1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This register allocator allocates registers to a basic block at a time, 11 // attempting to keep values in registers and reusing registers as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/Passes.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/SparseSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/RegisterClassInfo.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "regalloc" 41 42 STATISTIC(NumStores, "Number of stores added"); 43 STATISTIC(NumLoads , "Number of loads added"); 44 STATISTIC(NumCopies, "Number of copies coalesced"); 45 46 static RegisterRegAlloc 47 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 48 49 namespace { 50 class RAFast : public MachineFunctionPass { 51 public: 52 static char ID; 53 RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1), 54 isBulkSpilling(false) {} 55 private: 56 MachineFunction *MF; 57 MachineRegisterInfo *MRI; 58 const TargetRegisterInfo *TRI; 59 const TargetInstrInfo *TII; 60 RegisterClassInfo RegClassInfo; 61 62 // Basic block currently being allocated. 63 MachineBasicBlock *MBB; 64 65 // StackSlotForVirtReg - Maps virtual regs to the frame index where these 66 // values are spilled. 67 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 68 69 // Everything we know about a live virtual register. 70 struct LiveReg { 71 MachineInstr *LastUse; // Last instr to use reg. 72 unsigned VirtReg; // Virtual register number. 73 unsigned PhysReg; // Currently held here. 74 unsigned short LastOpNum; // OpNum on LastUse. 75 bool Dirty; // Register needs spill. 76 77 explicit LiveReg(unsigned v) 78 : LastUse(nullptr), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false){} 79 80 unsigned getSparseSetIndex() const { 81 return TargetRegisterInfo::virtReg2Index(VirtReg); 82 } 83 }; 84 85 typedef SparseSet<LiveReg> LiveRegMap; 86 87 // LiveVirtRegs - This map contains entries for each virtual register 88 // that is currently available in a physical register. 89 LiveRegMap LiveVirtRegs; 90 91 DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap; 92 93 // RegState - Track the state of a physical register. 94 enum RegState { 95 // A disabled register is not available for allocation, but an alias may 96 // be in use. A register can only be moved out of the disabled state if 97 // all aliases are disabled. 98 regDisabled, 99 100 // A free register is not currently in use and can be allocated 101 // immediately without checking aliases. 102 regFree, 103 104 // A reserved register has been assigned explicitly (e.g., setting up a 105 // call parameter), and it remains reserved until it is used. 106 regReserved 107 108 // A register state may also be a virtual register number, indication that 109 // the physical register is currently allocated to a virtual register. In 110 // that case, LiveVirtRegs contains the inverse mapping. 111 }; 112 113 // PhysRegState - One of the RegState enums, or a virtreg. 114 std::vector<unsigned> PhysRegState; 115 116 // Set of register units. 117 typedef SparseSet<unsigned> UsedInInstrSet; 118 119 // Set of register units that are used in the current instruction, and so 120 // cannot be allocated. 121 UsedInInstrSet UsedInInstr; 122 123 // Mark a physreg as used in this instruction. 124 void markRegUsedInInstr(unsigned PhysReg) { 125 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 126 UsedInInstr.insert(*Units); 127 } 128 129 // Check if a physreg or any of its aliases are used in this instruction. 130 bool isRegUsedInInstr(unsigned PhysReg) const { 131 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 132 if (UsedInInstr.count(*Units)) 133 return true; 134 return false; 135 } 136 137 // SkippedInstrs - Descriptors of instructions whose clobber list was 138 // ignored because all registers were spilled. It is still necessary to 139 // mark all the clobbered registers as used by the function. 140 SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs; 141 142 // isBulkSpilling - This flag is set when LiveRegMap will be cleared 143 // completely after spilling all live registers. LiveRegMap entries should 144 // not be erased. 145 bool isBulkSpilling; 146 147 enum : unsigned { 148 spillClean = 1, 149 spillDirty = 100, 150 spillImpossible = ~0u 151 }; 152 public: 153 const char *getPassName() const override { 154 return "Fast Register Allocator"; 155 } 156 157 void getAnalysisUsage(AnalysisUsage &AU) const override { 158 AU.setPreservesCFG(); 159 MachineFunctionPass::getAnalysisUsage(AU); 160 } 161 162 private: 163 bool runOnMachineFunction(MachineFunction &Fn) override; 164 void AllocateBasicBlock(); 165 void handleThroughOperands(MachineInstr *MI, 166 SmallVectorImpl<unsigned> &VirtDead); 167 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); 168 bool isLastUseOfLocalReg(MachineOperand&); 169 170 void addKillFlag(const LiveReg&); 171 void killVirtReg(LiveRegMap::iterator); 