1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RegAllocRegistry.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/MC/MCInstrDesc.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <cassert> 48 #include <tuple> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumStores, "Number of stores added"); 56 STATISTIC(NumLoads , "Number of loads added"); 57 STATISTIC(NumCoalesced, "Number of copies coalesced"); 58 59 static RegisterRegAlloc 60 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 61 62 namespace { 63 64 class RegAllocFast : public MachineFunctionPass { 65 public: 66 static char ID; 67 68 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 69 70 private: 71 MachineFrameInfo *MFI; 72 MachineRegisterInfo *MRI; 73 const TargetRegisterInfo *TRI; 74 const TargetInstrInfo *TII; 75 RegisterClassInfo RegClassInfo; 76 77 /// Basic block currently being allocated. 78 MachineBasicBlock *MBB; 79 80 /// Maps virtual regs to the frame index where these values are spilled. 81 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 82 83 /// Everything we know about a live virtual register. 84 struct LiveReg { 85 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 86 Register VirtReg; ///< Virtual register number. 87 MCPhysReg PhysReg = 0; ///< Currently held here. 88 unsigned short LastOpNum = 0; ///< OpNum on LastUse. 89 bool Dirty = false; ///< Register needs spill. 90 91 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 92 93 unsigned getSparseSetIndex() const { 94 return Register::virtReg2Index(VirtReg); 95 } 96 }; 97 98 using LiveRegMap = SparseSet<LiveReg>; 99 /// This map contains entries for each virtual register that is currently 100 /// available in a physical register. 101 LiveRegMap LiveVirtRegs; 102 103 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap; 104 105 /// Has a bit set for every virtual register for which it was determined 106 /// that it is alive across blocks. 107 BitVector MayLiveAcrossBlocks; 108 109 /// State of a register unit. 110 enum RegUnitState { 111 /// A free register is not currently in use and can be allocated 112 /// immediately without checking aliases. 113 regFree, 114 115 /// A reserved register has been assigned explicitly (e.g., setting up a 116 /// call parameter), and it remains reserved until it is used. 117 regReserved 118 119 /// A register state may also be a virtual register number, indication 120 /// that the physical register is currently allocated to a virtual 121 /// register. In that case, LiveVirtRegs contains the inverse mapping. 122 }; 123 124 /// Maps each physical register to a RegUnitState enum or virtual register. 125 std::vector<unsigned> RegUnitStates; 126 127 SmallVector<Register, 16> VirtDead; 128 SmallVector<MachineInstr *, 32> Coalesced; 129 130 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 131 /// Set of register units that are used in the current instruction, and so 132 /// cannot be allocated. 133 RegUnitSet UsedInInstr; 134 135 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 136 137 /// Mark a physreg as used in this instruction. 138 void markRegUsedInInstr(MCPhysReg PhysReg) { 139 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 140 UsedInInstr.insert(*Units); 141 } 142 143 /// Check if a physreg or any of its aliases are used in this instruction. 144 bool isRegUsedInInstr(MCPhysReg PhysReg) const { 145 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 146 if (UsedInInstr.count(*Units)) 147 return true; 148 return false; 149 } 150 151 enum : unsigned { 152 spillClean = 50, 153 spillDirty = 100, 154 spillPrefBonus = 20, 155 spillImpossible = ~0u 156 }; 157 158 public: 159 StringRef getPassName() const override { return "Fast Register Allocator"; } 160 161 void getAnalysisUsage(AnalysisUsage &AU) const override { 162 AU.setPreservesCFG(); 163 MachineFunctionPass::getAnalysisUsage(AU); 164 } 165 166 MachineFunctionProperties getRequiredProperties() const override { 167 return MachineFunctionProperties().set( 168 MachineFunctionProperties::Property::NoPHIs); 169 } 170 171 MachineFunctionProperties getSetProperties() const override { 172 return MachineFunctionProperties().set( 173 MachineFunctionProperties::Property::NoVRegs); 174 } 175 176 private: 177 bool runOnMachineFunction(MachineFunction &MF) override; 178 179 void allocateBasicBlock(MachineBasicBlock &MBB); 180 void allocateInstruction(MachineInstr &MI); 181 void handleDebugValue(MachineInstr &MI); 182 void handleThroughOperands(MachineInstr &MI, 183 SmallVectorImpl<Register> &VirtDead); 184 bool isLastUseOfLocalReg(const MachineOperand &MO) const; 185 186 void addKillFlag(const LiveReg &LRI); 187 #ifndef NDEBUG 188 bool verifyRegStateMapping(const LiveReg &LR) const; 189 #endif 190 191 void killVirtReg(LiveReg &LR); 192 void killVirtReg(Register VirtReg); 193 void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR); 194 void spillVirtReg(MachineBasicBlock::iterator MI, Register VirtReg); 195 196 void usePhysReg(MachineOperand &MO); 197 void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg, 198 unsigned NewState); 199 unsigned calcSpillCost(MCPhysReg PhysReg) const; 200 void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg); 201 202 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 203 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 204 } 205 206 