1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file This register allocator allocates registers to a basic block at a 11 /// time, attempting to keep values in registers and reusing registers as 12 /// appropriate. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/IndexedMap.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/SparseSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/RegAllocRegistry.h" 32 #include "llvm/CodeGen/RegisterClassInfo.h" 33 #include "llvm/IR/DebugInfoMetadata.h" 34 #include "llvm/IR/DebugLoc.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/MC/MCInstrDesc.h" 37 #include "llvm/MC/MCRegisterInfo.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Target/TargetInstrInfo.h" 45 #include "llvm/Target/TargetOpcodes.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include <cassert> 49 #include <tuple> 50 #include <vector> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "regalloc" 55 56 STATISTIC(NumStores, "Number of stores added"); 57 STATISTIC(NumLoads , "Number of loads added"); 58 STATISTIC(NumCopies, "Number of copies coalesced"); 59 60 static RegisterRegAlloc 61 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 62 63 namespace { 64 65 class RegAllocFast : public MachineFunctionPass { 66 public: 67 static char ID; 68 69 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 70 71 private: 72 MachineFrameInfo *MFI; 73 MachineRegisterInfo *MRI; 74 const TargetRegisterInfo *TRI; 75 const TargetInstrInfo *TII; 76 RegisterClassInfo RegClassInfo; 77 78 /// Basic block currently being allocated. 79 MachineBasicBlock *MBB; 80 81 /// Maps virtual regs to the frame index where these values are spilled. 82 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 83 84 /// Everything we know about a live virtual register. 85 struct LiveReg { 86 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 87 unsigned VirtReg; ///< Virtual register number. 88 MCPhysReg PhysReg = 0; ///< Currently held here. 89 unsigned short LastOpNum = 0; ///< OpNum on LastUse. 90 bool Dirty = false; ///< Register needs spill. 91 92 explicit LiveReg(unsigned v) : VirtReg(v) {} 93 94 unsigned getSparseSetIndex() const { 95 return TargetRegisterInfo::virtReg2Index(VirtReg); 96 } 97 }; 98 99 using LiveRegMap = SparseSet<LiveReg>; 100 101 /// This map contains entries for each virtual register that is currently 102 /// available in a physical register. 103 LiveRegMap LiveVirtRegs; 104 105 DenseMap<unsigned, SmallVector<MachineInstr *, 4>> LiveDbgValueMap; 106 107 /// Track the state of a physical register. 108 enum RegState { 109 /// A disabled register is not available for allocation, but an alias may 110 /// be in use. A register can only be moved out of the disabled state if 111 /// all aliases are disabled. 112 regDisabled, 113 114 /// A free register is not currently in use and can be allocated 115 /// immediately without checking aliases. 116 regFree, 117 118 /// A reserved register has been assigned explicitly (e.g., setting up a 119 /// call parameter), and it remains reserved until it is used. 120 regReserved 121 122 /// A register state may also be a virtual register number, indication 123 /// that the physical register is currently allocated to a virtual 124 /// register. In that case, LiveVirtRegs contains the inverse mapping. 125 }; 126 127 /// One of the RegState enums, or a virtreg. 128 std::vector<unsigned> PhysRegState; 129 130 SmallVector<unsigned, 16> VirtDead; 131 SmallVector<MachineInstr *, 32> Coalesced; 132 133 /// Set of register units. 134 using UsedInInstrSet = SparseSet<unsigned>; 135 136 /// Set of register units that are used in the current instruction, and so 137 /// cannot be allocated. 138 UsedInInstrSet UsedInInstr; 139 140 /// Mark a physreg as used in this instruction. 141 void markRegUsedInInstr(MCPhysReg PhysReg) { 142 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 143 UsedInInstr.insert(*Units); 144 } 145 146 /// Check if a physreg or any of its aliases are used in this instruction. 147 bool isRegUsedInInstr(MCPhysReg PhysReg) const { 148 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 149 if (UsedInInstr.count(*Units)) 150 return true; 151 return false; 152 } 153 154 /// This flag is set when LiveRegMap will be cleared completely after 155 /// spilling all live registers. LiveRegMap entries should not be erased. 