1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This register allocator allocates registers to a basic block at a time, 11 // attempting to keep values in registers and reusing registers as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/IndexedMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/RegisterClassInfo.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <algorithm> 36 using namespace llvm; 37 38 #define DEBUG_TYPE "regalloc" 39 40 STATISTIC(NumStores, "Number of stores added"); 41 STATISTIC(NumLoads , "Number of loads added"); 42 STATISTIC(NumCopies, "Number of copies coalesced"); 43 44 static RegisterRegAlloc 45 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 46 47 namespace { 48 class RAFast : public MachineFunctionPass { 49 public: 50 static char ID; 51 RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1), 52 isBulkSpilling(false) {} 53 54 private: 55 MachineFunction *MF; 56 MachineRegisterInfo *MRI; 57 const TargetRegisterInfo *TRI; 58 const TargetInstrInfo *TII; 59 RegisterClassInfo RegClassInfo; 60 61 // Basic block currently being allocated. 62 MachineBasicBlock *MBB; 63 64 // StackSlotForVirtReg - Maps virtual regs to the frame index where these 65 // values are spilled. 66 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 67 68 // Everything we know about a live virtual register. 69 struct LiveReg { 70 MachineInstr *LastUse; // Last instr to use reg. 71 unsigned VirtReg; // Virtual register number. 72 unsigned PhysReg; // Currently held here. 73 unsigned short LastOpNum; // OpNum on LastUse. 74 bool Dirty; // Register needs spill. 75 76 explicit LiveReg(unsigned v) 77 : LastUse(nullptr), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false){} 78 79 unsigned getSparseSetIndex() const { 80 return TargetRegisterInfo::virtReg2Index(VirtReg); 81 } 82 }; 83 84 typedef SparseSet<LiveReg> LiveRegMap; 85 86 // LiveVirtRegs - This map contains entries for each virtual register 87 // that is currently available in a physical register. 88 LiveRegMap LiveVirtRegs; 89 90 DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap; 91 92 // RegState - Track the state of a physical register. 93 enum RegState { 94 // A disabled register is not available for allocation, but an alias may 95 // be in use. A register can only be moved out of the disabled state if 96 // all aliases are disabled. 97 regDisabled, 98 99 // A free register is not currently in use and can be allocated 100 // immediately without checking aliases. 101 regFree, 102 103 // A reserved register has been assigned explicitly (e.g., setting up a 104 // call parameter), and it remains reserved until it is used. 105 regReserved 106 107 // A register state may also be a virtual register number, indication that 108 // the physical register is currently allocated to a virtual register. In 109 // that case, LiveVirtRegs contains the inverse mapping. 110 }; 111 112 // PhysRegState - One of the RegState enums, or a virtreg. 113 std::vector<unsigned> PhysRegState; 114 115 // Set of register units. 116 typedef SparseSet<unsigned> UsedInInstrSet; 117 118 // Set of register units that are used in the current instruction, and so 119 // cannot be allocated. 120 UsedInInstrSet UsedInInstr; 121 122 // Mark a physreg as used in this instruction. 123 void markRegUsedInInstr(unsigned PhysReg) { 124 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 125 UsedInInstr.insert(*Units); 126 } 127 128 // Check if a physreg or any of its aliases are used in this instruction. 129 bool isRegUsedInInstr(unsigned PhysReg) const { 130 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 131 if (UsedInInstr.count(*Units)) 132 return true; 133 return false; 134 } 135 136 // SkippedInstrs - Descriptors of instructions whose clobber list was 137 // ignored because all registers were spilled. It is still necessary to 138 // mark all the clobbered registers as used by the function. 139 SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs; 140 141 // isBulkSpilling - This flag is set when LiveRegMap will be cleared 142 // completely after spilling all live registers. LiveRegMap entries should 143 // not be erased. 