1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file This register allocator allocates registers to a basic block at a 11 /// time, attempting to keep values in registers and reusing registers as 12 /// appropriate. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/IndexedMap.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/SparseSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/RegAllocRegistry.h" 32 #include "llvm/CodeGen/RegisterClassInfo.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetOpcodes.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/MC/MCInstrDesc.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <cassert> 48 #include <tuple> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumStores, "Number of stores added"); 56 STATISTIC(NumLoads , "Number of loads added"); 57 STATISTIC(NumCopies, "Number of copies coalesced"); 58 59 static RegisterRegAlloc 60 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 61 62 namespace { 63 64 class RegAllocFast : public MachineFunctionPass { 65 public: 66 static char ID; 67 68 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 69 70 private: 71 MachineFrameInfo *MFI; 72 MachineRegisterInfo *MRI; 73 const TargetRegisterInfo *TRI; 74 const TargetInstrInfo *TII; 75 RegisterClassInfo RegClassInfo; 76 77 /// Basic block currently being allocated. 78 MachineBasicBlock *MBB; 79 80 /// Maps virtual regs to the frame index where these values are spilled. 81 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 82 83 /// Everything we know about a live virtual register. 84 struct LiveReg { 85 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 86 unsigned VirtReg; ///< Virtual register number. 87 MCPhysReg PhysReg = 0; ///< Currently held here. 88 unsigned short LastOpNum = 0; ///< OpNum on LastUse. 89 bool Dirty = false; ///< Register needs spill. 90 91 explicit LiveReg(unsigned v) : VirtReg(v) {} 92 93 unsigned getSparseSetIndex() const { 94 return TargetRegisterInfo::virtReg2Index(VirtReg); 95 } 96 }; 97 98 using LiveRegMap = SparseSet<LiveReg>; 99 100 /// This map contains entries for each virtual register that is currently 101 /// available in a physical register. 102 LiveRegMap LiveVirtRegs; 103 104 DenseMap<unsigned, SmallVector<MachineInstr *, 4>> LiveDbgValueMap; 105 106 /// Track the state of a physical register. 107 enum RegState { 108 /// A disabled register is not available for allocation, but an alias may 109 /// be in use. A register can only be moved out of the disabled state if 110 /// all aliases are disabled. 111 regDisabled, 112 113 /// A free register is not currently in use and can be allocated 114 /// immediately without checking aliases. 115 regFree, 116 117 /// A reserved register has been assigned explicitly (e.g., setting up a 118 /// call parameter), and it remains reserved until it is used. 119 regReserved 120 121 /// A register state may also be a virtual register number, indication 122 /// that the physical register is currently allocated to a virtual 123 /// register. In that case, LiveVirtRegs contains the inverse mapping. 124 }; 125 126 /// One of the RegState enums, or a virtreg. 127 std::vector<unsigned> PhysRegState; 128 129 SmallVector<unsigned, 16> VirtDead; 130 SmallVector<MachineInstr *, 32> Coalesced; 131 132 /// Set of register units. 133 using UsedInInstrSet = SparseSet<unsigned>; 134 135 /// Set of register units that are used in the current instruction, and so 136 /// cannot be allocated. 137 UsedInInstrSet UsedInInstr; 138 139 /// Mark a physreg as used in this instruction. 140 void markRegUsedInInstr(MCPhysReg PhysReg) { 141 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 142 UsedInInstr.insert(*Units); 143 } 144 145 /// Check if a physreg or any of its aliases are used in this instruction. 146 bool isRegUsedInInstr(MCPhysReg PhysReg) const { 147 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 148 if (UsedInInstr.count(*Units)) 149 return true; 150 return false; 151 } 152 153 /// This flag is set when LiveRegMap will be cleared completely after 154 /// spilling all live registers. LiveRegMap entries should not be erased. 