1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file This register allocator allocates registers to a basic block at a 11 /// time, attempting to keep values in registers and reusing registers as 12 /// appropriate. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/IndexedMap.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/SparseSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/RegAllocRegistry.h" 32 #include "llvm/CodeGen/RegisterClassInfo.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetOpcodes.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/MC/MCInstrDesc.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <cassert> 48 #include <tuple> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumStores, "Number of stores added"); 56 STATISTIC(NumLoads , "Number of loads added"); 57 STATISTIC(NumCoalesced, "Number of copies coalesced"); 58 59 static RegisterRegAlloc 60 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 61 62 namespace { 63 64 class RegAllocFast : public MachineFunctionPass { 65 public: 66 static char ID; 67 68 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 69 70 private: 71 MachineFrameInfo *MFI; 72 MachineRegisterInfo *MRI; 73 const TargetRegisterInfo *TRI; 74 const TargetInstrInfo *TII; 75 RegisterClassInfo RegClassInfo; 76 77 /// Basic block currently being allocated. 78 MachineBasicBlock *MBB; 79 80 /// Maps virtual regs to the frame index where these values are spilled. 81 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 82 83 /// Everything we know about a live virtual register. 84 struct LiveReg { 85 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 86 unsigned VirtReg; ///< Virtual register number. 87 MCPhysReg PhysReg = 0; ///< Currently held here. 88 unsigned short LastOpNum = 0; ///< OpNum on LastUse. 89 bool Dirty = false; ///< Register needs spill. 90 91 explicit LiveReg(unsigned VirtReg) : VirtReg(VirtReg) {} 92 93 unsigned getSparseSetIndex() const { 94 return TargetRegisterInfo::virtReg2Index(VirtReg); 95 } 96 }; 97 98 using LiveRegMap = SparseSet<LiveReg>; 99 /// This map contains entries for each virtual register that is currently 100 /// available in a physical register. 101 LiveRegMap LiveVirtRegs; 102 103 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap; 104 105 /// State of a physical register. 106 enum RegState { 107 /// A disabled register is not available for allocation, but an alias may 108 /// be in use. A register can only be moved out of the disabled state if 109 /// all aliases are disabled. 110 regDisabled, 111 112 /// A free register is not currently in use and can be allocated 113 /// immediately without checking aliases. 114 regFree, 115 116 /// A reserved register has been assigned explicitly (e.g., setting up a 117 /// call parameter), and it remains reserved until it is used. 118 regReserved 119 120 /// A register state may also be a virtual register number, indication 121 /// that the physical register is currently allocated to a virtual 122 /// register. In that case, LiveVirtRegs contains the inverse mapping. 123 }; 124 125 /// Maps each physical register to a RegState enum or a virtual register. 126 std::vector<unsigned> PhysRegState; 127 128 SmallVector<unsigned, 16> VirtDead; 129 SmallVector<MachineInstr *, 32> Coalesced; 130 131 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 132 /// Set of register units that are used in the current instruction, and so 133 /// cannot be allocated. 134 RegUnitSet UsedInInstr; 135 136 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 137 138 /// Mark a physreg as used in this instruction. 139 void markRegUsedInInstr(MCPhysReg PhysReg) { 140 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 141 UsedInInstr.insert(*Units); 142 } 143 144 /// Check if a physreg or any of its aliases are used in this instruction. 145 bool isRegUsedInInstr(MCPhysReg PhysReg) const { 146 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 147 if (UsedInInstr.count(*Units)) 148 return true; 149 return false; 150 } 151 152 enum : unsigned { 153 spillClean = 50, 154 spillDirty = 100, 155 spillImpossible = ~0u 156 }; 157 158 public: 159 StringRef getPassName() const override { return "Fast Register Allocator"; } 160 161 void getAnalysisUsage(AnalysisUsage &AU) const override { 162 AU.setPreservesCFG(); 163 MachineFunctionPass::getAnalysisUsage(AU); 164 } 165 166 MachineFunctionProperties getRequiredProperties() const override { 167 return MachineFunctionProperties().set( 168 MachineFunctionProperties::Property::NoPHIs); 169 } 170 171 MachineFunctionProperties getSetProperties() const override { 172 return MachineFunctionProperties().set( 173 MachineFunctionProperties::Property::NoVRegs); 174 } 175 176 private: 177 bool runOnMachineFunction(MachineFunction &MF) override; 178 179 void allocateBasicBlock(MachineBasicBlock &MBB); 180 void allocateInstruction(MachineInstr &MI); 181 void handleDebugValue(MachineInstr &MI); 182 void handleThroughOperands(MachineInstr &MI, 183 SmallVectorImpl<unsigned> &VirtDead); 184 bool isLastUseOfLocalReg(const MachineOperand &MO) const; 185 186 void addKillFlag(const LiveReg &LRI); 187 void killVirtReg(LiveReg &LR); 188 void killVirtReg(unsigned VirtReg); 189 void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR); 190 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 191 192 void usePhysReg(MachineOperand &MO); 193 void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg, 194 RegState NewState); 195 unsigned calcSpillCost(MCPhysReg PhysReg) const; 196 void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg); 197 198 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 199 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 200 } 201 202 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 203 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 204 } 205 206 void allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint); 207 MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg, 208 unsigned Hint); 209 LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg, 210 unsigned Hint); 211 void spillAll(MachineBasicBlock::iterator MI); 212 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 213 214 int getStackSpaceFor(unsigned VirtReg); 215 void spill(MachineBasicBlock::iterator Before, unsigned VirtReg, 216 MCPhysReg AssignedReg, bool Kill); 217 void reload(MachineBasicBlock::iterator Before, unsigned VirtReg, 218 MCPhysReg PhysReg); 219 220 void dumpState(); 221 }; 222 223 } // end anonymous namespace 224 225 char RegAllocFast::ID = 0; 226 227 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 228 false) 229 230 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 231 PhysRegState[PhysReg] = NewState; 232 } 233 234 /// This allocates space for the specified virtual register to be held on the 235 /// stack. 236 int RegAllocFast::getStackSpaceFor(unsigned VirtReg) { 237 // Find the location Reg would belong... 238 int SS = StackSlotForVirtReg[VirtReg]; 239 // Already has space allocated? 240 if (SS != -1) 241 return SS; 242 243 // Allocate a new stack object for this spill location... 244 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 245 unsigned Size = TRI->getSpillSize(RC); 246 unsigned Align = TRI->getSpillAlignment(RC); 247 int FrameIdx = MFI->CreateSpillStackObject(Size, Align); 248 249 // Assign the slot. 250 StackSlotForVirtReg[VirtReg] = FrameIdx; 251 return FrameIdx; 252 } 253 254 /// Insert spill instruction for \p AssignedReg before \p Before. Update 255 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 256 void RegAllocFast::spill(MachineBasicBlock::iterator Before, unsigned VirtReg, 257 MCPhysReg AssignedReg, bool Kill) { 258 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 259 << " in " << printReg(AssignedReg, TRI)); 260 int FI = getStackSpaceFor(VirtReg); 261 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 262 263 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 264 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 265 ++NumStores; 266 267 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 268 // identify spilled location as the place to find corresponding variable's 269 // value. 270 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg]; 271 for (MachineInstr *DBG : LRIDbgValues) { 272 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI); 273 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 274 (void)NewDV; 275 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 276 } 277 // Now this register is spilled there is should not be any DBG_VALUE 278 // pointing to this register because they are all pointing to spilled value 279 // now. 280 LRIDbgValues.clear(); 281 } 282 283 /// Insert reload instruction for \p PhysReg before \p Before. 284 void RegAllocFast::reload(MachineBasicBlock::iterator Before, unsigned VirtReg, 285 MCPhysReg PhysReg) { 286 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 287 << printReg(PhysReg, TRI) << '\n'); 288 int FI = getStackSpaceFor(VirtReg); 289 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 290 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 291 ++NumLoads; 292 } 293 294 /// Return true if MO is the only remaining reference to its virtual register, 295 /// and it is guaranteed to be a block-local register. 296 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const { 297 // If the register has ever been spilled or reloaded, we conservatively assume 298 // it is a global register used in multiple blocks. 299 if (StackSlotForVirtReg[MO.getReg()] != -1) 300 return false; 301 302 // Check that the use/def chain has exactly one operand - MO. 303 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 304 if (&*I != &MO) 305 return false; 306 return ++I == MRI->reg_nodbg_end(); 307 } 308 309 /// Set kill flags on last use of a virtual register. 