1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file This register allocator allocates registers to a basic block at a
11 /// time, attempting to keep values in registers and reusing registers as
12 /// appropriate.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/IndexedMap.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RegAllocRegistry.h"
32 #include "llvm/CodeGen/RegisterClassInfo.h"
33 #include "llvm/IR/DebugInfoMetadata.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/MC/MCInstrDesc.h"
37 #include "llvm/MC/MCRegisterInfo.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Target/TargetInstrInfo.h"
45 #include "llvm/Target/TargetOpcodes.h"
46 #include "llvm/Target/TargetRegisterInfo.h"
47 #include "llvm/Target/TargetSubtargetInfo.h"
48 #include <cassert>
49 #include <tuple>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "regalloc"
55 
56 STATISTIC(NumStores, "Number of stores added");
57 STATISTIC(NumLoads , "Number of loads added");
58 STATISTIC(NumCopies, "Number of copies coalesced");
59 
60 static RegisterRegAlloc
61   fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
62 
63 namespace {
64 
65   class RegAllocFast : public MachineFunctionPass {
66   public:
67     static char ID;
68 
69     RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {}
70 
71   private:
72     MachineFrameInfo *MFI;
73     MachineRegisterInfo *MRI;
74     const TargetRegisterInfo *TRI;
75     const TargetInstrInfo *TII;
76     RegisterClassInfo RegClassInfo;
77 
78     /// Basic block currently being allocated.
79     MachineBasicBlock *MBB;
80 
81     /// Maps virtual regs to the frame index where these values are spilled.
82     IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
83 
84     /// Everything we know about a live virtual register.
85     struct LiveReg {
86       MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
87       unsigned VirtReg;                ///< Virtual register number.
88       MCPhysReg PhysReg = 0;           ///< Currently held here.
89       unsigned short LastOpNum = 0;    ///< OpNum on LastUse.
90       bool Dirty = false;              ///< Register needs spill.
91 
92       explicit LiveReg(unsigned v) : VirtReg(v) {}
93 
94       unsigned getSparseSetIndex() const {
95         return TargetRegisterInfo::virtReg2Index(VirtReg);
96       }
97     };
98 
99     using LiveRegMap = SparseSet<LiveReg>;
100 
101     /// This map contains entries for each virtual register that is currently
102     /// available in a physical register.
103     LiveRegMap LiveVirtRegs;
104 
105     DenseMap<unsigned, SmallVector<MachineInstr *, 4>> LiveDbgValueMap;
106 
107     /// Track the state of a physical register.
108     enum RegState {
109       /// A disabled register is not available for allocation, but an alias may
110       /// be in use. A register can only be moved out of the disabled state if
111       /// all aliases are disabled.
112       regDisabled,
113 
114       /// A free register is not currently in use and can be allocated
115       /// immediately without checking aliases.
116       regFree,
117 
118       /// A reserved register has been assigned explicitly (e.g., setting up a
119       /// call parameter), and it remains reserved until it is used.
120       regReserved
121 
122       /// A register state may also be a virtual register number, indication
123       /// that the physical register is currently allocated to a virtual
124       /// register. In that case, LiveVirtRegs contains the inverse mapping.
125     };
126 
127     /// One of the RegState enums, or a virtreg.
128     std::vector<unsigned> PhysRegState;
129 
130     SmallVector<unsigned, 16> VirtDead;
131     SmallVector<MachineInstr *, 32> Coalesced;
132 
133     /// Set of register units.
134     using UsedInInstrSet = SparseSet<unsigned>;
135 
136     /// Set of register units that are used in the current instruction, and so
137     /// cannot be allocated.
138     UsedInInstrSet UsedInInstr;
139 
140     /// Mark a physreg as used in this instruction.
141     void markRegUsedInInstr(MCPhysReg PhysReg) {
142       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
143         UsedInInstr.insert(*Units);
144     }
145 
146     /// Check if a physreg or any of its aliases are used in this instruction.
147     bool isRegUsedInInstr(MCPhysReg PhysReg) const {
148       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
149         if (UsedInInstr.count(*Units))
150           return true;
151       return false;
152     }
153 
154     /// This flag is set when LiveRegMap will be cleared completely after
155     /// spilling all live registers. LiveRegMap entries should not be erased.
