1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RegAllocRegistry.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/MC/MCInstrDesc.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <cassert> 48 #include <tuple> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumStores, "Number of stores added"); 56 STATISTIC(NumLoads , "Number of loads added"); 57 STATISTIC(NumCoalesced, "Number of copies coalesced"); 58 59 static RegisterRegAlloc 60 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 61 62 namespace { 63 64 class RegAllocFast : public MachineFunctionPass { 65 public: 66 static char ID; 67 68 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 69 70 private: 71 MachineFrameInfo *MFI; 72 MachineRegisterInfo *MRI; 73 const TargetRegisterInfo *TRI; 74 const TargetInstrInfo *TII; 75 RegisterClassInfo RegClassInfo; 76 77 /// Basic block currently being allocated. 78 MachineBasicBlock *MBB; 79 80 /// Maps virtual regs to the frame index where these values are spilled. 81 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 82 83 /// Everything we know about a live virtual register. 84 struct LiveReg { 85 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 86 Register VirtReg; ///< Virtual register number. 87 MCPhysReg PhysReg = 0; ///< Currently held here. 88 unsigned short LastOpNum = 0; ///< OpNum on LastUse. 89 bool Dirty = false; ///< Register needs spill. 90 91 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 92 93 unsigned getSparseSetIndex() const { 94 return Register::virtReg2Index(VirtReg); 95 } 96 }; 97 98 using LiveRegMap = SparseSet<LiveReg>; 99 /// This map contains entries for each virtual register that is currently 100 /// available in a physical register. 101 LiveRegMap LiveVirtRegs; 102 103 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap; 104 105 /// Has a bit set for every virtual register for which it was determined 106 /// that it is alive across blocks. 107 BitVector MayLiveAcrossBlocks; 108 109 /// State of a register unit. 110 enum RegUnitState { 111 /// A free register is not currently in use and can be allocated 112 /// immediately without checking aliases. 113 regFree, 114 115 /// A reserved register has been assigned explicitly (e.g., setting up a 116 /// call parameter), and it remains reserved until it is used. 117 regReserved 118 119 /// A register state may also be a virtual register number, indication 120 /// that the physical register is currently allocated to a virtual 121 /// register. In that case, LiveVirtRegs contains the inverse mapping. 122 }; 123 124 /// Maps each physical register to a RegUnitState enum or virtual register. 125 std::vector<unsigned> RegUnitStates; 126 127 SmallVector<Register, 16> VirtDead; 128 SmallVector<MachineInstr *, 32> Coalesced; 129 130 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 131 /// Set of register units that are used in the current instruction, and so 132 /// cannot be allocated. 133 RegUnitSet UsedInInstr; 134 135 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 136 bool isPhysRegFree(MCPhysReg PhysReg) const; 137 138 /// Mark a physreg as used in this instruction. 139 void markRegUsedInInstr(MCPhysReg PhysReg) { 140 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 141 UsedInInstr.insert(*Units); 142 } 143 144 /// Check if a physreg or any of its aliases are used in this instruction. 145 bool isRegUsedInInstr(MCPhysReg PhysReg) const { 146 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 147 if (UsedInInstr.count(*Units)) 148 return true; 149 return false; 150 } 151 152 enum : unsigned { 153 spillClean = 50, 154 spillDirty = 100, 155 spillPrefBonus = 20, 156 spillImpossible = ~0u 157 }; 158 159 public: 160 StringRef getPassName() const override { return "Fast Register Allocator"; } 161 162 void getAnalysisUsage(AnalysisUsage &AU) const override { 163 AU.setPreservesCFG(); 164 MachineFunctionPass::getAnalysisUsage(AU); 165 } 166 167 MachineFunctionProperties getRequiredProperties() const override { 168 return MachineFunctionProperties().set( 169 MachineFunctionProperties::Property::NoPHIs); 170 } 171 172 MachineFunctionProperties getSetProperties() const override { 173 return MachineFunctionProperties().set( 174 MachineFunctionProperties::Property::NoVRegs); 175 } 176 177 private: 178 bool runOnMachineFunction(MachineFunction &MF) override; 179 180 void allocateBasicBlock(MachineBasicBlock &MBB); 181 void allocateInstruction(MachineInstr &MI); 182 void handleDebugValue(MachineInstr &MI); 183 void handleThroughOperands(MachineInstr &MI, 184 SmallVectorImpl<Register> &VirtDead); 185 bool isLastUseOfLocalReg(const MachineOperand &MO) const; 186 187 void addKillFlag(const LiveReg &LRI); 188 bool verifyRegStateMapping(const LiveReg &LR) const; 189 void killVirtReg(LiveReg &LR); 190 void killVirtReg(Register VirtReg); 191 void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR); 192 void spillVirtReg(MachineBasicBlock::iterator MI, Register VirtReg); 193 194 void usePhysReg(MachineOperand &MO); 195 void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg, 196 unsigned NewState); 197 unsigned calcSpillCost(MCPhysReg PhysReg) const; 198 void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg); 199 200 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 201 