1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This register allocator allocates registers to a basic block at a time, 11 // attempting to keep values in registers and reusing registers as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "llvm/BasicBlock.h" 17 #include "llvm/CodeGen/MachineFunctionPass.h" 18 #include "llvm/CodeGen/MachineInstr.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegAllocRegistry.h" 24 #include "llvm/CodeGen/RegisterClassInfo.h" 25 #include "llvm/Target/TargetInstrInfo.h" 26 #include "llvm/Target/TargetMachine.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/IndexedMap.h" 33 #include "llvm/ADT/SmallSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/SparseSet.h" 36 #include "llvm/ADT/Statistic.h" 37 #include "llvm/ADT/STLExtras.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 STATISTIC(NumStores, "Number of stores added"); 42 STATISTIC(NumLoads , "Number of loads added"); 43 STATISTIC(NumCopies, "Number of copies coalesced"); 44 45 static RegisterRegAlloc 46 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 47 48 namespace { 49 class RAFast : public MachineFunctionPass { 50 public: 51 static char ID; 52 RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1), 53 isBulkSpilling(false) {} 54 private: 55 const TargetMachine *TM; 56 MachineFunction *MF; 57 MachineRegisterInfo *MRI; 58 const TargetRegisterInfo *TRI; 59 const TargetInstrInfo *TII; 60 RegisterClassInfo RegClassInfo; 61 62 // Basic block currently being allocated. 63 MachineBasicBlock *MBB; 64 65 // StackSlotForVirtReg - Maps virtual regs to the frame index where these 66 // values are spilled. 67 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 68 69 // Everything we know about a live virtual register. 70 struct LiveReg { 71 MachineInstr *LastUse; // Last instr to use reg. 72 unsigned VirtReg; // Virtual register number. 73 unsigned PhysReg; // Currently held here. 74 unsigned short LastOpNum; // OpNum on LastUse. 75 bool Dirty; // Register needs spill. 76 77 explicit LiveReg(unsigned v) 78 : LastUse(0), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false) {} 79 80 unsigned getSparseSetIndex() const { 81 return TargetRegisterInfo::virtReg2Index(VirtReg); 82 } 83 }; 84 85 typedef SparseSet<LiveReg> LiveRegMap; 86 87 // LiveVirtRegs - This map contains entries for each virtual register 88 // that is currently available in a physical register. 89 LiveRegMap LiveVirtRegs; 90 91 DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap; 92 93 // RegState - Track the state of a physical register. 94 enum RegState { 95 // A disabled register is not available for allocation, but an alias may 96 // be in use. A register can only be moved out of the disabled state if 97 // all aliases are disabled. 98 regDisabled, 99 100 // A free register is not currently in use and can be allocated 101 // immediately without checking aliases. 102 regFree, 103 104 // A reserved register has been assigned explicitly (e.g., setting up a 105 // call parameter), and it remains reserved until it is used. 106 regReserved 107 108 // A register state may also be a virtual register number, indication that 109 // the physical register is currently allocated to a virtual register. In 110 // that case, LiveVirtRegs contains the inverse mapping. 111 }; 112 113 // PhysRegState - One of the RegState enums, or a virtreg. 114 std::vector<unsigned> PhysRegState; 115 116 typedef SparseSet<unsigned> UsedInInstrSet; 117 118 // UsedInInstr - Set of physregs that are used in the current instruction, 119 // and so cannot be allocated. 120 UsedInInstrSet UsedInInstr; 121 122 // SkippedInstrs - Descriptors of instructions whose clobber list was 123 // ignored because all registers were spilled. It is still necessary to 124 // mark all the clobbered registers as used by the function. 125 SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs; 126 127 // isBulkSpilling - This flag is set when LiveRegMap will be cleared 128 // completely after spilling all live registers. LiveRegMap entries should 129 // not be erased. 130 bool isBulkSpilling; 131 132 enum { 133 spillClean = 1, 134 spillDirty = 100, 135 spillImpossible = ~0u 136 }; 137 public: 138 virtual const char *getPassName() const { 139 return "Fast Register Allocator"; 140 } 141 142 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 143 AU.setPreservesCFG(); 144 MachineFunctionPass::getAnalysisUsage(AU); 145 } 146 147 private: 148 bool runOnMachineFunction(MachineFunction &Fn); 149 void AllocateBasicBlock(); 150 void handleThroughOperands(MachineInstr *MI, 151 SmallVectorImpl<unsigned> &VirtDead); 152 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); 153 bool isLastUseOfLocalReg(MachineOperand&); 154 155 void addKillFlag(const LiveReg&); 156 void killVirtReg(LiveRegMap::iterator); 157 void killVirtReg(unsigned VirtReg); 158 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator); 159 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 160 161 void usePhysReg(MachineOperand&); 162 void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState); 163 unsigned calcSpillCost(unsigned