156     bool isBulkSpilling = false;
157 
158     enum : unsigned {
159       spillClean = 1,
160       spillDirty = 100,
161       spillImpossible = ~0u
162     };
163 
164   public:
165     StringRef getPassName() const override { return "Fast Register Allocator"; }
166 
167     void getAnalysisUsage(AnalysisUsage &AU) const override {
168       AU.setPreservesCFG();
169       MachineFunctionPass::getAnalysisUsage(AU);
170     }
171 
172     MachineFunctionProperties getRequiredProperties() const override {
173       return MachineFunctionProperties().set(
174           MachineFunctionProperties::Property::NoPHIs);
175     }
176 
177     MachineFunctionProperties getSetProperties() const override {
178       return MachineFunctionProperties().set(
179           MachineFunctionProperties::Property::NoVRegs);
180     }
181 
182   private:
183     bool runOnMachineFunction(MachineFunction &Fn) override;
184     void allocateBasicBlock(MachineBasicBlock &MBB);
185     void handleThroughOperands(MachineInstr &MI,
186                                SmallVectorImpl<unsigned> &VirtDead);
187     int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass &RC);
188     bool isLastUseOfLocalReg(const MachineOperand &MO) const;
189 
190     void addKillFlag(const LiveReg &LRI);
191     void killVirtReg(LiveRegMap::iterator LRI);
192     void killVirtReg(unsigned VirtReg);
193     void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator);
194     void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
195 
196     void usePhysReg(MachineOperand &MO);
197     void definePhysReg(MachineInstr &MI, MCPhysReg PhysReg, RegState NewState);
198     unsigned calcSpillCost(MCPhysReg PhysReg) const;
199     void assignVirtToPhysReg(LiveReg&, MCPhysReg PhysReg);
200 
201     LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
202       return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
203     }
204 
205     LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
206       return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
207     }
208 
209     LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, MCPhysReg PhysReg);
210     LiveRegMap::iterator allocVirtReg(MachineInstr &MI, LiveRegMap::iterator,
211                                       unsigned Hint);
212     LiveRegMap::iterator defineVirtReg(MachineInstr &MI, unsigned OpNum,
213                                        unsigned VirtReg, unsigned Hint);
214     LiveRegMap::iterator reloadVirtReg(MachineInstr &MI, unsigned OpNum,
215                                        unsigned VirtReg, unsigned Hint);
216     void spillAll(MachineBasicBlock::iterator MI);
217     bool setPhysReg(MachineInstr &MI, unsigned OpNum, MCPhysReg PhysReg);
218 
219     void dumpState();
220   };
221 
222 } // end anonymous namespace
223 
224 char RegAllocFast::ID = 0;
225 
226 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
227                 false)
228 
229 /// This allocates space for the specified virtual register to be held on the
230 /// stack.
231 int RegAllocFast::getStackSpaceFor(unsigned VirtReg,
232                                    const TargetRegisterClass &RC) {
233   // Find the location Reg would belong...
234   int SS = StackSlotForVirtReg[VirtReg];
235   // Already has space allocated?
236   if (SS != -1)
237     return SS;
238 
239   // Allocate a new stack object for this spill location...
240   unsigned Size = TRI->getSpillSize(RC);
241   unsigned Align = TRI->getSpillAlignment(RC);
242   int FrameIdx = MFI->CreateSpillStackObject(Size, Align);
243 
244   // Assign the slot.
245   StackSlotForVirtReg[VirtReg] = FrameIdx;
246   return FrameIdx;
247 }
248 
249 /// Return true if MO is the only remaining reference to its virtual register,
250 /// and it is guaranteed to be a block-local register.
251 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const {
252   // If the register has ever been spilled or reloaded, we conservatively assume
253   // it is a global register used in multiple blocks.
254   if (StackSlotForVirtReg[MO.getReg()] != -1)
255     return false;
256 
257   // Check that the use/def chain has exactly one operand - MO.
258   MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
259   if (&*I != &MO)
260     return false;
261   return ++I == MRI->reg_nodbg_end();
262 }
263 
264 /// Set kill flags on last use of a virtual register.
265 void RegAllocFast::addKillFlag(const LiveReg &LR) {
266   if (!LR.LastUse) return;
267   MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
268   if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
269     if (MO.getReg() == LR.PhysReg)
270       MO.setIsKill();
271     // else, don't do anything we are problably redefining a
272     // subreg of this register and given we don't track which
273     // lanes are actually dead, we cannot insert a kill flag here.
274     // Otherwise we may end up in a situation like this:
275     // ... = (MO) physreg:sub1, physreg <implicit-use, kill>
276     // ... <== Here we would allow later pass to reuse physreg:sub1
277     //         which is potentially wrong.
278     // LR:sub0 = ...
279     // ... = LR.sub1 <== This is going to use physreg:sub1
280   }
281 }
282 
283 /// Mark virtreg as no longer available.
284 void RegAllocFast::killVirtReg(LiveRegMap::iterator LRI) {
285   addKillFlag(*LRI);
286   assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg &&
287          "Broken RegState mapping");
288   PhysRegState[LRI->PhysReg] = regFree;
289   // Erase from LiveVirtRegs unless we're spilling in bulk.
290   if (!isBulkSpilling)
291     LiveVirtRegs.erase(LRI);
292 }
293 
294 /// Mark virtreg as no longer available.
295 void RegAllocFast::killVirtReg(unsigned VirtReg) {
296   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
297          "killVirtReg needs a virtual register");
298   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
299   if (LRI != LiveVirtRegs.end())
300     killVirtReg(LRI);
301 }
302 
303 /// This method spills the value specified by VirtReg into the corresponding
304 /// stack slot if needed.
305 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI,
306                                 unsigned VirtReg) {
307   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
308          "Spilling a physical register is illegal!");
309   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
310   assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register");
311   spillVirtReg(MI, LRI);
312 }
313 
314 /// Do the actual work of spilling.