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 202 } 203 204 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 205 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 206 } 207 208 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint); 209 void allocVirtRegUndef(MachineOperand &MO); 210 MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 211 Register Hint); 212 LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 213 Register Hint); 214 void spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut); 215 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 216 217 Register traceCopies(Register VirtReg) const; 218 Register traceCopyChain(Register Reg) const; 219 220 int getStackSpaceFor(Register VirtReg); 221 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 222 MCPhysReg AssignedReg, bool Kill); 223 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 224 MCPhysReg PhysReg); 225 226 bool mayLiveOut(Register VirtReg); 227 bool mayLiveIn(Register VirtReg); 228 229 void printRegUnitState(unsigned State) const; 230 void dumpState() const; 231 }; 232 233 } // end anonymous namespace 234 235 char RegAllocFast::ID = 0; 236 237 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 238 false) 239 240 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 241 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) 242 RegUnitStates[*UI] = NewState; 243 } 244 245 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const { 246 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 247 if (RegUnitStates[*UI] != regFree) 248 return false; 249 } 250 return true; 251 } 252 253 /// This allocates space for the specified virtual register to be held on the 254 /// stack. 255 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 256 // Find the location Reg would belong... 257 int SS = StackSlotForVirtReg[VirtReg]; 258 // Already has space allocated? 259 if (SS != -1) 260 return SS; 261 262 // Allocate a new stack object for this spill location... 263 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 264 unsigned Size = TRI->getSpillSize(RC); 265 Align Alignment = TRI->getSpillAlign(RC); 266 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 267 268 // Assign the slot. 269 StackSlotForVirtReg[VirtReg] = FrameIdx; 270 return FrameIdx; 271 } 272 273 /// Returns false if \p VirtReg is known to not live out of the current block. 274 bool RegAllocFast::mayLiveOut(Register VirtReg) { 275 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 276 // Cannot be live-out if there are no successors. 277 return !MBB->succ_empty(); 278 } 279 280 // If this block loops back to itself, it would be necessary to check whether 281 // the use comes after the def. 282 if (MBB->isSuccessor(MBB)) { 283 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 284 return true; 285 } 286 287 // See if the first \p Limit uses of the register are all in the current 288 // block. 289 static const unsigned Limit = 8; 290 unsigned C = 0; 291 for (const MachineInstr &UseInst : MRI->reg_nodbg_instructions(VirtReg)) { 292 if (UseInst.getParent() != MBB || ++C >= Limit) { 293 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 294 // Cannot be live-out if there are no successors. 295 return !MBB->succ_empty(); 296 } 297 } 298 299 return false; 300 } 301 302 /// Returns false if \p VirtReg is known to not be live into the current block. 303 bool RegAllocFast::mayLiveIn(Register VirtReg) { 304 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 305 return !MBB->pred_empty(); 306 307 // See if the first \p Limit def of the register are all in the current block. 308 static const unsigned Limit = 8; 309 unsigned C = 0; 310 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 311 if (DefInst.getParent() != MBB || ++C >= Limit) { 312 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 313 return !MBB->pred_empty(); 314 } 315 } 316 317 return false; 318 } 319 320 /// Insert spill instruction for \p AssignedReg before \p Before. Update 321 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 322 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 323 MCPhysReg AssignedReg, bool Kill) { 324 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 325 << " in " << printReg(AssignedReg, TRI)); 326 int FI = getStackSpaceFor(VirtReg); 327 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 328 329 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 330 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 331 ++NumStores; 332 333 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 334 // identify spilled location as the place to find corresponding variable's 335 // value. 336 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg]; 337 for (MachineInstr *DBG : LRIDbgValues) { 338 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI); 339 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 340 (void)NewDV; 341 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 342 } 343 // Now this register is spilled there is should not be any DBG_VALUE 344 // pointing to this register because they are all pointing to spilled value 345 // now. 346 LRIDbgValues.clear(); 347 } 348 349 /// Insert reload instruction for \p PhysReg before \p Before. 