 2503 // 2504 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef 2505 // 2 %1 = COPY %0 ;; %1 is defined here. 2506 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition, 2507 // ;; but it's equivalent to "undef". 2508 return std::make_pair(nullptr, SrcReg); 2509 } 2510 VNI = ValueIn; 2511 TrackReg = SrcReg; 2512 } 2513 return std::make_pair(VNI, TrackReg); 2514 } 2515 2516 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2517 const JoinVals &Other) const { 2518 const VNInfo *Orig0; 2519 unsigned Reg0; 2520 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2521 if (Orig0 == Value1 && Reg0 == Other.Reg) 2522 return true; 2523 2524 const VNInfo *Orig1; 2525 unsigned Reg1; 2526 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2527 // If both values are undefined, and the source registers are the same 2528 // register, the values are identical. Filter out cases where only one 2529 // value is defined. 2530 if (Orig0 == nullptr || Orig1 == nullptr) 2531 return Orig0 == Orig1 && Reg0 == Reg1; 2532 2533 // The values are equal if they are defined at the same place and use the 2534 // same register. Note that we cannot compare VNInfos directly as some of 2535 // them might be from a copy created in mergeSubRangeInto() while the other 2536 // is from the original LiveInterval. 2537 return Orig0->def == Orig1->def && Reg0 == Reg1; 2538 } 2539 2540 JoinVals::ConflictResolution 2541 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2542 Val &V = Vals[ValNo]; 2543 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2544 VNInfo *VNI = LR.getValNumInfo(ValNo); 2545 if (VNI->isUnused()) { 2546 V.WriteLanes = LaneBitmask::getAll(); 2547 return CR_Keep; 2548 } 2549 2550 // Get the instruction defining this value, compute the lanes written. 2551 const MachineInstr *DefMI = nullptr; 2552 if (VNI->isPHIDef()) { 2553 // Conservatively assume that all lanes in a PHI are valid. 2554 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2555 : TRI->getSubRegIndexLaneMask(SubIdx); 2556 V.ValidLanes = V.WriteLanes = Lanes; 2557 } else { 2558 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2559 assert(DefMI != nullptr); 2560 if (SubRangeJoin) { 2561 // We don't care about the lanes when joining subregister ranges. 2562 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2563 if (DefMI->isImplicitDef()) { 2564 V.ValidLanes = LaneBitmask::getNone(); 2565 V.ErasableImplicitDef = true; 2566 } 2567 } else { 2568 bool Redef = false; 2569 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2570 2571 // If this is a read-modify-write instruction, there may be more valid 2572 // lanes than the ones written by this instruction. 2573 // This only covers partial redef operands. DefMI may have normal use 2574 // operands reading the register. They don't contribute valid lanes. 2575 // 2576 // This adds ssub1 to the set of valid lanes in %src: 2577 // 2578 // %src:ssub1 = FOO 2579 // 2580 // This leaves only ssub1 valid, making any other lanes undef: 2581 // 2582 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2583 // 2584 // The <read-undef> flag on the def operand means that old lane values are 2585 // not important. 2586 if (Redef) { 2587 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2588 assert((TrackSubRegLiveness || V.RedefVNI) && 2589 "Instruction is reading nonexistent value"); 2590 if (V.RedefVNI != nullptr) { 2591 computeAssignment(V.RedefVNI->id, Other); 2592 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2593 } 2594 } 2595 2596 // An IMPLICIT_DEF writes undef values. 2597 if (DefMI->isImplicitDef()) { 2598 // We normally expect IMPLICIT_DEF values to be live only until the end 2599 // of their block. If the value is really live longer and gets pruned in 2600 // another block, this flag is cleared again. 2601 // 2602 // Clearing the valid lanes is deferred until it is sure this can be 2603 // erased. 2604 V.ErasableImplicitDef = true; 2605 } 2606 } 2607 } 2608 2609 // Find the value in Other that overlaps VNI->def, if any. 2610 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2611 2612 // It is possible that both values are defined by the same instruction, or 2613 // the values are PHIs defined in the same block. When that happens, the two 2614 // values should be merged into one, but not into any preceding value. 2615 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2616 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2617 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2618 2619 // One value stays, the other is merged. Keep the earlier one, or the first 2620 // one we see. 2621 if (OtherVNI->def < VNI->def) 2622 Other.computeAssignment(OtherVNI->id, *this); 2623 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2624 // This is an early-clobber def overlapping a live-in value in the other 2625 // register. Not mergeable. 2626 V.OtherVNI = OtherLRQ.valueIn(); 2627 return CR_Impossible; 2628 } 2629 V.OtherVNI = OtherVNI; 2630 Val &OtherV = Other.Vals[OtherVNI->id]; 2631 // Keep this value, check for conflicts when analyzing OtherVNI. 2632 if (!OtherV.isAnalyzed()) 2633 return CR_Keep; 2634 // Both sides have been analyzed now. 2635 // Allow overlapping PHI values. Any real interference would show up in a 2636 // predecessor, the PHI itself can't introduce any conflicts. 2637 if (VNI->isPHIDef()) 2638 return CR_Merge; 2639 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2640 // Overlapping lanes can't be resolved. 2641 return CR_Impossible; 2642 else 2643 return CR_Merge; 2644 } 2645 2646 // No simultaneous def. Is Other live at the def? 2647 V.OtherVNI = OtherLRQ.valueIn(); 2648 if (!V.OtherVNI) 2649 // No overlap, no conflict. 2650 return CR_Keep; 2651 2652 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2653 2654 // We have overlapping values, or possibly a kill of Other. 2655 // Recursively compute assignments up the dominator tree. 2656 Other.computeAssignment(V.OtherVNI->id, *this); 2657 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2658 2659 if (OtherV.ErasableImplicitDef) { 2660 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2661 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2662 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2663 // technically. 2664 // 2665 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2666 // to erase the IMPLICIT_DEF instruction. 2667 if (DefMI && 2668 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2669 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2670 << " extends into " 2671 << printMBBReference(*DefMI->getParent()) 2672 << ", keeping it.\n"); 2673 OtherV.ErasableImplicitDef = false; 2674 } else { 2675 // We deferred clearing these lanes in case we needed to save them 2676 OtherV.ValidLanes &= ~OtherV.WriteLanes; 2677 } 2678 } 2679 2680 // Allow overlapping PHI values. Any real interference would show up in a 2681 // predecessor, the PHI itself can't introduce any conflicts. 