315 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI,
316                                 LiveRegMap::iterator LRI) {
317   LiveReg &LR = *LRI;
318   assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping");
319 
320   if (LR.Dirty) {
321     // If this physreg is used by the instruction, we want to kill it on the
322     // instruction, not on the spill.
323     bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI;
324     LR.Dirty = false;
325     DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI)
326                  << " in " << PrintReg(LR.PhysReg, TRI));
327     const TargetRegisterClass &RC = *MRI->getRegClass(LRI->VirtReg);
328     int FI = getStackSpaceFor(LRI->VirtReg, RC);
329     DEBUG(dbgs() << " to stack slot #" << FI << "\n");
330     TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, &RC, TRI);
331     ++NumStores;   // Update statistics
332 
333     // If this register is used by DBG_VALUE then insert new DBG_VALUE to
334     // identify spilled location as the place to find corresponding variable's
335     // value.
336     SmallVectorImpl<MachineInstr *> &LRIDbgValues =
337       LiveDbgValueMap[LRI->VirtReg];
338     for (MachineInstr *DBG : LRIDbgValues) {
339       MachineInstr *NewDV = buildDbgValueForSpill(*MBB, MI, *DBG, FI);
340       assert(NewDV->getParent() == MBB && "dangling parent pointer");
341       (void)NewDV;
342       DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV);
343     }
344     // Now this register is spilled there is should not be any DBG_VALUE
345     // pointing to this register because they are all pointing to spilled value
346     // now.
347     LRIDbgValues.clear();
348     if (SpillKill)
349       LR.LastUse = nullptr; // Don't kill register again
350   }
351   killVirtReg(LRI);
352 }
353 
354 /// Spill all dirty virtregs without killing them.
355 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI) {
356   if (LiveVirtRegs.empty()) return;
357   isBulkSpilling = true;
358   // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
359   // of spilling here is deterministic, if arbitrary.
360   for (LiveRegMap::iterator I = LiveVirtRegs.begin(), E = LiveVirtRegs.end();
361        I != E; ++I)
362     spillVirtReg(MI, I);
363   LiveVirtRegs.clear();
364   isBulkSpilling = false;
365 }
366 
367 /// Handle the direct use of a physical register.  Check that the register is
368 /// not used by a virtreg. Kill the physreg, marking it free. This may add
369 /// implicit kills to MO->getParent() and invalidate MO.
370 void RegAllocFast::usePhysReg(MachineOperand &MO) {
371   // Ignore undef uses.
372   if (MO.isUndef())
373     return;
374 
375   unsigned PhysReg = MO.getReg();
376   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
377          "Bad usePhysReg operand");
378 
379   markRegUsedInInstr(PhysReg);
380   switch (PhysRegState[PhysReg]) {
381   case regDisabled:
382     break;
383   case regReserved:
384     PhysRegState[PhysReg] = regFree;
385     LLVM_FALLTHROUGH;
386   case regFree:
387     MO.setIsKill();
388     return;
389   default:
390     // The physreg was allocated to a virtual register. That means the value we
391     // wanted has been clobbered.
392     llvm_unreachable("Instruction uses an allocated register");
393   }
394 
395   // Maybe a superregister is reserved?
396   for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
397     MCPhysReg Alias = *AI;
398     switch (PhysRegState[Alias]) {
399     case regDisabled:
400       break;
401     case regReserved:
402       // Either PhysReg is a subregister of Alias and we mark the
403       // whole register as free, or PhysReg is the superregister of
404       // Alias and we mark all the aliases as disabled before freeing
405       // PhysReg.
406       // In the latter case, since PhysReg was disabled, this means that
407       // its value is defined only by physical sub-registers. This check
408       // is performed by the assert of the default case in this loop.
409       // Note: The value of the superregister may only be partial
410       // defined, that is why regDisabled is a valid state for aliases.
411       assert((TRI->isSuperRegister(PhysReg, Alias) ||
412               TRI->isSuperRegister(Alias, PhysReg)) &&
413              "Instruction is not using a subregister of a reserved register");
414       LLVM_FALLTHROUGH;
415     case regFree:
416       if (TRI->isSuperRegister(PhysReg, Alias)) {
417         // Leave the superregister in the working set.
418         PhysRegState[Alias] = regFree;
419         MO.getParent()->addRegisterKilled(Alias, TRI, true);
420         return;
421       }
422       // Some other alias was in the working set - clear it.
423       PhysRegState[Alias] = regDisabled;
424       break;
425     default:
426       llvm_unreachable("Instruction uses an alias of an allocated register");
427     }
428   }
429 
430   // All aliases are disabled, bring register into working set.
431   PhysRegState[PhysReg] = regFree;
432   MO.setIsKill();
433 }
434 
435 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
436 /// similar to defineVirtReg except the physreg is reserved instead of
437 /// allocated.