310 void RegAllocFast::addKillFlag(const LiveReg &LR) { 311 if (!LR.LastUse) return; 312 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 313 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 314 if (MO.getReg() == LR.PhysReg) 315 MO.setIsKill(); 316 // else, don't do anything we are problably redefining a 317 // subreg of this register and given we don't track which 318 // lanes are actually dead, we cannot insert a kill flag here. 319 // Otherwise we may end up in a situation like this: 320 // ... = (MO) physreg:sub1, implicit killed physreg 321 // ... <== Here we would allow later pass to reuse physreg:sub1 322 // which is potentially wrong. 323 // LR:sub0 = ... 324 // ... = LR.sub1 <== This is going to use physreg:sub1 325 } 326 } 327 328 /// Mark virtreg as no longer available. 329 void RegAllocFast::killVirtReg(LiveReg &LR) { 330 addKillFlag(LR); 331 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && 332 "Broken RegState mapping"); 333 setPhysRegState(LR.PhysReg, regFree); 334 LR.PhysReg = 0; 335 } 336 337 /// Mark virtreg as no longer available. 338 void RegAllocFast::killVirtReg(unsigned VirtReg) { 339 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 340 "killVirtReg needs a virtual register"); 341 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 342 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) 343 killVirtReg(*LRI); 344 } 345 346 /// This method spills the value specified by VirtReg into the corresponding 347 /// stack slot if needed. 348 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 349 unsigned VirtReg) { 350 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 351 "Spilling a physical register is illegal!"); 352 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 353 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 354 "Spilling unmapped virtual register"); 355 spillVirtReg(MI, *LRI); 356 } 357 358 /// Do the actual work of spilling. 359 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) { 360 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping"); 361 362 if (LR.Dirty) { 363 // If this physreg is used by the instruction, we want to kill it on the 364 // instruction, not on the spill. 365 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; 366 LR.Dirty = false; 367 368 spill(MI, LR.VirtReg, LR.PhysReg, SpillKill); 369 370 if (SpillKill) 371 LR.LastUse = nullptr; // Don't kill register again 372 } 373 killVirtReg(LR); 374 } 375 376 /// Spill all dirty virtregs without killing them. 377 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI) { 378 if (LiveVirtRegs.empty()) 379 return; 380 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 381 // of spilling here is deterministic, if arbitrary. 382 for (LiveReg &LR : LiveVirtRegs) { 383 if (!LR.PhysReg) 384 continue; 385 spillVirtReg(MI, LR); 386 } 387 LiveVirtRegs.clear(); 388 } 389 390 /// Handle the direct use of a physical register. Check that the register is 391 /// not used by a virtreg. Kill the physreg, marking it free. This may add 392 /// implicit kills to MO->getParent() and invalidate MO. 393 void RegAllocFast::usePhysReg(MachineOperand &MO) { 394 // Ignore undef uses. 395 if (MO.isUndef()) 396 return; 397 398 unsigned PhysReg = MO.getReg(); 399 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 400 "Bad usePhysReg operand"); 401 402 markRegUsedInInstr(PhysReg); 403 switch (PhysRegState[PhysReg]) { 404 case regDisabled: 405 break; 406 case regReserved: 407 PhysRegState[PhysReg] = regFree; 408 LLVM_FALLTHROUGH; 409 case regFree: 410 MO.setIsKill(); 411 return; 412 default: 413 // The physreg was allocated to a virtual register. That means the value we 414 // wanted has been clobbered. 415 llvm_unreachable("Instruction uses an allocated register"); 416 } 417 418 // Maybe a superregister is reserved? 419 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 420 MCPhysReg Alias = *AI; 421 switch (PhysRegState[Alias]) { 422 case regDisabled: 423 break; 424 case regReserved: 425 // Either PhysReg is a subregister of Alias and we mark the 426 // whole register as free, or PhysReg is the superregister of 427 // Alias and we mark all the aliases as disabled before freeing 428 // PhysReg. 429 // In the latter case, since PhysReg was disabled, this means that 430 // its value is defined only by physical sub-registers. This check 431 // is performed by the assert of the default case in this loop. 432 // Note: The value of the superregister may only be partial 433 // defined, that is why regDisabled is a valid state for aliases. 