172 void killVirtReg(unsigned VirtReg); 173 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator); 174 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 175 176 void usePhysReg(MachineOperand&); 177 void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState); 178 unsigned calcSpillCost(unsigned PhysReg) const; 179 void assignVirtToPhysReg(LiveReg&, unsigned PhysReg); 180 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 181 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 182 } 183 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 184 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 185 } 186 LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg); 187 LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator, 188 unsigned Hint); 189 LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum, 190 unsigned VirtReg, unsigned Hint); 191 LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum, 192 unsigned VirtReg, unsigned Hint); 193 void spillAll(MachineBasicBlock::iterator MI); 194 bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg); 195 }; 196 char RAFast::ID = 0; 197 } 198 199 /// getStackSpaceFor - This allocates space for the specified virtual register 200 /// to be held on the stack. 201 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { 202 // Find the location Reg would belong... 203 int SS = StackSlotForVirtReg[VirtReg]; 204 if (SS != -1) 205 return SS; // Already has space allocated? 206 207 // Allocate a new stack object for this spill location... 208 int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), 209 RC->getAlignment()); 210 211 // Assign the slot. 212 StackSlotForVirtReg[VirtReg] = FrameIdx; 213 return FrameIdx; 214 } 215 216 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to 217 /// its virtual register, and it is guaranteed to be a block-local register. 218 /// 219 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) { 220 // If the register has ever been spilled or reloaded, we conservatively assume 221 // it is a global register used in multiple blocks. 222 if (StackSlotForVirtReg[MO.getReg()] != -1) 223 return false; 224 225 // Check that the use/def chain has exactly one operand - MO. 226 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 227 if (&*I != &MO) 228 return false; 229 return ++I == MRI->reg_nodbg_end(); 230 } 231 232 /// addKillFlag - Set kill flags on last use of a virtual register. 233 void RAFast::addKillFlag(const LiveReg &LR) { 234 if (!LR.LastUse) return; 235 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 236 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 237 if (MO.getReg() == LR.PhysReg) 238 MO.setIsKill(); 239 else 240 LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true); 241 } 242 } 243 244 /// killVirtReg - Mark virtreg as no longer available. 245 void RAFast::killVirtReg(LiveRegMap::iterator LRI) { 246 addKillFlag(*LRI); 247 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg && 248 "Broken RegState mapping"); 249 PhysRegState[LRI->PhysReg] = regFree; 250 // Erase from LiveVirtRegs unless we're spilling in bulk. 251 if (!isBulkSpilling) 252 LiveVirtRegs.erase(LRI); 253 } 254 255 /// killVirtReg - Mark virtreg as no longer available. 256 void RAFast::killVirtReg(unsigned VirtReg) { 257 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 258 "killVirtReg needs a virtual register"); 259 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 260 if (LRI != LiveVirtRegs.end()) 261 killVirtReg(LRI); 262 } 263 264 /// spillVirtReg - This method spills the value specified by VirtReg into the 265 /// corresponding stack slot if needed. 266 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) { 267 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 268 "Spilling a physical register is illegal!"); 269 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 270 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register"); 271 spillVirtReg(MI, LRI); 272 } 273 274 /// spillVirtReg - Do the actual work of spilling. 275 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, 276 LiveRegMap::iterator LRI) { 277 LiveReg &LR = *LRI; 278 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping"); 279 280 if (LR.Dirty) { 281 // If this physreg is used by the instruction, we want to kill it on the 282 // instruction, not on the spill. 283 bool SpillKill = LR.LastUse != MI; 284 LR.Dirty = false; 285 DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI) 286 << " in " << PrintReg(LR.PhysReg, TRI)); 287 const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg); 288 int FI = getStackSpaceFor(LRI->VirtReg, RC); 289 DEBUG(dbgs() << " to stack slot #" << FI << "\n"); 290 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI); 291 ++NumStores; // Update statistics 292 293 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 294 // identify spilled location as the place to find corresponding variable's 295 // value. 