1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This register allocator allocates registers to a basic block at a
10 /// time, attempting to keep values in registers and reusing registers as
11 /// appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RegAllocCommon.h"
32 #include "llvm/CodeGen/RegAllocRegistry.h"
33 #include "llvm/CodeGen/RegisterClassInfo.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <tuple>
46 #include <vector>
47
48 using namespace llvm;
49
50 #define DEBUG_TYPE "regalloc"
51
52 STATISTIC(NumStores, "Number of stores added");
53 STATISTIC(NumLoads , "Number of loads added");
54 STATISTIC(NumCoalesced, "Number of copies coalesced");
55
56 // FIXME: Remove this switch when all testcases are fixed!
57 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs",
58 cl::Hidden);
59
60 static RegisterRegAlloc
61 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
62
63 namespace {
64
65 class RegAllocFast : public MachineFunctionPass {
66 public:
67 static char ID;
68
RegAllocFast(const RegClassFilterFunc F=allocateAllRegClasses,bool ClearVirtRegs_=true)69 RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses,
70 bool ClearVirtRegs_ = true) :
71 MachineFunctionPass(ID),
72 ShouldAllocateClass(F),
73 StackSlotForVirtReg(-1),
74 ClearVirtRegs(ClearVirtRegs_) {
75 }
76
77 private:
78 MachineFrameInfo *MFI;
79 MachineRegisterInfo *MRI;
80 const TargetRegisterInfo *TRI;
81 const TargetInstrInfo *TII;
82 RegisterClassInfo RegClassInfo;
83 const RegClassFilterFunc ShouldAllocateClass;
84
85 /// Basic block currently being allocated.
86 MachineBasicBlock *MBB;
87
88 /// Maps virtual regs to the frame index where these values are spilled.
89 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
90
91 bool ClearVirtRegs;
92
93 /// Everything we know about a live virtual register.
94 struct LiveReg {
95 MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
96 Register VirtReg; ///< Virtual register number.
97 MCPhysReg PhysReg = 0; ///< Currently held here.
98 bool LiveOut = false; ///< Register is possibly live out.
99 bool Reloaded = false; ///< Register was reloaded.
100 bool Error = false; ///< Could not allocate.
101
LiveReg__anone082371b0111::RegAllocFast::LiveReg102 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {}
103
getSparseSetIndex__anone082371b0111::RegAllocFast::LiveReg104 unsigned getSparseSetIndex() const {
105 return Register::virtReg2Index(VirtReg);
106 }
107 };
108
109 using LiveRegMap = SparseSet<LiveReg>;
110 /// This map contains entries for each virtual register that is currently
111 /// available in a physical register.
112 LiveRegMap LiveVirtRegs;
113
114 /// Stores assigned virtual registers present in the bundle MI.
115 DenseMap<Register, MCPhysReg> BundleVirtRegsMap;
116
117 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap;
118 /// List of DBG_VALUE that we encountered without the vreg being assigned
119 /// because they were placed after the last use of the vreg.
120 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues;
121
122 /// Has a bit set for every virtual register for which it was determined
123 /// that it is alive across blocks.
124 BitVector MayLiveAcrossBlocks;
125
126 /// State of a register unit.
127 enum RegUnitState {
128 /// A free register is not currently in use and can be allocated
129 /// immediately without checking aliases.
130 regFree,
131
132 /// A pre-assigned register has been assigned before register allocation
133 /// (e.g., setting up a call parameter).
134 regPreAssigned,
135
136 /// Used temporarily in reloadAtBegin() to mark register units that are
137 /// live-in to the basic block.
138 regLiveIn,
139
140 /// A register state may also be a virtual register number, indication
141 /// that the physical register is currently allocated to a virtual
142 /// register. In that case, LiveVirtRegs contains the inverse mapping.
143 };
144
145 /// Maps each physical register to a RegUnitState enum or virtual register.
146 std::vector<unsigned> RegUnitStates;
147
148 SmallVector<MachineInstr *, 32> Coalesced;
149
150 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
151 /// Set of register units that are used in the current instruction, and so
152 /// cannot be allocated.
153 RegUnitSet UsedInInstr;
154 RegUnitSet PhysRegUses;
155 SmallVector<uint16_t, 8> DefOperandIndexes;
156 // Register masks attached to the current instruction.
157 SmallVector<const uint32_t *> RegMasks;
158
159 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
160 bool isPhysRegFree(MCPhysReg PhysReg) const;
161
162 /// Mark a physreg as used in this instruction.
markRegUsedInInstr(MCPhysReg PhysReg)163 void markRegUsedInInstr(MCPhysReg PhysReg) {
164 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
165 UsedInInstr.insert(*Units);
166 }
167
168 // Check if physreg is clobbered by instruction's regmask(s).
isClobberedByRegMasks(MCPhysReg PhysReg) const169 bool isClobberedByRegMasks(MCPhysReg PhysReg) const {
170 return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) {
171 return MachineOperand::clobbersPhysReg(Mask, PhysReg);
172 });
173 }
174
175 /// Check if a physreg or any of its aliases are used in this instruction.
isRegUsedInInstr(MCPhysReg PhysReg,bool LookAtPhysRegUses) const176 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const {
177 if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg))
178 return true;
179 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
180 if (UsedInInstr.count(*Units))
181 return true;
182 if (LookAtPhysRegUses && PhysRegUses.count(*Units))
183 return true;
184 }
185 return false;
186 }
187
188 /// Mark physical register as being used in a register use operand.
189 /// This is only used by the special livethrough handling code.
markPhysRegUsedInInstr(MCPhysReg PhysReg)190 void markPhysRegUsedInInstr(MCPhysReg PhysReg) {
191 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
192 PhysRegUses.insert(*Units);
193 }
194
195 /// Remove mark of physical register being used in the instruction.