438 void RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg PhysReg,
439                                  RegState NewState) {
440   markRegUsedInInstr(PhysReg);
441   switch (unsigned VirtReg = PhysRegState[PhysReg]) {
442   case regDisabled:
443     break;
444   default:
445     spillVirtReg(MI, VirtReg);
446     LLVM_FALLTHROUGH;
447   case regFree:
448   case regReserved:
449     PhysRegState[PhysReg] = NewState;
450     return;
451   }
452 
453   // This is a disabled register, disable all aliases.
454   PhysRegState[PhysReg] = NewState;
455   for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
456     MCPhysReg Alias = *AI;
457     switch (unsigned VirtReg = PhysRegState[Alias]) {
458     case regDisabled:
459       break;
460     default:
461       spillVirtReg(MI, VirtReg);
462       LLVM_FALLTHROUGH;
463     case regFree:
464     case regReserved:
465       PhysRegState[Alias] = regDisabled;
466       if (TRI->isSuperRegister(PhysReg, Alias))
467         return;
468       break;
469     }
470   }
471 }
472 
473 /// \brief Return the cost of spilling clearing out PhysReg and aliases so it is
474 /// free for allocation. Returns 0 when PhysReg is free or disabled with all
475 /// aliases disabled - it can be allocated directly.
476 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
477 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
478   if (isRegUsedInInstr(PhysReg)) {
479     DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n");
480     return spillImpossible;
481   }
482   switch (unsigned VirtReg = PhysRegState[PhysReg]) {
483   case regDisabled:
484     break;
485   case regFree:
486     return 0;
487   case regReserved:
488     DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding "
489                  << PrintReg(PhysReg, TRI) << " is reserved already.\n");
490     return spillImpossible;
491   default: {
492     LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
493     assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
494     return I->Dirty ? spillDirty : spillClean;
495   }
496   }
497 
498   // This is a disabled register, add up cost of aliases.
499   DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n");
500   unsigned Cost = 0;
501   for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
502     MCPhysReg Alias = *AI;
503     switch (unsigned VirtReg = PhysRegState[Alias]) {
504     case regDisabled:
505       break;
506     case regFree:
507       ++Cost;
508       break;
509     case regReserved:
510       return spillImpossible;
511     default: {
512       LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
513       assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
514       Cost += I->Dirty ? spillDirty : spillClean;
515       break;
516     }
517     }
518   }
519   return Cost;
520 }
521 
522 /// \brief This method updates local state so that we know that PhysReg is the
523 /// proper container for VirtReg now.  The physical register must not be used
524 /// for anything else when this is called.
525 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) {
526   DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to "
527                << PrintReg(PhysReg, TRI) << "\n");
528   PhysRegState[PhysReg] = LR.VirtReg;
529   assert(!LR.PhysReg && "Already assigned a physreg");
530   LR.PhysReg = PhysReg;
531 }
532 
533 RegAllocFast::LiveRegMap::iterator
534 RegAllocFast::assignVirtToPhysReg(unsigned VirtReg, MCPhysReg PhysReg) {
535   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
536   assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared");
537   assignVirtToPhysReg(*LRI, PhysReg);
538   return LRI;
539 }
540 
541 /// Allocates a physical register for VirtReg.
542 RegAllocFast::LiveRegMap::iterator RegAllocFast::allocVirtReg(MachineInstr &MI,
543     LiveRegMap::iterator LRI, unsigned Hint) {
544   const unsigned VirtReg = LRI->VirtReg;
545 
546   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
547          "Can only allocate virtual registers");
548 
549   // Take hint when possible.
550   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
551   if (TargetRegisterInfo::isPhysicalRegister(Hint) &&
552       MRI->isAllocatable(Hint) && RC.contains(Hint)) {
553     // Ignore the hint if we would have to spill a dirty register.
554     unsigned Cost = calcSpillCost(Hint);
555     if (Cost < spillDirty) {
556       if (Cost)
557         definePhysReg(MI, Hint, regFree);
558       // definePhysReg may kill virtual registers and modify LiveVirtRegs.
559       // That invalidates LRI, so run a new lookup for VirtReg.
560       return assignVirtToPhysReg(VirtReg, Hint);
561     }
562   }
563 
564   // First try to find a completely free register.
565   ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(&RC);
566   for (MCPhysReg PhysReg : AO) {
567     if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) {
568       assignVirtToPhysReg(*LRI, PhysReg);
569       return LRI;
570     }
571   }
572 
573   DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from "
574                << TRI->getRegClassName(&RC) << "\n");
575 
576   unsigned BestReg = 0;
577   unsigned BestCost = spillImpossible;
578   for (MCPhysReg PhysReg : AO) {
579     unsigned Cost = calcSpillCost(PhysReg);
580     DEBUG(dbgs() << "\tRegister: " << PrintReg(PhysReg, TRI) << "\n");
581     DEBUG(dbgs() << "\tCost: " << Cost << "\n");
582     DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n");
583     // Cost is 0 when all aliases are already disabled.
584     if (Cost == 0) {
585       assignVirtToPhysReg(*LRI, PhysReg);
586       return LRI;
587     }
588     if (Cost < BestCost)
589       BestReg = PhysReg, BestCost = Cost;
590   }
591 
592   if (BestReg) {
593     definePhysReg(MI, BestReg, regFree);
594     // definePhysReg may kill virtual registers and modify LiveVirtRegs.