296 SmallVectorImpl<MachineInstr *> &LRIDbgValues = 297 LiveDbgValueMap[LRI->VirtReg]; 298 for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) { 299 MachineInstr *DBG = LRIDbgValues[li]; 300 const MDNode *Var = DBG->getDebugVariable(); 301 const MDNode *Expr = DBG->getDebugExpression(); 302 bool IsIndirect = DBG->isIndirectDebugValue(); 303 uint64_t Offset = IsIndirect ? DBG->getOperand(1).getImm() : 0; 304 DebugLoc DL; 305 if (MI == MBB->end()) { 306 // If MI is at basic block end then use last instruction's location. 307 MachineBasicBlock::iterator EI = MI; 308 DL = (--EI)->getDebugLoc(); 309 } else 310 DL = MI->getDebugLoc(); 311 MachineInstr *NewDV = 312 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::DBG_VALUE)) 313 .addFrameIndex(FI) 314 .addImm(Offset) 315 .addMetadata(Var) 316 .addMetadata(Expr); 317 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 318 (void)NewDV; 319 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV); 320 } 321 // Now this register is spilled there is should not be any DBG_VALUE 322 // pointing to this register because they are all pointing to spilled value 323 // now. 324 LRIDbgValues.clear(); 325 if (SpillKill) 326 LR.LastUse = nullptr; // Don't kill register again 327 } 328 killVirtReg(LRI); 329 } 330 331 /// spillAll - Spill all dirty virtregs without killing them. 332 void RAFast::spillAll(MachineBasicBlock::iterator MI) { 333 if (LiveVirtRegs.empty()) return; 334 isBulkSpilling = true; 335 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 336 // of spilling here is deterministic, if arbitrary. 337 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end(); 338 i != e; ++i) 339 spillVirtReg(MI, i); 340 LiveVirtRegs.clear(); 341 isBulkSpilling = false; 342 } 343 344 /// usePhysReg - Handle the direct use of a physical register. 345 /// Check that the register is not used by a virtreg. 346 /// Kill the physreg, marking it free. 347 /// This may add implicit kills to MO->getParent() and invalidate MO. 348 void RAFast::usePhysReg(MachineOperand &MO) { 349 unsigned PhysReg = MO.getReg(); 350 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 351 "Bad usePhysReg operand"); 352 markRegUsedInInstr(PhysReg); 353 switch (PhysRegState[PhysReg]) { 354 case regDisabled: 355 break; 356 case regReserved: 357 PhysRegState[PhysReg] = regFree; 358 // Fall through 359 case regFree: 360 MO.setIsKill(); 361 return; 362 default: 363 // The physreg was allocated to a virtual register. That means the value we 364 // wanted has been clobbered. 365 llvm_unreachable("Instruction uses an allocated register"); 366 } 367 368 // Maybe a superregister is reserved? 369 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 370 unsigned Alias = *AI; 371 switch (PhysRegState[Alias]) { 372 case regDisabled: 373 break; 374 case regReserved: 375 // Either PhysReg is a subregister of Alias and we mark the 376 // whole register as free, or PhysReg is the superregister of 377 // Alias and we mark all the aliases as disabled before freeing 378 // PhysReg. 379 // In the latter case, since PhysReg was disabled, this means that 380 // its value is defined only by physical sub-registers. This check 381 // is performed by the assert of the default case in this loop. 382 // Note: The value of the superregister may only be partial 383 // defined, that is why regDisabled is a valid state for aliases. 384 assert((TRI->isSuperRegister(PhysReg, Alias) || 385 TRI->isSuperRegister(Alias, PhysReg)) && 386 "Instruction is not using a subregister of a reserved register"); 387 // Fall through. 388 case regFree: 389 if (TRI->isSuperRegister(PhysReg, Alias)) { 390 // Leave the superregister in the working set. 391 PhysRegState[Alias] = regFree; 392 MO.getParent()->addRegisterKilled(Alias, TRI, true); 393 return; 394 } 395 // Some other alias was in the working set - clear it. 396 PhysRegState[Alias] = regDisabled; 397 break; 398 default: 399 llvm_unreachable("Instruction uses an alias of an allocated register"); 400 } 401 } 402 403 // All aliases are disabled, bring register into working set. 404 PhysRegState[PhysReg] = regFree; 405 MO.setIsKill(); 406 } 407 408 /// definePhysReg - Mark PhysReg as reserved or free after spilling any 409 /// virtregs. This is very similar to defineVirtReg except the physreg is 410 /// reserved instead of allocated. 411 void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg, 412 RegState NewState) { 413 markRegUsedInInstr(PhysReg); 414 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 415 case regDisabled: 416 break; 417 default: 418 spillVirtReg(MI, VirtReg); 419 // Fall through. 420 case regFree: 421 case regReserved: 422 PhysRegState[PhysReg] = NewState; 423 return; 424 } 425 426 // This is a disabled register, disable all aliases. 427 PhysRegState[PhysReg] = NewState; 428 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 429 unsigned Alias = *AI; 430 switch (unsigned VirtReg = PhysRegState[Alias]) { 431 case regDisabled: 432 break; 433 default: 434 spillVirtReg(MI, VirtReg); 435 // Fall through. 