1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This register allocator allocates registers to a basic block at a time, 11 // attempting to keep values in registers and reusing registers as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/Passes.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/SparseSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/RegisterClassInfo.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "regalloc" 41 42 STATISTIC(NumStores, "Number of stores added"); 43 STATISTIC(NumLoads , "Number of loads added"); 44 STATISTIC(NumCopies, "Number of copies coalesced"); 45 46 static RegisterRegAlloc 47 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 48 49 namespace { 50 class RAFast : public MachineFunctionPass { 51 public: 52 static char ID; 53 RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1), 54 isBulkSpilling(false) {} 55 private: 56 MachineFunction *MF; 57 MachineRegisterInfo *MRI; 58 const TargetRegisterInfo *TRI; 59 const TargetInstrInfo *TII; 60 RegisterClassInfo RegClassInfo; 61 62 // Basic block currently being allocated. 63 MachineBasicBlock *MBB; 64 65 // StackSlotForVirtReg - Maps virtual regs to the frame index where these 66 // values are spilled. 67 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 68 69 // Everything we know about a live virtual register. 70 struct LiveReg { 71 MachineInstr *LastUse; // Last instr to use reg. 72 unsigned VirtReg; // Virtual register number. 73 unsigned PhysReg; // Currently held here. 74 unsigned short LastOpNum; // OpNum on LastUse. 75 bool Dirty; // Register needs spill. 76 77 explicit LiveReg(unsigned v) 78 : LastUse(nullptr), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false){} 79 80 unsigned getSparseSetIndex() const { 81 return TargetRegisterInfo::virtReg2Index(VirtReg); 82 } 83 }; 84 85 typedef SparseSet<LiveReg> LiveRegMap; 86 87 // LiveVirtRegs - This map contains entries for each virtual register 88 // that is currently available in a physical register. 89 LiveRegMap LiveVirtRegs; 90 91 DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap; 92 93 // RegState - Track the state of a physical register. 94 enum RegState { 95 // A disabled register is not available for allocation, but an alias may 96 // be in use. A register can only be moved out of the disabled state if 97 // all aliases are disabled. 98 regDisabled, 99 100 // A free register is not currently in use and can be allocated 101 // immediately without checking aliases. 102 regFree, 103 104 // A reserved register has been assigned explicitly (e.g., setting up a 105 // call parameter), and it remains reserved until it is used. 106 regReserved 107 108 // A register state may also be a virtual register number, indication that 109 // the physical register is currently allocated to a virtual register. In 110 // that case, LiveVirtRegs contains the inverse mapping. 111 }; 112 113 // PhysRegState - One of the RegState enums, or a virtreg. 114 std::vector<unsigned> PhysRegState; 115 116 // Set of register units. 117 typedef SparseSet<unsigned> UsedInInstrSet; 118 119 // Set of register units that are used in the current instruction, and so 120 // cannot be allocated. 121 UsedInInstrSet UsedInInstr; 122 123 // Mark a physreg as used in this instruction. 124 void markRegUsedInInstr(unsigned PhysReg) { 125 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 126 UsedInInstr.insert(*Units); 127 } 128 129 // Check if a physreg or any of its aliases are used in this instruction. 130 bool isRegUsedInInstr(unsigned PhysReg) const { 131 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 132 if (UsedInInstr.count(*Units)) 133 return true; 134 return false; 135 } 136 137 // SkippedInstrs - Descriptors of instructions whose clobber list was 138 // ignored because all registers were spilled. It is still necessary to 139 // mark all the clobbered registers as used by the function. 140 SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs; 141 142 // isBulkSpilling - This flag is set when LiveRegMap will be cleared 143 // completely after spilling all live registers. LiveRegMap entries should 144 // not be erased. 