PhysReg) const; 164 void assignVirtToPhysReg(LiveReg&, unsigned PhysReg); 165 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 166 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 167 } 168 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 169 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 170 } 171 LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg); 172 LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator, 173 unsigned Hint); 174 LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum, 175 unsigned VirtReg, unsigned Hint); 176 LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum, 177 unsigned VirtReg, unsigned Hint); 178 void spillAll(MachineInstr *MI); 179 bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg); 180 void addRetOperands(MachineBasicBlock *MBB); 181 }; 182 char RAFast::ID = 0; 183 } 184 185 /// getStackSpaceFor - This allocates space for the specified virtual register 186 /// to be held on the stack. 187 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { 188 // Find the location Reg would belong... 189 int SS = StackSlotForVirtReg[VirtReg]; 190 if (SS != -1) 191 return SS; // Already has space allocated? 192 193 // Allocate a new stack object for this spill location... 194 int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), 195 RC->getAlignment()); 196 197 // Assign the slot. 198 StackSlotForVirtReg[VirtReg] = FrameIdx; 199 return FrameIdx; 200 } 201 202 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to 203 /// its virtual register, and it is guaranteed to be a block-local register. 204 /// 205 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) { 206 // If the register has ever been spilled or reloaded, we conservatively assume 207 // it is a global register used in multiple blocks. 208 if (StackSlotForVirtReg[MO.getReg()] != -1) 209 return false; 210 211 // Check that the use/def chain has exactly one operand - MO. 212 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 213 if (&I.getOperand() != &MO) 214 return false; 215 return ++I == MRI->reg_nodbg_end(); 216 } 217 218 /// addKillFlag - Set kill flags on last use of a virtual register. 219 void RAFast::addKillFlag(const LiveReg &LR) { 220 if (!LR.LastUse) return; 221 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 222 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 223 if (MO.getReg() == LR.PhysReg) 224 MO.setIsKill(); 225 else 226 LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true); 227 } 228 } 229 230 /// killVirtReg - Mark virtreg as no longer available. 231 void RAFast::killVirtReg(LiveRegMap::iterator LRI) { 232 addKillFlag(*LRI); 233 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg && 234 "Broken RegState mapping"); 235 PhysRegState[LRI->PhysReg] = regFree; 236 // Erase from LiveVirtRegs unless we're spilling in bulk. 237 if (!isBulkSpilling) 238 LiveVirtRegs.erase(LRI); 239 } 240 241 /// killVirtReg - Mark virtreg as no longer available. 242 void RAFast::killVirtReg(unsigned VirtReg) { 243 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 244 "killVirtReg needs a virtual register"); 245 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 246 if (LRI != LiveVirtRegs.end()) 247 killVirtReg(LRI); 248 } 249 250 /// spillVirtReg - This method spills the value specified by VirtReg into the 251 /// corresponding stack slot if needed. 252 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) { 253 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 254 "Spilling a physical register is illegal!"); 255 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 256 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register"); 257 spillVirtReg(MI, LRI); 258 } 259 260 /// spillVirtReg - Do the actual work of spilling. 261 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, 262 LiveRegMap::iterator LRI) { 263 LiveReg &LR = *LRI; 264 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping"); 265 266 if (LR.Dirty) { 267 // If this physreg is used by the instruction, we want to kill it on the 268 // instruction, not on the spill. 269 bool SpillKill = LR.LastUse != MI; 270 LR.Dirty = false; 271 DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI) 272 << " in " << PrintReg(LR.PhysReg, TRI)); 273 const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg); 274 int FI = getStackSpaceFor(LRI->VirtReg, RC); 275 DEBUG(dbgs() << " to stack slot #" << FI << "\n"); 276 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI); 277 ++NumStores; // Update statistics 278 279 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 280 // identify spilled location as the place to find corresponding variable's 281 // value. 282 SmallVector<MachineInstr *, 4> &LRIDbgValues = 283 LiveDbgValueMap[LRI->VirtReg]; 284 for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) { 285 MachineInstr *DBG = LRIDbgValues[li]; 286 const MDNode *MDPtr = 287 DBG->getOperand(DBG->getNumOperands()-1).getMetadata(); 288 int64_t Offset = 0; 289 if (DBG->getOperand(1).isImm()) 290 Offset = DBG->getOperand(1).getImm(); 291 DebugLoc DL; 292 if (MI == MBB->end()) { 293 // If MI is at basic block end then use last instruction's location. 