436 case regFree: 437 case regReserved: 438 PhysRegState[Alias] = regDisabled; 439 if (TRI->isSuperRegister(PhysReg, Alias)) 440 return; 441 break; 442 } 443 } 444 } 445 446 447 // calcSpillCost - Return the cost of spilling clearing out PhysReg and 448 // aliases so it is free for allocation. 449 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it 450 // can be allocated directly. 451 // Returns spillImpossible when PhysReg or an alias can't be spilled. 452 unsigned RAFast::calcSpillCost(unsigned PhysReg) const { 453 if (isRegUsedInInstr(PhysReg)) { 454 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n"); 455 return spillImpossible; 456 } 457 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 458 case regDisabled: 459 break; 460 case regFree: 461 return 0; 462 case regReserved: 463 DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding " 464 << PrintReg(PhysReg, TRI) << " is reserved already.\n"); 465 return spillImpossible; 466 default: { 467 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 468 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 469 return I->Dirty ? spillDirty : spillClean; 470 } 471 } 472 473 // This is a disabled register, add up cost of aliases. 474 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n"); 475 unsigned Cost = 0; 476 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 477 unsigned Alias = *AI; 478 switch (unsigned VirtReg = PhysRegState[Alias]) { 479 case regDisabled: 480 break; 481 case regFree: 482 ++Cost; 483 break; 484 case regReserved: 485 return spillImpossible; 486 default: { 487 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 488 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 489 Cost += I->Dirty ? spillDirty : spillClean; 490 break; 491 } 492 } 493 } 494 return Cost; 495 } 496 497 498 /// assignVirtToPhysReg - This method updates local state so that we know 499 /// that PhysReg is the proper container for VirtReg now. The physical 500 /// register must not be used for anything else when this is called. 501 /// 502 void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) { 503 DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to " 504 << PrintReg(PhysReg, TRI) << "\n"); 505 PhysRegState[PhysReg] = LR.VirtReg; 506 assert(!LR.PhysReg && "Already assigned a physreg"); 507 LR.PhysReg = PhysReg; 508 } 509 510 RAFast::LiveRegMap::iterator 511 RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { 512 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 513 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared"); 514 assignVirtToPhysReg(*LRI, PhysReg); 515 return LRI; 516 } 517 518 /// allocVirtReg - Allocate a physical register for VirtReg. 519 RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI, 520 LiveRegMap::iterator LRI, 521 unsigned Hint) { 522 const unsigned VirtReg = LRI->VirtReg; 523 524 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 525 "Can only allocate virtual registers"); 526 527 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); 528 529 // Ignore invalid hints. 530 if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) || 531 !RC->contains(Hint) || !MRI->isAllocatable(Hint))) 532 Hint = 0; 533 534 // Take hint when possible. 535 if (Hint) { 536 // Ignore the hint if we would have to spill a dirty register. 537 unsigned Cost = calcSpillCost(Hint); 538 if (Cost < spillDirty) { 539 if (Cost) 540 definePhysReg(MI, Hint, regFree); 541 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 542 // That invalidates LRI, so run a new lookup for VirtReg. 543 return assignVirtToPhysReg(VirtReg, Hint); 544 } 545 } 546 547 ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC); 548 549 // First try to find a completely free register. 550 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){ 551 unsigned PhysReg = *I; 552 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) { 553 assignVirtToPhysReg(*LRI, PhysReg); 554 return LRI; 555 } 556 } 557 558 DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from " 559 << TRI->getRegClassName(RC) << "\n"); 560 561 unsigned BestReg = 0, BestCost = spillImpossible; 562 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){ 563 unsigned Cost = calcSpillCost(*I); 564 DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n"); 565 DEBUG(dbgs() << "\tCost: " << Cost << "\n"); 566 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n"); 567 // Cost is 0 when all aliases are already disabled. 568 if (Cost == 0) { 569 assignVirtToPhysReg(*LRI, *I); 570 return LRI; 571 } 572 if (Cost < BestCost) 573 BestReg = *I, BestCost = Cost; 574 } 575 576 if (BestReg) { 577 definePhysReg(MI, BestReg, regFree); 578 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 579 // That invalidates LRI, so run a new lookup for VirtReg. 