145 bool isBulkSpilling; 146 147 enum : unsigned { 148 spillClean = 1, 149 spillDirty = 100, 150 spillImpossible = ~0u 151 }; 152 public: 153 const char *getPassName() const override { 154 return "Fast Register Allocator"; 155 } 156 157 void getAnalysisUsage(AnalysisUsage &AU) const override { 158 AU.setPreservesCFG(); 159 MachineFunctionPass::getAnalysisUsage(AU); 160 } 161 162 private: 163 bool runOnMachineFunction(MachineFunction &Fn) override; 164 void AllocateBasicBlock(); 165 void handleThroughOperands(MachineInstr *MI, 166 SmallVectorImpl<unsigned> &VirtDead); 167 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); 168 bool isLastUseOfLocalReg(MachineOperand&); 169 170 void addKillFlag(const LiveReg&); 171 void killVirtReg(LiveRegMap::iterator); 172 void killVirtReg(unsigned VirtReg); 173 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator); 174 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 175 176 void usePhysReg(MachineOperand&); 177 void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState); 178 unsigned calcSpillCost(unsigned PhysReg) const; 179 void assignVirtToPhysReg(LiveReg&, unsigned PhysReg); 180 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 181 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 182 } 183 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 184 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 185 } 186 LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg); 187 LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator, 188 unsigned Hint); 189 LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum, 190 unsigned VirtReg, unsigned Hint); 191 LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum, 192 unsigned VirtReg, unsigned Hint); 193 void spillAll(MachineBasicBlock::iterator MI); 194 bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg); 195 }; 196 char RAFast::ID = 0; 197 } 198 199 /// getStackSpaceFor - This allocates space for the specified virtual register 200 /// to be held on the stack. 201 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { 202 // Find the location Reg would belong... 203 int SS = StackSlotForVirtReg[VirtReg]; 204 if (SS != -1) 205 return SS; // Already has space allocated? 206 207 // Allocate a new stack object for this spill location... 208 int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), 209 RC->getAlignment()); 210 211 // Assign the slot. 212 StackSlotForVirtReg[VirtReg] = FrameIdx; 213 return FrameIdx; 214 } 215 216 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to 217 /// its virtual register, and it is guaranteed to be a block-local register. 218 /// 219 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) { 220 // If the register has ever been spilled or reloaded, we conservatively assume 221 // it is a global register used in multiple blocks. 222 if (StackSlotForVirtReg[MO.getReg()] != -1) 223 return false; 224 225 // Check that the use/def chain has exactly one operand - MO. 226 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 227 if (&*I != &MO) 228 return false; 229 return ++I == MRI->reg_nodbg_end(); 230 } 231 232 /// addKillFlag - Set kill flags on last use of a virtual register. 233 void RAFast::addKillFlag(const LiveReg &LR) { 234 if (!LR.LastUse) return; 235 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 236 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 237 if (MO.getReg() == LR.PhysReg) 238 MO.setIsKill(); 239 else 240 LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true); 241 } 242 } 243 244 /// killVirtReg - Mark virtreg as no longer available. 245 void RAFast::killVirtReg(LiveRegMap::iterator LRI) { 246 addKillFlag(*LRI); 247 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg && 248 "Broken RegState mapping"); 249 PhysRegState[LRI->PhysReg] = regFree; 250 // Erase from LiveVirtRegs unless we're spilling in bulk. 251 if (!isBulkSpilling) 252 LiveVirtRegs.erase(LRI); 253 } 254 255 /// killVirtReg - Mark virtreg as no longer available. 256 void RAFast::killVirtReg(unsigned VirtReg) { 257 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 258 "killVirtReg needs a virtual register"); 259 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 260 if (LRI != LiveVirtRegs.end()) 261 killVirtReg(LRI); 262 } 263 264 /// spillVirtReg - This method spills the value specified by VirtReg into the 265 /// corresponding stack slot if needed. 266 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) { 267 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 268 "Spilling a physical register is illegal!"); 269 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 270 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register"); 271 spillVirtReg(MI, LRI); 272 } 273 274 /// spillVirtReg - Do the actual work of spilling. 275 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, 276 LiveRegMap::iterator LRI) { 277 LiveReg &LR = *LRI; 278 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping"); 279 280 if (LR.Dirty) { 281 // If this physreg is used by the instruction, we want to kill it on the 282 // instruction, not on the spill. 283 bool SpillKill = LR.LastUse != MI; 284 LR.Dirty = false; 285 DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI) 286 << " in " << PrintReg(LR.PhysReg, TRI)); 287 const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg); 288 int FI = getStackSpaceFor(LRI->VirtReg, RC); 289 DEBUG(dbgs() << " to stack slot #" << FI << "\n"); 290 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI); 291 ++NumStores; // Update statistics 292 293 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 294 // identify spilled location as the place to find corresponding variable's 295 // value. 