156 bool isBulkSpilling = false; 157 158 enum : unsigned { 159 spillClean = 1, 160 spillDirty = 100, 161 spillImpossible = ~0u 162 }; 163 164 public: 165 StringRef getPassName() const override { return "Fast Register Allocator"; } 166 167 void getAnalysisUsage(AnalysisUsage &AU) const override { 168 AU.setPreservesCFG(); 169 MachineFunctionPass::getAnalysisUsage(AU); 170 } 171 172 MachineFunctionProperties getRequiredProperties() const override { 173 return MachineFunctionProperties().set( 174 MachineFunctionProperties::Property::NoPHIs); 175 } 176 177 MachineFunctionProperties getSetProperties() const override { 178 return MachineFunctionProperties().set( 179 MachineFunctionProperties::Property::NoVRegs); 180 } 181 182 private: 183 bool runOnMachineFunction(MachineFunction &Fn) override; 184 void allocateBasicBlock(MachineBasicBlock &MBB); 185 void handleThroughOperands(MachineInstr &MI, 186 SmallVectorImpl<unsigned> &VirtDead); 187 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass &RC); 188 bool isLastUseOfLocalReg(const MachineOperand &MO) const; 189 190 void addKillFlag(const LiveReg &LRI); 191 void killVirtReg(LiveRegMap::iterator LRI); 192 void killVirtReg(unsigned VirtReg); 193 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator); 194 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 195 196 void usePhysReg(MachineOperand &MO); 197 void definePhysReg(MachineInstr &MI, MCPhysReg PhysReg, RegState NewState); 198 unsigned calcSpillCost(MCPhysReg PhysReg) const; 199 void assignVirtToPhysReg(LiveReg&, MCPhysReg PhysReg); 200 201 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 202 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 203 } 204 205 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 206 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 207 } 208 209 LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, MCPhysReg PhysReg); 210 LiveRegMap::iterator allocVirtReg(MachineInstr &MI, LiveRegMap::iterator, 211 unsigned Hint); 212 LiveRegMap::iterator defineVirtReg(MachineInstr &MI, unsigned OpNum, 213 unsigned VirtReg, unsigned Hint); 214 LiveRegMap::iterator reloadVirtReg(MachineInstr &MI, unsigned OpNum, 215 unsigned VirtReg, unsigned Hint); 216 void spillAll(MachineBasicBlock::iterator MI); 217 bool setPhysReg(MachineInstr &MI, unsigned OpNum, MCPhysReg PhysReg); 218 219 void dumpState(); 220 }; 221 222 } // end anonymous namespace 223 224 char RegAllocFast::ID = 0; 225 226 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 227 false) 228 229 /// This allocates space for the specified virtual register to be held on the 230 /// stack. 231 int RegAllocFast::getStackSpaceFor(unsigned VirtReg, 232 const TargetRegisterClass &RC) { 233 // Find the location Reg would belong... 234 int SS = StackSlotForVirtReg[VirtReg]; 235 // Already has space allocated? 236 if (SS != -1) 237 return SS; 238 239 // Allocate a new stack object for this spill location... 240 unsigned Size = TRI->getSpillSize(RC); 241 unsigned Align = TRI->getSpillAlignment(RC); 242 int FrameIdx = MFI->CreateSpillStackObject(Size, Align); 243 244 // Assign the slot. 245 StackSlotForVirtReg[VirtReg] = FrameIdx; 246 return FrameIdx; 247 } 248 249 /// Return true if MO is the only remaining reference to its virtual register, 250 /// and it is guaranteed to be a block-local register. 251 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const { 252 // If the register has ever been spilled or reloaded, we conservatively assume 253 // it is a global register used in multiple blocks. 254 if (StackSlotForVirtReg[MO.getReg()] != -1) 255 return false; 256 257 // Check that the use/def chain has exactly one operand - MO. 258 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 259 if (&*I != &MO) 260 return false; 261 return ++I == MRI->reg_nodbg_end(); 262 } 263 264 /// Set kill flags on last use of a virtual register. 265 void RegAllocFast::addKillFlag(const LiveReg &LR) { 266 if (!LR.LastUse) return; 267 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 268 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 269 if (MO.getReg() == LR.PhysReg) 270 MO.setIsKill(); 271 // else, don't do anything we are problably redefining a 272 // subreg of this register and given we don't track which 273 // lanes are actually dead, we cannot insert a kill flag here. 274 // Otherwise we may end up in a situation like this: 275 // ... = (MO) physreg:sub1, physreg <implicit-use, kill> 276 // ... <== Here we would allow later pass to reuse physreg:sub1 277 // which is potentially wrong. 278 // LR:sub0 = ... 279 // ... = LR.sub1 <== This is going to use physreg:sub1 280 } 281 } 282 283 /// Mark virtreg as no longer available. 284 void RegAllocFast::killVirtReg(LiveRegMap::iterator LRI) { 285 addKillFlag(*LRI); 286 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg && 287 "Broken RegState mapping"); 288 PhysRegState[LRI->PhysReg] = regFree; 289 // Erase from LiveVirtRegs unless we're spilling in bulk. 290 if (!isBulkSpilling) 291 LiveVirtRegs.erase(LRI); 292 } 293 294 /// Mark virtreg as no longer available. 295 void RegAllocFast::killVirtReg(unsigned VirtReg) { 296 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 297 "killVirtReg needs a virtual register"); 298 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 299 if (LRI != LiveVirtRegs.end()) 300 killVirtReg(LRI); 301 } 302 303 /// This method spills the value specified by VirtReg into the corresponding 304 /// stack slot if needed. 