1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RegAllocRegistry.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/MC/MCInstrDesc.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <cassert> 48 #include <tuple> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumStores, "Number of stores added"); 56 STATISTIC(NumLoads , "Number of loads added"); 57 STATISTIC(NumCoalesced, "Number of copies coalesced"); 58 59 // FIXME: Remove this switch when all testcases are fixed! 60 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", 61 cl::Hidden); 62 63 static RegisterRegAlloc 64 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 65 66 namespace { 67 68 class RegAllocFast : public MachineFunctionPass { 69 public: 70 static char ID; 71 72 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 73 74 private: 75 MachineFrameInfo *MFI; 76 MachineRegisterInfo *MRI; 77 const TargetRegisterInfo *TRI; 78 const TargetInstrInfo *TII; 79 RegisterClassInfo RegClassInfo; 80 81 /// Basic block currently being allocated. 82 MachineBasicBlock *MBB; 83 84 /// Maps virtual regs to the frame index where these values are spilled. 85 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 86 87 /// Everything we know about a live virtual register. 88 struct LiveReg { 89 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 90 Register VirtReg; ///< Virtual register number. 91 MCPhysReg PhysReg = 0; ///< Currently held here. 92 bool LiveOut = false; ///< Register is possibly live out. 93 bool Reloaded = false; ///< Register was reloaded. 94 bool Error = false; ///< Could not allocate. 95 96 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 97 98 unsigned getSparseSetIndex() const { 99 return Register::virtReg2Index(VirtReg); 100 } 101 }; 102 103 using LiveRegMap = SparseSet<LiveReg>; 104 /// This map contains entries for each virtual register that is currently 105 /// available in a physical register. 106 LiveRegMap LiveVirtRegs; 107 108 /// Stores assigned virtual registers present in the bundle MI. 109 DenseMap<Register, MCPhysReg> BundleVirtRegsMap; 110 111 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap; 112 /// List of DBG_VALUE that we encountered without the vreg being assigned 113 /// because they were placed after the last use of the vreg. 114 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; 115 116 /// Has a bit set for every virtual register for which it was determined 117 /// that it is alive across blocks. 118 BitVector MayLiveAcrossBlocks; 119 120 /// State of a register unit. 121 enum RegUnitState { 122 /// A free register is not currently in use and can be allocated 123 /// immediately without checking aliases. 124 regFree, 125 126 /// A pre-assigned register has been assigned before register allocation 127 /// (e.g., setting up a call parameter). 128 regPreAssigned, 129 130 /// Used temporarily in reloadAtBegin() to mark register units that are 131 /// live-in to the basic block. 132 regLiveIn, 133 134 /// A register state may also be a virtual register number, indication 135 /// that the physical register is currently allocated to a virtual 136 /// register. In that case, LiveVirtRegs contains the inverse mapping. 137 }; 138 139 /// Maps each physical register to a RegUnitState enum or virtual register. 140 std::vector<unsigned> RegUnitStates; 141 142 SmallVector<MachineInstr *, 32> Coalesced; 143 144 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 145 /// Set of register units that are used in the current instruction, and so 146 /// cannot be allocated. 147 RegUnitSet UsedInInstr; 148 RegUnitSet PhysRegUses; 149 SmallVector<uint16_t, 8> DefOperandIndexes; 150 151 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 152 bool isPhysRegFree(MCPhysReg PhysReg) const; 153 154 /// Mark a physreg as used in this instruction. 155 void markRegUsedInInstr(MCPhysReg PhysReg) { 156 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 157 UsedInInstr.insert(*Units); 158 } 159 160 /// Check if a physreg or any of its aliases are used in this instruction. 161 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { 162 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 163 if (UsedInInstr.count(*Units)) 164 return true; 165 if (LookAtPhysRegUses && PhysRegUses.count(*Units)) 166 return true; 167 } 168 return false; 169 } 170 171 /// Mark physical register as being used in a register use operand. 172 /// This is only used by the special livethrough handling code. 173 void markPhysRegUsedInInstr(MCPhysReg PhysReg) { 174 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 175 PhysRegUses.insert(*Units); 176 } 177 178 /// Remove mark of physical register being used in the instruction. 179 void unmarkRegUsedInInstr(MCPhysReg PhysReg) { 180 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 181 UsedInInstr.erase(*Units); 182 } 183 184 enum : unsigned { 185 spillClean = 50, 186 spillDirty = 100, 187 spillPrefBonus = 20, 188 spillImpossible = ~0u 189 }; 190 191 public: 192 StringRef getPassName() const override { return "Fast Register Allocator"; } 193 194 void getAnalysisUsage(AnalysisUsage &AU) const override { 195 AU.setPreservesCFG(); 196 MachineFunctionPass::getAnalysisUsage(AU); 197 } 198 199 MachineFunctionProperties getRequiredProperties() const override { 200 return MachineFunctionProperties().set( 201 MachineFunctionProperties::Property::NoPHIs); 202 } 203 204 MachineFunctionProperties getSetProperties() const override { 205 return MachineFunctionProperties().set( 206 MachineFunctionProperties::Property::NoVRegs); 207 } 208 209 MachineFunctionProperties getClearedProperties() const override { 210 return MachineFunctionProperties().set( 211 MachineFunctionProperties::Property::IsSSA); 212 } 213 214 private: 215 bool runOnMachineFunction(MachineFunction &MF) override; 216 217 void allocateBasicBlock(MachineBasicBlock &MBB); 218 219 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 220 Register Reg) const; 221 222 void allocateInstruction(MachineInstr &MI); 223 void handleDebugValue(MachineInstr &MI); 224 void handleBundle(MachineInstr &MI); 225 226 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 227 