1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RegAllocRegistry.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/MC/MCInstrDesc.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <cassert> 48 #include <tuple> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumStores, "Number of stores added"); 56 STATISTIC(NumLoads , "Number of loads added"); 57 STATISTIC(NumCoalesced, "Number of copies coalesced"); 58 59 // FIXME: Remove this switch when all testcases are fixed! 60 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", 61 cl::Hidden); 62 63 static RegisterRegAlloc 64 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 65 66 namespace { 67 68 class RegAllocFast : public MachineFunctionPass { 69 public: 70 static char ID; 71 72 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 73 74 private: 75 MachineFrameInfo *MFI; 76 MachineRegisterInfo *MRI; 77 const TargetRegisterInfo *TRI; 78 const TargetInstrInfo *TII; 79 RegisterClassInfo RegClassInfo; 80 81 /// Basic block currently being allocated. 82 MachineBasicBlock *MBB; 83 84 /// Maps virtual regs to the frame index where these values are spilled. 85 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 86 87 /// Everything we know about a live virtual register. 88 struct LiveReg { 89 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 90 Register VirtReg; ///< Virtual register number. 91 MCPhysReg PhysReg = 0; ///< Currently held here. 92 bool LiveOut = false; ///< Register is possibly live out. 93 bool Reloaded = false; ///< Register was reloaded. 94 bool Error = false; ///< Could not allocate. 95 96 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 97 98 unsigned getSparseSetIndex() const { 99 return Register::virtReg2Index(VirtReg); 100 } 101 }; 102 103 using LiveRegMap = SparseSet<LiveReg>; 104 /// This map contains entries for each virtual register that is currently 105 /// available in a physical register. 106 LiveRegMap LiveVirtRegs; 107 108 /// Stores assigned virtual registers present in the bundle MI. 109 DenseMap<Register, MCPhysReg> BundleVirtRegsMap; 110 111 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap; 112 /// List of DBG_VALUE that we encountered without the vreg being assigned 113 /// because they were placed after the last use of the vreg. 114 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; 115 116 /// Has a bit set for every virtual register for which it was determined 117 /// that it is alive across blocks. 118 BitVector MayLiveAcrossBlocks; 119 120 /// State of a register unit. 121 enum RegUnitState { 122 /// A free register is not currently in use and can be allocated 123 /// immediately without checking aliases. 124 regFree, 125 126 /// A pre-assigned register has been assigned before register allocation 127 /// (e.g., setting up a call parameter). 128 regPreAssigned, 129 130 /// Used temporarily in reloadAtBegin() to mark register units that are 131 /// live-in to the basic block. 132 regLiveIn, 133 134 /// A register state may also be a virtual register number, indication 135 /// that the physical register is currently allocated to a virtual 136 /// register. In that case, LiveVirtRegs contains the inverse mapping. 137 }; 138 139 /// Maps each physical register to a RegUnitState enum or virtual register. 140 std::vector<unsigned> RegUnitStates; 141 142 SmallVector<MachineInstr *, 32> Coalesced; 143 144 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 145 /// Set of register units that are used in the current instruction, and so 146 /// cannot be allocated. 147 RegUnitSet UsedInInstr; 148 RegUnitSet PhysRegUses; 149 SmallVector<uint16_t, 8> DefOperandIndexes; 150 151 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 152 bool isPhysRegFree(MCPhysReg PhysReg) const; 153 154 /// Mark a physreg as used in this instruction. 155 void markRegUsedInInstr(MCPhysReg PhysReg) { 156 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 157 UsedInInstr.insert(*Units); 158 } 159 160 /// Check if a physreg or any of its aliases are used in this instruction. 161 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { 162 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 163 if (UsedInInstr.count(*Units)) 164 return true; 165 if (LookAtPhysRegUses && PhysRegUses.count(*Units)) 166 return true; 167 } 168 return false; 169 } 170 171 /// Mark physical register as being used in a register use operand. 172 /// This is only used by the special livethrough handling code. 173 void markPhysRegUsedInInstr(MCPhysReg PhysReg) { 174 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 175 PhysRegUses.insert(*Units); 176 } 177 178 /// Remove mark of physical register being used in the instruction. 179 void unmarkRegUsedInInstr(MCPhysReg PhysReg) { 180 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 181 UsedInInstr.erase(*Units); 182 } 183 184 enum : unsigned { 185 spillClean = 50, 186 spillDirty = 100, 187 spillPrefBonus = 20, 188 spillImpossible = ~0u 189 }; 190 191 public: 192 StringRef getPassName() const override { return "Fast Register Allocator"; } 193 194 void getAnalysisUsage(AnalysisUsage &AU) const override { 195 AU.setPreservesCFG(); 196 MachineFunctionPass::getAnalysisUsage(AU); 197 } 198 199 MachineFunctionProperties getRequiredProperties() const override { 200 return MachineFunctionProperties().set( 201 MachineFunctionProperties::Property::NoPHIs); 202 } 203 204 MachineFunctionProperties getSetProperties() const override { 205 return MachineFunctionProperties().set( 206 MachineFunctionProperties::Property::NoVRegs); 207 } 208 209 MachineFunctionProperties getClearedProperties() const override { 210 return MachineFunctionProperties().set( 211 MachineFunctionProperties::Property::IsSSA); 212 } 213 214 private: 215 bool runOnMachineFunction(MachineFunction &MF) override; 216 217 void allocateBasicBlock(MachineBasicBlock &MBB); 218 219 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 220 Register Reg) const; 221 222 void allocateInstruction(MachineInstr &MI); 223 void handleDebugValue(MachineInstr &MI); 224 void handleBundle(MachineInstr &MI); 225 226 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 227 