305 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 306 unsigned VirtReg) { 307 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 308 "Spilling a physical register is illegal!"); 309 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 310 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register"); 311 spillVirtReg(MI, LRI); 312 } 313 314 /// Do the actual work of spilling. 315 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 316 LiveRegMap::iterator LRI) { 317 LiveReg &LR = *LRI; 318 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping"); 319 320 if (LR.Dirty) { 321 // If this physreg is used by the instruction, we want to kill it on the 322 // instruction, not on the spill. 323 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; 324 LR.Dirty = false; 325 DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI) 326 << " in " << PrintReg(LR.PhysReg, TRI)); 327 const TargetRegisterClass &RC = *MRI->getRegClass(LRI->VirtReg); 328 int FI = getStackSpaceFor(LRI->VirtReg, RC); 329 DEBUG(dbgs() << " to stack slot #" << FI << "\n"); 330 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, &RC, TRI); 331 ++NumStores; // Update statistics 332 333 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 334 // identify spilled location as the place to find corresponding variable's 335 // value. 336 SmallVectorImpl<MachineInstr *> &LRIDbgValues = 337 LiveDbgValueMap[LRI->VirtReg]; 338 for (MachineInstr *DBG : LRIDbgValues) { 339 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, MI, *DBG, FI); 340 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 341 (void)NewDV; 342 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV); 343 } 344 // Now this register is spilled there is should not be any DBG_VALUE 345 // pointing to this register because they are all pointing to spilled value 346 // now. 347 LRIDbgValues.clear(); 348 if (SpillKill) 349 LR.LastUse = nullptr; // Don't kill register again 350 } 351 killVirtReg(LRI); 352 } 353 354 /// Spill all dirty virtregs without killing them. 355 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI) { 356 if (LiveVirtRegs.empty()) return; 357 isBulkSpilling = true; 358 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 359 // of spilling here is deterministic, if arbitrary. 360 for (LiveRegMap::iterator I = LiveVirtRegs.begin(), E = LiveVirtRegs.end(); 361 I != E; ++I) 362 spillVirtReg(MI, I); 363 LiveVirtRegs.clear(); 364 isBulkSpilling = false; 365 } 366 367 /// Handle the direct use of a physical register. Check that the register is 368 /// not used by a virtreg. Kill the physreg, marking it free. This may add 369 /// implicit kills to MO->getParent() and invalidate MO. 370 void RegAllocFast::usePhysReg(MachineOperand &MO) { 371 // Ignore undef uses. 372 if (MO.isUndef()) 373 return; 374 375 unsigned PhysReg = MO.getReg(); 376 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 377 "Bad usePhysReg operand"); 378 379 markRegUsedInInstr(PhysReg); 380 switch (PhysRegState[PhysReg]) { 381 case regDisabled: 382 break; 383 case regReserved: 384 PhysRegState[PhysReg] = regFree; 385 LLVM_FALLTHROUGH; 386 case regFree: 387 MO.setIsKill(); 388 return; 389 default: 390 // The physreg was allocated to a virtual register. That means the value we 391 // wanted has been clobbered. 392 llvm_unreachable("Instruction uses an allocated register"); 393 } 394 395 // Maybe a superregister is reserved? 396 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 397 MCPhysReg Alias = *AI; 398 switch (PhysRegState[Alias]) { 399 case regDisabled: 400 break; 401 case regReserved: 402 // Either PhysReg is a subregister of Alias and we mark the 403 // whole register as free, or PhysReg is the superregister of 404 // Alias and we mark all the aliases as disabled before freeing 405 // PhysReg. 406 // In the latter case, since PhysReg was disabled, this means that 407 // its value is defined only by physical sub-registers. This check 408 // is performed by the assert of the default case in this loop. 409 // Note: The value of the superregister may only be partial 410 // defined, that is why regDisabled is a valid state for aliases. 411 assert((TRI->isSuperRegister(PhysReg, Alias) || 412 TRI->isSuperRegister(Alias, PhysReg)) && 413 "Instruction is not using a subregister of a reserved register"); 414 LLVM_FALLTHROUGH; 415 case regFree: 416 if (TRI->isSuperRegister(PhysReg, Alias)) { 417 // Leave the superregister in the working set. 418 PhysRegState[Alias] = regFree; 419 MO.getParent()->addRegisterKilled(Alias, TRI, true); 420 return; 421 } 422 // Some other alias was in the working set - clear it. 423 PhysRegState[Alias] = regDisabled; 424 break; 425 default: 426 llvm_unreachable("Instruction uses an alias of an allocated register"); 427 } 428 } 429 430 // All aliases are disabled, bring register into working set. 431 PhysRegState[PhysReg] = regFree; 432 MO.setIsKill(); 433 } 434 435 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 436 /// similar to defineVirtReg except the physreg is reserved instead of 437 /// allocated. 