1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file This register allocator allocates registers to a basic block at a 11 /// time, attempting to keep values in registers and reusing registers as 12 /// appropriate. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/IndexedMap.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/SparseSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/RegAllocRegistry.h" 32 #include "llvm/CodeGen/RegisterClassInfo.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetOpcodes.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/MC/MCInstrDesc.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <cassert> 48 #include <tuple> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumStores, "Number of stores added"); 56 STATISTIC(NumLoads , "Number of loads added"); 57 STATISTIC(NumCopies, "Number of copies coalesced"); 58 59 static RegisterRegAlloc 60 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 61 62 namespace { 63 64 class RegAllocFast : public MachineFunctionPass { 65 public: 66 static char ID; 67 68 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 69 70 private: 71 MachineFrameInfo *MFI; 72 MachineRegisterInfo *MRI; 73 const TargetRegisterInfo *TRI; 74 const TargetInstrInfo *TII; 75 RegisterClassInfo RegClassInfo; 76 77 /// Basic block currently being allocated. 78 MachineBasicBlock *MBB; 79 80 /// Maps virtual regs to the frame index where these values are spilled. 81 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 82 83 /// Everything we know about a live virtual register. 84 struct LiveReg { 85 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 86 unsigned VirtReg; ///< Virtual register number. 87 MCPhysReg PhysReg = 0; ///< Currently held here. 88 unsigned short LastOpNum = 0; ///< OpNum on LastUse. 89 bool Dirty = false; ///< Register needs spill. 90 91 explicit LiveReg(unsigned v) : VirtReg(v) {} 92 93 unsigned getSparseSetIndex() const { 94 return TargetRegisterInfo::virtReg2Index(VirtReg); 95 } 96 }; 97 98 using LiveRegMap = SparseSet<LiveReg>; 99 100 /// This map contains entries for each virtual register that is currently 101 /// available in a physical register. 102 LiveRegMap LiveVirtRegs; 103 104 DenseMap<unsigned, SmallVector<MachineInstr *, 4>> LiveDbgValueMap; 105 106 /// Track the state of a physical register. 107 enum RegState { 108 /// A disabled register is not available for allocation, but an alias may 109 /// be in use. A register can only be moved out of the disabled state if 110 /// all aliases are disabled. 111 regDisabled, 112 113 /// A free register is not currently in use and can be allocated 114 /// immediately without checking aliases. 115 regFree, 116 117 /// A reserved register has been assigned explicitly (e.g., setting up a 118 /// call parameter), and it remains reserved until it is used. 119 regReserved 120 121 /// A register state may also be a virtual register number, indication 122 /// that the physical register is currently allocated to a virtual 123 /// register. In that case, LiveVirtRegs contains the inverse mapping. 124 }; 125 126 /// One of the RegState enums, or a virtreg. 127 std::vector<unsigned> PhysRegState; 128 129 SmallVector<unsigned, 16> VirtDead; 130 SmallVector<MachineInstr *, 32> Coalesced; 131 132 /// Set of register units. 133 using UsedInInstrSet = SparseSet<unsigned>; 134 135 /// Set of register units that are used in the current instruction, and so 136 /// cannot be allocated. 137 UsedInInstrSet UsedInInstr; 138 139 /// Mark a physreg as used in this instruction. 140 void markRegUsedInInstr(MCPhysReg PhysReg) { 141 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 142 UsedInInstr.insert(*Units); 143 } 144 145 /// Check if a physreg or any of its aliases are used in this instruction. 146 bool isRegUsedInInstr(MCPhysReg PhysReg) const { 147 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 148 if (UsedInInstr.count(*Units)) 149 return true; 150 return false; 151 } 152 153 /// This flag is set when LiveRegMap will be cleared completely after 154 /// spilling all live registers. LiveRegMap entries should not be erased. 155 bool isBulkSpilling = false; 156 157 enum : unsigned { 158 spillClean = 1, 159 spillDirty = 100, 160 spillImpossible = ~0u 161 }; 162 163 public: 164 StringRef getPassName() const override { return "Fast Register Allocator"; } 165 166 void getAnalysisUsage(AnalysisUsage &AU) const override { 167 AU.setPreservesCFG(); 168 MachineFunctionPass::getAnalysisUsage(AU); 169 } 170 171 MachineFunctionProperties getRequiredProperties() const override { 172 return MachineFunctionProperties().set( 173 MachineFunctionProperties::Property::NoPHIs); 174 } 175 176 MachineFunctionProperties getSetProperties() const override { 177 return MachineFunctionProperties().set( 178 MachineFunctionProperties::Property::NoVRegs); 179 } 180 181 private: 