434 assert((TRI->isSuperRegister(PhysReg, Alias) || 435 TRI->isSuperRegister(Alias, PhysReg)) && 436 "Instruction is not using a subregister of a reserved register"); 437 LLVM_FALLTHROUGH; 438 case regFree: 439 if (TRI->isSuperRegister(PhysReg, Alias)) { 440 // Leave the superregister in the working set. 441 setPhysRegState(Alias, regFree); 442 MO.getParent()->addRegisterKilled(Alias, TRI, true); 443 return; 444 } 445 // Some other alias was in the working set - clear it. 446 setPhysRegState(Alias, regDisabled); 447 break; 448 default: 449 llvm_unreachable("Instruction uses an alias of an allocated register"); 450 } 451 } 452 453 // All aliases are disabled, bring register into working set. 454 setPhysRegState(PhysReg, regFree); 455 MO.setIsKill(); 456 } 457 458 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 459 /// similar to defineVirtReg except the physreg is reserved instead of 460 /// allocated. 461 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI, 462 MCPhysReg PhysReg, RegState NewState) { 463 markRegUsedInInstr(PhysReg); 464 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 465 case regDisabled: 466 break; 467 default: 468 spillVirtReg(MI, VirtReg); 469 LLVM_FALLTHROUGH; 470 case regFree: 471 case regReserved: 472 setPhysRegState(PhysReg, NewState); 473 return; 474 } 475 476 // This is a disabled register, disable all aliases. 477 setPhysRegState(PhysReg, NewState); 478 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 479 MCPhysReg Alias = *AI; 480 switch (unsigned VirtReg = PhysRegState[Alias]) { 481 case regDisabled: 482 break; 483 default: 484 spillVirtReg(MI, VirtReg); 485 LLVM_FALLTHROUGH; 486 case regFree: 487 case regReserved: 488 setPhysRegState(Alias, regDisabled); 489 if (TRI->isSuperRegister(PhysReg, Alias)) 490 return; 491 break; 492 } 493 } 494 } 495 496 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 497 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 498 /// disabled - it can be allocated directly. 499 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 500 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 501 if (isRegUsedInInstr(PhysReg)) { 502 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) 503 << " is already used in instr.\n"); 504 return spillImpossible; 505 } 506 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 507 case regDisabled: 508 break; 509 case regFree: 510 return 0; 511 case regReserved: 512 LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding " 513 << printReg(PhysReg, TRI) << " is reserved already.\n"); 514 return spillImpossible; 515 default: { 516 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 517 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 518 "Missing VirtReg entry"); 519 return LRI->Dirty ? spillDirty : spillClean; 520 } 521 } 522 523 // This is a disabled register, add up cost of aliases. 524 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n"); 525 unsigned Cost = 0; 526 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 527 MCPhysReg Alias = *AI; 528 switch (unsigned VirtReg = PhysRegState[Alias]) { 529 case regDisabled: 530 break; 531 case regFree: 532 ++Cost; 533 break; 534 case regReserved: 535 return spillImpossible; 536 default: { 537 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 538 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 539 "Missing VirtReg entry"); 540 Cost += LRI->Dirty ? spillDirty : spillClean; 541 break; 542 } 543 } 544 } 545 return Cost; 546 } 547 548 /// This method updates local state so that we know that PhysReg is the 549 /// proper container for VirtReg now. The physical register must not be used 550 /// for anything else when this is called. 551 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) { 552 unsigned VirtReg = LR.VirtReg; 553 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 554 << printReg(PhysReg, TRI) << '\n'); 555 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 556 assert(PhysReg != 0 && "Trying to assign no register"); 557 LR.PhysReg = PhysReg; 558 setPhysRegState(PhysReg, VirtReg); 559 } 560 561 /// Allocates a physical register for VirtReg. 562 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint) { 563 const unsigned VirtReg = LR.VirtReg; 564 565 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 566 "Can only allocate virtual registers"); 567 568 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 569 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 570 << " in class " << TRI->getRegClassName(&RC) << '\n'); 571 572 // Take hint when possible. 573 if (TargetRegisterInfo::isPhysicalRegister(Hint) && 574 MRI->isAllocatable(Hint) && RC.contains(Hint)) { 575 // Ignore the hint if we would have to spill a dirty register. 576 unsigned Cost = calcSpillCost(Hint); 577 if (Cost < spillDirty) { 578 if (Cost) 579 definePhysReg(MI, Hint, regFree); 580 assignVirtToPhysReg(LR, Hint); 581 return; 582 } 583 } 584 585 // First try to find a completely free register. 