350 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 351 MCPhysReg PhysReg) { 352 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 353 << printReg(PhysReg, TRI) << '\n'); 354 int FI = getStackSpaceFor(VirtReg); 355 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 356 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 357 ++NumLoads; 358 } 359 360 /// Return true if MO is the only remaining reference to its virtual register, 361 /// and it is guaranteed to be a block-local register. 362 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const { 363 // If the register has ever been spilled or reloaded, we conservatively assume 364 // it is a global register used in multiple blocks. 365 if (StackSlotForVirtReg[MO.getReg()] != -1) 366 return false; 367 368 // Check that the use/def chain has exactly one operand - MO. 369 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 370 if (&*I != &MO) 371 return false; 372 return ++I == MRI->reg_nodbg_end(); 373 } 374 375 /// Set kill flags on last use of a virtual register. 376 void RegAllocFast::addKillFlag(const LiveReg &LR) { 377 if (!LR.LastUse) return; 378 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 379 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 380 if (MO.getReg() == LR.PhysReg) 381 MO.setIsKill(); 382 // else, don't do anything we are problably redefining a 383 // subreg of this register and given we don't track which 384 // lanes are actually dead, we cannot insert a kill flag here. 385 // Otherwise we may end up in a situation like this: 386 // ... = (MO) physreg:sub1, implicit killed physreg 387 // ... <== Here we would allow later pass to reuse physreg:sub1 388 // which is potentially wrong. 389 // LR:sub0 = ... 390 // ... = LR.sub1 <== This is going to use physreg:sub1 391 } 392 } 393 394 bool RegAllocFast::verifyRegStateMapping(const LiveReg &LR) const { 395 for (MCRegUnitIterator UI(LR.PhysReg, TRI); UI.isValid(); ++UI) { 396 if (RegUnitStates[*UI] != LR.VirtReg) 397 return false; 398 } 399 400 return true; 401 } 402 403 /// Mark virtreg as no longer available. 404 void RegAllocFast::killVirtReg(LiveReg &LR) { 405 assert(verifyRegStateMapping(LR) && "Broken RegState mapping"); 406 addKillFlag(LR); 407 MCPhysReg PhysReg = LR.PhysReg; 408 setPhysRegState(PhysReg, regFree); 409 LR.PhysReg = 0; 410 } 411 412 /// Mark virtreg as no longer available. 413 void RegAllocFast::killVirtReg(Register VirtReg) { 414 assert(Register::isVirtualRegister(VirtReg) && 415 "killVirtReg needs a virtual register"); 416 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 417 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) 418 killVirtReg(*LRI); 419 } 420 421 /// This method spills the value specified by VirtReg into the corresponding 422 /// stack slot if needed. 423 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 424 Register VirtReg) { 425 assert(Register::isVirtualRegister(VirtReg) && 426 "Spilling a physical register is illegal!"); 427 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 428 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 429 "Spilling unmapped virtual register"); 430 spillVirtReg(MI, *LRI); 431 } 432 433 /// Do the actual work of spilling. 434 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) { 435 assert(verifyRegStateMapping(LR) && "Broken RegState mapping"); 436 437 MCPhysReg PhysReg = LR.PhysReg; 438 439 if (LR.Dirty) { 440 // If this physreg is used by the instruction, we want to kill it on the 441 // instruction, not on the spill. 442 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; 443 LR.Dirty = false; 444 445 spill(MI, LR.VirtReg, PhysReg, SpillKill); 446 447 if (SpillKill) 448 LR.LastUse = nullptr; // Don't kill register again 449 } 450 killVirtReg(LR); 451 } 452 453 /// Spill all dirty virtregs without killing them. 454 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut) { 455 if (LiveVirtRegs.empty()) 456 return; 457 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 458 // of spilling here is deterministic, if arbitrary. 459 for (LiveReg &LR : LiveVirtRegs) { 460 if (!LR.PhysReg) 461 continue; 462 if (OnlyLiveOut && !mayLiveOut(LR.VirtReg)) 463 continue; 464 spillVirtReg(MI, LR); 465 } 466 LiveVirtRegs.clear(); 467 } 468 469 /// Handle the direct use of a physical register. Check that the register is 470 /// not used by a virtreg. Kill the physreg, marking it free. This may add 471 /// implicit kills to MO->getParent() and invalidate MO. 472 void RegAllocFast::usePhysReg(MachineOperand &MO) { 473 // Ignore undef uses. 474 if (MO.isUndef()) 475 return; 476 477 Register PhysReg = MO.getReg(); 478 assert(PhysReg.isPhysical() && "Bad usePhysReg operand"); 479 480 markRegUsedInInstr(PhysReg); 481 482 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 483 switch (RegUnitStates[*UI]) { 484 case regReserved: 485 RegUnitStates[*UI] = regFree; 486 LLVM_FALLTHROUGH; 487 case regFree: 488 break; 489 default: 490 llvm_unreachable("Unexpected reg unit state"); 491 } 492 } 493 494 // All aliases are disabled, bring register into working set. 495 setPhysRegState(PhysReg, regFree); 496 MO.setIsKill(); 497 } 498 499 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 500 /// similar to defineVirtReg except the physreg is reserved instead of 501 /// allocated. 