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 228 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 229 void freePhysReg(MCPhysReg PhysReg); 230 231 unsigned calcSpillCost(MCPhysReg PhysReg) const; 232 233 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 234 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 235 } 236 237 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 238 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 239 } 240 241 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); 242 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, 243 bool LookAtPhysRegUses = false); 244 void allocVirtRegUndef(MachineOperand &MO); 245 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, 246 MCPhysReg Reg); 247 void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 248 Register VirtReg); 249 void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 250 bool LookAtPhysRegUses = false); 251 void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg); 252 253 MachineBasicBlock::iterator 254 getMBBBeginInsertionPoint(MachineBasicBlock &MBB, 255 SmallSet<Register, 2> &PrologLiveIns) const; 256 257 void reloadAtBegin(MachineBasicBlock &MBB); 258 void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 259 260 Register traceCopies(Register VirtReg) const; 261 Register traceCopyChain(Register Reg) const; 262 263 int getStackSpaceFor(Register VirtReg); 264 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 265 MCPhysReg AssignedReg, bool Kill, bool LiveOut); 266 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 267 MCPhysReg PhysReg); 268 269 bool mayLiveOut(Register VirtReg); 270 bool mayLiveIn(Register VirtReg); 271 272 void dumpState() const; 273 }; 274 275 } // end anonymous namespace 276 277 char RegAllocFast::ID = 0; 278 279 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 280 false) 281 282 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 283 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) 284 RegUnitStates[*UI] = NewState; 285 } 286 287 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const { 288 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 289 if (RegUnitStates[*UI] != regFree) 290 return false; 291 } 292 return true; 293 } 294 295 /// This allocates space for the specified virtual register to be held on the 296 /// stack. 297 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 298 // Find the location Reg would belong... 299 int SS = StackSlotForVirtReg[VirtReg]; 300 // Already has space allocated? 301 if (SS != -1) 302 return SS; 303 304 // Allocate a new stack object for this spill location... 305 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 306 unsigned Size = TRI->getSpillSize(RC); 307 Align Alignment = TRI->getSpillAlign(RC); 308 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 309 310 // Assign the slot. 311 StackSlotForVirtReg[VirtReg] = FrameIdx; 312 return FrameIdx; 313 } 314 315 static bool dominates(MachineBasicBlock &MBB, 316 MachineBasicBlock::const_iterator A, 317 MachineBasicBlock::const_iterator B) { 318 auto MBBEnd = MBB.end(); 319 if (B == MBBEnd) 320 return true; 321 322 MachineBasicBlock::const_iterator I = MBB.begin(); 323 for (; &*I != A && &*I != B; ++I) 324 ; 325 326 return &*I == A; 327 } 328 329 /// Returns false if \p VirtReg is known to not live out of the current block. 330 bool RegAllocFast::mayLiveOut(Register VirtReg) { 331 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 332 // Cannot be live-out if there are no successors. 333 return !MBB->succ_empty(); 334 } 335 336 const MachineInstr *SelfLoopDef = nullptr; 337 338 // If this block loops back to itself, it is necessary to check whether the 339 // use comes after the def. 340 if (MBB->isSuccessor(MBB)) { 341 SelfLoopDef = MRI->getUniqueVRegDef(VirtReg); 342 if (!SelfLoopDef) { 343 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 344 return true; 345 } 346 } 347 348 // See if the first \p Limit uses of the register are all in the current 349 // block. 350 static const unsigned Limit = 8; 351 unsigned C = 0; 352 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { 353 if (UseInst.getParent() != MBB || ++C >= Limit) { 354 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 355 // Cannot be live-out if there are no successors. 356 return !MBB->succ_empty(); 357 } 358 359 if (SelfLoopDef) { 360 // Try to handle some simple cases to avoid spilling and reloading every 361 // value inside a self looping block. 362 if (SelfLoopDef == &UseInst || 363 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) { 364 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 365 return true; 366 } 367 } 368 } 369 370 return false; 371 } 372 373 /// Returns false if \p VirtReg is known to not be live into the current block. 374 bool RegAllocFast::mayLiveIn(Register VirtReg) { 375 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 376 return !MBB->pred_empty(); 377 378 // See if the first \p Limit def of the register are all in the current block. 379 static const unsigned Limit = 8; 380 unsigned C = 0; 381 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 382 if (DefInst.getParent() != MBB || ++C >= Limit) { 383 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 384 return !MBB->pred_empty(); 385 } 386 } 387 388 return false; 389 } 390 391 /// Insert spill instruction for \p AssignedReg before \p Before. Update 392 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 393 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 394 MCPhysReg AssignedReg, bool Kill, bool LiveOut) { 395 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 396 << " in " << printReg(AssignedReg, TRI)); 397 int FI = getStackSpaceFor(VirtReg); 398 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 399 400 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 401 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 402 ++NumStores; 403 404 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); 405 406 // When we spill a virtual register, we will have spill instructions behind 407 // every definition of it, meaning we can switch all the DBG_VALUEs over 408 // to just reference the stack slot. 409 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg]; 410 for (MachineInstr *DBG : LRIDbgValues) { 411 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI); 412 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 413 (void)NewDV; 414 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 415 416 if (LiveOut) { 417 // We need to insert a DBG_VALUE at the end of the block if the spill slot 418 // is live out, but there is another use of the value after the 419 // spill. This will allow LiveDebugValues to see the correct live out 420 // value to propagate to the successors. 