438 void RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg PhysReg, 439 RegState NewState) { 440 markRegUsedInInstr(PhysReg); 441 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 442 case regDisabled: 443 break; 444 default: 445 spillVirtReg(MI, VirtReg); 446 LLVM_FALLTHROUGH; 447 case regFree: 448 case regReserved: 449 PhysRegState[PhysReg] = NewState; 450 return; 451 } 452 453 // This is a disabled register, disable all aliases. 454 PhysRegState[PhysReg] = NewState; 455 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 456 MCPhysReg Alias = *AI; 457 switch (unsigned VirtReg = PhysRegState[Alias]) { 458 case regDisabled: 459 break; 460 default: 461 spillVirtReg(MI, VirtReg); 462 LLVM_FALLTHROUGH; 463 case regFree: 464 case regReserved: 465 PhysRegState[Alias] = regDisabled; 466 if (TRI->isSuperRegister(PhysReg, Alias)) 467 return; 468 break; 469 } 470 } 471 } 472 473 /// \brief Return the cost of spilling clearing out PhysReg and aliases so it is 474 /// free for allocation. Returns 0 when PhysReg is free or disabled with all 475 /// aliases disabled - it can be allocated directly. 476 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 477 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 478 if (isRegUsedInInstr(PhysReg)) { 479 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n"); 480 return spillImpossible; 481 } 482 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 483 case regDisabled: 484 break; 485 case regFree: 486 return 0; 487 case regReserved: 488 DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding " 489 << PrintReg(PhysReg, TRI) << " is reserved already.\n"); 490 return spillImpossible; 491 default: { 492 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 493 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 494 return I->Dirty ? spillDirty : spillClean; 495 } 496 } 497 498 // This is a disabled register, add up cost of aliases. 499 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n"); 500 unsigned Cost = 0; 501 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 502 MCPhysReg Alias = *AI; 503 switch (unsigned VirtReg = PhysRegState[Alias]) { 504 case regDisabled: 505 break; 506 case regFree: 507 ++Cost; 508 break; 509 case regReserved: 510 return spillImpossible; 511 default: { 512 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 513 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 514 Cost += I->Dirty ? spillDirty : spillClean; 515 break; 516 } 517 } 518 } 519 return Cost; 520 } 521 522 /// \brief This method updates local state so that we know that PhysReg is the 523 /// proper container for VirtReg now. The physical register must not be used 524 /// for anything else when this is called. 525 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) { 526 DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to " 527 << PrintReg(PhysReg, TRI) << "\n"); 528 PhysRegState[PhysReg] = LR.VirtReg; 529 assert(!LR.PhysReg && "Already assigned a physreg"); 530 LR.PhysReg = PhysReg; 531 } 532 533 RegAllocFast::LiveRegMap::iterator 534 RegAllocFast::assignVirtToPhysReg(unsigned VirtReg, MCPhysReg PhysReg) { 535 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 536 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared"); 537 assignVirtToPhysReg(*LRI, PhysReg); 538 return LRI; 539 } 540 541 /// Allocates a physical register for VirtReg. 542 RegAllocFast::LiveRegMap::iterator RegAllocFast::allocVirtReg(MachineInstr &MI, 543 LiveRegMap::iterator LRI, unsigned Hint) { 544 const unsigned VirtReg = LRI->VirtReg; 545 546 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 547 "Can only allocate virtual registers"); 548 549 // Take hint when possible. 550 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 551 if (TargetRegisterInfo::isPhysicalRegister(Hint) && 552 MRI->isAllocatable(Hint) && RC.contains(Hint)) { 553 // Ignore the hint if we would have to spill a dirty register. 554 unsigned Cost = calcSpillCost(Hint); 555 if (Cost < spillDirty) { 556 if (Cost) 557 definePhysReg(MI, Hint, regFree); 558 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 559 // That invalidates LRI, so run a new lookup for VirtReg. 560 return assignVirtToPhysReg(VirtReg, Hint); 561 } 562 } 563 564 // First try to find a completely free register. 