586 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 587 for (MCPhysReg PhysReg : AllocationOrder) { 588 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) { 589 assignVirtToPhysReg(LR, PhysReg); 590 return; 591 } 592 } 593 594 MCPhysReg BestReg = 0; 595 unsigned BestCost = spillImpossible; 596 for (MCPhysReg PhysReg : AllocationOrder) { 597 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 598 unsigned Cost = calcSpillCost(PhysReg); 599 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 600 // Immediate take a register with cost 0. 601 if (Cost == 0) { 602 assignVirtToPhysReg(LR, PhysReg); 603 return; 604 } 605 if (Cost < BestCost) { 606 BestReg = PhysReg; 607 BestCost = Cost; 608 } 609 } 610 611 if (!BestReg) { 612 // Nothing we can do: Report an error and keep going with an invalid 613 // allocation. 614 if (MI.isInlineAsm()) 615 MI.emitError("inline assembly requires more registers than available"); 616 else 617 MI.emitError("ran out of registers during register allocation"); 618 definePhysReg(MI, *AllocationOrder.begin(), regFree); 619 assignVirtToPhysReg(LR, *AllocationOrder.begin()); 620 return; 621 } 622 623 definePhysReg(MI, BestReg, regFree); 624 assignVirtToPhysReg(LR, BestReg); 625 } 626 627 /// Allocates a register for VirtReg and mark it as dirty. 628 MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 629 unsigned VirtReg, unsigned Hint) { 630 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 631 "Not a virtual register"); 632 LiveRegMap::iterator LRI; 633 bool New; 634 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 635 if (!LRI->PhysReg) { 636 // If there is no hint, peek at the only use of this register. 637 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 638 MRI->hasOneNonDBGUse(VirtReg)) { 639 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 640 // It's a copy, use the destination register as a hint. 641 if (UseMI.isCopyLike()) 642 Hint = UseMI.getOperand(0).getReg(); 643 } 644 allocVirtReg(MI, *LRI, Hint); 645 } else if (LRI->LastUse) { 646 // Redefining a live register - kill at the last use, unless it is this 647 // instruction defining VirtReg multiple times. 648 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 649 addKillFlag(*LRI); 650 } 651 assert(LRI->PhysReg && "Register not assigned"); 652 LRI->LastUse = &MI; 653 LRI->LastOpNum = OpNum; 654 LRI->Dirty = true; 655 markRegUsedInInstr(LRI->PhysReg); 656 return LRI->PhysReg; 657 } 658 659 /// Make sure VirtReg is available in a physreg and return it. 660 RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI, 661 unsigned OpNum, 662 unsigned VirtReg, 663 unsigned Hint) { 664 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 665 "Not a virtual register"); 666 LiveRegMap::iterator LRI; 667 bool New; 668 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 669 MachineOperand &MO = MI.getOperand(OpNum); 670 if (!LRI->PhysReg) { 671 allocVirtReg(MI, *LRI, Hint); 672 reload(MI, VirtReg, LRI->PhysReg); 673 } else if (LRI->Dirty) { 674 if (isLastUseOfLocalReg(MO)) { 675 LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n'); 676 if (MO.isUse()) 677 MO.setIsKill(); 678 else 679 MO.setIsDead(); 680 } else if (MO.isKill()) { 681 LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n'); 682 MO.setIsKill(false); 683 } else if (MO.isDead()) { 684 LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n'); 685 MO.setIsDead(false); 686 } 687 } else if (MO.isKill()) { 688 // We must remove kill flags from uses of reloaded registers because the 689 // register would be killed immediately, and there might be a second use: 690 // %foo = OR killed %x, %x 691 // This would cause a second reload of %x into a different register. 692 LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n'); 693 MO.setIsKill(false); 694 } else if (MO.isDead()) { 695 LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n'); 696 MO.setIsDead(false); 697 } 698 assert(LRI->PhysReg && "Register not assigned"); 699 LRI->LastUse = &MI; 700 LRI->LastOpNum = OpNum; 701 markRegUsedInInstr(LRI->PhysReg); 702 return *LRI; 703 } 704 705 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 706 /// may invalidate any operand pointers. Return true if the operand kills its 707 /// register. 708 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 709 MCPhysReg PhysReg) { 710 bool Dead = MO.isDead(); 711 if (!MO.getSubReg()) { 712 MO.setReg(PhysReg); 713 MO.setIsRenamable(true); 714 return MO.isKill() || Dead; 715 } 716 717 // Handle subregister index. 718 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 719 MO.setIsRenamable(true); 720 MO.setSubReg(0); 721 722 // A kill flag implies killing the full register. Add corresponding super 723 // register kill. 724 if (MO.isKill()) { 725 MI.addRegisterKilled(PhysReg, TRI, true); 726 return true; 727 } 728 729 // A <def,read-undef> of a sub-register requires an implicit def of the full 730 // register. 