595     // That invalidates LRI, so run a new lookup for VirtReg.
596     return assignVirtToPhysReg(VirtReg, BestReg);
597   }
598 
599   // Nothing we can do. Report an error and keep going with a bad allocation.
600   if (MI.isInlineAsm())
601     MI.emitError("inline assembly requires more registers than available");
602   else
603     MI.emitError("ran out of registers during register allocation");
604   definePhysReg(MI, *AO.begin(), regFree);
605   return assignVirtToPhysReg(VirtReg, *AO.begin());
606 }
607 
608 /// Allocates a register for VirtReg and mark it as dirty.
609 RegAllocFast::LiveRegMap::iterator RegAllocFast::defineVirtReg(MachineInstr &MI,
610                                                                unsigned OpNum,
611                                                                unsigned VirtReg,
612                                                                unsigned Hint) {
613   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
614          "Not a virtual register");
615   LiveRegMap::iterator LRI;
616   bool New;
617   std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
618   if (New) {
619     // If there is no hint, peek at the only use of this register.
620     if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
621         MRI->hasOneNonDBGUse(VirtReg)) {
622       const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg);
623       // It's a copy, use the destination register as a hint.
624       if (UseMI.isCopyLike())
625         Hint = UseMI.getOperand(0).getReg();
626     }
627     LRI = allocVirtReg(MI, LRI, Hint);
628   } else if (LRI->LastUse) {
629     // Redefining a live register - kill at the last use, unless it is this
630     // instruction defining VirtReg multiple times.
631     if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
632       addKillFlag(*LRI);
633   }
634   assert(LRI->PhysReg && "Register not assigned");
635   LRI->LastUse = &MI;
636   LRI->LastOpNum = OpNum;
637   LRI->Dirty = true;
638   markRegUsedInInstr(LRI->PhysReg);
639   return LRI;
640 }
641 
642 /// Make sure VirtReg is available in a physreg and return it.
643 RegAllocFast::LiveRegMap::iterator RegAllocFast::reloadVirtReg(MachineInstr &MI,
644                                                                unsigned OpNum,
645                                                                unsigned VirtReg,
646                                                                unsigned Hint) {
647   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
648          "Not a virtual register");
649   LiveRegMap::iterator LRI;
650   bool New;
651   std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
652   MachineOperand &MO = MI.getOperand(OpNum);
653   if (New) {
654     LRI = allocVirtReg(MI, LRI, Hint);
655     const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
656     int FrameIndex = getStackSpaceFor(VirtReg, RC);
657     DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into "
658                  << PrintReg(LRI->PhysReg, TRI) << "\n");
659     TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, &RC, TRI);
660     ++NumLoads;
661   } else if (LRI->Dirty) {
662     if (isLastUseOfLocalReg(MO)) {
663       DEBUG(dbgs() << "Killing last use: " << MO << "\n");
664       if (MO.isUse())
665         MO.setIsKill();
666       else
667         MO.setIsDead();
668     } else if (MO.isKill()) {
669       DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
670       MO.setIsKill(false);
671     } else if (MO.isDead()) {
672       DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n");
673       MO.setIsDead(false);
674     }
675   } else if (MO.isKill()) {
676     // We must remove kill flags from uses of reloaded registers because the
677     // register would be killed immediately, and there might be a second use:
678     //   %foo = OR %x<kill>, %x
679     // This would cause a second reload of %x into a different register.
680     DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n");
681     MO.setIsKill(false);
682   } else if (MO.isDead()) {
683     DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n");
684     MO.setIsDead(false);
685   }
686   assert(LRI->PhysReg && "Register not assigned");
687   LRI->LastUse = &MI;
688   LRI->LastOpNum = OpNum;
689   markRegUsedInInstr(LRI->PhysReg);
690   return LRI;
691 }
692 
693 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
694 /// may invalidate any operand pointers.  Return true if the operand kills its
695 /// register.
696 bool RegAllocFast::setPhysReg(MachineInstr &MI, unsigned OpNum,
697                               MCPhysReg PhysReg) {
698   MachineOperand &MO = MI.getOperand(OpNum);
699   bool Dead = MO.isDead();
700   if (!MO.getSubReg()) {
701     MO.setReg(PhysReg);
702     return MO.isKill() || Dead;
703   }
704 
705   // Handle subregister index.
706   MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
707   MO.setSubReg(0);
708 
709   // A kill flag implies killing the full register. Add corresponding super
710   // register kill.
711   if (MO.isKill()) {
712     MI.addRegisterKilled(PhysReg, TRI, true);
713     return true;
714   }
715 
716   // A <def,read-undef> of a sub-register requires an implicit def of the full
717   // register.
718   if (MO.isDef() && MO.isUndef())
719     MI.addRegisterDefined(PhysReg, TRI);
720 
721   return Dead;
722 }
723 
724 // Handles special instruction operand like early clobbers and tied ops when
725 // there are additional physreg defines.