unmarkRegUsedInInstr(MCPhysReg PhysReg)196 void unmarkRegUsedInInstr(MCPhysReg PhysReg) {
197 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
198 UsedInInstr.erase(*Units);
199 }
200
201 enum : unsigned {
202 spillClean = 50,
203 spillDirty = 100,
204 spillPrefBonus = 20,
205 spillImpossible = ~0u
206 };
207
208 public:
getPassName() const209 StringRef getPassName() const override { return "Fast Register Allocator"; }
210
getAnalysisUsage(AnalysisUsage & AU) const211 void getAnalysisUsage(AnalysisUsage &AU) const override {
212 AU.setPreservesCFG();
213 MachineFunctionPass::getAnalysisUsage(AU);
214 }
215
getRequiredProperties() const216 MachineFunctionProperties getRequiredProperties() const override {
217 return MachineFunctionProperties().set(
218 MachineFunctionProperties::Property::NoPHIs);
219 }
220
getSetProperties() const221 MachineFunctionProperties getSetProperties() const override {
222 if (ClearVirtRegs) {
223 return MachineFunctionProperties().set(
224 MachineFunctionProperties::Property::NoVRegs);
225 }
226
227 return MachineFunctionProperties();
228 }
229
getClearedProperties() const230 MachineFunctionProperties getClearedProperties() const override {
231 return MachineFunctionProperties().set(
232 MachineFunctionProperties::Property::IsSSA);
233 }
234
235 private:
236 bool runOnMachineFunction(MachineFunction &MF) override;
237
238 void allocateBasicBlock(MachineBasicBlock &MBB);
239
240 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
241 Register Reg) const;
242
243 void allocateInstruction(MachineInstr &MI);
244 void handleDebugValue(MachineInstr &MI);
245 void handleBundle(MachineInstr &MI);
246
247 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
248 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
249 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
250 void freePhysReg(MCPhysReg PhysReg);
251
252 unsigned calcSpillCost(MCPhysReg PhysReg) const;
253
findLiveVirtReg(Register VirtReg)254 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) {
255 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
256 }
257
findLiveVirtReg(Register VirtReg) const258 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const {
259 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
260 }
261
262 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg);
263 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint,
264 bool LookAtPhysRegUses = false);
265 void allocVirtRegUndef(MachineOperand &MO);
266 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg,
267 MCPhysReg Reg);
268 void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
269 Register VirtReg);
270 void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
271 bool LookAtPhysRegUses = false);
272 void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg);
273
274 MachineBasicBlock::iterator
275 getMBBBeginInsertionPoint(MachineBasicBlock &MBB,
276 SmallSet<Register, 2> &PrologLiveIns) const;
277
278 void reloadAtBegin(MachineBasicBlock &MBB);
279 void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
280
281 Register traceCopies(Register VirtReg) const;
282 Register traceCopyChain(Register Reg) const;
283
284 int getStackSpaceFor(Register VirtReg);
285 void spill(MachineBasicBlock::iterator Before, Register VirtReg,
286 MCPhysReg AssignedReg, bool Kill, bool LiveOut);
287 void reload(MachineBasicBlock::iterator Before, Register VirtReg,
288 MCPhysReg PhysReg);
289
290 bool mayLiveOut(Register VirtReg);
291 bool mayLiveIn(Register VirtReg);
292
293 void dumpState() const;
294 };
295
296 } // end anonymous namespace
297
298 char RegAllocFast::ID = 0;
299
300 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
301 false)
302
setPhysRegState(MCPhysReg PhysReg,unsigned NewState)303 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
304 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI)
305 RegUnitStates[*UI] = NewState;
306 }
307
isPhysRegFree(MCPhysReg PhysReg) const308 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const {
309 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
310 if (RegUnitStates[*UI] != regFree)
311 return false;
312 }
313 return true;
314 }
315
316 /// This allocates space for the specified virtual register to be held on the
317 /// stack.
getStackSpaceFor(Register VirtReg)318 int RegAllocFast::getStackSpaceFor(Register VirtReg) {
319 // Find the location Reg would belong...
320 int SS = StackSlotForVirtReg[VirtReg];
321 // Already has space allocated?
322 if (SS != -1)
323 return SS;
324
325 // Allocate a new stack object for this spill location...
326 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
327 unsigned Size = TRI->getSpillSize(RC);
328 Align Alignment = TRI->getSpillAlign(RC);
329 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment);
330
331 // Assign the slot.
332 StackSlotForVirtReg[VirtReg] = FrameIdx;
333 return FrameIdx;
334 }
335
dominates(MachineBasicBlock & MBB,MachineBasicBlock::const_iterator A,MachineBasicBlock::const_iterator B)336 static bool dominates(MachineBasicBlock &MBB,
337 MachineBasicBlock::const_iterator A,
338 MachineBasicBlock::const_iterator B) {
339 auto MBBEnd = MBB.end();
340 if (B == MBBEnd)
341 return true;
342
343 MachineBasicBlock::const_iterator I = MBB.begin();
344 for (; &*I != A && &*I != B; ++I)
345 ;
346
347 return &*I == A;
348 }
349
350 /// Returns false if \p VirtReg is known to not live out of the current block.
mayLiveOut(Register VirtReg)351 bool RegAllocFast::mayLiveOut(Register VirtReg) {
352 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
353 // Cannot be live-out if there are no successors.
354 return !MBB->succ_empty();
355 }
356
357 const MachineInstr *SelfLoopDef = nullptr;
358
359 // If this block loops back to itself, it is necessary to check whether the
360 // use comes after the def.
361 if (MBB->isSuccessor(MBB)) {
362 // Find the first def in the self loop MBB.
363 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
364 if (DefInst.getParent() != MBB) {
365 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
366 return true;
367 } else {
368 if (!SelfLoopDef || dominates(*MBB, DefInst.getIterator(), SelfLoopDef))
369 SelfLoopDef = &DefInst;
370 }
371 }
372 if (!SelfLoopDef) {
373 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
374 return true;
375 }
376 }
377
378 // See if the first \p Limit uses of the register are all in the current
379 // block.
380 static const unsigned Limit = 8;
381 unsigned C = 0;
382 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) {
383 if (UseInst.getParent() != MBB || ++C >= Limit) {
384 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
385 // Cannot be live-out if there are no successors.
386 return !MBB->succ_empty();
387 }
388
389 if (SelfLoopDef) {
390 // Try to handle some simple cases to avoid spilling and reloading every
391 // value inside a self looping block.
392 if (SelfLoopDef == &UseInst ||
393 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) {
394 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
395 return true;
396 }
397 }
398 }
399
400 return false;
401 }
402
403 /// Returns false if \p VirtReg is known to not be live into the current block.
mayLiveIn(Register VirtReg)404 bool RegAllocFast::mayLiveIn(Register VirtReg) {
405 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
406 return !MBB->pred_empty();
407
408 // See if the first \p Limit def of the register are all in the current block.
409 static const unsigned Limit = 8;
410 unsigned C = 0;
411 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
412 if (DefInst.getParent() != MBB || ++C >= Limit) {
413 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
414 return !MBB->pred_empty();
415 }
416 }
417
418 return false;
419 }
420
421 /// Insert spill instruction for \p AssignedReg before \p Before. Update
422 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
spill(MachineBasicBlock::iterator Before,Register VirtReg,MCPhysReg AssignedReg,bool Kill,bool LiveOut)423 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg,
424 MCPhysReg AssignedReg, bool Kill, bool LiveOut) {
425 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
426 << " in " << printReg(AssignedReg, TRI));
427 int FI = getStackSpaceFor(VirtReg);
428 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
429
430 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
431 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI);
432 ++NumStores;
433
434 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator();
435
436 // When we spill a virtual register, we will have spill instructions behind
437 // every definition of it, meaning we can switch all the DBG_VALUEs over
438 // to just reference the stack slot.