2682 if (VNI->isPHIDef()) 2683 return CR_Replace; 2684 2685 // Check for simple erasable conflicts. 2686 if (DefMI->isImplicitDef()) { 2687 // We need the def for the subregister if there is nothing else live at the 2688 // subrange at this point. 2689 if (TrackSubRegLiveness 2690 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none()) 2691 return CR_Replace; 2692 return CR_Erase; 2693 } 2694 2695 // Include the non-conflict where DefMI is a coalescable copy that kills 2696 // OtherVNI. We still want the copy erased and value numbers merged. 2697 if (CP.isCoalescable(DefMI)) { 2698 // Some of the lanes copied from OtherVNI may be undef, making them undef 2699 // here too. 2700 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2701 return CR_Erase; 2702 } 2703 2704 // This may not be a real conflict if DefMI simply kills Other and defines 2705 // VNI. 2706 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2707 return CR_Keep; 2708 2709 // Handle the case where VNI and OtherVNI can be proven to be identical: 2710 // 2711 // %other = COPY %ext 2712 // %this = COPY %ext <-- Erase this copy 2713 // 2714 if (DefMI->isFullCopy() && !CP.isPartial() && 2715 valuesIdentical(VNI, V.OtherVNI, Other)) { 2716 V.Identical = true; 2717 return CR_Erase; 2718 } 2719 2720 // The remaining checks apply to the lanes, which aren't tracked here. This 2721 // was already decided to be OK via the following CR_Replace condition. 2722 // CR_Replace. 2723 if (SubRangeJoin) 2724 return CR_Replace; 2725 2726 // If the lanes written by this instruction were all undef in OtherVNI, it is 2727 // still safe to join the live ranges. This can't be done with a simple value 2728 // mapping, though - OtherVNI will map to multiple values: 2729 // 2730 // 1 %dst:ssub0 = FOO <-- OtherVNI 2731 // 2 %src = BAR <-- VNI 2732 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy. 2733 // 4 BAZ killed %dst 2734 // 5 QUUX killed %src 2735 // 2736 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2737 // handles this complex value mapping. 2738 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2739 return CR_Replace; 2740 2741 // If the other live range is killed by DefMI and the live ranges are still 2742 // overlapping, it must be because we're looking at an early clobber def: 2743 // 2744 // %dst<def,early-clobber> = ASM killed %src 2745 // 2746 // In this case, it is illegal to merge the two live ranges since the early 2747 // clobber def would clobber %src before it was read. 2748 if (OtherLRQ.isKill()) { 2749 // This case where the def doesn't overlap the kill is handled above. 2750 assert(VNI->def.isEarlyClobber() && 2751 "Only early clobber defs can overlap a kill"); 2752 return CR_Impossible; 2753 } 2754 2755 // VNI is clobbering live lanes in OtherVNI, but there is still the 2756 // possibility that no instructions actually read the clobbered lanes. 2757 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2758 // Otherwise Other.RI wouldn't be live here. 2759 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2760 return CR_Impossible; 2761 2762 // We need to verify that no instructions are reading the clobbered lanes. To 2763 // save compile time, we'll only check that locally. Don't allow the tainted 2764 // value to escape the basic block. 2765 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2766 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2767 return CR_Impossible; 2768 2769 // There are still some things that could go wrong besides clobbered lanes 2770 // being read, for example OtherVNI may be only partially redefined in MBB, 2771 // and some clobbered lanes could escape the block. Save this analysis for 2772 // resolveConflicts() when all values have been mapped. We need to know 2773 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2774 // that now - the recursive analyzeValue() calls must go upwards in the 2775 // dominator tree. 2776 return CR_Unresolved; 2777 } 2778 2779 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2780 Val &V = Vals[ValNo]; 2781 if (V.isAnalyzed()) { 2782 // Recursion should always move up the dominator tree, so ValNo is not 2783 // supposed to reappear before it has been assigned. 2784 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2785 return; 2786 } 2787 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2788 case CR_Erase: 2789 case CR_Merge: 2790 // Merge this ValNo into OtherVNI. 2791 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2792 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2793 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2794 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@' 2795 << LR.getValNumInfo(ValNo)->def << " into " 2796 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2797 << V.OtherVNI->def << " --> @" 2798 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2799 break; 2800 case CR_Replace: 2801 case CR_Unresolved: { 2802 // The other value is going to be pruned if this join is successful. 2803 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2804 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2805 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2806 // its lanes. 2807 if (OtherV.ErasableImplicitDef && 2808 TrackSubRegLiveness && 2809 (OtherV.WriteLanes & ~V.ValidLanes).any()) { 2810 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n"); 2811 2812 OtherV.ErasableImplicitDef = false; 2813 // The valid lanes written by the implicit_def were speculatively cleared 2814 // before, so make this more conservative. It may be better to track this, 2815 // I haven't found a testcase where it matters. 2816 OtherV.ValidLanes = LaneBitmask::getAll(); 2817 } 2818 2819 OtherV.Pruned = true; 2820 LLVM_FALLTHROUGH; 2821 } 2822 default: 2823 // This value number needs to go in the final joined live range. 2824 Assignments[ValNo] = NewVNInfo.size(); 2825 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2826 break; 2827 } 2828 } 2829 2830 bool JoinVals::mapValues(JoinVals &Other) { 2831 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2832 computeAssignment(i, Other); 2833 if (Vals[i].Resolution == CR_Impossible) { 2834 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i 2835 << '@' << LR.getValNumInfo(i)->def << '\n'); 2836 return false; 2837 } 2838 } 2839 return true; 2840 } 2841 2842 bool JoinVals:: 2843 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2844 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { 2845 VNInfo *VNI = LR.getValNumInfo(ValNo); 2846 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2847 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2848 2849 // Scan Other.LR from VNI.def to MBBEnd. 2850 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2851 assert(OtherI != Other.LR.end() && "No conflict?"); 2852 do { 2853 // OtherI is pointing to a tainted value. Abort the join if the tainted 2854 // lanes escape the block. 