294 MachineBasicBlock::iterator EI = MI; 295 DL = (--EI)->getDebugLoc(); 296 } 297 else 298 DL = MI->getDebugLoc(); 299 if (MachineInstr *NewDV = 300 TII->emitFrameIndexDebugValue(*MF, FI, Offset, MDPtr, DL)) { 301 MachineBasicBlock *MBB = DBG->getParent(); 302 MBB->insert(MI, NewDV); 303 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV); 304 } 305 } 306 // Now this register is spilled there is should not be any DBG_VALUE 307 // pointing to this register because they are all pointing to spilled value 308 // now. 309 LRIDbgValues.clear(); 310 if (SpillKill) 311 LR.LastUse = 0; // Don't kill register again 312 } 313 killVirtReg(LRI); 314 } 315 316 /// spillAll - Spill all dirty virtregs without killing them. 317 void RAFast::spillAll(MachineInstr *MI) { 318 if (LiveVirtRegs.empty()) return; 319 isBulkSpilling = true; 320 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 321 // of spilling here is deterministic, if arbitrary. 322 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end(); 323 i != e; ++i) 324 spillVirtReg(MI, i); 325 LiveVirtRegs.clear(); 326 isBulkSpilling = false; 327 } 328 329 /// usePhysReg - Handle the direct use of a physical register. 330 /// Check that the register is not used by a virtreg. 331 /// Kill the physreg, marking it free. 332 /// This may add implicit kills to MO->getParent() and invalidate MO. 333 void RAFast::usePhysReg(MachineOperand &MO) { 334 unsigned PhysReg = MO.getReg(); 335 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 336 "Bad usePhysReg operand"); 337 338 switch (PhysRegState[PhysReg]) { 339 case regDisabled: 340 break; 341 case regReserved: 342 PhysRegState[PhysReg] = regFree; 343 // Fall through 344 case regFree: 345 UsedInInstr.insert(PhysReg); 346 MO.setIsKill(); 347 return; 348 default: 349 // The physreg was allocated to a virtual register. That means the value we 350 // wanted has been clobbered. 351 llvm_unreachable("Instruction uses an allocated register"); 352 } 353 354 // Maybe a superregister is reserved? 355 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 356 unsigned Alias = *AI; 357 switch (PhysRegState[Alias]) { 358 case regDisabled: 359 break; 360 case regReserved: 361 assert(TRI->isSuperRegister(PhysReg, Alias) && 362 "Instruction is not using a subregister of a reserved register"); 363 // Leave the superregister in the working set. 364 PhysRegState[Alias] = regFree; 365 UsedInInstr.insert(Alias); 366 MO.getParent()->addRegisterKilled(Alias, TRI, true); 367 return; 368 case regFree: 369 if (TRI->isSuperRegister(PhysReg, Alias)) { 370 // Leave the superregister in the working set. 371 UsedInInstr.insert(Alias); 372 MO.getParent()->addRegisterKilled(Alias, TRI, true); 373 return; 374 } 375 // Some other alias was in the working set - clear it. 376 PhysRegState[Alias] = regDisabled; 377 break; 378 default: 379 llvm_unreachable("Instruction uses an alias of an allocated register"); 380 } 381 } 382 383 // All aliases are disabled, bring register into working set. 384 PhysRegState[PhysReg] = regFree; 385 UsedInInstr.insert(PhysReg); 386 MO.setIsKill(); 387 } 388 389 /// definePhysReg - Mark PhysReg as reserved or free after spilling any 390 /// virtregs. This is very similar to defineVirtReg except the physreg is 391 /// reserved instead of allocated. 392 void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg, 393 RegState NewState) { 394 UsedInInstr.insert(PhysReg); 395 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 396 case regDisabled: 397 break; 398 default: 399 spillVirtReg(MI, VirtReg); 400 // Fall through. 401 case regFree: 402 case regReserved: 403 PhysRegState[PhysReg] = NewState; 404 return; 405 } 406 407 // This is a disabled register, disable all aliases. 408 PhysRegState[PhysReg] = NewState; 409 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 410 unsigned Alias = *AI; 411 switch (unsigned VirtReg = PhysRegState[Alias]) { 412 case regDisabled: 413 break; 414 default: 415 spillVirtReg(MI, VirtReg); 416 // Fall through. 417 case regFree: 418 case regReserved: 419 PhysRegState[Alias] = regDisabled; 420 if (TRI->isSuperRegister(PhysReg, Alias)) 421 return; 422 break; 423 } 424 } 425 } 426 427 428 // calcSpillCost - Return the cost of spilling clearing out PhysReg and 429 // aliases so it is free for allocation. 430 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it 431 // can be allocated directly. 432 // Returns spillImpossible when PhysReg or an alias can't be spilled. 433 unsigned RAFast::calcSpillCost(unsigned PhysReg) const { 434 if (UsedInInstr.count(PhysReg)) { 435 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n"); 436 return spillImpossible; 437 } 438 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 439 case regDisabled: 440 break; 441 case regFree: 442 return 0; 443 case regReserved: 444 DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding " 445 << PrintReg(PhysReg, TRI) << " is reserved already.\n"); 446 return spillImpossible; 447 default: { 448 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 449 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 450 return I->Dirty ? spillDirty : spillClean; 451 } 452 } 453 454 // This is a disabled register, add up cost of aliases. 