565 ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(&RC); 566 for (MCPhysReg PhysReg : AO) { 567 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) { 568 assignVirtToPhysReg(*LRI, PhysReg); 569 return LRI; 570 } 571 } 572 573 DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from " 574 << TRI->getRegClassName(&RC) << "\n"); 575 576 unsigned BestReg = 0; 577 unsigned BestCost = spillImpossible; 578 for (MCPhysReg PhysReg : AO) { 579 unsigned Cost = calcSpillCost(PhysReg); 580 DEBUG(dbgs() << "\tRegister: " << PrintReg(PhysReg, TRI) << "\n"); 581 DEBUG(dbgs() << "\tCost: " << Cost << "\n"); 582 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n"); 583 // Cost is 0 when all aliases are already disabled. 584 if (Cost == 0) { 585 assignVirtToPhysReg(*LRI, PhysReg); 586 return LRI; 587 } 588 if (Cost < BestCost) 589 BestReg = PhysReg, BestCost = Cost; 590 } 591 592 if (BestReg) { 593 definePhysReg(MI, BestReg, regFree); 594 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 595 // That invalidates LRI, so run a new lookup for VirtReg. 596 return assignVirtToPhysReg(VirtReg, BestReg); 597 } 598 599 // Nothing we can do. Report an error and keep going with a bad allocation. 600 if (MI.isInlineAsm()) 601 MI.emitError("inline assembly requires more registers than available"); 602 else 603 MI.emitError("ran out of registers during register allocation"); 604 definePhysReg(MI, *AO.begin(), regFree); 605 return assignVirtToPhysReg(VirtReg, *AO.begin()); 606 } 607 608 /// Allocates a register for VirtReg and mark it as dirty. 609 RegAllocFast::LiveRegMap::iterator RegAllocFast::defineVirtReg(MachineInstr &MI, 610 unsigned OpNum, 611 unsigned VirtReg, 612 unsigned Hint) { 613 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 614 "Not a virtual register"); 615 LiveRegMap::iterator LRI; 616 bool New; 617 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 618 if (New) { 619 // If there is no hint, peek at the only use of this register. 620 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 621 MRI->hasOneNonDBGUse(VirtReg)) { 622 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 623 // It's a copy, use the destination register as a hint. 624 if (UseMI.isCopyLike()) 625 Hint = UseMI.getOperand(0).getReg(); 626 } 627 LRI = allocVirtReg(MI, LRI, Hint); 628 } else if (LRI->LastUse) { 629 // Redefining a live register - kill at the last use, unless it is this 630 // instruction defining VirtReg multiple times. 631 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 632 addKillFlag(*LRI); 633 } 634 assert(LRI->PhysReg && "Register not assigned"); 635 LRI->LastUse = &MI; 636 LRI->LastOpNum = OpNum; 637 LRI->Dirty = true; 638 markRegUsedInInstr(LRI->PhysReg); 639 return LRI; 640 } 641 642 /// Make sure VirtReg is available in a physreg and return it. 643 RegAllocFast::LiveRegMap::iterator RegAllocFast::reloadVirtReg(MachineInstr &MI, 644 unsigned OpNum, 645 unsigned VirtReg, 646 unsigned Hint) { 647 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 648 "Not a virtual register"); 649 LiveRegMap::iterator LRI; 650 bool New; 651 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 652 MachineOperand &MO = MI.getOperand(OpNum); 653 if (New) { 654 LRI = allocVirtReg(MI, LRI, Hint); 655 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 656 int FrameIndex = getStackSpaceFor(VirtReg, RC); 657 DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into " 658 << PrintReg(LRI->PhysReg, TRI) << "\n"); 659 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, &RC, TRI); 660 ++NumLoads; 661 } else if (LRI->Dirty) { 662 if (isLastUseOfLocalReg(MO)) { 663 DEBUG(dbgs() << "Killing last use: " << MO << "\n"); 664 if (MO.isUse()) 665 MO.setIsKill(); 666 else 667 MO.setIsDead(); 668 } else if (MO.isKill()) { 669 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n"); 670 MO.setIsKill(false); 671 } else if (MO.isDead()) { 672 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n"); 673 MO.setIsDead(false); 674 } 675 } else if (MO.isKill()) { 676 // We must remove kill flags from uses of reloaded registers because the 677 // register would be killed immediately, and there might be a second use: 678 // %foo = OR %x<kill>, %x 679 // This would cause a second reload of %x into a different register. 680 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n"); 681 MO.setIsKill(false); 682 } else if (MO.isDead()) { 683 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n"); 684 MO.setIsDead(false); 685 } 686 assert(LRI->PhysReg && "Register not assigned"); 687 LRI->LastUse = &MI; 688 LRI->LastOpNum = OpNum; 689 markRegUsedInInstr(LRI->PhysReg); 690 return LRI; 691 } 692 693 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 694 /// may invalidate any operand pointers. Return true if the operand kills its 695 /// register. 696 bool RegAllocFast::setPhysReg(MachineInstr &MI, unsigned OpNum, 697 MCPhysReg PhysReg) { 698 MachineOperand &MO = MI.getOperand(OpNum); 699 bool Dead = MO.isDead(); 700 if (!MO.getSubReg()) { 701 MO.setReg(PhysReg); 702 return MO.isKill() || Dead; 703 } 704 705 // Handle subregister index. 