144 bool isBulkSpilling; 145 146 enum : unsigned { 147 spillClean = 1, 148 spillDirty = 100, 149 spillImpossible = ~0u 150 }; 151 public: 152 StringRef getPassName() const override { return "Fast Register Allocator"; } 153 154 void getAnalysisUsage(AnalysisUsage &AU) const override { 155 AU.setPreservesCFG(); 156 MachineFunctionPass::getAnalysisUsage(AU); 157 } 158 159 MachineFunctionProperties getRequiredProperties() const override { 160 return MachineFunctionProperties().set( 161 MachineFunctionProperties::Property::NoPHIs); 162 } 163 164 MachineFunctionProperties getSetProperties() const override { 165 return MachineFunctionProperties().set( 166 MachineFunctionProperties::Property::NoVRegs); 167 } 168 169 private: 170 bool runOnMachineFunction(MachineFunction &Fn) override; 171 void AllocateBasicBlock(); 172 void handleThroughOperands(MachineInstr *MI, 173 SmallVectorImpl<unsigned> &VirtDead); 174 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); 175 bool isLastUseOfLocalReg(MachineOperand&); 176 177 void addKillFlag(const LiveReg&); 178 void killVirtReg(LiveRegMap::iterator); 179 void killVirtReg(unsigned VirtReg); 180 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator); 181 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 182 183 void usePhysReg(MachineOperand&); 184 void definePhysReg(MachineInstr &MI, unsigned PhysReg, RegState NewState); 185 unsigned calcSpillCost(unsigned PhysReg) const; 186 void assignVirtToPhysReg(LiveReg&, unsigned PhysReg); 187 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 188 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 189 } 190 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 191 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 192 } 193 LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg); 194 LiveRegMap::iterator allocVirtReg(MachineInstr &MI, LiveRegMap::iterator, 195 unsigned Hint); 196 LiveRegMap::iterator defineVirtReg(MachineInstr &MI, unsigned OpNum, 197 unsigned VirtReg, unsigned Hint); 198 LiveRegMap::iterator reloadVirtReg(MachineInstr &MI, unsigned OpNum, 199 unsigned VirtReg, unsigned Hint); 200 void spillAll(MachineBasicBlock::iterator MI); 201 bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg); 202 }; 203 char RAFast::ID = 0; 204 } 205 206 /// getStackSpaceFor - This allocates space for the specified virtual register 207 /// to be held on the stack. 208 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { 209 // Find the location Reg would belong... 210 int SS = StackSlotForVirtReg[VirtReg]; 211 if (SS != -1) 212 return SS; // Already has space allocated? 213 214 // Allocate a new stack object for this spill location... 215 int FrameIdx = MF->getFrameInfo().CreateSpillStackObject(RC->getSize(), 216 RC->getAlignment()); 217 218 // Assign the slot. 219 StackSlotForVirtReg[VirtReg] = FrameIdx; 220 return FrameIdx; 221 } 222 223 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to 224 /// its virtual register, and it is guaranteed to be a block-local register. 225 /// 226 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) { 227 // If the register has ever been spilled or reloaded, we conservatively assume 228 // it is a global register used in multiple blocks. 229 if (StackSlotForVirtReg[MO.getReg()] != -1) 230 return false; 231 232 // Check that the use/def chain has exactly one operand - MO. 233 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 234 if (&*I != &MO) 235 return false; 236 return ++I == MRI->reg_nodbg_end(); 237 } 238 239 /// addKillFlag - Set kill flags on last use of a virtual register. 240 void RAFast::addKillFlag(const LiveReg &LR) { 241 if (!LR.LastUse) return; 242 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 243 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 244 if (MO.getReg() == LR.PhysReg) 245 MO.setIsKill(); 246 else 247 LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true); 248 } 249 } 250 251 /// killVirtReg - Mark virtreg as no longer available. 252 void RAFast::killVirtReg(LiveRegMap::iterator LRI) { 253 addKillFlag(*LRI); 254 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg && 255 "Broken RegState mapping"); 256 PhysRegState[LRI->PhysReg] = regFree; 257 // Erase from LiveVirtRegs unless we're spilling in bulk. 258 if (!isBulkSpilling) 259 LiveVirtRegs.erase(LRI); 260 } 261 262 /// killVirtReg - Mark virtreg as no longer available. 263 void RAFast::killVirtReg(unsigned VirtReg) { 264 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 265 "killVirtReg needs a virtual register"); 266 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 267 if (LRI != LiveVirtRegs.end()) 268 killVirtReg(LRI); 269 } 270 271 /// spillVirtReg - This method spills the value specified by VirtReg into the 272 /// corresponding stack slot if needed. 273 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) { 274 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 275 "Spilling a physical register is illegal!"); 276 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 277 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register"); 278 spillVirtReg(MI, LRI); 279 } 280 281 /// spillVirtReg - Do the actual work of spilling. 282 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, 283 LiveRegMap::iterator LRI) { 284 LiveReg &LR = *LRI; 285 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping"); 286 287 if (LR.Dirty) { 288 // If this physreg is used by the instruction, we want to kill it on the 289 // instruction, not on the spill. 