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 228 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 229 void freePhysReg(MCPhysReg PhysReg); 230 231 unsigned calcSpillCost(MCPhysReg PhysReg) const; 232 233 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 234 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 235 } 236 237 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 238 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 239 } 240 241 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); 242 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, 243 bool LookAtPhysRegUses = false); 244 void allocVirtRegUndef(MachineOperand &MO); 245 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, 246 MCPhysReg Reg); 247 void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 248 Register VirtReg); 249 void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 250 bool LookAtPhysRegUses = false); 251 void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg); 252 253 MachineBasicBlock::iterator 254 getMBBBeginInsertionPoint(MachineBasicBlock &MBB, 255 SmallSet<Register, 2> &PrologLiveIns) const; 256 257 void reloadAtBegin(MachineBasicBlock &MBB); 258 void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 259 260 Register traceCopies(Register VirtReg) const; 261 Register traceCopyChain(Register Reg) const; 262 263 int getStackSpaceFor(Register VirtReg); 264 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 265 MCPhysReg AssignedReg, bool Kill, bool LiveOut); 266 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 267 MCPhysReg PhysReg); 268 269 bool mayLiveOut(Register VirtReg); 270 bool mayLiveIn(Register VirtReg); 271 272 void dumpState() const; 273 }; 274 275 } // end anonymous namespace 276 277 char RegAllocFast::ID = 0; 278 279 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 280 false) 281 282 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 283 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) 284 RegUnitStates[*UI] = NewState; 285 } 286 287 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const { 288 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 289 if (RegUnitStates[*UI] != regFree) 290 return false; 291 } 292 return true; 293 } 294 295 /// This allocates space for the specified virtual register to be held on the 296 /// stack. 297 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 298 // Find the location Reg would belong... 299 int SS = StackSlotForVirtReg[VirtReg]; 300 // Already has space allocated? 301 if (SS != -1) 302 return SS; 303 304 // Allocate a new stack object for this spill location... 305 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 306 unsigned Size = TRI->getSpillSize(RC); 307 Align Alignment = TRI->getSpillAlign(RC); 308 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 309 310 // Assign the slot. 311 StackSlotForVirtReg[VirtReg] = FrameIdx; 312 return FrameIdx; 313 } 314 315 static bool dominates(MachineBasicBlock &MBB, 316 MachineBasicBlock::const_iterator A, 317 MachineBasicBlock::const_iterator B) { 318 auto MBBEnd = MBB.end(); 319 if (B == MBBEnd) 320 return true; 321 322 MachineBasicBlock::const_iterator I = MBB.begin(); 323 for (; &*I != A && &*I != B; ++I) 324 ; 325 326 return &*I == A; 327 } 328 329 /// Returns false if \p VirtReg is known to not live out of the current block. 330 bool RegAllocFast::mayLiveOut(Register VirtReg) { 331 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 332 // Cannot be live-out if there are no successors. 333 return !MBB->succ_empty(); 334 } 335 336 const MachineInstr *SelfLoopDef = nullptr; 337 338 // If this block loops back to itself, it is necessary to check whether the 339 // use comes after the def. 340 if (MBB->isSuccessor(MBB)) { 341 SelfLoopDef = MRI->getUniqueVRegDef(VirtReg); 342 if (!SelfLoopDef) { 343 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 344 return true; 345 } 346 } 347 348 // See if the first \p Limit uses of the register are all in the current 349 // block. 350 static const unsigned Limit = 8; 351 unsigned C = 0; 352 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { 353 if (UseInst.getParent() != MBB || ++C >= Limit) { 354 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 355 // Cannot be live-out if there are no successors. 356 return !MBB->succ_empty(); 357 } 358 359 if (SelfLoopDef) { 360 // Try to handle some simple cases to avoid spilling and reloading every 361 // value inside a self looping block. 362 if (SelfLoopDef == &UseInst || 363 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) { 364 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 365 return true; 366 } 367 } 368 } 369 370 return false; 371 } 372 373 /// Returns false if \p VirtReg is known to not be live into the current block. 374 bool RegAllocFast::mayLiveIn(Register VirtReg) { 375 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 376 return !MBB->pred_empty(); 377 378 // See if the first \p Limit def of the register are all in the current block. 379 static const unsigned Limit = 8; 380 unsigned C = 0; 381 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 382 if (DefInst.getParent() != MBB || ++C >= Limit) { 383 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 384 return !MBB->pred_empty(); 385 } 386 } 387 388 return false; 389 } 390 391 /// Insert spill instruction for \p AssignedReg before \p Before. Update 392 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 393 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 394 MCPhysReg AssignedReg, bool Kill, bool LiveOut) { 395 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 396 << " in " << printReg(AssignedReg, TRI)); 397 int FI = getStackSpaceFor(VirtReg); 398 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 399 400 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 401 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 402 ++NumStores; 403 404 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); 405 406 // When we spill a virtual register, we will have spill instructions behind 407 // every definition of it, meaning we can switch all the DBG_VALUEs over 408 // to just reference the stack slot. 409 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg]; 410 for (MachineInstr *DBG : LRIDbgValues) { 411 MachineInstr *NewDV = 412 buildDbgValueForSpill(*MBB, Before, *DBG, FI, AssignedReg); 413 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 414 (void)NewDV; 415 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 416 417 if (LiveOut) { 418 // We need to insert a DBG_VALUE at the end of the block if the spill slot 419 // is live out, but there is another use of the value after the 420 // spill. This will allow LiveDebugValues to see the correct live out 421 // value to propagate to the successors. 