580 return assignVirtToPhysReg(VirtReg, BestReg); 581 } 582 583 // Nothing we can do. Report an error and keep going with a bad allocation. 584 if (MI->isInlineAsm()) 585 MI->emitError("inline assembly requires more registers than available"); 586 else 587 MI->emitError("ran out of registers during register allocation"); 588 definePhysReg(MI, *AO.begin(), regFree); 589 return assignVirtToPhysReg(VirtReg, *AO.begin()); 590 } 591 592 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty. 593 RAFast::LiveRegMap::iterator 594 RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum, 595 unsigned VirtReg, unsigned Hint) { 596 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 597 "Not a virtual register"); 598 LiveRegMap::iterator LRI; 599 bool New; 600 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 601 if (New) { 602 // If there is no hint, peek at the only use of this register. 603 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 604 MRI->hasOneNonDBGUse(VirtReg)) { 605 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 606 // It's a copy, use the destination register as a hint. 607 if (UseMI.isCopyLike()) 608 Hint = UseMI.getOperand(0).getReg(); 609 } 610 LRI = allocVirtReg(MI, LRI, Hint); 611 } else if (LRI->LastUse) { 612 // Redefining a live register - kill at the last use, unless it is this 613 // instruction defining VirtReg multiple times. 614 if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 615 addKillFlag(*LRI); 616 } 617 assert(LRI->PhysReg && "Register not assigned"); 618 LRI->LastUse = MI; 619 LRI->LastOpNum = OpNum; 620 LRI->Dirty = true; 621 markRegUsedInInstr(LRI->PhysReg); 622 return LRI; 623 } 624 625 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it. 626 RAFast::LiveRegMap::iterator 627 RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum, 628 unsigned VirtReg, unsigned Hint) { 629 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 630 "Not a virtual register"); 631 LiveRegMap::iterator LRI; 632 bool New; 633 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 634 MachineOperand &MO = MI->getOperand(OpNum); 635 if (New) { 636 LRI = allocVirtReg(MI, LRI, Hint); 637 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); 638 int FrameIndex = getStackSpaceFor(VirtReg, RC); 639 DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into " 640 << PrintReg(LRI->PhysReg, TRI) << "\n"); 641 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI); 642 ++NumLoads; 643 } else if (LRI->Dirty) { 644 if (isLastUseOfLocalReg(MO)) { 645 DEBUG(dbgs() << "Killing last use: " << MO << "\n"); 646 if (MO.isUse()) 647 MO.setIsKill(); 648 else 649 MO.setIsDead(); 650 } else if (MO.isKill()) { 651 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n"); 652 MO.setIsKill(false); 653 } else if (MO.isDead()) { 654 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n"); 655 MO.setIsDead(false); 656 } 657 } else if (MO.isKill()) { 658 // We must remove kill flags from uses of reloaded registers because the 659 // register would be killed immediately, and there might be a second use: 660 // %foo = OR %x<kill>, %x 661 // This would cause a second reload of %x into a different register. 662 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n"); 663 MO.setIsKill(false); 664 } else if (MO.isDead()) { 665 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n"); 666 MO.setIsDead(false); 667 } 668 assert(LRI->PhysReg && "Register not assigned"); 669 LRI->LastUse = MI; 670 LRI->LastOpNum = OpNum; 671 markRegUsedInInstr(LRI->PhysReg); 672 return LRI; 673 } 674 675 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering 676 // subregs. This may invalidate any operand pointers. 677 // Return true if the operand kills its register. 678 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) { 679 MachineOperand &MO = MI->getOperand(OpNum); 680 bool Dead = MO.isDead(); 681 if (!MO.getSubReg()) { 682 MO.setReg(PhysReg); 683 return MO.isKill() || Dead; 684 } 685 686 // Handle subregister index. 687 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 688 MO.setSubReg(0); 689 690 // A kill flag implies killing the full register. Add corresponding super 691 // register kill. 692 if (MO.isKill()) { 693 MI->addRegisterKilled(PhysReg, TRI, true); 694 return true; 695 } 696 697 // A <def,read-undef> of a sub-register requires an implicit def of the full 698 // register. 699 if (MO.isDef() && MO.isUndef()) 700 MI->addRegisterDefined(PhysReg, TRI); 701 702 return Dead; 703 } 704 705 // Handle special instruction operand like early clobbers and tied ops when 706 // there are additional physreg defines. 