1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This register allocator allocates registers to a basic block at a time, 11 // attempting to keep values in registers and reusing registers as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/IndexedMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/SparseSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/RegAllocRegistry.h" 30 #include "llvm/CodeGen/RegisterClassInfo.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 STATISTIC(NumStores, "Number of stores added"); 42 STATISTIC(NumLoads , "Number of loads added"); 43 STATISTIC(NumCopies, "Number of copies coalesced"); 44 45 static RegisterRegAlloc 46 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 47 48 namespace { 49 class RAFast : public MachineFunctionPass { 50 public: 51 static char ID; 52 RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1), 53 isBulkSpilling(false) {} 54 private: 55 const TargetMachine *TM; 56 MachineFunction *MF; 57 MachineRegisterInfo *MRI; 58 const TargetRegisterInfo *TRI; 59 const TargetInstrInfo *TII; 60 RegisterClassInfo RegClassInfo; 61 62 // Basic block currently being allocated. 63 MachineBasicBlock *MBB; 64 65 // StackSlotForVirtReg - Maps virtual regs to the frame index where these 66 // values are spilled. 67 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 68 69 // Everything we know about a live virtual register. 70 struct LiveReg { 71 MachineInstr *LastUse; // Last instr to use reg. 72 unsigned VirtReg; // Virtual register number. 73 unsigned PhysReg; // Currently held here. 74 unsigned short LastOpNum; // OpNum on LastUse. 75 bool Dirty; // Register needs spill. 76 77 explicit LiveReg(unsigned v) 78 : LastUse(0), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false) {} 79 80 unsigned getSparseSetIndex() const { 81 return TargetRegisterInfo::virtReg2Index(VirtReg); 82 } 83 }; 84 85 typedef SparseSet<LiveReg> LiveRegMap; 86 87 // LiveVirtRegs - This map contains entries for each virtual register 88 // that is currently available in a physical register. 89 LiveRegMap LiveVirtRegs; 90 91 DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap; 92 93 // RegState - Track the state of a physical register. 94 enum RegState { 95 // A disabled register is not available for allocation, but an alias may 96 // be in use. A register can only be moved out of the disabled state if 97 // all aliases are disabled. 98 regDisabled, 99 100 // A free register is not currently in use and can be allocated 101 // immediately without checking aliases. 102 regFree, 103 104 // A reserved register has been assigned explicitly (e.g., setting up a 105 // call parameter), and it remains reserved until it is used. 106 regReserved 107 108 // A register state may also be a virtual register number, indication that 109 // the physical register is currently allocated to a virtual register. In 110 // that case, LiveVirtRegs contains the inverse mapping. 111 }; 112 113 // PhysRegState - One of the RegState enums, or a virtreg. 114 std::vector<unsigned> PhysRegState; 115 116 // Set of register units. 117 typedef SparseSet<unsigned> UsedInInstrSet; 118 119 // Set of register units that are used in the current instruction, and so 120 // cannot be allocated. 121 UsedInInstrSet UsedInInstr; 122 123 // Mark a physreg as used in this instruction. 124 void markRegUsedInInstr(unsigned PhysReg) { 125 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 126 UsedInInstr.insert(*Units); 127 } 128 129 // Check if a physreg or any of its aliases are used in this instruction. 130 bool isRegUsedInInstr(unsigned PhysReg) const { 131 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 132 if (UsedInInstr.count(*Units)) 133 return true; 134 return false; 135 } 136 137 // SkippedInstrs - Descriptors of instructions whose clobber list was 138 // ignored because all registers were spilled. It is still necessary to 139 // mark all the clobbered registers as used by the function. 140 SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs; 141 142 // isBulkSpilling - This flag is set when LiveRegMap will be cleared 143 // completely after spilling all live registers. LiveRegMap entries should 144 // not be erased. 