706 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 707 MO.setSubReg(0); 708 709 // A kill flag implies killing the full register. Add corresponding super 710 // register kill. 711 if (MO.isKill()) { 712 MI.addRegisterKilled(PhysReg, TRI, true); 713 return true; 714 } 715 716 // A <def,read-undef> of a sub-register requires an implicit def of the full 717 // register. 718 if (MO.isDef() && MO.isUndef()) 719 MI.addRegisterDefined(PhysReg, TRI); 720 721 return Dead; 722 } 723 724 // Handles special instruction operand like early clobbers and tied ops when 725 // there are additional physreg defines. 726 void RegAllocFast::handleThroughOperands(MachineInstr &MI, 727 SmallVectorImpl<unsigned> &VirtDead) { 728 DEBUG(dbgs() << "Scanning for through registers:"); 729 SmallSet<unsigned, 8> ThroughRegs; 730 for (const MachineOperand &MO : MI.operands()) { 731 if (!MO.isReg()) continue; 732 unsigned Reg = MO.getReg(); 733 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 734 continue; 735 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) || 736 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) { 737 if (ThroughRegs.insert(Reg).second) 738 DEBUG(dbgs() << ' ' << PrintReg(Reg)); 739 } 740 } 741 742 // If any physreg defines collide with preallocated through registers, 743 // we must spill and reallocate. 744 DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 745 for (const MachineOperand &MO : MI.operands()) { 746 if (!MO.isReg() || !MO.isDef()) continue; 747 unsigned Reg = MO.getReg(); 748 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 749 markRegUsedInInstr(Reg); 750 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 751 if (ThroughRegs.count(PhysRegState[*AI])) 752 definePhysReg(MI, *AI, regFree); 753 } 754 } 755 756 SmallVector<unsigned, 8> PartialDefs; 757 DEBUG(dbgs() << "Allocating tied uses.\n"); 758 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 759 const MachineOperand &MO = MI.getOperand(I); 760 if (!MO.isReg()) continue; 761 unsigned Reg = MO.getReg(); 762 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 763 if (MO.isUse()) { 764 if (!MO.isTied()) continue; 765 DEBUG(dbgs() << "Operand " << I << "("<< MO << ") is tied to operand " 766 << MI.findTiedOperandIdx(I) << ".\n"); 767 LiveRegMap::iterator LRI = reloadVirtReg(MI, I, Reg, 0); 768 MCPhysReg PhysReg = LRI->PhysReg; 769 setPhysReg(MI, I, PhysReg); 770 // Note: we don't update the def operand yet. That would cause the normal 771 // def-scan to attempt spilling. 772 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) { 773 DEBUG(dbgs() << "Partial redefine: " << MO << "\n"); 774 // Reload the register, but don't assign to the operand just yet. 775 // That would confuse the later phys-def processing pass. 776 LiveRegMap::iterator LRI = reloadVirtReg(MI, I, Reg, 0); 777 PartialDefs.push_back(LRI->PhysReg); 778 } 779 } 780 781 DEBUG(dbgs() << "Allocating early clobbers.\n"); 782 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 783 const MachineOperand &MO = MI.getOperand(I); 784 if (!MO.isReg()) continue; 785 unsigned Reg = MO.getReg(); 786 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 787 if (!MO.isEarlyClobber()) 788 continue; 789 // Note: defineVirtReg may invalidate MO. 790 LiveRegMap::iterator LRI = defineVirtReg(MI, I, Reg, 0); 791 MCPhysReg PhysReg = LRI->PhysReg; 792 if (setPhysReg(MI, I, PhysReg)) 793 VirtDead.push_back(Reg); 794 } 795 796 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 797 UsedInInstr.clear(); 798 for (const MachineOperand &MO : MI.operands()) { 799 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 800 unsigned Reg = MO.getReg(); 801 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 802 DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI) 803 << " as used in instr\n"); 804 markRegUsedInInstr(Reg); 805 } 806 807 // Also mark PartialDefs as used to avoid reallocation. 808 for (unsigned PartialDef : PartialDefs) 809 markRegUsedInInstr(PartialDef); 810 } 811 812 #ifndef NDEBUG 813 void RegAllocFast::dumpState() { 814 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 815 if (PhysRegState[Reg] == regDisabled) continue; 816 dbgs() << " " << TRI->getName(Reg); 817 switch(PhysRegState[Reg]) { 818 case regFree: 819 break; 820 case regReserved: 821 dbgs() << "*"; 822 break; 823 default: { 824 dbgs() << '=' << PrintReg(PhysRegState[Reg]); 825 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]); 826 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 827 if (I->Dirty) 828 dbgs() << "*"; 829 assert(I->PhysReg == Reg && "Bad inverse map"); 830 break; 831 } 832 } 833 } 834 dbgs() << '\n'; 835 // Check that LiveVirtRegs is the inverse. 