502 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI, 503 MCPhysReg PhysReg, unsigned NewState) { 504 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 505 switch (unsigned VirtReg = RegUnitStates[*UI]) { 506 default: 507 spillVirtReg(MI, VirtReg); 508 break; 509 case regFree: 510 case regReserved: 511 break; 512 } 513 } 514 515 markRegUsedInInstr(PhysReg); 516 setPhysRegState(PhysReg, NewState); 517 } 518 519 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 520 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 521 /// disabled - it can be allocated directly. 522 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 523 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 524 if (isRegUsedInInstr(PhysReg)) { 525 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) 526 << " is already used in instr.\n"); 527 return spillImpossible; 528 } 529 530 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 531 switch (unsigned VirtReg = RegUnitStates[*UI]) { 532 case regFree: 533 break; 534 case regReserved: 535 LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding " 536 << printReg(PhysReg, TRI) << " is reserved already.\n"); 537 return spillImpossible; 538 default: { 539 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 540 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 541 "Missing VirtReg entry"); 542 return LRI->Dirty ? spillDirty : spillClean; 543 } 544 } 545 } 546 return 0; 547 } 548 549 /// This method updates local state so that we know that PhysReg is the 550 /// proper container for VirtReg now. The physical register must not be used 551 /// for anything else when this is called. 552 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) { 553 Register VirtReg = LR.VirtReg; 554 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 555 << printReg(PhysReg, TRI) << '\n'); 556 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 557 assert(PhysReg != 0 && "Trying to assign no register"); 558 LR.PhysReg = PhysReg; 559 setPhysRegState(PhysReg, VirtReg); 560 } 561 562 static bool isCoalescable(const MachineInstr &MI) { 563 return MI.isFullCopy(); 564 } 565 566 Register RegAllocFast::traceCopyChain(Register Reg) const { 567 static const unsigned ChainLengthLimit = 3; 568 unsigned C = 0; 569 do { 570 if (Reg.isPhysical()) 571 return Reg; 572 assert(Reg.isVirtual()); 573 574 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 575 if (!VRegDef || !isCoalescable(*VRegDef)) 576 return 0; 577 Reg = VRegDef->getOperand(1).getReg(); 578 } while (++C <= ChainLengthLimit); 579 return 0; 580 } 581 582 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 583 /// chain of copies to check whether we reach a physical register we can 584 /// coalesce with. 585 Register RegAllocFast::traceCopies(Register VirtReg) const { 586 static const unsigned DefLimit = 3; 587 unsigned C = 0; 588 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 589 if (isCoalescable(MI)) { 590 Register Reg = MI.getOperand(1).getReg(); 591 Reg = traceCopyChain(Reg); 592 if (Reg.isValid()) 593 return Reg; 594 } 595 596 if (++C >= DefLimit) 597 break; 598 } 599 return Register(); 600 } 601 602 /// Allocates a physical register for VirtReg. 603 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint0) { 604 const Register VirtReg = LR.VirtReg; 605 606 assert(Register::isVirtualRegister(VirtReg) && 607 "Can only allocate virtual registers"); 608 609 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 610 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 611 << " in class " << TRI->getRegClassName(&RC) 612 << " with hint " << printReg(Hint0, TRI) << '\n'); 613 614 // Take hint when possible. 615 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && 616 RC.contains(Hint0)) { 617 // Ignore the hint if we would have to spill a dirty register. 618 unsigned Cost = calcSpillCost(Hint0); 619 if (Cost < spillDirty) { 620 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 621 << '\n'); 622 if (Cost) 623 definePhysReg(MI, Hint0, regFree); 624 assignVirtToPhysReg(LR, Hint0); 625 return; 626 } else { 627 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 628 << "occupied\n"); 629 } 630 } else { 631 Hint0 = Register(); 632 } 633 634 // Try other hint. 635 Register Hint1 = traceCopies(VirtReg); 636 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && 637 RC.contains(Hint1) && !isRegUsedInInstr(Hint1)) { 638 // Ignore the hint if we would have to spill a dirty register. 639 unsigned Cost = calcSpillCost(Hint1); 640 if (Cost < spillDirty) { 641 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 642 << '\n'); 643 if (Cost) 644 definePhysReg(MI, Hint1, regFree); 645 assignVirtToPhysReg(LR, Hint1); 646 return; 647 } else { 648 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 649 << "occupied\n"); 650 } 651 } else { 652 Hint1 = Register(); 653 } 654 655 MCPhysReg BestReg = 0; 656 unsigned BestCost = spillImpossible; 657 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 658 for (MCPhysReg PhysReg : AllocationOrder) { 659 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 660 unsigned Cost = calcSpillCost(PhysReg); 661 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 662 // Immediate take a register with cost 0. 