182 bool runOnMachineFunction(MachineFunction &MF) override; 183 void allocateBasicBlock(MachineBasicBlock &MBB); 184 void handleThroughOperands(MachineInstr &MI, 185 SmallVectorImpl<unsigned> &VirtDead); 186 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass &RC); 187 bool isLastUseOfLocalReg(const MachineOperand &MO) const; 188 189 void addKillFlag(const LiveReg &LRI); 190 void killVirtReg(LiveRegMap::iterator LRI); 191 void killVirtReg(unsigned VirtReg); 192 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator); 193 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 194 195 void usePhysReg(MachineOperand &MO); 196 void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg, 197 RegState NewState); 198 unsigned calcSpillCost(MCPhysReg PhysReg) const; 199 void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg); 200 201 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 202 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 203 } 204 205 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 206 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 207 } 208 209 LiveRegMap::iterator assignVirtToPhysReg(unsigned VirtReg, MCPhysReg PhysReg); 210 LiveRegMap::iterator allocVirtReg(MachineInstr &MI, LiveRegMap::iterator, 211 unsigned Hint); 212 LiveRegMap::iterator defineVirtReg(MachineInstr &MI, unsigned OpNum, 213 unsigned VirtReg, unsigned Hint); 214 LiveRegMap::iterator reloadVirtReg(MachineInstr &MI, unsigned OpNum, 215 unsigned VirtReg, unsigned Hint); 216 void spillAll(MachineBasicBlock::iterator MI); 217 bool setPhysReg(MachineInstr &MI, unsigned OpNum, MCPhysReg PhysReg); 218 219 void dumpState(); 220 }; 221 222 } // end anonymous namespace 223 224 char RegAllocFast::ID = 0; 225 226 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 227 false) 228 229 /// This allocates space for the specified virtual register to be held on the 230 /// stack. 231 int RegAllocFast::getStackSpaceFor(unsigned VirtReg, 232 const TargetRegisterClass &RC) { 233 // Find the location Reg would belong... 234 int SS = StackSlotForVirtReg[VirtReg]; 235 // Already has space allocated? 236 if (SS != -1) 237 return SS; 238 239 // Allocate a new stack object for this spill location... 240 unsigned Size = TRI->getSpillSize(RC); 241 unsigned Align = TRI->getSpillAlignment(RC); 242 int FrameIdx = MFI->CreateSpillStackObject(Size, Align); 243 244 // Assign the slot. 245 StackSlotForVirtReg[VirtReg] = FrameIdx; 246 return FrameIdx; 247 } 248 249 /// Return true if MO is the only remaining reference to its virtual register, 250 /// and it is guaranteed to be a block-local register. 251 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const { 252 // If the register has ever been spilled or reloaded, we conservatively assume 253 // it is a global register used in multiple blocks. 254 if (StackSlotForVirtReg[MO.getReg()] != -1) 255 return false; 256 257 // Check that the use/def chain has exactly one operand - MO. 258 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 259 if (&*I != &MO) 260 return false; 261 return ++I == MRI->reg_nodbg_end(); 262 } 263 264 /// Set kill flags on last use of a virtual register. 265 void RegAllocFast::addKillFlag(const LiveReg &LR) { 266 if (!LR.LastUse) return; 267 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 268 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 269 if (MO.getReg() == LR.PhysReg) 270 MO.setIsKill(); 271 // else, don't do anything we are problably redefining a 272 // subreg of this register and given we don't track which 273 // lanes are actually dead, we cannot insert a kill flag here. 274 // Otherwise we may end up in a situation like this: 275 // ... = (MO) physreg:sub1, implicit killed physreg 276 // ... <== Here we would allow later pass to reuse physreg:sub1 277 // which is potentially wrong. 278 // LR:sub0 = ... 279 // ... = LR.sub1 <== This is going to use physreg:sub1 280 } 281 } 282 283 /// Mark virtreg as no longer available. 284 void RegAllocFast::killVirtReg(LiveRegMap::iterator LRI) { 285 addKillFlag(*LRI); 286 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg && 287 "Broken RegState mapping"); 288 PhysRegState[LRI->PhysReg] = regFree; 289 // Erase from LiveVirtRegs unless we're spilling in bulk. 290 if (!isBulkSpilling) 291 LiveVirtRegs.erase(LRI); 292 } 293 294 /// Mark virtreg as no longer available. 295 void RegAllocFast::killVirtReg(unsigned VirtReg) { 296 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 297 "killVirtReg needs a virtual register"); 298 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 299 if (LRI != LiveVirtRegs.end()) 300 killVirtReg(LRI); 301 } 302 303 /// This method spills the value specified by VirtReg into the corresponding 304 /// stack slot if needed. 