296 SmallVectorImpl<MachineInstr *> &LRIDbgValues = 297 LiveDbgValueMap[LRI->VirtReg]; 298 for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) { 299 MachineInstr *DBG = LRIDbgValues[li]; 300 const MDNode *Var = DBG->getDebugVariable(); 301 const MDNode *Expr = DBG->getDebugExpression(); 302 bool IsIndirect = DBG->isIndirectDebugValue(); 303 uint64_t Offset = IsIndirect ? DBG->getOperand(1).getImm() : 0; 304 DebugLoc DL; 305 if (MI == MBB->end()) { 306 // If MI is at basic block end then use last instruction's location. 307 MachineBasicBlock::iterator EI = MI; 308 DL = (--EI)->getDebugLoc(); 309 } else 310 DL = MI->getDebugLoc(); 311 MachineInstr *NewDV = 312 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::DBG_VALUE)) 313 .addFrameIndex(FI) 314 .addImm(Offset) 315 .addMetadata(Var) 316 .addMetadata(Expr); 317 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 318 (void)NewDV; 319 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV); 320 } 321 // Now this register is spilled there is should not be any DBG_VALUE 322 // pointing to this register because they are all pointing to spilled value 323 // now. 324 LRIDbgValues.clear(); 325 if (SpillKill) 326 LR.LastUse = nullptr; // Don't kill register again 327 } 328 killVirtReg(LRI); 329 } 330 331 /// spillAll - Spill all dirty virtregs without killing them. 332 void RAFast::spillAll(MachineBasicBlock::iterator MI) { 333 if (LiveVirtRegs.empty()) return; 334 isBulkSpilling = true; 335 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 336 // of spilling here is deterministic, if arbitrary. 337 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end(); 338 i != e; ++i) 339 spillVirtReg(MI, i); 340 LiveVirtRegs.clear(); 341 isBulkSpilling = false; 342 } 343 344 /// usePhysReg - Handle the direct use of a physical register. 345 /// Check that the register is not used by a virtreg. 346 /// Kill the physreg, marking it free. 347 /// This may add implicit kills to MO->getParent() and invalidate MO. 348 void RAFast::usePhysReg(MachineOperand &MO) { 349 unsigned PhysReg = MO.getReg(); 350 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 351 "Bad usePhysReg operand"); 352 markRegUsedInInstr(PhysReg); 353 switch (PhysRegState[PhysReg]) { 354 case regDisabled: 355 break; 356 case regReserved: 357 PhysRegState[PhysReg] = regFree; 358 // Fall through 359 case regFree: 360 MO.setIsKill(); 361 return; 362 default: 363 // The physreg was allocated to a virtual register. That means the value we 364 // wanted has been clobbered. 365 llvm_unreachable("Instruction uses an allocated register"); 366 } 367 368 // Maybe a superregister is reserved? 369 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 370 unsigned Alias = *AI; 371 switch (PhysRegState[Alias]) { 372 case regDisabled: 373 break; 374 case regReserved: 375 assert(TRI->isSuperRegister(PhysReg, Alias) && 376 "Instruction is not using a subregister of a reserved register"); 377 // Leave the superregister in the working set. 378 PhysRegState[Alias] = regFree; 379 MO.getParent()->addRegisterKilled(Alias, TRI, true); 380 return; 381 case regFree: 382 if (TRI->isSuperRegister(PhysReg, Alias)) { 383 // Leave the superregister in the working set. 384 MO.getParent()->addRegisterKilled(Alias, TRI, true); 385 return; 386 } 387 // Some other alias was in the working set - clear it. 388 PhysRegState[Alias] = regDisabled; 389 break; 390 default: 391 llvm_unreachable("Instruction uses an alias of an allocated register"); 392 } 393 } 394 395 // All aliases are disabled, bring register into working set. 396 PhysRegState[PhysReg] = regFree; 397 MO.setIsKill(); 398 } 399 400 /// definePhysReg - Mark PhysReg as reserved or free after spilling any 401 /// virtregs. This is very similar to defineVirtReg except the physreg is 402 /// reserved instead of allocated. 403 void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg, 404 RegState NewState) { 405 markRegUsedInInstr(PhysReg); 406 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 407 case regDisabled: 408 break; 409 default: 410 spillVirtReg(MI, VirtReg); 411 // Fall through. 412 case regFree: 413 case regReserved: 414 PhysRegState[PhysReg] = NewState; 415 return; 416 } 417 418 // This is a disabled register, disable all aliases. 419 PhysRegState[PhysReg] = NewState; 420 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 421 unsigned Alias = *AI; 422 switch (unsigned VirtReg = PhysRegState[Alias]) { 423 case regDisabled: 424 break; 425 default: 426 spillVirtReg(MI, VirtReg); 427 // Fall through. 428 case regFree: 429 case regReserved: 430 PhysRegState[Alias] = regDisabled; 431 if (TRI->isSuperRegister(PhysReg, Alias)) 432 return; 433 break; 434 } 435 } 436 } 437 438 439 // calcSpillCost - Return the cost of spilling clearing out PhysReg and 440 // aliases so it is free for allocation. 