455 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n"); 456 unsigned Cost = 0; 457 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 458 unsigned Alias = *AI; 459 if (UsedInInstr.count(Alias)) 460 return spillImpossible; 461 switch (unsigned VirtReg = PhysRegState[Alias]) { 462 case regDisabled: 463 break; 464 case regFree: 465 ++Cost; 466 break; 467 case regReserved: 468 return spillImpossible; 469 default: { 470 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 471 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 472 Cost += I->Dirty ? spillDirty : spillClean; 473 break; 474 } 475 } 476 } 477 return Cost; 478 } 479 480 481 /// assignVirtToPhysReg - This method updates local state so that we know 482 /// that PhysReg is the proper container for VirtReg now. The physical 483 /// register must not be used for anything else when this is called. 484 /// 485 void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) { 486 DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to " 487 << PrintReg(PhysReg, TRI) << "\n"); 488 PhysRegState[PhysReg] = LR.VirtReg; 489 assert(!LR.PhysReg && "Already assigned a physreg"); 490 LR.PhysReg = PhysReg; 491 } 492 493 RAFast::LiveRegMap::iterator 494 RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { 495 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 496 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared"); 497 assignVirtToPhysReg(*LRI, PhysReg); 498 return LRI; 499 } 500 501 /// allocVirtReg - Allocate a physical register for VirtReg. 502 RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI, 503 LiveRegMap::iterator LRI, 504 unsigned Hint) { 505 const unsigned VirtReg = LRI->VirtReg; 506 507 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 508 "Can only allocate virtual registers"); 509 510 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); 511 512 // Ignore invalid hints. 513 if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) || 514 !RC->contains(Hint) || !MRI->isAllocatable(Hint))) 515 Hint = 0; 516 517 // Take hint when possible. 518 if (Hint) { 519 // Ignore the hint if we would have to spill a dirty register. 520 unsigned Cost = calcSpillCost(Hint); 521 if (Cost < spillDirty) { 522 if (Cost) 523 definePhysReg(MI, Hint, regFree); 524 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 525 // That invalidates LRI, so run a new lookup for VirtReg. 526 return assignVirtToPhysReg(VirtReg, Hint); 527 } 528 } 529 530 ArrayRef<unsigned> AO = RegClassInfo.getOrder(RC); 531 532 // First try to find a completely free register. 533 for (ArrayRef<unsigned>::iterator I = AO.begin(), E = AO.end(); I != E; ++I) { 534 unsigned PhysReg = *I; 535 if (PhysRegState[PhysReg] == regFree && !UsedInInstr.count(PhysReg)) { 536 assignVirtToPhysReg(*LRI, PhysReg); 537 return LRI; 538 } 539 } 540 541 DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from " 542 << RC->getName() << "\n"); 543 544 unsigned BestReg = 0, BestCost = spillImpossible; 545 for (ArrayRef<unsigned>::iterator I = AO.begin(), E = AO.end(); I != E; ++I) { 546 unsigned Cost = calcSpillCost(*I); 547 DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n"); 548 DEBUG(dbgs() << "\tCost: " << Cost << "\n"); 549 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n"); 550 // Cost is 0 when all aliases are already disabled. 551 if (Cost == 0) { 552 assignVirtToPhysReg(*LRI, *I); 553 return LRI; 554 } 555 if (Cost < BestCost) 556 BestReg = *I, BestCost = Cost; 557 } 558 559 if (BestReg) { 560 definePhysReg(MI, BestReg, regFree); 561 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 562 // That invalidates LRI, so run a new lookup for VirtReg. 563 return assignVirtToPhysReg(VirtReg, BestReg); 564 } 565 566 // Nothing we can do. Report an error and keep going with a bad allocation. 567 MI->emitError("ran out of registers during register allocation"); 568 definePhysReg(MI, *AO.begin(), regFree); 569 return assignVirtToPhysReg(VirtReg, *AO.begin()); 570 } 571 572 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty. 573 RAFast::LiveRegMap::iterator 574 RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum, 575 unsigned VirtReg, unsigned Hint) { 576 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 577 "Not a virtual register"); 578 LiveRegMap::iterator LRI; 579 bool New; 580 tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 581 if (New) { 582 // If there is no hint, peek at the only use of this register. 583 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 584 MRI->hasOneNonDBGUse(VirtReg)) { 585 const MachineInstr &UseMI = *MRI->use_nodbg_begin(VirtReg); 586 // It's a copy, use the destination register as a hint. 587 if (UseMI.isCopyLike()) 588 Hint = UseMI.getOperand(0).getReg(); 589 } 590 LRI = allocVirtReg(MI, LRI, Hint); 591 } else if (LRI->LastUse) { 592 // Redefining a live register - kill at the last use, unless it is this 593 // instruction defining VirtReg multiple times. 