421 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV); 422 MBB->insert(FirstTerm, ClonedDV); 423 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n"); 424 } 425 426 // Rewrite unassigned dbg_values to use the stack slot. 427 // TODO We can potentially do this for list debug values as well if we know 428 // how the dbg_values are getting unassigned. 429 if (DBG->isNonListDebugValue()) { 430 MachineOperand &MO = DBG->getDebugOperand(0); 431 if (MO.isReg() && MO.getReg() == 0) { 432 updateDbgValueForSpill(*DBG, FI); 433 } 434 } 435 } 436 // Now this register is spilled there is should not be any DBG_VALUE 437 // pointing to this register because they are all pointing to spilled value 438 // now. 439 LRIDbgValues.clear(); 440 } 441 442 /// Insert reload instruction for \p PhysReg before \p Before. 443 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 444 MCPhysReg PhysReg) { 445 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 446 << printReg(PhysReg, TRI) << '\n'); 447 int FI = getStackSpaceFor(VirtReg); 448 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 449 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 450 ++NumLoads; 451 } 452 453 /// Get basic block begin insertion point. 454 /// This is not just MBB.begin() because surprisingly we have EH_LABEL 455 /// instructions marking the begin of a basic block. This means we must insert 456 /// new instructions after such labels... 457 MachineBasicBlock::iterator 458 RegAllocFast::getMBBBeginInsertionPoint( 459 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { 460 MachineBasicBlock::iterator I = MBB.begin(); 461 while (I != MBB.end()) { 462 if (I->isLabel()) { 463 ++I; 464 continue; 465 } 466 467 // Most reloads should be inserted after prolog instructions. 468 if (!TII->isBasicBlockPrologue(*I)) 469 break; 470 471 // However if a prolog instruction reads a register that needs to be 472 // reloaded, the reload should be inserted before the prolog. 473 for (MachineOperand &MO : I->operands()) { 474 if (MO.isReg()) 475 PrologLiveIns.insert(MO.getReg()); 476 } 477 478 ++I; 479 } 480 481 return I; 482 } 483 484 /// Reload all currently assigned virtual registers. 485 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) { 486 if (LiveVirtRegs.empty()) 487 return; 488 489 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 490 MCPhysReg Reg = P.PhysReg; 491 // Set state to live-in. This possibly overrides mappings to virtual 492 // registers but we don't care anymore at this point. 493 setPhysRegState(Reg, regLiveIn); 494 } 495 496 497 SmallSet<Register, 2> PrologLiveIns; 498 499 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 500 // of spilling here is deterministic, if arbitrary. 501 MachineBasicBlock::iterator InsertBefore 502 = getMBBBeginInsertionPoint(MBB, PrologLiveIns); 503 for (const LiveReg &LR : LiveVirtRegs) { 504 MCPhysReg PhysReg = LR.PhysReg; 505 if (PhysReg == 0) 506 continue; 507 508 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 509 if (RegUnitStates[FirstUnit] == regLiveIn) 510 continue; 511 512 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && 513 "no reload in start block. Missing vreg def?"); 514 515 if (PrologLiveIns.count(PhysReg)) { 516 // FIXME: Theoretically this should use an insert point skipping labels 517 // but I'm not sure how labels should interact with prolog instruction 518 // that need reloads. 519 reload(MBB.begin(), LR.VirtReg, PhysReg); 520 } else 521 reload(InsertBefore, LR.VirtReg, PhysReg); 522 } 523 LiveVirtRegs.clear(); 524 } 525 526 /// Handle the direct use of a physical register. Check that the register is 527 /// not used by a virtreg. Kill the physreg, marking it free. This may add 528 /// implicit kills to MO->getParent() and invalidate MO. 529 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { 530 assert(Register::isPhysicalRegister(Reg) && "expected physreg"); 531 bool displacedAny = displacePhysReg(MI, Reg); 532 setPhysRegState(Reg, regPreAssigned); 533 markRegUsedInInstr(Reg); 534 return displacedAny; 535 } 536 537 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { 538 bool displacedAny = displacePhysReg(MI, Reg); 539 setPhysRegState(Reg, regPreAssigned); 540 return displacedAny; 541 } 542 543 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 544 /// similar to defineVirtReg except the physreg is reserved instead of 545 /// allocated. 546 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { 547 bool displacedAny = false; 548 549 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 550 unsigned Unit = *UI; 551 switch (unsigned VirtReg = RegUnitStates[Unit]) { 552 default: { 553 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 554 assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); 555 MachineBasicBlock::iterator ReloadBefore = 556 std::next((MachineBasicBlock::iterator)MI.getIterator()); 557 reload(ReloadBefore, VirtReg, LRI->PhysReg); 558 559 setPhysRegState(LRI->PhysReg, regFree); 560 LRI->PhysReg = 0; 561 LRI->Reloaded = true; 562 displacedAny = true; 563 break; 564 } 565 case regPreAssigned: 566 RegUnitStates[Unit] = regFree; 567 displacedAny = true; 568 break; 569 case regFree: 570 break; 571 } 572 } 573 return displacedAny; 574 } 575 576 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) { 577 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); 578 579 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 580 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { 581 case regFree: 582 LLVM_DEBUG(dbgs() << '\n'); 583 return; 584 case regPreAssigned: 585 LLVM_DEBUG(dbgs() << '\n'); 586 setPhysRegState(PhysReg, regFree); 587 return; 588 default: { 589 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 590 assert(LRI != LiveVirtRegs.end()); 591 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); 592 setPhysRegState(LRI->PhysReg, regFree); 593 LRI->PhysReg = 0; 594 } 595 return; 596 } 597 } 598 599 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 600 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 601 /// disabled - it can be allocated directly. 