422 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV); 423 MBB->insert(FirstTerm, ClonedDV); 424 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n"); 425 } 426 427 // Rewrite unassigned dbg_values to use the stack slot. 428 // TODO We can potentially do this for list debug values as well if we know 429 // how the dbg_values are getting unassigned. 430 if (DBG->isNonListDebugValue()) { 431 MachineOperand &MO = DBG->getDebugOperand(0); 432 if (MO.isReg() && MO.getReg() == 0) { 433 updateDbgValueForSpill(*DBG, FI, 0); 434 } 435 } 436 } 437 // Now this register is spilled there is should not be any DBG_VALUE 438 // pointing to this register because they are all pointing to spilled value 439 // now. 440 LRIDbgValues.clear(); 441 } 442 443 /// Insert reload instruction for \p PhysReg before \p Before. 444 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 445 MCPhysReg PhysReg) { 446 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 447 << printReg(PhysReg, TRI) << '\n'); 448 int FI = getStackSpaceFor(VirtReg); 449 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 450 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 451 ++NumLoads; 452 } 453 454 /// Get basic block begin insertion point. 455 /// This is not just MBB.begin() because surprisingly we have EH_LABEL 456 /// instructions marking the begin of a basic block. This means we must insert 457 /// new instructions after such labels... 458 MachineBasicBlock::iterator 459 RegAllocFast::getMBBBeginInsertionPoint( 460 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { 461 MachineBasicBlock::iterator I = MBB.begin(); 462 while (I != MBB.end()) { 463 if (I->isLabel()) { 464 ++I; 465 continue; 466 } 467 468 // Most reloads should be inserted after prolog instructions. 469 if (!TII->isBasicBlockPrologue(*I)) 470 break; 471 472 // However if a prolog instruction reads a register that needs to be 473 // reloaded, the reload should be inserted before the prolog. 474 for (MachineOperand &MO : I->operands()) { 475 if (MO.isReg()) 476 PrologLiveIns.insert(MO.getReg()); 477 } 478 479 ++I; 480 } 481 482 return I; 483 } 484 485 /// Reload all currently assigned virtual registers. 486 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) { 487 if (LiveVirtRegs.empty()) 488 return; 489 490 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 491 MCPhysReg Reg = P.PhysReg; 492 // Set state to live-in. This possibly overrides mappings to virtual 493 // registers but we don't care anymore at this point. 494 setPhysRegState(Reg, regLiveIn); 495 } 496 497 498 SmallSet<Register, 2> PrologLiveIns; 499 500 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 501 // of spilling here is deterministic, if arbitrary. 502 MachineBasicBlock::iterator InsertBefore 503 = getMBBBeginInsertionPoint(MBB, PrologLiveIns); 504 for (const LiveReg &LR : LiveVirtRegs) { 505 MCPhysReg PhysReg = LR.PhysReg; 506 if (PhysReg == 0) 507 continue; 508 509 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 510 if (RegUnitStates[FirstUnit] == regLiveIn) 511 continue; 512 513 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && 514 "no reload in start block. Missing vreg def?"); 515 516 if (PrologLiveIns.count(PhysReg)) { 517 // FIXME: Theoretically this should use an insert point skipping labels 518 // but I'm not sure how labels should interact with prolog instruction 519 // that need reloads. 520 reload(MBB.begin(), LR.VirtReg, PhysReg); 521 } else 522 reload(InsertBefore, LR.VirtReg, PhysReg); 523 } 524 LiveVirtRegs.clear(); 525 } 526 527 /// Handle the direct use of a physical register. Check that the register is 528 /// not used by a virtreg. Kill the physreg, marking it free. This may add 529 /// implicit kills to MO->getParent() and invalidate MO. 530 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { 531 assert(Register::isPhysicalRegister(Reg) && "expected physreg"); 532 bool displacedAny = displacePhysReg(MI, Reg); 533 setPhysRegState(Reg, regPreAssigned); 534 markRegUsedInInstr(Reg); 535 return displacedAny; 536 } 537 538 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { 539 bool displacedAny = displacePhysReg(MI, Reg); 540 setPhysRegState(Reg, regPreAssigned); 541 return displacedAny; 542 } 543 544 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 545 /// similar to defineVirtReg except the physreg is reserved instead of 546 /// allocated. 547 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { 548 bool displacedAny = false; 549 550 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 551 unsigned Unit = *UI; 552 switch (unsigned VirtReg = RegUnitStates[Unit]) { 553 default: { 554 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 555 assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); 556 MachineBasicBlock::iterator ReloadBefore = 557 std::next((MachineBasicBlock::iterator)MI.getIterator()); 558 reload(ReloadBefore, VirtReg, LRI->PhysReg); 559 560 setPhysRegState(LRI->PhysReg, regFree); 561 LRI->PhysReg = 0; 562 LRI->Reloaded = true; 563 displacedAny = true; 564 break; 565 } 566 case regPreAssigned: 567 RegUnitStates[Unit] = regFree; 568 displacedAny = true; 569 break; 570 case regFree: 571 break; 572 } 573 } 574 return displacedAny; 575 } 576 577 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) { 578 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); 579 580 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 581 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { 582 case regFree: 583 LLVM_DEBUG(dbgs() << '\n'); 584 return; 585 case regPreAssigned: 586 LLVM_DEBUG(dbgs() << '\n'); 587 setPhysRegState(PhysReg, regFree); 588 return; 589 default: { 590 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 591 assert(LRI != LiveVirtRegs.end()); 592 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); 593 setPhysRegState(LRI->PhysReg, regFree); 594 LRI->PhysReg = 0; 595 } 596 return; 597 } 598 } 599 600 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 601 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 602 /// disabled - it can be allocated directly. 