305 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 306 unsigned VirtReg) { 307 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 308 "Spilling a physical register is illegal!"); 309 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 310 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register"); 311 spillVirtReg(MI, LRI); 312 } 313 314 /// Do the actual work of spilling. 315 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 316 LiveRegMap::iterator LRI) { 317 LiveReg &LR = *LRI; 318 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping"); 319 320 if (LR.Dirty) { 321 // If this physreg is used by the instruction, we want to kill it on the 322 // instruction, not on the spill. 323 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; 324 LR.Dirty = false; 325 LLVM_DEBUG(dbgs() << "Spilling " << printReg(LRI->VirtReg, TRI) << " in " 326 << printReg(LR.PhysReg, TRI)); 327 const TargetRegisterClass &RC = *MRI->getRegClass(LRI->VirtReg); 328 int FI = getStackSpaceFor(LRI->VirtReg, RC); 329 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << "\n"); 330 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, &RC, TRI); 331 ++NumStores; // Update statistics 332 333 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 334 // identify spilled location as the place to find corresponding variable's 335 // value. 336 SmallVectorImpl<MachineInstr *> &LRIDbgValues = 337 LiveDbgValueMap[LRI->VirtReg]; 338 for (MachineInstr *DBG : LRIDbgValues) { 339 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, MI, *DBG, FI); 340 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 341 (void)NewDV; 342 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:" 343 << "\n" 344 << *NewDV); 345 } 346 // Now this register is spilled there is should not be any DBG_VALUE 347 // pointing to this register because they are all pointing to spilled value 348 // now. 349 LRIDbgValues.clear(); 350 if (SpillKill) 351 LR.LastUse = nullptr; // Don't kill register again 352 } 353 killVirtReg(LRI); 354 } 355 356 /// Spill all dirty virtregs without killing them. 357 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI) { 358 if (LiveVirtRegs.empty()) return; 359 isBulkSpilling = true; 360 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 361 // of spilling here is deterministic, if arbitrary. 362 for (LiveRegMap::iterator I = LiveVirtRegs.begin(), E = LiveVirtRegs.end(); 363 I != E; ++I) 364 spillVirtReg(MI, I); 365 LiveVirtRegs.clear(); 366 isBulkSpilling = false; 367 } 368 369 /// Handle the direct use of a physical register. Check that the register is 370 /// not used by a virtreg. Kill the physreg, marking it free. This may add 371 /// implicit kills to MO->getParent() and invalidate MO. 372 void RegAllocFast::usePhysReg(MachineOperand &MO) { 373 // Ignore undef uses. 374 if (MO.isUndef()) 375 return; 376 377 unsigned PhysReg = MO.getReg(); 378 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 379 "Bad usePhysReg operand"); 380 381 markRegUsedInInstr(PhysReg); 382 switch (PhysRegState[PhysReg]) { 383 case regDisabled: 384 break; 385 case regReserved: 386 PhysRegState[PhysReg] = regFree; 387 LLVM_FALLTHROUGH; 388 case regFree: 389 MO.setIsKill(); 390 return; 391 default: 392 // The physreg was allocated to a virtual register. That means the value we 393 // wanted has been clobbered. 394 llvm_unreachable("Instruction uses an allocated register"); 395 } 396 397 // Maybe a superregister is reserved? 398 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 399 MCPhysReg Alias = *AI; 400 switch (PhysRegState[Alias]) { 401 case regDisabled: 402 break; 403 case regReserved: 404 // Either PhysReg is a subregister of Alias and we mark the 405 // whole register as free, or PhysReg is the superregister of 406 // Alias and we mark all the aliases as disabled before freeing 407 // PhysReg. 408 // In the latter case, since PhysReg was disabled, this means that 409 // its value is defined only by physical sub-registers. This check 410 // is performed by the assert of the default case in this loop. 411 // Note: The value of the superregister may only be partial 412 // defined, that is why regDisabled is a valid state for aliases. 413 assert((TRI->isSuperRegister(PhysReg, Alias) || 414 TRI->isSuperRegister(Alias, PhysReg)) && 415 "Instruction is not using a subregister of a reserved register"); 416 LLVM_FALLTHROUGH; 417 case regFree: 418 if (TRI->isSuperRegister(PhysReg, Alias)) { 419 // Leave the superregister in the working set. 420 PhysRegState[Alias] = regFree; 421 MO.getParent()->addRegisterKilled(Alias, TRI, true); 422 return; 423 } 424 // Some other alias was in the working set - clear it. 425 PhysRegState[Alias] = regDisabled; 426 break; 427 default: 428 llvm_unreachable("Instruction uses an alias of an allocated register"); 429 } 430 } 431 432 // All aliases are disabled, bring register into working set. 433 PhysRegState[PhysReg] = regFree; 434 MO.setIsKill(); 435 } 436 437 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 438 /// similar to defineVirtReg except the physreg is reserved instead of 439 /// allocated. 