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 207 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 208 } 209 210 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint); 211 void allocVirtRegUndef(MachineOperand &MO); 212 MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 213 Register Hint); 214 LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 215 Register Hint); 216 void spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut); 217 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 218 219 Register traceCopies(Register VirtReg) const; 220 Register traceCopyChain(Register Reg) const; 221 222 int getStackSpaceFor(Register VirtReg); 223 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 224 MCPhysReg AssignedReg, bool Kill); 225 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 226 MCPhysReg PhysReg); 227 228 bool mayLiveOut(Register VirtReg); 229 bool mayLiveIn(Register VirtReg); 230 231 void dumpState() const; 232 }; 233 234 } // end anonymous namespace 235 236 char RegAllocFast::ID = 0; 237 238 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 239 false) 240 241 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 242 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) 243 RegUnitStates[*UI] = NewState; 244 } 245 246 /// This allocates space for the specified virtual register to be held on the 247 /// stack. 248 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 249 // Find the location Reg would belong... 250 int SS = StackSlotForVirtReg[VirtReg]; 251 // Already has space allocated? 252 if (SS != -1) 253 return SS; 254 255 // Allocate a new stack object for this spill location... 256 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 257 unsigned Size = TRI->getSpillSize(RC); 258 Align Alignment = TRI->getSpillAlign(RC); 259 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 260 261 // Assign the slot. 262 StackSlotForVirtReg[VirtReg] = FrameIdx; 263 return FrameIdx; 264 } 265 266 static bool dominates(MachineBasicBlock &MBB, 267 MachineBasicBlock::const_iterator A, 268 MachineBasicBlock::const_iterator B) { 269 auto MBBEnd = MBB.end(); 270 if (B == MBBEnd) 271 return true; 272 273 MachineBasicBlock::const_iterator I = MBB.begin(); 274 for (; &*I != A && &*I != B; ++I) 275 ; 276 277 return &*I == A; 278 } 279 280 /// Returns false if \p VirtReg is known to not live out of the current block. 281 bool RegAllocFast::mayLiveOut(Register VirtReg) { 282 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 283 // Cannot be live-out if there are no successors. 284 return !MBB->succ_empty(); 285 } 286 287 const MachineInstr *SelfLoopDef = nullptr; 288 289 // If this block loops back to itself, it is necessary to check whether the 290 // use comes after the def. 291 if (MBB->isSuccessor(MBB)) { 292 SelfLoopDef = MRI->getUniqueVRegDef(VirtReg); 293 if (!SelfLoopDef) { 294 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 295 return true; 296 } 297 } 298 299 // See if the first \p Limit uses of the register are all in the current 300 // block. 301 static const unsigned Limit = 8; 302 unsigned C = 0; 303 for (const MachineInstr &UseInst : MRI->reg_nodbg_instructions(VirtReg)) { 304 if (UseInst.getParent() != MBB || ++C >= Limit) { 305 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 306 // Cannot be live-out if there are no successors. 307 return !MBB->succ_empty(); 308 } 309 310 if (SelfLoopDef) { 311 // Try to handle some simple cases to avoid spilling and reloading every 312 // value inside a self looping block. 313 if (SelfLoopDef == &UseInst || 314 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) { 315 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 316 return true; 317 } 318 } 319 } 320 321 return false; 322 } 323 324 /// Returns false if \p VirtReg is known to not be live into the current block. 325 bool RegAllocFast::mayLiveIn(Register VirtReg) { 326 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 327 return !MBB->pred_empty(); 328 329 // See if the first \p Limit def of the register are all in the current block. 330 static const unsigned Limit = 8; 331 unsigned C = 0; 332 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 333 if (DefInst.getParent() != MBB || ++C >= Limit) { 334 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 335 return !MBB->pred_empty(); 336 } 337 } 338 339 return false; 340 } 341 342 /// Insert spill instruction for \p AssignedReg before \p Before. Update 343 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 344 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 345 MCPhysReg AssignedReg, bool Kill) { 346 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 347 << " in " << printReg(AssignedReg, TRI)); 348 int FI = getStackSpaceFor(VirtReg); 349 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 350 351 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 352 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 353 ++NumStores; 354 355 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 356 // identify spilled location as the place to find corresponding variable's 357 // value. 