155 bool isBulkSpilling = false; 156 157 enum : unsigned { 158 spillClean = 1, 159 spillDirty = 100, 160 spillImpossible = ~0u 161 }; 162 163 public: 164 StringRef getPassName() const override { return "Fast Register Allocator"; } 165 166 void getAnalysisUsage(AnalysisUsage &AU) const override { 167 AU.setPreservesCFG(); 168 MachineFunctionPass::getAnalysisUsage(AU); 169 } 170 171 MachineFunctionProperties getRequiredProperties() const override { 172 return MachineFunctionProperties().set( 173 MachineFunctionProperties::Property::NoPHIs); 174 } 175 176 MachineFunctionProperties getSetProperties() const override { 177 return MachineFunctionProperties().set( 178 MachineFunctionProperties::Property::NoVRegs); 179 } 180 181 private: 182 bool runOnMachineFunction(MachineFunction &Fn) override; 183 void allocateBasicBlock(MachineBasicBlock &MBB); 184 void handleThroughOperands(MachineInstr &MI, 185 SmallVectorImpl<unsigned> &VirtDead); 186 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass &RC); 187 bool isLastUseOfLocalReg(const MachineOperand &MO) const; 188 189 void addKillFlag(const LiveReg &LRI); 190 void killVirtReg(LiveRegMap::iterator LRI); 191 void killVirtReg(unsigned VirtReg); 192 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator); 193 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 194 195 void usePhysReg(MachineOperand &MO); 196 void definePhysReg(MachineInstr &MI, MCPhysReg PhysReg, RegState NewState); 197 unsigned calcSpillCost(MCPhysReg PhysReg) const; 198 void assignVirtToPhysReg(LiveReg&, MCPhysReg PhysReg); 199 200 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 201 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 202 } 203 204 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 205 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 206 } 207 208 LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, MCPhysReg PhysReg); 209 LiveRegMap::iterator allocVirtReg(MachineInstr &MI, LiveRegMap::iterator, 210 unsigned Hint); 211 LiveRegMap::iterator defineVirtReg(MachineInstr &MI, unsigned OpNum, 212 unsigned VirtReg, unsigned Hint); 213 LiveRegMap::iterator reloadVirtReg(MachineInstr &MI, unsigned OpNum, 214 unsigned VirtReg, unsigned Hint); 215 void spillAll(MachineBasicBlock::iterator MI); 216 bool setPhysReg(MachineInstr &MI, unsigned OpNum, MCPhysReg PhysReg); 217 218 void dumpState(); 219 }; 220 221 } // end anonymous namespace 222 223 char RegAllocFast::ID = 0; 224 225 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 226 false) 227 228 /// This allocates space for the specified virtual register to be held on the 229 /// stack. 230 int RegAllocFast::getStackSpaceFor(unsigned VirtReg, 231 const TargetRegisterClass &RC) { 232 // Find the location Reg would belong... 233 int SS = StackSlotForVirtReg[VirtReg]; 234 // Already has space allocated? 235 if (SS != -1) 236 return SS; 237 238 // Allocate a new stack object for this spill location... 239 unsigned Size = TRI->getSpillSize(RC); 240 unsigned Align = TRI->getSpillAlignment(RC); 241 int FrameIdx = MFI->CreateSpillStackObject(Size, Align); 242 243 // Assign the slot. 244 StackSlotForVirtReg[VirtReg] = FrameIdx; 245 return FrameIdx; 246 } 247 248 /// Return true if MO is the only remaining reference to its virtual register, 249 /// and it is guaranteed to be a block-local register. 250 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const { 251 // If the register has ever been spilled or reloaded, we conservatively assume 252 // it is a global register used in multiple blocks. 253 if (StackSlotForVirtReg[MO.getReg()] != -1) 254 return false; 255 256 // Check that the use/def chain has exactly one operand - MO. 257 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 258 if (&*I != &MO) 259 return false; 260 return ++I == MRI->reg_nodbg_end(); 261 } 262 263 /// Set kill flags on last use of a virtual register. 264 void RegAllocFast::addKillFlag(const LiveReg &LR) { 265 if (!LR.LastUse) return; 266 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 267 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 268 if (MO.getReg() == LR.PhysReg) 269 MO.setIsKill(); 270 // else, don't do anything we are problably redefining a 271 // subreg of this register and given we don't track which 272 // lanes are actually dead, we cannot insert a kill flag here. 273 // Otherwise we may end up in a situation like this: 274 // ... = (MO) physreg:sub1, implicit killed physreg 275 // ... <== Here we would allow later pass to reuse physreg:sub1 276 // which is potentially wrong. 277 // LR:sub0 = ... 278 // ... = LR.sub1 <== This is going to use physreg:sub1 279 } 280 } 281 282 /// Mark virtreg as no longer available. 283 void RegAllocFast::killVirtReg(LiveRegMap::iterator LRI) { 284 addKillFlag(*LRI); 285 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg && 286 "Broken RegState mapping"); 287 PhysRegState[LRI->PhysReg] = regFree; 288 // Erase from LiveVirtRegs unless we're spilling in bulk. 289 if (!isBulkSpilling) 290 LiveVirtRegs.erase(LRI); 291 } 292 293 /// Mark virtreg as no longer available. 294 void RegAllocFast::killVirtReg(unsigned VirtReg) { 295 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 296 "killVirtReg needs a virtual register"); 297 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 298 if (LRI != LiveVirtRegs.end()) 299 killVirtReg(LRI); 300 } 301 302 /// This method spills the value specified by VirtReg into the corresponding 303 /// stack slot if needed. 