290 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; 291 LR.Dirty = false; 292 DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI) 293 << " in " << PrintReg(LR.PhysReg, TRI)); 294 const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg); 295 int FI = getStackSpaceFor(LRI->VirtReg, RC); 296 DEBUG(dbgs() << " to stack slot #" << FI << "\n"); 297 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI); 298 ++NumStores; // Update statistics 299 300 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 301 // identify spilled location as the place to find corresponding variable's 302 // value. 303 SmallVectorImpl<MachineInstr *> &LRIDbgValues = 304 LiveDbgValueMap[LRI->VirtReg]; 305 for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) { 306 MachineInstr *DBG = LRIDbgValues[li]; 307 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, MI, *DBG, FI); 308 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 309 (void)NewDV; 310 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV); 311 } 312 // Now this register is spilled there is should not be any DBG_VALUE 313 // pointing to this register because they are all pointing to spilled value 314 // now. 315 LRIDbgValues.clear(); 316 if (SpillKill) 317 LR.LastUse = nullptr; // Don't kill register again 318 } 319 killVirtReg(LRI); 320 } 321 322 /// spillAll - Spill all dirty virtregs without killing them. 323 void RAFast::spillAll(MachineBasicBlock::iterator MI) { 324 if (LiveVirtRegs.empty()) return; 325 isBulkSpilling = true; 326 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 327 // of spilling here is deterministic, if arbitrary. 328 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end(); 329 i != e; ++i) 330 spillVirtReg(MI, i); 331 LiveVirtRegs.clear(); 332 isBulkSpilling = false; 333 } 334 335 /// usePhysReg - Handle the direct use of a physical register. 336 /// Check that the register is not used by a virtreg. 337 /// Kill the physreg, marking it free. 338 /// This may add implicit kills to MO->getParent() and invalidate MO. 339 void RAFast::usePhysReg(MachineOperand &MO) { 340 unsigned PhysReg = MO.getReg(); 341 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 342 "Bad usePhysReg operand"); 343 344 // Ignore undef uses. 345 if (MO.isUndef()) 346 return; 347 348 markRegUsedInInstr(PhysReg); 349 switch (PhysRegState[PhysReg]) { 350 case regDisabled: 351 break; 352 case regReserved: 353 PhysRegState[PhysReg] = regFree; 354 LLVM_FALLTHROUGH; 355 case regFree: 356 MO.setIsKill(); 357 return; 358 default: 359 // The physreg was allocated to a virtual register. That means the value we 360 // wanted has been clobbered. 361 llvm_unreachable("Instruction uses an allocated register"); 362 } 363 364 // Maybe a superregister is reserved? 365 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 366 unsigned Alias = *AI; 367 switch (PhysRegState[Alias]) { 368 case regDisabled: 369 break; 370 case regReserved: 371 // Either PhysReg is a subregister of Alias and we mark the 372 // whole register as free, or PhysReg is the superregister of 373 // Alias and we mark all the aliases as disabled before freeing 374 // PhysReg. 375 // In the latter case, since PhysReg was disabled, this means that 376 // its value is defined only by physical sub-registers. This check 377 // is performed by the assert of the default case in this loop. 378 // Note: The value of the superregister may only be partial 379 // defined, that is why regDisabled is a valid state for aliases. 380 assert((TRI->isSuperRegister(PhysReg, Alias) || 381 TRI->isSuperRegister(Alias, PhysReg)) && 382 "Instruction is not using a subregister of a reserved register"); 383 LLVM_FALLTHROUGH; 384 case regFree: 385 if (TRI->isSuperRegister(PhysReg, Alias)) { 386 // Leave the superregister in the working set. 387 PhysRegState[Alias] = regFree; 388 MO.getParent()->addRegisterKilled(Alias, TRI, true); 389 return; 390 } 391 // Some other alias was in the working set - clear it. 392 PhysRegState[Alias] = regDisabled; 393 break; 394 default: 395 llvm_unreachable("Instruction uses an alias of an allocated register"); 396 } 397 } 398 399 // All aliases are disabled, bring register into working set. 400 PhysRegState[PhysReg] = regFree; 401 MO.setIsKill(); 402 } 403 404 /// definePhysReg - Mark PhysReg as reserved or free after spilling any 405 /// virtregs. This is very similar to defineVirtReg except the physreg is 406 /// reserved instead of allocated. 407 void RAFast::definePhysReg(MachineInstr &MI, unsigned PhysReg, 408 RegState NewState) { 409 markRegUsedInInstr(PhysReg); 410 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 411 case regDisabled: 412 break; 413 default: 414 spillVirtReg(MI, VirtReg); 415 LLVM_FALLTHROUGH; 416 case regFree: 417 case regReserved: 418 PhysRegState[PhysReg] = NewState; 419 return; 420 } 421 422 // This is a disabled register, disable all aliases. 