358 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg]; 359 for (MachineInstr *DBG : LRIDbgValues) { 360 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI); 361 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 362 (void)NewDV; 363 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 364 } 365 // Now this register is spilled there is should not be any DBG_VALUE 366 // pointing to this register because they are all pointing to spilled value 367 // now. 368 LRIDbgValues.clear(); 369 } 370 371 /// Insert reload instruction for \p PhysReg before \p Before. 372 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 373 MCPhysReg PhysReg) { 374 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 375 << printReg(PhysReg, TRI) << '\n'); 376 int FI = getStackSpaceFor(VirtReg); 377 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 378 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 379 ++NumLoads; 380 } 381 382 /// Return true if MO is the only remaining reference to its virtual register, 383 /// and it is guaranteed to be a block-local register. 384 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const { 385 // If the register has ever been spilled or reloaded, we conservatively assume 386 // it is a global register used in multiple blocks. 387 if (StackSlotForVirtReg[MO.getReg()] != -1) 388 return false; 389 390 // Check that the use/def chain has exactly one operand - MO. 391 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 392 if (&*I != &MO) 393 return false; 394 return ++I == MRI->reg_nodbg_end(); 395 } 396 397 /// Set kill flags on last use of a virtual register. 398 void RegAllocFast::addKillFlag(const LiveReg &LR) { 399 if (!LR.LastUse) return; 400 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 401 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 402 if (MO.getReg() == LR.PhysReg) 403 MO.setIsKill(); 404 // else, don't do anything we are problably redefining a 405 // subreg of this register and given we don't track which 406 // lanes are actually dead, we cannot insert a kill flag here. 407 // Otherwise we may end up in a situation like this: 408 // ... = (MO) physreg:sub1, implicit killed physreg 409 // ... <== Here we would allow later pass to reuse physreg:sub1 410 // which is potentially wrong. 411 // LR:sub0 = ... 412 // ... = LR.sub1 <== This is going to use physreg:sub1 413 } 414 } 415 416 #ifndef NDEBUG 417 bool RegAllocFast::verifyRegStateMapping(const LiveReg &LR) const { 418 for (MCRegUnitIterator UI(LR.PhysReg, TRI); UI.isValid(); ++UI) { 419 if (RegUnitStates[*UI] != LR.VirtReg) 420 return false; 421 } 422 423 return true; 424 } 425 #endif 426 427 /// Mark virtreg as no longer available. 428 void RegAllocFast::killVirtReg(LiveReg &LR) { 429 assert(verifyRegStateMapping(LR) && "Broken RegState mapping"); 430 addKillFlag(LR); 431 MCPhysReg PhysReg = LR.PhysReg; 432 setPhysRegState(PhysReg, regFree); 433 LR.PhysReg = 0; 434 } 435 436 /// Mark virtreg as no longer available. 437 void RegAllocFast::killVirtReg(Register VirtReg) { 438 assert(Register::isVirtualRegister(VirtReg) && 439 "killVirtReg needs a virtual register"); 440 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 441 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) 442 killVirtReg(*LRI); 443 } 444 445 /// This method spills the value specified by VirtReg into the corresponding 446 /// stack slot if needed. 447 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 448 Register VirtReg) { 449 assert(Register::isVirtualRegister(VirtReg) && 450 "Spilling a physical register is illegal!"); 451 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 452 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 453 "Spilling unmapped virtual register"); 454 spillVirtReg(MI, *LRI); 455 } 456 457 /// Do the actual work of spilling. 458 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) { 459 assert(verifyRegStateMapping(LR) && "Broken RegState mapping"); 460 461 MCPhysReg PhysReg = LR.PhysReg; 462 463 if (LR.Dirty) { 464 // If this physreg is used by the instruction, we want to kill it on the 465 // instruction, not on the spill. 466 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; 467 LR.Dirty = false; 468 469 spill(MI, LR.VirtReg, PhysReg, SpillKill); 470 471 if (SpillKill) 472 LR.LastUse = nullptr; // Don't kill register again 473 } 474 killVirtReg(LR); 475 } 476 477 /// Spill all dirty virtregs without killing them. 478 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut) { 479 if (LiveVirtRegs.empty()) 480 return; 481 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 482 // of spilling here is deterministic, if arbitrary. 483 for (LiveReg &LR : LiveVirtRegs) { 484 if (!LR.PhysReg) 485 continue; 486 if (OnlyLiveOut && !mayLiveOut(LR.VirtReg)) 487 continue; 488 spillVirtReg(MI, LR); 489 } 490 LiveVirtRegs.clear(); 491 } 492 493 /// Handle the direct use of a physical register. Check that the register is 494 /// not used by a virtreg. Kill the physreg, marking it free. This may add 495 /// implicit kills to MO->getParent() and invalidate MO. 496 void RegAllocFast::usePhysReg(MachineOperand &MO) { 497 // Ignore undef uses. 498 if (MO.isUndef()) 499 return; 500 501 Register PhysReg = MO.getReg(); 502 assert(PhysReg.isPhysical() && "Bad usePhysReg operand"); 503 504 markRegUsedInInstr(PhysReg); 505 506 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 507 switch (RegUnitStates[*UI]) { 508 case regReserved: 509 RegUnitStates[*UI] = regFree; 510 LLVM_FALLTHROUGH; 511 case regFree: 512 break; 513 default: 514 llvm_unreachable("Unexpected reg unit state"); 515 } 516 } 517 518 // All aliases are disabled, bring register into working set. 519 setPhysRegState(PhysReg, regFree); 520 MO.setIsKill(); 521 } 522 523 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 524 /// similar to defineVirtReg except the physreg is reserved instead of 525 /// allocated. 