594 if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 595 addKillFlag(*LRI); 596 } 597 assert(LRI->PhysReg && "Register not assigned"); 598 LRI->LastUse = MI; 599 LRI->LastOpNum = OpNum; 600 LRI->Dirty = true; 601 UsedInInstr.insert(LRI->PhysReg); 602 return LRI; 603 } 604 605 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it. 606 RAFast::LiveRegMap::iterator 607 RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum, 608 unsigned VirtReg, unsigned Hint) { 609 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 610 "Not a virtual register"); 611 LiveRegMap::iterator LRI; 612 bool New; 613 tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 614 MachineOperand &MO = MI->getOperand(OpNum); 615 if (New) { 616 LRI = allocVirtReg(MI, LRI, Hint); 617 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); 618 int FrameIndex = getStackSpaceFor(VirtReg, RC); 619 DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into " 620 << PrintReg(LRI->PhysReg, TRI) << "\n"); 621 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI); 622 ++NumLoads; 623 } else if (LRI->Dirty) { 624 if (isLastUseOfLocalReg(MO)) { 625 DEBUG(dbgs() << "Killing last use: " << MO << "\n"); 626 if (MO.isUse()) 627 MO.setIsKill(); 628 else 629 MO.setIsDead(); 630 } else if (MO.isKill()) { 631 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n"); 632 MO.setIsKill(false); 633 } else if (MO.isDead()) { 634 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n"); 635 MO.setIsDead(false); 636 } 637 } else if (MO.isKill()) { 638 // We must remove kill flags from uses of reloaded registers because the 639 // register would be killed immediately, and there might be a second use: 640 // %foo = OR %x<kill>, %x 641 // This would cause a second reload of %x into a different register. 642 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n"); 643 MO.setIsKill(false); 644 } else if (MO.isDead()) { 645 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n"); 646 MO.setIsDead(false); 647 } 648 assert(LRI->PhysReg && "Register not assigned"); 649 LRI->LastUse = MI; 650 LRI->LastOpNum = OpNum; 651 UsedInInstr.insert(LRI->PhysReg); 652 return LRI; 653 } 654 655 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering 656 // subregs. This may invalidate any operand pointers. 657 // Return true if the operand kills its register. 658 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) { 659 MachineOperand &MO = MI->getOperand(OpNum); 660 bool Dead = MO.isDead(); 661 if (!MO.getSubReg()) { 662 MO.setReg(PhysReg); 663 return MO.isKill() || Dead; 664 } 665 666 // Handle subregister index. 667 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 668 MO.setSubReg(0); 669 670 // A kill flag implies killing the full register. Add corresponding super 671 // register kill. 672 if (MO.isKill()) { 673 MI->addRegisterKilled(PhysReg, TRI, true); 674 return true; 675 } 676 677 // A <def,read-undef> of a sub-register requires an implicit def of the full 678 // register. 679 if (MO.isDef() && MO.isUndef()) 680 MI->addRegisterDefined(PhysReg, TRI); 681 682 return Dead; 683 } 684 685 // Handle special instruction operand like early clobbers and tied ops when 686 // there are additional physreg defines. 687 void RAFast::handleThroughOperands(MachineInstr *MI, 688 SmallVectorImpl<unsigned> &VirtDead) { 689 DEBUG(dbgs() << "Scanning for through registers:"); 690 SmallSet<unsigned, 8> ThroughRegs; 691 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 692 MachineOperand &MO = MI->getOperand(i); 693 if (!MO.isReg()) continue; 694 unsigned Reg = MO.getReg(); 695 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 696 continue; 697 if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) || 698 (MO.getSubReg() && MI->readsVirtualRegister(Reg))) { 699 if (ThroughRegs.insert(Reg)) 700 DEBUG(dbgs() << ' ' << PrintReg(Reg)); 701 } 702 } 703 704 // If any physreg defines collide with preallocated through registers, 705 // we must spill and reallocate. 706 DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 707 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 708 MachineOperand &MO = MI->getOperand(i); 709 if (!MO.isReg() || !MO.isDef()) continue; 710 unsigned Reg = MO.getReg(); 711 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 712 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 713 UsedInInstr.insert(*AI); 714 if (ThroughRegs.count(PhysRegState[*AI])) 715 definePhysReg(MI, *AI, regFree); 716 } 717 } 718 719 SmallVector<unsigned, 8> PartialDefs; 720 DEBUG(dbgs() << "Allocating tied uses.\n"); 721 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 722 MachineOperand &MO = MI->getOperand(i); 723 if (!MO.isReg()) continue; 724 unsigned Reg = MO.getReg(); 725 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 726 if (MO.isUse()) { 727 unsigned DefIdx = 0; 728 if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue; 729 DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand " 730 << DefIdx << ".\n"); 731 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); 732 unsigned PhysReg = LRI->PhysReg; 733 setPhysReg(MI, i, PhysReg); 734 // Note: we don't update the def operand yet. That would cause the normal 735 // def-scan to attempt spilling. 