731 if (MO.isDef() && MO.isUndef()) 732 MI.addRegisterDefined(PhysReg, TRI); 733 734 return Dead; 735 } 736 737 // Handles special instruction operand like early clobbers and tied ops when 738 // there are additional physreg defines. 739 void RegAllocFast::handleThroughOperands(MachineInstr &MI, 740 SmallVectorImpl<unsigned> &VirtDead) { 741 LLVM_DEBUG(dbgs() << "Scanning for through registers:"); 742 SmallSet<unsigned, 8> ThroughRegs; 743 for (const MachineOperand &MO : MI.operands()) { 744 if (!MO.isReg()) continue; 745 unsigned Reg = MO.getReg(); 746 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 747 continue; 748 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) || 749 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) { 750 if (ThroughRegs.insert(Reg).second) 751 LLVM_DEBUG(dbgs() << ' ' << printReg(Reg)); 752 } 753 } 754 755 // If any physreg defines collide with preallocated through registers, 756 // we must spill and reallocate. 757 LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 758 for (const MachineOperand &MO : MI.operands()) { 759 if (!MO.isReg() || !MO.isDef()) continue; 760 unsigned Reg = MO.getReg(); 761 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 762 markRegUsedInInstr(Reg); 763 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 764 if (ThroughRegs.count(PhysRegState[*AI])) 765 definePhysReg(MI, *AI, regFree); 766 } 767 } 768 769 SmallVector<unsigned, 8> PartialDefs; 770 LLVM_DEBUG(dbgs() << "Allocating tied uses.\n"); 771 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 772 MachineOperand &MO = MI.getOperand(I); 773 if (!MO.isReg()) continue; 774 unsigned Reg = MO.getReg(); 775 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 776 if (MO.isUse()) { 777 if (!MO.isTied()) continue; 778 LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO 779 << ") is tied to operand " << MI.findTiedOperandIdx(I) 780 << ".\n"); 781 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 782 MCPhysReg PhysReg = LR.PhysReg; 783 setPhysReg(MI, MO, PhysReg); 784 // Note: we don't update the def operand yet. That would cause the normal 785 // def-scan to attempt spilling. 786 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) { 787 LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n'); 788 // Reload the register, but don't assign to the operand just yet. 789 // That would confuse the later phys-def processing pass. 790 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 791 PartialDefs.push_back(LR.PhysReg); 792 } 793 } 794 795 LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n"); 796 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 797 const MachineOperand &MO = MI.getOperand(I); 798 if (!MO.isReg()) continue; 799 unsigned Reg = MO.getReg(); 800 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 801 if (!MO.isEarlyClobber()) 802 continue; 803 // Note: defineVirtReg may invalidate MO. 804 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0); 805 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) 806 VirtDead.push_back(Reg); 807 } 808 809 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 810 UsedInInstr.clear(); 811 for (const MachineOperand &MO : MI.operands()) { 812 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 813 unsigned Reg = MO.getReg(); 814 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 815 LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI) 816 << " as used in instr\n"); 817 markRegUsedInInstr(Reg); 818 } 819 820 // Also mark PartialDefs as used to avoid reallocation. 821 for (unsigned PartialDef : PartialDefs) 822 markRegUsedInInstr(PartialDef); 823 } 824 825 #ifndef NDEBUG 826 void RegAllocFast::dumpState() { 827 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 828 if (PhysRegState[Reg] == regDisabled) continue; 829 dbgs() << " " << printReg(Reg, TRI); 830 switch(PhysRegState[Reg]) { 831 case regFree: 832 break; 833 case regReserved: 834 dbgs() << "*"; 835 break; 836 default: { 837 dbgs() << '=' << printReg(PhysRegState[Reg]); 838 LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]); 839 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 840 "Missing VirtReg entry"); 841 if (LRI->Dirty) 842 dbgs() << "*"; 843 assert(LRI->PhysReg == Reg && "Bad inverse map"); 844 break; 845 } 846 } 847 } 848 dbgs() << '\n'; 849 // Check that LiveVirtRegs is the inverse. 850 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 851 e = LiveVirtRegs.end(); i != e; ++i) { 852 if (!i->PhysReg) 853 continue; 854 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 855 "Bad map key"); 856 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 857 "Bad map value"); 858 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 859 } 860 } 861 #endif 862 863 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 864 const MCInstrDesc &MCID = MI.getDesc(); 865 866 // If this is a copy, we may be able to coalesce. 