726 void RegAllocFast::handleThroughOperands(MachineInstr &MI,
727                                          SmallVectorImpl<unsigned> &VirtDead) {
728   DEBUG(dbgs() << "Scanning for through registers:");
729   SmallSet<unsigned, 8> ThroughRegs;
730   for (const MachineOperand &MO : MI.operands()) {
731     if (!MO.isReg()) continue;
732     unsigned Reg = MO.getReg();
733     if (!TargetRegisterInfo::isVirtualRegister(Reg))
734       continue;
735     if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) ||
736         (MO.getSubReg() && MI.readsVirtualRegister(Reg))) {
737       if (ThroughRegs.insert(Reg).second)
738         DEBUG(dbgs() << ' ' << PrintReg(Reg));
739     }
740   }
741 
742   // If any physreg defines collide with preallocated through registers,
743   // we must spill and reallocate.
744   DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
745   for (const MachineOperand &MO : MI.operands()) {
746     if (!MO.isReg() || !MO.isDef()) continue;
747     unsigned Reg = MO.getReg();
748     if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
749     markRegUsedInInstr(Reg);
750     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
751       if (ThroughRegs.count(PhysRegState[*AI]))
752         definePhysReg(MI, *AI, regFree);
753     }
754   }
755 
756   SmallVector<unsigned, 8> PartialDefs;
757   DEBUG(dbgs() << "Allocating tied uses.\n");
758   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
759     const MachineOperand &MO = MI.getOperand(I);
760     if (!MO.isReg()) continue;
761     unsigned Reg = MO.getReg();
762     if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
763     if (MO.isUse()) {
764       if (!MO.isTied()) continue;
765       DEBUG(dbgs() << "Operand " << I << "("<< MO << ") is tied to operand "
766         << MI.findTiedOperandIdx(I) << ".\n");
767       LiveRegMap::iterator LRI = reloadVirtReg(MI, I, Reg, 0);
768       MCPhysReg PhysReg = LRI->PhysReg;
769       setPhysReg(MI, I, PhysReg);
770       // Note: we don't update the def operand yet. That would cause the normal
771       // def-scan to attempt spilling.
772     } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) {
773       DEBUG(dbgs() << "Partial redefine: " << MO << "\n");
774       // Reload the register, but don't assign to the operand just yet.
775       // That would confuse the later phys-def processing pass.
776       LiveRegMap::iterator LRI = reloadVirtReg(MI, I, Reg, 0);
777       PartialDefs.push_back(LRI->PhysReg);
778     }
779   }
780 
781   DEBUG(dbgs() << "Allocating early clobbers.\n");
782   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
783     const MachineOperand &MO = MI.getOperand(I);
784     if (!MO.isReg()) continue;
785     unsigned Reg = MO.getReg();
786     if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
787     if (!MO.isEarlyClobber())
788       continue;
789     // Note: defineVirtReg may invalidate MO.
790     LiveRegMap::iterator LRI = defineVirtReg(MI, I, Reg, 0);
791     MCPhysReg PhysReg = LRI->PhysReg;
792     if (setPhysReg(MI, I, PhysReg))
793       VirtDead.push_back(Reg);
794   }
795 
796   // Restore UsedInInstr to a state usable for allocating normal virtual uses.
797   UsedInInstr.clear();
798   for (const MachineOperand &MO : MI.operands()) {
799     if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
800     unsigned Reg = MO.getReg();
801     if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
802     DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI)
803                  << " as used in instr\n");
804     markRegUsedInInstr(Reg);
805   }
806 
807   // Also mark PartialDefs as used to avoid reallocation.
808   for (unsigned PartialDef : PartialDefs)
809     markRegUsedInInstr(PartialDef);
810 }
811 
812 #ifndef NDEBUG
813 void RegAllocFast::dumpState() {
814   for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
815     if (PhysRegState[Reg] == regDisabled) continue;
816     dbgs() << " " << TRI->getName(Reg);
817     switch(PhysRegState[Reg]) {
818     case regFree:
819       break;
820     case regReserved:
821       dbgs() << "*";
822       break;
823     default: {
824       dbgs() << '=' << PrintReg(PhysRegState[Reg]);
825       LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]);
826       assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
827       if (I->Dirty)
828         dbgs() << "*";
829       assert(I->PhysReg == Reg && "Bad inverse map");
830       break;
831     }
832     }
833   }
834   dbgs() << '\n';
835   // Check that LiveVirtRegs is the inverse.
836   for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
837        e = LiveVirtRegs.end(); i != e; ++i) {
838     assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
839            "Bad map key");
840     assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
841            "Bad map value");
842     assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
843   }
844 }
845 #endif
846 
847 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
848   this->MBB = &MBB;
849   DEBUG(dbgs() << "\nAllocating " << MBB);
850 
851   PhysRegState.assign(TRI->getNumRegs(), regDisabled);
852   assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
853 
854   MachineBasicBlock::iterator MII = MBB.begin();
855 
856   // Add live-in registers as live.