145 bool isBulkSpilling; 146 147 enum { 148 spillClean = 1, 149 spillDirty = 100, 150 spillImpossible = ~0u 151 }; 152 public: 153 virtual const char *getPassName() const { 154 return "Fast Register Allocator"; 155 } 156 157 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 158 AU.setPreservesCFG(); 159 MachineFunctionPass::getAnalysisUsage(AU); 160 } 161 162 private: 163 bool runOnMachineFunction(MachineFunction &Fn); 164 void AllocateBasicBlock(); 165 void handleThroughOperands(MachineInstr *MI, 166 SmallVectorImpl<unsigned> &VirtDead); 167 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); 168 bool isLastUseOfLocalReg(MachineOperand&); 169 170 void addKillFlag(const LiveReg&); 171 void killVirtReg(LiveRegMap::iterator); 172 void killVirtReg(unsigned VirtReg); 173 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator); 174 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 175 176 void usePhysReg(MachineOperand&); 177 void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState); 178 unsigned calcSpillCost(unsigned PhysReg) const; 179 void assignVirtToPhysReg(LiveReg&, unsigned PhysReg); 180 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 181 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 182 } 183 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 184 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 185 } 186 LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg); 187 LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator, 188 unsigned Hint); 189 LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum, 190 unsigned VirtReg, unsigned Hint); 191 LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum, 192 unsigned VirtReg, unsigned Hint); 193 void spillAll(MachineBasicBlock::iterator MI); 194 bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg); 195 }; 196 char RAFast::ID = 0; 197 } 198 199 /// getStackSpaceFor - This allocates space for the specified virtual register 200 /// to be held on the stack. 201 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { 202 // Find the location Reg would belong... 203 int SS = StackSlotForVirtReg[VirtReg]; 204 if (SS != -1) 205 return SS; // Already has space allocated? 206 207 // Allocate a new stack object for this spill location... 208 int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), 209 RC->getAlignment()); 210 211 // Assign the slot. 212 StackSlotForVirtReg[VirtReg] = FrameIdx; 213 return FrameIdx; 214 } 215 216 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to 217 /// its virtual register, and it is guaranteed to be a block-local register. 218 /// 219 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) { 220 // If the register has ever been spilled or reloaded, we conservatively assume 221 // it is a global register used in multiple blocks. 222 if (StackSlotForVirtReg[MO.getReg()] != -1) 223 return false; 224 225 // Check that the use/def chain has exactly one operand - MO. 226 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 227 if (&I.getOperand() != &MO) 228 return false; 229 return ++I == MRI->reg_nodbg_end(); 230 } 231 232 /// addKillFlag - Set kill flags on last use of a virtual register. 233 void RAFast::addKillFlag(const LiveReg &LR) { 234 if (!LR.LastUse) return; 235 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 236 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 237 if (MO.getReg() == LR.PhysReg) 238 MO.setIsKill(); 239 else 240 LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true); 241 } 242 } 243 244 /// killVirtReg - Mark virtreg as no longer available. 245 void RAFast::killVirtReg(LiveRegMap::iterator LRI) { 246 addKillFlag(*LRI); 247 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg && 248 "Broken RegState mapping"); 249 PhysRegState[LRI->PhysReg] = regFree; 250 // Erase from LiveVirtRegs unless we're spilling in bulk. 251 if (!isBulkSpilling) 252 LiveVirtRegs.erase(LRI); 253 } 254 255 /// killVirtReg - Mark virtreg as no longer available. 256 void RAFast::killVirtReg(unsigned VirtReg) { 257 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 258 "killVirtReg needs a virtual register"); 259 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 260 if (LRI != LiveVirtRegs.end()) 261 killVirtReg(LRI); 262 } 263 264 /// spillVirtReg - This method spills the value specified by VirtReg into the 265 /// corresponding stack slot if needed. 266 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) { 267 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 268 "Spilling a physical register is illegal!"); 269 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 270 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register"); 271 spillVirtReg(MI, LRI); 272 } 273 274 /// spillVirtReg - Do the actual work of spilling. 275 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, 276 LiveRegMap::iterator LRI) { 277 LiveReg &LR = *LRI; 278 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping"); 279 280 if (LR.Dirty) { 281 // If this physreg is used by the instruction, we want to kill it on the 282 // instruction, not on the spill. 283 bool SpillKill = LR.LastUse != MI; 284 LR.Dirty = false; 285 DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI) 286 << " in " << PrintReg(LR.PhysReg, TRI)); 287 const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg); 288 int FI = getStackSpaceFor(LRI->VirtReg, RC); 289 DEBUG(dbgs() << " to stack slot #" << FI << "\n"); 290 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI); 291 ++NumStores; // Update statistics 292 293 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 294 // identify spilled location as the place to find corresponding variable's 295 // value. 