439 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg];
440 SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2>
441 SpilledOperandsMap;
442 for (MachineOperand *MO : LRIDbgOperands)
443 SpilledOperandsMap[MO->getParent()].push_back(MO);
444 for (auto MISpilledOperands : SpilledOperandsMap) {
445 MachineInstr &DBG = *MISpilledOperands.first;
446 // We don't have enough support for tracking operands of DBG_VALUE_LISTs.
447 if (DBG.isDebugValueList())
448 continue;
449 MachineInstr *NewDV = buildDbgValueForSpill(
450 *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second);
451 assert(NewDV->getParent() == MBB && "dangling parent pointer");
452 (void)NewDV;
453 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
454
455 if (LiveOut) {
456 // We need to insert a DBG_VALUE at the end of the block if the spill slot
457 // is live out, but there is another use of the value after the
458 // spill. This will allow LiveDebugValues to see the correct live out
459 // value to propagate to the successors.
460 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV);
461 MBB->insert(FirstTerm, ClonedDV);
462 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n");
463 }
464
465 // Rewrite unassigned dbg_values to use the stack slot.
466 // TODO We can potentially do this for list debug values as well if we know
467 // how the dbg_values are getting unassigned.
468 if (DBG.isNonListDebugValue()) {
469 MachineOperand &MO = DBG.getDebugOperand(0);
470 if (MO.isReg() && MO.getReg() == 0) {
471 updateDbgValueForSpill(DBG, FI, 0);
472 }
473 }
474 }
475 // Now this register is spilled there is should not be any DBG_VALUE
476 // pointing to this register because they are all pointing to spilled value
477 // now.
478 LRIDbgOperands.clear();
479 }
480
481 /// Insert reload instruction for \p PhysReg before \p Before.
reload(MachineBasicBlock::iterator Before,Register VirtReg,MCPhysReg PhysReg)482 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg,
483 MCPhysReg PhysReg) {
484 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
485 << printReg(PhysReg, TRI) << '\n');
486 int FI = getStackSpaceFor(VirtReg);
487 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
488 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI);
489 ++NumLoads;
490 }
491
492 /// Get basic block begin insertion point.
493 /// This is not just MBB.begin() because surprisingly we have EH_LABEL
494 /// instructions marking the begin of a basic block. This means we must insert
495 /// new instructions after such labels...
496 MachineBasicBlock::iterator
getMBBBeginInsertionPoint(MachineBasicBlock & MBB,SmallSet<Register,2> & PrologLiveIns) const497 RegAllocFast::getMBBBeginInsertionPoint(
498 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const {
499 MachineBasicBlock::iterator I = MBB.begin();
500 while (I != MBB.end()) {
501 if (I->isLabel()) {
502 ++I;
503 continue;
504 }
505
506 // Most reloads should be inserted after prolog instructions.
507 if (!TII->isBasicBlockPrologue(*I))
508 break;
509
510 // However if a prolog instruction reads a register that needs to be
511 // reloaded, the reload should be inserted before the prolog.
512 for (MachineOperand &MO : I->operands()) {
513 if (MO.isReg())
514 PrologLiveIns.insert(MO.getReg());
515 }
516
517 ++I;
518 }
519
520 return I;
521 }
522
523 /// Reload all currently assigned virtual registers.
reloadAtBegin(MachineBasicBlock & MBB)524 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) {
525 if (LiveVirtRegs.empty())
526 return;
527
528 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
529 MCPhysReg Reg = P.PhysReg;
530 // Set state to live-in. This possibly overrides mappings to virtual
531 // registers but we don't care anymore at this point.
532 setPhysRegState(Reg, regLiveIn);
533 }
534
535
536 SmallSet<Register, 2> PrologLiveIns;
537
538 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
539 // of spilling here is deterministic, if arbitrary.
540 MachineBasicBlock::iterator InsertBefore
541 = getMBBBeginInsertionPoint(MBB, PrologLiveIns);
542 for (const LiveReg &LR : LiveVirtRegs) {
543 MCPhysReg PhysReg = LR.PhysReg;
544 if (PhysReg == 0)
545 continue;
546
547 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI);
548 if (RegUnitStates[FirstUnit] == regLiveIn)
549 continue;
550
551 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) &&
552 "no reload in start block. Missing vreg def?");
553
554 if (PrologLiveIns.count(PhysReg)) {
555 // FIXME: Theoretically this should use an insert point skipping labels
556 // but I'm not sure how labels should interact with prolog instruction
557 // that need reloads.
558 reload(MBB.begin(), LR.VirtReg, PhysReg);
559 } else
560 reload(InsertBefore, LR.VirtReg, PhysReg);
561 }
562 LiveVirtRegs.clear();
563 }
564
565 /// Handle the direct use of a physical register. Check that the register is
566 /// not used by a virtreg. Kill the physreg, marking it free. This may add
567 /// implicit kills to MO->getParent() and invalidate MO.
usePhysReg(MachineInstr & MI,MCPhysReg Reg)568 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) {
569 assert(Register::isPhysicalRegister(Reg) && "expected physreg");
570 bool displacedAny = displacePhysReg(MI, Reg);
571 setPhysRegState(Reg, regPreAssigned);
572 markRegUsedInInstr(Reg);
573 return displacedAny;
574 }
575
definePhysReg(MachineInstr & MI,MCPhysReg Reg)576 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) {
577 bool displacedAny = displacePhysReg(MI, Reg);
578 setPhysRegState(Reg, regPreAssigned);
579 return displacedAny;
580 }
581
582 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
583 /// similar to defineVirtReg except the physreg is reserved instead of
584 /// allocated.
displacePhysReg(MachineInstr & MI,MCPhysReg PhysReg)585 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) {
586 bool displacedAny = false;
587
588 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
589 unsigned Unit = *UI;
590 switch (unsigned VirtReg = RegUnitStates[Unit]) {
591 default: {
592 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
593 assert(LRI != LiveVirtRegs.end() && "datastructures in sync");
594 MachineBasicBlock::iterator ReloadBefore =
595 std::next((MachineBasicBlock::iterator)MI.getIterator());
596 reload(ReloadBefore, VirtReg, LRI->PhysReg);
597
598 setPhysRegState(LRI->PhysReg, regFree);
599 LRI->PhysReg = 0;
600 LRI->Reloaded = true;
601 displacedAny = true;
602 break;
603 }
604 case regPreAssigned:
605 RegUnitStates[Unit] = regFree;
606 displacedAny = true;
607 break;
608 case regFree:
609 break;
610 }
611 }
612 return displacedAny;
613 }
614
freePhysReg(MCPhysReg PhysReg)615 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) {
616 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':');
617
618 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI);
619 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) {
620 case regFree:
621 LLVM_DEBUG(dbgs() << '\n');
622 return;
623 case regPreAssigned:
624 LLVM_DEBUG(dbgs() << '\n');
625 setPhysRegState(PhysReg, regFree);
626 return;
627 default: {
628 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
629 assert(LRI != LiveVirtRegs.end());
630 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n');
631 setPhysRegState(LRI->PhysReg, regFree);
632 LRI->PhysReg = 0;
633 }
634 return;
635 }
636 }
637
638 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
639 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
640 /// disabled - it can be allocated directly.