440 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI, 441 MCPhysReg PhysReg, RegState NewState) { 442 markRegUsedInInstr(PhysReg); 443 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 444 case regDisabled: 445 break; 446 default: 447 spillVirtReg(MI, VirtReg); 448 LLVM_FALLTHROUGH; 449 case regFree: 450 case regReserved: 451 PhysRegState[PhysReg] = NewState; 452 return; 453 } 454 455 // This is a disabled register, disable all aliases. 456 PhysRegState[PhysReg] = NewState; 457 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 458 MCPhysReg Alias = *AI; 459 switch (unsigned VirtReg = PhysRegState[Alias]) { 460 case regDisabled: 461 break; 462 default: 463 spillVirtReg(MI, VirtReg); 464 LLVM_FALLTHROUGH; 465 case regFree: 466 case regReserved: 467 PhysRegState[Alias] = regDisabled; 468 if (TRI->isSuperRegister(PhysReg, Alias)) 469 return; 470 break; 471 } 472 } 473 } 474 475 /// Return the cost of spilling clearing out PhysReg and aliases so it is 476 /// free for allocation. Returns 0 when PhysReg is free or disabled with all 477 /// aliases disabled - it can be allocated directly. 478 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 479 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 480 if (isRegUsedInInstr(PhysReg)) { 481 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) 482 << " is already used in instr.\n"); 483 return spillImpossible; 484 } 485 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 486 case regDisabled: 487 break; 488 case regFree: 489 return 0; 490 case regReserved: 491 LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding " 492 << printReg(PhysReg, TRI) << " is reserved already.\n"); 493 return spillImpossible; 494 default: { 495 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 496 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 497 return I->Dirty ? spillDirty : spillClean; 498 } 499 } 500 501 // This is a disabled register, add up cost of aliases. 502 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n"); 503 unsigned Cost = 0; 504 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 505 MCPhysReg Alias = *AI; 506 switch (unsigned VirtReg = PhysRegState[Alias]) { 507 case regDisabled: 508 break; 509 case regFree: 510 ++Cost; 511 break; 512 case regReserved: 513 return spillImpossible; 514 default: { 515 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 516 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 517 Cost += I->Dirty ? spillDirty : spillClean; 518 break; 519 } 520 } 521 } 522 return Cost; 523 } 524 525 /// This method updates local state so that we know that PhysReg is the 526 /// proper container for VirtReg now. The physical register must not be used 527 /// for anything else when this is called. 528 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) { 529 LLVM_DEBUG(dbgs() << "Assigning " << printReg(LR.VirtReg, TRI) << " to " 530 << printReg(PhysReg, TRI) << "\n"); 531 PhysRegState[PhysReg] = LR.VirtReg; 532 assert(!LR.PhysReg && "Already assigned a physreg"); 533 LR.PhysReg = PhysReg; 534 } 535 536 RegAllocFast::LiveRegMap::iterator 537 RegAllocFast::assignVirtToPhysReg(unsigned VirtReg, MCPhysReg PhysReg) { 538 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 539 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared"); 540 assignVirtToPhysReg(*LRI, PhysReg); 541 return LRI; 542 } 543 544 /// Allocates a physical register for VirtReg. 545 RegAllocFast::LiveRegMap::iterator RegAllocFast::allocVirtReg(MachineInstr &MI, 546 LiveRegMap::iterator LRI, unsigned Hint) { 547 const unsigned VirtReg = LRI->VirtReg; 548 549 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 550 "Can only allocate virtual registers"); 551 552 // Take hint when possible. 553 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 554 if (TargetRegisterInfo::isPhysicalRegister(Hint) && 555 MRI->isAllocatable(Hint) && RC.contains(Hint)) { 556 // Ignore the hint if we would have to spill a dirty register. 557 unsigned Cost = calcSpillCost(Hint); 558 if (Cost < spillDirty) { 559 if (Cost) 560 definePhysReg(MI, Hint, regFree); 561 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 562 // That invalidates LRI, so run a new lookup for VirtReg. 563 return assignVirtToPhysReg(VirtReg, Hint); 564 } 565 } 566 567 // First try to find a completely free register. 568 ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(&RC); 569 for (MCPhysReg PhysReg : AO) { 570 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) { 571 assignVirtToPhysReg(*LRI, PhysReg); 572 return LRI; 573 } 574 } 575 576 LLVM_DEBUG(dbgs() << "Allocating " << printReg(VirtReg) << " from " 577 << TRI->getRegClassName(&RC) << "\n"); 578 579 unsigned BestReg = 0; 580 unsigned BestCost = spillImpossible; 581 for (MCPhysReg PhysReg : AO) { 582 unsigned Cost = calcSpillCost(PhysReg); 583 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << "\n"); 584 LLVM_DEBUG(dbgs() << "\tCost: " << Cost << "\n"); 585 LLVM_DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n"); 586 // Cost is 0 when all aliases are already disabled. 