707 void RAFast::handleThroughOperands(MachineInstr *MI, 708 SmallVectorImpl<unsigned> &VirtDead) { 709 DEBUG(dbgs() << "Scanning for through registers:"); 710 SmallSet<unsigned, 8> ThroughRegs; 711 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 712 MachineOperand &MO = MI->getOperand(i); 713 if (!MO.isReg()) continue; 714 unsigned Reg = MO.getReg(); 715 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 716 continue; 717 if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) || 718 (MO.getSubReg() && MI->readsVirtualRegister(Reg))) { 719 if (ThroughRegs.insert(Reg).second) 720 DEBUG(dbgs() << ' ' << PrintReg(Reg)); 721 } 722 } 723 724 // If any physreg defines collide with preallocated through registers, 725 // we must spill and reallocate. 726 DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 727 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 728 MachineOperand &MO = MI->getOperand(i); 729 if (!MO.isReg() || !MO.isDef()) continue; 730 unsigned Reg = MO.getReg(); 731 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 732 markRegUsedInInstr(Reg); 733 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 734 if (ThroughRegs.count(PhysRegState[*AI])) 735 definePhysReg(MI, *AI, regFree); 736 } 737 } 738 739 SmallVector<unsigned, 8> PartialDefs; 740 DEBUG(dbgs() << "Allocating tied uses.\n"); 741 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 742 MachineOperand &MO = MI->getOperand(i); 743 if (!MO.isReg()) continue; 744 unsigned Reg = MO.getReg(); 745 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 746 if (MO.isUse()) { 747 unsigned DefIdx = 0; 748 if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue; 749 DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand " 750 << DefIdx << ".\n"); 751 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); 752 unsigned PhysReg = LRI->PhysReg; 753 setPhysReg(MI, i, PhysReg); 754 // Note: we don't update the def operand yet. That would cause the normal 755 // def-scan to attempt spilling. 756 } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) { 757 DEBUG(dbgs() << "Partial redefine: " << MO << "\n"); 758 // Reload the register, but don't assign to the operand just yet. 759 // That would confuse the later phys-def processing pass. 760 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); 761 PartialDefs.push_back(LRI->PhysReg); 762 } 763 } 764 765 DEBUG(dbgs() << "Allocating early clobbers.\n"); 766 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 767 MachineOperand &MO = MI->getOperand(i); 768 if (!MO.isReg()) continue; 769 unsigned Reg = MO.getReg(); 770 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 771 if (!MO.isEarlyClobber()) 772 continue; 773 // Note: defineVirtReg may invalidate MO. 774 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0); 775 unsigned PhysReg = LRI->PhysReg; 776 if (setPhysReg(MI, i, PhysReg)) 777 VirtDead.push_back(Reg); 778 } 779 780 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 781 UsedInInstr.clear(); 782 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 783 MachineOperand &MO = MI->getOperand(i); 784 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 785 unsigned Reg = MO.getReg(); 786 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 787 DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI) 788 << " as used in instr\n"); 789 markRegUsedInInstr(Reg); 790 } 791 792 // Also mark PartialDefs as used to avoid reallocation. 793 for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i) 794 markRegUsedInInstr(PartialDefs[i]); 795 } 796 797 void RAFast::AllocateBasicBlock() { 798 DEBUG(dbgs() << "\nAllocating " << *MBB); 799 800 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 801 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 802 803 MachineBasicBlock::iterator MII = MBB->begin(); 804 805 // Add live-in registers as live. 806 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 807 E = MBB->livein_end(); I != E; ++I) 808 if (MRI->isAllocatable(*I)) 809 definePhysReg(MII, *I, regReserved); 810 811 SmallVector<unsigned, 8> VirtDead; 812 SmallVector<MachineInstr*, 32> Coalesced; 813 814 // Otherwise, sequentially allocate each instruction in the MBB. 815 while (MII != MBB->end()) { 816 MachineInstr *MI = MII++; 817 const MCInstrDesc &MCID = MI->getDesc(); 818 DEBUG({ 819 dbgs() << "\n>> " << *MI << "Regs:"; 820 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 821 if (PhysRegState[Reg] == regDisabled) continue; 822 dbgs() << " " << TRI->getName(Reg); 823 switch(PhysRegState[Reg]) { 824 case regFree: 825 break; 826 case regReserved: 827 dbgs() << "*"; 828 break; 829 default: { 830 dbgs() << '=' << PrintReg(PhysRegState[Reg]); 831 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]); 832 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 833 if (I->Dirty) 834 dbgs() << "*"; 835 assert(I->PhysReg == Reg && "Bad inverse map"); 836 break; 837 } 838 } 839 } 840 dbgs() << '\n'; 841 // Check that LiveVirtRegs is the inverse. 