304 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 305 unsigned VirtReg) { 306 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 307 "Spilling a physical register is illegal!"); 308 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 309 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register"); 310 spillVirtReg(MI, LRI); 311 } 312 313 /// Do the actual work of spilling. 314 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 315 LiveRegMap::iterator LRI) { 316 LiveReg &LR = *LRI; 317 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping"); 318 319 if (LR.Dirty) { 320 // If this physreg is used by the instruction, we want to kill it on the 321 // instruction, not on the spill. 322 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; 323 LR.Dirty = false; 324 DEBUG(dbgs() << "Spilling " << printReg(LRI->VirtReg, TRI) 325 << " in " << printReg(LR.PhysReg, TRI)); 326 const TargetRegisterClass &RC = *MRI->getRegClass(LRI->VirtReg); 327 int FI = getStackSpaceFor(LRI->VirtReg, RC); 328 DEBUG(dbgs() << " to stack slot #" << FI << "\n"); 329 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, &RC, TRI); 330 ++NumStores; // Update statistics 331 332 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 333 // identify spilled location as the place to find corresponding variable's 334 // value. 335 SmallVectorImpl<MachineInstr *> &LRIDbgValues = 336 LiveDbgValueMap[LRI->VirtReg]; 337 for (MachineInstr *DBG : LRIDbgValues) { 338 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, MI, *DBG, FI); 339 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 340 (void)NewDV; 341 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV); 342 } 343 // Now this register is spilled there is should not be any DBG_VALUE 344 // pointing to this register because they are all pointing to spilled value 345 // now. 346 LRIDbgValues.clear(); 347 if (SpillKill) 348 LR.LastUse = nullptr; // Don't kill register again 349 } 350 killVirtReg(LRI); 351 } 352 353 /// Spill all dirty virtregs without killing them. 354 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI) { 355 if (LiveVirtRegs.empty()) return; 356 isBulkSpilling = true; 357 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 358 // of spilling here is deterministic, if arbitrary. 359 for (LiveRegMap::iterator I = LiveVirtRegs.begin(), E = LiveVirtRegs.end(); 360 I != E; ++I) 361 spillVirtReg(MI, I); 362 LiveVirtRegs.clear(); 363 isBulkSpilling = false; 364 } 365 366 /// Handle the direct use of a physical register. Check that the register is 367 /// not used by a virtreg. Kill the physreg, marking it free. This may add 368 /// implicit kills to MO->getParent() and invalidate MO. 369 void RegAllocFast::usePhysReg(MachineOperand &MO) { 370 // Ignore undef uses. 371 if (MO.isUndef()) 372 return; 373 374 unsigned PhysReg = MO.getReg(); 375 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 376 "Bad usePhysReg operand"); 377 378 markRegUsedInInstr(PhysReg); 379 switch (PhysRegState[PhysReg]) { 380 case regDisabled: 381 break; 382 case regReserved: 383 PhysRegState[PhysReg] = regFree; 384 LLVM_FALLTHROUGH; 385 case regFree: 386 MO.setIsKill(); 387 return; 388 default: 389 // The physreg was allocated to a virtual register. That means the value we 390 // wanted has been clobbered. 391 llvm_unreachable("Instruction uses an allocated register"); 392 } 393 394 // Maybe a superregister is reserved? 395 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 396 MCPhysReg Alias = *AI; 397 switch (PhysRegState[Alias]) { 398 case regDisabled: 399 break; 400 case regReserved: 401 // Either PhysReg is a subregister of Alias and we mark the 402 // whole register as free, or PhysReg is the superregister of 403 // Alias and we mark all the aliases as disabled before freeing 404 // PhysReg. 405 // In the latter case, since PhysReg was disabled, this means that 406 // its value is defined only by physical sub-registers. This check 407 // is performed by the assert of the default case in this loop. 408 // Note: The value of the superregister may only be partial 409 // defined, that is why regDisabled is a valid state for aliases. 410 assert((TRI->isSuperRegister(PhysReg, Alias) || 411 TRI->isSuperRegister(Alias, PhysReg)) && 412 "Instruction is not using a subregister of a reserved register"); 413 LLVM_FALLTHROUGH; 414 case regFree: 415 if (TRI->isSuperRegister(PhysReg, Alias)) { 416 // Leave the superregister in the working set. 417 PhysRegState[Alias] = regFree; 418 MO.getParent()->addRegisterKilled(Alias, TRI, true); 419 return; 420 } 421 // Some other alias was in the working set - clear it. 422 PhysRegState[Alias] = regDisabled; 423 break; 424 default: 425 llvm_unreachable("Instruction uses an alias of an allocated register"); 426 } 427 } 428 429 // All aliases are disabled, bring register into working set. 430 PhysRegState[PhysReg] = regFree; 431 MO.setIsKill(); 432 } 433 434 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 435 /// similar to defineVirtReg except the physreg is reserved instead of 436 /// allocated. 