587 if (Cost == 0) { 588 assignVirtToPhysReg(*LRI, PhysReg); 589 return LRI; 590 } 591 if (Cost < BestCost) 592 BestReg = PhysReg, BestCost = Cost; 593 } 594 595 if (BestReg) { 596 definePhysReg(MI, BestReg, regFree); 597 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 598 // That invalidates LRI, so run a new lookup for VirtReg. 599 return assignVirtToPhysReg(VirtReg, BestReg); 600 } 601 602 // Nothing we can do. Report an error and keep going with a bad allocation. 603 if (MI.isInlineAsm()) 604 MI.emitError("inline assembly requires more registers than available"); 605 else 606 MI.emitError("ran out of registers during register allocation"); 607 definePhysReg(MI, *AO.begin(), regFree); 608 return assignVirtToPhysReg(VirtReg, *AO.begin()); 609 } 610 611 /// Allocates a register for VirtReg and mark it as dirty. 612 RegAllocFast::LiveRegMap::iterator RegAllocFast::defineVirtReg(MachineInstr &MI, 613 unsigned OpNum, 614 unsigned VirtReg, 615 unsigned Hint) { 616 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 617 "Not a virtual register"); 618 LiveRegMap::iterator LRI; 619 bool New; 620 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 621 if (New) { 622 // If there is no hint, peek at the only use of this register. 623 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 624 MRI->hasOneNonDBGUse(VirtReg)) { 625 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 626 // It's a copy, use the destination register as a hint. 627 if (UseMI.isCopyLike()) 628 Hint = UseMI.getOperand(0).getReg(); 629 } 630 LRI = allocVirtReg(MI, LRI, Hint); 631 } else if (LRI->LastUse) { 632 // Redefining a live register - kill at the last use, unless it is this 633 // instruction defining VirtReg multiple times. 634 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 635 addKillFlag(*LRI); 636 } 637 assert(LRI->PhysReg && "Register not assigned"); 638 LRI->LastUse = &MI; 639 LRI->LastOpNum = OpNum; 640 LRI->Dirty = true; 641 markRegUsedInInstr(LRI->PhysReg); 642 return LRI; 643 } 644 645 /// Make sure VirtReg is available in a physreg and return it. 646 RegAllocFast::LiveRegMap::iterator RegAllocFast::reloadVirtReg(MachineInstr &MI, 647 unsigned OpNum, 648 unsigned VirtReg, 649 unsigned Hint) { 650 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 651 "Not a virtual register"); 652 LiveRegMap::iterator LRI; 653 bool New; 654 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 655 MachineOperand &MO = MI.getOperand(OpNum); 656 if (New) { 657 LRI = allocVirtReg(MI, LRI, Hint); 658 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 659 int FrameIndex = getStackSpaceFor(VirtReg, RC); 660 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 661 << printReg(LRI->PhysReg, TRI) << "\n"); 662 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, &RC, TRI); 663 ++NumLoads; 664 } else if (LRI->Dirty) { 665 if (isLastUseOfLocalReg(MO)) { 666 LLVM_DEBUG(dbgs() << "Killing last use: " << MO << "\n"); 667 if (MO.isUse()) 668 MO.setIsKill(); 669 else 670 MO.setIsDead(); 671 } else if (MO.isKill()) { 672 LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n"); 673 MO.setIsKill(false); 674 } else if (MO.isDead()) { 675 LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n"); 676 MO.setIsDead(false); 677 } 678 } else if (MO.isKill()) { 679 // We must remove kill flags from uses of reloaded registers because the 680 // register would be killed immediately, and there might be a second use: 681 // %foo = OR killed %x, %x 682 // This would cause a second reload of %x into a different register. 683 LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n"); 684 MO.setIsKill(false); 685 } else if (MO.isDead()) { 686 LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n"); 687 MO.setIsDead(false); 688 } 689 assert(LRI->PhysReg && "Register not assigned"); 690 LRI->LastUse = &MI; 691 LRI->LastOpNum = OpNum; 692 markRegUsedInInstr(LRI->PhysReg); 693 return LRI; 694 } 695 696 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 697 /// may invalidate any operand pointers. Return true if the operand kills its 698 /// register. 699 bool RegAllocFast::setPhysReg(MachineInstr &MI, unsigned OpNum, 700 MCPhysReg PhysReg) { 701 MachineOperand &MO = MI.getOperand(OpNum); 702 bool Dead = MO.isDead(); 703 if (!MO.getSubReg()) { 704 MO.setReg(PhysReg); 705 MO.setIsRenamable(true); 706 return MO.isKill() || Dead; 707 } 708 709 // Handle subregister index. 