603 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 604 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 605 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 606 switch (unsigned VirtReg = RegUnitStates[*UI]) { 607 case regFree: 608 break; 609 case regPreAssigned: 610 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " 611 << printReg(PhysReg, TRI) << '\n'); 612 return spillImpossible; 613 default: { 614 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || 615 findLiveVirtReg(VirtReg)->LiveOut; 616 return SureSpill ? spillClean : spillDirty; 617 } 618 } 619 } 620 return 0; 621 } 622 623 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition, 624 Register VirtReg, MCPhysReg Reg) { 625 auto UDBGValIter = DanglingDbgValues.find(VirtReg); 626 if (UDBGValIter == DanglingDbgValues.end()) 627 return; 628 629 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second; 630 for (MachineInstr *DbgValue : Dangling) { 631 assert(DbgValue->isDebugValue()); 632 if (!DbgValue->hasDebugOperandForReg(VirtReg)) 633 continue; 634 635 // Test whether the physreg survives from the definition to the DBG_VALUE. 636 MCPhysReg SetToReg = Reg; 637 unsigned Limit = 20; 638 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), 639 E = DbgValue->getIterator(); I != E; ++I) { 640 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { 641 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 642 << '\n'); 643 SetToReg = 0; 644 break; 645 } 646 } 647 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) { 648 MO.setReg(SetToReg); 649 if (SetToReg != 0) 650 MO.setIsRenamable(); 651 } 652 } 653 Dangling.clear(); 654 } 655 656 /// This method updates local state so that we know that PhysReg is the 657 /// proper container for VirtReg now. The physical register must not be used 658 /// for anything else when this is called. 659 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, 660 MCPhysReg PhysReg) { 661 Register VirtReg = LR.VirtReg; 662 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 663 << printReg(PhysReg, TRI) << '\n'); 664 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 665 assert(PhysReg != 0 && "Trying to assign no register"); 666 LR.PhysReg = PhysReg; 667 setPhysRegState(PhysReg, VirtReg); 668 669 assignDanglingDebugValues(AtMI, VirtReg, PhysReg); 670 } 671 672 static bool isCoalescable(const MachineInstr &MI) { 673 return MI.isFullCopy(); 674 } 675 676 Register RegAllocFast::traceCopyChain(Register Reg) const { 677 static const unsigned ChainLengthLimit = 3; 678 unsigned C = 0; 679 do { 680 if (Reg.isPhysical()) 681 return Reg; 682 assert(Reg.isVirtual()); 683 684 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 685 if (!VRegDef || !isCoalescable(*VRegDef)) 686 return 0; 687 Reg = VRegDef->getOperand(1).getReg(); 688 } while (++C <= ChainLengthLimit); 689 return 0; 690 } 691 692 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 693 /// chain of copies to check whether we reach a physical register we can 694 /// coalesce with. 695 Register RegAllocFast::traceCopies(Register VirtReg) const { 696 static const unsigned DefLimit = 3; 697 unsigned C = 0; 698 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 699 if (isCoalescable(MI)) { 700 Register Reg = MI.getOperand(1).getReg(); 701 Reg = traceCopyChain(Reg); 702 if (Reg.isValid()) 703 return Reg; 704 } 705 706 if (++C >= DefLimit) 707 break; 708 } 709 return Register(); 710 } 711 712 /// Allocates a physical register for VirtReg. 713 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, 714 Register Hint0, bool LookAtPhysRegUses) { 715 const Register VirtReg = LR.VirtReg; 716 assert(LR.PhysReg == 0); 717 718 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 719 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 720 << " in class " << TRI->getRegClassName(&RC) 721 << " with hint " << printReg(Hint0, TRI) << '\n'); 722 723 // Take hint when possible. 724 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && 725 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { 726 // Take hint if the register is currently free. 727 if (isPhysRegFree(Hint0)) { 728 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 729 << '\n'); 730 assignVirtToPhysReg(MI, LR, Hint0); 731 return; 732 } else { 733 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) 734 << " occupied\n"); 735 } 736 } else { 737 Hint0 = Register(); 738 } 739 740 741 // Try other hint. 742 Register Hint1 = traceCopies(VirtReg); 743 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 744 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { 745 // Take hint if the register is currently free. 746 if (isPhysRegFree(Hint1)) { 747 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 748 << '\n'); 749 assignVirtToPhysReg(MI, LR, Hint1); 750 return; 751 } else { 752 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) 753 << " occupied\n"); 754 } 755 } else { 756 Hint1 = Register(); 757 } 758 759 MCPhysReg BestReg = 0; 760 unsigned BestCost = spillImpossible; 761 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 762 for (MCPhysReg PhysReg : AllocationOrder) { 763 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 764 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { 765 LLVM_DEBUG(dbgs() << "already used in instr.\n"); 766 continue; 767 } 768 769 unsigned Cost = calcSpillCost(PhysReg); 770 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 771 // Immediate take a register with cost 0. 772 if (Cost == 0) { 773 assignVirtToPhysReg(MI, LR, PhysReg); 774 return; 775 } 776 777 if (PhysReg == Hint0 || PhysReg == Hint1) 778 Cost -= spillPrefBonus; 779 780 if (Cost < BestCost) { 781 BestReg = PhysReg; 782 BestCost = Cost; 783 } 784 } 785 786 if (!BestReg) { 787 // Nothing we can do: Report an error and keep going with an invalid 788 // allocation. 