423 PhysRegState[PhysReg] = NewState; 424 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 425 unsigned Alias = *AI; 426 switch (unsigned VirtReg = PhysRegState[Alias]) { 427 case regDisabled: 428 break; 429 default: 430 spillVirtReg(MI, VirtReg); 431 LLVM_FALLTHROUGH; 432 case regFree: 433 case regReserved: 434 PhysRegState[Alias] = regDisabled; 435 if (TRI->isSuperRegister(PhysReg, Alias)) 436 return; 437 break; 438 } 439 } 440 } 441 442 443 // calcSpillCost - Return the cost of spilling clearing out PhysReg and 444 // aliases so it is free for allocation. 445 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it 446 // can be allocated directly. 447 // Returns spillImpossible when PhysReg or an alias can't be spilled. 448 unsigned RAFast::calcSpillCost(unsigned PhysReg) const { 449 if (isRegUsedInInstr(PhysReg)) { 450 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n"); 451 return spillImpossible; 452 } 453 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 454 case regDisabled: 455 break; 456 case regFree: 457 return 0; 458 case regReserved: 459 DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding " 460 << PrintReg(PhysReg, TRI) << " is reserved already.\n"); 461 return spillImpossible; 462 default: { 463 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 464 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 465 return I->Dirty ? spillDirty : spillClean; 466 } 467 } 468 469 // This is a disabled register, add up cost of aliases. 470 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n"); 471 unsigned Cost = 0; 472 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 473 unsigned Alias = *AI; 474 switch (unsigned VirtReg = PhysRegState[Alias]) { 475 case regDisabled: 476 break; 477 case regFree: 478 ++Cost; 479 break; 480 case regReserved: 481 return spillImpossible; 482 default: { 483 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 484 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 485 Cost += I->Dirty ? spillDirty : spillClean; 486 break; 487 } 488 } 489 } 490 return Cost; 491 } 492 493 494 /// assignVirtToPhysReg - This method updates local state so that we know 495 /// that PhysReg is the proper container for VirtReg now. The physical 496 /// register must not be used for anything else when this is called. 497 /// 498 void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) { 499 DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to " 500 << PrintReg(PhysReg, TRI) << "\n"); 501 PhysRegState[PhysReg] = LR.VirtReg; 502 assert(!LR.PhysReg && "Already assigned a physreg"); 503 LR.PhysReg = PhysReg; 504 } 505 506 RAFast::LiveRegMap::iterator 507 RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { 508 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 509 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared"); 510 assignVirtToPhysReg(*LRI, PhysReg); 511 return LRI; 512 } 513 514 /// allocVirtReg - Allocate a physical register for VirtReg. 515 RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr &MI, 516 LiveRegMap::iterator LRI, 517 unsigned Hint) { 518 const unsigned VirtReg = LRI->VirtReg; 519 520 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 521 "Can only allocate virtual registers"); 522 523 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); 524 525 // Ignore invalid hints. 526 if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) || 527 !RC->contains(Hint) || !MRI->isAllocatable(Hint))) 528 Hint = 0; 529 530 // Take hint when possible. 531 if (Hint) { 532 // Ignore the hint if we would have to spill a dirty register. 533 unsigned Cost = calcSpillCost(Hint); 534 if (Cost < spillDirty) { 535 if (Cost) 536 definePhysReg(MI, Hint, regFree); 537 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 538 // That invalidates LRI, so run a new lookup for VirtReg. 539 return assignVirtToPhysReg(VirtReg, Hint); 540 } 541 } 542 543 ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC); 544 545 // First try to find a completely free register. 546 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){ 547 unsigned PhysReg = *I; 548 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) { 549 assignVirtToPhysReg(*LRI, PhysReg); 550 return LRI; 551 } 552 } 553 554 DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from " 555 << TRI->getRegClassName(RC) << "\n"); 556 557 unsigned BestReg = 0, BestCost = spillImpossible; 558 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){ 559 unsigned Cost = calcSpillCost(*I); 560 DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n"); 561 DEBUG(dbgs() << "\tCost: " << Cost << "\n"); 562 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n"); 563 // Cost is 0 when all aliases are already disabled. 564 if (Cost == 0) { 565 assignVirtToPhysReg(*LRI, *I); 566 return LRI; 567 } 568 if (Cost < BestCost) 569 BestReg = *I, BestCost = Cost; 570 } 571 572 if (BestReg) { 573 definePhysReg(MI, BestReg, regFree); 574 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 575 // That invalidates LRI, so run a new lookup for VirtReg. 