736 } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) { 737 DEBUG(dbgs() << "Partial redefine: " << MO << "\n"); 738 // Reload the register, but don't assign to the operand just yet. 739 // That would confuse the later phys-def processing pass. 740 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); 741 PartialDefs.push_back(LRI->PhysReg); 742 } 743 } 744 745 DEBUG(dbgs() << "Allocating early clobbers.\n"); 746 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 747 MachineOperand &MO = MI->getOperand(i); 748 if (!MO.isReg()) continue; 749 unsigned Reg = MO.getReg(); 750 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 751 if (!MO.isEarlyClobber()) 752 continue; 753 // Note: defineVirtReg may invalidate MO. 754 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0); 755 unsigned PhysReg = LRI->PhysReg; 756 if (setPhysReg(MI, i, PhysReg)) 757 VirtDead.push_back(Reg); 758 } 759 760 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 761 UsedInInstr.clear(); 762 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 763 MachineOperand &MO = MI->getOperand(i); 764 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 765 unsigned Reg = MO.getReg(); 766 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 767 DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI) 768 << " as used in instr\n"); 769 UsedInInstr.insert(Reg); 770 } 771 772 // Also mark PartialDefs as used to avoid reallocation. 773 for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i) 774 UsedInInstr.insert(PartialDefs[i]); 775 } 776 777 /// addRetOperand - ensure that a return instruction has an operand for each 778 /// value live out of the function. 779 /// 780 /// Things marked both call and return are tail calls; do not do this for them. 781 /// The tail callee need not take the same registers as input that it produces 782 /// as output, and there are dependencies for its input registers elsewhere. 783 /// 784 /// FIXME: This should be done as part of instruction selection, and this helper 785 /// should be deleted. Until then, we use custom logic here to create the proper 786 /// operand under all circumstances. We can't use addRegisterKilled because that 787 /// doesn't make sense for undefined values. We can't simply avoid calling it 788 /// for undefined values, because we must ensure that the operand always exists. 789 void RAFast::addRetOperands(MachineBasicBlock *MBB) { 790 if (MBB->empty() || !MBB->back().isReturn() || MBB->back().isCall()) 791 return; 792 793 MachineInstr *MI = &MBB->back(); 794 795 for (MachineRegisterInfo::liveout_iterator 796 I = MBB->getParent()->getRegInfo().liveout_begin(), 797 E = MBB->getParent()->getRegInfo().liveout_end(); I != E; ++I) { 798 unsigned Reg = *I; 799 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 800 "Cannot have a live-out virtual register."); 801 802 bool hasDef = PhysRegState[Reg] == regReserved; 803 804 // Check if this register already has an operand. 805 bool Found = false; 806 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 807 MachineOperand &MO = MI->getOperand(i); 808 if (!MO.isReg() || !MO.isUse()) 809 continue; 810 811 unsigned OperReg = MO.getReg(); 812 if (!TargetRegisterInfo::isPhysicalRegister(OperReg)) 813 continue; 814 815 if (OperReg == Reg || TRI->isSuperRegister(OperReg, Reg)) { 816 // If the ret already has an operand for this physreg or a superset, 817 // don't duplicate it. Set the kill flag if the value is defined. 818 if (hasDef && !MO.isKill()) 819 MO.setIsKill(); 820 Found = true; 821 break; 822 } 823 } 824 if (!Found) 825 MI->addOperand(MachineOperand::CreateReg(Reg, 826 false /*IsDef*/, 827 true /*IsImp*/, 828 hasDef/*IsKill*/)); 829 } 830 } 831 832 void RAFast::AllocateBasicBlock() { 833 DEBUG(dbgs() << "\nAllocating " << *MBB); 834 835 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 836 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 837 838 MachineBasicBlock::iterator MII = MBB->begin(); 839 840 // Add live-in registers as live. 841 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 842 E = MBB->livein_end(); I != E; ++I) 843 if (MRI->isAllocatable(*I)) 844 definePhysReg(MII, *I, regReserved); 845 846 SmallVector<unsigned, 8> VirtDead; 847 SmallVector<MachineInstr*, 32> Coalesced; 848 849 // Otherwise, sequentially allocate each instruction in the MBB. 850 while (MII != MBB->end()) { 851 MachineInstr *MI = MII++; 852 const MCInstrDesc &MCID = MI->getDesc(); 853 DEBUG({ 854 dbgs() << "\n>> " << *MI << "Regs:"; 855 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 856 if (PhysRegState[Reg] == regDisabled) continue; 857 dbgs() << " " << TRI->getName(Reg); 858 switch(PhysRegState[Reg]) { 859 case regFree: 860 break; 861 case regReserved: 862 dbgs() << "*"; 863 break; 864 default: { 865 dbgs() << '=' << PrintReg(PhysRegState[Reg]); 866 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]); 867 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 868 if (I->Dirty) 869 dbgs() << "*"; 870 assert(I->PhysReg == Reg && "Bad inverse map"); 871 break; 872 } 873 } 874 } 875 dbgs() << '\n'; 876 // Check that LiveVirtRegs is the inverse. 