789 if (MI.isInlineAsm()) 790 MI.emitError("inline assembly requires more registers than available"); 791 else 792 MI.emitError("ran out of registers during register allocation"); 793 794 LR.Error = true; 795 LR.PhysReg = 0; 796 return; 797 } 798 799 displacePhysReg(MI, BestReg); 800 assignVirtToPhysReg(MI, LR, BestReg); 801 } 802 803 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 804 assert(MO.isUndef() && "expected undef use"); 805 Register VirtReg = MO.getReg(); 806 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg"); 807 808 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 809 MCPhysReg PhysReg; 810 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 811 PhysReg = LRI->PhysReg; 812 } else { 813 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 814 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 815 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 816 PhysReg = AllocationOrder[0]; 817 } 818 819 unsigned SubRegIdx = MO.getSubReg(); 820 if (SubRegIdx != 0) { 821 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 822 MO.setSubReg(0); 823 } 824 MO.setReg(PhysReg); 825 MO.setIsRenamable(true); 826 } 827 828 /// Variation of defineVirtReg() with special handling for livethrough regs 829 /// (tied or earlyclobber) that may interfere with preassigned uses. 830 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 831 Register VirtReg) { 832 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 833 if (LRI != LiveVirtRegs.end()) { 834 MCPhysReg PrevReg = LRI->PhysReg; 835 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { 836 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) 837 << " (tied/earlyclobber resolution)\n"); 838 freePhysReg(PrevReg); 839 LRI->PhysReg = 0; 840 allocVirtReg(MI, *LRI, 0, true); 841 MachineBasicBlock::iterator InsertBefore = 842 std::next((MachineBasicBlock::iterator)MI.getIterator()); 843 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " 844 << printReg(PrevReg, TRI) << '\n'); 845 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), 846 TII->get(TargetOpcode::COPY), PrevReg) 847 .addReg(LRI->PhysReg, llvm::RegState::Kill); 848 } 849 MachineOperand &MO = MI.getOperand(OpNum); 850 if (MO.getSubReg() && !MO.isUndef()) { 851 LRI->LastUse = &MI; 852 } 853 } 854 return defineVirtReg(MI, OpNum, VirtReg, true); 855 } 856 857 /// Allocates a register for VirtReg definition. Typically the register is 858 /// already assigned from a use of the virtreg, however we still need to 859 /// perform an allocation if: 860 /// - It is a dead definition without any uses. 861 /// - The value is live out and all uses are in different basic blocks. 862 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 863 Register VirtReg, bool LookAtPhysRegUses) { 864 assert(VirtReg.isVirtual() && "Not a virtual register"); 865 MachineOperand &MO = MI.getOperand(OpNum); 866 LiveRegMap::iterator LRI; 867 bool New; 868 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 869 if (New) { 870 if (!MO.isDead()) { 871 if (mayLiveOut(VirtReg)) { 872 LRI->LiveOut = true; 873 } else { 874 // It is a dead def without the dead flag; add the flag now. 875 MO.setIsDead(true); 876 } 877 } 878 } 879 if (LRI->PhysReg == 0) 880 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); 881 else { 882 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) && 883 "TODO: preassign mismatch"); 884 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) 885 << " use existing assignment to " 886 << printReg(LRI->PhysReg, TRI) << '\n'); 887 } 888 889 MCPhysReg PhysReg = LRI->PhysReg; 890 assert(PhysReg != 0 && "Register not assigned"); 891 if (LRI->Reloaded || LRI->LiveOut) { 892 if (!MI.isImplicitDef()) { 893 MachineBasicBlock::iterator SpillBefore = 894 std::next((MachineBasicBlock::iterator)MI.getIterator()); 895 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: " 896 << LRI->Reloaded << '\n'); 897 bool Kill = LRI->LastUse == nullptr; 898 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut); 899 LRI->LastUse = nullptr; 900 } 901 LRI->LiveOut = false; 902 LRI->Reloaded = false; 903 } 904 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 905 BundleVirtRegsMap[VirtReg] = PhysReg; 906 } 907 markRegUsedInInstr(PhysReg); 908 setPhysReg(MI, MO, PhysReg); 909 } 910 911 /// Allocates a register for a VirtReg use. 912 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum, 913 Register VirtReg) { 914 assert(VirtReg.isVirtual() && "Not a virtual register"); 915 MachineOperand &MO = MI.getOperand(OpNum); 916 LiveRegMap::iterator LRI; 917 bool New; 918 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 919 if (New) { 920 MachineOperand &MO = MI.getOperand(OpNum); 921 if (!MO.isKill()) { 922 if (mayLiveOut(VirtReg)) { 923 LRI->LiveOut = true; 924 } else { 925 // It is a last (killing) use without the kill flag; add the flag now. 926 MO.setIsKill(true); 927 } 928 } 929 } else { 930 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); 931 } 932 933 // If necessary allocate a register. 934 if (LRI->PhysReg == 0) { 935 assert(!MO.isTied() && "tied op should be allocated"); 936 Register Hint; 937 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { 938 Hint = MI.getOperand(0).getReg(); 939 assert(Hint.isPhysical() && 940 "Copy destination should already be assigned"); 941 } 942 allocVirtReg(MI, *LRI, Hint, false); 943 if (LRI->Error) { 944 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 945 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 946 setPhysReg(MI, MO, *AllocationOrder.begin()); 947 return; 948 } 949 } 950 951 LRI->LastUse = &MI; 952 953 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 954 BundleVirtRegsMap[VirtReg] = LRI->PhysReg; 955 } 956 markRegUsedInInstr(LRI->PhysReg); 957 setPhysReg(MI, MO, LRI->PhysReg); 958 } 959 960 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 961 /// may invalidate any operand pointers. Return true if the operand kills its 962 /// register. 963 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 964 MCPhysReg PhysReg) { 965 if (!MO.getSubReg()) { 966 MO.setReg(PhysReg); 967 MO.setIsRenamable(true); 968 return; 969 } 970 971 // Handle subregister index. 