602 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 603 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 604 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 605 switch (unsigned VirtReg = RegUnitStates[*UI]) { 606 case regFree: 607 break; 608 case regPreAssigned: 609 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " 610 << printReg(PhysReg, TRI) << '\n'); 611 return spillImpossible; 612 default: { 613 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || 614 findLiveVirtReg(VirtReg)->LiveOut; 615 return SureSpill ? spillClean : spillDirty; 616 } 617 } 618 } 619 return 0; 620 } 621 622 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition, 623 Register VirtReg, MCPhysReg Reg) { 624 auto UDBGValIter = DanglingDbgValues.find(VirtReg); 625 if (UDBGValIter == DanglingDbgValues.end()) 626 return; 627 628 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second; 629 for (MachineInstr *DbgValue : Dangling) { 630 assert(DbgValue->isDebugValue()); 631 if (!DbgValue->hasDebugOperandForReg(VirtReg)) 632 continue; 633 634 // Test whether the physreg survives from the definition to the DBG_VALUE. 635 MCPhysReg SetToReg = Reg; 636 unsigned Limit = 20; 637 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), 638 E = DbgValue->getIterator(); I != E; ++I) { 639 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { 640 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 641 << '\n'); 642 SetToReg = 0; 643 break; 644 } 645 } 646 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) { 647 MO.setReg(SetToReg); 648 if (SetToReg != 0) 649 MO.setIsRenamable(); 650 } 651 } 652 Dangling.clear(); 653 } 654 655 /// This method updates local state so that we know that PhysReg is the 656 /// proper container for VirtReg now. The physical register must not be used 657 /// for anything else when this is called. 658 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, 659 MCPhysReg PhysReg) { 660 Register VirtReg = LR.VirtReg; 661 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 662 << printReg(PhysReg, TRI) << '\n'); 663 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 664 assert(PhysReg != 0 && "Trying to assign no register"); 665 LR.PhysReg = PhysReg; 666 setPhysRegState(PhysReg, VirtReg); 667 668 assignDanglingDebugValues(AtMI, VirtReg, PhysReg); 669 } 670 671 static bool isCoalescable(const MachineInstr &MI) { 672 return MI.isFullCopy(); 673 } 674 675 Register RegAllocFast::traceCopyChain(Register Reg) const { 676 static const unsigned ChainLengthLimit = 3; 677 unsigned C = 0; 678 do { 679 if (Reg.isPhysical()) 680 return Reg; 681 assert(Reg.isVirtual()); 682 683 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 684 if (!VRegDef || !isCoalescable(*VRegDef)) 685 return 0; 686 Reg = VRegDef->getOperand(1).getReg(); 687 } while (++C <= ChainLengthLimit); 688 return 0; 689 } 690 691 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 692 /// chain of copies to check whether we reach a physical register we can 693 /// coalesce with. 694 Register RegAllocFast::traceCopies(Register VirtReg) const { 695 static const unsigned DefLimit = 3; 696 unsigned C = 0; 697 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 698 if (isCoalescable(MI)) { 699 Register Reg = MI.getOperand(1).getReg(); 700 Reg = traceCopyChain(Reg); 701 if (Reg.isValid()) 702 return Reg; 703 } 704 705 if (++C >= DefLimit) 706 break; 707 } 708 return Register(); 709 } 710 711 /// Allocates a physical register for VirtReg. 712 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, 713 Register Hint0, bool LookAtPhysRegUses) { 714 const Register VirtReg = LR.VirtReg; 715 assert(LR.PhysReg == 0); 716 717 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 718 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 719 << " in class " << TRI->getRegClassName(&RC) 720 << " with hint " << printReg(Hint0, TRI) << '\n'); 721 722 // Take hint when possible. 723 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && 724 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { 725 // Take hint if the register is currently free. 726 if (isPhysRegFree(Hint0)) { 727 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 728 << '\n'); 729 assignVirtToPhysReg(MI, LR, Hint0); 730 return; 731 } else { 732 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) 733 << " occupied\n"); 734 } 735 } else { 736 Hint0 = Register(); 737 } 738 739 740 // Try other hint. 741 Register Hint1 = traceCopies(VirtReg); 742 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 743 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { 744 // Take hint if the register is currently free. 745 if (isPhysRegFree(Hint1)) { 746 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 747 << '\n'); 748 assignVirtToPhysReg(MI, LR, Hint1); 749 return; 750 } else { 751 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) 752 << " occupied\n"); 753 } 754 } else { 755 Hint1 = Register(); 756 } 757 758 MCPhysReg BestReg = 0; 759 unsigned BestCost = spillImpossible; 760 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 761 for (MCPhysReg PhysReg : AllocationOrder) { 762 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 763 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { 764 LLVM_DEBUG(dbgs() << "already used in instr.\n"); 765 continue; 766 } 767 768 unsigned Cost = calcSpillCost(PhysReg); 769 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 770 // Immediate take a register with cost 0. 771 if (Cost == 0) { 772 assignVirtToPhysReg(MI, LR, PhysReg); 773 return; 774 } 775 776 if (PhysReg == Hint0 || PhysReg == Hint1) 777 Cost -= spillPrefBonus; 778 779 if (Cost < BestCost) { 780 BestReg = PhysReg; 781 BestCost = Cost; 782 } 783 } 784 785 if (!BestReg) { 786 // Nothing we can do: Report an error and keep going with an invalid 787 // allocation. 