526 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI, 527 MCPhysReg PhysReg, unsigned NewState) { 528 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 529 switch (unsigned VirtReg = RegUnitStates[*UI]) { 530 default: 531 spillVirtReg(MI, VirtReg); 532 break; 533 case regFree: 534 case regReserved: 535 break; 536 } 537 } 538 539 markRegUsedInInstr(PhysReg); 540 setPhysRegState(PhysReg, NewState); 541 } 542 543 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 544 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 545 /// disabled - it can be allocated directly. 546 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 547 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 548 if (isRegUsedInInstr(PhysReg)) { 549 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) 550 << " is already used in instr.\n"); 551 return spillImpossible; 552 } 553 554 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 555 switch (unsigned VirtReg = RegUnitStates[*UI]) { 556 case regFree: 557 break; 558 case regReserved: 559 LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding " 560 << printReg(PhysReg, TRI) << " is reserved already.\n"); 561 return spillImpossible; 562 default: { 563 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 564 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 565 "Missing VirtReg entry"); 566 return LRI->Dirty ? spillDirty : spillClean; 567 } 568 } 569 } 570 return 0; 571 } 572 573 /// This method updates local state so that we know that PhysReg is the 574 /// proper container for VirtReg now. The physical register must not be used 575 /// for anything else when this is called. 576 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) { 577 Register VirtReg = LR.VirtReg; 578 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 579 << printReg(PhysReg, TRI) << '\n'); 580 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 581 assert(PhysReg != 0 && "Trying to assign no register"); 582 LR.PhysReg = PhysReg; 583 setPhysRegState(PhysReg, VirtReg); 584 } 585 586 static bool isCoalescable(const MachineInstr &MI) { 587 return MI.isFullCopy(); 588 } 589 590 Register RegAllocFast::traceCopyChain(Register Reg) const { 591 static const unsigned ChainLengthLimit = 3; 592 unsigned C = 0; 593 do { 594 if (Reg.isPhysical()) 595 return Reg; 596 assert(Reg.isVirtual()); 597 598 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 599 if (!VRegDef || !isCoalescable(*VRegDef)) 600 return 0; 601 Reg = VRegDef->getOperand(1).getReg(); 602 } while (++C <= ChainLengthLimit); 603 return 0; 604 } 605 606 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 607 /// chain of copies to check whether we reach a physical register we can 608 /// coalesce with. 609 Register RegAllocFast::traceCopies(Register VirtReg) const { 610 static const unsigned DefLimit = 3; 611 unsigned C = 0; 612 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 613 if (isCoalescable(MI)) { 614 Register Reg = MI.getOperand(1).getReg(); 615 Reg = traceCopyChain(Reg); 616 if (Reg.isValid()) 617 return Reg; 618 } 619 620 if (++C >= DefLimit) 621 break; 622 } 623 return Register(); 624 } 625 626 /// Allocates a physical register for VirtReg. 627 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint0) { 628 const Register VirtReg = LR.VirtReg; 629 630 assert(Register::isVirtualRegister(VirtReg) && 631 "Can only allocate virtual registers"); 632 633 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 634 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 635 << " in class " << TRI->getRegClassName(&RC) 636 << " with hint " << printReg(Hint0, TRI) << '\n'); 637 638 // Take hint when possible. 639 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && 640 RC.contains(Hint0)) { 641 // Ignore the hint if we would have to spill a dirty register. 642 unsigned Cost = calcSpillCost(Hint0); 643 if (Cost < spillDirty) { 644 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 645 << '\n'); 646 if (Cost) 647 definePhysReg(MI, Hint0, regFree); 648 assignVirtToPhysReg(LR, Hint0); 649 return; 650 } else { 651 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 652 << "occupied\n"); 653 } 654 } else { 655 Hint0 = Register(); 656 } 657 658 // Try other hint. 659 Register Hint1 = traceCopies(VirtReg); 660 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && 661 RC.contains(Hint1) && !isRegUsedInInstr(Hint1)) { 662 // Ignore the hint if we would have to spill a dirty register. 663 unsigned Cost = calcSpillCost(Hint1); 664 if (Cost < spillDirty) { 665 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 666 << '\n'); 667 if (Cost) 668 definePhysReg(MI, Hint1, regFree); 669 assignVirtToPhysReg(LR, Hint1); 670 return; 671 } else { 672 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 673 << "occupied\n"); 674 } 675 } else { 676 Hint1 = Register(); 677 } 678 679 MCPhysReg BestReg = 0; 680 unsigned BestCost = spillImpossible; 681 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 682 for (MCPhysReg PhysReg : AllocationOrder) { 683 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 684 unsigned Cost = calcSpillCost(PhysReg); 685 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 686 // Immediate take a register with cost 0. 