867 unsigned CopySrcReg = 0; 868 unsigned CopyDstReg = 0; 869 unsigned CopySrcSub = 0; 870 unsigned CopyDstSub = 0; 871 if (MI.isCopy()) { 872 CopyDstReg = MI.getOperand(0).getReg(); 873 CopySrcReg = MI.getOperand(1).getReg(); 874 CopyDstSub = MI.getOperand(0).getSubReg(); 875 CopySrcSub = MI.getOperand(1).getSubReg(); 876 } 877 878 // Track registers used by instruction. 879 UsedInInstr.clear(); 880 881 // First scan. 882 // Mark physreg uses and early clobbers as used. 883 // Find the end of the virtreg operands 884 unsigned VirtOpEnd = 0; 885 bool hasTiedOps = false; 886 bool hasEarlyClobbers = false; 887 bool hasPartialRedefs = false; 888 bool hasPhysDefs = false; 889 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 890 MachineOperand &MO = MI.getOperand(i); 891 // Make sure MRI knows about registers clobbered by regmasks. 892 if (MO.isRegMask()) { 893 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 894 continue; 895 } 896 if (!MO.isReg()) continue; 897 unsigned Reg = MO.getReg(); 898 if (!Reg) continue; 899 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 900 VirtOpEnd = i+1; 901 if (MO.isUse()) { 902 hasTiedOps = hasTiedOps || 903 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 904 } else { 905 if (MO.isEarlyClobber()) 906 hasEarlyClobbers = true; 907 if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) 908 hasPartialRedefs = true; 909 } 910 continue; 911 } 912 if (!MRI->isAllocatable(Reg)) continue; 913 if (MO.isUse()) { 914 usePhysReg(MO); 915 } else if (MO.isEarlyClobber()) { 916 definePhysReg(MI, Reg, 917 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); 918 hasEarlyClobbers = true; 919 } else 920 hasPhysDefs = true; 921 } 922 923 // The instruction may have virtual register operands that must be allocated 924 // the same register at use-time and def-time: early clobbers and tied 925 // operands. If there are also physical defs, these registers must avoid 926 // both physical defs and uses, making them more constrained than normal 927 // operands. 928 // Similarly, if there are multiple defs and tied operands, we must make 929 // sure the same register is allocated to uses and defs. 930 // We didn't detect inline asm tied operands above, so just make this extra 931 // pass for all inline asm. 932 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 933 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 934 handleThroughOperands(MI, VirtDead); 935 // Don't attempt coalescing when we have funny stuff going on. 936 CopyDstReg = 0; 937 // Pretend we have early clobbers so the use operands get marked below. 938 // This is not necessary for the common case of a single tied use. 939 hasEarlyClobbers = true; 940 } 941 942 // Second scan. 943 // Allocate virtreg uses. 944 for (unsigned I = 0; I != VirtOpEnd; ++I) { 945 MachineOperand &MO = MI.getOperand(I); 946 if (!MO.isReg()) continue; 947 unsigned Reg = MO.getReg(); 948 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 949 if (MO.isUse()) { 950 LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg); 951 MCPhysReg PhysReg = LR.PhysReg; 952 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0; 953 if (setPhysReg(MI, MO, PhysReg)) 954 killVirtReg(LR); 955 } 956 } 957 958 // Track registers defined by instruction - early clobbers and tied uses at 959 // this point. 960 UsedInInstr.clear(); 961 if (hasEarlyClobbers) { 962 for (const MachineOperand &MO : MI.operands()) { 963 if (!MO.isReg()) continue; 964 unsigned Reg = MO.getReg(); 965 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 966 // Look for physreg defs and tied uses. 967 if (!MO.isDef() && !MO.isTied()) continue; 968 markRegUsedInInstr(Reg); 969 } 970 } 971 972 unsigned DefOpEnd = MI.getNumOperands(); 973 if (MI.isCall()) { 974 // Spill all virtregs before a call. This serves one purpose: If an 975 // exception is thrown, the landing pad is going to expect to find 976 // registers in their spill slots. 977 // Note: although this is appealing to just consider all definitions 978 // as call-clobbered, this is not correct because some of those 979 // definitions may be used later on and we do not want to reuse 980 // those for virtual registers in between. 