437 void RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg PhysReg, 438 RegState NewState) { 439 markRegUsedInInstr(PhysReg); 440 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 441 case regDisabled: 442 break; 443 default: 444 spillVirtReg(MI, VirtReg); 445 LLVM_FALLTHROUGH; 446 case regFree: 447 case regReserved: 448 PhysRegState[PhysReg] = NewState; 449 return; 450 } 451 452 // This is a disabled register, disable all aliases. 453 PhysRegState[PhysReg] = NewState; 454 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 455 MCPhysReg Alias = *AI; 456 switch (unsigned VirtReg = PhysRegState[Alias]) { 457 case regDisabled: 458 break; 459 default: 460 spillVirtReg(MI, VirtReg); 461 LLVM_FALLTHROUGH; 462 case regFree: 463 case regReserved: 464 PhysRegState[Alias] = regDisabled; 465 if (TRI->isSuperRegister(PhysReg, Alias)) 466 return; 467 break; 468 } 469 } 470 } 471 472 /// \brief Return the cost of spilling clearing out PhysReg and aliases so it is 473 /// free for allocation. Returns 0 when PhysReg is free or disabled with all 474 /// aliases disabled - it can be allocated directly. 475 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 476 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 477 if (isRegUsedInInstr(PhysReg)) { 478 DEBUG(dbgs() << printReg(PhysReg, TRI) << " is already used in instr.\n"); 479 return spillImpossible; 480 } 481 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 482 case regDisabled: 483 break; 484 case regFree: 485 return 0; 486 case regReserved: 487 DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding " 488 << printReg(PhysReg, TRI) << " is reserved already.\n"); 489 return spillImpossible; 490 default: { 491 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 492 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 493 return I->Dirty ? spillDirty : spillClean; 494 } 495 } 496 497 // This is a disabled register, add up cost of aliases. 498 DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n"); 499 unsigned Cost = 0; 500 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 501 MCPhysReg Alias = *AI; 502 switch (unsigned VirtReg = PhysRegState[Alias]) { 503 case regDisabled: 504 break; 505 case regFree: 506 ++Cost; 507 break; 508 case regReserved: 509 return spillImpossible; 510 default: { 511 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 512 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 513 Cost += I->Dirty ? spillDirty : spillClean; 514 break; 515 } 516 } 517 } 518 return Cost; 519 } 520 521 /// \brief This method updates local state so that we know that PhysReg is the 522 /// proper container for VirtReg now. The physical register must not be used 523 /// for anything else when this is called. 524 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) { 525 DEBUG(dbgs() << "Assigning " << printReg(LR.VirtReg, TRI) << " to " 526 << printReg(PhysReg, TRI) << "\n"); 527 PhysRegState[PhysReg] = LR.VirtReg; 528 assert(!LR.PhysReg && "Already assigned a physreg"); 529 LR.PhysReg = PhysReg; 530 } 531 532 RegAllocFast::LiveRegMap::iterator 533 RegAllocFast::assignVirtToPhysReg(unsigned VirtReg, MCPhysReg PhysReg) { 534 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 535 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared"); 536 assignVirtToPhysReg(*LRI, PhysReg); 537 return LRI; 538 } 539 540 /// Allocates a physical register for VirtReg. 541 RegAllocFast::LiveRegMap::iterator RegAllocFast::allocVirtReg(MachineInstr &MI, 542 LiveRegMap::iterator LRI, unsigned Hint) { 543 const unsigned VirtReg = LRI->VirtReg; 544 545 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 546 "Can only allocate virtual registers"); 547 548 // Take hint when possible. 549 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 550 if (TargetRegisterInfo::isPhysicalRegister(Hint) && 551 MRI->isAllocatable(Hint) && RC.contains(Hint)) { 552 // Ignore the hint if we would have to spill a dirty register. 553 unsigned Cost = calcSpillCost(Hint); 554 if (Cost < spillDirty) { 555 if (Cost) 556 definePhysReg(MI, Hint, regFree); 557 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 558 // That invalidates LRI, so run a new lookup for VirtReg. 559 return assignVirtToPhysReg(VirtReg, Hint); 560 } 561 } 562 563 // First try to find a completely free register. 564 ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(&RC); 565 for (MCPhysReg PhysReg : AO) { 566 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) { 567 assignVirtToPhysReg(*LRI, PhysReg); 568 return LRI; 569 } 570 } 571 572 DEBUG(dbgs() << "Allocating " << printReg(VirtReg) << " from " 573 << TRI->getRegClassName(&RC) << "\n"); 574 575 unsigned BestReg = 0; 576 unsigned BestCost = spillImpossible; 577 for (MCPhysReg PhysReg : AO) { 578 unsigned Cost = calcSpillCost(PhysReg); 579 DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << "\n"); 580 DEBUG(dbgs() << "\tCost: " << Cost << "\n"); 581 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n"); 582 // Cost is 0 when all aliases are already disabled. 