576 return assignVirtToPhysReg(VirtReg, BestReg); 577 } 578 579 // Nothing we can do. Report an error and keep going with a bad allocation. 580 if (MI.isInlineAsm()) 581 MI.emitError("inline assembly requires more registers than available"); 582 else 583 MI.emitError("ran out of registers during register allocation"); 584 definePhysReg(MI, *AO.begin(), regFree); 585 return assignVirtToPhysReg(VirtReg, *AO.begin()); 586 } 587 588 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty. 589 RAFast::LiveRegMap::iterator RAFast::defineVirtReg(MachineInstr &MI, 590 unsigned OpNum, 591 unsigned VirtReg, 592 unsigned Hint) { 593 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 594 "Not a virtual register"); 595 LiveRegMap::iterator LRI; 596 bool New; 597 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 598 if (New) { 599 // If there is no hint, peek at the only use of this register. 600 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 601 MRI->hasOneNonDBGUse(VirtReg)) { 602 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 603 // It's a copy, use the destination register as a hint. 604 if (UseMI.isCopyLike()) 605 Hint = UseMI.getOperand(0).getReg(); 606 } 607 LRI = allocVirtReg(MI, LRI, Hint); 608 } else if (LRI->LastUse) { 609 // Redefining a live register - kill at the last use, unless it is this 610 // instruction defining VirtReg multiple times. 611 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 612 addKillFlag(*LRI); 613 } 614 assert(LRI->PhysReg && "Register not assigned"); 615 LRI->LastUse = &MI; 616 LRI->LastOpNum = OpNum; 617 LRI->Dirty = true; 618 markRegUsedInInstr(LRI->PhysReg); 619 return LRI; 620 } 621 622 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it. 623 RAFast::LiveRegMap::iterator RAFast::reloadVirtReg(MachineInstr &MI, 624 unsigned OpNum, 625 unsigned VirtReg, 626 unsigned Hint) { 627 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 628 "Not a virtual register"); 629 LiveRegMap::iterator LRI; 630 bool New; 631 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 632 MachineOperand &MO = MI.getOperand(OpNum); 633 if (New) { 634 LRI = allocVirtReg(MI, LRI, Hint); 635 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); 636 int FrameIndex = getStackSpaceFor(VirtReg, RC); 637 DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into " 638 << PrintReg(LRI->PhysReg, TRI) << "\n"); 639 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI); 640 ++NumLoads; 641 } else if (LRI->Dirty) { 642 if (isLastUseOfLocalReg(MO)) { 643 DEBUG(dbgs() << "Killing last use: " << MO << "\n"); 644 if (MO.isUse()) 645 MO.setIsKill(); 646 else 647 MO.setIsDead(); 648 } else if (MO.isKill()) { 649 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n"); 650 MO.setIsKill(false); 651 } else if (MO.isDead()) { 652 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n"); 653 MO.setIsDead(false); 654 } 655 } else if (MO.isKill()) { 656 // We must remove kill flags from uses of reloaded registers because the 657 // register would be killed immediately, and there might be a second use: 658 // %foo = OR %x<kill>, %x 659 // This would cause a second reload of %x into a different register. 660 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n"); 661 MO.setIsKill(false); 662 } else if (MO.isDead()) { 663 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n"); 664 MO.setIsDead(false); 665 } 666 assert(LRI->PhysReg && "Register not assigned"); 667 LRI->LastUse = &MI; 668 LRI->LastOpNum = OpNum; 669 markRegUsedInInstr(LRI->PhysReg); 670 return LRI; 671 } 672 673 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering 674 // subregs. This may invalidate any operand pointers. 675 // Return true if the operand kills its register. 676 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) { 677 MachineOperand &MO = MI->getOperand(OpNum); 678 bool Dead = MO.isDead(); 679 if (!MO.getSubReg()) { 680 MO.setReg(PhysReg); 681 return MO.isKill() || Dead; 682 } 683 684 // Handle subregister index. 685 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 686 MO.setSubReg(0); 687 688 // A kill flag implies killing the full register. Add corresponding super 689 // register kill. 690 if (MO.isKill()) { 691 MI->addRegisterKilled(PhysReg, TRI, true); 692 return true; 693 } 694 695 // A <def,read-undef> of a sub-register requires an implicit def of the full 696 // register. 697 if (MO.isDef() && MO.isUndef()) 698 MI->addRegisterDefined(PhysReg, TRI); 699 700 return Dead; 701 } 702 703 // Handle special instruction operand like early clobbers and tied ops when 704 // there are additional physreg defines. 