296 SmallVector<MachineInstr *, 4> &LRIDbgValues = 297 LiveDbgValueMap[LRI->VirtReg]; 298 for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) { 299 MachineInstr *DBG = LRIDbgValues[li]; 300 const MDNode *MDPtr = DBG->getOperand(2).getMetadata(); 301 int64_t Offset = DBG->getOperand(1).getImm(); 302 DebugLoc DL; 303 if (MI == MBB->end()) { 304 // If MI is at basic block end then use last instruction's location. 305 MachineBasicBlock::iterator EI = MI; 306 DL = (--EI)->getDebugLoc(); 307 } else 308 DL = MI->getDebugLoc(); 309 MachineBasicBlock *MBB = DBG->getParent(); 310 MachineInstr *NewDV = 311 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::DBG_VALUE)) 312 .addFrameIndex(FI).addImm(Offset).addMetadata(MDPtr); 313 (void)NewDV; 314 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV); 315 } 316 // Now this register is spilled there is should not be any DBG_VALUE 317 // pointing to this register because they are all pointing to spilled value 318 // now. 319 LRIDbgValues.clear(); 320 if (SpillKill) 321 LR.LastUse = 0; // Don't kill register again 322 } 323 killVirtReg(LRI); 324 } 325 326 /// spillAll - Spill all dirty virtregs without killing them. 327 void RAFast::spillAll(MachineBasicBlock::iterator MI) { 328 if (LiveVirtRegs.empty()) return; 329 isBulkSpilling = true; 330 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 331 // of spilling here is deterministic, if arbitrary. 332 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end(); 333 i != e; ++i) 334 spillVirtReg(MI, i); 335 LiveVirtRegs.clear(); 336 isBulkSpilling = false; 337 } 338 339 /// usePhysReg - Handle the direct use of a physical register. 340 /// Check that the register is not used by a virtreg. 341 /// Kill the physreg, marking it free. 342 /// This may add implicit kills to MO->getParent() and invalidate MO. 343 void RAFast::usePhysReg(MachineOperand &MO) { 344 unsigned PhysReg = MO.getReg(); 345 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 346 "Bad usePhysReg operand"); 347 markRegUsedInInstr(PhysReg); 348 switch (PhysRegState[PhysReg]) { 349 case regDisabled: 350 break; 351 case regReserved: 352 PhysRegState[PhysReg] = regFree; 353 // Fall through 354 case regFree: 355 MO.setIsKill(); 356 return; 357 default: 358 // The physreg was allocated to a virtual register. That means the value we 359 // wanted has been clobbered. 360 llvm_unreachable("Instruction uses an allocated register"); 361 } 362 363 // Maybe a superregister is reserved? 364 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 365 unsigned Alias = *AI; 366 switch (PhysRegState[Alias]) { 367 case regDisabled: 368 break; 369 case regReserved: 370 assert(TRI->isSuperRegister(PhysReg, Alias) && 371 "Instruction is not using a subregister of a reserved register"); 372 // Leave the superregister in the working set. 373 PhysRegState[Alias] = regFree; 374 MO.getParent()->addRegisterKilled(Alias, TRI, true); 375 return; 376 case regFree: 377 if (TRI->isSuperRegister(PhysReg, Alias)) { 378 // Leave the superregister in the working set. 379 MO.getParent()->addRegisterKilled(Alias, TRI, true); 380 return; 381 } 382 // Some other alias was in the working set - clear it. 383 PhysRegState[Alias] = regDisabled; 384 break; 385 default: 386 llvm_unreachable("Instruction uses an alias of an allocated register"); 387 } 388 } 389 390 // All aliases are disabled, bring register into working set. 391 PhysRegState[PhysReg] = regFree; 392 MO.setIsKill(); 393 } 394 395 /// definePhysReg - Mark PhysReg as reserved or free after spilling any 396 /// virtregs. This is very similar to defineVirtReg except the physreg is 397 /// reserved instead of allocated. 398 void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg, 399 RegState NewState) { 400 markRegUsedInInstr(PhysReg); 401 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 402 case regDisabled: 403 break; 404 default: 405 spillVirtReg(MI, VirtReg); 406 // Fall through. 407 case regFree: 408 case regReserved: 409 PhysRegState[PhysReg] = NewState; 410 return; 411 } 412 413 // This is a disabled register, disable all aliases. 414 PhysRegState[PhysReg] = NewState; 415 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 416 unsigned Alias = *AI; 417 switch (unsigned VirtReg = PhysRegState[Alias]) { 418 case regDisabled: 419 break; 420 default: 421 spillVirtReg(MI, VirtReg); 422 // Fall through. 423 case regFree: 424 case regReserved: 425 PhysRegState[Alias] = regDisabled; 426 if (TRI->isSuperRegister(PhysReg, Alias)) 427 return; 428 break; 429 } 430 } 431 } 432 433 434 // calcSpillCost - Return the cost of spilling clearing out PhysReg and 435 // aliases so it is free for allocation. 