583 if (Cost == 0) { 584 assignVirtToPhysReg(*LRI, PhysReg); 585 return LRI; 586 } 587 if (Cost < BestCost) 588 BestReg = PhysReg, BestCost = Cost; 589 } 590 591 if (BestReg) { 592 definePhysReg(MI, BestReg, regFree); 593 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 594 // That invalidates LRI, so run a new lookup for VirtReg. 595 return assignVirtToPhysReg(VirtReg, BestReg); 596 } 597 598 // Nothing we can do. Report an error and keep going with a bad allocation. 599 if (MI.isInlineAsm()) 600 MI.emitError("inline assembly requires more registers than available"); 601 else 602 MI.emitError("ran out of registers during register allocation"); 603 definePhysReg(MI, *AO.begin(), regFree); 604 return assignVirtToPhysReg(VirtReg, *AO.begin()); 605 } 606 607 /// Allocates a register for VirtReg and mark it as dirty. 608 RegAllocFast::LiveRegMap::iterator RegAllocFast::defineVirtReg(MachineInstr &MI, 609 unsigned OpNum, 610 unsigned VirtReg, 611 unsigned Hint) { 612 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 613 "Not a virtual register"); 614 LiveRegMap::iterator LRI; 615 bool New; 616 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 617 if (New) { 618 // If there is no hint, peek at the only use of this register. 619 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 620 MRI->hasOneNonDBGUse(VirtReg)) { 621 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 622 // It's a copy, use the destination register as a hint. 623 if (UseMI.isCopyLike()) 624 Hint = UseMI.getOperand(0).getReg(); 625 } 626 LRI = allocVirtReg(MI, LRI, Hint); 627 } else if (LRI->LastUse) { 628 // Redefining a live register - kill at the last use, unless it is this 629 // instruction defining VirtReg multiple times. 630 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 631 addKillFlag(*LRI); 632 } 633 assert(LRI->PhysReg && "Register not assigned"); 634 LRI->LastUse = &MI; 635 LRI->LastOpNum = OpNum; 636 LRI->Dirty = true; 637 markRegUsedInInstr(LRI->PhysReg); 638 return LRI; 639 } 640 641 /// Make sure VirtReg is available in a physreg and return it. 642 RegAllocFast::LiveRegMap::iterator RegAllocFast::reloadVirtReg(MachineInstr &MI, 643 unsigned OpNum, 644 unsigned VirtReg, 645 unsigned Hint) { 646 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 647 "Not a virtual register"); 648 LiveRegMap::iterator LRI; 649 bool New; 650 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 651 MachineOperand &MO = MI.getOperand(OpNum); 652 if (New) { 653 LRI = allocVirtReg(MI, LRI, Hint); 654 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 655 int FrameIndex = getStackSpaceFor(VirtReg, RC); 656 DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 657 << printReg(LRI->PhysReg, TRI) << "\n"); 658 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, &RC, TRI); 659 ++NumLoads; 660 } else if (LRI->Dirty) { 661 if (isLastUseOfLocalReg(MO)) { 662 DEBUG(dbgs() << "Killing last use: " << MO << "\n"); 663 if (MO.isUse()) 664 MO.setIsKill(); 665 else 666 MO.setIsDead(); 667 } else if (MO.isKill()) { 668 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n"); 669 MO.setIsKill(false); 670 } else if (MO.isDead()) { 671 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n"); 672 MO.setIsDead(false); 673 } 674 } else if (MO.isKill()) { 675 // We must remove kill flags from uses of reloaded registers because the 676 // register would be killed immediately, and there might be a second use: 677 // %foo = OR killed %x, %x 678 // This would cause a second reload of %x into a different register. 679 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n"); 680 MO.setIsKill(false); 681 } else if (MO.isDead()) { 682 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n"); 683 MO.setIsDead(false); 684 } 685 assert(LRI->PhysReg && "Register not assigned"); 686 LRI->LastUse = &MI; 687 LRI->LastOpNum = OpNum; 688 markRegUsedInInstr(LRI->PhysReg); 689 return LRI; 690 } 691 692 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 693 /// may invalidate any operand pointers. Return true if the operand kills its 694 /// register. 695 bool RegAllocFast::setPhysReg(MachineInstr &MI, unsigned OpNum, 696 MCPhysReg PhysReg) { 697 MachineOperand &MO = MI.getOperand(OpNum); 698 bool Dead = MO.isDead(); 699 if (!MO.getSubReg()) { 700 MO.setReg(PhysReg); 701 MO.setIsRenamableIfNoExtraRegAllocReq(); 702 return MO.isKill() || Dead; 703 } 704 705 // Handle subregister index. 