687 if (Cost == 0) { 688 assignVirtToPhysReg(LR, PhysReg); 689 return; 690 } 691 692 if (PhysReg == Hint1 || PhysReg == Hint0) 693 Cost -= spillPrefBonus; 694 695 if (Cost < BestCost) { 696 BestReg = PhysReg; 697 BestCost = Cost; 698 } 699 } 700 701 if (!BestReg) { 702 // Nothing we can do: Report an error and keep going with an invalid 703 // allocation. 704 if (MI.isInlineAsm()) 705 MI.emitError("inline assembly requires more registers than available"); 706 else 707 MI.emitError("ran out of registers during register allocation"); 708 definePhysReg(MI, *AllocationOrder.begin(), regFree); 709 assignVirtToPhysReg(LR, *AllocationOrder.begin()); 710 return; 711 } 712 713 definePhysReg(MI, BestReg, regFree); 714 assignVirtToPhysReg(LR, BestReg); 715 } 716 717 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 718 assert(MO.isUndef() && "expected undef use"); 719 Register VirtReg = MO.getReg(); 720 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg"); 721 722 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 723 MCPhysReg PhysReg; 724 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 725 PhysReg = LRI->PhysReg; 726 } else { 727 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 728 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 729 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 730 PhysReg = AllocationOrder[0]; 731 } 732 733 unsigned SubRegIdx = MO.getSubReg(); 734 if (SubRegIdx != 0) { 735 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 736 MO.setSubReg(0); 737 } 738 MO.setReg(PhysReg); 739 MO.setIsRenamable(true); 740 } 741 742 /// Allocates a register for VirtReg and mark it as dirty. 743 MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 744 Register VirtReg, Register Hint) { 745 assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register"); 746 LiveRegMap::iterator LRI; 747 bool New; 748 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 749 if (!LRI->PhysReg) { 750 // If there is no hint, peek at the only use of this register. 751 if ((!Hint || !Hint.isPhysical()) && 752 MRI->hasOneNonDBGUse(VirtReg)) { 753 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 754 // It's a copy, use the destination register as a hint. 755 if (UseMI.isCopyLike()) 756 Hint = UseMI.getOperand(0).getReg(); 757 } 758 allocVirtReg(MI, *LRI, Hint); 759 } else if (LRI->LastUse) { 760 // Redefining a live register - kill at the last use, unless it is this 761 // instruction defining VirtReg multiple times. 762 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 763 addKillFlag(*LRI); 764 } 765 assert(LRI->PhysReg && "Register not assigned"); 766 LRI->LastUse = &MI; 767 LRI->LastOpNum = OpNum; 768 LRI->Dirty = true; 769 markRegUsedInInstr(LRI->PhysReg); 770 return LRI->PhysReg; 771 } 772 773 /// Make sure VirtReg is available in a physreg and return it. 774 RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI, 775 unsigned OpNum, 776 Register VirtReg, 777 Register Hint) { 778 assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register"); 779 LiveRegMap::iterator LRI; 780 bool New; 781 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 782 MachineOperand &MO = MI.getOperand(OpNum); 783 if (!LRI->PhysReg) { 784 allocVirtReg(MI, *LRI, Hint); 785 reload(MI, VirtReg, LRI->PhysReg); 786 } else if (LRI->Dirty) { 787 if (isLastUseOfLocalReg(MO)) { 788 LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n'); 789 if (MO.isUse()) 790 MO.setIsKill(); 791 else 792 MO.setIsDead(); 793 } else if (MO.isKill()) { 794 LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n'); 795 MO.setIsKill(false); 796 } else if (MO.isDead()) { 797 LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n'); 798 MO.setIsDead(false); 799 } 800 } else if (MO.isKill()) { 801 // We must remove kill flags from uses of reloaded registers because the 802 // register would be killed immediately, and there might be a second use: 803 // %foo = OR killed %x, %x 804 // This would cause a second reload of %x into a different register. 805 LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n'); 806 MO.setIsKill(false); 807 } else if (MO.isDead()) { 808 LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n'); 809 MO.setIsDead(false); 810 } 811 assert(LRI->PhysReg && "Register not assigned"); 812 LRI->LastUse = &MI; 813 LRI->LastOpNum = OpNum; 814 markRegUsedInInstr(LRI->PhysReg); 815 return *LRI; 816 } 817 818 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 819 /// may invalidate any operand pointers. Return true if the operand kills its 820 /// register. 821 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 822 MCPhysReg PhysReg) { 823 bool Dead = MO.isDead(); 824 if (!MO.getSubReg()) { 825 MO.setReg(PhysReg); 826 MO.setIsRenamable(true); 827 return MO.isKill() || Dead; 828 } 829 830 // Handle subregister index. 831 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : Register()); 832 MO.setIsRenamable(true); 833 MO.setSubReg(0); 834 835 // A kill flag implies killing the full register. Add corresponding super 836 // register kill. 837 if (MO.isKill()) { 838 MI.addRegisterKilled(PhysReg, TRI, true); 839 return true; 840 } 841 842 // A <def,read-undef> of a sub-register requires an implicit def of the full 843 // register. 