2855 SlotIndex End = OtherI->end; 2856 if (End >= MBBEnd) { 2857 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':' 2858 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2859 return false; 2860 } 2861 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':' 2862 << OtherI->valno->id << '@' << OtherI->start << " to " 2863 << End << '\n'); 2864 // A dead def is not a problem. 2865 if (End.isDead()) 2866 break; 2867 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2868 2869 // Check for another def in the MBB. 2870 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2871 break; 2872 2873 // Lanes written by the new def are no longer tainted. 2874 const Val &OV = Other.Vals[OtherI->valno->id]; 2875 TaintedLanes &= ~OV.WriteLanes; 2876 if (!OV.RedefVNI) 2877 break; 2878 } while (TaintedLanes.any()); 2879 return true; 2880 } 2881 2882 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, 2883 LaneBitmask Lanes) const { 2884 if (MI.isDebugInstr()) 2885 return false; 2886 for (const MachineOperand &MO : MI.operands()) { 2887 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2888 continue; 2889 if (!MO.readsReg()) 2890 continue; 2891 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 2892 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 2893 return true; 2894 } 2895 return false; 2896 } 2897 2898 bool JoinVals::resolveConflicts(JoinVals &Other) { 2899 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2900 Val &V = Vals[i]; 2901 assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); 2902 if (V.Resolution != CR_Unresolved) 2903 continue; 2904 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@' 2905 << LR.getValNumInfo(i)->def 2906 << ' ' << PrintLaneMask(LaneMask) << '\n'); 2907 if (SubRangeJoin) 2908 return false; 2909 2910 ++NumLaneConflicts; 2911 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2912 VNInfo *VNI = LR.getValNumInfo(i); 2913 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2914 2915 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2916 // join, those lanes will be tainted with a wrong value. Get the extent of 2917 // the tainted lanes. 2918 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2919 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2920 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2921 // Tainted lanes would extend beyond the basic block. 2922 return false; 2923 2924 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2925 2926 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2927 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2928 MachineBasicBlock::iterator MI = MBB->begin(); 2929 if (!VNI->isPHIDef()) { 2930 MI = Indexes->getInstructionFromIndex(VNI->def); 2931 // No need to check the instruction defining VNI for reads. 2932 ++MI; 2933 } 2934 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2935 "Interference ends on VNI->def. Should have been handled earlier"); 2936 MachineInstr *LastMI = 2937 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2938 assert(LastMI && "Range must end at a proper instruction"); 2939 unsigned TaintNum = 0; 2940 while (true) { 2941 assert(MI != MBB->end() && "Bad LastMI"); 2942 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2943 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2944 return false; 2945 } 2946 // LastMI is the last instruction to use the current value. 2947 if (&*MI == LastMI) { 2948 if (++TaintNum == TaintExtent.size()) 2949 break; 2950 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2951 assert(LastMI && "Range must end at a proper instruction"); 2952 TaintedLanes = TaintExtent[TaintNum].second; 2953 } 2954 ++MI; 2955 } 2956 2957 // The tainted lanes are unused. 2958 V.Resolution = CR_Replace; 2959 ++NumLaneResolves; 2960 } 2961 return true; 2962 } 2963 2964 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2965 Val &V = Vals[ValNo]; 2966 if (V.Pruned || V.PrunedComputed) 2967 return V.Pruned; 2968 2969 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2970 return V.Pruned; 2971 2972 // Follow copies up the dominator tree and check if any intermediate value 2973 // has been pruned. 2974 V.PrunedComputed = true; 2975 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2976 return V.Pruned; 2977 } 2978 2979 void JoinVals::pruneValues(JoinVals &Other, 2980 SmallVectorImpl<SlotIndex> &EndPoints, 2981 bool changeInstrs) { 2982 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2983 SlotIndex Def = LR.getValNumInfo(i)->def; 2984 switch (Vals[i].Resolution) { 2985 case CR_Keep: 2986 break; 2987 case CR_Replace: { 2988 // This value takes precedence over the value in Other.LR. 2989 LIS->pruneValue(Other.LR, Def, &EndPoints); 2990 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2991 // instructions are only inserted to provide a live-out value for PHI 2992 // predecessors, so the instruction should simply go away once its value 2993 // has been replaced. 2994 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2995 bool EraseImpDef = OtherV.ErasableImplicitDef && 2996 OtherV.Resolution == CR_Keep; 2997 if (!Def.isBlock()) { 2998 if (changeInstrs) { 2999 // Remove <def,read-undef> flags. This def is now a partial redef. 3000 // Also remove dead flags since the joined live range will 3001 // continue past this instruction. 3002 for (MachineOperand &MO : 3003 Indexes->getInstructionFromIndex(Def)->operands()) { 3004 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 3005 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) 3006 MO.setIsUndef(false); 3007 MO.setIsDead(false); 3008 } 3009 } 3010 } 3011 // This value will reach instructions below, but we need to make sure 3012 // the live range also reaches the instruction at Def. 3013 if (!EraseImpDef) 3014 EndPoints.push_back(Def); 3015 } 3016 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def 3017 << ": " << Other.LR << '\n'); 3018 break; 3019 } 3020 case CR_Erase: 3021 case CR_Merge: 3022 if (isPrunedValue(i, Other)) { 3023 // This value is ultimately a copy of a pruned value in LR or Other.LR. 3024 // We can no longer trust the value mapping computed by 3025 // computeAssignment(), the value that was originally copied could have 3026 // been replaced. 3027 LIS->pruneValue(LR, Def, &EndPoints); 3028 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at " 3029 << Def << ": " << LR << '\n'); 3030 } 3031 break; 3032 case CR_Unresolved: 3033 case CR_Impossible: 3034 llvm_unreachable("Unresolved conflicts"); 3035 } 3036 } 3037 } 3038 3039 /// Consider the following situation when coalescing the copy between 3040 /// %31 and %45 at 800. (The vertical lines represent live range segments.) 