663 if (Cost == 0) { 664 assignVirtToPhysReg(LR, PhysReg); 665 return; 666 } 667 668 if (PhysReg == Hint1 || PhysReg == Hint0) 669 Cost -= spillPrefBonus; 670 671 if (Cost < BestCost) { 672 BestReg = PhysReg; 673 BestCost = Cost; 674 } 675 } 676 677 if (!BestReg) { 678 // Nothing we can do: Report an error and keep going with an invalid 679 // allocation. 680 if (MI.isInlineAsm()) 681 MI.emitError("inline assembly requires more registers than available"); 682 else 683 MI.emitError("ran out of registers during register allocation"); 684 definePhysReg(MI, *AllocationOrder.begin(), regFree); 685 assignVirtToPhysReg(LR, *AllocationOrder.begin()); 686 return; 687 } 688 689 definePhysReg(MI, BestReg, regFree); 690 assignVirtToPhysReg(LR, BestReg); 691 } 692 693 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 694 assert(MO.isUndef() && "expected undef use"); 695 Register VirtReg = MO.getReg(); 696 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg"); 697 698 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 699 MCPhysReg PhysReg; 700 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 701 PhysReg = LRI->PhysReg; 702 } else { 703 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 704 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 705 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 706 PhysReg = AllocationOrder[0]; 707 } 708 709 unsigned SubRegIdx = MO.getSubReg(); 710 if (SubRegIdx != 0) { 711 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 712 MO.setSubReg(0); 713 } 714 MO.setReg(PhysReg); 715 MO.setIsRenamable(true); 716 } 717 718 /// Allocates a register for VirtReg and mark it as dirty. 719 MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 720 Register VirtReg, Register Hint) { 721 assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register"); 722 LiveRegMap::iterator LRI; 723 bool New; 724 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 725 if (!LRI->PhysReg) { 726 // If there is no hint, peek at the only use of this register. 727 if ((!Hint || !Hint.isPhysical()) && 728 MRI->hasOneNonDBGUse(VirtReg)) { 729 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 730 // It's a copy, use the destination register as a hint. 731 if (UseMI.isCopyLike()) 732 Hint = UseMI.getOperand(0).getReg(); 733 } 734 allocVirtReg(MI, *LRI, Hint); 735 } else if (LRI->LastUse) { 736 // Redefining a live register - kill at the last use, unless it is this 737 // instruction defining VirtReg multiple times. 738 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 739 addKillFlag(*LRI); 740 } 741 assert(LRI->PhysReg && "Register not assigned"); 742 LRI->LastUse = &MI; 743 LRI->LastOpNum = OpNum; 744 LRI->Dirty = true; 745 markRegUsedInInstr(LRI->PhysReg); 746 return LRI->PhysReg; 747 } 748 749 /// Make sure VirtReg is available in a physreg and return it. 750 RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI, 751 unsigned OpNum, 752 Register VirtReg, 753 Register Hint) { 754 assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register"); 755 LiveRegMap::iterator LRI; 756 bool New; 757 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 758 MachineOperand &MO = MI.getOperand(OpNum); 759 if (!LRI->PhysReg) { 760 allocVirtReg(MI, *LRI, Hint); 761 reload(MI, VirtReg, LRI->PhysReg); 762 } else if (LRI->Dirty) { 763 if (isLastUseOfLocalReg(MO)) { 764 LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n'); 765 if (MO.isUse()) 766 MO.setIsKill(); 767 else 768 MO.setIsDead(); 769 } else if (MO.isKill()) { 770 LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n'); 771 MO.setIsKill(false); 772 } else if (MO.isDead()) { 773 LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n'); 774 MO.setIsDead(false); 775 } 776 } else if (MO.isKill()) { 777 // We must remove kill flags from uses of reloaded registers because the 778 // register would be killed immediately, and there might be a second use: 779 // %foo = OR killed %x, %x 780 // This would cause a second reload of %x into a different register. 781 LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n'); 782 MO.setIsKill(false); 783 } else if (MO.isDead()) { 784 LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n'); 785 MO.setIsDead(false); 786 } 787 assert(LRI->PhysReg && "Register not assigned"); 788 LRI->LastUse = &MI; 789 LRI->LastOpNum = OpNum; 790 markRegUsedInInstr(LRI->PhysReg); 791 return *LRI; 792 } 793 794 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 795 /// may invalidate any operand pointers. Return true if the operand kills its 796 /// register. 797 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 798 MCPhysReg PhysReg) { 799 bool Dead = MO.isDead(); 800 if (!MO.getSubReg()) { 801 MO.setReg(PhysReg); 802 MO.setIsRenamable(true); 803 return MO.isKill() || Dead; 804 } 805 806 // Handle subregister index. 807 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : Register()); 808 MO.setIsRenamable(true); 809 MO.setSubReg(0); 810 811 // A kill flag implies killing the full register. Add corresponding super 812 // register kill. 813 if (MO.isKill()) { 814 MI.addRegisterKilled(PhysReg, TRI, true); 815 return true; 816 } 817 818 // A <def,read-undef> of a sub-register requires an implicit def of the full 819 // register. 820 if (MO.isDef() && MO.isUndef()) 821 MI.addRegisterDefined(PhysReg, TRI); 822 823 return Dead; 824 } 825 826 // Handles special instruction operand like early clobbers and tied ops when 827 // there are additional physreg defines. 