706 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 707 MO.setIsRenamableIfNoExtraRegAllocReq(); 708 MO.setSubReg(0); 709 710 // A kill flag implies killing the full register. Add corresponding super 711 // register kill. 712 if (MO.isKill()) { 713 MI.addRegisterKilled(PhysReg, TRI, true); 714 return true; 715 } 716 717 // A <def,read-undef> of a sub-register requires an implicit def of the full 718 // register. 719 if (MO.isDef() && MO.isUndef()) 720 MI.addRegisterDefined(PhysReg, TRI); 721 722 return Dead; 723 } 724 725 // Handles special instruction operand like early clobbers and tied ops when 726 // there are additional physreg defines. 727 void RegAllocFast::handleThroughOperands(MachineInstr &MI, 728 SmallVectorImpl<unsigned> &VirtDead) { 729 DEBUG(dbgs() << "Scanning for through registers:"); 730 SmallSet<unsigned, 8> ThroughRegs; 731 for (const MachineOperand &MO : MI.operands()) { 732 if (!MO.isReg()) continue; 733 unsigned Reg = MO.getReg(); 734 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 735 continue; 736 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) || 737 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) { 738 if (ThroughRegs.insert(Reg).second) 739 DEBUG(dbgs() << ' ' << printReg(Reg)); 740 } 741 } 742 743 // If any physreg defines collide with preallocated through registers, 744 // we must spill and reallocate. 745 DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 746 for (const MachineOperand &MO : MI.operands()) { 747 if (!MO.isReg() || !MO.isDef()) continue; 748 unsigned Reg = MO.getReg(); 749 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 750 markRegUsedInInstr(Reg); 751 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 752 if (ThroughRegs.count(PhysRegState[*AI])) 753 definePhysReg(MI, *AI, regFree); 754 } 755 } 756 757 SmallVector<unsigned, 8> PartialDefs; 758 DEBUG(dbgs() << "Allocating tied uses.\n"); 759 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 760 const MachineOperand &MO = MI.getOperand(I); 761 if (!MO.isReg()) continue; 762 unsigned Reg = MO.getReg(); 763 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 764 if (MO.isUse()) { 765 if (!MO.isTied()) continue; 766 DEBUG(dbgs() << "Operand " << I << "("<< MO << ") is tied to operand " 767 << MI.findTiedOperandIdx(I) << ".\n"); 768 LiveRegMap::iterator LRI = reloadVirtReg(MI, I, Reg, 0); 769 MCPhysReg PhysReg = LRI->PhysReg; 770 setPhysReg(MI, I, PhysReg); 771 // Note: we don't update the def operand yet. That would cause the normal 772 // def-scan to attempt spilling. 773 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) { 774 DEBUG(dbgs() << "Partial redefine: " << MO << "\n"); 775 // Reload the register, but don't assign to the operand just yet. 776 // That would confuse the later phys-def processing pass. 777 LiveRegMap::iterator LRI = reloadVirtReg(MI, I, Reg, 0); 778 PartialDefs.push_back(LRI->PhysReg); 779 } 780 } 781 782 DEBUG(dbgs() << "Allocating early clobbers.\n"); 783 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 784 const MachineOperand &MO = MI.getOperand(I); 785 if (!MO.isReg()) continue; 786 unsigned Reg = MO.getReg(); 787 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 788 if (!MO.isEarlyClobber()) 789 continue; 790 // Note: defineVirtReg may invalidate MO. 791 LiveRegMap::iterator LRI = defineVirtReg(MI, I, Reg, 0); 792 MCPhysReg PhysReg = LRI->PhysReg; 793 if (setPhysReg(MI, I, PhysReg)) 794 VirtDead.push_back(Reg); 795 } 796 797 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 798 UsedInInstr.clear(); 799 for (const MachineOperand &MO : MI.operands()) { 800 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 801 unsigned Reg = MO.getReg(); 802 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 803 DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI) 804 << " as used in instr\n"); 805 markRegUsedInInstr(Reg); 806 } 807 808 // Also mark PartialDefs as used to avoid reallocation. 809 for (unsigned PartialDef : PartialDefs) 810 markRegUsedInInstr(PartialDef); 811 } 812 813 #ifndef NDEBUG 814 void RegAllocFast::dumpState() { 815 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 816 if (PhysRegState[Reg] == regDisabled) continue; 817 dbgs() << " " << printReg(Reg, TRI); 818 switch(PhysRegState[Reg]) { 819 case regFree: 820 break; 821 case regReserved: 822 dbgs() << "*"; 823 break; 824 default: { 825 dbgs() << '=' << printReg(PhysRegState[Reg]); 826 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]); 827 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 828 if (I->Dirty) 829 dbgs() << "*"; 830 assert(I->PhysReg == Reg && "Bad inverse map"); 831 break; 832 } 833 } 834 } 835 dbgs() << '\n'; 836 // Check that LiveVirtRegs is the inverse. 