836 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 837 e = LiveVirtRegs.end(); i != e; ++i) { 838 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 839 "Bad map key"); 840 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 841 "Bad map value"); 842 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 843 } 844 } 845 #endif 846 847 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 848 this->MBB = &MBB; 849 DEBUG(dbgs() << "\nAllocating " << MBB); 850 851 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 852 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 853 854 MachineBasicBlock::iterator MII = MBB.begin(); 855 856 // Add live-in registers as live. 857 for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins()) 858 if (MRI->isAllocatable(LI.PhysReg)) 859 definePhysReg(*MII, LI.PhysReg, regReserved); 860 861 VirtDead.clear(); 862 Coalesced.clear(); 863 864 // Otherwise, sequentially allocate each instruction in the MBB. 865 for (MachineInstr &MI : MBB) { 866 const MCInstrDesc &MCID = MI.getDesc(); 867 DEBUG( 868 dbgs() << "\n>> " << MI << "Regs:"; 869 dumpState() 870 ); 871 872 // Debug values are not allowed to change codegen in any way. 873 if (MI.isDebugValue()) { 874 MachineInstr *DebugMI = &MI; 875 MachineOperand &MO = DebugMI->getOperand(0); 876 877 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 878 // mostly constants and frame indices. 879 if (!MO.isReg()) 880 continue; 881 unsigned Reg = MO.getReg(); 882 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 883 continue; 884 885 // See if this virtual register has already been allocated to a physical 886 // register or spilled to a stack slot. 887 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 888 if (LRI != LiveVirtRegs.end()) 889 setPhysReg(*DebugMI, 0, LRI->PhysReg); 890 else { 891 int SS = StackSlotForVirtReg[Reg]; 892 if (SS != -1) { 893 // Modify DBG_VALUE now that the value is in a spill slot. 894 updateDbgValueForSpill(*DebugMI, SS); 895 DEBUG(dbgs() << "Modifying debug info due to spill:" 896 << "\t" << *DebugMI); 897 continue; 898 } 899 900 // We can't allocate a physreg for a DebugValue, sorry! 901 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 902 MO.setReg(0); 903 } 904 905 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 906 // that future spills of Reg will have DBG_VALUEs. 907 LiveDbgValueMap[Reg].push_back(DebugMI); 908 continue; 909 } 910 911 // If this is a copy, we may be able to coalesce. 912 unsigned CopySrcReg = 0; 913 unsigned CopyDstReg = 0; 914 unsigned CopySrcSub = 0; 915 unsigned CopyDstSub = 0; 916 if (MI.isCopy()) { 917 CopyDstReg = MI.getOperand(0).getReg(); 918 CopySrcReg = MI.getOperand(1).getReg(); 919 CopyDstSub = MI.getOperand(0).getSubReg(); 920 CopySrcSub = MI.getOperand(1).getSubReg(); 921 } 922 923 // Track registers used by instruction. 924 UsedInInstr.clear(); 925 926 // First scan. 927 // Mark physreg uses and early clobbers as used. 928 // Find the end of the virtreg operands 929 unsigned VirtOpEnd = 0; 930 bool hasTiedOps = false; 931 bool hasEarlyClobbers = false; 932 bool hasPartialRedefs = false; 933 bool hasPhysDefs = false; 934 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 935 MachineOperand &MO = MI.getOperand(i); 936 // Make sure MRI knows about registers clobbered by regmasks. 937 if (MO.isRegMask()) { 938 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 939 continue; 940 } 941 if (!MO.isReg()) continue; 942 unsigned Reg = MO.getReg(); 943 if (!Reg) continue; 944 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 945 VirtOpEnd = i+1; 946 if (MO.isUse()) { 947 hasTiedOps = hasTiedOps || 948 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 949 } else { 950 if (MO.isEarlyClobber()) 951 hasEarlyClobbers = true; 952 if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) 953 hasPartialRedefs = true; 954 } 955 continue; 956 } 957 if (!MRI->isAllocatable(Reg)) continue; 958 if (MO.isUse()) { 959 usePhysReg(MO); 960 } else if (MO.isEarlyClobber()) { 961 definePhysReg(MI, Reg, 962 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); 963 hasEarlyClobbers = true; 964 } else 965 hasPhysDefs = true; 966 } 967 968 // The instruction may have virtual register operands that must be allocated 969 // the same register at use-time and def-time: early clobbers and tied 970 // operands. If there are also physical defs, these registers must avoid 971 // both physical defs and uses, making them more constrained than normal 972 // operands. 973 // Similarly, if there are multiple defs and tied operands, we must make 974 // sure the same register is allocated to uses and defs. 975 // We didn't detect inline asm tied operands above, so just make this extra 976 // pass for all inline asm. 977 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 978 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 979 handleThroughOperands(MI, VirtDead); 980 // Don't attempt coalescing when we have funny stuff going on. 981 CopyDstReg = 0; 982 // Pretend we have early clobbers so the use operands get marked below. 