981 LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 982 spillAll(MI); 983 } 984 985 // Third scan. 986 // Allocate defs and collect dead defs. 987 for (unsigned I = 0; I != DefOpEnd; ++I) { 988 const MachineOperand &MO = MI.getOperand(I); 989 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 990 continue; 991 unsigned Reg = MO.getReg(); 992 993 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 994 if (!MRI->isAllocatable(Reg)) continue; 995 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); 996 continue; 997 } 998 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg); 999 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) { 1000 VirtDead.push_back(Reg); 1001 CopyDstReg = 0; // cancel coalescing; 1002 } else 1003 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0; 1004 } 1005 1006 // Kill dead defs after the scan to ensure that multiple defs of the same 1007 // register are allocated identically. We didn't need to do this for uses 1008 // because we are crerating our own kill flags, and they are always at the 1009 // last use. 1010 for (unsigned VirtReg : VirtDead) 1011 killVirtReg(VirtReg); 1012 VirtDead.clear(); 1013 1014 LLVM_DEBUG(dbgs() << "<< " << MI); 1015 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) { 1016 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1017 Coalesced.push_back(&MI); 1018 } 1019 } 1020 1021 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1022 MachineOperand &MO = MI.getOperand(0); 1023 1024 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1025 // mostly constants and frame indices. 1026 if (!MO.isReg()) 1027 return; 1028 unsigned Reg = MO.getReg(); 1029 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1030 return; 1031 1032 // See if this virtual register has already been allocated to a physical 1033 // register or spilled to a stack slot. 1034 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1035 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1036 setPhysReg(MI, MO, LRI->PhysReg); 1037 } else { 1038 int SS = StackSlotForVirtReg[Reg]; 1039 if (SS != -1) { 1040 // Modify DBG_VALUE now that the value is in a spill slot. 1041 updateDbgValueForSpill(MI, SS); 1042 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI); 1043 return; 1044 } 1045 1046 // We can't allocate a physreg for a DebugValue, sorry! 1047 LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 1048 MO.setReg(0); 1049 } 1050 1051 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1052 // that future spills of Reg will have DBG_VALUEs. 1053 LiveDbgValueMap[Reg].push_back(&MI); 1054 } 1055 1056 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1057 this->MBB = &MBB; 1058 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1059 1060 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 1061 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1062 1063 MachineBasicBlock::iterator MII = MBB.begin(); 1064 1065 // Add live-in registers as live. 1066 for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins()) 1067 if (MRI->isAllocatable(LI.PhysReg)) 1068 definePhysReg(MII, LI.PhysReg, regReserved); 1069 1070 VirtDead.clear(); 1071 Coalesced.clear(); 1072 1073 // Otherwise, sequentially allocate each instruction in the MBB. 1074 for (MachineInstr &MI : MBB) { 1075 LLVM_DEBUG( 1076 dbgs() << "\n>> " << MI << "Regs:"; 1077 dumpState() 1078 ); 1079 1080 // Special handling for debug values. Note that they are not allowed to 1081 // affect codegen of the other instructions in any way. 1082 if (MI.isDebugValue()) { 1083 handleDebugValue(MI); 1084 continue; 1085 } 1086 1087 allocateInstruction(MI); 1088 } 1089 1090 // Spill all physical registers holding virtual registers now. 1091 LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1092 spillAll(MBB.getFirstTerminator()); 1093 1094 // Erase all the coalesced copies. We are delaying it until now because 1095 // LiveVirtRegs might refer to the instrs. 1096 for (MachineInstr *MI : Coalesced) 1097 MBB.erase(MI); 1098 NumCoalesced += Coalesced.size(); 1099 1100 LLVM_DEBUG(MBB.dump()); 1101 } 1102 1103 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1104 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1105 << "********** Function: " << MF.getName() << '\n'); 1106 MRI = &MF.getRegInfo(); 1107 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1108 TRI = STI.getRegisterInfo(); 1109 TII = STI.getInstrInfo(); 1110 MFI = &MF.getFrameInfo(); 1111 MRI->freezeReservedRegs(MF); 1112 RegClassInfo.runOnMachineFunction(MF); 1113 UsedInInstr.clear(); 1114 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1115 1116 // initialize the virtual->physical register map to have a 'null' 1117 // mapping for all virtual registers 1118 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1119 StackSlotForVirtReg.resize(NumVirtRegs); 1120 LiveVirtRegs.setUniverse(NumVirtRegs); 1121 1122 // Loop over all of the basic blocks, eliminating virtual register references 1123 for (MachineBasicBlock &MBB : MF) 1124 allocateBasicBlock(MBB); 1125 1126 // All machine operands and other references to virtual registers have been 1127 // replaced. Remove the virtual registers. 1128 MRI->clearVirtRegs(); 1129 1130 StackSlotForVirtReg.clear(); 1131 LiveDbgValueMap.clear(); 1132 return true; 1133 } 1134 1135 FunctionPass *llvm::createFastRegisterAllocator() { 1136 return new RegAllocFast(); 1137 } 1138