641 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
calcSpillCost(MCPhysReg PhysReg) const642 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
643 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
644 switch (unsigned VirtReg = RegUnitStates[*UI]) {
645 case regFree:
646 break;
647 case regPreAssigned:
648 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned "
649 << printReg(PhysReg, TRI) << '\n');
650 return spillImpossible;
651 default: {
652 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 ||
653 findLiveVirtReg(VirtReg)->LiveOut;
654 return SureSpill ? spillClean : spillDirty;
655 }
656 }
657 }
658 return 0;
659 }
660
assignDanglingDebugValues(MachineInstr & Definition,Register VirtReg,MCPhysReg Reg)661 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition,
662 Register VirtReg, MCPhysReg Reg) {
663 auto UDBGValIter = DanglingDbgValues.find(VirtReg);
664 if (UDBGValIter == DanglingDbgValues.end())
665 return;
666
667 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second;
668 for (MachineInstr *DbgValue : Dangling) {
669 assert(DbgValue->isDebugValue());
670 if (!DbgValue->hasDebugOperandForReg(VirtReg))
671 continue;
672
673 // Test whether the physreg survives from the definition to the DBG_VALUE.
674 MCPhysReg SetToReg = Reg;
675 unsigned Limit = 20;
676 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()),
677 E = DbgValue->getIterator(); I != E; ++I) {
678 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) {
679 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
680 << '\n');
681 SetToReg = 0;
682 break;
683 }
684 }
685 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) {
686 MO.setReg(SetToReg);
687 if (SetToReg != 0)
688 MO.setIsRenamable();
689 }
690 }
691 Dangling.clear();
692 }
693
694 /// This method updates local state so that we know that PhysReg is the
695 /// proper container for VirtReg now. The physical register must not be used
696 /// for anything else when this is called.
assignVirtToPhysReg(MachineInstr & AtMI,LiveReg & LR,MCPhysReg PhysReg)697 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR,
698 MCPhysReg PhysReg) {
699 Register VirtReg = LR.VirtReg;
700 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
701 << printReg(PhysReg, TRI) << '\n');
702 assert(LR.PhysReg == 0 && "Already assigned a physreg");
703 assert(PhysReg != 0 && "Trying to assign no register");
704 LR.PhysReg = PhysReg;
705 setPhysRegState(PhysReg, VirtReg);
706
707 assignDanglingDebugValues(AtMI, VirtReg, PhysReg);
708 }
709
isCoalescable(const MachineInstr & MI)710 static bool isCoalescable(const MachineInstr &MI) {
711 return MI.isFullCopy();
712 }
713
traceCopyChain(Register Reg) const714 Register RegAllocFast::traceCopyChain(Register Reg) const {
715 static const unsigned ChainLengthLimit = 3;
716 unsigned C = 0;
717 do {
718 if (Reg.isPhysical())
719 return Reg;
720 assert(Reg.isVirtual());
721
722 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
723 if (!VRegDef || !isCoalescable(*VRegDef))
724 return 0;
725 Reg = VRegDef->getOperand(1).getReg();
726 } while (++C <= ChainLengthLimit);
727 return 0;
728 }
729
730 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the
731 /// chain of copies to check whether we reach a physical register we can
732 /// coalesce with.
traceCopies(Register VirtReg) const733 Register RegAllocFast::traceCopies(Register VirtReg) const {
734 static const unsigned DefLimit = 3;
735 unsigned C = 0;
736 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
737 if (isCoalescable(MI)) {
738 Register Reg = MI.getOperand(1).getReg();
739 Reg = traceCopyChain(Reg);
740 if (Reg.isValid())
741 return Reg;
742 }
743
744 if (++C >= DefLimit)
745 break;
746 }
747 return Register();
748 }
749
750 /// Allocates a physical register for VirtReg.
allocVirtReg(MachineInstr & MI,LiveReg & LR,Register Hint0,bool LookAtPhysRegUses)751 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR,
752 Register Hint0, bool LookAtPhysRegUses) {
753 const Register VirtReg = LR.VirtReg;
754 assert(LR.PhysReg == 0);
755
756 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
757 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
758 << " in class " << TRI->getRegClassName(&RC)
759 << " with hint " << printReg(Hint0, TRI) << '\n');
760
761 // Take hint when possible.
762 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) &&
763 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) {
764 // Take hint if the register is currently free.
765 if (isPhysRegFree(Hint0)) {
766 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
767 << '\n');
768 assignVirtToPhysReg(MI, LR, Hint0);
769 return;
770 } else {
771 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI)
772 << " occupied\n");
773 }
774 } else {
775 Hint0 = Register();
776 }
777
778
779 // Try other hint.
780 Register Hint1 = traceCopies(VirtReg);
781 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) &&
782 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) {
783 // Take hint if the register is currently free.
784 if (isPhysRegFree(Hint1)) {
785 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
786 << '\n');
787 assignVirtToPhysReg(MI, LR, Hint1);
788 return;
789 } else {
790 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI)
791 << " occupied\n");
792 }
793 } else {
794 Hint1 = Register();
795 }
796
797 MCPhysReg BestReg = 0;
798 unsigned BestCost = spillImpossible;
799 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
800 for (MCPhysReg PhysReg : AllocationOrder) {
801 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
802 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) {
803 LLVM_DEBUG(dbgs() << "already used in instr.\n");
804 continue;
805 }
806
807 unsigned Cost = calcSpillCost(PhysReg);
808 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
809 // Immediate take a register with cost 0.
810 if (Cost == 0) {
811 assignVirtToPhysReg(MI, LR, PhysReg);
812 return;
813 }
814
815 if (PhysReg == Hint0 || PhysReg == Hint1)
816 Cost -= spillPrefBonus;
817
818 if (Cost < BestCost) {
819 BestReg = PhysReg;
820 BestCost = Cost;
821 }
822 }
823
824 if (!BestReg) {
825 // Nothing we can do: Report an error and keep going with an invalid
826 // allocation.