828 void RegAllocFast::handleThroughOperands(MachineInstr &MI, 829 SmallVectorImpl<Register> &VirtDead) { 830 LLVM_DEBUG(dbgs() << "Scanning for through registers:"); 831 SmallSet<Register, 8> ThroughRegs; 832 for (const MachineOperand &MO : MI.operands()) { 833 if (!MO.isReg()) continue; 834 Register Reg = MO.getReg(); 835 if (!Reg.isVirtual()) 836 continue; 837 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) || 838 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) { 839 if (ThroughRegs.insert(Reg).second) 840 LLVM_DEBUG(dbgs() << ' ' << printReg(Reg)); 841 } 842 } 843 844 // If any physreg defines collide with preallocated through registers, 845 // we must spill and reallocate. 846 LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 847 for (const MachineOperand &MO : MI.operands()) { 848 if (!MO.isReg() || !MO.isDef()) continue; 849 Register Reg = MO.getReg(); 850 if (!Reg || !Reg.isPhysical()) 851 continue; 852 markRegUsedInInstr(Reg); 853 854 for (MCRegUnitIterator UI(Reg, TRI); UI.isValid(); ++UI) { 855 if (!ThroughRegs.count(RegUnitStates[*UI])) 856 continue; 857 858 // Need to spill any aliasing registers. 859 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 860 for (MCSuperRegIterator SI(*RI, TRI, true); SI.isValid(); ++SI) { 861 definePhysReg(MI, *SI, regFree); 862 } 863 } 864 } 865 } 866 867 SmallVector<Register, 8> PartialDefs; 868 LLVM_DEBUG(dbgs() << "Allocating tied uses.\n"); 869 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 870 MachineOperand &MO = MI.getOperand(I); 871 if (!MO.isReg()) continue; 872 Register Reg = MO.getReg(); 873 if (!Register::isVirtualRegister(Reg)) 874 continue; 875 if (MO.isUse()) { 876 if (!MO.isTied()) continue; 877 LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO 878 << ") is tied to operand " << MI.findTiedOperandIdx(I) 879 << ".\n"); 880 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 881 MCPhysReg PhysReg = LR.PhysReg; 882 setPhysReg(MI, MO, PhysReg); 883 // Note: we don't update the def operand yet. That would cause the normal 884 // def-scan to attempt spilling. 885 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) { 886 LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n'); 887 // Reload the register, but don't assign to the operand just yet. 888 // That would confuse the later phys-def processing pass. 889 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 890 PartialDefs.push_back(LR.PhysReg); 891 } 892 } 893 894 LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n"); 895 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 896 const MachineOperand &MO = MI.getOperand(I); 897 if (!MO.isReg()) continue; 898 Register Reg = MO.getReg(); 899 if (!Register::isVirtualRegister(Reg)) 900 continue; 901 if (!MO.isEarlyClobber()) 902 continue; 903 // Note: defineVirtReg may invalidate MO. 904 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0); 905 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) 906 VirtDead.push_back(Reg); 907 } 908 909 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 910 UsedInInstr.clear(); 911 for (const MachineOperand &MO : MI.operands()) { 912 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 913 Register Reg = MO.getReg(); 914 if (!Reg || !Reg.isPhysical()) 915 continue; 916 LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI) 917 << " as used in instr\n"); 918 markRegUsedInInstr(Reg); 919 } 920 921 // Also mark PartialDefs as used to avoid reallocation. 922 for (Register PartialDef : PartialDefs) 923 markRegUsedInInstr(PartialDef); 924 } 925 926 #ifndef NDEBUG 927 928 void RegAllocFast::dumpState() const { 929 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 930 ++Unit) { 931 switch (unsigned VirtReg = RegUnitStates[Unit]) { 932 case regFree: 933 break; 934 case regReserved: 935 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 936 break; 937 default: { 938 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 939 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 940 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 941 if (I->Dirty) 942 dbgs() << "[D]"; 943 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 944 break; 945 } 946 } 947 } 948 dbgs() << '\n'; 949 // Check that LiveVirtRegs is the inverse. 950 for (const LiveReg &LR : LiveVirtRegs) { 951 Register VirtReg = LR.VirtReg; 952 assert(VirtReg.isVirtual() && "Bad map key"); 953 MCPhysReg PhysReg = LR.PhysReg; 954 if (PhysReg != 0) { 955 assert(Register::isPhysicalRegister(PhysReg) && 956 "mapped to physreg"); 957 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 958 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid"); 959 } 960 } 961 } 962 } 963 #endif 964 965 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 966 const MCInstrDesc &MCID = MI.getDesc(); 967 968 // If this is a copy, we may be able to coalesce. 969 Register CopySrcReg; 970 Register CopyDstReg; 971 unsigned CopySrcSub = 0; 972 unsigned CopyDstSub = 0; 973 if (MI.isCopy()) { 974 CopyDstReg = MI.getOperand(0).getReg(); 975 CopySrcReg = MI.getOperand(1).getReg(); 976 CopyDstSub = MI.getOperand(0).getSubReg(); 977 CopySrcSub = MI.getOperand(1).getSubReg(); 978 } 979 980 // Track registers used by instruction. 