972 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister()); 973 MO.setIsRenamable(true); 974 // Note: We leave the subreg number around a little longer in case of defs. 975 // This is so that the register freeing logic in allocateInstruction can still 976 // recognize this as subregister defs. The code there will clear the number. 977 if (!MO.isDef()) 978 MO.setSubReg(0); 979 980 // A kill flag implies killing the full register. Add corresponding super 981 // register kill. 982 if (MO.isKill()) { 983 MI.addRegisterKilled(PhysReg, TRI, true); 984 return; 985 } 986 987 // A <def,read-undef> of a sub-register requires an implicit def of the full 988 // register. 989 if (MO.isDef() && MO.isUndef()) { 990 if (MO.isDead()) 991 MI.addRegisterDead(PhysReg, TRI, true); 992 else 993 MI.addRegisterDefined(PhysReg, TRI); 994 } 995 } 996 997 #ifndef NDEBUG 998 999 void RegAllocFast::dumpState() const { 1000 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 1001 ++Unit) { 1002 switch (unsigned VirtReg = RegUnitStates[Unit]) { 1003 case regFree: 1004 break; 1005 case regPreAssigned: 1006 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 1007 break; 1008 case regLiveIn: 1009 llvm_unreachable("Should not have regLiveIn in map"); 1010 default: { 1011 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 1012 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 1013 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 1014 if (I->LiveOut || I->Reloaded) { 1015 dbgs() << '['; 1016 if (I->LiveOut) dbgs() << 'O'; 1017 if (I->Reloaded) dbgs() << 'R'; 1018 dbgs() << ']'; 1019 } 1020 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 1021 break; 1022 } 1023 } 1024 } 1025 dbgs() << '\n'; 1026 // Check that LiveVirtRegs is the inverse. 1027 for (const LiveReg &LR : LiveVirtRegs) { 1028 Register VirtReg = LR.VirtReg; 1029 assert(VirtReg.isVirtual() && "Bad map key"); 1030 MCPhysReg PhysReg = LR.PhysReg; 1031 if (PhysReg != 0) { 1032 assert(Register::isPhysicalRegister(PhysReg) && 1033 "mapped to physreg"); 1034 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 1035 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid"); 1036 } 1037 } 1038 } 1039 } 1040 #endif 1041 1042 /// Count number of defs consumed from each register class by \p Reg 1043 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 1044 Register Reg) const { 1045 assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); 1046 1047 if (Reg.isVirtual()) { 1048 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); 1049 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1050 RCIdx != RCIdxEnd; ++RCIdx) { 1051 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1052 // FIXME: Consider aliasing sub/super registers. 1053 if (OpRC->hasSubClassEq(IdxRC)) 1054 ++RegClassDefCounts[RCIdx]; 1055 } 1056 1057 return; 1058 } 1059 1060 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1061 RCIdx != RCIdxEnd; ++RCIdx) { 1062 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1063 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 1064 if (IdxRC->contains(*Alias)) { 1065 ++RegClassDefCounts[RCIdx]; 1066 break; 1067 } 1068 } 1069 } 1070 } 1071 1072 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 1073 // The basic algorithm here is: 1074 // 1. Mark registers of def operands as free 1075 // 2. Allocate registers to use operands and place reload instructions for 1076 // registers displaced by the allocation. 1077 // 1078 // However we need to handle some corner cases: 1079 // - pre-assigned defs and uses need to be handled before the other def/use 1080 // operands are processed to avoid the allocation heuristics clashing with 1081 // the pre-assignment. 1082 // - The "free def operands" step has to come last instead of first for tied 1083 // operands and early-clobbers. 1084 1085 UsedInInstr.clear(); 1086 BundleVirtRegsMap.clear(); 1087 1088 // Scan for special cases; Apply pre-assigned register defs to state. 1089 bool HasPhysRegUse = false; 1090 bool HasRegMask = false; 1091 bool HasVRegDef = false; 1092 bool HasDef = false; 1093 bool HasEarlyClobber = false; 1094 bool NeedToAssignLiveThroughs = false; 1095 for (MachineOperand &MO : MI.operands()) { 1096 if (MO.isReg()) { 1097 Register Reg = MO.getReg(); 1098 if (Reg.isVirtual()) { 1099 if (MO.isDef()) { 1100 HasDef = true; 1101 HasVRegDef = true; 1102 if (MO.isEarlyClobber()) { 1103 HasEarlyClobber = true; 1104 NeedToAssignLiveThroughs = true; 1105 } 1106 if (MO.isTied() || (MO.getSubReg() != 0 && !MO.isUndef())) 1107 NeedToAssignLiveThroughs = true; 1108 } 1109 } else if (Reg.isPhysical()) { 1110 if (!MRI->isReserved(Reg)) { 1111 if (MO.isDef()) { 1112 HasDef = true; 1113 bool displacedAny = definePhysReg(MI, Reg); 1114 if (MO.isEarlyClobber()) 1115 HasEarlyClobber = true; 1116 if (!displacedAny) 1117 MO.setIsDead(true); 1118 } 1119 if (MO.readsReg()) 1120 HasPhysRegUse = true; 1121 } 1122 } 1123 } else if (MO.isRegMask()) { 1124 HasRegMask = true; 1125 } 1126 } 1127 1128 // Allocate virtreg defs. 1129 if (HasDef) { 1130 if (HasVRegDef) { 1131 // Special handling for early clobbers, tied operands or subregister defs: 1132 // Compared to "normal" defs these: 1133 // - Must not use a register that is pre-assigned for a use operand. 1134 // - In order to solve tricky inline assembly constraints we change the 1135 // heuristic to figure out a good operand order before doing 1136 // assignments. 1137 if (NeedToAssignLiveThroughs) { 1138 DefOperandIndexes.clear(); 1139 PhysRegUses.clear(); 1140 1141 // Track number of defs which may consume a register from the class. 