3041 /// 3042 /// Main range Subrange 0004 (sub2) 3043 /// %31 %45 %31 %45 3044 /// 544 %45 = COPY %28 + + 3045 /// | v1 | v1 3046 /// 560B bb.1: + + 3047 /// 624 = %45.sub2 | v2 | v2 3048 /// 800 %31 = COPY %45 + + + + 3049 /// | v0 | v0 3050 /// 816 %31.sub1 = ... + | 3051 /// 880 %30 = COPY %31 | v1 + 3052 /// 928 %45 = COPY %30 | + + 3053 /// | | v0 | v0 <--+ 3054 /// 992B ; backedge -> bb.1 | + + | 3055 /// 1040 = %31.sub0 + | 3056 /// This value must remain 3057 /// live-out! 3058 /// 3059 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes 3060 /// redundant, since it copies the value from %45 back into it. The 3061 /// conflict resolution for the main range determines that %45.v0 is 3062 /// to be erased, which is ok since %31.v1 is identical to it. 3063 /// The problem happens with the subrange for sub2: it has to be live 3064 /// on exit from the block, but since 928 was actually a point of 3065 /// definition of %45.sub2, %45.sub2 was not live immediately prior 3066 /// to that definition. As a result, when 928 was erased, the value v0 3067 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an 3068 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2, 3069 /// providing an incorrect value to the use at 624. 3070 /// 3071 /// Since the main-range values %31.v1 and %45.v0 were proved to be 3072 /// identical, the corresponding values in subranges must also be the 3073 /// same. A redundant copy is removed because it's not needed, and not 3074 /// because it copied an undefined value, so any liveness that originated 3075 /// from that copy cannot disappear. When pruning a value that started 3076 /// at the removed copy, the corresponding identical value must be 3077 /// extended to replace it. 3078 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 3079 // Look for values being erased. 3080 bool DidPrune = false; 3081 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3082 Val &V = Vals[i]; 3083 // We should trigger in all cases in which eraseInstrs() does something. 3084 // match what eraseInstrs() is doing, print a message so 3085 if (V.Resolution != CR_Erase && 3086 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)) 3087 continue; 3088 3089 // Check subranges at the point where the copy will be removed. 3090 SlotIndex Def = LR.getValNumInfo(i)->def; 3091 SlotIndex OtherDef; 3092 if (V.Identical) 3093 OtherDef = V.OtherVNI->def; 3094 3095 // Print message so mismatches with eraseInstrs() can be diagnosed. 3096 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def 3097 << '\n'); 3098 for (LiveInterval::SubRange &S : LI.subranges()) { 3099 LiveQueryResult Q = S.Query(Def); 3100 3101 // If a subrange starts at the copy then an undefined value has been 3102 // copied and we must remove that subrange value as well. 3103 VNInfo *ValueOut = Q.valueOutOrDead(); 3104 if (ValueOut != nullptr && (Q.valueIn() == nullptr || 3105 (V.Identical && V.Resolution == CR_Erase && 3106 ValueOut->def == Def))) { 3107 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 3108 << " at " << Def << "\n"); 3109 SmallVector<SlotIndex,8> EndPoints; 3110 LIS->pruneValue(S, Def, &EndPoints); 3111 DidPrune = true; 3112 // Mark value number as unused. 3113 ValueOut->markUnused(); 3114 3115 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) { 3116 // If V is identical to V.OtherVNI (and S was live at OtherDef), 3117 // then we can't simply prune V from S. V needs to be replaced 3118 // with V.OtherVNI. 3119 LIS->extendToIndices(S, EndPoints); 3120 } 3121 continue; 3122 } 3123 // If a subrange ends at the copy, then a value was copied but only 3124 // partially used later. Shrink the subregister range appropriately. 3125 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 3126 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane " 3127 << PrintLaneMask(S.LaneMask) << " at " << Def 3128 << "\n"); 3129 ShrinkMask |= S.LaneMask; 3130 } 3131 } 3132 } 3133 if (DidPrune) 3134 LI.removeEmptySubRanges(); 3135 } 3136 3137 /// Check if any of the subranges of @p LI contain a definition at @p Def. 3138 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 3139 for (LiveInterval::SubRange &SR : LI.subranges()) { 3140 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 3141 if (VNI->def == Def) 3142 return true; 3143 } 3144 return false; 3145 } 3146 3147 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 3148 assert(&static_cast<LiveRange&>(LI) == &LR); 3149 3150 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3151 if (Vals[i].Resolution != CR_Keep) 3152 continue; 3153 VNInfo *VNI = LR.getValNumInfo(i); 3154 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 3155 continue; 3156 Vals[i].Pruned = true; 3157 ShrinkMainRange = true; 3158 } 3159 } 3160 3161 void JoinVals::removeImplicitDefs() { 3162 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3163 Val &V = Vals[i]; 3164 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 3165 continue; 3166 3167 VNInfo *VNI = LR.getValNumInfo(i); 3168 VNI->markUnused(); 3169 LR.removeValNo(VNI); 3170 } 3171 } 3172 3173 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 3174 SmallVectorImpl<unsigned> &ShrinkRegs, 3175 LiveInterval *LI) { 3176 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3177 // Get the def location before markUnused() below invalidates it. 3178 VNInfo *VNI = LR.getValNumInfo(i); 3179 SlotIndex Def = VNI->def; 3180 switch (Vals[i].Resolution) { 3181 case CR_Keep: { 3182 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 3183 // longer. The IMPLICIT_DEF instructions are only inserted by 3184 // PHIElimination to guarantee that all PHI predecessors have a value. 3185 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 3186 break; 3187 // Remove value number i from LR. 3188 // For intervals with subranges, removing a segment from the main range 3189 // may require extending the previous segment: for each definition of 3190 // a subregister, there will be a corresponding def in the main range. 3191 // That def may fall in the middle of a segment from another subrange. 3192 // In such cases, removing this def from the main range must be 3193 // complemented by extending the main range to account for the liveness 3194 // of the other subrange. 3195 // The new end point of the main range segment to be extended. 3196 SlotIndex NewEnd; 3197 if (LI != nullptr) { 3198 LiveRange::iterator I = LR.FindSegmentContaining(Def); 3199 assert(I != LR.end()); 3200 // Do not extend beyond the end of the segment being removed. 3201 // The segment may have been pruned in preparation for joining 3202 // live ranges. 3203 NewEnd = I->end; 3204 } 3205 3206 LR.removeValNo(VNI); 3207 // Note that this VNInfo is reused and still referenced in NewVNInfo, 3208 // make it appear like an unused value number. 