981 UsedInInstr.clear(); 982 983 // First scan. 984 // Mark physreg uses and early clobbers as used. 985 // Find the end of the virtreg operands 986 unsigned VirtOpEnd = 0; 987 bool hasTiedOps = false; 988 bool hasEarlyClobbers = false; 989 bool hasPartialRedefs = false; 990 bool hasPhysDefs = false; 991 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 992 MachineOperand &MO = MI.getOperand(i); 993 // Make sure MRI knows about registers clobbered by regmasks. 994 if (MO.isRegMask()) { 995 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 996 continue; 997 } 998 if (!MO.isReg()) continue; 999 Register Reg = MO.getReg(); 1000 if (!Reg) continue; 1001 if (Register::isVirtualRegister(Reg)) { 1002 VirtOpEnd = i+1; 1003 if (MO.isUse()) { 1004 hasTiedOps = hasTiedOps || 1005 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 1006 } else { 1007 if (MO.isEarlyClobber()) 1008 hasEarlyClobbers = true; 1009 if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) 1010 hasPartialRedefs = true; 1011 } 1012 continue; 1013 } 1014 if (!MRI->isAllocatable(Reg)) continue; 1015 if (MO.isUse()) { 1016 usePhysReg(MO); 1017 } else if (MO.isEarlyClobber()) { 1018 definePhysReg(MI, Reg, 1019 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); 1020 hasEarlyClobbers = true; 1021 } else 1022 hasPhysDefs = true; 1023 } 1024 1025 // The instruction may have virtual register operands that must be allocated 1026 // the same register at use-time and def-time: early clobbers and tied 1027 // operands. If there are also physical defs, these registers must avoid 1028 // both physical defs and uses, making them more constrained than normal 1029 // operands. 1030 // Similarly, if there are multiple defs and tied operands, we must make 1031 // sure the same register is allocated to uses and defs. 1032 // We didn't detect inline asm tied operands above, so just make this extra 1033 // pass for all inline asm. 1034 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 1035 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 1036 handleThroughOperands(MI, VirtDead); 1037 // Don't attempt coalescing when we have funny stuff going on. 1038 CopyDstReg = Register(); 1039 // Pretend we have early clobbers so the use operands get marked below. 1040 // This is not necessary for the common case of a single tied use. 1041 hasEarlyClobbers = true; 1042 } 1043 1044 // Second scan. 1045 // Allocate virtreg uses. 1046 bool HasUndefUse = false; 1047 for (unsigned I = 0; I != VirtOpEnd; ++I) { 1048 MachineOperand &MO = MI.getOperand(I); 1049 if (!MO.isReg()) continue; 1050 Register Reg = MO.getReg(); 1051 if (!Reg.isVirtual()) 1052 continue; 1053 if (MO.isUse()) { 1054 if (MO.isUndef()) { 1055 HasUndefUse = true; 1056 // There is no need to allocate a register for an undef use. 1057 continue; 1058 } 1059 1060 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1061 // the def block (removing the vreg uses). 1062 mayLiveIn(Reg); 1063 1064 LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg); 1065 MCPhysReg PhysReg = LR.PhysReg; 1066 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0; 1067 if (setPhysReg(MI, MO, PhysReg)) 1068 killVirtReg(LR); 1069 } 1070 } 1071 1072 // Allocate undef operands. This is a separate step because in a situation 1073 // like ` = OP undef %X, %X` both operands need the same register assign 1074 // so we should perform the normal assignment first. 1075 if (HasUndefUse) { 1076 for (MachineOperand &MO : MI.uses()) { 1077 if (!MO.isReg() || !MO.isUse()) 1078 continue; 1079 Register Reg = MO.getReg(); 1080 if (!Reg.isVirtual()) 1081 continue; 1082 1083 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1084 allocVirtRegUndef(MO); 1085 } 1086 } 1087 1088 // Track registers defined by instruction - early clobbers and tied uses at 1089 // this point. 1090 UsedInInstr.clear(); 1091 if (hasEarlyClobbers) { 1092 for (const MachineOperand &MO : MI.operands()) { 1093 if (!MO.isReg()) continue; 1094 Register Reg = MO.getReg(); 1095 if (!Reg || !Reg.isPhysical()) 1096 continue; 1097 // Look for physreg defs and tied uses. 1098 if (!MO.isDef() && !MO.isTied()) continue; 1099 markRegUsedInInstr(Reg); 1100 } 1101 } 1102 1103 unsigned DefOpEnd = MI.getNumOperands(); 1104 if (MI.isCall()) { 1105 // Spill all virtregs before a call. This serves one purpose: If an 1106 // exception is thrown, the landing pad is going to expect to find 1107 // registers in their spill slots. 1108 // Note: although this is appealing to just consider all definitions 1109 // as call-clobbered, this is not correct because some of those 1110 // definitions may be used later on and we do not want to reuse 1111 // those for virtual registers in between. 