844 if (MO.isDef() && MO.isUndef()) 845 MI.addRegisterDefined(PhysReg, TRI); 846 847 return Dead; 848 } 849 850 // Handles special instruction operand like early clobbers and tied ops when 851 // there are additional physreg defines. 852 void RegAllocFast::handleThroughOperands(MachineInstr &MI, 853 SmallVectorImpl<Register> &VirtDead) { 854 LLVM_DEBUG(dbgs() << "Scanning for through registers:"); 855 SmallSet<Register, 8> ThroughRegs; 856 for (const MachineOperand &MO : MI.operands()) { 857 if (!MO.isReg()) continue; 858 Register Reg = MO.getReg(); 859 if (!Reg.isVirtual()) 860 continue; 861 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) || 862 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) { 863 if (ThroughRegs.insert(Reg).second) 864 LLVM_DEBUG(dbgs() << ' ' << printReg(Reg)); 865 } 866 } 867 868 // If any physreg defines collide with preallocated through registers, 869 // we must spill and reallocate. 870 LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 871 for (const MachineOperand &MO : MI.operands()) { 872 if (!MO.isReg() || !MO.isDef()) continue; 873 Register Reg = MO.getReg(); 874 if (!Reg || !Reg.isPhysical()) 875 continue; 876 markRegUsedInInstr(Reg); 877 878 for (MCRegUnitIterator UI(Reg, TRI); UI.isValid(); ++UI) { 879 if (!ThroughRegs.count(RegUnitStates[*UI])) 880 continue; 881 882 // Need to spill any aliasing registers. 883 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 884 for (MCSuperRegIterator SI(*RI, TRI, true); SI.isValid(); ++SI) { 885 definePhysReg(MI, *SI, regFree); 886 } 887 } 888 } 889 } 890 891 SmallVector<Register, 8> PartialDefs; 892 LLVM_DEBUG(dbgs() << "Allocating tied uses.\n"); 893 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 894 MachineOperand &MO = MI.getOperand(I); 895 if (!MO.isReg()) continue; 896 Register Reg = MO.getReg(); 897 if (!Register::isVirtualRegister(Reg)) 898 continue; 899 if (MO.isUse()) { 900 if (!MO.isTied()) continue; 901 LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO 902 << ") is tied to operand " << MI.findTiedOperandIdx(I) 903 << ".\n"); 904 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 905 MCPhysReg PhysReg = LR.PhysReg; 906 setPhysReg(MI, MO, PhysReg); 907 // Note: we don't update the def operand yet. That would cause the normal 908 // def-scan to attempt spilling. 909 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) { 910 LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n'); 911 // Reload the register, but don't assign to the operand just yet. 912 // That would confuse the later phys-def processing pass. 913 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 914 PartialDefs.push_back(LR.PhysReg); 915 } 916 } 917 918 LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n"); 919 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 920 const MachineOperand &MO = MI.getOperand(I); 921 if (!MO.isReg()) continue; 922 Register Reg = MO.getReg(); 923 if (!Register::isVirtualRegister(Reg)) 924 continue; 925 if (!MO.isEarlyClobber()) 926 continue; 927 // Note: defineVirtReg may invalidate MO. 928 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0); 929 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) 930 VirtDead.push_back(Reg); 931 } 932 933 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 934 UsedInInstr.clear(); 935 for (const MachineOperand &MO : MI.operands()) { 936 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 937 Register Reg = MO.getReg(); 938 if (!Reg || !Reg.isPhysical()) 939 continue; 940 LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI) 941 << " as used in instr\n"); 942 markRegUsedInInstr(Reg); 943 } 944 945 // Also mark PartialDefs as used to avoid reallocation. 946 for (Register PartialDef : PartialDefs) 947 markRegUsedInInstr(PartialDef); 948 } 949 950 #ifndef NDEBUG 951 952 void RegAllocFast::dumpState() const { 953 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 954 ++Unit) { 955 switch (unsigned VirtReg = RegUnitStates[Unit]) { 956 case regFree: 957 break; 958 case regReserved: 959 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 960 break; 961 default: { 962 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 963 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 964 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 965 if (I->Dirty) 966 dbgs() << "[D]"; 967 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 968 break; 969 } 970 } 971 } 972 dbgs() << '\n'; 973 // Check that LiveVirtRegs is the inverse. 974 for (const LiveReg &LR : LiveVirtRegs) { 975 Register VirtReg = LR.VirtReg; 976 assert(VirtReg.isVirtual() && "Bad map key"); 977 MCPhysReg PhysReg = LR.PhysReg; 978 if (PhysReg != 0) { 979 assert(Register::isPhysicalRegister(PhysReg) && 980 "mapped to physreg"); 981 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 982 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid"); 983 } 984 } 985 } 986 } 987 #endif 988 989 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 990 const MCInstrDesc &MCID = MI.getDesc(); 991 992 // If this is a copy, we may be able to coalesce. 993 Register CopySrcReg; 994 Register CopyDstReg; 995 unsigned CopySrcSub = 0; 996 unsigned CopyDstSub = 0; 997 if (MI.isCopy()) { 998 CopyDstReg = MI.getOperand(0).getReg(); 999 CopySrcReg = MI.getOperand(1).getReg(); 1000 CopyDstSub = MI.getOperand(0).getSubReg(); 1001 CopySrcSub = MI.getOperand(1).getSubReg(); 1002 } 1003 1004 // Track registers used by instruction. 