877 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 878 e = LiveVirtRegs.end(); i != e; ++i) { 879 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 880 "Bad map key"); 881 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 882 "Bad map value"); 883 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 884 } 885 }); 886 887 // Debug values are not allowed to change codegen in any way. 888 if (MI->isDebugValue()) { 889 bool ScanDbgValue = true; 890 while (ScanDbgValue) { 891 ScanDbgValue = false; 892 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 893 MachineOperand &MO = MI->getOperand(i); 894 if (!MO.isReg()) continue; 895 unsigned Reg = MO.getReg(); 896 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 897 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 898 if (LRI != LiveVirtRegs.end()) 899 setPhysReg(MI, i, LRI->PhysReg); 900 else { 901 int SS = StackSlotForVirtReg[Reg]; 902 if (SS == -1) { 903 // We can't allocate a physreg for a DebugValue, sorry! 904 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 905 MO.setReg(0); 906 } 907 else { 908 // Modify DBG_VALUE now that the value is in a spill slot. 909 int64_t Offset = MI->getOperand(1).getImm(); 910 const MDNode *MDPtr = 911 MI->getOperand(MI->getNumOperands()-1).getMetadata(); 912 DebugLoc DL = MI->getDebugLoc(); 913 if (MachineInstr *NewDV = 914 TII->emitFrameIndexDebugValue(*MF, SS, Offset, MDPtr, DL)) { 915 DEBUG(dbgs() << "Modifying debug info due to spill:" << 916 "\t" << *MI); 917 MachineBasicBlock *MBB = MI->getParent(); 918 MBB->insert(MBB->erase(MI), NewDV); 919 // Scan NewDV operands from the beginning. 920 MI = NewDV; 921 ScanDbgValue = true; 922 break; 923 } else { 924 // We can't allocate a physreg for a DebugValue; sorry! 925 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 926 MO.setReg(0); 927 } 928 } 929 } 930 LiveDbgValueMap[Reg].push_back(MI); 931 } 932 } 933 // Next instruction. 934 continue; 935 } 936 937 // If this is a copy, we may be able to coalesce. 938 unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0; 939 if (MI->isCopy()) { 940 CopyDst = MI->getOperand(0).getReg(); 941 CopySrc = MI->getOperand(1).getReg(); 942 CopyDstSub = MI->getOperand(0).getSubReg(); 943 CopySrcSub = MI->getOperand(1).getSubReg(); 944 } 945 946 // Track registers used by instruction. 947 UsedInInstr.clear(); 948 949 // First scan. 950 // Mark physreg uses and early clobbers as used. 951 // Find the end of the virtreg operands 952 unsigned VirtOpEnd = 0; 953 bool hasTiedOps = false; 954 bool hasEarlyClobbers = false; 955 bool hasPartialRedefs = false; 956 bool hasPhysDefs = false; 957 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 958 MachineOperand &MO = MI->getOperand(i); 959 if (!MO.isReg()) continue; 960 unsigned Reg = MO.getReg(); 961 if (!Reg) continue; 962 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 963 VirtOpEnd = i+1; 964 if (MO.isUse()) { 965 hasTiedOps = hasTiedOps || 966 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 967 } else { 968 if (MO.isEarlyClobber()) 969 hasEarlyClobbers = true; 970 if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) 971 hasPartialRedefs = true; 972 } 973 continue; 974 } 975 if (!MRI->isAllocatable(Reg)) continue; 976 if (MO.isUse()) { 977 usePhysReg(MO); 978 } else if (MO.isEarlyClobber()) { 979 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? 980 regFree : regReserved); 981 hasEarlyClobbers = true; 982 } else 983 hasPhysDefs = true; 984 } 985 986 // The instruction may have virtual register operands that must be allocated 987 // the same register at use-time and def-time: early clobbers and tied 988 // operands. If there are also physical defs, these registers must avoid 989 // both physical defs and uses, making them more constrained than normal 990 // operands. 991 // Similarly, if there are multiple defs and tied operands, we must make 992 // sure the same register is allocated to uses and defs. 993 // We didn't detect inline asm tied operands above, so just make this extra 994 // pass for all inline asm. 995 if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 996 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 997 handleThroughOperands(MI, VirtDead); 998 // Don't attempt coalescing when we have funny stuff going on. 999 CopyDst = 0; 1000 // Pretend we have early clobbers so the use operands get marked below. 1001 // This is not necessary for the common case of a single tied use. 1002 hasEarlyClobbers = true; 1003 } 1004 1005 // Second scan. 1006 // Allocate virtreg uses. 1007 for (unsigned i = 0; i != VirtOpEnd; ++i) { 1008 MachineOperand &MO = MI->getOperand(i); 1009 if (!MO.isReg()) continue; 1010 unsigned Reg = MO.getReg(); 1011 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 1012 if (MO.isUse()) { 1013 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst); 1014 unsigned PhysReg = LRI->PhysReg; 1015 CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0; 1016 if (setPhysReg(MI, i, PhysReg)) 1017 killVirtReg(LRI); 1018 } 1019 } 1020 1021 for (UsedInInstrSet::iterator 1022 I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I) 1023 MRI->setPhysRegUsed(*I); 1024 1025 // Track registers defined by instruction - early clobbers and tied uses at 1026 // this point. 