441 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it 442 // can be allocated directly. 443 // Returns spillImpossible when PhysReg or an alias can't be spilled. 444 unsigned RAFast::calcSpillCost(unsigned PhysReg) const { 445 if (isRegUsedInInstr(PhysReg)) { 446 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n"); 447 return spillImpossible; 448 } 449 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 450 case regDisabled: 451 break; 452 case regFree: 453 return 0; 454 case regReserved: 455 DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding " 456 << PrintReg(PhysReg, TRI) << " is reserved already.\n"); 457 return spillImpossible; 458 default: { 459 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 460 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 461 return I->Dirty ? spillDirty : spillClean; 462 } 463 } 464 465 // This is a disabled register, add up cost of aliases. 466 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n"); 467 unsigned Cost = 0; 468 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 469 unsigned Alias = *AI; 470 switch (unsigned VirtReg = PhysRegState[Alias]) { 471 case regDisabled: 472 break; 473 case regFree: 474 ++Cost; 475 break; 476 case regReserved: 477 return spillImpossible; 478 default: { 479 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 480 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 481 Cost += I->Dirty ? spillDirty : spillClean; 482 break; 483 } 484 } 485 } 486 return Cost; 487 } 488 489 490 /// assignVirtToPhysReg - This method updates local state so that we know 491 /// that PhysReg is the proper container for VirtReg now. The physical 492 /// register must not be used for anything else when this is called. 493 /// 494 void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) { 495 DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to " 496 << PrintReg(PhysReg, TRI) << "\n"); 497 PhysRegState[PhysReg] = LR.VirtReg; 498 assert(!LR.PhysReg && "Already assigned a physreg"); 499 LR.PhysReg = PhysReg; 500 } 501 502 RAFast::LiveRegMap::iterator 503 RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { 504 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 505 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared"); 506 assignVirtToPhysReg(*LRI, PhysReg); 507 return LRI; 508 } 509 510 /// allocVirtReg - Allocate a physical register for VirtReg. 511 RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI, 512 LiveRegMap::iterator LRI, 513 unsigned Hint) { 514 const unsigned VirtReg = LRI->VirtReg; 515 516 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 517 "Can only allocate virtual registers"); 518 519 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); 520 521 // Ignore invalid hints. 522 if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) || 523 !RC->contains(Hint) || !MRI->isAllocatable(Hint))) 524 Hint = 0; 525 526 // Take hint when possible. 527 if (Hint) { 528 // Ignore the hint if we would have to spill a dirty register. 529 unsigned Cost = calcSpillCost(Hint); 530 if (Cost < spillDirty) { 531 if (Cost) 532 definePhysReg(MI, Hint, regFree); 533 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 534 // That invalidates LRI, so run a new lookup for VirtReg. 535 return assignVirtToPhysReg(VirtReg, Hint); 536 } 537 } 538 539 ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC); 540 541 // First try to find a completely free register. 542 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){ 543 unsigned PhysReg = *I; 544 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) { 545 assignVirtToPhysReg(*LRI, PhysReg); 546 return LRI; 547 } 548 } 549 550 DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from " 551 << RC->getName() << "\n"); 552 553 unsigned BestReg = 0, BestCost = spillImpossible; 554 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){ 555 unsigned Cost = calcSpillCost(*I); 556 DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n"); 557 DEBUG(dbgs() << "\tCost: " << Cost << "\n"); 558 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n"); 559 // Cost is 0 when all aliases are already disabled. 560 if (Cost == 0) { 561 assignVirtToPhysReg(*LRI, *I); 562 return LRI; 563 } 564 if (Cost < BestCost) 565 BestReg = *I, BestCost = Cost; 566 } 567 568 if (BestReg) { 569 definePhysReg(MI, BestReg, regFree); 570 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 571 // That invalidates LRI, so run a new lookup for VirtReg. 572 return assignVirtToPhysReg(VirtReg, BestReg); 573 } 574 575 // Nothing we can do. Report an error and keep going with a bad allocation. 