710 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 711 MO.setIsRenamable(true); 712 MO.setSubReg(0); 713 714 // A kill flag implies killing the full register. Add corresponding super 715 // register kill. 716 if (MO.isKill()) { 717 MI.addRegisterKilled(PhysReg, TRI, true); 718 return true; 719 } 720 721 // A <def,read-undef> of a sub-register requires an implicit def of the full 722 // register. 723 if (MO.isDef() && MO.isUndef()) 724 MI.addRegisterDefined(PhysReg, TRI); 725 726 return Dead; 727 } 728 729 // Handles special instruction operand like early clobbers and tied ops when 730 // there are additional physreg defines. 731 void RegAllocFast::handleThroughOperands(MachineInstr &MI, 732 SmallVectorImpl<unsigned> &VirtDead) { 733 LLVM_DEBUG(dbgs() << "Scanning for through registers:"); 734 SmallSet<unsigned, 8> ThroughRegs; 735 for (const MachineOperand &MO : MI.operands()) { 736 if (!MO.isReg()) continue; 737 unsigned Reg = MO.getReg(); 738 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 739 continue; 740 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) || 741 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) { 742 if (ThroughRegs.insert(Reg).second) 743 LLVM_DEBUG(dbgs() << ' ' << printReg(Reg)); 744 } 745 } 746 747 // If any physreg defines collide with preallocated through registers, 748 // we must spill and reallocate. 749 LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 750 for (const MachineOperand &MO : MI.operands()) { 751 if (!MO.isReg() || !MO.isDef()) continue; 752 unsigned Reg = MO.getReg(); 753 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 754 markRegUsedInInstr(Reg); 755 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 756 if (ThroughRegs.count(PhysRegState[*AI])) 757 definePhysReg(MI, *AI, regFree); 758 } 759 } 760 761 SmallVector<unsigned, 8> PartialDefs; 762 LLVM_DEBUG(dbgs() << "Allocating tied uses.\n"); 763 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 764 const MachineOperand &MO = MI.getOperand(I); 765 if (!MO.isReg()) continue; 766 unsigned Reg = MO.getReg(); 767 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 768 if (MO.isUse()) { 769 if (!MO.isTied()) continue; 770 LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO 771 << ") is tied to operand " << MI.findTiedOperandIdx(I) 772 << ".\n"); 773 LiveRegMap::iterator LRI = reloadVirtReg(MI, I, Reg, 0); 774 MCPhysReg PhysReg = LRI->PhysReg; 775 setPhysReg(MI, I, PhysReg); 776 // Note: we don't update the def operand yet. That would cause the normal 777 // def-scan to attempt spilling. 778 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) { 779 LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << "\n"); 780 // Reload the register, but don't assign to the operand just yet. 781 // That would confuse the later phys-def processing pass. 782 LiveRegMap::iterator LRI = reloadVirtReg(MI, I, Reg, 0); 783 PartialDefs.push_back(LRI->PhysReg); 784 } 785 } 786 787 LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n"); 788 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 789 const MachineOperand &MO = MI.getOperand(I); 790 if (!MO.isReg()) continue; 791 unsigned Reg = MO.getReg(); 792 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 793 if (!MO.isEarlyClobber()) 794 continue; 795 // Note: defineVirtReg may invalidate MO. 796 LiveRegMap::iterator LRI = defineVirtReg(MI, I, Reg, 0); 797 MCPhysReg PhysReg = LRI->PhysReg; 798 if (setPhysReg(MI, I, PhysReg)) 799 VirtDead.push_back(Reg); 800 } 801 802 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 803 UsedInInstr.clear(); 804 for (const MachineOperand &MO : MI.operands()) { 805 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 806 unsigned Reg = MO.getReg(); 807 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 808 LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI) 809 << " as used in instr\n"); 810 markRegUsedInInstr(Reg); 811 } 812 813 // Also mark PartialDefs as used to avoid reallocation. 814 for (unsigned PartialDef : PartialDefs) 815 markRegUsedInInstr(PartialDef); 816 } 817 818 #ifndef NDEBUG 819 void RegAllocFast::dumpState() { 820 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 821 if (PhysRegState[Reg] == regDisabled) continue; 822 dbgs() << " " << printReg(Reg, TRI); 823 switch(PhysRegState[Reg]) { 824 case regFree: 825 break; 826 case regReserved: 827 dbgs() << "*"; 828 break; 829 default: { 830 dbgs() << '=' << printReg(PhysRegState[Reg]); 831 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]); 832 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 833 if (I->Dirty) 834 dbgs() << "*"; 835 assert(I->PhysReg == Reg && "Bad inverse map"); 836 break; 837 } 838 } 839 } 840 dbgs() << '\n'; 841 // Check that LiveVirtRegs is the inverse. 