1142 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); 1143 assert(RegClassDefCounts[0] == 0); 1144 1145 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); 1146 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1147 const MachineOperand &MO = MI.getOperand(I); 1148 if (!MO.isReg()) 1149 continue; 1150 Register Reg = MO.getReg(); 1151 if (MO.readsReg()) { 1152 if (Reg.isPhysical()) { 1153 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) 1154 << '\n'); 1155 markPhysRegUsedInInstr(Reg); 1156 } 1157 } 1158 1159 if (MO.isDef()) { 1160 if (Reg.isVirtual()) 1161 DefOperandIndexes.push_back(I); 1162 1163 addRegClassDefCounts(RegClassDefCounts, Reg); 1164 } 1165 } 1166 1167 llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) { 1168 const MachineOperand &MO0 = MI.getOperand(I0); 1169 const MachineOperand &MO1 = MI.getOperand(I1); 1170 Register Reg0 = MO0.getReg(); 1171 Register Reg1 = MO1.getReg(); 1172 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); 1173 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); 1174 1175 // Identify regclass that are easy to use up completely just in this 1176 // instruction. 1177 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); 1178 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); 1179 1180 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; 1181 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; 1182 if (SmallClass0 > SmallClass1) 1183 return true; 1184 if (SmallClass0 < SmallClass1) 1185 return false; 1186 1187 // Allocate early clobbers and livethrough operands first. 1188 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || 1189 (MO0.getSubReg() == 0 && !MO0.isUndef()); 1190 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || 1191 (MO1.getSubReg() == 0 && !MO1.isUndef()); 1192 if (Livethrough0 > Livethrough1) 1193 return true; 1194 if (Livethrough0 < Livethrough1) 1195 return false; 1196 1197 // Tie-break rule: operand index. 1198 return I0 < I1; 1199 }); 1200 1201 for (uint16_t OpIdx : DefOperandIndexes) { 1202 MachineOperand &MO = MI.getOperand(OpIdx); 1203 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); 1204 unsigned Reg = MO.getReg(); 1205 if (MO.isEarlyClobber() || MO.isTied() || 1206 (MO.getSubReg() && !MO.isUndef())) { 1207 defineLiveThroughVirtReg(MI, OpIdx, Reg); 1208 } else { 1209 defineVirtReg(MI, OpIdx, Reg); 1210 } 1211 } 1212 } else { 1213 // Assign virtual register defs. 1214 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1215 MachineOperand &MO = MI.getOperand(I); 1216 if (!MO.isReg() || !MO.isDef()) 1217 continue; 1218 Register Reg = MO.getReg(); 1219 if (Reg.isVirtual()) 1220 defineVirtReg(MI, I, Reg); 1221 } 1222 } 1223 } 1224 1225 // Free registers occupied by defs. 1226 // Iterate operands in reverse order, so we see the implicit super register 1227 // defs first (we added them earlier in case of <def,read-undef>). 1228 for (unsigned I = MI.getNumOperands(); I-- > 0;) { 1229 MachineOperand &MO = MI.getOperand(I); 1230 if (!MO.isReg() || !MO.isDef()) 1231 continue; 1232 1233 // subreg defs don't free the full register. We left the subreg number 1234 // around as a marker in setPhysReg() to recognize this case here. 1235 if (MO.getSubReg() != 0) { 1236 MO.setSubReg(0); 1237 continue; 1238 } 1239 1240 // Do not free tied operands and early clobbers. 1241 if (MO.isTied() || MO.isEarlyClobber()) 1242 continue; 1243 Register Reg = MO.getReg(); 1244 if (!Reg) 1245 continue; 1246 assert(Reg.isPhysical()); 1247 if (MRI->isReserved(Reg)) 1248 continue; 1249 freePhysReg(Reg); 1250 unmarkRegUsedInInstr(Reg); 1251 } 1252 } 1253 1254 // Displace clobbered registers. 1255 if (HasRegMask) { 1256 for (const MachineOperand &MO : MI.operands()) { 1257 if (MO.isRegMask()) { 1258 // MRI bookkeeping. 1259 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 1260 1261 // Displace clobbered registers. 1262 const uint32_t *Mask = MO.getRegMask(); 1263 for (const LiveReg &LR : LiveVirtRegs) { 1264 MCPhysReg PhysReg = LR.PhysReg; 1265 if (PhysReg != 0 && MachineOperand::clobbersPhysReg(Mask, PhysReg)) 1266 displacePhysReg(MI, PhysReg); 1267 } 1268 } 1269 } 1270 } 1271 1272 // Apply pre-assigned register uses to state. 1273 if (HasPhysRegUse) { 1274 for (MachineOperand &MO : MI.operands()) { 1275 if (!MO.isReg() || !MO.readsReg()) 1276 continue; 1277 Register Reg = MO.getReg(); 1278 if (!Reg.isPhysical()) 1279 continue; 1280 if (MRI->isReserved(Reg)) 1281 continue; 1282 bool displacedAny = usePhysReg(MI, Reg); 1283 if (!displacedAny && !MRI->isReserved(Reg)) 1284 MO.setIsKill(true); 1285 } 1286 } 1287 1288 // Allocate virtreg uses and insert reloads as necessary. 1289 bool HasUndefUse = false; 1290 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1291 MachineOperand &MO = MI.getOperand(I); 1292 if (!MO.isReg() || !MO.isUse()) 1293 continue; 1294 Register Reg = MO.getReg(); 1295 if (!Reg.isVirtual()) 1296 continue; 1297 1298 if (MO.isUndef()) { 1299 HasUndefUse = true; 1300 continue; 1301 } 1302 1303 1304 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1305 // the def block (removing the vreg uses). 1306 mayLiveIn(Reg); 1307 1308 1309 assert(!MO.isInternalRead() && "Bundles not supported"); 1310 assert(MO.readsReg() && "reading use"); 1311 useVirtReg(MI, I, Reg); 1312 } 1313 1314 // Allocate undef operands. This is a separate step because in a situation 1315 // like ` = OP undef %X, %X` both operands need the same register assign 1316 // so we should perform the normal assignment first. 1317 if (HasUndefUse) { 1318 for (MachineOperand &MO : MI.uses()) { 1319 if (!MO.isReg() || !MO.isUse()) 1320 continue; 1321 Register Reg = MO.getReg(); 1322 if (!Reg.isVirtual()) 1323 continue; 1324 1325 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1326 allocVirtRegUndef(MO); 1327 } 1328 } 1329 1330 // Free early clobbers. 1331 if (HasEarlyClobber) { 1332 for (unsigned I = MI.getNumOperands(); I-- > 0; ) { 1333 MachineOperand &MO = MI.getOperand(I); 1334 if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber()) 1335 continue; 1336 // subreg defs don't free the full register. We left the subreg number 1337 // around as a marker in setPhysReg() to recognize this case here. 1338 if (MO.getSubReg() != 0) { 1339 MO.setSubReg(0); 1340 continue; 1341 } 1342 1343 Register Reg = MO.getReg(); 1344 if (!Reg) 1345 continue; 1346 assert(Reg.isPhysical() && "should have register assigned"); 1347 1348 // We sometimes get odd situations like: 1349 // early-clobber %x0 = INSTRUCTION %x0 1350 // which is semantically questionable as the early-clobber should 1351 // apply before the use. But in practice we consider the use to 1352 // happen before the early clobber now. Don't free the early clobber 1353 // register in this case. 1354 if (MI.readsRegister(Reg, TRI)) 1355 continue; 1356 1357 freePhysReg(Reg); 1358 } 1359 } 1360 1361 LLVM_DEBUG(dbgs() << "<< " << MI); 1362 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 1363 MI.getNumOperands() == 2) { 1364 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1365 Coalesced.push_back(&MI); 1366 } 1367 } 1368 1369 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1370 SmallSet<Register, 4> SeenRegisters; 1371 for (MachineOperand &MO : MI.debug_operands()) { 1372 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1373 // mostly constants and frame indices. 