576 if (MI->isInlineAsm()) 577 MI->emitError("inline assembly requires more registers than available"); 578 else 579 MI->emitError("ran out of registers during register allocation"); 580 definePhysReg(MI, *AO.begin(), regFree); 581 return assignVirtToPhysReg(VirtReg, *AO.begin()); 582 } 583 584 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty. 585 RAFast::LiveRegMap::iterator 586 RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum, 587 unsigned VirtReg, unsigned Hint) { 588 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 589 "Not a virtual register"); 590 LiveRegMap::iterator LRI; 591 bool New; 592 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 593 if (New) { 594 // If there is no hint, peek at the only use of this register. 595 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 596 MRI->hasOneNonDBGUse(VirtReg)) { 597 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 598 // It's a copy, use the destination register as a hint. 599 if (UseMI.isCopyLike()) 600 Hint = UseMI.getOperand(0).getReg(); 601 } 602 LRI = allocVirtReg(MI, LRI, Hint); 603 } else if (LRI->LastUse) { 604 // Redefining a live register - kill at the last use, unless it is this 605 // instruction defining VirtReg multiple times. 606 if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 607 addKillFlag(*LRI); 608 } 609 assert(LRI->PhysReg && "Register not assigned"); 610 LRI->LastUse = MI; 611 LRI->LastOpNum = OpNum; 612 LRI->Dirty = true; 613 markRegUsedInInstr(LRI->PhysReg); 614 return LRI; 615 } 616 617 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it. 618 RAFast::LiveRegMap::iterator 619 RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum, 620 unsigned VirtReg, unsigned Hint) { 621 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 622 "Not a virtual register"); 623 LiveRegMap::iterator LRI; 624 bool New; 625 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 626 MachineOperand &MO = MI->getOperand(OpNum); 627 if (New) { 628 LRI = allocVirtReg(MI, LRI, Hint); 629 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); 630 int FrameIndex = getStackSpaceFor(VirtReg, RC); 631 DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into " 632 << PrintReg(LRI->PhysReg, TRI) << "\n"); 633 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI); 634 ++NumLoads; 635 } else if (LRI->Dirty) { 636 if (isLastUseOfLocalReg(MO)) { 637 DEBUG(dbgs() << "Killing last use: " << MO << "\n"); 638 if (MO.isUse()) 639 MO.setIsKill(); 640 else 641 MO.setIsDead(); 642 } else if (MO.isKill()) { 643 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n"); 644 MO.setIsKill(false); 645 } else if (MO.isDead()) { 646 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n"); 647 MO.setIsDead(false); 648 } 649 } else if (MO.isKill()) { 650 // We must remove kill flags from uses of reloaded registers because the 651 // register would be killed immediately, and there might be a second use: 652 // %foo = OR %x<kill>, %x 653 // This would cause a second reload of %x into a different register. 654 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n"); 655 MO.setIsKill(false); 656 } else if (MO.isDead()) { 657 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n"); 658 MO.setIsDead(false); 659 } 660 assert(LRI->PhysReg && "Register not assigned"); 661 LRI->LastUse = MI; 662 LRI->LastOpNum = OpNum; 663 markRegUsedInInstr(LRI->PhysReg); 664 return LRI; 665 } 666 667 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering 668 // subregs. This may invalidate any operand pointers. 669 // Return true if the operand kills its register. 670 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) { 671 MachineOperand &MO = MI->getOperand(OpNum); 672 bool Dead = MO.isDead(); 673 if (!MO.getSubReg()) { 674 MO.setReg(PhysReg); 675 return MO.isKill() || Dead; 676 } 677 678 // Handle subregister index. 679 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 680 MO.setSubReg(0); 681 682 // A kill flag implies killing the full register. Add corresponding super 683 // register kill. 684 if (MO.isKill()) { 685 MI->addRegisterKilled(PhysReg, TRI, true); 686 return true; 687 } 688 689 // A <def,read-undef> of a sub-register requires an implicit def of the full 690 // register. 691 if (MO.isDef() && MO.isUndef()) 692 MI->addRegisterDefined(PhysReg, TRI); 693 694 return Dead; 695 } 696 697 // Handle special instruction operand like early clobbers and tied ops when 698 // there are additional physreg defines. 699 void RAFast::handleThroughOperands(MachineInstr *MI, 700 SmallVectorImpl<unsigned> &VirtDead) { 701 DEBUG(dbgs() << "Scanning for through registers:"); 702 SmallSet<unsigned, 8> ThroughRegs; 703 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 704 MachineOperand &MO = MI->getOperand(i); 705 if (!MO.isReg()) continue; 706 unsigned Reg = MO.getReg(); 707 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 708 continue; 709 if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) || 710 (MO.getSubReg() && MI->readsVirtualRegister(Reg))) { 711 if (ThroughRegs.insert(Reg)) 712 DEBUG(dbgs() << ' ' << PrintReg(Reg)); 713 } 714 } 715 716 // If any physreg defines collide with preallocated through registers, 717 // we must spill and reallocate. 