436 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it 437 // can be allocated directly. 438 // Returns spillImpossible when PhysReg or an alias can't be spilled. 439 unsigned RAFast::calcSpillCost(unsigned PhysReg) const { 440 if (isRegUsedInInstr(PhysReg)) { 441 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n"); 442 return spillImpossible; 443 } 444 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 445 case regDisabled: 446 break; 447 case regFree: 448 return 0; 449 case regReserved: 450 DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding " 451 << PrintReg(PhysReg, TRI) << " is reserved already.\n"); 452 return spillImpossible; 453 default: { 454 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 455 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 456 return I->Dirty ? spillDirty : spillClean; 457 } 458 } 459 460 // This is a disabled register, add up cost of aliases. 461 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n"); 462 unsigned Cost = 0; 463 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 464 unsigned Alias = *AI; 465 switch (unsigned VirtReg = PhysRegState[Alias]) { 466 case regDisabled: 467 break; 468 case regFree: 469 ++Cost; 470 break; 471 case regReserved: 472 return spillImpossible; 473 default: { 474 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 475 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 476 Cost += I->Dirty ? spillDirty : spillClean; 477 break; 478 } 479 } 480 } 481 return Cost; 482 } 483 484 485 /// assignVirtToPhysReg - This method updates local state so that we know 486 /// that PhysReg is the proper container for VirtReg now. The physical 487 /// register must not be used for anything else when this is called. 488 /// 489 void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) { 490 DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to " 491 << PrintReg(PhysReg, TRI) << "\n"); 492 PhysRegState[PhysReg] = LR.VirtReg; 493 assert(!LR.PhysReg && "Already assigned a physreg"); 494 LR.PhysReg = PhysReg; 495 } 496 497 RAFast::LiveRegMap::iterator 498 RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { 499 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 500 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared"); 501 assignVirtToPhysReg(*LRI, PhysReg); 502 return LRI; 503 } 504 505 /// allocVirtReg - Allocate a physical register for VirtReg. 506 RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI, 507 LiveRegMap::iterator LRI, 508 unsigned Hint) { 509 const unsigned VirtReg = LRI->VirtReg; 510 511 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 512 "Can only allocate virtual registers"); 513 514 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); 515 516 // Ignore invalid hints. 517 if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) || 518 !RC->contains(Hint) || !MRI->isAllocatable(Hint))) 519 Hint = 0; 520 521 // Take hint when possible. 522 if (Hint) { 523 // Ignore the hint if we would have to spill a dirty register. 524 unsigned Cost = calcSpillCost(Hint); 525 if (Cost < spillDirty) { 526 if (Cost) 527 definePhysReg(MI, Hint, regFree); 528 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 529 // That invalidates LRI, so run a new lookup for VirtReg. 530 return assignVirtToPhysReg(VirtReg, Hint); 531 } 532 } 533 534 ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC); 535 536 // First try to find a completely free register. 537 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){ 538 unsigned PhysReg = *I; 539 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) { 540 assignVirtToPhysReg(*LRI, PhysReg); 541 return LRI; 542 } 543 } 544 545 DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from " 546 << RC->getName() << "\n"); 547 548 unsigned BestReg = 0, BestCost = spillImpossible; 549 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){ 550 unsigned Cost = calcSpillCost(*I); 551 DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n"); 552 DEBUG(dbgs() << "\tCost: " << Cost << "\n"); 553 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n"); 554 // Cost is 0 when all aliases are already disabled. 555 if (Cost == 0) { 556 assignVirtToPhysReg(*LRI, *I); 557 return LRI; 558 } 559 if (Cost < BestCost) 560 BestReg = *I, BestCost = Cost; 561 } 562 563 if (BestReg) { 564 definePhysReg(MI, BestReg, regFree); 565 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 566 // That invalidates LRI, so run a new lookup for VirtReg. 567 return assignVirtToPhysReg(VirtReg, BestReg); 568 } 569 570 // Nothing we can do. Report an error and keep going with a bad allocation. 