3209 VNI->markUnused(); 3210 3211 if (LI != nullptr && LI->hasSubRanges()) { 3212 assert(static_cast<LiveRange*>(LI) == &LR); 3213 // Determine the end point based on the subrange information: 3214 // minimum of (earliest def of next segment, 3215 // latest end point of containing segment) 3216 SlotIndex ED, LE; 3217 for (LiveInterval::SubRange &SR : LI->subranges()) { 3218 LiveRange::iterator I = SR.find(Def); 3219 if (I == SR.end()) 3220 continue; 3221 if (I->start > Def) 3222 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 3223 else 3224 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 3225 } 3226 if (LE.isValid()) 3227 NewEnd = std::min(NewEnd, LE); 3228 if (ED.isValid()) 3229 NewEnd = std::min(NewEnd, ED); 3230 3231 // We only want to do the extension if there was a subrange that 3232 // was live across Def. 3233 if (LE.isValid()) { 3234 LiveRange::iterator S = LR.find(Def); 3235 if (S != LR.begin()) 3236 std::prev(S)->end = NewEnd; 3237 } 3238 } 3239 LLVM_DEBUG({ 3240 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 3241 if (LI != nullptr) 3242 dbgs() << "\t\t LHS = " << *LI << '\n'; 3243 }); 3244 LLVM_FALLTHROUGH; 3245 } 3246 3247 case CR_Erase: { 3248 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 3249 assert(MI && "No instruction to erase"); 3250 if (MI->isCopy()) { 3251 Register Reg = MI->getOperand(1).getReg(); 3252 if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() && 3253 Reg != CP.getDstReg()) 3254 ShrinkRegs.push_back(Reg); 3255 } 3256 ErasedInstrs.insert(MI); 3257 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 3258 LIS->RemoveMachineInstrFromMaps(*MI); 3259 MI->eraseFromParent(); 3260 break; 3261 } 3262 default: 3263 break; 3264 } 3265 } 3266 } 3267 3268 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 3269 LaneBitmask LaneMask, 3270 const CoalescerPair &CP) { 3271 SmallVector<VNInfo*, 16> NewVNInfo; 3272 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 3273 NewVNInfo, CP, LIS, TRI, true, true); 3274 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 3275 NewVNInfo, CP, LIS, TRI, true, true); 3276 3277 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 3278 // We should be able to resolve all conflicts here as we could successfully do 3279 // it on the mainrange already. There is however a problem when multiple 3280 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 3281 // interferences. 3282 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 3283 // We already determined that it is legal to merge the intervals, so this 3284 // should never fail. 3285 llvm_unreachable("*** Couldn't join subrange!\n"); 3286 } 3287 if (!LHSVals.resolveConflicts(RHSVals) || 3288 !RHSVals.resolveConflicts(LHSVals)) { 3289 // We already determined that it is legal to merge the intervals, so this 3290 // should never fail. 3291 llvm_unreachable("*** Couldn't join subrange!\n"); 3292 } 3293 3294 // The merging algorithm in LiveInterval::join() can't handle conflicting 3295 // value mappings, so we need to remove any live ranges that overlap a 3296 // CR_Replace resolution. Collect a set of end points that can be used to 3297 // restore the live range after joining. 3298 SmallVector<SlotIndex, 8> EndPoints; 3299 LHSVals.pruneValues(RHSVals, EndPoints, false); 3300 RHSVals.pruneValues(LHSVals, EndPoints, false); 3301 3302 LHSVals.removeImplicitDefs(); 3303 RHSVals.removeImplicitDefs(); 3304 3305 LRange.verify(); 3306 RRange.verify(); 3307 3308 // Join RRange into LHS. 3309 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 3310 NewVNInfo); 3311 3312 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask) 3313 << ' ' << LRange << "\n"); 3314 if (EndPoints.empty()) 3315 return; 3316 3317 // Recompute the parts of the live range we had to remove because of 3318 // CR_Replace conflicts. 3319 LLVM_DEBUG({ 3320 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3321 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3322 dbgs() << EndPoints[i]; 3323 if (i != n-1) 3324 dbgs() << ','; 3325 } 3326 dbgs() << ": " << LRange << '\n'; 3327 }); 3328 LIS->extendToIndices(LRange, EndPoints); 3329 } 3330 3331 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 3332 const LiveRange &ToMerge, 3333 LaneBitmask LaneMask, 3334 CoalescerPair &CP, 3335 unsigned ComposeSubRegIdx) { 3336 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3337 LI.refineSubRanges( 3338 Allocator, LaneMask, 3339 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) { 3340 if (SR.empty()) { 3341 SR.assign(ToMerge, Allocator); 3342 } else { 3343 // joinSubRegRange() destroys the merged range, so we need a copy. 3344 LiveRange RangeCopy(ToMerge, Allocator); 3345 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 3346 } 3347 }, 3348 *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx); 3349 } 3350 3351 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) { 3352 if (LI.valnos.size() < LargeIntervalSizeThreshold) 3353 return false; 3354 auto &Counter = LargeLIVisitCounter[LI.reg]; 3355 if (Counter < LargeIntervalFreqThreshold) { 3356 Counter++; 3357 return false; 3358 } 3359 return true; 3360 } 3361 3362 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 3363 SmallVector<VNInfo*, 16> NewVNInfo; 3364 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 3365 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 3366 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 3367 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 3368 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3369 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 3370 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3371 3372 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n'); 3373 3374 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS)) 3375 return false; 3376 3377 // First compute NewVNInfo and the simple value mappings. 3378 // Detect impossible conflicts early. 3379 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 3380 return false; 3381 3382 // Some conflicts can only be resolved after all values have been mapped. 3383 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 3384 return false; 3385 3386 // All clear, the live ranges can be merged. 3387 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 3388 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3389 3390 // Transform lanemasks from the LHS to masks in the coalesced register and 3391 // create initial subranges if necessary. 3392 unsigned DstIdx = CP.getDstIdx(); 3393 if (!LHS.hasSubRanges()) { 3394 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 3395 : TRI->getSubRegIndexLaneMask(DstIdx); 3396 // LHS must support subregs or we wouldn't be in this codepath. 3397 assert(Mask.any()); 3398 LHS.createSubRangeFrom(Allocator, Mask, LHS); 3399 } else if (DstIdx != 0) { 3400 // Transform LHS lanemasks to new register class if necessary. 