788 if (MI.isInlineAsm()) 789 MI.emitError("inline assembly requires more registers than available"); 790 else 791 MI.emitError("ran out of registers during register allocation"); 792 793 LR.Error = true; 794 LR.PhysReg = 0; 795 return; 796 } 797 798 displacePhysReg(MI, BestReg); 799 assignVirtToPhysReg(MI, LR, BestReg); 800 } 801 802 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 803 assert(MO.isUndef() && "expected undef use"); 804 Register VirtReg = MO.getReg(); 805 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg"); 806 807 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 808 MCPhysReg PhysReg; 809 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 810 PhysReg = LRI->PhysReg; 811 } else { 812 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 813 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 814 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 815 PhysReg = AllocationOrder[0]; 816 } 817 818 unsigned SubRegIdx = MO.getSubReg(); 819 if (SubRegIdx != 0) { 820 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 821 MO.setSubReg(0); 822 } 823 MO.setReg(PhysReg); 824 MO.setIsRenamable(true); 825 } 826 827 /// Variation of defineVirtReg() with special handling for livethrough regs 828 /// (tied or earlyclobber) that may interfere with preassigned uses. 829 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 830 Register VirtReg) { 831 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 832 if (LRI != LiveVirtRegs.end()) { 833 MCPhysReg PrevReg = LRI->PhysReg; 834 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { 835 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) 836 << " (tied/earlyclobber resolution)\n"); 837 freePhysReg(PrevReg); 838 LRI->PhysReg = 0; 839 allocVirtReg(MI, *LRI, 0, true); 840 MachineBasicBlock::iterator InsertBefore = 841 std::next((MachineBasicBlock::iterator)MI.getIterator()); 842 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " 843 << printReg(PrevReg, TRI) << '\n'); 844 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), 845 TII->get(TargetOpcode::COPY), PrevReg) 846 .addReg(LRI->PhysReg, llvm::RegState::Kill); 847 } 848 MachineOperand &MO = MI.getOperand(OpNum); 849 if (MO.getSubReg() && !MO.isUndef()) { 850 LRI->LastUse = &MI; 851 } 852 } 853 return defineVirtReg(MI, OpNum, VirtReg, true); 854 } 855 856 /// Allocates a register for VirtReg definition. Typically the register is 857 /// already assigned from a use of the virtreg, however we still need to 858 /// perform an allocation if: 859 /// - It is a dead definition without any uses. 860 /// - The value is live out and all uses are in different basic blocks. 861 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 862 Register VirtReg, bool LookAtPhysRegUses) { 863 assert(VirtReg.isVirtual() && "Not a virtual register"); 864 MachineOperand &MO = MI.getOperand(OpNum); 865 LiveRegMap::iterator LRI; 866 bool New; 867 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 868 if (New) { 869 if (!MO.isDead()) { 870 if (mayLiveOut(VirtReg)) { 871 LRI->LiveOut = true; 872 } else { 873 // It is a dead def without the dead flag; add the flag now. 874 MO.setIsDead(true); 875 } 876 } 877 } 878 if (LRI->PhysReg == 0) 879 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); 880 else { 881 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) && 882 "TODO: preassign mismatch"); 883 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) 884 << " use existing assignment to " 885 << printReg(LRI->PhysReg, TRI) << '\n'); 886 } 887 888 MCPhysReg PhysReg = LRI->PhysReg; 889 assert(PhysReg != 0 && "Register not assigned"); 890 if (LRI->Reloaded || LRI->LiveOut) { 891 if (!MI.isImplicitDef()) { 892 MachineBasicBlock::iterator SpillBefore = 893 std::next((MachineBasicBlock::iterator)MI.getIterator()); 894 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: " 895 << LRI->Reloaded << '\n'); 896 bool Kill = LRI->LastUse == nullptr; 897 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut); 898 LRI->LastUse = nullptr; 899 } 900 LRI->LiveOut = false; 901 LRI->Reloaded = false; 902 } 903 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 904 BundleVirtRegsMap[VirtReg] = PhysReg; 905 } 906 markRegUsedInInstr(PhysReg); 907 setPhysReg(MI, MO, PhysReg); 908 } 909 910 /// Allocates a register for a VirtReg use. 911 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum, 912 Register VirtReg) { 913 assert(VirtReg.isVirtual() && "Not a virtual register"); 914 MachineOperand &MO = MI.getOperand(OpNum); 915 LiveRegMap::iterator LRI; 916 bool New; 917 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 918 if (New) { 919 MachineOperand &MO = MI.getOperand(OpNum); 920 if (!MO.isKill()) { 921 if (mayLiveOut(VirtReg)) { 922 LRI->LiveOut = true; 923 } else { 924 // It is a last (killing) use without the kill flag; add the flag now. 925 MO.setIsKill(true); 926 } 927 } 928 } else { 929 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); 930 } 931 932 // If necessary allocate a register. 933 if (LRI->PhysReg == 0) { 934 assert(!MO.isTied() && "tied op should be allocated"); 935 Register Hint; 936 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { 937 Hint = MI.getOperand(0).getReg(); 938 assert(Hint.isPhysical() && 939 "Copy destination should already be assigned"); 940 } 941 allocVirtReg(MI, *LRI, Hint, false); 942 if (LRI->Error) { 943 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 944 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 945 setPhysReg(MI, MO, *AllocationOrder.begin()); 946 return; 947 } 948 } 949 950 LRI->LastUse = &MI; 951 952 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 953 BundleVirtRegsMap[VirtReg] = LRI->PhysReg; 954 } 955 markRegUsedInInstr(LRI->PhysReg); 956 setPhysReg(MI, MO, LRI->PhysReg); 957 } 958 959 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 960 /// may invalidate any operand pointers. Return true if the operand kills its 961 /// register. 962 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 963 MCPhysReg PhysReg) { 964 if (!MO.getSubReg()) { 965 MO.setReg(PhysReg); 966 MO.setIsRenamable(true); 967 return; 968 } 969 970 // Handle subregister index. 