837 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 838 e = LiveVirtRegs.end(); i != e; ++i) { 839 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 840 "Bad map key"); 841 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 842 "Bad map value"); 843 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 844 } 845 } 846 #endif 847 848 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 849 this->MBB = &MBB; 850 DEBUG(dbgs() << "\nAllocating " << MBB); 851 852 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 853 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 854 855 MachineBasicBlock::iterator MII = MBB.begin(); 856 857 // Add live-in registers as live. 858 for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins()) 859 if (MRI->isAllocatable(LI.PhysReg)) 860 definePhysReg(*MII, LI.PhysReg, regReserved); 861 862 VirtDead.clear(); 863 Coalesced.clear(); 864 865 // Otherwise, sequentially allocate each instruction in the MBB. 866 for (MachineInstr &MI : MBB) { 867 const MCInstrDesc &MCID = MI.getDesc(); 868 DEBUG( 869 dbgs() << "\n>> " << MI << "Regs:"; 870 dumpState() 871 ); 872 873 // Debug values are not allowed to change codegen in any way. 874 if (MI.isDebugValue()) { 875 MachineInstr *DebugMI = &MI; 876 MachineOperand &MO = DebugMI->getOperand(0); 877 878 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 879 // mostly constants and frame indices. 880 if (!MO.isReg()) 881 continue; 882 unsigned Reg = MO.getReg(); 883 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 884 continue; 885 886 // See if this virtual register has already been allocated to a physical 887 // register or spilled to a stack slot. 888 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 889 if (LRI != LiveVirtRegs.end()) 890 setPhysReg(*DebugMI, 0, LRI->PhysReg); 891 else { 892 int SS = StackSlotForVirtReg[Reg]; 893 if (SS != -1) { 894 // Modify DBG_VALUE now that the value is in a spill slot. 895 updateDbgValueForSpill(*DebugMI, SS); 896 DEBUG(dbgs() << "Modifying debug info due to spill:" 897 << "\t" << *DebugMI); 898 continue; 899 } 900 901 // We can't allocate a physreg for a DebugValue, sorry! 902 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 903 MO.setReg(0); 904 } 905 906 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 907 // that future spills of Reg will have DBG_VALUEs. 908 LiveDbgValueMap[Reg].push_back(DebugMI); 909 continue; 910 } 911 912 // If this is a copy, we may be able to coalesce. 913 unsigned CopySrcReg = 0; 914 unsigned CopyDstReg = 0; 915 unsigned CopySrcSub = 0; 916 unsigned CopyDstSub = 0; 917 if (MI.isCopy()) { 918 CopyDstReg = MI.getOperand(0).getReg(); 919 CopySrcReg = MI.getOperand(1).getReg(); 920 CopyDstSub = MI.getOperand(0).getSubReg(); 921 CopySrcSub = MI.getOperand(1).getSubReg(); 922 } 923 924 // Track registers used by instruction. 925 UsedInInstr.clear(); 926 927 // First scan. 928 // Mark physreg uses and early clobbers as used. 929 // Find the end of the virtreg operands 930 unsigned VirtOpEnd = 0; 931 bool hasTiedOps = false; 932 bool hasEarlyClobbers = false; 933 bool hasPartialRedefs = false; 934 bool hasPhysDefs = false; 935 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 936 MachineOperand &MO = MI.getOperand(i); 937 // Make sure MRI knows about registers clobbered by regmasks. 938 if (MO.isRegMask()) { 939 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 940 continue; 941 } 942 if (!MO.isReg()) continue; 943 unsigned Reg = MO.getReg(); 944 if (!Reg) continue; 945 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 946 VirtOpEnd = i+1; 947 if (MO.isUse()) { 948 hasTiedOps = hasTiedOps || 949 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 950 } else { 951 if (MO.isEarlyClobber()) 952 hasEarlyClobbers = true; 953 if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) 954 hasPartialRedefs = true; 955 } 956 continue; 957 } 958 if (!MRI->isAllocatable(Reg)) continue; 959 if (MO.isUse()) { 960 usePhysReg(MO); 961 } else if (MO.isEarlyClobber()) { 962 definePhysReg(MI, Reg, 963 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); 964 hasEarlyClobbers = true; 965 } else 966 hasPhysDefs = true; 967 } 968 969 // The instruction may have virtual register operands that must be allocated 970 // the same register at use-time and def-time: early clobbers and tied 971 // operands. If there are also physical defs, these registers must avoid 972 // both physical defs and uses, making them more constrained than normal 973 // operands. 974 // Similarly, if there are multiple defs and tied operands, we must make 975 // sure the same register is allocated to uses and defs. 976 // We didn't detect inline asm tied operands above, so just make this extra 977 // pass for all inline asm. 978 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 979 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 980 handleThroughOperands(MI, VirtDead); 981 // Don't attempt coalescing when we have funny stuff going on. 982 CopyDstReg = 0; 983 // Pretend we have early clobbers so the use operands get marked below. 