718 DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 719 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 720 MachineOperand &MO = MI->getOperand(i); 721 if (!MO.isReg() || !MO.isDef()) continue; 722 unsigned Reg = MO.getReg(); 723 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 724 markRegUsedInInstr(Reg); 725 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 726 if (ThroughRegs.count(PhysRegState[*AI])) 727 definePhysReg(MI, *AI, regFree); 728 } 729 } 730 731 SmallVector<unsigned, 8> PartialDefs; 732 DEBUG(dbgs() << "Allocating tied uses.\n"); 733 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 734 MachineOperand &MO = MI->getOperand(i); 735 if (!MO.isReg()) continue; 736 unsigned Reg = MO.getReg(); 737 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 738 if (MO.isUse()) { 739 unsigned DefIdx = 0; 740 if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue; 741 DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand " 742 << DefIdx << ".\n"); 743 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); 744 unsigned PhysReg = LRI->PhysReg; 745 setPhysReg(MI, i, PhysReg); 746 // Note: we don't update the def operand yet. That would cause the normal 747 // def-scan to attempt spilling. 748 } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) { 749 DEBUG(dbgs() << "Partial redefine: " << MO << "\n"); 750 // Reload the register, but don't assign to the operand just yet. 751 // That would confuse the later phys-def processing pass. 752 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); 753 PartialDefs.push_back(LRI->PhysReg); 754 } 755 } 756 757 DEBUG(dbgs() << "Allocating early clobbers.\n"); 758 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 759 MachineOperand &MO = MI->getOperand(i); 760 if (!MO.isReg()) continue; 761 unsigned Reg = MO.getReg(); 762 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 763 if (!MO.isEarlyClobber()) 764 continue; 765 // Note: defineVirtReg may invalidate MO. 766 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0); 767 unsigned PhysReg = LRI->PhysReg; 768 if (setPhysReg(MI, i, PhysReg)) 769 VirtDead.push_back(Reg); 770 } 771 772 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 773 UsedInInstr.clear(); 774 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 775 MachineOperand &MO = MI->getOperand(i); 776 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 777 unsigned Reg = MO.getReg(); 778 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 779 DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI) 780 << " as used in instr\n"); 781 markRegUsedInInstr(Reg); 782 } 783 784 // Also mark PartialDefs as used to avoid reallocation. 785 for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i) 786 markRegUsedInInstr(PartialDefs[i]); 787 } 788 789 void RAFast::AllocateBasicBlock() { 790 DEBUG(dbgs() << "\nAllocating " << *MBB); 791 792 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 793 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 794 795 MachineBasicBlock::iterator MII = MBB->begin(); 796 797 // Add live-in registers as live. 798 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 799 E = MBB->livein_end(); I != E; ++I) 800 if (MRI->isAllocatable(*I)) 801 definePhysReg(MII, *I, regReserved); 802 803 SmallVector<unsigned, 8> VirtDead; 804 SmallVector<MachineInstr*, 32> Coalesced; 805 806 // Otherwise, sequentially allocate each instruction in the MBB. 807 while (MII != MBB->end()) { 808 MachineInstr *MI = MII++; 809 const MCInstrDesc &MCID = MI->getDesc(); 810 DEBUG({ 811 dbgs() << "\n>> " << *MI << "Regs:"; 812 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 813 if (PhysRegState[Reg] == regDisabled) continue; 814 dbgs() << " " << TRI->getName(Reg); 815 switch(PhysRegState[Reg]) { 816 case regFree: 817 break; 818 case regReserved: 819 dbgs() << "*"; 820 break; 821 default: { 822 dbgs() << '=' << PrintReg(PhysRegState[Reg]); 823 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]); 824 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 825 if (I->Dirty) 826 dbgs() << "*"; 827 assert(I->PhysReg == Reg && "Bad inverse map"); 828 break; 829 } 830 } 831 } 832 dbgs() << '\n'; 833 // Check that LiveVirtRegs is the inverse. 