857   for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins())
858     if (MRI->isAllocatable(LI.PhysReg))
859       definePhysReg(*MII, LI.PhysReg, regReserved);
860 
861   VirtDead.clear();
862   Coalesced.clear();
863 
864   // Otherwise, sequentially allocate each instruction in the MBB.
865   for (MachineInstr &MI : MBB) {
866     const MCInstrDesc &MCID = MI.getDesc();
867     DEBUG(
868       dbgs() << "\n>> " << MI << "Regs:";
869       dumpState()
870     );
871 
872     // Debug values are not allowed to change codegen in any way.
873     if (MI.isDebugValue()) {
874       MachineInstr *DebugMI = &MI;
875       MachineOperand &MO = DebugMI->getOperand(0);
876 
877       // Ignore DBG_VALUEs that aren't based on virtual registers. These are
878       // mostly constants and frame indices.
879       if (!MO.isReg())
880         continue;
881       unsigned Reg = MO.getReg();
882       if (!TargetRegisterInfo::isVirtualRegister(Reg))
883         continue;
884 
885       // See if this virtual register has already been allocated to a physical
886       // register or spilled to a stack slot.
887       LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
888       if (LRI != LiveVirtRegs.end())
889         setPhysReg(*DebugMI, 0, LRI->PhysReg);
890       else {
891         int SS = StackSlotForVirtReg[Reg];
892         if (SS != -1) {
893           // Modify DBG_VALUE now that the value is in a spill slot.
894           updateDbgValueForSpill(*DebugMI, SS);
895           DEBUG(dbgs() << "Modifying debug info due to spill:"
896                        << "\t" << *DebugMI);
897           continue;
898         }
899 
900         // We can't allocate a physreg for a DebugValue, sorry!
901         DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
902         MO.setReg(0);
903       }
904 
905       // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
906       // that future spills of Reg will have DBG_VALUEs.
907       LiveDbgValueMap[Reg].push_back(DebugMI);
908       continue;
909     }
910 
911     // If this is a copy, we may be able to coalesce.
912     unsigned CopySrcReg = 0;
913     unsigned CopyDstReg = 0;
914     unsigned CopySrcSub = 0;
915     unsigned CopyDstSub = 0;
916     if (MI.isCopy()) {
917       CopyDstReg = MI.getOperand(0).getReg();
918       CopySrcReg = MI.getOperand(1).getReg();
919       CopyDstSub = MI.getOperand(0).getSubReg();
920       CopySrcSub = MI.getOperand(1).getSubReg();
921     }
922 
923     // Track registers used by instruction.
924     UsedInInstr.clear();
925 
926     // First scan.
927     // Mark physreg uses and early clobbers as used.
928     // Find the end of the virtreg operands
929     unsigned VirtOpEnd = 0;
930     bool hasTiedOps = false;
931     bool hasEarlyClobbers = false;
932     bool hasPartialRedefs = false;
933     bool hasPhysDefs = false;
934     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
935       MachineOperand &MO = MI.getOperand(i);
936       // Make sure MRI knows about registers clobbered by regmasks.
937       if (MO.isRegMask()) {
938         MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
939         continue;
940       }
941       if (!MO.isReg()) continue;
942       unsigned Reg = MO.getReg();
943       if (!Reg) continue;
944       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
945         VirtOpEnd = i+1;
946         if (MO.isUse()) {
947           hasTiedOps = hasTiedOps ||
948                               MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
949         } else {
950           if (MO.isEarlyClobber())
951             hasEarlyClobbers = true;
952           if (MO.getSubReg() && MI.readsVirtualRegister(Reg))
953             hasPartialRedefs = true;
954         }
955         continue;
956       }
957       if (!MRI->isAllocatable(Reg)) continue;
958       if (MO.isUse()) {
959         usePhysReg(MO);
960       } else if (MO.isEarlyClobber()) {
961         definePhysReg(MI, Reg,
962                       (MO.isImplicit() || MO.isDead()) ? regFree : regReserved);
963         hasEarlyClobbers = true;
964       } else
965         hasPhysDefs = true;
966     }
967 
968     // The instruction may have virtual register operands that must be allocated
969     // the same register at use-time and def-time: early clobbers and tied
970     // operands. If there are also physical defs, these registers must avoid
971     // both physical defs and uses, making them more constrained than normal
972     // operands.
973     // Similarly, if there are multiple defs and tied operands, we must make
974     // sure the same register is allocated to uses and defs.
975     // We didn't detect inline asm tied operands above, so just make this extra
976     // pass for all inline asm.
977     if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
978         (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
979       handleThroughOperands(MI, VirtDead);
980       // Don't attempt coalescing when we have funny stuff going on.
981       CopyDstReg = 0;
982       // Pretend we have early clobbers so the use operands get marked below.
983       // This is not necessary for the common case of a single tied use.
984       hasEarlyClobbers = true;
985     }
986 
987     // Second scan.
988     // Allocate virtreg uses.