984 // This is not necessary for the common case of a single tied use. 985 hasEarlyClobbers = true; 986 } 987 988 // Second scan. 989 // Allocate virtreg uses. 990 for (unsigned I = 0; I != VirtOpEnd; ++I) { 991 const MachineOperand &MO = MI.getOperand(I); 992 if (!MO.isReg()) continue; 993 unsigned Reg = MO.getReg(); 994 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 995 if (MO.isUse()) { 996 LiveRegMap::iterator LRI = reloadVirtReg(MI, I, Reg, CopyDstReg); 997 MCPhysReg PhysReg = LRI->PhysReg; 998 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0; 999 if (setPhysReg(MI, I, PhysReg)) 1000 killVirtReg(LRI); 1001 } 1002 } 1003 1004 // Track registers defined by instruction - early clobbers and tied uses at 1005 // this point. 1006 UsedInInstr.clear(); 1007 if (hasEarlyClobbers) { 1008 for (const MachineOperand &MO : MI.operands()) { 1009 if (!MO.isReg()) continue; 1010 unsigned Reg = MO.getReg(); 1011 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1012 // Look for physreg defs and tied uses. 1013 if (!MO.isDef() && !MO.isTied()) continue; 1014 markRegUsedInInstr(Reg); 1015 } 1016 } 1017 1018 unsigned DefOpEnd = MI.getNumOperands(); 1019 if (MI.isCall()) { 1020 // Spill all virtregs before a call. This serves one purpose: If an 1021 // exception is thrown, the landing pad is going to expect to find 1022 // registers in their spill slots. 1023 // Note: although this is appealing to just consider all definitions 1024 // as call-clobbered, this is not correct because some of those 1025 // definitions may be used later on and we do not want to reuse 1026 // those for virtual registers in between. 1027 DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1028 spillAll(MI); 1029 } 1030 1031 // Third scan. 1032 // Allocate defs and collect dead defs. 1033 for (unsigned I = 0; I != DefOpEnd; ++I) { 1034 const MachineOperand &MO = MI.getOperand(I); 1035 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1036 continue; 1037 unsigned Reg = MO.getReg(); 1038 1039 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1040 if (!MRI->isAllocatable(Reg)) continue; 1041 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); 1042 continue; 1043 } 1044 LiveRegMap::iterator LRI = defineVirtReg(MI, I, Reg, CopySrcReg); 1045 MCPhysReg PhysReg = LRI->PhysReg; 1046 if (setPhysReg(MI, I, PhysReg)) { 1047 VirtDead.push_back(Reg); 1048 CopyDstReg = 0; // cancel coalescing; 1049 } else 1050 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0; 1051 } 1052 1053 // Kill dead defs after the scan to ensure that multiple defs of the same 1054 // register are allocated identically. We didn't need to do this for uses 1055 // because we are crerating our own kill flags, and they are always at the 1056 // last use. 1057 for (unsigned VirtReg : VirtDead) 1058 killVirtReg(VirtReg); 1059 VirtDead.clear(); 1060 1061 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) { 1062 DEBUG(dbgs() << "-- coalescing: " << MI); 1063 Coalesced.push_back(&MI); 1064 } else { 1065 DEBUG(dbgs() << "<< " << MI); 1066 } 1067 } 1068 1069 // Spill all physical registers holding virtual registers now. 1070 DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1071 spillAll(MBB.getFirstTerminator()); 1072 1073 // Erase all the coalesced copies. We are delaying it until now because 1074 // LiveVirtRegs might refer to the instrs. 1075 for (MachineInstr *MI : Coalesced) 1076 MBB.erase(MI); 1077 NumCopies += Coalesced.size(); 1078 1079 DEBUG(MBB.dump()); 1080 } 1081 1082 /// Allocates registers for a function. 1083 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1084 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1085 << "********** Function: " << MF.getName() << '\n'); 1086 MRI = &MF.getRegInfo(); 1087 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1088 TRI = STI.getRegisterInfo(); 1089 TII = STI.getInstrInfo(); 1090 MFI = &MF.getFrameInfo(); 1091 MRI->freezeReservedRegs(MF); 1092 RegClassInfo.runOnMachineFunction(MF); 1093 UsedInInstr.clear(); 1094 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1095 1096 // initialize the virtual->physical register map to have a 'null' 1097 // mapping for all virtual registers 1098 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1099 StackSlotForVirtReg.resize(NumVirtRegs); 1100 LiveVirtRegs.setUniverse(NumVirtRegs); 1101 1102 // Loop over all of the basic blocks, eliminating virtual register references 1103 for (MachineBasicBlock &MBB : MF) 1104 allocateBasicBlock(MBB); 1105 1106 // All machine operands and other references to virtual registers have been 1107 // replaced. Remove the virtual registers. 1108 MRI->clearVirtRegs(); 1109 1110 StackSlotForVirtReg.clear(); 1111 LiveDbgValueMap.clear(); 1112 return true; 1113 } 1114 1115 FunctionPass *llvm::createFastRegisterAllocator() { 1116 return new RegAllocFast(); 1117 } 1118