571 MI->emitError("ran out of registers during register allocation"); 572 definePhysReg(MI, *AO.begin(), regFree); 573 return assignVirtToPhysReg(VirtReg, *AO.begin()); 574 } 575 576 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty. 577 RAFast::LiveRegMap::iterator 578 RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum, 579 unsigned VirtReg, unsigned Hint) { 580 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 581 "Not a virtual register"); 582 LiveRegMap::iterator LRI; 583 bool New; 584 tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 585 if (New) { 586 // If there is no hint, peek at the only use of this register. 587 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 588 MRI->hasOneNonDBGUse(VirtReg)) { 589 const MachineInstr &UseMI = *MRI->use_nodbg_begin(VirtReg); 590 // It's a copy, use the destination register as a hint. 591 if (UseMI.isCopyLike()) 592 Hint = UseMI.getOperand(0).getReg(); 593 } 594 LRI = allocVirtReg(MI, LRI, Hint); 595 } else if (LRI->LastUse) { 596 // Redefining a live register - kill at the last use, unless it is this 597 // instruction defining VirtReg multiple times. 598 if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 599 addKillFlag(*LRI); 600 } 601 assert(LRI->PhysReg && "Register not assigned"); 602 LRI->LastUse = MI; 603 LRI->LastOpNum = OpNum; 604 LRI->Dirty = true; 605 markRegUsedInInstr(LRI->PhysReg); 606 return LRI; 607 } 608 609 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it. 610 RAFast::LiveRegMap::iterator 611 RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum, 612 unsigned VirtReg, unsigned Hint) { 613 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 614 "Not a virtual register"); 615 LiveRegMap::iterator LRI; 616 bool New; 617 tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 618 MachineOperand &MO = MI->getOperand(OpNum); 619 if (New) { 620 LRI = allocVirtReg(MI, LRI, Hint); 621 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); 622 int FrameIndex = getStackSpaceFor(VirtReg, RC); 623 DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into " 624 << PrintReg(LRI->PhysReg, TRI) << "\n"); 625 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI); 626 ++NumLoads; 627 } else if (LRI->Dirty) { 628 if (isLastUseOfLocalReg(MO)) { 629 DEBUG(dbgs() << "Killing last use: " << MO << "\n"); 630 if (MO.isUse()) 631 MO.setIsKill(); 632 else 633 MO.setIsDead(); 634 } else if (MO.isKill()) { 635 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n"); 636 MO.setIsKill(false); 637 } else if (MO.isDead()) { 638 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n"); 639 MO.setIsDead(false); 640 } 641 } else if (MO.isKill()) { 642 // We must remove kill flags from uses of reloaded registers because the 643 // register would be killed immediately, and there might be a second use: 644 // %foo = OR %x<kill>, %x 645 // This would cause a second reload of %x into a different register. 646 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n"); 647 MO.setIsKill(false); 648 } else if (MO.isDead()) { 649 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n"); 650 MO.setIsDead(false); 651 } 652 assert(LRI->PhysReg && "Register not assigned"); 653 LRI->LastUse = MI; 654 LRI->LastOpNum = OpNum; 655 markRegUsedInInstr(LRI->PhysReg); 656 return LRI; 657 } 658 659 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering 660 // subregs. This may invalidate any operand pointers. 661 // Return true if the operand kills its register. 662 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) { 663 MachineOperand &MO = MI->getOperand(OpNum); 664 bool Dead = MO.isDead(); 665 if (!MO.getSubReg()) { 666 MO.setReg(PhysReg); 667 return MO.isKill() || Dead; 668 } 669 670 // Handle subregister index. 671 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 672 MO.setSubReg(0); 673 674 // A kill flag implies killing the full register. Add corresponding super 675 // register kill. 676 if (MO.isKill()) { 677 MI->addRegisterKilled(PhysReg, TRI, true); 678 return true; 679 } 680 681 // A <def,read-undef> of a sub-register requires an implicit def of the full 682 // register. 683 if (MO.isDef() && MO.isUndef()) 684 MI->addRegisterDefined(PhysReg, TRI); 685 686 return Dead; 687 } 688 689 // Handle special instruction operand like early clobbers and tied ops when 690 // there are additional physreg defines. 691 void RAFast::handleThroughOperands(MachineInstr *MI, 692 SmallVectorImpl<unsigned> &VirtDead) { 693 DEBUG(dbgs() << "Scanning for through registers:"); 694 SmallSet<unsigned, 8> ThroughRegs; 695 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 696 MachineOperand &MO = MI->getOperand(i); 697 if (!MO.isReg()) continue; 698 unsigned Reg = MO.getReg(); 699 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 700 continue; 701 if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) || 702 (MO.getSubReg() && MI->readsVirtualRegister(Reg))) { 703 if (ThroughRegs.insert(Reg)) 704 DEBUG(dbgs() << ' ' << PrintReg(Reg)); 705 } 706 } 707 708 // If any physreg defines collide with preallocated through registers, 709 // we must spill and reallocate. 