834 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 835 e = LiveVirtRegs.end(); i != e; ++i) { 836 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 837 "Bad map key"); 838 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 839 "Bad map value"); 840 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 841 } 842 }); 843 844 // Debug values are not allowed to change codegen in any way. 845 if (MI->isDebugValue()) { 846 bool ScanDbgValue = true; 847 while (ScanDbgValue) { 848 ScanDbgValue = false; 849 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 850 MachineOperand &MO = MI->getOperand(i); 851 if (!MO.isReg()) continue; 852 unsigned Reg = MO.getReg(); 853 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 854 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 855 if (LRI != LiveVirtRegs.end()) 856 setPhysReg(MI, i, LRI->PhysReg); 857 else { 858 int SS = StackSlotForVirtReg[Reg]; 859 if (SS == -1) { 860 // We can't allocate a physreg for a DebugValue, sorry! 861 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 862 MO.setReg(0); 863 } 864 else { 865 // Modify DBG_VALUE now that the value is in a spill slot. 866 bool IsIndirect = MI->isIndirectDebugValue(); 867 uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 868 const MDNode *Var = MI->getDebugVariable(); 869 const MDNode *Expr = MI->getDebugExpression(); 870 DebugLoc DL = MI->getDebugLoc(); 871 MachineBasicBlock *MBB = MI->getParent(); 872 MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(MI), DL, 873 TII->get(TargetOpcode::DBG_VALUE)) 874 .addFrameIndex(SS) 875 .addImm(Offset) 876 .addMetadata(Var) 877 .addMetadata(Expr); 878 DEBUG(dbgs() << "Modifying debug info due to spill:" 879 << "\t" << *NewDV); 880 // Scan NewDV operands from the beginning. 881 MI = NewDV; 882 ScanDbgValue = true; 883 break; 884 } 885 } 886 LiveDbgValueMap[Reg].push_back(MI); 887 } 888 } 889 // Next instruction. 890 continue; 891 } 892 893 // If this is a copy, we may be able to coalesce. 894 unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0; 895 if (MI->isCopy()) { 896 CopyDst = MI->getOperand(0).getReg(); 897 CopySrc = MI->getOperand(1).getReg(); 898 CopyDstSub = MI->getOperand(0).getSubReg(); 899 CopySrcSub = MI->getOperand(1).getSubReg(); 900 } 901 902 // Track registers used by instruction. 903 UsedInInstr.clear(); 904 905 // First scan. 906 // Mark physreg uses and early clobbers as used. 907 // Find the end of the virtreg operands 908 unsigned VirtOpEnd = 0; 909 bool hasTiedOps = false; 910 bool hasEarlyClobbers = false; 911 bool hasPartialRedefs = false; 912 bool hasPhysDefs = false; 913 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 914 MachineOperand &MO = MI->getOperand(i); 915 // Make sure MRI knows about registers clobbered by regmasks. 916 if (MO.isRegMask()) { 917 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 918 continue; 919 } 920 if (!MO.isReg()) continue; 921 unsigned Reg = MO.getReg(); 922 if (!Reg) continue; 923 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 924 VirtOpEnd = i+1; 925 if (MO.isUse()) { 926 hasTiedOps = hasTiedOps || 927 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 928 } else { 929 if (MO.isEarlyClobber()) 930 hasEarlyClobbers = true; 931 if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) 932 hasPartialRedefs = true; 933 } 934 continue; 935 } 936 if (!MRI->isAllocatable(Reg)) continue; 937 if (MO.isUse()) { 938 usePhysReg(MO); 939 } else if (MO.isEarlyClobber()) { 940 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? 941 regFree : regReserved); 942 hasEarlyClobbers = true; 943 } else 944 hasPhysDefs = true; 945 } 946 947 // The instruction may have virtual register operands that must be allocated 948 // the same register at use-time and def-time: early clobbers and tied 949 // operands. If there are also physical defs, these registers must avoid 950 // both physical defs and uses, making them more constrained than normal 951 // operands. 952 // Similarly, if there are multiple defs and tied operands, we must make 953 // sure the same register is allocated to uses and defs. 954 // We didn't detect inline asm tied operands above, so just make this extra 955 // pass for all inline asm. 956 if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 957 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 958 handleThroughOperands(MI, VirtDead); 959 // Don't attempt coalescing when we have funny stuff going on. 960 CopyDst = 0; 961 // Pretend we have early clobbers so the use operands get marked below. 962 // This is not necessary for the common case of a single tied use. 963 hasEarlyClobbers = true; 964 } 965 966 // Second scan. 967 // Allocate virtreg uses. 968 for (unsigned i = 0; i != VirtOpEnd; ++i) { 969 MachineOperand &MO = MI->getOperand(i); 970 if (!MO.isReg()) continue; 971 unsigned Reg = MO.getReg(); 972 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 973 if (MO.isUse()) { 974 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst); 975 unsigned PhysReg = LRI->PhysReg; 976 CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0; 977 if (setPhysReg(MI, i, PhysReg)) 978 killVirtReg(LRI); 979 } 980 } 981 982 for (UsedInInstrSet::iterator 983 I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I) 984 MRI->setRegUnitUsed(*I); 985 986 // Track registers defined by instruction - early clobbers and tied uses at 987 // this point. 