827 if (MI.isInlineAsm())
828 MI.emitError("inline assembly requires more registers than available");
829 else
830 MI.emitError("ran out of registers during register allocation");
831
832 LR.Error = true;
833 LR.PhysReg = 0;
834 return;
835 }
836
837 displacePhysReg(MI, BestReg);
838 assignVirtToPhysReg(MI, LR, BestReg);
839 }
840
allocVirtRegUndef(MachineOperand & MO)841 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
842 assert(MO.isUndef() && "expected undef use");
843 Register VirtReg = MO.getReg();
844 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg");
845
846 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
847 MCPhysReg PhysReg;
848 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
849 PhysReg = LRI->PhysReg;
850 } else {
851 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
852 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
853 assert(!AllocationOrder.empty() && "Allocation order must not be empty");
854 PhysReg = AllocationOrder[0];
855 }
856
857 unsigned SubRegIdx = MO.getSubReg();
858 if (SubRegIdx != 0) {
859 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
860 MO.setSubReg(0);
861 }
862 MO.setReg(PhysReg);
863 MO.setIsRenamable(true);
864 }
865
866 /// Variation of defineVirtReg() with special handling for livethrough regs
867 /// (tied or earlyclobber) that may interfere with preassigned uses.
defineLiveThroughVirtReg(MachineInstr & MI,unsigned OpNum,Register VirtReg)868 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
869 Register VirtReg) {
870 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
871 if (LRI != LiveVirtRegs.end()) {
872 MCPhysReg PrevReg = LRI->PhysReg;
873 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) {
874 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI)
875 << " (tied/earlyclobber resolution)\n");
876 freePhysReg(PrevReg);
877 LRI->PhysReg = 0;
878 allocVirtReg(MI, *LRI, 0, true);
879 MachineBasicBlock::iterator InsertBefore =
880 std::next((MachineBasicBlock::iterator)MI.getIterator());
881 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to "
882 << printReg(PrevReg, TRI) << '\n');
883 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(),
884 TII->get(TargetOpcode::COPY), PrevReg)
885 .addReg(LRI->PhysReg, llvm::RegState::Kill);
886 }
887 MachineOperand &MO = MI.getOperand(OpNum);
888 if (MO.getSubReg() && !MO.isUndef()) {
889 LRI->LastUse = &MI;
890 }
891 }
892 return defineVirtReg(MI, OpNum, VirtReg, true);
893 }
894
895 /// Allocates a register for VirtReg definition. Typically the register is
896 /// already assigned from a use of the virtreg, however we still need to
897 /// perform an allocation if:
898 /// - It is a dead definition without any uses.
899 /// - The value is live out and all uses are in different basic blocks.
defineVirtReg(MachineInstr & MI,unsigned OpNum,Register VirtReg,bool LookAtPhysRegUses)900 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
901 Register VirtReg, bool LookAtPhysRegUses) {
902 assert(VirtReg.isVirtual() && "Not a virtual register");
903 MachineOperand &MO = MI.getOperand(OpNum);
904 LiveRegMap::iterator LRI;
905 bool New;
906 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
907 if (New) {
908 if (!MO.isDead()) {
909 if (mayLiveOut(VirtReg)) {
910 LRI->LiveOut = true;
911 } else {
912 // It is a dead def without the dead flag; add the flag now.
913 MO.setIsDead(true);
914 }
915 }
916 }
917 if (LRI->PhysReg == 0)
918 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses);
919 else {
920 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) &&
921 "TODO: preassign mismatch");
922 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI)
923 << " use existing assignment to "
924 << printReg(LRI->PhysReg, TRI) << '\n');
925 }
926
927 MCPhysReg PhysReg = LRI->PhysReg;
928 assert(PhysReg != 0 && "Register not assigned");
929 if (LRI->Reloaded || LRI->LiveOut) {
930 if (!MI.isImplicitDef()) {
931 MachineBasicBlock::iterator SpillBefore =
932 std::next((MachineBasicBlock::iterator)MI.getIterator());
933 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: "
934 << LRI->Reloaded << '\n');
935 bool Kill = LRI->LastUse == nullptr;
936 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut);
937 LRI->LastUse = nullptr;
938 }
939 LRI->LiveOut = false;
940 LRI->Reloaded = false;
941 }
942 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
943 BundleVirtRegsMap[VirtReg] = PhysReg;
944 }
945 markRegUsedInInstr(PhysReg);
946 setPhysReg(MI, MO, PhysReg);
947 }
948
949 /// Allocates a register for a VirtReg use.
useVirtReg(MachineInstr & MI,unsigned OpNum,Register VirtReg)950 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum,
951 Register VirtReg) {
952 assert(VirtReg.isVirtual() && "Not a virtual register");
953 MachineOperand &MO = MI.getOperand(OpNum);
954 LiveRegMap::iterator LRI;
955 bool New;
956 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
957 if (New) {
958 MachineOperand &MO = MI.getOperand(OpNum);
959 if (!MO.isKill()) {
960 if (mayLiveOut(VirtReg)) {
961 LRI->LiveOut = true;
962 } else {
963 // It is a last (killing) use without the kill flag; add the flag now.
964 MO.setIsKill(true);
965 }
966 }
967 } else {
968 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag");
969 }
970
971 // If necessary allocate a register.
972 if (LRI->PhysReg == 0) {
973 assert(!MO.isTied() && "tied op should be allocated");
974 Register Hint;
975 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) {
976 Hint = MI.getOperand(0).getReg();
977 assert(Hint.isPhysical() &&
978 "Copy destination should already be assigned");
979 }
980 allocVirtReg(MI, *LRI, Hint, false);
981 if (LRI->Error) {
982 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
983 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
984 setPhysReg(MI, MO, *AllocationOrder.begin());
985 return;
986 }
987 }
988
989 LRI->LastUse = &MI;
990
991 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
992 BundleVirtRegsMap[VirtReg] = LRI->PhysReg;
993 }
994 markRegUsedInInstr(LRI->PhysReg);
995 setPhysReg(MI, MO, LRI->PhysReg);
996 }
997
998 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
999 /// may invalidate any operand pointers. Return true if the operand kills its
1000 /// register.
setPhysReg(MachineInstr & MI,MachineOperand & MO,MCPhysReg PhysReg)1001 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
1002 MCPhysReg PhysReg) {
1003 if (!MO.getSubReg()) {
1004 MO.setReg(PhysReg);
1005 MO.setIsRenamable(true);
1006 return;
1007 }
1008
1009 // Handle subregister index.
1010 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister());
1011 MO.setIsRenamable(true);
1012 // Note: We leave the subreg number around a little longer in case of defs.
1013 // This is so that the register freeing logic in allocateInstruction can still
1014 // recognize this as subregister defs. The code there will clear the number.
1015 if (!MO.isDef())
1016 MO.setSubReg(0);
1017
1018 // A kill flag implies killing the full register. Add corresponding super
1019 // register kill.
1020 if (MO.isKill()) {
1021 MI.addRegisterKilled(PhysReg, TRI, true);
1022 return;
1023 }
1024
1025 // A <def,read-undef> of a sub-register requires an implicit def of the full
1026 // register.