1005 UsedInInstr.clear(); 1006 1007 // First scan. 1008 // Mark physreg uses and early clobbers as used. 1009 // Find the end of the virtreg operands 1010 unsigned VirtOpEnd = 0; 1011 bool hasTiedOps = false; 1012 bool hasEarlyClobbers = false; 1013 bool hasPartialRedefs = false; 1014 bool hasPhysDefs = false; 1015 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1016 MachineOperand &MO = MI.getOperand(i); 1017 // Make sure MRI knows about registers clobbered by regmasks. 1018 if (MO.isRegMask()) { 1019 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 1020 continue; 1021 } 1022 if (!MO.isReg()) continue; 1023 Register Reg = MO.getReg(); 1024 if (!Reg) continue; 1025 if (Register::isVirtualRegister(Reg)) { 1026 VirtOpEnd = i+1; 1027 if (MO.isUse()) { 1028 hasTiedOps = hasTiedOps || 1029 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 1030 } else { 1031 if (MO.isEarlyClobber()) 1032 hasEarlyClobbers = true; 1033 if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) 1034 hasPartialRedefs = true; 1035 } 1036 continue; 1037 } 1038 if (!MRI->isAllocatable(Reg)) continue; 1039 if (MO.isUse()) { 1040 usePhysReg(MO); 1041 } else if (MO.isEarlyClobber()) { 1042 definePhysReg(MI, Reg, 1043 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); 1044 hasEarlyClobbers = true; 1045 } else 1046 hasPhysDefs = true; 1047 } 1048 1049 // The instruction may have virtual register operands that must be allocated 1050 // the same register at use-time and def-time: early clobbers and tied 1051 // operands. If there are also physical defs, these registers must avoid 1052 // both physical defs and uses, making them more constrained than normal 1053 // operands. 1054 // Similarly, if there are multiple defs and tied operands, we must make 1055 // sure the same register is allocated to uses and defs. 1056 // We didn't detect inline asm tied operands above, so just make this extra 1057 // pass for all inline asm. 1058 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 1059 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 1060 handleThroughOperands(MI, VirtDead); 1061 // Don't attempt coalescing when we have funny stuff going on. 1062 CopyDstReg = Register(); 1063 // Pretend we have early clobbers so the use operands get marked below. 1064 // This is not necessary for the common case of a single tied use. 1065 hasEarlyClobbers = true; 1066 } 1067 1068 // Second scan. 1069 // Allocate virtreg uses. 1070 bool HasUndefUse = false; 1071 for (unsigned I = 0; I != VirtOpEnd; ++I) { 1072 MachineOperand &MO = MI.getOperand(I); 1073 if (!MO.isReg()) continue; 1074 Register Reg = MO.getReg(); 1075 if (!Reg.isVirtual()) 1076 continue; 1077 if (MO.isUse()) { 1078 if (MO.isUndef()) { 1079 HasUndefUse = true; 1080 // There is no need to allocate a register for an undef use. 1081 continue; 1082 } 1083 1084 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1085 // the def block (removing the vreg uses). 1086 mayLiveIn(Reg); 1087 1088 LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg); 1089 MCPhysReg PhysReg = LR.PhysReg; 1090 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0; 1091 if (setPhysReg(MI, MO, PhysReg)) 1092 killVirtReg(LR); 1093 } 1094 } 1095 1096 // Allocate undef operands. This is a separate step because in a situation 1097 // like ` = OP undef %X, %X` both operands need the same register assign 1098 // so we should perform the normal assignment first. 1099 if (HasUndefUse) { 1100 for (MachineOperand &MO : MI.uses()) { 1101 if (!MO.isReg() || !MO.isUse()) 1102 continue; 1103 Register Reg = MO.getReg(); 1104 if (!Reg.isVirtual()) 1105 continue; 1106 1107 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1108 allocVirtRegUndef(MO); 1109 } 1110 } 1111 1112 // Track registers defined by instruction - early clobbers and tied uses at 1113 // this point. 1114 UsedInInstr.clear(); 1115 if (hasEarlyClobbers) { 1116 for (const MachineOperand &MO : MI.operands()) { 1117 if (!MO.isReg()) continue; 1118 Register Reg = MO.getReg(); 1119 if (!Reg || !Reg.isPhysical()) 1120 continue; 1121 // Look for physreg defs and tied uses. 1122 if (!MO.isDef() && !MO.isTied()) continue; 1123 markRegUsedInInstr(Reg); 1124 } 1125 } 1126 1127 unsigned DefOpEnd = MI.getNumOperands(); 1128 if (MI.isCall()) { 1129 // Spill all virtregs before a call. This serves one purpose: If an 1130 // exception is thrown, the landing pad is going to expect to find 1131 // registers in their spill slots. 1132 // Note: although this is appealing to just consider all definitions 1133 // as call-clobbered, this is not correct because some of those 1134 // definitions may be used later on and we do not want to reuse 1135 // those for virtual registers in between. 