971 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister()); 972 MO.setIsRenamable(true); 973 // Note: We leave the subreg number around a little longer in case of defs. 974 // This is so that the register freeing logic in allocateInstruction can still 975 // recognize this as subregister defs. The code there will clear the number. 976 if (!MO.isDef()) 977 MO.setSubReg(0); 978 979 // A kill flag implies killing the full register. Add corresponding super 980 // register kill. 981 if (MO.isKill()) { 982 MI.addRegisterKilled(PhysReg, TRI, true); 983 return; 984 } 985 986 // A <def,read-undef> of a sub-register requires an implicit def of the full 987 // register. 988 if (MO.isDef() && MO.isUndef()) { 989 if (MO.isDead()) 990 MI.addRegisterDead(PhysReg, TRI, true); 991 else 992 MI.addRegisterDefined(PhysReg, TRI); 993 } 994 } 995 996 #ifndef NDEBUG 997 998 void RegAllocFast::dumpState() const { 999 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 1000 ++Unit) { 1001 switch (unsigned VirtReg = RegUnitStates[Unit]) { 1002 case regFree: 1003 break; 1004 case regPreAssigned: 1005 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 1006 break; 1007 case regLiveIn: 1008 llvm_unreachable("Should not have regLiveIn in map"); 1009 default: { 1010 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 1011 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 1012 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 1013 if (I->LiveOut || I->Reloaded) { 1014 dbgs() << '['; 1015 if (I->LiveOut) dbgs() << 'O'; 1016 if (I->Reloaded) dbgs() << 'R'; 1017 dbgs() << ']'; 1018 } 1019 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 1020 break; 1021 } 1022 } 1023 } 1024 dbgs() << '\n'; 1025 // Check that LiveVirtRegs is the inverse. 1026 for (const LiveReg &LR : LiveVirtRegs) { 1027 Register VirtReg = LR.VirtReg; 1028 assert(VirtReg.isVirtual() && "Bad map key"); 1029 MCPhysReg PhysReg = LR.PhysReg; 1030 if (PhysReg != 0) { 1031 assert(Register::isPhysicalRegister(PhysReg) && 1032 "mapped to physreg"); 1033 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 1034 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid"); 1035 } 1036 } 1037 } 1038 } 1039 #endif 1040 1041 /// Count number of defs consumed from each register class by \p Reg 1042 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 1043 Register Reg) const { 1044 assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); 1045 1046 if (Reg.isVirtual()) { 1047 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); 1048 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1049 RCIdx != RCIdxEnd; ++RCIdx) { 1050 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1051 // FIXME: Consider aliasing sub/super registers. 1052 if (OpRC->hasSubClassEq(IdxRC)) 1053 ++RegClassDefCounts[RCIdx]; 1054 } 1055 1056 return; 1057 } 1058 1059 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1060 RCIdx != RCIdxEnd; ++RCIdx) { 1061 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1062 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 1063 if (IdxRC->contains(*Alias)) { 1064 ++RegClassDefCounts[RCIdx]; 1065 break; 1066 } 1067 } 1068 } 1069 } 1070 1071 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 1072 // The basic algorithm here is: 1073 // 1. Mark registers of def operands as free 1074 // 2. Allocate registers to use operands and place reload instructions for 1075 // registers displaced by the allocation. 1076 // 1077 // However we need to handle some corner cases: 1078 // - pre-assigned defs and uses need to be handled before the other def/use 1079 // operands are processed to avoid the allocation heuristics clashing with 1080 // the pre-assignment. 1081 // - The "free def operands" step has to come last instead of first for tied 1082 // operands and early-clobbers. 1083 1084 UsedInInstr.clear(); 1085 BundleVirtRegsMap.clear(); 1086 1087 // Scan for special cases; Apply pre-assigned register defs to state. 1088 bool HasPhysRegUse = false; 1089 bool HasRegMask = false; 1090 bool HasVRegDef = false; 1091 bool HasDef = false; 1092 bool HasEarlyClobber = false; 1093 bool NeedToAssignLiveThroughs = false; 1094 for (MachineOperand &MO : MI.operands()) { 1095 if (MO.isReg()) { 1096 Register Reg = MO.getReg(); 1097 if (Reg.isVirtual()) { 1098 if (MO.isDef()) { 1099 HasDef = true; 1100 HasVRegDef = true; 1101 if (MO.isEarlyClobber()) { 1102 HasEarlyClobber = true; 1103 NeedToAssignLiveThroughs = true; 1104 } 1105 if (MO.isTied() || (MO.getSubReg() != 0 && !MO.isUndef())) 1106 NeedToAssignLiveThroughs = true; 1107 } 1108 } else if (Reg.isPhysical()) { 1109 if (!MRI->isReserved(Reg)) { 1110 if (MO.isDef()) { 1111 HasDef = true; 1112 bool displacedAny = definePhysReg(MI, Reg); 1113 if (MO.isEarlyClobber()) 1114 HasEarlyClobber = true; 1115 if (!displacedAny) 1116 MO.setIsDead(true); 1117 } 1118 if (MO.readsReg()) 1119 HasPhysRegUse = true; 1120 } 1121 } 1122 } else if (MO.isRegMask()) { 1123 HasRegMask = true; 1124 } 1125 } 1126 1127 // Allocate virtreg defs. 1128 if (HasDef) { 1129 if (HasVRegDef) { 1130 // Special handling for early clobbers, tied operands or subregister defs: 1131 // Compared to "normal" defs these: 1132 // - Must not use a register that is pre-assigned for a use operand. 1133 // - In order to solve tricky inline assembly constraints we change the 1134 // heuristic to figure out a good operand order before doing 1135 // assignments. 1136 if (NeedToAssignLiveThroughs) { 1137 DefOperandIndexes.clear(); 1138 PhysRegUses.clear(); 1139 1140 // Track number of defs which may consume a register from the class. 