989     for (unsigned I = 0; I != VirtOpEnd; ++I) {
990       const MachineOperand &MO = MI.getOperand(I);
991       if (!MO.isReg()) continue;
992       unsigned Reg = MO.getReg();
993       if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
994       if (MO.isUse()) {
995         LiveRegMap::iterator LRI = reloadVirtReg(MI, I, Reg, CopyDstReg);
996         MCPhysReg PhysReg = LRI->PhysReg;
997         CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0;
998         if (setPhysReg(MI, I, PhysReg))
999           killVirtReg(LRI);
1000       }
1001     }
1002 
1003     // Track registers defined by instruction - early clobbers and tied uses at
1004     // this point.
1005     UsedInInstr.clear();
1006     if (hasEarlyClobbers) {
1007       for (const MachineOperand &MO : MI.operands()) {
1008         if (!MO.isReg()) continue;
1009         unsigned Reg = MO.getReg();
1010         if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1011         // Look for physreg defs and tied uses.
1012         if (!MO.isDef() && !MO.isTied()) continue;
1013         markRegUsedInInstr(Reg);
1014       }
1015     }
1016 
1017     unsigned DefOpEnd = MI.getNumOperands();
1018     if (MI.isCall()) {
1019       // Spill all virtregs before a call. This serves one purpose: If an
1020       // exception is thrown, the landing pad is going to expect to find
1021       // registers in their spill slots.
1022       // Note: although this is appealing to just consider all definitions
1023       // as call-clobbered, this is not correct because some of those
1024       // definitions may be used later on and we do not want to reuse
1025       // those for virtual registers in between.
1026       DEBUG(dbgs() << "  Spilling remaining registers before call.\n");
1027       spillAll(MI);
1028     }
1029 
1030     // Third scan.
1031     // Allocate defs and collect dead defs.
1032     for (unsigned I = 0; I != DefOpEnd; ++I) {
1033       const MachineOperand &MO = MI.getOperand(I);
1034       if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1035         continue;
1036       unsigned Reg = MO.getReg();
1037 
1038       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1039         if (!MRI->isAllocatable(Reg)) continue;
1040         definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved);
1041         continue;
1042       }
1043       LiveRegMap::iterator LRI = defineVirtReg(MI, I, Reg, CopySrcReg);
1044       MCPhysReg PhysReg = LRI->PhysReg;
1045       if (setPhysReg(MI, I, PhysReg)) {
1046         VirtDead.push_back(Reg);
1047         CopyDstReg = 0; // cancel coalescing;
1048       } else
1049         CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0;
1050     }
1051 
1052     // Kill dead defs after the scan to ensure that multiple defs of the same
1053     // register are allocated identically. We didn't need to do this for uses
1054     // because we are crerating our own kill flags, and they are always at the
1055     // last use.
1056     for (unsigned VirtReg : VirtDead)
1057       killVirtReg(VirtReg);
1058     VirtDead.clear();
1059 
1060     if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) {
1061       DEBUG(dbgs() << "-- coalescing: " << MI);
1062       Coalesced.push_back(&MI);
1063     } else {
1064       DEBUG(dbgs() << "<< " << MI);
1065     }
1066   }
1067 
1068   // Spill all physical registers holding virtual registers now.
1069   DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1070   spillAll(MBB.getFirstTerminator());
1071 
1072   // Erase all the coalesced copies. We are delaying it until now because
1073   // LiveVirtRegs might refer to the instrs.
1074   for (MachineInstr *MI : Coalesced)
1075     MBB.erase(MI);
1076   NumCopies += Coalesced.size();
1077 
1078   DEBUG(MBB.dump());
1079 }
1080 
1081 /// Allocates registers for a function.
1082 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
1083   DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1084                << "********** Function: " << MF.getName() << '\n');
1085   MRI = &MF.getRegInfo();
1086   const TargetSubtargetInfo &STI = MF.getSubtarget();
1087   TRI = STI.getRegisterInfo();
1088   TII = STI.getInstrInfo();
1089   MFI = &MF.getFrameInfo();
1090   MRI->freezeReservedRegs(MF);
1091   RegClassInfo.runOnMachineFunction(MF);
1092   UsedInInstr.clear();
1093   UsedInInstr.setUniverse(TRI->getNumRegUnits());
1094 
1095   // initialize the virtual->physical register map to have a 'null'
1096   // mapping for all virtual registers
1097   unsigned NumVirtRegs = MRI->getNumVirtRegs();
1098   StackSlotForVirtReg.resize(NumVirtRegs);
1099   LiveVirtRegs.setUniverse(NumVirtRegs);
1100 
1101   // Loop over all of the basic blocks, eliminating virtual register references
1102   for (MachineBasicBlock &MBB : MF)
1103     allocateBasicBlock(MBB);
1104 
1105   // All machine operands and other references to virtual registers have been
1106   // replaced. Remove the virtual registers.
1107   MRI->clearVirtRegs();
1108 
1109   StackSlotForVirtReg.clear();
1110   LiveDbgValueMap.clear();
1111   return true;
1112 }
1113 
1114 FunctionPass *llvm::createFastRegisterAllocator() {
1115   return new RegAllocFast();
1116 }
1117