3401 for (LiveInterval::SubRange &R : LHS.subranges()) { 3402 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 3403 R.LaneMask = Mask; 3404 } 3405 } 3406 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS 3407 << '\n'); 3408 3409 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3410 unsigned SrcIdx = CP.getSrcIdx(); 3411 if (!RHS.hasSubRanges()) { 3412 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3413 : TRI->getSubRegIndexLaneMask(SrcIdx); 3414 mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx); 3415 } else { 3416 // Pair up subranges and merge. 3417 for (LiveInterval::SubRange &R : RHS.subranges()) { 3418 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3419 mergeSubRangeInto(LHS, R, Mask, CP, DstIdx); 3420 } 3421 } 3422 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3423 3424 // Pruning implicit defs from subranges may result in the main range 3425 // having stale segments. 3426 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3427 3428 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3429 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3430 } 3431 3432 // The merging algorithm in LiveInterval::join() can't handle conflicting 3433 // value mappings, so we need to remove any live ranges that overlap a 3434 // CR_Replace resolution. Collect a set of end points that can be used to 3435 // restore the live range after joining. 3436 SmallVector<SlotIndex, 8> EndPoints; 3437 LHSVals.pruneValues(RHSVals, EndPoints, true); 3438 RHSVals.pruneValues(LHSVals, EndPoints, true); 3439 3440 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3441 // registers to require trimming. 3442 SmallVector<unsigned, 8> ShrinkRegs; 3443 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3444 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3445 while (!ShrinkRegs.empty()) 3446 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3447 3448 // Scan and mark undef any DBG_VALUEs that would refer to a different value. 3449 checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals); 3450 3451 // Join RHS into LHS. 3452 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3453 3454 // Kill flags are going to be wrong if the live ranges were overlapping. 3455 // Eventually, we should simply clear all kill flags when computing live 3456 // ranges. They are reinserted after register allocation. 3457 MRI->clearKillFlags(LHS.reg); 3458 MRI->clearKillFlags(RHS.reg); 3459 3460 if (!EndPoints.empty()) { 3461 // Recompute the parts of the live range we had to remove because of 3462 // CR_Replace conflicts. 3463 LLVM_DEBUG({ 3464 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3465 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3466 dbgs() << EndPoints[i]; 3467 if (i != n-1) 3468 dbgs() << ','; 3469 } 3470 dbgs() << ": " << LHS << '\n'; 3471 }); 3472 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3473 } 3474 3475 return true; 3476 } 3477 3478 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3479 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3480 } 3481 3482 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF) 3483 { 3484 const SlotIndexes &Slots = *LIS->getSlotIndexes(); 3485 SmallVector<MachineInstr *, 8> ToInsert; 3486 3487 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the 3488 // vreg => DbgValueLoc map. 3489 auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) { 3490 for (auto *X : ToInsert) 3491 DbgVRegToValues[X->getOperand(0).getReg()].push_back({Slot, X}); 3492 3493 ToInsert.clear(); 3494 }; 3495 3496 // Iterate over all instructions, collecting them into the ToInsert vector. 3497 // Once a non-debug instruction is found, record the slot index of the 3498 // collected DBG_VALUEs. 3499 for (auto &MBB : MF) { 3500 SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB); 3501 3502 for (auto &MI : MBB) { 3503 if (MI.isDebugValue() && MI.getOperand(0).isReg() && 3504 MI.getOperand(0).getReg().isVirtual()) { 3505 ToInsert.push_back(&MI); 3506 } else if (!MI.isDebugInstr()) { 3507 CurrentSlot = Slots.getInstructionIndex(MI); 3508 CloseNewDVRange(CurrentSlot); 3509 } 3510 } 3511 3512 // Close range of DBG_VALUEs at the end of blocks. 3513 CloseNewDVRange(Slots.getMBBEndIdx(&MBB)); 3514 } 3515 3516 // Sort all DBG_VALUEs we've seen by slot number. 3517 for (auto &Pair : DbgVRegToValues) 3518 llvm::sort(Pair.second); 3519 } 3520 3521 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP, 3522 LiveRange &LHS, 3523 JoinVals &LHSVals, 3524 LiveRange &RHS, 3525 JoinVals &RHSVals) { 3526 auto ScanForDstReg = [&](unsigned Reg) { 3527 checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals); 3528 }; 3529 3530 auto ScanForSrcReg = [&](unsigned Reg) { 3531 checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals); 3532 }; 3533 3534 // Scan for potentially unsound DBG_VALUEs: examine first the register number 3535 // Reg, and then any other vregs that may have been merged into it. 3536 auto PerformScan = [this](unsigned Reg, std::function<void(unsigned)> Func) { 3537 Func(Reg); 3538 if (DbgMergedVRegNums.count(Reg)) 3539 for (unsigned X : DbgMergedVRegNums[Reg]) 3540 Func(X); 3541 }; 3542 3543 // Scan for unsound updates of both the source and destination register. 3544 PerformScan(CP.getSrcReg(), ScanForSrcReg); 3545 PerformScan(CP.getDstReg(), ScanForDstReg); 3546 } 3547 3548 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(unsigned Reg, 3549 LiveRange &OtherLR, 3550 LiveRange &RegLR, 3551 JoinVals &RegVals) { 3552 // Are there any DBG_VALUEs to examine? 3553 auto VRegMapIt = DbgVRegToValues.find(Reg); 3554 if (VRegMapIt == DbgVRegToValues.end()) 3555 return; 3556 3557 auto &DbgValueSet = VRegMapIt->second; 3558 auto DbgValueSetIt = DbgValueSet.begin(); 3559 auto SegmentIt = OtherLR.begin(); 3560 3561 bool LastUndefResult = false; 3562 SlotIndex LastUndefIdx; 3563 3564 // If the "Other" register is live at a slot Idx, test whether Reg can 3565 // safely be merged with it, or should be marked undef. 3566 auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult, 3567 &LastUndefIdx](SlotIndex Idx) -> bool { 3568 // Our worst-case performance typically happens with asan, causing very 3569 // many DBG_VALUEs of the same location. Cache a copy of the most recent 3570 // result for this edge-case. 3571 if (LastUndefIdx == Idx) 3572 return LastUndefResult; 3573 3574 // If the other range was live, and Reg's was not, the register coalescer 3575 // will not have tried to resolve any conflicts. We don't know whether 3576 // the DBG_VALUE will refer to the same value number, so it must be made 3577 // undef. 3578 auto OtherIt = RegLR.find(Idx); 3579 if (OtherIt == RegLR.end()) 3580 return true; 3581 3582 // Both the registers were live: examine the conflict resolution record for 3583 // the value number Reg refers to. CR_Keep meant that this value number 3584 // "won" and the merged register definitely refers to that value. CR_Erase 3585 // means the value number was a redundant copy of the other value, which 3586 // was coalesced and Reg deleted. It's safe to refer to the other register 3587 // (which will be the source of the copy). 