1136 LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1137 spillAll(MI, /*OnlyLiveOut*/ false); 1138 } 1139 1140 // Third scan. 1141 // Mark all physreg defs as used before allocating virtreg defs. 1142 for (unsigned I = 0; I != DefOpEnd; ++I) { 1143 const MachineOperand &MO = MI.getOperand(I); 1144 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1145 continue; 1146 Register Reg = MO.getReg(); 1147 1148 if (!Reg || !Reg.isPhysical() || !MRI->isAllocatable(Reg)) 1149 continue; 1150 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); 1151 } 1152 1153 // Fourth scan. 1154 // Allocate defs and collect dead defs. 1155 for (unsigned I = 0; I != DefOpEnd; ++I) { 1156 const MachineOperand &MO = MI.getOperand(I); 1157 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1158 continue; 1159 Register Reg = MO.getReg(); 1160 1161 // We have already dealt with phys regs in the previous scan. 1162 if (Reg.isPhysical()) 1163 continue; 1164 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg); 1165 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) { 1166 VirtDead.push_back(Reg); 1167 CopyDstReg = Register(); // cancel coalescing; 1168 } else 1169 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0; 1170 } 1171 1172 // Kill dead defs after the scan to ensure that multiple defs of the same 1173 // register are allocated identically. We didn't need to do this for uses 1174 // because we are creating our own kill flags, and they are always at the last 1175 // use. 1176 for (Register VirtReg : VirtDead) 1177 killVirtReg(VirtReg); 1178 VirtDead.clear(); 1179 1180 LLVM_DEBUG(dbgs() << "<< " << MI); 1181 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) { 1182 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1183 Coalesced.push_back(&MI); 1184 } 1185 } 1186 1187 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1188 MachineOperand &MO = MI.getDebugOperand(0); 1189 1190 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1191 // mostly constants and frame indices. 1192 if (!MO.isReg()) 1193 return; 1194 Register Reg = MO.getReg(); 1195 if (!Register::isVirtualRegister(Reg)) 1196 return; 1197 1198 // See if this virtual register has already been allocated to a physical 1199 // register or spilled to a stack slot. 1200 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1201 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1202 setPhysReg(MI, MO, LRI->PhysReg); 1203 } else { 1204 int SS = StackSlotForVirtReg[Reg]; 1205 if (SS != -1) { 1206 // Modify DBG_VALUE now that the value is in a spill slot. 1207 updateDbgValueForSpill(MI, SS); 1208 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI); 1209 return; 1210 } 1211 1212 // We can't allocate a physreg for a DebugValue, sorry! 1213 LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 1214 MO.setReg(Register()); 1215 } 1216 1217 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1218 // that future spills of Reg will have DBG_VALUEs. 1219 LiveDbgValueMap[Reg].push_back(&MI); 1220 } 1221 1222 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1223 this->MBB = &MBB; 1224 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1225 1226 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1227 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1228 1229 MachineBasicBlock::iterator MII = MBB.begin(); 1230 1231 // Add live-in registers as live. 1232 for (const MachineBasicBlock::RegisterMaskPair &LI : MBB.liveins()) 1233 if (MRI->isAllocatable(LI.PhysReg)) 1234 definePhysReg(MII, LI.PhysReg, regReserved); 1235 1236 VirtDead.clear(); 1237 Coalesced.clear(); 1238 1239 // Otherwise, sequentially allocate each instruction in the MBB. 1240 for (MachineInstr &MI : MBB) { 1241 LLVM_DEBUG( 1242 dbgs() << "\n>> " << MI << "Regs:"; 1243 dumpState() 1244 ); 1245 1246 // Special handling for debug values. Note that they are not allowed to 1247 // affect codegen of the other instructions in any way. 1248 if (MI.isDebugValue()) { 1249 handleDebugValue(MI); 1250 continue; 1251 } 1252 1253 allocateInstruction(MI); 1254 } 1255 1256 // Spill all physical registers holding virtual registers now. 1257 LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1258 spillAll(MBB.getFirstTerminator(), /*OnlyLiveOut*/ true); 1259 1260 // Erase all the coalesced copies. We are delaying it until now because 1261 // LiveVirtRegs might refer to the instrs. 1262 for (MachineInstr *MI : Coalesced) 1263 MBB.erase(MI); 1264 NumCoalesced += Coalesced.size(); 1265 1266 LLVM_DEBUG(MBB.dump()); 1267 } 1268 1269 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1270 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1271 << "********** Function: " << MF.getName() << '\n'); 1272 MRI = &MF.getRegInfo(); 1273 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1274 TRI = STI.getRegisterInfo(); 1275 TII = STI.getInstrInfo(); 1276 MFI = &MF.getFrameInfo(); 1277 MRI->freezeReservedRegs(MF); 1278 RegClassInfo.runOnMachineFunction(MF); 1279 UsedInInstr.clear(); 1280 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1281 1282 // initialize the virtual->physical register map to have a 'null' 1283 // mapping for all virtual registers 1284 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1285 StackSlotForVirtReg.resize(NumVirtRegs); 1286 LiveVirtRegs.setUniverse(NumVirtRegs); 1287 MayLiveAcrossBlocks.clear(); 1288 MayLiveAcrossBlocks.resize(NumVirtRegs); 1289 1290 // Loop over all of the basic blocks, eliminating virtual register references 1291 for (MachineBasicBlock &MBB : MF) 1292 allocateBasicBlock(MBB); 1293 1294 // All machine operands and other references to virtual registers have been 1295 // replaced. Remove the virtual registers. 1296 MRI->clearVirtRegs(); 1297 1298 StackSlotForVirtReg.clear(); 1299 LiveDbgValueMap.clear(); 1300 return true; 1301 } 1302 1303 FunctionPass *llvm::createFastRegisterAllocator() { 1304 return new RegAllocFast(); 1305 } 1306