1141 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); 1142 assert(RegClassDefCounts[0] == 0); 1143 1144 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); 1145 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1146 const MachineOperand &MO = MI.getOperand(I); 1147 if (!MO.isReg()) 1148 continue; 1149 Register Reg = MO.getReg(); 1150 if (MO.readsReg()) { 1151 if (Reg.isPhysical()) { 1152 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) 1153 << '\n'); 1154 markPhysRegUsedInInstr(Reg); 1155 } 1156 } 1157 1158 if (MO.isDef()) { 1159 if (Reg.isVirtual()) 1160 DefOperandIndexes.push_back(I); 1161 1162 addRegClassDefCounts(RegClassDefCounts, Reg); 1163 } 1164 } 1165 1166 llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) { 1167 const MachineOperand &MO0 = MI.getOperand(I0); 1168 const MachineOperand &MO1 = MI.getOperand(I1); 1169 Register Reg0 = MO0.getReg(); 1170 Register Reg1 = MO1.getReg(); 1171 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); 1172 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); 1173 1174 // Identify regclass that are easy to use up completely just in this 1175 // instruction. 1176 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); 1177 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); 1178 1179 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; 1180 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; 1181 if (SmallClass0 > SmallClass1) 1182 return true; 1183 if (SmallClass0 < SmallClass1) 1184 return false; 1185 1186 // Allocate early clobbers and livethrough operands first. 1187 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || 1188 (MO0.getSubReg() == 0 && !MO0.isUndef()); 1189 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || 1190 (MO1.getSubReg() == 0 && !MO1.isUndef()); 1191 if (Livethrough0 > Livethrough1) 1192 return true; 1193 if (Livethrough0 < Livethrough1) 1194 return false; 1195 1196 // Tie-break rule: operand index. 1197 return I0 < I1; 1198 }); 1199 1200 for (uint16_t OpIdx : DefOperandIndexes) { 1201 MachineOperand &MO = MI.getOperand(OpIdx); 1202 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); 1203 unsigned Reg = MO.getReg(); 1204 if (MO.isEarlyClobber() || MO.isTied() || 1205 (MO.getSubReg() && !MO.isUndef())) { 1206 defineLiveThroughVirtReg(MI, OpIdx, Reg); 1207 } else { 1208 defineVirtReg(MI, OpIdx, Reg); 1209 } 1210 } 1211 } else { 1212 // Assign virtual register defs. 1213 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1214 MachineOperand &MO = MI.getOperand(I); 1215 if (!MO.isReg() || !MO.isDef()) 1216 continue; 1217 Register Reg = MO.getReg(); 1218 if (Reg.isVirtual()) 1219 defineVirtReg(MI, I, Reg); 1220 } 1221 } 1222 } 1223 1224 // Free registers occupied by defs. 1225 // Iterate operands in reverse order, so we see the implicit super register 1226 // defs first (we added them earlier in case of <def,read-undef>). 1227 for (unsigned I = MI.getNumOperands(); I-- > 0;) { 1228 MachineOperand &MO = MI.getOperand(I); 1229 if (!MO.isReg() || !MO.isDef()) 1230 continue; 1231 1232 // subreg defs don't free the full register. We left the subreg number 1233 // around as a marker in setPhysReg() to recognize this case here. 1234 if (MO.getSubReg() != 0) { 1235 MO.setSubReg(0); 1236 continue; 1237 } 1238 1239 // Do not free tied operands and early clobbers. 1240 if (MO.isTied() || MO.isEarlyClobber()) 1241 continue; 1242 Register Reg = MO.getReg(); 1243 if (!Reg) 1244 continue; 1245 assert(Reg.isPhysical()); 1246 if (MRI->isReserved(Reg)) 1247 continue; 1248 freePhysReg(Reg); 1249 unmarkRegUsedInInstr(Reg); 1250 } 1251 } 1252 1253 // Displace clobbered registers. 1254 if (HasRegMask) { 1255 for (const MachineOperand &MO : MI.operands()) { 1256 if (MO.isRegMask()) { 1257 // MRI bookkeeping. 1258 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 1259 1260 // Displace clobbered registers. 1261 const uint32_t *Mask = MO.getRegMask(); 1262 for (const LiveReg &LR : LiveVirtRegs) { 1263 MCPhysReg PhysReg = LR.PhysReg; 1264 if (PhysReg != 0 && MachineOperand::clobbersPhysReg(Mask, PhysReg)) 1265 displacePhysReg(MI, PhysReg); 1266 } 1267 } 1268 } 1269 } 1270 1271 // Apply pre-assigned register uses to state. 1272 if (HasPhysRegUse) { 1273 for (MachineOperand &MO : MI.operands()) { 1274 if (!MO.isReg() || !MO.readsReg()) 1275 continue; 1276 Register Reg = MO.getReg(); 1277 if (!Reg.isPhysical()) 1278 continue; 1279 if (MRI->isReserved(Reg)) 1280 continue; 1281 bool displacedAny = usePhysReg(MI, Reg); 1282 if (!displacedAny && !MRI->isReserved(Reg)) 1283 MO.setIsKill(true); 1284 } 1285 } 1286 1287 // Allocate virtreg uses and insert reloads as necessary. 1288 bool HasUndefUse = false; 1289 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1290 MachineOperand &MO = MI.getOperand(I); 1291 if (!MO.isReg() || !MO.isUse()) 1292 continue; 1293 Register Reg = MO.getReg(); 1294 if (!Reg.isVirtual()) 1295 continue; 1296 1297 if (MO.isUndef()) { 1298 HasUndefUse = true; 1299 continue; 1300 } 1301 1302 1303 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1304 // the def block (removing the vreg uses). 1305 mayLiveIn(Reg); 1306 1307 1308 assert(!MO.isInternalRead() && "Bundles not supported"); 1309 assert(MO.readsReg() && "reading use"); 1310 useVirtReg(MI, I, Reg); 1311 } 1312 1313 // Allocate undef operands. This is a separate step because in a situation 1314 // like ` = OP undef %X, %X` both operands need the same register assign 1315 // so we should perform the normal assignment first. 1316 if (HasUndefUse) { 1317 for (MachineOperand &MO : MI.uses()) { 1318 if (!MO.isReg() || !MO.isUse()) 1319 continue; 1320 Register Reg = MO.getReg(); 1321 if (!Reg.isVirtual()) 1322 continue; 1323 1324 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1325 allocVirtRegUndef(MO); 1326 } 1327 } 1328 1329 // Free early clobbers. 1330 if (HasEarlyClobber) { 1331 for (unsigned I = MI.getNumOperands(); I-- > 0; ) { 1332 MachineOperand &MO = MI.getOperand(I); 1333 if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber()) 1334 continue; 1335 // subreg defs don't free the full register. We left the subreg number 1336 // around as a marker in setPhysReg() to recognize this case here. 1337 if (MO.getSubReg() != 0) { 1338 MO.setSubReg(0); 1339 continue; 1340 } 1341 1342 Register Reg = MO.getReg(); 1343 if (!Reg) 1344 continue; 1345 assert(Reg.isPhysical() && "should have register assigned"); 1346 1347 // We sometimes get odd situations like: 1348 // early-clobber %x0 = INSTRUCTION %x0 1349 // which is semantically questionable as the early-clobber should 1350 // apply before the use. But in practice we consider the use to 1351 // happen before the early clobber now. Don't free the early clobber 1352 // register in this case. 1353 if (MI.readsRegister(Reg, TRI)) 1354 continue; 1355 1356 freePhysReg(Reg); 1357 } 1358 } 1359 1360 LLVM_DEBUG(dbgs() << "<< " << MI); 1361 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 1362 MI.getNumOperands() == 2) { 1363 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1364 Coalesced.push_back(&MI); 1365 } 1366 } 1367 1368 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1369 SmallSet<Register, 4> SeenRegisters; 1370 for (MachineOperand &MO : MI.debug_operands()) { 1371 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1372 // mostly constants and frame indices. 