705 void RAFast::handleThroughOperands(MachineInstr *MI, 706 SmallVectorImpl<unsigned> &VirtDead) { 707 DEBUG(dbgs() << "Scanning for through registers:"); 708 SmallSet<unsigned, 8> ThroughRegs; 709 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 710 MachineOperand &MO = MI->getOperand(i); 711 if (!MO.isReg()) continue; 712 unsigned Reg = MO.getReg(); 713 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 714 continue; 715 if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) || 716 (MO.getSubReg() && MI->readsVirtualRegister(Reg))) { 717 if (ThroughRegs.insert(Reg).second) 718 DEBUG(dbgs() << ' ' << PrintReg(Reg)); 719 } 720 } 721 722 // If any physreg defines collide with preallocated through registers, 723 // we must spill and reallocate. 724 DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 725 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 726 MachineOperand &MO = MI->getOperand(i); 727 if (!MO.isReg() || !MO.isDef()) continue; 728 unsigned Reg = MO.getReg(); 729 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 730 markRegUsedInInstr(Reg); 731 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 732 if (ThroughRegs.count(PhysRegState[*AI])) 733 definePhysReg(*MI, *AI, regFree); 734 } 735 } 736 737 SmallVector<unsigned, 8> PartialDefs; 738 DEBUG(dbgs() << "Allocating tied uses.\n"); 739 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 740 MachineOperand &MO = MI->getOperand(i); 741 if (!MO.isReg()) continue; 742 unsigned Reg = MO.getReg(); 743 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 744 if (MO.isUse()) { 745 unsigned DefIdx = 0; 746 if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue; 747 DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand " 748 << DefIdx << ".\n"); 749 LiveRegMap::iterator LRI = reloadVirtReg(*MI, i, Reg, 0); 750 unsigned PhysReg = LRI->PhysReg; 751 setPhysReg(MI, i, PhysReg); 752 // Note: we don't update the def operand yet. That would cause the normal 753 // def-scan to attempt spilling. 754 } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) { 755 DEBUG(dbgs() << "Partial redefine: " << MO << "\n"); 756 // Reload the register, but don't assign to the operand just yet. 757 // That would confuse the later phys-def processing pass. 758 LiveRegMap::iterator LRI = reloadVirtReg(*MI, i, Reg, 0); 759 PartialDefs.push_back(LRI->PhysReg); 760 } 761 } 762 763 DEBUG(dbgs() << "Allocating early clobbers.\n"); 764 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 765 MachineOperand &MO = MI->getOperand(i); 766 if (!MO.isReg()) continue; 767 unsigned Reg = MO.getReg(); 768 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 769 if (!MO.isEarlyClobber()) 770 continue; 771 // Note: defineVirtReg may invalidate MO. 772 LiveRegMap::iterator LRI = defineVirtReg(*MI, i, Reg, 0); 773 unsigned PhysReg = LRI->PhysReg; 774 if (setPhysReg(MI, i, PhysReg)) 775 VirtDead.push_back(Reg); 776 } 777 778 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 779 UsedInInstr.clear(); 780 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 781 MachineOperand &MO = MI->getOperand(i); 782 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 783 unsigned Reg = MO.getReg(); 784 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 785 DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI) 786 << " as used in instr\n"); 787 markRegUsedInInstr(Reg); 788 } 789 790 // Also mark PartialDefs as used to avoid reallocation. 791 for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i) 792 markRegUsedInInstr(PartialDefs[i]); 793 } 794 795 void RAFast::AllocateBasicBlock() { 796 DEBUG(dbgs() << "\nAllocating " << *MBB); 797 798 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 799 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 800 801 MachineBasicBlock::iterator MII = MBB->begin(); 802 803 // Add live-in registers as live. 804 for (const auto &LI : MBB->liveins()) 805 if (MRI->isAllocatable(LI.PhysReg)) 806 definePhysReg(*MII, LI.PhysReg, regReserved); 807 808 SmallVector<unsigned, 8> VirtDead; 809 SmallVector<MachineInstr*, 32> Coalesced; 810 811 // Otherwise, sequentially allocate each instruction in the MBB. 812 while (MII != MBB->end()) { 813 MachineInstr *MI = &*MII++; 814 const MCInstrDesc &MCID = MI->getDesc(); 815 DEBUG({ 816 dbgs() << "\n>> " << *MI << "Regs:"; 817 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 818 if (PhysRegState[Reg] == regDisabled) continue; 819 dbgs() << " " << TRI->getName(Reg); 820 switch(PhysRegState[Reg]) { 821 case regFree: 822 break; 823 case regReserved: 824 dbgs() << "*"; 825 break; 826 default: { 827 dbgs() << '=' << PrintReg(PhysRegState[Reg]); 828 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]); 829 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 830 if (I->Dirty) 831 dbgs() << "*"; 832 assert(I->PhysReg == Reg && "Bad inverse map"); 833 break; 834 } 835 } 836 } 837 dbgs() << '\n'; 838 // Check that LiveVirtRegs is the inverse. 