710 DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 711 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 712 MachineOperand &MO = MI->getOperand(i); 713 if (!MO.isReg() || !MO.isDef()) continue; 714 unsigned Reg = MO.getReg(); 715 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 716 markRegUsedInInstr(Reg); 717 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 718 if (ThroughRegs.count(PhysRegState[*AI])) 719 definePhysReg(MI, *AI, regFree); 720 } 721 } 722 723 SmallVector<unsigned, 8> PartialDefs; 724 DEBUG(dbgs() << "Allocating tied uses.\n"); 725 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 726 MachineOperand &MO = MI->getOperand(i); 727 if (!MO.isReg()) continue; 728 unsigned Reg = MO.getReg(); 729 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 730 if (MO.isUse()) { 731 unsigned DefIdx = 0; 732 if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue; 733 DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand " 734 << DefIdx << ".\n"); 735 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); 736 unsigned PhysReg = LRI->PhysReg; 737 setPhysReg(MI, i, PhysReg); 738 // Note: we don't update the def operand yet. That would cause the normal 739 // def-scan to attempt spilling. 740 } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) { 741 DEBUG(dbgs() << "Partial redefine: " << MO << "\n"); 742 // Reload the register, but don't assign to the operand just yet. 743 // That would confuse the later phys-def processing pass. 744 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); 745 PartialDefs.push_back(LRI->PhysReg); 746 } 747 } 748 749 DEBUG(dbgs() << "Allocating early clobbers.\n"); 750 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 751 MachineOperand &MO = MI->getOperand(i); 752 if (!MO.isReg()) continue; 753 unsigned Reg = MO.getReg(); 754 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 755 if (!MO.isEarlyClobber()) 756 continue; 757 // Note: defineVirtReg may invalidate MO. 758 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0); 759 unsigned PhysReg = LRI->PhysReg; 760 if (setPhysReg(MI, i, PhysReg)) 761 VirtDead.push_back(Reg); 762 } 763 764 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 765 UsedInInstr.clear(); 766 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 767 MachineOperand &MO = MI->getOperand(i); 768 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 769 unsigned Reg = MO.getReg(); 770 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 771 DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI) 772 << " as used in instr\n"); 773 markRegUsedInInstr(Reg); 774 } 775 776 // Also mark PartialDefs as used to avoid reallocation. 777 for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i) 778 markRegUsedInInstr(PartialDefs[i]); 779 } 780 781 void RAFast::AllocateBasicBlock() { 782 DEBUG(dbgs() << "\nAllocating " << *MBB); 783 784 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 785 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 786 787 MachineBasicBlock::iterator MII = MBB->begin(); 788 789 // Add live-in registers as live. 790 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 791 E = MBB->livein_end(); I != E; ++I) 792 if (MRI->isAllocatable(*I)) 793 definePhysReg(MII, *I, regReserved); 794 795 SmallVector<unsigned, 8> VirtDead; 796 SmallVector<MachineInstr*, 32> Coalesced; 797 798 // Otherwise, sequentially allocate each instruction in the MBB. 799 while (MII != MBB->end()) { 800 MachineInstr *MI = MII++; 801 const MCInstrDesc &MCID = MI->getDesc(); 802 DEBUG({ 803 dbgs() << "\n>> " << *MI << "Regs:"; 804 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 805 if (PhysRegState[Reg] == regDisabled) continue; 806 dbgs() << " " << TRI->getName(Reg); 807 switch(PhysRegState[Reg]) { 808 case regFree: 809 break; 810 case regReserved: 811 dbgs() << "*"; 812 break; 813 default: { 814 dbgs() << '=' << PrintReg(PhysRegState[Reg]); 815 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]); 816 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 817 if (I->Dirty) 818 dbgs() << "*"; 819 assert(I->PhysReg == Reg && "Bad inverse map"); 820 break; 821 } 822 } 823 } 824 dbgs() << '\n'; 825 // Check that LiveVirtRegs is the inverse. 