842 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 843 e = LiveVirtRegs.end(); i != e; ++i) { 844 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 845 "Bad map key"); 846 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 847 "Bad map value"); 848 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 849 } 850 } 851 #endif 852 853 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 854 this->MBB = &MBB; 855 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 856 857 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 858 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 859 860 MachineBasicBlock::iterator MII = MBB.begin(); 861 862 // Add live-in registers as live. 863 for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins()) 864 if (MRI->isAllocatable(LI.PhysReg)) 865 definePhysReg(MII, LI.PhysReg, regReserved); 866 867 VirtDead.clear(); 868 Coalesced.clear(); 869 870 // Otherwise, sequentially allocate each instruction in the MBB. 871 for (MachineInstr &MI : MBB) { 872 const MCInstrDesc &MCID = MI.getDesc(); 873 LLVM_DEBUG(dbgs() << "\n>> " << MI << "Regs:"; dumpState()); 874 875 // Debug values are not allowed to change codegen in any way. 876 if (MI.isDebugValue()) { 877 MachineInstr *DebugMI = &MI; 878 MachineOperand &MO = DebugMI->getOperand(0); 879 880 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 881 // mostly constants and frame indices. 882 if (!MO.isReg()) 883 continue; 884 unsigned Reg = MO.getReg(); 885 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 886 continue; 887 888 // See if this virtual register has already been allocated to a physical 889 // register or spilled to a stack slot. 890 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 891 if (LRI != LiveVirtRegs.end()) 892 setPhysReg(*DebugMI, 0, LRI->PhysReg); 893 else { 894 int SS = StackSlotForVirtReg[Reg]; 895 if (SS != -1) { 896 // Modify DBG_VALUE now that the value is in a spill slot. 897 updateDbgValueForSpill(*DebugMI, SS); 898 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" 899 << "\t" << *DebugMI); 900 continue; 901 } 902 903 // We can't allocate a physreg for a DebugValue, sorry! 904 LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 905 MO.setReg(0); 906 } 907 908 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 909 // that future spills of Reg will have DBG_VALUEs. 910 LiveDbgValueMap[Reg].push_back(DebugMI); 911 continue; 912 } 913 914 if (MI.isDebugLabel()) 915 continue; 916 917 // If this is a copy, we may be able to coalesce. 918 unsigned CopySrcReg = 0; 919 unsigned CopyDstReg = 0; 920 unsigned CopySrcSub = 0; 921 unsigned CopyDstSub = 0; 922 if (MI.isCopy()) { 923 CopyDstReg = MI.getOperand(0).getReg(); 924 CopySrcReg = MI.getOperand(1).getReg(); 925 CopyDstSub = MI.getOperand(0).getSubReg(); 926 CopySrcSub = MI.getOperand(1).getSubReg(); 927 } 928 929 // Track registers used by instruction. 930 UsedInInstr.clear(); 931 932 // First scan. 933 // Mark physreg uses and early clobbers as used. 934 // Find the end of the virtreg operands 935 unsigned VirtOpEnd = 0; 936 bool hasTiedOps = false; 937 bool hasEarlyClobbers = false; 938 bool hasPartialRedefs = false; 939 bool hasPhysDefs = false; 940 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 941 MachineOperand &MO = MI.getOperand(i); 942 // Make sure MRI knows about registers clobbered by regmasks. 943 if (MO.isRegMask()) { 944 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 945 continue; 946 } 947 if (!MO.isReg()) continue; 948 unsigned Reg = MO.getReg(); 949 if (!Reg) continue; 950 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 951 VirtOpEnd = i+1; 952 if (MO.isUse()) { 953 hasTiedOps = hasTiedOps || 954 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 955 } else { 956 if (MO.isEarlyClobber()) 957 hasEarlyClobbers = true; 958 if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) 959 hasPartialRedefs = true; 960 } 961 continue; 962 } 963 if (!MRI->isAllocatable(Reg)) continue; 964 if (MO.isUse()) { 965 usePhysReg(MO); 966 } else if (MO.isEarlyClobber()) { 967 definePhysReg(MI, Reg, 968 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); 969 hasEarlyClobbers = true; 970 } else 971 hasPhysDefs = true; 972 } 973 974 // The instruction may have virtual register operands that must be allocated 975 // the same register at use-time and def-time: early clobbers and tied 976 // operands. If there are also physical defs, these registers must avoid 977 // both physical defs and uses, making them more constrained than normal 978 // operands. 979 // Similarly, if there are multiple defs and tied operands, we must make 980 // sure the same register is allocated to uses and defs. 981 // We didn't detect inline asm tied operands above, so just make this extra 982 // pass for all inline asm. 983 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 984 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 985 handleThroughOperands(MI, VirtDead); 986 // Don't attempt coalescing when we have funny stuff going on. 987 CopyDstReg = 0; 988 // Pretend we have early clobbers so the use operands get marked below. 