839 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 840 e = LiveVirtRegs.end(); i != e; ++i) { 841 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 842 "Bad map key"); 843 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 844 "Bad map value"); 845 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 846 } 847 }); 848 849 // Debug values are not allowed to change codegen in any way. 850 if (MI->isDebugValue()) { 851 bool ScanDbgValue = true; 852 while (ScanDbgValue) { 853 ScanDbgValue = false; 854 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 855 MachineOperand &MO = MI->getOperand(i); 856 if (!MO.isReg()) continue; 857 unsigned Reg = MO.getReg(); 858 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 859 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 860 if (LRI != LiveVirtRegs.end()) 861 setPhysReg(MI, i, LRI->PhysReg); 862 else { 863 int SS = StackSlotForVirtReg[Reg]; 864 if (SS == -1) { 865 // We can't allocate a physreg for a DebugValue, sorry! 866 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 867 MO.setReg(0); 868 } 869 else { 870 // Modify DBG_VALUE now that the value is in a spill slot. 871 bool IsIndirect = MI->isIndirectDebugValue(); 872 uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 873 const MDNode *Var = MI->getDebugVariable(); 874 const MDNode *Expr = MI->getDebugExpression(); 875 DebugLoc DL = MI->getDebugLoc(); 876 MachineBasicBlock *MBB = MI->getParent(); 877 assert( 878 cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 879 "Expected inlined-at fields to agree"); 880 MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(MI), DL, 881 TII->get(TargetOpcode::DBG_VALUE)) 882 .addFrameIndex(SS) 883 .addImm(Offset) 884 .addMetadata(Var) 885 .addMetadata(Expr); 886 DEBUG(dbgs() << "Modifying debug info due to spill:" 887 << "\t" << *NewDV); 888 // Scan NewDV operands from the beginning. 889 MI = NewDV; 890 ScanDbgValue = true; 891 break; 892 } 893 } 894 LiveDbgValueMap[Reg].push_back(MI); 895 } 896 } 897 // Next instruction. 898 continue; 899 } 900 901 // If this is a copy, we may be able to coalesce. 902 unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0; 903 if (MI->isCopy()) { 904 CopyDst = MI->getOperand(0).getReg(); 905 CopySrc = MI->getOperand(1).getReg(); 906 CopyDstSub = MI->getOperand(0).getSubReg(); 907 CopySrcSub = MI->getOperand(1).getSubReg(); 908 } 909 910 // Track registers used by instruction. 911 UsedInInstr.clear(); 912 913 // First scan. 914 // Mark physreg uses and early clobbers as used. 915 // Find the end of the virtreg operands 916 unsigned VirtOpEnd = 0; 917 bool hasTiedOps = false; 918 bool hasEarlyClobbers = false; 919 bool hasPartialRedefs = false; 920 bool hasPhysDefs = false; 921 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 922 MachineOperand &MO = MI->getOperand(i); 923 // Make sure MRI knows about registers clobbered by regmasks. 924 if (MO.isRegMask()) { 925 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 926 continue; 927 } 928 if (!MO.isReg()) continue; 929 unsigned Reg = MO.getReg(); 930 if (!Reg) continue; 931 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 932 VirtOpEnd = i+1; 933 if (MO.isUse()) { 934 hasTiedOps = hasTiedOps || 935 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 936 } else { 937 if (MO.isEarlyClobber()) 938 hasEarlyClobbers = true; 939 if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) 940 hasPartialRedefs = true; 941 } 942 continue; 943 } 944 if (!MRI->isAllocatable(Reg)) continue; 945 if (MO.isUse()) { 946 usePhysReg(MO); 947 } else if (MO.isEarlyClobber()) { 948 definePhysReg(*MI, Reg, 949 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); 950 hasEarlyClobbers = true; 951 } else 952 hasPhysDefs = true; 953 } 954 955 // The instruction may have virtual register operands that must be allocated 956 // the same register at use-time and def-time: early clobbers and tied 957 // operands. If there are also physical defs, these registers must avoid 958 // both physical defs and uses, making them more constrained than normal 959 // operands. 960 // Similarly, if there are multiple defs and tied operands, we must make 961 // sure the same register is allocated to uses and defs. 962 // We didn't detect inline asm tied operands above, so just make this extra 963 // pass for all inline asm. 964 if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 965 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 966 handleThroughOperands(MI, VirtDead); 967 // Don't attempt coalescing when we have funny stuff going on. 968 CopyDst = 0; 969 // Pretend we have early clobbers so the use operands get marked below. 