3588 auto Resolution = RegVals.getResolution(OtherIt->valno->id); 3589 LastUndefResult = Resolution != JoinVals::CR_Keep && 3590 Resolution != JoinVals::CR_Erase; 3591 LastUndefIdx = Idx; 3592 return LastUndefResult; 3593 }; 3594 3595 // Iterate over both the live-range of the "Other" register, and the set of 3596 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest 3597 // slot index. This relies on the DbgValueSet being ordered. 3598 while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) { 3599 if (DbgValueSetIt->first < SegmentIt->end) { 3600 // "Other" is live and there is a DBG_VALUE of Reg: test if we should 3601 // set it undef. 3602 if (DbgValueSetIt->first >= SegmentIt->start && 3603 DbgValueSetIt->second->getOperand(0).getReg() != 0 && 3604 ShouldUndef(DbgValueSetIt->first)) { 3605 // Mark undef, erase record of this DBG_VALUE to avoid revisiting. 3606 DbgValueSetIt->second->getOperand(0).setReg(0); 3607 continue; 3608 } 3609 ++DbgValueSetIt; 3610 } else { 3611 ++SegmentIt; 3612 } 3613 } 3614 } 3615 3616 namespace { 3617 3618 /// Information concerning MBB coalescing priority. 3619 struct MBBPriorityInfo { 3620 MachineBasicBlock *MBB; 3621 unsigned Depth; 3622 bool IsSplit; 3623 3624 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3625 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3626 }; 3627 3628 } // end anonymous namespace 3629 3630 /// C-style comparator that sorts first based on the loop depth of the basic 3631 /// block (the unsigned), and then on the MBB number. 3632 /// 3633 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3634 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3635 const MBBPriorityInfo *RHS) { 3636 // Deeper loops first 3637 if (LHS->Depth != RHS->Depth) 3638 return LHS->Depth > RHS->Depth ? -1 : 1; 3639 3640 // Try to unsplit critical edges next. 3641 if (LHS->IsSplit != RHS->IsSplit) 3642 return LHS->IsSplit ? -1 : 1; 3643 3644 // Prefer blocks that are more connected in the CFG. This takes care of 3645 // the most difficult copies first while intervals are short. 3646 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3647 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3648 if (cl != cr) 3649 return cl > cr ? -1 : 1; 3650 3651 // As a last resort, sort by block number. 3652 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3653 } 3654 3655 /// \returns true if the given copy uses or defines a local live range. 3656 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3657 if (!Copy->isCopy()) 3658 return false; 3659 3660 if (Copy->getOperand(1).isUndef()) 3661 return false; 3662 3663 Register SrcReg = Copy->getOperand(1).getReg(); 3664 Register DstReg = Copy->getOperand(0).getReg(); 3665 if (Register::isPhysicalRegister(SrcReg) || 3666 Register::isPhysicalRegister(DstReg)) 3667 return false; 3668 3669 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3670 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3671 } 3672 3673 void RegisterCoalescer::lateLiveIntervalUpdate() { 3674 for (unsigned reg : ToBeUpdated) { 3675 if (!LIS->hasInterval(reg)) 3676 continue; 3677 LiveInterval &LI = LIS->getInterval(reg); 3678 shrinkToUses(&LI, &DeadDefs); 3679 if (!DeadDefs.empty()) 3680 eliminateDeadDefs(); 3681 } 3682 ToBeUpdated.clear(); 3683 } 3684 3685 bool RegisterCoalescer:: 3686 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3687 bool Progress = false; 3688 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 3689 if (!CurrList[i]) 3690 continue; 3691 // Skip instruction pointers that have already been erased, for example by 3692 // dead code elimination. 3693 if (ErasedInstrs.count(CurrList[i])) { 3694 CurrList[i] = nullptr; 3695 continue; 3696 } 3697 bool Again = false; 3698 bool Success = joinCopy(CurrList[i], Again); 3699 Progress |= Success; 3700 if (Success || !Again) 3701 CurrList[i] = nullptr; 3702 } 3703 return Progress; 3704 } 3705 3706 /// Check if DstReg is a terminal node. 3707 /// I.e., it does not have any affinity other than \p Copy. 3708 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 3709 const MachineRegisterInfo *MRI) { 3710 assert(Copy.isCopyLike()); 3711 // Check if the destination of this copy as any other affinity. 3712 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3713 if (&MI != &Copy && MI.isCopyLike()) 3714 return false; 3715 return true; 3716 } 3717 3718 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3719 assert(Copy.isCopyLike()); 3720 if (!UseTerminalRule) 3721 return false; 3722 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 3723 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg)) 3724 return false; 3725 // Check if the destination of this copy has any other affinity. 3726 if (Register::isPhysicalRegister(DstReg) || 3727 // If SrcReg is a physical register, the copy won't be coalesced. 3728 // Ignoring it may have other side effect (like missing 3729 // rematerialization). So keep it. 3730 Register::isPhysicalRegister(SrcReg) || !isTerminalReg(DstReg, Copy, MRI)) 3731 return false; 3732 3733 // DstReg is a terminal node. Check if it interferes with any other 3734 // copy involving SrcReg. 3735 const MachineBasicBlock *OrigBB = Copy.getParent(); 3736 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3737 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3738 // Technically we should check if the weight of the new copy is 3739 // interesting compared to the other one and update the weight 3740 // of the copies accordingly. However, this would only work if 3741 // we would gather all the copies first then coalesce, whereas 3742 // right now we interleave both actions. 3743 // For now, just consider the copies that are in the same block. 3744 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3745 continue; 3746 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 3747 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3748 OtherSubReg)) 3749 return false; 3750 if (OtherReg == SrcReg) 3751 OtherReg = OtherSrcReg; 3752 // Check if OtherReg is a non-terminal. 3753 if (Register::isPhysicalRegister(OtherReg) || 3754 isTerminalReg(OtherReg, MI, MRI)) 3755 continue; 3756 // Check that OtherReg interfere with DstReg. 3757 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3758 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) 3759 << '\n'); 3760 return true; 3761 } 3762 } 3763 return false; 3764 } 3765 3766 void 3767 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3768 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n"); 3769 3770 // Collect all copy-like instructions in MBB. Don't start coalescing anything 3771 // yet, it might invalidate the iterator. 