1027 if (MO.isDef() && MO.isUndef()) {
1028 if (MO.isDead())
1029 MI.addRegisterDead(PhysReg, TRI, true);
1030 else
1031 MI.addRegisterDefined(PhysReg, TRI);
1032 }
1033 }
1034
1035 #ifndef NDEBUG
1036
dumpState() const1037 void RegAllocFast::dumpState() const {
1038 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE;
1039 ++Unit) {
1040 switch (unsigned VirtReg = RegUnitStates[Unit]) {
1041 case regFree:
1042 break;
1043 case regPreAssigned:
1044 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]";
1045 break;
1046 case regLiveIn:
1047 llvm_unreachable("Should not have regLiveIn in map");
1048 default: {
1049 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg);
1050 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
1051 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry");
1052 if (I->LiveOut || I->Reloaded) {
1053 dbgs() << '[';
1054 if (I->LiveOut) dbgs() << 'O';
1055 if (I->Reloaded) dbgs() << 'R';
1056 dbgs() << ']';
1057 }
1058 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present");
1059 break;
1060 }
1061 }
1062 }
1063 dbgs() << '\n';
1064 // Check that LiveVirtRegs is the inverse.
1065 for (const LiveReg &LR : LiveVirtRegs) {
1066 Register VirtReg = LR.VirtReg;
1067 assert(VirtReg.isVirtual() && "Bad map key");
1068 MCPhysReg PhysReg = LR.PhysReg;
1069 if (PhysReg != 0) {
1070 assert(Register::isPhysicalRegister(PhysReg) &&
1071 "mapped to physreg");
1072 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
1073 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid");
1074 }
1075 }
1076 }
1077 }
1078 #endif
1079
1080 /// Count number of defs consumed from each register class by \p Reg
addRegClassDefCounts(std::vector<unsigned> & RegClassDefCounts,Register Reg) const1081 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
1082 Register Reg) const {
1083 assert(RegClassDefCounts.size() == TRI->getNumRegClasses());
1084
1085 if (Reg.isVirtual()) {
1086 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg);
1087 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1088 RCIdx != RCIdxEnd; ++RCIdx) {
1089 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
1090 // FIXME: Consider aliasing sub/super registers.
1091 if (OpRC->hasSubClassEq(IdxRC))
1092 ++RegClassDefCounts[RCIdx];
1093 }
1094
1095 return;
1096 }
1097
1098 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1099 RCIdx != RCIdxEnd; ++RCIdx) {
1100 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
1101 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
1102 if (IdxRC->contains(*Alias)) {
1103 ++RegClassDefCounts[RCIdx];
1104 break;
1105 }
1106 }
1107 }
1108 }
1109
allocateInstruction(MachineInstr & MI)1110 void RegAllocFast::allocateInstruction(MachineInstr &MI) {
1111 // The basic algorithm here is:
1112 // 1. Mark registers of def operands as free
1113 // 2. Allocate registers to use operands and place reload instructions for
1114 // registers displaced by the allocation.
1115 //
1116 // However we need to handle some corner cases:
1117 // - pre-assigned defs and uses need to be handled before the other def/use
1118 // operands are processed to avoid the allocation heuristics clashing with
1119 // the pre-assignment.
1120 // - The "free def operands" step has to come last instead of first for tied
1121 // operands and early-clobbers.
1122
1123 UsedInInstr.clear();
1124 RegMasks.clear();
1125 BundleVirtRegsMap.clear();
1126
1127 auto TiedOpIsUndef = [&](const MachineOperand &MO, unsigned Idx) {
1128 assert(MO.isTied());
1129 unsigned TiedIdx = MI.findTiedOperandIdx(Idx);
1130 const MachineOperand &TiedMO = MI.getOperand(TiedIdx);
1131 return TiedMO.isUndef();
1132 };
1133 // Scan for special cases; Apply pre-assigned register defs to state.
1134 bool HasPhysRegUse = false;
1135 bool HasRegMask = false;
1136 bool HasVRegDef = false;
1137 bool HasDef = false;
1138 bool HasEarlyClobber = false;
1139 bool NeedToAssignLiveThroughs = false;
1140 for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
1141 MachineOperand &MO = MI.getOperand(I);
1142 if (MO.isReg()) {
1143 Register Reg = MO.getReg();
1144 if (Reg.isVirtual()) {
1145 if (MO.isDef()) {
1146 HasDef = true;
1147 HasVRegDef = true;
1148 if (MO.isEarlyClobber()) {
1149 HasEarlyClobber = true;
1150 NeedToAssignLiveThroughs = true;
1151 }
1152 if ((MO.isTied() && !TiedOpIsUndef(MO, I)) ||
1153 (MO.getSubReg() != 0 && !MO.isUndef()))
1154 NeedToAssignLiveThroughs = true;
1155 }
1156 } else if (Reg.isPhysical()) {
1157 if (!MRI->isReserved(Reg)) {
1158 if (MO.isDef()) {
1159 HasDef = true;
1160 bool displacedAny = definePhysReg(MI, Reg);
1161 if (MO.isEarlyClobber())
1162 HasEarlyClobber = true;
1163 if (!displacedAny)
1164 MO.setIsDead(true);
1165 }
1166 if (MO.readsReg())
1167 HasPhysRegUse = true;
1168 }
1169 }
1170 } else if (MO.isRegMask()) {
1171 HasRegMask = true;
1172 RegMasks.push_back(MO.getRegMask());
1173 }
1174 }
1175
1176 // Allocate virtreg defs.
1177 if (HasDef) {
1178 if (HasVRegDef) {
1179 // Special handling for early clobbers, tied operands or subregister defs:
1180 // Compared to "normal" defs these:
1181 // - Must not use a register that is pre-assigned for a use operand.
1182 // - In order to solve tricky inline assembly constraints we change the
1183 // heuristic to figure out a good operand order before doing
1184 // assignments.
1185 if (NeedToAssignLiveThroughs) {
1186 DefOperandIndexes.clear();
1187 PhysRegUses.clear();
1188
1189 // Track number of defs which may consume a register from the class.
1190 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0);
1191 assert(RegClassDefCounts[0] == 0);
1192
1193 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n");
1194 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
1195 const MachineOperand &MO = MI.getOperand(I);
1196 if (!MO.isReg())
1197 continue;
1198 Register Reg = MO.getReg();
1199 if (MO.readsReg()) {
1200 if (Reg.isPhysical()) {
1201 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI)
1202 << '\n');
1203 markPhysRegUsedInInstr(Reg);
1204 }
1205 }
1206
1207 if (MO.isDef()) {
1208 if (Reg.isVirtual())
1209 DefOperandIndexes.push_back(I);
1210
1211 addRegClassDefCounts(RegClassDefCounts, Reg);
1212 }
1213 }
1214
1215 llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) {
1216 const MachineOperand &MO0 = MI.getOperand(I0);
1217 const MachineOperand &MO1 = MI.getOperand(I1);
1218 Register Reg0 = MO0.getReg();
1219 Register Reg1 = MO1.getReg();
1220 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0);
1221 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1);
1222
1223 // Identify regclass that are easy to use up completely just in this
1224 // instruction.