1027 UsedInInstr.clear(); 1028 if (hasEarlyClobbers) { 1029 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1030 MachineOperand &MO = MI->getOperand(i); 1031 if (!MO.isReg()) continue; 1032 unsigned Reg = MO.getReg(); 1033 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1034 // Look for physreg defs and tied uses. 1035 if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue; 1036 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1037 UsedInInstr.insert(*AI); 1038 } 1039 } 1040 1041 unsigned DefOpEnd = MI->getNumOperands(); 1042 if (MI->isCall()) { 1043 // Spill all virtregs before a call. This serves two purposes: 1. If an 1044 // exception is thrown, the landing pad is going to expect to find 1045 // registers in their spill slots, and 2. we don't have to wade through 1046 // all the <imp-def> operands on the call instruction. 1047 DefOpEnd = VirtOpEnd; 1048 DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1049 spillAll(MI); 1050 1051 // The imp-defs are skipped below, but we still need to mark those 1052 // registers as used by the function. 1053 SkippedInstrs.insert(&MCID); 1054 } 1055 1056 // Third scan. 1057 // Allocate defs and collect dead defs. 1058 for (unsigned i = 0; i != DefOpEnd; ++i) { 1059 MachineOperand &MO = MI->getOperand(i); 1060 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1061 continue; 1062 unsigned Reg = MO.getReg(); 1063 1064 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1065 if (!MRI->isAllocatable(Reg)) continue; 1066 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? 1067 regFree : regReserved); 1068 continue; 1069 } 1070 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc); 1071 unsigned PhysReg = LRI->PhysReg; 1072 if (setPhysReg(MI, i, PhysReg)) { 1073 VirtDead.push_back(Reg); 1074 CopyDst = 0; // cancel coalescing; 1075 } else 1076 CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0; 1077 } 1078 1079 // Kill dead defs after the scan to ensure that multiple defs of the same 1080 // register are allocated identically. We didn't need to do this for uses 1081 // because we are crerating our own kill flags, and they are always at the 1082 // last use. 1083 for (unsigned i = 0, e = VirtDead.size(); i != e; ++i) 1084 killVirtReg(VirtDead[i]); 1085 VirtDead.clear(); 1086 1087 for (UsedInInstrSet::iterator 1088 I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I) 1089 MRI->setPhysRegUsed(*I); 1090 1091 if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) { 1092 DEBUG(dbgs() << "-- coalescing: " << *MI); 1093 Coalesced.push_back(MI); 1094 } else { 1095 DEBUG(dbgs() << "<< " << *MI); 1096 } 1097 } 1098 1099 // Spill all physical registers holding virtual registers now. 1100 DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1101 spillAll(MBB->getFirstTerminator()); 1102 1103 // Erase all the coalesced copies. We are delaying it until now because 1104 // LiveVirtRegs might refer to the instrs. 1105 for (unsigned i = 0, e = Coalesced.size(); i != e; ++i) 1106 MBB->erase(Coalesced[i]); 1107 NumCopies += Coalesced.size(); 1108 1109 // addRetOperands must run after we've seen all defs in this block. 1110 addRetOperands(MBB); 1111 1112 DEBUG(MBB->dump()); 1113 } 1114 1115 /// runOnMachineFunction - Register allocate the whole function 1116 /// 1117 bool RAFast::runOnMachineFunction(MachineFunction &Fn) { 1118 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1119 << "********** Function: " << Fn.getName() << '\n'); 1120 MF = &Fn; 1121 MRI = &MF->getRegInfo(); 1122 TM = &Fn.getTarget(); 1123 TRI = TM->getRegisterInfo(); 1124 TII = TM->getInstrInfo(); 1125 MRI->freezeReservedRegs(Fn); 1126 RegClassInfo.runOnMachineFunction(Fn); 1127 UsedInInstr.clear(); 1128 UsedInInstr.setUniverse(TRI->getNumRegs()); 1129 1130 assert(!MRI->isSSA() && "regalloc requires leaving SSA"); 1131 1132 // initialize the virtual->physical register map to have a 'null' 1133 // mapping for all virtual registers 1134 StackSlotForVirtReg.resize(MRI->getNumVirtRegs()); 1135 LiveVirtRegs.setUniverse(MRI->getNumVirtRegs()); 1136 1137 // Loop over all of the basic blocks, eliminating virtual register references 1138 for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end(); 1139 MBBi != MBBe; ++MBBi) { 1140 MBB = &*MBBi; 1141 AllocateBasicBlock(); 1142 } 1143 1144 // Add the clobber lists for all the instructions we skipped earlier. 1145 for (SmallPtrSet<const MCInstrDesc*, 4>::const_iterator 1146 I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I) 1147 if (const uint16_t *Defs = (*I)->getImplicitDefs()) 1148 while (*Defs) 1149 MRI->setPhysRegUsed(*Defs++); 1150 1151 // All machine operands and other references to virtual registers have been 1152 // replaced. Remove the virtual registers. 1153 MRI->clearVirtRegs(); 1154 1155 SkippedInstrs.clear(); 1156 StackSlotForVirtReg.clear(); 1157 LiveDbgValueMap.clear(); 1158 return true; 1159 } 1160 1161 FunctionPass *llvm::createFastRegisterAllocator() { 1162 return new RAFast(); 1163 } 1164