3772 const unsigned PrevSize = WorkList.size(); 3773 if (JoinGlobalCopies) { 3774 SmallVector<MachineInstr*, 2> LocalTerminals; 3775 SmallVector<MachineInstr*, 2> GlobalTerminals; 3776 // Coalesce copies bottom-up to coalesce local defs before local uses. They 3777 // are not inherently easier to resolve, but slightly preferable until we 3778 // have local live range splitting. In particular this is required by 3779 // cmp+jmp macro fusion. 3780 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 3781 MII != E; ++MII) { 3782 if (!MII->isCopyLike()) 3783 continue; 3784 bool ApplyTerminalRule = applyTerminalRule(*MII); 3785 if (isLocalCopy(&(*MII), LIS)) { 3786 if (ApplyTerminalRule) 3787 LocalTerminals.push_back(&(*MII)); 3788 else 3789 LocalWorkList.push_back(&(*MII)); 3790 } else { 3791 if (ApplyTerminalRule) 3792 GlobalTerminals.push_back(&(*MII)); 3793 else 3794 WorkList.push_back(&(*MII)); 3795 } 3796 } 3797 // Append the copies evicted by the terminal rule at the end of the list. 3798 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 3799 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 3800 } 3801 else { 3802 SmallVector<MachineInstr*, 2> Terminals; 3803 for (MachineInstr &MII : *MBB) 3804 if (MII.isCopyLike()) { 3805 if (applyTerminalRule(MII)) 3806 Terminals.push_back(&MII); 3807 else 3808 WorkList.push_back(&MII); 3809 } 3810 // Append the copies evicted by the terminal rule at the end of the list. 3811 WorkList.append(Terminals.begin(), Terminals.end()); 3812 } 3813 // Try coalescing the collected copies immediately, and remove the nulls. 3814 // This prevents the WorkList from getting too large since most copies are 3815 // joinable on the first attempt. 3816 MutableArrayRef<MachineInstr*> 3817 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 3818 if (copyCoalesceWorkList(CurrList)) 3819 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 3820 nullptr), WorkList.end()); 3821 } 3822 3823 void RegisterCoalescer::coalesceLocals() { 3824 copyCoalesceWorkList(LocalWorkList); 3825 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 3826 if (LocalWorkList[j]) 3827 WorkList.push_back(LocalWorkList[j]); 3828 } 3829 LocalWorkList.clear(); 3830 } 3831 3832 void RegisterCoalescer::joinAllIntervals() { 3833 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 3834 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 3835 3836 std::vector<MBBPriorityInfo> MBBs; 3837 MBBs.reserve(MF->size()); 3838 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 3839 MachineBasicBlock *MBB = &*I; 3840 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 3841 JoinSplitEdges && isSplitEdge(MBB))); 3842 } 3843 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 3844 3845 // Coalesce intervals in MBB priority order. 3846 unsigned CurrDepth = std::numeric_limits<unsigned>::max(); 3847 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 3848 // Try coalescing the collected local copies for deeper loops. 3849 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 3850 coalesceLocals(); 3851 CurrDepth = MBBs[i].Depth; 3852 } 3853 copyCoalesceInMBB(MBBs[i].MBB); 3854 } 3855 lateLiveIntervalUpdate(); 3856 coalesceLocals(); 3857 3858 // Joining intervals can allow other intervals to be joined. Iteratively join 3859 // until we make no progress. 3860 while (copyCoalesceWorkList(WorkList)) 3861 /* empty */ ; 3862 lateLiveIntervalUpdate(); 3863 } 3864 3865 void RegisterCoalescer::releaseMemory() { 3866 ErasedInstrs.clear(); 3867 WorkList.clear(); 3868 DeadDefs.clear(); 3869 InflateRegs.clear(); 3870 LargeLIVisitCounter.clear(); 3871 } 3872 3873 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 3874 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 3875 << "********** Function: " << fn.getName() << '\n'); 3876 3877 // Variables changed between a setjmp and a longjump can have undefined value 3878 // after the longjmp. This behaviour can be observed if such a variable is 3879 // spilled, so longjmp won't restore the value in the spill slot. 3880 // RegisterCoalescer should not run in functions with a setjmp to avoid 3881 // merging such undefined variables with predictable ones. 3882 // 3883 // TODO: Could specifically disable coalescing registers live across setjmp 3884 // calls 3885 if (fn.exposesReturnsTwice()) { 3886 LLVM_DEBUG( 3887 dbgs() << "* Skipped as it exposes funcions that returns twice.\n"); 3888 return false; 3889 } 3890 3891 MF = &fn; 3892 MRI = &fn.getRegInfo(); 3893 const TargetSubtargetInfo &STI = fn.getSubtarget(); 3894 TRI = STI.getRegisterInfo(); 3895 TII = STI.getInstrInfo(); 3896 LIS = &getAnalysis<LiveIntervals>(); 3897 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3898 Loops = &getAnalysis<MachineLoopInfo>(); 3899 if (EnableGlobalCopies == cl::BOU_UNSET) 3900 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 3901 else 3902 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 3903 3904 // The MachineScheduler does not currently require JoinSplitEdges. This will 3905 // either be enabled unconditionally or replaced by a more general live range 3906 // splitting optimization. 3907 JoinSplitEdges = EnableJoinSplits; 3908 3909 if (VerifyCoalescing) 3910 MF->verify(this, "Before register coalescing"); 3911 3912 DbgVRegToValues.clear(); 3913 DbgMergedVRegNums.clear(); 3914 buildVRegToDbgValueMap(fn); 3915 3916 RegClassInfo.runOnMachineFunction(fn); 3917 3918 // Join (coalesce) intervals if requested. 3919 if (EnableJoining) 3920 joinAllIntervals(); 3921 3922 // After deleting a lot of copies, register classes may be less constrained. 3923 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 3924 // DPR inflation. 3925 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 3926 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 3927 InflateRegs.end()); 3928 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() 3929 << " regs.\n"); 3930 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 3931 unsigned Reg = InflateRegs[i]; 3932 if (MRI->reg_nodbg_empty(Reg)) 3933 continue; 3934 if (MRI->recomputeRegClass(Reg)) { 3935 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to " 3936 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 3937 ++NumInflated; 3938 3939 LiveInterval &LI = LIS->getInterval(Reg); 3940 if (LI.hasSubRanges()) { 3941 // If the inflated register class does not support subregisters anymore 3942 // remove the subranges. 3943 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 3944 LI.clearSubRanges(); 3945 } else { 3946 #ifndef NDEBUG 3947 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3948 // If subranges are still supported, then the same subregs 3949 // should still be supported. 3950 for (LiveInterval::SubRange &S : LI.subranges()) { 3951 assert((S.LaneMask & ~MaxMask).none()); 3952 } 3953 #endif 3954 } 3955 } 3956 } 3957 } 3958 3959 LLVM_DEBUG(dump()); 3960 if (VerifyCoalescing) 3961 MF->verify(this, "After register coalescing"); 3962 return true; 3963 } 3964 3965 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 3966 LIS->print(O, m); 3967 } 3968