1112 LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1113 spillAll(MI, /*OnlyLiveOut*/ false); 1114 } 1115 1116 // Third scan. 1117 // Mark all physreg defs as used before allocating virtreg defs. 1118 for (unsigned I = 0; I != DefOpEnd; ++I) { 1119 const MachineOperand &MO = MI.getOperand(I); 1120 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1121 continue; 1122 Register Reg = MO.getReg(); 1123 1124 if (!Reg || !Reg.isPhysical() || !MRI->isAllocatable(Reg)) 1125 continue; 1126 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); 1127 } 1128 1129 // Fourth scan. 1130 // Allocate defs and collect dead defs. 1131 for (unsigned I = 0; I != DefOpEnd; ++I) { 1132 const MachineOperand &MO = MI.getOperand(I); 1133 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1134 continue; 1135 Register Reg = MO.getReg(); 1136 1137 // We have already dealt with phys regs in the previous scan. 1138 if (Reg.isPhysical()) 1139 continue; 1140 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg); 1141 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) { 1142 VirtDead.push_back(Reg); 1143 CopyDstReg = Register(); // cancel coalescing; 1144 } else 1145 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0; 1146 } 1147 1148 // Kill dead defs after the scan to ensure that multiple defs of the same 1149 // register are allocated identically. We didn't need to do this for uses 1150 // because we are crerating our own kill flags, and they are always at the 1151 // last use. 1152 for (Register VirtReg : VirtDead) 1153 killVirtReg(VirtReg); 1154 VirtDead.clear(); 1155 1156 LLVM_DEBUG(dbgs() << "<< " << MI); 1157 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) { 1158 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1159 Coalesced.push_back(&MI); 1160 } 1161 } 1162 1163 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1164 MachineOperand &MO = MI.getOperand(0); 1165 1166 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1167 // mostly constants and frame indices. 1168 if (!MO.isReg()) 1169 return; 1170 Register Reg = MO.getReg(); 1171 if (!Register::isVirtualRegister(Reg)) 1172 return; 1173 1174 // See if this virtual register has already been allocated to a physical 1175 // register or spilled to a stack slot. 1176 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1177 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1178 setPhysReg(MI, MO, LRI->PhysReg); 1179 } else { 1180 int SS = StackSlotForVirtReg[Reg]; 1181 if (SS != -1) { 1182 // Modify DBG_VALUE now that the value is in a spill slot. 1183 updateDbgValueForSpill(MI, SS); 1184 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI); 1185 return; 1186 } 1187 1188 // We can't allocate a physreg for a DebugValue, sorry! 1189 LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 1190 MO.setReg(Register()); 1191 } 1192 1193 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1194 // that future spills of Reg will have DBG_VALUEs. 1195 LiveDbgValueMap[Reg].push_back(&MI); 1196 } 1197 1198 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1199 this->MBB = &MBB; 1200 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1201 1202 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1203 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1204 1205 MachineBasicBlock::iterator MII = MBB.begin(); 1206 1207 // Add live-in registers as live. 1208 for (const MachineBasicBlock::RegisterMaskPair &LI : MBB.liveins()) 1209 if (MRI->isAllocatable(LI.PhysReg)) 1210 definePhysReg(MII, LI.PhysReg, regReserved); 1211 1212 VirtDead.clear(); 1213 Coalesced.clear(); 1214 1215 // Otherwise, sequentially allocate each instruction in the MBB. 1216 for (MachineInstr &MI : MBB) { 1217 LLVM_DEBUG( 1218 dbgs() << "\n>> " << MI << "Regs:"; 1219 dumpState() 1220 ); 1221 1222 // Special handling for debug values. Note that they are not allowed to 1223 // affect codegen of the other instructions in any way. 1224 if (MI.isDebugValue()) { 1225 handleDebugValue(MI); 1226 continue; 1227 } 1228 1229 allocateInstruction(MI); 1230 } 1231 1232 // Spill all physical registers holding virtual registers now. 1233 LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1234 spillAll(MBB.getFirstTerminator(), /*OnlyLiveOut*/ true); 1235 1236 // Erase all the coalesced copies. We are delaying it until now because 1237 // LiveVirtRegs might refer to the instrs. 1238 for (MachineInstr *MI : Coalesced) 1239 MBB.erase(MI); 1240 NumCoalesced += Coalesced.size(); 1241 1242 LLVM_DEBUG(MBB.dump()); 1243 } 1244 1245 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1246 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1247 << "********** Function: " << MF.getName() << '\n'); 1248 MRI = &MF.getRegInfo(); 1249 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1250 TRI = STI.getRegisterInfo(); 1251 TII = STI.getInstrInfo(); 1252 MFI = &MF.getFrameInfo(); 1253 MRI->freezeReservedRegs(MF); 1254 RegClassInfo.runOnMachineFunction(MF); 1255 UsedInInstr.clear(); 1256 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1257 1258 // initialize the virtual->physical register map to have a 'null' 1259 // mapping for all virtual registers 1260 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1261 StackSlotForVirtReg.resize(NumVirtRegs); 1262 LiveVirtRegs.setUniverse(NumVirtRegs); 1263 MayLiveAcrossBlocks.clear(); 1264 MayLiveAcrossBlocks.resize(NumVirtRegs); 1265 1266 // Loop over all of the basic blocks, eliminating virtual register references 1267 for (MachineBasicBlock &MBB : MF) 1268 allocateBasicBlock(MBB); 1269 1270 // All machine operands and other references to virtual registers have been 1271 // replaced. Remove the virtual registers. 1272 MRI->clearVirtRegs(); 1273 1274 StackSlotForVirtReg.clear(); 1275 LiveDbgValueMap.clear(); 1276 return true; 1277 } 1278 1279 FunctionPass *llvm::createFastRegisterAllocator() { 1280 return new RegAllocFast(); 1281 } 1282