1373 if (!MO.isReg()) 1374 continue; 1375 Register Reg = MO.getReg(); 1376 if (!Register::isVirtualRegister(Reg)) 1377 continue; 1378 // Only process each register once per MI, each use of that register will 1379 // be updated if necessary. 1380 if (!SeenRegisters.insert(Reg).second) 1381 continue; 1382 1383 // Already spilled to a stackslot? 1384 int SS = StackSlotForVirtReg[Reg]; 1385 if (SS != -1) { 1386 // Modify DBG_VALUE now that the value is in a spill slot. 1387 updateDbgValueForSpill(MI, SS); 1388 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); 1389 continue; 1390 } 1391 1392 // See if this virtual register has already been allocated to a physical 1393 // register or spilled to a stack slot. 1394 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1395 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1396 // Update every use of Reg within MI. 1397 for (auto &RegMO : MI.getDebugOperandsForReg(Reg)) 1398 setPhysReg(MI, RegMO, LRI->PhysReg); 1399 } else { 1400 DanglingDbgValues[Reg].push_back(&MI); 1401 } 1402 1403 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1404 // that future spills of Reg will have DBG_VALUEs. 1405 LiveDbgValueMap[Reg].push_back(&MI); 1406 } 1407 } 1408 1409 void RegAllocFast::handleBundle(MachineInstr &MI) { 1410 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); 1411 ++BundledMI; 1412 while (BundledMI->isBundledWithPred()) { 1413 for (unsigned I = 0; I < BundledMI->getNumOperands(); ++I) { 1414 MachineOperand &MO = BundledMI->getOperand(I); 1415 if (!MO.isReg()) 1416 continue; 1417 1418 Register Reg = MO.getReg(); 1419 if (!Reg.isVirtual()) 1420 continue; 1421 1422 DenseMap<Register, MCPhysReg>::iterator DI; 1423 DI = BundleVirtRegsMap.find(Reg); 1424 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register"); 1425 1426 setPhysReg(MI, MO, DI->second); 1427 } 1428 1429 ++BundledMI; 1430 } 1431 } 1432 1433 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1434 this->MBB = &MBB; 1435 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1436 1437 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1438 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1439 1440 for (MachineBasicBlock *Succ : MBB.successors()) { 1441 for (const MachineBasicBlock::RegisterMaskPair &LI : Succ->liveins()) 1442 setPhysRegState(LI.PhysReg, regPreAssigned); 1443 } 1444 1445 Coalesced.clear(); 1446 1447 // Traverse block in reverse order allocating instructions one by one. 1448 for (MachineInstr &MI : reverse(MBB)) { 1449 LLVM_DEBUG( 1450 dbgs() << "\n>> " << MI << "Regs:"; 1451 dumpState() 1452 ); 1453 1454 // Special handling for debug values. Note that they are not allowed to 1455 // affect codegen of the other instructions in any way. 1456 if (MI.isDebugValue()) { 1457 handleDebugValue(MI); 1458 continue; 1459 } 1460 1461 allocateInstruction(MI); 1462 1463 // Once BUNDLE header is assigned registers, same assignments need to be 1464 // done for bundled MIs. 1465 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1466 handleBundle(MI); 1467 } 1468 } 1469 1470 LLVM_DEBUG( 1471 dbgs() << "Begin Regs:"; 1472 dumpState() 1473 ); 1474 1475 // Spill all physical registers holding virtual registers now. 1476 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); 1477 reloadAtBegin(MBB); 1478 1479 // Erase all the coalesced copies. We are delaying it until now because 1480 // LiveVirtRegs might refer to the instrs. 1481 for (MachineInstr *MI : Coalesced) 1482 MBB.erase(MI); 1483 NumCoalesced += Coalesced.size(); 1484 1485 for (auto &UDBGPair : DanglingDbgValues) { 1486 for (MachineInstr *DbgValue : UDBGPair.second) { 1487 assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); 1488 // Nothing to do if the vreg was spilled in the meantime. 1489 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first)) 1490 continue; 1491 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 1492 << '\n'); 1493 DbgValue->setDebugValueUndef(); 1494 } 1495 } 1496 DanglingDbgValues.clear(); 1497 1498 LLVM_DEBUG(MBB.dump()); 1499 } 1500 1501 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1502 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1503 << "********** Function: " << MF.getName() << '\n'); 1504 MRI = &MF.getRegInfo(); 1505 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1506 TRI = STI.getRegisterInfo(); 1507 TII = STI.getInstrInfo(); 1508 MFI = &MF.getFrameInfo(); 1509 MRI->freezeReservedRegs(MF); 1510 RegClassInfo.runOnMachineFunction(MF); 1511 unsigned NumRegUnits = TRI->getNumRegUnits(); 1512 UsedInInstr.clear(); 1513 UsedInInstr.setUniverse(NumRegUnits); 1514 PhysRegUses.clear(); 1515 PhysRegUses.setUniverse(NumRegUnits); 1516 1517 // initialize the virtual->physical register map to have a 'null' 1518 // mapping for all virtual registers 1519 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1520 StackSlotForVirtReg.resize(NumVirtRegs); 1521 LiveVirtRegs.setUniverse(NumVirtRegs); 1522 MayLiveAcrossBlocks.clear(); 1523 MayLiveAcrossBlocks.resize(NumVirtRegs); 1524 1525 // Loop over all of the basic blocks, eliminating virtual register references 1526 for (MachineBasicBlock &MBB : MF) 1527 allocateBasicBlock(MBB); 1528 1529 // All machine operands and other references to virtual registers have been 1530 // replaced. Remove the virtual registers. 1531 MRI->clearVirtRegs(); 1532 1533 StackSlotForVirtReg.clear(); 1534 LiveDbgValueMap.clear(); 1535 return true; 1536 } 1537 1538 FunctionPass *llvm::createFastRegisterAllocator() { 1539 return new RegAllocFast(); 1540 } 1541