970 // This is not necessary for the common case of a single tied use. 971 hasEarlyClobbers = true; 972 } 973 974 // Second scan. 975 // Allocate virtreg uses. 976 for (unsigned i = 0; i != VirtOpEnd; ++i) { 977 MachineOperand &MO = MI->getOperand(i); 978 if (!MO.isReg()) continue; 979 unsigned Reg = MO.getReg(); 980 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 981 if (MO.isUse()) { 982 LiveRegMap::iterator LRI = reloadVirtReg(*MI, i, Reg, CopyDst); 983 unsigned PhysReg = LRI->PhysReg; 984 CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0; 985 if (setPhysReg(MI, i, PhysReg)) 986 killVirtReg(LRI); 987 } 988 } 989 990 // Track registers defined by instruction - early clobbers and tied uses at 991 // this point. 992 UsedInInstr.clear(); 993 if (hasEarlyClobbers) { 994 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 995 MachineOperand &MO = MI->getOperand(i); 996 if (!MO.isReg()) continue; 997 unsigned Reg = MO.getReg(); 998 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 999 // Look for physreg defs and tied uses. 1000 if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue; 1001 markRegUsedInInstr(Reg); 1002 } 1003 } 1004 1005 unsigned DefOpEnd = MI->getNumOperands(); 1006 if (MI->isCall()) { 1007 // Spill all virtregs before a call. This serves one purpose: If an 1008 // exception is thrown, the landing pad is going to expect to find 1009 // registers in their spill slots. 1010 // Note: although this is appealing to just consider all definitions 1011 // as call-clobbered, this is not correct because some of those 1012 // definitions may be used later on and we do not want to reuse 1013 // those for virtual registers in between. 1014 DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1015 spillAll(MI); 1016 1017 // The imp-defs are skipped below, but we still need to mark those 1018 // registers as used by the function. 1019 SkippedInstrs.insert(&MCID); 1020 } 1021 1022 // Third scan. 1023 // Allocate defs and collect dead defs. 1024 for (unsigned i = 0; i != DefOpEnd; ++i) { 1025 MachineOperand &MO = MI->getOperand(i); 1026 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1027 continue; 1028 unsigned Reg = MO.getReg(); 1029 1030 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1031 if (!MRI->isAllocatable(Reg)) continue; 1032 definePhysReg(*MI, Reg, MO.isDead() ? regFree : regReserved); 1033 continue; 1034 } 1035 LiveRegMap::iterator LRI = defineVirtReg(*MI, i, Reg, CopySrc); 1036 unsigned PhysReg = LRI->PhysReg; 1037 if (setPhysReg(MI, i, PhysReg)) { 1038 VirtDead.push_back(Reg); 1039 CopyDst = 0; // cancel coalescing; 1040 } else 1041 CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0; 1042 } 1043 1044 // Kill dead defs after the scan to ensure that multiple defs of the same 1045 // register are allocated identically. We didn't need to do this for uses 1046 // because we are crerating our own kill flags, and they are always at the 1047 // last use. 1048 for (unsigned i = 0, e = VirtDead.size(); i != e; ++i) 1049 killVirtReg(VirtDead[i]); 1050 VirtDead.clear(); 1051 1052 if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) { 1053 DEBUG(dbgs() << "-- coalescing: " << *MI); 1054 Coalesced.push_back(MI); 1055 } else { 1056 DEBUG(dbgs() << "<< " << *MI); 1057 } 1058 } 1059 1060 // Spill all physical registers holding virtual registers now. 1061 DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1062 spillAll(MBB->getFirstTerminator()); 1063 1064 // Erase all the coalesced copies. We are delaying it until now because 1065 // LiveVirtRegs might refer to the instrs. 1066 for (unsigned i = 0, e = Coalesced.size(); i != e; ++i) 1067 MBB->erase(Coalesced[i]); 1068 NumCopies += Coalesced.size(); 1069 1070 DEBUG(MBB->dump()); 1071 } 1072 1073 /// runOnMachineFunction - Register allocate the whole function 1074 /// 1075 bool RAFast::runOnMachineFunction(MachineFunction &Fn) { 1076 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1077 << "********** Function: " << Fn.getName() << '\n'); 1078 MF = &Fn; 1079 MRI = &MF->getRegInfo(); 1080 TRI = MF->getSubtarget().getRegisterInfo(); 1081 TII = MF->getSubtarget().getInstrInfo(); 1082 MRI->freezeReservedRegs(Fn); 1083 RegClassInfo.runOnMachineFunction(Fn); 1084 UsedInInstr.clear(); 1085 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1086 1087 // initialize the virtual->physical register map to have a 'null' 1088 // mapping for all virtual registers 1089 StackSlotForVirtReg.resize(MRI->getNumVirtRegs()); 1090 LiveVirtRegs.setUniverse(MRI->getNumVirtRegs()); 1091 1092 // Loop over all of the basic blocks, eliminating virtual register references 1093 for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end(); 1094 MBBi != MBBe; ++MBBi) { 1095 MBB = &*MBBi; 1096 AllocateBasicBlock(); 1097 } 1098 1099 // All machine operands and other references to virtual registers have been 1100 // replaced. Remove the virtual registers. 1101 MRI->clearVirtRegs(); 1102 1103 SkippedInstrs.clear(); 1104 StackSlotForVirtReg.clear(); 1105 LiveDbgValueMap.clear(); 1106 return true; 1107 } 1108 1109 FunctionPass *llvm::createFastRegisterAllocator() { 1110 return new RAFast(); 1111 } 1112