1225 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size();
1226 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size();
1227
1228 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()];
1229 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()];
1230 if (SmallClass0 > SmallClass1)
1231 return true;
1232 if (SmallClass0 < SmallClass1)
1233 return false;
1234
1235 // Allocate early clobbers and livethrough operands first.
1236 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() ||
1237 (MO0.getSubReg() == 0 && !MO0.isUndef());
1238 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() ||
1239 (MO1.getSubReg() == 0 && !MO1.isUndef());
1240 if (Livethrough0 > Livethrough1)
1241 return true;
1242 if (Livethrough0 < Livethrough1)
1243 return false;
1244
1245 // Tie-break rule: operand index.
1246 return I0 < I1;
1247 });
1248
1249 for (uint16_t OpIdx : DefOperandIndexes) {
1250 MachineOperand &MO = MI.getOperand(OpIdx);
1251 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n');
1252 unsigned Reg = MO.getReg();
1253 if (MO.isEarlyClobber() ||
1254 (MO.isTied() && !TiedOpIsUndef(MO, OpIdx)) ||
1255 (MO.getSubReg() && !MO.isUndef())) {
1256 defineLiveThroughVirtReg(MI, OpIdx, Reg);
1257 } else {
1258 defineVirtReg(MI, OpIdx, Reg);
1259 }
1260 }
1261 } else {
1262 // Assign virtual register defs.
1263 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
1264 MachineOperand &MO = MI.getOperand(I);
1265 if (!MO.isReg() || !MO.isDef())
1266 continue;
1267 Register Reg = MO.getReg();
1268 if (Reg.isVirtual())
1269 defineVirtReg(MI, I, Reg);
1270 }
1271 }
1272 }
1273
1274 // Free registers occupied by defs.
1275 // Iterate operands in reverse order, so we see the implicit super register
1276 // defs first (we added them earlier in case of <def,read-undef>).
1277 for (signed I = MI.getNumOperands() - 1; I >= 0; --I) {
1278 MachineOperand &MO = MI.getOperand(I);
1279 if (!MO.isReg() || !MO.isDef())
1280 continue;
1281
1282 // subreg defs don't free the full register. We left the subreg number
1283 // around as a marker in setPhysReg() to recognize this case here.
1284 if (MO.getSubReg() != 0) {
1285 MO.setSubReg(0);
1286 continue;
1287 }
1288
1289 assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) &&
1290 "tied def assigned to clobbered register");
1291
1292 // Do not free tied operands and early clobbers.
1293 if ((MO.isTied() && !TiedOpIsUndef(MO, I)) || MO.isEarlyClobber())
1294 continue;
1295 Register Reg = MO.getReg();
1296 if (!Reg)
1297 continue;
1298 assert(Reg.isPhysical());
1299 if (MRI->isReserved(Reg))
1300 continue;
1301 freePhysReg(Reg);
1302 unmarkRegUsedInInstr(Reg);
1303 }
1304 }
1305
1306 // Displace clobbered registers.
1307 if (HasRegMask) {
1308 assert(!RegMasks.empty() && "expected RegMask");
1309 // MRI bookkeeping.
1310 for (const auto *RM : RegMasks)
1311 MRI->addPhysRegsUsedFromRegMask(RM);
1312
1313 // Displace clobbered registers.
1314 for (const LiveReg &LR : LiveVirtRegs) {
1315 MCPhysReg PhysReg = LR.PhysReg;
1316 if (PhysReg != 0 && isClobberedByRegMasks(PhysReg))
1317 displacePhysReg(MI, PhysReg);
1318 }
1319 }
1320
1321 // Apply pre-assigned register uses to state.
1322 if (HasPhysRegUse) {
1323 for (MachineOperand &MO : MI.operands()) {
1324 if (!MO.isReg() || !MO.readsReg())
1325 continue;
1326 Register Reg = MO.getReg();
1327 if (!Reg.isPhysical())
1328 continue;
1329 if (MRI->isReserved(Reg))
1330 continue;
1331 bool displacedAny = usePhysReg(MI, Reg);
1332 if (!displacedAny && !MRI->isReserved(Reg))
1333 MO.setIsKill(true);
1334 }
1335 }
1336
1337 // Allocate virtreg uses and insert reloads as necessary.
1338 bool HasUndefUse = false;
1339 for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
1340 MachineOperand &MO = MI.getOperand(I);
1341 if (!MO.isReg() || !MO.isUse())
1342 continue;
1343 Register Reg = MO.getReg();
1344 if (!Reg.isVirtual())
1345 continue;
1346
1347 if (MO.isUndef()) {
1348 HasUndefUse = true;
1349 continue;
1350 }
1351
1352
1353 // Populate MayLiveAcrossBlocks in case the use block is allocated before
1354 // the def block (removing the vreg uses).
1355 mayLiveIn(Reg);
1356
1357
1358 assert(!MO.isInternalRead() && "Bundles not supported");
1359 assert(MO.readsReg() && "reading use");
1360 useVirtReg(MI, I, Reg);
1361 }
1362
1363 // Allocate undef operands. This is a separate step because in a situation
1364 // like ` = OP undef %X, %X` both operands need the same register assign
1365 // so we should perform the normal assignment first.
1366 if (HasUndefUse) {
1367 for (MachineOperand &MO : MI.uses()) {
1368 if (!MO.isReg() || !MO.isUse())
1369 continue;
1370 Register Reg = MO.getReg();
1371 if (!Reg.isVirtual())
1372 continue;
1373
1374 assert(MO.isUndef() && "Should only have undef virtreg uses left");
1375 allocVirtRegUndef(MO);
1376 }
1377 }
1378
1379 // Free early clobbers.
1380 if (HasEarlyClobber) {
1381 for (MachineOperand &MO : llvm::reverse(MI.operands())) {
1382 if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber())
1383 continue;
1384 // subreg defs don't free the full register. We left the subreg number
1385 // around as a marker in setPhysReg() to recognize this case here.
1386 if (MO.getSubReg() != 0) {
1387 MO.setSubReg(0);
1388 continue;
1389 }
1390
1391 Register Reg = MO.getReg();
1392 if (!Reg)
1393 continue;
1394 assert(Reg.isPhysical() && "should have register assigned");
1395
1396 // We sometimes get odd situations like:
1397 // early-clobber %x0 = INSTRUCTION %x0
1398 // which is semantically questionable as the early-clobber should
1399 // apply before the use. But in practice we consider the use to
1400 // happen before the early clobber now. Don't free the early clobber
1401 // register in this case.