983 // This is not necessary for the common case of a single tied use. 984 hasEarlyClobbers = true; 985 } 986 987 // Second scan. 988 // Allocate virtreg uses. 989 for (unsigned I = 0; I != VirtOpEnd; ++I) { 990 const MachineOperand &MO = MI.getOperand(I); 991 if (!MO.isReg()) continue; 992 unsigned Reg = MO.getReg(); 993 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 994 if (MO.isUse()) { 995 LiveRegMap::iterator LRI = reloadVirtReg(MI, I, Reg, CopyDstReg); 996 MCPhysReg PhysReg = LRI->PhysReg; 997 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0; 998 if (setPhysReg(MI, I, PhysReg)) 999 killVirtReg(LRI); 1000 } 1001 } 1002 1003 // Track registers defined by instruction - early clobbers and tied uses at 1004 // this point. 1005 UsedInInstr.clear(); 1006 if (hasEarlyClobbers) { 1007 for (const MachineOperand &MO : MI.operands()) { 1008 if (!MO.isReg()) continue; 1009 unsigned Reg = MO.getReg(); 1010 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1011 // Look for physreg defs and tied uses. 1012 if (!MO.isDef() && !MO.isTied()) continue; 1013 markRegUsedInInstr(Reg); 1014 } 1015 } 1016 1017 unsigned DefOpEnd = MI.getNumOperands(); 1018 if (MI.isCall()) { 1019 // Spill all virtregs before a call. This serves one purpose: If an 1020 // exception is thrown, the landing pad is going to expect to find 1021 // registers in their spill slots. 1022 // Note: although this is appealing to just consider all definitions 1023 // as call-clobbered, this is not correct because some of those 1024 // definitions may be used later on and we do not want to reuse 1025 // those for virtual registers in between. 1026 DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1027 spillAll(MI); 1028 } 1029 1030 // Third scan. 1031 // Allocate defs and collect dead defs. 1032 for (unsigned I = 0; I != DefOpEnd; ++I) { 1033 const MachineOperand &MO = MI.getOperand(I); 1034 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1035 continue; 1036 unsigned Reg = MO.getReg(); 1037 1038 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1039 if (!MRI->isAllocatable(Reg)) continue; 1040 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); 1041 continue; 1042 } 1043 LiveRegMap::iterator LRI = defineVirtReg(MI, I, Reg, CopySrcReg); 1044 MCPhysReg PhysReg = LRI->PhysReg; 1045 if (setPhysReg(MI, I, PhysReg)) { 1046 VirtDead.push_back(Reg); 1047 CopyDstReg = 0; // cancel coalescing; 1048 } else 1049 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0; 1050 } 1051 1052 // Kill dead defs after the scan to ensure that multiple defs of the same 1053 // register are allocated identically. We didn't need to do this for uses 1054 // because we are crerating our own kill flags, and they are always at the 1055 // last use. 1056 for (unsigned VirtReg : VirtDead) 1057 killVirtReg(VirtReg); 1058 VirtDead.clear(); 1059 1060 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) { 1061 DEBUG(dbgs() << "-- coalescing: " << MI); 1062 Coalesced.push_back(&MI); 1063 } else { 1064 DEBUG(dbgs() << "<< " << MI); 1065 } 1066 } 1067 1068 // Spill all physical registers holding virtual registers now. 1069 DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1070 spillAll(MBB.getFirstTerminator()); 1071 1072 // Erase all the coalesced copies. We are delaying it until now because 1073 // LiveVirtRegs might refer to the instrs. 1074 for (MachineInstr *MI : Coalesced) 1075 MBB.erase(MI); 1076 NumCopies += Coalesced.size(); 1077 1078 DEBUG(MBB.dump()); 1079 } 1080 1081 /// Allocates registers for a function. 1082 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1083 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1084 << "********** Function: " << MF.getName() << '\n'); 1085 MRI = &MF.getRegInfo(); 1086 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1087 TRI = STI.getRegisterInfo(); 1088 TII = STI.getInstrInfo(); 1089 MFI = &MF.getFrameInfo(); 1090 MRI->freezeReservedRegs(MF); 1091 RegClassInfo.runOnMachineFunction(MF); 1092 UsedInInstr.clear(); 1093 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1094 1095 // initialize the virtual->physical register map to have a 'null' 1096 // mapping for all virtual registers 1097 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1098 StackSlotForVirtReg.resize(NumVirtRegs); 1099 LiveVirtRegs.setUniverse(NumVirtRegs); 1100 1101 // Loop over all of the basic blocks, eliminating virtual register references 1102 for (MachineBasicBlock &MBB : MF) 1103 allocateBasicBlock(MBB); 1104 1105 // All machine operands and other references to virtual registers have been 1106 // replaced. Remove the virtual registers. 1107 MRI->clearVirtRegs(); 1108 1109 StackSlotForVirtReg.clear(); 1110 LiveDbgValueMap.clear(); 1111 return true; 1112 } 1113 1114 FunctionPass *llvm::createFastRegisterAllocator() { 1115 return new RegAllocFast(); 1116 } 1117