988 UsedInInstr.clear(); 989 if (hasEarlyClobbers) { 990 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 991 MachineOperand &MO = MI->getOperand(i); 992 if (!MO.isReg()) continue; 993 unsigned Reg = MO.getReg(); 994 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 995 // Look for physreg defs and tied uses. 996 if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue; 997 markRegUsedInInstr(Reg); 998 } 999 } 1000 1001 unsigned DefOpEnd = MI->getNumOperands(); 1002 if (MI->isCall()) { 1003 // Spill all virtregs before a call. This serves two purposes: 1. If an 1004 // exception is thrown, the landing pad is going to expect to find 1005 // registers in their spill slots, and 2. we don't have to wade through 1006 // all the <imp-def> operands on the call instruction. 1007 DefOpEnd = VirtOpEnd; 1008 DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1009 spillAll(MI); 1010 1011 // The imp-defs are skipped below, but we still need to mark those 1012 // registers as used by the function. 1013 SkippedInstrs.insert(&MCID); 1014 } 1015 1016 // Third scan. 1017 // Allocate defs and collect dead defs. 1018 for (unsigned i = 0; i != DefOpEnd; ++i) { 1019 MachineOperand &MO = MI->getOperand(i); 1020 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1021 continue; 1022 unsigned Reg = MO.getReg(); 1023 1024 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1025 if (!MRI->isAllocatable(Reg)) continue; 1026 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? 1027 regFree : regReserved); 1028 continue; 1029 } 1030 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc); 1031 unsigned PhysReg = LRI->PhysReg; 1032 if (setPhysReg(MI, i, PhysReg)) { 1033 VirtDead.push_back(Reg); 1034 CopyDst = 0; // cancel coalescing; 1035 } else 1036 CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0; 1037 } 1038 1039 // Kill dead defs after the scan to ensure that multiple defs of the same 1040 // register are allocated identically. We didn't need to do this for uses 1041 // because we are crerating our own kill flags, and they are always at the 1042 // last use. 1043 for (unsigned i = 0, e = VirtDead.size(); i != e; ++i) 1044 killVirtReg(VirtDead[i]); 1045 VirtDead.clear(); 1046 1047 for (UsedInInstrSet::iterator 1048 I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I) 1049 MRI->setRegUnitUsed(*I); 1050 1051 if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) { 1052 DEBUG(dbgs() << "-- coalescing: " << *MI); 1053 Coalesced.push_back(MI); 1054 } else { 1055 DEBUG(dbgs() << "<< " << *MI); 1056 } 1057 } 1058 1059 // Spill all physical registers holding virtual registers now. 1060 DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1061 spillAll(MBB->getFirstTerminator()); 1062 1063 // Erase all the coalesced copies. We are delaying it until now because 1064 // LiveVirtRegs might refer to the instrs. 1065 for (unsigned i = 0, e = Coalesced.size(); i != e; ++i) 1066 MBB->erase(Coalesced[i]); 1067 NumCopies += Coalesced.size(); 1068 1069 DEBUG(MBB->dump()); 1070 } 1071 1072 /// runOnMachineFunction - Register allocate the whole function 1073 /// 1074 bool RAFast::runOnMachineFunction(MachineFunction &Fn) { 1075 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1076 << "********** Function: " << Fn.getName() << '\n'); 1077 MF = &Fn; 1078 MRI = &MF->getRegInfo(); 1079 TRI = MF->getSubtarget().getRegisterInfo(); 1080 TII = MF->getSubtarget().getInstrInfo(); 1081 MRI->freezeReservedRegs(Fn); 1082 RegClassInfo.runOnMachineFunction(Fn); 1083 UsedInInstr.clear(); 1084 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1085 1086 assert(!MRI->isSSA() && "regalloc requires leaving SSA"); 1087 1088 // initialize the virtual->physical register map to have a 'null' 1089 // mapping for all virtual registers 1090 StackSlotForVirtReg.resize(MRI->getNumVirtRegs()); 1091 LiveVirtRegs.setUniverse(MRI->getNumVirtRegs()); 1092 1093 // Loop over all of the basic blocks, eliminating virtual register references 1094 for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end(); 1095 MBBi != MBBe; ++MBBi) { 1096 MBB = &*MBBi; 1097 AllocateBasicBlock(); 1098 } 1099 1100 // Add the clobber lists for all the instructions we skipped earlier. 1101 for (const MCInstrDesc *Desc : SkippedInstrs) 1102 if (const uint16_t *Defs = Desc->getImplicitDefs()) 1103 while (*Defs) 1104 MRI->setPhysRegUsed(*Defs++); 1105 1106 // All machine operands and other references to virtual registers have been 1107 // replaced. Remove the virtual registers. 1108 MRI->clearVirtRegs(); 1109 1110 SkippedInstrs.clear(); 1111 StackSlotForVirtReg.clear(); 1112 LiveDbgValueMap.clear(); 1113 return true; 1114 } 1115 1116 FunctionPass *llvm::createFastRegisterAllocator() { 1117 return new RAFast(); 1118 } 1119