1402 if (MI.readsRegister(Reg, TRI))
1403 continue;
1404
1405 freePhysReg(Reg);
1406 }
1407 }
1408
1409 LLVM_DEBUG(dbgs() << "<< " << MI);
1410 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
1411 MI.getNumOperands() == 2) {
1412 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1413 Coalesced.push_back(&MI);
1414 }
1415 }
1416
handleDebugValue(MachineInstr & MI)1417 void RegAllocFast::handleDebugValue(MachineInstr &MI) {
1418 // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1419 // mostly constants and frame indices.
1420 for (Register Reg : MI.getUsedDebugRegs()) {
1421 if (!Register::isVirtualRegister(Reg))
1422 continue;
1423
1424 // Already spilled to a stackslot?
1425 int SS = StackSlotForVirtReg[Reg];
1426 if (SS != -1) {
1427 // Modify DBG_VALUE now that the value is in a spill slot.
1428 updateDbgValueForSpill(MI, SS, Reg);
1429 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI);
1430 continue;
1431 }
1432
1433 // See if this virtual register has already been allocated to a physical
1434 // register or spilled to a stack slot.
1435 LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
1436 SmallVector<MachineOperand *> DbgOps;
1437 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg))
1438 DbgOps.push_back(&Op);
1439
1440 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
1441 // Update every use of Reg within MI.
1442 for (auto &RegMO : DbgOps)
1443 setPhysReg(MI, *RegMO, LRI->PhysReg);
1444 } else {
1445 DanglingDbgValues[Reg].push_back(&MI);
1446 }
1447
1448 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1449 // that future spills of Reg will have DBG_VALUEs.
1450 LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end());
1451 }
1452 }
1453
handleBundle(MachineInstr & MI)1454 void RegAllocFast::handleBundle(MachineInstr &MI) {
1455 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator();
1456 ++BundledMI;
1457 while (BundledMI->isBundledWithPred()) {
1458 for (MachineOperand &MO : BundledMI->operands()) {
1459 if (!MO.isReg())
1460 continue;
1461
1462 Register Reg = MO.getReg();
1463 if (!Reg.isVirtual())
1464 continue;
1465
1466 DenseMap<Register, MCPhysReg>::iterator DI;
1467 DI = BundleVirtRegsMap.find(Reg);
1468 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register");
1469
1470 setPhysReg(MI, MO, DI->second);
1471 }
1472
1473 ++BundledMI;
1474 }
1475 }
1476
allocateBasicBlock(MachineBasicBlock & MBB)1477 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
1478 this->MBB = &MBB;
1479 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
1480
1481 RegUnitStates.assign(TRI->getNumRegUnits(), regFree);
1482 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
1483
1484 for (const auto &LiveReg : MBB.liveouts())
1485 setPhysRegState(LiveReg.PhysReg, regPreAssigned);
1486
1487 Coalesced.clear();
1488
1489 // Traverse block in reverse order allocating instructions one by one.
1490 for (MachineInstr &MI : reverse(MBB)) {
1491 LLVM_DEBUG(
1492 dbgs() << "\n>> " << MI << "Regs:";
1493 dumpState()
1494 );
1495
1496 // Special handling for debug values. Note that they are not allowed to
1497 // affect codegen of the other instructions in any way.
1498 if (MI.isDebugValue()) {
1499 handleDebugValue(MI);
1500 continue;
1501 }
1502
1503 allocateInstruction(MI);
1504
1505 // Once BUNDLE header is assigned registers, same assignments need to be
1506 // done for bundled MIs.
1507 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1508 handleBundle(MI);
1509 }
1510 }
1511
1512 LLVM_DEBUG(
1513 dbgs() << "Begin Regs:";
1514 dumpState()
1515 );
1516
1517 // Spill all physical registers holding virtual registers now.
1518 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n");
1519 reloadAtBegin(MBB);
1520
1521 // Erase all the coalesced copies. We are delaying it until now because
1522 // LiveVirtRegs might refer to the instrs.
1523 for (MachineInstr *MI : Coalesced)
1524 MBB.erase(MI);
1525 NumCoalesced += Coalesced.size();
1526
1527 for (auto &UDBGPair : DanglingDbgValues) {
1528 for (MachineInstr *DbgValue : UDBGPair.second) {
1529 assert(DbgValue->isDebugValue() && "expected DBG_VALUE");
1530 // Nothing to do if the vreg was spilled in the meantime.
1531 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first))
1532 continue;
1533 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
1534 << '\n');
1535 DbgValue->setDebugValueUndef();
1536 }
1537 }
1538 DanglingDbgValues.clear();
1539
1540 LLVM_DEBUG(MBB.dump());
1541 }
1542
runOnMachineFunction(MachineFunction & MF)1543 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
1544 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1545 << "********** Function: " << MF.getName() << '\n');
1546 MRI = &MF.getRegInfo();
1547 const TargetSubtargetInfo &STI = MF.getSubtarget();
1548 TRI = STI.getRegisterInfo();
1549 TII = STI.getInstrInfo();
1550 MFI = &MF.getFrameInfo();
1551 MRI->freezeReservedRegs(MF);
1552 RegClassInfo.runOnMachineFunction(MF);
1553 unsigned NumRegUnits = TRI->getNumRegUnits();
1554 UsedInInstr.clear();
1555 UsedInInstr.setUniverse(NumRegUnits);
1556 PhysRegUses.clear();
1557 PhysRegUses.setUniverse(NumRegUnits);
1558
1559 // initialize the virtual->physical register map to have a 'null'
1560 // mapping for all virtual registers
1561 unsigned NumVirtRegs = MRI->getNumVirtRegs();
1562 StackSlotForVirtReg.resize(NumVirtRegs);
1563 LiveVirtRegs.setUniverse(NumVirtRegs);
1564 MayLiveAcrossBlocks.clear();
1565 MayLiveAcrossBlocks.resize(NumVirtRegs);
1566
1567 // Loop over all of the basic blocks, eliminating virtual register references
1568 for (MachineBasicBlock &MBB : MF)
1569 allocateBasicBlock(MBB);
1570
1571 if (ClearVirtRegs) {
1572 // All machine operands and other references to virtual registers have been
1573 // replaced. Remove the virtual registers.
1574 MRI->clearVirtRegs();
1575 }
1576
1577 StackSlotForVirtReg.clear();
1578 LiveDbgValueMap.clear();
1579 return true;
1580 }
1581
createFastRegisterAllocator()1582 FunctionPass *llvm::createFastRegisterAllocator() {
1583 return new RegAllocFast();
1584 }
1585
createFastRegisterAllocator(RegClassFilterFunc Ftor,bool ClearVirtRegs)1586 FunctionPass *llvm::createFastRegisterAllocator(RegClassFilterFunc Ftor,
1587 bool ClearVirtRegs) {
1588 return new RegAllocFast(Ftor, ClearVirtRegs);
1589 }
1590