842 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 843 e = LiveVirtRegs.end(); i != e; ++i) { 844 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 845 "Bad map key"); 846 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 847 "Bad map value"); 848 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 849 } 850 }); 851 852 // Debug values are not allowed to change codegen in any way. 853 if (MI->isDebugValue()) { 854 bool ScanDbgValue = true; 855 while (ScanDbgValue) { 856 ScanDbgValue = false; 857 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 858 MachineOperand &MO = MI->getOperand(i); 859 if (!MO.isReg()) continue; 860 unsigned Reg = MO.getReg(); 861 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 862 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 863 if (LRI != LiveVirtRegs.end()) 864 setPhysReg(MI, i, LRI->PhysReg); 865 else { 866 int SS = StackSlotForVirtReg[Reg]; 867 if (SS == -1) { 868 // We can't allocate a physreg for a DebugValue, sorry! 869 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 870 MO.setReg(0); 871 } 872 else { 873 // Modify DBG_VALUE now that the value is in a spill slot. 874 bool IsIndirect = MI->isIndirectDebugValue(); 875 uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 876 const MDNode *Var = MI->getDebugVariable(); 877 const MDNode *Expr = MI->getDebugExpression(); 878 DebugLoc DL = MI->getDebugLoc(); 879 MachineBasicBlock *MBB = MI->getParent(); 880 MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(MI), DL, 881 TII->get(TargetOpcode::DBG_VALUE)) 882 .addFrameIndex(SS) 883 .addImm(Offset) 884 .addMetadata(Var) 885 .addMetadata(Expr); 886 DEBUG(dbgs() << "Modifying debug info due to spill:" 887 << "\t" << *NewDV); 888 // Scan NewDV operands from the beginning. 889 MI = NewDV; 890 ScanDbgValue = true; 891 break; 892 } 893 } 894 LiveDbgValueMap[Reg].push_back(MI); 895 } 896 } 897 // Next instruction. 898 continue; 899 } 900 901 // If this is a copy, we may be able to coalesce. 902 unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0; 903 if (MI->isCopy()) { 904 CopyDst = MI->getOperand(0).getReg(); 905 CopySrc = MI->getOperand(1).getReg(); 906 CopyDstSub = MI->getOperand(0).getSubReg(); 907 CopySrcSub = MI->getOperand(1).getSubReg(); 908 } 909 910 // Track registers used by instruction. 911 UsedInInstr.clear(); 912 913 // First scan. 914 // Mark physreg uses and early clobbers as used. 915 // Find the end of the virtreg operands 916 unsigned VirtOpEnd = 0; 917 bool hasTiedOps = false; 918 bool hasEarlyClobbers = false; 919 bool hasPartialRedefs = false; 920 bool hasPhysDefs = false; 921 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 922 MachineOperand &MO = MI->getOperand(i); 923 // Make sure MRI knows about registers clobbered by regmasks. 924 if (MO.isRegMask()) { 925 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 926 continue; 927 } 928 if (!MO.isReg()) continue; 929 unsigned Reg = MO.getReg(); 930 if (!Reg) continue; 931 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 932 VirtOpEnd = i+1; 933 if (MO.isUse()) { 934 hasTiedOps = hasTiedOps || 935 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 936 } else { 937 if (MO.isEarlyClobber()) 938 hasEarlyClobbers = true; 939 if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) 940 hasPartialRedefs = true; 941 } 942 continue; 943 } 944 if (!MRI->isAllocatable(Reg)) continue; 945 if (MO.isUse()) { 946 usePhysReg(MO); 947 } else if (MO.isEarlyClobber()) { 948 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? 949 regFree : regReserved); 950 hasEarlyClobbers = true; 951 } else 952 hasPhysDefs = true; 953 } 954 955 // The instruction may have virtual register operands that must be allocated 956 // the same register at use-time and def-time: early clobbers and tied 957 // operands. If there are also physical defs, these registers must avoid 958 // both physical defs and uses, making them more constrained than normal 959 // operands. 960 // Similarly, if there are multiple defs and tied operands, we must make 961 // sure the same register is allocated to uses and defs. 962 // We didn't detect inline asm tied operands above, so just make this extra 963 // pass for all inline asm. 964 if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 965 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 966 handleThroughOperands(MI, VirtDead); 967 // Don't attempt coalescing when we have funny stuff going on. 968 CopyDst = 0; 969 // Pretend we have early clobbers so the use operands get marked below. 970 // This is not necessary for the common case of a single tied use. 971 hasEarlyClobbers = true; 972 } 973 974 // Second scan. 975 // Allocate virtreg uses. 976 for (unsigned i = 0; i != VirtOpEnd; ++i) { 977 MachineOperand &MO = MI->getOperand(i); 978 if (!MO.isReg()) continue; 979 unsigned Reg = MO.getReg(); 980 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 981 if (MO.isUse()) { 982 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst); 983 unsigned PhysReg = LRI->PhysReg; 984 CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0; 985 if (setPhysReg(MI, i, PhysReg)) 986 killVirtReg(LRI); 987 } 988 } 989 990 for (UsedInInstrSet::iterator 991 I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I) 992 MRI->setRegUnitUsed(*I); 993 994 // Track registers defined by instruction - early clobbers and tied uses at 995 // this point. 