826 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 827 e = LiveVirtRegs.end(); i != e; ++i) { 828 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 829 "Bad map key"); 830 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 831 "Bad map value"); 832 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 833 } 834 }); 835 836 // Debug values are not allowed to change codegen in any way. 837 if (MI->isDebugValue()) { 838 bool ScanDbgValue = true; 839 while (ScanDbgValue) { 840 ScanDbgValue = false; 841 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 842 MachineOperand &MO = MI->getOperand(i); 843 if (!MO.isReg()) continue; 844 unsigned Reg = MO.getReg(); 845 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 846 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 847 if (LRI != LiveVirtRegs.end()) 848 setPhysReg(MI, i, LRI->PhysReg); 849 else { 850 int SS = StackSlotForVirtReg[Reg]; 851 if (SS == -1) { 852 // We can't allocate a physreg for a DebugValue, sorry! 853 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 854 MO.setReg(0); 855 } 856 else { 857 // Modify DBG_VALUE now that the value is in a spill slot. 858 int64_t Offset = MI->getOperand(1).getImm(); 859 const MDNode *MDPtr = 860 MI->getOperand(MI->getNumOperands()-1).getMetadata(); 861 DebugLoc DL = MI->getDebugLoc(); 862 MachineBasicBlock *MBB = MI->getParent(); 863 MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(MI), DL, 864 TII->get(TargetOpcode::DBG_VALUE)) 865 .addFrameIndex(SS).addImm(Offset).addMetadata(MDPtr); 866 DEBUG(dbgs() << "Modifying debug info due to spill:" 867 << "\t" << *NewDV); 868 // Scan NewDV operands from the beginning. 869 MI = NewDV; 870 ScanDbgValue = true; 871 break; 872 } 873 } 874 LiveDbgValueMap[Reg].push_back(MI); 875 } 876 } 877 // Next instruction. 878 continue; 879 } 880 881 // If this is a copy, we may be able to coalesce. 882 unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0; 883 if (MI->isCopy()) { 884 CopyDst = MI->getOperand(0).getReg(); 885 CopySrc = MI->getOperand(1).getReg(); 886 CopyDstSub = MI->getOperand(0).getSubReg(); 887 CopySrcSub = MI->getOperand(1).getSubReg(); 888 } 889 890 // Track registers used by instruction. 891 UsedInInstr.clear(); 892 893 // First scan. 894 // Mark physreg uses and early clobbers as used. 895 // Find the end of the virtreg operands 896 unsigned VirtOpEnd = 0; 897 bool hasTiedOps = false; 898 bool hasEarlyClobbers = false; 899 bool hasPartialRedefs = false; 900 bool hasPhysDefs = false; 901 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 902 MachineOperand &MO = MI->getOperand(i); 903 // Make sure MRI knows about registers clobbered by regmasks. 904 if (MO.isRegMask()) { 905 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 906 continue; 907 } 908 if (!MO.isReg()) continue; 909 unsigned Reg = MO.getReg(); 910 if (!Reg) continue; 911 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 912 VirtOpEnd = i+1; 913 if (MO.isUse()) { 914 hasTiedOps = hasTiedOps || 915 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 916 } else { 917 if (MO.isEarlyClobber()) 918 hasEarlyClobbers = true; 919 if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) 920 hasPartialRedefs = true; 921 } 922 continue; 923 } 924 if (!MRI->isAllocatable(Reg)) continue; 925 if (MO.isUse()) { 926 usePhysReg(MO); 927 } else if (MO.isEarlyClobber()) { 928 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? 929 regFree : regReserved); 930 hasEarlyClobbers = true; 931 } else 932 hasPhysDefs = true; 933 } 934 935 // The instruction may have virtual register operands that must be allocated 936 // the same register at use-time and def-time: early clobbers and tied 937 // operands. If there are also physical defs, these registers must avoid 938 // both physical defs and uses, making them more constrained than normal 939 // operands. 940 // Similarly, if there are multiple defs and tied operands, we must make 941 // sure the same register is allocated to uses and defs. 942 // We didn't detect inline asm tied operands above, so just make this extra 943 // pass for all inline asm. 944 if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 945 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 946 handleThroughOperands(MI, VirtDead); 947 // Don't attempt coalescing when we have funny stuff going on. 948 CopyDst = 0; 949 // Pretend we have early clobbers so the use operands get marked below. 950 // This is not necessary for the common case of a single tied use. 951 hasEarlyClobbers = true; 952 } 953 954 // Second scan. 955 // Allocate virtreg uses. 956 for (unsigned i = 0; i != VirtOpEnd; ++i) { 957 MachineOperand &MO = MI->getOperand(i); 958 if (!MO.isReg()) continue; 959 unsigned Reg = MO.getReg(); 960 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 961 if (MO.isUse()) { 962 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst); 963 unsigned PhysReg = LRI->PhysReg; 964 CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0; 965 if (setPhysReg(MI, i, PhysReg)) 966 killVirtReg(LRI); 967 } 968 } 969 970 for (UsedInInstrSet::iterator 971 I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I) 972 MRI->setRegUnitUsed(*I); 973 974 // Track registers defined by instruction - early clobbers and tied uses at 975 // this point. 