989 // This is not necessary for the common case of a single tied use. 990 hasEarlyClobbers = true; 991 } 992 993 // Second scan. 994 // Allocate virtreg uses. 995 for (unsigned I = 0; I != VirtOpEnd; ++I) { 996 const MachineOperand &MO = MI.getOperand(I); 997 if (!MO.isReg()) continue; 998 unsigned Reg = MO.getReg(); 999 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 1000 if (MO.isUse()) { 1001 LiveRegMap::iterator LRI = reloadVirtReg(MI, I, Reg, CopyDstReg); 1002 MCPhysReg PhysReg = LRI->PhysReg; 1003 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0; 1004 if (setPhysReg(MI, I, PhysReg)) 1005 killVirtReg(LRI); 1006 } 1007 } 1008 1009 // Track registers defined by instruction - early clobbers and tied uses at 1010 // this point. 1011 UsedInInstr.clear(); 1012 if (hasEarlyClobbers) { 1013 for (const MachineOperand &MO : MI.operands()) { 1014 if (!MO.isReg()) continue; 1015 unsigned Reg = MO.getReg(); 1016 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1017 // Look for physreg defs and tied uses. 1018 if (!MO.isDef() && !MO.isTied()) continue; 1019 markRegUsedInInstr(Reg); 1020 } 1021 } 1022 1023 unsigned DefOpEnd = MI.getNumOperands(); 1024 if (MI.isCall()) { 1025 // Spill all virtregs before a call. This serves one purpose: If an 1026 // exception is thrown, the landing pad is going to expect to find 1027 // registers in their spill slots. 1028 // Note: although this is appealing to just consider all definitions 1029 // as call-clobbered, this is not correct because some of those 1030 // definitions may be used later on and we do not want to reuse 1031 // those for virtual registers in between. 1032 LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1033 spillAll(MI); 1034 } 1035 1036 // Third scan. 1037 // Allocate defs and collect dead defs. 1038 for (unsigned I = 0; I != DefOpEnd; ++I) { 1039 const MachineOperand &MO = MI.getOperand(I); 1040 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1041 continue; 1042 unsigned Reg = MO.getReg(); 1043 1044 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1045 if (!MRI->isAllocatable(Reg)) continue; 1046 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); 1047 continue; 1048 } 1049 LiveRegMap::iterator LRI = defineVirtReg(MI, I, Reg, CopySrcReg); 1050 MCPhysReg PhysReg = LRI->PhysReg; 1051 if (setPhysReg(MI, I, PhysReg)) { 1052 VirtDead.push_back(Reg); 1053 CopyDstReg = 0; // cancel coalescing; 1054 } else 1055 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0; 1056 } 1057 1058 // Kill dead defs after the scan to ensure that multiple defs of the same 1059 // register are allocated identically. We didn't need to do this for uses 1060 // because we are crerating our own kill flags, and they are always at the 1061 // last use. 1062 for (unsigned VirtReg : VirtDead) 1063 killVirtReg(VirtReg); 1064 VirtDead.clear(); 1065 1066 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) { 1067 LLVM_DEBUG(dbgs() << "-- coalescing: " << MI); 1068 Coalesced.push_back(&MI); 1069 } else { 1070 LLVM_DEBUG(dbgs() << "<< " << MI); 1071 } 1072 } 1073 1074 // Spill all physical registers holding virtual registers now. 1075 LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1076 spillAll(MBB.getFirstTerminator()); 1077 1078 // Erase all the coalesced copies. We are delaying it until now because 1079 // LiveVirtRegs might refer to the instrs. 1080 for (MachineInstr *MI : Coalesced) 1081 MBB.erase(MI); 1082 NumCopies += Coalesced.size(); 1083 1084 LLVM_DEBUG(MBB.dump()); 1085 } 1086 1087 /// Allocates registers for a function. 1088 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1089 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1090 << "********** Function: " << MF.getName() << '\n'); 1091 MRI = &MF.getRegInfo(); 1092 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1093 TRI = STI.getRegisterInfo(); 1094 TII = STI.getInstrInfo(); 1095 MFI = &MF.getFrameInfo(); 1096 MRI->freezeReservedRegs(MF); 1097 RegClassInfo.runOnMachineFunction(MF); 1098 UsedInInstr.clear(); 1099 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1100 1101 // initialize the virtual->physical register map to have a 'null' 1102 // mapping for all virtual registers 1103 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1104 StackSlotForVirtReg.resize(NumVirtRegs); 1105 LiveVirtRegs.setUniverse(NumVirtRegs); 1106 1107 // Loop over all of the basic blocks, eliminating virtual register references 1108 for (MachineBasicBlock &MBB : MF) 1109 allocateBasicBlock(MBB); 1110 1111 // All machine operands and other references to virtual registers have been 1112 // replaced. Remove the virtual registers. 1113 MRI->clearVirtRegs(); 1114 1115 StackSlotForVirtReg.clear(); 1116 LiveDbgValueMap.clear(); 1117 return true; 1118 } 1119 1120 FunctionPass *llvm::createFastRegisterAllocator() { 1121 return new RegAllocFast(); 1122 } 1123