996 UsedInInstr.clear(); 997 if (hasEarlyClobbers) { 998 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 999 MachineOperand &MO = MI->getOperand(i); 1000 if (!MO.isReg()) continue; 1001 unsigned Reg = MO.getReg(); 1002 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1003 // Look for physreg defs and tied uses. 1004 if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue; 1005 markRegUsedInInstr(Reg); 1006 } 1007 } 1008 1009 unsigned DefOpEnd = MI->getNumOperands(); 1010 if (MI->isCall()) { 1011 // Spill all virtregs before a call. This serves two purposes: 1. If an 1012 // exception is thrown, the landing pad is going to expect to find 1013 // registers in their spill slots, and 2. we don't have to wade through 1014 // all the <imp-def> operands on the call instruction. 1015 DefOpEnd = VirtOpEnd; 1016 DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1017 spillAll(MI); 1018 1019 // The imp-defs are skipped below, but we still need to mark those 1020 // registers as used by the function. 1021 SkippedInstrs.insert(&MCID); 1022 } 1023 1024 // Third scan. 1025 // Allocate defs and collect dead defs. 1026 for (unsigned i = 0; i != DefOpEnd; ++i) { 1027 MachineOperand &MO = MI->getOperand(i); 1028 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1029 continue; 1030 unsigned Reg = MO.getReg(); 1031 1032 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1033 if (!MRI->isAllocatable(Reg)) continue; 1034 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); 1035 continue; 1036 } 1037 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc); 1038 unsigned PhysReg = LRI->PhysReg; 1039 if (setPhysReg(MI, i, PhysReg)) { 1040 VirtDead.push_back(Reg); 1041 CopyDst = 0; // cancel coalescing; 1042 } else 1043 CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0; 1044 } 1045 1046 // Kill dead defs after the scan to ensure that multiple defs of the same 1047 // register are allocated identically. We didn't need to do this for uses 1048 // because we are crerating our own kill flags, and they are always at the 1049 // last use. 1050 for (unsigned i = 0, e = VirtDead.size(); i != e; ++i) 1051 killVirtReg(VirtDead[i]); 1052 VirtDead.clear(); 1053 1054 for (UsedInInstrSet::iterator 1055 I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I) 1056 MRI->setRegUnitUsed(*I); 1057 1058 if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) { 1059 DEBUG(dbgs() << "-- coalescing: " << *MI); 1060 Coalesced.push_back(MI); 1061 } else { 1062 DEBUG(dbgs() << "<< " << *MI); 1063 } 1064 } 1065 1066 // Spill all physical registers holding virtual registers now. 1067 DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1068 spillAll(MBB->getFirstTerminator()); 1069 1070 // Erase all the coalesced copies. We are delaying it until now because 1071 // LiveVirtRegs might refer to the instrs. 1072 for (unsigned i = 0, e = Coalesced.size(); i != e; ++i) 1073 MBB->erase(Coalesced[i]); 1074 NumCopies += Coalesced.size(); 1075 1076 DEBUG(MBB->dump()); 1077 } 1078 1079 /// runOnMachineFunction - Register allocate the whole function 1080 /// 1081 bool RAFast::runOnMachineFunction(MachineFunction &Fn) { 1082 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1083 << "********** Function: " << Fn.getName() << '\n'); 1084 MF = &Fn; 1085 MRI = &MF->getRegInfo(); 1086 TRI = MF->getSubtarget().getRegisterInfo(); 1087 TII = MF->getSubtarget().getInstrInfo(); 1088 MRI->freezeReservedRegs(Fn); 1089 RegClassInfo.runOnMachineFunction(Fn); 1090 UsedInInstr.clear(); 1091 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1092 1093 assert(!MRI->isSSA() && "regalloc requires leaving SSA"); 1094 1095 // initialize the virtual->physical register map to have a 'null' 1096 // mapping for all virtual registers 1097 StackSlotForVirtReg.resize(MRI->getNumVirtRegs()); 1098 LiveVirtRegs.setUniverse(MRI->getNumVirtRegs()); 1099 1100 // Loop over all of the basic blocks, eliminating virtual register references 1101 for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end(); 1102 MBBi != MBBe; ++MBBi) { 1103 MBB = &*MBBi; 1104 AllocateBasicBlock(); 1105 } 1106 1107 // Add the clobber lists for all the instructions we skipped earlier. 1108 for (const MCInstrDesc *Desc : SkippedInstrs) 1109 if (const uint16_t *Defs = Desc->getImplicitDefs()) 1110 while (*Defs) 1111 MRI->setPhysRegUsed(*Defs++); 1112 1113 // All machine operands and other references to virtual registers have been 1114 // replaced. Remove the virtual registers. 1115 MRI->clearVirtRegs(); 1116 1117 SkippedInstrs.clear(); 1118 StackSlotForVirtReg.clear(); 1119 LiveDbgValueMap.clear(); 1120 return true; 1121 } 1122 1123 FunctionPass *llvm::createFastRegisterAllocator() { 1124 return new RAFast(); 1125 } 1126