976 UsedInInstr.clear(); 977 if (hasEarlyClobbers) { 978 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 979 MachineOperand &MO = MI->getOperand(i); 980 if (!MO.isReg()) continue; 981 unsigned Reg = MO.getReg(); 982 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 983 // Look for physreg defs and tied uses. 984 if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue; 985 markRegUsedInInstr(Reg); 986 } 987 } 988 989 unsigned DefOpEnd = MI->getNumOperands(); 990 if (MI->isCall()) { 991 // Spill all virtregs before a call. This serves two purposes: 1. If an 992 // exception is thrown, the landing pad is going to expect to find 993 // registers in their spill slots, and 2. we don't have to wade through 994 // all the <imp-def> operands on the call instruction. 995 DefOpEnd = VirtOpEnd; 996 DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 997 spillAll(MI); 998 999 // The imp-defs are skipped below, but we still need to mark those 1000 // registers as used by the function. 1001 SkippedInstrs.insert(&MCID); 1002 } 1003 1004 // Third scan. 1005 // Allocate defs and collect dead defs. 1006 for (unsigned i = 0; i != DefOpEnd; ++i) { 1007 MachineOperand &MO = MI->getOperand(i); 1008 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1009 continue; 1010 unsigned Reg = MO.getReg(); 1011 1012 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1013 if (!MRI->isAllocatable(Reg)) continue; 1014 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? 1015 regFree : regReserved); 1016 continue; 1017 } 1018 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc); 1019 unsigned PhysReg = LRI->PhysReg; 1020 if (setPhysReg(MI, i, PhysReg)) { 1021 VirtDead.push_back(Reg); 1022 CopyDst = 0; // cancel coalescing; 1023 } else 1024 CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0; 1025 } 1026 1027 // Kill dead defs after the scan to ensure that multiple defs of the same 1028 // register are allocated identically. We didn't need to do this for uses 1029 // because we are crerating our own kill flags, and they are always at the 1030 // last use. 1031 for (unsigned i = 0, e = VirtDead.size(); i != e; ++i) 1032 killVirtReg(VirtDead[i]); 1033 VirtDead.clear(); 1034 1035 for (UsedInInstrSet::iterator 1036 I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I) 1037 MRI->setRegUnitUsed(*I); 1038 1039 if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) { 1040 DEBUG(dbgs() << "-- coalescing: " << *MI); 1041 Coalesced.push_back(MI); 1042 } else { 1043 DEBUG(dbgs() << "<< " << *MI); 1044 } 1045 } 1046 1047 // Spill all physical registers holding virtual registers now. 1048 DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1049 spillAll(MBB->getFirstTerminator()); 1050 1051 // Erase all the coalesced copies. We are delaying it until now because 1052 // LiveVirtRegs might refer to the instrs. 1053 for (unsigned i = 0, e = Coalesced.size(); i != e; ++i) 1054 MBB->erase(Coalesced[i]); 1055 NumCopies += Coalesced.size(); 1056 1057 DEBUG(MBB->dump()); 1058 } 1059 1060 /// runOnMachineFunction - Register allocate the whole function 1061 /// 1062 bool RAFast::runOnMachineFunction(MachineFunction &Fn) { 1063 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1064 << "********** Function: " << Fn.getName() << '\n'); 1065 MF = &Fn; 1066 MRI = &MF->getRegInfo(); 1067 TM = &Fn.getTarget(); 1068 TRI = TM->getRegisterInfo(); 1069 TII = TM->getInstrInfo(); 1070 MRI->freezeReservedRegs(Fn); 1071 RegClassInfo.runOnMachineFunction(Fn); 1072 UsedInInstr.clear(); 1073 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1074 1075 assert(!MRI->isSSA() && "regalloc requires leaving SSA"); 1076 1077 // initialize the virtual->physical register map to have a 'null' 1078 // mapping for all virtual registers 1079 StackSlotForVirtReg.resize(MRI->getNumVirtRegs()); 1080 LiveVirtRegs.setUniverse(MRI->getNumVirtRegs()); 1081 1082 // Loop over all of the basic blocks, eliminating virtual register references 1083 for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end(); 1084 MBBi != MBBe; ++MBBi) { 1085 MBB = &*MBBi; 1086 AllocateBasicBlock(); 1087 } 1088 1089 // Add the clobber lists for all the instructions we skipped earlier. 1090 for (SmallPtrSet<const MCInstrDesc*, 4>::const_iterator 1091 I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I) 1092 if (const uint16_t *Defs = (*I)->getImplicitDefs()) 1093 while (*Defs) 1094 MRI->setPhysRegUsed(*Defs++); 1095 1096 // All machine operands and other references to virtual registers have been 1097 // replaced. Remove the virtual registers. 1098 MRI->clearVirtRegs(); 1099 1100 SkippedInstrs.clear(); 1101 StackSlotForVirtReg.clear(); 1102 LiveDbgValueMap.clear(); 1103 return true; 1104 } 1105 1106 FunctionPass *llvm::createFastRegisterAllocator() { 1107 return new RAFast(); 1108 } 1109