1374 if (!MO.isReg()) 1375 continue; 1376 Register Reg = MO.getReg(); 1377 if (!Register::isVirtualRegister(Reg)) 1378 continue; 1379 // Only process each register once per MI, each use of that register will 1380 // be updated if necessary. 1381 if (!SeenRegisters.insert(Reg).second) 1382 continue; 1383 1384 // Already spilled to a stackslot? 1385 int SS = StackSlotForVirtReg[Reg]; 1386 if (SS != -1) { 1387 // Modify DBG_VALUE now that the value is in a spill slot. 1388 updateDbgValueForSpill(MI, SS, Reg); 1389 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); 1390 continue; 1391 } 1392 1393 // See if this virtual register has already been allocated to a physical 1394 // register or spilled to a stack slot. 1395 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1396 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1397 // Update every use of Reg within MI. 1398 for (auto &RegMO : MI.getDebugOperandsForReg(Reg)) 1399 setPhysReg(MI, RegMO, LRI->PhysReg); 1400 } else { 1401 DanglingDbgValues[Reg].push_back(&MI); 1402 } 1403 1404 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1405 // that future spills of Reg will have DBG_VALUEs. 1406 LiveDbgValueMap[Reg].push_back(&MI); 1407 } 1408 } 1409 1410 void RegAllocFast::handleBundle(MachineInstr &MI) { 1411 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); 1412 ++BundledMI; 1413 while (BundledMI->isBundledWithPred()) { 1414 for (unsigned I = 0; I < BundledMI->getNumOperands(); ++I) { 1415 MachineOperand &MO = BundledMI->getOperand(I); 1416 if (!MO.isReg()) 1417 continue; 1418 1419 Register Reg = MO.getReg(); 1420 if (!Reg.isVirtual()) 1421 continue; 1422 1423 DenseMap<Register, MCPhysReg>::iterator DI; 1424 DI = BundleVirtRegsMap.find(Reg); 1425 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register"); 1426 1427 setPhysReg(MI, MO, DI->second); 1428 } 1429 1430 ++BundledMI; 1431 } 1432 } 1433 1434 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1435 this->MBB = &MBB; 1436 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1437 1438 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1439 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1440 1441 for (MachineBasicBlock *Succ : MBB.successors()) { 1442 for (const MachineBasicBlock::RegisterMaskPair &LI : Succ->liveins()) 1443 setPhysRegState(LI.PhysReg, regPreAssigned); 1444 } 1445 1446 Coalesced.clear(); 1447 1448 // Traverse block in reverse order allocating instructions one by one. 1449 for (MachineInstr &MI : reverse(MBB)) { 1450 LLVM_DEBUG( 1451 dbgs() << "\n>> " << MI << "Regs:"; 1452 dumpState() 1453 ); 1454 1455 // Special handling for debug values. Note that they are not allowed to 1456 // affect codegen of the other instructions in any way. 1457 if (MI.isDebugValue()) { 1458 handleDebugValue(MI); 1459 continue; 1460 } 1461 1462 allocateInstruction(MI); 1463 1464 // Once BUNDLE header is assigned registers, same assignments need to be 1465 // done for bundled MIs. 1466 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1467 handleBundle(MI); 1468 } 1469 } 1470 1471 LLVM_DEBUG( 1472 dbgs() << "Begin Regs:"; 1473 dumpState() 1474 ); 1475 1476 // Spill all physical registers holding virtual registers now. 1477 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); 1478 reloadAtBegin(MBB); 1479 1480 // Erase all the coalesced copies. We are delaying it until now because 1481 // LiveVirtRegs might refer to the instrs. 1482 for (MachineInstr *MI : Coalesced) 1483 MBB.erase(MI); 1484 NumCoalesced += Coalesced.size(); 1485 1486 for (auto &UDBGPair : DanglingDbgValues) { 1487 for (MachineInstr *DbgValue : UDBGPair.second) { 1488 assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); 1489 // Nothing to do if the vreg was spilled in the meantime. 1490 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first)) 1491 continue; 1492 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 1493 << '\n'); 1494 DbgValue->setDebugValueUndef(); 1495 } 1496 } 1497 DanglingDbgValues.clear(); 1498 1499 LLVM_DEBUG(MBB.dump()); 1500 } 1501 1502 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1503 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1504 << "********** Function: " << MF.getName() << '\n'); 1505 MRI = &MF.getRegInfo(); 1506 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1507 TRI = STI.getRegisterInfo(); 1508 TII = STI.getInstrInfo(); 1509 MFI = &MF.getFrameInfo(); 1510 MRI->freezeReservedRegs(MF); 1511 RegClassInfo.runOnMachineFunction(MF); 1512 unsigned NumRegUnits = TRI->getNumRegUnits(); 1513 UsedInInstr.clear(); 1514 UsedInInstr.setUniverse(NumRegUnits); 1515 PhysRegUses.clear(); 1516 PhysRegUses.setUniverse(NumRegUnits); 1517 1518 // initialize the virtual->physical register map to have a 'null' 1519 // mapping for all virtual registers 1520 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1521 StackSlotForVirtReg.resize(NumVirtRegs); 1522 LiveVirtRegs.setUniverse(NumVirtRegs); 1523 MayLiveAcrossBlocks.clear(); 1524 MayLiveAcrossBlocks.resize(NumVirtRegs); 1525 1526 // Loop over all of the basic blocks, eliminating virtual register references 1527 for (MachineBasicBlock &MBB : MF) 1528 allocateBasicBlock(MBB); 1529 1530 // All machine operands and other references to virtual registers have been 1531 // replaced. Remove the virtual registers. 1532 MRI->clearVirtRegs(); 1533 1534 StackSlotForVirtReg.clear(); 1535 LiveDbgValueMap.clear(); 1536 return true; 1537 } 1538 1539 FunctionPass *llvm::createFastRegisterAllocator() { 1540 return new RegAllocFast(); 1541 } 1542